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Abstract

During its operational mission, a transportation mean is subject to broadband acous-
tic, aerodynamic and structure-borne excitations. The transportation means, such as
aircrafts, space launchers, ships, cars, trains, etc., are designed to accomplish a primary
goal, usually to transfer a payload (passengers, goods, satellites, for example) from a
point to another, always keeping a high level of comfort, safety and survivability of
the payload. National and international regulations about noise pollution are more
and more stringent; scientists and industrial players are facing with these challenges
developing new materials and new design choices.

Composite materials, complex geometries and new design concepts are investigated,
making the analysis and the prediction of the vibroacoustic response of these struc-
tures a huge challenge. The complexity makes the derivation of analytical models
harder to obtain; the use of numerical tools is of crucial importance. One of the most
employed methods is the Finite Element (FE) modeling, but the huge amount of de-
grees of freedom together with a high computational cost limits its use to the low
frequency range. In the last decades, different methods are derived to obtain the dis-
persion characteristics of the structures; one of the most common is the Wave Finite
Element Method (WFEM), that is based on the wave propagation. This method has
been applied on various simple and complex structures, deriving both 1D and 2D for-
mulations, extended also to curved structures.

Recently, an energetic approach has been derived starting from the Prony’s method,
the Inhomogeneous Wave Correlation (IWC) method. This approach has its appli-
cability in the mid-high frequency range, where the modal overlap is quite high. The
IWC method is based on the projection of the wavefield on an inhomogeneous traveling
wave. The dominant wavenumber, at each frequency, is obtained by maximization of
the correlation function between the projected wavefield and the inhomogeneous wave.

In this context, an extended version of the IWC method is derived, allowing to describe
the dispersion curves of complex structures: periodic narrow plates, composite plates,
ribbed panels, composite curved shells and curved stiffened structures. The method
has the advantage to be applied in an operational environment, making use of sparse
acquisition locations. A complete dispersion characteristics analysis is conducted, even
in presence of periodic elements and vibration-control devices, describing the directly
correlated band-gaps in certain frequency regions and general vibration level attenua-
tion. A numerical and experimental estimation of the structural damping loss factor
is computed. A description of the local dynamics in presence of small-scale resonators,
of the periodicity effect and the identification of the multi-modal behavior are also
captured.
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All the results of the numerical simulations are experimentally validated on complex
large-scale meta-structures, such as a 3D-printed sandwich panel, a curved compos-
ite laminated sandwich panel and a aluminum aircraft sidewall panel. The effect of
industrially-oriented 3D-printed small-scale resonators on the vibro-acoustic response
of the considered structures is conducted, taking in account both diffuse acoustic field
and mechanical excitations.

Keywords : Wavenumber, k -space, periodic structures, dispersion curve, damping loss
factor, stiffened curved structures, resonators, meta-structures
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Résumé

Pendant sa mission opérationnelle, un moyen de transport est soumis à des excitations
acoustiques, aérodynamiques et structurales à large bande. Les moyens de transport,
tels que les avions, les lanceurs spatiaux, les bateaux, les voitures, les trains, etc., sont
conçus pour accomplir un objectif principal, généralement de transférer une charge utile
(passagers, marchandises, satellites, par exemple) d’un point à un autre, en maintenant
toujours un niveau élevé de confort, de sécurité et de capacité de survie de la charge
utile. Les réglementations nationales et internationales en matière de pollution sonore
sont de plus en plus strictes ; les scientifiques et les acteurs industriels sont confrontés à
ces défis de développement de nouveaux matériaux et de nouveaux choix de conception.

Les matériaux composites, les géométries complexes et les nouvelles conceptions sont
étudiés, ce qui rend l’étude et la prédiction de la réponse vibro-acoustique de ces struc-
tures un défi énorme. La complexité rend la dérivation des modèles analytiques plus
difficile à obtenir ; l’utilisation d’outils numériques est d’une importance cruciale. L’une
des méthodes les plus utilisées est la modélisation par éléments finis (FE), mais l’énorme
quantité de degrés de liberté associée à un coût de calcul élevé limite son utilisation dans
la gamme de basses fréquences. Au cours des dernières décennies, différentes méthodes
sont dérivées pour obtenir les caractéristiques de dispersion des structures ; l’une des
plus courantes est la méthode des éléments finis ondulatoire (WFEM), qui est basée
sur la propagation des ondes. Cette méthode a été appliquée sur diverses structures
simples et complexes, dérivant une formulation soit 1D que 2D, également étendu à
des structures courbes.

Récemment, une approche énergétique a été dérivée à partir de la méthode de Prony :
la méthode de corrélation d’onde inhomogène (IWC). Cette approche trouve son ap-
plicabilité dans la gamme de fréquence moyenne et haute, où le chevauchement modal
est assez élevé. La méthode IWC est basée sur la projection du champ d’onde sur une
onde itinérante inhomogène. Le nombre d’onde dominant, à chaque fréquence, est ob-
tenu par maximisation de la fonction de corrélation entre le champ d’onde projeté et
l’onde inhomogène.

Dans ce contexte, une version étendue de la méthode IWC est dérivée, permettant de
décrire les courbes de dispersion des structures complexes : plaques étroites périodiques,
plaques composites, panneaux raidis, panneaux composites courbes et panneaux raidis
courbes. La méthode a l’avantage d’être applicable dans un environnement opération-
nel, en utilisant des emplacements d’acquisition clairsemés. Une analyse complète des
caractéristiques de dispersion est effectuée, même en présence d’éléments périodiques
et de dispositifs de contrôle des vibrations, décrivant les écarts de bande directement
corrélés dans certaines régions de fréquence et l’atténuation du niveau de vibration. Une
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estimation numérique et expérimentale du facteur de perte d’amortissement structurel
est calculée. Une description de la dynamique locale en présence de résonateurs à petite
échelle, de l’effet de la périodicité et de l’identification du comportement multi-modal
sont également capturés.

Tous les résultats des simulations numériques sont validés expérimentalement sur des
meta-structures complexes à grande échelle, comme un panneau sandwich imprimé en
3D, un panneau courbé sandwich en composite et un panneau d’avion en aluminium.
L’effet des résonateurs à petite échelle imprimés en 3D à orientation industrielle sur la
réponse vibro-acoustique des structures considérées est réalisé en tenant compte soit
de l’excitation champ acoustique diffus et de l’excitations mécaniques.

Mots-clés : Nombre d’onde, k-space, structures périodiques, courbes de dispersion, fac-
teur de perte d’amortissement, structures courbées raidies, résonateurs, meta-structures
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Samenvatting

Tijdens zijn operationele opdracht, is een vervoersgemiddelde onderworpen aan breed-
band akoestische, aërodynamische en structuur - gedragen excitaties. De transport-
middelen, zoals vliegtuigen, ruimtelanceerders, schepen, auto’s, treinen, enz., zijn ont-
worpen om een primair doel te verwezenlijken, gewoonlijk om een lading (passagiers,
goederen, satellieten, bijvoorbeeld) van een punt naar een andere over te brengen, al-
tijd houdend een hoog niveau van comfort, veiligheid en overleefbaarheid van de lading.
De nationale en internationale regelgeving inzake geluidshinder is steeds strenger; we-
tenschappers en industriële spelers worden geconfronteerd met deze uitdagingen bij de
ontwikkeling van nieuwe materialen en nieuwe ontwerpkeuzes.

Samengestelde materialen, complexe geometrieën en nieuwe ontwerpconcepten worden
onderzocht, waardoor de studie en de voorspelling van de vibroakoestische respons van
deze structuren een enorme uitdaging. De complexiteit maakt de afleiding van analyti-
sche modellen moeilijker te verkrijgen; het gebruik van numerieke tools is van cruciaal
belang. Een van de meest gebruikte methoden is de FE-modellering (Finite Element),
maar de enorme hoeveelheid vrijheidsgraden in combinatie met hoge computerkosten
beperkt het gebruik ervan in het lage frequentiebereik. In de afgelopen decennia zijn
verschillende methoden afgeleid om de verspreidingskenmerken van de structuren te
verkrijgen; een van de meest voorkomende methoden is de Wave Finite element Me-
thod (WFEM), die gebaseerd is op de golfvoortplanting. Deze methode is toegepast
op verschillende eenvoudige en complexe structuren, die een 1D- en 2D-formulering
afleiden, ook uitgebreid tot gebogen structuren.

Onlangs is een energieke benadering afgeleid van de methode van Prony, de Inhomoge-
neous Wave Correlation (IWC) methode. Deze benadering heeft haar toepasbaarheid
in het middenhoge frequentiebereik, waar de modale overlapping vrij hoog is. De
IWC-methode is gebaseerd op de projectie van het golfveld op een inhomogene golf.
De dominante golvenumber wordt bij elke frequentie verkregen door maximalisatie van
de correlatiefunctie tussen het geprojecteerde golfveld en de inhomogene golf.

In dit verband wordt een uitgebreide versie van de IWC-methode afgeleid, waarmee de
verspreidingscurves van complexe structuren kunnen worden beschreven: Periodieke
smalle platen, samengestelde platen, geribde panelen, samengestelde gebogen schalen
en gebogen geribbelde panelen. De methode heeft het voordeel om te worden toegepast
in een operationele omgeving, waarbij gebruik wordt gemaakt van sparse acquisitielo-
caties. Er wordt een volledige analyse van de verspreidingskenmerken uitgevoerd, zelfs
in aanwezigheid van periodieke elementen en apparatuur voor trillingscontrole, die de
direct met elkaar verband houdende bandhiaten in bepaalde frequentiegebieden en de
verzwakking van het trillingsniveau beschrijven. Er wordt een numerieke en expe-
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rimentele schatting van de verliesfactor van de structurele demping berekend. Een
beschrijving van de lokale dynamiek in aanwezigheid van kleinschalige resonatoren,
van het periodiciteitseffect en de identificatie van het multimodale gedrag worden ook
vastgelegd.

Alle resultaten van de numerieke simulaties worden experimenteel gevalideerd op com-
plexe grootschalige meta-structuren, zoals een 3D-gedrukt sandwichpaneel, een ge-
bogen samengesteld gelamineerd sandwichpaneel en een aluminium zijpaneel aan de
zijkant van het vliegtuig. Het effect van industrieel georiënteerde 3D-gedrukte klein-
schalige resonatoren op de trillings-akoestische respons van de overwogen structuren
wordt uitgevoerd, waarbij rekening wordt gehouden met zowel diffuus akoestisch veld
als mechanische excitaties.

Trefwoord : Wavenumber, k-space, periodieke structuren, dispersiecurve, demping ver-
liesfactor, verstevigde gebogen structuren, resonatoren, meta-structuren
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Introduction

Industrial and scientific context

In transportation engineering, the vibro-acoustic and dynamic behaviors of the main
structures are of fundamental interest. The transportation means, such as aircrafts,
space launchers, ships, cars, trains, etc., are designed to accomplish a primary goal,
usually to transfer a payload (passengers, goods, satellites, for example) from a point to
another, always keeping a high level of comfort, safety and survivability of the payload.
During their missions, transportation means are subject to different transient and dy-
namic loads, such as acoustic, aerodynamic and structure-born excitations, which are
transferred to the payload and to the structures themselves.

National and international regulations about noise pollution are more and more strin-
gent, imposing to the constructors and industrial players a strong reduction of the
radiated noise and an high level of acoustic comfort. This aspect is more and more
used as quality indicator, pushing the authorities and the industrial players to invest
resources into this sector. To face these challenges, the transportation industries are
focusing their attention on new structural designs and new materials, such as compos-
ites and sandwich panels.

Composite and sandwich materials are more and more used, to fulfill the requirements
of reduced structural weight and high mechanical performances. Concerning the com-
posite materials, one of the main drawbacks is the exhibition of bad vibro-acoustic
performances compared to an equivalent structure made of a common metal alloy.
In this context, the vibro-acoustic response and the dynamical behavior of laminated
composite sandwich shells are of fundamental relevance for the industry, even at a
preliminary stage of the design process, where the design rules are in evolution. An
example of laminated honeycomb sandwich composite panel is shown in Fig. 0.1, in
which a lightweight thick core is bonded by two thin stiff skins. The identification of
the energy propagation, of the waves attenuation, with the related damping informa-
tions, and of the waves dispersion characteristics are relevant aspects to fully describe
the vibro-acoustic behavior of a system. The anisotropic behavior and the complexity
related to their composite nature make the development of an analytical theory and/or
of a predictive model very hard to obtain.

The presence of stringers and frames in the longitudinal and circumferential directions
of aircraft fuselages, space launchers fairings, ship hulls and submarines, for example,
is a very common design choice. These stiffening elements are usually periodically
distributed on the main structures, allowing to assume a certain degree of structural
periodicity which, if properly designed, can give some advantages in the vibro-acoustic
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Figure 0.1 – Honeycomb sandwich panel

(a) (b)

Figure 0.2 – Periodic structures: part of the fuselage of an AIRBUS A350 aircraft (a) and a
rail (b).

response. Many methods were developed based on the spatial repetition of a unit cell;
the unit cell modeling approach allows to reduce the computational effort working on
a small geometrical part of the structure and applying periodic boundary conditions at
the edges, and it is widely used to simulate infinite media. Periodic structures can be
designed and employed to attenuate the wave propagation in certain frequency regions,
originating the so-called band gaps. Examples of periodic structures for aerospace and
rail applications are shown in Fig. 0.2.

Many noise control treatments are proposed to reduce the noise inside the vehicle.
Amongst them, the most employed are the sound-absorbing materials, usually attached
to the structure or introduced in the sandwich panels, and damping materials usually
stick between two different structural layers.
To mitigate structural vibrations, some devices can be designed and included in the
structure. In civil engineering, tuned mass dampers are used in the skyscrapers to
mitigate the vibrations induced by earthquakes and wind gusts (see Fig. 0.3). These
resonant systems are used to attenuate the vibrations induced at a known frequency.
The application field is enlarged also to mechanical engineering, where a distributed
pattern of small-scale resonators is used to attenuate the vibration levels in specified
frequency regions, introducing the so-called band-gaps, and leading to meta-structures.

Research objectives and Thesis outline

The scope of this dissertation is to develop a tool to investigate the vibro-acoustic
performances of complex periodic structures in industrial environment. The idea is
to conduct the analysis in the wavenumber domain (also called k -space), in order to
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Figure 0.3 – Tuned mass damper used in the Taipei 101 skyscraper.

identify the dispersion relations, the damping loss factor information, to investigate
the preferred directions of wave/energy propagation and to estimate the equivalent
mechanical properties of complex structures by an inverse approach.

The k-space investigation is conducted using an Inhomogeneous Wave Correlation
(IWC) method based approach, extending the IWC method to periodic curved struc-
tures and avoiding some limitations related to plane wave assumption. The IWC
method is also compared to standard k-space techniques, such as Fast Fourier Trans-
form (FFT) function, McDaniel’s approach and the Wave Finite Element Method
(WFEM).
The IWC method is here proposed as a preliminary design tool for a fast vibro-acoustic
characterization of a complex structure, making a comparison in the wavenumber do-
main between different design choices. The flowchart of the proposed approach is
presented in Fig. 0.4.

In the flowchart, a bare test structure is considered and investigated in the wavenumber
domain, under a frequency-dependent excitation. Then, the structure is equipped with
periodic add-on, such as stiffeners, frames, distributed small-scale resonators, etc., and
subject to the same excitation. The k-space informations are obtained for the new
configuration and compared to the bare test case. An optimization process can be
reached by these comparisons.

The present work is organized following a step-by-step process, moving from some rel-
atively simple in-plane structures to complex large-scale curved structures, equipped
with both industrially-oriented 3D-printed small-scale resonators and periodic patterns
of stringers and frames. Experimental validations are also provided, testing the struc-
tures under both diffuse acoustic field and mechanical excitations.

A literature survey is conducted in chapter 1. An overview of the k-space methods
available in literature is provided, reporting also the most important achievements and
results.
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Figure 0.4 – Flowchart of the optimization process.
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In chapter 2, a modified formulation of the IWC method is proposed, using a combi-
nation of Green’s and Hankel’s functions. Numerical investigations are conducted on
both 1D beam-like and 2D in-plane structures. The dispersion relations are identified,
with the related damping loss factor information. Both geometric periodicity and res-
onators band-gaps occurrence are discussed.

An experimental validation on a 3D-printed sandwich panel is proposed in chapter 3.
The angle-dependent dispersion relation is described for both isotropic and orthotropic
panels. Two different sandwich panels are investigated, focusing on the effect of the
spacing between the vertical mechanical links of the double-wall panels. The geometric
periodicity band-gap is also captured in the wavenumber domain.

Chapter 4 is devoted to the development of the IWC method for curved structures. In
this chapter, complex large-scale meta-structures are experimentally investigated: an
isotropic panel, a laminated composite honeycomb sandwich shell and an aluminum
aircraft sidewall panel. The industrially-oriented concept of 3D-printed small-scale res-
onators is experimentally investigated. The multi-modal behavior and the band-gaps
occurrence are described and compared to the bare test structures, under both diffuse
acoustic field and shaker excitations.

In chapter 5, an investigation about the effect of the stiffeners cross-section shape and
of their inter-spacing on the vibro-acoustic response of axially and ring stiffened curved
structures is conducted. Two different stiffeners pitches are investigated. For what con-
cerns the stiffener cross-section, three different shapes are taken in account, keeping
constant the cross-sectional inertia properties. The effect of both cross-section shape
and pitch are analyzed in terms of dispersion relations and sound transmission losses.

Finally, some concluding remarks and future perspectives are presented in a concluding
section.
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Chapter 1

Literature review and state of the art

1.1 Introduction

The identification of wave propagation and dispersion characteristics of a vibrating
structure are of fundamental importance and a highly discussed topic in the vibro-
acoustic domain. Dispersion is a physical phenomenon which can be easily explained
as a dependency of the phase-velocity from the frequency, mainly related to the inho-
mogeneous structure of the material and to the geometrical shape of the structure.

Waveguide dispersion, phase velocity dispersion, group velocity dispersion play a key
role in understanding how the energy flows in a structure and to highlight if there are
some preferable directions of waves propagation. Usually, in the dispersion relation the
most important parameters are the wavenumber k and the angular velocity ω. The
wavenumber k is defined as the total number of complete wave cycles per unit length;
in other words, it can be considered as the spatial frequency of a wave: k = 2π/λ,
where λ is the wavelength of the wave. Usually, the wavenumber is a complex number;
its imaginary part contains information about the attenuation factor per unit distance.
Its estimation is very helpful in the determination of the evanescent field and in the
identification of wave spatial decay.

Structural identification, equivalent material properties of complex structures and
damping estimation are of great interest in engineering applications, such as vibro-
acoustics [1–5]. Some semi-analytical approaches have been developed in order to
estimate the mechanical properties of sandwich composite structures [2, 6, 7]. Numer-
ical simulations become more and more important to reduce the cost of experimental
identification processes and to describe the damping phenomenon on which any vibra-
tion problem is directly dependent.

The most employed methods for wavenumber identification, wave propagation and
damping loss factor estimation are discussed in this chapter. In literature, many works
can be found on these topics, giving a large overview of the vibro-acoustic related
problems. In this chapter, a general overview of the methods is given, showing also the
main results and applications.

7



CHAPTER 1. LITERATURE REVIEW AND STATE OF THE ART

1.2 Wavenumber identification techniques
The wavenumber domain is also known as k-space and it is largely used in various sci-
ences, from medicine, where this technique is used to rebuild the magnetic resonance
image from the acquired data, to mechanical engineering, to study the vibration of the
structures, for example.

To introduce the idea of wavenumber, a two-dimensional time-harmonic wave propaga-
tion is considered. Assuming a constant amplitude U0 along the propagation direction,
the wave is called plane wave, and can be expressed as:

U(~r) = U0e
ik(ct−~d·~r), (1.1)

in which k is the wavenumber, i is the imaginary unit, ~r is the spatial vector, c is the
phase velocity, t is the time variable and ~d is the propagation direction vector. From
the previous definition of wavenumber, defined as the number of complete oscillation
per unit length, k = 2π/λ, Eq. (1.1) can be rewritten as:

U(~r) = U0e
i(ωt−kxx−kyy), (1.2)

where kx = k cos θ and ky = k sin θ are the wave-vector (~k = k~d) components in the x
and y directions.

In general, a positive wavenumber represents a rightward traveling wave, while a neg-
ative wavenumber denotes a left going wave. By definition, when kx and ky are real
valued, the wave is defined to be propagative and free to propagate without attenua-
tion. If the wavenumber components are purely imaginary valued, the wave is defined
to be evanescent. When the wavenumber is complex valued, the propagating wave is
defined to be attenuated. The wave propagation is strictly dependent on the wavenum-
ber, being the relation between wavenumber and frequency defined as the dispersion
relation: ω = kc, with c = 1/λ.

In the field of structural vibrations many different methods are employed to obtain
information from/about the k-space; the most common is the Fourier transform analy-
sis, which directly gives the k-space from the vibrational field acquisition. Some others
inverse methods were developed in the last decades; these methods allow to predict
several quantities, such as the material properties, the structure-borne sound trans-
mission coefficients, the radiated power, the attenuation, applying an inverse approach
based on the estimated complex wavenumbers.

In literature, most works focus on the modal-based numerical approaches; these ap-
proaches reach their limits in mid- and high-frequency ranges where great wave modes
density exists. This disadvantage makes their use of limited interest. As alternatives,
in a wave propagation framework, for parameter identification other methods based on
the wavenumber domain analysis [8–12] or based on the Statistical Energy Analysis
(SEA) [13–15] are introduced.

The most employed technique in the wavenumber domain analysis is the spatial Fourier
Transform, with the associated Discrete Fourier Transform (DFT) in the discrete do-
main. This approach is very simple and very fast, but it is affected by some limitations
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in terms of resolution (directly dependent on the geometrical dimensions of the struc-
ture and its discretization) and of the indirect estimation of the complex wavenumbers.
This latter aspect has been solved using different approaches based on Prony’s method.
Prony’s method offers high resolution along with the capability of identifying the un-
known complex wavenumbers and their amplitudes. The Prony’s technique is a means
of identifying the constituent wavenumbers and their corresponding amplitudes in an
exponential model of the spatial response. The Prony’s method is a two-stage process.
In the first stage, the wavenumbers are found and, in the second stage, the amplitudes
for these wavenumbers are found from a linear least-squares fit of the model to the
data. A modified extended technique based on Prony’s method to estimate the com-
plex wavenumbers is shown in [16].

1.2.1 Space-wavenumber Fourier transform
The basic idea of the Fourier transform is to determine the constitutive waves of any
signal, giving back information about the frequency and the amplitude.
The space-wavenumber Fourier transform is analogous to the well known time-frequency
Fourier transform; the main difference is the operating variables that have changed from
ωt to kr. A very basic tutorial on how to calculate the wavenumber and its transforms
from a structural vibration field can be found in [17]. The expressions of the spatial
Fourier transform and its inverse are, respectively:

F (k) =

∫ ∞
−∞

f(~r)ei
~k~r d~r, (1.3a)

f(~r) =
1

2π

∫ ∞
−∞

F (k)e−i~k~r dk. (1.3b)

One of the main difference between time-frequency and space-wavenumber Fourier
transforms is the presence of right and left traveling waves in the spatial vibrational
field. Considering a single wave propagating in the rightward direction at a fixed
frequency f, this wave is defined by a single wavenumber k, showing a single peak in
the wavenumber domain.
One of the most simple application of this technique is on a 2D plane structure. A
harmonic displacement field can be considered as primary input, usually defined in the
(x, y) plane (see Eq. (1.4), in which the symbol ŵ indicates that the displacement field
is frequency-dependent):

w(x, y, t) =

∫ +∞

0

ŵ(x, y)eiωt dω. (1.4)

An application of the spatial-wavenumber Fourier transform in shown in Fig. 1.1, in
which the classical (4,2) structural mode shape is shown for an isotropic plate, together
with the correlated wavenumber transform.

In the following part the main advantages and the main drawbacks of the Discrete
Fourier Transform (DFT) are investigated [12]. The DFT assumes two hypothesis:

1. the displacement field ŵ is given in an uniform grid (xi = idx, yj = jdy) with 1 ≤
i ≤ N1− 1 and 1 ≤ j ≤ N2− 1, in which N1 and N2 are the meshgrid dimensions
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(a) (b)

Figure 1.1 – Structural mode shape (a) and wavenumber transform (b) [17].

along x and y directions, respectively, dx and dy are the space increments along
the axes x and y, respectively;

2. the field is assumed to be 2D-periodic:

∀i, j ∈ N2, ŵ(idx, jdy) = ŵ((i/N1)dx, (j/N2)dy). (1.5)

The spatial mesh has to be small enough to satisfy the Nyquist criterion, at the least
half of the smallest wavelength of interest; on the other hand, the span of the mea-
surement has to be large enough to have an acceptable resolution in the wavenumber
domain.
In the discrete domain, we can assume ∆kx = 2π/N1dx and ∆ky = 2π/N2dy as a ba-
sis for the complex functions space; the family of exponential functions with discrete
wavenumbers can be written as (kxp = p∆kx, kyq = q∆ky)(1≤p≤N1−1,1≤q≤N2−1). Conse-
quently, the displacement field can be written as follows:

ŵ(xi, yj) =

N1−1∑
p=0

N2−1∑
q=0

̂̂w(kxp, kyq)e
i(kxpxi+kyqyj). (1.6)

The DFT ŵ −→ ̂̂w assumes the following expression:

̂̂w(kxp, kyq) =
1

N1N2

N1−1∑
i=0

N2−1∑
j=0

ŵ(xi, yj)e
−i(kxpxi+kyqyj). (1.7)

Two main advantages are bijectivity and rapidity; the first one, bijectivity, means that
the inverse of the DFT (IDFT) exists, that is useful to rebuild the displacement field
from the k -space or to introduce a filter in the wavenumber domain. Rapidity is related
to the possibility to use the Fast Fourier Transform (FFT) to process the data very
fast [12].

10
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The drawbacks connected to the use of the DFT are aliasing, leakage and poor resolu-
tion. The aliasing effect is related to field discretization and to the fact that the DFT
is (2π/∆x)-periodic; the periodicity condition is expressed in Eq. (1.8):

̂̂w(kx, ky) = ̂̂w(kx +
2π

dx
, ky

)
= ̂̂w(kx, ky +

2π

dy

)
. (1.8)

This means erroneous DFT treatments for wavenumbers kx and ky outside the domains
[−π/∆x, π/∆x], [−π/∆y, π/∆y], respectively. Leakage is due to the finite size of the field
ŵ, because a singular wave (kx, ky) appears as a cardinal sine shape, while it should
appear in the k -space as a Dirac distribution. The k -space resolution allows to obtain
a poor estimation of the wave vectors, because the wave content of a given field ŵ is
only known in a k -space grid [12].

1.2.2 McDaniel ’s method

A method for estimating the complex wavenumbers and amplitudes of waves that
propagate in damped structures was proposed by McDaniel [8]. The idea is to compare
the response measurements of a vibrating structure with a wave field that approximates
its behavior; in other words, re-constructing the wave field from the spatially response
data. A harmonic time-dependent expression of the displacement field is assumed, in
the form: w = Re{We−iωt}. In a steady-state condition, the governing differential
equation that describes the motion of the neutral surface of the structure (the neutral
axis in case of beam-like structures) assumes the following expression:

− ω2W + L{W} = 0, (1.9)

where W is the displacement amplitude, ω2 is the angular frequency and L is a linear
operator that involves derivatives with respect to x and structural parameters. To
solve the differential equation expressed in Eq. (1.9), a mathematical expression of
the boundary conditions has to be defined, based on the order of differentiation of the
operator L. The boundary conditions equations can be expressed as follows:

Lb{w}|x=xb = Re{Be−iωt}, (1.10)

where xb represents the spatial coordinate at the boundaries and B is a complex val-
ued amplitude. The steady-state solution of Eq. (1.9) subject to a set of boundary
conditions of the form given in Eq. (1.10) is a summation of damped waves [8]:

W (x) =
N∑
n=1

(
Fne

iknx +Bne
ikn(L−x)

)
. (1.11)

Each value of n represents a distinct wave type that propagates on the structure with
a complex-valued wavenumber, kn. The two terms Fn and Bn are the amplitudes of
the forward and backward propagating waves, respectively; their values are boundary
conditions-dependent.
The proposed method uses an iterative process for the wavenumbers estimation; the
iterative process consists in adjusting the wavenumber and waves amplitudes in Eq.
(1.11) so that the measured data are approximated by the wave-field. The algorithm
starts assuming a value of the propagating wavenumbers at a fixed frequency; a way to
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obtain a first estimation of the wavenumber is to use analytical expressions (if the cross-
section is homogeneous) for the bending kf , longitudinal kl and shear ks wavenumbers,
respectively:

k4
f =

√
ρAω2

E(ω)[1− iη(ω)]I

kl =

√
ρω2

E(ω)[1− iη(ω)]

ks =

√
ρω2

G(ω)[1− iη(ω)]

, (1.12)

where ρ is the mass density, A is the cross-sectional area, I is the area moment of
inertia, E is the real part of the Young’s modulus, η is the material loss factor and
G = E/[2(1 + ν)] is the shear modulus.
The waves amplitudes are found imposing that the wave-field in Eq. (1.11) approxi-
mates the measured data at each location:

Wm ≈ W̃m, for m = 1, 2, . . . ,M , (1.13)

where M is the total number of acquisition points. Each amplitude Wm can be ex-
pressed as the sum of all the individual wave-fields evaluated at the m-th measurement
position, as follows:

Wm =
N∑
n=1

(
Fne

iknxm +Bne
ikn(L−xm)

)
, (1.14)

in which N = 2 when flexural modeling is required, and N = 1 in case of longitudinal
or torsional motions.
Writing the approximations of Eq. (1.13) in matrix form gives:

[
[Φ][β]

]{{F}
{B}

}
≈ W̃m, (1.15)

where the forward and backward propagation matrices, respectively [Φ] and [β], are
given by:

Φmn = eiknxm and βmn = eikn(L−xm). (1.16)

The waves amplitudes are found by satisfying Eq. (1.15) in a least-squares sense; the
number of required measurement locations depends on the the number of waves that
propagate in the structure [8]. An estimation error can be then calculated, making
the difference between the wave-field and the measurements. The normalized error
assumes the following expression:

ε =

√√√√( M∑
m=1

∣∣∣Wm − W̃m

∣∣∣2/ M∑
m=1

∣∣∣W̃m

∣∣∣2). (1.17)

Based on the error norm in Eq. (1.17), the wavenumber estimates are refined and the
process repeats until the error norm is below a given tolerance.
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(a) (b)

Figure 1.2 – Normalized dispersion curve (a) and estimation error in the real and imaginary
parts of the normalized wavenumbers (b) [8] .

The presented method is then applied to a vibrating beam and compared to an ana-
lytical solution. The real part of the dispersion curve is shown in Fig. 1.2a, in which
both wavenumber and frequency are normalized. The estimation of the errors in the
real and imaginary parts of the normalized wavenumbers are shown in Fig. 1.2b.

A similar approach is presented in [9], in which a wave approach is used to estimate the
damping loss factor under transient loading condition. To obtain the forced response
of the beam, the global solution y(x, t) is assumed to be given by a sum of wave and
modal solutions, as follows:

y(x, t) = yw(x, t) + ym(x, t), (1.18)

where yw represents the wave solution (needed to satisfy homogeneous initial conditions
and non-homogeneous boundary conditions) and ym is the modal solution (required to
satisfy non-homogeneous initial conditions and homogeneous boundary conditions).
Both wave and modal solutions have to satisfy the following differential equation:

ρ
d2y

dt2
+ L{y} = 0, (1.19)

where L is the time-invariant linear operator involving derivatives with respect to the
spatial coordinate x. The boundary conditions assume the following expression:

Lb{y}|x=xb =

{
f(t), wave solution
0, modal solution

, (1.20)

in which xb = {0, L} and Lb is time-invariant and involves spatial derivatives of y [9].
By solving the differential equation expressed in Eq. (1.19), imposing the appropri-
ate boundary and initial conditions for both wave and modal solutions, the complex
wavenumbers can be estimated (with the related damping loss factor information).
An example of damping loss factor estimation for the finite element model of a vibrating
beam is shown in Fig. 1.3a; the normalized error of the noise-free and noisy-simulated
data are shown in Fig. 1.3b.
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(a) (b)

Figure 1.3 – Damping loss factor estimation for the finite element model: exact solution ·−·−,
noise-free simulated data −−, noisy-simulated data — (a) and normalized error: noise-free
simulated data −−, noisy-simulated data — (b). [9]

McDaniel’s method provides an estimation of the dispersion curves and of the damping
loss factor in damped structures from a small number of acquisition points. The steady-
state condition is assumed constituted of a sum of forward and backward propagating
waves. The main advantages are the absence of any hypotheses about the boundary
conditions, the material properties or the cross-sectional dimensions of the structures
[8].

1.2.3 The Inhomogeneous Wave Correlation (IWC) method
In the mid-high-frequency domain classical normal modes-based methods cannot be
used due to high modal overlap and high modal density, making the identification of
the modes hard to obtain. In this context, a method based on plane wave propagation
was developed: the Inhomogeneous Wave Correlation (IWC) method [11, 18]. The aim
of this approach is the estimation of the damping information of a vibrating structure
and the identification of the angle-dependent dispersion curves for orthotropic plane
structures [12, 19, 20]. The idea is to correlate the total energy of a vibrating struc-
ture and the energy carried on by an inhomogeneous damped plane wave, traveling
with a incidence angle θ. The IWC method can be considered the equivalent, in the
wavenumber domain, of the Modal Assurance Criterion (MAC), in the modal domain
[21]. The basic assumptions of the IWC method can be summarized as follows:

• comparison between the displacement field of the vibrating plane structure and
the inhomogeneous plane wave;

• possibility to use coherence signals of the experimental measured points;

• separation of the near field from the far field by the introduction of the attenuation
factor;

• assumption of a single plane wave traveling in the specific direction θ.

The inhomogeneous wave assumes the following expression:
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Figure 1.4 – Schematic representation of the basis of the IWC method: vibrational field of a
plane structure (a) and the representation of an inhomogeneous damped wave (b).

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))(x cos θ+y sin θ), (1.21)

where θ is the heading angle of the traveling wave, γ is the attenuation factor (γ =
ηcϕ/2cg, with η, cϕ, cg being the damping loss factor, the phase velocity and the group
velocity, respectively [13]), i2 = 1 is the imaginary unit and (x, y) are the spatial
coordinates. A schematic representation of the vibrational field of a plane structure
subjected to a harmonic unit force and of a one-dimensional inhomogeneous damped
wave is shown in Fig. 1.4.

For a fixed frequency f0, the correlation between the inhomogeneous wave expressed
in Eq. (1.21) and the complete wave field is calculated by the following relationship:

IWC(k, γ, θ) =

∣∣ ∫∫
S
ŵ · σ̂∗k,γ,θ dx dy

∣∣√∫∫
S
|ŵ|2 dx dy ·

∫∫
S
|σ̂k,γ,θ|2 dx dy

, (1.22)

where * denotes the complex conjugate and S is the surface of the vibrating structure.
The identification of the unknown complex wavenumber k = kRe + ikIm, for a given di-
rection θ, leads to the maximization of the function (k, γ) −→ IWC(k, γ, θ). For very
simple structures, the IWC function has a well-defined maximum, identifying the point
where the inhomogeneous wave σ̂k,γ,θ(x, y) correlates best with the displacement field
[18]. An example of the identified maximum values of the real part of the wavenumber
and of the attenuation factor are shown in Fig. 1.5a and Fig. 1.5b, respectively.

In practical applications, the wave field is measurable in some discrete points, becoming
the integration over the entire surface S in Eq. (1.22) a finite weighted sum:∫∫

S

dx dy =⇒
N∑
i=1

ρiSi, (1.23)

where ρi are the coherence values of the measured data at each point (ρi = 1 if the
coherence is not available), Si is an estimation of the surface around the point i and
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Figure 1.5 – Identified maximum values of the wavenumber (a) and of the attenuation factor
γ (b) for a fixed frequency f0.

Figure 1.6 – Set-up of the one-side clamped ribbed panel [12].

N is the total number of discrete points. Introducing Eq. (1.23) into Eq. (1.22), the
correlation function becomes:

IWC(k, γ, θ) =

∣∣∑N
i=1 ŵ(xi, yi) · σ̂∗k,γ,θ(xi, yi)ρiSi

∣∣√∑N
i=1|ŵ(xi, yi)|2ρiSi ·

∑N
i=1|σ̂k,γ,θ(xi, yi)|2ρiSi

. (1.24)

The algorithm first discretizes the angle θ into (θj); for each of these angles, the max-
imum of IWC is located at a value (kj, γj); thus the method creates two functions
θ → k(θ) and θ → γ(θ) defined on the set of discrete values (θj). Finally, the trio
(θj0, kj0, γj0) is removed from the list if γj0 is greater than 1. The introduction of a loss
factor makes it possible to distinguish the near-field from the far-field: the near-field
corresponds to a high apparent loss factor (imaginary part of the identified wavenum-
ber greater than its real part [12]).

Ichchou et at. [12, 19] applied the IWC method to a ribbed plate to identify the
orthotropic behavior (i.e. the angle-dependent wavenumbers) and the multi-modal
propagation. The set-up of their experimental investigation is shown in Fig. 1.6.
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(a) (b)

Figure 1.7 – IWC results for a ribbed panel with different boundary conditions: free (a) and
one-side clamped (b) [12].

The independence of the wavenumber from the boundary conditions have been also
demonstrated, describing the orthotropic behavior and the classical elliptic shape in
the wavenumber domain (see Fig. 1.7).
The uncoupled flexural plate and stiffeners wavenumbers are captured and shown in
Fig. 1.8. In this case, the correlation function is characterized by the presence of a
maximum value (see Fig. 1.5) and some other local maxima, denoting several wavenum-
bers propagating at the same frequency. In the low-frequency range the global bending
mode of the plate is dominated by the motion of the skin; increasing the frequency,
two straight segments appear in the k -space domain, as shown in Fig. 1.9, denoting a
wave propagation along the stiffeners direction.

Based on the estimated flexural wavenumbers with the IWC method, an inverse ap-
proach is presented in [22], obtaining an evaluation of the equivalent material properties
of a composite sandwich honeycomb beam and plate. The dispersion curve of the com-
posite sandwich honeycomb beam is shown in Fig. 1.10, in which a comparison with
the Timoshenko’s beam theory and the McDaniel formulation (described in section
1.2.2) is proposed.
The estimation of the orthotropic behavior of the composite sandwich honeycomb panel
is shown in Fig. 1.11a; an inverse estimation of the dynamic stiffness is proposed in
Fig. 1.11b.

A slightly different formulation for the inhomogeneous traveling wave is proposed in
[23]. This variant of the method is proposed to avoid some limitations of the classical
IWC approach related to the damping estimation and the plane wave assumption in
the region close to the excitation point. A sum of inhomogeneous waves is considered,
dealing with the following expression:

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))(x cos θ+y sin θ) + eik(θ)(1+iγ(θ))(x cos θ+y sin θ), (1.25)

which accounts for both right e−ik(θ) and left eik(θ) traveling waves. The two ways trav-
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Figure 1.8 – Multi-modal dispersion curves [19].

Figure 1.9 – Multi-modal propagation at different frequencies [12].
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Figure 1.10 – Dispersion curve for the composite beam [22].

(a) (b)

Figure 1.11 – Angle-dependent wavenumbers at fixed frequencies (a) and inverse estimation
of the dynamic stiffness (b) [22].

eling waves is the main difference with the classical IWC method, which considers only
the forward propagating (incident) wave e−ik(θ) and neglects the term corresponding
to backward propagating wave eik(θ) and two other terms corresponding to evanescent
waves.

1.2.3.1 Extended IWC formulation

An application of the IWC method on a locally resonant meta-material plate is pro-
posed in [24], using a so called "extended" IWC approach. In this work, experimental
dispersion curves are retrieved from harmonic out-of-plane displacement field measure-
ments w(x, y) of a vibrating locally resonant meta-material plate (see Fig. 1.12), built
attaching a periodic pattern of resonators (a schematic representation of the resonator
is given in Fig. 1.12a). To obtain a better estimate of the attenuation around the band-
gap frequency region, a different expression of the inhomogeneous wave is proposed,
taking in account the location of the punctual excitation, (x0, y0), as follows:

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))((x−x0) cos θ+(y−y0) sin θ). (1.26)
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(a) (b) (c)

Figure 1.12 – Unit cell of the locally resonant meta-structure (a), full-scale resonant plate (b)
and close-up view (c) [24].

(a) (b) (c)

Figure 1.13 – Numerically predicted dispersion curves compared with the measured one by
using the extended IWC method: θ = 0 deg (a), θ = 45 deg (b) and θ = 90 deg (c)[24].

The inhomogeneous wave in Eq. (1.26) is then correlated in the same way showed
in Eq. (1.24). The damped unit cell technique is applied to the unit cell presented
in Fig. 1.12a, in order to obtain the numerical dispersion curves in three different
directions: θ = 0 deg, θ = 45 deg and θ = 90 deg. The resonators are tuned at 600 Hz;
the resonance is characterized by an increase of the amplitude of the wavenumber in
the frequency region just before the tuning frequency, then a strong attenuation around
that value of the frequency (with an increase of the imaginary part of the wavenumber)
and followed by a gradual increment of the real part after the resonance region (see Fig.
1.13). The experimental dispersion curves are obtained exciting the meta-structure by
a mechanical shaker and scanning the out-of-plane displacement using a Laser Doppler
Velocimeter; the displacement field is then post-processed with the extended IWC
method. From the dispersion curves analysis, a directional effect of the resonators can
be observed.

1.2.3.2 1D variant of the IWC method

The IWC method is also valid for one-dimensional structures [25, 26]. In this case, a
wave propagation in the form ekx is assumed; the inhomogeneous wave has the following
expression:
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(a) (b)

Figure 1.14 – Experimental set-up of the beam with varying cross-section (a) and analytical
dispersion curves in the first Brillouin zone (b) [26].

σ̂k,γ,θ(x) = e−ik(θ)(1+iγ(θ))x. (1.27)

Moving from the 2D domain to the 1D one and assuming L the length of the structure,
Eq. (1.22) becomes:

IWC(k, γ, θ) =

∣∣ ∫
L
ŵ · σ̂∗k,γ,θ dx

∣∣√∫
L
|ŵ|2 dx ·

∫
L
|σ̂k,γ,θ|2 dx

. (1.28)

As in the 2D case, the maximization of the correlation function in terms of k and γ
defines the point of best agreement between ŵ and σ̂k,γ,θ. In order to reconstruct the
full spatial spectrum of the wave pattern, an iterative process is proposed in [26], and
it can be summarized as follows:

1. find the location (k1, γ1) of the absolute maximum using the fmincon function
of matlab R©(the fmincon function is used to estimate the imaginary part of the
wavenumber within given boundaries, i.e. ranges of possible values of k and γ);

2. calculate the complex amplitude of this component of the total deflection, by
projecting the inhomogeneous wave onto the measured vibration pattern, and
normalizing it to the norm of σ̂

A1 =

∑
i σ̂(k1, γ1, xi)ŵ(xi)∑

i σ̂(k1, γ1, xi)σ̂∗(k1, γ1, xi)
;

3. subtract the scaled inhomogeneous wave A1σ̂(k1, γ1, x) from the measured vibra-
tion pattern and go back to step 1 .

The IWC method is successfully implemented to obtain the real and the imaginary
parts of the wavenumbers for a beam with a varying cross-section and for a cross
laminated timber beam. The experimental set-up and the beam dimensions are very
similar for both cases; a schematic representation of the periodic beam and of the set-up
is illustrated in Fig. 1.14a. The analytical solution is derived using the transfer-matrix
formulation [27] using a thick-beam model, described as follows:

EI
∂4w

∂x4
+ ρA

∂2w

∂t2
−
(
ρI +

EIρ

KAG

)
∂4w

∂x2∂t2
+
ρ2I

KG

∂4w

∂t4
= 0, (1.29)
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(a) (b)

(c)

Figure 1.15 – Dispersion curves of the polyamid beam with periodically varying thickness with
the spacial Fourier transform (a) and the IWC method (real part (b) and imaginary part (c))
[25].

where E is the Young’s modulus, I is the moment of area, G is the shear modulus, ρ
is the mass density, w is the transverse displacement, x is the spatial coordinate, A is
the beam cross-section area, t is the time dependence and K = 5/6 is a constant value
to take in account the shear-force variation in the thickness direction. The dispersion
curves obtained solving Eq. (1.29) are shown in Fig. 1.14. The IWC method is then
applied to the harmonic displacement field, estimating the complex dispersion curves
shown in Fig. 1.15, where a comparison with a 1D spatial Fourier transform is also
made (see Fig. 1.15a).

1.2.4 Spatial LAplace Transform for COmplex Wavenumber re-
covery (SLaTCoW) method

A method very similar to the IWC method is proposed in [28] and applied in [29, 30];
this method is called SLaTCoW, which is an acronym for Spatial LAplace Transform
for COmplex Wavenumber recovery. The main difference between the proposed ap-
proach and the IWC method is the use of the Laplace transform instead of the Fourier
transform, in order to recover both the real and imaginary parts of the wavenumber.

Following the formulation of Geslain et al. [28], the SLaTCoW method can be sum-
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marized as follows. Assuming a general wave-field discretely recorded along a line of
length L with a time dependence of e−iωt, the complete wave-field can be reconstructed
by a sum of modal contributions, as follows:

ξ(x) =
∑
m∈M

ξ̃meiK
mxΠ(x, L), (1.30)

where x is the spatial coordinate, ξ̃m is the complex amplitude of the m-th mode, Km

is the complex wavenumber of the m-th mode, M is the set of modes and Π(x, L) is
the gate function equal to 1 when x ∈ [0, L] and equal to 0 elsewhere. The expression
of Eq. (1.30) takes into account only forward propagating modes, having both real
and imaginary parts of the complex wavenumber a positive value. Denoting with
Ξ(s) =

∫∞
−∞ ξ(x)e−sx dx (s being the complex wavenumber parameter s = sIm + isRe,

with real valued sIm and sRe) the spatial Laplace transform of the wave field ξ(x). This
spatial Laplace transform is expressed as follows:

Ξ(s) =
∑
m∈M

ξ̃m
∫ L

0

e[(iKm−s)x] dx

= L
∑
m∈M

ξ̃me[(iKm−s)L/2] sinh [(iKm − s)L/2]

(iKm − s)L/2
.

(1.31)

The complex wavenumber can be found for each frequency by minimizing the following
cost function (similarly to what is described in [31]):

F
(
|ξ̃m|, φm, kmr , kmi ,M

)
=∑
sr

∑
si

∣∣∣∣∣Ξmes(s)− L
∑
m∈M

|ξ̃m|eiφm ·

· e[i(kmr +ikmi )−si−isr]L/2 sinh [i(kmr + ikmi )− si − isr]L/2
[i(kmr + ikmi )− si − isr]L/2

∣∣∣∣∣, (1.32)

where Ξmes is the spatial Laplace transform of the measured field ξ(x), |ξ̃m| and φm

are, respectively, the theoretical amplitude and phase of the m-th mode.
The method is then applied to a porous material to determine the frequency-wavenumber
relation, as shown in Fig. 1.16.
The proposed approach seems to be robust, efficient and versatile; it is possible to
recover the complex wavenumber in a very large frequency band and to take in account
several modes, which may overlap. Some limitations are related to the choice of the
appropriate cost function and to the treatment of noisy data [28].

1.2.5 High-Resolution Wavenumber Analysis (HRWA) method
The High-Resolution Wavenumber Analysis (HRWA) method [32, 33] identifies com-
plex wavenumbers and amplitudes of waves composing the harmonic response of vibrat-
ing structures. The HRWA method is developed to overcome some limitations related
to complex poles identification from measured signals and to extend the approach to
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(a) (b)

(c) (d)

Figure 1.16 – Set-up of the experimental test (a), Laplace transform at 2453 Hz (b), real part
(c) and imaginary part (d) of the estimated wavenumbers [28].

full-field measurements. Complex poles identification techniques were widely developed
and applied in many engineering applications, starting from Prony’s approach [34].
Other methods directly related to Prony’s approach are Matrix Pencil [35], Pisarenko
method [36], MUSIC (MUltiple SIgnal Classification) algorithm [37] and ESPRIT al-
gorithm based methods [16, 38–45].

The HRWA method has been firstly developed for unidimensional structures [32]. In
these beam-like structures, the wavenumbers are dependent of the local structural
behavior, considering the beams as waveguides. The HRWA method makes use of the
subspace-based identification algorithm ESPRIT (Estimation of Signal Parameters
via Rotational Invariance Techniques, [46]). The main advantages of the use of the
ESPRIT algorithm are:

• high resolution, as it uses a recurrence property of the signal to identify the wave
parameters;

• by using the subspace decomposition, the number of waves contained in the
signal can be estimated automatically with the ESTER (ESTimation or ERror)
criterion ([47]);
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• the complex wavenumbers are the solution of an optimization-free problem thus
the computational cost is lightened.

The analytical formulation here described is taken from [32], which makes use of Eu-
ler’s and Timoshenko’s beam models.

The harmonic response of the beam, far from sources and boundaries, is measured
along the beam x axis, assuming a discrete model of a beam, with N points along the
x axis and with a regular spacing ∆, as follows:

xu = x1 + (u− 1)∆ with u ∈ [1, N ]. (1.33)

In a linear formulation framework, the measurement of a component of u(x, y, z) along
the mesh x can be expressed as a sum of R damped exponentials, p, and noise, n:

su = ui(xu, y0, z0) + nu = pu + nu =
R∑
r=1

arz
u
r + nu, (1.34)

where ar are the amplitudes corresponding to the poles zr = eikr∆, with kr = kr(1−iγr).

The p part of the signal can be expressed as p = VN(zR) ·aR, where aR = [a1 · · · aR]T ,
zR = [z1 · · · zR]T and VN(zR) is the Vandermonde matrix. The main problem is to find
the poles zR. Once the poles are known, the complex amplitudes aR can be estimated
in the measured noisy signal s in the least-square sense:

aR =
(
V∗N(zR) ·VN(zR)

)−1(V∗N(zR) · s
)
. (1.35)

where ∗ denotes complex conjugate or hermitian transpose.

The ESPRIT algorithm is applied in order to obtain the subspace decomposition to
improve the resistance to noise and it is here reported to the sake of clarity (the
following formulation is taken from [32]). In addition, the ESTER criterion is used
to estimate the signal order (number of poles contained in the signal). The first step
of the algorithm consists in the decomposition of the signal between signal and noise
subspaces. First, a Hankel matrix H is formed with the measured signal s of length
N : 

s1 s2 . . . sN−K
s2 s3 . . . sN−K+1
... . . . ...
sK . . . sN

 , (1.36)

where the integer parameter K corresponds to the sum of the dimensions of signal and
noise subspaces. The HRWA method makes use of the auto-covariance matrix Rss,
expressed as follows:

Rss = HH∗ = W∗DW, (1.37)

which eigenvectors W span the same subspace as the Hankel matrix singular vectors,
and has the advantage to be an asymptotically non-biased estimator of the signal
autocovariance, in presence of white gaussian noise. The eigenvector matrix W spans
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the entire subspace of the noisy signal s. This total subspace can be decomposed
into signal subspace Wp and noise subspace Wn, with Wp built with the eigenvectors
corresponding to the R dominant eigenvalues.
The ESPRIT algorithm strategy consists in estimating the signal poles zR via the
signal subspace matrix Wp. As this last matrix and the Vandermonde matrix spans
close subspaces, they are related by a transformation matrix T: VN(zR) = WpT. The
rotational invariance property is then expressed as a function of the signal subspace
matrix W↓

p = W↑
pF, in which ↓ and ↑ respectively correspond to the (N − 1) first and

last samples of the signal and F = TZT−1 and:

W↑
p =

[
I(K−1) 0(K−1)x1

]
Wp,

W↓
p =

[
0(K−1)x1 I(K−1)

]
Wp.

(1.38)

The matrix F is estimated in the Least-Square sense: F = (W↑
p)
−1W↓

p; then, the poles
zR are extracted from the diagonalization of F.

Usually, the number of dominant waves is unknown; the HRWA method uses the ES-
TER criterion, which can estimate the signal order R that minimizes the F estimation
residuals, in a given range r ∈ [rmin, rmax]:

R = min
r∈[rmin,rmax]

‖W↑
p(r)F(r)−W↓

p(r)‖2. (1.39)

The HRWA procedure consists in applying the following steps to each obtained har-
monic response s(ωi) = S(x, ωi), where S(x, ω) is the time domain Fourier transform
of the measured displacement, velocity or acceleration:

1. based on the array s(ωi), the Hankel matrix is built (see Eq. (1.36));

2. the covariance matrix Rss is computed and diagonalized yielding the matrix of
eigenvectors W (see Eq. (1.37));

3. the ESTER method is applied to estimate the number of detectable waves in the
noisy signal. Then, for each r ∈ [rmin, rmax]:

• the r eigenvectors corresponding to the r dominant eigenvalues are extracted
to form the approximated signal subspace matrix Wp;

• the truncated signal subspace matrices W↑
p and W↓

p are built (see Eq.
(1.38));
• the least-squares estimation of F is computed;
• the ESTER criterion as function of r is evaluated (see Eq. (1.39));

4. the eigenvalues of matrix F are computed, yielding the wavenumbers kr of all the
waves which can be detected with the HRWA at the angular frequency ωi:

kr(ωi) =
ln (izr(ωi))

∆
;

5. if a signal reconstruction is needed, the Vandermonde matrix VN(zR) is com-
puted, and the complex amplitudes aR are estimated (see Eq. (1.35)).
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(a) (b)

(c) (d)

Figure 1.17 – HRWA method on a PVC beam: torsional and bending wavenumbers (a), spatial
decay γ (b), apparent complex moduli (c) and damping loss factor (d) [32].

The HRWA method is applied on a polyvinyl chloride (PVC) beam in [32], exciting
the beam with impulse and random noise excitations in the range [0 Hz - 22 kHz]. The
real part of the dispersion curves is shown in Fig. 1.17a, where both torsional and
flexural wavenumbers are estimated. The decay for both torsional and flexural waves
is captured and shown in Fig. 1.17b. From the estimated complex wavenumbers, the
equivalent material properties (see Fig. 1.17c) and the damping loss factor (see Fig.
1.17d) have been estimated.

A 2D version of the HRWA method is developed and presented in [33]. The fundamen-
tal equations are basically the same of the 1D approach, except for the 2D formulation
of the ESTER criterion [48–50]. The experimental results on two different sandwich
plates with carbon fiber reinforces polymer (CFRP) skins and different core materi-
als (PVC foam and honeycomb) are shown in Fig. 1.19 and Fig. 1.20, respectively;
both plates have dimensions 60 cm × 60 cm. The excitation is provided by a mechan-
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Figure 1.18 – Set-up of the experimental tests, with excitation and acquisition systems, for
the 2D application of the HRWA method [33].

(a) (b)

Figure 1.19 – 2D application of the HRWA method on a sandwich plate with CFRP skins
and PVC core: phase velocity-frequency relation (a) and phase velocity angle dependency (b)
[33].

ical shaker in the frequency range [100 Hz - 40 kHz]; the vibrational field is acquired
by a scanning laser vibrometer (see Fig. 1.18). The results are compared with the
results obtained with the Spectral Finite Elements Method (SFEM) scheme [51–53].
The frequency-dependent phase velocities for the orthotropic sandwich plate with PVC
core are shown in Fig. 1.19; the solid lines are estimated by using the SFEM scheme
[52], while the dot markers are the HRWA method estimations. The angle-dependent
dispersion curves for the sandwich plate with honeycomb core are shown in Fig. 1.20.
A singularity is observed around 34 kHz; at this frequency, the half-wavelength π/|k|
approaches the cell-size of the honeycomb core, resulting in a resonance effect.

1.2.6 Image source method

All the methods based on plane waves propagation are valid only if some assumptions
are verified. In these methods the measure of the steady state response is needed and
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(a) (b)

(c) (d)

Figure 1.20 – 2D application of the HRWA method on a sandwich plate with CFRP skins
and honeycomb core: frequency and angle dependency of the real (a) and imaginary (b) parts
of the estimated wavenumbers; real (c) and imaginary (d) discrete dispersion surfaces [33].
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the acquisition region should be far from the excitation points, due to the singularities
introduced in the formulation. In fact, the basic problem with plane waves of the type
e±ikxx±ikyy is that the vibrational field of a structure deviates from a plane wave field
near the excitation points. The image source method, based on the Green’s function of
a point excited plate, is not affected by these problems. The image source method re-
places the boundaries of the considered domain by mirror sources of the original source
The weights and the locations of image sources are calculated in order to satisfy the
boundary conditions [54].

The image source method can be used for both electrostatics and acoustics prob-
lems [55]. Starting from the time-dependent solution of the wave equation ∇2Ψ =
(1/c2)(∂2Ψ/∂t2), the solution of the Helmholtz equation by specifying a simple-harmonic
dependence on time of the solution of the wave equation is given by ψe−iωt = ψe−ikct

[55]. Substituting the Helmholtz solution ψ with the Green’s one G, the complete so-
lution is given by Ge−ikct. The expression of the waves going outward from the source
point is given by:

Gk(r|r0) = gk(R) = eikR/R, with boudary at infinity. (1.40)

In case of incoming wave the term e−ikR/R should be considered in Eq. (1.40). A com-
bination of outgoing and incoming waves has to be assumed when the boundaries are
at a finite distance r0 from the source; in this case, the energy might not be completely
dissipated at the surface and might be reflected back to the source.

As said before, an analogy between electrostatics and acoustics can be made; without
any boundaries, gk(R) is the classical Green’s function. In electrostatics, when a surface
is introduced a potential is developed, due to the induced charge on the boundary
surface, which in turn is caused by the applied electric field gk(R). In acoustics, the
presence of boundaries causes the reflections which contribute to the total pressure
[55]; Eq. (1.40) modifies in:

Gk(r|r0) = gk(R) + Fk(r|r0), (1.41)

where Fk(r|r0) represents the boundary effects.
In [55] a detailed discussion about Eq. (1.41) and the term Fk(r|r0) is provided and
here reported for clearness purpose.

The image source method can be employed to determine Fk(r|r0) since it describes the
reflected waves contribution. A schematic representation of the image source method is
shown in Fig. 1.21, applied to an electrostatics problem. An infinitely conducting metal
plane is considered with a unit line charge placed in (x0, y0). On the surface at x = 0
the potential must be zero, imposing to the Green’s function to satisfy the Dirichlet
boundary conditions. In this method, a line charge of opposite sign is considered at
the image point (−x0, y0). The total potential for x > 0 is:

G0(r|r0) = −2 ln(R/R0), x ≥ 0. (1.42)

The boundary conditions are satisfied at the equipotential plane, where R = R0 and
G0 = 0; as consequence, since gk(R) = −2 lnR, we obtain F0 = 2 lnR0. By the
generalization of Eq. (1.42), the expression of Gk can be found:
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Figure 1.21 – Image of a source point (x0, y0) in the plane x = 0 [55].

Gk(r|r0) = iπ[H
(1)
0 (kR)−H(1)

0 (kR0)], (1.43)

where H(1)
0 is the cylindrical Hankel’s function of the first kind of order 0.

One of the first application of the image source method on polygonal plates is shown
in Gunda et al. [56], in which the feasibility of calculating the frequency-dependent
response of thin plates and beams has been demonstrated. The image source method
has been successfully applied to describe the structural vibrations of a plane structure.
Cuenca et al. [54] derived the formulation of the image source method in case of
simply supported convex polygonal plates (see Fig. 1.22). The plate has an interior
domain Ω, boundaries ∂Ω and it is excited by a point source at location r0. To obtain
an expression of the flexural vibrations of the plate, the Kirchhoff’s theory is adopted
[57]. The solution of the system of equations listed in Eq. (1.44) represents the Green’s
function GΩ associated to the flexural vibrations of the considered structure.

D(∇4 − k4
f )GΩ(r, r0) = δ(r− r0) in Ω

GΩ(r, r0) = 0 on ∂Ω
∂2GΩ

∂n2 (r, r0) + ν ∂
2GΩ

∂t2
(r, r0) = 0 on ∂Ω

, (1.44)

where D(∇4− k4
f ) is the differential operator governing flexural wave propagation, δ is

the Dirac delta function, ν is the Poisson’s coefficient and n and t are the normal and
tangent to the boundary, respectively [54, 58]. The term D is the flexural rigidity of
the plate and is given by D = Eh3/[12(1 − ν2)], being E the Young’s modulus and h
the thickness of the plate. The flexural wavenumber is defined as k4

f = ω2ρh/D, where
ρ is the mass density.

To obtain the solution of the finite plate, the image source method considers an infinite
plate containing the original source and a sum of image sources whose locations and
weighted amplitudes in order to satisfy the boundary conditions [59]. Denoting with
DΩ(r, r0) the sum of Dirac delta functions, the vibrational field is obtained as the
superposition of elementary contributions from all the sources; as consequence, Eq.
(1.44) can be express as follows:

D(∇4 − k4
f )GΩ(r, r0) = DΩ(r, r0). (1.45)
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Figure 1.22 – Polygonal plate with inside domain Ω and boundaries ∂Ω, with source (+) and
receiver (×) locations [54].

For a point source located at 0, G∞ (the Green’s function of the infinite plate [56]) is
the solution of the following equation:

D(∇4 − k4
f )G∞(r,0) = δ(r), (1.46)

where G∞ is defined as:

G∞(r,0) =
i

8k2
fD

[H
(1)
0 (kf |r|)−H(1)

0 (ikf |r|)], (1.47)

Finally, the Green’s function of the finite plate is defined by the convolution product
of the infinite Green’s function (in Eq. (1.47)) and the contribution of all the sources:

GΩ(r, r0) = DΩ(r, r0) ∗G∞(r,0). (1.48)

An experimental validation of the proposed approach is presented by Cuenca et al.
[60]; the image source method is here applied on a flat panel covered with viscoelastic
layer in order to obtain the equivalent Young’s modulus and the structural damping
loss factor. The schematic representation of the panel and of the excitation is shown in
Fig. 1.23. Based on [61], the displacement field at the input point of an infinite plate
is given by the asymptotic limit of the Green’s function, as follows:

lim
r→r0

G∞(r, r0; kf ) =
i

8k2
fD

. (1.49)

The bending stiffness can be then estimated by an inverse approach based on the
driving point mobility:

|Y |(r, r0; kf ) = |iω lim
r→r0

G∞(r, r0; kf )| =
1

8
√
ρh(D1/2)

. (1.50)

The Young’s modulus can be estimated from the bending stiffness modulus of Eq.
(1.50), as a function of the damping loss factor:
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(a) (b)

Figure 1.23 – Experimental set-up of the plate with viscoelastic layer (a) and shaker excitation
(b) [60].

E =
|D|12(1− ν2)

h3
√

1 + ν2
. (1.51)

The couple (E, η) is iteratively estimated by using the standard deviation of the driving
point mobility as a criterion for comparison between simulated and measured mobil-
ities. The estimations of the bending stiffness D, the Young’s modulus E and the
damping loss factor are shown in Fig. (1.24).

A 1D formulation of the image source method is developed in [62] and applied to beam-
like structures in presence of uncertainties. Assuming a homogeneous rectangular cross-
section for a beam structure, the longitudinal and flexural displacements are given,
respectively, by the following expressions [58]:

EA

(
∂2

∂x2
+ k2

l0

)
Gl(x, x0; kl0) = δ(x− x0), (1.52a)

EI

(
∂4

∂x4
+ k4

f0

)
Gf (x, x0; kf0) = δ(x− x0), (1.52b)

where E is the Young’s modulus, A = hb is the cross-section area, with h and b
the thickness and width, respectively, I = bh3/12 is the second moment of area, Gl

and Gf are respectively the Green’s functions of longitudinal (along the x axis) and
flexural motion (along the z axis) with corresponding wavenumbers kl0 = ω

√
ρ/E and

kf0 = (ω2ρA/EI)1/4, x0 is location of the source and ρ is the mass density. The Green’s
function of the longitudinal motion in Eq. (1.52a) is given by:

Gl(x, x0; kl0) =
eikl0|x−x0|

2ikl0EA
, (1.53)

while the Green’s function of the flexural motion in Eq. (1.52b) is equal to:

Gf (x, x0; kf0) =
eikf0|x−x0|

−4ik3
f0EI

+
e−kf0|x−x0|

−4k3
f0EI

. (1.54)
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(a) (b)

(c)

Figure 1.24 – Experimental estimation of the bending stiffness D (a), the Young’s modulus E
(b) and the damping loss factor (c) [60].

The first terms in both Eq. (1.53) and Eq. (1.54) are representative of the propagative
waves, while the second term in Eq. (1.54) represents the evanescent wave.

Recently, Roozen et al. [5] developed an approach based on a combination of image
source method and a set of Hankel’s functions to retrieve the vibrational field of a point
excited plate. The equation of motion of the isotropic plate is given by the Kirchhoff’s
thin plate theory [57], similarly to Eq. (1.45):

D
(
∇4 − k4

f

)
w(x, y) = δ(x− x0, y − y0), (1.55)

where w(x, y) is the out-of-plane displacement of the plate and (x0, y0) is the location
of the point force. The solution of Eq. (1.55) can be obtained in a similar manner of
Eq. (1.43):

G∞(x− x0, y − y0) =
1

8k2
fD

(
H

(1)
0 (kfr)−H(1)

0 (ikfr)
)
, (1.56)

where:

• kf =
(
ω2 ρh

D

)1/4

, flexural wavenumber;

• D = Eh3

12(1−ν2)
, bending stiffness;

• H(1)
0 , Hankel’s function of order zero and first kind;

• r = ‖x− x0, y − y0‖, source-to-receiver distance.

The response of the finite plate can be calculated by a linear combination of image
sources contributions. Considering the transverse displacements in the form w(xj, yj, ω)
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and a discrete number M of acquisition points (xj, yj), with j = 1, . . . ,M , the vibra-
tional field can be built as follows:

w̃(xj, yj, ω) =
N∑
n=1

αn(ω)φn(xj, yj), (1.57)

where:

• αn(ω),is the strength of each image source;

• φn(xj, yj) = G∞
(
xj − x0(n), yj − y0(n)

)
, Green’s function of the infinite plate at

the location (x0(n), y0(n)) of the n-th image source.

Considering a matrix notation and all the M measured points, Eq. (1.57) can be
written as:

w̃ = Φα, (1.58)

where w̃ is a vector containing the projected displacements w(xj, yj, ω), Φ is a matrix
containing the vectors of the image source Green’s functions and α is a vector con-
taining the contribution strengths [5]. The vector of contribution strengths α needs
to be determined by means of a generalized inverse approach; different methods are
proposed in [5, 63–65].

The projected vibrational field and the normalized reconstruction error between the
matrix Φ and measurements w are expressed, respectively, by:

w̃ = ΦΦ+λw and e =
‖w − w̃‖2

‖w‖2
. (1.59)

The error e also depends upon the complex valued flexural wavenumber kf used to
build the test wave fitting function Φ. The optimal value for kf , from a set of candi-
date values for kf sampled in complex plane, is obtained by the minimization of the
reconstructed error e. Assuming that a single flexural wave is propagating, a single
wavenumber kf is found for each angular frequency ω.

The method is then applied to a thin isotropic plate in order to estimate the material
properties and the damping loss factor information. The experimental set-up is shown
in Fig. 1.25. The real part of the dispersion curve is shown in Fig. 1.26a; the damping
loss factor is also estimated and reported in Fig. 1.26b. Using an inverse approach
based on the estimated flexural wavenumbers, the equivalent stiffness D and Young’s
E moduli are determined and shown in Fig. 1.26.
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Figure 1.25 – Isotropic plate and measurement area [5].

(a) (b)

(c) (d)

Figure 1.26 – Real part of the dispersion curve (a), damping loss factor estimation (b), equiv-
alent stiffness modulus (c) and equivalent Young’s modulus (d) [5].
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1.3 Force Analysis Technique (FAT)

The Force Analysis Technique (FAT), also known with the French acronym RIFF (Régu-
larisation Inverse Filtrée et Fenêtrée), is an inverse method for the localization of the
external excitation from displacement field information. This method was introduced
by Pézerat et al. [66] in one-dimensional formulation and applied for the first time to
a beam-like structure and then extended to 2D structures [67]. Further development
of the FAT are presented by Pézerat’s research group and extended to more complex
cases [68–74].
The method allows to identify stationary force distribution from the knowledge of the
measured flexural displacement fields, using a finite difference scheme to discretize the
local equation of motion. When dealing with experimental data, the acquired data may
be affected by noise; to avoid this problem and to mitigate the uncertainties related
to the data, two different approaches are used: Singular Value Decomposition (SVD),
which consists in the elimination of the singular values of the operator applied to the
displacements, and a high wavenumber filter [67].

The force distribution can be calculated at each point where the displacement and its
fourth derivatives are known. Considering a simple isotropic plate, the equation of
motion, under point harmonic excitation, is given by the following relationship:

Eh3

12(1− ν2)

(
∂4w

∂x4
+
∂4w

∂y4
+

2∂4w

∂2x∂2y

)
− ρhω2w = F (x, y, ω), (1.60)

where E is the Young’s modulus, h is the plate thickness, ν is the Poisson’s coefficient,
ρ is the mass density, ω is the frequency, w is the normal displacement, (x, y) are the
spatial coordinates and F is the distribution of external forces.
In practical applications, the displacements can be measured, but the derivatives have
to be obtained in a different manner. One of the most employed technique to estimate
the derivatives is the use of the finite difference scheme. Following a classical centered
scheme, the first derivatives can be approximated as follows:

∂w

∂x
⇒ δ1x

i,j =
1

∆x

(
wi+1/2,j − wi−1/2,j

)
, (1.61a)

∂w

∂y
⇒ δ1y

i,j =
1

∆y

(
wi,j+1/2 − wi,j−1/2

)
, (1.61b)

where∆x and ∆y are the distance between two consecutive points in the directions x
and y, i and j are the indexes of the meshgrid point and wi,j is the transverse displace-
ment at the point (i, j). From equations (1.61a) and (1.61b), the fourth derivatives
can be obtained:

∂4w

∂x4
⇒ δ4x

i,j =
1

∆x4

(
wi+2,j − 4wi+1,j + 6wi,j − 4wi−1,j + wi−2,j

)
, (1.62)

∂4w

∂y4
⇒ δ4y

i,j =
1

∆y4

(
wi,j+2 − 4wi,j+1 + 6wi,j − 4wi,j−1 + wi,j−2

)
, (1.63)
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∂4w

∂x2∂y2
⇒ δ2x2y

i,j =
1

∆x2∆y2

(
wi+1,j+1 − 2wi+1,j + wi+1,j−1−

− 2wi,j+1 + 4wi,j − 2wi,j−1 + wi−1,j+1 − 2wi−1,j + wi−1,j−1

)
. (1.64)

Substituting equations (1.62), (1.63) and (1.64) in the equation of motion (see Eq.
(1.60)), the force distribution can be calculated as:

Fi,j =
Eh3

12(1− ν2)

(
δ4x
i,j + δ4y

i,j + δ2x2y
i,j

)
− ρhω2wi,j. (1.65)

From Eq. (1.65) can be noted that the calculation of the force at one point requires
the measurements of the displacements in 13 different points (around the considered
one, see Fig. 1.28).

An example of force distribution identification is shown in Fig. 1.27. Firstly, the force
distribution is reconstructed using the finite difference scheme, starting from the exact
values of the displacement (see Fig. 1.27a, in which the iso-lines also are plotted). A
random noise distribution is then applied to the displacement field; in this case, the
estimated force distribution is irregular and shown in Fig. 1.27b. Three different filter-
ing approaches are used to mitigate the uncertainties and to de-noise the displacement
field. The first technique is the SVD; the identified force distribution is shown in Fig.
1.27c. The second filtering technique that can be used to de-noise the displacement
field is the low-pass wavenumbers filter; the reconstructed force distribution is shown in
Fig. 1.27d. To avoid the singularities introduced by the boundaries (as shown in Fig.
1.27d), a spatial multiplicative window can be introduced (see Fig. 1.27e). After the
application of the three filtering technique, the identified force distribution is shown in
Fig. 1.27f; the obtained results are very close to the exact case.

The Force Analysis Technique is used in [72] to identify the flexural dispersion curve
of a plate in fluid-structure coupling condition. The FAT is applied to a plate without
singularities, as shown in Fig. 1.29a. The equation of motion of one-side fluid-loaded
plate, in case of fluid-structure coupling, can be written as:

∇4w(x, y, ω)− k4
fw(x, y, ω) =

p(x, y, ω)

D
+
pcoupling(x, y, ω)

D
, (1.66)

in which kf is the flexural wavenumber of the plate, p is the fluid pressure and D is
the bending stiffness modulus. Introducing the effective flexural wavenumber γ, which
takes in account the fluid-structure coupling:

γ4 = k4
f +

pcoupling(x, y, ω)

D
, (1.67)

the motion equation expressed by Eq. (1.66) can be rewritten as:

∇4w(x, y, ω)− γ4w(x, y, ω) =
p(x, y, ω)

D
. (1.68)

The dispersion curve is shown in Fig. 1.29b and compared to the one of the plate
without fluid-structure coupling and to the analytical solution.
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(a) (b) (c)

(d) (e) (f)

Figure 1.27 – FAT on isotropic plate: exact motion (a), noisy displacement (b), SVD filtering
(c), low-pass wavenumber filtering (d), spatial windowing (e) and filtered force distribution
(f) [67].

Figure 1.28 – Points needed to estimate the fourth derivatives with the finite difference scheme
[72].
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(a) (b)

Figure 1.29 – Fluid-loaded plate (a) and dispersion curves (b) [72].

1.4 Wave Finite Element Method (WFEM)

The Wave Finite Element Method (WFEM) is a technique developed to investigate
wave motion and wave propagation in periodic structures, assumed as assembled by
elementary cells, which are modeled using conventional FE techniques. The method
starts from a short section of a waveguide or a small part of a 2D structure; the govern-
ing equation for time-harmonic motion is expressed in terms of discrete nodal degrees
of freedom (DOF) and forces of the FE model, assuming the following expression (sim-
ilarly to what described in [75, 76]):(

K + iωC− ω2M
)
q = f, (1.69)

where K, C and M are the stiffness, damping and mass matrices, respectively, q and
f are the nodal DOFs and forces vectors, respectively. In the WFEM for waveguides
[77, 78], the FE dynamic matrix of Eq. (1.69) assumes the role of transfer matrix,
leading to an eigenvalue problem after applying periodicity conditions [79].

The basis of the WFE method can be found in [80], in which the dispersion curves of
periodic structures are estimated using a combination of FE approach and receptance
method. An extended application of the proposed approach to 1D, 2D and 3D peri-
odic structures is presented in [81]. An application of the method to railway tracks
is presented in [82–85], in which both free wave propagation and dynamic behavior
have been analyzed. An application of the wave FE method to structures that are
geometrically periodic along one main dimension is proposed in Silva et al. [86].

In the last years, several contributions to the WFEM were given by Ichchou’s and
Mencik’s research groups [87–93]; in their works, waveguides propagation, multi-modal
behavior and fluid-structure interaction problems for straight and curved structures
have been analyzed.

Another research group which gave an important contribution to the development of
the WFE method is the one of Mace [77, 78, 94–107]. Their approach started from a
commercial FE package for the modeling of the unit cell and using free wave propaga-
tion in simple waveguides to obtain the forced response of different structures.

The WFE method is applied to periodic structures, assumed to be constituted by unit
cells each of which coupled to its neighbors on all sides and corners. Following the
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Figure 1.30 – Periodicity conditions between two adjacent cells [108].

(a) (b)

Figure 1.31 – FE models of the 2D unit cells with corners nodes (a) and mid-side nodes (b)
[99].

same notation of Eq. (1.69), the continuity of nodal displacements and the equilibrium
of nodal forces between two adjacent cells can be expressed as shown in Fig. 1.30.
Considering a unit periodic element modeled in commercial FE package, as shown in
Fig. 1.31a, the vector of the nodal DOFs can be expressed as:

q =
[
qT1 qT2 qT3 qT4

]T
, (1.70)

where the superscript T represents the transpose and qi is the vector of the DOFs of
the i -th node. In general, if multiple elements are present in the thickness direction,
the i-th node becomes an hypernode, obtained concatenating all the nodes through the
thickness. Similarly, the vector of the nodal forces can be obtained:

f =
[
fT1 fT2 fT3 fT4

]T
. (1.71)

Being kx and ky the wavenumber components in two orthogonal directions, Lx and Ly
the dimensions of the unit element (see Fig. 1.31a), the propagation of the free wave
[109, 110] can be derived starting from the propagation constants in the two orthogonal
directions, µx = kxLx and µy = kyLy; the nodal displacements q at a corner can be
related to the other one by the following relationships:

q2 = λxq1; q3 = λyq1; q4 = λxλyq1, (1.72)

where λx = e−iµx and λy = e−iµy . Substituting Eq. (1.72) into Eq. (1.70), we obtain:

q = ΛRq1, with ΛR =
[
I λxI λyI λxλyI

]T
. (1.73)

If no external forces are applied, from the equilibrium condition at node 1, the following
expression is obtained:
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ΛLf = 0, with ΛL =
[
I λ−1

x I λ−1
y I (λxλy)

−1I
]
. (1.74)

Pre-multiplying both sides of Eq. (1.69) and taking in account Eq. (1.73), the expres-
sion of free wave motion is given by:[

K̄(µx, µy) + iωC̄(µx, µy)− ω2M̄(µx, µy)
]
q1 = 0, (1.75)

in which:

K̄ = ΛLKΛR, (1.76a)
C̄ = ΛLCΛR, (1.76b)
M̄ = ΛLMΛR (1.76c)

are the element stiffness, damping and mass matrices projected onto the DOFs of node
1. Denoting with D̄ the element dynamic matrix projected onto the DOFs of node 1,
the eigenvalue problem can be expressed as:

D̄(ω, λx, λy) = 0. (1.77)

The dimensions of the dynamic stiffness matrix are dependent on the number of nodal
DOFs; assuming to have n DOFs per node, nodal displacements and force vectors are
of n× 1, the element matrices are 4n× 4n and the reduced matrix is n× n.

In some cases, the unit periodic cell doesn’t coincide with the single discrete element
employed to model the structure in the FE package; a certain number of mid-side nodes
can be present, as shown in Fig. 1.31b. The nodal DOFs vector expressed in Eq. (1.70)
becomes:

q =
[
qT1 qT2 qT3 qT4 qTL qTR qTB qTT

]T
, (1.78)

while the periodicity condition in Eq. (1.73) is now expressed by:

q = ΛR

q1

qL
qB

 , with ΛR =

I λxI λyI λxλyI 0 0 0 0
0 0 0 0 I λxI 0 0
0 0 0 0 0 0 I λyI

 . (1.79)

The set of relationship between the DOFs of the node 1 and the others are completed
as follows:

qL = λ1/2
y q1; qB = λ1/2

x q1. (1.80)

Considering Eq. (1.70), the dynamic stiffness matrix of the element in Eq. (1.69) can
be partitioned as follows:

D =


D11 D12 D14 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

 , (1.81)

giving the following reduced eigenvalue problem:
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(a) (b) (c)

Figure 1.32 – Wave Finite Element method for curved structures: cylindrical coordinates (a),
curved element (b) and FE model of the unit periodic cell (c) [99].

[
(D11 + D22 + D33 + D44)λxλy + (D12 + D34)λ2

xλy+

+ (D13 + D24)λxλ
2
y + D32λ

2
x + D23λ

2
y + (D21 + D43)λy+

+ (D31 + D42)λx + D14λ
2
xλ

2
y + D41

]
q = 0. (1.82)

In general, four kind of eigenvalue problems are possible:

• linear algebraic for real propagation constants, in which the dispersion relations
for free wave propagation are obtained by fixing the real propagation constants
µx and µy and calculating the corresponding frequency ω;

• quadratic polynomial for complex propagation constant, in which the frequency ω
and one wavenumber component kx or ky are given and all the possible solutions
for the other wavenumber component are found;

• polynomial for complex propagation constant, in which the frequency ω and the
propagation direction θ are given, while the propagation constants have to be
found (but their ratio is known, µx/µy = (Lx/Ly) tan θ);

• transcendental, if the ratio µx/µy is not rational.

The WFE method can be extended to curved structures [99]. Considering the cylin-
drical coordinates in Fig. 1.32a the circumferential wavenumber can be defined: kx =
kα/R, with x = Rα the axis along the circumference.
To apply the periodicity condition, the local reference system must be rotated to model
the curvature. The stiffness, damping and mass matrices of the curved element can be
obtained by the support of a transformation matrix R, as follows:

K = R̄TKLOCR̄, (1.83a)

C = R̄TCLOCR̄, (1.83b)

M = R̄TMLOCR̄, (1.83c)

being the transformation matrix defined as:
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R̄ =


I 0 0 0
0 R 0 0
0 0 I 0
0 0 0 R

 . (1.84)

The rotation matrix R is defined as follows:

R =

[
r 0
0 r

]
, with r =

cosα 0 − sinα
0 1 0

sinα 0 cosα

 . (1.85)

After introducing the rotation matrix and after the calculation of the stiffness, damping
and mass matrices of the curved element (see Eq. (1.83a), 1.83b and 1.83c), the WFE
method becomes the same of flat structures.

1.5 Damping Loss Factor estimation
The experimental investigation of the damping loss factor is an highly debated topic.
Oberst [111, 112] developed a technique to estimate the damping loss factor of multi-
layer cantilever beams from non-contact measurement, making a comparison between
the FRF of the bare beam (usually lightly damped) and the one of the damped beam.
Thwaites et al. [113] proposed a technique based on the Time-of-Flight method, cal-
culating the wave decay between consecutive measurement points. McDaniel et al. [9]
proposed an approach based on the estimated complex wavenumbers. Depending on
which kind of wavenumber is estimated (flexural kf or longitudinal kl), the damping
loss factor is determined at each frequency with the following relationships [9]:

η =

∣∣∣∣∣Im(k4
f )

Re(k4
f )

∣∣∣∣∣ or η =

∣∣∣∣∣Im(k2
l )

Re(k2
l )

∣∣∣∣∣. (1.86)

An experimental estimation of the damping loss factor based on bending wavenumbers
of a beam-like structure is shown in Fig. 1.33.

Figure 1.33 – Experimental estimation of the damping loss factor [8].
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Cherif et al. [1] proposed an experimental vibro-acoustic investigation and damping
estimation for complex flat panels. The damping loss factor calculated by Eq. (1.86) is
then compared with some classical methods: the half-power bandwidth method (3 dB
method) [114], the decay rate method [115] and the power injection method [116]. The
previous methods are here briefly summarized for the sake of clarity:

• Half-power bandwidth method: this technique is largely used in the low frequency
range or when the modal overlap is very low. With this approach it is possible to
estimate the modal damping at each resonance, adopting the following formula:

ηn =
∆f

fn
, (1.87)

where fn is the resonance frequency of the mode and ∆f the half-power band-
width of the mode (−3 dB).

• Decay rate method: this method is based on the logarithmic decrement of the
transient structural response. Usually, some accelerometers are placed on the
structure to measure the decay of the vibrations after the excitation is cut off.
The damping is assumed to have an exponential decay and the same damping is
assumed for all the modes in the same frequency band. Assuming a third-octave
band and a decay rate DR (in dB/s), the damping loss factor is given by:

ηi =
DR

27.3f
. (1.88)

• Power injection method: this method is directly derived from the Statistical
Energy Analysis (SEA) power balance equation. The damping loss factor is
obtained from the spatially averaged square velocities produced by the power
injected to the structure. In steady-state condition, the space and frequency
averaged input power is equal to the average dissipated power; the average loss
factor is given by the following relationship:

ηi =
Pi
ωEi

, (1.89)

where:

Pi = 0.5Re
{
F ∗v

}
= 0.5Re

{∫ ω2

ω1

GFv(ω) dω

}
, (1.90)

is the input power obtained from the real part of the cross-spectral densityGFv(ω)
between the force F and the velocity v and

Ei = Miv
2
i = Mi

∫ ω2

ω1

Gvv(ω) dω, (1.91)

is the space and frequency averaged total energy, with Mi the mass related to
the measurement area.
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The previous methods are applied to four different panels: an isotropic aluminum
panel, an isotropic aluminum panel with viscoelastic layer, a thin and a thick composite
sandwich honeycomb panels. The structures were freely suspended and subject to point
harmonic excitation, using a mechanical shaker generating a white noise excitation in
the range [100 Hz - 10 000 Hz]. The results are shown in Fig. 1.34.

(a) (b)

(c) (d)

Figure 1.34 – Damping loss factor estimation for flat panels: isotropic aluminum (a), isotropic
aluminum with viscoelastic layer (b), thin composite (c) and thick composite (d), with 3 dB
method (

a
), decay rate method (+), power injected method (×) and IWC method (—) [1].
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Chapter 2

New formulation of the IWC method
based on Green’s and Hankel’s
functions

Part of this Chapter has already been published as "G. Tufano, C. Droz, M. Ichchou,
O. Bareille, A.-M. Zine, B. Pluymers and W. Desmet, On the structural characteriza-
tion through k-space methods: assessments and validations, Book of Proceeding of 9th

ECCOMAS Thematic Conference on Smart Structures and Materials, SMART 2019,
Paris, France".

Abstract
Periodic structures are very common and widely used in many engineering fields. Many
methods were developed based on the spatial repetition of a unit cell; the unit cell
modeling approach allows to reduce the computational effort working on a small geo-
metrical part of the structure and applying periodic boundary conditions at the edges,
and it is widely used to simulate infinite media. Periodic structures can be designed
and employed to attenuate the wave propagation in certain frequency bands, originat-
ing the so-called band-gaps. This physical behavior can be obtained in two different
ways, which are: resonant meta-materials (usually spatially distributed resonators)
and phononic crystals. The band-gaps generated by phononic crystal are related to
the Bragg’s effect; a band-gap occurs when the incoming waves are scattered by a
periodic structure, giving rise a destructive interference. This physical effect occurs
when the distance between the two scatters is of the same order of magnitude of the
wavelength of the propagating waves. K-space methods are widely employed to de-
termine the dispersion characteristics, to identify the direction of propagation and to
estimate the equivalent material properties of complex structures through an inverse
approach, when the analytical models are not available or too complex to be derived. In
addition to the classical Fourier-transform based methods, other approaches were de-
veloped, such as the Inhomogeneous Wave Correlation (IWC) method. In this chapter,
the physical characteristics of periodic structures are employed to analyze the vibro-
acoustic response of several complex structures in the wavenumber domain. The idea
is to investigate a mechanical system with a certain degree of periodicity to control and
attenuate the vibration levels of the structure subjected to a harmonic excitation. The
proposed technique shows an accurate description of the band-gaps and of the wave
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CHAPTER 2. NEW FORMULATION OF THE IWC METHOD BASED ON
GREEN’S AND HANKEL’S FUNCTIONS

attenuation, giving some interesting information about the physics of the problem and
the structural damping of the system. The optimal wavenumber, at each frequency,
is obtained by a maximization function, making a comparison between the vibrational
field (usually calculated in a finite element framework) and the one generated by a set
of Green’s and Hankel’s functions.

2.1 Introduction

In literature, several methods are available to correctly extract the real part of the
wavenumber, but the estimation of the related damping information is still an open
challenge. In the domain of punctual harmonic excited structures, McDaniel et al.
[8, 9] developed a semi-analytical approach based on damped plane wave propagation
(1D guided waves), using an expression of the plane wave of type e±ikx, where i is
the imaginary unit, k is the complex wavenumber and x is the spatial coordinate (see
section 1.2.2).

To describe the vibrational field of a structure subjected to punctual harmonic exci-
tation, the Green’s functions and the related image source method are widely used
in literature (see section 1.2.6). An application of the method of images is shown in
Gunda et al. [56] ; the authors used this approach to describe the harmonic response
of beams and rectangular plates. Based on the method of the images, Cuenca et al.
[54] described the vibrational field of a finite plate with simply supported boundary
conditions by the reconstruction of the Green’s function of a point excited plate. The
same method has been applied by Cuenca et al. [60] to estimate the equivalent ma-
terial properties of a plate covered by a viscoelastic layer. Recently, Roozen et al. [5]
used the Green’s function of a point excited plate, by using a set of Hankel’s functions,
into a complex wavenumber fit procedure, making a comparison between the acquired
vibrational field and the Green’s function; the procedure here described allows to re-
trieve the complex wavenumber and the equivalent material properties.

All the methods based on plane wave assumption are affected by some limitations due
to the nature of the plane wave itself. The vibrational field should be acquired in a
steady-state condition, sufficiently far from the excitation location (this is a singularity
point where the plane wave hypothesis is not valid) and trying to distinguish between
the direct, reflected and evanescent fields.

When dealing with harmonic excitation, the need to mitigate some specific structural
modes allows to develop vibration control devices, such as the tuned mass dampers
(TMDs). The TMD devices are widely used in civil engineering to attenuate wind and
earthquake effects on tall buildings. Most of the TMDs are tuned at a specific fre-
quency, playing on different values of mass and stiffness properties in order to obtain
a resonance frequency equal to the excitation frequency [117–120].

In this chapter, a method is proposed to combine advantages of the IWC method and
of the image source method, which uses a set of Hankel’s functions to obtain the vi-
brational field of a point excited structure. The main advantage of this approach is
the possibility to be close to the excitation region, avoiding the problems related to
the plane wave assumption. The proposed approach estimates the complex wavenum-
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ber and the dispersion relation of several complex structures, showing a description of
the periodicity effect (Bragg’s band-gaps); the damping loss factor is also estimated.
The local dynamics is also well described on narrow plates and isotropic panels with
distributed tuned mass-damper elements.

For what concerns the numerical simulations, the out-of-plane component of the dis-
placement is taken in account and used as primary input for the proposed IWC ap-
proach. The boundary conditions are of kind free on each edge of the considered
structure. The full vibrational field is acquired and considered for the estimation of
the complex wavenumbers.

2.2 Methodology
The complex dispersion relation of different structures is here estimated by a wave cor-
relation method. The presented approach estimates, at each frequency f0, the complex
wavenumber as the point of best agreement between the acquired vibrational field and
the Green’s function of the point excited structure. The Green’s function is derived
from the classical Kirchhoff’s thin plate theory [57]; according to this theory, for an
isotropic, homogeneous plate with a constant thickness h, the flexural vibration, in
terms of transverse displacement w, is expressed by:

D∇4w(~x, t) + ρh
∂2w(~x, t)

∂t2
= F ( ~x0, t), (2.1)

where D = Eh3/12(1−ν2) is the bending stiffness, E is the Young’s modulus, ν is the
Poisson’s coefficient, ρ is the mass density, ∇4 = ∇2∇2 is the biharmonic operator, ∇2

is the Laplacian operator, t is the time variable, F is the force per unit area and ~x,
~x0 are the position vectors of the acquisition and excitation points, respectively. The
Laplacian operator is defined as follows:

∇2∇2 =
∂4

∂x4
1

+ 2
∂4

∂x2
1∂x

2
2

+
∂4

∂x4
2

. (2.2)

Assuming a harmonic point excitation, the expression of the force becomes P ( ~x0, t) =
F ( ~x0)eiωt, ω being the angular frequency; consequently, the steady state response of the
transversal vibrational field is w(~x, t) = u(~x)eiwt. Substituting these two expressions
in Eq. (2.1), the governing equation assumes the following form:

D∇4u(~x)− k4u(~x) = F ( ~x0), (2.3)

where k4 = ρhω2/D is the flexural wavenumber.

For a plate of infinite dimensions, the solution of Eq. (2.3) is given by:

G∞(x, y) =
1

8k2D

[
H1

0 (kr)−H1
0 (ikr)

]
, (2.4)

with G∞ the Green’s function of the infinite plate, H1
0 the Hankel’s function of first

kind and order 0 and r = ‖x− x0, y − y0‖ is the distance between the acquisition (x, y)
and excitation (x0, y0) points.
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At each frequency f0, the complex flexural wavenumber is found as the point of best
agreement between the measured vibrational field and the Green’s function expressed
in Eq. (2.4). Considering an acquisition region of area S in the plane (x, y), indicating
with w̃ and w the measured vibrational field and the one described by Eq. (2.4),
respectively, the normalized correlation function assumes the following expression:

F(kRe, kIm) =

∣∣ ∫∫
S
w̃ · w∗kRe,kIm dx dy

∣∣√∫∫
S
|w̃|2 dx dy ·

∫∫
S
|wkRe,kIm|2 dx dy

, (2.5)

where * denotes the complex conjugate. For discrete point measurements, the integrals
in Eq. (2.5) are replaced by summations over the entire domain, as follows:

F(kRe, kIm) =

∣∣∑N
j=1 w̃(xj, yj) · w∗kRe,kIm(xj, yj)ρjSj

∣∣√∑N
j=1|w̃(xj, yj)|2ρjSj ·

∑N
j=1|wkRe,kIm(xj, yj)|2ρjSj

, (2.6)

where j denotes the j -th discrete point, N is the total number of points, ρj is the
coherence of the measured signal at the j -th point and Sj is the estimation of the
nodal surface around the point (xj, yj).
The complex wavenumber is identified as the location of the maximum of the correlation
function. From the estimated wavenumber, an estimation of the damping loss factor
can be obtained, at each frequency, by the well-known relationship between the real
and imaginary parts of the flexural wavenumber, expressed in Eq. (1.86):

η =

∣∣∣∣∣Im(k4)

Re(k4)

∣∣∣∣∣.
By choosing a proper direction of propagation, Eq. (2.4) can be applied to a narrow
plate subjected to punctual harmonic excitation. Keeping the same notation and indi-
cating as L the length of the acquisition region, the correlation function showed in Eq.
(2.5) becomes:

F(kRe, kIm) =

∣∣ ∫
L
w̃ · w∗kRe,kIm dx

∣∣√∫
L
|w̃|2 dx ·

∫
L
|wkRe,kIm |2 dx

. (2.7)

Similarly to what done in Eq. (2.5), in the discrete domain Eq. (2.7) becomes:

F(kRe, kIm) =

∣∣∑N
j=1 w̃(xj) · w∗kRe,kIm(xj)ρjLj

∣∣√∑N
j=1|w̃(xj)|2ρjLj ·

∑N
j=1|wkRe,kIm(xj)|2ρjLj

. (2.8)

The dispersion curves of the different structures have been validated using the Wave
Finite Element Method (WFEM), in both one- and two-dimensional formulations (see
section 1.4).

2.3 Narrow plate structures: numerical models and
result discussion

The proposed approach is applied to several structures. Firstly, different narrow plates
are taken in account: isotropic, periodic (with varying material and cross-section along

52



2.3. NARROW PLATE STRUCTURES: NUMERICAL MODELS AND RESULT
DISCUSSION

the length) and with distributed TMDs narrow plates. For all the analyzed configura-
tions, the vibrational field is obtained by a FE analysis; the dynamic matrices of the
structures are obtained using a commercial FE package, while the full-FEM analysis
is done using a in-home matlab R©code script. A harmonic unit force is applied in the
center of the considered structures.

2.3.1 Isotropic narrow plate

The first application of the proposed approach is on a simple homogeneous narrow
plate. The total length of the narrow plate is 1.0 m (see Fig. 2.1a); a periodic unit cell
of 5 mm length can be identified, with cross-sectional dimensions of 10 mm × 1 mm, as
shown in Fig. 2.1b; the finite element models of the narrow plate and of the periodic
unit cell are shown in Fig. 2.1. The FE model of the structure is built using 200 struc-
tural beam elements (ANSYS BEAM44), resulting in a total number of 1206 degrees
of freedom.
The employed material is a general thermoplastic polymer (ABS) with Young’s mod-
ulus E = 1.0 GPa, density ρ = 980.0 kg m−3 and Poisson’s coefficient ν = 0.35; two
constant values of structural damping η are assumed: 2% and 4%. The FE analysis is
conducted in the frequency range [100 Hz - 10 000 Hz], with a frequency step of 5 Hz.

The propagative part of the dispersion curve for the isotropic homogeneous narrow
plate is shown in Fig. 2.2a. The proposed approach is compared to the WFE method
and to the analytical dispersion relation that can be derived from Timoshenko’s model
for vibrating beams, as follows:

EIk4 − ρAω2 −
(
ρI +

EIρ

KG

)
k2ω2 +

ρ2I

KG
ω4 = 0, (2.9)

where G is the shear modulus, I = bh3/12 is the second moment of area, A is the narrow
plate’s cross-section area and K = 5/6 is a constant to take in account the shear force
variation.

The proposed IWC approach exhibits a very good agreement with the analytical model
(expressed by Eq. (2.9)) and the WFE method, in the whole frequency range. In Fig.
2.2b the damping loss factor estimations are shown; in both cases, the identified com-
plex wavenumbers give a reasonable estimation of the structural damping introduced
in the model. In the low frequency range, the estimated damping loss factor exhibits
an oscillating behavior; on the contrary, when the excitation frequency increases the
damping loss factor value reaches asymptotically the exact value of structural damping
introduced in the FE model.

2.3.2 Periodic narrow plate

A periodic narrow plate is also investigated, to prove the feasibility of the proposed
approach in describing the band-gaps due to the geometric periodicity of the structure.
The finite element models of both the periodic unit cell and the full-scale structure are
shown in Fig. 2.3. The unit cell has total length of 0.04 m and it’s characterized by a
double periodicity: material and cross-section. The employed materials are a standard
aluminum alloy, with Young’s modulus E = 70.0 GPa, density ρ = 2700.0 kg m−3 and
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(a) (b)

Figure 2.1 – Finite element models of the isotropic narrow plate: full-scale (a) and periodic
unit cell (b).
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Figure 2.2 – Isotropic beam: propagative part od the dispersion curve calculated with proposed
approach compared with the analytical model and the WFE method (a) and damping loss
factor estimation (b).
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(a) (b)

Figure 2.3 – Finite element models of the periodic narrow plate: full-scale (a) and periodic
unit cell (b).

Poisson’s coefficient ν = 0.33, and the ABS material already employed for the homoge-
neous narrow plate described in section 2.3.1. The aluminum part has a cross-section
of dimensions 10 mm × 2 mm; the ABS part has dimensions 20 mm × 2 mm. The FE
model of the structure is built using 400 structural beam elements (ANSYS BEAM44),
resulting in a total number of 2406 degrees of freedom. The FE analysis is conducted
in the frequency range [100 Hz - 20 000 Hz], with a frequency step of 5 Hz.

The dispersion curves of the periodic narrow plate are shown in Fig. 2.4; the dispersion
curves calculated with the WFE method are limited to the first Brillouin zone, where
the wavelengths are longer than one period of the structure (see Fig. 2.4a). The real
part of the wavenumber has periodicity π/∆, with ∆ the length of the unit cell, showing
multiples band-gaps, but always with kRe ∈ [0, π/∆]. The dispersion curves estimated
with the proposed approach are shown in Fig. 2.4b, being in good agreement with the
one calculated with the WFE method, identifying the same wide band-gaps zone. The
proposed IWC approach takes in account the whole structure, avoiding the periodicity
issue previously described in the wavenumbers estimation.
As shown in Fig. 2.4, from the dispersion curves four different resonance zones can
be identified. The first band-gap, corresponding to the first Brillouin zone, appears
in the frequency range [700 Hz - 1100 Hz]; the second band-gap opens at 2900 Hz and
closes at 4900 Hz. The widest band-gap is the third, which is approximatively of 3 kHz,
from 8.2 kHz to 11 kHz; the last band-gap occurs in the frequency range [15.4 kHz -
16.6 kHz]. Each band-gap is characterized by a constant value of the propagative part
of the wavenumber and an increase of the evanescent one; this effect is related to the
physical phenomenon called scattering, in which the wave is reflected between two
consecutive scatterers.

2.3.3 Isotropic narrow plate with distributed TMDs

The considered narrow plate has the same geometric characteristics of the isotropic
beam analyzed in section 2.3.1; the total length is 1.0 m, with cross-sectional dimen-
sions of 10 mm × 1 mm, as shown in Fig. 2.1b. For the host structure, the employed
material is a classical aluminum alloy with Young’s modulus E = 70.0 GPa, density
ρ = 2700.0 kg m−3 and Poisson’s coefficient ν = 0.33; a constant value of structural
damping η = 5% is introduced in the model. The narrow plate is equipped with dis-
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Figure 2.4 – Periodic beam: WFE method (a) and proposed approach (b) complex dispersion
curve estimation.

(a) (b)

Figure 2.5 – FE models of the isotropic narrow plate with distributed TMDs: full-size (a) and
front view of the unit periodic cell (b).

tributed TMD devices, modeled as mass-spring systems. The distance between each
TMD is of 10 cm, resulting in a total number of 19 TMDs. The FE model of the
structure is built using 200 structural beam elements (ANSYS BEAM44) for the host
structure, 19 linear spring elements (ANSYS COMBIN14) and 19 point mass element
(ANSYS MASS21), resulting in a total number of 1263 degrees of freedom. The finite
element model of the resonating narrow plate is shown in Fig. 2.5; a front view of the
narrow plate cross-section and of the TMD model is shown in Fig. 2.5b. The FE analy-
sis is conducted in the frequency range [100 Hz - 7000 Hz], with a frequency step of 5 Hz.

A preliminary analysis is conducted on the bare test base narrow plate, to obtain the
FRF and to identify the natural modes of the structure (as shown in Fig. 2.6a). Then
the TMD devices are tuned following a three steps process:

1. identification of the natural frequency of the mode to attenuate, ωn;

2. definition of the percentage of added mass and, as a consequence, of the mass of
each TMD, mi;
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3. from the values of the natural frequency and of the mass of each TMD, the
stiffness value ki to be assigned at each spring element can be found: ωn =

√
ki/mi.

A first study is conducted using mass-spring systems, introducing a null value of damp-
ing. The mode to attenuate is chosen to be the one at 1500 Hz and two different per-
centages of added mass are chosen: 5% and 10%; the FRF comparison is shown in
Fig. 2.6a, showing an attenuation of the considered mode. The associated dispersion
curves are shown in Fig. 2.7; around the tuning frequency of the mass-spring systems
a band-gap occurs. The depth of the band-gap and the attenuation in the wavenumber
amplitude become more evident increasing the added-mass value.

Introducing the damping in the mass-spring system, the three-step process becomes a
four-step one:

4. the damping coefficient ci to introduce in each spring element is calculated as
follows: ci = 2ζωnmi, in which ζ is the structural damping ratio of the main
mass.

A value of 5% of added mass is considered for the TMDs with the damping effect; a
second mode to attenuate is chosen at 3500 Hz, and the related FRFs are plotted in
Fig. 2.6b.

In Fig. 2.8a there are the dispersion curves of the bare narrow plate and of the res-
onating one with damping coefficient; this figure can be compared to Fig. 2.7, in
which the damping coefficient was imposed equal to zero: the band-gap is wider and
the amplitude of the propagative wavenumber is strongly attenuated. In Fig. 2.8b
the global structural damping loss factor is calculated based on the estimated complex
wavenumbers; in the region around the tuning frequency of the resonators, the equiva-
lent damping coefficient is higher than 1, denoting a region in which the evanescent part
of the wavenumber is much higher of its propagative part. After the tuning frequency
of the TMDs, the estimated damping loss factor reach asymptotically the structural
damping of the FE model.

The same behavior is obtained when the TMDs are tuned at 3500 Hz, as shown in
Fig. 2.9; in this case, the band-gap is approximatively of 1.5 kHz and associated with
a strong attenuation of the propagative wavenumber. The same behavior observed in
Fig. 2.8b is obtained in Fig. 2.9b for the estimation of the damping loss factor.
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Figure 2.6 – FRFs comparison of the isotropic narrow plate with distributed TMDs: resonators
tuned at 1500 Hz (a) and at 3500 Hz (b).
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Figure 2.7 – Dispersion curves of the isotropic narrow plate with distributed TMDs.
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Figure 2.8 – Dispersion curve (a) and damping loss factor estimation (b) for the isotropic
narrow plate with distributed TMDs tuned at 1500 Hz.
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Figure 2.9 – Dispersion curve (a) and damping loss factor estimation (b) for the isotropic
narrow plate with distributed TMDs tuned at 3500 Hz.
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2.4 Two-dimensional flat structures: numerical mod-
els and result discussion

The proposed approach has been applied to two-dimensional flat structures, taking in
account an homogeneous plate, a composite one, sticking together three different layers
in the thickness direction, and an homogeneous plate with distributed TMD devices.

2.4.1 Homogeneous plate
An homogeneous plate has been investigated to demonstrate the feasibility of the pro-
posed approach to two-dimensional structures. The plate has dimensions 1.0 m × 0.6 m
and thickness h = 0.01 m; the employed material is the ABS already described in sec-
tion 2.3.1. The FE model is built using solid structural elements (ANSYS SOLID45) in
order to have a sufficient number of elements in the thickness direction; a total number
of 30000 elements is used for the FE model, resulting in 221796 degrees of freedom.
The FE models of the full-size panel and of the periodic unit cell are shown in Fig.
2.10. Two different constant values of structural damping η are assumed and intro-
duced in the FE model: 2% and 5%. The harmonic displacement fields are obtained by
an FE analysis in the frequency range [100 Hz - 5000 Hz], with a frequency step of 10 Hz.

(a) (b)

Figure 2.10 – Finite element models of the full-size (a) and of the periodic unit cell (b) of the
homogeneous plate.

The propagative part of the dispersion curve is plotted in Fig. 2.11a; the proposed
approach is compared with the WFE method (see section 1.4), which makes use of
the periodic unit cell shown in Fig. 2.10b, and with the analytical expression of the
dispersion relation derived from Kirchhoff’s thin plate theory, expressed as follows:

k =
√
ω

(
ρh

D

)1/4

. (2.10)

A good agreement between the three methods is observed in the low frequency range,
while in the high-frequency region the proposed approach exhibits an overestimation.
The damping loss factor is estimated using Eq. (1.86) and the estimated values are
plotted in Fig. 2.11b. As already discussed for the narrow plates in the previous
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Figure 2.11 – Homogeneous plate: dispersion curve comparison (a) and damping loss factor
estimation (b).

section, the damping loss factor reaches asymptotically the value of the structural
damping introduced in the FE model.

2.4.2 Laminated composite plate

The proposed approach has been applied to a laminated composite plate, constituted
of three layers of different materials: aluminum - ABS - aluminum (the material prop-
erties have been already described in the previous sections), of thickness 1 mm - 8 mm -
1 mm, respectively. The global dimensions of the plate are 1.0 m × 0.6 m and thickness
h = 0.01 m. The FE model is built using solid structural elements (ANSYS SOLID45)
in order to have a sufficient number of elements in the thickness direction; a total num-
ber of 30000 elements is used for the FE model, resulting in 221796 degrees of freedom.
The FE models of the full-size panel and of the periodic unit cell are shown in Fig.
2.12. Two different constant values of structural damping η are assumed and intro-
duced in the FE model: 2% and 5%. The harmonic displacement fields are obtained by
an FE analysis in the frequency range [100 Hz - 5000 Hz], with a frequency step of 10 Hz.

The propagative part of the dispersion curve of the laminated composite plate is shown
in Fig. 2.13a; a good agreement between the proposed approach and the WFE method
is obtained in the whole frequency band of interest. A good identification of the damp-
ing loss factor is performed and shown in Fig. 2.13b. From the analysis of the dispersion
curves and from the comparison between Fig. 2.13a and Fig. 2.11a, it can be observed
how the laminated composite plate is stiffer than the homogeneous one, due to the pres-
ence of the two thin aluminum skins. Using an inverse approach based on the estimated
wavenumber, the equivalent bending stiffness and the equivalent Young’s modulus of
the structure have been calculated by the following formulas, directly derived from Eq.
(2.3):

Deq =
ω2ρh

k4
and Eeq =

Deq12(1− ν2)

h3
. (2.11)

The equivalent plate properties are shown in Fig. 2.14.
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(a) (b)

Figure 2.12 – Finite element models of the full-size (a) and of the periodic unit cell (b) of the
laminated composite plate.
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Figure 2.13 – Dispersion curve (a) and damping loss factor estimation (b) for the laminated
composite plate.

2.4.3 Homogeneous plate with distributed TMDs

The proposed IWC approach is then applied to an homogeneous panel with dis-
tributed TMDs on the external surface. The plate has global dimensions equal to
1.0 m × 1.0 m and thickness h = 0.002 m. The employed material is a standard alu-
minum alloy, with the following material properties: Young’s modulus E = 70.0 GPa,
density ρ = 2700.0 kg m−3 and Poisson’s coefficient ν = 0.33; a constant value of struc-
tural damping η = 5% is introduced in the model. The FE model is built using solid
structural elements (ANSYS SOLID45); a total number of 6400 elements is used for
the FE model of the host panel, resulting in 39366 degrees of freedom. A total number
of 100 TMDs is spatially distributed on the surface of the panel; the TMD devices are
modeled using mass-spring elements: linear spring element (ANSYS COMBIN14) and
point mass element (ANSYS MASS21). The distance between each TMD is 10.0 cm,
identifying a periodic unit cell of dimensions 10.0 cm × 10.0 cm. The TMDs are tuned
following the process described in section 2.3.3, with a null damping coefficient. The
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Figure 2.14 – Equivalent mechanical properties of the laminated composite panel: bending
stiffness modulus (a) and Young’s modulus (b).

(a) (b)

Figure 2.15 – FE models of the homogeneous panel with distributed TMDs: full-size (a) and
front view of the unit periodic cell (b).

FE models of the full-size panel and of the periodic unit cell are shown in Fig. 2.15.
The harmonic displacement fields are obtained by an FE analysis in the frequency
range [50 Hz - 1000 Hz], with a frequency step of 2 Hz.

A preliminary investigation of the FRF of the bare panel is conducted to identify the
mode to attenuate; the natural mode at fn = 350.0 Hz is then chosen to tune the
TMDs. Two different values of percentage of added mass are investigated: 3% and 5%.
The comparison between the FRFs is shown in Fig. 2.16.

In Fig. 2.17a the dispersion curve of the homogeneous panel is calculated using the
Kirchhoff’s thin plate theory of Eq. (2.10); the analytical dispersion curve is compared
to the ones obtained using the proposed IWC approach on the resonating plates. The
band-gap is well captured and its width is added-mass-dependent, as already described
in section 2.3.3. The damping loss factor is also estimated, showing a fast convergence
to the value of the structural damping introduced in FE model; of course, around the
tuning frequency of the TMDs, the damping coefficient estimation is affected by the
dominance of the evanescent waves.
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Figure 2.16 – FRFs comparison of the homogeneous panel with distributed TMDs.
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Figure 2.17 – Dispersion curve (a) and damping loss factor estimation (b) for the homogeneous
panel with distributed TMDs.

2.5 Concluding remarks

In this chapter, different ideas are successfully implemented in this modified IWC ap-
proach, showing a very good prediction of the complex dispersion relations of periodic
narrow plates and laminated structures. An estimation of the damping loss factor is
obtained; the calculated values of η fast converge to the structural damping introduced
in the FE models. The feasibility of this method in estimating the wave attenuation
in the structures is successfully demonstrated.

The proposed approach allows to identify the resonance regions (stop-bands) due to
the geometrical periodicity of the structure, showing a good agreement with the WFE
method, based on the unit cell theory.

The proposed approach can be used in an inverse way to estimate the frequency de-
pendent equivalent material properties of complex structures, when analytical models
are not available or difficult to obtain.
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Both global bending behavior and local dynamics are captured by the proposed ap-
proach; the dynamics of the TMD devices is well described, in both propagative and
evanescent parts.
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Chapter 3

Wavenumber analysis of flat
orthotropic structures

Abstract

Two double-wall panels are investigated in this chapter, based on the unit cell modeling.
The idea is to identify the angle-dependent dispersion curves, due to the orthotropic
behavior of the analyzed structures. In case of isotropic behavior, the dispersion curves
are the same in all directions, while in case of orthotropic materials, the wavenumber
may be different in each direction. Two differentdouble wall panels are investigated,
with two different inter-spacings between the vertical mechanical links, to identify
band-gaps occurrence.
One of the considered panels was 3D printed and experimentally tested under punctual
harmonic excitation.

3.1 Introduction

The aim to combine lightness and good vibro-acoustic and mechanical properties of
engineering structures allows to design new shapes and new materials. Composite,
non-isotropic skins, sandwich cores of different shapes are widely used in transporta-
tion engineering. With the introduction of numerical tools, such as the Wave Finite
Element Method (WFEM) (see section 1.4), the Finite Element (FE) analysis and some
k -space methods, sandwich panels are widely investigated chancing the design of the
core, always keeping a high stiffness-to-mass ratio [121–123].

Among the vibro-acoustic indicators, one of the most important is the wavenumber.
For relatively simple structures, some analytical methods are made available in litera-
ture [10, 58, 124]. An analytical formulation for the prediction of the core transverse
shear and bending matrices for orthotropic sandwich panels has been introduced by
Renji et al. [125]. The acoustic indicators and the dispersion characteristics are ob-
tained using an analytical model based on Discrete Laminate Theory by Ghinet et al.
[126, 127]. In the low-to-mid-frequency range, Guillaumie [128] proposed an analytical
solution for the identification of the modal density and the eigenmodes.

Analytical and semi-analytical theories are limited to low- and mid-frequencies analy-
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sis, where the wave modes are well defined (normally there aren’t intersections between
the different propagating modes) and in the case of relatively simple structures. In-
creasing the frequency and/or the complexity of the structures, numerical models and
approaches become more and more important. Some application of the WFEM method
in the estimation of the dispersion curves for flat and curved structures can be found
in [99, 129, 130]. Chronopoulos et al. [6, 7, 15] estimated the vibro-acoustic properties
of complex composite sandwich structures deriving a dynamic stiffness matrix based
approach.

This chapter is structured as follows: a short recall of the IWC method in section 3.2;
calculation of the angle-dependent dispersion curves on a simple isotropic panel and
on an orthotropic plate is presented in section 3.3. In section 3.4 the IWC method
is applied to two sandwich panels with different spacing values between the mechani-
cal links: numerical and experimental investigations are conducted. Some concluding
remarks are presented in section 3.5.

3.2 Overview of the IWC method
In this section, an overview of the Inhomogeneous Wave Correlation method is pre-
sented, based on what described in section 1.2.3. The IWC method estimates the damp-
ing information of a vibrating structure and the angle-dependent dispersion curves for
orthotropic plane structures. The idea is to correlate the total energy of a vibrating
structure and the energy carried by an inhomogeneous damped plane wave, traveling
with a incidence angle θ. The inhomogeneous wave is expressed in Eq. (1.26):

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))((x−x0) cos θ+((y−y0) sin θ).

For a fixed frequency f0, the correlation between the inhomogeneous wave expressed
in Eq. (1.26) and the complete wave field is calculated by Eq. (1.22):

IWC(k, γ, θ) =

∣∣ ∫∫
S
ŵ · σ̂∗k,γ,θ dx dy

∣∣√∫∫
S
|ŵ|2 dx dy ·

∫∫
S
|σ̂k,γ,θ|2 dx dy

.

Moving from the continuous domain to the discrete one, the integrals in Eq. (1.22)
become sums, as expressed in Eq. (1.24):

IWC(k, γ, θ) =

∣∣∑N
i=1 ŵ(xi, yi) · σ̂∗k,γ,θ(xi, yi)ρiSi

∣∣√∑N
i=1|ŵ(xi, yi)|2ρiSi ·

∑N
i=1|σ̂k,γ,θ(xi, yi)|2ρiSi

.

The harmonic displacement field of the vibrating structures is introduced in Eq. (1.24)
to extract the propagating wavenumber at each frequency and for a fixed propagation
angle θ.

3.3 Numerical investigation of homogeneous panels
The IWC method is firstly applied to two homogeneous structures: an isotropic and
orthotropic panels. The angle-dependent dispersion curves are numerically estimated
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and compared, for some specific frequencies, with the Fourier-based methods results
(see section 1.2.1 for the theoretic background).

3.3.1 Isotropic panels
An isotropic homogeneous panel is firstly investigated. The panel dimensions are
1.0 m × 1.0 m and thickness h = 0.001 m. The employed material is a standard alu-
minum alloy, with the following material properties: Young’s modulus E = 70.0 GPa,
density ρ = 2700.0 kg m−3 and Poisson’s coefficient ν = 0.33; a constant value of struc-
tural damping η = 1% is introduced in the model. The FE model of the considered
structure is shown in Fig. 3.1. A punctual harmonic unit force is applied in the middle
of the panel, as shown in Fig. 3.1. The FE analysis is conducted at three different fre-
quencies: 500 Hz, 700 Hz and 1100 Hz. The IWC method is computed with a heading
angle varying in the range [0 deg - 360 deg], with a resolution of 5 deg.

For each frequency value, the IWC method is computed on a set of discrete values
of the angle θ (heading angle of the inhomogeneous wave, see Eq. (1.26)), obtaining
the complete θ-dependent dispersion relation. The results are shown in Fig. 3.2; in
the polar plots (see Fig. 3.2a, 3.2c and 3.2e), the IWC results are compared with
the Kirchhoff’s thin plate theory (see Eq. (2.10)), showing a good agreement for the
three considered frequencies and for all the heading angles. The IWC results are then
compared to the FFT analysis; in Fig. 3.2b, 3.2d and 3.2f the IWC correctly estimates
the dominant wavenumber in each direction.

The same isotropic panel made of ABS and described in section 2.4.1 is also analyzed in
this section. Using the symmetry and isotropy properties, the angle-dependent disper-
sion curves are analyzed in one-fourth of the circle. In particular, the dispersion curves
are estimated using the following values for the heading angle of the inhomogeneous
wave: [0, 30, 45, 60, 90 deg]. A punctual harmonic force is applied to the structure, as
shown in Fig. 3.1; the excitation is applied in the frequency range [50 Hz - 3000 Hz],
with a frequency step of 10 Hz.

The dispersion curves are shown in Fig. 3.3a; a superposition of the curves was expected
and obtained, due to the isotropic material. The damping loss factor is also calculated
using Eq. (1.86), based on the estimated complex wavenumbers. In this case, a perfect
agreement is observed in Fig. 3.3b, estimating the same damping coefficient in each
considered direction.

3.3.2 Orthotropic panel
An orthotropic panel is analysed in this section. The panel dimensions are 1.0 m× 0.6 m
and thickness h = 0.01 m. The employed material has properties: Young’s moduli
Ex = 1.0 GPa and Ey = 0.5 GPa, density ρ = 980.0 kg m−3 and Poisson’s coefficient
ν = 0.35; a constant value of structural damping η = 5% is introduced in the model.
The FE model is built using solid structural elements (ANSYS SOLID45) in order to
have a sufficient number of elements in the thickness direction; a total number of 30000
elements is used for the FE model, resulting in 221796 degrees of freedom. A punctual
harmonic unit force is applied in the middle of the panel, as shown in Fig. 3.4. The FE
analysis is conducted in the frequency range [50 Hz - 5000 Hz], with a frequency step
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Figure 3.1 – FE model of the isotropic panel with the punctual harmonic excitation.

of 10 Hz. Two different values of the heading angles are chosen in this case: θ = 0 deg
and θ = 90 deg.

The estimations of the dispersion curves and of the damping loss factor are shown in
Fig. 3.5. Both quantities are calculated in the two orthogonal directions, as shown
in Fig. 3.4. The propagative part of the dispersion curves is shown in Fig. 3.5a,
in which a comparison with the WFE method is presented. The IWC results are in
agreement with the WFEM estimations, highlighting the orthotropic behavior of the
panel. The damping loss factor estimations are slightly different in the two directions,
but they asymptotically converge to the value of structural damping introduced in the
FE model.
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Figure 3.2 – Angle-dependent dispersion curves for the isotropic panel. Comparison with the
Kirchhoff’s theory and the FFT at three different frequencies: at 500 Hz (a-b), at 700 Hz (c-d)
and at 1100 Hz (e-f).
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Figure 3.3 – Isotropic panel: angle-dependent dispersion curves (a) and damping loss factor
estimation (b).

Figure 3.4 – FE model of the orthotropic panel with the punctual harmonic excitation.
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Figure 3.5 – Orthotropic panel: angle-dependent dispersion curves (a) and damping loss factor
estimation (b).
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3.4 Orthotropic sandwich panels
This section is devoted to numerical simulations and experimental validations of two
sandwich panels, constituted by two skins separated by vertical mechanical links; two
different inter-spacings between the mechanical links are considered: 1.0 cm and 2.0 cm.
The first panel only is experimentally tested.

3.4.1 Double-wall panel with 1 cm of inter-spacing: numerical
results and experimental validation

For what concerns the first panel, the FE models of the full-size panel and of the pe-
riodic unit cell are shown in Fig. 3.6. The panel has dimensions 0.40 m × 0.35 m and
thickness h = 0.0106 m; the thickness of both skins and vertical links is 0.6 mm. The
FE model is built using shell structural elements (ANSYS SHELL181); a total number
of 19200 elements is used, resulting in 98172 degrees of freedom. The employed material
is the ABS already described in the previous sections (Young’s modulus E = 1.0 GPa,
density ρ = 980.0 kg m−3 and Poisson’s coefficient ν = 0.35). The panel is 3D-printed
using a Stratasys Fortus 450mc industrial 3D printer which has a maximum printable
volume of 40 × 35 × 40 cm3. The 3D-printed panel is shown in Fig. 3.7.

The 3D-printed panel has been experimentally investigated under mechanical exci-
tation. To simulate free boudary conditions, the panel was freely suspended using
Polylactic Acid filaments, as shown in Fig. 3.8b. The panel was excited by a point
mechanical force using a Brüel & Kjær shaker attached to the structure using an
impedance head. The out of plane vibrational field was acquired using a Polytec PSV-
500 Scanning Vibrometer. An acquisition window of 0.36 m × 0.31 m was scanned,
using a mesh of 19 × 17 along length and width, respectively, with a total number
of 323 acquisition points. To acquire the vibrational field by the Laser Doppler Ve-
locimeter, some stripes of reflective tape were attached on the external surface of the
3D-printed panel (see Fig. 3.8). The shaker was mounted on the rear surface while the
front one was scanned by the Laser Doppler Velocimeter. The excitation was gener-
ated using a white noise signal from 10 Hz to 2000 Hz. The acquisition was made with
a frequency resolution of 0.625 Hz, resulting in 3185 acquisition frequencies; for each
measured point, the signal was averaged over 10 acquisitions.

The considered panel is also numerically investigated. A punctual harmonic unit force
is applied to the panel, as shown in Fig. 3.6. The FE analysis is conducted in the
frequency range [10 Hz - 2000 Hz], with a frequency step of 5 Hz. The IWC method is
applied on a set of discrete values of the heading angle θ, with a resolution of 5 deg. For
a fixed frequency, the IWC results are compared to the one obtained using the FFT
method, as shown in Fig. 3.9. For each considered angle of propagation of the inho-
mogeneous wave, the IWC correlation functions are plotted considering not only the
dominant wavenumber but also the local maxima, obtaining a full k -space description,
as shown in Fig. 3.9b. The orthotropic property is highlighted in the k -space plot, as
shown in Fig. 3.9c, in which an elliptic-shaped plot is obtained.

The comparison between numerical and experimental dispersion curves is shown in Fig.
3.10. The dispersion curves are calculated along two orthogonal directions: θ = 0 deg
and θ = 90 deg; the magnitude of the estimated wavenumbers is strongly different in
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(a) (b)

Figure 3.6 – Double-wall panel with 1.0 cm of inter-spacing between the mechanical links: full
view (a) and periodic unit cell (b).

(a) (b)

Figure 3.7 – 3D-printed sandwich panel: full-size (a) and close up (b) views.

the two considered directions, in agreement with the orthotropic behavior. The global
behavior of the panel in the x direction is dominated by the bending motion of the
skins and it is representative of an apparent softness of the structure (higher wavenum-
ber amplitude). When the dispersion curve is evaluated in the stiffeners direction (y
direction in this case), the global behavior is dominated by the bending motion of the
stiffeners; there is an apparent increase of the stiffness of the structure, characterized
by a lower amplitude of the estimated wavenumbers (see Fig. 3.10).

3.4.2 Double-wall panel with 2 cm of inter-spacing: numerical
investigation

In this section, a double-wall panel with 2 cm of inter-spacing between the mechanical
links is numerically investigated. This stiffeners pitch is chosen in order to open a
geometric periodicity related band-gap in the frequency range [10 Hz - 2000 Hz]. The
panel dimensions are 0.40 m × 0.35 m and thickness h = 0.0106 m; the thickness of
both skins and vertical links is 0.6 mm. The FE model is built using shell structural
elements (ANSYS SHELL181); a total number of 14000 elements is used, resulting in
77532 degrees of freedom. The employed material is the ABS already described in
the previous sections (Young’s modulus E = 1.0 GPa, density ρ = 980.0 kg m−3 and
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(a) (b)

Figure 3.8 – 3D-printed sandwich panel: reflective tape (a) and installation for shaker exci-
tation (b).
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Figure 3.9 – Double-wall panel with 1.0 cm of inter-spacing. K-space obtained using the FFT
(a) and the IWC (b) methods, and angle-dependent wavenumbers (c) at 1500 Hz.
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Figure 3.10 – Numerical-experimental dispersion curves of the double-wall panel with 1.0 cm
of inter-spacing between the mechanical links.

Poisson’s coefficient ν = 0.35). The FE models of both full-size panel and periodic unit
cell are shown in Fig. 3.11.
A punctual harmonic unit force is applied to the panel, as shown in Fig. 3.11. The FE
analysis is conducted in the frequency range [10 Hz - 2000 Hz], with a frequency step
of 5 Hz.

The dispersion curves are calculated along two orthogonal directions: θ = 0 deg and
θ = 90 deg; the magnitude of the estimated wavenumbers is strongly different in the
two considered directions, in agreement with the orthotropic behavior. The global be-
havior of the panel in the x direction is dominated by the bending motion of the skins
and it is representative of an apparent softness of the structure (higher wavenumber
amplitude). When the dispersion curve is evaluated in the stiffeners direction (z di-
rection in this case), the global behavior is dominated by the bending motion of the
stiffeners; there is an apparent increase of the stiffness of the structure, characterized
by a lower amplitude of the estimated wavenumbers (see Fig. 3.12).

Evaluating the dispersion curve in the x direction, the periodic distribution of stiffeners
opens a band-gap width of approximatively 400 Hz, starting from 760 Hz. The band-
gap opens when the wavenumber assumes the value k = π/∆, where ∆ is the length
of the unit cell (or, in other words, the distance between two scatterers); when this
condition is reached, the scattered waves interfere destructively.
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(a) (b)

Figure 3.11 – Double-wall panel with 2.0 cm of inter-spacing between the mechanical links:
full view (a) and periodic unit cell (b).
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Figure 3.12 – Numerical dispersion curves of the double-wall panel with 2.0 cm of inter-spacing
between the mechanical links.

3.5 Concluding remarks
In this chapter, the IWC method is successfully implemented to obtain the angle-
dependent dispersion curves. The orthotropic behavior is described in both dispersion
curves and k -space plots at fixed frequencies. The estimated complex wavenumber
allows also to estimate the damping loss factor for both isotropic and orthotropic
structures.

The proposed approach allows to identify the resonance zones (stop-bands) due to the
geometrical periodicity of the structure, including the apparent stiffening or softening
behavior of the structures in presence of mechanical stiffeners.

The numerical results are experimentally validated using a 3D-printed sandwich panel.
A good agreement between the numerical simulation and the experimental results is
observed in the whole frequency range and for the two orthogonal directions of wave
propagation.
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Chapter 4

K-space analysis of complex
large-scale meta-structures

This chapter is mainly based on "G. Tufano, F. Errico, O. Robin, C. Droz, M. Ichchou,
B. Pluymers, W. Desmet and N. Atalla, K-space analysis of complex large-scale meta-
structures using the Inhomogeneous Wave Correlation method, Mechanical System and
Signal Processing 135, 106407, 2020".

Abstract

A new formulation of the Inhomogeneous Wave Correlation method for curved struc-
tures is developed in this chapter and it is used to characterize the vibration behav-
ior of three structures and meta-structures with different complexity levels: a plane
steel panel, a curved thick composite sandwich shell and a stiffened aluminum aircraft
sidewall panel. Bare structures are first studied and then equipped with spatially dis-
tributed small-scale resonators, leading to meta-structures. For the two curved panels,
tests are conducted under diffuse acoustic field and point mechanical excitations.
For each studied case, the effect of the industrially-oriented small-scale resonators is
highlighted using frequency and wavenumber analysis, showing general attenuation of
the vibration level and even band-gaps occurrence. The complex wavenumber iden-
tification allows also estimating the structural loss factor in the composite sandwich
panel, while the multi-modal behavior is captured in the aluminum aircraft sidewall
panel.

4.1 Introduction

In the aerospace sector, curved shells and axial-symmetric structures are widely used.
The presence of stringers and frames in the longitudinal and circumferential directions
of aircraft fuselages lets assume a certain degree of structural periodicity which, if
properly designed, can give some advantages in the vibroacoustic response.

Composite materials are more and more used in this sector, to fulfill the requirements
of reduced structural weight and high mechanical performances. The anisotropic be-
havior and the complexity related to their composite nature make the development of
an analytical theory or of a predictive model very hard to obtain. The vibro-acoustic
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response and the dynamical behavior of laminated composite sandwich shells are of
fundamentals relevance for the industry. The identification of the energy propagation,
of the wave attenuation, with the related damping informations, and of the wave dis-
persion characteristics are relevant aspects to fully describe the vibro-acoustic behavior
of a system [1].

Some semi-analytical approaches have been developed in order to estimate the me-
chanical properties of sandwich composite structures [2, 6, 7, 10]. These formulations
are limited to the low-frequency domain, in which the wave modes are well defined; in
the mid-high-frequency range, classical analytical approaches do not give a good esti-
mation of the waves dispersion characteristics, due to an high wave modes density. As
alternatives, in a wave propagation framework, for the parameter identification other
methods based on the wavenumber domain (k -space) analysis [8, 9, 11, 12] or based on
the Statistical Energy Analysis (SEA) [13–15] are introduced.

Some applications of the Prony’s method for the wavenumber analysis of one- and
two-dimensional structures have been proposed [131? ]. The Prony’s technique is
a mean of identifying the constituent complex wavenumbers and their corresponding
amplitudes in an exponential model of the spatial response. It is a two-step process:
the wavenumbers are first found and the amplitudes for these wavenumbers are then
obtained from a linear least-squares fit of the model to the data. A modified extended
technique based on Prony’s method to estimate the complex wavenumbers is shown in
Grosh et al. [16]. Ferguson et al. [132] proposed a technique to identify the dominant
wavenumber in a considered area, using a windowed field of the displacement of the
structure, computing the correlation between the normal velocities measurement and
a harmonic wave-field. An algorithm for the identification of the complex wavenumber
and of the damping loss factor was developed by Berthaut et al. [11, 12, 19]; the pro-
posed method is called Inhomogeneous Wave Correlation (IWC) method and it allows
to identify the complex flexural wavenumber in a large frequency range.

In order to increase the wave attenuation in certain frequency bands and to generate
some band-gaps, periodic adds-on and locally resonant devices are widely used. The
effect of wave propagation in rib-stiffened plate structures is investigated in [19, 133],
showing the multi-modal behavior in the wavenumber domain, in terms of uncoupled
plate and stringer flexural wavenumbers. A vibroacoustic study of a fluid-loaded ribbed
plate is shown by Maxit [134], in which the response is investigated in the wavenumber
domain using a discrete Fourier Transform based approach. A numerical investigation
of the IWC method on curved shells and axial-symmetric structures is presented in
[135], showing a good prediction of the angle-dependent wavenumber at different exci-
tation frequencies and compared with the Discrete Fourier Transform technique. For
what concerns the stop-band behavior of tuned resonators, Claeys et al. [136, 137]
have demonstrated their potential use to reduce the vibrational response of panels,
spatially distributing them over the panel surface. An application of the IWC method
on a meta-material plate with distributed resonators is given by Van Belle et al. [24].

An experimental investigation on the vibro-acoustic response of cylindrical shells is
presented in Williams et al. [138], in which the dominant wavenumbers are identified
in the regions close to the natural frequencies of the structure. An analysis in the
wavenumber domain is conducted in Photiadis et al. [139] to investigate the acoustic
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response of a ribbed shell, demonstrating the dominant flexural behavior in the mid-
frequency range. Photiadis et al. [140] investigated the effect of distributed internal
oscillators on the acoustic response of a complex ribbed shell, showing their influence in
the wavenumber domain compared to the bare configuration. The effect of the internal
frames on the vibro-acoustic response of an aluminum cylinder is performed by Meyer
et al. [141], providing a better understanding of frames influence in the wavenumber
domain and on the dispersion curves, mainly based on the numbers and the spatial
distribution of the internal frames.

Nateghi et al. [142, 143] have discussed and experimentally validated that by adding
locally resonating structures to cylindrically curved panels and pipes, improved noise
and vibration behavior can be obtained in a targeted and tunable frequency band.
This concept was applied on an aircraft sidewall panel by Droz et al. [144] , improving
the acoustic properties of the panel in the ring frequency region, showing how a smart
design of meta-material structures can be adopted to improve the vibro-acoustic per-
formance.

This work is fully devoted to the experimental identification of the dispersion char-
acteristics of these complex structures, subjected to either a diffuse acoustic field or
point mechanical excitations. Each considered structure is first tested alone, and then
with the addition of spatially-distributed small-scale resonators. The method used in
this work is an extended version of the IWC method, capturing the effect of the local
dynamics of the resonators and applied under diffuse acoustic excitation, in presence of
periodic adds-on. The main advantages of this method are the possibility to investigate
both flat and curved structures, the identification of the resonator-related band-gaps
and the use of the experimental measured data, without any restriction related to an
ordered mesh-grid for the acquisition points.

In section 4.2, an overview of the IWCmethod is presented and an extended formulation
to take in account the curvature effect is developed. The experimental set-up for
each studied case is fully described in section 4.3, showing how the experimental tests
were performed and giving information about the tuning frequencies of the resonators.
Section 4.4 is fully devoted to the result discussion; an isotropic steel panel is first
considered, then all the results concerning the curved structures are discussed. A
numerical simulation of an isotropic curved panel is performed to validate the feasibility
of the proposed IWC formulation for curved structures, followed by experimental results
on the two considered curved structures for tests.

4.2 Inhomogeneous Wave Correlation method for
curved structures

The Inhomogeneous Wave Correlation (IWC) method here proposed is extended to
complex curved structures in presence of periodic elements and small-scale resonators.
The aim of this approach is the complete description of the angle-dependent dispersion
characteristics and the identification of the structural damping information of a vibrat-
ing structure, using the whole wave field of a vibrating structure as primary input.
The basic idea of the approach is the same of the classical IWC method presented
in section 1.2.3; this method estimates the complex wavenumber by maximization of
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Figure 4.1 – Curved structure coordinates system.

the correlation function between the energy carried on by an inhomogeneous traveling
wave and the total energy of the vibrational field.

Based on what is described in section 1.2.3, a new formulation for curved structures
can be derived, which takes in account the curvature effect in the IWC formulation.
The two components of the plane wave-vector are defined as:

kx = k cos θ, (4.1a)
ky = k sin θ. (4.1b)

From the notations and the coordinate system shown in Fig. 4.1, identifying with R
the curvature radius of the structure and with ϕ the angular coordinate, the following
relationships can be derived:

y = R sinϕ ≈ Rϕ and kϕ = Rky, (4.2)

where a small value of the angle ϕ is assumed (this value strictly depends on the
discretization resolution) and kϕ is the circumferential component of the wave-vector,
which is related to the ky component by Eq. (4.2). The classical two-dimensional
damped plane wave expressed in Eq. (1.26):

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))((x−x0) cos θ+(y−y0) sin θ),

becomes a damped helical plane wave, which assumes the following form:

w̃kC,θ(x, ϕ) = e−ikC(θ)((x−x0) cos θ+(ϕ−ϕ0) sin θ). (4.3)

where ϕ0 is the angular position of the excitation point and kC = kRe + ikIm is the
complex wavenumber, which contains both propagation and attenuation informations.

Moving from the Cartesian coordinate system to the curved one (see Fig. 4.1), the
correlation function of Eq. (1.24):

IWC(k, γ, θ) =

∣∣∑N
i=1 ŵ(xi, yi) · σ̂∗k,γ,θ(xi, yi)ρiSi

∣∣√∑N
i=1|ŵ(xi, yi)|2ρiSi ·

∑N
i=1|σ̂k,γ,θ(xi, yi)|2ρiSi

,

is modified as follows:
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I(kC, θ) =

∣∣∑N
j=1 ŵ(xj, ϕj) · w̃∗kC,θ(xj, ϕj)hjΩj

∣∣√∑N
j=1|ŵ(xj, ϕj)|2hjΩj ·

∑N
j=1|w̃kC,θ(xj, ϕj)|2hjΩj

, (4.4)

where hj is the coherence of the measured signal at each point, Ωj is an estimation of
the surface around point j and N is the total number of acquisition points.

The location of the maximum of the correlation function I(kC, θ) gives the identified
complex wavenumber in the specified direction. When the structure is complex, the
correlation function could be characterized by an absolute maximum and some other
local maxima, denoting the presence of different bending wave modes propagating at
the same time. Following the evolution of the local maxima, the multi-modal behavior
of the structure can be described, as shown in section 4.4.4.

4.3 Experimental sets-up

Three different structures have been experimentally investigated: an isotropic steel flat
panel, a thick curved composite laminated sandwich panel and a thin aluminum aircraft
sidewall panel, including frames and stringers (see Fig. 4.2). The considered structures
are analyzed in the bare test case configuration and then with periodically distributed
resonators. The structures have been analyzed under Diffuse Acoustic Field (DAF) and
punctual mechanical excitations, as shown in Table 4.1. The concept of the resonators
and their feasibility in reducing the bending wavenumber was demonstrated in [145].
The same concept was used in [144], in which they were also tested on the aluminum
aircraft sidewall panel considered in the present work, with the aim of improving the
sound insulation properties of the considered structure.

The single resonator is schematically represented in Fig. 4.3; the resonators are 3D-
printed using polycarbonate polymer. The shape is similar to a cantilever beam, with a
rectangular prismatic base of dimensions 10 × 10 × 8.0 mm3 on which the beam and the
stiffener are connected; the resonator main beam has dimensions 23 × 10 × 4 mm3 and
the stiffener element has section of 4 × 3.5 mm. The resonator has a total dimensions
of 33 × 10 × 8.0 mm3 and a unit weight of 2.72 g. A magnet is glued on the opposite
tip end, with the possibility to tune it by adding or removing neodymium magnets of
known masses. A schematic representation of the resonator and its application on the
host structure are shown in Fig. 4.3. A periodic distribution of the resonators on the
surface of the structures is chosen to avoid any local and/or directional effect.

Table 4.1 – Experimentally tested configurations.

Bare Bare + resonators
Shaker DAF Shaker DAF

Steel panel X × X ×
Composite shell X X X X
Aluminum shell X X × X
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(a) (b)

Figure 4.2 – Large-scale curved structures: composite sandwich honeycomb shell (a) and
aluminum aircraft sidewall panel (b).

Figure 4.3 – Schematic representation of the resonator (a) and its application on the host
structure (b).

4.3.1 Isotropic plate

An isotropic steel plate of dimensions 0.95 m × 0.60 m and thickness of 2.0 mm is
considered. The host structure has a total weight of 9.0 kg, approximatively. To
simulate free boundary conditions, the structure was suspended at three points along
the longer edge using Polylactic Acid filaments. The plate was excited by a point
mechanical force using a Brüel & Kjær shaker attached to the host structure using an
impedance head (see Fig. 4.4). The out of plane vibrational field was acquired using a
Polytec PSV-500 Scanning Vibrometer. An acquisition window of 0.92 m × 0.56 m was
scanned, using a mesh of 60 × 24 along length and width, respectively, with a total
number of 1440 acquisition points (see Fig. 4.4b). The bare structure was first tested,
and then the effect of distributed resonators tuned at frequencies of 800 Hz and 1400 Hz
were successively tested. The resonator working frequency being adjusted with varying
tuning masses, the added weight was different for the two considered frequencies. For
the first one (800 Hz), the added weight from the resonators represented 2.5% of the
total panel weight, while for the second one (1400 Hz), the panel weight was increased
by 1.5%.
The shaker and the resonators were mounted on the rear surface of the host struc-
ture while the front one was scanned by the Laser Doppler Velocimeter system. The
excitation was generated using a white noise signal from 100 Hz to 2000 Hz. The ac-
quisition was made with a frequency resolution of 1.25 Hz, resulting in 1521 acquisition
frequencies; for each measured point, the signal was averaged over 10 acquisitions. A
representation of the distributed resonators and a picture of the experimental set-up is
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(a) (b)

Figure 4.4 – Set-up of the steel plate with distributed resonators (a) and acquisition window
(b).

Table 4.2 – Material properties of the curved composite sandwich panel.

Laminated skins Honeycomb core

E1 [MPa] 46.0× 103 0.01
E3 [MPa] 46.0× 103 0.179× 103

G12 [MPa] 17.7× 103 1.0
G13 [MPa] 17.7× 103 26.0
G23 [MPa] 17.7× 103 56.0
ν12 [-] 0.3 0.45
ν13 [-] 0.3 0.01
ρ [kg3 m−1] 1570.0 64.0
Thickness [mm] 0.98 25.5

shown in Fig. 4.4.

4.3.2 Curved composite sandwich panel

The composite panel dimensions are 1.54 m × 1.62 m, with a curvature radius approx-
imatively of 0.97 m, and thickness equal to 27.5 mm (see Fig. 4.5a). The material
properties are listed in Table 4.2.

A preliminary experimental investigation of the dispersion characteristics of the com-
posite laminated sandwich panel was first conducted. The panel has been simply
hanged in the anechoic room assuming free boundary conditions. The tests were per-
formed using an impact hammer and four accelerometers, placed in the circumferential
and axial directions; the experimental data have been recorded using a Brüel & Kjær
real-time, multichannel sound and vibration data acquisition card. The experimental
wavenumbers were calculated using a technique based on the phase difference between
consecutive accelerometers, placed along the specific direction [113, 146]. The recorded
time domain data were filtered and truncated to measure only the first incident wave
fronts.
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The panel was then installed in the aperture between the coupled reverberant-anechoic
rooms of the GAUS (Groupe d’Acoustique de l’Université de Sherbrooke) laboratory,
at Université de Sherbrooke (see Fig. 4.5). The representative scheme of the coupled
rooms is shown in Fig. 4.6. The reverberant room has dimensions 7.5 × 6.2 × 3.0 m3

with an averaged reverberation time (T60) of 5.5 s in the frequency band [50 Hz -
1000 Hz]. The acoustic excitation was generated by a loudspeaker placed close to a
corner of the room, with a white noise signal input from 100 Hz to 3000 Hz. Concerning
the mechanical excitation, a Modal Shop Model 2025E shaker was installed in the re-
verberant room and attached to the test structure using an impedance head, as shown
in Fig.4.5b; the excitation was generated using a white noise signal from 100 Hz to
3000 Hz. The full vibrational field was measured using a Polytec 3D Scanning Vibrom-
eter (PSV-3D), installed in the anechoic room, with dimensions 6.0 × 7.0 × 3.0 m3. The
acquisition window was approximatively of 1.2 m × 1.0 m, in order to be sufficiently
far from the boundaries and to reduce the influence of the boundary conditions, with
a total number of 3111 measured points (mesh grid of 61 x 51), with approximatively
2.0 cm of spacing between two adjacent points; an illustration of the acquisition system
is shown in Fig. 4.5c. In the frequency range of the excitation, 1857 frequency ac-
quisitions were made, resulting in a resolution of 1.5625 Hz; for each point, the signals
recorded by the LDV system were averaged over 10 acquisitions.

A regular pattern of 3D-printed small-scale resonators was then attached to the panel
and compared to the bare test case (see Fig. 4.5b). The chosen tuning frequency was
1000 Hz; the panel weight was increased by 4% for a total number of 246 resonators. For
each considered excitation (diffuse acoustic field (DAF) and point mechanical excita-
tions), the bare structure was first tested, and then the effect of distributed resonators
tuned at a frequency of 1000 Hz was tested. In the reverberant room, a control mi-
crophone was placed close to the surface of the excited structure to double check the
incident pressure and normalize the FRFs (Frequency Response Functions).

For both configurations, the panel was installed on a plywood support with acoustic
sealant made of neoprene adhesive and silicone applied on the four edges, to prevent any
leakage while using the acoustic excitation. The boundary conditions can be assumed
of the kind “clamped” for all the four edges.

4.3.3 Aluminum aircraft sidewall panel

The aluminum panel has dimensions 1.45 m × 1.70 m, with a curvature radius approx-
imatively of 1.30 m(see Fig. 4.2b). The main geometrical properties are listed in Table
4.3.

The panel was installed in the aperture between the coupled reverberant-anechoic
rooms of the GAUS laboratory, already described in section 4.3.2. For the point me-
chanical excitation, the bare panel was tested with free boundary conditions, and in
bare test case configuration only, as listed in Table 4.1. For the diffuse acoustic field
excitation, the bare structure was first tested and then the effect of distributed res-
onators tuned at three different frequencies was evaluated. The resonators were tuned
at three different frequencies, tuning 1/3 of the resonators at each frequency and at-
taching them regularly to avoid any local/directional effect. The chosen frequencies
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(a) (b)

(c) (d)

Figure 4.5 – Curved composite laminate sandwich panel: bare configuration (a), distributed
resonators configuration (b), acquisition system (c) and acquisition window (d).

Figure 4.6 – Illustration of the coupled rooms.
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Table 4.3 – Geometrical dimensions of the aluminum aircraft sidewall panel.

Frames Stringers Skin
(mm) (mm) (mm)

Thickness 1.8 1.2 1.2
Height 72.0 28.0 -
Spacing 406.0 152.0 -

(a) (b)

Figure 4.7 – Set-up and installation for mechanical excitation: shaker installation (a) and
acquisition region (b).

were 670 Hz, 820 Hz and 980 Hz, in order to cover a relatively large frequency band
around the ring frequency (estimated to be ≈ 670 Hz [147]) . The presence of the 246
resonators increased the panel weight by 4.5% in this case.

The same Modal Shop Model 2025E shaker, described in the section 4.3.2, was used
to excite the aluminum panel, using a white noise signal input from 50 Hz to 2000 Hz.
The structure was freely suspended to simulate free boundary condition; the shaker
was placed on an internal frame structure, as shown in Fig. 4.7a. The external surface
was scanned using a Polytec 3D Scanning Vibrometer, with an acquisition window of
approximatively of 0.85 m × 0.95 m, with 5451 acquisition points (equivalent to a mesh
grid of 69 × 79, see Fig. 4.8a). A frequency resolution of 1.5625 Hz, resulting in 1255
acquisition frequencies.

To test the aluminum panel under diffuse acoustic field excitation, the panel was in-
stalled between the two rooms, as shown in Fig. 4.9. The panel was mounted using
plywood frames of adapted sizes with acoustic sealant made of neoprene adhesive and
silicone; the panel skin was clamped over approximatively 2.0 cm in the mounting frame,
while the stiffeners and frames were not clamped. The resonators were attached on the
external surface (in the reverberant room) and the internal surface was scanned by a
Polytec 3D Scanning Vibrometer, in the skin regions between stringers and frames, as
shown in Fig. 4.10a; the total number of scanned points was 2916, with a mesh grid
of 27 × 9 for each region (total mesh grid of 54 × 54), as shown in Fig. 4.8b. The
structure was excited in the frequency range [100 Hz - 2000 Hz]; a frequency resolution
of 0.625 Hz, resulting in 3040 acquisition frequencies.
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(a) (b)

Figure 4.8 – Aluminum aircraft sidewall panel: acquisition windows for shaker (a) and DAF
(b) excitations.

(a) (b)

(c)

Figure 4.9 – Set-up and installation of the bare configuration: outer skin subjected to DAF
excitation (a), inner surface (b) and acquisition system (c).
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(a) (b)

Figure 4.10 – DAF excitation: acquisition window (a) and detail of the host structure with
the attached resonators (b).

4.4 Numerical validations and experimental results
In this section, the IWC method is applied to the experimental data to obtain the
dispersion curves. The results are compared and validated with numerical simulations
and analytical models.

4.4.1 Steel plate: experimental results and validation
In this case, the dispersion curves obtained with the IWC method are compared with
the classical Kirchhoff’s thin plate theory. The fundamental equations are here briefly
reported. The differential equation of motion of a plate under pure bending is expressed
as:

D∇4w + ρ
∂2w

∂t2
= 0, (4.5)

in which w is the transverse displacement, ρ is the mass density, D the bending stiffness
and ∇4 = ∇2∇2, with ∇2 the Laplacian operator, defined in Eq. (2.2):

∇2∇2 =
∂4

∂x4
1

+ 2
∂4

∂x2
1∂x

2
2

+
∂4

∂x4
2

.

Assuming a free harmonic motion with amplitude W :

w = W cosωt, (4.6)

and substituting Eq. (4.6) into Eq. (4.5), the following expression can be obtained:

∂4w

∂x4
1

+ 2
∂4w

∂x2
1∂x

2
2

+
∂4w

∂x4
2

=
ρhω2

D
W = k4W, (4.7)

obtaining the following expression for the flexural wavenumber:

k =
√
ω

(
ρh

D

)1/4

. (4.8)
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Figure 4.11 – Dispersion curves comparison for the steel plate, with and without the res-
onators: at 800 Hz (a) and at 1400 Hz (b).

The dispersion curves are estimated for all tested configurations and compared with
the analytical solution, as shown in Fig. 4.11. The estimated dispersion curves are in
agreement with the analytical solution in the whole frequency range. In Fig. 4.11a, the
effect of the resonators tuned at 800 Hz is shown, giving a band-gap of approximatively
200 Hz width; before and after the band gap, the dispersion curve follows the one of
the bare configuration and the analytical solution. For what concerns the resonators
tuned at 1400 Hz, the originated band gap is approximatively 250 Hz wide, as shown in
Fig. 4.11b. For both configuration, a strong attenuation is observed in the resonators
tuning frequency regions.

The whole vibrational fields have been acquired for the three considered configura-
tions. In Fig. 4.12 the normalized (respect to the maximum value of the amplitude)
displacements fields are plotted at three different frequencies: before the first tuning
frequency of the resonators (250 Hz), in the first band-gap region (820 Hz) and in the
second band-gap interval (1375 Hz). At 250 Hz, the displacement fields are not affected
by the resonators (see figures 4.12a, 4.12b and 4.12c). For the frequency value in the
first band-gap, the bare test case panel and the panels with the resonators not tuned
at this frequency exhibit a displacement fields similar to a global mode behavior (see
figures 4.12d and 4.12f), while the panel with the resonators tuned at this frequency
shows an attenuated vibration level (see Fig. 4.12e). At the last considered frequency,
in the second band-gap, the bare test case panel and the panel with the resonators
tuned at 800 Hz show a classical plate motions (see figures 4.12g and 4.12h), while the
panel with the resonators correctly tuned exhibits an attenuated displacement field
(see Fig. 4.12i).
Based on the acquired displacement values, the averaged (over 25 randomly chosen
measurement points) FRFs of the three configurations are shown in Fig. 4.13, in which
both drops due to the resonators are captured.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.12 – Displacement fields of the steel plate, with and without the resonators. First
frequency at 250 Hz: bare test case (a), first resonators configuration (b) and second res-
onators configurations (c). Second frequency at 820 Hz: bare test case (d), first resonators
configuration (e) and second resonators configurations (f). Third frequency at 1375 Hz: bare
test case (g), first resonators configuration (h) and second resonators configurations (i).

4.4.2 Isotropic curved panel: numerical simulation and valida-
tion

Firstly, the proposed IWC formulation for curved structures is numerically validated.
The method is applied to an isotropic curved panel; the employed material is a stan-
dard aeronautical aluminum alloy, similarly to the experimentally measured case. The
dimensions are 0.85 m × 0.95 m, thickness equal to 1.2 mm and curvature radius of
1.3 m. The finite element model of this structure, shown in Fig. 4.14a , is built using
13328 shell structural elements (ANSYS SHELL181), with a total number of degrees
of freedom equal to 81560. A point mechanical force is positioned as it was made for
experiments. The analysis is performed in the frequency range from 50 Hz to 2000 Hz.
A frequency step of 5 Hz is chosen, resulting in 381 acquisition frequencies. The dis-
persion curve obtained with the proposed approach is validated by the Wave Finite
Element Method (WFEM) for curved structures, based on the formulation described
in section 1.4; the dispersion curves are in agreement on the whole frequency range, as
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Figure 4.13 – Steel plate: averaged Frequency Response Functions comparison.

shown in Fig. 4.14b.
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Figure 4.14 – FE model of the curved panel (a) and dispersion curves comparison (b).

4.4.3 Curved composite laminated sandwich panel: experimen-
tal results and validation

Firstly, the Frequency Response Functions (FRFs) of the two configurations of the
panel are compared, for both excitations (see Fig. 4.15). For what concerns the FRF
of the panel under diffuse acoustic field excitation, the natural modes are not well
identified due to the high damping level; in any case, around the tuning frequency of
the resonators a drop of the amplitude is observed (see Fig. 4.15a). Under mechanical
excitation, the natural modes of the structure can be identified; the drop around the
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tuning frequency of the resonators is captured (see Fig. 4.15b) and it is clearer com-
pared to the one obtained in Fig. 4.15a.

The measured displacement fields for all four configurations and for both excitation
condition are plotted in Fig. 4.16 and Fig. 4.17. Three different values of the frequency
are chosen: before and after the tuning frequency of the resonators and in the region
in which the resonators are tuned to work in. In Fig. 4.16, the displacement fields
under DAF excitation are shown; for frequency values far from the tuning frequency of
the resonators, the displacement fields of both configurations are similar showing that
the resonators are not working at these frequencies (see figures 4.16a, 4.16b, 4.16e and
4.16f). Around the tuning frequency of the resonators, an attenuation of the vibration
level is observed in Fig. 4.16d, compared to the bare test case configuration (see Fig.
4.16c).

A similar behavior is observed under shaker excitation, in which the location of the
shaker is marked, allowing the identification of wave propagation (see Fig. 4.17). For
frequency values very different from the tuning frequency of the resonators, the dis-
placement fields for both configurations are very similar, as shown comparing Fig.
4.17a with Fig. 4.17b and Fig. 4.17e with Fig. 4.17f. Around the tuning frequency of
the resonators, the vibration level is strongly attenuated, as shown in Fig. 4.17d.

Fig. 4.18 shows the bending dispersion curves under diffuse acoustic field excitation for
both configurations, with and without resonators; the dispersion curves are computed
in the two orthogonal directions, axial and circumferential. For both directions, the
local dynamics of the resonators is well described.
The same comparison is done using the mechanical excitation, as shown in Fig. 4.19;
the dispersion curves are calculated in both directions, with and without the resonators.
The local dynamics of the resonators is well described in both directions.

From the estimation of the complex wavenumbers, a calculation of the damping loss
factor is performed, using the following relationship between the real and imaginary
parts of the flexural wavenumber, already expressed in Eq. (1.86), in section 1.5:

η =

∣∣∣∣∣Im(k4)

Re(k4)

∣∣∣∣∣.
The experimental damping loss factor is calculated for both configurations, the test
case and the panel with distributed resonators, as shown in Fig. 4.20a, where the
damping loss factor is expressed in one twelfth octave band. In the low frequency
region, the damping loss factor appears very high, mainly due to the influence of the
boundary conditions. Around the tuning frequency of the resonators an increase of the
damping factor is present; this effect is correlated to the continuously increasing of the
imaginary part of the wavenumber and decreasing of the real one, consequently to a
strong reduction of the vibration level.
The estimated damping loss factor is then compared with a different method, the Power
Input Method, already described in section 1.5. The damping loss factor is calculated
using Eq. (1.89), as follows:

ηf =
Pf
ωEf

,
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Figure 4.15 – FRFs comparison for both configurations and excitations: DAF excitation (a)
and point mechanical excitation (b).

where Pf and the Ef are given by Eq. (1.90) and Eq. (1.91), respectively.
The quadratic velocities and the force are averaged over 200 points. All these quantities
are derived from the use of an impedance head.

4.4.4 Aluminum aircraft sidewall panel: experimental results
and validation

The finite element model of the panel is shown together with the structure in Fig.
4.21; the numerical displacement field is obtained by a full FE analysis, using a point
harmonic excitation at the same location of the shaker in the experimental test.

The material properties introduced in the numerical model are of a standard alu-
minum alloy for aeronautical application: Young’s modulus E = 73.1 GPa, mass den-
sity ρ = 2780.0 kg m−3 and Poisson coefficient ν = 0.33. The structure is not modeled
with a very high degree of fidelity. For example, the all the joints and connections are
not modeled, stringers and frame are considered rigidly connected; the small air-gap
present in the real structure is neglected and some small holes in the frame structure
are not present in the numerical model, because of their effect on the dispersion char-
acteristics is considered small. The FE model is built using structural shell elements
(ANSYS SHELL181); the total number of structural elements is approximatively of
3.2 · 104.

The normal displacements of the nodes of the external surface are used as primary
input in Eq. (4.4); from the full-field measurements, the multi-modal behavior is well
identified in the numerical simulation and experimental test, with shaker excitation
and full-field acquisition, as shown in Fig. 4.22a. The two different modes of prop-
agation are quite evident in the axial direction and they are well captured when the
full-structure is scanned. The same behavior is not captured when the acquisition
window is reduced to the internal bays (as shown in Fig. 4.10a), because the stringer
vibration is not acquired. Two uncoupled wavenumber are identified at the same fre-
quency: plate flexural and stringer flexural. Some discrepancy between the numerical
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(a) (b)

(c) (d)

(e) (f)

Figure 4.16 – Normalized displacement fields under DAF excitation for the composite shell
at three different frequencies. At 325 Hz: bare test case (a) and resonating structure (b). At
1000 Hz: bare test case (c) and resonating structure (d). At 1675 Hz: bare test case (e) and
resonating structure (f).
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17 – Normalized displacement fields under shaker excitation for the composite shell
at three different frequencies. At 325 Hz: bare test case (a) and resonating structure (b). At
1000 Hz: bare test case (c) and resonating structure (d). At 1675 Hz: bare test case (e) and
resonating structure (f).
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Figure 4.18 – Dispersion curves under DAF excitation, with and without resonators: axial (a)
and circumferential (b) directions.

500 1000 1500 2000 2500 3000

Frequency [Hz]

0

5

10

15

20

25

30

35

W
a
v
e
n
u
m

b
e
r 

[r
a
d
/m

]

IWC: bare configuration

IWC: resonators configuration

(a)

500 1000 1500 2000 2500 3000

Frequency [Hz]

0

10

20

30

40

50

60

W
a
v
e
n
u
m

b
e
r 

[r
a
d
/m

]

IWC: bare configuration

IWC: resonators configuration

(b)

Figure 4.19 – Dispersion curves under shaker excitation, with and without resonators: axial
(a) and circumferential (b) directions.

and experimental dispersion curves are present in Fig. 4.22a, mainly due to the mod-
eling choices. A good agreement between the numerical dispersion curves and the
experimental ones, under the two different loading conditions, is shown in Fig. 4.22,
both in the axial and circumferential directions.

The effect of the resonators on the dispersion curves is remarkable, in both directions.
In the axial direction (see Fig. 4.23a) the bending dispersion curve appears higher in
frequency; in the circumferential one a band-gap between 500 Hz and 1000 Hz appears,
as shown in Fig. 4.23b. In this frequency band, the energy flowing in structure is dis-
sipated by the vibration of the resonators, showing a high apparent stiffening behavior
(lower values of the wavenumbers compared to the bare test case).
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Figure 4.20 – Damping Loss Factor estimation: bare test case and resonators configuration
comparison with Eq. (1.86) (a) and bare test case comparison between Eq. (1.86) and PIM
(b).

(a) (b)

Figure 4.21 – Installation of the aluminum panel (a) and FE model (b).

101



CHAPTER 4. K-SPACE ANALYSIS OF COMPLEX LARGE-SCALE
META-STRUCTURES

0 500 1000 1500 2000

Frequency [Hz]

0

20

40

60

80

100

W
a

v
e

n
u

m
b

e
r 

[r
a

d
/m

]

Numerical: plate

Numerical: stringers

Experimental: plate - shaker

Experimental: stringers - shaker

Experimental: plate - DAF

(a)

0 500 1000 1500 2000

Frequency [Hz]

0

10

20

30

40

50

60

70

80

90

W
a
v
e
n
u
m

b
e
r 

[r
a
d
/m

]

Numerical

Experimental: shaker

Experimental: DAF

(b)

Figure 4.22 – Dispersion curves for the bare configuration and different loading conditions:
axial (a) and circumferential (b) directions.
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Figure 4.23 – Dispersion curves under DAF excitation, with and without resonators: axial (a)
and circumferential (b) directions.
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4.5 Conclusions
In this chapter, the feasibility of the Inhomogeneous Wave Correlation method on com-
plex structures, in presence of a local dynamics effect and under diffuse acoustic field
excitation has been demonstrated, giving an estimation of the dispersion curves for all
tested configurations.

The global bending behavior of the aeronautical aluminum panel is well captured, even
if the acquisition window is reduced to the bays between the stringers and the frames.
At the same time, the local dynamics and the multi-modal behavior is not described.
This is one of the main advantages of the proposed approach, which allows to describe
the global behavior from a reduced acquisition window and a reduced number of points.

The efficiency of these 3D-printed small-scale resonators is also demonstrated, obtain-
ing a reduction of the vibrational levels of the panels. For all tested configurations, in
the frequency band the resonators are tuned to work in, a drop in the dispersion curves
is observed. The method here developed is mainly an energetic approach, which makes
a correlation between the energy carried on by the inhomogeneous wave and the total
energy of the vibrating structure. The drops in the dispersion curves appear because
the energy is dissipated by the motion of the resonators, resulting in a deformation of
the main structure similar to the unloaded case.

This preliminary study on the industrial application of small-scale resonators on real
aeronautic structures opens the possibility to attenuate the vibration levels in some
specific frequency bands, working on the design of the resonators. A deep investigation
about the design of the resonators can be done in order to increase the wave attenuation
and to enlarge the band-gap and the resonance zone.
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Chapter 5

Vibro-acoustic response of axially and
ring stiffened curved structures

Abstract

A vibro-acoustic investigation on the effects of axially and circumferentially distributed
stiffeners on curved panels is carried out in this chapter. The effect of the pitch between
the stiffeners, of their cross-section shape and their orientation is investigated. The
stiffeners are modeled using three different cross-sections: T shaped, H shaped and
Ω shaped; the stiffened panels are then compared to the bare test case configuration.
The dispersion characteristics in two orthogonal directions (axial and circumferential)
are identified by the use of an Inhomogeneous Wave Correlation (IWC) based method.
A periodic pattern of stiffeners is modeled in each studied case; the band-gaps related
to the geometric periodicity are also well-captured. The structures are modeled using
a commercial Finite Element (FE) package; the displacement field under punctual
harmonic unit force is calculate by a full-FE analysis.
The effects of each configuration on the sound radiation are investigated by computing
the sound transmission losses for each of the configurations tested. Both a purely
diffuse acoustic excitation and a combination of turbulent boundary layer and acoustic
diffuse load are simulated to approach real operational loading conditions.

5.1 Introduction

The presence of stringers and frames in the longitudinal and circumferential directions
of aircraft fuselages and space launcher fairings is a very common design choice. To
analyze and predict the vibro-acoustic behavior of stiffened plates, some analytical
theories have been developed [148–150]. Many works investigating the vibro-acoustic
behavior of stiffened cylindrical shells can be found in the literature [151–154]. Ribbed
panels are widely used in many engineering applications, ensuring a compromise be-
tween weight and high apparent rigidity. The vibro-acoustic behavior of ribbed panels
under point mechanical force or fluid-load excitation is intensively studied by different
authors. Rumerman [155] used a plane wave excitation to obtain an explicit solution of
the forced vibration of periodically ribbed plate. In the context of fluid-loaded plates,
Mace [156, 157] developed a similar approach to investigate periodically stiffened plates.
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The identification of the dispersion curves associated to transverse displacements are
of fundamental interest since they contain informations directly related to the vibro-
acoustic behavior of the structure. In this framework, k -space methods are growing in
interest in the domain of wave propagation parameter identification. An application of
the IWC method to identify the dispersion curves of a ribbed plate with inner resonance
is presented in [158], in which the dispersion curves are compared with a homogenized
analytical model. Maxit [134] investigated the vibro-acoustic behavior of a fluid-loaded
periodically stiffened plate in the wavenumber domain; the out of plane displacement
field is expressed in the wavenumber domain while the acoustic pressure in the fluid
domain. He proposed also a discrete Fourier Transform to obtain the same information
in the physical space. A vibro-acoustic analysis of stiffened composite panels is shown
in [159], in which the influence of the shape and the position of the stiffening elements
is analyzed.

Using the generalized nearfield acoustical holography, the calculation of the vibration
and of the sound radiation of submerged cylinders excited by a point force is shown in
[160]. Later, the same authors extended the analysis in the wavenumber domain [138];
in this domain, they identified the wavenumber diagrams and the contribution of each
wave to the far-field radiation. Photiadis et al. [139] investigated the acoustic response
of a ribbed shell in the wavenumber domain, identifying the flexural behavior in the
mid-frequency range. Meyer et al. [141] experimentally investigated the influence of
internal frames on the vibro-acoustic response of stiffened aluminum cylindrical shell.
Their study was focused on the analysis of the effect of the non-axisymmetric frames
on the radiation efficiency.

Some works analyzed the sound radiation of ring-stiffened shells as a function of the
number of stiffeners and their pitch [161, 162]. For example, Laulagnet et al. [161]
treated the sound radiation problem using stiffeners of hollow cross-section, to simulate
real industrial case-studies; tangential and radial forces are applied on the skins and
the stiffeners and the fluid-structure interaction modeled using a modal decomposition.
Lee et al. [162] investigated the problem varying the angle of incidence of an acoustic
plane wave excitation. The circumferential stiffeners induce an increased sound trans-
mission loss before the ring frequency, that is simultaneously slightly reduced with
respect to the one of the bare case.

On the contrary, shells with axial stiffeners are investigated in terms of acoustic radi-
ation in [163]. The presence of axial stiffeners is studied only in terms of additional
impedance and different configurations are analyzed by varying the number of axial
stiffeners.

In this chapter, a full vibro-acoustic analysis is conducted, investigating both dispersion
characteristics and sound radiation properties, extending the investigation to more
realistic aero-acoustic loading conditions, using a unit cell approach developed in [164].
The dispersion curves of the unstiffened and stiffened shells are analyzed in section 5.4,
while the STL results are shown in section 5.5.
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5.2 Overview of the methodologies

In this section, an overview of the Donnell-Mushtary analytical theory for thin circular
cylindrical shells, used to validate the dispersion curve for the bare configuration, and
of the Inhomogeneous Wave correlation method for curved structures is proposed.

5.2.1 Donnell-Mushtary theory for thin cylindrical shells

This section is devoted to the derivation of the main equations of the Donnell-Mushtary
theory for thin circular cylindrical shells. All the intermediate passages are skipped
and they can be found in [165].

Based on Love’s and Timoshenko’s theories, the strain-displacement equations can be
expressed as follows:

es = εs + zκs, eθ = εθ + zκθ and γsθ = εsθ + zτ, (5.1)

where s = x/R is the non-dimensional length, R is the radius of curvature of the
cylinder and θ is the angular coordinate, as shown in Fig. 5.1. The expressions of the
normal and shear strains in the middle surface (εs, εθ and εsθ) and the mid-surface
changes in curvature and twist (κs, κθ and τ) of Eq. (5.1) are listed below:

εs =
1

R

∂u

∂s

εθ =
1

R

∂v

∂θ
+
w

R

εsθ =
1

R

∂u

∂θ
+

1

R

∂v

∂s

κs = − 1

R2

∂2w

∂s2

κθ = − 1

R2

∂2w

∂θ2

τ = − 1

R2

∂2w

∂s∂θ
− 1

R2

∂2w

∂θ∂s

, (5.2)

where {u, v, w} are the orthogonal components of displacements in the x, θ and radial
directions, respectively. Skipping the derivation of the strain-displacement relations
and the integration to find the stress resultants, the equations of motion can be written,
in matrix notation, as:

[A]u = {0}, (5.3)

in which [A] is the 3-by-3 matrix differential operator and {u} is the displacement
vector. This differential operator assumes the following expression:
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[A] =
[
∂2

∂s2
+ 1−ν

2
∂2
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12
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∂2

∂t2

]
 , (5.4)

where ν is the Poisson’s coefficient, h is the thickness, K is the middle surface stiffness,
D is the flexural rigidity and ∇4 = ∇2∇2, being ∇2 the Laplacian operator. The
quantities K, D and ∇2 are defined as follows, respectively:

K =
Eh

1− ν2
, D =

Eh3

12(1− ν2)
and ∇2 =

∂2

∂x2
+

∂2

R2∂θ2
. (5.5)

The following expressions for the displacements can be assumed:
u = Ueλ

x
R cosnθ cosωt

v = V eλ
x
R sinnθ cosωt

w = Weλ
x
R cosnθ cosωt

, (5.6)

in which U , V and W are the amplitudes of the displacement components, λ is the
propagation constant in the axial direction, ω is the frequency in radians per second
and n is the circumferential order. Substituting Eq. (5.6) into Eq. (5.3) and re-writing
the resulting equations in matrix notations, we obtain: B11

1+ν
2

λ
R2 ν λ

R2

−1+ν
2

λn
R2 B22 − n

R2

ν λ
R2

n
R2 B33

UV
W

 =

0
0
0

 , (5.7)

in which:

B11 =
λ2

R2
− 1− ν

2

n2

R2
+
ρhω2

K

B22 =
1− ν
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R2
− n2
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ρhω2
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(
λ4
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− 2

n2λ2

R2
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R2

)
+

1

R2
− ρhω2

K

. (5.8)

For non-trivial solution, the determinant of the coefficient matrix in Eq. (5.7) is set
equal to zero, resulting in two eigenvalue problems:

• for a given value of the propagation constant λ, there is one or more values of
the frequency such that the determinant is zero;

• for a given value of the frequency ω, there is one or more values of the propagation
constant such that the determinant vanishes.
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Figure 5.1 – Coordinates system for the Donnell-Mushtary theory

5.2.2 IWC method for curved structures

In this section an overview of the IWC method for curved structures is provided; this
formulation is described in detail in Tufano et al. [166] and in chapter 4. The IWC
method is applied to stiffened curved panels to identify the dispersion curves in two
orthogonal directions, axial and circumferential.

Considering the reference system shown in Fig. 4.1, the inhomogeneous helical wave
can be expressed as follows:

w̃kC,θ(x, ϕ) = e−ikC(θ)((x−x0) cos θ+(ϕ−ϕ0) sin θ).

For a given direction θ and at a fixed value of the frequency f, the unknown complex
wavenumber kC is identified as the location of the maximum of the normalized corre-
lation function, denoting the point where the measured signal ŵ correlates best with
the inhomogeneous helical wave w̃kC,β(x, α):

I(kC, θ) =

∣∣∑N
j=1 ŵ(xj, ϕj) · w̃∗kC,θ(xj, ϕj)hjΩj

∣∣√∑N
j=1|ŵ(xj, ϕj)|2hjΩj ·

∑N
j=1|w̃kC,θ(xj, ϕj)|2hjΩj

,

where * denotes the complex conjugate, hj is the coherence of the measured signal at
each point, Ωj is an estimation of the surface around the point j and N is the total
number of acquisition points.

Firstly, a discrete value of the propagation angle θi is defined, then, for each frequency
value, the maximum of the IWC correlation function is located at a value (kRe, kIm),
creating two vectors kRe(θi) and kIm(θi) of the same length of the frequency vector.
The location of the maximum of the correlation function I(kC, θ) gives the identified
complex wavenumber in the specified direction. When the structure is complex, the
correlation function could be characterized by an absolute maximum and some local
maxima, denoting the presence of different bending waves propagating at the same
time.
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Table 5.1 – Cross-section properties of the stiffeners.

T shaped H shaped Ω shaped

Cross-section Area [m2] 3.46 · 10−5 3.70 · 10−5 2.78 · 10−5

Moment of Inertia, Ixx [m4] 2.54 · 10−10 2.85 · 10−10 2.61 · 10−10

Moment of Inertia, Iyy [m4] 8.01 · 10−10 8.11 · 10−10 7.87 · 10−10

5.3 Numerical models of the considered configura-
tions

A bare test case panel is considered, then a periodic distribution of stiffeners is applied
in the axial and in the circumferential directions, separately. The effects of the spacing
between the stiffeners and of their cross-section shape are then compared to the bare
test case results. The panels have dimensions 0.60 m x 1.05 m, with a curvature radius
R = 1.0 m and thickness equal to 1.2 mm (see Fig. 5.2a). The material properties are
chosen to be similar to a standard aeronautical aluminum alloy, with Young’s modulus
E = 70.0 GPa, mass density ρ = 2700.0 kg m−3 and Poisson coefficient ν = 0.33; the
total weight is 19.91 kg.

From these properties, the ring frequency results equal to:

fR =
1

2πR

√
E

ρ
= 800 Hz. (5.9)

The FE model is built using shell structural elements (ANSYS SHELL181); a total
number of 6240 elements is used, resulting in 38430 degrees of freedom. For the stiff-
eners, three different cross-sections are analyzed: T, H and Ω shaped, as shown in Fig.
5.3; the cross-section properties are listed in Table 5.1. The stiffeners are modeled try-
ing to keep constant the cross-section properties, in particular the Moments of Inertia,
choosing the T shaped cross-section as reference. All the stiffeners are built using the
same element property (ANSYS SHELL181) and the same material employed for the
skin.

The periodic stiffeners are placed in the axial and in the circumferential direction, as
shown in Fig. 5.4a-5.4b, respectively. Keeping the T shaped design for the stiffeners,
two different inter-spacings are chosen: 6 cm and 10 cm (see Fig. 5.4). The effect of
the shape on the vibro-acoustic response is analyzed keeping the stiffener inter-spacing
equal to 6 cm. The information about the FE models of the stiffened panels is listed
in Table 5.2.
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(a) (b) (c)

Figure 5.2 – FE models of the bare test case panel (a) and of the stiffened panels with T
shaped stiffeners in axial (b) and circumferential (c) directions.

Table 5.2 – FE models details of the stiffened panels

Axial stiffeners Circumferential stiffeners
Elements DoF Weight Elements DoF Weight

[-] [-] [kg] [-] [-] [kg]

T shaped, 10 cm pitch 8040 42090 25.8 8112 42210 26.1
T shaped, 6 cm pitch 9300 44652 29.9 9360 44730 30.1
H shaped, 6 cm pitch 11340 57096 30.8 11440 57330 31.0
Ω shaped, 6 cm pitch 11340 50874 30.4 11440 51030 30.6

(a) (b)

(c)

Figure 5.3 – Front view of the stiffeners cross-section: T shaped (a), H shaped (b) and Ω
shaped (c).

111



CHAPTER 5. VIBRO-ACOUSTIC RESPONSE OF AXIALLY AND RING
STIFFENED CURVED STRUCTURES

(a) (b)

(c) (d)

Figure 5.4 – FE models of the panels with T shaped stiffeners: 6 cm pitch in the axial (a) and
circumferential (b) directions, 10 cm pitch in the axial (c) and circumferential (d) directions.

5.4 Wavenumber analysis

In this section, a wavenumber analysis is conducted. The aim is to evaluate the effects
of both the stiffener inter-spacing and the stiffener shape in the wavenumber domain,
making a comparison between the dispersion curves of the bare test case and the stiff-
ened panel ones.

The dispersion curves are calculated in two orthogonal directions: axial and circum-
ferential. In case of curved structures, the curvature effect on the dispersion curves
is present when evaluating the axial wavenumber, while in the curvature direction the
response of the structure is equivalent to the one of an infinite flat plate. The axial
dispersion curve of the bare test case panel is compared to the one calculated with
the Donnell-Mushtary theory (by solving the second kind of eigenvalue problem which
comes from Eq. (5.7)). The dispersion curve in the circumferential direction is vali-
dated by using the Kirchhoff’s thin plate theory, in which the flexural wavenumber is
given by Eq. (4.8) and here rewritten:

kf =
√
ω

(
ρh

D

)1/4

.

The displacement fields are obtained by a full-FE analysis using an in-home mat-
lab R© code script; a punctual harmonic unit force is applied to excite the structure in
the frequency range [50 Hz - 2000 Hz], with a frequency resolution of 5 Hz. A schematic
representation of the punctual force is shown in Fig. 5.2. The location of the force is
the same for all the considered configurations. The displacement field is introduced in
Eq. (4.4) and correlated with the inhomogeneous propagating wave.
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Figure 5.5 – Dispersion curves comparisons between the IWC method and the analytical
theories: axial direction (a) and circumferential direction (b).

5.4.1 Bare test case configuration

The dispersion curves of the bare test case panel are plotted in Fig. 5.5. In Fig.
5.5a, a comparison with the Donnell-Mushtary theory is made; this analytical theory
allows estimating all the propagating wavenumbers (longitudinal, shear and flexural
wavenumber), while the IWC method allows to calculate the flexural wavenumber only.
The Donnell-Mushatry theory predicts exactly the same value of the ring frequency
estimated in Eq. (5.9) (800 Hz); the IWC method estimates a lower value for fR,
which is 770 Hz. This discrepancy is due to several reasons; first of all, the IWC
method works better in the mid-high frequency range. Below the ring frequency, the
evanescent flexural wave is dominant in terms of wavenumber amplitude, while the
longitudinal and shear propagating wavenumbers are always present; estimating the
flexural wavenumber, the IWC method is not precise enough in this region, in which
the amplitude of the real part of the longitudinal, shear and bending wavenumbers are
comparable. Starting from the ring frequency value and until the upper limit of the
considered frequency range a good agreement is observed, as shown in Fig. 5.5a. The
dispersion curve in the curvature direction is shown in Fig. 5.5b; a good agreement
between the IWC method and the Kirchhoff’s thin plate theory is observed in the whole
frequency range.

5.4.2 Stiffened panels with T shaped stiffeners: inter-spacing
effect

To evaluate the effect of the stiffener inter-spacing, a single shape of the stiffener cross-
section is chosen as reference: T shaped. The dispersion curves in the two orthogonal
directions are shown in Fig. 5.6 and compared with the bare test case configuration.
Two different stiffened panels are analyzed: stiffeners placed along the axial direction
and then along the circumferential one.

Firstly, the results of the stiffened panels with the stiffener inter-spacing of 6 cm are
analysed. For what concerns the axially stiffened panel, when evaluating the wave
propagation in the axial direction (along the stiffeners direction) the behavior of the
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structure is dominated by the bending motion of the stiffeners, as shown in Fig. 5.6a.
On the other hand, when the inhomogeneous wave travels in the circumferential di-
rection the periodic distribution of stiffeners is encountered; the global behavior is
dominated by the bending motion of the skin, but a band-gap is observed in the fre-
quency range [720 Hz - 920 Hz] (see Fig. 5.6b).
The opposite behavior is observable for the circumferentially stiffened panel. The
dispersion curve calculated in the orthogonal direction respect to the stiffeners main
dimension presents a band-gap from 1030 Hz to 1380 Hz; the presence of the stiffeners
has an influence on the ring frequency, which is identified at 550 Hz, as shown in Fig.
5.6a. The dispersion curve in the same direction of the stiffeners is shown in Fig. 5.6b;
the structural behavior is dominated by the flexural motion of the stiffeners.

A similar behavior is obtained considering the stiffened panels with an inter-spacing of
10 cm, as reported in Fig. 5.6. In this case, the band-gap occurs in the low-frequency
region; in Fig. 5.6a any band-gap is observable while in the circumferential direction
the band-gap appears in the frequency range [250 Hz - 350 Hz] (see Fig. 5.6b). From
the dispersion curves in the axial direction, the ring frequency can be identified around
600 Hz.

A similar global behavior is observed for both inter-spacings and compared to the bare
test case. For what concerns the band-gaps, they are wider for the stiffened panels with
6 cm pitch between the stiffeners. The panels with an inter-spacing of 6 cm are stiffer
than the others, as shown in Fig. 5.6, in which the dispersion curves have a smaller
amplitude compared to the others, in the whole frequency range.

5.4.3 Effect of the stiffener cross-section shape on the disper-
sion curves

The effect of the stiffener cross-section shape on the dispersion curves is evaluated in
this section. The pitch between the stiffeners is 6 cm for all the considered configura-
tions. Three different stiffener cross-sections are analyzed and compared to the bare
test case. The stiffened panels with the T shaped stiffeners have already been analyzed
and discussed in section 5.4.2, and the dispersion curves shown in Fig. 5.6.

The second stiffener cross-section shape which has been analyzed is the H shape. The
dispersion curves are shown in Fig. 5.7. When evaluating the dispersion curves in
same direction of the stiffeners, the global structural behavior is dominated by the
bending mode of the stiffeners for both axially and circumferentially stiffened panels.
In Fig. 5.7a the dispersion curves in the axial direction are shown; for what con-
cerns the circumferentially stiffened panels, a band-gap is open in the frequency range
[900 Hz - 1150 Hz]. For the axially stiffened panel, the band-gap occurs when the dis-
persion curve is calculated in the circumferential direction, as shown in Fig. 5.7b; in
this case, the band-gap is from 580 Hz to 725 Hz.

The third stiffener cross-section shape that has been investigated is the Ω shape; the
corresponding dispersion curves are shown in Fig. 5.7. The dispersion curves of the
axially stiffened panel exhibit a band-gap in the direction orthogonal to the stiffeners,
as shown in Fig. 5.7b; the band-gap is present in the frequency range [480 Hz - 680 Hz].
The dispersion curve calculated in the same direction of the stiffeners is representative
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Figure 5.6 – Effect of stiffeners inter-spacing on the dispersion curves of the stiffened panels
with T shaped stiffeners: axial direction (a) and circumferential direction (b).
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of the dominating global bending mode of the stiffeners on the structural behavior
(see Fig. 5.7a). For what concerns the circumferentially stiffened panel, a band-gap
appears in the dispersion curve calculated in the axial direction; the band-gap is from
850 Hz to 1050 Hz, as shown in Fig. 5.7a. For this configuration, the estimated ring
frequency is approximatively 550 Hz. The dispersion curve in the curvature direction
is influenced by the presence of the stiffeners in the same direction (see Fig. 5.7b).

The dispersion curves of all the considered configurations are summarized in Fig. 5.7. A
similar behavior is observed for the different cross-section shapes of the stiffeners. When
evaluating the waves propagation in the stiffener direction, the global behavior of the
stiffened panels is dominated by the bending of the stiffeners themselves. Considering
the dispersion curves in the axial direction for the circumferentially stiffened panels, the
band-gaps are slightly dependent of the stiffener shape; the frequency range is larger
in the case of T shaped stiffeners, while it is comparable for the other two shapes. The
band-gap starts at a lower frequency value for the H and Ω shaped stiffeners and it
shifts to a higher value for the T shaped stiffener. For what concerns the dispersion
curves in the circumferential direction, a similar global trend is observed (see Fig. 5.7b).
The dispersion curves of the circumferentially stiffened panels are very close to each
other, denoting similar equivalent stiffness properties. For the axially stiffened panels,
the dispersion curves follow the same trend of the bare test case panel; the band-gaps
appear in three different frequency regions, but with a similar width of approximatively
200 Hz.
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Figure 5.7 – Dispersion curves of the stiffened panels: axial direction (a) and circumferential
direction (b).
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5.5 Sound transmission Loss calculations

In this section the effects of the different stiffeners are evaluated in terms of sound
transmission. The numerical approach adopted for the acoustic simulations is given
in [147, 164]. The structure is modeled using a periodic cell approach and using AN-
SYS SOLID45 elements. The calculations are carried out considering two excitation
models: a purely diffuse acoustic field (DAF) and a simultaneous presence of a diffuse
acoustic field and a turbulent boundary layer (DAF + TBL) to simulate more realistic
loading conditions in some practical applications. The hypothesis of semi-infinite fluid
termination is applied in the internal radiating domain and thus single acoustic cavity
modes are not considered while a band-averaged result (in the classic SEA definition)
is given [164]. This numerical approach is validated with measurements of real ribbed
aircraft panels by Errico et al. [147].

The configurations described in Fig. 5.3 are analyzed under a diffuse acoustic field in
Fig. 5.8. All the configurations with axial and circumferential stiffeners are considered.
In all cases, two phenomena are observed. First, as before, the ring frequency of the
shell is reduced and thus the first drop of sound transmission loss is shifted to a lower
frequency. At the same time, an increase of transmission loss is evident in the region
before the ring frequency because of the strong stiffening of the structure compared to
the bare test case.

Among all the configurations, the main differences between the axial and circumferen-
tial stiffening are observed for the H shaped, in the whole frequency band after the ring
frequency. Even though the differences are not important, the circumferential stiffening
provides a slightly reduced sound radiation. Comparing the three shapes the T shaped
seems to provide a higher sound transmission loss than the other configurations in the
band between 1000 Hz and 2000 Hz.

Differently, when changing the excitation model as in Fig. 5.9, the differences between
structures with axial and circumferential stiffeners become more important. The TBL
model used is the one of Corcos [167], with flow direction always along the axis of the
shell: Uc = 190 m s−1; stream-wise and cross-wise correlation coefficients equal to 0.125
and 0.81.

In contrast with the diffuse acoustic excitation, the convective nature of the TBL load
requires stiffening elements in the direction of the flow; the axial stiffening provides a
sound transmission loss at least 5 dB higher in the whole frequency band, as observable
from Fig. 5.9. This can be explained by looking at the wavenumber transforms (see
Fig. 5.10) of the structures in bare, axially-stiffened and ring-stiffened configurations.
The response to turbulent boundary layer load, in fact, can be calculated starting from
the product of the wavenumber transforms of the structure and the load model; the
joint-acceptance is a fundamental parameter [168]. In Fig. 5.10 the wavenumber trans-
forms show how the bare configuration is characterized by axially propagating waves
(see Fig. 5.10a) with almost the same wavenumber as the convective ridge of the load
model in Fig. 5.10d. At the same frequency, the ring stiffeners reduce the peaks of the
circumferential wavenumbers in the circumferential direction by stiffening the structure
(see Fig.5.10c); only small changes are present on the ones in the axial direction, that
couple very well with the convective load. Differently, when axial stiffeners are adopted
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Figure 5.8 – Sound Transmission Loss for the stiffened panels under DAF excitation: T shaped
(a), H shaped (b) and Ω shaped (c) stiffeners.

(see Fig.5.10b), the axial wavenumber peaks shift to lower frequencies (stiffer structure
in this direction) and thus distance from the convective ridge of the TBL model at that
frequency; the result is a reduced vibration and sound radiation of the shell.

It is also worth to observe how, with a convective load, the Ω shaped stiffeners give
better results, in Fig. 5.9, due to their higher torsional stiffness, which induced a
reduced local bending of the skins that contributes to the sound radiation.

5.5.1 The effect of pitch distance on sound radiation

The effect of the pitch distance on the sound radiation is analysed here for the T shaped
stiffeners. Again, both a pure diffuse acoustic excitation and turbulent boundary layer
load are considered. The main differences observed are in the low-frequency region. A
slight variation of the ring frequency is followed by a global reduction of sound trans-
mission loss that eventually approaches the one of the un-stiffened shell for increasing
pitch. This is of course given by the reduced stiffening of the global structure compared
to the cases with small pitch, as observed also in [162].

In particular, the axial stiffening being important when a turbulent boundary layer
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Figure 5.9 – Sound Transmission Loss for the stiffened panels under DAF and TBL excitations:
T shaped (a), H shaped (b) and Ω shaped (c) stiffeners.
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(a) (b)

(c) (d)

Figure 5.10 – Wavenumber transforms for the structures and the load model at 1.5 kHz:
unstiffened shell (a), shell with axial T shaped stiffeners (b), shell with circumferential T
shaped stiffeners (c) and DAF and TBL load spectra (d).
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Figure 5.11 – Sound Transmission Loss for the T shaped stiffened panels with different pitch
distances: circumferential stiffeners and DAF load (a), axial stiffeners and DAF load (b)
circumferential stiffeners and DAF + TBL load (c) and axial stiffeners and DAF + TBL load
(d).

excitation is applied, the different pitches induce a frequency broadband variation of
the sound transmission loss (see Fig. 5.11d), in contrast to the mainly low-frequency
effects in the cases of pure acoustic excitation (see Fig. 5.11b).

5.6 Conclusions
In this chapter, a vibroacoustic investigation of periodically stiffened shells is con-
ducted, highlighting the effect of both stiffener cross-section shape and stiffener pitch.

For what concerns the wavenumber domain, an increase of the stiffness of the shells is
observed when evaluating the dispersion curves in the same direction of the wave prop-
agation, represented by a smaller amplitude of the estimated wavenumbers compared
to the bare test case. The dispersion curves calculated in the orthogonal direction
respect to the stiffeners main dimension follow the same global behavior of the un-
stiffened shell, except for the band-gaps frequency regions. A reduction of the ring
frequency is observed in the dispersion curves of the stiffened shells. A reduction of the
stiffeners inter-spacing reduces the amplitude of the estimated wavenumbers, showing
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an increase of the global stiffness of the structure.

In terms of sound transmission loss, the main differences between axial and circum-
ferential stiffening are observed with convective loads. While a reduction of the ring
frequency is always present, the presence of axial stiffeners strongly reduces the sound
radiation under turbulent boundary layer loads, while is giving a negligible difference
for a diffuse acoustic field. The physical explanation is given by looking at the wave
propagation in the structures and comparing it to the wavenumber spectra of the load
model.

The results show that a reduction of pitch distance is beneficial for the sound trans-
mission loss in the lowest frequency bands, due to the increased stiffness of the global
structural system. When a convective load is considered, this effect is beneficial in the
whole band and not just in the low frequencies.
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Concluding remarks and perspectives

The main purpose of the presented work is addressed to the development of k -space
based methods for vibro-acoustic problems. The guideline is to give a tool for the
analysis and design of industrial structures and for a fast estimation of vibro-acoustic
indicators. The main findings can be summarized as follows:

• The Inhomogeneous Wave Correlation method is successfully implemented to
obtain the angle-dependent dispersion curves. The orthotropic behavior is de-
scribed in both dispersion curves and k -space plots at fixed frequencies. The IWC
method is applied to the experimental vibrational field of a 3D-printed sandwich
panel, showing a good agreement with the predicted numerical dispersion curves.
The dynamic behavior of the structure is fully-described by a reduced number
measurement points, as shown in chapter 3.

• To avoid some limitations related to the plane wave assumption, an extended
formulation of the IWC method is proposed in chapter 2, using a combination
of Green’s and Hankel’s functions. The extended IWC approach shows a good
prediction of the complex dispersion relations for both periodic narrow plates and
laminated structures. The estimations of the damping loss factor are obtained
for the considered configurations; the calculated values of η rapidly converge to
the structural damping introduced in the FE models as the frequency increases.
The feasibility of this method in estimating the wave attenuation in a structure
is successfully demonstrated.

• The proposed approach allows to identify the local resonance frequency bands
(stop-bands) due to the geometric periodicity of the structure, including the ap-
parent stiffening or softening behavior of the structures in presence of mechanical
stiffeners.

• A vibro-acoustic investigation of periodically stiffened shells is conducted, high-
lighting the effect of both the stiffener cross-section shape and the stiffener pitch.
The IWC method allows to identify the global bending behavior and the stiffener
effect on the dynamic response of the considered curved structures. The disper-
sion curves calculated in the orthogonal direction with respect to the stiffener
main dimension follow the same global behavior of the unstiffened shell, except
for the band-gap frequency regions. A reduction of the ring frequency is also cap-
tured in the dispersion curves of the stiffened shells, as expected. A reduction of
the stiffener inter-spacing reduces the amplitude of the estimated wavenumbers,
showing an increase of the global stiffness of the structure. This investigation on
the stiffener cross-sections and stiffener pitch shows the feasibility of the proposed
approach as a tool to compare different design choices.
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• The applicability of 3D-printed small-scale resonators is demonstrated on relevant
industrial structures. For all tested configurations, in the frequency band the
resonators are tuned to work in, a drop in the dispersion curves is observed. The
drops in the dispersion curves appear because the energy flow in the structure is
strongly reduced and dissipated by the resonators. In chapter 4, a preliminary
study on the industrial application of small-scale resonators on real aeronautic
structures opens the possibility of attenuating the vibration levels in some specific
frequency bands, working on the design of the resonators.

• The multi-modal behavior in terms of uncoupled flexural skin and flexural stiff-
ener motions is described in the dispersion curves. This aspect allows to identify
preferred propagation directions and the energy flows in the structures.

• The proposed approach can be used in an inverse way to estimate the frequency-
dependent equivalent material properties of complex structures, when analytical
models are not available or difficult to obtain.

The presented work touches several key points in the vibro-acoustic domain. The
work has the potential to be implemented in an industrial environment in order to
give an immediate comparison between different design choices. Some perspectives can
be summarized in the next bullets in the hope of opening new scenarios and further
developments in the near future.

• The inclusion of orthotropic Green’s function in the new proposed approach for
the IWC method to investigate any kind of structure and not only isotropic or
slightly orthotropic media.

• Generalization of the IWC formulation for curved structures to conical shells, in
order to cover any kind of geometry in the aerospace field.

• The IWC method can be used as a design tool. The proposed approach can
be included in a parametric study in order to achieve an optimal design in the
vibro-acoustic framework.

• This preliminary study on the industrial application of small-scale resonators on
real aeronautic structures opens the possibility to attenuate the vibration level in
some specific frequency bands, working on the design of the resonators. A deep
investigation about the design of the resonators can be done in order to increase
the wave attenuation and to enlarge both band-gaps and resonance zones.
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