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Titre : Vers des matériaux énergétiques durables : élargissement de l'analyse du cycle 

de vie pour le développement de technologies émergentes et des choix économes en 
ressources 

Résumé : Les matériaux énergétiques sont particulièrement intéressants du point de 

vue du développement durable pour faire progresser les systèmes d’énergie 
renouvelable, notamment les énergies de production et de stockage. Leurs utilisations 
appropriées ainsi que leur développement requièrent une méthode d’évaluation 
quantitative. L’Analyse de Cycle de Vie (ACV) est une méthode qui soutient le 
développement durable par l’identification de priorités environnementales ainsi que par 
la comparaison de différentes technologies. Cette recherche vise à soutenir le 
développement des matériaux énergétiques et de faire de la méthode d'analyse du cycle 
de vie un outil plus pertinent pour l'évaluation environnementale à travers l’extension de 
son usage dans deux directions émergentes : l’évaluation des technologies au début de 
leur développement et le soutien des choix économes en ressources dans le contexte 
d'une économie circulaire. 

Les objectifs de recherche se focalisent sur le développement de l’information relatives 
aux technologies ainsi que sur la méthodologie d’identification des défis et opportunités 
par l’application de l’ACV sur trois études de cas de technologie énergétique à différents 
niveaux de maturité. Dans le premier cas d’étude, les piles alcalines, actuellement à haut 
niveau de maturité () sont évalué grâce à l’utilisation de l’ACV combiné avec un indicateur 
d’économie circulaire, l'indicateur de circularité du matériau (MCI). Le but était d’explorer 
une opportunité de couplage des deux méthodes ainsi que les compromis entre les 
indicateurs pour différentes stratégies de conception et de gestion de ces batteries. Dans 
le deuxième cas d’étude, les électrodes à base d’hydroxyde de nickel-cobalt, à présent à 
bas niveau de maturité (échelle de laboratoire) sont évaluées dans l’optique d’étudier des 
priorités environnementales des voies de synthèse favorables. Dans le troisième cas 
d’étude, les chargeurs organiques photovoltaïques portables pour petits équipements 
éléectroniques, actuellement à un niveau de maturité intermédiaire (échelle pilote), sont 
évalués pour remplacement du réseau électrique traditionnel pour le chargement de 
téléphones portables. 

Les résultats pour la pile alcaline montrent la valeur et la portée de l’indicateur MCI pour 
l’évaluation de stratégies comparés aux résultats de catégorie ACV et d’indicateur. Dans 
ce contexte, une méthode de couplage et de présentation de l’indicateur MCI est 
proposée, et un besoin d’améliorer la caractérisation de la qualité des matériaux de perte 
pour les matériaux secondaires (recyclés) est identifié. Le cas d’étude des électrodes 
offre un aperçu des priorités environnementales et de leur statut par rapport au 
technologies alternatives existantes, en incluant les avantages de certaines étapes de 
processus et voies de synthèse. Les paramètres d’opération les plus favorables en terme 
de densité de courant et de durée de vie espérée sont identifiés. L’analyse des chargeurs 
photovoltaïques montre la potentielle performance environnementale de cette 
technologie étant donnée le contexte géographique et l’intensité d’utilisation. Les 
chargeurs ont prouvé leur éventuelle valeur de substitut au réseau électrique local dans 
trois parmi six pays en usage fréquent, et dans des catégories d’impact spécifiques. Deux 
contributions pour le développement et l’utilisation de l’indicateur sont complétées par 
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des recommandations concernant de meilleures définissions et catégorisations des 
indicateurs d’économie circulaires pour le cadrage des évaluations quantitatives (incluant 
l’ACV) et en vue de leur contribution sociaux économique à l’analyse environnementale. 
Les cas des électrodes et des chargeurs démontrent des incertitudes relatives à 
l’allocation des flux de référence de l’unité fonctionnelle, qui sont gérées par la mise en 
place d’un scénario et une analyse de sensibilité. Etant donné les défis et la conduite des 
actions de réponse, les efforts devront porter sur la phase d’interprétation de l’ACV, une 
observation qui aurait des implications plus larges en ACV pour l’évaluation des 
technologies émergentes. 

Les futures recherches devraient considérer comment sont utilisés les indicateurs 
d’économie circulaire et comment ils pourraient être étudiés avec et en complément de 
méthode d’allocation quantitatives comme l’ACV. Dans un contexte de modélisation de 
technologies émergentes avec l’ACV, il est recommandé de mettre plus d’emphase sur 
la classification des ACV orientée vers le futur pour les technologies émergentes, afin de 
mieux cadrer et organiser les avancements méthodologiques existants et futurs dans ce 
domaine. Une recommandation est aussi faite au regard de l’utilisation de l’ACV 
attributionel et conséquentiel pour guider le développement des technologies à travers 
différents niveaux de maturité. 

Mots clés : Matériaux durables, évaluation environnementale, analyse du cycle de 

vie 
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Title: Towards sustainable energy materials: broadening life cycle assessment for 

emerging technology development and resource-effective choices 

Abstract: Energy materials are particularly important from a sustainability perspective 

for advancing renewable energy systems, including energy production and storage. Their 
appropriate use and development require quantitative assessment methods. Life Cycle 
Assessment (LCA) is a method to support sustainable development that can be used to 
identify environmental hotspots and compare different technologies. The purpose of this 
research is to support development of several energy materials and make LCA a more 
relevant tool for sustainability assessment by extending its use in two emerging directions: 
assessment of technologies at the early stage of development, and by supporting more 
resource-effective choices for a circular economy.  

The research objectives focus on informing the development of technologies and 
identifying methodological challenges and opportunities by applying LCA to three energy-
technology case studies, each at a different technological maturity level. In the first case 
study, alkaline batteries, currently at a high maturity level (incumbent products), are 
evaluated using LCA in combination with a circular economy indicator, the Material 
Circularity Indicator (MCI). The aim was to investigate opportunities to combine the two 
methods, while considering trade-offs between indicators for different strategies for 
battery design and management. In the second case study, nickel-cobalt hydroxide 
charge storage electrodes, currently at a low maturity level (laboratory-scale), are 
evaluated to investigate environmental hotspots and preferred synthesis route. In the third 
case study, organic photovoltaic portable chargers for small electronics, currently at a 
medium maturity level (pilot-scale), are evaluated for replacing conventional electricity 
grid for charging a mobile phone.  

The results of the alkaline batteries case study show the value and meaning of the MCI 
circular economy indicator to evaluate resource strategies as compared to LCA category 
and indicator results. In this context, an approach for combining and presenting the MCI 
indicator is proposed, and a need to improve characterization of material quality losses 
of secondary (recycled) material was identified. The electrodes case study offers insights 
on the environmental hotspots and relative status among technology alternatives, 
including the benefit of certain process stages and synthesis routes. The most favourable 
operating parameters in terms of current density and device lifetime expectations are 
identified. The analysis of photovoltaic chargers shows their environmental-performance 
potential given the geographical and use-intensity contexts. The chargers have shown as 
potentially valuable substitutes to local electricity grids in three of six countries given 
frequent use, and for specific impact categories. Case studies on electrodes and chargers 
demonstrate uncertainties in relation to allocation of reference flow to functional unit, 
which are addressed conducting scenario and break-even analysis. Given challenge and 
carried out responses, involve increasing efforts in the interpretation phase of LCA, an 
observation with potentially broader implications to the assessment of emerging 
technologies in LCA. 

Further research should consider how circular economy indicators and could be used with 
and complement quantitative assessment methods such as LCA. In the context of LCA 
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of emerging technologies, it is recommended that more emphasis is given to further 
classification of future-oriented LCA studies of emerging technologies, in order to better 
frame and organize methodological advancements in this area. A recommendation is also 
made in consideration to application of attributional and consequential LCA approaches 
in guiding technology development at different stages of technological maturity. 

Keywords: Sustainable materials, environmental assessment, life cycle assessment 
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Chapter 1: Introduction 
 

1.1. Research context and problem rationale  
 

Assessment methods play an important role for moving towards sustainable products and 

resource use. “What cannot be measured, cannot be managed” is a phrase often used to highlight 

that unless there is a way to quantify the system, actions for improvement are not warranted. 

Within the toolbox of Industrial Ecology, the Life Cycle Assessment (LCA) method has been used 

to provide science-based support for environmental sustainability improvements of goods and 

services. In this context, LCA embodies the work of several organizations and the broader 

scientific community that has been central to its rapid development over past three decades. 

Namely, standards ISO 14040 and ISO 14044 of International Organization for Standardization 

(ISO), “Code of Practice” of Society of Environmental Toxicology and Chemistry, and International 

Reference Life Cycle Data System Handbook offer guidelines to method and procedures, support 

harmonization, and continuous improvements of methodology (Consoli 1993; ISO-14040 2006; 

ISO-14044 2006; Wolf et al. 2012). In turn, LCA has long been used and has found diverse 

applications in policy and industry. In policy, LCA has been used since early 2000’s (Owsianiak 

et al. 2018) to incorporate life cycle thinking in pollution-prevention of products (e.g., Mudgal 

and Benito 2008), support the introduction of new technologies, and management and taxation 

of solid waste (e.g., Björklund and Finnveden 2007; European Parlament and Council 2008; Meylan 

et al. 2015). In industry, used initially to inform packaging in the late 1980’s, LCA is now used in 

all aspects of product management and procurement, including the process development, 

marketing, monitoring of environmental performance of products and production, supply chain 

management, and strategic planning (Baumann and Tillman 2004; Fava et al. 2000; Guinee et al. 

2010; Hauschild, Rosenbaum, and Olsen 2018).  

Despite its widespread use, and significant efforts invested in harmonization and streamlining 

for more comprehensive and consistent assessment, LCA is criticized for lacking a true 

“sustainability” perspective. Mainly, it is perceived that the outlook on only environmental 

aspects is limited if not pursued with consideration to a broader socio-economic context. Specific 

critiques include the method’s ability to: address potential trade-offs between environmental and 

socio-economic aspects; support decisions from the perspective of sustainable production and 

consumption; address system dynamics and different scales of production; and forecasting of 

future systems (Dreyer, Hauschild, and Schierbeck 2006; Franze and Ciroth 2011; Hertwich 2005; 

Norris 2001; Ny et al. 2006; Reap et al. 2008; Sala, Farioli, and Zamagni 2013a).   
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In an effort to overcome these shortcomings, various approaches have been suggested, with 

discussion particularly intensifying in recent years. Efforts can be traced to the work of 

Andersson et al. (1998), who combine socio-ecological principles with LCA (Andersson et al. 

1998). Ny et al. (2006) use "basic sustainability principles" as outlined in The Natural Step as the 

distance-to-target approach to account for degradation of the environment, resource use and 

resource sufficiency (Ny et al. 2006; Robèrt 2000). In a similar manner, Heijungs et al. (2014) use 

planetary boundaries in effort to provide an absolute reference to emission burdens to model 

how products fit within sustainable consumption (Heijungs, de Koning, and Guinée 2014). A large 

number of studies have also proposed combining LCA with social and economic assessment 

methods and indicators to complement environmental assessment  (e.g., Norris 2006; Onat et al. 

2016; Sonnemann, Tsang, and Schumacher 2018). More recently, Klopffer et al. (2008) combine 

LCA with social and cost-analysis by means of Social Life Cycle Assessment and Life Cycle Costing 

for an integrative Life Cycle Sustainability Assessment (Klopffer 2008). A similar, but more 

conceptually open approach was proposed by Guinee et al. (2010) in which a variety of methods 

could be used alongside LCA to address social and economic aspects of products (Guinee et al. 

2010). Aforementioned efforts have extended the scope of environmental LCA even though, the 

adaptation of LCA in all aspects pertaining to sustainability remains an ongoing objective 

(Moltesen and Bjørn 2018; Sala et al. 2013a). 

To transcend from its conventional focus on the environment to a method that can support 

broader sustainability choices, there is a need for “broadening”, “deepening” of LCA, and “leaping 

forward” (CALCAS 2009; Guinee et al. 2010). 6th EU Framework for Co-ordination Action for 

innovation in Life Cycle Analysis for Sustainability (CALCAS) differentiates two types of 

broadening: broadening the scope of indicators, and broadening the object of analysis. The 

broadening of the scope of indicators includes broadening beyond environmental assessment to 

include the social and economic aspects (CALCAS 2009; Guinee et al. 2010). The broadening of 

the object of analysis entails the use of LCA beyond product assessment, referring to company 

and sector (meso-level) scales of analysis, and to economy scale (macro-level) questions.  

In terms of broadening LCA beyond focus on environment, a significant opportunity for LCA lies 

with the new sustainability paradigm of circular economy (CE), where many efforts have been 

directed at different levels of economy and organisations, including significant interest to bring 

these considerations at the product-level (Ghisellini, Cialani, and Ulgiati 2016; Haupt and 

Zschokke 2017). CE aims to optimize resource use, including reduced consumption of virgin raw 

materials and generation of waste, through closing loops in production and consumption of 

materials (Haas et al. 2015). Given that the concept of resources is inherently a human construct 
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(Dewulf et al. 2015), their preservation, localisation, and provision have socio-economic value 

that can be evaluated and complement the environmental analysis in LCA. 

Sustainability improvement could also be supported by extending the scope of LCA use beyond 

conventional applications. Specifically, use of LCA to inform technology innovation and beyond 

ex-post (retrospective) LCA of current (incumbent) products to model future technologies is 

increasingly considered. Modeling of emerging technology as future systems is commonly 

referred to as “ex-ante LCA” (Cucurachi, van der Giesen, and Guinée 2018; Villares et al. 2017), 

although terms are still evolving (Buyle et al. 2019). Recent invited articles in the journal Nature 

Materials and the Journal of American Ceramic Society attest to that interest, for example where 

LCA has been identified as a key tool to assist scientific research in functional materials and 

energy applications (Kirchain, Gregory, and Olivetti 2017; Smith et al. 2019). However, the 

materials science community has not fully embraced the use of LCA due to challenges in the 

assessment of emerging technologies (Smith et al. 2019).  

This research tries to extend the scope of LCA in two directions: broadening the scope of 

indicators to include indicators of a new economic paradigm of CE, and considering LCA for 

assessment of emerging technologies. Two new use-contexts hold a great promise for further 

proliferation and advancement of LCA as a development and decision-making tool, and extending 

the scope of the current ex-post environmental LCA. Among emerging technologies and within 

the context of CE, energy materials are of particular interest to materials science and industry 

given their role in improving renewable energy systems (Santoyo-Castelazo and Azapagic 2014).  

1.2. Purpose and objectives 
 

The overall purpose of the research was to make LCA a more relevant tool for sustainability 

assessment of materials, by considering an integration of socio-economic indicators of circular 

economy to allow for resource-effective choices, and by enhancing its use for the assessment of 

emerging technologies.  

Two research objectives were identified:  

1. Evaluate methodological potential of CE-indicators to complement environmental 

assessment with LCA. 

2. Use LCA to improve the development of emerging energy materials. 

And the following specific research questions were established: 

Under objective 1: 
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1-1. What are the challenges in combining LCA with circularity indicators focusing on 

impact-circularity trade-offs and methodological differences? 

1-2. What methodological improvements can be suggested to address these 

challenges? 

Under objective 2: 

2-1. What are the environmental sustainability implications of new energy materials 

including opportunities/aspects for optimization across product life cycle, and 

when compared with conventional alternatives? 

2-2. What are challenges and methodological approaches for improving assessment of 

emerging technologies?  

In line with objective 2, the research considered three case study technologies: alkaline batteries, 

nickel-cobalt (Ni-Co) hydroxide charge storage electrodes, and organic photovoltaic solar charger, 

which are considered energy technologies. Objective 1 was addressed using the case study of 

alkaline batteries, and objective 2 was considered using the case studies of charge storage 

electrodes and organic photovoltaic solar chargers. The rationale for selection and characteristics 

of the case studies are explained in Section 1.4.1.  

1.3. Background 
 

Given the purpose of this research to improve sustainability assessment using LCA, this chapter 

provides further background on the sustainability challenges and LCA methodology, use of LCA 

in context of circular economy (CE) and emerging technology assessment. The chapter starts with 

a description of what pertains to sustainability and what are the challenges with a particular 

emphasis on resource use. The subsequent section provides an overview of indicators developed 

to lead CE choices at the material and product levels as well as their challenges and limitations 

leading to the justification of the potential research gap addressed in this research. The last 

section of this chapter gives an overview of the assessment of emerging technology with LCA, 

review of the LCA case studies, serving to motivate case studies and exploration of this area. 

1.3.1. The sustainability challenge 
 

Sustainability has emerged as an important direction to how resources need to be utilized with 

regard to economic progress, social well-being and impacts on the environment (Gibson 2005). A 

more sustainable future needs to prioritize intergenerational and intragenerational equity 
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pertaining to the availability, access, and share of resources among the human population. At the 

same time, resource-intensive human activity has to remain within the ability of the natural 

environment to absorb related pressures from emissions and disturbance so that the functioning 

of ecosystems and access to resources are preserved (Rockström et al. 2009). Aspects of equity 

and environmental protection have been adeptly captured in the definition of sustainable 

development set forth by Brundtland Commission in 1987  as “a development that meets the 

needs of the present without compromising the ability of future generations to meet their own 

needs” (WCED 1987).  

To achieve resource provision goals, tremendous challenges persist in efforts to accommodate 

the quantities and pace of resource use that has been increasing steeply in both relative (per 

capita) and absolute terms (i.e., globally) over the past century (Krausmann, Weisz, and 

Eisenmenger 2016; UNEP 2010b). From around 23 billion tonnes in 1970, extraction of mineral 

resources more than tripled to today’s rates, now exceeding 70 billion tonnes. Steeply increasing 

consumption rates have potential to further increase given current unequal distribution of 

resources among human population. Currently, developed countries, that constitute only 20% of 

the world’s population, consume 80% of natural resources (Steinberger, Krausmann, and 

Eisenmenger 2010). Assuming the desired improvement in living conditions in developing 

countries over the next three decades, while pursuing similar systems of production and 

provision for housing, food, mobility, energy and water supply, the present rates of resource 

consumption would nearly triple (Schandl et al. 2016).  

The primary concern over rates of resource use are their associated negative impacts on the 

environment. The impacts from resource extraction, production, use, trade and disposal of 

resources and associated commodities are the major cause of anthropogenic pollution and have 

implications on both local environments and global emission concentrations (Ayres and Simonis 

1994; UNEP 2010a). Local implications constitute negative environmental and socio-economic 

impacts on local ecosystems associated with often unfair and poorly managed activities of 

resource extraction and mining in developing countries  (IIED 2002). Global pollutant 

concentrations are of concern due to their effect on perturbations of the Earth’s biophysical 

systems, which have significant negative impact on human populations globally (Running 2012; 

Steffen, Rockström, and Costanza 2011; Wackernagel and Rees 1998). According to a sizable body 

of research in that area, we are already transgressing some of Earth’s biophysical limits to absorb 

certain types of pollution or a further trends of resource use would result in such transgression 

in a near future (Steffen et al. 2015). Imminent danger of climate change is particularly 

emphasised, a consequence of greenhouse gas concentrations emitted to the atmosphere mostly 

to meet the demand for energy that is largely sourced from fossil fuels. Raising greenhouse gas 
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concentrations beyond 500 parts-per-million are expected to trigger uncertain complex 

mechanisms and feedback loops that could result in extreme droughts, food shortages, loss of 

species and collapse of ecosystems (IPCC 2012). 

In addition to environmental pressures, the rate of resource use is associated with potential 

challenges of accessibility to some minerals and metals. Presently more than 90% of all materials 

are derived from non-renewable resources and most demand for materials is addressed by 

primary production (Allwood et al. 2012; Ashby 2012; Behrens et al. 2007; Graedel et al. 2011). 

While the scarcity itself is still a highly debated topic (Drielsma et al. 2016), according to some 

estimates, shortages of metals such as zinc, copper, and indium, may be experienced within the 

next 50 years (Bleischwitz et al. 2009; Meadows, Randers, and Meadows 2004; Ragnarsdóttir, 

Koca, and Sverdrup 2012). Geological scarcity is exacerbated by the resource access and 

increasing dependency on a broader range of materials to fulfil the current technological needs 

(Graedel et al. 2013).  Some of the materials important for the economy, and current and future 

technologies, are sourced from countries where supply is not reliable and resources concentrated 

at only specific geographies (Ayres and Peiró 2013), or sourcing and supply chain of raw materials 

associated with various social issues (Young 2018; Young, Fonseca, and Dias 2010). 

Given the future perceived risks of availability, accessibility and environmental pressures, all 

largely associated with virgin material production, sustainable development calls for decoupling 

well-being and economic growth from the use of resources - dematerialization, and associated 

environmental impacts - impact-decoupling (UNEP 2014). The decoupling ambition stipulates an 

increase in resource productivity accomplished through the management and technological 

solutions to facilitate more efficient and effective use of resources and improved recovery to 

which production of energy from more renewable sources is specifically emphasized (Bringezu 

et al. 2004; Cleveland and Ruth 1998; Jackson 2009; UNEP 2011; Young 2001). Decoupling can 

occur in relative and absolute terms, depending on whether the reduction of resource use is a 

relative decrease in comparison with present demand, or decrease is an absolute thus able to 

accommodate also increase in population and affluence (Schandl et al. 2016). Under the premise 

of sustainable development, the rate of resources consumption has to be reduced in absolute 

terms and the absolute reduction should not impede material sufficiency and economic 

prosperity (WCED 1987).   

Urgency of the climate crisis and resource productivity, resource access, and provision, may 

foster risky and untried techno-fix solutions that shift environmental impact burdens and have 

unintended negative implications (Hällström 2008). Therefore, the role of quantitative 

assessment methods, and LCA in particular, as the only ISO-standardized environmental 

quantitative assessment method suitable to measure and lead resource productive choices and 
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needed transformation in energy supply, cannot be overemphasised. Currently, LCA can 

positively influence technology’s environmental intensity through more eco-efficient solutions, 

and given complex environmental-profile assessment based on life-cycle and systems thinking, 

and interdisciplinary approach (e.g., not limited to specific impacts such as greenhouse gas 

emission) (Sala, Farioli, and Zamagni 2013b). However, the method’s capabilities to address social 

and economic aspects are not currently captured by standardized methodology (Klopffer 2008), 

and the scope of LCA application in various domains of science and technology development 

needs to increase to take full advantage of its potential. 

1.3.2. Methodological approach of life cycle assessment 
 

An ISO-informed LCA study conforms to a certain structure and the steps recommended in the 

standard (ISO-14044 2006). This largely entails that an LCA study undergoes four distinct 

methodological phases: Goal and scope, Life cycle inventory, Impact assessment, and 

Interpretation phase. 

Constant iteration is carried out throughout the four phases to ensure that the goal of the study 

is met. The relationship between stages and possible iterations are shown in schematic in Figure 

1-1, as adopted from ISO 14040 standard. Next the four stages of LCA are briefly described. 

 

Figure 1-1. Stages of an LCA (ISO-14040 2006) 

The first stage, Goal and Scope is dedicated to outlining the main purpose of a study, a unit of 

the analysis and the modeling properties. For the goal definition, the ISO standard mandates a 

definition of the study purpose, an intended audience, an application, and a declaration if the 
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study is to be used for comparative assertions. The scope includes: the specifications of the 

modelling such as the function, the functional unit and reference flow to be used as a proxy for 

evaluation and comparison; the boundaries of the product system and decision to include 

particular impacts and stages of the life cycle; specifications on the choice of impact assessment 

methodology and indicators; data and limitations; and a need for a critical review. 

The second stage, the Inventory analysis, consists of gathering the data on relevant material and 

energy flow inputs and outputs of the studied product system. Foreground and background data 

are often differentiated. The former is collected by the analyst and the latter relied upon 

processes originating from the LCA databases. An outcome of the inventory analysis is a list of 

quantified elementary flows normalized to reference flow as determined from the functional unit. 

In the third stage of LCA, Impact Assessment, inputs and outputs of materials gathered in the 

inventory phase are translated into potential environmental impacts. The impact assessment 

phase consist of several mandatory steps including: selection of impact categories and indicators 

that can sufficiently quantify the impacts chosen with the scope of the study, classification of 

elementary flows to impact categories and indicators, and characterization that entails 

measurement of indicator within impact category using environmental fate-exposure-effect 

models (i.e., cause-effect linkages estimating pollutant’s potential impact to the environmental 

category). Moreover, the following optional steps are foreseen: normalization of the impact 

assessment results to show a relative magnitude of characterized scores for each impact 

category, and weighting to aggregate several impact categories based on value choices to reach a 

single value. A description of most commonly used impact categories, is shown in Table 1-1. 

The fourth and last stage, Interpretation, ensures certainty and consistency of the results are 

adequate and information are in a format that offers a comprehensive picture of available 

positions and opportunities for improvement. The interpretation phase considers choices and 

output from first three phases and their adequacy to fulfil the goal of a study. Sensitivity and 

uncertainty analyses are often applied as part of consistency, completeness and sensitivity 

checks, to ensure robustness of the results to potential assumptions applied to data, system 

boundaries, impact assessment methods, or other modeling criteria. 

Table 1-1 

Common impact categories in LCA (Baumann and Tillman 2004) 

Category Description 

Global warming Greenhouse gases capacity to enhance radiative forcing thereby heat the 

atmosphere. Several gasses with widely different capacity to absorb infrared 
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radiation contribute to global warming effect including: carbon dioxide, carbon 

monoxide, methane, chlorofluorocarbons, nitrous oxide, and some other trace 

gasses. Impacts to this category are normally expresses in units of carbon dioxide 

equivalent (CO2eq). Given that these gases have also different life-spans in the 

atmosphere global warming potential is often calculated for different time horizons. 

Global warming potentials used in LCA are estimates developed by UN 

Intergovernmental Panel on Climate Change. 

Ozone depletion Impacts to stratospheric ozone layer as a result of emission of various bromated and 

chlorinated substances such as chlorofluorocarbons (CFC) and halons. Ozone 

depletion potential developed for LCA by World Meteorological Organisation, reflects 

on change of stratospheric column due to amount of ozone depletion emissions 

normalized to CFC-11 equivalents. 

Toxicity Impacts of various substances with different range and type of toxicity to human 

health and environment. Characterization is based on fate, exposure or intake, and 

effect of toxic substances while accounting for various physical and regional 

conditions. Toxicological data, models or empirical data. The reference substance to 

which toxicity of materials is estimated is 1.4-dichlorobenzene. 

Photo-oxidant 

(smog) formation 

NOx and hydrocarbon concentrations as precursor of smog that causes irritation of 

respiratory system in humans, and damage to vegetation. 

Acidification Concentration of air pollutants (SO2, NOx, NH2 and HCl) that precipitate in form of 

acidic rain, fog, or snow, with damage to ecosystems and human health.  

Eutrophication Excessive concentration of phosphorus and nitrogen nutrients that can increase 

biological productivity and absorb oxygen having significant negative potential to 

aquatic and terrestrial ecosystems. These measurements reflect on biological and 

chemical oxygen demands. Common reference to eutrophication is PO4
3- equivalents. 

Land use The use of land from the perspective of occupancy and transformation expressed in 

m2. 

Resources Use of resources, including renewable and non-renewable, and biotic and abiotic, 

involving depletion and impact. 

 

Given the choice of background data and system boundaries delimitation, two types of LCA are 

commonly differentiated: the consequential and the attributional approach (Ekvall and Weidema 

2004). These approaches differ in how emission burdens are shared among different co-products. 

The attributional approach uses partitioning to determine how burdens among co-products are 

distributed, whereas the consequential approach uses system expansion to include co-product 

systems. Accordingly, the attributional LCA is used for modeling the systems where impacts 

based on industry average data use is appropriate. The consequential LCA measures the impacts 

of the product in the context of the market and economy and various marginal effects on supply 
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and demand of materials motivated by raw material or product availability (Ekvall and Weidema 

2004; Sandén and Karlström 2007).  

The four stages of LCA described and shown in Figure 1-1, and impact categories shown in Table 

1-1, were consistently carried out in all case studies in the current research (Chapters 2-4). Studies 

use different methods and approaches in the interpretation phase, but overall, the modeling 

consistency was followed. In the course of this research, both attributional and consequential 

methods were used.   

1.3.3. Supporting resource-effective “circularity” choices with life cycle 

assessment 
 

One of the ways of broadening the scope of LCA and consistent with “(broadening LCA) by adding 

economic impacts, social impacts, or environmental impacts that are not covered by present-day 

LCA” (Zamagni et al. 2009, p17), is by incorporating socio-economic indicators of circular 

economy (CE). With the origins in the industrial ecology and industrial symbiosis concepts, CE 

aspires to improve resource and impact decoupling and has become widely embraced in both 

industry and policy spheres (Blomsma and Brennan 2017; EC 2011; EMF 2012). In comparison to 

conventional approach to products of take-make-use-dispose manner, the CE aspires to seize 

more value out of virgin resources through different product design, management and business 

strategies that incentives closing the loops of materials (e.g., building durable products, selling 

service instead of products, etc.). Moreover, cost-effective production and consumption of CE is 

expected to have positive implication to job creation, sufficiency and localisation of resources, 

thus promoting positive improvements to socio-economic and environmental aspects.  

With the popularization of CE idea and identified need for framing and operationalizing this 

concept, the role of LCA for directing CE choices at the product level has been highlighted (CIRAIG 

2015; Haupt and Zschokke 2017; Sassanelli et al. 2019; UNEP 2014). A science-based life cycle 

thinking approach represented through LCA is needed to ensure that resource productivity 

initiatives (i.e., policies and business models underpinning CE concept) reflect positively on 

environmental performance. Traditionally, LCA was used to inform any improvement resource 

strategy directed for resource minimization or recovery, either as a motivated contribution to CE 

or simply deemed as an environmentally-relevant strategy.  

In addition to LCA that is useful to provide environmental impact evaluation of CE-motivated 

strategies, the need to encourage and monitor resource use conducive to CE at the product level 

was identified (Ghisellini et al. 2016). As a result, various indicators that encourage closing loops 

of materials to reduce the use of virgin resources have been proposed (see Table 1-2). Given the 
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focus in the current research on raw material resources, new indicators could offer new material 

efficiency management perspective in assessment of products alongside environmentally-

relevant indicators and categories of LCA. For instance, most of circularity indicators would 

discourage permanent loss of materials through product end-of-life management involving 

incineration, and encourage disassemble or re-manufacture in design of products. Therefore, 

combining “circularity” indicators with established assessment methods such as LCA, Material 

Flow Analysis and Multi-Criteria Decision Analysis, remain an important part of their 

development and use (EMF 2015; Pauliuk 2018). This combination can uncover possible trade-

offs between MCI and LCA indicators and categories and encourage solutions for optimal 

environmental performance and circularity. Integration of LCA with CE-indicators is not 

discussed in the work of CALCAS, which preceded development of these indicators. However, CE-

indicators certainly bear resemblance to methods such as Material Input per Unit of Service 

(MIPS), originally discussed in CALCAS Deliverable 20 Blue paper on Life Cycle Sustainability 

Analysis (Zamagni et al. 2009), and with significant traction of CE in the past decade this is 

increasingly of interest.   

Current indicator and index approaches aimed at product-level circularity assessment are shown 

in Table 1-2. 

Table 1-2. 

Overview of product-level circularity indicators 

Indicator and source 

study 

Description 

Material Reuse Indicator  

(Park and Chertow 2014) 

Provides characterization of end-of-life products as resource-like or waste-

like based on context and technological ability of materials to be reused. 

Demonstrated at a case of coal combustion byproduct. 

Circular Economy Index  

(Di Maio and Rem 2015) 

Represents the ratio of the monetary value between secondary material 

(from recycling facility) and intrinsic value of material entering recycling 

facility. 

Material Circularity 

Indicator  

(EMF 2015) 

Measures the extent of material circularity versus linearity by accounting for 

different material characteristics and fractions along life cycle stages of a 

product. MCI is determined by measuring the quantity of virgin (or 

secondary) material used in the product manufacture, the product use 

efficiency, and how much material is recovered at product’s end-of-life. 

Demonstrated for a washing machine and a power drill. 
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Longevity Indicator 

(Franklin-Johnson, Figge, 

and Canning 2016) 
 

Shows a length of time material is retained in Technosphere taking into 

account: initial lifetime, earned refurbished lifetime and earned recycled 

lifetime. Demonstrated for precious metals in mobile phone handsets. 

Displacement Rate  

(Zink, Geyer, and Startz 

2016) 

Calculates how much of secondary material (reused or recycled) would 

displace primary material. Displacement rate is calculated using partial 

equilibrium modeling accounting for five price response parameters of 

supply and demand for materials. Demonstrated in example of aluminium 

recycling. 

Value-based Resource 

Efficiency  

(Di Maio et al. 2017) 

Represents the ratio between input and output value of "stressed" resources 

- those that are geologically or market scarce, or extracting them creates 

externalities. 

Circular Economy 

Performance Indicator  

(Huysman et al. 2017) 

Indicator is based on technical quality, calculated by dividing actual benefit 

with ideal benefit according to quality of waste stream evaluated using 

Cumulative Exergy Extraction from the Natural Environment (CEENE) 

method. Demonstrated at a case of post-industrial plastic waste from 

extrusion process. 

Product-Level Circularity 

Metric  

(Linder, Sarasini, and 

Loon 2017) 

Represents the ratio between economic value of recirculated parts and 

economic value of all product parts. Demonstrated for a plastic toy and a 

starter engine. 

Ease of disassembly  

(Vanegas et al. 2018) 

Measures time for disassembly by sequence of actions specific to product or 

product components. The premise is that fast disassembly will increase the 

economic viability of product life extension techniques through repair and 

reuse, or improve recycling yield. Indicator demonstrated in a case of LCD 

monitor. 

 

As shown in the Table 1-2, circularity indicators entail very diverse perception of how circularity 

of products is accomplished. Most of the CE indicator approaches focus on the end-of-life stage 

of products and provide a characterization of recycling or recovery practices. Other approaches 

that consider all stages in the product life cycle and account for market forces, such as value or 

context of reuse in the industry, are suggested for Displacement Rate and Material Reuse 

Indicator, time duration as a proxy of product durability (i.e., Longevity indicator), product 

disassembly (i.e., Ease of disassembly), and material quality based on ratio between original 

materials used in the product and the value of recovered material (i.e., Circular Economy Index, 

Product-Level Circularity Metric and Value-based Resource Efficiency). Several studies discuss the 

differences between proposed indicators based on their mechanisms, scientific validity, or 

anticipated actions for the transition to CE (Elia, Gnoni, and Tornese 2017; Linder et al. 2017; 
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Saidani et al. 2017), or according to their use for CE strategies and measurement scope (Moraga 

et al. 2019). 

Among characterization studies, and studies proposing indicators and demonstrating indicator 

uses, little or no attention has been dedicated to characterization of the indicators  in their 

practical use and conceptual value with some of the existing assessment methods, even though 

these aspects are considered important in their use and development (EMF 2015; Pauliuk 2018). 

Particularly, vastly diverse conceptualizations of the indicators also impact the abilities and 

opportunities to be used with these methods. From a practical perspective, circularity indicators 

mandate different type of data and are useful in the context of different type of strategies. From 

a conceptual point of view, depending on the methods that they complement, circularity 

indicators - given the variety of answers they support - contribute different value to existing 

methods. Despite these observations, thus far only three studies investigated combining results 

or aspects of trade-offs between circularity and environmental categories and indicators, or their 

joint interpretation with LCA (Lonca et al. 2018; Niero and Kalbar 2019; Walker et al. 2018).   

1.3.4. Assessment of prospective emerging technology development with life 

cycle assessment 
 

This section explores the use of LCA for assessment of potential future systems, particularly 

emerging technologies, and tries to explore research opportunities in this area by looking at 

current LCA case studies assessing emerging technologies and literature that addresses 

challenges in modeling of emerging technologies.  

Use of LCA for emerging technology development attempts to inform design improvements 

before technology is locked in a product form and limitations to design adaptations have set in 

(Collingridge 1982). Given that around 80% of environmental impacts of the product are 

determined in the design phase (Tischner et al. 2000), such improvements are believed to be 

significant (Villares et al. 2017; Wender et al. 2014). For new technologies, the degree of design 

freedom is believed to decrease throughout technology development, whereas knowledge of 

technology performance and inputs and outputs of energy and materials through technology 

optimization and scale-up increases (Figure 1-2). Inverted and proportional to the knowledge is 

an uncertainty dealt within LCA models that is high at the beginning and reduces with stages of 

development.  
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Figure 1-2. Scheme of relationship between design freedom and technology diffusion, knowledge 

of technology and associated uncertainty. Adapted from (Zschieschang, Pfeifer, and Schebek 

2012). 

Given these scale-up mechanisms, the assessment of emerging technologies in LCA need to 

overcome numerous challenges that increase uncertainty, challenge reliability of the results from 

the analysis, and affect how the LCA method need to be applied and results interpreted. 

Commonly reported challenges are:  

i. The access and forecasting of data on material and energy use,  

ii. The capability of LCA impact categories and impact assessment methods to deal with new 

types of materials and associated pollutants (e.g., characterization factors to estimate the 

fate, transport and effect of nanomaterials (Gilbertson et al. 2015; Upadhyayula et al. 

2012)), 

iii. Definition of function, functional unit and reference flow given the new or uncertain 

functionality (i.e., no reference (benchmark) for the technology, or the knowledge of how 

the new technology will be deployed) (Pourzahedi et al. 2018), 

iv. The uncertainty associated with deployment of the new technology on the market 

(Hetherington et al. 2014), and  

v. Challenges to carrying out contribution and comparative analysis given process materials 

and energy scaling-up potential (Gilbertson et al. 2015).  

Scaling-up challenges in LCA refer to the uncertainty associated with the potential of reagents 

and energy quantities to change (reduce) from laboratory-scale synthesis (of early technology) to 

mass production (inherent to mature (incumbent) technology) and should not be confused with 
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different scales (objects of analysis) at which LCA can be applied (i.e., product, organization, 

sector, and economy). 

To address some of the noted challenges, various approaches are proposed to adapt and 

complement the method to minimize uncertainties and maximize the value of the analysis. In 

that regard, LCA is either conducted with more extensive sensitivity and scenario analysis, or 

combined with other methods to resolve uncertainties and aspects not viably captured by 

conventional LCA. The sensitivity and scenario-based approaches include: predictive scenarios 

and scenario ranges for modeling of foreground and background systems (Arvidsson et al. 2018); 

scenarios generated from integrated assessment models (Mendoza Beltran et al. 2018); adoption 

of innovation to construct scenarios with anticipated market mechanisms (Sharp and Miller 

2016); linear regression and cross validation to project efficiencies and fill in data gaps (Meng et 

al. 2019); global sensitivity analysis to address uncertainty of inventory inputs (Lacirignola et al. 

2017); pre-screening for the most relevant processes to focus on the analysis (Ravikumar et al. 

2018); and base scenarios on using scale-up projections (Gavankar, Anderson, and Keller 2015). 

Examples of methods coupling LCA with other methods to improve on uncertainties include 

design of experiments technique (Rivera and Sutherland 2015), and material criteria decision 

analysis and risk assessment to support assessment and associated uncertainties related to 

impact of nanomaterials (Scott et al. 2016; Sonnemann et al. 2018; Tsang et al. 2014). Discussion 

is also set around what an LCA of emerging technologies should entail (i.e., what type of questions 

can it answer), and how a level of technology maturity should be reported (Arvidsson et al. 2018; 

Gavankar, Suh, and Keller 2015). 

Literature was reviewed to identify challenges involved in LCA dealing with emerging 

technologies, in order to get a sense of current progress in the area. The review was carried out 

in Scopus using the key words: “emerging”, “technology” and “life cycle assessment”, focusing 

on applications involving synthesis of materials and components while excluding emerging 

technologies for waste treatment, studies on biological systems (e.g. biofuels), and conference 

papers. From 254 initial items, 13 studies were identified as relevant. The review was realized by 

tracking reported challenges and methodological choices (i.e., system boundaries, impact 

categories, etc.) reported in case studies, and in particular the following:  

a) Technology, authors and year 

b) Scope of the study 

c) Challenges to Functional Unit (FU) reported or implied 

d) Technology Readiness (Maturity) Level (TRL) reported or implied 

e) TRL of benchmark technology 

f) Type of LCA reported 
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g) If use of nanomaterials is reported 

h) If scale-up challenges are reported  

i) Nature of sensitivity or scenarios analysis 

j) Impact categories and methods used 

Three criteria require further explanation for their use: consideration of TRL, the type of LCA 

reported, and observation to nano-materials in reviewed studies. TRL is a feature that defines the 

level of a technology’s development and has implications for scaling-up challenges (Gavankar, 

Suh, et al. 2015). Use of nanomaterials is considered as indication of how challenges to (and lack 

of) characterization factors for nanomaterials fate and transport are prevalent in these studies, 

and given that the new generation energy technologies increasingly rely on use of nano-materials. 

The type of LCA refers to differentiation between “anticipatory”, “prospective”, and “ex-ante” 

LCA. The identification between three terms in reviewed studies suggests the level of adoption 

of new terms among reviewed case studies that may further hint on what is perceived as 

belonging under given classification and what is its overall usefulness. Distinctions between these 

terms is still fuzzy in the literature and with certainly some overlap. The most established term 

is “prospective” LCA, which traditionally refers to general distinction between whether present 

or future systems are modeled, and as distinct from conventional retrospective LCA. Moreover, 

a term “prospective” was also used to refer to consequential approach in LCA in distinction to 

attributional as “retrospective”, although it was eventually established that both attributional and 

consequential approaches can be both prospective and retrospective (Curran, Mann, and Norris 

2005). Arvidsson et al (2018) suggest a definition of “prospective” LCA that focuses specifically 

on emerging technology. According to the authors, study is “prospective” when an emerging 

technology is modeled as if it was a future, more mature technology. This is considered with the 

use of predictive scenarios (Arvidsson et al. 2018). Anticipatory LCA is a non-predictive tool 

inclusive of uncertainty that explores a spectrum of possible future scenarios to determine those 

that may be most environmentally promising for future research. Uncertainty is increased 

through inclusion of multiple social perspectives through stakeholder engagement, and 

prospective modeling tools. As such, anticipatory LCA tries to embody core principles of 

responsible research and innovation. Anticipatory and prospective LCA appear to be similar on 

the basis of questions being addressed, object of analysis (both focus on emerging technology), 

the scope, complementary methods used in modeling, and allocation procedure (Guinée et al. 

2018), although their differences are highlighted in the degree and type of communication to 

carry out two modes (Pourzahedi et al. 2018). Inclusion of stakeholder values and social 

perspectives are not a prerequisite for the prospective LCA. Cucurachi et al. (2018) define 

conditions for ex-ante LCA, in that it should 1) include scale-up assumptions of future technology 

performance, and 2) carry out comparison with incumbent technologies. Hence the ex-ante LCA 
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can fit under the broader umbrella terms of  “prospective”, “consequential”, “dynamic”, 

“anticipatory”, and “mixed” LCA (LCAs including mixed features of previous modes) (Cucurachi 

et al. 2018). The three modes do not capture an exhaustive list of future-oriented LCA modes 

associated with an emerging technology. Other modes used to model potential future products 

include: “dynamic”, “back-casting”, “consequential”, “scenario-based”, and newly proposed, 

“explorative” (Cucurachi et al. 2018; Fukushima and Hirao 2002; Guinée et al. 2018). However, 

these modes are not accounted for here as they also present approaches that concern existing 

commercial (incumbent) technologies. 

A number of LCA studies that address emerging technology were identified. These studies are 

described in Table 1-3 and the following observations are made:  

⎯ All studies were carried out using cradle-to-gate boundaries (i.e., only production stage in 

technology life cycle is modeled) 

⎯ More than half of the studies were carried out in the last two years.  

⎯ Classification of LCA studies into “prospective”, “anticipatory” and “ex-ante” seems to be 

only taking a hold in recent years with the majority of studies not employing any of the 

proposed terms.  

⎯ Two studies reported uncertainty related to technology deployment, as an aspect of 

functional unit and reference flow definition.  

⎯ Five studies report the use of nano-materials, although potential uncertainties related to 

availability of characterization factors of the impact assessment methods are not reported 

and explored as part of sensitivity or uncertainty analysis.  

⎯ Aspects of the emerging nature of a technology are discussed in roughly half of the 

studies. Nevertheless, not all cases carry out scenario, sensitivity or uncertainty analysis 

with respect to the variables around the emerging technology; in some instances, these 

additional analyses were carried out but not discussed as part of the data used to describe 

the emerging technology. In such cases, uncertainty related to efficiencies are investigated 

more frequently in comparison to uncertainties related to inventory data.  

⎯ There does not seem to be a trend of using specific environmental impact categories or 

indicators/methods.  

Together this review shows inconsistencies in how LCA is used for assessment of emerging 

technologies. Observations from the reviewed case studies include: the time-period of case 

studies, inconsistencies with LCA-mode terminology or absence of it, challenges to definition of 

functional unit and reference flow, reporting on characterization factors associated with novel 

emissions, and pursued uncertainty and sensitivity analysis that incorporate characteristic of 

emerging technologies. Particularly, improvements are needed to further clarify the features and 
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challenges of modeling emerging technologies and build on them to provide recommendations 

and delineate emerging technology LCAs. These observations are consistent with a recent review 

of emerging technology LCA case studies, which also highlights the lack of attention given to 

technologies at very early stage of development among emerging technologies (Buyle et al. 2019). 
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Table 1-3   

Review of LCA studies on emerging technologies from year 2000 up to December 2018 

Technology & authors Study 
scope 

Reported 
or implied 
challenges 

to FU 

Reported or 
implied TRL 

TRL of 
benchmark 

Reported 
type of LCA  

Reported 
use of 
nano-

materials 

Reported 
scale-up 

challenges  

Sensitivity 
or 

scenarios 
addressing 
emerging 

nature 

Impact 
categories/method 

used 

Carbon nanofibers 
(Khanna, Bakshi, and 

Lee 2008) 

Cradle-
to-gate 

Yes Reported lab-
scale 

Conventional None Yes Yes, 
materials 

data 

Sensitivity 
to system 
boundary 

GWP, HTTP, ODP, 
POFP, freshwater 

ETP, terrestrial ETP, 
AP, EP, Endpoint: 
HH, ecosystems, 

resources 

Quantum dot 
photovoltaic module 

(Şengül and Theis 
2011) 

Cradle-
to-gate 

No Implied - 
pilot 

Conventional None Yes No No EPBT, CED, GWP, HM 

Perchlorate drinking 
water treatment 

technology (Choe et 
al. 2013) 

Cradle-
to-gate 

No Not clear Conventional None No No No TRACI 2.1. 

Carbon nanotube-
enabled chemical gas 
sensor (Gilbertson et 

al. 2014) 

Cradle-
to-gate 

No Reported lab-
scale 

None None Yes No No TRACI 2.0.  

Electronics display 
(Amasawa et al. 2016) 

Cradle-
to-gate 

No Implied - 
pilot 

Similar TRL None No Yes, 
materials 

data 

No CED, GWP 

Copper recovery by 
bioleaching (Villares et 

al. 2016) 

Cradle-
to-gate 

No Reported lab-
scale 

Conventional None No Yes, 
materials 

data 

Scenarios 
to 

materials 
scaling-up 

TRACI 2.0. 

Chlori-alkali (Garcia-
Herrero et al. 2017) 

Cradle-
to-gate 

Yes Implied - 
emerging 

conventional 

Similar TRL None No No Sensitivity 
to 

efficiency 

AP, HH-carc, ODP, 
POFP, aquatic AP, 
aquatic oxygen 

demand, ETP, EP, 
land impacts from 

waste  
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Technology & authors Study 
scope 

Reported 
or implied 
challenges 

to FU 

Reported or 
implied TRL 

TRL of 
benchmark 

Reported 
type of LCA  

Reported 
use of 
nano-

materials 

Reported 
scale-up 

challenges  

Sensitivity 
or 

scenarios 
addressing 
emerging 

nature 

Impact 
categories/method 

used 

Ultra-high pressure 
homogenisation for 

milk treatment 
(Valsasina et al. 2017) 

Cradle-
to-gate 

No Reported, 
pilot scale 

Conventional Prospective No Yes, 
materials 

data 

Sensitivity 
to 

efficiency 

ReCiPe Midpoint E 

Epitaxial graphene 
(Arvidsson and 
Molander 2017) 

Cradle-
to-gate 

Yes Yes - lab 
scale 

None Prospective No Yes, 
materials 

data 

Scenarios 
to 

materials 
scaling-up 

CED, GWP, terrestrial 
AP, ETP 

Single walled carbon 
nanotube cell and 

tandem photovoltaic 
cell (Celik et al. 2017) 

Cradle-
to-gate 

No Implied lab-
pilot 

Similar TRL Ex-ante Yes Yes, 
efficiency 

Sensitivity 
to lifetime 

TRACI, EPBT 

Hydrogen production 
from natural gas 

(Salkuyeh, Saville, and 
MacLean 2017) 

Cradle-
to-gate 

No Implied - 
pilot 

Conventional None No No Sensitivity 
to 

efficiency 

Direct CO2 
emissions 

Paving blocks from 
bauxite residue (Joyce 

et al. 2018) 

Cradle-
to-gate 

No Yes - lab-
scale 

None Anticipatory No Yes, 
materials 

data 

No GWP, AC, PMFP, 
POFP, ODP, HT-

cancer, HTTP-non-
carc, HTTP-non-carc, 
IRP, freshwater EP, 

marine ETP, 
freshwater ETP, ADP 

Nanocrystal solvent 
(Tsang et al. 2018) 

Cradle-
to-gate 

Yes Reported lab-
scale 

Conventional Anticipatory Yes No No ReCiPe Midpoint (H) 

Thin film copper 
indium gallium 

(di)selenide 
photovoltaic modules 

(Amarakoon et al. 
2018) 

Cradle-
to-gate 

No Reported 
pilot-scale 

None None No Yes, 
efficiency 

No TRACI 2.1. 

Abbreviation of categories and indicators: land occupation (LOP), climate change (GWP), fossil depletion (FDP), ecotoxicity (ETP), eutrophication (EP), human toxicity 

(HTTP), ionizing radiation (IRP), metal depletion (MDP), natural land transformation (LTP), ozone depletion (ODP), particulate matter formation (PMFP), photochemical 

oxidant formation (smog) (POFP), acidification (AP), ecotoxicity (ETP), water depletion (WDP); energy payback time (EPBT), cumulative energy demand (CED), heavy metals 

(HM), abiotic resource depletion (ADP), human health (HH). ReCiPe Midpoint: agricultural LOP, GWP, FDP, freshwater ETP, freshwater EP, HTTP, IRP, marine ETP, marine 

EP, MDP, LTP, ODP, PMFP, POFP, terrestrial AP, terrestrial ETP, urban LOP, WDP. TRACI: AP, ET, HH air, HH carc., HH non-carc, EP, ODP, POFP, ADP-fossile fuels. 
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1.4. Research design 
 

This section introduces the three case studies that were analyzed. The section provides reasoning 

for the case study selection in view of the objectives and research questions of this research 

(outlined in section 1.2.). Selected cases represent examples of less conventional application of 

LCA bringing value to the method development as it provides a proof of concept and reveals 

potential challenges (Baumann and Tillman 2004). This has been noted for both the assessment 

of emerging technologies with LCA (Hetherington et al. 2014), and the development of circularity 

indicators (Elia et al. 2017). 

The cases were chosen in the general domain of energy materials, and where industrial and 

materials science research interests exist. Furthermore, the selection was driven on basis of 

several criteria including: technology readiness level (TRL), life cycle phase, access to informed 

actors, and applied method in LCA (i.e., differentiation between “attributional” and 

“consequential approaches, described in Section 1.3.2). Therefore, the intention was to have cases 

representative of different life cycle stages, different TRL, and to test use of both LCA methods. 

Proposed criteria were meant to enable more diversified reference and improve the potential for 

generalization. For example, in reference to different life cycle stages, having both production-

phase and use-phase addressed through two case studies allowed to identify broader range of 

challenges in assessment of emerging technologies. Three case studies: alkaline batteries, nickel-

cobalt (Ni-Co) hydroxide charge storage electrodes and organic photovoltaic (OPV) solar chargers 

correspond to a cross-section of these criteria as shown in Table 1-4. 

Table 1-4 

Aspects considered for selection of case studies in this research 

    Alkaline 
batteries 

OPV chargers Charge storage 
electrodes 

Focus life-cycle 
stage 

Production     * 

Use 
 

*   

End-of-life *     

LCA method Attributional * 
 

* 

Consequential 
 

*   

Technological 
maturity 

Lab-scale     * 

Pilot-scale 
 

*   

Industrial-scale *     

Informed actors Policy * *   

Industry * * * 

Consumer   *   
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In line with the purpose and the objectives of the research, the cases are in the domain of energy 

materials which are important from a sustainability perspective for advancing renewable energy 

systems (Santoyo-Castelazo and Azapagic 2014), and in the scope of this research project, 

represent emerging technologies and incorporate challenges to resource use (relevant to closing 

loops in CE). Energy storage and production technologies based on renewables sources of energy 

that can compete with conventional energy sources are intensively studied and developed. The 

new technologies are only viable if they offer greener and overall better substitutes to current 

energy supply systems. As we move from carbon-intensive mineral fuels to more extraction-

intensive mineral resource, it is important that emissions burdens are not shifted from lower 

greenhouse gas emissions to new type of emissions related to toxicity or heavy metals. 

Furthermore, a shift to renewables strain supply of resources such as lithium (in batteries), 

neodymium (in magnets for wind turbines), cobalt (in lithium ion batteries), silica (photovoltaics), 

etc. notwithstanding the challenges from the perspective of disposal and closing loops of end-of-

life materials.  

OPV and charge electrodes were selected as cases for evaluating use of LCA for emerging 

technologies, while assessment of circularity uses the alkaline batteries case, as it is a more 

established technology where data of all life cycle stages are available. The position of the 

selected two case studies in use-contexts of LCA use investigated in this study is depicted in 

Figure 1-3. The case of alkaline batteries contributes to adding CE indicators to LCA impact 

category and indicator results, moving from environment-oriented assessment in LCA to also 

address other resource impacts. The cases of electrodes and OPV chargers pursue LCA 

assessment at different levels of technological readiness. Electrodes are positioned earlier in 

comparison to OPV charger given their lower technological maturity level in comparison to pilot-

level OPV technology. 
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Figure 1-3. Conceptual framework of two use-context of LCA use in this study and how case 

studies are situated on broadening of scope of indicators (vertical scale) and looking at 

emerging technologies of different readiness level of ex-ante LCA  

The assessment of alkaline batteries entails combining LCA methods with the so-called “Material 

Circularity Indicator” (MCI), which was selected among CE-indicators to assess CE performance 

of batteries. While other choices were available (see Table 1-2.), this particular indicator was 

selected given its construct and popularity. The MCI integrates a whole-life cycle approach, 

including multiple criteria that allows range of circularity strategies to be tested for alkaline 

batteries, and is frequently considered in research in the domain of CE (Azevedo, Godina, and 

Matias 2017; Elia et al. 2017; Saidani et al. 2017). Furthermore, the MCI can be easily calculated 

using data obtained in the LCA inventory. The founders of the indicator noted that MCI could be 

one of the parameters considered “as an output from an LCA or eco-design approach alongside 

those already typically used” (EMF 2015, p11).  

Consistent with the broadening approach adopted in this study, it is necessary to consider the 

socio-economic character of the MCI indicator and its capacity to complement environmental 

analysis in LCA. In that regard, it has been argued that although the relationship of MCI to the 

three sustainability pillars is not explicit (Saidani et al. 2017), the MCI indirectly appeals to 

sustainability through its life cycle thinking approach and ability to measure strategies for 

preservation of product, components, materials, and embodied energy (Moraga et al. 2019). These 

strategies aim to improve resource productivity, prompt redesign of products to give more 
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attention to their end-of-life recovery and waste management, while also creating market demand 

for secondary materials. This preservation of material resources, is geared to human welfare and 

have therefore a strong socio-economic character (Dewulf et al. 2015). In addition, the iterations 

to conventional production and consumption practices implied through these strategies, and CE 

more broadly, are expected to have indirect implications to employment, and improve the access 

of resources for industry and economy (e.g., resource localization and sufficiency). Details on the 

methodology and calculation of MCI are described in the methodology section of the case study 

(see Table 2.1). 

This chapter has situated the research by providing background, current literature and research 

gaps, corresponding research objectives and questions, and the research approach to selecting 

the three case studies. Two general research gaps were identified to motivate advancements in 

two use-contexts of LCA: (i) the lack of experience and direction on combining CE indicators with 

LCA, and (ii) a general weakness in guidance available on applying LCA to emerging technologies. 

The subsequent chapters 2-4, each present a different case study with its own introduction, 

methods, results, discussion and conclusion sections. Chapter 2 reports on the case study on 

alkaline batteries, followed by the case study on charge-storage electrodes in chapter 3, and the 

case study on photovoltaic chargers in chapter 4. Chapter 5, reflects on how the overall objectives 

and research questions were answered given the results from the case studies. Chapter 5 also 

gives an overview of the main contributions of the research, considers implications, discusses its 

limitations, and offers recommendations for future research. 
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Chapter 2: Confronting challenges in combining Material 

Circularity Indicator with Life Cycle Assessment: Learnings 

from a case of alkaline batteries 1 
 

Abstract 
 

Product-level assessment indicators and methods are needed to incorporate circular economy 

ideas of resource minimization and cycling in the product manufacture, use, and end-of-life. 

Strategies applied to improve product circularity are only plausible if they also contribute 

positively to the product’s environmental performance or trade-offs to the environment are 

acceptable. In the current work, we investigate the trade-offs between prominent circularity 

indicator Material Circularity Indicator (MCI) and categories and indicators of Life Cycle 

Assessment (LCA) in order to scope their application and improve their combined use. The 

methods are used to evaluate several scenarios for design and management of single-use alkaline 

batteries involving strategies of recycling, use of recycled content, end-of-life collection, and 

improved use efficiency. In addition, the trade-offs are observed under changing boundary 

assumptions in order to determine how the lack of quality characterization of secondary material 

in assessment of MCI affects the robustness of the dual analysis and applicability of MCI to 

specific strategies. Results suggest that trade-offs between MCI and LCA categories and indicators 

could be significant given the choice of recycling route and recycled content in battery 

manufacture (i.e., using 10% of recycled content increases MCI (9%) but also impacts (up to 6.85 

%). The robustness of the results is notably affected under truncation of system boundaries to 

exclude byproducts of recycling in which case MCI is more significantly affected than categories 

and indicators in LCA highlighting the need for the characterization of material quality losses in 

the evaluation of MCI. We offer a new approach to visualize and identify trade-offs between 

indicators and compare circularity strategies.  

2.1. Introduction 
 

More sustainable use of resources requires development and adequate implementation of various 

management strategies to be applied at different stages of the product life cycle, i.e., from 

 
1 A version if this chapter was submitted to the journal Resources, Conservation & Recycling as: Edis 

Glogic, Guido Sonnemann, Steven B. Young. Confronting challenges in coupling Material Circularity 
Indicator with Life Cycle Assessment: learnings from a case of alkaline batteries. 
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sourcing of raw materials, product manufacture, use, and end-of-life. Strategies can be pursued 

to improve product’s performance on desired parameters such as costs, reduction of impacts to 

the environment, and social aspects of resource use. Recently, they are pursued to improve 

resource productivity consistent with the closing material cycles in circular economy. The 

implementation of circularity strategies presents an opportunity to conserve the resources, but 

also a risk if they undermine other sustainability aspects. Primarily, decisions aimed to improve 

circularity should incorporate strong environmental value system and ensure closing loops of 

resources do not result in significant negative trade-offs to the environment (Ghisellini et al. 

2016; Haupt and Zschokke 2017; Kalmykova, Rosado, and Patrício 2015).  

A notable approach to quantify the influence of different strategies, aimed at improving the 

circularity of products, is made using Material Circularity Indicator (MCI). The indicator is 

developed by Ellen MacArthur Foundation and Granta Design Ltd. and integrated in to the 

software package MI:Product Intelligence (EMF 2015). As a multi-criteria whole life-cycle 

approach, the indicator is particularly popular in the industry and is among the most prominent 

choices for measuring circularity of the products (Elia et al. 2017). MCI measures “the extent at 

which linear flows of resources, used in the product have been minimised and restorative flows 

maximised, and how long and intensively the product is used compared to a similar industry-

average product” (EMF 2015). The MCI quantifies material flow fractions and product use 

characteristics to reach a single value. Three main parameters are quantified to determine the 

MCI value: quantity of primary material used to manufacture a product, quantity of material that 

ends up as waste, and how long or intensively product is used (a product’s “utility”). These 

parameters are responsive to a vast range of resource productivity and minimization strategies 

that can be implemented to increase circularity. 

To identify the trade-offs between resource circularity and environmental impacts, MCI analysis 

could be complemented with life cycle assessment (LCA), an established methodology for the 

assessment of impacts to human health, ecosystems, and resources (ISO-14040 2006). Combining 

of methods would ensure that selected circularity strategies improve product circularity without 

significant trade-offs to the environment. Evaluation of MCI as part of the LCA framework has 

also been suggested by the indicator founders given the easiness of evaluating MCI as part of the 

LCA study, with such attempts observed for other resource-based and circularity indicators 

(Adibi et al. 2017; Sonnemann et al. 2015). However, the combining is challenging due to different 

methodologies to calculate indicator values, different valuation scales (i.e., MCI values are 

absolute and unitless) and means to resolve potential trade-offs. Three previous studies 

attempted to advance on these aspects. Lonca et al. (2018) compared environmental impact 

categories and indicators with MCI to assess circularity strategies for life-extension and 
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manufacture of truck tires. Environmental trade-offs were noted for the life-extension strategies, 

while the use of secondary material for tire manufacture was shown beneficial for both impact 

and circularity indicators. Combining and comparing indicators were facilitated by inverting MCI 

value to calculate “material linearity” (Lonca et al. 2018). A study by Neiro and Kalbar (2019) 

combined MCI with LCA categories to compare hypothetical alternatives for beer packaging. The 

authors proposed resolving trade-offs through multi-criteria decision analysis to enable coupling 

of the methods in which case circularity and environmental impact categories are weighted to 

reach a single score. The authors use TOPSIS method to identify the numerical distance from 

Positive Ideal Solution and Negative Ideal Solution, thus enable MCI (benefit-type) and LCA results 

(cost-type) to be compared (Niero and Kalbar 2019). Lastly, Walker et al. (2018) compared several 

circularity indicators (including MCI) with carbon footprinting indicator. Improvement of both 

MCI and greenhouse gas reductions are observed with improvement scenarios for a tidal turbine 

considering scenarios incorporating additional energy recovery from end-of-life product, 

refurbishment, and extended product lifetime. Degree of correlation between MCI and LCA 

categories and indicators was observed, although the authors note that MCI was unable to 

recognise true benefits of some scenarios that had a more significant impact on greenhouse gas 

reductions, in comparison to more moderate improvements of circularity (Walker et al. 2018). 

Although trade-offs were observed in this study, the challenges of methods combining and joint 

interpretation were not discussed. Combining of other circularity indicators with LCA was 

observed in a study by Adibi et al. (2017) in which case LCA indicator of abiotic depletion 

potential was coupled and compared with Global Resource Indicator incorporating recyclability 

and criticality to support the assessment of resources (Adibi et al. 2017). However, given the 

construct and nature of the indicator, the coupling is more straightforward than for multi-criteria 

and material efficiency-based MCI.  

As a continuation of these efforts, the objective of this study is to investigate the trade-offs 

between environmental impact categories and indicators and MCI in order to improve their joint 

use and discuss the context of MCI use and development. We look more thoroughly at how the 

robustness of results is affected by the lack of characterisation of material quality losses 

(byproducts of recycling) in the calculation of MCI. The circularity and environmental analysis 

are conducted for several strategies for management of single-use zinc-manganese alkaline 

batteries in the Canadian province Ontario. Circularity strategies including recycling, the use of 

recycled content in battery manufacture, batteries’ end-of-life collection, and adaptations of 

design for improved battery performance, converge into several scenarios for battery 

management based on the current and prospective best industry practices and policy targets.  
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2.2. Materials and methods 
 

2.2.1. Case study: challenges to closing loops of alkaline batteries  
 

Alkaline batteries are selected as a product with an obvious appeal from analysis of circular 

economy and impacts on the environment. Their intensive and widespread use, single-use life 

cycle, and small size all impose challenges to closing material loops. Disposal of spent alkaline 

batteries to landfill is discouraged or restricted due to presence of potentially toxic materials 

(Eisler 1993, 1998), preference to the recycling (Fisher et al. 2006), and batteries indirect role in 

recycling rates of other battery streams which are undermined if the disposal to landfill is 

permitted (Xará, Almeida, and Costa 2015).  

In Ontario, a province of 14 million, these challenges pertain to around six million batteries and 

5 000 metric tons of battery waste generated each year (Stewardship Ontario 2016). Collection 

and recycling of batteries at their end-of-life is the responsibility of battery manufacturers who 

fund and coordinate with recyclers to achieve particular recycling and collection rates. By 

provincial legislation, recycling rates of collected batteries are set at minimum 50%, while the 

collection of batteries is currently close to 50% and aspired to further increase (Stewardship 

Ontario 2016). A sizeable portion of secondary batteries in Ontario is processed by two recyclers: 

Inmetco and Raw Material Company, who are relevant for our investigation as their production 

data and the case was made available for this analysis in light of potential changes in stewardship 

share of the market and new circular economy policies. Recycling of batteries by Inmetco (route 

#1) employs mechanical and pyrometallurgical treatment, and recycling by Raw Material 

Company (route #2) employs mechanical and hydrometallurgical treatment. Companies produce 

intermediate materials that are further processed by other industries.  

Given the number of battery-specific management challenges from the perspective of circular 

economy and impact on the environment, which are also sufficiently complex and diverse in view 

of potential strategies for improvement of circularity, the alkaline batteries offer a suitable 

product for integrative circularity-environment assessment intended to highlight advantages and 

limitations of assessment methods and potential for their joint use. Two recycling routes provide 

separate baseline scenarios of current practices in battery management which are extended to 

consider other improvements in battery design and management (detailed in Section 2.2.3.). 
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2.2.2. Assessment methodology 
 

Assessment of battery scenarios is carried out using LCA and MCI. The LCA provides a 

quantitative evaluation of battery impacts across all stages in the life cycle of batteries including 

all the inputs and outputs of the energy, materials use and waste emissions arising in the 

manufacture, use and disposal of the product, by investigating their potential contribution to 

several environmental impact categories. Consistent with ISO 14040 and 14044 standards, 

modeling is carried out through four phases: goal and scope, life cycle inventory, impact 

assessment, and interpretation (ISO-14040 2006; ISO-14044 2006).  In contrast, the calculation of 

MCI is based on material flow efficiencies to reach a single integrative score. Data, calculation 

procedures and results for MCI are incorporated in the four phases of LCA framework: calculation 

procedure is outlined in goal and scope phase, data for quantification is detailed in life cycle 

inventory phase, and the values presented as part of the life cycle impact assessment phase. 

2.2.2.1. Goal definition 
The primary objective of this study is to evaluate the trade-offs between environmental impacts 

and circularity of different battery management scenarios in order to improve methods 

combining and contribute to the efforts of circularity evaluation at the product level. Prospective 

findings are of interest to both industry and academia that require adequate methods to 

operationalize the circular economy and broaden the scope of assessment beyond environmental 

analysis.  

2.2.2.2. System boundaries and functional unit 
All evaluated scenarios include manufacturing, use, and disposal of batteries. Also included are 

impacts of transportation between these stages involving battery purchase, spent battery 

collection, and their delivery to a recycling facility. The batteries are credited for avoided impacts 

of the production of virgin materials as a result of materials recovery through recycling. Batteries 

are manufactured mostly using primary (virgin) resources, and for some scenarios portion of 

secondary steel and zinc derived through the closed-loop (i.e., from recycled batteries) or open- 

loop, from the recycling of galvanized steel. Allocation of burdens among byproducts of recycling 

is made using 50-50 approach in which case impacts of manufacture of the upstream product 

providing secondary material to batteries and recycling is shared between upstream product and 

materials recovered through recycling in 50/50 ratio. The cut-off to the system boundaries 

includes capital goods such as infrastructure for recycling, buildings and transport vehicles, and 

plastic containers for collection and transportation of spent batteries. Some of these impacts are 

assumed to be insignificant or not known as battery production is not location-specific or 

locations are not known.  
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A sensitivity analysis is carried out to determine the robustness of the result to assumptions 

made to system boundary related to sourcing and modeling of secondary material used for 

battery manufacture and recycling. Two new scenarios are described in the following section. 

The functional unit for comparison between battery life-cycle alternatives was to supply 1Wh of 

electricity. Considering the average battery capacity of 2450mAh operating at 1.5V AA battery, 

approximately 0.27 of single AA battery is needed to supply 1Wh of electricity. 

Boundaries pertaining to the evaluation of MCI require less detailed description as the indicator 

is mostly calculated based on material flow rates. One important assumption made here was that 

Ef parameter pertaining to recycling efficiency (see Table 1), is determined based on material 

flows of base elements rather than the weight of recovery of materials in their oxidized or wet 

state. This was necessary for a calculation to be viably applied as batteries mass and volume 

increases to approximately 20% during their use and disposal (Olivetti, Gregory, and Kirchain 

2011). If buffered weight was used instead, MCI value could theoretically surpass the maximum 

value of 1. 

Limitations to data include a lack of specificity to certain material and waste datasets and 

occasional data gaps and assumptions. Average data from other publications were used to model 

manufacture, retail, transportation and collection whereas data for recycling is mostly based on 

thermodynamic estimates and information on transportation distances were not specified in a 

source report and therefore excluded or approximated. Given limitations to data are appropriate 

given the goal of this study which is used for demonstrative purpose. 

2.2.2.3. Product systems: alkaline batteries 
Each scenario represents alkaline batteries of both AA and AAA type that are produced, used and 

disposed of in a specific manner for which several alternative battery life cycle routes comprising 

common and prospective battery management strategies are differentiated. Alkaline batteries 

consist of steel casing, brass connectors, zinc electrode, manganese electrolyte, copper 

connectors, and PVC and paper separator. As a baseline we consider battery life cycles comprising 

average technology and one of the two recycling routes, that can further incorporate one of 

“improvement strategies”. Baseline scenarios are explained in detail and each of improvement 

strategies is explained in reference to the baseline scenarios. Flow diagram of battery product 

systems adopting two recycling routes is depicted in Figure 2-1. All data considering recycling 

routes are obtained from an industry report commissioned by Raw Material Company (McLean 

Consulting 2014) 
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Figure 2-1. Battery life cycle including production and two alternative recycling routes. Flow 

diagram also includes the transportation (T-symbols next to the arrows), and byproducts of 

recycling. 

1. Baseline R#1. This scenario represents the current design and management of batteries. 

Batteries are assumed to perform at an average capacity of 2450mAh per AA-type alkaline 

battery, manufacturing is carried out using exclusively virgin feedstock and end-of-life 

collection rates are consistent with current collection rates in Ontario (50%). For this 

scenario, it is assumed that 100% of collected batteries are recycled considering route #1 

(R#1) which recovers materials at 83% efficiency, and corresponds to conventional 

practice involving three companies: Call2Recycle that enables collection, Inmetco that 

carries out the initial processing and sorting of batteries, and Horsehead zinc smelter that 

recovers material from the electrodes and electrolyte. In route #1 the spent batteries are 

first shredded to separate steel and other components. Steel is fed in electric arc furnace 

(EAF) to produce low alloyed steel. Remaining components: wrapper, copper connectors 

and electrodes, are fed to Waelz kiln to recover zinc-oxide and slag. Zinc-oxide is purified 

to zinc and slag reused as a substitute to a clinker cement. 50% of batteries not collected 

are assumed to be landfilled. 

2. Baseline R#2. Manufacture, collection and disposal rates, and battery capacity in this 

scenario are analogous to baseline R#1 whereas the recycling is carried out by route #2 

(R#2). This route comprises more refined mechanical separation to segregate steel, 
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wrapper, brass and electrodes. Steel casings are sent to steel smelter where they are 

recovered in EAF. Wrapper and brass are sent to energy recovery facility but recycler - 

Raw Material Company is not certain of their recovery and does not claim credits for 

potentially recovered brass and energy. Electrode material (black mass) consisting of zinc 

and manganese oxides, water, potassium hydroxide and carbon, is converted into 

agricultural fertilizer. The overal recovery efficiency of base elements is 83%. 

Improvement scenarios apply to each of the recycling routes and include: 

1. Recycled content. This scenario entails that 10% of the primary material in the 

manufacture of batteries is substituted by secondary material. Mainly, 50% of zinc and 

50% of steel that constitute steel casing and electrode are substituted by secondary steel 

and zinc sourced either from the closed or open-loop recycling, as both metals could be 

recycled to high purity from batteries themselves, or sourced as recovered from other 

processes. Both closed-loop and open-loop scenarios are possible for batteries by R#1 

while only the open-loop route is applicable to batteries by R#2 since recovered materials 

are used dissipative in agriculture. The closed-loop scenario is practically possible 

considering current recovery rates for R#1, i.e., the recovery rates of steel and zinc at the 

assumed collection rates and recycling technology, are sufficient to address the demand 

for 10% of recycled material proposed in this scenario.  

The recycled content rate of 10% is higher than current rates of recycled content use for 

the manufacture of batteries but lower than predicted future rates by some of the 

producers. Energizer® EcoAdvancedTM alkaline batteries currently contain 4% recycled 

content, and the company predicts that this might increase to up to 40% in the next six 

years.  

2. Improved collection. In this prospective scenario we assume that additional 10% of 

batteries are collected. Collection in Ontario is carried out through bi-annual curbside 

collection and designated public drop of facilities. The present collection rates of around 

50% (Stewardship Ontario 2016), are targeted for further increase with introduction of 

bans and extended producer responsibility programs in Ontario and the rest of Canada 

(Giroux 2014; SagisEPR 2013; Stewardship Ontario 2009; Turner and Nugent 2015).  

3. Improved utility. By this scenario, we assume designing batteries with longer shelf life or 

higher capacity that would lead to an increase of discharge current delivered over the 

lifetime. Although, the amount of energy that could be supplied through batteries 

dependent on multiple factors including the initial capacity, self-discharge, application, 

and environmental conditions, there are notable differences between how much energy 

can be supplied among the battery brands. For this scenario, we assume that the capacity 
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of batteries is increased by 20% in comparison to the industrial average, and capacity 

assumed for the baseline scenario.  

4. Maximum circularity. This scenario is an integrative scenario of all three improvement 

strategies: batteries are produced with 10% recycled content, have 20% higher energy 

capacity in comparison the industry’s average, and 60% of spent batteries are collected.  

This scenario is critical to our approach for visualizing MCI values in a normalized manner 

to be compared with normalized results of indicator values in LCA.  

Two additional scenarios are considered for sensitivity analysis applicable to route #1. We 

compare how impacts and circularity is influenced when recycled content is delivered in a closed 

loop, as a possible alternative to default open-loop system. Additionally, we investigate how 

circularity and environmental impacts are affected by the decision to exclude credits for avoided 

burden production of clinker cement. In the latter case, two close-loop recycled content scenarios 

are compared, the default one and one excluding credits for clinker cement that affects impacts 

both upstream (in production of batteries) and end-of-life (credits allocated to batteries for 

recovered material). 

2.2.2.4. Impact assessment methods  
Classification and characterization of material and energy inputs and waste outputs throughout 

the life cycle of batteries are carried out using OpenLCA v1.5.0 software and utilizing the 

cumulative energy demand (CED) method and ReCiPe endpoint (H) impact assessment method: 

human health, ecosystem, and resources (Goedkoop et al. 2008).  

Calculation of MCI is detailed in the EMF report and consists of calculating three main parameters: 

the amount of virgin feedstock (V), unrecoverable waste (W), and utility (F) calculated by 

accounting several sub-parameters, as shown in Table 2-1. MCI of a product can be calculated as 

a weighted sum of MCI scores of each of the product components, or MCI directly calculated for 

the product. The per-component analysis allows to implement economic weighting to component 

MCIs to derive the final value. However, if a product’s MCI is calculated based on mass fractions 

of components, MCI can be computed directly for the whole product with the same results (Lonca 

et al. 2018). For calculation of MCI of batteries, we pursue the direct approach. 

MCI scores have been communicated both as their absolute values, increase or decrease from 

those values in relative terms, and also relative to the maximum circularity of batteries (i.e., 

normalized to maximum circularity scenario). Latter representation allows to interpret MCI 

scores and be able to compare them with impact categories and indicators.  
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The values of product circularity are inverted to those of environmental impacts (i.e., the higher 

graph for circularity indicate a more desirable outcome whereas high impacts of end-point impact 

categories and indicators are less desirable).  

This approach allows better visualisation and perception of trade-offs between MCI and LCA 

impact categories and indicators. 

Table 2-1.  

Parameters considered and calculations in the assessment of MCI 

Parameters to be measured Symbols and calculation 

Mass of the product M 

Fraction of feedstock derived from recycled resources Fr 

Fraction of feedstock derived from reused resources Fu 

TOTAL MASS OF VIRGIN MATERIAL 𝑉 = 𝑀(1 − 𝐹𝑟 − 𝐹𝑢) 
Fraction of the mass of the product being collected for 

recycling at EOL Cr  
Fraction of the mass of the product going into component 

reuse Cu  

Amount of waste going to landfill or energy recovery 𝑊𝑜 = 𝑀(1 − 𝐶𝑟 − 𝐶𝑢) 

Efficiency of the recycling process at product's EOL Ec 

Quantity of waste generated in the recycling process 𝑊𝑐 = 𝑀(1 − 𝐸𝑐) 

Waste generated to produce recycled content used as 
feedstock 

𝑊𝑓 = 𝑀(1 − 𝐸𝑓)
𝐹𝑟

𝐸𝑓
 

Efficiency of the recycling process used to produce the 
recycled feedstock Ef  

TOTAL MASS OF UNRECOVERABLE WASTE 
  

𝑊 = 𝑊𝑜 +
𝑊𝑓 + 𝑊𝑐

2
 

 

Product's lifetime L 

Average industries' product lifetime Lav 

Product's intensity of use U 

Average industries' product intensity of use Uav 

 
UTILITY 

  

𝑋 = (
𝐿

𝐿𝑎𝑣
)(

𝑈

𝑈𝑎𝑣
) 

  

MATERIAL CIRCULARITY INDICATOR 
 
  

𝑀𝐶𝐼 = 1 − (
𝑉 + 𝑊

2𝑀 +
𝑊𝑓 − 𝑊𝑐

2

) 0.9𝑋 

 
 

2.2.3. Life cycle inventory 

2.2.3.1. Data for LCA model 
All foreground data for battery manufacture, packaging, retail, collection and recycling were 

adopted from previous publications and report commissioned for one of the recyclers. All 
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background data of material, energy and waste burdens are derived from the Ecoinvent v3.3. 

Background data for chemicals is assumed as average global, and electricity is modeled for the 

province of Ontario. Disposal of metallurgical waste is assumed as average slag from a specific 

industry, EAF slag, or average non-hazardous waste submitted for incineration. 

Data for battery manufacture, packaging and retail, including transportation of batteries and 

materials are adopted from previous work (Dolci et al. 2016). According to this inventory, the 

batteries are manufactured by universal approach combining hydro and hard metallurgy. The 

electrolyte is produced in a solution by adding acid in solution of zinc and manganese. Steel 

casings are hot rolled and copper connectors produced by extrusion. Packaging assumes 

cardboard boxes that are used 0.48g per functional unit.  

The data for secondary steel and zinc used as used for battery manufacture in the recycled 

content and maximum circularity scenarios is assumed from galvanized steel scrap recycling. 

The recovery process, detailed and adopted from previous work presumes steel recovery in EAF 

and zinc recovery from baghouse dust in Waltz kiln (Viklund-White 2000). 20kg of dust is 

assumed to be generated per tonne of steel (Antrekowitsch et al. 2014), electricity consumption 

for shredding of steel scrap is assumed 150kWh/tonne of scrap steel, and materials and energy 

for the production of steel from scrap in EAF obtained from the report (Stubbles 2000). Recycling 

of galvanized steel is carried out at 95% efficiency. 

We assume that all batteries in Ontario are either collected as part of the municipal waste stream 

or collected separately and recycled. Impacts for the collection of batteries includes 

transportation from the collection point to sorting facility and then to recyclers. Batteries 

collected as part of municipal waste stream are transported directly to the landfill. Distances for 

both legs of transportation are adopted from previous work on batteries (Olivetti et al. 2011). 

The first leg includes the collection of batteries with 20t municipal solid waste truck driving the 

distance of 35 km at 60% capacity to sorting facility or 270km to the landfill at 80% capacity 

(Olivetti et al. 2011). Batteries collected for recycling are further transported from a sorting 

facility to the recyclers. For route #1 this includes 500km distance to Philadelphia, and for route 

#2, 300km to Port Colborne. 

Data for recycling of batteries was derived from a thermodynamic report prepared by McLean 

consultancy (McLean Consulting 2014). The main material flows detailed in the report are shown 

in Table 2-2. Zinc oxide as a byproduct from route #1 undergoes an additional step of reduction 

to elementary zinc according to inventory found in (Viklund-White 2000). 
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Table 2-2. 

Inputs and outputs of two recycling routes considered in this study. 

Alkaline battery disposal, route #1     Alkaline battery disposal, route #2     

INPUTS Quantity Units INPUTS Quantity Units 

Spent batteries 1000.0 kg Spent batteries 1000.0 kg 

Electricity (for separation) 38.0 kWh Electricity (for separation) 38.0 kWh 

Electricity (for EAF) 144.0 kWh Electricity (for EAF) 144.0 kWh 

Coke (for Waelz kiln) 88.0 kg Sulphuric acid 271.0 kg 

Oxygen (for Waelz kiln) 124.4 kg       

OUTPUTS     OUTPUTS     

Slag (from EAF) 2.6 kg Carbon dioxide 16.6 kg 

Carbon monoxide 268.8 kg Slag (from EAF) 2.6 kg 

Carbon dioxide 80.8 kg Baghouse dust (to waste) 1.5 kg 

Chlorine 12.4 kg Steel low-alloyed (avoided) 190.1 kg 

Baghouse dust (to waste) 31.2 kg Zinc sulfate (avoided) 147.7 kg 

Mn-Cu-Fe slag (avoided) 271.3 kg Manganese sulfate (avoided) 229.0 kg 

Crude zinc oxide (avoided) 231.3 kg Potassium oxide (avoided) 31.6 kg 

Steel low-alloyed (avoided) 190.1 kg Zinc oxide (avoided) 149.0 kg 

Baghouse dust (ZnO for recovery) 5.2 kg Manganese oxide (avoided) 239.0 kg 

 

2.2.3.2. Data for calculation of MCI 
Data for calculation of MCI, with the exception of calculation of utility (F), is based on material 

and process efficiency rates. Data does not incorporate flows of energy and auxiliary emissions 

such as transportation and capital goods. Material flows for the recycling of batteries was made 

based on material flows of base elements as shown in Table 2-3. Battery treatment routes achieve 

the same efficiencies of 83%. The data used for each parameter for calculation of MCI for each 

battery scenario is shown in Table 2-4. 

Table 2-3.  

Per element recovery rates of R#1 and R#2 per 1000 kg of spent alkaline batteries. 

  Units Materials in 
alkaline battery 

Route #1 Route #2 Route #1 (no 
slag reuse) 

Zinc (electrode) kg 190 185 178 185 

Manganese  kg 250 250 250 0 

Iron  kg 190 185 184 184 

Nickel  kg 4 4 4 4 

Zinc (in casing) kg 0 0 0 0 

Potassium kg 26 0 26 0 



37 
 

Carbon kg 36 0 0 0 

Copper  kg 20 20 0 0 

Zinc (in brass) kg 10 0 0 0 

PVC  kg 15 0 0 0 

Nylon  kg 15 0 0 0 

Paper  kg 15 0 0 0 

Total kg 772 644 641 372 

Recovery rate %   83 83 48 

 

Table 2-4.  

Material circularity indicator parameter values for baseline and improvement scenarios, including 

recycled content (close-loop) and no clinker credit which is used in the sensitivity analysis. 

MCI 

parameters 

 

Baseline  Recycled 

content. 

(CL)* 

Recycled 

content 

(OL) 

Improved 

collection 

Improved 

technology 

Maximum 

circularity  

No clinker 

credit* 

M 1000 1000 1000 1000 1000 1000 1000 

Fr 0 0.10 0.10 0 0 0.10 0 

Fu 0 0 0 0 0 0 0 

Cr 0.5 0.5 0.5 0.6 0.5 0.6 0.5 

Cu 0 0 0 0 0 0 0 

Ec 0.83 0.83 0.95 0.83 0.48 0.83 0.48 

Ef 0.83 0.83 0.83 0.83 0.83 0.83 0.48 

L 1 1 1 1 1.2 1.2 1 

Lav 1 1 1 1 1 1 1 

U 1 1 1 1 1 1 1 

Uav 1 1 1 1 1 1 1 

* - applies only to R#1 

2.3. Results 
 

2.3.1. Life cycle impact assessment 

2.3.1.1. Absolute circularity and environmental impact values 
MCI values of batteries differentiated for two recycling routes, and related improvement 

scenarios are shown in Table 2-5, including also scenarios investigating the influence of 

byproduct characterization (i.e., no clinker credit), and closed-loop recycling, both applicable to 

the route #1 only.  

It can be observed that MCI values for route #1 and route #2 are identical, due to the same 

recycling efficiencies, giving a value of 0.29 for the baseline scenario. For a single-strategy 
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improvement scenario, it can be observed that the highest value for MCI is achieved with the 

increased utility, followed closely by improvement in recycled content, and lastly, collection rates. 

Maximum circularity by incorporating all these strategies equals 0.48, which is 0.19 increase of 

indicator value or a relative increase of 65% in comparison to the baseline scenario. 

Table 2-5.  

Absolute values of end-point categories, cumulative energy demand and MCI for baseline, 

improvement scenarios, and scenarios used in sensitivity analysis, for R#1 and R#2.  

    Units Baseline Recycled 
content 

(CL) 

Recycled 
content 

(OL) 

Improved 
collection 

Improved 
technology 

No 
clinker 
credit 

Max 
circularity 

B
a
tt

e
ri

e
s
 b

y
 R

#
1

 H.H. DALY 1.04E-07 9.73E-08 1.06E-07 1.03E-07 8.65E-08 1.00E-07 8.68E-08 

Res. $ 1.76E-02 1.73E-02 1.76E-02 1.75E-02 1.46E-02 1.73E-02 1.45E-02 

Ecosys. spec.yr 3.81E-10 4.47E-10 3.89E-10 3.78E-10 3.16E-10 4.59E-10 3.21E-10 

CED MJ 5.11E-01 5.13E-01 5.14E-01 5.14E-01 4.24E-01 5.17E-01 4.30E-01 

MCI - 0.29 0.33 0.34 0.33 0.41 0.26 0.48 

B
a
tt

e
ri

e
s
 b

y
 R

#
2

 H.H. DALY 9.27E-08  - 9.43E-08 8.90E-08 7.69E-08 - 7.48E-08 

Res. $ 9.94E-03  - 9.92E-03 8.37E-03 8.25E-03 - 6.66E-03 

Ecosys. spec.yr 1.11E-10  - 1.19E-10 5.43E-11 9.25E-11 - 4.30E-11 

CED MJ 3.94E-01 
- 

3.97E-01 3.73E-01 3.27E-01 
- 

3.09E-01 

MCI - 0.29 - 0.34 0.33 0.41 - 0.48 

 

2.3.1.2. Baseline scenario comparison 
Environmental impact contributions to product life cycle stages for two baseline routes are shown 

in Figure 2-2 (a, b), and their relative comparison is shown in Figure 2-3. It can be observed that 

the manufacture of batteries creates most of the impacts in the life cycle of batteries for both 

routes. For batteries by R#1, impacts of manufacture are followed by the small influence of 

packaging and retail, recycling, and the negligible contribution due to landfilling of batteries not 

collected for recycling. In comparison, the recycling stage in the life cycle of R#2 has a more 

substantial impact on the life cycle of batteries. Relative benefits of the recycling for R#2 baseline 

are in the range of 12-42% for three categories and indicator of cumulative energy demand, and 

nearly outweigh the impacts of manufacture for the end-point category of ecosystems. 

Relative comparison between baseline scenarios (Figure 3) shows that baseline R#2 have 

significantly lower impacts than R#1. Impacts are lower by roughly 70% for ecosystems, 40% for 

resources and 12% for human health end-point categories. Clearly, the results of environmental 

impacts significantly diverge from MCI values that are equal for two scenarios (MCI=0.29), 

calculated based on the efficiency rates of their recycling routes that are both estimated at 83%. 
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Identical efficiencies of two recycling routes allow to highlight how influential is the nature of 

secondary material to either circularity or environmental impacts of recycling, but also on the 

other strategies that are affected by characteristics of secondary material. The choice of recycling 

route affects whether the collection is beneficial and whether materials can move in a closed or 

open loop. R#1 enables both open and closed-loop recycling, while the use of materials recovered 

in R#2 is limited to a specific secondary application involving fertilizer production. 

a)              b)  

    

Figure 2-2. Contribution analysis for cradle-to-cradle life cycle of batteries for baseline routes: 

a) batteries by R#1, and b) batteries by R#2. 

 

Figure 2-3. Normalized comparison of two baseline routes for end-point categories and 

cumulative energy demand. 
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2.3.1.3. The relative contribution of improvement strategies  
Evaluation of three improvement scenarios is made using normalized values for both LCA 

categories and indicators and MCI which allows to visualize the trade-offs between MCI and LCA 

categories and indicators. The environmental impacts are shown in Figure 2-4 (a-d) and Figure 2-

5 (a-d), and MCI in Figure 2-6 (a-b). For categories and indicators of LCA, the comparison is made 

by showing increase or decrease in value of impacts for the scenarios relative to the baseline (at 

100%), and MCI values are shown a relative increase of circularity to the maximum circularity 

scenario (at 100%). Waterfall charts are shown for recycled content derived through open-loop 

recycling.  

a)              b)
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c)              d)   

   

Figure 2-4 (a-d). The relative effect of improvement strategies on impact reduction in reference 

to the baseline for batteries by route #1. 

a)              b) 
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c)              d)

   

Figure 2-5 (a-d). The relative effect of improvement strategies on impact reduction in reference 

to the baseline for batteries by route #2. 

a)              b) 
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Figure 2-6 (a-b). The relative effect of improvement strategies to MCI-circularity increase in 

reference to the maximum circularity potential scenario (identical for R#1 and R#2). 

Deriving from the values of both MCI and LCA categories and indicators, it appears that the 

majority of applied strategies reduce environmental impacts. However, it can be observed that 

only improvements in utility are uniformly complementary for two methods, and have similar 

values (17 for LCA in comparison to 24 for MCI). The values of other improvement scenarios for 

LCA and MCI do not significantly correlate in value, and sometimes in direction. Recycled content 

most significantly diverges for two methods. For the resources category, use of recycled content 

represents a small improvement in comparison to the baseline for route#1 (0.2%) whereas it 

negatively affects this category for route #2, creating more substantial trade-offs (6.85%). For 

both routes, MCI increases by around 9%. Collection of batteries in all cases reduces 

environmental impacts since recycling creates benefits for all impact categories and indicators. 

Although, complementarity is not reflected in value, with impact categories and indicators being 

vastly affected by choice of recycling route. Increase in circularity is relatively small for MCI (~8%) 

while for impact categories and indicators improvements due to recycling are negligible for R#1 

(1-2%) while for R#2, impact reduction is substantial (4-51%). 

2.3.2. Interpretation 

2.3.2.1. Influence of byproduct characterization on indicator trade-offs  
Comparison between batteries incorporating recycled content in a close-loop and batteries with 

recycled content derived through open-loop (i.e., secondary zinc and steel from galvanized steel 

recycling) for R#1, is shown in Figure 2-7. Incorporating recycled content in battery manufacture 

through closed-loop recycling improves environmental impacts for human health by 7% and 

resources by 3%, but has increases impacts for ecosystems by 1%. The MCI values are similar for 

two scenarios with MCI of 0.35 for open-loop and 0.34 for closed-loop scenario. The difference 

of 0.01 or a relative increase of 3% in circularity, is the result of a slightly higher recovery rate 

for recycled material derived through open-loop (95% in comparison to 83% for a close-loop). In 

this case, although relative percent change is the same for the end-point category of resources 

and MCI, and overall median percentage change between impact categories and indicators is 

similar, MCI and LCA categories and indicators are different in direction with MCI showing 

preference to recycled content derived from open-loop recycling. These values are observed for 

10% recycled content use and would further increase if more secondary material would be used 

in product manufacture. With such increases, the relative influence on human health category 

would clearly become quite substantial given the choice of secondary material origin. On the 

other hand, MCI is only concerned with how efficient is the recycling process to obtain recycled 

content, and indifferent to the material origin. We calculated that if the primary feedstock is 
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entirely substituted by secondary material owing recycling efficiency of 83%, MCI of batteries 

would equal 0.71, and if that efficiency was 95%, MCI would be 0.74, thus only slightly higher. 

 

Figure 2-7. Comparison between close (CL) and open-loop (OL) recycled content scenarios for R#1.  

Also, in relation to choices made to product system boundary, Figure 2-8 shows how LCA 

categories and indicators are impacted when the system is not credited for avoided production 

of clinker cement assumed as a substitute to manganese slag byproduct for route #1. This 

scenario reflects on the aspect that manganese reuse as clinker is a case of downcycling that has 

as a main aim a diversion of waste rather than motivated production. 

 

Figure 2-8. Comparison between recycled content close-loop scenario and recycled content close-

loop scenario excluding clinker cement as a byproduct. 

For impact categories and indicators, in line with the 50-50 allocation method, the exclusion of 

clinker as a byproduct increases the share of environmental burdens appropriated to the 

secondary zinc and steel used as recycled content. In this instance, the burdens for production 
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and recycling of batteries are now shared only between zinc and steel byproducts, and not a slag. 

On the other hand, for MCI, exclusion of clinker results in lower material flow efficiency rates 

and affects parameters of recycling efficiency (Ec) and efficiency to produce recycled content (Ef), 

which reduce from 0.83 to 0.48.  

It is evident that the characterization of clinker only minimally affects LCA results while MCI 

indicator is more considerably affected. Environmental impacts decrease less than 3%, whereas 

MCI value decreases from 0.33 to 0.25 for the no-clinker scenario, which is a 30% decrease in 

relative value. Inconsistent responsiveness of indicator values to truncation of system boundaries 

affects the robustness of the dual analysis and undermines their joint use.  

2.4. Discussion 
 

Observed extent and consistency of the trade-offs between environmental and circularity 

performance renders two questions: should MCI adapt more alongside environmental choices, 

and how can MCI be adjusted or supported to improve their joint use (i.e., avoid significant trade-

offs, and become more consistent with environmental categories and indicators under changing 

modeling assumptions)? Two questions are discussed, including also advantages and limitations 

of the new approach for interpretation of MCI value. 

2.4.1. Opportunities and limitations of normalized MCI approach 
 

Representation of MCI scores shown in Figure 6 mirrors conventional representation of impact 

values in LCA allowing visualization of trade-offs between MCI and LCA categories and indicators 

and their combining. The approach rests on the assumption that multiple competing or 

complementary strategies are often available and needed to implement together in order to 

improve circularity (Blomsma and Brennan 2017; Kalverkamp and Young 2019). A sum of these 

multiple strategies serves as a yardstick to estimate how each strategy is individually valued in 

advancing product’s circularity and assigns its value in range 0-100.   

In addition to the visual and methodological appeal, an advantage of this approach is a 

representation of MCI score inherent to the context of technology and its practical limitations to 

close the loop of resources (i.e., advance on parameters quantified by MCI). MCI score normalized 

to its maximum circularity potential reflects on the notion that every product has different 

potential to achieve circularity, which is useful outlook if the progress for improving circularity 

among different products wants to be achieved at an equal footing. Such normalization of MCI 

value could be useful as a coefficient performance indicator to monitor implementation of the 
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circular economy adaptation across different product assortments and sectors within a company 

given different nature and level of challenges that different products face to improve circularity.  

The need for normalization of MCI scores has been voiced previously (Niero and Kalbar 2019). In 

that instance, the authors normalize MCI scores to their Positive Ideal Solution and LCA 

categories to their Negative Ideal Solution and add another step of weighting to arrive at the 

single score. In the referred study, normalization is made against the best possible scenario for 

packaging, whereas maximum circularity value chosen as a reference in our study is a sum of 

strategies that could be applied at different life cycle stages. In the studies by Lonca et al. (2018) 

and Walker et al. (2018), MCI values are normalized and inverted to be compared with impacts in 

LCA (i.e., material linearity). The graphical representation adopted in Walker et al. (2018) bears 

some resemblance to the approach proposed in our study. However, similarly to Niero and Kalbar 

(2019) normalization is made in reference to the most impactful scenario. 

In addition to argued advantages, it needs to be noted that normalized MCI value could not be 

used to compare different products (meant to fulfil the same function), in which case only 

absolute values are appropriate. 

2.4.2. Implications to MCI use and development 
 

Sizable trade-offs between environmental impacts and circularity for certain strategies in this 

and previous studies renders the question of whether MCI choices should try to adapt more 

alongside environmental lines. Although, an improvement in circularity should not be expected 

to accompany environmental improvements as this has been shown and argued earlier (Geyer et 

al. 2016; Humbert et al. 2009; Linder et al. 2017; Lonca et al. 2018), an instance of significant 

trade-offs for specific strategies might be an indication that circularity indicator needs further 

improvement, or the scope of its implementation has to be contextualized for technologies and 

evaluated strategies. In case of investigated strategies for batteries, only the strategy of improved 

utility entails consistent improvements for both environmental impacts and circularity while the 

strategies of recycling and improved collection are only meaningful if recycling creates benefits 

and its benefits are sizeable in comparison with impacts from other life cycle stages. An 

adaptation of circularity indicator more in line with environmental choices could prevent that 

circularity strategy is dismissed and also ensure, that in case LCA is not carried out, the circularity 

strategy does not result in significant trade-offs to the environment.  

Another potential aspect for MCI development, affecting its use with LCA, relates to a lack of 

consistency between MCI and LCA categories and indicators with decisions to change or truncate 

product system boundaries. As we have shown, the decision to exclude byproducts had 
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significant impacts on MCI but a minor influence on environmental categories and indicators 

suggesting that the use of recycled content, as well as recycling, are poorly supported. This 

shortcoming is likely exacerbated for circularity assessment of already manufactured products 

in which case circularity improvements are limited to end-of-life strategies. In contrast, 

characterization of primary material quality in MCI is conveniently addressed through a 

measurement of the product utility. Such inconsistency could be further affected by other choices 

in LCA modeling such as the selection of different allocation methods or changes in value of the 

product utility that does not affect value of MCI in a linear fashion as this is case for LCA, i.e., 

small increase in product utility makes a steep increase of MCI and plateaus after reaching certain 

value. 

To potentially enhance consistency and also ameliorate trade-offs between categories and 

indicators of LCA and MCI, the circularity assessment with MCI could be complemented with 

other circularity indicators, providing certain hierarchy among competing alternatives for end-

of-life treatment, or revising Ef parameter calculation to incorporate the recycling gradient. 

Multiple circularity indicators have been developed exclusively to support end-of-life 

management practices and secondary material quality that could be used to complement MCI 

given some additional data of end-of-life procedures, material pricing, or market potential 

(Huysman et al. 2017; Linder et al. 2017; Di Maio et al. 2017; Di Maio and Rem 2015; Moraga et 

al. 2019; Park and Chertow 2014; Vanegas et al. 2018; Zink et al. 2016). Circularity indicator 

proposed by Huysman et al. (2017) allows quality characterization using proxy of exergy, while a 

proxy of price in a value ratio between input product and secondary (recycled or reused) material 

is also frequently used (Linder et al. 2017; Di Maio and Rem 2015). More indirectly, material 

quality can be grasped looking at easiness of disassembly that evaluates product fractions 

separation (Vanegas et al. 2018), or looking at the reuse potential of material on the market (Park 

and Chertow 2014; Zink et al. 2016) 

The role of secondary material quality evaluation for added consistency to coupling is likely an 

important one, but not an exhaustive. Recovery of materials of sufficiently high quality is critical 

in reaching higher recovery rates in circular economy (Pauliuk 2018). Finally, it is important to 

bear in mind that MCI, and any other circularity indicator or combinations thereof, need to strike 

a good balance between simplicity and accuracy, so as to remain attractive to industry 

practitioners to be used alongside other performance indicators in a straightforward and feasible 

manner. In the current study, although we briefly discuss how MCI could shape to better support 

coupling and environmental choices, we don’t discuss the broader norms of circular economy 

and what measurement of circularity should entail. For that, the readers should refer to other 

works (Elia et al. 2017; Linder et al. 2017; Potting et al. 2017; Saidani et al. 2017). 
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2.5. Conclusions 
 

Assessment of the products by combining LCA and MCI could help identify circularity strategies 

that are both environmentally sound and minimize the use of resources. The challenges to 

combining arise due to methodological differences to calculate indicator values, different 

valuation scales and means to resolve the trade-offs between MCI and LCA categories and 

indicators. To confront these challenges, we apply two methods to several strategies for the 

design and management of alkaline batteries and observe the extent and consistency of indicator 

trade-offs. The comparison between MCI and LCA categories and indicators is made possible by 

normalizing MCI values, by identifying the maximum circularity potential of batteries and 

measure how each individual strategy fare in contributing to that maximum value. This approach 

improves visualization of trade-offs and allows to incorporate the context of technology and its 

potential to improve circularity, which could be useful for companies to manage their internal 

efforts in adaptation of circular economy. Deriving on the results, we pinpoint the strategies that 

are more viable to consider when applying MCI and advocate caution if MCI is used to inform 

recycling and use of recycled content in product manufacture to improve circularity. We conclude 

that MCI and LCA categories and indicators combining would improve with better 

characterization of secondary material quality losses and discuss how additional circularity 

indicators could be used to improve on that aspect. 
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Chapter 3: Life cycle assessment of emerging Ni-Co hydroxide 

charge storage electrodes: impacts of graphene oxide and 

synthesis routes 2 

Abstract 
 

Decoupling energy supply from fossil fuels through electrification and sustainable energy 

management requires efficient and environmentally low-impact energy storage technologies. 

Potential candidates are charge storage electrodes that combine nickel and cobalt hydroxides 

with reduced graphene oxide (rGO) designed to achieve high-energy, high-power density and long 

cycling lifetimes. An early eco-efficiency analysis of these electrodes seeks to examine the 

impacts of materials and processes used in the synthesis, specifically while focusing on the use 

of rGO. The emerging electrodes synthesized by means of electrodeposition, are further 

compared with electrodes obtained by an alternative synthesis route involving co-precipitation. 

Life cycle assessment (LCA) method was applied to compare a baseline nickel-cobalt hydroxide 

electrode (NCED), the focal electrode integrating rGO (NCED-rGO), and the benchmark co-

precipitated electrode (NCCP), for delivering the charge of 1000mAh. Contribution analysis 

reveals that the main environmental hotspots in the synthesis of the NCED-rGO are the use of 

electricity for potentiostat, ethanol for cleaning, and rGO. Results of comparison show 

significantly better performance of NCED-rGO in comparison to NCED across all impact 

categories, suggesting that improved functionalities by addition of rGO outweigh added impacts 

of the use of material itself. NCED-rGO is more impactful than NCCP except for the categories 

and indicators of cumulative energy demand, climate change, and fossil depletion. To produce a 

functional equivalent for the three electrodes, total cumulative energy use was estimated to be 

78 Wh for NCED, 25 Wh for NCED-rGO, and 35 Wh for NCCP. Sensitivity analysis explores the 

significance of GO efficiency uptake on the relative comparison with NCCP, and potential impact 

of GO in process effluent on the category of freshwater ecotoxicity. Scenario analysis further 

shows relative performance of the electrodes at the range of alternative functional parameters of 

current density and lifetime. Lastly, the environmental performance of NCED-rGO electrodes is 

discussed in regard to technology readiness level and opportunities for design improvements.    

 
2 A version of this chapter was accepted for publication in the journal of RSC Advances as: Edis Glogic, 

Alberto Adán-Más, Guido Sonnemann, Maria de Fatima Montemor, Liliane Guerlou-Demourgues, Steven B. 
Young (2019). Life cycle assessment of emerging Ni-Co hydroxide charge storage electrodes: impacts of 
graphene oxide and synthesis routes. Journal of RSC Advances, vol. 9, no 33, p. 18853-18862. 
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3.1. Introduction 
 

Energy storage technologies are considered essential in the pursuit of sustainable energy use, 

especially their foreseen role in decarbonizing transportation sector and the expansion of 

renewable energy infrastructure. To meet increasingly diversified demand of these and other 

applications, efforts in materials science have been directed on developing energy storage 

systems with improved functionality and low environmental impacts. Desired properties are 

expected for storage systems with high-energy density, high-power density and long cycling 

lifetimes of their integrating electrodes (Chae, Zhou, and Chen 2012; Conway 1991; Rydh 2003). 

The state-of-art electrodes could be developed by combining metal oxides and hydroxides with 

carbon-based materials (Nguyen et al. 2017; Prioteasa et al. 2015; Simon and Gogotsi 2008; Y. 

Wang, Song, and Xia 2016), which are currently pursued in positive electrodes for batteries and 

hybrid-supercapacitors based on nickel and cobalt (Ni-Co) hydroxides fabricated by means of 

potentiostatic electrodeposition (Adán-Más et al. 2017). Enhanced electrochemical performance 

of the Ni-Co hydroxide electrodes has been observed with the addition of reduced graphene oxide 

(rGO). The addition of rGO improves the capacity of the electrodes and acts as a conductive 

matrix that accommodates strain in the charge-discharge process leading to longer lifetimes 

(Adán-Más et al. 2017). Conveniently, the reduction of GO to rGO is facilitated through the process 

of electrodeposition itself, avoiding the energy-intensive step of chemical reduction or other 

analogous routes, which would otherwise be necessary.  

Considering their emerging nature, quantification of the environmental impacts of novel 

electrodes has not been previously attempted.  Such an early inclusion of environmental 

performance consideration in the design of emerging electrodes could ensure that the potential 

impacts in electrode synthesis are known and can be minimized in the future design and process 

optimization. Several studies, that constitute closest available literature, include analysis of 

several emerging cathode composites that only loosely resemble some of the materials used for 

the fabrication of novel electrodes (Deng et al. 2018; Peters et al. 2016). Similarly, lack of science-

based environmental impact analysis applies to the exploration of a new trend of combining 

metal-hydroxides with carbon-based materials such as rGO. 

To address these gaps, the present study employs the life cycle assessment (LCA) method to 

establish resource, ecosystem and human health impacts in the synthesis of emerging electrodes, 

implications of addition of GO to metal hydroxide matrix, and performance of electrodes as they 

are compared with existing alternatives. The analysis identifies how impacts of the electrodes 

can be improved, and what functional application leads to optimized environmental performance 
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with the aim to support these electrodes to take a positive role in sustainable energy 

management. 

3.2. Materials and methods 
 

The LCA study is carried out through four phases pertaining to requirements and 

recommendations of the International Standards Association, including (i) goal and scope, (ii) life 

cycle inventory, (iii) life cycle impact assessment, and (iv) life cycle interpretation (ISO-14040 

2006; ISO-14044 2006). 

The goal and scope phase, detailed in the current material and methods section, outlines the 

study purpose, the boundaries of the modeled product systems (i.e., electrodes), the function and 

functional unit used as a reference for comparison, and select impact category indicators used 

for characterization of environmental impacts.  

3.2.1. Goal and scope 
 

3.2.1.1. Goal definition 
The goal of this study is to identify environmental hotspots in the synthesis of Ni-Co electrodes 

integrating rGO, and determine if the addition of rGO improves eco-efficiency when compared 

with baseline electrodeposited Ni-Co hydroxide electrode and Ni-Co hydroxide electrodes 

obtained through co-precipitation (an alternative fabrication route).  

Given this goal, the analysis aims to improve and determine the eco-efficient status of the rGO 

integrating electrode and, as a broader objective, shed light on environmental implications of 

newly adopted practice in the materials science of combining carbon-based materials and metal 

hydroxides and oxides. The findings of this study are meant to contribute to the material design 

and to support future research on energy storage materials, thus informing material scientists 

and technology developers working on energy storage. 

3.2.1.2. Function and functional unit 
The function of the electrode is defined by its ability to store energy over its effective lifetime, 

characterized by two parameters: (1) the electrode’s capacity, representing an ability of the 

material to store charge given applied current, and (2) the number of charge-discharge cycles that 

can be carried out before capacity reduces due to structural degradation, chemical parasitic 

transformations or other ageing phenomena that occur during cycling. Capacity fade is 

commonly tolerated up to 20-30%, or in other words, when 70-80% of the initial electrode capacity 

is maintained (Chaari et al. 2011; Murray and Hayes 2015; Saxena et al. 2015). The functional unit 
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(FU) used to compare electrodes is generating discharge current of 1000 mA h over the lifetime 

of the electrode, at a current density of 1 A·g-1 considering a maximum capacity fade of 20%.  

𝐹𝑈 = 𝑋 ·

∑ {
∑ 𝐶𝑖

𝑖=𝑛
𝑖=1

𝑛 }
𝑛=𝑛𝐸𝑂𝐿
𝑛=1

𝑛𝐸𝑂𝐿
 

where Ci is the capacity of the material after i charge-discharge cycles in mA·h·g-1 (electrode’s 

capacity after the first cycle), n is the total number of cycles at a given point during the charge-

discharge cycling test, nEOL is the number of cycles to reach end-of-life capacity fade, and X is the 

mass of electrode’s active layer, expressed in grams. 

3.2.1.3. Product systems: NCED and NCED-rGO 
The charge storage electrodes investigated in this study are nickel-cobalt hydroxides deposited 

on top of conductive stainless-steel substrate. The two electrodes are synthesized by means of 

potentiostatic electrodeposition. First product system is the baseline electrode NCED (Ni-Co-

Electrodeposited), with chemical formulae α-Ni0.33Co0.66(OH)2·(CO3
2-,2·NO3-)0.66(H2O)0.5 and second, 

the analogous composite in which reduced graphene oxide is added: NCED-rGO, with chemical 

formulae α-Ni0.33Co0.66(OH)2·(CO3
2-,2·NO3-)0.66(H2O)0.5/rGO. Derivation of the formulae is available in 

Supplementary Information (SI), Table S3-1. 

Synthesis of the two electrodes and their characterization has been depicted in Figure 3-1 and 

detailed elsewhere (Adán-Más et al. 2017).  The NCED electrode was prepared by applying a 10 

second pulsed potential between -0.9 V and -1.2 V to the working electrode (stainless steel AISI 

304) and using a counter electrode of platinum submerged in an aqueous electrolyte containing 

nickel and cobalt nitrate hexahydrates with a concentration of 3 mM and 6 mM respectively, and 

a saturated calomel electrode as the reference electrode. The deposition rate was approximately 

1.5 µg per cm2 per minute, assuming linearity (Streinz et al. 1995), which can be manipulated to 

achieve different layer thicknesses. The electrodeposited electrode material was subsequently 

washed with water and ethanol to remove impurities and to facilitate drying. The NCED-rGO 

electrode was prepared similarly, with the exception of the substitution of the aqueous electrolyte 

by a graphene oxide (GO) aqueous suspension at the concentration of 1 g·L-1 and subsequent 

addition to electrodeposition bath along with the nickel and cobalt salts. Prior to its addition, GO 

was ultrasonicated for 30 min to ensure stable dispersion of GO flakes.  

Electrochemical properties have been measured at several current densities including 1 A·g-1, 4 

A·g-1 and 10 A·g-1 and after reaching capacity fade of 20% and 30%. The cycling stability and the 

consequent evaluation of capacity fade was assessed at the current density of 10 A·g-1 by applying 

continuous charge-discharge during 5000 cycles in the 0.45 V to -0.2 V potential range. Cycling 
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stability was assumed to be equivalent for other current densities, as similar degradation 

phenomena occur.  

At the applied current density of 1 A∙g-1, the capacity of NCED electrode is 30 mA·h·g-1 and NCED-

rGO is 96 mA·h·g-1. For NCED the capacity fade of a 20% is reached after 972 cycles, and NCED-

rGO after 1676 cycles.  

 

Figure 3-1. Process flowchart for the synthesis of NCED and NCED-rGO 

3.2.1.4. Product system: NCCP  
More mature and resource-optimized Ni-Co hydroxide electrode involving the synthesis of active 

material by co-precipitation followed by physical deposition onto a stainless-steel substrate was 

used as a benchmark for comparison with NCGOED-rGO electrode. The material, noted here as 

NCCP (Ni-Co Co-Precipitated), with chemical formulae α-Ni0.33Co0.66(OH)2·(CO3
2-,2·NO3-)0.66(H2O)0.5, 

is prepared in several process steps as depicted in Figure 3-2, and detailed elsewhere (Faure, 

Delmas, and Willmann 1991a, 1991b). Co-precipitation is carried out in 2M sodium hydroxide 

solution, containing 1.5 mL of hydrogen peroxide, that is slowly added to a solution containing 

5 g of nickel nitrate hexahydrate and 10 g of cobalt nitrate hexahydrate (1:2 molar ratio). The 

mixture is stirred for 48 h and washed under centrifugation (4000 rpm, 10 minutes) six times 

with water and two with ethanol to reach stable pH. The precipitate is dried in the oven for 24 h 

at 40 oC. The material, in powder form, is then mixed with polytetrafluoroethylene (PTFE) and 

carbon black (at 80:5:15 mass ratio, respectively), using ethanol as solvent, and pressure-printed 

on a stainless-steel grid to produce the electrode. The capacity of this electrode is 121 mA·h·g-1 

at a current density of 1 A∙g-1, and reaches a capacity fade of 20% after 1006 charge-discharge 

cycles. 



54 
 

 

Figure 3-2. Process flowchart for the synthesis of NCCP 

3.2.1.5. System boundaries  
Cradle-to-product gate analysis was carried out. Boundaries of the analyzed product system 

include the production and manufacture of the electrodes, and do not quantify impacts arising 

in the use and disposal of the electrodes, which could have been modeled only in consideration 

to the entire energy-storage device. Cut-off criteria also apply to capital goods such as laboratory 

equipment, machinery, buildings and transportation vehicles used to carry out the processes and 

manage materials. Impacts of capital goods are assumed to be negligible considering low use of 

abrasive chemicals and high temperatures. In either case, these impacts would be almost identical 

for the two electrodeposited electrodes that employ similar processing steps. Capital goods also 

include the counter and reference electrodes that are used in electrodeposition, since they are 

not consumed in the process and could be reused without losses and deterioration. 

Wastewater effluents from potentiostat, co-precipitation and washing stages are excluded for the 

baseline comparison and only potential toxicity impacts of GO to the freshwater systems 

quantified and investigated as a separate scenario. The small amounts of cobalt and nickel 

present in the effluent, in similar concentrations for all three electrodes, are assumed to be 

treated on site and precipitated prior to disposal to the sewage system or landfill. The literature 

suggests a high degree of removal of cobalt (up to 90%) and nickel (up to 80%) from the effluents 

(Fu and Wang 2011; Kurniawan et al. 2006). The reagents that would be potentially used to 

precipitate these pollutants are assumed to be small and uncertain, as electrolytic effluent is 

mixed with the wastewater from other experiments before it is treated. GO in effluent could be 

precipitated to a large degree using adsorption (Sun et al. 2018), floc-flotation (Chen and Li 2018), 

coagulation (Duan et al. 2017; J. Wang et al. 2016), or photo-degradation (Zhang et al. 2016).  

However, if the specific type of treatment is not applied to the process effluent before its disposal 
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to the conventional sewage system, the portion of GO could be eventually left untreated and enter 

natural water systems. GO in freshwater is associated with toxicity-related effects (Ou et al. 2016). 

Classification and characterization of environmental impacts is carried out using the indicator 

of cumulative energy demand and nine impact assessment categories of ReCiPe Midpoint (H) 

method including: climate change, ionizing radiation, metal depletion, fossil depletion, water 

depletion, terrestrial ecotoxicity, freshwater ecotoxicity, marine ecotoxicity, and human toxicity 

(Goedkoop et al. 2008). GO impacts to freshwater ecotoxicity was investigated using USEtox 

method (Rosenbaum et al. 2008), as needed characterization factors and reference units of 

toxicity impacts were developed specifically for this method. Toxicity impacts in USEtox are 

expressed in the unit of potentially affected fraction of species (PAF) per cubic meter per day per 

kilogram emitted, i.e., PAF·m3·day·kg-1, in comparison with ReCiPe using kg 1.4 dichlorobenzene 

(1.4-DB) equivalents (Deng et al. 2017). The modeling was carried out using OpenLCA v1.5 

software. Direct material inputs in the synthesis of the electrodes are either observed 

experimentally, scaled-up in reference to industrial practice or optimal use of laboratory 

equipment. Value assumptions are based on the literature, direct measurements, and expert 

opinion. Synthesis of the electrodes is modeled as a foreground system while impact-profiles of 

reagent materials are sourced from the Ecoinvent v3.3 database. Input quantities, related 

assumptions, and background data sources for each material in the foreground system are 

described in a subsequent LCI section. Input quantities of each material are shown per 1g of 

active material. Material inputs per quantity of active materials corresponding to the functional 

unit and naming of background data sourced from the Ecoinvent database are provided in SI, 

Table S3-2 and S3-3. Background datasets of electricity inputs and transportation were selected 

for an average European context, while for all chemicals an average global production was 

assumed. 

In addition to sensitivity analysis applied to system boundaries to investigate potential toxicity 

effect of GO in the effluent, a sensitivity analysis is also carried out to address the inventory 

assumption related to an efficiency rate of GO use in the manufacture of NCED-rGO. The GO 

uptake of 80% was considered as a scaled-up scenario. The scaled-up NCED-rGO is compared with 

NCCP only. 

Scenario analysis was further carried out to compare electrodes in consideration to different 

operational parameters of applied current density and electrodes’ lifetimes. In comparison to the 

baseline scenario, in which electrodes are compared at 1 A·g-1 current density and capacity fade 

of 20%, a comparison was also carried out at current densities of 4 A·g-1 and 10 A·g-1 and a capacity 

fade of 30%. In total, five scenarios are investigated. Performance values of the electrodes 
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(capacity and number of charge-discharge cycles) at these alternative current densities and 

capacity fade criteria are detailed in SI, Table S3-4. 

3.3. Results 
 

The results section encompasses the remaining three phases in LCA: the inventory, impact 

assessment, and interpretation phase. The inventory phase details data sources, assumptions 

and quantities for all the materials and energy inputs, which are then classified and characterized 

among environmental impact categories, in the subsequent impact assessment phase. In 

interpretation phase, main findings and modeling assumptions related to functional unit and GO 

use, are investigated through scenario and sensitivity analysis. 

3.3.1. Life cycle inventory 

3.3.1.1. Cobalt and nickel nitrates  
The quantities of cobalt and nickel nitrate salts used during the fabrication of electrodeposited 

electrodes (NCED and NCED-rGO) are calculated assuming an uptake efficiency of 95%. These are 

scaled-up efficiencies readily achieved in industrial settings. Cobalt and nickel nitrate salts are 

modeled as obtained in direct oxidation from metallic cobalt in reaction with nitric acid (Grayson, 

Kirk, and Othmer 1996). 0.83 g of nickel-nitrate-hexahydrate and 1.661 g of cobalt-nitrate-

hexahydrate were required to produce 1g of active material for fabrication of NCED, and 0.79 g 

and 1.58 g for fabrication of NCED-rGO electrode, respectively.  

Use efficiency of cobalt in nickel salts in co-precipitation was calculated to be 83%. 0.76 g of 

nickel-nitrate-hexahydrate and 1.54 g of cobalt-nitrate-hexahydrate are required to produce 1g 

of active material for NCCP. 

3.3.1.2. Graphene oxide solution  
Inputs of GO for fabrication of NCED-rGO had to be established on the basis of limited knowledge 

of GO behavior during electrodeposition, specifically, the efficiency of GO-use in 

electrodeposition and the concentration of the GO in the final electrode. It is approximated that 

rGO constitutes 5% of the NCED-rGO electrode which comes as an additional mass in 

electrodeposition in comparison to NCED, holding all other process material-inputs equal. This 

assumption is supported by the slight difference in weight between two materials. However 

precise measurement is difficult due to the possible presence of surface pollutants, non-

homogeneous nature of the dispersion and limitations of the techniques currently used to 

quantify weight percentage (i.e., energy dispersive X-ray spectroscopy and X-ray photoelectron 

spectroscopy). 
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GO is used in excess in laboratory practice and only around 1% is utilized in the preparation of 

electrode. However, unlike the metal salts, the electrodeposition of GO is an emerging practice 

and the efficiency rates of deposition could not be emulated from existing industry practices and 

current scientific literature. Although, considering the non-ionic mechanism of GO deposition, 

and low reactivity of rGO, it is likely that this efficiency would be lower than for metals. 

Consequently, we made a conservative assumption in which GO use-efficiency is set at 5% for the 

default comparison, and uptake of 80% has been investigated as a potential scale-up scenario.  

Use efficiency will, among other, depend if the electrodeposition of GO can be established as a 

continuous and semi-continuous production, as opposed to batch-scale production carried out 

in a laboratory. 

The inventory for the production of GO was adapted from comparative LCA study of different 

GO production routes (Cossutta, McKechnie, and Pickering 2017), based on Bangal variant of the 

Hummer’s method (Chen, Yan, and Bangal 2010). 1 g of GO or 1000 ml of 1% GO solution was 

assumed per 1 g of active electrode material. 

Electricity use for sonication of GO was assumed for 110 W sonicator working for 30 min mixing 

1 L solution of GO, equaling use of energy to 55 W·h per 1 g of GO. 

3.3.1.3. Stainless steel substrate  
A stainless steel AINSI 304 is used as a substrate for all electrodes, given its low electrochemical 

signal and chemical stability, which are needed to evaluate the electrochemical response of the 

active material. The stainless-steel foil, with a thickness of 3 mm, is applied as a substrate and is 

used to deposit 0.05 g of active material per 1 cm2 of active electrode material. 3.2 g of stainless 

steel is required per 1 g of active material.  

3.3.1.4. Transport of materials 
Transportation of materials and process chemicals is assumed for average European 

transportation following the recommendation of Frischknecht et al. (2007). Accordingly, the 

distances of 600 km by train and 200 km by a 32 t lorry are taken for all the chemicals and 200 

km by train and 100 km by 32 t lorry for stainless steel (Frischknecht et al. 2007). 

3.3.1.5. Electricity use  
Potentiostat electricity is calculated for constant use of 75 W Gamry Interface 1000TM 

potentiostat, depositing an area of 100 cm2 steel substrate, at -1.2 V which can allow deposition 

rates of 0.15 mg and 0.1575 mg of active material per min per cm2 for NCED and NCED-rGO, 

respectively. Energy consumption was measured empirically resulting in energy use of 317 W·h 

for 1 g of active material for both NCED and NCED-rGO.  
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In co-precipitation, electricity was measured for 2280 W Sigma 4-16K Centrifuge operating for a 

total of 80 min at 4000 rpm. Electricity for drying was indicated for Mermert oven 5800 W, for 

24h at 40oC and measured empirically.  The energy for printing the mixture on a steel substrate 

is assumed at 5 t·cm-2.  Per gram of active material, the energy requirement for centrifuge was 

measured to be 15.15 W·h, for drying 106.8 W·h and the energy for printing was calculated to be 

2.72 W·h. 

3.3.1.6. Cleaning agents, electrolyte and effluent treatment 
Use of ethanol and water for washing and drying of electrodeposited electrodes corresponds to 

an experimental procedure. 3mL of ethanol and 9 mL of water are estimated for cleaning 1 cm2 

surface area of the electrode. For deposition of 1 g of active material, we estimate 62 ml of ethanol 

and 200 ml of water for NCED, and NCED-rGO.  

Cleaning in co-precipitation was carried out under centrifugation using 602 ml of ethanol and 

230 mL of water per gram of active material.   

3.3.1.7. Additional chemicals for the synthesis of NCCP  
In addition to Ni-Co precipitation, fabrication of NCCP comprises additional mixing and pressing 

step that involves use of additional materials including polytetrafluoroethylene, carbon black, 

hydrogen peroxide, ethanol and sodium hydroxides. The inventory for production of 

polytetrafluoroethylene (PTFE) used as a binder is obtained from Jungbluth et al. (2012). 0.05 g 

of PTFE is used per gram of active material. Quantities of other reagents include 0.15 g of carbon 

black, 0.2 ml of hydrogen peroxide, 250 ml of ethanol, and 0.5 g of sodium hydroxide, for which 

background data was obtained from the Ecoinvent. 

3.3.2. Life cycle impact assessment  
 

3.3.2.1. Contribution analysis of NCED-rGO  
The relative contribution of the main processes and materials in the synthesis of NCED-rGO to 

environmental impact categories are shown in Figure 3-3. Application of GO and electricity for 

potentiostat appear to be the major contributors to the environmental impact categories. Impacts 

of GO application are generated from electricity for sonication and GO manufacture, and are 

mostly equally shared among each other for impact categories, with the exception of metal 

depletion category that is affected solely due to GO manufacture. Potential impacts of electricity 

are particularly high in the category of ionizing radiation due to use of nuclear electricity in 

Europe. Impacts of cleaning are the third most significant, with the particular contribution to the 

category of terrestrial ecotoxicity, fossil depletion and cumulative energy use. Consumption of 

distilled water for cleaning and potentiostat is the major contributor to impacts of terrestrial 
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ecotoxicity (45%) mostly due to impacts of road transportation. Ethylene in production of ethanol 

is responsible to high impacts of ethanol especially to category of fossil depletion (35%). Stainless 

steel substrate has high impact on marine and freshwater ecotoxicity and resource categories 

including water and metal depletion, due to use of ferrochromium and ferronickel used for 

alloying. Impacts of nickel and cobalt nitrates which are relatively low when compared to other 

reagents, contribute to toxicity categories and metal depletion. Impacts of transportation of 

foreground materials are negligible. 

 

Figure 3-3. Environmental impact contributions of direct material use and emissions in the 

synthesis of NCED-rGO electrode 

3.3.2.2. Comparison with NCED and NCCP  
Normalized comparison between three electrodes is given in Figure 3-4 and 3-5, and absolute 

values detailed in SI, Table S3-5. In comparison to NCED, NCED-rGO electrode appears to have 

the lowest impacts in all investigated categories. Hence, it appears that significant improvement 

in electrochemical properties considerably outweighs added impacts from GO production. On 

average across all the impact categories, NCED-rGO generates 70% less impacts than NCED to 

reach the same discharge current. 

The superior performance of NCED-rGO is not confirmed in reference to NCCP electrode. NCCP 

is better in most of the impact categories with on average 40% lower impacts. The exceptions are 

categories of fossil depletion, climate change and cumulative energy use that are driven by 

considerably higher use of ethanol and electricity in fabrication of NCCP. 
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Figure 3-4. Normalized comparison between NCED and NCED-rGO 

 

 

Figure 3-5. Normalized comparison between NCED-rGO and NCCP 

3.3.3. Interpretation 
 

3.3.3.1. The potential impact of GO-rich effluent on freshwater ecotoxicity  
Under the scenario that GO from effluent is not adequately treated and ends in freshwater 

systems, freshwater ecotoxicity impacts of NCED-rGO electrode would increase by 37% for default 

scenario or 8% for the scaled-up scenario (at GO use efficiency of 80%). As impacts of GO 

manufacture are 45% of total 15% that GO application adds to the net impacts in that category 

(remaining 55% are impact of electricity for sonication), the total impacts to category of 
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freshwater ecotoxicity would increase by 4% if GO would not be removed from the effluent before 

wastewater discharge. Absolute values of three electrodes and hypothetical scenario for NCED-

rGO including impacts of GO to freshwater are given per FU in Table 3-1.   

Table 3-1.  

Relative comparison between electrodes for freshwater ecotoxicity including the scenario of 

untreated GO effluent (NCED-rGO+eff-GO). Unit CTUe [PAF m3.day.kg-1_emitted] applies to all the 

values 

  Freshwater ecotoxicity 

NCED 7.68E-02 

NCED-rGO 2.12E-02 

NCCP 1.77E-02 

NED-rGO + eff-GO 2.63E-02 

 

3.3.3.2. Influence of increased rGO uptake on the relative comparison with NCCP 
At more efficient GO use (uptake of 80%) two electrodes are comparable with clear preference for 

NCED-rGO in additional categories of terrestrial ecotoxicity and fossil depletion, in comparison 

to the baseline scenario. The comparison of the scaled-up scenario for NCED-rGO with NCCP 

electrode is given in Figure 3-6. GO use is one of the main environmental hotspots in the 

fabrication of NCED-rGO. On average GO production is responsible to 20% of the contribution in 

all impact categories and 70% of the impacts in metal depletion category. Overall, the significant 

influence of GO to toxicity categories results in notable shift in these categories at the scaled-up 

use. Contribution of GO to human toxicity, marine and freshwater ecotoxicity are divided between 

production of GO itself, and electricity use for sonnication whereas terrestrial ecotoxicity is 

dominated by GO production (81%). Relative impacts to metal depletion that are entirely 

responsible by GO use and potassium permanganate (95%). 
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Figure 3-6. Normalized comparison between scaled-up scenario for NCED-rGO and NCCP 

 

3.3.3.3. Effect of capacity fade and current density on relative performance of NCED-

rGO electrode  
The relative performance between NCED, NCCP and NCED-rGO electrode varies at different 

current densities and allowances for capacity fade. Table 3-2 shows relative performance of each 

NCED and NCCP in comparison with NCED-rGO electrode for baseline scenario corresponding to 

parameters taken for FU (S0), and additional scenarios (S-1, S-2, S-3, S-4, and S-5). Absolute values 

for electrode are given in Table S3-6 (a-c). It appears that NCED-rGO performs best for current 

density of 1 A·g-1 considered for the baseline comparison, while it would entail slightly better 

performance at capacity fade of 30%. Overal, it compares similarly with NCED across additional 

scenarios. The preference for NCCP increases at higher current densities. Thus, the least favorable 

application of NCED-rGO appears at the current density of 10 A·g-1. 
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Table 3-2.  

Relative impacts of NCED-rGO in comparison with NCED, and NCCP at different operational 

parameters of current density and capacity fade. Scenario abbreviation refer to combination of 

current density (CD) and capacity fade (CF): S-0 – CD 1 A·g-1, CF 20% (baseline); S-1 – CD 4 A·g-1, 

CF 20%; S-2 – CD 10 A·g-1, CF 20%; S-3 – CD 1 A·g-1, CF30%; S-4 – CD 4 A·g-1, CF 30%; S-5 – CD 10 

A·g-1, CF 30%. Impacts of NCED-rGO are lower for percentage values preceded by the minus sign 

and are higher for positive values.  

 

3.4. Discussion 
 

3.4.1. Opportunities and priorities for NCED-rGO design improvements  
 

Results pinpointed several material and process hotspots that should be prioritized when 

considering future electrode design and scaling up processes, and while seeking improvements 

in specific impact categories. Although, this is not universally observed (Arvidsson and Molander 

2017), the use of process reagents and energy that are modeled at the scale of laboratory 

equipment is expected to decrease with process optimization (Gavankar, Suh, et al. 2015; 

Gutowski et al. 2009). The impacts of materials that already assume industrial-scale efficiency 

could be further mitigated by identifying more eco-efficient substitutes or pursuing their 

recovery at the end-of-life. Here we discuss how impacts of some of the materials can be 

mitigated. 

The impact of the stainless-steel substrate is relative to required active material thickness and a 

requirement for the thickness of the substrate itself, thus of concern if the aim is to create 

  Relative difference in comparison with NCED Relative difference in comparison with NCCP 

  S-0 S-1 S-2 S-3 S-4 S-5 S-0 S-1 S-2 S-3 S-4 S-5 

Marine ecotoxicity -70% -60% -70% -76% -66% -73% 34% 61% 62% 29% 56% 59% 
Terrestrial 
ecotoxicity -68% -58% -68% -75% -64% -72% 39% 63% 21% 34% 45% 49% 
Freshwater 
ecotoxicity -69% -61% -71% -76% -67% -74% 34% 61% 18% 30% 57% 60% 

Fossil depletion -68% -59% -68% -75% -64% -72% -44% -7% 0% -51% -22% -16% 

Human toxicity -69% -60% -69% -76% -65% -73% 34% 60% 19% 30% 56% 59% 

Water depletion -68% -59% -68% -75% -64% -72% 49% 69% 23% 43% 65% 67% 

Climate Change -67% -57% -67% -74% -63% -71% -1% 39% 14% -14% 26% 31% 

Ionising radiation -68% -58% -68% -75% -64% -72% 60% 76% 25% 56% 71% 73% 

Metal depletion -38% -20% -39% -52% -31% -46% 59% 75% 47% 56% 73% 75% 
Cumulative energy 

demand -68% -59% -68% -75% -64% -72% -30% 14% 20% -39% -2% 5% 
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electrodes with relatively thin deposits. To reduce impacts of the substrate, the stainless-steel 

could be compared with adequate alternatives which could include both metallic and non-metallic 

substrates (e.g., Dubal et al. 2014; Wu et al. 2006), or stainless-steel substrate used in a way that 

it could be recycled at end-of-life of the electrode (Frischknecht 2010).  

The impacts of cobalt and nickel nitrates appear small but their share is likely to increase relative 

to a contribution to other electrode constituents since their use is already modeled at high 

efficiency. Reduction of impacts of cobalt and nickel salts can be targeted by manipulating their 

concentration taking their similar electrochemical properties in order to target reduction of 

specific impact categories. Relative to cobalt nitrate, nickel nitrate induces greater impacts in 

toxicity categories, while climate change and metal depletion categories are more impacted by 

cobalt nitrate. Such substitution is only appropriate under the condition that the functionality of 

the electrode is maintained.  

The impact of GO could be mitigated with more efficient uptake of GO in the deposition process, 

and by using GO from more eco-efficient synthesis route. Increasing uptake would mean that less 

GO would be required to produce NCED-rGO electrode. Impacts of GO that are shown to be on 

average 20% would reduce to the low of 3-4% if GO would be utilized at the efficiency of 80%. 

Therefore, any efforts directed to better understand and improve GO deposition could 

significantly improve environmental impacts. For example, researchers and industry could 

examine the effect of increased deposition times and investigate if electrodeposition involving 

GO could be established as a continuous production.  

The impact of GO appears to vary significantly depending on its manufacturing production route. 

Hence, sourcing or manufacturing of GO needs to be carefully selected and optimized if impacts 

of integrating electrode are to be minimized. The fabrication method adopted in the present 

study is based on chemical oxidation route (Chen et al. 2010), which rates favorably in 

comparison to approach by chemical vapor deposition and other variants of the Hummer’s 

method (Cossutta et al. 2017). For example, the procedure initially considered, as described in 

Zaaba et al. (2017), was three times more impactful in comparison to chemical oxidation route 

we used for our model (Cossutta et al. 2017; Zaaba et al. 2017). Although, the authors report that 

impacts of adopted synthesis route could be potentially further reduced (by an average of 

additional 50%) if energy is used more efficiently, and hydrochloric acid is recovered and reused 

(Cossutta, McKechnie, and Pickering 2017).  
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3.4.2. Usefulness and limitations in view of emerging nature and 

technological maturity  
 

LCA of emerging technologies is often regarded as exploratory because findings are directional 

rather than definitive (Villares et al. 2017). In like manner, the findings of this study need to be 

interpreted in view of an emerging nature of studied electrodes, particularly the aspects of a less 

established functional requirement of the electrodes in comparison to the whole energy storage 

device, and technology readiness level (TRL).  

Nonspecific functional requirement and flexible range of application of component-level 

emerging technology present the challenge to identify functional proxy in LCA. Representative 

functionality in our study is decided based on criteria of electrode’s lifetime and operating 

current density, which ultimately correlate with the power requirements of the final device, a 

critical parameter in applications such as memory back-up applications or auxiliary power 

sources in small appliances such as laptops or mobile phones (Endo et al. 2001). However, since 

the final application of the electrode is not known, the parameters used for the functional unit 

(corresponding to baseline case), represents just one of the scenarios under which the electrode 

could be applied. Therefore, it is important to encompass other functional setups, by 

investigating multiple functional units or scenario analysis to reflect on possible alternatives as 

we have pursued in our study.  

Observation of emerging technology’s TRL is necessary to interpret the findings of the analysis 

and realize what is the potential of observed impacts and relative performance of electrodes to 

change as the technology matures. This is highly relevant when technologies of different TRLs 

are compared as they may own different potential that their impacts will change with future 

scaling-up and efforts to improve functionality (Gavankar, Suh, et al. 2015). In the current study, 

NCED-rGO appears at TRL level of four and NCCP at the level of five, which will likely make NCED-

rGO more competitive as material develops. While comparing technologies at significantly 

different TRLs is not optimal (Troy et al. 2016), it is important to realize potential benefits to 

research and innovation of providing a certain benchmark to the development of new technology. 

Furthermore, different potentials of materials to undergo changes with increased scales means 

that the current relative contribution of different reagents, as shown in Figure 3-3, could further 

change. These potentials need to be considered when interpreting current results and prioritizing 

resource strategies to reduce the impacts of the electrodes. 

With uncertainties pertaining to assessment of emerging technology, especially in regard to data, 

the primary aim of our study was to aid the design of the electrode and accommodate fair 



66 
 

comparison among competing electrodes of similar TRLs. Despite data and other limitations 

commonly claimed for assessment of emerging technologies (Hetherington et al. 2014; Wender 

and Seager 2011), incorporating eco-efficiency considerations to early-stage research has great 

potential to steer product design across more environmentally plausible lines (Villares et al. 2017; 

Wender et al. 2014). Specifically, analysis at an early stage can navigate most convenient 

application of technology at which technological and environmental performance are maximized, 

which should ultimately be the goal in materials engineering for energy storage. LCA can assist 

this process by selecting the most benign and convenient material while maintaining technical 

requisites.  

In our study, we established that under favorable operational conditions, NCED-rGO has clear 

potential to be eco-efficient. Particularly, as such observation comes in addition to some of the 

other practical aspects inherent to electrodeposition fabrication method itself, that could add a 

positive impact on the environment. Electrodeposition enables morphology-controlled deposition 

enabling adhesion on various conductive substrates without the need of binders thus conferring 

certain flexibility to the technique (i.e., material thickness, surface geometry), involves few 

process steps required to produce the final electrode including the absence of thermal treatment 

of pressurized systems, and can be scaled to various capacities with ease  (Schwarzacher 2006). 

These aspects result in shorter deposition times, safer working conditions and more durable use 

of process equipment, that could also positively affect environmental performance, but could not 

be captured in the present analysis. Nonetheless, this work reflects the need to increase capacity 

response and rate capability of electrodeposited Ni-Co hydroxide to produce more competitive 

results for this fabrication technique and NCED-rGO electrodes to be the most compelling choice. 

To this aim, strategies such as creating 3D hierarchical structures to optimize morphology may 

be undertaken. 

This work may be extended to other synthesis techniques such as chemical vapor deposition or 

sol-gel synthesis among others, or compare Ni-Co hydroxide electrodes with other commonly 

used material for charge storage electrodes, such as manganese oxide or lithium-based 

electrodes. Extending LCA studies to other early-stage electrode material development could lead 

to environmentally-informed decisions in future research for energy storage. 

3.5. Conclusions 
 

The present study identifies the main environmental hotspots in the synthesis of NCED-rGO 

electrode and its environmental performance relative to baseline NCED electrode and benchmark 

NCCP electrode. The analysis aims to support further design and optimization of this electrode 
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while giving a broader perspective on potentials of using rGO, and offering insight how this 

electrode performs in reference to current alternatives. The cradle-to-gate analysis was based on 

two functional parameters denoting capacity and lifetime, which are examined at different 

operational parameters of applied currents and criteria for end-of-life. 

The findings suggest that the most dominant impacts in the fabrication of NCED-rGO come from 

electricity and cleaning, followed by GO, steel substrate and use of cobalt and nickel nitrates. Use 

of GO has shown to be advantageously applied to nickel-cobalt hydroxide electrodes as improved 

functionality of NCED-rGO electrode over NCED considerably outweighs added impacts from GO 

use. NCED-rGO is competitive with benchmark NCCP under specific circumstances.  

We argue that the findings of this study need to be interpreted in view of the emerging nature of 

these technologies. The relative contribution of the impacts in the design of the electrode needs 

to be interpreted in view of changing potentials for scaling-up of reagent materials while 

comparative results need to be interpreted in view of technology readiness level of comparing 

electrodes and functional requirement of energy storage applications. The study recommends 

several resource strategies for further optimization of NCED-rGO. 
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Chapter 4: Life cycle assessment of organic photovoltaic solar 

charger: a role of use intensity and irradiation 3 

 

Abstract 

Solar chargers for mobile phones are the first integration of organic photovoltaic (OPV) 

technology into commercial products. Although environmental impacts of OPVs have been 

studied extensively, the performance of chargers have been narrowly examined in reference to 

intensity of their use and use geographies. To explore these aspects, we study the environmental 

impacts of OPV chargers considering the charger as a substitute for a local electricity grid supply 

for charging a mobile phone. A consequential life-cycle assessment (LCA) was carried out to 

evaluate the environmental performance of the OPV charger in six European countries 

representative of different electricity grids and solar irradiation contexts. Particular effort is 

made to explore the implications of use intensity of the charger and determine a frequency at 

which charger is competitive. The results suggest that using an OPV charger has the potential to 

be environmentally friendly only in countries with high fossil-fuel share in their electricity 

supplies. The OPV charger is environmentally beneficial in Greece and Spain across most of the 

evaluated impact categories if used 100-120 times per year, which is practical given the high solar 

insulation in the two countries. Charging a phone with OPV in Germany or the Netherlands is 

environmentally-friendly only under conditions of intensive use of the device, or for selective 

impact categories. In the category of climate change, charging with OPV would represent an 

improvement in Greece and Germany. In two countries a phone-charging supported by OPV 

generates 2.5kg of CO2-equivalents per year in comparison to 2.9-3kg CO2-equivalents charging 

from the grid. Phone-charging supported by OPV in Norway and France is more impactful than 

using the grid for the majority of impact categories, including the category of climate change. 

The study contributes a novel methodology for looking at photovoltaic technology and helps 

inform users and policymakers who should consider the local context before an adoption of 

environmental technologies. 

 
3 A version of this chapter was accepted for publication in the Journal of Cleaner Production as: Edis 

Glogic, Steffi Weyand, Michael P. Tsang, Steven B. Young, Liselotte Schebek, Guido Sonnemann (2019). Life 
cycle assessment of organic photovoltaic solar charger: a role of use intensity and irradiation. Journal of 
Cleaner Production, vol. 233, p. 1088-1096. 
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4.1. Introduction 
 

Photovoltaic (PV) technology has been proposed as a more sustainable alternative to 

contemporary fossil fuel-based energy supply. Even though impacts are created during the 

manufacturing and disposal of PV products, overall improvements, especially in terms of 

greenhouse gasses mitigation, are significant (Serrano-Luján et al. 2017). From a range of 

photovoltaic technologies developed over several decades, the third generation organic PV (OPV) 

technology is advocated for superior eco-efficiency performance and distinct physical and 

electrochemical properties that could increase the range of PV products (Darling and You 2013; 

Hoppe and Sariciftci 2004). Compared to conventional silicon solar cells, OPVs have shown to 

have lower environmental impacts and shorter energy payback times (Espinosa et al. 2012; 

Espinosa, Garcia-Valverde, et al. 2011; García‐Valverde, Cherni, and Urbina 2010; Roes et al. 2009; 

Serrano-Luján et al. 2017; Tsang, Sonnemann, and Bassani 2015; Yue et al. 2012), and when 

applied in the chargers for mobile phones (Alves dos Reis Benatto, Espinosa, and Krebs 2017; 

Tsang, Sonnemann, and Bassani 2016), portable lighting systems (Espinosa, García-Valverde, and 

Krebs 2011), and solar panels (Serrano-Luján et al. 2017; Tsang et al. 2016). 

In practice, however, photovoltaics more often compete with other energy supply systems, in 

which case an aspect of the intensity of their use becomes more prominent and sometimes critical 

to their performance. Environmental impacts associated with the unit of PV electricity are created 

mostly during the production of PV device, while the use of PV devices when electricity is 

generated is virtually emission-free. Such disposition of impacts across life cycle phases of PV 

products prompts impacts to be lower with the more intensive use of PV device. Main factors 

influencing the use intensity of PV produces, are the choice of PV product integration and the 

geographical context of their application (i.e., solar irradiation).  

The aspect of use intensity on perceived greenness of PV electricity supply presents a challenge 

to prospective product integration of OPV technology as a portable solar charger for the mobile 

phones. Even though these chargers integrate potentially greener OPV technology, they are used 

for only selective appliances such as mobile phones, headphones, cameras or other small 

electronic devices to facilitate on-demand charging in which instance the use could be expected 

to occur at a lower and intermittent frequency in comparison to stationary outdoors PV systems. 

OPV chargers are lightweight and portable and could easily be carried on person as a possible 

alternative to a powerbank charger and standard outlet supplying electricity from the local grid.  

Two studies that explored environmental impacts of using a charger, narrowly explore an aspect 

of charger use intensity and reach different conclusions. A study by Tsang et al. (2016) explored 

impacts of the charger in comparison to amorphous silicon as a substitute in which OPV was 

compared more favorably (Tsang et al. 2016). Benatto at al. (2017) investigated the OPV charger 
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as a substitute to a local electricity grid and amorphous silicon charger and has shown that OPV 

charger is not preferred to charge a phone in China and Denmark (Alves dos Reis Benatto et al. 

2017). The results apply to the limited geographical scope and are based on a single use-intensity, 

largely neglecting intermittent use-profile of the charger, which is of particular concern to the 

results of the latter study where OPV is compared with electricity grid as a very different energy 

supply system. The competitiveness of OPV charger over amorphous silicon alternative was also 

ruled differently, which comes likely as a consequence of different assumptions of cell 

infrastructure, and expectations of efficiencies and lifetimes of the OPV cell. 

Not conclusive to the studies on OPV chargers, modeling of intermittently used PV devices that 

resemble similar use behavior to that of PV chargers such as solar tents and solar backpacks, 

have not been performed to our knowledge. In the literature, intermittency of PV systems has 

been more readily discussed as a constraint to reliable energy supply (Margeta and Glasnovic 

2012), and intermittency of solar irradiation (Laleman, Albrecht, and Dewulf 2013), rather than 

as a consequence of use-profile of PV device. 

Taking aforementioned limitations, including the diverging results, geographical coverage and 

narrow use intensity assumptions of current studies on OPV charger, and also general lack of 

studies exploring intermittency of PV product use in assessment of environmental impacts, we 

investigate if the use of OPV charger as a substitute to the conventional electricity supply grid 

could reduce the impacts of charging a mobile phone. We look more closely at the device use 

intensity while exploring the broad geographic scope of Europe. The information is presented in 

the manner to achieve more comprehensive understanding of potential implications of the 

charger use while offering an original methodology to quantify the influence of solar irradiation 

for intermittently used PV devices. The methods and findings provided throughout this study 

could serve as valuable information to technology developers and policymakers who should 

consider product integration of this technology and the geographical context of its application. 

 

4.2. Materials and methods 
 

The comparison between OPV charger and grid was carried out using consequential approach in 

LCA. Both direct and indirect environmental impacts considered through this approach are best 

suited for more perspective and context relevant assessment of emerging technologies and 

energy supply systems (Andersen 2013; Earles and Halog 2011; Liang et al. 2013).  

Consistent with recommendations outlined in ISO 14040:2006 and ISO14044:2006 standards, 

LCA is carried out through, four phases: (1) goal and scope, (2) life cycle inventory, (3) life cycle 

impact assessment and (4) interpretation (ISO-14040 2006; ISO-14044 2006). The first two phases 
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are described in the current materials and methods section, and the third and fourth phases 

constitute the results section of this paper.  

 

4.2.1. Goal and scope  
 

4.2.1.1. Goal definition 
The goal of this study was to investigate the environmental consequences of using an OPV solar 

charger as a substitute for the electricity grid to charge a mobile phone in Europe, while 

specifically investigating the aspect of charger use-intensity and influence of irradiation on 

anticipated intermittent use. The study findings are expected to support OPV technology 

development and product integration.  

4.2.1.2. Functional unit 
The function for comparison between the OPV charger and the grid, is to charge a phone battery 

of 2000 mAh every day for five years. The selected capacity of 2000 mAh can be viewed either as 

charging a smaller battery or only partially charging a battery of bigger capacity. We consider this 

as a meaningful usage capacity considering the current designs of smartphones. As a reference, 

the iPhone 8 has a battery capacity of 1821 mAh, and the Samsung Galaxy S8 3000 mAh. The 

functional unit is one charged 2000 mAh battery using a standard 5V USB port. The reference 

flow is 10 Wh of electricity drawn and stored in the mobile phone battery.  

4.2.1.3. System boundaries 
The environmental analysis of the OPV charger device considers impacts arising from all life cycle 

stages including raw material extraction, manufacturing, use, and disposal. Assumptions of 

charger design and operating performances are adopted from previous works (Tsang et al. 2015, 

2016). Included is a stand-alone 10 Wp (Watt-peak) solar charger (without battery power bank), 

with 0.2 m2 of OPV panel and plastic casing. Additionally, this study includes a USB port which 

was not considered in a previous works due to a lack of data (Tsang et al. 2016). Consistent with 

Tsang et al. (2016), the structure of the OPV cell consists of two electrodes, an electron hole 

transport layer, an active layer, and a substrate. The active layer consists of fullerene derivative 

phenyl-C61-butyric acid methyl ester (PCBM) as a donor, and co-polymer polythiophene polymer 

poly(3-hexylthiophene) (P3HT) as an acceptor material, embedded in the form of bulk-

heterojunction. Charge separation is facilitated using a transparent positive electrode of indium 

tin oxide, and the hole transport layer from molybdenum trioxide. A back electrode is from 

aluminum covered by the thin layer of lithium fluoride. A laminate is assumed from polyethylene 

terephthalate (PET). The OPV cell operates at 5% efficiency and five years lifetime, taken as a 

compromise between practical and laboratory performances (Tsang et al. 2015). Disposal of the 

charger was modeled assuming incineration, an established waste disposal route and dominant 
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waste treatment method for municipal solid waste in several countries in northern and western 

Europe (Blumenthal 2011). Incineration is only marginally better than landfilling a solar charger, 

another likely waste disposal alternative for the charger (Tsang et al. 2016). The charger is 

assumed to be used only for charging a mobile phone, and not the other electronic devices such 

as cameras or headphones.  

4.2.1.4. Impact assessment and interpretation methodology 
The relative comparison between the OPV charger and the grid was carried out including (1) direct 

comparison and (2) break-even comparison. Moreover, the results from the two comparisons are 

interpreted in view of solar irradiation constraints. Comparison and interpretation approaches 

are represented by framework in Figure 4-1. 

 

Figure 4-1. A framework describing comparative steps in this study and the irradiation model 

used for interpretation.  

 

The direct comparison represents the conventional approach in LCA to calculate impacts between 

competing product systems using normalized values in the range 0-100. In this case, two product 

systems for charging a mobile phone are compared: (1) combining a solar charger and electricity 

grid, and (2) charging solely using the electricity grid. Charging with the solar charger is modeled 

at 150 times per year, the assumed use frequency adopted from the previous study on OPV 

chargers (Alves dos Reis Benatto et al. 2017). Over five years each product system supplies a total 

of 18.25 kWh of electricity, of which 7.5 kWh is drawn from the charger.  

The break-even comparison, specifically developed in this study, describes the relative 

environmental impacts of the charger in reference to charger use intensity. Break-even 

comparison is designed to calculate phone charging frequency using an OPV charger, at which 

phone charging with the OPV charger (OPV-charges) would equal the impacts of charging with 

the grid (grid-charges). The break-even OPV-charges are calculated for each impact category using 

the following equation:    
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𝑏𝑟𝑒𝑎𝑘 𝑒𝑣𝑒𝑛 𝑂𝑃𝑉−𝑐ℎ𝑎𝑟𝑔𝑒𝑠 =
𝑒𝑛𝑣. 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑑𝑖𝑠𝑝𝑜𝑠𝑎𝑙 𝑜𝑓 𝑂𝑃𝑉 𝑐ℎ𝑎𝑟𝑔𝑒𝑟

𝑒𝑛𝑣. 𝑖𝑚𝑝𝑎𝑐𝑡 𝑜𝑓 𝑠𝑖𝑛𝑔𝑙𝑒 𝑔𝑟𝑖𝑑 𝑐ℎ𝑎𝑟𝑔𝑒 ∙ 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑂𝑃𝑉𝑐ℎ𝑎𝑟𝑔𝑒𝑟
 

 

The calculation of OPV-charges allows greater insight in the aspect of use intensity of the charger 

on its environmental performance and avoids making an assumption of charger use frequency 

as this is made in the direct comparison. Calculation of break-even OPV-charges could be 

established due to a different distribution of the environmental impacts across life cycle stages 

of the charger and grids. In the life cycle of the solar charger, all environmental impacts arise in 

the production and disposal phase, whereas most of the impacts of grid electricity are generated 

in the use phase (i.e., when fossil fuels are burned). A frequency of the charger use that exceeds 

break-even value would render the charger as more eco-efficient. 

Interpretation of comparative results from the direct comparison and OPV charges is made 

through the lens of solar irradiation, given the sunlight as a limiting factor for charger use. We 

propose a method to incorporate solar irradiation constraints by calculating the number of 

unconstrained days per year which receive sufficient irradiation to fully charge a phone using a 

solar charger. Nominal daily irradiation, above which the day is unconstrained, represents solar 

irradiation sufficient to charge a 2000 mAh mobile phone battery using 10Wp OPV charger taking 

practical conditions such as technically required irradiation to charge a battery of given size, and 

also a portion of energy that wouldn’t be utilized in practice. The extent of such unexploited 

energy would vary depending of irradiation strength and consistency, time of the day, and other 

practical factors that would obstruct the user from using a charger even when irradiation is 

available. Ideally, the value of nominal daily irradiation would also benefit from studies on user 

behavior to better understand how these practical constraints affect charging consistency, but in 

their absence in scientific literature, that value is assumed. The nominal daily irradiation is 

proposed as 2.5 kWh/m2 of irradiation per day which equals to 3-4h of direct sunlight depending 

on the country and season and is 2.5 times greater than the theoretical irradiation needed to 

charge a phone battery4.  

Using unconstrained days, it was possible to determine: (1) if OPV-charges set in direct 

comparison are appropriate, which is the case if an assumed value is lower than the number of 

unconstrained days for given country, and (2) the break-even potentials to express the likelihood 

of reaching break-even OPV-charges. Break-even potentials are calculated using the following 

equation:  

 
4The value of 1kWh/m2 is derived by considering technical aspects of the charger and amount of energy needed to 
charge 2000mAh battery. Needed 10Wh of electricity is generated using 10Wp (peak) solar charger with panel 
area of 0.2m2 operating at 5% efficiency: 10Wh/(1kWh/m2∙0.05∙0.2m2) =1kWh/m2.  
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𝑏𝑟𝑒𝑎𝑘−𝑒𝑣𝑒𝑛 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 =
𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑑𝑎𝑦𝑠 − 𝑏𝑟𝑒𝑎𝑘−𝑒𝑣𝑒𝑛 𝑂𝑃𝑉−𝑐ℎ𝑎𝑟𝑔𝑒𝑠

𝑢𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑 𝑑𝑎𝑦𝑠
 

 

According to the equation, the break-even potential has a value of zero if a number of 

unconstrained days are equal or lower than OPV-charges. The potential has a value of one if the 

number of unconstrained days is twice the number of break-even OPV-charges or greater. 

Daily solar irradiation values, used to calculate unconstrained days, were extrapolated from 

monthly values of Global Horizontal Irradiance derived from the IRENA Global Atlas geographical 

coordinate grids and several measurement points for each of the six investigated countries (see 

Supporting Information (SI), Table S4-2). This irradiation value is expressed in Wh/m2 and 

represents the total amount of solar irradiation received on the surface including both direct 

normal and diffuse horizontal irradiance. The daily irradiation values were extrapolated 

assuming a linear increase or decrease of irradiation throughout the month. 

Emissions arising in the life cycles of the OPV charger and electricity grids were characterized 

using the ReCiPe 2008 Midpoint (H) (v1.11) impact assessment method, Table 4-1. The use of the 

method is in line with previous studies on OPV (Tsang et al. 2015, 2016), and an identified need 

for a broader set of categories and indicators in the modeling of PV and OPV systems (Laleman 

et al. 2013; Tsang et al. 2015). The comprehensive selection of impact categories included in the 

method was also needed to cover diverse range of impact-profiles characteristic for electricity 

grids in Europe. OpenLCA 1.6.3 open source LCA software was employed. 

 

Table 4-1. Environmental impact categories of the ReCiPe midpoint method used in the study 

Impact categories Reference units Abbreviations 

Agricultural land occupation m2*a ALOP 

Climate Change kg CO2 eq GWP 

Fossil depletion kg oil eq FDP 

Freshwater ecotoxicity kg 1,4-DB eq FETP 

Freshwater eutrophication kg P eq FEP 

Human toxicity kg 1,4-DB eq HTTP 

Ionizing radiation kg U235 eq IRP 

Marine ecotoxicity kg 1,4-DB eq METP 

Marine eutrophication kg N eq MEP 

Metal depletion kg Fe eq MDP 

Natural land transformation m2 LTP 

Ozone depletion kg CFC-11 eq ODP 

Particulate matter formation kg PM10 eq PMFP 

Photochemical oxidant formation kg NMVOC POFP 

Terrestrial acidification kg SO2 eq TAP 

Terrestrial ecotoxicity kg 1,4-DB eq TETP 

Urban land occupation m2*a ULOP 

Water depletion m3 WDP 
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4.2.2. Life cycle inventory  
 

Data on materials used in the manufacture of a 10 Wp OPV charger are taken from Tsang et al. 

(2015), and the inventory pertaining to incineration of the charger from Tsang et al (2016). All 

the assumptions for compilation of life cycle inventory is thoroughly described in the two studies, 

and are not repeated here. Only final values are disclosed in the supplement of this paper (Table 

S4-3) and materials used shortly described below. Data from the inventory, previously linked to 

the Ecoinvent v2.2 background data was linked to background data sourced from the Ecoinvent 

v3.3 consequential database for the average European context (Wernet et al. 2016).  

Inventory of OPV charger assume production of PCBM via the pyrolysis technique using toluene 

as a feedstock. Deposition of all the layers in the OPV cell is assumed to be gravure printed, 

except for the transparent electrode that assumed the sputtering technique. Chlorobenzene is 

used as a solvent for the active layer application. Electricity is used for the annealing and printing 

of panel components and the lamination of the panel. The solar charger uses no produced energy 

or materials to operate and produces no direct emissions.  

A dataset for a single USB port was obtained from Ecoinvent v3.3 as “market for electric 

connector, peripheral type buss -GLO”.  

Data for the country-specific electricity grid mixes are from the Ecoinvent v3.3 consequential 

database for 2015 as “market for electricity, low voltage” (Itten, Frischknecht, and Stucki 2014; 

Wernet et al. 2016). 

 

4.2.3. Selection of representative countries  
 

Charging scenarios were purposefully chosen to reflect on most diverse sources of electricity 

present in Europe with intention that broader conclusions can be made in regard to other regions 

in Europe and beyond. Two criteria were considered significant to the environmental 

performance of solar chargers: (a) greenhouse gas (GHG) intensity of the country’s electricity grid, 

and (b) annual solar irradiation available in the country. 

GHG emission values were obtained from the Ecoinvent v3.3 consequential database (Itten et al. 

2014; Wernet et al. 2016), and the yearly solar irradiation values were taken from the International 

Renewable Energy Agency’s Global Atlas (IRENA 2005) (see SI, Table S4-1, and Table S4-2).  

Finally, out of 17 European countries for which both sets of data were available, six were selected 

(Figure 4-2) to represent each of the six partitions in the matrix of electricity supply grids and 

yearly solar irradiation. The electricity supply grid energy make-up of these countries is quite 
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variable with different single energy source having a high share in country’s grid supply: Greece 

– 11% of oil, Spain – 26% of renewables, Germany – 44% of coal, the Netherlands – 42% of natural 

gas, France – 78% of nuclear and Norway – 96% of hydro. The GHG - irradiation performances of 

all 17 countries considered initially is disclosed in SI, Figure S4-1. Source data for Figure 4-1, 

Figure S4-1, and energy source share is derived from Table S4-1. 

 

Figure 4-2. GHG-intensities of electricity supply grids and solar irradiation of six selected 

countries. Six countries cover a diverse range of possible charger use contexts, hence serve as a 

representative of Europe.  

4.3. Results 

  
The results are presented in two sections. The life cycle impact assessment section, presents the 

findings from the direct and break-even comparison. In the interpretation section, findings from 

the direct comparison, and OPV charges determined through break-even comparison, are 

characterized for their validity and likelihood in view of solar irradiation capacity of investigated 

countries.  

4.3.1.  Life cycle impact assessment 
 

4.3.1.1. Direct comparison 
The relative comparison of a phone charged by combining OPV and grid electricity, versus grid-

only charging is shown in Figure 4-3 (a-f) and absolute values are detailed in SI, Table S4-4, and 

0

300

600

900

900 1400 1900
Irradiation (kWh/m²yr)

France Germany Greece

Netherlands Norway Spain

GHG emissions 
(g CO2-Eq/ kWh)



77 
 

Table S4-5. Results show that the OPV-grid scenario appears competitive across most impact 

categories in Spain and Greece, and across eight of 18 categories in the Netherlands, ten in 

Germany, and six in France, while with only three categories showing benefits in Norway. 
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c)  
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e)  
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f)  

Figure 4-3 (a-f). Environmental impacts of charging of a 2000mAh phone battery every day for 5 

years measured across 18 impact categories in six countries: a) Greece, b) Spain, c) Germany, d) 

the Netherlands, e) France, and f) Norway. Dark-colored bars show the results of combined OPV 

and grid-charging and lighter bars represent the grid-only system.  

Use of OPV chargers is less beneficial in all countries across the potential category impacts of 

natural land transformation (LTP), ozone depletion (ODP), particulate matter formation (PMFP), 

and terrestrial ecotoxicity (TETP) due to impacts created as a result of polyester resin production 

for the charger casing. On the other hand, use of the charger lowers impacts across most of the 

water-related categories in all countries. That applies to the freshwater ecotoxicity (FETP), marine 

ecotoxicity (METP) and water depletion potential (WDP) for all countries, and marine and 

freshwater eutrophication impacts (MEP and FEP), for all countries except Norway. The 

environmental benefits in these categories are created from the avoided emissions of electricity 

due to OPV casing incineration. Potential impacts to categories of depletion of other resources 

provides mixed results. Metal depletion potential (MDP) is worse for the charger-use scenario in 

all countries, while fossil depletion (FDP) is similar for both product systems, except in France 

and Norway where electricity grids have notably lower impacts. A potential impact of low-voltage 

electricity grids in the category of agricultural land occupation (ALOP), comes with environmental 

benefits for all the countries due to the heat and power co-generation of biogas. Hence, those 

benefits are more pronounced in the grid-only scenario. The concentration of photochemical 

oxidants (POFP) that give rise to a summer smog is more impactful for the charger-grid scenario 

in almost all countries. For the particulate matter formation (PMFP) category, the charger-use 

scenario proves better only in Spain and Greece.  Higher concentration of particulate matter in 

the electricity mix of both countries appears to be due to the use of lignite and coal. The OPV 

scenario is lower for ionizing radiation category (IR) due to energy recovery from the charger 
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incineration. Environmental benefits are also observed in the case of German electricity due to 

heat and power co-generation and the treatment of tailings in uranium milling. A use of OPV 

charger benefits the climate change (GWP) category in Germany, Greece and the Netherlands. 

Climate change (GWP), fossil depletion (FDP) and urban land occupation (ULOP) are similar for 

both grids and OPV charger and are likely to be sensitive to small deviations of OPV-charges 

above and below the 150 charges per year assumed for the comparison.  

4.3.1.2.  Break-even comparison 
Table 4-2 shows break-even OPV-charges. Below 100 OPV-charges the break-even points are 

reached in nearly all water-related impact categories in all countries except Norway, and in most 

of the impact categories for Greece. In Spain, breaks in most of the categories can be reached at 

around 100 OPV-charges. At around 130 OPV-charges roughly half of the impact categories could 

be reached for Germany and the Netherlands. 

 

Table 4-2. OPV-charges to break-even with the environmental impacts of the electricity grids in 

six countries, across 18 impact categories.  

Impact category GR ES DE NL FR NO 

Agricultural land occupation - - - - - 10527 

Climate Change 94 179 97 133 1103 3640 

Fossil depletion 80 211 129 137 1288 5592 

Freshwater ecotoxicity 20 49 15 35 60 67 

Freshwater eutrophication 3 32 3 18 96 238 

Human toxicity 14 117 26 162 227 360 

Ionizing radiation 0 0 160 0 0 0 

Marine ecotoxicity 18 48 15 34 59 65 

Marine eutrophication 25 138 32 137 244 1921 

Metal depletion 439 400 235 384 487 641 

Natural land transformation 266 271 2250 212 1319 627 

Ozone depletion 128 103 1395 270 52 3345 

Particulate matter formation 68 92 3204 912 622 1635 

Photochemical oxidant formation 299 273 293 506 1899 7010 

Terrestrial acidification 41 55 176 263 461 1691 

Terrestrial ecotoxicity 2810 3453 2160 4756 5548 8910 

Urban land occupation 223 111 115 130 550 1569 

Water depletion 0 0 0 0 0 0 

 

Break-even charges can only be derived for impact categories for which the more intensive use 

of solar charger leads to a reduction in the environmental impacts. Consequently, for impact 

categories where impacts of the grid charging are negative due to indirect environmental benefits, 
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the break-even values could not be implied. This is the case for the category of agricultural land 

occupation for all countries except Norway. Inversely, for impact categories where impacts of the 

OPV charging are negative due to environmental benefits, as such is the case for the categories 

of irradiation potential, and water depletion, impact categories are assigned zero value.  

 

4.3.2. Interpretation of the results using solar irradiation constraints 
 

4.3.2.1. Characterization of OPV-charges used for the direct comparison 
The unconstrained days were calculated as 305 in Spain, 282 Greece, 242 France, 205 Germany, 

197 the Netherlands and 181 Norway. These values appear higher than the baseline assumption 

of 150 OPV-charges suggesting that the results shown in Figure 4-3 (a-f) are practical. However, 

given differences between assumed charges and unconstrained days in countries, results of the 

comparison for Spain, Greece and France are more conservative and thus more compelling than 

the conclusions derived for the Netherlands, Germany and Norway.  

4.3.2.2. Characterization of break-even OPV charges: break-even potentials 
Break-even potentials are shown in Table 4-3. The high potentials (above 0.5) of achieving break-

even OPV-charges applies to Spain and Greece, with the charger breaking even in majority of the 

impact categories. In the Netherlands and Germany, even though the break-even OPV charges can 

be achieved in most of the categories, the potentials of reaching break-even values are small. For 

example, for the Netherlands, in five of ten categories where OPV break-even charges could be 

achieved, the potentials are below 0.34. For Norway and France, most of the impact categories 

are not attainable. However, the break-even potentials in the remaining categories in France are 

high, suggesting a high likelihood of making improvements in specific categories by using the 

charger.  

Break-even potentials mostly allow to observe relative likelihood among countries to reach break-

even OPV-charges and highlight that similar break-even values have different potentials to be 

reached depending of country’s irradiation. For instance, for Greece and Germany the break-even 

values of the category of climate change (94 and 97, respectively), although similar, translate in 

to higher potential for Greece (0.67) than Germany (0.53). 

 

Table 4-3. Break-even potentials showing the relative likelihood of reaching OPV-charges.  

  Break-even OPV-charging potentials 

  GR ES DE NL FR NO 

Agricultural land occupation 0.00 0.00 0.00 0.00 0.00 0.00 

Climate Change 0.67 0.41 0.53 0.32 0.00 0.00 

Fossil depletion 0.72 0.31 0.37 0.30 0.00 0.00 
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Freshwater ecotoxicity 0.93 0.84 0.93 0.82 0.75 0.63 

Freshwater eutrophication 0.99 0.90 0.99 0.91 0.60 0.00 

Human toxicity 0.95 0.62 0.87 0.18 0.06 0.00 

Ionising radiation 1.00 1.00 0.22 1.00 1.00 1.00 

Marine ecotoxicity 0.94 0.84 0.93 0.83 0.76 0.64 

Marine eutrophication 0.91 0.55 0.84 0.30 0.00 0.00 

Metal depletion 0.00 0.00 0.00 0.00 0.00 0.00 

Natural land transformation 0.06 0.11 0.00 0.00 0.00 0.00 

Ozone depletion 0.55 0.66 0.00 0.00 0.79 0.00 

Particulate matter formation 0.76 0.70 0.00 0.00 0.00 0.00 

Photochemical oxidant formation 0.00 0.10 0.00 0.00 0.00 0.00 

Terrestrial acidification 0.85 0.82 0.14 0.00 0.00 0.00 

Terrestrial ecotoxicity 0.00 0.00 0.00 0.00 0.00 0.00 

Urban land occupation 0.21 0.64 0.44 0.34 0.00 0.00 

Water depletion 1.00 1.00 1.00 1.00 1.00 1.00 

Break-even potentials in range 0.5-1 signify high potentials, and 0-0.5low-to-medium likelihood to reach OPV-charges. 

Potentials with the values of zero represent categories for which break-even value could not be achieved as break-even 

charges are greater than unconstrained days.  

 

4.4. Discussion 
 

Contrary to the previous studies (Espinosa et al. 2012; Espinosa, Garcia-Valverde, et al. 2011; 

García‐Valverde et al. 2010; Roes et al. 2009; Serrano-Luján et al. 2017; Tsang et al. 2015; Yue et 

al. 2012), our research shows that OPV technology is not always environmentally-friendly and 

that the choice of integrating PV products plays a decisive role. In most of the investigated 

countries, the intensive use of charger is needed if charging with OPV is to be considered an 

improvement. Even in countries with dirtier grids, such as Greece where electricity grid supply is 

dominated by coal, and in Spain where grid supply is mostly based on use of oil, coal, and 

biomass, the charger needs to be used on average 100 times to have equal impacts with 

competing grids, and more intensively to be categorized as “green”. Overall, the OPV charger is 

more suited for targeting improvements in selective impact categories, rather than seeking to 

obtain improvements in all categories. Thus, given priority to specific impact categories, the 

charger could also be preferred in Germany, the Netherlands, and even France. 

An observation to favorable charger performance for category of climate change in countries with 

dirtier electricity grids, echoes in earlier works where the charger was rated worse in Denmark, 

which has a high ratio of wind power, and positively in China where there is a high share of fossil 

fuels in the electricity grid (Alves dos Reis Benatto et al. 2017). However, for other impact 

categories our results vary which likely come about as a result of different assumptions for OPV 

cell design, lower operating efficiencies assumed, or the different version of Ecoinvent database 
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used for modeling (Steubing et al. 2016). The type of analysis that considers geographic variables 

for renewable energy is similar to work being undertaken to compare electric vehicles with cars 

with internal combustion engine (Nealer, Reichmuth, and Anair 2015). However, electric vehicles 

do better on cleaner grids, whereas OPV chargers compare better in the context of polluting grids. 

Principally, if CO2 emission-equivalents are presumed as indicative of fuel share of electricity 

(refer to Figure 4-2 and Figure S4-1), our findings could be extended to assume charger 

performance in other countries with similar solar irradiation potentials and fuel shares of their 

grid supplies. In that case, the environmentally advantageous use of OPV charger within the 

reasonable frequencies of charger use could be achieved in Italy and Portugal. Use in the Czech 

Republic, the United Kingdom, and Luxemburg will result in environmental trade-offs between 

similar impact categories, whereas, the use of charger in Switzerland, Slovakia, Austria and 

Belgium would not be accommodating to low-impact phone charging using OPV.  

The type of analysis we presented in our study is the first attempt to model the aspect of 

intermittency of PV devices as a feature of the product use-profile, the aspect which is highly 

uncertain and a more expected feature of emerging technologies, since a credible estimate of user 

behavior is more difficult. While the most conventional way to tackle this issue is to assess 

multiple assumption of charger use involving multiple scenarios and functional proxies, we offer 

an approach where the estimate of product use can be avoided altogether. Additionally, the 

demonstrated break-even comparison allows incorporating solar irradiation in the modeling of 

chargers. Lastly, this novel distance-to-target representation of the results generates information 

more palatable to the user, hence appealing to circular economy perspective where product user 

can take more proactive role. Similar approach to modeling could be applied to any consumer 

product whose performance changes with intensified use.   

A main limitation of our work is associated with the assumption of nominal daily irradiation used 

to derive unconstrained days, that could not be well supported in the current literature on 

consumer behavior. Although, this is not detrimental to our overall findings as the preference 

across investigated impact categories is mostly divided between grids and an OPV charger, hence, 

small to medium variations in solar irradiation are expected to have minor influence on the 

results. Also, it is important to note that a technical durability of the charger (i.e., five years), 

although realistic assumption of technology (Green et al. 2017; Peters et al. 2011), is not 

necessarily an indication of the actual longevity of use (Khan et al. 2018). Both nominal daily 

irradiation value and expected lifetime assumptions could benefit from behavioral science and 

agent-based modeling that is increasingly used in environmental studies to estimate consumer 

behavior (Raihanian Mashhadi and Behdad 2018; Di Sorrentino, Woelbert, and Sala 2016). Another 

viable approach to realize potential for OPV-charging is with the help of ambient light sensors in 

mobile phones that can inform on user exposure to solar irradiation (Schuss et al. 2014). 
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Finally, when considering the prospective advantages between OPV chargers and the electricity 

grid, it is worth noting the differences between the two supply systems in terms of practical 

considerations like reliability and scale of energy provision. Solar chargers provide the 

convenience of outdoor charging, and in areas where charging is otherwise not accessible such 

as developing countries where grid infrastructure is not available. This flexibility and the 

potential of environmental performance in given countries would make portable OPV systems 

competitive replacements for diesel generators. On the other hand, grid electricity is often a more 

reliable electricity source that cannot be entirely replaced by a solar charger. The cost of 

electricity pertaining to both systems and the social aspects connected to resource use would 

need to complement this environmental analysis to fully support policy or consumer decision.  

 

4.5. Conclusions 
 

The study was carried out to determine if the use of OPV charger provides an improvement over 

conventional charging of the mobile phone in several countries in Europe while considering the 

frequency at which the charger is used. Comparison with conventional grid-charging is carried 

out both for an estimated use-rate of the charger, and inversely by calculating the use rate at eco-

efficiency break-even points. Subsequently, the results from both comparative approaches are 

interpreted accounting for capacity of solar irradiation.  

The findings suggest that OPV charger has the potential to be environmentally-friendly in the 

countries with dirtier electricity supplies and for targeting improvements in select impact 

categories. Overall, the use of OPV chargers could reduce impacts in water-related categories and 

increase impacts in categories representing atmospheric pollution. The OPV charger is beneficial 

in Spain and Greece but cannot compete with low-impact hydro and nuclear power of the grids 

in Norway and France. 

The approach presented in this study constitutes a guiding framework for assessment of 

intermittently used products and offers a quantitative method for incorporating solar irradiation 

in modeling of PV products. 
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Chapter 5 – Discussion and conclusions 
 

This work helps fill the two research gaps identified in chapter 1: (i) the lack of experience and 

direction on combining CE indicators with LCA, and (ii) a general weakness in guidance available 

on applying LCA to emerging technologies. Thus, the research extends the scope of LCA in two 

directions: by considering broadening the scope of indicators to include indicators from the new 

economic paradigm of the Circular Economy (CE); and by providing new insights on using LCA 

for assessment of emerging technologies. The application of LCA in these two areas are identified 

in the scientific community (CIRAIG 2015; Haupt and Zschokke 2017; Kirchain Jr et al. 2017; 

Smith et al. 2019; UNEP 2011), and its potential further framed in this research as an effort for 

extending the scope of LCA as a sustainability assessment tool (Guinée 2016; Klopffer 2008; Sala 

et al. 2013a; Zamagni, Pesonen, and Swarr 2013).  

The three case studies contributed to the objectives and the research questions outlined in 

Chapter 1. The first objective was met by investigating the capacity of the Material Circularity 

Indicator (MCI) to complement environmental assessment with LCA given potential trade-offs 

among MCI and LCA impact categories and indicators, applied to the case of alkaline batteries. 

The second objective was met by using LCA to evaluate emerging technologies for the cases of 

electrodes and OPV chargers. Assessment of three energy materials explored by three studies 

helps identify improvements to these specific important technologies. 

This chapter gives an overview of the main contributions of this research, considers implications, 

discusses its limitations, and offers some recommendations for future research. Sections 5.1 and 

5.2 provide a summary of the main findings discussed in view of the proposed objectives and 

research questions and discuss their implications to the broader literature theory and practice. 

Section 5.3 discusses the limitations of our research, and Section 5.4. provides recommendations 

for future research drawing on existing literature on CE indicators and emerging technology 

assessment, and the observations from the three case studies. 

5.1. Challenges and opportunities for combining life cycle 

assessment with MCI 
 

Objective 1 was to evaluate the methodological potential of CE-indicators to complement 

environmental assessment with LCA. The two research questions under objective 1 were: 
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1-1. What are the challenges in combining LCA with circularity indicators, focusing on impact-

circularity trade-offs and methodological differences? 

1-2. What methodological improvements can be suggested to address these challenges? 

To fulfil this first objective, the alkaline battery case study was used to examine the possibility 

of combining LCA results with a circular economy indicator. Several design and management 

scenarios for batteries were investigated with each scenario integrating a specific circularity 

strategy in comparison to the baseline so that the influence of specific strategies on the batteries’ 

environmental and circularity performance could be differentiated. Strategies reviewed 

encompass two alternative recycling routes and several improvement strategies: use of recycled 

content in battery manufacture, increased used battery collection, and an improved battery 

lifetime (i.e., utility). In response to the research question 1-1, two challenges were noted: (i) trade-

offs between MCI and LCA categories and indicators across two recycling routes and for several 

improvement strategies, and (ii) different sensitivities of MCI and LCA indicator values to 

particular modeling assumptions.  

The trade-offs were largely observed for the recycled content use scenario, while improving 

utility, and battery collection in most cases resulted in improved circularity and reduced impacts, 

albeit to different degrees. Also, the trade-offs between LCA impact categories and indicators and 

MCI seems to be case- rather than strategy-specific (Lonca et al. 2018; Niero and Kalbar 2019). 

In regards to the robustness of LCA impact categories and indicator values and MCI scores to a 

changing assumption for the system boundaries, we established that a decision to include certain 

byproducts of recycling differently affects two sets of values. Specifically, for recycled content 

scenarios, the assumption of a displacement of clinker cement with manganese slag has little 

effect on LCA results, but the MCI value changes in order of 30%. This disproportional sensitivity 

between LCA impact categories and indicators and MCI scores stems from the limitation of MCI 

to characterize material quality losses (EMF 2015; Saidani et al. 2017), whereas the 

characterization of material quality losses in LCA is indirectly accounted for through allocation 

of byproduct of recycling. Given the quality of byproducts, system is either credited for avoided 

emission for producing primary material (i.e., material moves in a closed-loop fashion), or for 

avoiding production of lesser-quality products, thus signaling if the recycling is “functional” or 

the material is downcycled. With the example of alkaline batteries, we now show the “gravity” of 

that particular disparity and how much that might affect the robustness of the results in such 

combined analysis. To improve the characterization of material quality losses in MCI, suggestions 

were made to consider use of complementary CE-indicators better suited to address material 

flows at end-of-life stage as they look more carefully in the nature of byproduct of a recycling. In 

that regard, following works are indicated as relevant: (Huysman et al. 2017; Linder et al. 2017; 



87 
 

Di Maio et al. 2017; Di Maio and Rem 2015; Park and Chertow 2014; Vanegas et al. 2018; Zink et 

al. 2016). 

In response to identified challenges of combining LCA impact categories and indicators with MCI, 

as per research question 1-2, we propose a better visualization and interpretation of MCI values 

to improve understanding of trade-offs across strategies and comparison among categories and 

indicators (Figures 2-4, 2-5 and 2-6). MCI scores of different circularity strategies are normalized 

to their maximum circularity potential (i.e., a combined value of all identified applicable 

strategies over the life cycle of a product) to allow representation of MCI scores relative to what 

is practically achievable in terms of closing loops of resources. The proposed approach 

contributes to the development of the MCI indicator and provides an alternative to other efforts 

in comparing LCA impact categories and indicators with MCI (Lonca et al. 2018; Niero and Kalbar 

2019; Walker et al. 2018). In these studies, MCI scores are normalized to their baseline scenario, 

while normalization in our method is based on the cumulative (net) circularity scenario and more 

leverage is given to incremental improvements in circularity. The new approach is arguably more 

suitable to compare circularity progress of different product assortments on an equal basis, as 

part of monitoring a company’s internal progress in the adaptation of CE among products.   

The implications to quality characterization of material losses, and the new approach for 

visualization, contribute to previously identified gap in the literature related to the lack of insight 

in CE indicators combining with LCA, as the means of indicators use and development (Lonca et 

al. 2018; Niero and Kalbar 2019; Walker et al. 2018). These observations and suggestions should 

influence how MCI is used and developed in the future and might be significant given that MCI is 

likely the most popular choice amongst micro/product-level CE indicators considering its early 

conception and origins, sophisticated construct, a whole life-cycle, and multiple criteria approach 

(Elia et al. 2017; EMF 2015; Moraga et al. 2019). On the other hand, this contribution is limited to 

qualification of indicator to measure circularity. Saidani et al. (2017) have shown that MCI lacks 

consistency with some of the CE principles including modularity, connectivity, upgradability, 

considerations for design and disassembly as a preventive maintenance of products and more 

granular levels of recovery such as remanufacturing or refurbishment (Saidani et al. 2017). 

Moraga et al. (2019) also note that none of CE-indicators, including MCI, support preservation of 

functions instead of products, and do not have a means to quantify product sharing, schemes 

for product redundancy, and multifunctionality (Moraga et al. 2019). However, the authors 

acknowledge MCI’s applicability to industry, life cycle thinking approach, and sustainability 

perspective (Elia et al. 2017; Moraga et al. 2019; Saidani et al. 2017). MCI’s future competitiveness 

and way of application will depend on how the next indicator developments respond to these 

critiques. 
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5.2. Application of life cycle assessment for emerging 

technology development 
 

Objective 2 was to evaluate the use of LCA to improve the development of emerging energy 

materials. The two research questions under objective 2 were:  

2-1. What are the environmental sustainability implications of new energy materials including 

opportunities/aspects for optimization across product life cycle, and when compared 

with conventional alternatives? 

2-2. What are challenges and methodological approaches for improving assessment of 

emerging technologies?  

This second objective was met through LCA case studies of two energy technologies: Ni-Co 

hydroxide charge storage electrodes, and organic photovolotaic (OPV) chargers. The case study 

of emerging Ni-Co hydroxide charge electrodes entails comparison between several synthesis 

methods to manufacture the electrodes to be used as an anode in supercapacitors or batteries. 

Synthesis is enabled by using electrodeposition with an optional use of graphene oxide. It was 

determined that environmental hotspots of electrodes are associated with electricity use, 

cleaning agents, and graphene oxide. The new synthesis method is less competitive with more 

mature coprecipitation technique under variety of possible uses although with small 

optimization of materials and efficiency improvement, the electrodes can be competitive given 

favorable operating parameters of current density and device lifetime expectations. The study of 

OPV chargers investigates the environmental impacts of chargers for replacing electricity grid for 

charging a phone in six countries in Europe. The chargers are potentially valuable substitutes to 

local electricity grids in three countries given frequent use and specific impact categories. 

Each of two cases represents a valuable contribution given their implications for technology 

development and importance of renewable energy systems for sustainability (Glogic, Adán-Más, 

et al. 2019; Glogic, Weyand, et al. 2019). For example, understanding of process optimization 

hotspots for charge storage electrodes, new data inventory, and the outlook of (beneficial) use of 

graphene oxide in design of the electrodes, are valuable to the materials science research. 

Similarly, the insights into the deployment of OPV technology for the charger product-integration 

and investigated geographies, and the solar irradiation model for modeling of intermittently used 

PV devices, are valuable contributions to the field of environmental-impact modeling and future 

development of these technologies.  
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In the case of electrodes, as a very early-stage technology, the challenges to modeling associated 

with emerging-nature noted previously in Chapter 1, Section 1.3.4 (i.e., challenges i – v), includes 

the forecasting of data to scaled-up process materials, evaluation of the results of comparison 

and contribution and function, functional unit and reference flow definition. This latter challenge 

manifests in increased uncertainty over the type of a battery system and operating parameters 

at which the electrodes would be deployed. As these different parameters imply different 

degradation phenomena and reduction in capacity over the lifetime of the electrodes, different 

quantities of material inputs are required to deliver the functional equivalent of energy storage. 

In the case of OPV chargers, the modeling of use-phase associated with uncertain use-frequency 

at which chargers would be deployed, also imposed a challenge to the definition of function, 

functional unit and reference flow.  

Commonality of noted challenge in two studies, prompted further investigation and is a topic of 

following discussion that have broader implications to assessment of emerging technologies in 

LCA.The challenge of defining the function, functional unit and reference flow in LCA could 

appear for both emerging and current technologies but it is deemed to be compounded for 

assessment of emerging technologies (Hetherington et al. 2014). Uncertainties to technology’s 

operating conditions and use-frequency observed in two studies refer to what Cooper (2003) 

identifies as challenges in allocation of reference flow to functional unit. Related to this challenge 

are uncertainties in assumed performance and lifetime of the product, and system dependency 

(i.e., an ability to capture functional interactions with other product systems) (Cooper 2003). In 

our cases, this variability relates to the amount of electodes required to produce the reference 

flow that depends of operating parameters at which electrodes are deployed and the assumed 

lifetime. For OPV chargers, variability relates to how intensively chargers are used. This challenge 

occurs also in one LCA studies reviewed earlier (Table 1-3, chapter 1) indicating that observation 

in our studies are not uncommon in assessment of emerging technologies. The analysis of 

epitaxial graphene oxide reports uncertainty related to final application of technology (Arvidsson 

and Molander 2017), the challenges analogous to the ones noted in the study of electrodes.  

According to Cooper (2003), multiple potential sources of error can arise when the function, 

functional unit, and reference flow do not reflect on the reality of a product system (Cooper 

2003). Besides the challenge to allocation of reference flow to functional unit noted above, errors 

can arise when 1) assigning functional unit to the multiple functions, 2) carrying out (functionally 

equivalent) comparisons for substantially different products where strict focus on functionality 

loses the view of product differences in which the function is delivered, and 3) when functions 

are non-quantifiable (Cooper 2003). Further challenges to functional unit definition relate more 

commonly to emerging technologies. Pourzahedi et al. (2018) identify challenges in the ability to 
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capture complete effects of the new technologies and compare them with conventional 

technologies. Challenges for new technologies may also arise if a functional unit is not able to 

grasp increased functional requirements and consumption trends of particular technology; in 

which case an increasing demand for performance can outcompete the improvements of new 

technologies (Deng and Williams 2011; Kim, Kara, and Hauschild 2017). 

To address the challenge of allocation of reference flow to functional unit in case of electrodes, 

multiple scenarios are conducted to investigate a broader range of possible functional set-ups of 

potential current density and lifetime expectations at which electrodes could be deployed. For 

OPV chargers, to resolve use-frequency uncertainties a break-even analysis was employed that 

allowed to show where OPV chargers would represent an improvement given frequency of use 

while offering an insight if such frequency is feasible given solar irradiation constraints. This led 

to identifying several countries where use of OPV chargers would be plausible. While break-even 

approach is not necessary when PV devices are directly compared (e.g. Tsang, Sonnemann, and 

Bassani 2016), an uninformed assumption of use-frequency is not adequate when a comparison 

is made with other energy systems which PV’s are more likely to substitute in practice (e.g., the 

electricity grid). The break-even approach is less widely used in LCA, but arguably more frequent 

for energy systems. For example, break-even analysis was used to for calculate normative mileage 

for electric cars (Nealer et al. 2015), and energy payback time for photovoltaics (Tsang et al. 2015). 

However, it is argued here that this approach is particularly viable for emerging technologies with 

uncertain use-context. The break-even approach also avoids assuming that a new technology 

replaces an existing one on a one-for-one basis, a potentially inaccurate assumption as it ignores 

practical trends and aspects of human behavior that could be particularly uncertain for emerging 

technologies (Cooper and Gutowski 2018). 

From the limited set of studies analyzed and reviewed in this research, it appears that challenges 

to function, functional unit and reference flow may be shifting from definition of functional unit 

(error 1 according to Cooper (2003)) towards challenges to allocation of reference flow. If such 

observations hold true, as we are going from incumbent to emerging technology assessment, 

modeling efforts might be shifting from life cycle impact assessment phase (to investigate 

multiple functionalities) to the interpretation phase (to test uncertainties related to the 

challenges of allocation of reference flow to functional unit).  

This observation is potentially significant given the desire to better understand how assessment 

of emerging technologies can be credibly carried out, and pointing to the opportunities and 

challenges that are underrepresented in the literature (Pourzahedi et al. 2018; Smith et al. 2019). 

Application of LCA methodology in development of emerging technologies has a great potential 

to improve environmental performance of products (Boothroyd 1994; Tischner et al. 2000), 
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particularly  in domain of energy production and storage. The choice of functional unit in 

particular has significant influence on transferability and comparability of the results (Gargiulo, 

Girardi, and Temporelli 2017), and presents the greatest cause of variability in assessment of 

some emerging systems (Hischier, Salieri, and Pini 2017).  

5.3. Additional considerations 
 

A main limitation of this research, to both use-contexts of LCA, is a small number of studies that 

could undermine or exaggerate the importance of some of the observations made. For use of LCA 

for emerging technology development this could affect the perception of ISO-based LCA to 

adequately deal with new emerging-nature challenges.  Similarly, challenges of combining MCI 

with LCA categories and indicators are likely not conclusive to the aspects we identified. Other 

aspects related to differences in indicator constructs, and non-linearity inherent to MCI 

calculation may also pose challenges. Eventually, future development of CE indicators might re-

design indicators to become more conducive or restricting to their potential use with LCA (Elia 

et al. 2017; Linder et al. 2017; Saidani et al. 2017).  

The second limitation concerns the broadening assumption regarding the use of MCI to 

complement assessment with LCA without providing some more specific characterization to how 

MCI increases the aptitude of sustainability assessment and improve upon socio-economic pillar. 

Broadening as defined in work of CALCAS could be accomplished “by better incorporating 

sustainability aspects and linking to neighbouring models, to improve their significance” 

(Heijungs, Huppes, and Guinee 2009, p7). However, the link between the utility of closing-loops 

inherent to circularity indicators, and the social, economic, and environmental pillars has not 

been extensively investigated. According to Moraga et al. (2019), MCI only partially accounts for 

environmental, economic and social aspects. Integral to this discussion is also the question of 

how MCI, and CE indicators in general, relate to resource categories in LCA such as abiotic 

resource depletion (Steen 2006), or resource indicators of emerging importance such as 

indicators of resource criticality important to the resource access in the economy (Gemechu, 

Sonnemann, and Young 2017; Graedel et al. 2012). In comparison with these categories and 

indicators, the MCI has an absolute range of value, it changes in non-linear fashion, and focuses 

on material flows instead of products, and as a result influences the design and management of 

products differently. To improve and reach high value of MCI requires that material fractions are 

managed to extent that high material yield is recovered and that product design and management 

practices constantly strive to increase that yield towards fully closing the loops. This is 

particularly the case in consideration to increasing “utility” above an industry’s average, that is 

non-linear and changing variable dependent of the current industry best practices. Given the 
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multi-criteria perspective on closing the loops of materials that respond to many possible 

circularity strategies, MCI has potential to influence product design and management beyond 

one-dimensional eco-efficiency improvements targeted by conventional indicators in LCA. Given 

that focus on product eco-efficiency in pursuit of sustainable production and consumption is, at 

best, limited (Figge et al. 2017), considering MCI along other resources indicators in LCA could 

represent an added value.  

As a third consideration, in the context of the two use-contexts explored, is that the current 

research does not try to fill in the “gap” between LCA application to emerging technology 

assessment and use with CE-indicators. Assessment of circularity was not considered for 

emerging technologies, and circularity indicators investigated on the basis of how they support 

emerging technology assessment. 

Lastly, it is worthwhile pointing out that two general limitations or critiques of LCA itself are 

relevant, involving the technocratic view and limited outlook on necessity of production 

(Moltesen and Bjørn 2018). These concerns are particularly pervasive in the current research 

where the underlying context presumes necessary role of emerging technologies in a sustainable 

energy transition. LCA is a useful tool for the assessment of technologies and comparison of pre-

determined alternatives, but it does not look into the necessity and importance of the services 

technology delivers. This applies to energy, as to any other commodity, and its use is unlikely to 

be addressed to the extent needed for sustainability by solely improving technological efficiency. 

An improvement of eco-efficiency of the service could lead to the so-called “rebound-effect”, 

where with increased availability and affordability of technology as a consequence of 

technological improvement, more of it is used. The common example within energy domain is 

the use of electricity for lighting that despite significant technological improvements has 

remained constant (Tsao and Waide 2010). To tackle the rates of resource consumption and 

pressing issues of climate change it is important that social, political and institutional 

restructuring takes place. Within, the role and reliance on technology to address current 

environmental problems and material provision will be more or less pronounced. Less dramatic 

reforms are proposed in a steady-state and a green economy where technology, and particularly 

renewable energy technology plays a key role (Daly 1973; UNEP 2011). A more radical redefinition 

of socio-economic model and less technocratic view is included in paradigm of de-growth (Daly 

1974; Jackson 2009; UNEP 2011; Victor 2012). In a circular economy, seen as an “intermediate” 

target to sustainability, transitions involve innovation in new technologies, optimisation of 

existing systems, and technology indirectly affecting the system (i.e., information technology) 

(Potting et al. 2017). Depending on what role technology plays out in sustainable development, 

so will LCA given its utility to inform new and existing technologies. 
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5.4. Conclusions and recommendations for future work 
 

Several recommendations are provided for future work. 

First, future research could explore constraints and opportunities of use of CE-indicators with 

assessment methods and LCA in particular. This includes understanding methodological aspects 

and resolving potential trade-offs in their joint use. Likely, simpler, single-criterion CE indicators 

are more conducive to coupling but they are limited to a range of resource strategies (or life-cycle 

stages) to which they can be applied, while more complex index-based indicators such as MCI 

require more detail examination to identify these limitations and opportunities. It is particularly 

worthwhile considering how CE indicators complement these methods in terms of “broadening” 

and “deepening” for sustainability, particularly as their contribution to social, environmental and 

economic pillars of sustainability is still fairly unexplored (Linder et al. 2017; Moraga et al. 2019; 

Pauliuk 2018). It would be worthwhile considering if circularity indicators encompass some of 

the aspect of “deepening” LCA, another condition noted to improve range of sustainability 

contribution. It is noted that “the primary physical (or “environmental”) mechanisms within the 

system are deepened to include social and economic mechanisms” (Heijungs, Huppes, and Guinee 

2009, p23).  

The second recommendation, also drawing from stated limitations of this work, constitutes the 

exploration of CE-indicators for their use for emerging technology development, thus bridging 

the “gap” between broadening approaches explored in this research. To that aim, characterization 

of circularity indicators at earlier stages of technology readiness level could be an interesting 

area of future research. The potential of existing indicators to fulfil that role or consideration of 

new indicators can be explored. Saidani et al. (2017) mentions increasing development of “nano-

level” circularity indicators focusing on circularity of components and materials, rather than 

products.  

As the third recommendation, we call for a more careful and precise use of the terminology like 

“ex-ante”, “prospective”, and “anticipatory” in emerging technology LCAs, and better framing of 

these terms to encourage their adequate use. This recommendation is based on observations 

taken from the scoping review of LCA studies (Table 1-2), in which many studies do not identify 

with the new terminology, but also from our own experience. Neither the study on electrodes nor 

on OPV chargers assumed either of the three terms. While “ex-ante” is perhaps the most suitable 

description, it is not exclusively used for analysis of emerging technologies (Buyle et al. 2019). In 

the study of OPV chargers, priority was given to characterization of study as “consequential”, 

which was arguably more relevant to use to imply a study delimitation. In the study of electrodes, 
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“ex-ante” terminology was not suitable as a product benchmark was not incumbent technology 

as this is mandated under this categorization (Cucurachi et al. 2018). For assessment of 

electrodes, the choice of comparison with another technology (at the pilot, rather than mature 

technology) was more meaningful in particular case, and considering researcher’s interest. Better 

classification of emerging-type LCAs and subsequent use of the terms could allow for better 

organization of the current and future knowledge in this area through literature reviews of 

relevant LCA studies (Arvidsson et al. 2018; Cucurachi et al. 2018). Clear differentiation between 

emerging-type LCAs is also needed to prevent that term is used as originally introduced. For 

example, Tsang et al. (2018) refer to LCA as “anticipatory”, although the study does not include 

uncertainty and stakeholder analysis associated with the particular classification (Wender et al. 

2014). While, definition among different classifications has been to a good degree laid out for 

“anticipatory” LCA (Wender et al. 2012), further classification could be made for “prospective” 

(Arvidsson et al. 2018), and “ex-ante” approches (Cucurachi et al. 2018). An alternative to naming 

considerations is declaring the technology readiness level in LCA studies as another plausible 

way to organize studies that assess emerging technologies and their needs in a consistent manner 

(Gavankar, Suh, et al. 2015). 

The last recommendation coming from this work is directed to materials scientists who are urged 

to consider opportunities at different technology maturity levels (from conception to application 

of technology) where specific environmental improvements can be made and LCA can be used to 

aid technology development process. At the very early stage of technology development, 

functional optimization can go in hand with optimization of process steps, where selection, and 

substitution of materials and processes can be considered. For example, pinpointing hotspot 

materials within the process can create an opportunity for less impactful material substitutes, 

while testing how reduced quantities of hotspot material affect device functionality can inform 

the most optimal setup of functionality and impact reduction. To identify these opportunities, 

an attributional approach in LCA is more appropriate as it tries to estimate impact of technology 

for its contribution to global impact reservoirs, hence giving an insight to how “good” is the 

technology. The next step in product design should be to consider how the technology is most 

suitably applied in various product integrations and what technology does it substitute. Good 

environmental performance is a relative aspect as any product uses materials and energy to be 

extracted, refined, used and disposed of. Similar to what we demonstrated in our case study on 

OPV chargers, such investigation is more appropriate to be carried out using consequential LCA 

approach, which tries to estimate impacts given the context of application, and considers the 

market mechanism and both direct and indirect impacts associated with the new technology 

(Ekvall and Weidema 2004).  
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As materials research evolves, particularly to address sustainability challenges of energy supply, 

a viable, comprehensive, and science-based assessment tools will be needed to guide their 

development and use in view of influence on the environment and benefits to the society, while 

ensuring that the positives outweigh the negatives and the best available choices are prioritized. 

A circular economy and a progress in development of new technologies alike, need to ensure that 

the assumptions of environmental improvements through more circular flows of resources, or 

new technologies that enable renewable energy use, are grounded in life cycle thinking and multi-

criteria-based decisions. As it was discussed and demonstrated in this work, LCA is a viable tool 

to meet these challenges given that its capabilities are extended and opportunities for application 

seized. In a pursuit of sustainability knowledge, through interdisciplinary lens of materials 

sciences, circular economy, and LCA, we attempted to contribute to these efforts. 
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APPENDICES 

Annex 1: Supplementary Information - Life cycle assessment of emerging Ni-Co 

hydroxide charge storage electrodes: impact of graphene oxide and synthesis route 
 

This document provides all the background information of life cycle assessment carried 

out to compare three electrodes based on nickel-cobalt hydroxides, abbreviated as 

NCED, NCED-rGO and NCCP. This supplementary document includes the derivation of 

stoichiometric representation of active electrode materials which are used as basis to 

establishing some of the inventory data, the inventory itself normalized per 1g of 

electrode and functional unit of the study, and data adaptations from other studies 

modeled as a foreground process. The document further outlines all the absolute values 

of life cycle impact assessment and choice of background data from the Ecoinvent 

database given for the parameters for the functional unit and alternative parameters 

considered in scenario analysis. 

Table S3-1 

Calculation of stochiometric formulae for NCED and NCED-rGO, and NCCP electrode, 

which is used to establish use of nickel and cobalt nitrates  

Electrodeposition 
reaction 
(NCED and NCED-rGO) 

Ni(NO3)2·6H2O →Ni2+ + 6H2O + 2NO3
-  

Co(NO3)2·6H2O →Co2+ + 6H2O + 2NO3
-  

(Nickel, cobalt and water probably in the complex form of 
[Ni(H2O)6]

2+/[Co(H2O)6]
2+) 

When cathodic current is applied (input of electrons), at the surface 
of the conductive substrate: 
NO3

- + 7H2O + 8 e- → NH4
+ + 10OH- 

There are many possible mechanisms for this reaction, we consider 
this one found in (Ash, Paramguru, and Mishra 2010; Delmas, Faure, 
and Borthomieu 1992)  
2Ni2+ + 4Co2+ + 12OH- + 2(NO3

-)2- + 3H2O →6Ni0.33Co0.66(OH)2·(CO3
2-, 

2NO3
-)0.33·(H2O)0.5 

In this case, since there is an excess of nitrate ions instead of 
carbonates, this is the preferential anion that gets intercalated.   
 

Coprecipitation reaction 
(NCCP) 

Ni(NO3)2·6H2O →Ni2+ + 6H2O + 2NO3
-  

Co(NO3)2·6H2O →Co2+ + 6H2O + 2NO3
-  

(Nickel, cobalt and water probably in the complex form of 
[Ni(H2O)6]

2+/[Co(H2O)6]
2+) 

Addition of NaOH induces 2 Simultaneous reactions: 
(1) 2Co2++ H2O2 → 2Co3+ + 2OH- ; redox reaction consisting of two 
semi reactions: 
 (1.1) H2O2 + 2e- → 2OH- Reduction reaction 
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 (1.2) Co2+ → Co3+ + e- 
(2) 2Ni2+ + 4Co3+ + 12OH- + 2(CO3

2-, 2NO3
-) + 3H2O 

→6Ni0.33Co0.66(OH)2·(CO3
2-, 2NO3

-)0.33·(H2O)0.5 
(3) Na+ + NO3

- →) Na+NO3
- in solution. 

Note that water and carbonates come from the solution in order 
maintain charge neutrality and occupy the remaining insterslab 
space. Carbonates anions come into solution from atmospheric CO2 
with which a spontaneous exchange occurs (Ash et al. 2010; Delmas 
et al. 1992) 
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Table S3-2 

Life cycle inventory quantities of NCED, NCED-rGO and NCCP, including material and energy inputs and waste outputs 

indicated per 1 g of active material (AM) and per functional unit (FU) 

  NCED  NCED-rGO NCCP  
Flows (original naming from Ecoinvent unless modeled as a 
foreground system) 
   Unit  

Amount 
per 1g AM 

Amount 
per FU 

Amount 
per 1g AM 

Amount 
per FU 

Amount 
per 1g AM 

Amount 
per FU 

Data source 

nickel nitrate hexahydrate g 8.30E-01 3.16E-02 7.90E-01 8.50E-03 7.60E-01 6.94E-03 Modeled as foreground 

cobalt nitrate hexahydrate g 1.66E+00 6.33E-02 1.58E+00 1.70E-02 1.54E+00 1.41E-02 Modeled as foreground 

graphene oxide g 0.00E+00 0.00E+00 1.00E+00 1.08E-02 0.00E+00 0.00E+00 Modeled as foreground 

water, ultrapure g 1.15E+03 4.39E+01 1.20E+03 1.29E+01 2.45E+02 2.24E+00 Ecoinvent 

ethanol, without water, in 99.7% solution state, from 
ethylene g 4.89E+01 1.86E+00 4.89E+01 5.26E-01 2.46E+02 2.25E+00 Ecoinvent 

sodium hydroxide, without water, in 50% solution state g 0.00E+00 0.00E+00 0.00E+00 3.44E-02 4.96E-01 4.53E-03 Ecoinvent 

hydrogen peroxide, without water, in 50% solution state g 0.00E+00 0.00E+00 0.00E+00 4.01E+00 2.90E-01 2.65E-03 Ecoinvent 

polytetrafluoroethylene g 0.00E+00 0.00E+00 0.00E+00 4.29E-04 5.00E-02 4.56E-04 Modeled as foreground 

carbon black g 0.00E+00 0.00E+00 0.00E+00 7.38E-05 1.50E-01 1.37E-03 Ecoinvent 

steel, chromium steel 18/8 g 3.20E+00 1.22E-01 3.20E+00 8.50E-03 3.20E+00 2.92E-02 Ecoinvent 

electricity, medium voltage Wh 3.33E+02 1.27E+01 3.72E+02 1.70E-02 1.47E+02 1.34E+00 Ecoinvent 

transport, freight train t/km 3.93E-02 1.50E-03 3.99E-02 1.08E-02 1.90E-01 1.73E-03 Ecoinvent 

transport, freight, lorry 16-32 metric ton, EURO6 t/km 1.32E-02 5.04E-04 6.86E-03 1.29E+01 6.34E-02 5.78E-04 Ecoinvent 
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Table S3-3 (a-d) 

Processes modeled as foreground systems including: a) nickel nitrate hexahydrate, b) 

cobalt nitrate hexahydrate, c) graphene oxide, d) polytetrafluoroethylene 

a) 

Nickel nitrate hexahydrate 
Estimated from Ullmann’s Encyclopedia 
of Industrial Chemistry (Hoydonckx et al. 
2007) 

Flow Unit Amount per 1kg Data source 

water, ultrapure g 3.10E+02 Ecoinvent 

nickel, 99.5% g 2.02E+02 Ecoinvent 

electricity, medium voltage kJ 8.25E+02 Ecoinvent 

nitric acid, without water, in 50% solution state g 4.33E+02 Ecoinvent 

transport, freight train t*km 3.81E-01 Ecoinvent 

transport, freight, lorry 16-32 metric ton, EURO6 t*km 1.27E-01 Ecoinvent 

 

b) 

Cobalt nitrate hexahydrate 
Estimated from Ullmann’s Encyclopedia 
of Industrial Chemistry (Hoydonckx et al. 
2007)   

Flow Unit Amount per 1kg Data source 

cobalt g 2.02E+02 Ecoinvent 

water, ultrapure g 2.48E+02 Ecoinvent 

nitric acid, without water, in 50% solution state g 8.66E+02 Ecoinvent 

transport, freight, lorry 16-32 metric ton, EURO6 t*km 2.14E-01 Ecoinvent 

transport, freight train t*km 6.41E-01 Ecoinvent 

 

c) 

Graphene oxide Sourced from (Cossutta et al. 2017)  

Flow Unit Amount per 1kg Data source 

lime, hydrated, loose weight g 2.28E+04 Ecoinvent 

graphite, battery grade g 7.12E+02 Ecoinvent 

potassium permanganate g 2.14E+03 Ecoinvent 

hydrogen peroxide, without water, in 50% solution state g 1.24E+03 Ecoinvent 

electricity, medium voltage Wh 2.78E+03 Ecoinvent 

water, ultrapure g 2.24E+05 Ecoinvent 

sulfuric acid g 3.02E+04 Ecoinvent 
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d) 

Polytetrafluoroethylene Sourced from (Jungbluth et al. 2012) 

Flow Unit 
Amount per per 1 
kg 

Data 
source 

refinery sludge kg 4.39E+00 Ecoinvent 

chlorodifluoromethane kg 1.81E+03 Ecoinvent 

municipal solid waste kg 1.22E+00 Ecoinvent 

transport, freight, lorry 7.5-16 metric ton, EURO6 t*km 2.30E-01 Ecoinvent 

heat, district or industrial, natural gas MJ 3.75E+04 Ecoinvent 

heat, district or industrial, other than natural gas MJ 4.68E+03 Ecoinvent 

chemical factory, organics Item(s) 4.00E-07 Ecoinvent 

 

 

Table S3-4 

Functional parameters of capacity and cycling stability (number of charge-discharge 

cycles) at current density of 1 Ag-1, 4 Ag-1 and 10 Ag-1, and capacity fade of 20 and 30%. 

  NCED NCED-rGO NCCP 

  Capacity 

Current density (A/g) mAh/g mAh/g mAh/g 

1 30 96 121 

2 26 58 114 

4 22 49 102 

10 15 43 96 

  Cycling stability 

Capacity fade (%) #cycles #cycles #cycles 

20 972 1676 1006 

30 1804 2557 2048 

 

Table S3-5 

Absolute values of NCED, NCED-rGO, NCCP and scaled-up scenario for NCED-rGO 

involving efficient use of graphene oxide.  

Impact categories & indicators Reference unit NCED NCED-rGO NCCP 
NCED-rGO 
scaled-up 

Marine ecotoxicity kg 1,4-DB eq 2.20E-04 6.60E-05 4.37E-05 5.28E-05 

Terrestrial ecotoxicity kg 1,4-DB eq 1.39E-06 4.50E-07 2.74E-07 2.14E-07 

Freshwater ecotoxicity kg 1,4-DB eq 2.20E-04 6.71E-05 4.42E-05 5.44E-05 

Fossil depletion kg oil eq 4.52E-03 1.44E-03 2.56E-03 1.09E-03 
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Human toxicity kg 1,4-DB eq 6.01E-03 1.85E-03 1.23E-03 1.36E-03 

Water depletion m3 7.63E-02 2.42E-02 1.23E-02 1.96E-02 

Climate Change kg CO2 eq 1.19E-02 3.97E-03 4.03E-03 2.80E-03 

Ionising radiation kg U235 eq 3.28E-03 1.06E-03 4.20E-04 8.50E-04 

Metal depletion kg Fe eq 1.91E-03 1.18E-03 4.80E-04 4.90E-04 

Cumulative energy demand MJ 2.81E-01 8.94E-02 1.27E-01 6.96E-02 

 

Table S3-6 (a-c) 

Relative impacts of NCED-rGO in comparison with NCED and NCCP when considering 

different combinations of current densities including 1, 4 and 10 A/g, and criteria for 

capacity fade of 20% and 30%. Percentage value indicate relative difference in impact for 

each category. Scenario abbreviation refer to combination of current density (CD) and 

capacity fade (CF): S-0 – CD 1 A·g-1, CF 20% (baseline, depicted in Figure 4 and 5); S-1 – 

CD 4 A·g-1, CF 20%; S-2 – CD 10 A·g-1, CF 20%; S-3 – CD 1 A·g-1, CF30%; S-4 – CD 4 A·g-1, CF 

30%; S-5 – CD 10 A·g-1, CF 30%.Impacts of NCED-rGO are lower for percentage values 

preceded by the minus sign and are higher for positive values. 

a) 

    NCED 

Impact categories 
Reference 
unit S-1 S-2 S-3 S-4 S-5 

Marine ecotoxicity kg 1,4-DB eq 
3.00E-
04 

4.40E-
04 

1.40E-
04 

1.90E-
04 

2.80E-
04 

Terrestrial ecotoxicity kg 1,4-DB eq 
1.90E-
06 

2.79E-
06 

9.02E-
07 

1.23E-
06 

1.80E-
06 

Freshwater ecotoxicity kg 1,4-DB eq 
3.10E-
04 

4.50E-
04 

1.40E-
04 

2.00E-
04 

2.90E-
04 

Fossil depletion kg oil eq 
6.16E-
03 

9.05E-
03 

2.92E-
03 

3.99E-
03 

5.85E-
03 

Human toxicity kg 1,4-DB eq 
8.19E-
03 

1.20E-
02 

3.88E-
03 

5.30E-
03 

7.77E-
03 

Water depletion m3 
1.04E-
01 

1.53E-
01 

4.93E-
02 

6.73E-
02 

9.86E-
02 

Climate Change kg CO2 eq 
1.63E-
02 

2.39E-
02 

7.71E-
03 

1.05E-
02 

1.54E-
02 

Ionising radiation kg U235 eq 
4.48E-
03 

6.57E-
03 

2.12E-
03 

2.89E-
03 

4.25E-
03 

Metal depletion kg Fe eq 
2.60E-
03 

3.86E-
03 

1.23E-
03 

1.68E-
03 

2.47E-
03 

Cumulative energy demand MJ 
3.83E-
01 

5.62E-
01 

1.82E-
01 

2.48E-
01 

3.63E-
01 

b) 

    NCED-rGO 
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Impact categories 
Reference 
unit S-1 S-2 S-3 S-4 S-5 

Marine ecotoxicity kg 1,4-DB eq 
1.20E-
04 

1.30E-
04 

3.33E-
05 

6.53E-
05 

7.44E-
05 

Terrestrial ecotoxicity kg 1,4-DB eq 
7.94E-
07 

9.05E-
07 

2.28E-
07 

4.45E-
07 

5.08E-
07 

Freshwater ecotoxicity kg 1,4-DB eq 
1.20E-
04 

1.30E-
04 

3.39E-
05 

6.64E-
05 

7.57E-
05 

Fossil depletion kg oil eq 
2.54E-
03 

2.90E-
03 

7.30E-
04 

1.42E-
03 

1.62E-
03 

Human toxicity kg 1,4-DB eq 
3.25E-
03 

3.71E-
03 

9.30E-
04 

1.83E-
03 

2.08E-
03 

Water depletion m3 
4.26E-
02 

4.86E-
02 

1.22E-
02 

2.39E-
02 

2.73E-
02 

Climate Change kg CO2 eq 
7.01E-
03 

7.98E-
03 

2.01E-
03 

3.93E-
03 

4.48E-
03 

Ionising radiation kg U235 eq 
1.87E-
03 

2.13E-
03 

5.40E-
04 

1.05E-
03 

1.20E-
03 

Metal depletion kg Fe eq 
2.07E-
03 

2.36E-
03 

5.90E-
04 

1.16E-
03 

1.33E-
03 

Cumulative energy demand MJ 
1.58E-
01 

1.80E-
01 

4.52E-
02 

8.84E-
02 

1.01E-
01 

c) 

    NCCP 

Impact categories 
Reference 
unit S-1 S-2 S-3 S-4 S-5 

Marine ecotoxicity kg 1,4-DB eq 
4.67E-
05 

4.96E-
05 

2.35E-
05 

2.88E-
05 

3.06E-
05 

Terrestrial ecotoxicity kg 1,4-DB eq 
2.92E-
07 

3.11E-
07 

1.51E-
07 

2.43E-
07 

2.59E-
07 

Freshwater ecotoxicity kg 1,4-DB eq 
4.72E-
05 

5.02E-
05 

2.38E-
05 

2.88E-
05 

3.06E-
05 

Fossil depletion kg oil eq 
2.73E-
03 

2.90E-
03 

1.50E-
03 

1.82E-
03 

1.93E-
03 

Human toxicity kg 1,4-DB eq 
1.31E-
03 

1.40E-
03 

6.50E-
04 

8.00E-
04 

8.50E-
04 

Water depletion m3 
1.31E-
02 

1.39E-
02 

6.99E-
03 

8.40E-
03 

8.92E-
03 

Climate Change kg CO2 eq 
4.30E-
03 

4.57E-
03 

2.34E-
03 

2.90E-
03 

3.09E-
03 

Ionising radiation kg U235 eq 
4.40E-
04 

4.70E-
04 

2.40E-
04 

3.00E-
04 

3.20E-
04 

Metal depletion kg Fe eq 
5.20E-
04 

5.50E-
04 

2.60E-
04 

3.10E-
04 

3.30E-
04 

Cumulative energy demand MJ 
1.36E-
01 

1.44E-
01 

7.44E-
02 

9.04E-
02 

9.61E-
02 
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Annex 2: Supplementary Information - Life cycle assessment of organic 

photovoltaic charger use in Europe: the role of product use intensity and irradiation 
 

This supplementary document contains background data for: 1) selection of the representative 

European countries to be investigated for context of OPV charger use, 2) development of method 

to indicate unconstrained number of days, based on irradiation profiles of selected countries, 

and 3) absolute values related to LCIA analysis, and process selection in conversion of pre-

existing data published in Tsang et al (2015 & 2016), from attributional Ecoinvent v2.2 to 

consequential v3.3 (Tsang et al. 2015, 2016).  

 

Table S4-1 

Greenhouse gas (GHG) emission, average yearly irradiation, and electricity mix composition for 

23 European countries 

European IEA 
member 
states 

Average 
yearly 
irradiati
on[1] 
kWh/m²
yr 

GHG 
emission
s of  
electricit
y mix[2] 
g CO2-eq 

Electricity mix, Data from 2015[3] 
C: Coal, O: Oil, G: Gas, N: Nuclear, RE: Renewables, H: Hydro, B: 
Biofules, W: Wind, G: Geothermal, S: Solar 

Austria 1210 111.00 C: 8%,O: 1.4%, G: 13%, N: 0%, RE: 77.5%, H: 60%, B: 8%, W: 8%, S: 1.5%, 

Belgium 1060 149.00 C: 6%,O: 0.3%, G: 33%, N: 38%, RE: 22%, H: 0%, B: 10%, W: 8%, S: 4%, 

Czech 
Republic 

1170 609.00 C: 53%,O: 0%, G: 3%, N: 32%, RE: 12%, H: 2%, B: 6%, W: 1%, S: 3%, 

Denmark NaN 15.00 C: 25%,O: 1%, G: 6%, N: 0%, RE: 68%, H: 0%, B: 17%, W: 49%, S: 2%, 

Estonia NaN No data C: 82%,O: 1%, G: 1%, N: 0%, RE: 16%, H: 0%, B: 9%, W: 7%, S: 0%, 

Finland NaN 104.00 C: 8%,O: 0%, G: 8%, N: 34%, RE: 44%, H: 24%, B: 17%, W: 3%, S: 0%, 

France 1460 71.00 C: 2%,O: 0%, G: 4%, N: 78%, RE: 16%, H: 10%, B: 1%, W: 4%, S: 1%, 

Germany 1140 803.00 C: 44%,O: 1%, G: 10%, N: 14%, RE: 30%, H: 3%, B: 9%, W: 12%, S: 6%, 

Greece 1680 827.00 C: 43%,O: 11%, G: 18%, N: 0%, RE: 30%, H: 12%, B: 1%, W: 9%, S: 8%, 

Hungary 1250 458.00 C: 19%,O: 0%, G: 17%, N: 52%, RE: 12%, H: 1%, B: 8%, W: 2%, S: 1%, 

Ireland 960 No data C: 17%,O: 1%, G: 44%, N: 0%, RE: 28%, H: 3%, B: 2%, W: 23%, S: 0%, 

Italy 1500 467.00 C: 16%, O: 5%, G: 39%, N: 0%, RE: 39%, H: 16%, B: 8%, W: 5%, Geo: 
2%%, S: 8%, 

Luxembourg 1130 758.00 C: 0%,O: 0%, G: 63%, N: 0%, RE: 37%, H: 7%, B: 14%, W: 8%, S: 8%, 

Netherlands 1070 587.00 C: 39%,O: 1%, G: 42%, N: 4%, RE: 14%, H: 0%, B: 6%, W: 7%, S: 1%, 

Norway 980 21.00 C: 0%,O: 0%, G: 2%, N: 0%, RE: 98%, H: 96%, B: 0%, W: 2%, S: 0%, 

Poland 1100 1.00 C: 81%,O: 1%, G: 4%, N: 0%, RE: 14%, H: 1%, B: 6%, W: 7%, S: 0%, 

Portugal 1790 565.00 C: 29%,O: 3%, G: 21%, N: 0%, RE: 49%, H: 17%, B: 7%, W: 23%, S: 2%, 

Slovakia 1200 33.00 C: 13%,O: 1%, G: 6%, N: 57%, RE: 23%, H: 15%, B: 6%, W: 0%, S: 2%, 
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Spain 1860 435.00 C: 20%,O: 6%, G: 19%, N: 21%, RE: 36%, H: 10%, B: 3%, W: 18%, S: 5%, 

Sweden NaN 23.00 C: 1%,O: 0%, G: 0%, N: 35%, RE: 64%, H: 47%, B: 7%, W: 10%, S: 0%, 

Switzerland 1240 10.00 C: 0%,O: 0%, G: 1%, N: 35%, RE: 64%, H: 58%, B: 4%, W: 0%, S: 2%, 

United 
Kingdom 

1030 696.00 C: 23%,O: 1%, G: 30%, N: 21%, RE: 26%, H: 2%, B: 10%, W: 12%, S: 2%, 

[1] Extracted from https://irena.masdar.ac.ae/GIS/?map=529# for capitals, for countries with different 
climate more than one city was chosen (Austria, Croatia, France, Germany, Italy, Poland, Portugal, Spain) 
[2] Calculated via openLCA 1.6.3, Ecoinvent 3.3 consequ., LCIA methods 1.5.6, ReCiPE, Climate change, 
Process country-specific "market for electricity, low voltage" 
[3] IEA website (https://www.iea.org/countries/membercountries/) country-specific key energy data 

 

Table S4-2 

Monthly irradiation of investigated countries (in kWh/m2) 

 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Greece 63 84 139 173 183 225 222 207 139 105 67 57 

Spain 83 98 155 195 225 233 248 211 170 110 69 64 

Germany 49 94 159 241 296 311 300 282 206 138 62 45 

NL 19 39 72 131 168 183 142 125 101 57 21 14 

France 107 118 172 206 244 264 289 270 211 162 112 97 

Norway 7 22 74 136 159 182 165 125 74 29 6 0 

 

Table S4-3 

Direct material and energy consumption for producing 10 Wp OPV charger based on Tsang et al 

(2015; 2016) 

Materials Quantity Unit OPV component 

PET 273 g Casing material 

Polyester 273 g Casing material 

PET 26.6 g Lamination 

PET 14.8 g Substrate 

Florine-doped tin oxide solution 0.36 g Transport electrode 

Molybdenum oxide 0.048 g Hole transport layer 

PCBM 0.041 g Active layer 

P3HT 0.047 g Active layer 

Chlorobenzene 1.532 g Solvent for active layer 

https://irena.masdar.ac.ae/GIS/?map=529
https://www.iea.org/countries/membercountries/
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Aluminium 0.191 g Back electrode 

Lithium Fluoride 0.012 mg Back electrode 

    
Energy Quantity Unit Process 

Electricity 1.026 MJ Annealing 

Electricity 0.512 MJ Printing of panel 

Electricity 0.017 MJ Lamination of panel 

 

 

Figure S4-1. Extended comparison between GHG emissions per 1kWh low-voltage electricity and 

yearly averaged irradiation of 17 countries (out of 23 for which data was available). The data is 

derived from Table S4-1. 

 

Table S4-4 

Absolute impact of production of 10Wh of grid electricity in six countries, indicated in Ecoinvent 

as “market for electricity, low voltage  | conseq. long-term, U“ 

 

0
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900 1400 1900
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CO2-Eq/kWh) 
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United Kingdom Spain
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Impact category 
Reference 
unit 

Germany Spain France Greece NL Norway 

Agricultural land occupation m2*a -3.58E-03 -1.18E-04 -9.25E-05 -2.57E-04 -1.23E-03 1.40E-05 

Climate Change kg CO2 eq 8.03E-03 4.35E-03 7.06E-04 8.27E-03 5.87E-03 2.14E-04 

Fossil depletion kg oil eq 1.76E-03 1.08E-03 1.77E-04 2.84E-03 1.66E-03 4.08E-05 

Freshwater ecotoxicity kg 1,4-DB eq 7.55E-04 2.37E-04 1.95E-04 5.85E-04 3.37E-04 1.76E-04 

Freshwater eutrophication kg P eq 2.13E-05 2.32E-06 7.61E-07 2.58E-05 4.16E-06 3.08E-07 

Human toxicity kg 1,4-DB eq 8.32E-03 1.82E-03 9.41E-04 1.58E-02 1.32E-03 5.94E-04 

Ionising radiation kg U235 eq -1.83E-04 2.31E-03 6.22E-03 2.06E-04 7.08E-04 5.94E-06 

Marine ecotoxicity kg 1,4-DB eq 6.68E-04 2.08E-04 1.70E-04 5.41E-04 2.93E-04 1.52E-04 

Marine eutrophication kg N eq 4.51E-06 1.05E-06 5.89E-07 5.71E-06 1.05E-06 7.48E-08 

Metal depletion kg Fe eq 3.70E-04 2.17E-04 1.79E-04 1.98E-04 2.26E-04 1.36E-04 

Natural land transformation m2 4.42E-08 3.67E-07 7.54E-08 3.73E-07 4.69E-07 1.59E-07 

Ozone depletion kg CFC-11 eq 3.62E-11 4.88E-10 9.63E-10 3.93E-10 1.87E-10 1.51E-11 

Particulate matter formation kg PM10 eq 3.10E-07 1.08E-05 1.60E-06 1.46E-05 1.09E-06 6.07E-07 

Photochemical oxidant 
formation 

kg NMVOC 1.34E-05 1.43E-05 2.06E-06 1.31E-05 7.73E-06 5.58E-07 

Terrestrial acidification kg SO2 eq 9.22E-06 2.97E-05 3.51E-06 3.91E-05 6.15E-06 9.58E-07 

Terrestrial ecotoxicity kg 1,4-DB eq 3.32E-07 2.08E-07 1.29E-07 2.55E-07 1.51E-07 8.06E-08 

Urban land occupation m2*a 3.51E-05 3.64E-05 7.35E-06 1.81E-05 3.12E-05 2.58E-06 

Water depletion m3 3.87E-02 3.69E-02 4.60E-02 6.22E-02 6.76E-03 1.06E-02 

 

 

Table S4-5 

Absolute impact for production of 10Wp OPV solar charger 

Impact category Reference unit 

 
Agricultural land occupation m2*a 7.39E-01 

Climate Change kg CO2 eq 3.89E+00 

Fossil depletion kg oil eq 1.14E+00 

Freshwater ecotoxicity kg 1,4-DB eq 5.84E-02 

Freshwater eutrophication kg P eq 3.67E-04 
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Human toxicity kg 1,4-DB eq 1.07E+00 

Ionising radiation kg U235 eq -1.47E-01 

Marine ecotoxicity kg 1,4-DB eq 4.97E-02 

Marine eutrophication kg N eq 7.19E-04 

Metal depletion kg Fe eq 4.34E-01 

Natural land transformation m2 4.97E-04 

Ozone depletion kg CFC-11 eq 2.52E-07 

Particulate matter formation kg PM10 eq 4.97E-03 

Photochemical oxidant formation kg NMVOC 1.96E-02 

Terrestrial acidification kg SO2 eq 8.10E-03 

Terrestrial ecotoxicity kg 1,4-DB eq 3.59E-03 

Urban land occupation m2*a 2.02E-02 

Water depletion m3 -3.59E+00 
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Annex 3: Life cycle assessment of the production of surface-active alkyl 

polyglycosides from acid-assisted ball-milled wheat straw compared to the 

conventional production based on corn-starch 
 

Abstract 

Production of alkyl polyglycosides from mechanocatalytic depolymerization of wheat straw is a 

promising route because of the use of an available bio-based feedstock. This study aims to verify 

the environmental benefit of this process in comparison with a reference process that produces 

APGs from corn starch-based glucose. Life cycle assessment methodology is used to compare 

both production routes.  The results have shown that the new production route based on wheat 

straw generate lower environmental impacts compared to the reference process because of the 

use of wheat straw instead of corn starch-based glucose and the energy recovery from the by-

product lignine that meets most of energy demand of the process. The LCA results also show 

that the production of fatty alcohol dominates the life cycle impacts of APGs. Environmental 

impacts are sensitive to the source of the fatty alcohol (from palm kernel or coconut oil. 

 

Introduction 

Surfactants are chemicals widely used in cosmetic and detergent industries. Sustainability and 

user-toxicity concerns have prompted shifting demand from synthetic petrochemical to overall 

safer and bio-based surfactants. In particular, the plant-based surfactants alkyl polyglycosides 

(APGs) have been particularly promoted (von Rybinski and Hill 1998). Favorable properties such 

as good wettability, foam production, and cleaning ability have been indicated in application as 

cleaning agents, as well as dermatological and ocular safety for their use in cosmetics (Pantelic 

2014). Due to their perceived environmental safety and compliance to the principles of Green 

Chemistry, APGs have been considered as green chemicals, and even some APGs have been 

granted the status of pharmaceutical excipients (Anastas and Eghbali 2010; Guilbot et al. 2013; 

Pantelic 2014). 

Although APGs are bio-based and considered better for the environment in comparison to 

synthetic surfactants, they are not emission free. Materials and energy inputs needed, and 

process waste outputs released in manufacture of APGs, result in environmental impacts. In 

particular, agricultural activities carried out to produce necessary raw materials are particularly 

impactful. Currently, APGs are synthesized via the Fischer glycosidation, which comprises a 

reaction between plant-based fatty alcohols (typically sourced from palm or coconut oil) and 
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carbohydrates in the presence of an acid catalyst. Carbohydrates used are generally refined syrup 

or powder like glucose coming from corn starch hydrolysis. Cultivation of those cultures are all 

man-made and require inputs of water, fertilizers, pesticides, harvesting, transportation and 

other energy and chemical intensive activities.  

A newly developed process for manufacturing APGs surfactants using wheat straw could 

substitute traditional corn-starch-based glucose (Boissou et al. 2015). In acid-assisted ball milling 

process, APGs are also synthesized via the Fischer glycosidation. However, carbohydrates used 

in this new process are reactive polysaccharide oligomers coming from acid- catalysed milling of 

lignocellulosic raw materials. This reactive biomass is directly used in synthesis with fatty 

alcohols without separation or purification steps. In one hand, this new process allows the 

valorisation of all polysaccharides available in lignocellulosic raw materials like cellulose and 

hemicelluloses. This results in the production of alkylpolyglycosides mixture of 

alkylpolyglucosides and alkylpolypentosides (mainly alkylpolyxylosides). It has been proven that 

the presence of alkylpolypentosides is responsible for the improved chemical and physical 

properties and lower toxicity displayed (Marinkovic and Estrine 2010; Martel et al. 2010). On the 

other hand, non-edible polysaccharides can be used in the production of valuable amphiphilic 

alkylglycosides and lignin is burnt to provide electricity and heat. 

Yet, a current literature on APGs hasn’t extensively investigated environmental burdens 

associated with these APGs. Only few studies attempts to quantify impacts associated with APGs 

production and use (Guilbot et al. 2013; Lokesh et al. 2017). A recent study analyses the 

environmental impacts of producing APGs from wheat straw wax extracted with supercritical CO2 

(Lokesh et al. 2017). 

In effort to further the knowledge of environmental benefits of APGs and additionally optimise 

material and energy use in the production of this chemical, the present study investigates 

environmental impacts of APGs production. 

Environmental impact of producing APGs based on wheat straw is therefore investigated, and 

subsequently compared with conventional corn-starch based APGs. Life cycle assessment (LCA) 

method was used to account all the inputs of energy and materials and waste emissions in the 

APGs production and convert them to potential impacts to the environment.  

 

Material and methods 
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The environmental impacts of the APGs production processes will be based on LCA. LCA is a 

multicriteria tool to assess the burdens on the environment of a product or a service over its 

lifetime, i.e., from the production of the raw materials to the end of life management. LCA is 

suitable to assess the potential benefits of sustainable chemistry (Kralisch et al. 2014) (Kralisch 

et al. 2014).  

The LCA methodology is defined by ISO standards (ISO-14040 2006) and is divided in four steps: 

- The goal and scope definition phase: the objectives of the study, the boundaries of the 

system are clearly presented. 

- The inventory analysis phase: the elementary flows (inputs and outputs) of the product 

system are collected. The inventory entails the quantification of energy, resources, and emissions 

to air, soil and water. 

- The impact assessment phase: based on the inventory, the different flows are converted 

into environmental impacts. 

- The interpretation phase: the results are interpreted and lead to the identification of the 

environmental hotspots and to recommendations to improve the environmental performance of 

the product. 

 

Goal and scope   

The aim of the study is to investigate environmental performance of alkyl polyglycoside 

productions using wheat straw as a sugar-base (hydrophilic component) based on a newly 

developed acid-assisted ball milling process. Impacts associated to wheat straw-based process 

(“mechanocatalytic process” hereafter) and further compared with the conventional industrial 

process for manufacturing of APGs using glucose from corn starch (“reference process” 

hereafter). 

The function of the system is the production of APGs, and the corresponding functional unit and 

reference flow is 1 ton of APGs. 

A cradle-to-gate assessment is carried out; production of raw materials and manufacture of APGs 

are taken into account while use, retail and end-of-life life cycle stages are not included because 

they are considered similar in both systems.  
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All data sources and allocation procedures are explained in the LCI section. The LCI is set up in 

the French context. 

Environmental impacts are then characterized using ReCiPe Midpoint (H) life cycle impact 

assessment method selected as the most up to date method for the European context (Table 1) 

(Huijbregts et al. 2016). All modelling was done using SimaPro 8.3, LCA software. 

 

Table 1. ReCiPe 2016 midpoint (H) impact categories and list of abbreviations 

Impact category Abbreviations Unit 

Global warming GW kg CO2 eq 

Stratospheric ozone depletion SOD kg CFC11 eq 

Ionizing radiation IR kg Co-60 eq 

Ozone formation, Human health OF kg NOx eq 

Fine particulate matter formation FPMF kg PM2.5 eq 

Ozone formation, Terrestrial ecosystems OF T kg NOx eq 

Terrestrial acidification TA kg SO2 eq 

Freshwater eutrophication FEut kg P eq 

Terrestrial ecotoxicity TE kg 1,4-DCB eq 

Freshwater ecotoxicity FE kg 1,4-DCB eq 

Marine ecotoxicity ME kg 1,4-DCB eq 

Human carcinogenic toxicity HCT kg 1,4-DCB eq 

Human non-carcinogenic toxicity HNCT kg 1,4-DCB eq 

Land use LU m²a crop eq 

Mineral resource scarcity MRS kg Cu eq 

Fossil resource scarcity FRS kg oil eq 

Water consumption WC m3 

 

 

Life Cycle Inventory 

Product system 1 – Mechanocatalytic process 

The process flowchart for the mechanocatalytic process is given in Figure 1.  

First, wheat straw is grinded in a knife mill and then fed in the ball miller along with sulfuric acid 

to release and convert cellulose and hemicelluloses to short chain oligosaccharides. Then, 

glycosylation process is carried in the reaction between the mechanocatalytically depolymerized 
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cellulose and fatty alcohols either from palm kernel or coconut oil. The resulting products are 

lignin, APGs (as a mixture of alkylpolyglucosides and alkylpolypentosides) and sodium sulfate 

(Boissou et al. 2015). 

Grinding, ball milling and glycosylation are modelled as foreground processes with data collected 

in the literature for the energy use and at the lab-scale for the quantities (Boissou et al. 2015). 

Data are reported in Figure 1. 

Figure 1. Process flow chart of the mechanocatalytic process 

Energy use for grinding wheat straw having size of 0.8mm has been reported to be 51.6 kWh/t 

of wheat straw (Tumuluru et al. 2014). resulting in 35 kWh/t of APG. As for the ball milling 

process, Kaufman Rechulski et al. (2015) reported an energy use of 376 kWh/t (Kaufman 

Rechulski et al. 2015), resulting in 255 kWh/t of APG.  

Energy use for glycosylation was taken from Guilbot et al. (2013) that report 313 kWh/t of APG 

for electricity (pumps, stirring motors) and 104 kg of steam/t of APG for the reaction. We added 

an extra consumption of 208 kg of steam for recovering fatty alcohol in excess from the system 

by distillation. The total energy demand of the glycosylation process is 313 kWh of electricity 

and 312 kg of steam. For this process, we additionally assumed the incineration of the co-

produced lignin with energy recovery in a cogeneration unit and energy reinjected back in the 

system to meet most of the energy demand of the glycosylation. The cogeneration unit allows 

the recovery of 115kg of lignin per ton of APGs produced. This is equivalent to 2875MJ/ton of 

APGs considering a lower heating value of the lignin equal to 25kJ/kg (Sheng and Azevedo 2005). 

In the cogeneration unit, 35% of the total energy can be recovered in electricity, i.e., 1006.25MJ 

or 279 kWh. The remaining energy can be valorised to produce steam. We assumed that half of 

the remaining energy is converted in steam, i.e., 934.4 MJ. The production of 1 kg of steam for 
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chemical industry needs 3.067 MJ of energy according to ecoinvent data. Therefore 304.7 kg of 

steam can be produced per ton of APGs. At last the glycosylation process only requires additional 

energy input of 34kWh of electricity and 7.3 kg of steam (Figure 1). 

For the remaining byproducts (APGs and sodium sulfate) an allocation of the burdens had to be 

made. For the baseline scenario, an economic allocation is done to share the impacts between the 

APGs and the sodium sulfate. The economic allocation calculation is given by the following 

formula: 

 
sulfatesodiumsulfatesodiumAPGAPG

APGAPG

PmPm

Pm

__

APGA
+


=  

Where A is the allocation factor, m the mass (t) and P the price (€/t). 

The prices were given by an expert source: 2 500 and 300 €/t for APGs and sodium sulfate 

respectively. For the production of 1 ton of APGs, 98.5 kg of sodium sulfate are obtained. Thus, 

APGs accounts for 99% of the burdens of the overall process.                                                                                                              

Figure 1 gives an overview of material and energy inputs for the mechanocatalytic process. 

The LCI concerning the background production of energy and reactants (in italic) were taken from 

Ecoinvent v3.3 database (Wernet et al. 2016). Table S1 in Supplementary information gives the 

background processes names from ecoinvent used for the ball milling process. 

The study has been made in a French context: all the data used is considered as the most accurate 

for the French situation. For example, the straw coming from wheat production is a Swiss process. 

Both countries have similar agricultural systems.  

Product system 2 – reference process  

The process flowchart and inventory data for the reference process is given in Figure 2 taken 

from (Hirsinger 1997). The APGs (mainly alkylpolyglucosides) are obtained via Fischer 

Glycosylation process in reaction between powder glucose, fatty alcohols and sulfuric acid. 

Sodium sulfate is also generated after neutralization step at a very low level (less than 1wt%/APG). 

It is included to the final product. 

The energy for the glycosylation reported in Hirsinger et al. (1997) is 3250 kWh which is more 

than 6 times higher than for the glycosylation step of the mechanocatalytic process, probably 

because the process is outdated. As a matter of consistency, we assumed a similar energy demand 

in both processes, i.e., 313 kWh of electricity and 312 kg of steam. 
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Background data are taken from ecoinvent 3.3. We considered corn starch background process 

instead of corn starch-based glucose. This is because ecoinvent does not provide data for the 

latter process. The hydrolysis of corn starch to glucose has a small share of impact in the life 

cycle of this feedstock, and according to Hirsinger et al. (1997) the reference process can also use 

corn starch. Table S2 in Supplementary information gives the the background processes names 

used for reference process. 

 

Results 

Process contribution analysis of the mechanocatalytic process 

In this section, the life cycle impact assessment results of the acid-assisted ball milling process 

are presented in Figure 3 (a, b), and absolute values are provided in Supplementary Information 

(Table S4). 

 

Figure 2. Process flowchart of reference process – APGs production from corn-starch 

The results show that, in average, 90 % of the impacts come from the production of the fatty 

alcohols. The second main raw material, i.e., wheat straw accounts for a small share of the 

impacts. The mechanocatalytic process only accounts for few impacts. One exception can be 

noticed regarding the ionizing radiation indicator. In this case, the electricity used during the 

process has the highest share of impacts because of the French electricity mix mainly composed 

of nuclear energy.  
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a) b) 

 

Figure 3 (a, b). a) Contribution analysis of APGs production with mechanocatalytic process b) 

Contribution analysis of reference process for APGs production. Abbreviations definitions are 

available in Table 1 (Huijbregts et al. 2016). 

Process contribution analysis of reference process 

The process contribution of the reference process on the environmental impacts is given in Figure 

4. 

It highlights that, similarly to the mechanocatalytic process, the main burdens come from the 

production of the fatty alcohols. However, the feedstock corn starch has also important 

contribution in most of impact categories. The specific electricity impacts from nuclear energy 

can be observed in the ionizing radiation indicator for the same reasons exposed before.  

Comparison between mechanocatalytic and reference process 

FiComparison between the mechanocatalytic and the reference processes is provided in Figure 5 

(a, b). Absolute values are provided in Supplementary Information (Table S4) 
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Mechanocataytic process results in lower impacts across all categories. This is mainly due to the 

use of wheat straw in the mechanocatalytic process that generate a small share of impacts 

compared to corn starch in the reference process. Also, the recovered energy from lignin in the 

mechanocatalytic process lowers the energy demand compared to the reference process. Even if 

the quantity of fatty alcohols to produce 1ton APGs with the mechanocatalytic process is higher 

compared to the reference process (490.2kg in comparison to 426kg), influence of corn starch 

and electricity related impacts affect overall result in favour of the mechanocatalytic process.  

 

Figure 5. Environmental impact comparion between mechanocatalytic and reference process. 

Discussions 

Influence of the allocation procedure 

The share of the burdens between the sodium sulfate and the APGs for the mechanocatalytic 

process was made using an economic allocation. A mass allocation is tested with the following 

formula: 

 

sulfatesodiumAPG

APG

mm

m

_

APGA
+

=  

 

The quantity of APGs and sodium sulfate are 1 t and 98 kg respectively thus allocating 91 % of 

the environmental impacts to the surfactants. The environmental burdens of the surfactant are 

higher in the case of the economic allocation because prices lead to a higher share (99 %) that a 
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mass allocation (91%). However, the choice of the allocation procedure has a low influence in the 

final results. 

 

Influence of the source of fatty alcohols 

The selected LCI background data for fatty alcohols (“Fatty alcohol {GLO}|market for”) is a global 

market dataset comprising three means of production: palm kernel oil, coconut oil and 

petrochemicals. As fatty alcohol contributes to a large share of impact in both processes, we 

made a sensitivity analysis to analyse the influence of the alcohol production route on the 

impacts of APGs production (Figure 6). 

Figure 6. Sensitivity analysis from 3 fatty alcohol production sources for the mechanocatalytic 

process 

The comparison between the 3 datasets shows that the use of fatty alcohols from coconut oil 

generates the largest important environmental burdens for most of impact categories. In general, 

the palm kernel source presents fewer impacts than the global market dataset.  

The difference between palm kernel oil and coconut oil production is explained by the fact that 

the production of coconut is a more pollutant activity. For example, in the Terrestrial 

Acidification indicator, the quantity of ammonia is 4 times higher in the case of the coconut 

production. 

Influence of the electricity mix 
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This study has been realised in a French context so we used the French electricity mix. It appeared 

interesting to show the influence of the spatial localisation. In other words, we did the modelling 

using German and the European electricity mix. The results are shown in Figure 7. 

 

Figure 7. Sensitivity analysis from 3 electricity mixes for the mechanocatalytic process 

The use of French electricity induces, in most of the indicators, less impact. The French electricity 

mix scenario generates higher ionizing radiation impacts because of the emissions of 

radionuclides (such as Radon-222) during the extraction of the nuclear fuel and the operation of 

the nuclear plants.  

However, the difference is, in average, less than 10 %. It is explained by the fact that most of the 

impacts come from the production of fatty alcohols independently from the electricity mix. 

Comparison with other studies 

The concern about the environmental impact of the surfactant has arisen during the last few 

years. Recently, two studies have been published dealing with the environmental impacts of alkyl 

polyglucosides (Guilbot et al. 2013; Lokesh et al. 2017). In the first study, the authors conducted 

the LCA of a cosmetic cream composed of APGs. The APGS are a combination of cetearyl alcohol 

(80%) and cetearyl glucoside. The authors also found that the most contributing phase is the 

production of the fatty alcohols in most of their selected impact categories considered: ozone 

depletion, global warming, mineral resources, petrochemical resources, eco-toxicity and 

acidification/eutrophication. It emphasizes the fact that the source of fatty alcohol is of great 

importance. Moreover, the surfactants are based on starch from wheat grain whereas the 

mechanocatalytic process used wheat straw, a low-value and non-edible resource. Finally, climate 
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change impacts of wheat straw based and cetearyl glucoside/alcohol-based products can be 

compared with keeping in mind that they rely on different assumptions: 1.8 and 12.4 kg of 

emitted CO2 eq respectively. It shows again the environmental benefits of the mechanocatalytic 

process compared to a conventional one. 

The second study (Lokesh et al. 2017), assesses the environmental performance of APGs sourced 

from wheat straw and transformed with supercritical CO2. The impacts of the production of 

APGs are quantified using 5 indicators: direct GHG emissions, land use change & emissions, fossil 

derived energy footprint, water consumption and a waste factor. These indicators, at the 

exception of the GHG emissions, can be described as inventory indicators rather than 

environmental impact indicators. A comparison between the mechanocatalytic process and the 

supercritical CO2 process shows that the emissions are in the same order of magnitude: 1.8 and 

1.6 kg CO2 eq respectively. However, the comparison should also be done with precaution 

because both studies rely on different assumptions and background processes, especially for the 

agriculture processes. 

Conclusions 

This paper proposes to assess the environmental impacts of a promising new route for producing 

APGs. The LCA showed that the use of wheat straw under current assumptions of material input 

lowers the environmental impacts of APGS compared to a reference scenario using corn starch. 

The mechanocataytic process seems to be a more desirable way to produce APGs. The production 

chain has been thought to reduce the environmental impacts of the production of surfactants. 

First, the raw material i.e. wheat straw is a residue from wheat production with limited value 

either in terms of economic value or environmental burdens, and it generates less impacts than 

glucose in conventional starch corn derived processes. Second, the recovery of lignin into 

electricity and steam meets 34% of the electricity demand and 98% of the heat demand of the 

whole process. This study has also pointed out that the environmental burdens of the surfactants 

come from the production of fatty alcohols. This tendency can be observed in all the indicators 

except for the ozone depletion and the ionizing radiation where the production of electricity in 

the nuclear plants is responsible for the impacts. Different sensitivity analyses were carried out 

on three parameters: allocation procedure, fatty alcohols sources and electricity mix. The 

allocation procedure does not change the outcomes so either allocation can be chosen. The 

electricity mix has a logical influence on the indicators that are driven by the energy inputs. We 

observed that the mechanocatalytic process had less impacts with French electricity compared 

to German or European electricity except for ionizing radiation. However, the energy required for 

the grinding and the glycosylation processes have a small contribution in the environmental 

impacts. Thus, the choice of the electricity mix has a limited influence on the results. The source 
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for the fatty alcohols production is the main source of variability as fatty alcohols are the main 

impact contributors.  

 

Supplementary Information: 

 
Table S1. Foreground data and background data sources for the ball milling process 

Flow/Process Quantity 
Ecoinvent process (background data 

source) 

Straw 679 kg 
Straw {CH}| wheat production, Swiss 

integrated production, intensive | Alloc Def 

Sulfuric acid 67,9 kg Sulfuric acid {GLO}| market for | Alloc Def 

Fatty alcohols 490,2 kg Fatty alcohol {GLO}| market for | Alloc Def 

Steam 7,3 kg 
Steam, in chemical industry {RER}| production 

| Alloc Def 

Soda 55,4 kg 
Sodium hydroxide, without water, in 50% 

solution state {GLO}| market for | Alloc Def 

Electricity 
35 kWh (grinding) 

255 kWh (ball milling) 
34  kWh (glycosylation) 

Electricity, medium voltage {FR}| market for | 
Alloc Def 

Lignin 
incineration 

115 kg 
Biowaste {GLO}| treatment of biowaste, 

municipal incineration | Alloc Def 

 

Table S1. Foreground data and background data sources for the reference process 

Flow/Process Quantity 
Ecoinvent or GaBi process (background 

data source) 
Corn starch 631 kg Maize starch {GLO}| market for | Alloc Def 

Fatty alcohol 426 kg Fatty alcohol {GLO}| market for | Alloc Def 

Sulfuric acid 5 kg Sulfuric acid {GLO}| market for | Alloc Def 

Electricity 313 kWh 
Electricity, medium voltage {FR}| market for | 

Alloc Def 

Steam 312 kg 
Steam, in chemical industry {RER}| production | 

Alloc Def 

 

Table S3. Additional processes used for the sensitivity analysis 

Flow/Process 
Ecoinvent or GaBi process (background 

data source) 
Fatty alcohol from 

coconul oil 
Fatty alcohol {RER}| production, from coconut 

oil | Alloc Def 

Fatty alcohol from 
palm kernel 

Fatty alcohol {RER}| production, from palm 
kernel oil | Alloc Def 

Electricity german 
mix 

Electricity, medium voltage {DE}| market for | 
Alloc Def 

Electricity 
European mix 

Electricity, medium voltage {Europe without 
Switzerland}| market group for | Alloc Def 
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Table S4. Absolute impact results for ball milling and reference processes (ReCiPe2016 Midpoint H) – 1 ton 
of APG 

Impact category Unit Ball milling 
process 

Reference 
process 

Global warming kg CO2 eq 1870.856 2240.740 

Stratospheric ozone 
depletion 

kg CFC11 eq 0.005 0.010 

Ionizing radiation kBq Co-60 eq 236.455 263.685 

Ozone formation, Human 
health 

kg NOx eq 3.803 4.800 

Fine particulate matter 
formation 

kg PM2.5 eq 2.411 2.748 

Ozone formation, 
Terrestrial ecosystems 

kg NOx eq 4.138 5.123 

Terrestrial acidification kg SO2 eq 8.315 11.786 

Freshwater 
eutrophication 

kg P eq 0.406 0.554 

Terrestrial ecotoxicity kg 1,4-DCB e 0.908 1.333 

Freshwater ecotoxicity kg 1,4-DCB e 52.735 62.124 

Marine ecotoxicity kg 1,4-DBC e 54.843 69.254 

Human carcinogenic 
toxicity 

kg 1,4-DBC e 42.479 54.840 

Human non-carcinogenic 
toxicity 

kg 1,4-DBC e 41108.948 72891.338 

Land use m2a crop eq 1053.839 1945.836 

Mineral resource scarcity kg Cu eq 4.563 6.407 

Fossil resource scarcity kg oil eq 493.554 559.275 

Water consumption m3 96.307 97.476 

 

 

 


