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“L’existence du quantum d’action (...) implique une sorte d’'incompatibilité entre le point de vue
de la localisation dans l'espace et dans le temps et le point de vue de I'évolution dynamique (...)
La localisation exacte dans I’espace et le temps est une sorte d’idéalisation statique qui exclut toute
évolution et toute dynamique. (...) Dans la mécanique classique, il était permis d’étudier pour
eux-mémes les déplacements dans I'espace et de définir ainsi les vitesses, les accélérations sans
s’occuper de la facon dont sont matériellement réalisés ces déplacements : de cette étude abstraite
des mouvements, on s'élevait ensuite a la dynamique en introduisant quelques principes physiques
nouveaux. Dans la mécanique quantique, une semblable division de I'exposé n’est plus en principe
admissible puisque la localisation spacio-temporelle qui est a la base de la cinématique est acceptable
seulement dans une mesure qui dépend des conditions dynamiques du mouvement...”

Louis de Broglie - « La physique nouvelle et les quanta » - (1937)
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Abstract (French)
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Doctor of Philosophy

Beyond pilot wave dynamics: non-linearity and non-equilibrium in quantum
mechanics

by Mohamed HATIFI

La mécanique quantique a modifié notre facon d’interpréter ce que jadis 1’on appelait communément "réalité
physique". A titre d’exemple, selon l'interprétation standard de la mécanique quantique (dite interprétation
probabiliste de Copenhague) les propriétés d'un objet quantique n’ont pas de réalité physique, du moins, pas
avant que ’observateur ne les mesure. De plus, tout semble se passer comme s’il y avait un indéterminisme in-
trinseque a la dynamique quantique qui ne permettrait pas de prédire avec certitude le résultat d"'une mesure.
Des lors, plusieurs interprétations physiques et philosophiques ont vu naissance afin de décrire (notre con-
naissance de) cette réalité.

C’est au cours de la conférence de Solvay en 1927 que Louis de Broglie, un opposant a l'interprétation prob-
abiliste, proposa une solution alternative qui permettait d’une part de restaurer le déterminisme (ainsi que
le réalisme) et d’autre part de remettre au premier plan la notion de trajectoire. Par la suite cette théorie
fut redécouverte et complétée par David Bohm pour donner naissance a la théorie connue aujourd’hui sous
l'appellation de théorie de ’onde pilote. John Bell a dit' a propos de cette interprétation : " En 1952, I'impossible
a été rendu possible. C’était dans l'article de David Bohm. Bohm a montré explicitement comment une de-
scription indéterministe pouvait étre transformée en théorie déterministe."

Les travaux présentés dans ce manuscrit de thése s’inscrivent dans la continuité de la vision de de Broglie
et consistent en deux parties, chacune d’elles ayant pour but de répondre a une problématique particuliére.
Dans la premiére, on considére deux formalismes du type onde pilote, une version déterministe (dynamique
de de Broglie-Bohm chapitre 2) ainsi qu'une de ses extensions stochastiques (dynamique de Bohm-Hiley-
Nelson chapitre 3). On s’attardera notamment sur ’émergence de la probabilité quantique |¥(x, t)|? a partir
de ces dynamiques dans 1’ approche dite du "Quantum Non-Equilibrium". Cette approche permet entre autres
de s’affranchir du statut axiomatique de la distribution de probabilité [¥(x, t)|* mais aussi de la justifier par
des arguments similaires a ceux que 1’on retrouve en mécanique statistique. Parmi ces arguments on retrou-
vera a titre d’exemple la notion d’ergodicité, de chaos, de mixing ainsi que d’autres propriétés qui feront
I'objet d'une étude approfondie (chapitre 4). En particulier, I’ émergence de 1’ équilibre s’accompagne d’'un
processus de relaxation que nous allons caractériser dans chacune de ces dynamiques (dans le chapitre 3 nous
dériverons un théoreme H qui décrit quantitativement ce processus dans le cas stochastique). Par ailleurs,
nous nous efforcerons, dans une approche phénoménologique, d’appliquer ces théories quantiques d’onde
pilote a la dynamique macroscopique des gouttes d’huile rebondissantes dans un bain (chapitre 5).

La deuxiéme problématique quant a elle, repose sur une hypothétique généralisation non-linéaire de la mé-
canique quantique. En particulier, nous considérerons 1’équation de Schrodinger Newton comme une pre-
mieére proposition a cette généralisation. Cette équation non-linéaire découle d’une approximation semi-
classique de la gravité et a été entre autres proposée par Roger Penrose pour expliquer le collapse de la
fonction d’onde. Nous montrerons dans un premier temps comment le programme de la double solution
de Louis de Broglie se développe dans ce contexte (chapitre 6). Par la suite nous verrons comment tester
cette généralisation non-linéaire par deux propositions expérimentales (chapitre 7). En particulier, I'une de
ces propositions nous conduira a étudier des effets de décohérence lors du refroidissement laser (Doppler
cooling, chapitre 8). Pour cela on utilisera le modele de Ghirardi-Rimini-Weber (GRW) comme modéle de
décohérence. Ce qui nous permettra par la suite de généraliser les résultats obtenus auparavant par GRW
dans leur modeéle.

1“On the impossible pilot wave” -1982
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Doctor of Philosophy

Beyond pilot wave dynamics: non-linearity and non-equilibrium in quantum
mechanics

by Mohamed HATIFI

The quantum theory has modified the way we interpret what in the past was commonly called "physical
reality”. As an example, according to the standard interpretation of quantum mechanics (the so-called prob-
abilistic interpretation of Copenhagen), the properties of a quantum object have no physical reality, at least
not before the observer measures them. Moreover, everything seems to happen as if there was an intrinsic
indeterminism in the quantum dynamics that forbids to predict with certainty the result of a measurement.
From then, several physical and philosophical interpretations were born to describe (our knowledge of) this
reality.

It is in 1927, during the Solvay conference, that Louis de Broglie, an opponent of the probabilistic interpreta-
tion, proposed an alternative solution to that problem. He proposed on the one hand to restore determinism
(as well as realism) and on the other hand to bring back the notion of trajectory to the foreground. Subse-
quently this theory was rediscovered and supplemented by David Bohm to give birth to the theory known
today as pilot wave theory. John Bell said” about this interpretation: " In 1952, I saw the impossible done.
It was in papers by David Bohm. Bohm showed explicitly how .... the indeterministic description could be
transformed into a deterministic one."

The works carried out in this manuscript are in continuity with de Broglie’s view and can be summed up
in two main parts, each of them having the aim of answering a particular problem. In the first part, we con-
sider two versions of the pilot wave theory: a deterministic version (de Broglie-Bohm dynamics in chapter 2)
as well as one of its stochastic extensions (Bohm-Hiley-Nelson dynamics in chapter 3). In the framework of
what is called the "Quantum non-equilibrium" approach we shall see how the quantum probability |¥(x, t)|?
emerges from those dynamics. This approach makes it possible to get rid of the axiomatic status of the proba-
bility distribution [¥ (x, t)|* but also to justify it by arguments similar to those found in statistical mechanics.
Among these arguments we shall for instance find ergodicity, chaos, mixing and other properties that will be
studied in depth (chapter 4). In particular, the emergence of the quantum probability is accompanied by a
relaxation process that will be characterized for both dynamics (in chapter 3 we derive a strong H-theorem
for the stochastic dynamics which quantitatively describes how this process occurs). In addition, we will try
in a phenomenological approach to apply these quantum pilot wave theories to the macroscopic dynamics of
bouncing oil droplets (chapter 5).

The second problem is linked to a hypothetical nonlinear generalization of the quantum theory. In partic-
ular, we considered the Schrodinger Newton equation as a first proposal to this generalization. In a nutshell,
this non-linear equation derives from a semi-classical approximation of gravity and has been proposed by
Roger Penrose among others to explain the collapse of the wave function. We shall first show how it is related
to the double solution program of Louis de Broglie (chapter 6). Subsequently we will see how to test this
nonlinear generalization by considering two experimental proposals (chapter 7). In particular, one of these
proposals will lead us to study the interplay between decoherence and Doppler cooling (chapter 8). To do this
we shall use the model of Ghirardi-Rimini and Weber (GRW) as a decoherence model, which will allow us to
generalize their original results.

2On the impossible pilot wave” -1982
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Chapter 1

Introduction

“L’humanité ne peut rien obtenir sans
donner quelque chose en retour. Pour
chaque chose recue, il faut en
abandonner une autre de méme
valeur. En alchimie, c’est la loi
fondamentale de 1’échange équivalent.
A cette époque, nous pensions que
¢’était la seule et unique vérité au
monde. Nous nous trompions, mais il
a fallu ceder quelque chose pour
l'apprendre.”

Edward Elric

Many problems of interpretation of the quantum theory deal with the following ques-
tion: “are quantum systems localized in 3D physical space”? Formulated in the words of
John Bell [1], the question could read “is position a beable”? Or in EPR words [2, 3] “Is the
position of a quantum system an element of reality”?

At the infamous Solvay conference Electrons and Photons held in Brussels in 1927 [4],
Louis de Broglie proposed [5] to positively answer to this question. It appeared that some
confusion surrounds this question; many particle physicists give a realistic description of
their experiments, and at the same time are opposed to de Broglie’s view. It is also com-
monly believed that the violation of Bell’s inequalities means the death of realism, which
is wrong. In the present thesis we aim at tackling two questions that naturally appear if,
like de Broglie, we assume that quantum systems are localized at any time and undergo
continuous trajectories. These questions were not mentioned by Louis de Broglie in 1927,
but he addressed them in several books [6, 7] and papers [8] when he studied the problem
again, after 25 years of silence (seemingly after the revival of these questions by David
Bohm in 1952 [9, 10]). The first of these questions is congenital to the so-called de Broglie-
Bohm (dBB) interpretation of the quantum theory. In this interpretation, a very precise
statement is proposed concerning the trajectories of quantum systems which is: particles
obey de Broglie’s guidance equation [11, 12]. In other words, their velocity at any time is
proportional to the gradient of the phase of the quantum wave function (called pilot-wave
in this context). Sometimes the guidance condition is also called the Madelung condition
[13], and it appears very naturally if we develop the analogy between the Born distribu-
tion [¥(r, t)|? of a quantum system and the distribution of positions of a fluid of classical
particles (material points).
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If thus we impose that quantum trajectories obey the guidance equation, the first ques-
tion that we shall tackle is the following:

1. DOES THE BORN RULE EMERGE AS A CONSEQUENCE OF THE DE BROGLIE-
BOHM DYNAMICS?

This is a natural question to ask, because in nearly all interpretations where position is
a beable, the Born rule is postulated to begin with, without clear motivation, which pro-
vides the uncomfortable feeling that the interpretation is ad hoc, a criticism recurrently
formulated against de Broglie-Bohm’s interpretation [14].

In the literature, this problem is referred to as the quantum equilibrium condition in anal-
ogy with classical statistical mechanics, where there exist numerous attempts to derive the
thermal equilibrium condition as a consequence of the dynamics. Boltzmann for instance
spent a lot of time and energy to demonstrate the so-called H-theorem according to which
a large class of systems spontaneously and irreversibly tend to thermal equilibrium. Sev-
eral chapters (2,3 and 4) of this work are devoted to the onset of quantum equilibrium and
to the derivation of a quantum H-theorem. In particular we derive a quantum version
of the H-theorem in the case where the guidance condition is supplemented with some
Brownian motion, which fits into what de Broglie called the quantum thermostat hypoth-
esis [15], a concept which is inspired by the work of Bohm and Vigier in the 50’s [16], and
also underlies the Nelson approach to quantum dynamics [17, 18].

A second question concerns the apparent dual nature of the de Broglie Bohm dynamics
in which two objects coexist: the particle (represented by its point like position) and the
pilot wave. There exist attempts, de Broglie essentially, to formulate a monistic version
of this interpretation (see [7] and [19] for a review) in which the Schrodinger equation is
replaced by a non-linear equation in such a way that the particle is a peaked wave packet,
stabilized by a self-focusing non-linearity (what is commonly called a soliton or a solitary
wave). We shall refer to this idea in what follows as de Broglie’s double solution program
(the soliton and the pilot wave being two solutions of a non-linear Schrodinger equation,
the first one in the presence of a strong non-linearity and the second one in the linear
regime). The second question that we shall tackle, in this context, is the following:

2. DOES THE DBB DYNAMICS EMERGE AS A CONSEQUENCE OF A NON-LINEAR
(GENERALISATION OF) SCHRODINGER EQUATION?

One can find in the literature a few attempts to tackle this question, but none of them
appeared to be fully convincing and satisfactory. More recently however a lot of attention
was devoted to the so-called Schrodinger-Newton equation [20, 21, 22, 23] in which a non-
linear and self-focusing interaction of gravitational nature is present. Several chapters (6
and 7) of this work are devoted to the study of the Schrodinger-Newton equation and to
its interplay with de Broglie’s double solution program [24].

Having in mind that in the last resort our conceptions about the laws of nature must agree
with experimental facts we also tackled two questions (3 and 4, which are respectively
related to the two questions above).



Chapter 1. Introduction 3

3. Is dBB dynamics relevant in order to describe the behavior of so-called droplets?

The droplets [25, 26] (sometimes called bouncers, sometimes walkers) can be considered
to some extent as macroscopic realizations of de Broglie double solution programs. They
consist of oil droplets bouncing at the surface of an oil vessel put into vibration by a shaker,
nearly at the Faraday threshold. The dynamics of these droplets [27, 28, 29, 30] is influ-
enced by the wave that they create in their vicinity at the surface of the oil, which in turn
exerts a feedback on their trajectory, in analogy with the dBB pilot wave. In order to study
in depth the analogy between droplets and dBB particles, we mimicked [31] the dynamics
of the droplets in terms of dBB trajectories, and studied in this context several dynamical
properties such as ergodicity, mixing, and so on.

The last question that we address in this work is question 4:

4. Is it possible to experimentally put into evidence the existence of a non-linear self-
interaction a la Newton-Schrodinger?

This question is challenging in relation with de Broglie’s double solution program but
it also opens the way to an entirely new class of experiments aimed at testing the role of
gravity at the quantum scale.

The thesis is structured as follows:

The first part is devoted to the questions 1 and 3. The chapter 2 deals with the onset
of quantum equilibrium in the deterministic dB-B dynamics. The chapter 3 with the same
problem in the case of a stochastic generalization of dB-B dynamics, essentially due to Nel-
son (called here the BHN dynamics, where we refer to a formulation of Nelson dynamics
due to Bohm and Hiley [32]). The BHN dynamics encapsulates some ideas of de Broglie
about what he called the quantum thermostat hypothesis, aimed at explaining the irre-
versible emergence of quantum equilibrium as a consequence of the “hidden” dynamics.
We derive a quantum H-theorem for BHN dynamics. In chapter 4 we study the role of
mixing in the dBB and BHN dynamics in relation with the onset of quantum equilibrium
and emphasize the role played by the presence of microstructures in position distributions.
We also show that mixing is extremely sensitive to noise (Brownian motion) in the case of
BHN dynamics. In chapter 5 we apply our results to simulate the behavior of droplets,
and propose experimental tests [31] aiming at checking whether pilot wave dynamics pro-
vides a good phenomenological model of the droplets dynamics.

The second part is devoted to questions 2 and 4.

In chapter 6 we introduce the Schrodinger-Newton equation. In a first time we show that
it provides a negative answer to the question 2: the dBB dynamics does not emerge as a
consequence of the Schrodinger-Newton equation. This is due to a generalized Ehrenfest
theorem which we show to be valid in this context. However, this generalized Ehrenfest
theorem shows that the quantum-classical transition appears to naturally emerge in the
framework of the double solution program which constitutes an interesting result in itself.
In chapter 7 we propose two experimental tests aiming at answering the question 4. In
order to study the realizability of our experimental proposals we were led to study the
interplay between decoherence and cooling which constitutes the core of chapter 8. The
last section is devoted to open questions and conclusions.
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Chapter 2

A deterministic pilot wave dynamics:
the de Broglie-Bohm interpretation

”Is this the real life? Is this just
fantasy?”

Queen - Bohemian Rhapsody

Summary In this chapter an overview of the de Broglie Bohm interpretation will be pre-
sented. According to the Copenhagen interpretation of quantum mechanics the wave
function is sufficent to describe completely the evolution of a quantum system. However,
according to bohmian mechanics the standard interpretation is incomplete and to com-
plete it, one only needs to add to the wave function description, well defined positions for
the particles. In section 2.1 we introduce the de Broglie Bohm (dBB) interpretation of quan-
tum mechanics [1, 2, 3] and we use the double slit experiment as an example to illustrate
its dynamics. We then present in section 2.2 the quantum non-equilibrium hypothesis. In
particular, we show in a well chosen context, how the probability distribution [¥]? (Born
rule) emerges from the dynamics. This chapter is adapted from [4].

2.1 An introduction to the de Broglie-Bohm theory

2.1.1 Short introduction

There exist many different interpretations of quantum mechanics. Here in this chapter
we focus on one of those interpretations, the so-called de Broglie-Bohm (dBB) theory also
known as the pilot wave formulation of quantum mechanics. The theory was first pro-
posed by Louis de Broglie in 1927 [1] and revived by David Bohm, in 1952 [2, 3]. It is a
hidden variables interpretation because according to the dBB theory, the wave function is
not sufficient to describe fully a quantum system. To complete the description, one needs
to specify the positions of the particles which are considered as hidden from the point of
view of the observer. In the present formulation a particle has always a truly definite po-
sition and is guided by the Schrodinger wave ¥ justifying the name of pilot wave. This
formulation applies for all non relativistic phenomenons [5] and gives a different way of
interpreting [6] the quantum wave function ¥. Moreover, the position is revealed in a
quantum measurement instead of “originating” with the measurement itself as is the case
according to the standard interpretation of quantum mechanics. Actually, the position has
a privileged role in this approach.
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According to John Bell! all the measurements reduce to position measurements. As a con-
sequence of that, the important status of the observers in standard quantum mechanics
becomes superfluous in this picture.

2.1.2 The de Broglie Bohm dynamics

Let us start the presentation of the dBB dynamics in the case of a single particle. In
standard and non-relativistic quantum mechanics, if we have an ensemble of experiments,
it is assumed that each element of the ensemble is described by the same wave function
¥ (x, t) which obeys the Schrodinger equation:

0¥ (x,t) K
h=— " = —%A‘I’(x,t) +V(x,)¥(x 1), (2.1)

where V(x, t) is an external potential, m the mass of the particle, and by a position x. The
wave function ¥(x, t) lives in the so called 3-dimensional configuration space”. If we were
to measure the position of the particle on many elements of the ensemble, we would find
that the results are distributed according to the Born’s law, i.e. corresponding to the distri-
bution [¥(x, t)]2.

Consequently, in order to reproduce the predictions of standard quantum mechanics one
must have that the positions are distributed according to the Born rule:

P(xt) = [¥(x 1) (2.2)

where P(x, t) is the distribution of particle positions over an ensemble of trajectories. An
ensemble satisfying condition (2.2) is said to be in quantum equilibrium?®. It is easy to

show from the Schrodinger equation (2.1) that the probability density [¥(x,t)|* satisfies
the following continuity equation:
¥ 2
A¥(xH)1° (a"t OF | v j(x,t) =0, (2.3)
where "
j:%jm(‘I’*V‘i’), (2.4)

is the (probability) current describing the flow of the probability due to (2.1). In order to
have trajectories, one needs a velocity vector which can be deduced as in hydrodynamics
by taking the ratio between the current and the density:

v(x, t) = "{]IE)’ZBP (2.5)

Secondly, if one expresses the wave function in terms of its phase S(x, ) and modulus

R(x,t) = \/[¥(x,t)|> as it was proposed by Bohm [2, 3],

Y (x,t) = R(x, t)e! SxD/M (2.6)

1« . in physics the only observations we must consider are position observations, if only positions of instrument

pointers. It is a great merit of the de Broglie-Bohm picture to force us to consider this fact’...” ([7], p. 166)

ZNote that the wave function of a system consisting of N particles, is defined in a 3N-dimensional config-
uration space.

3In section 2.2 we study the case in which this condition is not fulfilled.
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one finds that )
b4
j= oD ();flt” Vs, (2.7)

and that the velocity of the particle at time ¢ is given by* :

dx(t)
dt

—v(x t) = %Vs(x,t) ) 2.8)
x=x(t

After integrating the equation (2.8) we recover the dBB trajectory. From the above it should
be clear that the dBB interpretation is deterministic, knowing the initial position allows us
to know where the particle will be at all later time. Therefore, because of the continu-
ity equation (2.3), integrating (2.8) ensures that if initially P(x,t;) = |¥(x, )|, then the
equality P(x,t) = |¥(x,t)|*> will hold for all later times ¢ > t;. This is the equivariance
theorem. It should be stressed that any stochastic element here only comes from our lack
of knowledge of the initial positions.

2.1.3 The quantum Hamilton-Jacobi equation

It is worth emphasizing that injecting the polar form of ¥ (2.6) into the Schrodinger equa-
tion leads to a quantum generalization of the Hamilton Jacobi equation:

2
os0ul) _ ((V52<mt>> V(8 + Qﬂx,t)) , 29

where

n? V2R(x,t)
" 2m  R(x,t)
is the so called Quantum potential (see [9] for a review). Notice that this term is pro-
portional to 7 and in the classical limit (7 — 0) the classical Hamilton Jacobi equation is
recovered.

Qv = (2.10)

2.1.4 Application: the double slit experiment

Here we use the double slit experiment as an example to illustrate the de Broglie-Bohm
dynamics. This is one of the most famous quantum experiments® making the departure
from the classical world®.

Briefly summarized, if one sends quantum objects (for example photons, electrons or small
atoms) one at a time into a screen with two slits, interference patterns will emerge behind
the slits on a back wall showing a wave like behavior. At first sight, the repartition of the
spots positions seems to appear randomly on the screen.

“The expression (2.5) for the velocity field is of course not the only possible one: any solution of the form

V x f(x,t)

V/(X, H=v(xt)+ Wz

where f is a scalar function, will also give rise to (2.2) (see Ref. [8] for more details).

SRichard Feynman said about this experiment “We choose to examine a phenomenon which is impossible, ab-
solutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it
contains the only mystery. We cannot make the mystery go away by “explaining” how it works. We will just tell you
how it works.”

®In section 5.3.3 we discut it in the framework of the bouncing oil droplets.
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FIGURE 2.1: Illustration of the double-slit experiment on the left. On the

right the de Broglie-Bohm trajectories in the top and in the bottom the cor-

responding histogram which is exactly fitted by the quantum probability in
red.

By continuing to send quantum objects through the slits gradually reveal the interference
patterns which emerge in the repartition of the spots positions. As an experimental fact,
it turns out that the distribution of particle positions is in accordance with the Born rule
|'¥|2. Several authors in the past have tried to explain how the Born rule emerges from in-
dividual trajectories which is a highly non-trivial problem. In the standard interpretation
of quantum mechanics it is assumed that the interference patterns are a consequence of
the superposition principle which is a cornerstone of the quantum theory which in turn is
a consequence of the linearity of the Schrodinger equation. Because of that, it is impossible
to separate different possible paths for a particle. One has to consider all the possibilities
in a linear combination, i.e a linear superposition of paths.

On the other hand, in the pilot wave formulation of quantum mechanics, the particles
follow a definite and continuous path from the source to the back-wall screen (see figure
2.1). Furthermore, the particle seems to be guided by “something” that we call pilot wave
because the interference patterns suggests a wave like behavior. In this view, the particle
goes into one slit and the interference patterns are simply due to the pilot wave interfer-
ing with itself. Because of that, opening one or the two slits will influence non-locally the
trajectory of a particle through its pilot wave (2.8). Another strangeness of this experiment
is that if one tries to know through which slit the particle went, for example by using a
detector, it will irremediably destroy the interference patterns. In the Bohmian picture, if
we try to interact with the particle, we change the Hamiltonian of the evolution, so that
the wave function changes. Changing the wave function, changes also the trajectories’.
Note that the wave function affects the trajectories but the trajectories have no influence
on the wave function.

7We will come back to this point in section 5.3.3.
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FIGURE 2.2: Left: dBB trajectories for the double-slit experiment.
Right: Histogram of the positions and in red the quantum probability [¥|?.
The simulation was performed using (2.11) with ¢ = 0.15, % =1x =1

and was sampled up to t = 0.3 with step At = 0.01.

Simulation In figure 2.1 and 2.2 we computed numerically the dBB trajectories for the
double-slit experiment. As a consequence of the equivariance theorem it turns out that
the histogram of the positions fits exactly with the quantum probability. We modeled
the diffracted wave by using two identical gaussian profiles centered on each slits (at
t =y = 0). The wave function is expressed in the coordinates (x, t):

_x nk 2 ) s*% 2 )
exp (—m —ik (x — X5+ ;’;t)) exp <—(2";’E1+”3 + ik (x + x5 — %t))
Y(x,t) =N z + N z

o (1 + ;—2) o (1 + ;—2)
2.11)

where N is the normalization factor, £xs and ¢ are the coordinate and the width of each
slit. Solving equation (2.8) leads to the above figures. For more information, we refer the
reader to the textbook of Peter R. Holland ([9], p.177).

2.1.5 The non locality in the pilot wave formulation

In the previous section, we were dealing with single particle wave functions. Note that
for one particle, the wave function lives in the configuration space which coincides exactly
with the classical space. It is possible to generalize this theory to a system of N particles
[1]. In that case it is expressed in a 3N-dimensional configuration space and, in the most
general setting, the velocity of each particle is instantaneously influenced by the positions
of the remaining (N — 1) particles. This instantaneous influence of one object on another
wathever is the distance between them, is at the heart of the non-locality of quantum me-
chanics. Here we give a quick overview of the non-locality in the pilot wave formulation
[10]. Let us illustrate this effect with a simple example involving two particles.
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In this case, from the guidance equation (2.8) we deduce the velocities as :

dx1 h < V] ‘P(Xl,XZ, t) > dXz h < Vz‘{I(XL X2, t) )

_ = 7 t = 7
dt <t) Jm ‘Y(X],Xz, t) ( ) Jm ‘P(Xl,XZ, t)

and —_—
mq dt moy

X1=X1 (t)

X2 =X2 (t)

(2.12)

e Ifthe wave function ¥ (x3, x2, t) is a product state of the form ¥ (x1, x2, t) = x(x1,t)p(x2,t)
the two velocities simplify to :

Xm h ~ (le(xl,t)>

D= I o

dxa o ((Vag(xa,t)
and dt(t)_szm( o0xa, )

X2:X2(t)

(2.13)

X1=X1 (t)

Everything simplifies so that each particle evolves independently from the other and is
guided by its own local velocity field.

e Another feature of the quantum theory is the prediction of entanglement. In the case
of entangled particles, the wave function is by definition not factorizable so that the sim-
plification is not possible. In other words, the guidance equation:

dXi h ( V,"F(Xl,x;)_, t) )

(t) = ‘P(Xl,XZ, t)

— 2.14
dt m; ( )

xi=x; (t)

can not be simplified. In order to compute the velocity of one of the particles, we need to
know the position of the other particle.

This is a highly non-local effect which has no classical equivalent. The dBB theory ex-
poses with simplicity all the strangeness of quantum mechanics by also making explicit
the quantum nonlocality. In fact, the dBB theory was the first interpretation that exposed
the non locality in quantum mechanics, long before Bell inequalities. The violation of Bell
inequalities in the experiment of Alain Aspect has shown the intrinsic non locality of the
quantum theory and revealed the impossibility to build it from a local and classical de-
scription.

Let us now discuss the status of the quantum probability law in the context of the pilot
wave formulation.

2.2 Relaxation to the quantum probability: the quantum equilib-
rium hypothesis

2.2.1 Discussion

In the standard interpretation of quantum mechanics, the probability [¥(x,t)|? has an ax-
iomatic status. In our presentation of the dBB theory for a single particle, in section 2.1.1,
we also assumed that the initial ensemble of particle positions (at t = t;) is described by
the Born’s law

P(Xr ti) = |T(X, ti)’2 (215)

where P(x, t;) is the statistical distribution of initial positions.
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FIGURE 2.3: Illustration of the coarse graining procedure explained in the
subsection 2.2.2.

The dynamics ensures that the same relation will hold for any later time because of equa-
tion (2.3); i.e because of the equivariance theorem which has been already discussed in the
subsection 2.1.2. Louis de Broglie and David Bohm made the assumption (2.15) in their
original papers [1, 2, 3], although Bohm tried, already in the 1950s (first on his own — see,
e.g., sec. 9in[2] — and later with Vigier [11]), to relax this assumption by modifying the
dynamics. According to authors working today on the dBB theory [12, 6, 13], it is still an
assumption which has to be made®. According to Valentini [14, 15, 16], however, there is
no need to assume that the particle positions are initially distributed according to Born’s
law or to modify the dynamics.

His claim is that an ensemble P(x,t;) in which Born’s law is not satisfied (this consti-
tutes the so-called quantum non-equilibrium condition) will evolve spontaneously and
irreversibly towards quantum equilibrium [13, 17], provided that the wave function leads
to sufficiently complex dynamics. However, the relaxation process has to take place on a
coarse-grained level.

2.2.2 The coarse grained hypothesis

To begin with, let us explain the need for coarse-graining by introducing the function
f = P/|¥|? as in [12]. The non equilibrium ensemble evolves according to a continuity
equation:

IP(x,t)

V- <73(x,t) Vsigixt)) =0. (2.16)

An important implication of (2.3) and (2.16) is that the function f is conserved along the
dBB trajectories throught the Liouville’s equation:

df(x,t) _ of(xt) | . _
=t V) =0. (2.17)

8The final objective of de Broglie, Bohm, Vigier, Nelson (and several other contributors to various realistic
hidden variable interpretations in which quantum systems are assumed to be localized in space at any time)
was to rationalize wave-like statistics in terms of individual trajectories. The same problem occurs when we
deal with droplets phenomenology as we will see in chapter 5
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Consequently,
fxt) = f(xi t) (2.18)
Hence we have that
_ Pxit) 2

where x; is the initial position of the particle which leads to x, when evolving from ¢; to
t according to the dBB dynamics. As long as P(x;,t;)/|¥(x;, t)|* # 1, the relaxation to
quantum equilibrium is clearly impossible, at least at the microscopic level. However, as
argued by Valentini [15], the relaxation is possible at the coarse-grained level, provided
the initial distribution does not display any fine-grained microstructure.

The operational definition of the coarse-graining is illustrated in figure 2.3 and is explained
as follows. We divide the domain of interest A C () into small cubes of equal edge length
€ (we call them coarse-graining cells, or CG cells for short). These CG cells do not overlap
and their union is equal to A. The coarse-grained densities, which we denote by P(x, t)
and |¥(x, t)|?, are then defined as

— 1

P,t:—/ BrP(x, 1), 2.20
(X ) el CG cellox * <X ) ( )

FxoP=5 [ d¥nP 21)

where the domain of integration is the CG cell containing x. Hence, the ratio P/[¥ |2 is not
inevitably conserved along the dBB trajectories. This difference allows P to possibly con-
verge to |¥|2. As explained in [18], “The coarse-graining could be understood as corresponding
to a finite accuracy of physical measurements”.

2.2.3 Time reversibility

Let us assume we have a non-equilibrium distribution P(x, t;) which relaxes to quan-
tum equilibrium at the coarse-grained level, under the dynamics generated by the wave
function ¥(x,t). As the dBB theory is time-reversal invariant, in the time-reversed sit-
uation, under the dynamics generated by ¥*(x, —t) we would have a distribution that
moves away from quantum equilibrium. Thus it would seem that time-reversal invari-
ance contradicts the possibility of relaxation to quantum equilibrium. This conclusion is
unwarranted however: as the initial distribution P(x, t;) relaxes to quantum equilibrium,
it retains information on the original values of f (which are constant in time) and thereby
acquires a fine-grained microstructure, which means that at the final time ¢, P(x, t7) will
differ significantly from P(x, t). Therefore, in the time-reversed situation, the initial dis-
tribution would exhibit a fine-grained micro-structure. From this point of view the irre-
versible onset of quantum equilibrium [12, 6, 13] can be linked to the selection of the initial
distributions for which such fine grained microstructures are absent.

In chapter 4 we will develop the present dissussion in further detail. In particular we
will test the sensitivity of the convergence process in presence of microstructures in the
initial distribution of positions.
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0 10 20 30 40 50 6 70 8 90 100
t

(A) The coarse-grained distribu- (B) The quantum probability ['¥|2 (C) The evolution of the associated
tion P at time ¢ = 100. at time t = 100. entropy function H(t) (2.22).

FIGURE 2.4: This plot shows the convergence of P to the quantum probabil-

ity probability ['¥|? at the coarse grained level. We started with an ensemble

of N = 300000 intial positions uniformly distributed on [—2,2]x[—2,2]. The

coarse graining domain [—4, 4]x[—4,4] was divided by a number of 60x60

coarse grained cells. We chose in (2.26) a superposition of M = 42 = 16
modes.

2.24 The “H-theorem” in dBB

In order to quantify the difference between the distribution P(x, t) and the quantum equi-
librium condition |¥(x, t)|? at the coarse-grained level, Valentini [14, 15, 16] has introduced
the entropy-like function

H(t) = /Q #xP In (P/T¥R), (2.22)

where P and |Y|? as in (2.20) and (2.21), for which numerical simulations strongly suggest
that the (quantum) H-theorem holds in the sense that

H(t) < H(t), (2.23)

It should be stressed however that this is not necessarily a monotonic decay and therefore
does not prove that quantum equilibrium will always be reached. It merely indicates a
tendency towards relaxation. The strongest support for the idea of relaxation to quan-
tum equilibrium comes from numerical simulations of the evolution of non-equilibrium
distributions for various quantum systems [12, 18, 19, 20, 21, 22]. The first numerical sim-
ulations were performed by Valentini and Westman [12] who showed, in the case of a
2D box, that relaxation quickly takes place for a wave function which is a superposition
of the first 16 modes of energy (the superposition being equally weighted). It was also
hinted that the nodes of the wave function, with their associated vorticity, play a crucial
role in the relaxation process, as purveyors of chaos (or mixing) in the dynamics. This
later claim was properly understood in [23]. The dependence of the relaxation timescale
on the coarse-graining length € and on the number of energy modes was studied in [19]. In
[22], it was shown that quantum systems with a low number of modes are likely to never
fully relax, in which case H reaches a non-zero residue value. However, such a scenario
becomes unlikely as the number of modes increases.
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FIGURE 2.5: Plots showing three possible dBB trajectories for a single point

particle in the case of the 2D harmonic oscillator (2.26) with M = 22 = 4.

Each plot is associated to different initial random phases and different initial
positions.

Another interesting quantity is of course the L; norm of the difference between P and
the equilibrium distribution |¥|?:

L :/ x| P — ¥ (2.24)
Q

It was used by Petroni and Guerra [24, 25] to discuss relaxation towards equilibrium in
the framework of Nelson dynamics and it is used by Efthymiopoulos et al [26] in the dBB
theory. We will come back to this point in section 3.2.1.

In the framework of the quantum non-equilibrium approach, it is considered that standard
quantum mechanics is only one facet of the pilot-wave theory, that of quantum equilib-
rium, leaving the possibility for possible new physics: that of quantum non-equilibrium.
One should assume of course, that during our time we have only had (or can only have)
access to systems for which quantum equilibrium has already been reached. But that does
not mean that quantum non-equilibrium never existed in the early universe (which could
possibly be inferred from the observation of the remnants of the early fractions of seconds
of the universe, just after the big bang [27]), or that some, yet undetetected, exotic quantum
systems cannot still be in quantum non-equilibrium today [28].

2.2.5 Numerical simulation in a 2D quantum harmonic oscillator (dBB)

In order to illustrate the relaxation process towards quantum equilibrium, it is necessary
to define a context in which we can apply the basic ideas developped in the previous
subsection. For that purpose, let us consider a 2D quantum harmonic oscillator:

2
He PPy

mew?
2 2
o T o T 5 (x*+y7). (2.25)

The Schrodinger equation is easily solved so that the next step is to choose a quantum state

Y consisting of a superposition of equally weighted products of eigenstates ¢, along X
and ¥y, along Y. Increasing the number of modes M allows us to study the quantum
relaxation to the Born rule |¥|?. In fact the increase of the number of modes in the su-
perposition of ¥ enhances the complexity of the dynamics by making the variation of the
phase V5(x, t) non trivial.



2.2. Relaxation to the quantum probability: the quantum equilibrium hypothesis 19

a2f
1.3}
1.4}
15)
16]
>a7t
1.8}
1.9}
2t

-2.1¢

2.2 . . . .
-2.8 -2.6 -2.4 -2.2 -2
X

FIGURE 2.6: Plot showing the effect of a nodal point (zero of the wave-

function represented by a red circle) on the dBB trajectory. The figure has

been realized in the case of the 2D quantum harmonic oscillator (2.26) for
M=2>=4

The eigenstates are chosen among M energy (Fock) states, with randomly-chosen initial
phases an,nyi

VM—-1+vM-1 ] .
¥(x,y,t) Z Z el Oremy =i (b A ) Ly (), (1) (2.26)

%\H

In figure (2.5) we show three possible dBB trajectories associated to the solution of the
equation (2.8) for the sate ¥ above. One can obtain a huge variety of trajectories depend-
ing on the choice of M, 6, ,,, and on the choice of the initial position. A quick remark con-
cerns the influence of the nodal points (zeros of the distribution [¥|?) on the trajectories.
As already studied in [23, 29], the nodal points have a privileged role in the convergence
toward quantum equilibrium especially in the process of mixing (it will be discussed in
further details in the chapter 4.3). They can act as an attractor, i.e the trajectories can rotate
around them as illustrated in figure 2.6. On the other hand, in figure (2.4) we illustrate the
color plot of the distribution P obtained at the equilbrium and we plot the the associated
H-function (2.22) characterizing this relaxation process.
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2.3 Conclusion:

In this chapter we presented the de Broglie Bohm interpretation of quantum mechanics.
In a nutshell, we have introduced the minimal tools to understand the idea behind the
quantum non-equilibrium theory which aims to explain the emergence of the Born rule
statistics. To illustrate the process of convergence to quantum equilibrium we simulated
numerically the evolution of a non-equilibrium ensemble using a two dimensional har-
monic oscillator. In particular we quantified the onset of quantum equilibrium in terms
of a H-function H(t) [17]. Depending on the initial distribution of particle positions, or
on the complexity of the wavefunction, the quantum relaxation does not always happen.
In particular, this process depends on the way the coarse graining is done and also on the
possible existence of microstructures in the distribution of positions. This dependency will
be studied in further detail in chapter 4 in terms of chaos and mixing.

We shall now present the stochastic extention of the dBB theory in order to conduct a
comparative study of the onset of quantum equilibrium.
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Chapter 3

A stochastic pilot wave dynamics: the
Bohm-Hiley-Nelson theory

“Hakuna Matata”

Timon & Pumbaa

Summary Actually, the onset of quantum equilibrium in the framework of dBB dynam-
ics (see e.g.[1, 2] and also [3] and references therein) and in the stochastic versions thereof
([4,5 6,7,8,9]) is an important foundational issue in itself, which motivated numer-
ous studies. In the case of dBB dynamics it is easy to show that in simple situations
the relaxation to the Born statistical distribution does not occur at all, but recent stud-
ies [10, 11, 12,13, 14, 15, 16] show that in sufficiently complex situations (several modes of
different energies for instance) the system might exhibit mixing, which explains the onset
of quantum equilibrium in such cases. In this chapter, we study in detail the quantum
equilibrium in the case of Nelson-type dynamics. In particular we will see that the quan-
tum Brownian motion imposed in such a model accelerates the relaxation to the Born’s
distribution |¥|? and in fact ensures that relaxation to it will almost always occur (here we
derive a strong H theorem for the stochastic pilot wave dynamics). This chapter is adapted
from [17].

3.1 A simple realization of de Broglie’s quantum thermostat —
Bohm-Hiley-Nelson dynamics

3.1.1 Short introduction

Let us present here the stochastic generalisations of the de Broglie-Bohm dynamics. de
Broglie himself', in fact, considered such generalizations of the deterministic dBB dynam-
ics (which he called the “quantum thermostat hypothesis”) to be highly welcome because
they might provide a physically sound picture of the hidden dynamics in the case of static
quantum states. For instance, if we consider the position of an electron prepared in the
ground state of a hydrogen atom, the dBB dynamics predicts that its position will remain

1Quoting de Broglie: “...Finally, the particle’s motion is the combination of a regular motion defined by the guidance
formula, with a random motion of Brownian character... any particle, even isolated, has to be imagined as in continuous
“energetic contact” with a hidden medium, which constitutes a concealed thermostat. This hypothesis was brought
forward some fifteen years ago by Bohm and Vigier [1], who named this invisible thermostat the “subquantum medium”...
If a hidden sub-quantum medium is assumed, knowledge of its nature would seem desirable...” (In[18] Ch.XI: On the
necessary introduction of a random element in the double solution theory. The hidden thermostat and the
Brownian motion of the particle in its wave.)
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S

FIGURE 3.1: A particle suspended in a Madelung fluid and subject to local
fluctuations.

frozen at the same place throughout time because VS(x,t) = 0, which is counterintuitive
to say the least. Adding a stochastic component to its velocity could, in principle, explain
why averaging the position of the electron over time is characterized by an exponentially
decreasing probability density function, in agreement with the Born rule (provided, of
course, that ergodicity is present in the problem in exactly the right proportion as we will
see in section 3.3.7). A first proposal in this sense was formulated by Bohm and Vigier
in 1954 [1] which, later on, was made more precise by Bohm and Hiley [6], but stochastic
derivations of Schrodinger’s equation by Nelson[5] (and others [19, 20] in the framework
of stochastic electrodynamics) can also be considered to provide models of the quantum
thermostat.

3.1.2 Definition

In this chapter we shall consider a particular model of the quantum thermostat in which,
as in the Bohm-Vigier model, a single spinless particle suspended in a Madelung fluid (see
tigure 3.1). The particle moves with the local velocity of the resulting field, given by (2.8),
and is subjected to fluctuations coming from the latter. However, following Nelson, we
shall model these fluctuations by means of a particular stochastic process.” This process is
defined on a probabilistic space (), characterized by a probability distribution P(x, ) and
obeys an Ito stochastic differential equation of the general form:

dt + /adW(t), (3.1)

x=x(t)

1
dx = [mVS+'y]

where a is the (constant) diffusion coefficient that characterizes the strength of the random
part and dW (t) is a Wiener process in three dimensions. The function y(x, t) in (3.1) is a
systematic drift, the so-called osmotic velocity, which we shall fix in the following way.

2To be precise: our model is formally the same as Nelson’s in that it relies on the same stochastic process.
However, in spirit, it is closer to the Bohm-Hiley model[6] in that we do not assume to be at quantum equi-
librium (an assumption which is fundamental to Nelson’s theory, as was already pointed out by Bohm and
Hiley][6] ; see also Ref. [4] for a detailed presentation and a comparison of both approaches).
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The conservation equation of the probability distribution (which we denote by P, in or-
der to stress the difference with the probability in the dBB dynamics which is denoted by
P) obeys a the Fokker-Planck equation:

oP P o
If we now require that the quantum equilibrium P(g,t) = |¥(q,t)|? is a solution of this

Fokker-Planck equation, we obtain from (2.3), (2.7) and (3.2) that
. 2_ 4 2) _
V- (v[¥P -3 V¥?) =0, (3:3)

which is a constraint on the osmotic velocity. The simplest solution of this constraint is
[21]
a V|[Y|?
b)) = = . 3.4

In the rest of the chapter we choose the osmotic drift velocity to be (3.4), with « an a priori
free parameter, Nelson’s choice for a (x = 1/m).

In summary, our version of Nelson dynamics (due to Bohm-Hiley [6]) is fully defined
by the following Ito equation,

1 a V|| }
dx(t) = | =VS+ = dt +/adW (t) (3.5)
) m 2 Y17 [leex
where dW;(t) represents a Wiener process with
<AWi(t) >=0 and < dW(D)dW(f) >= %@jfs( —y (3.6)

while the Fokker-Planck equation for the associated probability distribution P(x, t) obeys

oP  « p « P ’
where ¥(x, t) satisfies the Schrodinger equation:
L S (3.8)
ot 2m ' '

At quantum equilibrium, i.e. when P(x,t) = |¥(x,t)|?, the diffusion velocity is balanced
by the osmotic term and the Bohm velocity is recovered, on average.

We shall now discuss the details of the relaxation towards quantum equilibrium in this
stochastic formalism.



26 Chapter 3. A stochastic pilot wave dynamics: the Bohm-Hiley-Nelson theory

3.2 The H-theorem for BHN dynamics

Let us start by introducing an analog of Valentini’s entropy” (2.22) for the probability dis-
tribution P(x, t) associated with our Nelson dynamics, as defined by (3.5-3.8),

Hy (f) = /Q &£x P In (;,2) , (3.9)

which is a special instance of a relative entropy known as the Kullback-Leibler divergence
[23]. We also define a second non-negative functional,

Le(t) = /Q Px F(P — ), (3.10)

where
f(xt) = I‘II’)((:::))P (3.11)
Note that we always impose the boundary conditions |T|2‘ao = P‘aQ =0and f ‘BQ =1

so as to avoid divergence of these integrals on the boundary of ().

To understand why functionals (3.9) and (3.10) are non-negative and why they are zero
if and only if (quantum) equilibrium is reached (that is to say when f = 1 everywhere in
space), it is important to note that the integrands of Hy and Ly satisfy the inequalities*

P P

P—¥YAH<Pln— < —
(P—I¥/") < Plntgm <

P— ¥, (3.12)
for which any of the possible equalities only hold when P = |¥|2. Now, since both P(x, t)
and [¥(x,t)|? are probability distributions, i.e. since we have [, Pdx = [ |¥[?dx = 1,
it follows from (3.12) that whenever Hy(f) and L¢(t) are well-defined, they satisfy the
inequalities:

0 < Hy(f) < Ly(t). (3.13)

Moreover, for the same reason, L £ can be re-expressed as

| @ [f(p—¥P) — (P [¥P)], (3.14)

the integrand in which is non-negative due to (3.12). Therefore, Ly can only be zero if its
integrand is zero, i.e.: if P = |¥|? (if P, |¥|? and f are sufficiently smooth, which is some-
thing we shall always assume unless otherwise stated). Similarly[2] one also has that Hy
can only be zero when P = |¥|? everywhere in Q.

Let us now prove the relaxation to quantum equilibrium. Substituting P = f [¥|? in the
Fokker-Planck equation (3.7), and using the continuity equation (2.3) and relation (2.7), it

31t should be noted that the entropy (3.9) or the functional (3.10) we shall use to quantify the relaxation
to quantum equilibrium, are different from the entropies usually considered in the context of classical H-
theorems (like e.g. the Boltzmann entropy). One should bear in mind however that quantum equilibrium
is radically different from classical equilibrium [22] and has no connection whatsoever with relaxation to
quantum thermal equilibrium, for the simple reason that the Born distribution of positions reached by an
ensemble of trajectories 4 la BHN or dBB is not a thermal distribution.

4This is immediate from the trivial inequality: Vx >0, (1—-1/x) <lnx<x-1.
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is easily verified that

\‘1’12

Y =ty e vs - B wpyvs). (3.15)

Rewriting Ly as
L= [ (- DI¥P, (3.16)

its behaviour in time can be calculated using (3.15), (2.3) and (2.7):

m

2 o
‘ZL;‘:/Q d®x [—V-(m(fz—f)W) S(2f =1V -(I‘I’va)] (3.17)
2/ Px |V-[2f ~D[¥PVS] -2(V

f) |‘1f|2} (3.18)

which gives

de

/d3 (V)2 )2 (3.19)

It is of course strictly negative, for all ¢, as long as Vf and |¥|? are not identically zero.
Hence, if ]‘F]Z is not zero throughout ), L f will decrease monotonically for as long as f is
not (identically) equal to one on (), and therefore necessarily converges to zero, a value it
can only attain when f = 1 or, equivalently, when P = |¥|2. We have thus established a
strong H-theorem showing that, in the case of BHN dynamics, any probability distribution
P necessarily converges to [¥|?, if the latter does not become identically zero. Note that
this excludes the case of a free particle for which lim;_, ;o |¥(x,t)|?> = 0, for all x, which

means that 2 d . tends to zero even when f does not converge to unity (see [8] for example).

A result, similar to the above, is also easily established for Hy since Ly dominates the
latter, or alternatively from the formula

The above results show that (excluding the case of the free particle) BHN dynamics, nat-
urally, exhibits relaxation towards quantum equilibrium, and this for general initial prob-
ability distributions (at least, as long as the initial distribution is smooth enough). In the
stochastic setting it seems that there is no need for any assumptions on the microstructure
of the initial distributions, nor is there any need for the coarse-grained hypothesis when
deriving an H-theorem (we will pursue the present discussion in chapter 4).

Note that these results also show that we have, in fact, convergence of the distribution
P to the quantum equilibrium distribution [¥|? in L! norm.

3.2.1 Convergence in L! norm

In this subsection we prove that the convergence in Hy implies the convergence in L1 and
we generalize the result of Petroni and Guera [8]. The functionnal L; is defined by

L = / Bx |P— ). (3.21)
@)
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To show the convergence in L, let us go back to the inequalities

P P
P—|¥P)<Pln—s <

e < W(P— ¥ ). (3.22)

Because of the normalization of the probabilities, the H-function (3.9) can be written as:

p
Hy= [ & [Pl <> P—‘I’z] 3.23
14 a X n “F’Z +< | ’ ) ( )
now using the substitution z = P/|¥|? leads to
HV:/ Px ¥ [zlnz — (z—1)]. (3.24)
o)

Moreover it is clear that .
1—E§lnz§z—1 (3.25)

with (z > 0) for which equalities only hold when z = 1. After some rearrangement the
above expression is rewritten as:

0< zlnz—(z—1) < (z—1)°. (3.26)
Making the Taylor expansion around zp = 1 so that z = 1 + x with |x| < 1, one finds that

x2

VA 3
(x+1)In(x+1) —x 2(1+%)—|—(9(x) (3.27)
We can conclude that Vz > 0 (see figure 3.2)
_1\2
zlnz —(z—1) > (z=1) (3.28)

T 21+ &)

1.2+

zlog(z) - (z -1)‘

05 7.0 15 20 25 300

FIGURE 3.2: We illustrate here the inequality (3.28)
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FIGURE 3.3: In this plot we ilustrate the Csiszar-Kullback-Pinsker inequality

(3.33). Left: in the case of the dBB dynamics. Right: in the case of the BHN

dynamics. In full line curve we plot L; and +/2 Hy in dashed line. The

coarse graining domain [—4,4|x[—4,4] was divided by a number of 25x25

coarse grained cells. We chose in (2.26) a superposition of M = 42 = 16
modes.

now using (3.28) in (3.23) with z = P/|¥|? leads to the following inequality

12
Hy > ;/ P ¥ [(Z(zl)l)] (3.29)
Q 1+ 5

then multiplying the right hand side by an integral equal to unity

1 —1)? -1
Hy > - / i e | 221 / P [ [1 + (Z)] (3.30)
2 Ja 14 &D | Ja 3
3
and using the Cauchy-Bunyakovsky-Schwarz inequality
2
1 —1)2 -1
Hy > 5 / dx |‘P|\/(Z(Z_)1) "ﬂ\/l + = 3 )] (3.31)
Q 1+ 5
hence
1 2
Hy > - U Px |P — \‘If\zq (3.32)
2 |Ja
thus we have
V2Hy > L1 >0 (3.33)

This inequality is known as Csiszar-Kullback-Pinsker inequality [23]. It means that the
convergence in Hy also implies the convergence in L; through equation (3.33). In order to
illustrate this result we plot in figure 3.3 the functionals L; and /2 Hy in the case of dBB
and BHN dynamics using the state (2.26) with M = 4% = 16 modes.
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3.2.2 Convergence in L? norm

We can pursue the analysis in order to show that the convergence in Hy also implies the
convergence in the L2 norm. Let us introduce the L, function as :

La(t) :/Qd3x (P —[¥]2)°. (3.34)

Starting from
Hy = / Bx |¥? [zInz — (z—1)] (3.35)
0

with z = P/|¥|? and using (3.26) and (3.28) we obtain
[ s (P—|¥P)"
2 Ja 2|¥2 +P

All the distributions we used have an upper bound (no Dirac delta are used). Let My
(resp. Mp) be the upper bound of |¥|? (resp. P) so that

P—|¥])?

<H </ i L 3.36
~ V > Q X |1Y’2 ( )

1 1
> 3.37
P+2|T‘2 - Mp—|—2M|1{r|2 ( )
and thus we have on the left of the inequality (3.36)
1
0<? L, < Hy (3.39)

=2 Mp—|-2M|q;‘z 2

Consequently, the convergence in Hy also implies the convergence in the L? norm. More-
over, if now |[¥|* has a lower bound 1y with my2 < [¥]? one finds on the right of (3.36)
that

1
Hy < / Px (P—[¥]2) (3.39)
mmz Q
We conclude that
3 1
- — [, <Hy< L 3.40
2 Mp +2M\‘I’|2 2=V = mmz 2 ( )

and then that Hy can also be seen as a norm. It is now clear that the relaxation process to
quantum equilibrium is an irreversible evolution minimizing the H-function. The stochas-
tic approach is not dependent on the coarse graining, thus the present H—theorem remains
valid for coarse grained quantities.

In what follows we shall illustrate these results by means of numerical simulations for
the ground state of a 1D-harmonic oscillator in section 3.3.6, for a coherent state in section
3.4.1 and for a 2D-harmonic oscillator in section 3.4.2.

3.2.3 Discussion

A last important remark concerns the influence of possible zeros in the equilibrium distri-
bution ¥ (x, t), which would give rise to singularities in the osmotic velocity terms in the
Ito equation (3.5) or the Fokker-Planck equation (3.7) (or equivalently in equation (3.15))
and might make the functions Hy and Ly ill-defined.
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As an exemple, in section 5.3.2 we discuss the case of the first excited state of the 1D-
harmonic oscillator, for which ¥(x, f) has a node at x = 0, and one could in fact imagine
studying higher excited states for which one has a finite number of nodes. In that case, the
osmotic velocity (3.4) will have simple poles at a finite number of positions in x. At the
level of the Ito equation one would not expect a finite set of poles to cause any particular
problems, not only because the probability of hitting a pole exactly in the stochastic evo-
lution is zero but also because the osmotic term tends to move the particle away from the
pole very quickly. Similarly, a finite number of simple poles in the convection-diffusion
equation (3.15) for f only influences the velocity field in the convection term in a finite
number of distinct places and it is to be expected that this would have the effect of actu-
ally enhancing the mixing in the system.

Moreover, it is also clear that simple nodes in ¥(x, t) only give rise to (a finite number
of) logarithmic singularities in the integrand of Hy and that the integral (3.9) therefore
still converges. The H-theorem for Hy derived above is thus still valid and an arbitrary
distribution P (sufficiently smooth) will still converge to quantum equilibrium, even in
the presence of nodes for ¥(x,t). The same cannot be said however of the function L¢ as
simple zeros in ¥ (x, t) give rise to double poles in the integrand and a possible divergence
of the integral (3.10). Hence, at the beginning of the evolution, for arbitary P, the function
L ¢ might take an infinitely large value®, but as soon as convergence sets in (which is guar-
anteed by the H-theorem for Hy), the divergent parts in its integrand will be smoothed
out and the function L will take finite values that converge to zero as time goes on.’

3.3 Relaxation to quantum equilibrium in BHN dynamics: static
case

In this section, in order to simplify the discussion, we will only consider the case of sta-
tionary states ¥ (x) for the one dimensional Schrodinger equation, i.e. energy levels for
which S = —E t and which therefore have zero Bohm velocity (2.8): VS = S, = 0.

3.3.1 Fokker-Planck operator and a formal connection to a Schrédinger equa-
tion

There exists a wide literature [24, 25] concerning a particular method for studying the
convergence of solutions of the Fokker-Planck equation to a stationary one, which is only
sporadically mentioned in the literature devoted to BHN dynamics [26]. This approach
makes it possible to quantify very precisely the speed of convergence to equilibrium, in
terms of (negative) eigenvalues of the Fokker-Planck operator. In order to show this, let us
rewrite the Fokker-Planck equation (3.7) in terms of the Fokker-Planck operator L:

oP 5 [ oy 0 a0
A AR TR A R (341)
where (3.4):
(I'¥st]),
X) =0a——m. 3.42

SThe integrand only diverges when [¥|? < P, i.e. when it is positive.
®0f course, when calculating these quantities for the results of numerical simulations, there is always some
amount of coarse-graining going on and genuine infinities never occur.
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Note that, due to the presence of the first derivative %, the £ operator is not Hermitian.
Now, in order to establish the H-theorem, we must prove that in the long-time limit this
equation tends to a stationary solution Py = |¥|?. The key idea here is to connect the

Fokker-Planck equation to a Schrodinger-like equation with imaginary time, i.e. a diffu-
sion equation, through the transformation

P(x,t) = \/ Pu(x) g(x,t), (3.43)

under which the r.h.s. of equation (3.41) reduces to

LP = \/Py(x) He g(x,1), (3.44)

where H,; is now a Hermitian operator:

~ x> 1/9y 97
fo=5a 2t s ) (34

The function g(x, t) thus obeys a Schrodinger-like equation with an effective potential
that depends on 7(x):

ag(aJ;,t) = Hg g(x,t) (3.46)

Note that the effective potential is exactly the Bohm-quantum potential defined in (2.10)
by

o1 0¥y
_ 47
Qv = o Y| 022 (347)
which can be expressed in terms of the osmotic velocity (for & = %) (3.42) as:
Qv 1[0y K +*
me . 2\9x @ ) (348)

3.3.2 Superposition ansatz

We can now represent the solution of (3.46) as a superposition of discrete eigenvectors (all
orthogonal, as the operator H; is Hermitian) and impose the superposition ansatz [27]:

g(x 1) = k)“j ac(t) g (x). (3.49)
=0

Equation (3.46) is separable and gives rise to the eigenvalue problem:

1 dﬂk(t)_ 1 -~ _
O d = g e s = e (3.50)

As a result we have

glx,t) =Y are ™ gi(x), (3.51)
k=0
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for a set of constants a; and where all the Ay are real (as H is Hermitian), for eigenfunctions
Qk(x) that satisfy the orthonormality conditions:

| dxgix)gix) = G 652)

Thus, we have the expression

Z age” M\ /Pyt (x) gi(x) (3.53)

By construction, the function /Py (x) is an eigenstate of the effective Hamiltonian with
energy 0. We shall associate the label Ay with this energy level.

In order to have a well defined probability distribution and to avoid any divergence in
time, it is clear that all eigenvalues —Ay have to be negative, which requires ¥ to be the
ground state of the effective Hamiltonian Hs;. From the study of the properties of the
Schrodinger equation it is clear that this will be the case if and only if ¥, (x) has no zeros.
In order to be self-contained however, we shall now show directly that if ¥ (x) has no
zeros, all Ay are indeed positive.

3.3.3 Negativity of the eigenvalues

If one defines pr(x) = +/Pst(x) gx(x), it is clear from the orthonormality relations (3.52)
that
© o pe(x) pi(x)
ax ——————= = bk, 3.54
[ N Pa(x) k1 (3.54)

where we have made explicit use of the fact that ¥s; has no zeros when we divide by
Py (x). The relations (3.52) imply that

/ dx P Pf ”)"() A (3.55)

while, on the other hand, equation (3.41) yields:

/ iy P Pf P)k( x) _ /jodx <Pk(X)>ax (_,y(x) pk(x)+%axpk(x)>~ (3.56)

Pst(X)

If this integral converges we have that

/j:o dx <Pk(x> ) Ox <—’)f(x) pr(x) + %axpk(x))

Py (x)
[ axa, ( I’jﬁi’iﬁ) @) ) + 5 ap)] . B57)

This last expression can be simplified using the relation

o (B0 = oy (1@ + 5 0um() 59
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which then yields:

[ = [Lwon o (] =

Since this integral is clearly negative, we have that Ay is necessarily positive.

(3.59)

If ¥t (x) does have zeros the osmotic velocity will have singularities. In the next subsec-
tion, we consider what happens in the case when ¥ (x) is an excited state of the harmonic
oscillator and we derive a formal solution in terms of the eigenvalues —A; which are now
not all negative, thus revealing the appearance of instabilities for cases where the above
formalism would still be valid.

3.3.4 Bohm-Hiley-Nelson dynamics: Formal solution when ¥, is a Fock state

Let us apply the formalism outlined in sections 3.3.1 and 3.3.2 to the case of a one di-
mensional quantum Harmonic oscillator. We will consider static wave functions ¥y =
V| ¥u(x, t)|? where the static state is a Fock state

1

F(x, 1) = pa(x)e @2, (3.60)

with

1 (2a\' .-
%(x):\/W(n) e Hn(\/fax). (3.61)

Here, H, is the Hermit polynomial of order n, a is the characteristic length, and w the
pulsation which is a function of the characteristic variables of the problem: w(a) = 2aa.
The osmotic velocity in this case reads:

2v2aanH, 1 (\/271 x)

Tu(x) = —2anx + i (\/27x>

(3.62)

For excited states (n > 0) the osmotic velocity diverges close to the nodes of the wave
function (see figure 3.4). The quantum potential however takes the form:

1
Qxy:—;mwzxz—i—hw(nsz). (3.63)
Hence, the equation 3.49 for g(x,t) is a Schrodinger Equation in an effective harmonic
potential
9g [a d®> 1«? 1
==z —=z— = . .64
ot [28x2 zzxx“"(’”zﬂg (364)

By considering the following substitution we can eliminate the shift term
g(x, ) = e, p), (3.65)
and it follows that

9 [ad* 1a?,].
= aae (360
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Yn(x)

FIGURE 3.4: Plot of the osmotic velocity 7, (x) in the case of (3.62). Here we
chosea=1landa = 1.

By applying a slightly modified version of the procedure in 3.3.2,7 allows us to express
P(x,t) over a basis of Hermite polynomials with Ay = w (k+ 3):

Zae Ok=m g, (x) () (3.67)

ax (if well-defined) is given by:

ak—/ dx j(x,0) gy (x / dx

The probability is well normalized since

/oo dx P(x,t) = i ae k-t /°° dx i (%) i (x)
— k=0 -

—a, = /oo dx P(x,0) = 1. (3.69)

v,b (x). (3.68)

However, the superposition (3.67) will diverge in time whenever the initial distribution
has a non-trivial overlap with excited states for k < n (for a; # 0) . The terms with k > n
decay exponentially over time at different periods which are multiple of the characteristic

"Instead of imposing P(x,t) = +/Py(x) g(x,t) as we did in section 3.3, we now impose P(x,t) =
Pu(x) g(x,t). When n = 0, both procedures are equivalent but excited states (n # 0) possess zeros and
are thus not always positive, which makes a difference in this case. In particular, the orthonormality relation
(3.52) between eigenmodes of the Fokker-Planck operator is not fulfilled if we consider absolute values of the
modes instead of their natural expression, as would have been the case in the approach of section 3.3.
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time (i.e multiple of 1), but those for which k < 1 increase exponentially, which may lead
to inconsistencies (like e.g. the appearance of negative probabilities). This paradoxical
feature is of course due to the presence of singularities at the level of Fokker-Planck equa-
tion because of the zeros of the static distribution /Py (x), and it clearly shows the rather
limited usefulness of this approach in that case.

3.3.5 Propagator and Green’s function formalism

On the other hand, we can also express the solution by using the Green function formal-
ism. The solution of (3.46) can be put in the form:

= i are™ (42)" gy ()
[/_0; ax’ j(x',0) (') | e 1) )

k=0

:/°° i(x',0) E% o (k+ )t
= [7 v j(,0) Kno(x, 1), (3.70)
where
Kpo(x,x',t) = i i (x) P (x)e @ (k+3)t
k=0
- Ié ﬁ <27§l> 2 o2 (x2+x/2)Hk (@x) H; (\/ZTZX/) o (k1)
= <n-smi(wt)> ; em[(xux’z) cosh(w t)72xx/]' 3.71)

Introducing an imaginary time t = iT we recover the well known propagator for the one
dimensional quantum harmonic oscillator. Hence, one can easily find the Green function
K}, of the Fokker-Planck equation (3.7).
Consider the expression:
P(x,t) = / dx' P(x',0) Kp(x, ', t)
= / dx" P, (x") j(x',0) Kp(x, X', t), (3.72)

which should be compared to

P(x,t) = iy (x)e(nt2)t ](x )
:/ dx’ l,b (n+2) (x 0) KHO(x x! t), (3.73)

which leads to the conclusion that

Kp(x,x',t) = ;P:((;C/)) e (nt2)t Kyo(x, X', t). (3.74)
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This function is singular when n # 0, due to the presence of zeros in {(x). However, when
n = 0 it takes the form:

Kp(x,x/,t) = <a> ’ o (1)t

7t sinh(wt)

xem[(xz—&-x’z) cosh(w t)+(x*—x"2) sinh(w t)—2 xx’] (3.75)

3.3.6 One dimensional oscillator and the evolution of Gaussian distributions
An important property of the Green function (3.75) for this case is that if [¥(x)|*> and
P(x,0) are Gaussian, then P(x, t) will still be Gaussian (3.72). This property will allow us

to study analytically the convergence to equilibrium. In this case, let us define the ground

state as
[Fot? = [¥(x) > =/ %E‘Z“Q, (3.76)
for which we can then write:
P(x,t) = 2’9:)6—2 b(E) (x—(x(1))* (3.77)

Injecting (3.77) in the Fokker-planck equation (3.41) gives a differential equation for

(x(t)),

a <’;§t)> — _2aa (x(t)), (3.78)
which is readily solved:
(x(t)) = (xo) e72™! (3.79)
As well as an equation for b(t)
1 db(t) B
with solution:
b(t) = g (3.81)

1— (1—;*0)674”“1‘

From (3.77) and (3.81) we can then calculate the width of the non-equilibrium Gaussian as:

1 1 a
2 — - _ ,—4ant W —dant
%)= 50 ~ 1 [(1 ¢ ) Tt }

which can be re-expressed as

ol (t) = o2 (1 - e’4ao‘t> + 02(0) e Hon! (3.82)

where (762[] represents the width 1/(4a) of the equilibrium distribution (3.76).
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FIGURE 3.5: Simulations of 10 000 trajectories (calculated from the Ito equa-

tion (3.5) for the ground state (3.76) of the 1D harmonic oscillator), whose

initial positions are normally distributed, for 5 different choices of distribu-

tion width (for 4 = 0.5 and « = 1). We observe, in each case, convergence to
the equilibrium (3.76) as predicted by the theory.

Clearly, (x) = (x)e; = 0 with a characteristic relaxation time inversely proportional to
the diffusion coefficient &. Moreover,

doy(t)
dt

o 4an (o, — 07(0)) e+, (3.83)
which has the same sign as that of the difference (c.; — 0%(0)). Hence, 0, () converges
monotonically to the equilibrium value o5, with a characteristic time inversely propor-
tional to the diffusion coefficient «, as confirmed by numerical simulations (see figure 3.5)
of the corresponding Ito equation (3.5).

3.3.7 Ergodicity in the relaxation to quantum equilibrium for the ground state
of the harmonic oscillator

We have just shown how Gaussian initial distributions converge towards quantum equi-
librium, but one could also ask the same question for non-Gaussian initial distributions.
Convergence is guaranteed by the H-theorem of section 3.2, but contrary to the Gaussian
case, we have no clear measure for the rate of convergence, except for the entropy-like
functions Hy (3.9) and Ly (3.10), or the Ly norm (3.21), defined in section 3.2.

The evolution in time of these three quantities is shown in Figure 3.6, for the stochastic
trajectories obtained from 20000 uniformly distributed initial conditions. The relaxation
towards quantum equilibrium is clearly visible in all three quantities. As expected, the
convergence of Hy is extremely fast. Note that, although initially very large, L 3 quickly
matches Ly, up to numerical fluctuations. One important question concerning this relax-
ation process is of course that of possible ergodicity. In order to study the ergodic proper-
ties of the BHN dynamics in a numerical way, we choose the definition of ergodicity that
is, in our approach, the easiest to test.
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FIGURE 3.6: Time evolution of Hy (3.9), Ly (3.10) and the Ly norm (3.21) ,

for a uniform initial probability distribution, calculated from the Ito equa-

tion (3.5) for the ground state of the 1D harmonic oscillator. Relaxation to-

wards the distribution of the ground state |¥|? (3.76) is clearly visible. The

simulation is performed for « = 1, a = 0.5, At = 0.01, for 20 000 uniformly
distributed initial conditions.

Let us first define the time average T of a function h on (), by the limit (if it exists):
- 1 gt
h= lim o [ h(x)dt, (3.84)
0

where x, represents the position of a particle at time #/, as obtained form the Ito stochas-
tic differential equation (3.5) for an initial condition x. We shall then say [28] that this
stochastic process is ergodic if the time average of any bounded function & on () is always
independent of x: Since for bounded / the time average is also invariant under shifts in
time, we can say that we have ergodicity if all time averages of such functions are in fact
constants. The main reason for choosing this particular definition is that it is well-suited
to empirical testing, since it is of course sufficient to establish constancy of the time aver-
ages for all indicator functions x 4 of arbitrary (measurable) sets A C (), for the analogous
property to ensue automatically for all bounded functions on Q).® More precisely, we need
to verify that
t
$a= lim » /0 xa(xe)dt, (3.85)

t—+4oo

is independent of both t and x, for any measurable A C (). Remember that one has of
course that x4 (x;) = Xg14(x), where oA = {xe€Q|x € A}.

In the present case, i.e. that of the BHN dynamics defined by the stationary (ground)
state of the 1D harmonic oscillator, it is clear that the distribution |¥s|? obtained from
the ground state eigenfunction Y, is a stationary solution to the associated Fokker-Planck
equation (3.7).

8 Another reason for choosing this particular definition is that it can also be applied to non-stationary
stochastic processes, as e.g. in the case of the coherent state of section 3.4.
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FIGURE 3.7: Histograms of the positions of a single particle, subject to BHN
dynamics for the ground state of the 1D harmonic oscillator. The full (red)
curve corresponds to the quantum probability |¥s|?>. Here a = 0.5, a = 1
and the total simulation time (t=10000) is sampled with At = 0.01.
a) The initial particle position is xy = 2.5 and the number of bins N;, = 100
(each with spatial size Ax = 0.0635). b) Same as a) but with N, = 50 and
Ax = 0.1270. ¢) Same as a) but with + = 200. d) Same as a) but for xy =
—0.85.

This distribution provides a natural invariant measure y on (): dy = |‘I’st|2dx, for which
Jqdu =1and
u(A) = / Wo2dx = (¢ 'A), "t>0,%A € Q. (3.86)
A

If a stationary stochastic process is ergodic, i.e. if all ¥4 are indeed constants, the values
of these constants can be easily calculated in general [29]. Suppose that forany A, X4 = ca,
for some constant c 4. Then one has from (3.85) that

1 t
ca /Q pea = lim X4 (%)

t—4oo t Jo

t
= lim 1/ dt' u(¢,*A)
0

t——+oo

=u(A). (3.87)
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FIGURE 3.8: Left: A point-particle (the dot near the center) subject to the
osmotic velocity field —2aa (x(t),y(t)), due to the ground state of the 2D
harmonic oscillator at time ¢;

Right: Color plot of the velocities along a trajectory for the evolution under
BHN dynamics, for the ground state of the 2D harmonic oscillator. The
simulation (for @ = 0.5 and & = 1) started from the initial position (—2,1)
and was sampled up to ¢ = 1000 with step At = 0.01.

Therefore, when one needs to decide whether or not a stationary stochastic process is er-
godic, it suffices to establish that Y4 = u(A), forany A € ).

The usual way to check this condition is to consider sampling time averages for a suffi-
ciently refined ‘binning” of ). Starting from a particular initial particle position x, we cal-
culate the trajectory x; that follows from the Ito stochastic equation (3.5), for a sufficiently
long time t. As was explained for the coarse-graining in section 2.2, the configuration space
() is subdivided into a large number of non-overlapping cells or ‘bins” Ay (k = 1,...,Np),
each with the same volume Ax. The trajectory x (t' € [0,t]) is then sampled at regular
intervals At, yielding N + 1 sample positions x,a¢ (1 =0,...,N), for N = t/At. We then
define the sampling function ¢y x

1 N
PNE= 3y Y xa, (xnat), (3.88)
n=0

which is a discretization of % fot Xa(xy)dt' in (3.85) and which gives the frequency with
which the (sample of the) orbit visited the bin Ay. Hence, if in the limit N — +oo, for
diminishing bin sizes Ax and sampling steps At, the normalized distribution obtained
from ¢y x/ Ax tends to a constant distribution (and, in particular, does not depend on the
initial positions x) then the stochastic process is ergodic according to the above definition.
Moreover, since in that case X4, = y(Ax), this normalized distribution must in fact
coincide with that for the invariant measure for the stationary process. For example, in the
case at hand, if the normalized distribution we obtain is indeed independent of the initial
positions, then since u(Ax) = [¥s(x)/? |x=§ Ax for some point § € Ay, we must have that
for sufficiently large N
PNk, 1A
Ax T Ax
i.e.: the empirical distribution obtained from this sampling time average must coincide

= ‘\PSt(x) |2‘x:§’ (389)

Note that this relation in fact tells us that the time average of an indicator function is equal to its space
average X, = [ dp xa = p(A). Obviously, since the indicator functions generate all bounded functions & on

), this then yields the property which is usually associated with ergodicity: h= Joduh(x) =h.
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FIGURE 3.9: Numerical solutions of the Ito stochastic differential equa-

tion (3.5) corresponding to the coherent state (3.90), for three different initial

conditions. We used ¥y = 1, 2 = 0.5, « = 1 and expressed the results in
natural units.

with the stationary quantum probability |¥s|2. This is exactly what we obtain from our
numerical simulations, as can be seen from the histograms depicted in Figure 3.7. After
a certain amount of time, the histograms we obtain indeed converge to the equilibrium
distribution, and this for arbitrary initial positions. The convergence clearly improves if
we increase the integration time, or if we diminish the spatial size Ax of the bins (while
diminishing the sampling time step in order to keep the occupancy rate of each bin high
enough). Although purely numerical, we believe this offers conclusive proof for the er-
godicity of the BHN dynamics associated with the ground state of the harmonic oscillator
in one dimension.

The same can be said, in fact, for the 2-dimensional oscillator which will be studied in
the next section. Some results of a simulation of a single trajectory under the BHN dynam-
ics for the ground state of this system are shown in figure 3.8, in which the red dot in the
plot on the left-hand side indicates the (final) position of the particle at time ¢. The proba-
bility distribution obtained by sampling the trajectory, clearly decreases with the distance
to the origin.

3.4 Relaxation to quantum equilibrium with BHN dynamics: non-
static case

3.4.1 BHN dynamics and asymptotic coherent states

Up to now, we have developed analytic and numerical tools aimed at studying the on-
set of equilibrium when the asymptotic equilibrium distribution is static. Actually, as the
H-theorem of section 3.2 is also valid for non-stationary processes, one of course expects
relaxation to take place even if the asymptotic state is not static, for instance when it is a
Gaussian distribution the center of which periodically oscillates at the classical frequency
w of the oscillator without deformation (typical for coherent states).
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FIGURE 3.10: The time evolution of a non-equilibrium ensemble, illustrated
with position histograms at six different times. The continuous curve is the
squared modulus [¥|? for the coherent state (3.90). As can be seen from
figures (d,e,f), once equilibrium is reached, the distribution clings to the co-
herent state and follows its oscillation faithfully. The center of the wave
packet moves between —2 and 2 with a period 27t. We started from a uni-
form distribution of initial conditions and chose a = 0.5, « = 1 and xy = 2.

The sampling time step is At = 0.01 and the number of bins is N, = 50, each
with width Ax = 0.0461.

In fact, our numerical simulations not only show that equilibrium is reached even in this
case, but also that this relaxation is ergodic. More precisely, we considered a wave function
in the coherent state

1
¥(x,t) = (2;) e (=R o), (3.90)

where ¢ is a global phase containing the energy and %; (p;) is the mean position (momen-
tum) of a classical oscillator at time t:
X = Xpcos (wt) and pr = —mwgsin (wt), (3.91)
with w = 2aa (x = I/m). For this ansatz we solved the Ito equation (3.5) numerically for
a collection of initial conditions.
As can be seen on figure 3.9, the trajectories are affected by the stochastic evolution but
keep oscillating at the same period because of the deterministic part of the (3.1). Notice
however that the trajectories seem to be getting closer to classical trajectories that only dif-
fer from each other by a simple shift. This can be explained as follows: at equilibrium (cf.
tigure 3.10), the Brownian motion is balanced by the osmotic velocity and the dBB velocity
is recovered “on average”.
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Now, the center of the Gaussian distribution moves at a classical velocity by virtue of
Ehrenfest’s theorem and, moreover, in the present case the dBB velocities can only depend
on time and not on space as the envelope of a coherent state moves without deformation.
Hence, the dBB trajectories obtained at equilibrium are, in fact, classical trajectories that
only differ by a mere shift in space (the magnitude of which however may change over
time).

Secondly, as can be clearly seen on figure 3.10, even for a uniform initial probability distri-
bution, the convergence to the quantum equilibrium is remarkably fast and the converged
distribution faithfully follows the oscillating motion of the non-stationary equilibrium dis-
tribution. The remarkable speed of the convergence to quantum equilibrium is corrobo-
rated by the decay of the functions Hy and L and of the L1 norm shown in figure 3.11.
Moreover, figure 3.12 depicts the sampling time average (as defined in section 3.3.7) of a
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FIGURE 3.11: Time evolution of Hy (3.9), Lf (3.10) and L (3.21), for a uni-
form initial probability distribution, showing the relaxation towards the dis-
tribution |¥|? of the coherent state (3.90).

The simulation is performed for « = 1, a = 0.5, At = 0.01 and from 20000
uniformly distributed initial conditions.

single trajectory for this non-stationary stochastic process. The convergence of the sam-
pling distribution to a static distribution ®(x), described by the integral of [¥(x,t)|* as
given by (3.90), over a period of the oscillation

w 27t/ w
O(x) = — |¥(x, t)[%dt, (3.92)
27T Jo
is striking. As the asymptotic distribution ®(x) does not depend on the choice of initial
condition, we conclude that the relaxation to equilibrium for the non-stationary stochastic
process associated with BHN dynamics for the coherent state (3.90) is ergodic (in the sense
explained in section 3.3.7).
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FIGURE 3.12: Histogram of the positions for a unique trajectory satisfying

the Ito equation (3.5) for (3.90). The full curve corresponds to the integration

of [¥|? over one period. The center of the wave packet moves between —2

and 2 with a period 271. Here 2 = 0.5 and « = 1. Total simulation time t is

t = 30000 and and the samping time step is At = 0.01. The initial position
is x; = 1 and the number of bins N;, = 100, each with width Ax = 0.1.

3.4.2 Numerical simulation in a 2D quantum harmonic oscillator (BHN)

We then compared the relaxation process for dBB with the quantum thermostat given by
BHN dynamics for M = 4> = 16 energy states. The results are shown in figure (3.13)
in which the two H-functions Hy (for the dBB and for the BHN dynamics), as well as
L; (for both the dBB and BHN dynamics) are plotted at the (same) coarse-grained level.
We started from a uniform distribution of positions; we took &« = 0.1. In both cases, the
position distributions P and P converge to |¥|?>. Moreover, we recover an exponential
decay for Hy, as already observed in [10], in absence of stochastic (brownian) noise 4 la
Nelson. However, we observe that the convergence to equilibrium occurs faster in the
presence of the quantum thermostat.
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FIGURE 3.13: Plots of the evolution in time of the coarse-grained H-

functions Hy (left) and L; (right) for the BHN and dBB dynamics. The

full line corresponds to the dBB dynamics and the dashed line corresponds

to the quantum thermostat. We started from 10000 initial positions uni-

formly distributed in a a box of size 10x10; we chose a = 0.5, « = 0.1 and
M = 42 = 16 energy states.

3.5 Conclusion:

In this chapter we characterized the process of convergence towards quantum equilibrium
in the framework of the Bohm-Hiley-Nelson dynamics [6]. We derived in this context a
strong H-theorem that allows a qualitative and quantitative analysis of the onset of quan-
tum equilibrium. In particular we have studied the Fokker-Planck operator in presence of
zeros in the probability density |¥]? and have shown numerically how the convergence to
equilibrium process occurs. For that purpose, we used the quantum harmonic oscillator at
one and then at two dimensions, for both stationary and non stationary states. It has been
shown that the BHN dynamics can be considered as ergodic. The noise plays a crucial
role in the relaxation process; it accelerates the convergence to the statistical distribution
|¥|? and ensures that this process will almost always occur. The Csiszar-Kullback-Pinsker
inequality [23] which connects the functionals Hy and L has been shown to be valid in
this framework. Our results generalize the results by Petroni and Guerra [7, 8] concerning
the relaxation towards quantum equilibrium in the framework of the BHN dynamics of
a single particle in a harmonic potential. Those results only involved the L; norm and
no H-theorem was derived at that time. In the next chapter we shall precise the differ-
ences between the stochastic dynamics and the deterministic version of the pilot wave
formulation (dBB). In particular we will focus our study on the mixing (this notion will be
explained) and on the process of uniformization of the initial distribution. Moreover, we
will make the link between the mixing and the chaos by the use of (an estimated value) of
the Lyapunov exponent.
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3.A Numerical simulations

Firstly, we discuss the case of the dBB dynamics. It is assumed that we have an analytical
solution of the Schrodinger equation ¥ (¢, x). We want to compute the evolution of a given
initial non-equilibrium density P(t;,x) up to a final time t; and for intermediate time
events (we denote all these events by t;, with tg = t; and t; = fx). In particular, we are
interested in the coarse-grained non-equilibrium density

1
Plxt) = - /C L PP, (3.93)

which is defined in (2.20).

Numerically, we replace that integral by a discrete sum over a finite set of points x/,
which are uniformly distributed over the CG cells. In order to obtain the value of each
P (X}, t) we use the Liouville relation

P, ) P, t)

FO P 0, 6)1 (399

where xg is the position of the particle which, when evolved according to (2.8) from ¢t; up
to tx, gives x!.

In order to obtain xf for each x!, we consider the time-reversed evolution with wave-
function ¥*(—t,x) and initial condition x! at time —t;. The position x/, if time evolved
from —t; up to —t; according to (2.8), will give the position x!. As there is usually no
analytical solution of (2.8), we use a Runge-Kutta (RK) algorithm [30] to obtain a numerical
estimate of the position xg. In order to know if we can trust the result of the Runge-Kutta
algorithm, we perform two realizations of the algorithm with different choices of a so-
called tolerance parameter (the smaller the value of that tolerance parameter, the more
precise the computation), say y and 10717. If the distance between the two positions
is less than some chosen value J, the result of the last iteration of the RK algorithm is
trusted. Otherwise, we perform another iteration with 1072y and we compare it to the
previous realization of the RK algorithm. We repeat the procedure until the constraint on
the distance between the two successive results of the RK algorithm is satisfied, or until
we reach some minimal value of the tolerance parameter. In that case, the position x' is
considered as a bad position and it is discarded from the numerical integration of (2.20).
This method was used in[10].

That is one possible method but we could also adopt a more brute-force method: Ran-
domly generate a set of N initial positions according to P (t;, x) and let them evolve accord-
ing to an Euler algorithm (that is, we divide the time-interval in small time-steps of length
At and we increment the position by v(t)At at each time-step). We record the positions of
the N particles for each value of f;, we count the number of particles in each CG cell for
each time f (say ncg) and we divide ncg by N in order to define P(x, ti). The first method
turns out to be more efficient in the case of the dBB dynamics but it is not applicable in the
presence of stochastic terms.

In the case of Nelson dynamics we used the Euler-Maruyama method for stochastic
processes to approximate the solution of the Ito equation (3.1). In the same way as Euler’s
method, the time T is divided into N small discrete time steps At. For each time t; we
generated a random variable normally distributed AW; = /At N (0,1). The integration
scheme has the form:

xit1 = x;j +0(x;, i At)At + /a AW;. (3.95)



48 Chapter 3. A stochastic pilot wave dynamics: the Bohm-Hiley-Nelson theory

We invite the reader interested in the details to read [31]. The remaining question is how
to choose the time step At so that one can trust the result of the numerical simulations.
One way to do this is the following. We know that the Born distribution remains invariant
under Nelson’s dynamics (equivariance). We therefore start with some value for At and
decrease it until the result of the numerical simulation confirms this theoretical prediction.
We then perform the numerical simulation for the non-equilibrium distribution with the
value of At thus obtained.
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Chapter 4

Role of mixing and microstructures:
deterministic vs stochastic pilot wave
dynamics

“Tout étant prét pour ma mort, j ‘ai
commencé a écrire ce dont justement je
sais qu il vous serait impossible de
pressentir la raison, d’apercevoir le
devenir. C’est ainsi que cela se passe.
C’est a votre incompréhension que je
m’adresse toujours. Sans cela, vous
voyez, ce ne serait pas la peine.”

Marguerite Duras, L'Homme atlantique

Summary In this chapter we compare the onset of quantum equilibrium in the (deter-
ministic) de Broglie-Bohm (dBB) formalism with its counterpart in the (stochastic) for-
malism of Bohm, Hiley and Nelson. In particular, we emphasize the role played by mi-
crostructures [1, 2, 3] in position distributions in differentiating the onset of equilibrium
in both situations. The present work is a continuation of the chapters 2 and 3 where er-
godicity of pilot wave dynamics has been studied. The chapter is structured as follows.
In section 4.1 we study the mechanism of uniformization (mixing) of two initial ensem-
bles spatially separated, in the context of a 2D quantum harmonic oscillator. In section
4.2 we show how the presence of microstructures in the initial distribution of positions
affects the process of convergence towards the statistical quantum probability. We eval-
uate the largest Lyapunov exponent in order to qualitatively relate the dispersion of the
microstructures with the degree of chaos present in the dynamics (section 4.2.1); we also
show how the presence of noise explodes the Lyapunov regime and accelerates the con-
vergence to equilibrium (section 4.2.2). We finally introduce a new measure (inspired by
Bernoulli processes) in order to measure the degree of mixing of two ensembles initially
separated in space (section 4.2.3).

4.1 Uniformization and mixing

In the previous chapters we introduced the de Broglie-Bohm (dBB) dynamics and its
stochastic extension a4 la Bohm-Hiley-Nelson (BHN). We also characterized the onset of
quantum equilibrium for both dynamics using H theorems. For that purpose, we illus-
trated the evolutions of the H functions, by means of numerical simulations in the context
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>2 dynamics

of a two-dimensional quantum harmonic oscillator.

In the continuity of this work, we aim to make explicit the differences that exist between
the dBB and the BHN dynamics. In particular, we shall see how the relaxation process
towards quantum equilibrium depends on the initial distribution of positions [1, 2, 3]. We
will make a comparative study of the mechanism of uniformization for various initial dis-
tributions. To do so, we shall keep using the same two dimensional harmonic oscillator as
in the chapters 2 and 3.

4.1.1 Uniformization mechanism in the de Broglie-Bohm dynamics

Let us start this study with the dBB dynamics and let us use an analogy with the thermo-
dynamics of mixing [4]. In a nutshell, we start initially from two ensembles (say a red one
and a blue one) of particle positions spatially separated. The two ensembles (say R for
the red one and B for the blue one) have a different number of initial points (Ng and Np)
uniformly distributed among them (see figure 4.1).

-2 -1 0 1 2

X

FIGURE 4.1: This figure shows the initial distribution P consisting of two

sub-ensembles (in the left, the ensemble B with Ny points and in the right

the ensemble R with Ny points) of particle positions spatially separated.
We chose here: Ng = 200000 and Ng = 100000

It is worth emphasizing that the potential well used (2.26) has a characteristic length

Loy =2- <h>1/2 (4.1)

mw

which in dimensionless unit becomes equal to L., = 2. This is why we generated the ini-
tial ensembles of positions between [—2,2]x[—2,2].

In addition, the coarse graining is done in the domain [—4, 4]x[—4, 4] which is such that all
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the trajectories are stuck in this domain as confirmed by means of numerical simulations.

Coming back to the ensembles defined above (figure 4.1). Once those ensembles of ini-
tial positions are created, we track their elements over time and we compute, for each of
them, their corresponding H function (2.22). For example, in figure 4.2 we plot those H
functions in the context of the 2D quantum harmonic oscillator defined in (2.26). This fig-
ure strongly suggests that the relaxation time is qualitaievely the same for the red (R), the
blue (B) and the total ensemble (R + B). We found using an exponential fit of the entropy
funtions H(t) as suggested in the reference [1], that these characteristic times are in a good
approximation given by tg ~ 15.65, 13 ~ 15.28 and T4 5 ~ 15.39. After these times, the
H functions tend to zero and the total system reaches quantum equilibrium.

1.5¢

80 100

FIGURE 4.2: This figure shows the evolution of the entropy functions H(t)

(2.22) for the dBB dynamics starting from the ensembles defined in figure

4.1. The blue dotted curve is associated to the ensemble B, the dashed line
to R and the the full line curve to the total ensemble 5 + R.

In order to understand how the non-equilibrium distribution becomes uniform over time,
it is convenient to define the fraction number function on each CG cell, for the red and the
blue mixtures, as follows:

cell; cell;
cell,; N, 7 cell,; Ny O
n 0 _ R n (7 _— B (4 2)
r T el cell b _ cell; cell; :
7) (1) (1) (/)
Np + Ny Np + Ny

We can also define the average fraction of the two mixtures:

1 Ncell 1 1 Ncell 1

= cell() = cell()

hr = Neell X; 1y ro My = Neell 21 n (43)
= =
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FIGURE 4.3: This plot shows the evolution of the average red mixture 7, on
the left and the entropy of mixing AS. We chose here: Nr = 200000 and
Np = 100000. The function 7, is converging to 72t = 2/3.

Continuing the analogy with the thermodynamics of mixing, we define an entropy of
mixing as:

In figure 4.3 we plot the averaged fraction number of the red mixture 7, and the asso-
ciated entropy of mixing AS. We note that, while the red ensemble R is converging
to the quantum equilibrium, the mixture 77, converges at the same time to the fraction
fit" = Nr/(Ng + Np). It means that on average, the same fraction of red or blue mix-
ture (of trajectories) is present in each cell. In addition,we note that the entropy is max-
imal' after a time of the order of the characteristic time of convergence t ~ Tz, (with
TR+B ™ 15.39).

4.1.2 Uniformization mechanism in the Bohm-Hiley-Nelson dynamics

Let us now make this study in the framework of the stochastic dynamics (BHN). In partic-
ular, for this study we consider small fluctuations of the background field defined in (3.5)
for which « < 1. It is quite intuitive that if « is large, the uniformization will occur quickly
because of the brownian character of the evolution. As we shall see, this acceleration of
the onset of equilibrium also occurs for small values of a (small compared to unity, a being
a dimensionless parameter).

Starting from the distribution corresponding to that in figure 4.1, we let each ensemble
(B and R) evolve according to the dynamics defined by equation (3.5).

1In the context of a thermodynamical system constituted by two mixing ideal gases [4], when the thermal
equilibrium is reached, it means that the kinetic energy is on average equally distributed among the particles
so that the entropy of mixing is maximal. Here in the quantum non-equilibrium, as a result we found that the
quantity is equally distributed as the averaged fraction number of the different mixtures.



4.1. Uniformization and mixing 55

2
—H
---Hp
1.5} T
80 100

FIGURE 4.4: This figure shows the evolution of the entropy functions H(t)
(2.22) in the case of the stochastic dynamics and starting from the ensembles
defined in figure 4.1. The blue dotted curve is associated to the ensemble 5,
the dashed line to R and the the full line curve to the total ensemble B + R.

In figure 4.4 we plot the H functions corresponding to each ensemble characterizing the
mixtures. As in the case of the dBB dynamics, the relaxation time is globally the same for
the red, the blue and the total ensemble. In figure 4.5 we compare the H functions obtained
for the dBB dynamics and those obtained in the stochastic dynamics for « = 10~*. We note
that, even in the case where & < 1, we observed an acceleration in the convergence for the
stochastic dynamics (as already seen in figure 3.13), compared to its deterministic counter-
part: it is almost 10% faster according to the values of the linear fit in figure 4.5.

In figure 4.6 we compare the averaged fraction number of the red mixture (4.3) and the cor-
responding entropy of mixing (4.4) for both dynamics. The mixture 7, converges slightly
faster to the ratio Nr/(Ng + Np) in the case of the stochastic dynamics than its determin-
istic counterpart. As we shall see, this effect is very sensitive to the initial distribution and
gets amplified in the presence of microstructures.
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FIGURE 4.5: In this plot we compare the H-functions obtained for the de
Broglie-Bohm dynamics and for the Bohm-Hiley-Nelson dynamics for & =
10~* . We plot here the logarithmic ratio In(H(t) /H(to) ). We considered for
both dynamics the same initial ensemble of initial positions. We chose N =
300000 initial points uniformly distributed in the domain [—2,2]x[—2,2].
Using a linear fit we estimated the characteristic time of convergence: for
the dBB dynamics we found T 15 ~ 15.39 and for the stochastic dynamics:
TR+B ~ 13.85.
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FIGURE 4.6: This plot shows the evolution of the average red mixture 7, on
the left and the entropy of mixing AS for the stochastic evolution (3.5). As
before: Ng = 200000 and Np = 100000. The function 7, is converging to
—=th
nt =2/3.
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FIGURE 4.7: We plot in a) the initial distribution of points. B) The distri-
bution at time t = 0.2. C) The function |¥|? at = 0 with its gradients.
We chose here 50x50 "clusters" of 20 points each, separated by a distance
|dg| ~ 1078 among them in each cluster. We choose Ng = N = 50x25x20 .

4.2 Mixing in presence of Microstructures

4.2.1 Microstructure in the de Broglie-Bohm dynamics

In the previous section, the initial positions were randomly distributed in each ensemb]e.
Here we study what happens in the relaxation process when the two ensembles exhibit
organized microstructures. In figure 4.7a we illustrate a new initial distribution for the red
and the blue mixtures, in which the lower half of the domain [—2, 2] x [—2,2] consists only
of red points and the upper half only of blue ones. However, each such ‘point’ is in reality
a cluster of points, with a microstructure made of 20 points arranged in a two dimensional
grid initially separated by a distance |dg| ~ 1078. In figure 4.7b the clusters move along
the dB-B trajectories to areas where the density |¥|? is different from zero (figure 4.7c). If
we zoom in on an elementary volume of space, it will be seen that the clusters are always
present until a certain time after which they start to disappear.

Intuitively, it is clear that if the dynamics is not sufficiently chaotic (for example with a
small number of modes M in the superposition in (2.26)) it will imply that the "cluster"
will survive over time. Moreover, the increase of the number of modes in the superposi-
tion of the pilot wave enhances the complexity of the dynamics by making the variation
of the phase nontrivial which in turn increases the chaos [5, 6, 7, 8, 9].

In figure 4.8a we plot the average distance |d(t)| between the points of the microstructures
inside each "cluster". In the time interval [0, Tr 5] (Where T 3 was defined in figure 4.5)
the logarithm of the distance is linear and we can estimate the time at which the clusters
start to disappear (see figure 4.8b). This time is inversely proportional to the largest Lya-
punov exponent A which characterize the degree of chaos present in the dynamics. The
largest Lyapunov exponent A is indeed related to the averaged "interclusters" distance
|d(t)| by: _

d(t) ~ A, sothat|d(t)| ~ |do| e (4.6)

d(t) 7 0 . .
If we estimate the Lyapunov time 74 = 1/A (where A is the Lyapunov exponent) with a
linear fit as in figure 4.8, we find a value of approximately 4 ~ 1.4. This estimate of the
largest Lyapunov exponent is in accordance with the value A = 0.6721 computed in figure
4.9 using a standard algorithm [10, 11].
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FIGURE 4.8: This plot shows the evolution of the distances between the
microstructures inside each "cluster". In a) the averaged distance |d(t)| be-

tween the points of the microstructures. B) We plot here In (|a(t) |/|do]

and we estimate the Lyapunov exponent as the slope of the full-line curve.
C) The distribution at time t = 100. We chose here 50x50 "clusters" of 20
points. Ng = Np = 50x25x20.
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FIGURE 4.9: Estimate of the largest Lyapunov exponent for the dBB dy-

namics using the algorithm in Appendix 4.A. This estimate was made after

averaging 150 orbits uniformly distributed (xo,y0) € [—2,2]x[—2,2]. We
used dg = 1078, t = 5.10* and with a time step At = 1073.
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It is worth noting that if we now go back to figure 4.5, where we imposed an initial ho-
mogeneous distribution of 300000 points, which corresponds to a distance between two
points of the order of |do| ~ 5-107°. We can then predict, according to (4.6), that after
a time of about 10 times 75 (i.e 10 X Tp ~ 15), the distance between two initially neigh-
boring points will be of the order of 5107 - ¢! ~ 1.1, which is of the order of the size
of the domain where the particle is confined. Therefore, it this also is in full agreement
with our estimate of the time required for establishing quantum equilibrium (for the dBB
dynamics:tr 45 ~ 15.39).

A second remark concerns this ‘Lyapunov regime’ during which the global dynamics in
the system is correctly predicted by the value of the Lyapunov exponent. This regime
is limited in time: an exponential amplification of discrepancies in initial conditions is,
de facto, limited in our case due to the confinement imposed by the harmonic potential.
Therefore the exponential growth saturates after a while, which can be observed at the
level of the picture in the middle of the figure 4.8.

Actually, as we have checked directly after visualizing a dynamical movie of the trajecto-
ries of the ensemble, the Lyapunov time is of the order of the time of passage in the vicinity
of a zero of the wave function, which confirms previous studies [7, 5] which demonstrated
that the chaotic properties of the dynamics have to be attributed to the mixing occurring
in the vicinity of the zeros of the wave function (where the gradient of the phase may take
huge values, which strongly increases the dBB guidance velocities).

4.2.2 Microstructure in the Bohm-Hiley-Nelson dynamics

We have found in a previous section that the stochastic evolution, even with a small dif-
fusion coefficient (« = 10~*), induces a speed-up in the mechanism of uniformization. In
this section we identify the origin of this difference by looking at the evolution occurring
at the microscopic level. Similarly to the procedure made in section 4.2.1 but within the
framework of the stochastic dynamics, we focus here on the effect of the microstructures
on the relaxation process.

To do so, let us consider the figure 4.10 in which we plot the averaged distance |d(t)|
between the points in each microstructure under a stochastic BHN evolution. The distance
|d(t)| grows quickly compared to the dBB dynamics. The mechanism of uniformization
is thus more efficient in the case of the stochastic dynamics as pointed out in the previous
section: even with a small diffusion coefficient (x = 10~%) the brownian character of the
evolution implies a quick disappearance of the microstructures. Visually, from figure 4.10,
we can estimate the convergence time T, 3 which is necessary for the clusters to grow to a
size comparable to the size of the domain where the particle is confined. This time is of the
order of 14, i.e. 14 ~ 13.85, which corresponds to the convergence time that we obtained
through a linear fit at the level of figure 4.5 where we found that for the BHN dynamics
TR4+B ™ 13.85.

Let us now estimate the chaos of the BHN dynamics making use of the procedure devel-
oped in the case of the dBB dynamics (section 4.2.1), which appeared to be very successful
in that case. The main result is encapsulated in figure 4.11 in which we plot the largest
Lyapunov exponent computed following [10, 11]. The numeric value for the Lyapunov
exponent converges to A ~ 5.26. The Lyapunov time 7, is then given by 7o ~ 1/A ~ 0.19
which is almost ten times smaller than the chaotic time of the dBB dynamics.



Chapter 4. Role of mixing and microstructures: deterministic vs stochastic pilot wave
dynamics

60

-1
—a =10
----- a=0
25} .
ol i
150 1
',‘\.
1F ¥ i
./
05} 1
0 L r""""/\’ I I I I

FIGURE 4.10: This plot shows the evolution of the interdistance |d(#)] of the

microstructures inside each "cluster". The red full line curve corresponds to

the stochastic dynamics and the blue dotted curve corresponds to the dBB
dynamics.
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FIGURE 4.11: Estimate of the largest Lyapunov exponent for the stochastic

dynamics using the algorithm in Appendix 4.A. This estimate was made

after averaging 150 orbits uniformly distributed. We used dy = 1078, t =
10* and with a time step At = 1073.
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FIGURE 4.12: This plot shows the evolution of the interdistance |d(t)| of the
microstructures inside each "cluster” of two points. Here the initial distance
do between the two points is dg = 107°.

We could then try to deduce the convergence time to equilibrium in the same way as for
the dBB dynamics. According to an analysis similar to that of section 4.2.1, we would find
that the distance reached when, the initially homogeneous ensemble of 300000 points,
approaches equilibrium ought to be equal to 5107 - ¢!% ~ 1.1 - ¢” which is obviously
wrong. Alternatively, we should find that after a time equal to 10 times 7y ~ 1.9 (7, is
now of the order of 0.19), the distance between two, initially, neighboring points will be of
the order of 5-107° - ¢! ~ 1.1, which contradicts the data encapsulated in figure 4.10.

This shows that the Lyapunov exponent is ill-suited for characterizing the dynamics in
presence of the BHN noise. A direct estimate based on figure 4.10 delivers the correct
answer. Actually if we try to fit the red full line curve of figure 4.10 with an exponential
curve (as we done for the de Broglie-Bohm case 4.8) or with a curve that is quadratic in
time curve (purely brownian motion) we again fail. The dynamics in the BHN case is thus
clearly different. Although the precise details of this dynamics remain to be investigated,
it is apparent that the spread of neighboring trajectories is much faster, at least initially,
than one would expect if the underlying mechanism would be purely chaotic as it is in
the dBB case. One tentative explanation might be that the combination of brownian mo-
tion and chaos which appears during the passage close to a zero of the wave function will
cause the divergence of the osmotic velocity (3.4). Our observation is confirmed by the
plots of figure 4.12 which clearly show that an exponential in time growth (4 la Lyapunov)
only occurs in the absence of noise (x = 0).

In figures 4.20 (in appendix 4.B) we illustrate and we compare the evolution of the mi-
crostructures through the dBB and the stochastic dynamics at different times. These fig-
ures strongly suggest that the mechanism of uniformization is indeed more efficient in
the case of the stochastic dynamics as pointed out along this chapter. Even with a small
diffusion coefficient (x = 10~*) the brownian character of the evolution implies a quick
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FIGURE 4.13: At t = t; two ensembles of initial points are placed on both

sides of a box. The ensembles evolve in time according to the dB-B (or

stochastic) dynamics. During the evolution we look at the sequence of
blue/red points in the sub-intervals n

disappearance of the microstructures. Moreover, in these figures we can notice the pres-
ence of the nodes of the wave function. With their associated vorticity, they have a crucial
role in the process of uniformization and they act like purveyors of chaos [7] (or mixing)
in the dynamics.

4.2.3 Convergence to the Bernoulli statistics

In section 4.1, we looked at the statistics at the coarse-grained level. Here we pay partic-
ular attention to the statistics at the level of the microstructures, with the aim of introduc-
ing a measure of mixing which does not depend on any coarse graining. To do so, we
recorded all the trajectories (N = N + Ng) corresponding to each ensemble R and B. We
considered initial ensembles with and without microstructures. We then projected all the
trajectories along one axis (for example the y—axis) and computed the probability of hav-
ing a particular sequence of blue (np) and red (ng) points in a sub-interval of n = ng + np
points (see figure-4.13).

We illustrate in figure-4.14-a and in figure-4.14-b the occurrence probability of having
{np = 1,ng = 1} in a sub-interval n = 2 without and with clusters of 20 microstruc-
tures (using |do| = 1078 for the moment), as defined and used in the previous sections.
As expected, this plot shows the fundamental difference between the deterministic and the
stochastic dynamics in the presence of the microstructures. In fact, the dBB evolution, con-
trary to the stochastic dynamics, is strongly affected by the presence of the microstructures
because of equation 2.17. Now when the spacing inside the microstructures |do| increases,
the mixing occurs more quickly as can be seen in figure 4.15 were P ; is plotted (where
we chose pairs of points with a spacing |do| = 107°). This figure has to be compared with
figure 4.12 in which the initial spacing |dp| is the same. It indicates that the probability
P, 1 saturates at the same time that the one required to saturate the distance due to the
confinement imposed by the potential well (roughly at t = 50 for the BHN dynamics and
att = 100 for the dBB dynamics).

As a result, it turns out that the probabilities Py, ,, converges to the Bernoulli statistics
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FIGURE 4.14: Plot of the occurrence probability Py, ., of having a sequence
of a blue point followed by a red point {ng = 1,ng = 1}: a) without mi-
crostructures and b) with clusters of 20 microstructures and with a spac-

ing |do| = 1078. The dB-B dynamics is associated to the full line curve
(blue) and the stochastic dynamics to the dashed line (red). We chose here
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FIGURE 4.15: Plot of the occurrence probability Py, ., of having a sequence

of {ng = 1,ng = 1} with microstructures (in this case we chose pairs with a

spacing |dg| = 10~). The dB-B dynamics is associated to the full line curve

(blue) and the stochastic dynamics to the21 dashed line (red). We chose here
x=10""%

100



Chapter 4. Role of mixing and microstructures: deterministic vs stochastic pilot wave

64 dynamics

as confirmed by means of numerical simulations. In the Bernoulli statistics, the probabil-
ity of having ng red and np blue points in an interval of ng + np points is given by

(TlB—f—TlR)!
P”Br”R == W PgR PgB (47)

or in terms of a parameter A defined by (Np = A Ng):

- (HB—I—TlR)! 1 "R A "B
Py = ng! ng! 1+A 1+ A (4.8)

At equilibrium, the mixing ensures that the blue and the red points are dispersed in such
a way that the most probable sequence of points in a sub-interval n = ng + np respects the
ratio ng/ng = A, on average.

To take the analysis one step further, we plot in figure 4.17 the histograms of Py, for
different combinations {np,ng} att = 100 for the dBB and the BHN dynamics. Typically,
in the present configuration, at f = 100 the quantum equilibrium is reached in absence
of microstructures (according to the figures 4.2 and 4.4), this is why we chose this time.
We illustrate, first, those histograms in the figures 4.17-a and 4.17-b which are realized
using an uniform initial distribution of positions that does not have microstructures. We
note that the probabilities Py, ,, indeed converges to the Bernoulli statistics for different
combinations of {np,ngr} for both dynamics. We thus compared quantitatively the abso-
lute difference between the probability of figure-4.17 with the Bernoulli statistics and we
found

5 5 5 5
Yo Y |Pugng —PBE =007 and Y Y [Pugue — PN = 0.06, (4.9)

ng,MR ng,MR
nr=0np=0 nr=0ng=0

which strongly confirms the validity of the convergence to the Bernoulli statistics in ab-
sence of microstructures. In the figures 4.17-c and 4.17-d we add the microstructures in the
initial distribution of positions by using 50x50 "clusters" of 20 points spatially separated
by |do| = 108. As a result we found that the BHN dynamics is not affected by the pres-
ence of microstructures while the dBB is strongly affected. Making the same quantitative
comparison we found

5 5 5 5
Y Y P —PEE =740 and Y Y |Puyu— PN =004,  (4.10)

np,MRr np,MR
nr=0np=0 nr=0np=0
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FIGURE 4.17: Probablity diagrams Py, ., at t = 100 and |dg| = 108 for :
a) dBB (without microstructures), b) BHN (without microstructures), c) dBB
(with microstructures), d) BHN (with microstructures).
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4.3 Conclusions

Our study confirms results that were previously obtained regarding the onset of quan-
tum equilibrium in the case of dBB dynamics [2, 7]. In particular, it confirms the role of
the zeros of the wave function regarding the chaotic nature of the dynamics, which itself
can be quantified making use of the Lyapunov exponent (section 4.2.1). In the case of the
dBB dynamics we showed that the convergence to equilibrium crucially depends on the
initial distribution [1, 2], a property which can be put in relation with the Lyapunov expo-
nent [6, 5] (section 4.2.1), and is confirmed by the introduction of a new measure based on
Bernoulli statistics (section 4.2.3).

In the presence of noise however (BHN dynamics) our results show that the Lyapunov
analysis is largely irrelevant: it does not allow us to quantify the emergence of the quan-
tum equilibrium (section 4.2.2). In this case (stochastic dynamics) our results rather show
that the convergence to equilibrium becomes insensitive to the initial distribution after
some time.
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4.A Largest Lyapunov exponent

The Lyapunov exponent is a parameter quantifying the degree of sensitivity to the initial
conditions. It is given theoretically by the formula

_ L1 d(t)
A= tlgg (11101210 " In (d(()))) (4.11)

where d(t) is the distance between two trajectories intially at very small distance dy. How-
ever, the largest Lyapunov exponent can be estimated numerically by using the algorithm
present in [12]. This procedure can be summarized with the following procedure. We
choose at t = t; two initial points x;(tp) and x» (o) separated by a distance dy chosen to
be small enough (dy ~ 1078 is sufficient). These two points evolve during a unique iter-
ation At (see figure 4.18). We compute the new distance d; and we estimate the value of
In (d1/dy).

d, d,

d, xt d,

x(to) X(tg+AD)

FIGURE 4.18: Illustration of the algorithm [12] used to estimate numerically
the largest Lyapunov exponent

In the next step, we rescale one of the trajectories (x; in figure 4.18) by readjusting the
separation. The rescaling is done in a way that the new distance is dy and the direction
is still in the same orientation as d;. We then repeat the procedure and we estimate for
each iteration the value of In (d1/dy). The largest Lyapunov exponent is given in a good
approximation for a long simulation time T by

1Y dq (i
A(xm,leo) ~ ? Z In < 1d(0)
i=1

) (4.12)

We found for dg = 108, T = 5.10° and for At = 1073 a Lyapunov exponent A ~ 0.6721.
Notice that this procedure has been successfully tested by us in the case of the Lorenz and
the Rossler attractors.
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4.B Appendix: Time evolution of the microstructures: dBB vs
BHN dynamics

dABB: t=0.4 - dBB:t=14 dBB: t=2.8
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FIGURE 4.20: This plot shows the evolution of the microstructures at dif-

ferent time for the dBB dynamics on the top and for the BHN dynamics on

the bottom. The initial ensemble of positions was the one in figure 4.7. We
chose here 50x50 "clusters" of 20 points. Ng = Np = 50x25x20.
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Chapter 5

Droplets: wave particle duality at the
macroscopic scale ?

“J’adore I'eau. Dans 20-30 ans, y’en
aura plus.”

JCVD

Summary In this chapter, we discuss the possible analogy between the experiments with
macroscopic bouncing oil droplets and the quantum wave-particle duality. To do so we
shall use the formalism developed in chapter 2, chapter 3 and chapter 4. “Walkers” are re-
alized as oil droplets generated at the surface of a vibrating oil bath. As shown by Couder
and Fort [1, 2, 3], the vibration of the bath prevents the coalescence of the droplets at the
surface, allowing them to remain stable for very long times. Moreover, the trajectories of
the walkers are guided by an external wave [4, 5] that they themselves generate at the
surface of the oil bath. From this point of view, walkers are reminiscent of wave-particle
duality [2, 6] and they seem to offer deep analogies with de Broglie-Bohm particles [7].
Up to now, different aspects of walker dynamics have been studied in a purely classical
framework, typically in a hydrodynamical approach [3, 5]. Here in this chapter we study
walker phenomenology in a quantum approach in which we propose experimental tests
aimed at validating the relevance of BHN’s and dBB’s formalism in order to mimic the
dynamics of droplets. This chapter is adapted from [8].

5.1 Wave particle duality at the macroscopic scale ?

5.1.1 Introduction

Walkers consist of oil droplets bouncing at the surface of a vibrating bath of oil (figure
5.1.1), excited at the edge of the Faraday resonance regime; the walkers are prevented
from coalescing into the bath because the vibration creates an air film at the interface be-
tween the surface of the bath and the droplet. As was noted in [9], ...Walkers exhibit rich
and intriguing properties.... For instance, when the walker passes through one slit of a two-slit
device, it undergoes the influence of its “pilot-wave” passing through the other slit, in such a way
that, after averaging over many trajectories, the interference pattern typical of a double-slit ex-
periment is restored despite the fact that each walker passes through only one slit. The average
trajectories of the drops exhibit several other quantum features such as orbit quantization [10],
quantum tunneling, single-slit diffraction, the Zeeman effect and so on. Another surprising fea-
ture is a pseudo-gravitational interaction that has also been observed between two droplets [1]. ...
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FIGURE 5.1: Illustration of the experimental setup.

These observations suggest that a ‘fluidic’, hydrodynamical formulation of wave mechanics is pos-
sible, in which the droplet would play the role of de Broglie’s soliton, while the properties of the
environmental bath are assigned to the pilot wave of de Broglie....

In view of these observations, de Broglie’s original ideas have regained a certain promi-
nence recently, since these walkers/bouncers were realized in the laboratory with artificial
macroscopic systems. These unexpected developments not only show that de Broglie’s
ideas encompass a large class of systems, but they might in the future also allow us to
build a bridge between quantum and classical mechanics, where ingredients such as non-
linearity, solitary waves and wave monism play a prominent role (see [9] for a review, and
[11, 12] for an alternative approach). Certain models address their deformations due to
their bouncing off the surface of the bath, in function of the density and viscosity of the oil
and other parameters [5]. Other studies describe the dynamics of the surface waves that
the walkers generate during the bouncing process, and how those waves in turn guide
their trajectories. In these models, this complex behavior is characterized by a memory
time which relates the dynamics of the walker bouncing at time ¢, to its successive bounc-
ing positions in the past [13, 14]. The presence of such a memory effect establishes a first
difference with quantum mechanics. Normally, in quantum mechanics, it is assumed that
all results of any possible future measurements to be performed on a quantum system,
are encapsulated in its present quantum state [15]: its wave function at the present time .
Droplets also transcend the most common interpretations of quantum theory which pro-
hibit any description of the system in terms of instantaneous, classical-like, trajectories.
Droplets and their trajectories are visible with the naked eye at any time and standard in-
terpretations of quantum mechanics do not apply.

This is why we believe that it is necessary and worthwhile to adapt realist (causal) for-
malisms such as de Broglie-Bohm (dBB) dynamics[16, 17] or a stochastic version a la Nel-
son[18], to explore the analogy with quantum systems. This is the main motivation of the
present chapter.

5.1.2 A quantum approach ?

To begin with, it is important to keep in mind that there is a fundamental difference be-
tween walker trajectories and quantum trajectories. The quantum description is intrinsi-
cally probabilistic and non-classical, while there exist regimes in which the trajectory of
the walkers is indeed deterministic and classical (for example, when they bounce exactly
in phase with the bath, they can be shown to follow straight lines at constant velocity
[19, 20, 21, 22]). However, there also exist regimes in which a Brownian motion is super-
imposed on their flow lines (e.g. above the Faraday threshold), and other regimes where
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FIGURE 5.2: Figure adapted from [4], trajectory of a single droplet in a cir-
cular corral showing a wavelike statistics. The colorplot shows the norm of
the velocity

the trajectories appear to be chaotic[5]. In fact, in several regimes droplets appear to ex-
hibit ergodic behavior . In practice, ergodicity has been established on the basis of the
following observations: if we prepare a walker at the surface of the liquid bath (a corral
for instance), it will progressively explore each part of the surface, following an apparently
random motion [4]. If one then visualizes the statistics of the sojourn time (see figure 5.2)
of the walker in each of these regions, a striking pattern emerges, bearing more than a
simple resemblance to an interference pattern[4, 7]. It is this, again remarkable, manifesta-
tion of wave-particle duality that first attracted our attention and which lies at the origin
of this chapter. Here, it is worth noting that thus far there is no experimental evidence
that droplets indeed follow de Broglie-Bohm and/or Nelson trajectories. Our approach
therefore differs radically from previous studies on droplets, in the sense that we impose
a quantum dynamic by brute force whereas, until now, the attempt to illustrate how chaos
may underlie quantum stochasticity has been a pillar of the research on walkers/droplets.
In particular, there exists (as far as we know) no way to derive an effective Schrodinger
equation from hydrodynamical models of droplets.

By choosing exactly the opposite approach, i.e. by imposing quantum-like dynamics on
the droplets, we pursue two goals. The first one is to formulate precise quantitative pre-
dictions regarding this relaxation process, which can possibly be validated by future ex-
periments. A second objective is to show, for the first time, that certain dBB trajectories
present a deep structural resemblance with certain trajectories that have been reported in
the literature about droplets trapped in a harmonic potential. This constitutes a prelimi-
nary attempt, ultimately aimed at establishing a dynamics that would combine stochastic
and/or dBB dynamics with a feedback of the trajectory on the wave, a problem which has
never been addressed in the framework of dBB or BHN dynamics, but which is a funda-
mental feature of droplet phenomenology.
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This is why droplets are appealing, because if their dynamics does present analogies with
dBB dynamics, their study will allow us to observe relaxation to (quantum) equilibrium ‘in
real time” in the lab., with our naked eyes, which is not possible with quantum systems for
which we have no direct access to individual trajectories. If one wants to investigate the
onset of equilibrium in dBB dynamics, one obviously has to consider non-static asymptotic
distributions since in static cases the dBB dynamics freezes the trajectories (as the phase of
the wave function is then position independent). Even in the case of a coherent state (see
section 3.4.1) the distribution of dBB positions would never reach equilibrium because it
moves as a whole (as the shape of a coherent state remains the same throughout time). In
a sense coherent states behave as solitary waves.

5.1.3 The quantum corral

It has been shown that the walkers can exhibit complex trajectories and periodic orbits can
emerge. For example in [23] they simulated droplets trajectories in a circular geometry
and they observed those periodic orbits emerging from their models (in figure 5.3a we
adapted one of those orbits). It should be stressed that their model has been confronted
to experimental observations. A result of a simulation in the case of the dBB dynamics
can be seen in figure 5.3b where the numerical trajectory was obtained for a single particle
starting from the initial position (0, —0.1). We considered a superposition of M = 3 energy
eigenstates (equally weighted with randomly-chosen initial phases 0,,) associated to the
quantum corral which is described by the following wavefunction:

"P(T’, ®, t) — Z Cm 619171*1(01,,”1‘]”1 (Zl,m %) efzmq), (51)

m=—1

where 2R is the size of the box, C;, a complex coefficient, Z,,, is the n'" zero of J, and

Wi = 2 (%)2 Quantitatively those trajectories are very similar as can be seen in
0.4f
0.2f
of
02}
04}
%6 04 02 o0 02 o4
(a) Figure adapted from [23]. (B) de Broglie-Bohm trajectory.

FIGURE 5.3: Here we compare simulations of a trajectory for: (A) a droplet
and (B) a dBB trajectory associated to (5.1).

figure 5.3. We shall now qualitatively describe this analogy in the case of the 2-D harmonic
oscillator.
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FIGURE 5.4: Figure adapted from [14], stable droplets trajectories observed

for different quantized number (1, m). In figure: (a-b) circular orbit obtained

for (n = 1, m = £1); (c-d) oval orbit obtained for (n = 2, m = £2); (e-f) the
lemniscates for (n = 2, m = 0) and (g-h) the trefoil for (n = 4, m = £2).

5.2 Dynamical model for droplets and double quantization of the
2-D harmonic oscillator

In this section we shall focus on the description of droplets dynamics as in [14, 10], for a
magnetized droplet moving in an isotropic 2-D harmonic potential. We shall show that
dBB dynamics allows us to reproduce some of the main features of the experimental ob-
servations (see figure 5.4). In [14, 10], it is reported that stable structures appear in the
droplets dynamics whenever a double quantization condition is satisfied. The Hamilto-
nian of the isotropic 2-D harmonic oscillator [24] being invariant under rotations, we may
indeed impose a double quantization constraint, requiring that the energy states of the
2D quantum harmonic oscillator are also eigenstates of the angular momentum. In polar
coordinates, these states (which are parameterized by two quantum numbers, the energy
number 7 and the magnetic number m) are expressed as follows[25]:

a k! _a? i ;
Pum (00,0 =\ L G (Var)" " [ar?] ettt (5
where .CLm' are the generalized Laguerre polynomials and k = ”_T‘m' Note that these

solutions are linear combinations of the product of solutions (3.61) in x and y. A first
experimental result reported in [14] is the following: trajectories are chaotic and nearly
unpredictable unless the spring constant of the harmonic potential takes quantized values
which are strongly reminiscent of energy quantization (under the condition that, during
the experiment, the size of the orbits is fixed once and for all). For quantized energies,
in our case, it is given at 2D by E, = (n + 1) hw, for some ‘effective” value of % to be
determined from actual experiments. Stable orbits appear to which one can attribute yet
another quantum number, this time for the angular momentum, which is strongly remi-
niscent of the magnetic number (the eigenvalue of the orbital momentum, perpendicular
to the surface of the vessel, is given by the product of 7z and m). In [14] (see figure 5.4) it is
shown, for instance, that for the first excitation (n=1, m = =£1) droplet orbits are circular
or oval, turning clockwise or anti-clockwise depending on the sign of m.
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FIGURE 5.5: dB-B trajectories obtained for a single point particle in a su-
perposition of eigenstates (5.3). Each plot is associated to a different com-
bination (n,m), as indicated. In the graphs (a,b) we imposed a = 1, and

w = 1,% = 0.05and w = 0.5,2—2 = 0.05 respectively ; for (c) we imposed

a=23,w =05 % =0.0708, &2 = 0.0456 and £ = 0.0773.
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FIGURE 5.6: Plots of three quantities associated to the lemniscate in figure

5.5¢. a) shows the L,-component of the angular momentum and the polar

plots b) and c) show the probability density || (b) and the -component of
the probability current (2.4) along the trajectory (c).

At the second energy level (n=2, m = —2,0,+2), ovals appear again for m = £2 and
lemniscates for an average value angular momentum < m >= 0. At the fourth energy
level (n=4, m = —4, 2,0, 2,4) trefoils appear (for m = +2).

We simulated dBB trajectories, always considering a superposition of one of the afore-
mentioned doubly quantized eigenstates ¢, ,, with the ground state:

. n .
Y (1’, 0, t) = pe ' Po,0 (7’, 0, t) + Z Cj+1 e 191 Y, —n+2j (7’, 0, t) (5.3)
=0

where ¢; and ¢; are real numbers with 0 < ¢p < 0. Computing the guidance relation
(2.8) for a single eigenstate (5.2), one ends up with a value for VS for which the trajectories
are circles of radius R around the origin, with tangential velocities proportional to m/R.
In particular, the dynamics is frozen when m = 0.
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FIGURE 5.7: dB-B trajectories obtained for a single point particle in a su-

perposition of eigenstates (5.3). Plots (a,b) correspond to w = 0,7 and

w = 1 respectively. Case c is obtained after multiplying the amplitude of

the (1, m) = (4,2) state by a complex phase (e(*3)). We took a = 1 in all
cases.

Mixing the wave function with the ground state, however, generates a periodic (in time)
component in the dBB velocity field, which turns circular orbits into ovals when ¢p is small
enough, and eventually generates more complex structures like rosaces.

We also tuned the energy difference between the ground state and the excited states such
that two timescales characterize the dynamics. These are the “centrifugal” period, nec-
essary for drawing a full circle around the origin, which varies as m/R?, and the “Bohr”
period which varies like T/ (n + 1), where T is the classical period of the oscillator. Tuning
these parameters we were able to simulate dBB trajectories very similar to those reported
in [14]. For instance, we found circles and ovals (see figures 5.5 a,b) for (n,m) = (1,1)
and (n,m) = (2,2). Note that the lemniscate cannot be obtained with a superposition
of the ground state and the (n,m) = (2,0) state for which dBB velocities are necessarily
purely radial, contrary to the suggestion made in[14], but rather should be generated with
a superposition of the ground state with (n,m) = (2,+2), (2, —2) and (2,0) in which the
weights of the m = +2 and —2 components are slightly different (see figure 5.5 c). Figure
5.6 shows further detail of the evolution along this trajectory.
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FIGURE 5.8: dB-B trajectories obtained for a single point particle in a super-
position of eigenstates (5.3) showing intermittent transitions between two
types of trajectories. The relevant parameter values are w = 0.2 ,2 = 1 and

0 — 0.0342, & = 0.2547 and & = 0.0505.
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Tuning the energy, we were also able to generate a trefoil and a “rosace” (see figure 5.7). It
is worth noting however that chaos is omnipresent in the dBB dynamics for this system, in
the sense that the trajectories exhibit an extreme sensitivity to the initial conditions, which
explains why these dBB orbits mimicking stable droplets orbits are in general unstable.
For instance, figure 5.8 shows intermittent transitions between an oval trajectory and a
lemniscate (as has also been reported in [14]), for a superposition of the ground state with
the (n,m) = (2,+2),(2,—2) and (2,0) states. Preliminary results furthermore show that
the trajectories are also unstable under BHN dynamics, i.e. in the presence of “noise”,
whenever this noise (parameterized by « in (3.5)) exceeds a critical value. Therefore, al-
though our approach might not explain all details of the double quantization reported in
[14], it does reproduce many of its essential features and we believe it would be very in-
teresting to be able to deepen this analogy. For instance, having access to the empirical
values of the weights of the ground state, or of the effective values of 7z and of the mass in
the case of droplets would allow us to test our model in real detail.

Another experiment, reported in [26], during which both the position of the droplet and
the excitation of the bath are monitored, and where a superposition between two dis-
tinct modes of the bath is reported, could also provide more insight and might offer some
means to test the validity of our model: using exactly the same observation device, but this
time in the case where the droplet undergoes a 2-D isotropic potential, would allow one to
check whether the modes of the bath are similar to the (1, m) quantum modes which we
associate with the quantized droplets trajectories.
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5.3 BHN dynamics: a phenomenological dynamical model for
walkers?

5.3.1 Predictions in the 2D harmonic oscillator

It is therefore interesting to compare predictions that we, on our side, can make in the
framework of BHN dynamics, with actual experimental observations of droplets dynam-
ics'. To our mind, one important comparison to make concerns the convergence to equi-
librium.

For example, if the initial distribution of positions projected along a reference axis, say X,
fits a mixture of the ground state and the nth Fock state (n = 1,2 - - -) for the 2D harmonic
oscillator (conveniently weighted in order to respect the ineluctable constraint of positiv-
ity), our Nelson-like model predicts that the typical time of convergence to equilibrium
will scale like the inverse of the eigenvalue of the nth Fock state, i.e. as 1/n, which con-
stitutes a very precise quantitative prediction. This follows from the representation (3.53),
when /P;(x) is the Gaussian ground state of the 1D harmonic oscillator and where the
eigenfunctions g are the Fock states given in (3.60) (this, of course, because of the separa-
bility of the Schrodinger equation and of our Nelson dynamics along X and Y in the case
of an isotropic 2D oscillator).

A possible way to measure this characteristic time would be to record the projections along
X of trajectories that correspond to an equally spaced grid of initial positions, weighted
such as to fit a mixture of the ground state with the nth Fock state (n = 1,2---), and to
compare the histogram constructed in this way at different times with theoretical predic-
tions derived from (3.53).

Another precise quantitative (theoretical) prediction, which is even simpler to verify, is
that if we prepare a droplet many times at exactly the same initial position, the position
obtained after averaging over all trajectories will (1) decrease exponentially in time and
(2) be characterized by a decay time which scales like 1/aa, by virtue of the discussion in
section 3.3.6 and in particular equation (3.79).

It has been suggested that droplet trajectories might be characterized by a quantum-like
Zitterbewegung, which can be seen in relativistic quantum dynamics as an intrinsic brow-
nian motion at the Compton scale [28, 29] and various proposals have been formulated in
order to express the amplitude and frequency of this Zitterbewegung [5, 30] in terms of
the parameters characterizing droplet dynamics. Exploring these analogies in depth lies
beyond the scope of this thesis, but the aforementioned attempts, obviously, pave the way
for relating brownian motion to droplet trajectories.

5.3.2 Presence of zeros in the interference pattern

One of our first motivations, when we decided to incorporate a Brownian component in
the dBB theory in order to simulate the dynamics of droplets, was the pioneering paper [4]
reporting on observations of a walker trapped in a spherical 2D cavity (corral), for which
the histogram of positions occupied over time by a single droplet trajectory faithfully re-
produces the Bessel function Jy? (see figure 5.2).

1Gee [27] for a pioneering work very similar to ours in the case of the double slit experiment.
2Which is also related to the Green function of the Helmholtz equation, with a typical length equal to the
Faraday wave length of the vibrating bath over which droplets propagate [21].
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These observations reveal, in a telling way, the presence of a pilot-wave that guides the
dynamics of the particles, and also raise the question of ergodicity.

If we try the approach we used for the 2D harmonic oscillator in the case of the corral
(effectively replacing the Gaussian ground state of the 2D harmonic oscillator by the zero
order Bessel function), we are immediately confronted with problems caused by the pres-
ence of zeros in the Bessel function. Certain formal methods aimed at solving the Fokker-
Planck equation (such as those introduced in section 3.3.6) are only relevant when the pilot
wave possesses no zeros. In particular, the eigenvalues —Ay of the Fokker-Planck opera-
tor (3.50) are not always negative when zeros are present, which of course would menace
the stability of the relaxation process. However, as we already indicated in section 3.2, al-
though the effect of zeros of the pilot wave in our Nelson dynamics is by no means trivial,
there are several observations that indicate that this problem is not really crucial.

First of all, as mentioned in section 3.2, the Wiener process makes it in principle possible
to “jump” over the zeros of the equilibrium distribution. This has actually been confirmed
in numerical simulations for the case of the 1D harmonic oscillator, where we imposed
that the equilibrium distribution Ps; is the square modulus of the first excited (Fock) state
(3.60), with amplitude:

1
2a\? _
Py = [¥s|? = [F1(x, 1) > = <7r> (ax?)e 2ax?, (5.4)

Indeed, as can be clearly seen from Figure 5.9, the particle will, from time to time, jump
over the zero in the middle (with the same probability from left to right as in the op-
posite direction), in such a way that finally the trajectory covers the full real axis, while
the histogram of positions faithfully reproduces the quantum prediction Py = [¥g|? =
|¥1(x,t)|%. This indicates that even in the presence of a zero in the equilibrium distribu-
tion, the relaxation process is still ergodic. The relaxation of a uniform initial distribution
to this quantum equilibrium is shown in Figure 5.10, for the quantities Hy, Ly and L.

A second indication that the problem posed by the presence of zeros is not so serious,
stems in fact from the experimental observations. Indeed, if we study the observations re-
ported in [4] for the case of a corral, it is clear that the minima of the histogram expressing
the distribution of positions of the droplet are in fact not zeros. This, undoubtedly, due to
the presence of a non-negligible residual background. Actually, without this background,
the droplet would never pass between regions separated by zeros: due to the rotational
symmetry of the corral, the zeros form circles centered at the origin and the position his-
togram obtained from a trajectory would remain confined to a torus comprising the initial
position. This, however, is clearly not the case. Which then suggests the following strat-
egy: to simulate BHN dynamics with a static distribution Ps; = ]‘Yst|2 given by the Bessel
function Jy but supplemented with a constant positive background e,

o V]o(r)?
R CET: dt + adW(t). (5.5)

dx(t)
In this case, the singularities of the Fokker-Planck equation automatically disappear and,
despite the fact that we have no analytic expression for the solutions as in the case of the
ground state of the harmonic oscillator, we are able to numerically simulate BHN dynam-
ics without difficulty. The results of these simulations are shown in Figure 5.11.
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FIGURE 5.9: Histogram of the positions in x of a single particle, in the case

of the first fock state (5.4). The full curve (red) corresponds to the quantum

probability |¥1|?>. Here a = 0.5 and a = 1. The total simulation time t is

t = 1000 and the sampling time step is At = 0.01. The initial position is
x; = 1 and the number of bins Nj, = 75, each with width Ax = 0.08.
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FIGURE 5.10: Evolution in time of Hy (3.9), Ly (3.10) and of the Ly (3.21)

norm, for a uniform initial probability distribution, showing the relaxation

towards the distribution of the first excited state [¥1|? (5.4). The simulation

is performed for « = 1, a = 0.5, At = 0.01 and from 20000 uniformly
distributed initial conditions.

The osmotic velocity in the BHN dynamics clearly tends to bring back the particle to re-
gions where |¥|? has extrema and the resemblance with the plot on the left is striking.
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The fact that this result again does not depend on the choice of initial condition strongly
suggests that the relaxation process to quantum equilibrium is also ergodic in this case.
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FIGURE 5.11: Left: The quantum probability associated to the Bessel func-
tion of the first kind Jy. Right: Color plot of the velocities reached along the
trajectory for an evolution corresponding to (5.5). The initial position was
(1,1), the simulation time t = 5000 and the sampling time step At = 0.005.
We chose &« = 0.1, ¢ = 0.2 and the size of the domain is L = 2. On the
boundary we impose a harmonic field force of the form: —2axr.
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5.3.3 Effective dynamics

One could even conceive dynamical models “in-between” BHN, dBB and classical dynam-
ics, characterized by two monitoring parameters (e.g. one parameter (€) quantifying the
degree of classicality [31, 32] and another one (¢') quantifying the degree of noise [33] as :

2
dx = (1—¢) ([;VS—}-G’“VPH ]

2 |¥P

dt + v ae’ dW(t)) + € Vigssicadt,  (5.6)
x=x(t)

This idea is illustrated in figure (5.12) where we show trajectories obtained in the case of
the double slit experiment, ranging from a quantum behavior (with noisy dB-B trajectories
a la Nelson, see [27] for a similar work) to a purely classical, noiseless behavior (with
straight line [19, 20, 21, 22])) passing through an in-between region where superpositions
are still present. In order to compute classical trajectories, we associated for each position
a normally distributed random velocity. We established the histograms of the distribution
of positions on the arrival after a time 0.3 (in dimensionless units). The average value as
well as the standard deviation of the distribution of classical velocities have been chosen
in such a way that the spread of the resulting classical probability has approximately the
same order of magnitude as the quantum (Nelson) one. We chose x; = 1, ¢ = 0.15,
At = 0.001 and v = 0.5. Figures (5.12) respectively correspond to the choices €’ = 1 and
(e =1,e = 1/2,e = 0). This model could maybe explain qualitatively why interference
effects are observed [1] in certain double slit experiments performed with droplets and
absent in others [34, 35] (see [36] for a review).
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FIGURE 5.12: Numerical simulations of the double-slit experiment: classical
trajectories (right), and distribution of arrivals on a screen (left). The curve
(blue) corresponds to the quantum probability |¥|%.

5.3.4 Discussion

Finally, it is worth recalling some of the problems that arose when, first de Broglie, and
then Bohm and Nelson developed their theories aimed at deriving quantum dynamics
(statistics) as an emergent property, i.e., resulting from an underlying “hidden” dynamics.
The most severe problem is undoubtedly non-locality, which was recognized by Bohm[16,
17] to be an irreducible feature of dBB dynamics (see also[37, 38] for similar conclusions
concerning Nelson-type dynamics). Today, under the influence of the work of John Bell
[39] and his followers, it is widely recognized that quantum theory is irreducibly non-
local, which makes it particularly difficult to mimic with classical models. Another prob-
lem concerns the fact that the pilot wave is a complex function. This poses still unresolved
problems in the case of BHN dynamics because Nelson’s diffusion process does not make
it possible to fix the phase of the wave function unequivocally[40, 41].

In our approach, which is mainly of quantum inspiration, complex wave functions and
imaginary phases appear spontaneously, but if we wish to scrutinize the link with the em-
pirically observed modes at the surface of oil baths [14, 10, 30, 26], it will be important to
interpret the exact meaning of this complex phase.
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5.4 Conclusion

In this chapter we studied stochastic, Nelson-like dynamics (BHN), as well as dBB dynam-
ics, with the aim of simulating the dynamics of droplets. The stochastic approach has the
merit that it explicitly takes into account the influence of noise on the dynamics [42, 43]. In
contrast to certain experiments where noise is considered to be a parameter that should be
minimized, here, noise is considered to be a relevant parameter for the dynamics (see also
[27]). For instance, as we have shown, it plays an essential role in the relaxation towards
equilibrium and in the ergodicity of the dynamics. In the dBB approach, on the other hand,
the main ingredient is the chaotic nature of the dynamics [44]. Both models thus shed a
different light on the dynamics and could possibly fit diverse set of regimes in droplets dy-
namics. Ultimately, experiment ought to indicate whether it is relevant, regarding droplets
phenomenology, to formalize the dynamical influence of noise a la Bohm-Hiley-Nelson as
we did in the present section. We actually formulated several proposals in this sense in
section 5.3.1. As we also emphasized throughout the present chapter, our models should
be seen as a first step in the direction of a dynamical model, still to write, combining Nel-
son’s stochastic dynamics (and /or dBB dynamics) and memory effects. To conclude, in our
view, the programs that aim at simulating droplet dynamics with quantum tools or at de-
scribing the emergence of quantum dynamics based on droplet dynamics, are still largely
incomplete and raise challenging fundamental questions. This Pandora box is now open
and it will not be closed soon, which is however not something to be feared as it offers
new and stimulating perspectives for future research in the field.
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Chapter 6

Semi-classical gravity: the
Schrodinger-Newton equation

“Faut mettre des chiffres maintenant.”

Thomas DURT

Summary In this chapter we introduce the Schrodinger-Newton equation [1, 2, 3, 4, 5, 6,
7, 8], an integro-differential non-linear equation derived from a semi-classical approxima-
tion of gravity. The model has been initially proposed as a possible non-linear generaliza-
tion of the quantum dynamics which might, among other things, solve the measurement
problem (that will be briefly discussed in section 6.1.2). In particular, we will see that
the idea of a non-linear underlying theory can be related to the double solution program
proposed by Louis de Broglie [9, 10]. We shall apply this program (section 6.2) in the
framework of the Schrodinger-Newton equation for the purpose of deriving a generalized
guidance equation for this non-linear dynamic. In chapter 7 we will also propose two ex-
periments aiming at testing the Schrodinger Newton equation. This chapter is adapted
from [11].

6.1 Non-Linearity and Quantum Mechanics

6.1.1 Introduction and motivation

In classical mechanics, it is usual to consider point particles when we describe the mo-
tion of macroscopic systems. On the other hand, the standard quantum theory says that
even a macroscopic system like a cat can be in a superposition of distant localized states.
Since the theory is linear at all scales, there is a priori no reason that the superposition
principle doesn’t hold for macroscopic systems. However, this is not in accordance with
what we experiment in our daily life, i.e. all the macroscopic objects are well localized in
space. This problem finds origin in the linearity of the Schrodinger equation. In addition,
the Schrodinger equation can be seen as a heat-like equation with an imaginary diffusion
coefficient. Hence, a particle is described by a wave function which tends to spread over
time so that it is difficult to explain why particles remain sharply localized in space as we
are used to observe in the macroscopic scale. The linearity is actually at the foundation of
the measurement problem.
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m

FIGURE 6.1: The paradox due to the linearity of the Schrodinger equa-
tion is illustrated here with the famous macroscopic superposition of the
Schrodinger cat, i.e. the cat is both alive and dead.

6.1.2 The measurement problem

As already discussed in part I, the double-slit experiment suggests that quantum particles
behave like waves. However, when a quantum measurement is performed, the particle is
found to be in a unique position. According to the standard interpretation, it means that
the probability is instantaneously collapsing into a dirac delta function centered in the
position of the measured particle. Consequently, because of the non-linear character of the
collapse, after the measurement, the probability is no longer a superposition of solution of
the linear Schrodinger equation. In figure (6.2), we illustrate the measurement problem in
the simple case of a qubit made by a superposition of the two possible outcomes |a1) or
|az) (it can be for example, the spin of an electron or the energy levels of a two-level atom).
Before the measurement, because of the linearity of the Schrodinger equation, any linear
combination of the form:

%) o a |ag) + B |az) 6.1)

is also a solution. However, after the measurement of the state it is only possible to obtain
experimentally either the eigenvalue:

. o |af? . . o B

a1 with a probability ——=——-== or the eigenvalue a, with a probability ——————-.
(laf? +181%) (laf? +181%)
Hence, the superposition principle which is at the core of the linearity is no longer valid. It
leads to a paradoxical interpretation of the measurement in which the Schrodinger wave
seems to be affected by the measurement itself. A large majority of physicists simply ac-
cepted the probabilistic interpretation as enough satisfactory even if it does not solve that
problem.

To conclude, the non-linear character of the collapse suggests to consider the existence
of a possible nonlinear underlying theory.
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FIGURE 6.2: Measurement

Following this line of thought several physicist! in the past wondered if it was possible
to modify nonlinearly the unitary Schrodinger evolution (and if it yes how to do it prop-

erly).

6.1.3 A first attempt of non-linear quantum theory: the self-gravity approach

The irreducibly linear nature of Schrodinger equation is still an open question today. As far
as we know, no fundamental non-linearity has been detected yet at the quantum level and
the superposition principle is usually accepted to be a universal principle with the status
of alaw of Nature. There even exist no-go theorems [16, 15] aimed at proving that linearity
is the price to pay to preserve Einsteinian causality (subsection 7.4), which is another pillar
of modern physics. At the other side, non-linear generalizations of the (otherwise linear)
Schrodinger equation pave the way to realistic solutions of the measurement problem in
full accordance with de Broglie’s double solution program [17, 18, 19]. The basic idea un-
derlying this approach is that non-linearity would be at the source of the so-called collapse
process (this question will be discussed in chapter 7), ultimately explaining the corpuscu-
lar properties exhibited by quantum systems. Following this line of thought, self-gravity
(in its commonly accepted formulation [7, 20, 1, 8, 2, 3, 4, 5, 6]) is particularly promising
because it enables to predict that the micro-macro (quantum-classical) transition occurs
for objects having a mass above say 10° a.m.u. [1]. For lighter objects (atoms, molecules,
small aggregates) self-gravity is however predicted to be so weak that no measurable vi-
olation of the superposition principle is possible, in agreement with all experimental data
collected so far. For sufficiently massive objects (having a mass above 10° a.m.u.), the non-
linearity activated by self-gravity is in principle sufficiently strong for localizing the wave
function of the quantum object in a region small compared to its physical size, in which
case the object behaves as a localized particle, which is one of the goals of de Broglie’s dou-
ble solution program [21, 19]. Of course, in this approach, the double solution program is,
contrary to de Broglie’s original formulation, not realized for ALL objects: it would work
only if the object is massive enough. Another problem in orthodox self-gravity., regard-
ing the realization of de Broglie’s program, is that there is no double solution: either the
wave function is self-collapsed and then it is no longer a solution of the linear Schrodinger
equation, or it fulfills the linear equation which means that self-gravity is so weak that it
can consistently be neglected.

1Since 1927, there were few attempts to consider non-linear modifications of the Schrodinger, for example
[12,13, 14, 15]
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de Broglie actually faced a similar dilemna in 1927 which brought him to formulate the
guidance condition [18] according to which corpuscles/solitons follow the de Broglie-
Bohm guidance equation, but there is no indication that this principle is valid in the frame-
work of orthodox self-gravity?.

6.1.4 The Schrodinger-Newton equation

It is common in the literature to represent quantum effects due to self-gravitation through
the Schrodinger-Newton equation [1, 2]

2
ihaqf;,x) = —th ANY (t,X) + Vert (3, ) ¥ (x, 1) + /d3x/|‘f’(t, XV PV (|Ix —X|)¥(t,x), (6.2)
where V(d) = —Gm?/d and V,y(x,t) an external potential. This equation can be shown

to result from the mean field coupling proposed by Meller [3] and Rosenfeld [5] in the
non-relativistic limit [1, 8]. In a nutshell, Moller and Rosenfeld considered a semi classi-
cal approach in which the (quantum) matter (encoded by the stress energy tensor 7\;“,) is
evolving in a (classical) space time (encoded by the Einstein’s tensor G,,,). They proposed
to start from a slightly modified Einstein equation:

G = 871G (¥| T [¥), 6.3)

in which the quantum operator 7A7W is taken as an expectation value with respect to a given
quantum state |¥). In the newtonian limit, the gravitational potential is shown to obey a
Poisson equation:

V20 = 4nGm (¥|p|¥) (6.4)

where p is the mass distribution. After some calculations it yields to the expression (6.2).
This is valid in principle when the object is an elementary particle. If the object possesses
an internal structure, it is necessary to integrate the self-gravitational potential over the in-
ternal degrees of freedom of the object [7]. In the case of a rigid homogeneous nanosphere
one finds that, at short distance, instead of the Newton potential V, the effective self-
interaction can be expressed [7, 22] in terms of d = |xcm — Xpy|, With xcwm the center of
mass of the nanosphere as follows:

=S (50 () () wsm e

where R is the radius of the nanosphere. This expression is valid when d is smaller than
twice the radius of the sphere. For larger distances, that is to say whenever d is larger than
twice the size of the object, the integration of the internal contributions can be realized
easily, making use of Gauss’s theorem. Then, we recover the usual Coulomb-like shape,
also valid in the case of a non-composite object (6.2):

_Gm?
i

2p, Fargue has shown in the past [17] that in the case of free propagation, there exist certain non-linear
equations admitting solitonic solutions moving along straight lines, respecting thereby the guidance condition
derived from a plane wave type solution of the free linear Schrodinger equation, but in our view this property
is merely a consequence of the Galilei invariance of the non-linear equation considered by D. Fargue in his
study [19]. As far as we know no confirmation of the validity of the guidance equation has been obtained
outside from this particular situation (free evolution plus Galilei invariance)

veff(d) = (d > 2R). (6.6)
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The resulting integro-differential evolution law of the center of mass wavefunction (CMWFE)
now reads

L OF (1, x n?
Zh(atCN[) = —% A‘Y(t, xCM>+Vext(XCM/ t)"P(XCM, t) (67)

+ /dg,X/CM\‘F(f, X o) [PV (Ixem — xem| ) E (£ xem),

where V(|xcm — x(|) is fully defined through equations (6.5,6.6). In the limit where

the wave function of the center of mass is peaked over a region small in comparison to R,
the effective potential can be considered as quadratic:

off Gm2 [ 6 1[/d\?

so that equation (6.7) is rewritten as a Schrodinger equation in a harmonic like potential :

aT(t, XCM) T’lz

h— "2 = —— AY (4, V. HY Jt
i 5 . (t, xcMm )+ Vext (xem, 1) (xem, t) 69
mwéN 2
+ 5 (XCM — <XCM>) “P(f, XCM)/
where now
Gm

is related to the the spring constant of the harmonic like oscillator (6.9). For instance,
for a nanosphere of radius R = 100 nm and with a mass m = 10'° atomic mass unit,
wsn ~ 1.1072 Hz. This is a very general result, not only valid for spherical objects, as has
been shown in ref.[6]: whenever the extent of the CMWEF is small enough, the effective
self-gravitational potential is quadratic (see also Refs.[23, 24]).

6.2 De Broglie double solution program

Briefly summarized, Louis de Broglie suggested [25] a wave monistic alternative solution
of the measurement problem, i.e. in this line of thought we can fully describe physical
phenomenons by considering only waves. Especially, according to him, a quantum sys-
tem could be described by two waves. The particle gets represented by a solitary wave (a
soliton) which is solution of a self-focusing non-linear Schrodinger equation which com-
pensate the natural spread of the wavefunction and by the pilot-wave, solution of the lin-
ear Schrodinger equation which guides the solitary wave through de guidance equation
(2.8). Louis de Broglie called this solution: the double-solution program (we schematically
present this idea in figure 6.3).

Originally, Louis de Broglie [26, 25, 27] conceived this model by considering that the total
wave function should be written as the sum of the pilot wave and of a solitary wave. He
tried to derive the guidance equation from this hypothesis but he never managed to derive
it. In the derivation of the guidance equation (2.8) by David Bohm, it is has if the soliton is
reduced to a mathematical point without any spatial structure.
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Non-linearity

spread F \\\\

FIGURE 6.3: We illustrate here the double solution program of Louis de

Broglie. In blue the peaked solitary wave which represents the particle and

which has x(t) as a center. The trajectory of x(t) obeys by a guidance equa-
tion coming from the linear pilot wave (in red).

In order to explore possible realization of de Broglie’s double solution program in the ab-
sence of the guidance condition, an other approach has been developed in the past another
approach in order to derive a generalized guidance equation from the double solution pro-
gram. In summary, instead of considering the sum of the two waves, it was proposed to
study the product of these two (this is the so-called factorizability ansatz [28, 19]). One of
the reasons for exploring this possibility is the recognition that the superposition principle
is no longer valid whenever non-linearities are present. The other reason is the afore-
mentioned difficulty (impossibility?) to derive the guidance condition from the non-linear
dynamics. It has been shown in the past that a generalized guidance condition [19] results
from the factorizability ansatz, in which, in first approximation, the velocity of the local-
ized soliton is the sum of the de Broglie-Bohm velocity and of an internal velocity. It has
also been shown by then that the approximation is good provided the soliton is peaked
enough. In order to verify the validity of this result, we considered here a particular regime
of self-gravity, the so-called quadratic regime [1, 6, 7], valid when the size of the object is
large compared to the soliton. In this regime, the evolution is endowed with a remarkable
property: it is gaussian; in other words, gaussian states remain gaussian throughout the
evolution [20].

6.2.1 Factorization ansatz, double solution and self-gravity

In this section we shall impose the factorization ansatz [28] according to which the total
wave function ¥ (¢, x) can be written as the product of a pilot wave Y. (¢, x) and of a peaked
soliton ¥YNE(t, x):

Y(t,x) =¥E(tx) - ¥NE(t, %), (6.11)
where ¥ (¢, x) is solution of the Schrodinger equation:

it ¥ (£, x), (6.12)

2
o + + (x — <x>)

a‘P(t,x) B _22872 Jext. 52 kSN
| 2mox2 2

with kN = m w2y, and YL(t, x) is solution of the following linear Schrodinger equation:

il YLt x). (6.13)

afoL(t,x> B _ﬁiZ+ fext o2
ot | 2mox2 2
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Originally, the ansatz (6.11) has been introduced [28] in order to describe the phenomenol-
ogy of walkers®. In the case of droplets, our basic motivation for imposing the factorization
ansatz is that walkers prepared at different positions and represented by YN always see
the same bath (environment) represented by Y°.

In order to test such an ansatz, let us for simplicity impose that ¥ (¢, x), Y%(t, x) (and thus
YNL(t,x)) are gaussian:

A2 _ALy2 L L _ ANL,2 NL NL
‘Y(t,x) —e Ax /2+Bx+C, \I;L(t’x) —e Ax*/2+BEx+C and "YNL(t,x) —e ANEx? /24BN x+4-C ,

where the factors A, AL, ANL, B, BL, BNL C,CL,CNE are time-dependent and complex func-
tions of time. The real part of C, CL and CNL is constrained by the normalization of the
wave function (which remains constant throughout time), and their imaginary part can be
seen as a global, purely time-dependent, phase, irrelevant from the physical point of view.
Having this in mind, one sees that the full wave function ¥ (¢, x), the pilot wave ¥*(t, x)
and the soliton ¥NE(t, x) can be consistently parameterized by 4 real parameters; the full
wave function for instance is entirely defined (up to an irrelevant global phase) by the 4
real parameters ay, ap, by, bo:

a1 =ReA, ar,=1ImA, by =ReB, b,=7ImB.

A similar parameterization holds for the pilot wave and the soliton. If now we impose the
constraints (6.11,6.12,6.13), the dynamics reads (making use of the fact that <x> = %):

ay =2 ar - ak = 2:;:% -ak
. h kext. +kSN . h kext.
= (@ — )+ b =~ ((ah)? — (ah)?) + =
. h . h
by = —(a1by + azby) bk = —(albk + abbh)

m m
. h kSNp, : h
b, = —%(albl — axby) + T bk = —%(ﬁb% —abbl),

and we also have the trivial and useful relations :
=y —at, =, —df,

Nt = b, — b}, B =1, b}

6.2.2 Generalized guidance equation.

In ref [19] the author showed in the framework of the factorization ansatz (6.11) the fol-
lowing property (from now on denoted the generalized guidance condition):

d<x>NE 1 < YNL|L G| @ NL >
= Vi = —7SL(x, ¢ i 6.14
T Virift mV L(xt) N + < IIINL"FNL > ( )
ViB—B Vint.

3See chapter 5 for what concerns droplets phenomenology.
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where S| represents the phase of the pilot wave ¥ and <x>NE the center of the peaked
soliton. The above generalized guidance equation contains the well-known Madelung-de
Broglie-Bohm [29, 30, 31] contribution (v,5_p is interpreted as the guidance velocity (2.8)),
plus a new contribution, an “internal” velocity reflecting the contributions of the internal
structure of the soliton :

< lIINL| VHINL >
< TNL"FNL >

Vint. = (6.15)

In order to test the range of validity of the generalized guidance equation through a con-
crete example, we numerically solved the dynamical systems (6.14). By doing so, we were
able to obtain plots of the parameters <x>, <p>, 02 and a% in function of time. These
four parameters respectively represent the average values of the position, the velocity and
their variances; in the case of a gaussian wave packet ¥ (¢, x) = e~ Ax*/24Bx+C they are in
one to one correspondence with the four complex parameters a1, a2, by, by:

bl bzal — a2b1 2 1 2 hz‘A|2
_ _ - 2= 16
<x> o <p> . , Oy Y o, 2 (6.16)

Similar relations hold in the case of the gaussian wave packets YL and ¥NL. In order to
check that the generalized guidance condition is indeed well satisfied, we had to evaluate,
in function of time the following quantities:

i) v4rifr the time derivative of the position of the barycenter of the solitonic wave packet

L fdx’|‘I’NL(t,x/)|2x/ B b{VL

N
= == 6.17
<X>y [ dx/[¥NL (¢, ') |2 oL (6.17)
ii) the de Broglie-Bohm velocity
VipE = lvsL(x t) _ 1 <b2 —ab <x>{“) (6.18)
m x=<x>N M
iii) the internal velocity
<p>£\IL 1 (bé\]LbZNL _ NLb{\]L)
Uint = —— = NL (6.19)

a

As can be seen in figure 6.4, vg,;r; and v pp + Uiy, are not distinguishable and thus estab-
lishing the validity of the generalized guidance condition in this case. Actually, we may
also retrieve the generalized guidance condition by an analytic argument, remarking that,
combining (ii) and (iii) above we obtain

_pt 1
VapB + Vint = — (bz +by" NL (ay +ay"t)) = (b2 —a <> ). (6.20)
G
This expression has to be compared with the average velocity of the “full” wave packet ¥
which is nothing else than 1 - (b, — b—l ;) ~ L. (by — <x>NL . alL) because in the regime
considered by us <x>; = 21 R <x>{\] L, due to the fact that the weight (size) of the pilot

wave is quite smaller (larger) than the weight (size) of the soliton (a% << a{‘] LY. Then the
velocity of the full packet also coincides with the drift velocity (6.14) of the soliton.
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< >
Varife

FIGURE 6.4: Plot of 04pp, Vint., Vagp + Vint, and vgripy = 4 (x)'L) in function
of time; space and time were rescaled and are of the order of unity.

This being said, it is worth noting that the drift velocity looks classical, as is obvious from

NL
a phase space representation of the average trajectory (x)'*, dy;(’t ) which looks perfectly

circular provided we rescale one of the variables appropriately as can be seen from figure
6.5.

This property was already noted before in ref [6], whom authors remarked that when
the dynamics obeys equations (6.14), the first moments of the distribution of positions and
velocities are not affected at all by the non-linear coupling. One can prove this result rig-
orously on the basis of the dynamics (6.14), but this property is not a coincidence; as was
noted in [23, 19], one can explain the emergence of classical trajectories in terms of a gen-
eralized Ehrenfest theorem as we shall discuss in the next section. The second moments
c? and (7% are nevertheless modified by the evolution. In our case, self-gravity results into
a breathing of the wave packet [32, 20], which is very explicitly shown in figure 6.6.

Actually there exists a stable radius for the gaussian packets for which self-gravity and
spreading behavior exactly compensate each other. In full analogy with coherent oscillator
states the size of these generalized coherent states is of the order of

h
VEkSNm

as confirmed by numerical simulations (this is so at least when we impose that the ratio
kSN /ke* is equal to 10%, in which case the small fluctuations of the shape of the general-
ized coherent states induced by the external harmonic potential are negligible). This can
be seen from figure 6.6 which shows that when 02 & klem the shape of the wave packet
remains stable, and that if it is slightly disturbed, the size of the wave packet oscillates
(breathes) around this equilibrium value.

(6.21)
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FIGURE 6.5: Plot of (<x>NE, d<);? ) in appropriate units, illustrating the

validity of a generalized Ehrenfest’s theorem.

t
t

FIGURE 6.6: Time evolution of the second moments ¢ and U;% with self-
h
VkSNm

gravity for a “coherent” state (black) such that 02 ~ and for an arbi-

trary state (red).

A similar study was already performed in the past [6, 23], motivated by the ambition
to experimentally observe manifestations of self-gravity through their influence on the
dynamical properties of a mesoscopic object trapped in a harmonic potential. In those
studies however, the self-gravitational interaction always appeared to be very small and
was treated as a perturbation. Actually, self-gravity is so weak that up to now it was im-
possible to experimentally observe its potential manifestations. In the approach proposed
here however, we do not impose that the norm of the wave function is equal to unity, as
is the case in orthodox self-gravity. The reason therefore is that we consider that the wave
function is attached to a solitonic self-collapsed solution of the non-linear dynamics which
behaves as a corpuscle [19], and ought not to be confused with the pilot wave, solution
of the linear Schrédinger equation for which normalization to unity ([ dx|[¥(t,x)[*> = 1)
is traditionally required, in agreement with Born’s probabilistic interpretation. This con-
straint is generally overlooked in the framework of usual (linear) quantum mechanics be-
cause the normalization of a solution of a linear equation does not affect the properties of
the solution, such a solution being always defined up to an arbitrary multiplicative factor.



6.2. De Broglie double solution program 101

On the contrary this is no longer so as far as we consider non-linear equations.

In our approach, we consider that the normalization factor of the solitonic wave represent-
ing the corpuscle is huge compared to unity, and it is rather the external potential that is
treated as a perturbation. This is why we explore the solutions of the non-linear dynam-
ics in a regime which has been unexplored before, regime in which the effective coupling
constant characterizing self-gravity is quite larger than the spring constant attached to the
external (trapping) potential. In the practice, we considered a situation for which the ratio

between the non-linear and linear spring constants Iljfj,v is equal to 10°.

6.2.3 Generalised Ehrenfest theorem.

Equations (6.2) and (6.7) are invariant under Galilean transformations, which expresses
that self-gravity does not result into self-acceleration, in accordance with Noether’s theo-
rem. This implies that even if a harmonic oscillator is self-gravitating, the average position
of its center of mass rigorously obeys Newton equation and indeed we find that

2 2
Tors =y <x> =S ax [ (e P92 ), 622)

where
/ dx / A [¥ (£, %) 2] (8, X) - 2(x — ') = 0. (6.23)

Thus < x > will oscillate at the classical frequency w,y;./27. This constraint imposes se-
vere limitations to our original program which was to realize de Broglie’s double solution
program, and thus to derive de Broglie-Bohm dynamics as a consequence of the factoriza-
tion ansatz. We found that de Broglie-Bohm trajectories coincide with classical trajectories
which is not at all the result that we were looking for [19]. In other words, we aimed at
deriving de Broglie-Bohm dynamics and instead we found classical dynamics, a rather
disappointing result. It is worth noting at this level that orthodox self-gravity exhibits the
same features: in the classical limit (for macroscopic objects counting at least of the order
of 10%% nucleons), in situations where self-gravitational collapse results in an extremely
peaked localization of the center of mass wavefunction (CMWF) of the object we may ne-
glect quantum fluctuations around the barycenter of the CMWF so that in virtue of the
generalized Ehrenfest’s theorem dynamics is FAPP classical. From this point of view, in
both approaches (ours and “orthodox” self-gravity), we predict that localized objects obey
classical dynamics in good approximation which is however satisfactory if we wish to deal
with the classical limit. However the classical limit is only one side of the measurement
problem. The other side of the measurement problem is related to the probabilistic nature
of the quantum predictions which was already discussed in part I.
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6.3 Conclusion:

In this chapter, we presented the Schrodinger Newton equation and proposed to apply in
this framework a prototype of the double solution program of Louis de Broglie. We con-
sidered a particular case in which self-gravity is treated in the quadratic regime for which
gaussian states are preserved through the dynamics. We have thus numerically integrated
the non-linear dynamics associated to the evolution of a self-gravitating gaussian wave
packet trapped in an external harmonic potential. By doing so we have confirmed that we
can in principle derive a generalized guidance equation for such non-linear dynamics. In
particular, we have shown that the trajectories of the soliton are classical. Contrary to our
primary hope which was to retrieve de Broglie-Bohm dynamics we noted that the inter-
nal velocity may not be neglected and even more, that it conspires, in agreement with the
generalized Ehrenfest theorem presented in section 6.2.3, to restore classical dynamics.

This finally brings us to invoke, as a last resort aimed at realizing de Broglie’s program, the
presence of a suitable combination of non-linear and stochastic component on the dynam-
ics, aimed at neutralizing the internal velocity while preserving equivariance. Moreover,
as has been noted by Gisin [33], the combination of non-linearity and stochasticity is also
an essential tool of collapse models (as we shall see in the next chapter) which are intro-
duced in such way that causality is preserved (it is expressed through the no signaling
condition [34, 21, 35]). This combination is also present in Nelson’s model (see chapter
3 with the osmotic velocity) and even in all “shut up and compute” simulations of the
Monte-Carlo type where an effective collapse is implemented. Our analysis suggests that,
probably, all approaches inspired by the double solution program of de Broglie [36, 18, 9]
will have to include stochasticity as an essential ingredient in order to tackle the hard task
of mimicking quantum mechanics with realistic models. Bohm and Vigier [37] as well
as de Broglie [27] arrived to a similar conclusion; de Broglie attributed the origin of the
stochastic quantum “zero-point field fluctuations” to a quantum thermostat or subquan-
tum field, the study of which constitutes still today one of the main open questions in the
framework of realistic hidden variables theories.

The Schrodinger-Newton equation is however interesting, even if it does not lead to de
Broglie guidance equation, it explains why macroscopic objects are localized in space and
why they follow classical dynamics. From this point of view, the Schrodinger-Newton
equation deserves to be tested experimentally.

In the next chapter we shall see how to test the non-linear Schrodinger equation by con-
sidering two experiments.
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Chapter 7

Experiment proposals to test
non-linear quantum mechanics a la
Schrodinger-Newton

“If we are going to stick to this
damned quantum-jumping, then I
regret | ever had anything to do with
quantum theory.”

E. Schrodinger

Summary We propose in this chapter two experimental tests aimed at putting into evi-
dence the existence of a non-linear self-interaction a la Schrodinger-Newton. The first test
involves a Humpty-Dumpty Stern-Gerlach experiment [1]. The second one implements
the idea that decoherence can be used as a tool for controlling and tailoring the evolu-
tion of a quantum system. Moreover it incorporates the concept of mobility [2] (that we
shall define in what follows), which is central in the derivation of Gisin’s famous no-go
theorem about non-linearity [3]. To put it simply, this theorem relates the presence of a
non-linearity to the violation of quantum signaling.

7.1 Measuring self-gravity in a Stern-Gerlach Humpty-Dumpty
experiment.

7.1.1 “Coherence of quantum gravity” at the nanoscale: recent proposals.

Two very similar experiments [4, 5] have been proposed recently aimed at revealing quan-
tum gravity effects. The figure 7.1 has been adapted from [4] to illustrate the main idea be-
hind these proposals. Roughly speaking, these experiments involved two spin 1/2 meso-
scopic systems (e.g. a NV center in a diamond nanocrystal) simultaneously released from
two traps placed side by side and falling through magnetic fields. The magnetic fields are
configured in such a way that the wave packet of each spin 1/2 system gets split into two
(say Left |L,1); and Right |R, |); where i = 1,2) parallel beams at the beginning of the
free fall and recombined at the end. This is a so-called Humpty-Dumpty Stern-Gerlach
experiment [1].

The basic idea of these proposals is the following: depending on its path, a branch of a
bi-localized mesoscopic particle will feel a different gravitational interaction.
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FIGURE 7.1: Figure adapted from [4]. This figure illustrates an experiment
which uses the principle of Stern Gerlach interferometry with the aim of
testing quantum gravity effects.

Typically, the total gravitational energy of each packet (corresponding to |j); or |j), where
j = LorR) is the sum of the Newton interaction between this packet and the other bi-
localized states (|L), and |R), or |L); and |R);). Hence, during the free fall, each of the
four packets accumulates a phase shift which is proportional to the sum of the gravita-
tional interactions with the two components of the other mesoscopic particle. After getting
recombined the spins appear to be entangled by gravity.

Performing a spin tomography could, in principle, reveal this entanglement which would
be the first manifestation of gravity in this regime and thus revealing what is called by the
authors the quantum coherence of the gravitational interaction. It is worth noting that in
both proposals, no explicit model of interaction has been written. It is clear however that
the authors assume that the experimental conditions are such that we are in a nearly clas-
sical regime, where the energy of interaction between two distant masses 1 and 2 obeys

Newton’s expression:
G ni1 mop

d1,2
Actually, a direct analogy with electro-magnetism and Coulomb interaction suggests two

possible phenomenological potentials of interaction to be tested in their experimental pro-
posal.

Vip=— (7.1)

e The first one, of classical nature [6]

/
VEESS = —Gmy my /d3x/d3x’pl(x )p2(x) (7.2)

[x = x|
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where, when 1 and 2 are not entangled, p; can be factorized so that p;(x) = ¥;(x) ¥;(x)
withi =1,2.

Otherwise, if they are described by a first-quantized wave function ¥1,(x1, x2) defined
in 6D configuration space (with possibly spin contributions that we omit here to write
explicitly for simplicity), the local 3D densities are the marginals of the 6D distribution:

pl(X,) = /d3XQ|‘F1,2(X1,X2)|2 and pz(x’) = /d3X1"Y1,2(X1,X2)|2 (73)

e Thesecond one, inspired by Coulomb interaction in the first-quantized Hydrogen/Helium
atom, reads:
[¥1,2(x1,%2) [

uant. "
sz = —Gmimy /d3x1d3x2
’ X1 — x|

(7.4)

It is not our goal to study these models in depth but the idea is that the phase shifts are
proportional to [ dtV. In fact, when we prepare at time ¢ = 0 the spinors 1 and 2 in a
factorizable state of the form

(= 0))1p = 5 (L) +[R)) (L), + [R)) 75

the state at time t will be equal to

1 . ) .
F(t=1))1,= 5 (IL)q [L)y €' ¥EE + |R)q [L), €' PRE + |L); |R), €' PLR 7.6)

+|R) 4 [R) p €' #%)

where we defined the phase ¢;; as
Vij

9i; = / t=1 7.7)

with i (resp. j) is L or R. Hence, if the potential of interaction is (7.1) we get

_ G mq np T 1

gpl] - h /O dtdi]'(t) (78)

where d; j(t) is the distance between the center of each packet corresponding to the states
li); and |j),. In [4, 5], the authors estimated the phase shifts using (7.8).

If now we use the potential Vflz”’ss' defined in (7.2 with 7.3), we get the same results ex-
cepted that the phase shifts are twice smaller. It is easy to show that entanglement is
generated only if the factorizability of [¥(t)), , is broken which provides the following
constraint

T T
/O dt(VLL + VRL) + /0 dt(VLR + VRR) mod 27t (7.9)

We shall no longer explore these proposals much in detail here, but we propose another
experiment in which only one Humpty-Dumpty Stern-Gerlach experiment is performed
instead of two, aimed at revealing the existence of self-gravity a la Schrodinger-Newton.
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7.1.2 The single spin Humpty-Dumpty Stern Gerlach experiment as a test for
the Schrodinger-Newton equation

The main difference between our proposal and the two aforementioned proposals [4, 5] is
that in our case the spin 1/2 mesoscopic particle interacts with itself due to self-gravity.
Consequently, the self-gravitational dephasing between the two wave packets (|L) and
|R)) will lead in our case to a rotation of the spin, which can as well be revealed by spin
tomography after completion of the Humpty-Dumpty experiment.

By |+) + poe 29D |-

FIGURE 7.2: Illustration of the Humpty-Dumpty experiment [1] discussed

in section 7.1.2. We rotated by 90° the figure 7.1, i.e. here the z-axis corre-

sponds to the x-axis of figure 7.1. We consider here a unique mesoscopic

sphere (NV center in a diamond nanocrystal) of radius R = 1-107% m and

with a mass m = 5.5-1071° Kg for which the Stern-Gerlach setup is applied.
The time-step T; are defined in appendix 7.A.2

We consider in what follows a description in the comoving frame (freely falling) so that
the problem reduces to a one-dimensional Stern Gerlach Humpty-Dumpty experiment for
which we choose z as the axis of quantification (see figure 7.2). We denote by |+) the state
previously denoted |R) and by |—) the state previously denoted |L).
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7.1.2.1 A wave packet description

Let us compute analytically the phase shift using gaussian wave packets. To do so we shall
use a one-dimensional approximation of the Schrodinger-Newton equation (6.7). To begin
with, let us start by writing down the general expression of the quantum state

Y(zt)= ), Bivi(zt) i) (7.10)
i={+—}

The B; are complex number such as |84 |> + |—|*> = 1 and ¢ is the spatial and normal-
ized complex wavefunction corresponding to the state |i). In this study we consider the
following Hamiltonian:

where By is the magnetic field and Bj is its gradient, yip is the Bohr magneton and g ~ 2 is
the electronic g-factor. From (7.10) one can associate the following probability density:

¥ HlP= Y Bl lpi(z ) (7.12)

i={+,-}
Thus, the one-dimensional Schrodinger-Newton potential [7] can be approximated (6.7) as

2
Voulat) = |G obv - (@ - LS00 BsP+ franlpel 03

Self-interaction = — =+
Self-interaction + — + T

If the distance between the two packets |(z) — (z) | < 2R then f+(z,t) is expressed' as

m m?
f=(t) = [2 wiy (z— (2)5)" — g GR ] (7.14)

so that the self-gravitational interaction is the same for both paths, i.e.Vg y (z,t) = Vi, (z,t).

Now if |(z) 4 — (z)_| > 2R then f= takes the form of a Newton-like potential
-
[(z)4 — (2)-|

Each branch of the superposition is then solution of the following non-linear Schrodinger
equation:

f=(t) = —Gm? (7.15)

2 32
a0zt [ # 0

o ﬁ @ + ?Gi (Z, t) I,Ui (Z, t) (7-16)

I Actually, the Schrodinger-Newton self-interaction can be neglected compared to the standard Stern-
Gerlach potential [8, 9] in the time intervals [0, T;] and [T3, T5] (see figure 7.5). However, it plays a role in
the interval [Ty, T3] through the Newton-like potential (7.15).
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7.1.2.2 Estimate of the phase

Generally, a Schrodinger equation of the form

o (z,t) 92
ot

ih——= T 02 +Vor(t)+Vie(t)z+ Voo (t) 22] Pi(z,t) (7.17)
can be solved using a gaussian wave function

Pi(z,t) = exp [—Ai(if)zz2 +Bi(t)z+ Ci(t)] (7.18)

where A4 (t), B+ (t) and C4 (t) are complex functions of time. Thus one can show that

( idA;t(t) _ %Ai(t)z ) Vz,;lz(f)
P = hA (1) By(t) + Dt (7.19)
LG = (A = B + 950

With Vi o, k = 0,1,2, is defined by (7.11) and (7.13). Now writing X(t) = x1(t) + i x2(t)
where by X we mean A, B or C, it can be also shown that c; + is solution of

dCi,z(i') h Vo,+ (t)
it 2m [b%,i - b%,:t — ] — i (7.20)
Noting that
b

<Z>:|: = ﬁ and <p>:|: =h (bZ,:I: —az+ <Z>:|:) . (721)

We can rewrite (7.20) to finally get

deio(t) T (p)+ (2)+ (r)3 Vo« ()

dt — ﬂ <Z>i (a%,i — ﬂ%/i) — 2 T LZZ,:t — 7 — ﬂill — h (722)

with

m 6 Gm? (
Vo,+£ = Vg, + (2 wiy (2)3 — 5 R) |B=|*+ {

Zady (22 —§ ) B i |(z)s —(2)-| <2R

—Gm? |(z>+1<z),\ 1B+ otherwise.

Knowing (z)+, (p)+ and A4 (t) allows us to solve this equation and to deduce the phase
difference between the two quantum paths |+) and |—) .

The expressions for (z)+ and (p)+ can be found in appendix 7.A.2. The functions A ()
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FIGURE 7.3: We illustrate here, the time evolution of (z)+ and (p)+. We
rotated by 90° the figure 7.1, i.e.the z-axis here corresponds to the x-axis of
figure 7.1
are solved in appendix 7.A.1 and are shown to obey
mwsy 1+ coe 2v! . 1 if |(z)y+—{(z)_] <2R
A = - h = . -
+(t) =v h 11— cye 2ivt wit v 1B« otherwise.
: _ h Ag—vmwsn/h
and with ¢y = -/ (Agwmwif,/h)'

Note that the expression of Ay (t) traduces the fact that (when |(z)+ — (z)_| > 2R) each
part of the bi-localized mass oscillates at frequencies which are weighted by the square
root of the quantum weight (i.e.by |B|) of the superposition. Actually, if we have a strict
equality |B+| = |B—| = 1/+/2 we find by symmetry that the phase shift is zero, i.e. we
havec, —c_ =0.

7.1.2.3 Numerical simulations

Let us illustrate, by means of numerical simulations, the experimental proposal discussed
above (7.1.2). To do so we used the data reproduced from [4]. We consider a mesoscopic
mass m = 5.5 107! kgs with radius R = 1-107° m, with an initial spread in position
oo = 1072 m. We also considered |3;| = 1/v/2 — 0.1 and we used a field gradient
B} = 10° Tm™!. For example, in figure 7.3 we plot the trajectories (z); and the momen-
tum (p)+ of each wave packet whose expressions are found in appendix 7.A.2.

When the two wave packets ¢; and ¢ are recombined (using a magnetic field oriented in
the opposite direction), the state becomes:

¥(z,t) = [m |4+) + B_e~ 29D |—>} ¥(z,t), where A@(T)=(cy —c )  (7.23)

Where T is the total time of the experiment. In figure 7.4 (left) we plot the phase shift
A@(T) in the case where the packets are directly recombined (it corresponds in appendix
7.A.2 to the case T3 = T3). The phase shift is almost zero ( ~ —7 - 1073) in this particular
case.
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10

FIGURE 7.4: Left: we plot the phase shift in the case T3 = T, (no free fall).
Right: we plot the corresponding probability to find the state in |x) (resp.
ly) ). Those plots are associated to the evolution 7.3. We chose [8| =

1
ﬁ—m

The present model predicts Rabi oscillations (precession) (figure 7.4 : right) in the plane
perpendicular to the direction of quantization z. In the plane (x,y) we get the following
probabilities:

Py — % (1% cos(Ap)) and Piy= - (1% sin(A)) (7.24)

N +—

where the following basis have been used

\+/—>x=12(|+>i|—>) and |+/-), = —= (|+) £i|=)) (7.25)

Sl

2

Actually, the phase shift is made by several and non-trivial contributions as can be seen in
(7.23). If we naively only take account of the contribution & S (T3 — T5) (|B4|> — [B-|?)
we expect to find a phase shift of the order of —60 for T3 — T, = 10 s. However, compen-
sations occur (that we cannot explain yet) so that the final phase shift taking account of
the total contribution is of the order of Ap ~ —0.25 as can be seen in figure 7.6. Measuring
this phase shift would, in principle, enable us to reveal the existence of self-gravity a Ia
Schrodinger-Newton.
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FIGURE 7.6: Left: we plot the phase shift in the case of a free fall of T3 — T, =
10 s. Right: Zoom of the figure in the left. Note that the accumulated phase
nearly vanishes during the recombination. Those plots are associated to the

evolution 7.5. We chose || = % —0.1
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7.2 No-go theorems: nonlinearity vs. nonlocality and no-signaling

In realistic experiments, quantum decoherence is omnipresent and must be taken into ac-
count in the description. This idea brought us to study the inter-relation that exists be-
tween decoherence and non-linear modifications of the Schrodinger dynamics (especially
in the case of the Schrodinger-Newton equation). By doing so, we emphasized the role
played by the non-linearity to differentiate different realizations of the same master equa-
tion. Making use of GRW [10] model we simulate decoherence in presence of self-gravity.

7.2.1 Gisin’s no-go theorem, realism and nonlocality.

Several authors [11], [3], [2] have shown that any non-linear modification of the Schrodinger
equation will necessarily imply non-locality in configuration space. In particular, accord-
ing to Gisin [3], those non-linear modifications would allow to distinguish different real-
izations of the same density matrix (see the no-signaling theorem in appendix 7.B). This
idea is linked to what is called in the literature by mobility property [2] which was made
explicit by Mielnik [12]. This property connects the presence of a nonlinearity in the dy-
namics to the possibility to differentiate non-orthogonal states, which ultimately makes it
possible to differentiate two realizations of a same density matrix and thus two unravel-
ings of a same master equation.

As written in [13] “ ... by performing a local measurement on a system A that is entangled
with a distant system B, one is able, by collapsing the full wave function, to obtain realizations of
the reduced density matrix of the system B which differ according to the choice of the measurement
basis made in the region A. Therefore, in principle, nonlinearity can be a tool for sending classical
information faster than light, contradicting the no-signaling property valid in the framework of
linear quantum mechanics [3].”

However there exist a class of collapse models (for example the QMUPL and the GRW
model which are presented in appendix 7.C and 7.D) which are built with a suitable combi-
nation of non-linearity and stochasticity that forbid faster than light communications. This
situation “of peaceful coexistence” between special relativity and quantum mechanics is
made possible by the fact that the collapse is not a deterministic process but a stochastic
one. This constitutes the so-called no-signaling condition (see appendix 7.B): due to the
intrinsic quantum randomness of the collapse, it is actually impossible to send a classical
signal faster than light. Therefore, as was shown by Gisin, in many collapse models (we
can mention for example [10, 14, 15, 16, 17, 18]), when a collapse occurs the Born rule is
preserved [19].

Now about the non-locality, as also written in [13]:

“... The question of nonlocality, as well as the question of relativistic invariance are problematic
in all realistic interpretations of the quantum theory. For instance, in an apparently Lorentz co-
variant collapse model (cf. appendix A of [13]) — the so-called flash ontology proposed by Tumulka
[18] — it is assumed that spontaneous localizations are distributed according to a Lorentz-covariant
distribution, when computed in different inertial frames. However, as noted in [20], one is always
required in this model to select a privileged frame to begin with. Once such a frame is selected, Tu-
mulka’s model makes it possible to compute the influence of quantum jumps (flashes) on the wave
function assigned to the system (here N non-interacting particles obeying Dirac’s equation), but
this aspect of the model is manifestly not Lorentz covariant, although the resulting distribution of
quantum jumps (flashes or events in space-time) is Lorentz covariant.
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This is a general feature of dB-B and collapse models (and more generally of all collapse models, as
explained in [21]): a privileged frame must be chosen in which nonlocality is necessarily present. It
is however generally admitted that Gisin’s no-go theorem does hold in the case of purely determin-
istic generalizations of the linear Schrodinger equation, such as the aforementioned Schrodinger-
Newton equation (6.2) [22, 23] or the NLS equation, for the simple reason that in the case of
deterministic evolution equations, stochasticity is in principle absent...”

This being said, there do exist several different ways to interpret Gisin’s result as is ex-
plained in [13]. In particular, as mentioned in [13], a possible route for circumventing
Gisin’s theorem consists of identifying particles with solitonic solutions of a nonlinear
modification of Schrodinger’s equation. If, in accordance with the de Broglie double so-
lution program, their trajectories would obey dB-B dynamics, then, making use of the
aforementioned results concerning the Born rule and no-signaling (see e.g. the proof are
given in appendix 7.B and in [13]), the no-signaling condition would be respected once the
process of relaxation is achieved.

This problem has been discussed in the previous section, and it has been shown however
that Ehrenfest’s theorem causes serious problems regarding the derivation of the guid-
ance equation, in the case of deterministic non-linear evolutions a la Schrodinger-Newton
(see chapter 6). This brings us to another strategy which as explained in the same pa-
per [13], consists of Not circumventing Gisin’s theorem, that is to say in accepting the
idea of the existence of a privileged reference frame in which supraluminal telegraphy is
possible. Accepting the implications of Gisin’s theorem, for instance in the framework of
semi-classical gravity models a4 Ia Newton-Schrodinger, leads then to the question of when
and where nonlocal, supraluminal communication is possible.

Actually, several experiments were performed by Gisin’s group in the past [24] (see also
[25] for proposals of similar tests to be realized in satellites) aimed at revealing hypo-
thetical finite speed influences (spooky actions at a distance) that might occur during the
collapse process. These experiments can be seen as quantum counterparts of similar ex-
periments realized in the 19th century by Fizeau, Hoek, Michelson-Morley and others in
order the reveal the existence of an hypothetical electro-magnetic aether.

As far as we know, however, no systematic study of nonlinearity induced signaling has
been performed up to now. For instance, it is not clear yet to which extent the various
nonlinear extensions of the Schrodinger equation mentioned in [13] have been ruled out
by Gisin’s experiments. Moreover, the self-gravitational coupling being very weak, one
can expect the violation of the no-signaling property to be weak [23] as well, but to the
best of our knowledge, a quantitative estimate of this violation has never been obtained.
A way for doing so consists in realizing different unravellings of the same master equation
expressing the decoherence that results from various couplings to the environment, in the
presence of self-gravity, in order to explicitly estimate to which extent the non-linearity
will differentiate the resulting density matrices. This idea is developed below.
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7.3 A corollary of Gisin’s no-go theorem: how to detect non-linearity
making use of decoherence.

As written in [26]:

. Several experimental tests of the limits of the superposition principle have been proposed in
the past, to be realized in the mesoscopic domain, which could reveal (or negate) the existence of
the various extensions of the Schridinger equation that have been proposed so far (spontaneous
localization mechanism [27, 28], self-gravity [7, 29], etc.). Recent progress in quantum technology
(in particular in quantum optomechanics [30]) nourishes the hope that it will soon be possible to
scrutinize the superposition principle at the level of mesoscopic objects (e.g. nanospheres) of masses
larger than 10° a.m.u. [31, 32, 33, 34]. Typically, the experiments proposed so far consist in mea-
suring the decay of interferences exhibited by these objects and in checking whether this decay can
be explained solely in terms of environmental (non-exotic) decoherence sources. The realization of
these experiments would make it possible, among others, to test the validity of exotic decoherence
models for spontaneous localization such as the Ghirardi-Rimini-Weber (GRW) [10], Pearle [14]
and Continuous Spontaneous Localisation (CSL) [35] models (for an extensive review of these mod-
els we invite the reader to consult reference [15])...

As has been shown [26] in the past, non-interferometric versions of such experiments
are not only sensitive to decoherence, but could also possibly reveal the influence of self-
gravitational effects at the classical-quantum transition. In the same paper it has been
shown that, due to the non-linearity of the Schrodinger-Newton equation, the usual treat-
ment in terms of master equations is not relevant because different realizations of the same
density matrix do not necessarily lead to the same density matrix in the future [3], as ex-
plained before. New techniques have been developed, however, for dealing with these
problems in the case of a freely falling nanoparticle [7, 26].

The present experimental proposal is a variation on the theme explored in [26], which
is the interplay between decoherence and self-gravity. As a corollary of Gisin’s theorem,
we shall show here that different realizations of a same decoherence process can be differ-
entiated in presence of self-gravity. Here we shall use the GRW model [10] as a model of
decoherence. Readers who are not familiar with the present formalism are advised to read
appendix 7.C and 7.D for a more detailed explanation. In these appendixes we present,
among other things, the technical tools used in this chapter and we also discuss the stabil-
ity of the GRW process.

7.4 Unraveling of the master equation

Let us first summarize the global idea that characterizes the GRW model (for more detail
see appendix 7.D). In short, the GRW model is a model of spontaneous localization which
can be used as a decoherence model. This process is characterized by a parameter that
we shall call A which is the product of two other parameters that we shall call « and T'.
The first parameter, « is the inverse of the square of the localization length induced by
a quantum jump and the second one, I is the inverse of the average time between two
quantum jumps. The trick that we imagined for achieving this experimental proposal, is
to choose several GRW realizations of decoherence characterized by a same decoherence

1/2
parameter A (with A = « - I') but for different values of € (with € = (h“ ) ), i.e. the

mT

product between a and I' is the same while their ratio is different.
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FIGURE 7.8: In this figure we plot the total spread in position of the center of

mass wave function of a gold nanosphere of radius R = 100 nm and density

p = 20000 kg.m~3. This spread is ploted in the case of a free evolution

and in the case of the Schrodinger-Newton equation following the algorithm

proposed in [26]. Here we chose an initial spread o, 9 = 10~7 m and we used
the value of A defined in (7.28).

Roughly speaking, to realize such quantum jumps, we may bombard the freely falling
nanosphere with photons of wavelength of the order of 1/+/a at a rate I'. We considered
in what follows, four different GRW processes characterized by the same valueof A = a - T

1/2
but for different values of € = (%) .
These unravellings are all characterized by an asymptotic value of the size 0; = /Q; of the
individual wave packets as explained in appendix 7.D. When € is a small parameter, the
size of the wave packet collapses to this (unique) asymptotic value after a few collisions.
Otherwise, it oscillates between a maximal and a minimal value that can be estimated nu-
merically and/or analytically in certain cases as we show in appendix.

In figure 7.9 we compare the time evolution of the individual quantum spreads in posi-
tion in absence of self gravity, in the case of the GRW model and in the case of the QMUPL.
In absence of self-gravity and in the limit € < 1, these processes are indistinguishable be-
cause they depends only on A (resp A for the QMUPL model). In presence of self-gravity
however the non-linearity may get activated provided the size of individual wave packets
is of the order of the size of 2

Ry = —=
L= Gm3

(7.26)

where R} is known as the Lieb radius.
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FIGURE 7.9: In this figure we plot the individual spread in position of the
center of mass wave function of a nanosphere of radius R = 100 nm and
density p = 4000 kg.m 3 using the GRW model 7.D and the QMUPL 7.C.
In A we plot the individual spread in position 0, ; = v/9;, in B we plot the
individual spread in momentum ¢0,,; = V/P; and in C we plot their product.
The product Q; P; converges to twice the value allowed by the Heisenberg
saturation. Here e = 3.59-107%, &« = 2.05- 101! m2and I = 10s~ 1.

It can be shown (see appendix 7.F equation (7.118) and also see [26]) that the condition
to have the Lieb radius Ry, as the asymptotic value of Q (the spread in position) constraint
the value aTI to

G4 1l
Indeed, we have for example in the case of the QMUPL model
1/2
N hae  ah’

where here Qp,, is the dimensionless individual spread in position which is also the ex-
tent of the wave packet. For example in figure 7.9 appendix 7.D we plot the evolution of Q
in the case of the GRW and the QMUPL model under the constraint (7.28). It can be seen
that this spread converges to the Lieb radius as an asymptotic value.

In figure 7.8, we plot the total spread in position of the center of mass wave function
of a gold nanosphere numerically solved from the Schrodinger equation with and without
self gravity. In this regime, when A takes the value in (7.28), the effect of the self-gravity
activated [26]. In addition, contrary to the spread (which can be related to the extent of
the wave packet) obtained in the free evolution, the spread in the case with self-gravity
does not increases indefinitely but oscillates. In figure 7.10 we plot the total spread in po-
sition in the case of the GRW model with and without self gravity for 10* realizations of
the process. As shown in appendix equation (7.87), the theoretical value of the spread is
predicted by the formula [10, 36]

9R* 12 AR
o (t) = 0, 1 . 7.29
r(t) r’o\/ +4m20f,0 +2m2cr§ (7.29)
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FIGURE 7.10: In this figure we plot (Left) the total spread in position of the

center of mass wave function of a gold nanosphere of radius R = 100 nm

and density p = 20000 kg.m 3. In the Right we plot a zoom of the figure in

the left. This spread was computed from the GRW model for 10* realizations

and is plotted in the case with and without sefl-gravity a4 la Schrodinger-

Newton. Here we chose an initial spread ;9 = 1077 m and we used the
value of A defined in (7.28).

The figure 7.10 confirms the validity of our numerical simulations since it is in agreement
with the theoretical function (7.29). The final results are encapsulated in figure 7.11 where
it is shown that, indeed, different unravellings of a same master equation (in absence of
self-gravity) get differentiated in the case of self-gravity.

7.5 Conclusion:

Here we proposed two experimental tests aimed at putting into evidence the existence of
a non-linear self-interaction a la Schrodinger-Newton. The first test involved a Humpty-
Dumpty Stern-Gerlach experiment. Such an experiment has actually not yet been realized,
due to limitations imposed by decoherence, but hopefully it could be realized in a near fu-
ture, being given the serious progresses realizing in the previous decades in trapping and
cooling mesoscopic quantum systems in processes characterized by a very low degree of
decoherence (very low temperatures and nearly perfect vacuum). The second one imple-
ments the idea that decoherence can be used as a tool for controlling and tailoring the
evolution of a quantum system. Moreover it incorporates the concept of mobility which is
central in the derivation of Gisin’s famous no-go theorem about non-linearity. This theo-
rem relates the presence of a non-linearity to the violation of quantum signaling.
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FIGURE 7.11: Here we illustrate four unravelings of the same density matrix

associated to the GRW model for 10* realizations of the process. In other

words we plot the spread in position of the center of mass wavefunction for

the same value A but for different €. Here we chose a gold nanosphere of

radius R = 100 nm with a density p = 20000 kg.m 3 and we chose an initial
spread 0,0 = 1077 m.
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7.A Humpty-Dumpty Stern-Gerlach experiment

7.A.1 Equation of A4 (1)

Here the following equation for A, (t) is solved

LdAL(t) R ’ Vo1 (1)
== ApL(t)" =2 ; (7.30)
where '
TN if —(z)_| <2R
Vo (1) :{ o e -] < 7.31)
—*¥  |B+|* otherwise.
It is useful to use a set of dimensionless variables such that
X(t) = A+ (t)L?> and s=wsyt (7.32)
with 5
L’ = (7.33)
m wsN
Thus we get
AX o 2 _ 1 if [{z)+—(z)-[ <2R
i i X“—v* where v°= B2 otherwise. (7.34)
then ix
= —ids 7.35
(X—v)(X+v) (735
which can be put in the form
ax 1 1 ,
> <X—1/_X+V>__st (7.36)
after integration we get
X—v Xy—v .
1n<X—|—1/X0—|—1/> = —2ivs (7.37)
with Xo = X(t =0) and ¢y = §g;z Finally it reads
(s} — 1+ coe 2vs A _ mwgy 1+coe 2!
(S) =V 1—co e—2ivs or i<t) _ h 1—co e—2ivt

with o o
= 1 if [(z)+ —(z)-| <2R
' { 1B+ otherwise. (7.38)
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7.A.2 Time evolution (see figure 7.5)

o To——T .
B B
@g:i%}%tam,@g:i%a%ﬁ
o I— T

(p+) = ggB By (t—2T;) and (z4)= in 0 ( 4Tlt+2T12)

o« Th,——T;
(p+) =0 and (z:) = =552 By 7}
o T3—1T,

(ps) = ﬂwBoa—T@ and (z.) = im3 [U—I@ —2ﬁ)

o T,——Ts

(ps) = 8028y (= T5) and  (z4) = +822 B (¢ - 7y

Note that in order to achieve the recombination we must require that

Th-T =T —Ts=Ts— T, =T

(7.39)

(7.40)

(7.41)

(7.42)

(7.43)

(7.44)
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7.B Collapse and causality: no-signaling theorem

The thought experiment below helps to understand the link that exists between the col-
lapse of the wave function and the causality through the no-signaling theorem. Let us
consider a quantum system made by a pair of entangled state (for example photons). Now
suppose that Alice and Bob share this entangled state and are spatially separated. In other
words, a part of the state goes to the left (Alice) and the other part to the right (Bob). Now
imagine that Alice has the possibility to measure, from this state two quantities say OA or
OA. Using the spectral decomposition we can write OA Y 0f i P A withj=1,2.

If Alice decides to perform a measurement, the state of Bob reduces to the statistical mix-
ture defined in the following way:

(#57)pu (07

o [ (P,{f]- 5 IB) pAB} (7.45)

an

e In the numerator the total state p4p is projected into the corresponding eigenvalue
obtained by Alice, this is the collapsed state:

(P @ %) pan (B 0 Z°) (7.46)
e The denominator is the normalization of the projected state
Tr [(ﬁ,;}j ® IB) o4 B} (7.47)

. p,'l is the Born rule corresponding to the superposition of the mixture. Actually, this

probability is also the probability that Alice has found the eigenvalue 0/ gt

ph = Tr [(ﬁ,fj ®IB) pAB} (7.48)
So the expression above (7.45) can be simplified
o=y (ﬁf‘] ® IB) PAB (13/*] ® IB) (7.49)
n

The collapse is by definition non-linear because it suppresses the superposition, but as we
see (7.49) is linear in the density matrix.
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Finally, (7.49) is simply the partial trace of the global state with respect to Alice state:

P = Tralpas] (7.50)

So the important thing to notice is that the effect of the measurement of Alice implies a
linear operation Tr,[...| on the global state pap. Bob perceives Alice measurement as a
linear quantum operation performed on the state. This simplification is made possible on
the one hand because of the linearity of the mathematical quantum operation and on the

second because p), is the Born rule which is also the normalization in the denominator.
This process preserves Bob’s reduced density matrix (7.49) which prevents superluminal
signaling. If Bob makes the measurement before or after Alice, nothing changes in the
statistics of his outcomes which are given by the reduced density matrix.

7.C The QMUPL model

We saw in chapter 6 that the linearity of the quantum theory is at the foundation of the
measurement problem. A way to solve the measurement problem and to avoid a possible
violation of the causality through 7.B, is to reconsider the way we deal with the quantum
evolution by modifying the Schrodinger equation. This modification can be done, for
example, with a suitable combination of nonlinear and stochastic terms in such a way
that the Gisin no-go theorem is still respected. This procedure is at the foundations of the
collapse models which are quickly discussed in this appendix.

7.C.1 Definitions

Let us start by considering a toy model, i.e.the Quantum Mechanics with Universal Posi-
tion Localization (QMUPL) model. It has been initially proposed [37] by Gisin and Percival
in 1992 to explain the collapse of the wave function and have been studied in detail in [38].
This model has the peculiarity of being mathematically simple but allowing the descrip-
tion of a large number of physical phenomenons. We consider a state |¥) defined in a
Hilbert space and subject to continuous and stochastic collapses in position. The general
evolution can be put in the Ito form:

d[¥) = —%Hm dt + DI¥)dt +}.8¥)dwW, (7.51)
— Deterministic drift \n—,—/

Schrodinger evolution Stochastic terms

Where D and S,, are quantum operators acting on the state |'¥) and dW, a complex Wigner
process with the following properties:

For the next it is necessary to remind the formula of the Ito product:

d(XVr) = Ved Xy + X dYy + dX; d Y. (7.53)
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Using this formula and the normalization condition d (¥|¥) = 0 leads to the following
constraints for the operators D and Sj;:

(¥|D+ D+ Y. SIS, |¥) =0 (7.54)
(¥|S, |¥) =0 (7.55)

In particular, the QMUPL model is constructed to collapse the quantum state in position
so that D and S,, are chosen as follows:

~ - . ~ Ay -
Si= VM@= (%)), D=-) 7" (%, — ()2, (7.56)
n
where A; is a phenomenological parameter describing the “strength” of the collapse felt
by the particle i when collapsing into the position (X;). In summary the QMPUL model is
defined by the following Ito differential equation:

(PN Au o - - -
dI¥) = |—2Hdt =) =% (%= (Ta)?dt+ VAw ) (B — (%)) AW, | [¥). (7.57)
n n
Note that the term (¥, — (X,))? is reminiscent of the evolution in the framework of the
Schrodinger Newton (6.9) in the quadratic regime but with an imaginary spring constant.
Moreover, it is shown in [38] (wWhre the QMUPL model is used as a spontaneous localiza-

tion model) that the parameter A grows proportionally to the mass:

A=), (7.58)
nyo

where m is chosen to be the mass of a nucleon my = 1,67.10~% kg and A is purely
phenomenological. However, we will briefly see in the next subsection that it can also be
related to the quantum decoherence parameter within the framework of open quantum
systems.

7.C.2 The master equation of the QMUPL model

For simplicity, let us start in the case of a single particle:

d[¥) = [—;Hdt SN E P VA (2)dW | 9 (7.59)
From that Ito form we can define the stochastic density matrix such as dp; = d (|¥) (¥])
which using 7.53 can be shown to evolve according to:

PN A = PR
dor = -7 {H,pt} dt —E{xzpt—l—ptxz—prtx} dt (7.60)
Schrodinger evolution Jump operator in position
+VA [(f— (®))pr dW + ps (% — (%)) m} (7.61)

Stochastic terms
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FIGURE 7.13: Here we illustrate the decoherence induced by the scattering
of environmental particles.

Now taking the average over many realizations E [dp;] gives the evolution for the quan-
tum density matrix p which is defined as p = E [p;]. Where here E [-] denotes the math-
ematical average over many realizations of the stochastic process. As a result, the master
equation for the density matrix takes the following Lindblad form:
p_ _1 [H p} —1(E+Ep+pi+i—2ipﬂ) (7.62)
dt /A 2
with L = v/A%. The Lindblad form has the particularity to preserve on the one hand the
linearity of p while on the other it preserves the hermicity of p and its normalization (the
sum of the eigenvalues is still equals to unity, i.e.Tr[p] = 1).

The master equation 7.62 can be put in the following compact form:

do i[5 Al

=g A - SRR 7.63)
which in the position representation (y| p |x) is rewritten as:

ap(x,y,t) ih ([ 9? B 0? A
— 3y o p(x,y,t) E(X y) o(xy,t) (7.64)

dt 2m

This equation corresponds to a limit case of the GRW model that we shall define in section
7.D.

7.C.3 Link with the quantum decoherence

The master equation 7.64 and the parameter A can be interpreted in terms of quantum de-
coherence. In the common interpretation, it is agreed that a superposition of microscopic
state can be created experimentally.
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For example, if one applies a coherent electromagnetic field with a proper frequency on a
quantum two levels atom (see figure 7.14) , the later will experience Rabi oscillation be-
tween its ground and its excited state. The superposition principle has been tested for
electrons, neutrons and small atoms in [39, 40]. In a realistic experiment, the atom is never
isolated completely, he can for example undergo collisions with other atoms or can be in-
teracting with a thermal bath (see figure 7.13). In that case, the superposition disappears
after a certain time known as decoherence time. As explained in [36] (p.131), in the case
of localizations due to environmental scattering, the change of the reduced density matrix
(in the position representation) is shown to evolve according to the equation :

oo(x,y,t ih (0> 9
Py, t) _ (ayz_M> 0(x,y,1) — Ase (x—yVp(xy,t)  (7.65)

it 2m
where Ay is the scattering constant containing the details of the interaction and which is
computed in the long wavelength limit ([36] p.130). The above master equation is exactly
the one derived in the QMUPL model 7.64 if one identifies the Lindblad coefficient A/2

with the scattering constant A,.. Hence, the coefficient A can be interpreted as a scattering
constant which encapsulates the informations of the interaction with the environment.

For example in figure (7.15) we illustrate this effect on the density matrix p(x,y, t) at two
different times using an initial wavefunction made by a superposition of two gaussians :

- (x—XO)2 o (x+x0)2
(7.66)

‘Y(x,O):N[e WF e i

The anti-diagonal terms of the density matrix p(x,y, ) tend to zero with a characteristic
timescale of spatial interference:

2
Alx—y)*

Using this analogy we will in chapter 8 study the inter-relation between decoherence and
the doppler cooling.

- (7.67)
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FIGURE 7.15: Here we illustrate the effect of decoherence in the anti-
diagonal terms of the density matrix p(x,y, t).

7.D Decoherence in the GRW model

The collapse model we present in this section will be also used in the next chapter as a
model of decoherence in the Doppler cooling. Here, we shall focus on the stability of the
GRW process. In addition we will compare the predictions made by this model with the
QMUPL model introduced in section 7.C. In particular, we will see that it is roughly the
same formalism as the one developed for the QMUPL model excepted that the collapse in
the GRW model is not a continuous process.

7.D.0.1 Quantum decoherence i la GRW

In the GRW model the collapse in positions of the wavefunction occurs spontaneously in
time following a Poisson time-distribution. The model is described and characterized by
two parameters; i.e.a characteristic length 1/+/a which provides informations about the
spatial interval in which the collapse can occur and a characteristic frequency I which is
the frequency of the Poisson distribution of the quantum jumps. Note that in the GRW
model (as well as in the QMUPL model), the frequency increases proportionally to the
number of particles; this is why, according to these models, a macroscopic object is well
localized in space, in the sens that its center of mass has always a well localized position.
As the QMUPL model, the GRW model provides useful tools for simulating the quantum
decoherence process.

In a nutshell, the density matrix p in the GRW model is solution of the following mas-
ter equation:

L
F =2 [Hpl =T (p—T)) (7.68)

where T is the frequency of localizations and T|p] is a superoperator acting on p in the
following way:

Tlp] = /d%fx ¥) (¥| T with Ty = (%)3/4 exp (—% (J?—a)Z) (7.69)
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Jx is the so-called jump factor which in the GRW model takes the form of a normalised
Gaussian function and « provides informations about the spatial interval in which the
localization occurs. The master equation (7.68) can be rewritten in the position represen-
tation (by taking the operation (x| ... |y)) as:

do(x,y,t ih 02 92 i (x—v)?
eyl (2 syt (1) gy o

The probability of collapsing the wave function in a time interval dt is then given by I dt,
otherwise there is a probability 1 — I' dt that the evolution follows the Schrodinger equa-
tion. The second term in the right will cause an exponential decay of the non-diagonal
terms. To see it, let us consider this second term only:

ap(xl Y, t) _ - (x—y)2
S =T (1 — et ) p(x,y,t) (7.71)
It is important to note that if the region of localization is quite larger than the size of
individual wavefunctions |x — y| < ﬁ (the so-called long wavelength limit (LWL)) then

[10] we get from (7.71)

dp(xyt) al 2
T (x—y)

p(x,y,1) (7.72)
This is almost the same master equation previously found in (7.64) (up to a factor 2) and
found in (7.65) (up to a factor 4). We can then deduce (in this regime) the link between
decoherence and collapse models 4 la GRW (resp. QMUPL) through the correspondence :

r
A= "‘7 and A =2As (7.73)
where A is the collapse parameter of the QMUPL model, the parameters « I' comes from
the GRW model and A, is the scattering constant containing the details of the interaction
with the environment.

Actually in the GRW model, a large number of properties only depend on the product
of I'and a:
AN=ua-T (7.74)

In the other limit (short wavelength limit (SWL)) defined by |x —y| > ﬁ, the master
equation for the density matrix reduces to the von Neumann equation [10]

00(x,vy,t ih 02 0?
WPlxyb) _ <%ﬂ_&@>mmyﬂ—FMLyﬂ (7.75)

dt 2m

The advantage of the GRW Monte Carlo-type unravelling of the decoherence process is
that it contains both regimes (both master equations (7.72) and (7.75)) as limiting cases,
which makes it an excellent model for mimicking decoherence [41] in the case where,
throughout the evolution, the system would pass through different regimes (SWL and
LWL).
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7.D.0.2 Useful formulas for the GRW model

By definition (7.69), the GRW model is built to preserve gaussian states. Let us first con-
sider a gaussian state at 1D of the form

1
_ 1 —A(t) X2 /2+4B(t) x 1 [ReA;\* _ Re’ B;
P(x,t) = N &P ,  where N p eXp | ~5pa A ) (7.76)

and where A(t) and B(t) are complex functions of time. From these functions it can be
shown that the average position (g;) and momentum (p;) evolve according to

Re Bl‘ Im B,‘ Re Al‘ —Im Al‘ Re Bi
) = N = ) = 7.77
(q:) Re A, (pi) =m(vi) = Re A, ( )

and the corresponding variance in position Q and in momentum P evolve according to

g2y g2 1 a2y I 2
Qi = (q7) — (qi) T 2Re A/ Pi=m (<Ui> <vz>)_2ReAi | Al (7.78)

It is also useful to introduce the qp-correlation R as

B Im A,
—Jop _w2u_ i
Ri= QP —1/4= 3 o a (7.79)

As has been shown in [10], at each jump the quantities (q),(p), Q and P change as follows
20Q;

(qr) = (qi) + Jaii2a0) g (7.80)
(ps) = (pi) + oﬁzag) g (7.81)
Qs = “(1%20@) (7.82)

p, = Pit W a(l+aQ)) 7.83)

a(1+200Q;)

where ¢ is a random number normally distributed. At each localization, the center of the
wave packet jumps randomly according to (7.69) while at the same time, its extent shrinks.
As a matter of fact the function A before (A;) and after the jump (Ay) are linked by the re-
lation Ay = A; + a thus the extent of the wave function Qf < Q;.

Between two collisions the evolution is ruled by the free Schrodinger equation.
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FIGURE 7.16: Here we illustrate the spread in position of the center of mass
wavefunction of a gold nanosphere of radius R = 100 nm and with a den-
sity p = 20000 kg.m 3. It can be seen that the evolution of spread is in
accordance wit the theoretical function (7.87). Here we chose 0, ¢ = 1077 m.

Thus, it can be shown? that during the Schrodinger evolution that:

Q(t) = Q(0) +2R(0)t/m + P(0)t?/m? (7.84)
P(t) = P(0) (7.85)
R(t) =/ Q(0) - P(0) + (P(0)t/m)? — 12 /4 (7.86)

Of course, experimentally, we have no access to the individual trajectories followed by the
wavefunction 7.9, but averaging over numerous realizations of the stochastic localization
mechanism by a quantum Monte-Carlo procedure makes it possible to predict the average
evolution of the object, that is of the associated density matrix. As shown in the original
GRW paper, globally, the spread of the density matrix diffuses even faster than in the ab-
sence of jumps, because of the dispersion of the positions at which jumps occur, according
to the formula [10, 36] at 3D we get:

9B 12 AW
o (t) = 0 1 . 7.87
r( ) r,O\/ + 41112 0_;1’0 + 211’120'3 ( )

Imposing A = 0 in (7.87) we recover the usual expression for the spread of a freely ex-
panding gaussian wave packet.

2We refer the reader to the paper [10] in which the formulas are explicitly derived.
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7.E Stability in GRW

7.E1 Mapl

In the original paper of GRW [10], the authors briefly studied the stability of the solutions
Q and P resulting from an evolution under a GRW process. This work was done in a
particular limit (that we will make explicit in what follows) so that we propose here to de-
velop and to generalize this work. They supposed [10] for simplicity that the localization
process of the ensemble occurs at successive time interval T = 1/T. It should be stressed
however that it is an approximation of the real underlying process, but we shall suppose
that such an approximation is valid; we will use this approximation to characterize the
stability of the GRW model.

They represented [10] each cycle (starting from a localization process) by the following
schematic map:

GRW Localization, Schrodinger Evolution
Q = @ SRWLealization, o _ () o) = O

(7.88)
D =P GRW Localization ,Pf —p ( O) Schrodinger Evolution ( ) _p
=p; /=0 — —
From the above it can be shown that:
) 1/2
g__ 9 +2(Q7’—h/4) 1 P+ifa(1+aQ) 1 7.59)
14240 1+20Q mT 1+20Q m2 T2 '
P+hr%a(1+aQ
P 1+&Q ). (7.90)

It is however important to notice that this cycle is not the only possible one. In section
7.E.2 we will consider another possible cycle made by an evolution which starts from a
Schrodinger evolution and is followed by a GRW localization. The map will lead to other
stable solutions (Q, P) which will be used to generalize the results obtained by GRW in
their paper [10].

Let us first come back to the cycle (7.88), its equilibrium is defined by the double con-
ditions @ = Q" and P = P’. As suggested by the authors in [10], for what follows it is

1/2
useful to introduce the parameter € = (;;—hr) and thus the dimensionless set of variables

(x,y) defined through

o

x=uaQ and y:WP. (7.91)
The set of equations (7.89-7.90) are then rewritten as
44)\1/2 4
;o X (xy —e*/4) y+e* (1+x)
R e R e g 1+2x (7.92)
41
Y =Gy = LEE U (7.93)

1+2x
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In their paper, the authors treated the case of a very small value € (which is chosen to
be of the order of 10~!2) and they claimed to have found a unique stable solution for the
pair (Q, P). Notice that this value of € is a consequence of a phenomenological and fixed
choice of the parameter &« and I' (adobted by GRW [10] in their model of spontaneous
localization). Those parameters are chosen in a way that macroscopic superpositions are
prohibited while it preserves the microscopic dynamics. In chapter 8, we will relax this
assumption and we will see that depending on the considered physical experiment, if one
wants to use the GRW model as a decoherence model one should adapt the choice of the
parameters « and I'. In particular, we shall see in the case of the Doppler cooling that &« and
I' can be related respectively to the photon wavelength of the laser and to the spontaneous
decay rate of the cooled atom.

7.E.1.1 Solutions at equilibrium

Here what we mean by equilibrium is when the natural spread of the Schrodinger evolu-
tion compensates the GRW localization; i.e.when ¥’ = x and i’ = y. Coming back to the
set of equations (7.92-7.93), it turns out that at equilibrium

1

5 (7.94)

Pe(x) = —4x% +2e%xv/1+2x + €*(1 4+ x)(1 4 2x) = 0. (7.95)

Those equations admit two analytical and physically relevant solutions which are func-
tions of € :

xi(e) = 411 (64 + /€t (et + 4)) (7.96)

1
x;(€) = 5 <€4 +Vet+16€* + \fZ\/es +12e* + Vet +16€0 + 4/ et + 16€2> (7.97)

and where the imaginary and the negative solutions of 7.95 have all been discarded be-
cause Q is real and positive. The same can be done for y using equation 7.94:

yile) = 5/t (e +4) (7.98)

€2 (\/64 416 — ez) \/68 4+ 12e* + Vet + 16€b + 4/ e* + 16¢€2
ya(€) = (7.99)
16v2

As an example, we plot in figure 7.17a (resp. figure 7.17b) the solutions x] and x; (resp.
yi and y3) in function of €. The difference Ay(e) = |x;(€) — x(e)| (resp. Ay(e) =
ly5(€) — y;(€)|) is also plotted in figure 7.17c (resp. in figure 7.17d).
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x;(€)

(A) The red curve corresponds to xj and (B) The red curve corresponds to y; and
the blue curve to x;. the blue curve to y;.
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FIGURE 7.18: Here we plot the the solutions x in figure A (resp. y; in
figure B) at equilibrium in function of e. We also plot their distance Ay (e) =
|x5(e) — x7(€)] in figure C (resp. Ay(€) = |y5(€) — yi (€)] in figure D).

When € tends to zero (this is the limit case considered by GRW [10]) the two solutions
can be developed in series of € as:

€2 e € 3¢
X} = E+(9(e4) X=—4 — 4+ ——+0() (7.100)

yi = e+ 0(e*) Yy = + O(eh) (7.101)

or in terms of (Q, P) as:

o; =11 Lo ;= U 1/21 ! O(€? 7.102
1= 51 TO(E) 2_ﬁ<mle“> [+\/§€+ (€”) (7.102)
2 1/2
P =mlh+ O(e?) Py = \h@ <MZF> [1+O(e?)] (7.103)

Notice that in the limit € < 1, the product Q7 P/ of any of the pair gives the same result;
which is twice the value allowed by the Heisenberg saturation. We shall now discuss the
stability of the above solutions.
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7.E.1.2 Stability of the solutions

It should be stressed that the stability depends only on the value of €. In the limit e < 1,
the unique stable solution is the pair (x5, y5). To see this, let us first apply successively the
map (7.92,7.93) on a pair of points (X}, y;) chosen to be close to (x},y;). For example we

) . ~ 2 ~ ) .
can choose in the limit e — 0: x] = % and x; = % which are the first non-zero term of
the series expansion of x7 and x3.

Fa,™[e] F)™[el

T e e

0.025}---------- et s Rttt MR T A 0.03

0.026/ -~ froeeaeed e oo forsenaeees :

PSSR SN S NS N 002

I s S 001

i -

: e 7 < S N S H——
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(A) In the case of (x7,y7). () In the case of (x3,y3).

FIGURE 7.19: Plot of successive applications of the map defined in
(7.92,7.93) when € < 1. The black curve corresponds to the solutions x; (€)
defined in (7.97) and the red curve is X} (e). The purple, the blue and the
golden curves are obtained after n = 1, n = 2 and n = 3 applications of the

cycle on xj = % (Left) and on x5 = \% (Right).

One can easily see that:

5 2
FI&0il =2 +0), FIFERLIEGR] = +0)

~%
X1 = 5

He=s FRR=5+0E), FIFEBELGEE] =
In the case of X7, each iteration increases its distance to x] (which acts like a repellor) while
for x; the distance to x; decreases (x; acts like an attractor). In figure 7.19 we plot three
successive applications of the cycle (7.92,7.93) on (x7,y}) in the limit € < 1. Those figures
also confirm that (x3,y;) acts like the unique attractor of the process. It should be noted
that this result is in agreement with the conclusion obtained in the paper [10].

+O(€?)

In the other limit, when € > 1 it should be noticed that the difference between the two
solutions x7, x5 tends to a finite value A, — 2 (see figure 7.17c and figure 7.17d) while in
momentum it tends to A, — 0. In this limit (x7,y7) and (x3, ;) are both attractors of the
process as can be seen in figures 7.20 which shows the convergence to the value x; (defined
in (7.19b)) when three successive applications of the map (7.92,7.93) are done starting from
a common initial point X = €.

e
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(a) In the case of (x7,y7). (8) In the case of (x3,y3).

FIGURE 7.20: Plot of successive applications of the map defined in

(7.92,7.93) on X7 = e. The black curve corresponds to the solutions x; (€)

defined in (7.97) and the red curve is X} (€). The purple, the blue and the

golden curves are obtained after n = 1, n = 2 and n = 3 applications of the
cycle starting from a common initial point x; = e.

7.E.1.3 Jacobian matrix for the mapping 1

We shall now quantitatively describe the stability. To do so let us consider the Jacobian
matrix which in the following will be expressed at equilibrium (i.e.when x’ = x and when
Yy = y). We associate to the process (7.92-7.93) the following Jacobian matrix:

/ 3
%i %i —(2x+1)e* —xy/(2x+1)et+1/(2x+1)et+x zx(iiiﬂ)erszrl
Y x(2x+1)2 2x+1)2
T(ae) = _ @) @)
9 o et 1
Jdx  dy y=e* Ltz T 224« 2x+1

Its eigenvalues can be deduced from its characteristic polynomial. As a reminder this
polynomial at 2D takes the form :

P(A) = A = Tr[J] A + Det [J] (7.104)

and its roots are in fact the eigenvalues of 7. Thus we find

A (7.105)

Tr [7] £ \/Tr [J]? = Det[J]
£ 2

Those roots depend on the trace and on the determinant of 7 but also on the discriminant
A of its characteristic polynomial. We illustrate in figure 7.21 those quantities in function
of € and at x = xj. When A < 0 the eigenvalues are complex conjugate. This is true for
A+ (x3) for any value € as can be seen in figure 7.21. In addition the modulus |A4(x3)| is
always smaller than one as can be seen in figure 7.22. Those informations provide crite-
rions to prove the stability of (x3,y5). In the case of (x],y]) it is globally unstable until a
critical value €, ~ 0.65 from which it starts to be stable.
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FIGURE 7.21: We illustrate here three functions associated to the Jacobian

matrix (7.104) taken in x = x} (in blue for x] and in golden for x3. From the

left to the write we plot: the trace, the determinant and the discriminant of
the characteristic polynomial (7.104).

(A) In the case of (x},y7). (B) In the case of (x3,3).

FIGURE 7.22: We plot here the norm of the eigenvalues (7.105) in function
of €, at x = x}. The red dashed curve corresponds to [A | and the full black
line corresponds to [A_|.

7.E.2 Map 2

To take the analysis one step further, let us briefly discuss the other possible cycle and its
possible stable solutions (Q*,P*). There is infact no justification to only consider the cycle
defined in 7.88. Instead of starting the cycle with a localization, let us now consider the
following map:

Q _ Q ( 0) Schrodinger Evolution Q (T) _ Qi GRW Localization Qf _ Q ’
(7.106)
7) _ P(O) SChrodinger Evolution P(T) _ 'Pl GRW Localization pf _ 7)/

From the cycle above it can be shown using the following dimensionless set of param-
eters u and v (in order to differentiate them from x and y):

o

l/l:lXQ and U:W

P. (7.107)

|A+]
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that
2 (uv—et/4)"?
W= Mo = M2 o —e/d) 1;” (7.108)
1+2[u—|—2(uv—€4/4) —1—0}
;- _v+et(1+0)
v —N[u,v]——1+zv (7.109)

One can notice that ' is always less than one. Moreover, it is worth noting that there is
no direct analytical solutions for u’ = 1 and v" = v. However, thanks to the work carried
in the previous subsection, the following study will be easily derived. Let us call S the
operation that evolves the quantum state under the free Schrodinger equation and G the
operation that localizes the state. Thus we can write:

‘SA’Qij‘zx;" _ QAAQAx;‘:QAxf
* *

u; uj

If now we call uf = G xj it follows that u} is the equilibrium state of the map defined
above; i.e.we have GS uj = u;.

7.E2.1 Check with simulations of the GRW process

Here we simulate the GRW process and we plot the evolution of # Q in function of time.
We also illustrate with an histogram the fluctuations of its values taken during its evolu-
tion. In figure 7.23 the simulation was done for € = 0.06. The analytical expression found
in (7.97) predicts a value at equilibrium x5 (0.06) ~ 0.044 and using the solution of (7.108)
we predict u3(0.06) ~ 0.041. In this regime (where € is small compared to unity), those
values are close and are both in accordance with the position of the peak of the histogram
of « Q. The width of the distribution reflects the limitations of the initial approximation;
i.e.about the periodicity T of the cycle. In reality, the cycle occurs in a statistical way (fol-
lowing a Poisson distribution) every T + dT which induces fluctuations on « Q.

Note also that only the assumption € < 1 has been made so far (in the literature about
the GRW model) but no assumption was made for € 2 1. In figure 7.24 we considered
€ = 0.6141. In this regime we note the appearance of a multitude of peaks on the his-
togram of « Q. As a result it shows the complexity of the underlying process and the
limitations of the approximation used so far to describe its stability.
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FIGURE 7.23: We illustrate here the time evolution of Q and an histogram
of its values at equilibrium. We chose I' = 143.10°, & = 3.3410™ and m = 40
a.m.u. so that ¢ = 0.06.
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FIGURE 7.24: We illustrate here the time evolution of Q and an histogram

of its values at equilibrium. We chose T' = 14.10°, & = 3.3410'* and m = 40

a.m.u. so that € = 0.61. This figure shows the appearance of a multitude of
peaks in the regime where € ~ 1.
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7.F GRW versus QMUPL: stability

In the limit € — 0 where € = \/%, the master equation of the GRW model can be “un-
raveled” with the QMUPL model (see section 7.C) and as we shall show, the asymptotic
values of Q then coincide. For example from the QMUPL (7.59) it can be shown for a free
gaussian state of the form

¥(x,t) = /i/ exp A X*/24B(H)x (7.110)
that i "
i dit) =L A24iA (7.111)

thus using a dimensionless set of variables (A = Aaandt =1/ I') The above equation is
rewritten as

A 5wy
i—= =€ A"+ = 7.112
pr 5 (7.112)
where we used the fact that A = aI'/2 (see (7.73)) and € = %
At equilibrium we get
2 A2 + % =0 (7.113)

from which we can deduce for the real (a; 5+) and the imaginary part (a:) of gst :

@i — a3 =0 (7.114)

1

5 (7.115)

2016t 25t = —

now injecting (7.115) in (7.114) leads to a fourth-degree polynomial in X = a1 4:

4 1

whose unique solution (real and positive) is found to be

1
Tt = 5o (7.117)

thus 1
;mupl - Tlst =€ (7.118)

This solution is exactly the stable solution found for the GRW model in (7.100) in the limit
€ < 1. This is confirmed by numerical simulations as can be seen in figure 7.9. This
confirms that the GRW model and the QMUPL give the same asymptotic value in the
limit of small €.
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Chapter 8

Interplay between decoherence and
cooling
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Summary In conventional treatments of Doppler cooling the atom is often treated as
a classical material point. Here we represent the state of the atom by a gaussian quan-
tum wave function, which doubles the numbers of degrees of freedom. In addition to
describe the atom with its classical position and velocity, we add to the description two
quantum degrees of freedom: the individual spreads in position and in momentum which
are constrained by Heisenberg uncertainty. Resorting to the Ghirardi-Rimini-Weber model
of decoherence, we study the interplay between decoherence and Doppler cooling

8.1 Introduction

In the previous section we proposed two experimental tests aimed at putting into evidence
the existence of a self-gravitational interaction @ la Schrodinger-Newton. In the past, a test
was proposed in the same context [1] in which a nanosphere was trapped and prepared
in a gaussian state with an extent of the order of the Lieb radius (7.26). Thereafter the
bead was released from the trap and evolved freely during several minutes before being
measured in the position basis. As was shown in [1] the square root deviation of the distri-
bution of positions was narrower when self-gravity is present, and after several minutes
of free-flight the narrowing was of the order of several tenths of nanometers, a measurable
effect. However, it should be emphasized that this experimental proposal is difficult to
realize for several reasons:

I- It requires the use of a satellite. As a matter of fact, a free flight of several minutes
is only possible in an inertial (gravitation-free) environment.

II- As has been shown in [1] decoherence has to remain weak, otherwise decoherence
effects will mask those of self-gravity, which requires to work in extreme vacuum, at very
low temperature. Moreover, decoherence increases more quickly than self-gravity with
the size of the nanosphere so that it is only at the mesoscopic transition that the experi-
ment can be realized.
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III- The initial spread of the gaussian state (of the order of 100 nanometer for a bead of
radius 100 nanometer) is quite larger than the spread that can be achieved in optical traps
(from 10712 — 10719 m).

The problems I and II can be overcome in principle, but at the time it was not clear how to
overcome the problem III. In [1] the authors investigated the possibility to tailor the size
of the wave function of the (center of mass of the) bead making use of decoherence. This
idea was considered in detail in the previous chapter in which we have seen that the width
of each gaussian state (corresponding to individual realizations of the stochastic GRW lo-
calization process) quickly converges to an asymptotic value (for example see the wiggly
curves in figure 8.1).

ae=g” 1 I 1 I ! I 1
0 0.01 0.02 0.03 0.04 ﬂ‘rOS 0.06 0.07 0.08 0.09 0.1

FIGURE 8.1: Here we illustrate the effect of a bombardment of a Gold
nanosphere by photons on its averaged position spread (of its center of
mass wave function (CMWF) expressed in m). The wiggly curves on
the bottom represent five individual quantum realizations corresponding

to (ar)Q = /O, + Qy + Q. where Q; is defined in (8.3). The dotted
curve corresponds to the classical average spread of the central positions
of individual wave functions (averaged over 10000 realizations): (a,)gl =

Yimxyz ((42) — (9:)%). The full curve corresponds to the total position

spread (i.e.., the square root of the sum of the squares of the spread of indi-

vidual wave functions and of the dotted curve): (0;)%,,; = (07)% + (Uy)zQ.

The theoretical value computed from equation (7.87) is nearly identical to
the simulated curve.

It is important to keep in mind that the decoherence process a la GRW is characterized
by a moderate heating of the quantum system (the latter being due to the Brownian motion
of the velocity caused by the quantum jumps). In absence of a specific cooling mechanism,
the effective cooling of the quantum degrees of freedom must get counterbalanced by a
heating of the classical ones, in virtue of energy conservation. Based on this property, the
authors of [1] proposed a novel way of ‘tailoring” the quantum state of the nanospheres
by means of intentional decoherence, in order to escape the severe constraints imposed by
the optical traps needed in a real experiment. Their conclusion was: Obviously, this model
is oversimplified, and it is beyond the scope of the present paper to develop it in more detail. It does
suggest however that an in-depth theoretical and experimental investigation of a situation in which
the nanosphere is submitted to a bombardment by light of well-chosen frequency and intensity such
that the photonic wind slows down the nanosphere (as in cold atom cooling) and at the same time
tailors the individual wave functions according to our needs, might be called for. Combining both
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features (cooling and localization) constitutes an answer of principle to the challenges raised by the
preparation process required in our experimental proposal.

FIGURE 8.2: Histogram of the distribution of the classical velocities (m/s)
during the decoherence process shown in figure 8.1 after 0.01 s.

5
x 10"

FIGURE 8.3: Histogram of the distribution of the classical velocities (m/s)
during the decoherence process shown in figure 8.1 after 0.2 s.

In the present chapter we shall develop this idea and study the interplay of cooling and
decoherence. It is worth noting that this topic seemingly did not deserve much attention in
the past, among others, probably because the development of laser cooling at one side and
decoherence at the other side were to some extents simultaneous (for example the GRW
paper [2] was published in 1986, while the famous paper [3] “optical molasses” by Lett et
al. which is one of the most influential pioneer papers in the field of Doppler cooling was
published in 1989).
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8.1.1 Motivation

There are several techniques of laser cooling [4, 3, 5, 6, 7, 8, 9, 10, 11]. The first one that
has been used and that will be considered in this chapter is the Doppler cooling meth-
ods [12, 13]. It is based on the interaction of light and matter. During this interaction, a
two-level atom alternates between its ground and its excited state. Using this property as
well as that of the Doppler effect it was shown [12] that one could cool atoms with lasers
very efficiently. This discovery is at the heart of a quantum technological revolution that
led to various applications from purely fundamentals to applied physics. In the standard
description of the doppler cooling, the internal degrees of freedom (energy levels, spin
...) are treated quantum mechanically. While the external degrees of freedom (positions,
velocities ...) are most often treated classically.

In the semi-classical approach, the atom is described like a classical and point like par-
ticle. It is worth noting that due to the presence of spontaneous emission, the atom must
be treated as an open quantum system, interacting with its environment. From this point
of view it is legitimate to investigate the role played by quantum external degrees of free-
dom, among others for what concerns decoherence.

This constitutes the main objective of the present chapter, which is to study the interplay
between decoherence and cooling, at the level of atomic external degrees of freedom.

8.1.2 Our approach

In order to better understand the role played by the quantum degrees of freedom, we shall
systematically consider that at each time the total system is a mixture of gaussian pure
states so that each atomic state i is represented by a wave function (in position representa-
tion'):

1
(0,1) = = exp~ Al 2/2+Bi(1)g L _ (Redi)® _Re’ B,
Pi(g,t) = N ,  where N - P | “5Re 4 ) (8.1)

Therefore, a gaussian state is characterized by four real parameters, Re A;, Im A;, Re B;
and Im B;. Those parameters are linked to the following “classical” quantities () and (p)

. Re Bl'

< > < > Im Bi Re Ai—Im AiRe Bi
1= Re Ay W

Re Al'

=m(v;)) =h (8.2)

But also to two “quantum” quantities Q; and P; which are the corresponding variances in
position and momentum

R 2\ A2 1 2 2\ A2) hz 12
Ql - <ql> <%> - 2 Re Ai’ 7)1 =m (<vl> <Ul> ) - 2 Re Al ‘A1| (83)

In particular, Q; and P; are constrained by Heisenberg uncertainties

hZ
Qi-Piz (8.4)
As explained in the introduction, the conventional approach to Doppler cooling consists of
neglecting the role played by Q; and P;, based on the implicit assumption that P; is small

IPassing to 3 spatial dimensions would not significantly affect our analysis at this level so that, we shall
assume here that the propagation is axial (say along the X direction) in order to simplify the treatment.
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(i.e. the wave packet is nearly monochromatic) while it is neither necessary nor useful to

know the position of the atom with accuracy better than say 4/ f—;.

Describing the atom by a (mixture of) gaussian states will allow to double the numbers
of degrees of freedom. As a matter of fact, in addition to the classical position and veloc-
ity, which are associated to the first moments of the corresponding observables ({g;) and
(pi)), we add the quantum degrees of freedom associated to their second moments (Q;
and P;). Our main goal consists of simulating decoherence, resorting to GRW’s process
[2] which is an unraveling of the master equation associated to decoherence (7.64) valid
in both the long and short wavelength regimes. It is a gaussian process so that at each
time the quantum state associated to an individual “trajectory” (or realization of the GRW
stochastic process) is a gaussian state, which explains our choice to represent the density
matrix as a mixture of gaussian states.

It is worth noting that we do not use GRW stochastic process as it was originally intended
(see chapter 7 for more detail). The two characteristic parameters of the decoherence,
which are the number of jumps by unit of time I' and the typical localization size associ-
ated to a jump 1/+/a, are not fixed according to GRW hidden variable theory but are, in
the present approach, dictated by the physical conditions of the experiment.

8.1.3 A generalized thermal (Maxwell-Boltzmann) distribution

It is worth noting that the classical average position (q) as well as the quantum variance
in position Q are not constrained, which means that generalized thermal states are char-
acterized by well-defined statistical distributions in momentum space only. In order to
simulate a cooling process during which atoms originate from the same source located at
g = 0, we shall impose as initial condition that (q)(t = 0) = 0 and ImA(t = 0) = 0.
With these supplementary constraints, the initial (generalized) thermal distribution is un-
ambiguously defined by two parameters, T;; and T.

FIGURE 8.4: Gaussian distribution of velocities (left) resulting from a time-
of-flight measurement. It is shown in the text to correspond to a preparation
at time t = 0 of a (generalized thermal) mixture of gaussian wave pack-

ets of the type L_ exp(—g?/4v/Q + iky - x) such that Vk., VP /m =
yP 2ya P

VkpTo/m, while the “classical” velocity ik, /m is gaussian distributed
with a standard deviation o¢c = v/kpTc/m. Note that each gaussian wave
packet saturates Heisenberg uncertainties at time t = 0 so that /P /m =

L(n/2,/Q).

As we shall see, if we measure the distribution of momenta (velocities) of the system
through a time-of-flight experiment, everything happens as if the generalized thermal dis-
tribution was a classical (Maxwell-Boltzmann) distribution of temperature T = T, + T
(figures 8.4, left, and 8.5, left).
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Classical limit: Quantum limit:
og—0 oc—0
or ~oc or ~ o

FIGURE 8.5: Two extreme situations corresponding to the right of figure

8.4, considered in the quantum (right) and classical (left) limit. Quantum

degrees of freedom are plotted in red and classical ones in gold. The blue

curve is the observed velocity distribution after a time of flight experiment,
in the limit of large times-of-flight (T.O.F.). It is the same in both cases.

In other words it is gaussian distributed symmetrically around zero, with a variance equal
to the sum of the classical and of the quantum variances (figure 8.4, right).

The corresponding distributions are schematically plotted at the level of figures 8.4 and 8.5.
In particular, if we perform a time-of-flight experiment at the end of which we measure
the distribution of positions, nothing distinguishes a purely classical distribution (T = T,
To = 0, figure 8.5, left) from a purely quantum one (T = Tg, T,; = 0, figure 8.5, right). The
distribution of positions is gaussian in both cases, characterized by the same average value
and the same standard deviation (v/kgT /m - T.O.F., where T.O.F. is the time-of-flight (this
result is valid in the limit where T.O.F. is large enough). The initial velocities are deduced?
from the final positions at the end of the T.O.F. experiment by dividing the observed posi-
tion by the T.O.F. (in accordance with the experimental scheme proposed by Feynman and
Hibbs [14] in the quantum case for which T,; = 0).

8.1.4 Estimate of the relevant parameters

To begin with, let us first recall the process of Doppler cooling of one atom. In particular,
we consider an individual cycle, during which an atom absorbs a photon emitted by the
lasers, reemits a spontaneous photon, absorbs again a photon and so on. We shall consider
situations during which the process of cooling is realized in the low intensity regime, so
that we are in the weak coupling regime [3] and it makes sense to describe this process
[15, 16] in terms of absorption and emission rates 4 la Einstein. To do so, let us introduce
the probabilities per unit of time:

2Using the properties of the propagator of the free Schrodinger equation, Feynman and Hibbs established
[14] that lim;_e0 [¥(x, t)\de|x:pt/m = |¥(p/h,t = 0)|2dp where ¥(k,t = 0) is the Fourier transform of the

initial wave function: ¥ (k,t = 0)=(1/+/271) [j;o exp(—ikx)¥(x,t = 0).
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e T4 to absorb a photon denoted here I'; in order to stress that we consider a situa-
tion with two lasers, emitting along +X and —X respectively: I't =T +T_.

e T to emit spontaneously a photon. I'y is the so-called spontaneous emission rate.

Here we consider the low intensity regime in which stimulated emission can be neglected.
Thus, the probability to find an atom in its excited (or in its ground) state can be shown to
obey
VUl o UTe (8.5)
1/To+1/Ty 1/To+1/Tx
I'y can be computed making use of Fermi’s golden rule, or estimated empirically by mea-
suring the linewidth of the transition addressed during the cooling process. In order to
estimate I'y, it appears to be useful to express the temporal evolution of the system in
terms of the density matrix associated to the internal degrees of freedom of the atom as we
shall do now.

8.1.5 Description in terms of the density matrix

Before implementing decoherence in the Doppler cooling, let us first present quickly the
theoretical tools that will be necessary for the following. The interaction of a two-level
atom with an external and classical electric field (here the field generated by the lasers) is
described by a total Hamiltonian Hr made by the sum of the free Hamiltonian

Hy = (“60 8) (8.6)
with the Hamiltonian of interaction H;,,;, which after the dipolar approximation reads:
Hip = ~d-F where E = Eq cos(wrt). (8.7)
In the rotating wave approximation, we get

Hr = Hy+ Hjy =1 < “o R COS(th)>

Q] cos(wrt) 0 8

where QO = —£o (g q.-e le),  is the dipole moment d = ge 7 and {|g), |e)} are the

ground and excited states
0 1
1g) = (1> and |e) = (0) (8.9)

In the interaction picture the Hamiltonian reads

& )2
= (ot %)

where §; = w; — wy is the so-called detuning. In order to take account of the sponta-
neous emission which results from the interaction of the two-level atom with the quan-
tized transverse electromagnetic modes, it is usual [11] to write down a master equation
in the Lindblad from:

(8.10)
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[T~ 1 / ~an~ P~ ~ o~
izf _ _% Ap| - 5(L'Tp+pl'T—2LpL") (8.11)
. . S ~ o g
Schrodinger evolution Spontaneous emission: Lsy

where p is the 2 X 2 density matrix and L is the Lindblad operator. In this case L reads
L = +/I'gyoc~ where

01 _ 00
+ —
o= (0 0) and o0 = (1 O) (8.12)
thus we get
T Pee Peg/2>
Ly =-T 1
: ‘ (Pge/ 2 —pee (®.13)

8.1.6 Ergodic hypothesis

When the regime is stationary, it is possible to invoke the ergodic hypothesis to the extent
that a large number of individual histories are considered. This allows us to write down,
the expressions for the probabilities to find the atom in the excited (or ground) state as

B 1/Ty
Pee = 1T +1/Tx

1/T4

and -\ 0gs = T 1T

(8.14)

The quantities p. and pg, are the steady-state population of the excited and the ground
level. Those probabilities do not depend on time, which means and are in one to one
correspondence with the steady state solution of the master equation (8.11)

_ 0O?%/4
C02/2+62 +T3/4

Pee and  pge =1 — pee (8.15)

It is however necessary to take account of the Doppler effect. To do so let us consider the
momentum and energy transfers that accompany the kick of a photon with the atom. The
law of momentum conservation implies that

mT + hky = ma; (8.16)

%
where ¥ (resp. @ ) is the initial (resp. final) atomic velocity and 7iky is the momentum
carried by the photon. In addition, the energy conservation implies that

Eg +mv*/2+ hwp, = Ee+mv}/2 (8.17)

where E; (resp. E,) is the energy of the ground (resp. excited) state. Using these conserva-
tion equations lead to
- Wk
hep =hwy + 1K+ 2L (8.18)

The last term above is the recoil energy which in the regime considered here can be ne-

—
glected [3]. Now let us write «p = wp + ki, - 7, we see that an atom moving with velocity
v" will have a natural linewidth centered at @y.
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The steady-state population in the excited level is modified as follows:

e — 03 /4 _ 03 /4
Y (@02 OF /24 TF/4 (5 K TR+ Q2/2+T2/4

(8.19)

Now, the steady state is by definition reached when emission and absorption exactly com-
pensate each other. This means that:

Pee ro = pgg Fi (820)

Combining the constraints (8.14) and (8.20), and making use of the fact that, in the low
intensity regime considered here, 1/Ty +1/I'+ ~ 1/I'y, we finally get

Iy ~T)pee- (8.21)

Hence, it allows us to accurately estimate the value of the probability per unit of time I'_
(resp. I't) to absorb a photon originating from the laser in —X (resp.+X) :

N /4
b=~ o —a > (P2 4T24
(WL — @01/ )2+ Q7 /24 T5/

0 (8.22)

where @y, = wo £ kr v.

8.1.7 Monte-Carlo formulation of the cooling process

At this level, we have at our disposal enough information in order to simulate, in a Monte-
Carlo approach, the individual histories undergone by an atom during Doppler cooling.
Those histories are exemplified here by the code reproduced from the reference [17] (see
figure 8.6 for more detail). This numerical scheme aimed at providing a microscopic de-
scription of the laser cooling process along one dimension (say X). In the present section
we shall assume that, for what concerns the external degrees of freedom, the atom is “clas-
sical” (Tc = T, Tg = 0), i.e. the atom is treated in the usual way.

In summary, the process illustrated in figure 8.6 goes as follows:

o If the atom is excited (left column), it can spontaneously de-excite to its ground state
after a time of the order of 1/T’g and with a probability:

(8.23)

Thus if we write kg = wp/c then the magnitude of momentum transfer is equal to iko.
In the case of spontaneous emission, the direction of the emitted photon is randomly dis-
tributed. Let us denote by Ry = Tikg the radius of a 3-D sphere over which the momentum
of the photon can be distributed, and let us project this momentum along the axis of cool-
ing (X).
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Initial state N
Yes Excited ? 0
Yes Emission ? No Absorbtion ? __ No
Iy dt _ 0j/4
€0 < Todt 0 R Fe s ey
Yes
N hko Go <Tydt Todt <Go<(I'y+T-)dt
= — 1
_, hk _ hkg
5'0 = +TIL 50 = — 7

»1 Final state |

FIGURE 8.6: Numerical scheme of the cooling process [17]. Here we in-

troduced two uniformly distributed random numbers, ¢, € [0,1] and

¢1 € [—1,1]. Note that stimulated emission practically never happens in

the low intensity regime that we consider here. It is because its probability,

which is equal to that of stimulated absorption, is very low as compared to
that of spontaneous emission.

Denoting 6 the angle between the X—axis and this momentum, we get that the proba-
bility that the projection of momentum lies in the interval [Rg cos6, Ry cos(0 + d6)] is equal

to
1 ) 1 1
F]R%(ZT[RO SZnQ) . (RO dg) == Ed(cosg) = m : dx (824)

where x = Ry cos(0) varies from —R( to +Ry.

We conclude that the projection of the momentum of the photon on the axis X is uniformly
distributed in the range [—iko, ko] according to the uniform probability density

Py = ——. (8.25)
e Now if the atom is in the ground state (right column), the probability to absorb a

photon of the laser at X in a time interval dt is given by the Lorentzian probability dis-
tribution (8.22) time dt

032 /4

[odt 8.26
(5Lj:kL-vcl)2+Q%/2+1"%/4 0 ( )

F+/_ dt ~
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At this level one might object that ergodicity is not applicable because the process is not
stationary, due to the fact that p,, varies in time during the cooling process, because of the
Doppler shift which depends on time. However, many quantum jumps are necessary in
order to significantly change the velocity of the atom, because the photon wind is very
weak. Therefore, it makes sense to assume that a “local in time” condition of ergodicity is
fulfilled.

8.1.8 Monte-Carlo simulation of the cooling process

Here we consider the cooling process of Calcium atoms with the lasers tuned to address
the ground state 4% S; , and the excited state 4% P; /,. The associated resonant wavelength
is Ag = 397 nm, while the line width is Ty = 143 x 10°s~! so that the lifetime of the excited
state is 1/Ty ~ 7 ns. The mass of the calcium atom is m = 40 a.m.u. Based on experi-
mental observations and on the domain of approximations discussed before, we chose the
Rabi frequency to obey Q) = 0.1T(/+/2, and imposed the detuning of the lasers to obey
61, = —T/2. In the numerical simulations we chose a time step dt = ;! /10 = 0.7 ns.

The term describing the dipole is traditionally [18] taken to be of the order of

1(glge 7 le) || = 2qemo, (8.27)

where g, is the electron charge, and a9 = 5.29 x 10! m is the Bohr radius. The Rabi
frequency is by definition given by the following expression

E
Qp = —%(gy ger - éle) . (8.28)

From the values ( Ty = 143 x 10°s~ ! and Q; = 0.1Ty//2), we find Eg ~ 60 V/m, which
corresponds to a laser power The spontaneous emission is an isotropic process, equivalent
to a random walk (brownian motion) in the velocity space which consequently heats the
atoms. The Doppler cooling limit is reached when the heating due to spontaneous emis-
sion compensates the cooling. The temperature limit also known as Doppler temperature
Tp depends of course on the way we describe the random emission process. In [3] it is
shown that the Doppler temperature obeys

nT
Tp = WO = 0.544 mK in this case (8.29)
B

In figure 8.7, we illustrate the time evolution of the temperature obtained after performing
the loop described here above for 1000 atoms, whose initial velocities are distributed ac-
cording to a 1D Maxwell Boltzmann distribution. The initial velocities are generated using
an initial temperature Tp = 1 mK which corresponds to a mean velocity around 0.5 m/s.
At any subsequent points of time, the velocity is modified by the process. The temperature
is deduced using the equipartition theorem at 1D:

=" (2 (8.30)
kg

Our simulation shows that the temperature decreases gradually and then reaches a limit
of 0.35 mK, which differs from the theoretical value (8.29), i.e. we found T; ~ 2 Tp /3.
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t (ms)

FIGURE 8.7: Here we illustrate the time evolution of the temperature of a

gas made by 1000 atoms. The temperature is expressed in function of the

Doppler temperature (8.29). Here we used an initial temperature of 1 mK.

The temperature decreases and stabilizes close to the Doppler temperature,
ie. Ty = 2Tp/3 where Tp.

It is not surprising because from (8.25) and because we consider two lasers it follows that

_ 1 ko _ 2.2\ _ 1 ko 2 2.9
nik) =2 5 /hko dxx=0, and (k) =25 /hko dx® = S0 (331)

=g % - B owm (8.32)
O\ wo 377 ‘ ‘

which explains the factor 2/3.

A fine understanding of the process does not really matter actually because anyhow the
Doppler cooling limit is not observed experimentally. The reason is that the model sketched
here does not take account of extra-cooling mechanisms such as the Sysiphus mechanism
which result in a substantial lowering of the cooling limit [19]. Practically the process
reaches temperatures quite lower than the Doppler limit and it is ultimately limited from
below by the recoil limit [3]

2
Tk = (Z k;i = 3 uKin this case where k; = 1.58 - 10" m and m = 40 am.u (8.33)
B

At this level the model outlined above loses its relevance because it ought to be comple-
mented by incorporating more complex effects of the Sysiphus type. In figure 8.8 we plot
the temperature of one atom whose initial velocity is 7o = 10 m/s and we plot in figure
8.9 the Doppler kicks the atom had undergone during its evolution.
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t (ms)

FIGURE 8.8: Temperature of one atom during the cooling process. We used
an initial velocity of 10 m/s and an atomic mass m = 40 a.m.u.

t (ms)

FIGURE 8.9: We plot here the Doppler kicks Av due to spontaneous emis-
sions. The kicks are uniformly distributed between i%.
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FIGURE 8.10: Here we consider a numerical scheme which combines GRW
decoherence (7.80-7.81) and Doppler cooling. We introduced two random
numbers, ¢y is uniformly distributed in [0,1] and ¢; is normally distributed.

8.2 GRW and cooling

A last important step before to implement decoherence is to justify the choice of the two
parameters characterizing the GRW model in this context. The physical justification is the
following: at each spontaneous emission, the atom is instantaneously localized in space.
This localization is accompanied by a quantum decoherence process that will be modeled
by the GRW model. Therefore, it seems natural to use the decay rate I'g as the decoherence
frequency I'.

Now we have to justify the choice of the second parameter a« which is related to the spatial
localization. A physical way to choose « is the following: as explained in the previous
section, the Doppler limit (8.29) occurs when the effect of the cooling is compensated by
the brownian motion in the velocity space. This Brownian motion which is due to sponta-
neous emission is accompanied by a heating which in this case [3] is equal to:

2
<d<p >> = 12T (K2) (8.34)
at ) pc
Now using (8.31) we get
d(p?) _ W Ty 2
( it )y 3 kg (8.35)

Since the GRW model [2] is also characterized by a heating

d(p?) _hzl"ooc
< dt >GRW_ 2 (836
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FIGURE 8.11: Here we plot the temperature of a gas made by 10* atoms

when combining Doppler cooling and GRW decoherence. We chose an ini-

tial wavefunction spread 0, ;9 = 1078 m. In this case, the temperature still
stabilizes to 2 Tp /3 as if there is no decoherence (as in figure 8.7).

it seems natural to equalize both processes to deduce the value of a. Thus we finally get

Physically, it means that the decoherence localizes the atom in a region of space 1/+/a
which is of the order of the photon wavelength Ay.

8.2.1 Monte-Carlo simulation of the GRW process in the Doppler cooling

Similarly to the Monte-Carlo description of the cooling process presented in section 8.1.7,
let us consider a numerical scheme in which the GRW model is implemented. To do so, we
replace in the numerical scheme 8.6 the part of the code devoted to spontaneous emission
by a GRW process (see figure 8.10). The GRW parameters were chosen as described in the
previous section.

The resulting cooling process is plotted in figure 8.11. As can be seen in this figure, we ob-
tain the same evolution of the temperature as the one obtained in figure 8.7 in accordance
with (8.37). The figures 8.12-A and 8.12-B show the evolution of the spread in position and
velocity averaged over 10* atoms. As confirmed numerically, those spreads remain gaus-
sian distributed over time in agreement with the GRW model. We also plot in figure 8.13
the kicks in position Ag and in velocity Av undergone by one atom during its evolution.
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FIGURE 8.12A: The time evolution of the atomic positions are illustrated

with histograms at time t = 0 and at t = 1.4 ms. The initial positions are all

generated from the same source in x = 0. The continuous curve in (B) isa a

gaussian fit traducing the fact that the positions are normally distributed ac-

cording to N (0, 0y ). The gaussian width is plotted in figure (C). We started

from N = 10* atomic initial positions at x = 0. We considered a sampling
time step At = 7.10"10s.
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(D) Histogram of the velocities at (E) Histogram of the velocities at (F) Here we plot the time evolu-
t =0 (ms). t = 1.4 (ms). tion of the spread o.

FIGURE 8.12B: The time evolution of the atomic velocities are illustrated

with histograms at time t = 0 and at ¢ = 1.4 ms. The continuous curve in

(D,E) is a a gaussian fit traducing the fact that the velocities are still normally

distributed according to N (0,0%). The gaussian width is plotted in figure

(F). We started from N = 10* atomic initial velocities distributed according

to a Maxwell-Boltzmann velocity distribution for T = 1 mK and for a mass
m = 40 a.m.u. We considered a sampling time step At = 7.10710 s.
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FIGURE 8.13: We plot here the kicks in position Ag and in velocity Av un-

dergone by one atom during its evolution. We also plot the corresponding
histograms of those kicks. Here we chose 0, ;o = 108 m.
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FIGURE 8.14: Here we plot the temperature of a gas of 10* atoms when com-

bining Doppler cooling and GRW decoherence for different initial spreads

Ox,io m. For oy ;o > 1077, the classical temperature still stabilizes to 2 Tp /3

as if there is no decoherence (by comparison to figure 8.7). However, for

Oxio < 107 m, the temperature is dramatically affected and increases

quickly before to stabilize after a relaxation process to 2 Tp /3. Here we used
an initial temperature of 1 mK.
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The key novelty here is that we have two new degrees of freedom in the description
of the cooling which are the size of the individual atomic wave packets Q; and their cor-
responding individual spread in velocity P;. In figure 8.14 we plot the temperature for
various initial values of those individual spreads. For an initial spread ¢y ;o > 107° m,
decoherence does not affect the stabilized temperature, it is still 0.35 mK exactly the same
way as figure 8.7. However, a notable difference occurs beyond a critical value of the initial
spread ((7;, 0~ 10~? m) for which we can see that the temperature is dramatically affected.
It quickly increases before to stabilize, after a relaxation process, around the Doppler tem-
perature. In the one hand, it is reassuring to find the same temperature limit for all o, ;
while, on the other hand, it is surprising to see such a difference in the behavior of the
temperature for oy ;o < 10~° m.

We shall now give a theoretical justification of this increase and justify the critical value of
the initial spread ¢¢, , ~ 10~ m.

8.2.2 Momentum transfer from the quantum to the classical degrees of free-
dom

The first thing to note is that the increase of temperature occurs for small times, typically
after the first few kicks. It is already confirmed by the numerical simulations as can be
seen in figure 8.15 in which we used an initial spread oy ;9 = 10~° m. This tigure provides
a zoom of the transfer of momentum occurring between the quantum and the classical
degrees of freedom during the process of decoherence.

In fact, as illustrated in figure 8.15, after some localizations, the individual spreads con-
verge to the asymptotic spread predicted by the GRW model (for more details we refer the

reader to section 7.E in which we introduced the parameter € = %), i.e. here ¢ ~ 0.043
so that the equilibrium spread is

1

2
ori=1/QF = <\/€§a> ~1.35-10%m (8.38)

This means that the quantum degrees of freedom get frozen very quickly. Thus, the ini-
tial spread in position o, ;o typically transfers, in accordance with Heisenberg principle, a
momentum contribution

h
0~ ~5-10"* kg. 8.39
Uprlfo 2 (Tx,i,() g m/s ( )
which corresponds to a temperature

2

o-.
To = 22 ~3mK 8.40
Q= kg 0™ (8.40)

This is almost the value of the heating peak observed in figure 8.14 for 0, ;0 = 10~ m. The
initial classical temperature was Tc = 1 mK which is less than Ty so that it explains how
the heating occurs.
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FIGURE 8.15: We plot here the individual quantum spreads in position o; ,

and in momentum o; , (for one atom). We also plot the statistical distribu-

tion of transfer of momentum which occurs during jumps corresponding to
the photon kicks. We chose an initial position spread ; , o = 10~°.

8.2.3 Violation of the momentum conservation ?

When the spread in position is small compared to a critical value (that we shall precise
in this section), it follows that the exchange of momentum accompanying the first quan-
tum jump is enormous compared to the momentum transferred by a photon. At first sight,
when we numerically observed this feature we doubted about the validity of our code, but
this property was confirmed by a detailed study of the momentum transfer as we shall see
in the present subsection.

As has been shown in [2] (for more detail see appendix 7.D.0.2) , the change in momentum
occurring during a GRW localization [2] is expressed as follows:

ZDCRi
Sp=ps—p; = S 8.41
p=pf—p uc(1—|—2aQi)C (8.41)

where ¢ is a random number normally distributed. The parameter R is defined through

hIm A
R =1/QP - 1?/4 = 5127 (8.42)

where A is the quadratic parameter of the Gaussian (see appendix 7.D.0.2 - (7.76)). In
absence of collision (when the evolution is ruled by the free Schrodinger equation) it can
be shown? that:

Q(t) = Q(0) +2R(0)t/m + P(0)t?/m?, and TR(t) = \/Q(O) “P0) + (P(0O)t/m)2 —h?/4
(8.43)

In our simulations we always choose initial gaussian wave packets for whichIm A = 0 so
that

R(0) =0 andthus Q(0) P(0) =FH/4 (8.44)

in virtue of the Heisenberg uncertainty relation.

3We refer the reader to the paper [2] in which the formulas are explicitly derived.
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Let us now assume that at time 7 = 1/T the first collision occurs. Thus from (8.43,8.44)
we get

h? h?
1+ Tz/m2] and R(7)= ——++—57 (8.45)

(1) = QO 11+ a5y 4m O(0)2

Finally, the transfer of momentum (8.41) occurring during the first kick is expressed as
follows

e2

2% [1+2x0 (1+ ¢t )}m

12
4 x5

5p = ath (8.46)

where here ¢ has been put to unity and where we introduce the dimensionless parameters

1/2
xo =aQ(0)and e = (”‘Z—T) as in section 7.E. According to our choice of the parameter
« we have in the prefactor of (8.46)
a2t ~ ko (8.47)

so that the violation of the momentum conservation occurs when the right-hand side is
more than one. This occurs from the critical value x( . which is found to be solution of

2

1/2
2 X0, [1+2x0,c (1+ < )]

7
4x0,C

=1 (8.48)

The value of xq depends only on €. Here € ~ 0.043 which corresponds to xp . ~ 9.2 - 104

Using the value of & = 1.67 - 10 we finally get

Thio =1 £ ~10°m (8.49)

The theoretical value found here corroborates the one obtained in the simulations 8.14.

Note that in the limit of small ¢, the critical individual spread in position ¢% ; ; converges
to the asymptotic solution x; solution found in (7.100), i.e. lime¢_o xgc ~ 6—22 The inter-
pretation is straightforward: if xp. = x; then TOQ = TastmptotiC and no transfer of quantum
energy occurs. Apparent violation of momentum conservation occurs when xp < o,
(then Tég > Tastm plotic and the transfer is exothermic).

This property (which would be absent in the classical regime, when To << T¢) sheds
a new light on the exchange of energy between the quantum and classical reservoirs, in
situations during which the quantum reservoir is quite hotter than the classical one.
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8.24 Discussion and intuitive explanation

When the initial individual spread in position 0,0 gets smaller than o7 ; ), the usual ap-
proximation to which the atom wave function is a plane wave is no longer valid. The
gedanken-experiment below helps to understand why, whenever the wave function is not
a plane wave, apparent violations of momentum conservation are likely to occur.

Let us, for simplicity, consider a description at one dimension of space (say X) and let
us consider an atom in the ground state.

Suppose that this atom is initially prepared in a state which is a 50/50 coherent superposi-
tion of a “slow” gaussian packet (i.e. with an average velocity taken to be equal to zero in
first approximation) and of a “fast” gaussian wave packet (for which the average velocity
is equal to V).

If now we send a photon in the direction of the atom, which is red shifted relatively to
the transition frequency of the atom in such a way that the photon would certainly get
captured (and reemitted) by the fast component of the wave function of the atom and be
invisible to the slow one. What we get is thus a superposition of a photon reemitted along
an arbitrary direction with the atom in the fast state and of a photon passing through the
atom without getting deflected with the atom at rest.

If afterwards we measure the photon along X it means thus that the atom is at rest, oth-
erwise the atom is moving fast at velocity V. We could conclude from this analysis that
this process violates momentum conservation because the transfer of momentum is appar-
ently equal to =mV where m is the mass of the atom (we supposedly are in right to neglect
here the photon momentum k). However the full wave function does not violate momen-
tum conservation which is (still neglecting fik) mV /2 before and after the passage of the
photon. Apparent violation occurs only whenever we trace over the photonic degrees of
freedom (here its direction of propagation after the interaction) and consider individual
histories. Now, GRW formalism and more generally all models of decoherence are pre-
cisely aimed at tracing over the environment and considering individual histories of the
quantum system of interest (here the atom). This simplified situation explains why mo-
mentum violation may appear to get violated in situations where the spread of momentum
of the atom is large compared to the photon momentum ik, which is precisely the situation
for which the GRW approach predicts.
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8.3 Conclusion

In conventional treatments of Doppler cooling the atom is treated as a classical point. Here
we made a fundamental correction to this model: the state of the quantum system under
interest (atom/bead) ought to be described by a Gaussian quantum wave function. In-
stead of considering only the “classical” position and velocity, which are associated to
the first moments of the corresponding observables, we add their “quantum” counterpart,
which is associated to the second moment of the respective distributions. We use the GRW
model [2] to simulate the decoherence effect during the process of Doppler cooling [3]. The
decoherence does not only affects the quantum degrees of freedom via the wavefunction
spread but it also affects the classical degrees of freedom (average position and velocity).

Our simulations demonstrate that there occurs a transfer of energy between quantum and
classical degrees of freedom. In particular, this transfer cannot be described in classical
terms before equilibrium is established. We studied in detail the apparent violation of mo-
mentum conservation characterizing the transitory regime which occurs before the onset
of equilibrium. Our results also establish that Doppler cooling is not affected by GRW de-
coherence when the initial wavefunction has a sufficiently large spread. However, when
the initial spread is very small, we predict a heating due to this transfer of energy between
quantum and classical degrees of freedom. This is so essentially because the variance of
two cumulated gaussian distributions is the sum of their respective variances.

Moreover we noted that the asymptotic spread, predicted in the framework of GRW model,
oy ~ 135 108 m corresponds to a quantum temperature of the order of the recoil
temperature. This justifies retrospectively why it is legitimate in the conventional treat-
ment of Doppler cooling to neglect the influence of quantum degrees of freedom (because
Tp > Tr). However, it could be that in the Sysiphus regime the quantum degrees of free-
dom associated to the spatial wave function of the atoms would well play an important

role...

In the case of nanospheres (beads), the typical preparation procedure is such that we are
in the quantum regime To >> T¢ at time t = 0 [20]. Our analysis makes it possible to
estimate the conditions required for effectively cooling a nanosphere during its time of
flight, which opens interesting and challenging experimental possibilities.
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Chapter 9

Conclusion and open questions

“Tout a une fin... sauf la saucisse qui
en a deux”

Proverbe allemand

In the present work, we have explored several topics that naturally appear if we aim
at giving a formulation of the quantum theory in which quantum systems are sharply lo-
calized in space throughout time and follow “real” trajectories [1, 2, 3, 4, 5].

The first topic, quantum equilibrium, naturally emerges if we wish to make the econ-
omy of a postulate [6], the Born rule, and try to derive the Born rule from the dynamics
[7,8,8,9,10]. Asis well-known, when the dynamics resumes to the guidance condition, it
is possible to derive the Born rule provided some chaos [11, 12, 13] is present, at the price
of introducing some coarse-graining. As has been shown elsewhere, chaos [11, 14, 12, 13]
accompanies the passage of the trajectory in the vicinity of a zero of the wave function.
We retrieved these results in our analysis (chapter 2 and chapter 3), and we put into ev-
idence the role of microstructures and mixing (chapter 4). What we have shown could
be formulated as follows: it makes sense to talk about equilibrium when mixing is such
that microstructures disappear. From this point of view, the time necessary to reach equi-
librium is not absolute, it depends on the size of the microstructure and of the Lyapunov
exponent characterizing the dynamics. We also introduced a measure of mixing inspired
by the analogy with thermodynamical mixing. This measure, that is independent of the
coarse graining, uses as a tool the Bernoulli distribution. We enlarged our analysis in or-
der to consider a dynamics a la Nelson (the BHN dynamics [15, 16, 17, 18, 19, 20, 21]) in
which, supplementary to the guidance condition, some Brownian motion is present. This
approach substantiates original ideas by Bohm and Vigier in the 50’s [7]. The mixture
of Brownian motion and guidance condition was labeled by de Broglie under the name
“quantum hidden thermostat” [22]. Note that these ideas are congenital to the so-called
stochastic electro-dynamics and other zero point field fluctuations realistic approaches to
the quantum theory [23].

We derived in this context several H-theorems (chapter 3) showing that quantum equi-
librium irreversibly occurs due to the presence of the Brownian noise/quantum stochas-
ticity. These H-theorems are formulated in terms of various measures of the departure
from equilibrium: £; norm, £, norm, L; norm and also the Kullback-Leibler divergence.
When the trajectories of the system are confined (as happened in our case where we con-
sidered a particle trapped in a 2D harmonic oscillator) equilibrium is de facto guaranteed,
what is however not true in the case of free particles, as shows the Guerra counterexam-
ple [17, 18, 19]. We also studied the ergodicity of the dBB and the BHN dynamics, and
we connected it to the uniformization properties of the bouncing oil droplets dynamics
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(chapter 5). Our analysis allowed us to formulate quantitative tests [24] putting the de-
gree of noise present in the dynamics in relation with the ergodicity. We also proposed
simple models aimed at qualitatively mimicking the trajectories observed in the case of a
droplet trapped in a 2D harmonic potential [25], motivated by the experimental observa-
tion [26, 27] according to which the droplets trajectories can be characterized in terms of
the same quantum numbers as those which characterize the energy levels of an isotropic
2D harmonic oscillator. Finally we proposed an effective model for droplets dynamics
in which the degree of noise is expressed by two real parameters, € and €’, model which
make it possible to continuously tune between the classical, dBB and BHN dynamics.

At this level we ignore whether the dBB and BHN dynamics deliver good candidates
for simulating the droplets dynamics, but we are hopeful that our ideas will stimulate the
experimentalists and contribute to better understand and quantify the analogies and dis-
crepancies between the pilot wave dynamics and the droplets dynamics, which remain
largely unexplored questions.

The second topic dealt with de Broglie double solution program [3, 28, 29] and a pro-
posal to realize it by introducing a fundamental non-linearity at the level of Schrodinger
equation (6). To some extent, our first result appeared to be negative: we proposed an
ansatz, the factorization ansatz, in which the double solution consists of a product of the
pilot wave with the wave of the particle and showed that this ansatz resulted into a gen-
eralized guidance equation to which the internal degrees of freedom of the particle also
contribute. Moreover we showed by a well-chosen example that this internal contribu-
tion conspires to restore the classical dynamics. These results were elucidated in terms
of a generalized Ehrenfest theorem [30, 31], valid for a very large class of non-linearities
(comprising e.g. N-S equation and NLS equations as particular cases) which all respect
Galilean invariance. It is worth noting that the Ehrenfest theorem is also valid even when
the factorization ansatz is not satisfied, provided the quantum wave function is sharply
enough peaked. It is thus a very general theorem. A possible way to escape the limita-
tions imposed by Ehrenfest theorem consists of replacing the internal velocity by a brow-
nian noise. It is still an open question to know whether we could relate this brownian
noise to the relativistic Dirac-Heisenberg zitterbewegung, as has been done for instance in
the context of stochastic electro-dynamics and actually a relativistically covariant formula-
tion of de Broglie’s double solution program has up to now be largely unadressed. In the
meanwhile, even though we were not able to realize stricto sensu de Broglie’s double solu-
tion program due to the limitations imposed by the aforementioned generalized Ehrenfest
theorem, the same theorem implies that the S-N equation remains a valuable candidate
for elucidating the quantum-classical transition. From that point of view, quantum mi-
croscopic systems would indeed remain delocalized at the quantum level (in agreement
with the recent loophole free violation of Bell’s inequalities achieved by experimentalists),
but macroscopic systems would happen to spontaneously localize and to follow classical
trajectories. This constitutes an interesting prediction in itself, justifying the interest of
considering nonlinear generalizations of Schrodinger equation a la Schrodinger-Newton.

We proposed (chapter 7) thus two experimental tests aimed at putting into evidence the
existence of a non-linear self-interaction a la Schrodinger-Newton [32, 33, 34, 35, 36, 37, 38,
39, 30].

The first one involved a humpty-dumpty Stern-Gerlach experiment [40]. Such an exper-
iment has actually not yet been realized, due to limitations imposed by decoherence, but
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hopefully it could be realized in a near future, being given the serious progresses real-
izing in the previous decades in trapping and cooling mesoscopic quantum systems in
processes characterized by a very low degree of decoherence (very low temperatures and
nearly perfect vacuum).

The second test implements the idea that decoherence can be used as a tool for control-
ling and tailoring the evolution of a quantum system [32, 33]. Moreover it incorporates
the concept of mobility [41, 42], central in the derivation of Gisin’s famous no-go theorem
[43] about non-linearity [44], which related the presence of a non-linearity to the violation
of quantum signaling. Mobility, as it was introduced by Mielnik [42] connects the presence
of a nonlinearity in the dynamics to the possibility to differentiate non-orthogonal states,
which ultimately makes it possible to differentiate two realizations of a same density ma-
trix and thus two unravelings of a same master equation. Similar to the humpty-dumpty
experiment [40], the conditions required for realizing the experiment proposed by us have
not been realized yet in the practice, because they impose initial conditions on the quan-
tum state of the mesoscopic system (bead) that are out of reach to experimentalists. These
experimental proposals also require to use a satellite in order to obtain the very long times
of free flight which [33] seriously menaces their potential realization. Obviously, what
still remains to be done is to extrapolate our experimental proposal to the case of trapped
systems which would largely enhance its practical implementability, because it could be
realized in a terrestrial lab. Unfortunately we had no time to carry out this study during
the relatively short time (three years) imposed to the completion of this work, but this pro-
gram is worth being fulfilled.

Indirectly, the study of the feasibility of our experimental proposals brought us to study in
depth the role of decoherence during Doppler cooling [45, 46] (chapter 8). By doing so, we
emphasized the role played by external quantum degrees of freedom of a Gaussian state
(these are the square root deviations of velocity and position) which, supplementary to the
external classical degrees of freedom (average velocity and average position) contribute to
the temperature of the considered quantum system. Making use of GRW [47] formalism
we studied how exchanges occur between the classical and quantum contributions to the
temperature, due to the localization process caused by the spontaneous emission of pho-
tons by the quantum system. Ultimately, we hope that these ideas could be exploited in
order to exert quantum control and tailoring of the state of a quantum system undergoing
laser cooling and/or Doppler cooling, in particular in the mesoscopic domain.

To conclude, the simple question raised by Louis de Broglie in 1927 which is “... have
we the right to assume that quantum systems are sharply localized at all times ... ?” brought us
to explore several topics:

the onset of quantum equilibrium,

realization of the wave particle duality at the macroscopic scale with oil droplets,
self-gravitationally induced non-linear modifications of Schrodinger equation,
tests of quantum coherence at the mesoscopic level

interplay between decoherence and cooling.

Our study settled certain questions and raised new ones, still to explore. We hope that
it will stimulate experimentalists and that it will benefit to our knowledge of the quan-
tum theory, a monument of the 20th century physics, still unachieved, for our greatest
satisfaction.
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