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Abstract
Full Waveform Inversion (FWI) is a PDE-constrained optimization which reconstructs sub-

surface parameters from sparse measurements of seismic wavefields. FWI generally relies on
local optimization techniques and a reduced-space approach where the wavefields are elim-
inated from the variables. In this setting, two bottlenecks of FWI are nonlinearity and ill-
posedness. One source of nonlinearity is cycle skipping, which drives the inversion to spurious
minima when the starting subsurface model is not kinematically accurate enough. Ill-posedness
can result from incomplete subsurface illumination, noise and parameter cross-talks. This thesis
aims to mitigate these pathologies with new optimization and regularization strategies. I first
improve the wavefield reconstruction method (WRI). WRI extends the FWI search space by
computing wavefields with a relaxation of the wave equation to match the data from inaccurate
parameters. Then, the parameters are updated by minimizing wave equation errors with either
alternating optimization or variable projection. In the former case, WRI breaks down FWI into
two linear subproblems thanks to wave equation bilinearity. WRI was initially implemented
with a penalty method, which requires a tedious adaptation of the penalty parameter in iter-
ations. Here, I replace the penalty method by the alternating-direction method of multipliers
(ADMM). I show with numerical examples how ADMM conciliates the search space extension
and the accuracy of the solution at the convergence point with fixed penalty parameters thanks to
the dual ascent update of the Lagrange multipliers. The second contribution is the implementa-
tion of bound constraints and non-smooth Total Variation (TV) regularization in ADMM-based
WRI. Following the Split Bregman method, suitable auxiliary variables allow for the decoupling
of the `1 and `2 subproblems, the former being solved efficiently with proximity operators.
Then, I combine Tikhonov and TV regularizations by infimal convolution to account for the
different statistical properties of the subsurface (smoothness and blockiness). At the next step,
I show the ability of sparse promoting regularization in reconstructing the model when ultra-
long offset sparse fixed-spread acquisition such as those carried out with OBN is used. This
thesis continues with the extension of the ADMM-based WRI to multiparameter reconstruction
in vertical transversely isotropic (VTI) acoustic media. I first show that the bilinearity of the
wave equation is satisfied for the elastodynamic equations. I discuss the joint reconstruction of
the vertical wavespeed and epsilon in VTI media. Second, I develop ADMM-based WRI for
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attenuation imaging, where I update wavefield, squared-slowness, and attenuation in an alter-
nating mode since the viscoacoustic wave equation can be approximated, with a high degree of
accuracy, as a multilinear equation. This alternating solving provides the necessary flexibility
to Taylor the regularization to each parameter class and invert large data sets. Then, I overcome
some limitations of ADMM-based WRI when a crude initial model is used. In this case, the
reconstructed wavefields are accurate only near the receivers. The inaccuracy of the phase of
wavefields may be the leading factor that drives the inversion towards spurious minimizers. To
mitigate the role of the phase during the early iterations, I update the parameters with phase
retrieval, a process that reconstructs a signal from the magnitude of linear measurements. This
approach, combined with efficient regularizations, leads to a more accurate reconstruction of
the shallow structure, which is decisive to drive ADMM-based WRI toward good solutions at
higher frequencies. The last part of this Ph.D. is devoted to time-domain WRI, where a chal-
lenge is to perform accurate wavefield reconstruction with an acceptable computational cost.
In the frequency domain, wavefield reconstruction consists of solving in a least-squares sense
an augmented wave equation system gathering the weighted wave equation and the observation
equation. In the time domain, I show how to reconstruct wavefields with explicit time stepping
through an iterative quasi-Newton method, whose convergence is discussed with the 2004 BP
salt model.
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Résumé
La FWI (Full Waveform Inversion) est un problème d’optimisation sous contraintes dédié

à l’estimation des paramètres constitutifs du sous-sol à partir de mesures parcimonieuses des
champs d’ondes sismiques. La FWI est fondée sur des approches locales d’optimisation et sur
un espace de recherche réduit obtenu par projection de variables. La non linéarité et le carac-
tère mal posé de la FWI sont deux difficultés majeures. Une source de non linéarité est liée
au repliement de la phase, qui conduit à un minimum local dès que le modèle initial n’est pas
suffisamment précis. Le caractère mal posé résulte de l’éclairage incomplet du sous-sol depuis
la surface, le bruit et les couplages inter-paramètres. L’objectif de cette thèse est de réduire
ces deux pathologies par de nouvelles approches d’optimisation et de régularisation. J’améliore
tout d’abord la méthode d’inversion par reconstruction des champs d’onde (WRI: Wavefield Re-
construction Inversion). WRI étend l’espace de recherche en calculant les champs d’onde avec
une relaxation de l’équation d’onde afin d’ajuster les données avec des modèles imprécis avant
d’estimer les paramètres en minimisant les erreurs générées par cette relaxation. Quand ces
deux estimations sont effectuées de manière alternée, WRI décompose l’inversion non linéaire
en deux sous-problèmes linéaires en vertue de la bilinéarité de l’équation d’onde. WRI a été
implémentée avec une méthode de pénalité, nécessitant une adaptation du paramètre de pénalité
lors des itérations. Je remédie à cela avec ADMM (Alternating-Direction Method of Multipli-
ers), qui concilie l’extension de l’espace de recherche et la précision de la solution au point de
convergence avec un paramètre de pénalité fixe grâce à la mise à jour itérative des multiplica-
teurs de Lagrange. Une seconde contribution est l’implémentation de contraintes de bornes et
de régularisation par variation totale (TV) dans WRI. Suivant la méthode de Split Bregman, des
variables auxiliaires permettent de découpler les termes impliquant des normes `2 et `1 et de
traiter les seconds efficacement avec des opérateurs de proximité. Ensuite, j’ai combiné une
régularisation de Tikhonov et de TV par convolution infimale pour prendre en compte les dif-
férentes propriétés statistiques du milieu (constantes par morceau et lisses). Ma thèse aborde
ensuite des reconstructions multi-paramètres. Je montre dans un premier temps que la bilinéar-
ité de l’équation d’onde est vérifiée pour les équations de l’elastodynamique. Ensuite, je traite
le cas de milieux acoustique VTI où je reconstruis conjointement la vitesse verticale et epsilon
pour un modèle synthétique représentatif d’un champ pétrolier en mer du Nord. Je m’intéresse
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ensuite à l’imagerie de l’atténuation qui est introduite en domaine harmonique sous forme d’une
vitesse complexe. J’étends WRI à la reconstruction de paramètres complexes tout en dévelop-
pant une régularisation adaptable à la vitesse réelle et au facteur de qualité. Durant les premières
itérations, les champs d’onde reconstruits sont précis uniquement au voisinnage des récepteurs.
Les imprécisions de la phase pourraient avoir un rôle préjudiciable sur la solution de l’inversion.
Afin de réduire cette empreinte, j’estime les paramètres par "phase retrieval", un processus qui
vise la reconstruction d’un signal complexe à partir de l’amplitude de sa mesure linéaire. Une
fois un premier modèle obtenu, je ré-injecte l’information de la phase pour converger vers la
solution finale. Je montre la pertinence de cette stratégie lorsque le modèle initial est homogène.
WRI a été initialement développée dans le domaine fréquentiel car la reconstruction des champs
d’onde y est raisonablement aisée avec des méthodes d’algèbre linéaire. En domaine temporel,
une approche fondée sur un schéma explicite d’intégration temporelle a été proposée mais re-
pose sur une linéarisation autour des sources supposées connues. Je montre les imprécisions du
champ d’onde reconstruit avec cette approximation que je corrige par une approche itérative,
dont je discute la convergence avec un exemple numérique.
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Chapter 1

General Introduction

Chapter overview: In this introductory chapter, I first define seismic imaging as an inverse
problem for the estimation of the underground parameters. Then, I review the principles of
the so-called full-waveform inversion (FWI) from the historical and technical perspectives. I
discuss its potential and limits related to nonlinearity and ill-posedness. I review recent works
which attempted to extend the linear regime of FWI. This review allows me to introduce the
main objectives of my thesis, whose content is outlined chapter by chapter.

1.1 Seismic imaging as an inverse problem

An inverse problem is the process of extracting causal factors from indirect observations
(Aster et al., 2004). Seismic imaging, as an inverse problem, is the process of extracting the
physical properties of the earth from seismic data. Generally, imaging methods are very im-
portant in many scientific fields because they provide a complete picture of an object that is
invisible to the human eye. Seismic data are collected during seismic exploration when an
active seismic source such as dynamite, vibroseis (for land) or air-gun (for marine) generates
wave propagation into the earth. The seismic waves, that can be elastic or acoustic, travel into
the earth and are affected and filtered by subsurface heterogeneities, and finally, some of them
return to the surface. These seismic data are recorded by seismic detectors, which can be geo-
phones (particle velocity measurements) or hydrophones (pressure perturbation measurements
in marine environments) (Sheriff and Geldart, 1995).
After the data acquisition, the seismic data must be inverted to build up images of subsurface
structures. Basically, seismic data inversion is a two-step procedure (Claerbout, 1985). First,
a smoothly-varying background model of the earth is reconstructed such that it describes the
kinematic information of the data, which contains the traveltimes of recorded waves. Then,
the dynamic information is used to image the short-wavelength information by solving a linear
least-squares problem which is known as migration. The migration step minimizes the differ-
ence between the recorded and modeled reflection data when the modeled data are generated
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by solving the linearized wave equation with the single-scattering Born approximation (Gray
et al., 2001; Etgen et al., 2009). In contrast, Full waveform inversion (FWI) (Tarantola, 1984;
Pratt et al., 1998; Virieux and Operto, 2009) refers to a nonlinear optimization problem which
estimates a subsurface model that jointly fits the kinematic and dynamic information. The word
"Full" is used since FWI uses both the amplitude and the phase of the recorded waveforms si-
multaneously, unlike tomography and migration methods. Moreover, FWI can use any kind of
waves without any distinction (diving waves, reflected waves, diffractions). As such, FWI is a
seismic imaging technique which can take advantage of acquisition devices allowing for a rich
illumination of the subsurface through the recording a wide variety of wave types.

1.2 Full waveform inversion

1.2.1 Problem statement and state of the art

Limits of the classical FWI

FWI is a leading-edge seismic imaging method that has gained renewed interest in oil and
gas exploration for one decade due to the emergence of supercomputers, long-offset wide-
azimuth acquisition, and broadband seismic sources (Virieux and Operto, 2009; Virieux et al.,
2017). FWI seeks to estimate subsurface parameters (P and S wavespeeds, density, attenuation,
anisotropic parameters) with a resolution close to the seismic wavelength by fitting seismic
records with modeled seismograms that are computed with two-way modeling engines to ac-
count for the full complexity of the wavefields (Tarantola, 1984; Pratt et al., 1998).

Besides the computational cost resulting from two-way full-waveform modeling for large-
scale 3D surveys, it is well acknowledged that one of the main challenges raised by FWI is
related to the high nonlinearity and ill-posedness of the underlying optimization problem. One
of the main sources of nonlinearity is related to the cycle-skipping pathology, which occurs
when the initial subsurface model does not predict recorded traveltimes with an error lower
than half the period and a classical least-squares difference-based misfit function is used (e.g.
Virieux and Operto, 2009, their Figure 7). Ill-posedness may result from the deficit of sub-
surface illumination provided by surface acquisitions, noise, and parameter cross-talk in the
framework of multi-parameter reconstruction (Operto et al., 2013).

From the numerical optimization viewpoint, the data-fitting/parameter-estimation problem
underlying FWI is a partial differential equation (PDE)-constrained nonlinear optimization
problem where the equality constraint is the wave equation, and the optimization parameters
are embedded in the coefficients of the PDE. One of the most popular methods to solve such
nonlinear constrained optimization problem is the method of Lagrange multiplier (Haber et al.,
2000) where the constraints are implemented through a Lagrangian function. A local minimizer
satisfies the so-called KKT (Karush-Kuhn-Tucker) first-order optimality conditions, which state
that the variations of the Lagrangian with respect to the wavefield (state variables), the Lagrange
multipliers (adjoint-state variables) and the parameters are zero at the optimum. The so-called
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full-space approach consists of solving the nonlinear KKT system with an iterative Newton
method to jointly update the three classes of unknowns. However, the dimension of the system
to be solved for FWI application makes this full space approach intractable from the computa-
tional viewpoint in particular for time-domain formulation (Askan et al., 2007; Epanomeritakis
et al., 2008). Instead, the FWI is classically solved with a reduced-space approach where the
optimization problem is recast into an unconstrained problem after explicitly eliminating the
wavefield from the unknowns by solving exactly the wave equation for the current guess of
the subsurface parameters. Therefore, the reduced approach embeds at each nonlinear iteration
the following steps: [1] compute the state variables by solving the wave equation, [2] from
the state variable estimation, compute exactly the adjoint-state variables by solving the adjoint-
state equation, [3] update the subsurface parameters with a gradient-based optimization method,
where the gradient of the objective with respect to the subsurface parameters can be easily ex-
pressed in a closed form as a function of the state and adjoint-state variables (Plessix, 2006). In
virtue of the spatial reciprocity of wave propagation, this gradient can be either viewed as the
zero-lag correlation between the partial derivative wavefields sampled at the receiver positions
with the data residuals or as the zero-lag correlation between the virtual sources of the partial
derivative wavefields and the adjoint-state variables. For a classical least-squares difference-
based misfit function, a partial derivative wavefield represents the wavefield single-scattered by
a parameter perturbation in the framework of the Born approximation (Pratt et al., 1998; Virieux
and Operto, 2009).

Although this reduced-space approach strictly enforces the constraints and is computation-
ally tractable, it is prone to cycle skipping, as mentioned above. Indeed, if the initial model
is not accurate enough to predict the recorded traveltimes with an error lower than half the
dominant period, the zero-lag correlations underlying the gradient building will smear in an
inconsistent way the offset-dependent difference-based residuals at wrong positions in the sub-
surface (i.e., along the wrong isochrones of the FWI sensitivity kernel), leading to unfocused
images (Virieux and Operto, 2009, Their Figure 5). The cycle skipping criterion is increasingly
difficult to satisfy when the number of propagated wavelengths increases as might be expected
with the development of long-offset wide-azimuth acquisitions (Pratt et al., 1996; Pratt, 2008).
This prompts the oil industry to develop broadband sources with a richer low-frequency content
to balance the increasing propagation distance and mitigate the cycle skipping issue accordingly
(Plessix et al., 2012; Baeten et al., 2013). In parallel with this, many heuristic data-driven ap-
proaches based upon frequency, traveltime, and offset continuations have been designed to drive
the optimization problem toward a multiscale subsurface update from the long wavelengths to
the shorter ones (e.g. Górszczyk et al., 2017).

Extending the linear regime of FWI

More automatic approaches, to reduce human intervention, have focused on the design of
more convex distances between recorded and modeled data such as those based upon optimal
transport theory (Engquist and Froese, 2014; Métivier et al., 2016b; Yang et al., 2018; Métivier
et al., 2018, 2019), correlation (van Leeuwen and Mulder, 2010), deconvolution and matching
filter (Luo and Sava, 2011; Warner and Guasch, 2016; Zhu and Fomel, 2016), instantaneous
phase and envelope (Bozdağ et al., 2011; Luo and Wu, 2015) and dynamic warping (Ma and
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Hale, 2013). Some of these distances improve the convexity of the function at the expense of
the spatial resolution of the imaging. Therefore, these approaches should be viewed as tools to
build initial models for classical FWI.

Another category of approaches seeks to extend the linear regime of FWI by enlarging the
parameter search space. A pioneering implementation of this idea is presented by Shaw (1986)
and Shaw (1988), who jointly estimates the velocity model and traveltime statics in the frame-
work of 1D waveform inversion. Huang et al. (2017) proposes the source-receiver extension
method, which interlace two optimization problems: first, the data is perfectly matched through
a trace-per-trace source signature estimation before updating the subsurface model by minimiz-
ing the deviation of each artificial source signature from a reference one through an annihilator.
This approach shares a connection with the adaptive waveform inversion of Warner and Guasch
(2016) in the sense of the trace-per-trace source estimation problem can be viewed as a match-
ing filter process. Biondi and Almomin (2014) propose to extend the subsurface model along
the time-lag axis to account for large traveltime residuals and augment the misfit function with a
penalty term which penalizes large time lags through an annihilator. The misfit function mixes
a nonlinear relation with respect to the background model and a linear relationship with re-
spect to the perturbation model, whose expression relies on the extended Born approximation.
According to the Born approximation, the observables are the difference between the recorded
data and the modeled data from the previous iteration. This approach, which jointly updates the
background model and the reflectivity performs a joint tomography-like and a migration-like
update of the subsurface, by opposition to reflection (Xu et al., 2012a; Brossier et al., 2015) or
joint reflection + diving wave waveform inversion (Zhou et al., 2015) where a scale separation
is explicitly enforced in the formalism through an alternating optimization scheme. The com-
putational cost of this approach remains a major bottle-neck for 3D applications.

The Wavefield Reconstruction Inversion (WRI) method

van Leeuwen and Herrmann (2013, 2016) proposed another extended search space method
in the frequency domain by recasting the PDE-constrained optimization problem into a quadratic
penalty method, where the least-squares norm of the observation equation (the data misfit func-
tion) is penalized by the least-squares norm of the wave equation error (the violation of the
physical constraint). The original motivation of this approach is that the subsurface model
could be retrieved exactly if one monochromatic wavefield could be recorded everywhere in the
subsurface. This statement results from the bilinearity of the wave equation in wavefields and
subsurface parameters (A function of two variables is bilinear if it is linear with respect to each
of its variables). Since this recording is not possible, the method of van Leeuwen and Herrmann
(2013) and van Leeuwen and Herrmann (2016) seeks to approximate the true wavefields by
those that best fit the sparse observations and satisfy the wave equation in a least-squares sense.
In order to prevent the cycle skipping issue (i.e., fit the observations), this overdetermined least-
squares problem is tuned such that a dominant weight is assigned to the observation equation
during the early iterations of the waveform inversion (when the velocity model is inaccurate),
hence generating significant relaxation of the wave equation constraint. Once the wavefields
have been reconstructed for each source, the subsurface parameters are updated by minimizing
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in the least-squares sense the wave-equation constraint violations. Since the governing idea of
the method is to reconstruct wavefields, which are as close as possible to the true ones, van
Leeuwen and Herrmann (2013) and van Leeuwen and Herrmann (2016) called their method
Wavefield Reconstruction Inversion (WRI). Similar approaches for parameter estimation prob-
lems are referred to as Error in Constitutive Equations (ECE) method by other communities
(Banerjee et al., 2013).
This penalty problem is solved for the wavefield and subsurface parameters in an alternating
mode (van Leeuwen and Herrmann, 2013) or through variable projection (van Leeuwen and
Herrmann, 2016). In the former case, WRI is recast as a sequence of two linear subproblems
in virtue of the wave equation bilinearity. A well-known difficulty associated with the penalty
method is related to the necessary adaptation of the penalty parameter in iterations, such that
the constraint is relaxed during the early iterations and fulfilled at the convergence point (Fu
and Symes, 2017). Compared to the above-mentioned full-space approach, the method of van
Leeuwen and Herrmann (2016) is more computationally attractive as each source is processed
independently during wavefield reconstruction and the update of the subsurface parameters does
not require solving an adjoint-state equation. This approach has been adapted in the time do-
main by Wang et al. (2016, 2017b); Huang et al. (2018b) where the penalty term seeks to
penalize the misfit between the true and the reconstructed sources instead of the true and the
reconstructed wavefields. This approach has been referred to as the reconstructed wavefield
method with extended sources.
Another frequency-domain approach which interlace the wavefield update and the subsurface
parameters is the contrast-source method (Abubakar et al., 2011), which consists in the alter-
nated update of the contrast (i.e., a term depending on the subsurface parameters) and the con-
trast source (i.e., a second-order scattering source formed by the product of the contrast with
the incident wavefield). However, the contrast-source method may not have been optimally
assessed as a search space expansion technique in the sense that the two functionals associ-
ated with the observation and the wave equations were linearly combined with a preset weight,
the aim of which is to make the two functionals dimensionless, rather than with an adaptive
weight as in the penalty method of van Leeuwen and Herrmann (2013). In fact, the motivation
behind the contrast-source method was mainly to mitigate the computational burden of itera-
tive frequency-domain seismic modeling based upon Gauss elimination techniques since the
contrast-source method requires only one LU decomposition per frequency, this decomposition
being computed in the starting model.

1.2.2 Objectives and content of the thesis

Improving WRI with ADMM

In the Chapter 2 of this thesis, I will first focus on an easy-to-implement improvement
of the WRI, which strongly reduces the sensitivity of the method to the choice of the penalty
parameter, resulting in a faster convergence and more accurate subsurface and wavefield re-
construction. To achieve this goal, I replace the penalty method by an augmented Lagrangian
method, which is implemented with a classical primal descent - dual ascent approach. In con-
strained optimization, the augmented Lagrangian method can be viewed as a combination of a
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classical Lagrangian method and a penalty method, where the Lagrangian multiplier steers the
inversion toward the constraint, while the penalization term regularizes the inversion (Nocedal
and Wright, 2006, Chapter 17). To make the computational problem tractable, as in the penalty
method of van Leeuwen and Herrmann (2013, 2016), I perform wavefield reconstruction and
parameter estimation (primal subproblems) in an alternating mode, while the Lagrange multi-
pliers are updated with a classical dual ascent approach after the two primal updates according
to the popular alternating direction method of multiplier (ADMM) (Boyd et al., 2010) or after
each of the two primal updates according to the Peaceman-Rachford splitting method (PRSM)
(Peaceman and Rachford, 1955; He et al., 2014). This operator splitting draws some connection
between my approach and ADMM with the difference that the wavefield reconstruction and the
parameter estimation are not separable problems. This non-separability is managed by solving
the two subproblems in sequence rather than in parallel, the solution of one subproblem being
passed as a passive variable to the next problem. This sequential splitting strategy linearizes the
parameter estimation problem around the reconstructed wavefield, which means that the origi-
nal nonlinear FWI has been recast as a sequence of two linear subproblems.
By using a scaled form of the Lagrangian (Boyd et al., 2010, Section 3.1.1), I will also show
that the augmented Lagrangian method is similar to the WRI penalty method, except that the
original right-hand sides in the two objective functions of the penalty function (namely, those
related to the data and the source misfits) are updated at each iteration with the running sum
of the data and source residuals of previous iterations. This iterative right-hand side updating
performs a self-adaptive weighting of the competing data-fitting and wave-equation objectives
of the penalty function, leading to more efficient wavefield reconstruction and parameter esti-
mation across iterations.

We can have a different insight into the ADMM-based WRI. As in the original WRI, the
nonlinear constrained problem for subsurface parameter estimation is recast as a sequence of
two unconstrained subproblems via a quadratic penalty method, where the two subproblems
seek to update the reconstructed wavefield and the subsurface parameters in an alternating way
within a cycle workflow. The key differences are that I re-inject the errors in the data misfit
function and the penalty term (the wave equation residual) back to their right-hand sides (the
data and the source) at each iteration. This iterative improvement of the solution by re-injecting
the error back to the right-hand side of the system, which is known as defect correction or
iterative refinement, is adapted here to a waveform-inversion problem. Similar iterative im-
provement of the solutions of linear inverse problems is found in the framework of asymptotic
least-squares waveform inversion where the iterations seek to account for the approximations
resulting from the linearization of the wave equation with the Born approximation and approx-
imate Hessian (Lambaré et al., 1992; Jin et al., 1992; Ribodetti et al., 2011). The iterative
refinement of the solution presented in this study is also closely related to the so-called Breg-
man distance (Bregman, 1967). Goldstein and Osher (2009) proposed to use Bregman distance
to solve constrained optimization problems of the form minuE(u) such that Au = b where E
denotes a convex functional (in the framework of this study, E would represent the FWI misfit
function and Au = b is the Helmholtz equation). Yin et al. (2008) and Goldstein and Osher
(2009) have shown that minimization of the Bregman distance is equivalent to recast the con-
strained problem as a quadratic penalty problem in a way comparable to the approach of van
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Leeuwen and Herrmann (2013) and van Leeuwen and Herrmann (2016) approach. However,
in a way that is comparable to the iterative refinement mentioned above, the right-hand side
of the constraint is updated at each iteration k + 1 with the error b−Auk from the previous
iteration (see Yin et al. (2008, Theorem 3.1). Goldstein and Osher (2009, Theorem 2.2) have
shown that this iterative update of the right-hand side strictly enforces the constraint as long as
E is convex. Accordingly, the value of the penalty parameter (λ in van Leeuwen and Herrmann
(2013, their equation 5) can remain constant over iterations, while it should progressively tend
to∞ in classical penalty method to satisfy the constraint. In the Bregman iterations, this value
can be chosen by trial and error such that the convergence rate is optimized. In this thesis, I
adapt the iterative refinement strategy embedded in the Bregman method to frequency-domain
FWI. I apply iterative right-hand side update to the two subproblems for wavefield reconstruc-
tion and subsurface parameter updates. Moreover, I perform the right-hand side update not only
in the constraint (the wave equation) but also in the data misfit function during the wavefield
reconstruction. Accordingly, I will refer to my method as IR-WRI (Iteratively-Refined WRI).
The Chapter 2 of this thesis is mostly extracted from a paper published in Geophysics (Aghamiry
et al., 2019c).

Interfacing leading-edge regularizations with IR-WRI

Ill-posedness is another significant pathology of FWI. Overcoming this issue requires robust
and versatile regularized optimization approaches, which should, at the same time, preserve the
intrinsic resolution power of FWI. To achieve this goal, I show in the first part of Chapter 3
how to implement bound constraints and total variation (TV) (Rudin et al., 1992) regulariza-
tion in IR-WRI with the split Bregman method, a particular instance of ADMM that has been
proposed by Goldstein and Osher (2009) to solve `1-regularized convex problems. The decom-
posability of ADMM provides the necessary recipe, after the introduction of suitable auxiliary
variables, to split the non-differentiable TV regularization problem into two easy-to-solve sub-
problems, namely a least-square subproblem and a `1 subproblem which is solved efficiently
with proximity operators. This study has been published in the Geophysical Journal Interna-
tional (Aghamiry et al., 2019b).

A proper regularization should be driven by the shape and statistical characteristics of the
medium to be imaged. For example, in geophysical imaging, the subsurface can be conceptual-
ized as a piece-wise smooth medium, which is a model that contains smoothly varying compo-
nents (for example, sedimentary cover) and blocky components (salt bodies, basalt flows). The
widespread Tikhonov regularizations (Tikhonov et al., 2013) rely on the smoothness assump-
tion and hence fail to recover sharp interfaces of such media. Conversely, TV regularizations
are based on blockiness assumption and hence are more suitable to image large contrasts. How-
ever, they generate undesirable staircase imprints in smooth regions.
Regions characterized by smoothly-varying properties and those containing sharp contrasts have
different statistical properties. The former are characterized by the normal prior, while the latter
by a heavy-tailed prior (Polson and Sokolov, 2019). Consequently, the simultaneous recovery
of both properties is difficult when one type of regularization is used (Tikhonov, TV, etc.). To
overcome this issue, I propose to use a combination of different regularizations (Gholami and
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Siahkoohi, 2010; Benning and Burger, 2018). A naive approach consists of the simple additive
coupling or convex combinations (CC) of regularizations. Alternatively, Gholami and Hosseini
(2013) proposed to explicitly decompose the model into several components of different statis-
tical properties and use an appropriate regularization to reconstruct each component. Using this
strategy, they combined Tikhonov and TV regularizations (referred to as TT regularization) to
reconstruct piece-wise smooth media. The smooth components are captured by the Tikhonov
regularization, while the TV counterpart determines the blocky ones. In many applications, it
has been shown that a compound regularization based upon infimal convolution (IC) outper-
forms the one based upon additive coupling (Bergmann et al., 2018). In the second part of
Chapter 3, I develop a general framework to combine a couple of regularization terms in IR-
WRI through CC and IC and compare the performances of each implementation with the large
contrast BP salt model.
The analysis of compound regularizations and their application in IR-WRI has been published
in the IEEE Transactions on Geoscience and Remote Sensing journal (Aghamiry et al., 2020b).

Extending IR-WRI to multi-parameter reconstruction

So far, IR-WRI was mainly assessed for wavespeed estimation from the scalar Helmholtz
equation. In the Chapter 4 of this thesis, I go one step further and develop and assess the
extension of IR-WRI to multi-parameter reconstruction. As I mentioned before, IR-WRI ex-
ploits the wave-equation bilinearity to recast FWI as a sequence of two linear subproblems.
Therefore, the first step is to discuss which forms of the wave equation satisfy the bilinear-
ity property. To achieve this goal, I started with the first order velocity-stress elastodynamic
equations in VTI media and show that it is a bilinear system in wavefield and model parame-
ters. Then, I build a second-order wave equation through a parsimonious variable-elimination
approach since second-order equations are often more computationally-efficient in frequency-
domain wave modeling (Operto et al., 2007a), and I discuss the bilinearity of this second-order
equation. Then, I review different optimization scenarios depending on which of the constitu-
tive parameters are processed as passive variables. In a second step, I will review in detail how
to implement the IR-WRI method with bound constraints and total variation (TV) regulariza-
tion for multi-parameter reconstruction in VTI acoustic media, where the different parameter
classes can be either updated jointly or sequentially.
The analysis of multi-parameter IR-WRI in VTI acoustic media is the topic of a paper published
in the Geophysical Journal International (Aghamiry et al., 2019a).
The second multi-parameter problem I will discuss deals with attenuation reconstruction. It is
well acknowledged that attenuation effects are easily implemented in frequency-domain seismic
modeling by using complex-valued wavespeeds. The imaginary part of the wavespeed depends
on the attenuation factor α (or quality factor Q, which is 1/α) and describes absorption effects,
while the real part contains a frequency-dependent term which describes dispersion effects and
guarantees causality (Toksöz and Johnston, 1981). In the frequency band, the quality factor is
generally considered as frequency independent. During the inverse problem for complex pa-
rameters, it is common to process the physical quantity of the complex number (wavespeed and
α) as two independent real-valued parameters. In frequency-domain FWI, the real part of the
wavespeed for a reference frequency and the quality factor are generally processed as two in-
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dependent real variables (Liao and McMechan, 1995; Hicks and Pratt, 2001; Malinowski et al.,
2011; Hak and Mulder, 2011; Kamei and Pratt, 2013; Operto and Miniussi, 2018). Based on
this, I break the complex wavespeed to squared slowness and attenuation factor, and I develop
an accurate multilinear viscoacoustic wave equation in the wavefield, squared slowness and at-
tenuation factor and extend IR-WRI for inversion of viscoacoustic wavefields corresponding
to attenuative media. The proposed viscoacoustic IR-WRI treats the nonlinear viscoacoustic
waveform inversion as a multiconvex optimization problem by replacing the original nonlinear
problem with the recursive solution of three linear subproblems corresponding to the recon-
struction of the wavefield, squared slowness, and attenuation factor. This new formulation also
provides the necessary flexibility to separate and tailor the regularization to the squared slow-
ness and attenuation factor, while providing the necessary computational efficiency to tackle
large data sets. The analysis of viscoacoustic IR-WRI with two real-valued quantities is the
topic of a paper published in the Geophysics journal (Aghamiry et al., 2020d).

Phase retrieval in IR-WRI

When wavefields are estimated from inaccurate velocity models and sparse observations,
the reconstructed wavefields match the true wavefields in the vicinity of the receivers but may
be quite inaccurate elsewhere. These inaccuracies are mapped into the velocity models during
the parameter estimation subproblem, and it remains unclear from the theoretical viewpoint up
to what point these inaccuracies can be progressively canceled out in iterations from the sur-
face to depth. Furthermore, it is well acknowledged in image processing that the phase has a
dominant imprint in a signal relative to amplitude (Oppenheim and Lim, 1981). This suggests
that the phase inaccuracy of the wavefields that are reconstructed during the early iterations
may be the main factor that drives IR-WRI toward spurious minima. To check this conjecture, I
recast in Chapter 5 the linear parameter-estimation subproblem of IR-WRI as a phase retrieval
problem through a majorization-minimization (MM) technique to mitigate the imprint of the
phase inaccuracies in IR-WRI. Phase retrieval refers to any process which aims to reconstruct
a complex-valued signal from the amplitudes of linear measurements (Fienup, 1982; Gholami,
2014). I apply phase retrieval during the early stages of IR-WRI at low frequencies. Then, I
switch to classical IR-WRI to re-inject the phase information in the waveform inversion. After
illustrating the information carried out by amplitudes in the parameter-estimation subproblem, I
show that phase retrieval allows me to reconstruct a large contrast medium starting the inversion
from a homogeneous model, unlike the classical IR-WRI.
This study has been published in the Geophysical Journal International (Aghamiry et al.,
2020e)

Time-domain formulation of IR-WRI

WRI has been originally developed in the frequency domain (van Leeuwen and Herrmann,
2013, 2016). The main reason is that the wavefield reconstruction with the feedback term to the
observations can be easily implemented in the frequency domain by solving an overdetermined
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linear system per source and frequency with any suitable linear algebra techniques (direct or
iterative solvers). Solving such a linear system in the time domain with an implicit scheme
would be intractable due to the extra temporal dimension. To address this issue, Wang et al.
(2016, 2017b) recast the wavefield reconstruction subproblem as a source reconstruction one.
Wavefield reconstruction and source reconstruction are theoretically equivalent in virtue of the
linearity between the wavefields and the sources. However, Wang et al. (2016, 2017b) exploits
the fact that the spatial distribution and the temporal signature of the true sources are gener-
ally reasonably well known to linearize the source reconstruction around the true source. This
linearization allows them to implement the source estimation problem with an explicit time-
stepping procedure, which includes one state and one adjoint-state simulation. I will show in
the Chapter 6 that the approximation proposed by Wang et al. (2016, 2017b) leads to signif-
icant inaccuracies in the reconstructed wavefields relative to those estimated in the frequency
domain. These inaccuracies have a significant impact on the convergence speed of IR-WRI and
the accuracy of the minimizer. Then, I will propose a recipe to refine the accuracy of the re-
constructed wavefields iteratively. I will prove mathematically the convergence of my iterative
scheme and I will assess the method numerically against a realistic synthetic example.
This study has been published as an express letter in Geophysics (Aghamiry et al., 2020a).

Chapter 7 will conclude my Ph.D. thesis, where I will recap the main results and review
some perspectives of my work in terms of new methodological developments and applications.
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Chapter 2

Wavefield reconstruction inversion

Chapter overview: Full waveform inversion (FWI) is a bi-linear waveform matching proce-
dure which can provide the subsurface model with a wavelength-scale resolution. However, this
high resolution makes FWI prone to cycle skipping, which drives inversion to a local minimum
when the initial model is not accurate enough. To mitigate cycle skipping, wavefield recon-
struction inversion (WRI) extends the inversion search space with a penalty method to relax
the wave-equation constraint and fit the data. Then, the subsurface parameters are updated by
minimizing the source residuals generated by the wave-equation relaxation, either through al-
ternating optimization or variable projection. In the former case, WRI decomposes FWI into
two linear sub-problems, capitalizing on the wave-equation bilinearity.
In this chapter, I am going to review FWI and WRI from a qualitative and quantitative view-
point. I start with a quick review of different strategies to tackle constrained optimization
problems. Then I describe FWI and WRI and illustrate, with some simple examples, how
WRI extends the search space relative to FWI. WRI is sensitive to the penalty parameter
and requires a tedious dynamic control of this parameter. To overcome this difficulty, I pro-
pose the iteratively-refined WRI (IR-WRI), which replaces the penalty method that is used in
WRI by the alternating direction method of multipliers (ADMM). ADMM relies on the aug-
mented Lagrangian method, a combination of Lagrangian and penalty methods. Compared to
penalty methods, augmented Lagrangian methods refine the solution more efficiently and ac-
curately when a fixed penalty parameter is used, thanks to the iterative update of the Lagrange
multipliers. This section includes our Geophysics paper, Improving full-waveform inversion
by wavefield reconstruction with the alternating direction method of multipliers (Aghamiry
et al., 2019c). Finally, I will finish the chapter with a local convergence proof of IR-WRI.

2.1 Non-linear constrained optimization problem

Finding the best of all possible solutions for a problem is referred to optimization. More
precisely, find a solution in the feasible region which has the minimum (or maximum) value of
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the objective function. If there is not any restriction on the feasible region, it is called an uncon-
strained optimization problem. In contrast, it is called a constrained optimization problem when
there are some priors about the feasible region (Nocedal and Wright, 2006). The constrained
optimization problem that will be discussed in this thesis has the form

min
u,m

P(m,u) (2.1a)

subject to C(m,u) = 0. (2.1b)

where u ∈ CN×1 is a field, N is the number of discrete grid points, and m ∈ CN×1 is the model
parameters. The constraint C(m,u) = 0 is a partial differential equation (PDE) and P(m,u) is
the distance between observed data and modeled data to be minimized (it is called data-fitting
or fidelity term).
In FWI, we seek to find m and u when sparse measurements of u as well as a low resolution
approximation of m are available. Also, reconstructing u for a given m is called forward
problem or data modeling.

2.1.1 The method of Lagrange multipliers

In mathematics, the method of Lagrange multipliers is a method to find the local stationary
point (minimum or maximum) of a function when some equality constraints are satisfied (No-
cedal and Wright, 2006). The basic idea is to convert a constrained problem into a form such
that the derivative test of an unconstrained problem can still be applied. To find the stationary
points of eq. 2.1, it is required to compute the stationary point of the Lagrangian which reads as

L(m,u,v) = P(m,u) + vTC(m,u), (2.2)

where v ∈ CN×1 is the Lagrange multiplier.
Lagrangian is a saddle point function and its stationary point occurs at a point which minimizes
the Lagrangian w.r.t m and u and maximizes it w.r.t v as

min
u,m

max
v
L(m,u,v). (2.3)

The necessary condition for (m,u) to be a local minimizer of the problem 2.1, referred to as the
Kush-Kun-Tucker (KKT) conditions, is that (m, u,v) is a stationary point of the Lagrangian

∇L(m,u,v) = 0→


∂P(m,u)

∂u
+ ∂C(m,u)T

∂u
v = 0

∂P(m,u)
∂m

+ ∂C(m,u)T

∂m
v = 0

C(m,u) = 0

. (2.4)

This is a nonlinear system for m, u and v, which can be solved with Newton family methods
(Haber et al., 2000).
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2.1.2 Reduced approach

Because of the computational burden and storage problem, it is impossible to use the former
method for large scale problems. The most common approach to solve such problems is called
reduced approach. In reduced approach, the KKT conditions are satisfied separately, which
means that the full search space that encompasses the unknown field and the model parameters
is first projected onto the parameter space by computing exactly the incident fields in the current
model before updating this later (Haber et al., 2000; Askan et al., 2007; Epanomeritakis et al.,
2008). The objective function can be written as an unconstrained optimization problem as

min
m

P(m,u(m)), (2.5)

where u(m) is the solution of C(m,u) = 0. It is well acknowledged that the oscillating nature
of seismic signals makes the reduced approach highly nonlinear when the starting m is far from
the solution (e.g. Virieux and Operto, 2009).

2.1.3 Penalty methods

A penalty method replaces a constrained optimization problem by a series of unconstrained
problems whose solutions ideally converge to the solution of the original constrained problem
(Nocedal and Wright, 2006). The unconstrained problems are formed by adding a penalty
function to the objective function that consists of a penalty parameter multiplied by a measure
of the violation of the constraints. The measure of the constraint violation is nonzero when the
constraints are violated and is zero in the region where constraints are not violated. The penalty
equivalent of equation 2.1 reads as

min
u,m

P(m,u) + λG(C(m,u)), (2.6)

where G(•) is a measure of the constraint violation and λ is the penalty parameter. The uncon-
strained problem 2.6 is solved iteratively, while penalty parameter λ is progressively increased
to satisfy the constraint C(m,u) = 0 at the convergence point. The advantage of the penalty
method is that one does not exactly satisfy the constraint C(m,u) = 0 when we are far from
the solution, but tuning the penalty parameter in a correct way is a big issue in penalty family
methods (Nocedal and Wright, 2006).

2.1.4 Augmented Lagrangian and method of multipliers

Augmented Lagrangian method is another method to solve constrained optimization prob-
lems (Nocedal and Wright, 2006; Bertsekas, 2016). It combines Lagrangian and penalty meth-
ods (a penalty term is added to the ordinary Lagrangian term). It is close to the penalty method
since it replaces a constrained optimization problem by a series of unconstrained problems. It
solves in an alternating mode the minimization subproblem for the primal variables and the
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maximization subproblem for the dual variables (Lagrange multipliers). The augmented La-
grangian of the problem 2.1 reads

LA(m,u,v) = P(m,u) + vTC(m,u) + λG(C(m,u)), (2.7)

where the second and third terms of the right-hand side are the Lagrangian term and the penalty
term (the augmentation), respectively.
Augmented Lagrangian is a saddle point problem, like Lagrangian, which can be solved in
alternating mode with the method of multipliers as

(uk+1,mk+1) = arg min
u,m

LA(m,u,vk), (2.8)

vk+1 = vk + C(mk+1,uk+1), (2.9)

where k denotes the iteration number. Here the augmented Lagrangian is minimized jointly
with respect to the two primal variables, u and m.

2.1.5 Alternating direction method of multipliers (ADMM)

The alternating direction method of multipliers (ADMM) is an algorithm that solves the first
(primal) subproblem of method of multipliers by breaking it into smaller pieces, each of which
are then easier to handle. ADMM consists of the iterations

uk+1 = arg min
u
LA(mk,u,vk), (2.10)

mk+1 = arg min
m
LA(m,uk+1,vk), (2.11)

vk+1 = vk + C(mk+1,uk+1). (2.12)

In ADMM, u and m are updated in an alternating mode, which accounts for the term alter-
nating direction. ADMM can be viewed as a version of the method of multipliers where the
primal variables u and m are updated with a single Gauss-Seidel iteration rather than jointly.
Originally, ADMM was proposed for linear problems. However, the convergence for bi-linear
problems has been demonstrated by Xu et al. (2012b) for a specific application. Also, recently,
a nonlinear version of ADMM has been proposed by Benning et al. (2015). I will prove the
local convergence property of ADMM for FWI problem in section 2.4.

2.2 Full waveform versus wavefield reconstruction inversions

Full Waveform Inversion (FWI) is a leading-edge seismic imaging method that has gained
renewed interest in oil and gas exploration since one decade due to the emergence of super-
computers, long-offset wide-azimuth acquisition, and broadband seismic sources (Virieux and
Operto, 2009).
FWI can be formulated in the frequency domain as the following PDE constrained optimization
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problem:
min
m,u

‖Pu− d‖2
2, subject to A(m)u = b, (2.13)

where m ∈ RN×1 is the discrete subsurface model parameters, b ∈ CN×1 is the sparse
monochromatic source term, u ∈ CN×1 is the monochromatic modeled wavefield, d ∈ CM×1

is the recorded seismic data and P ∈ RM×N (which M << N ) is a linear observation operator
that samples u at the receiver positions. Also, A(m) is the discretized wave-equation oper-
ator. Here, I assume a single-source problem. However, the extension to multiple sources is
straightforward. In its simplest form, it is the Helmholtz operator given by

A(m) = ∆ + ω2diag(m), (2.14)

where ∆ denotes the Laplace operator, ω the angular frequency, and m the squares slownesses.
The nonlinear constrained optimization problem, equation 2.13, can be solved with the method
of Lagrange multipliers and Newton-type algorithm (Haber et al., 2000).

min
m,u

max
v
L(m,u,v) = min

m,u
max

v
‖Pu− d‖2

2 + vT [A(m)u− b] , (2.15)

where v ∈ CN×1 denotes the Lagrange multiplier (or, adjoint-state wavefield in the FWI termi-
nology) and T the complex-conjugate (Hermitian) transpose. A Newton approach would require
to solve the large-scale KKT system (Haber et al., 2000; Akçelik, 2002; Askan et al., 2007), and
also to store previous values of (u, v, m) in memory, which makes it intractable.
Instead, a reduced approach strictly enforces the PDE constraint (u = A(m)−1b) at each itera-
tion, hence leading to the monovariate misfit function (Pratt et al., 1998; Plessix, 2006)

min
m

Jr(m) = min
m
‖PA−1(m)b− d‖2

2. (2.16)

For a long time, the reduced approach has been the most common approach to solve the FWI
optimization problem. The gradient of the reduced objective function at iteration k + 1 is
the zero-lag correlation between the so-called virtual scattering source, namely the incident
wavefield, uk+1 = A−1(mk)b, weighted by the radiation pattern matrix ∂A(mk)/∂m (Pratt
et al., 1998), and the adjoint field vk+1

∇mJr = <
(
ω2diag(uk+1)Tvk+1

)
, (2.17)

where the radiation pattern of the squared slowness simply samples uk+1 at the position of the
model parameter with a weight ω2 in the case of the Helmholtz equation 2.14. Also, <(•) is the
real part of •. The Lagrange multiplier vk+1 satisfies the so-called adjoint-state equation

AT (mk)vk+1 = PT
[
Puk+1 − d

]
, (2.18)

whose right-hand side is the prolongation of the data residuals in the full computational do-
main. The adjoint of A in equation 2.18 means that the residuals in the right-hand side are
back-propagated in time (reverse time propagation) in the subsurface model. The zero-lag cor-
relation between the virtual scattering source and the adjoint wavefield in the gradient of Jr
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extracts, from all of the residuals, the piece of information that should be mapped at a given
position of the subsurface.
Although this reduced approach requires to solve exactly the state and adjoint-state equations
at each nonlinear iteration, it is more computationally tractable than the full-space approach.
Moreover, after elimination of the state and adjoint-state variables, one needs to update only
one class of unknowns, namely m, at each iteration. Due to the highly-oscillating nature of
the inverse PDE operator A−1 (the Green’s function), the reduced minimization problem, equa-
tion 2.16, is prone to convergence to inaccurate minimizer when the initial m is not accurate
enough (Symes, 2008; Virieux and Operto, 2009).
To mitigate this nonlinearity issue, van Leeuwen and Herrmann (2013) recast the original con-
strained optimization problem, equation 2.13, as a multi-variate unconstrained quadratic penalty
problem for u and m given by

min
m,u

Jp(m,u) = min
m,u
‖Pu− d‖2

2 + λ‖A(m)u− b‖2
2, (2.19)

where the scalar λ > 0 is the so-called penalty parameter. The hard constraint in the orig-
inal constrained problem is replaced by a soft constraint as a quadratic penalty term, which
represents the square of the constraint violation. FWI based upon penalty method was called
Wavefield Reconstruction Inversion (WRI) by van Leeuwen and Herrmann (2013). In the next
section, I will describe in detail how WRI method works and what are the pros and cons of this
technology. Hereafter, I first illustrate the extending search space property of WRI compared to
the classical reduced approach, and I illustrate in a heuristic way how the method works with
some simple examples.
WRI has a lot of similarity with wavefield inversion or Error in Constitutive Equations (ECE)
methods (Banerjee et al., 2013). The wavefield inversion relies on the fact that, with known
wavefield, the model parameters can be extracted straightforwardly. Accordingly, the final goal
of wavefield inversion is to reconstruct wavefields as accurately as possible and estimate the
model parameters from these wavefields. In WRI, the inversion is broken down into two sub-
problems for wavefields and model parameters. In the first one, we try to find the wavefields
that are as close as possible to the true wavefields for each source by solving the wave equa-
tion and the observation equation in a least-squares sense. This step can also be interpreted as
a wavefield extrapolation when we try to reconstruct the wavefields at each point of the sub-
surface model from sparse measurements of the wavefields at receiver positions. Also, this
wavefield reconstruction step can be seen as a data assimilation problem when it tries to com-
bine physics (wave-equation) with observations (Auroux and Blum, 2008). At the next step, it
reconstructs the model parameters in a least-squares sense from the reconstructed wavefields.
More precisely, the wave-equation relaxation generates source residuals, which are minimized
with respect to the subsurface parameters during the second step of WRI to push back the re-
constructed wavefields toward the wave equation constraint.
The gradient associated with this minimization problem is formed by the zero-lag correla-
tion between the scattering virtual source associated with the reconstructed wavefield and the
spatially-distributed source residuals, sometimes called extended sources (Wang et al., 2017a;
Huang et al., 2018b). In fact, the source residuals replace the back-propagated adjoint wave-
fields of the reduced approach (eq. 2.17).
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The alternating solving in WRI find its roots in the bilinearity of the wave-equation. From the
definition of A in (2.14), we get that

A(m)u = ∆u + Lm, (2.20)

where

L =
∂A(m)

∂m
u = ω2diag(u). (2.21)

Bilinearity of the wave-equation tells us that, if we record the wavefield generated by a monochro-
matic source everywhere in the subsurface, then the subsurface model can be reconstructed
exactly in a single iteration by solving the linear system

Lm = y, (2.22)

where y = b−∆u. The bi-linearity of the wave equation on model parameters and wavefield
is illustrated in Figure 2.1. A part of BP 2004 is shown in Figure 2.1a and the monochromatic
wavefield computed in this model for one source located at the surface in the middle of the
model is shown in Figure 2.1b. In Figure 2.1c, the subsurface model reconstructed from this
monochromatic wavefield by a direct inversion matches perfectly the true velocity model shown
in Figure 2.1a.

Figure 2.1 – Bilinearity of the wave equation. (a) The left target of the 2004 BP salt model. (b)
Monochromatic 5 Hz wavefield for a source in the middle of the model. (c) The reconstructed
model using the monochromatic wavefield in (b).
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2.2.1 Illustration with a homogeneous, gradient and two-layer velocity
models

I now illustrate the mean features of WRI with some simple model examples.

Homogeneous velocity model

First, I now illustrate the mean features of WRI with a simple homogeneous model exam-
ple. A single-ended long spread surface acquisition is used for a homogeneous velocity model
of dimensions 8 km× 3 km (distance × depth). A single source located at x = 200m is used,
and receivers are deployed all along the surface with a 50 m spacing. The velocity model is
homogeneous and is parametrized by a single wavespeed v0, v(x, z) = v0. The data are gener-
ated with v0 = 2000m/s. The cost function of the reduced approach as well as that of the WRI
method for several values of λ are evaluated for v0 ∈ [1750, 2250], while the discrimination
step is 10 m/s (Figure 2.2). The figure shows that the WRI cost function for a sufficiently-
small value of λ is convex, unlike that of the reduced approach.
To further emphasize the role of the WRI method in reducing the cycle skipping and improve

Figure 2.2 – Cost function of the reduced approach and WRI for several values of λ. For WRI,
the cost function depends on the velocity (v0) and λ, while it is only a function of v0 for the
reduced approach. The background velocity model is homogeneous (see text for details).

the convexity of the cost function, I show the monochromatic 5 Hz wavefield computed with
the reduced approach and WRI. The true wavefield is shown in Figure 2.3a, while the wavefield
computed with the reduced approach for a velocity of v0 = 2200m/s is shown in Figure 2.3b.
The 200 m/s mismatch between the true and background wavespeeds is sufficient to generate
cycle skipping at large offsets, as shown by the comparison between the frequency domain data
computed in the true and background models (Figure 2.3d) and by the time-domain residuals
(Figure 2.3e). The wavefield reconstructed by WRI with a small value of the penalty param-
eter, such that data fitting is fostered at the expense of the wave-equation constraint, is shown
in Figure 2.3c. Comparing the WRI wavefield and the wavefield computed in the true model
clearly shows how the wave-equation relaxation pushes the reconstructed wavefield toward the
true one. Indeed, at the first WRI iteration, the wavefield reconstruction is accurate only in the
areas which are illuminated by arrivals that have a significant signature in the data, which is
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the shallow part in this test (direct wave propagation). If the true model would have contained
deep reflectors, or the acquisition would have involved longer offsets or lower frequency, the
reconstructed wavefield accuracy would have extended downward according to the extended
spatial support of the propagated wavefield. The comparison between the frequency domain
data computed in the true and initial models with WRI (Figure 2.3d) and by the time-domain
residuals (Figure 2.3f), clearly shows the ability of the method to overcome cycle skipping.
The data fit in WRI wavefield has been obtained at the expense of the accuracy with which the

Figure 2.3 – (a) Monochromatic wavefield computed in the true model v0 = 2000 m/s for
the 5 Hz frequency. (b) Reduced approach wavefield (v0 = 2200 m/s). (c) WRI wavefield
(v0 = 2200 m/s). (d) Direct comparison between the real part of the true (black), reduced-
approach (green) and WRI (red) wavefields at receiver positions. (e-f) Time-domain residual
seismograms between true and reduced-approach (e) and WRI (f).

reconstructed wavefields satisfy the wave equation. This wave equation relaxation generates
source residuals or extended sources (Huang et al., 2018b) which can be minimized in a least-
squares sense to update the subsurface parameters and push back the reconstructed wavefields
toward the wave equation. This alternating direction two-step cycle can be iterated until con-
vergence. I used a line of sources, which are deployed all along the surface with 200m spacing,
for inversion and I inverted the 5 Hz data up to 100 iterations. I used ADMM based WRI and
apply a smoothing filter with edge preserving property on the updated model at each iteration.
The ADMM based WRI will be discussed in detail in the next section. Figures 2.4a-g show
iterations 1, 2, 4, 10, 20, 50 and 100 of this process, respectively, where the updated model are
in the left column and the source residuals are shown in the right column of the figure. At the
first iteration (Figure 2.4a) the velocity updates are quite shallow, hence generating some artifi-
cial boundaries between the shallow and the deeper parts. These boundaries feed the wavefield
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reconstruction with a new set of data residuals, which contribute to progressively downward
continue the model updates until the convergence point is reached following some kind of layer
stripping approach.

Gradient velocity model

In the next test similar to that designed by Mulder and Plessix (2008), I consider a more
complex vertical velocity gradient model given by v(x, z) = v0 +αz, where v0 is the velocity at
the surface and α is the vertical velocity gradient. The size of the velocity model is 8 km×3 km.
The acquisition consists of a single source located at x = 200m, and a line of receivers spaced
50 m apart all along the surface. The data are generated with a velocity v0 = 2000 m/s and a
gradient α = 0.65 1/s (Figure 2.5a). The cost function of the reduced approach as well as that
of WRI with λ = 1e−2 are evaluated on a grid of 41× 41 testing points when v0 ∈ [1750, 2250]
and α ∈ [0.4, 0.9] (the discrimination step is 12.5 m/s for v0 and 0.0125 1/s for α). For each
point of this 2D grid, the cost functions of the reduced approach and WRI are shown in Figures
2.6a-b, respectively.
To facilitate the comparison between the cost functions of the reduced approach and WRI meth-

ods and emphasize the role of λ, I select two profiles of Figure 2.6 along the axis v0 = 2000m/s
and α = 0.65 1/s (the true values) and calculate the cost function for different values of λ. The
results are shown in Figure 2.7a for fixed α and Figure 2.7b for fixed v0. Again, Figures 2.6 and
2.7 highlight the convexity of the WRI cost function when a sufficient relaxation of the wave
equation is applied.
Like homogeneous test, I show the mono-chromatic 5 Hz wavefield computed with the reduced

approach and WRI. I use a homogeneous initial velocity with v0 = 3000m/s and α = 0 (Figure
2.5b). The true, reduced approach and WRI wavefields are shown in Figures 2.8a-c, respec-
tively. Also, a comparison between the frequency domain data at receiver positions computed
in the true and background models are shown in Figure 2.8d while the time-domain residuals of
these wavefields are shown in Figures 2.8e-f, for reduced approach and WRI, respectively. The
mismatch between the true and background wavespeeds is sufficient to generate cycle skipping.
Comparing the WRI wavefield and the wavefield computed in the true model clearly shows
how the wave-equation relaxation pushes the reconstructed wavefield toward the true one. The
comparison between the frequency domain data computed in the true and initial models with
WRI (Figure 2.8d) and by the time-domain residuals (Figure 2.8f), clearly shows the ability of
the method to overcome cycle skipping.

I used a line of sources, which are deployed all along the surface with 200 m spacing, for
inversion and I inverted the 5 Hz data up to 100 iterations with ADMM based WRI when a
smoothing filter on the updated model at each iteration is used. Figures 2.9a-g shows itera-
tions 1, 2, 4, 10, 20, 50 and 100 of this process, respectively, where the updated model are in
the left column and the source residuals are shown in the right column of the figure. Like the
homogeneous test, the velocity updates are quite shallow at early iterations and they generate
some artificial boundaries between the shallow and the deeper parts. These boundaries feed
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Figure 2.4 – Homogeneous test. The left column are updated models and the right column are
source residuals at iteration (a) 1, (b) 2, (c) 4, (d) 10, (e) 20, (f) 50 and (f) 100. The initial and
true velocity model are 2200m/s and 2000m/s, respectively.
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Figure 2.5 – Velocity gradient test. (a) True model. (b) Initial model.
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Figure 2.6 – Velocity gradient test. Cost function for reduced approach (a) and WRI(b). Each
cost function depends on the velocity at the surface (v0) and the velocity gradient (α).
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Figure 2.7 – Cost function of gradient velocity model for reduced approach and WRI. (a) When
α is kept fixed equal to the true α. (b) When v0 is kept fixed equal to the true v0. Both of them
are shown for WRI with different values of λ as well as reduced approach.

the wavefield reconstruction with a new set of data residuals, which contribute to progressively
downward continue the model updates until the convergence point is reached.
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Figure 2.8 – Velocity gradient test. (a) Monochromatic wavefield computed in the true gradient
model v0 = 2000 m/s and α = 0.651/s (Figure 2.5a) for the 5 Hz frequency. (b) Reduced ap-
proach wavefield (v0 = 3000 m/s and α = 0). (c) WRI wavefield (v0 = 3000 m/s and α = 0).
(d) Direct comparison between the real part of the true (black), reduced-approach (green) and
WRI (red) wavefields at receiver positions. (e-f) Time-domain residual seismograms between
true and reduced-approach (e) and WRI (f).

Two-layer velocity model

I continue with a two-layer model test. A single-ended spread surface acquisition is used for
a two-layers velocity model which has 8 km distance and 3 km depth. A line of sources which
are deployed at the surface with source interval 200m will be recorded by some receivers which
are deployed on the top of the model with 50m spacing. The velocity model contains two layers
with thickness 1 and 2 km with constant velocity 1.9 and 2 km/s, respectively (Figure 2.10a). I
show the mono-chromatic 5 Hz wavefield computed with the reduced approach and WRI when
the homogeneous initial velocity v0 = 2200m/s (Figure 2.10b) is used as the initial model.
The true, reduced approach and WRI wavefields are shown in Figures 2.11a-c, respectively.
Also, a comparison between the frequency domain data at receiver positions computed in the
true and background models are shown in Figure 2.11d while the time-domain residuals of
these wavefields are shown in Figure 2.11e-f, for reduced approach and WRI, respectively. The
mismatch between the true and background wavespeeds is sufficient to generate cycle skipping.
Comparing the WRI wavefield and the wavefield computed in the true model (Figures 2.11a-
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Figure 2.9 – Velocity gradient test. The left column are updated models and the right column
are source residuals at iteration (a) 1, (b) 2, (c) 3, (d) 10, (e) 20, (f) 50 and (f) 100. The true and
initial velocity model are shown in Figure 2.5a-b, respectively.
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c) clearly shows how the wavefield accuracy would have extended downward because of the
reflector in the true model. I invert the 5 Hz data up to 100 iterations with ADMM based

Figure 2.10 – Two-layer test. (a) True model. (b) Initial model.

Figure 2.11 – Two-layer test. (a) Monochromatic wavefield computed in the true model, Figure
2.10a, for the 5 Hz frequency. (b) Reduced approach wavefield (v0 = 2200 m/s). (c) WRI
wavefield (v0 = 2200 m/s). (d) Direct comparison between the real part of the true (black),
reduced-approach (green) and WRI (red) wavefields at receiver positions. (e-f) Time-domain
residual seismograms between true and reduced-approach (e) and WRI (f).

WRI when a smoothing filter with edge preserving property on the updated model at each
iteration is applied. Figures 2.12a-g shows iterations 1, 2, 4, 10, 20, 50 and 100 of this process,
respectively, where the updated model are in the left column and the source residuals are shown
in the right column of the figure. The velocity updates are relatively shallow at early iterations.
However, we already guess the top of the reflector at 1km depth after the first velocity update
(Figure 2.12a). This highlights how the footprint in the surface measurements of the wavefields
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reflected from the top of the second layer and refracted along the reflector helped to improve the
wavefield reconstruction at greater depths compared to the two former tests. The next iterations
contribute to refine the velocity in the upper layer (Figure 2.12f), before refining the velocity in
the bottom layer (Figure 2.12g).

Two-layer velocity model: on the benefit of long-offset acquisitions

I continue with an example which illustrates when IR-WRI can fail due to the velocity-depth
ambiguity and how this failure can be avoided by increasing the offsets. I keep the configuration
of the two-layer test and only increase the depth of the reflector to 2.5 km (Figure 2.13a). By
doing so the recorded wavefield only contains the direct wave which propagates on the top part
of the first layer and short-spread reflection from the reflector. Like previous test, the 5 Hz
data are inverted up to 100 iterations with ADMM based WRI when a smoothing filter with
edge preserving property is applied on the updated model at each iteration and a homogenous
initial model with a velocity of 2.2km/s is used as initial model (Figure 2.13b). The velocity
models obtained at iterations 1, 2, 4, 10, 20, 50 and 100 are shown in the left column of Figures
2.14(a-f), while the related source residuals are shown in the right column. It can be seen that
the inversion remains stuck in a local minimum because the maximum source-receiver offset is
not long enough to allow for the recording of the post-critical reflections and refracted waves
from the reflector. Moreover, the half width of the first Fresnel zone associated with the direct
wave propagation in the upper layer is not enough ( 850m) for the 8 km maximum offset to
illuminate the deep part of the upper layer. This incomplete illumination of the subsurface leads
to an ambiguity between the velocity in the upper layer and the depth of the reflector which
cannot be resolved by WRI.

To validate this claim, I repeat this test but when the maximum offset is extended to 16 km
(Figure 2.15a). The estimated models as well as source residuals for same iterations are shown
in Figures 2.16(a-f). The final velocity model shows that IR-WRI was able to position the re-
flector and estimate the top and bottom wavespeeds accurately.
This series of two tests highlight how WRI takes advantage of long-offset acquisition not only
to perform broadband imaging but also to converge more rapidly as long offsets will increase
the maximum penetration depth of waves and hence, the sensitivity of the data recorded at the
surface to the deep parts of the subsurface. This improved illumination contributes to perform
more accurate wavefield reconstruction, which is translated to more accurate velocity estima-
tion by source residual minimization. Indeed, long offsets exacerbate cycle skipping, which is
however mitigated by forcing the data fit through the wave equation relaxation.
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Figure 2.12 – Two-layer test. The left column are updated models and the right column are
source residuals at iteration (a) 1, (b) 2, (c) 3, (d) 10, (e) 20, (f) 50 and (f) 100. The initial and
true velocity model are shown in Figures 2.10a-b, respectively.
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Figure 2.13 – Two-layer test with a deep reflector. (a) True model. (b) Initial model.

Two-layer velocity model: contribution of reflections

I show another two-layer test which is similar to the previous one except that the velocity
of the homogeneous starting model is equal to the velocity of the top layer of the true model
(v0 = 1800m/s) (Figure 2.17b). With this experimental setup, I want to illustrate how WRI
can reconstruct the subsurface from reflected and refracted waves only via a migration-like
(positioning of the reflector) and a tomography-like reconstruction (estimation of the bottom
velocity). The two-layer velocity model of dimension 8 km × 3 km contains two layers of
thickness 1.5 km with constant velocities of 1.8 and 2 km/s, respectively (Figure 2.17a). The
acquisition setup for this test is the same as the previous ones. The monochromatic 5 Hz wave-
fields computed (exactly) in the true model and the homogeneous initial model are shown in
Figures 2.18a-b, while the wavefield computed in the initial model with a relaxation of the wave
equation is shown in Figure 2.18c. Also, a comparison between the frequency domain data at
receiver positions computed in the true and initial models are shown in Figure 2.18d while the
time-domain residuals of these wavefields are shown in Figure 2.18e-f, when wave equation
relaxation is used or not. The time-domain residuals computed without relaxation clearly show
significant residuals of the reflection and refraction from the reflector, while the wavefield com-
puted with relaxation match these events thanks to the feedback term to the data (the residual
is near zero in this case). Since I use here a maximum offset, which is long enough, the 5 Hz
inversion with ADMM based WRI (with a smoothing filter with edge-preserving property on
the updated model) manages to reconstruct the subsurface model as shown in Figure 2.19.

2.3 ADMM based wavefield reconstruction inversion

WRI has shown good convexity properties when small values of penalty parameter are used.
However, one well known issue of penalty method resides in the tuning of penalty parameter
which requires tedious continuation strategies proceeding from small values during early it-
erations to relax the constraint and fit the data from inaccurate model to large value near the
convergence point to guarantee that the constraint is satisfied. We overcome this convergence
issue by replacing the penalty method by the augmented Lagrangian method and ADMM to
solve the constrained optimization problem 2.13. Compared to penalty methods, augmented

28



Wavefield reconstruction inversion

Figure 2.14 – Two-layer test with a deep reflector. The left column are updated models and the
right column are source residuals at iteration (a) 1, (b) 2, (c) 3, (d) 10, (e) 20, (f) 50 and (f) 100.
The initial and true velocity model are shown in Figures 2.10a-b, respectively.
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Figure 2.15 – Extended two-layer test with a deep reflector. (a) True model. (b) Initial model.

Lagrangian methods refine the solution more efficiently and accurately when a fixed penalty
parameter is used. The following section is a paper published in Geophysics (Aghamiry et al.,
2019c), which reviews in details the theory, the algorithm and the numerical assessment (ac-
curacy of the solution, convergence history) with synthetic examples of ADMM-based WRI.

Improving full waveform inversion by wavefield reconstruction with the
alternating direction method of multipliers

Hossein S. Aghamiry, Ali Gholami and Stéphane Operto
Geophysics, 2019, 84(1), pages R139-R162

DOI: 10.1190/geo2018-0093.1

2.3.1 Summary

Full waveform inversion (FWI) is an iterative nonlinear waveform matching procedure sub-
ject to wave-equation constraint. FWI is highly nonlinear when the wave-equation constraint is
enforced at each iteration. To mitigate nonlinearity, wavefield-reconstruction inversion (WRI)
expands the search space by relaxing the wave-equation constraint with a penalty method. The
pitfall of this approach resides in the tuning of the penalty parameter because increasing val-
ues should be used to foster data fitting during early iterations while progressively enforcing the
wave-equation constraint during late iterations. However, large values of penalty parameter lead
to ill-conditioned problems. Here, this tuning issue is solved by replacing the penalty method
by an augmented Lagrangian method equipped with operator splitting (IR-WRI as iteratively-
refined WRI). It is shown that IR-WRI is similar to a penalty method in which data and sources
are updated at each iteration by the running sum of the data and source residuals of previous
iterations. Moreover, the alternating direction strategy exploits the bilinearity of the wave equa-
tion constraint to linearize the subsurface model estimation around the reconstructed wavefield.
Accordingly, the original nonlinear FWI is decomposed into a sequence of two linear sub-
problems, the optimization variable of one subproblem being passed as a passive variable for
the next subproblem. The convergence of WRI and IR-WRI are first compared with a simple
transmission experiment, which lies in the linear regime of FWI. Under the same conditions,
IR-WRI converges to a more accurate minimizer with a smaller number of iterations than WRI.
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Figure 2.16 – The extended two-layer test with a deep reflector. The left column are updated
models and the right column are source residuals at iteration (a) 1, (b) 2, (c) 3, (d) 10, (e) 20, (f)
50 and (f) 100. The initial and true velocity model are shown in Figures 2.10a-b, respectively.
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Figure 2.17 – Two-layer test. (a) True model. (b) Initial model.

Figure 2.18 – Two-layer test. (a) Monochromatic wavefield computed in the true model, Figure
2.17a, for the 5 Hz frequency. (b) Reduced approach wavefield (v0 = 1800 m/s). (c) WRI
wavefield (v0 = 1800 m/s). (d) Direct comparison between the real part of the true (black),
reduced-approach (green) and WRI (red) wavefields at receiver positions. (e-f) Time-domain
residual seismograms between true and reduced-approach (e) and WRI (f).

More realistic case studies performed with the Marmousi II and the BP salt models show the
resilience of IR-WRI to cycle skipping and noise, as well as its ability to reconstruct with high
fidelity large-contrast salt bodies and sub-salt structures starting the inversion from crude initial
models and a 3-Hz starting frequency.

2.3.2 Introduction

Full Waveform Inversion (FWI) is a leading-edge seismic imaging method that has gained
renewed interest in oil and gas exploration since one decade due to the emergence of super-
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Figure 2.19 – Two-layer test. The left column are updated models and the right column are
source residuals at iteration (a) 1, (b) 2, (c) 3, (d) 10, (e) 20, (f) 50 and (f) 100. The initial and
true velocity model are shown in Figures 2.17a-b, respectively.
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computers, long-offset wide-azimuth acquisition, and broadband seismic sources (Virieux and
Operto, 2009; Virieux et al., 2017). FWI seeks to estimate subsurface parameters with a res-
olution close to the seismic wavelength by fitting seismic records with modeled seismograms
that are computed with two-way modeling engines to account for the full complexity of the
wavefields (Tarantola, 1984; Pratt et al., 1998).

From the numerical optimization viewpoint, FWI can be defined as a partial differential
equation (PDE)-constrained nonlinear optimization problem, where the equality constraint is
the wave equation. A popular method to solve such nonlinear constrained optimization prob-
lem is the method of Lagrange multiplier, where the constraints are implemented through
a Lagrangian function (e.g. Haber et al., 2000). A local minimizer satisfies the so-called
KKT (Karush-Kuhn-Tucker) first-order optimality conditions at the stationary point of the La-
grangian. In the frame of local optimization methods, the so-called full-space approach sat-
isfies the nonlinear KKT conditions with an iterative Newton method which jointly updates
three classes of variables (the state variables, the adjoint-state variables and the parameters).
However, the dimension of the KKT system makes this full space approach computationally
intractable for FWI application. Instead, FWI is classically solved with a reduced approach,
namely a variational projection approach where the full-space optimization problem is recast
as an unconstrained problem after successive elimination of the state and adjoint-state variables
from the KKT system (Haber et al., 2000; Akçelik, 2002; Askan et al., 2007; Epanomeritakis
et al., 2008). Although this reduced-approach strictly enforces the constraints (because the wave
equation is solved exactly with the current guess of the subsurface parameters) and is compu-
tationally tractable, it is highly nonlinear and ill-posed due to the oscillating nature of seismic
signals (e.g. Symes, 2008). One of the main source of nonlinearity is cycle skipping, which
happens as soon as the current subsurface model is not accurate enough to predict recorded trav-
eltimes with an error lower than half the dominant period (e.g. Virieux and Operto, 2009, their
Figure 7). In contrast, full-space approaches are more resilient to cycle skipping because the
joint updating of wavefields, adjoint wavefields and subsurface model makes them more versa-
tile to fit the data with inaccurate subsurface models. The cycle skipping criterion is difficult
to satisfy when the number of propagated wavelengths increases as might be expected with the
development of long-offset wide-azimuth acquisitions (Pratt, 2008; Virieux and Operto, 2009).
This prompts the oil industry to develop broadband sources with a richer low frequency content
to balance increasing propagation distances and mitigate cycle skipping accordingly (Plessix
et al., 2012; Baeten et al., 2013). In parallel with this, many heuristic data-driven approaches
based upon frequency, traveltime and offset continuations have been designed to drive the op-
timization problem toward multiscale imaging from the long wavelengths to the shorter ones
(e.g. Górszczyk et al., 2017). To reduce human intervention, more automatic approaches rely
on more convex distances between recorded and modeled data such as those based upon in-
stantaneous phase and envelope (Shin and Min, 2006; Bozdağ et al., 2011; Luo and Wu, 2015)
or correlation (van Leeuwen and Mulder, 2010). However, these approaches should be rather
viewed as tools to build initial models for FWI rather than FWI methods per se because they
often achieve an improved convexity at the expense of spatial resolution.

More ambitious approaches extend the linear regime of FWI by enlarging the search space.
Extended-domain approaches have been intensively developed for velocity macromodel build-
ing in the framework of migration-based velocity analysis (Symes (2008) for a review). These
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approaches extends the model space with additional degree of freedom as subsurface offset
or time lag, which makes them quite computationally intensive. Then, the inverse problem
seeks a velocity model that produces a physical reflectivity through an annihilator applied to the
extended migration operator. More recently, van Leeuwen and Herrmann (2013) extended the
search space in frequency-domain FWI by replacing the wave-equation constraint by a quadratic
penalty term. This penalty method, called wavefield-reconstruction inversion (WRI), relaxes
the requirement to satisfy exactly the wave equation at each iteration for the benefit of an im-
proved data fitting. This is achieved by reconstructing the wavefield that best jointly fits in the
least-squares sense the observations and satisfy the wave equation. To make WRI computation-
ally tractable, van Leeuwen and Herrmann (2013) perform the wavefield reconstruction and the
subsurface parameter estimation in an alternating way: the wavefield is first reconstructed us-
ing the available subsurface model as fixed background model, before updating the subsurface
parameters by minimizing the source residuals generated by the wave-equation relaxation using
the previously-reconstructed wavefield as a fixed background wavefield, this cycle being iter-
ated until convergence. This alternating-direction strategy linearizes the parameter-estimation
subproblem around the reconstructed wavefield. Accordingly, parameter updating can be per-
formed with Gauss-Newton iterations, the Hessian being diagonal when the forward problem
equation is the Helmholtz equation (van Leeuwen and Herrmann, 2013, their equation 8).
Later, van Leeuwen and Herrmann (2016) reformulated WRI as a reduced penalty method im-
plemented with a variable projection approach: the closed-form expression of the extended-
domain reconstructed wavefield is injected as a function of the subsurface parameters in the
penalty function instead of using this wavefield as a passive variable (i.e., independent to the
subsurface parameters). Although this variable elimination makes the parameter-estimation
subproblem non linear, van Leeuwen and Herrmann (2016) assess their method with a Gauss-
Newton method (by opposition to the full Newton counterpart) to mitigate the computational
burden. Moreover, using a sparse approximation of the Gauss-Newton Hessian makes the de-
scent direction of the reduced approach identical to that of the alternating-direction WRI of van
Leeuwen and Herrmann (2013). In the following, for sake of concise notations, we will refer
WRI to as the alternating-direction penalty method of van Leeuwen and Herrmann (2013), be-
cause it is more closely related to the approach developed in this study. Compared to full-space
approaches, WRI is less computationally expensive as each source is processed independently
and the parameter estimation does not require solving an adjoint-state equation because the La-
grange multiplier has been eliminated from the optimization problem at the benefit of a penalty
parameter.
One potential difficulty with WRI resides in the tuning of the penalty parameter λ. Ideally,
increasing values should be used during iterations to progressively enforce the wave-equation
constraint and, hence satisfy the KKT optimality conditions of the original constrained problem
with acceptable precision at the minimizer. A significant issue with this continuation approach
is that the Hessian is ill conditioned for large λ. However, van Leeuwen and Herrmann (2016)
suggested that a fixed λ equal to a fraction of the largest eigenvalue of the normal operator asso-
ciated with the augmented wave-equation system may allow for convergence toward solutions
with acceptable error bounds.
Several other extended-search methods have been proposed. Luo and Sava (2011), Warner
and Guasch (2016), Zhu and Fomel (2016) estimate the filter that allows for the matching be-
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tween the recorded and modeled data before minimizing the deviation of this matching filter
from a delta function. Closely related to this approach, the source-receiver extension method
first matches the data through a trace-per-trace source signature estimation before updating the
subsurface model by minimizing the deviation of each non-physical source signature from a ref-
erence one through an annihilator (Huang et al., 2017). In line with the approach promoted by
Symes (2008), Biondi and Almomin (2014) extend the velocity model along the time-lag axis
to account for large traveltime residuals and augment the misfit function with a penalty term
which penalizes large time lags through an annihilator. With the same objective of managing
large time shifts, Engquist and Froese (2014), Métivier et al. (2016a), Métivier et al. (2016b),
Yang et al. (2018) compute the optimal transport between the observation and the modeled data
before updating the subsurface parameters by minimizing the optimal-transport distance. Ma
and Hale (2013) build traveltime residual maps between recorded and modeled shot gathers by
dynamic warping and minimize in a second step these traveltime residuals.

In this framework, this study focuses on an easy-to-implement improvement of WRI, which
strongly reduces the sensitivity of the method to the penalty parameter, resulting in a faster con-
vergence and more accurate subsurface and wavefield reconstruction. To achieve this goal, we
replace the penalty method by an augmented Lagrangian method which is implemented with
a classical primal descent - dual ascent approach. In constrained optimization, the augmented
Lagrangian method can be viewed as a combination of a classical Lagrangian method and a
penalty method, where the Lagrangian multiplier steers the inversion toward the constraint,
while the penalization term regularizes the inversion (Nocedal and Wright, 2006, Chapter 17).
As in WRI, we perform wavefield reconstruction and parameter estimation in an alternating
mode to make the computational problem tractable, while the Lagrange multipliers are updated
with a classical dual ascent approach. This operator splitting draw some connection between
our approach and the popular alternating direction method of multiplier (ADMM) (Boyd and
Vandenberghe, 2004) with the difference that the wavefield reconstruction and the parameter
estimation subproblems are not separable. This non-separability is managed by solving the two
subproblems in sequence rather than in parallel, the solution of one subproblem being passed
as a passive variable to the next problem. Taking advantage of the bilinearity of the Helmholtz
equation, this sequential splitting strategy linearizes the parameter estimation problem around
the reconstructed wavefield, which means that the original non linear FWI has been recast as a
sequence of two linear subproblems.
A scaled form of the augmented Lagrangian function clearly highlights the main difference
between WRI and our method: In our method, the right-hand sides in the two objectives of
the penalty function (namely, the data and the seismic sources) are updated at each iteration
with the running sum of the data and source residuals of previous iterations, namely, a scaled
form of the Lagrange multipliers. This right-hand side updating decreases more efficiently the
data and source residuals in iterations and performs a self-adaptive weighting of the competing
data-fitting and wave-equation objectives of the penalty function, leading to more accurate min-
imizers and faster convergence when a fixed penalty parameter is used. Accordingly, we refer
our method to as IR-WRI (Iteratively-Refined WRI).
We assess IR-WRI against three synthetic examples. First, a toy example highlights how the
convergence history of IR-WRI relative to WRI is improved by data and source residual up-
dating. Then, we apply IR-WRI to two challenging synthetic models (the Marmousi II and the
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2004 BP salt models) starting from crude initial models and realistic frequency (3 Hz). As WRI,
IR-WRI shows a good resilience to cycle skipping. However, IR-WRI converges to subsurface
models of much improved resolution and, in addition, it is more resilient to noise.

This paper is mainly organized in a method, numerical example and discussion sections.
In the method section, we first briefly review the principles of full-space and reduced-space
FWI before introducing WRI. Then, we introduce the basic principles of IR-WRI, highlight the
main differences between WRI and IR-WRI and review the IR-WRI algorithm. We review in
more details the mathematical concepts behind IR-WRI in Appendix A (section 2.3.7): we first
introduce a scaled form of the augmented Lagrangian method to recast IR-WRI as a penalty
method with right-hand side updating before describing the operator splitting procedure for al-
ternated wavefield reconstruction and parameter estimation with dual updating of the Lagrange
multipliers. In the second part of the paper, we present three numerical examples where we
compare the results of reduced-space FWI, WRI and IR-WRI. We first illustrate the impact of
the right-hand side updating (data and source) on the convergence history of IR-WRI with a toy
example. Then, we illustrate the ability of IR-WRI to image complex and large-contrast media
with the Marmousi II and BP salt models. In the final discussion section, the results of the
numerical examples are interpreted in light of the IR-WRI methodological ingredients, some
analogies with other optimization method such as the Bregman method are discussed and some
perspective works are introduced.

2.3.3 Method

From FWI to WRI: a short review

The FWI can be formulated in the frequency domain as the following nonlinear multivariate
PDE-constrained optimization problem (e.g. van Leeuwen and Herrmann, 2013, 2016):

min
m,u

‖Pu− d‖2
2, subject to A(m)u = b, (2.23)

where ‖ · ‖2
2 denotes the Euclidean norm, m ∈ RN×1 the discrete subsurface model parameters,

b ∈ CN×1 the source term, u ∈ CN×1 the modeled wavefield, d ∈ CM×1 the recorded seismic
data and P ∈ RM×N a linear observation operator that samples u at the receiver positions. We
consider one frequency and one source in equation 2.23 for sake of notation compactness. Ex-
tension to multiple frequencies and sources is simply implemented by summation over sources
and frequencies in the objective function and by adding multiple right-hand sides in the con-
straint, equation 2.23. The matrix A(m) ∈ CN×N , whose coefficients depend on m, represents
the discretized PDE (Pratt et al., 1998; Plessix, 2007). In this study, we limit ourselves to the
Helmholtz equation assuming a constant density equal to 1,

A(m) = ∆ + ω2C(m)diag(m)B, (2.24)

where ω is the angular frequency, ∆ a discretized Laplace operator and the subsurface pa-
rameters m are parametrized by the squared slowness. The operator C enclose boundary
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conditions, which can be a function of m (e.g., Robin paraxial conditions (Engquist and Ma-
jda, 1977)) or independent from m (e.g., sponge-like absorbing boundary conditions such as
perfectly-matched layers (Bérenger, 1994)). Also, the linear operator B spreads the "mass"
term ω2C(m)diag(m) over all the coefficients of the stencil to improve its accuracy follow-
ing an anti-lumped mass strategy (Marfurt, 1984; Jo et al., 1996; Hustedt et al., 2004). The
nonlinear constrained optimization problem, equation 2.23, can be solved with the method of
Lagrange multipliers and Newton-type algorithm (Haber et al., 2000).

min
m,u

max
v
L(m,u,v) = min

m,u
max

v
‖Pu− d‖2

2 + vT [A(m)u− b] , (2.25)

where v ∈ CN×1 denotes the Lagrange multiplier (or, adjoint-state wavefield in the FWI ter-
minology) and T the complex-conjugate (Hermitian) transpose. A full-space approach jointly
updates the three classes of variables (u, v, m). A Newton approach would require to solve the
large-scale KKT system, whose matrix operator is the multivariate Hessian, the unknowns are
gathered in the multivariate descent direction and the right-hand side is the multivariate gradient
of the Lagrangian (Haber et al., 2000; Akçelik, 2002; Askan et al., 2007). Instead, a reduced
approach (Pratt et al., 1998; Plessix, 2006), which strictly enforces the PDE constraint at each
iteration by projection of the full multivariate search space onto the parameter search space,
is more commonly used for sake of computational efficiency leading to the monovariate misfit
function

min
m

Jr(m) = min
m
‖PA−1(m)b− d‖2

2. (2.26)

Due to the highly-oscillating nature of the inverse PDE operator A−1 (the Green functions), the
reduced minimization problem, equation 2.26, is prone to convergence to inaccurate minimizer
when the initial m is not accurate enough (Symes, 2008; Virieux and Operto, 2009).

To mitigate this nonlinearity issue, van Leeuwen and Herrmann (2013) recast the original
constrained optimization problem, equation 2.23, as a multi-variate unconstrained quadratic
penalty problem for u and m given by

min
m,u

Jp(m,u) = min
m,u
‖Pu− d‖2

2 + λ‖A(m)u− b‖2
2, (2.27)

where the scalar λ > 0 is the so-called penalty parameter. The hard constraint in the original
constrained problem is replaced by a quadratic penalty term, which represents the squares of
the constraint violation. Also, the penalty problem, equation 2.27, can be viewed as a compro-
mise between the full-space and the reduced approach in the sense that the full search space
(m,u,v) has been projected onto the (m,u) space by enforcing v = λ[A(m)u − b] in the
Lagrangian function, equation 2.25 (van Leeuwen and Herrmann, 2016). By allowing for the
PDE constraint violation, van Leeuwen and Herrmann (2013) enlarge the search space and po-
tentially mitigate the inversion nonlinearity. However, the joint update of u and m remains
challenging from the computational viewpoint and van Leeuwen and Herrmann (2013) resort
to an alternating-direction minimization strategy to solve the penalty problem.

A cycle of the algorithm first reconstructs u by minimizing the objective function, equa-
tion 2.27, keeping m fixed. Then, m is updated by minimizing the source residuals gener-
ated by the wave-equation relaxation, while keeping the reconstructed wavefield fixed. This
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minimization pushes the reconstructed wavefield toward the wave equation constraint. This
alternating-direction strategy leads to the following sequence of two minimization problems

uk+1 = arg min
u

‖Pu− d‖2
2 + λ‖A(mk)u− b‖2

2, (2.28a)

mk+1 = arg min
m

‖A(m)uk+1 − b‖2
2, (2.28b)

where the solution of one subproblem is passed to the second subproblem as a passive variable.

A well known limitation of penalty methods is the tedious tuning of the penalty parameter
through iterations. Ideally, a sequence of increasing λk should be used such that the constraint is
satisfied with a prescribed tolerance at the last iteration of the minimization problem. However,
using large values of λk generally leads to ill-conditioned and unstable problems (Nocedal and
Wright, 2006, page 505). In the next section, we review our approach based on augmented
Lagrangian method with alternating directions to overcome this issue.

IR-WRI: WRI with alternating-direction method of multiplier

A combination of Lagrangian and penalty functionals, equations 2.25 and 2.27, leads to the
following augmented Lagrangian function (Nocedal and Wright, 2006; Bertsekas, 2016)

min
m,u

max
v

Ja(m,u,v) = min
m,u

max
v
‖Pu−d‖2

2 + vT [A(m)u− b] +λ‖A(m)u−b‖2
2. (2.29)

The penalty term (third term in the right-hand side of equation 2.29) allows for the relaxation
of the wave equation constraint as in the WRI method, while the Lagrange multiplier v pushes
the inversion toward the wave equation constraint. It has been proven mathematically that
the augmented Lagrangian method converges to more accurate minimizer than penalty method
when a fixed penalty parameter is used provided that the estimation of the Lagrange multiplier
is accurate enough (Nocedal and Wright, 2006, Theorems 17.5 and 17.6). Therefore, WRI
implemented with augmented Lagrangian method is expected to benefit from the same search
space extension than the classical WRI thanks to the penalty term, while converging toward
more accurate solution when a fixed penalty parameter is used thanks to the additional leverage
provided by the Lagrange multiplier. The remaining issue is related to the computational burden
associated with the update of u, v and m. We review in Appendix A (section 2.3.7) how we
overcome this issue: First, we update the primal (u and m) and dual (v) variables with the
so-called method of multiplier, namely a classical primal descent/dual ascent gradient method
(e.g. Nocedal and Wright, 2006, Chapter 17). Second, following the governing idea of WRI,
we update the two primal variables u and m in an alternating mode. This directs us to the
alternating-direction method of multiplier (ADMM) (Boyd et al., 2010) applied on biconvex
optimization problem, namely, an optimization problem in which two variables (here, u and m)
can be partitioned into sets over which the problem is convex when the other variable is fixed.
The reader is referred to Boyd et al. (2010, page 76) for a short discussion on the applicability of
ADMM to biconvex problems. Using these strategies, we show in Appendix A (section 2.3.7)
that the wavefield reconstruction and the subsurface parameter estimation problem can be recast
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as the following minimization subproblems

uk+1 = arg min
u

‖Pu− d− dk‖2
2 + λ‖A(mk)u− b− bk‖2

2, (2.30a)

dk+1 = dk + d−Puk+1, (2.30b)
bk+ 1

2 = bk + α[b−A(mk)uk+1], (2.30c)

mk+1 = arg min
m

‖A(m)uk+1 − b− bk+ 1
2‖2

2, (2.30d)

bk+1 = bk+ 1
2 + α[b−A(mk+1)uk+1], (2.30e)

beginning from d0 = 0 and b0 = 0 where α ∈ (0, 1). Equations 2.30a and 2.30d shows that
we recast the augmented Lagrangian function as a penalty function in which the right-hand
sides (the data and the seismic sources) in the objectives are updated with the running sum of
the data and source residuals at previous iterations, namely, dk and bk. These running sums
of the residuals represent a scaled form of the Lagrange multipliers, which are updated with
gradient ascent steps in equations 2.30b, 2.30c and 2.30e. This right-hand side updating in
equations 2.30a and 2.30d is the only difference with the WRI penalty function, equation 2.28.
We now provide the closed-form solution of the two primal subproblems for u and m and
discuss the linearization of the subproblem for m resulting from the operator splitting.

Optimization over u

The primal subproblem associated with u, equation 2.30a, is a quadratic optimization prob-
lem whose closed-form solution is given by

uk+1 =
[
PTP + λA(mk)TA(mk)

]−1[
PT [d + dk] + λA(mk)T [b + bk]

]
. (2.31)

The only difference with the expression given in van Leeuwen and Herrmann (2016, page 8)
is the running sum of the data and source residuals dk and bk in the gradient term (right-most
term).

Optimization over m

The primal subproblem for m, equation 2.30d, is more challenging due to the nonlinearity
of the forward operator A in m. However, exploiting the special structure of A, equation 2.24, it
is straightforward to show that the operator splitting has linearized the optimization subproblem
for m around u.
Indeed, after rewriting A(m)uk+1 as

A(m)uk+1 = ∆uk+1 + ω2C(m)diag(m)Buk+1,

≈ ∆uk+1 + L(uk+1)m, (2.32)
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where

L(uk+1) = ω2C(mk)diag(Buk+1), (2.33)

we can recast the subproblem 2.30d as the following linear problem

mk+1 = arg min
m
‖L(uk+1)m− yk‖2

2, (2.34)

where
yk = b + bk+ 1

2 −∆uk+1. (2.35)

Note that we have also linearized the operator A with respect to m by building the matrix C
from mk in equation 2.33 to manage potential nonlinear boundary conditions. However, in case
of PML absorbing boundary conditions, this extra linearization is not used. The linear problem,
equation 2.34, has a closed-form solution given by

mk+1 =
[
L(uk+1)TL(uk+1)

]−1[
L(uk+1)Tyk

]
. (2.36)

This expression is the same as van Leeuwen and Herrmann (2013, their equation 8) except that
we iteratively update the source b with the running sum of the wave equation errors in itera-
tions, bk+ 1

2 in equation 2.35. Note that the Gauss-Newton Hessian (LTL) in equation 2.36 is
always diagonal.
Now that we have linearized the minimization problem for m around u through the splitting
procedure, the two subproblems embedded in IR-WRI, equation 2.30, can be discussed in the
framework of linear inverse problem theory. The principle of iterative refinement in linear in-
verse problem theory is reviewed in Appendix B (section 2.3.8). The right-hand side correction
terms bk and dk in the objective function, equation 2.30, gather the running sum of the data and
source residuals of previous iterations. For linear problems, these accumulated residuals are lin-
early related to the running sum of the solution refinements (model perturbations in the classical
FWI terminology) performed at previous iterations. Therefore, these right-hand side correction
terms gather in the objective function the imprint of the solution refinements performed at pre-
vious iterations such that the solution refinement performed at the current iteration relies only
on the residual errors (see equation 2.55 in Appendix B, section 2.3.8). This iterative defect cor-
rection leads to the error forgetting property discussed by Yin and Osher (2013) in the frame of
Bregman iterations, which means that the error correction performed at the current iteration is
made independent to the error corrections performed at previous iterations. Here, this iterative
solution refinement by right-hand side updating is necessary to correct two sources of errors:
the first results from the fact that each primal subproblem is solved keeping fixed the other pri-
mal variable and the second from the fact that we solve a constrained problem with a penalty
method keeping the penalty parameter fixed. Other applications of iterative error correction in
geophysics are for example least-squares migration (e.g. Lambaré et al., 1992; Jin et al., 1992;
Ribodetti et al., 2011), which can be viewed as the linear counterpart of the iterative data resid-
ual minimization performed by nonlinear FWI. Another application is presented by Gholami
et al. (2018) who perform nonlinear amplitude versus offset (AVO) inversion, using a linearized
Zoeppritz equation to formulate the iterative linearized inverse problem, while computing the
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errors with the nonlinear equation.
Based on the above, the proposed IR-WRI algorithm is summarized in Algorithm 1. Note
that, in the outer loop (lines 3-12), the algorithm performs one iteration of the wavefield recon-
struction (lines 4-6) and one iteration of parameter estimation (lines 9-10), while several inner
iterations of each subproblem can be viewed (these inner iterations are omitted in Algorithm 1
for sake of compactness). The usefulness of these inner iterations is discussed in the next sec-
tion. Also, note that, in classical ADMM, the dual variables are updated only once per iteration
after the residuals generated by each primal subproblem have been gathered. In contrast, we use
a variant of ADMM referred to as the Peaceman-Rachford splitting method (PRSM) (Peaceman
and Rachford, 1955) to update the dual variables as soon as we update one primal variable (lines
5 and 10 in Algorithm 1). For a review, see Boyd et al. (2010, page 23) and Esser (2009, page
3). The accelerate convergence achieved by PRSM relative to ADMM is illustrated in the next
section. In the next section, we will also consider that the results obtained with IR-WRI when
right-hand side updating is not activated are representative of those that would be obtained with
WRI as shown by the comparison between equations 2.28 and 2.30.

Algorithm 1: FWI algorithm based on the Peaceman-Rachford splitting algorithm.
Initialize: set k = 0, dk = 0, bk = 0.

Input: m0

while convergence criteria not satisfied do
uk+1 ← update according to equation 2.31

dk+1 ← dk + d−Puk+1

bk+ 1
2 ← bk + α

[
b−A(mk)uk+1

]
yk ← b + bk+ 1

2 −∆uk+1

L(uk+1)← ω2C(mk)diag(Buk+1)

mk+1 ← update according to equation 2.36

bk+1 ← bk+ 1
2 + α

[
b−A(mk+1)uk+1

]
k ← k + 1

2.3.4 Numerical examples

We compare the performance of WRI and IR-WRI against three 2D mono-parameter syn-
thetic examples: a toy example built with a simple inclusion model to compare the convergence
history of the two methods and two complex synthetic experiments where the synthetics com-
puted in the starting model are strongly cycle skipped relative to the observables. For each
example, no regularization is used. We only apply bound constraints using the true values of
the minimum and maximum velocities as bounds for the velocity-model update. Because the
interfacing of regularization and additional constraints in our method is not the scope of this
study, we have not reviewed the bound-constraint implementation in the method section for
sake of clarity. We implement bound constraints through an auxiliary variable and add an extra
constraint to the problem following the split Bregman method (Goldstein and Osher, 2009).
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The interested reader is also referred to Maharramov and Levin (2015), where the split Breg-
man method (Goldstein and Osher, 2009) is used to imply bound constraints and total-variation
regularization in optimization problems.
For all numerical examples the forward modeling is performed with a nine-point stencil finite-
difference method implemented with anti-lumped mass and PML absorbing boundary condi-
tions to solve the Helmholtz equation, where the stencil coefficients are optimized to the fre-
quency (Chen et al., 2013). In this setting the diagonal matrix C contains the damping PML
coefficients and does not depend on m. With this setting, the update of m can be recast as a
linear inverse problem, without additional linearization to that induced by the operator splitting
(see equation 2.36).

Inclusion model

The subsurface model contains a box-shape anomaly of side 100 m embedded in a homo-
geneous background (Figure 2.20a). The dimensions of the model are 1000 m in distance and
700 m in depth and the grid spacing is 10 m. The cross-hole acquisition consists of one source
at (x,z)=(0 m,350 m) and 18 receivers deployed vertically on the opposite side of the grid (Fig-
ure 2.20a). The source signature is a Ricker wavelet with a 5 Hz dominant frequency. We start
the inversion from the homogeneous background model (vp = 1800 m/s) and invert simultane-
ously three frequency components (2.5, 5 and 7 Hz) with noiseless data. The stopping criterion
of iteration is related to the level of the wave-equation error.
First, we show the final reconstructed wavefields (Figure 2.20e,f) and velocity models (Fig-
ure 2.20b,c) as well as the final data misfit (Figure 2.20g) obtained with WRI and IR-WRI
when the value of the penalty parameter λ, equation 2.31, has been chosen to be a small frac-
tion (1e-4) of the largest eigenvalue of A−TPTPA−1 (µ1) according to the scaling proposed by
van Leeuwen and Herrmann (2016). WRI fails to build a velocity model as well resolved as the
one found by IR-WRI (Figure 2.20b,c). Here, the WRI failure does not obviously result from
cycle skipping as this case study lies in the linear regime of classical FWI but instead highlights
the inability of the penalty method to retrieve accurate minimizer with a fixed λ. Instead, the
iterative updating of the data residuals and wave equation errors performed by the augmented
Lagrangian method provides an efficient and automatic substitute to the adaptive tuning of the
penalty parameter to jointly satisfy the two competing data-fitting and wave-equation objectives
at the final iteration. The true scattered wavefield can be compared with the final WRI and IR-
WRI scattered wavefields in Figure 2.20d-f. Due to the transmission acquisition geometry, only
the forward component of the scattered wavefield can be reconstructed, leading to a smeared
reconstruction of the inclusion. The final scattered wavefield and data residuals confirm that
IR-WRI outperforms WRI to reconstruct the wavefield and fit the data (Figure 2.20g-i).

Sensitivity of WRI and IR-WRI to λ and convergence analysis

A more comprehensive convergence analysis can be performed by applying WRI and IR-
WRI with several values of λ ranging between 1e-9 µ1 and 1e3 µ1 (Figure 2.21). The value of
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µ1 (=1e7) is indicated by the vertical dash line in Figure 2.21a,b,e,f. We stop iteration when
a preset value of the wave-equation misfit ‖A(mk)uk − b‖2 is reached (Figure 2.21c,g, hori-
zontal dash line). We compare the relative model error ‖mk −m∗‖2/‖m∗‖2 and the relative
wavefield error ‖uk − u∗‖2/‖u∗‖2 achieved by WRI and IR-WRI as functions of the iteration
count k and λ in Figure 2.21a,b,e,f. In parallel with this, we compare the convergence history
of the wave-equation objective function ‖A(mk)uk−b‖2 and the data misfit objective function
‖Puk−d‖2 achieved by WRI and IR-WRI as functions of k for several λ in Figure 2.21c,d,g,h.
The true model and the wavefield computed in the true model (namely, the global minimizers)
are denoted by m∗ and u∗, respectively.
For small values of λ ranging between 1e-9 µ1 and 1e-4 µ1, IR-WRI reaches the stopping cri-
terion of iteration after a much smaller number of iterations (typically, one order of magnitude
smaller) than WRI (Figure 2.21c,g). The most-accurate minimizers (wavefield and subsurface
model) are obtained for these small values of λ, whatever WRI or IR-WRI is used, because
small values of λ foster data fitting during early iterations before minimizing source residuals
during late iterations (due to the small weight assigned to the wave equation objective func-
tion) and fulfill the stopping criterion of iteration accordingly (Figure 2.21a,b,e,f). However,
the minimizers estimated by IR-WRI are significantly more accurate than those of WRI for a
fixed value of λ (compare Figure 2.21a and 2.21e, Figure 2.21b and 2.21f). This highlights
that IR-WRI has decreased data residuals not only faster but also more significantly than WRI
before reaching the stopping criterion of iteration.
This more efficient data residual minimization performed by IR-WRI likely results from the
joint updating of the data and source residuals in iterations, equation 2.30b,2.30c and 2.30e.
However, one may wonder whether this joint residual updating performed by IR-WRI presents
the risk that the wave-equation based stopping criterion of iteration is prematurely satisfied be-
fore achieving a sufficient data fit. The numerical results suggest that this does not occur because
each time the wave equation error is decreased, this pushes back the optimization against the
data fitting constraint, hence re-balancing the relative weight of the two objectives. This inter-
pretation highlights the self-adaptivity of the augmented Lagrangian method to process compet-
ing constraints by iteratively updating the Lagrange multipliers (see Nocedal and Wright (2006,
Section 12.8) for the intuitive significance of Lagrange multipliers). As such, the augmented
Lagrangian method written in a scaled form, equation 2.45, can be viewed as a self-adaptive
penalty method, where the iterative updating of the Lagrange multipliers provides a systematic
and easy-to-implement alternative to an ad hoc penalty parameter continuation strategy.
When λ is decreased, the data fit achieved by WRI and IR-WRI becomes closer and closer, since
the small weight assigned to the wave-equation objective function leaves some time for WRI
and IR-WRI to get close to a local minimum where the objective function is nearly flat before
satisfying the stopping criterion of iteration. At the same time, the number of iterations per-
formed by the two approaches becomes increasingly different because the poorly-conditioned
WRI needs a prohibitively-high number of iterations before the wave-equation based stopping
criterion of iteration is fulfilled.
When higher values of λ are used up to a value of 1e3 µ1, WRI and IR-WRI satisfy the stopping
criterion after a smaller number of iterations (down to around 60 iterations for λ = 10 µ1) (Fig-
ure 2.21c,g) before an acceptable data fit has been achieved (Figure 2.21d,h). This degraded
data fit translates into minimizers of more limited accuracy (Figure 2.21a,b,e,f). However, this
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degradation of the data fit and minimizer quality is less significant in IR-WRI than in WRI due
to the above-mentioned self-adaptive management of the two objectives performed by IR-WRI.
It is also instructive to look at the joint evolution in iterations of the data misfit and the wave-
equation error on the one hand (Figure 2.22a,b), and the wavefield and subsurface model errors
on the other hand (Figure 2.22c,d). Figure 2.22a,b shows how small values of λ foster data fit-
ting with inaccurate m by allowing for significant wave-equation error during early iterations,
which is consistent with the governing idea of expanding the search space. The more complex
zigzag path followed by IR-WRI relative to WRI in the (‖Puk − d‖2 − ‖A(mk)uk − b‖2)
plane for intermediate values of λ (this trend is also illustrated in Figure 2.21g and 2.21h by
the non monotonicity of the IR-WRI convergence curves) highlights how the joint updating
of the data misfit and wave-equation error dynamically balances the weight of the two objec-
tives in iterations. This zigzag convergence trend translates also into more complex path in the
(‖uk−u∗‖2/‖u∗‖2−‖mk−m∗‖2/‖m∗‖2) plane, which highlights how the solution refinement
is pushed toward the wavefield reconstruction or the velocity model estimation according to the
self-adapting weighting of the two objectives (Figure 2.22c,d). Figure 2.22c,d also shows that
the accuracy gap between the WRI and IR-WRI minimizers becomes increasingly significant as
λ is decreased, while the data fit achieved by the two methods becomes closer (Figure 2.22a,b).
This highlights the ability of IR-WRI to keep on refining the wavefield and the velocity model
when the optimization becomes close to a local minimum where the objective function is in-
creasingly flat.

ADMM versus Peaceman-Rashford dual updating

In IR-WRI algorithm based on the Peaceman-Rachford splitting (a variant of ADMM re-
viewed in Appendix A, section 2.3.7), the dual variable bk is updated twice with a step length
equal to α, equation 2.30c and 2.30e, while this updating is performed only once with the
ADMM method, equation 2.47. To show the relevance of this double dual updating, we per-
form IR-WRI for several weights α, equation 2.30, and plot the model and wavefield errors as
well as the wave-equation and data misfit as functions of k in Figure 2.23 and compare these
results with those obtained with ADMM. The PRSM results obtained with α=1 can lead to an
improved minimizers (Figure 2.23a,b), although this setting leads potentially to instabilities.
These instabilities are illustrated by a poorer data fit and higher wave equation error when α=1
in Figure 2.23c,d). Overall, PRSM builds improved minimizers when α becomes closer to 1.
Also, the PRSM minimizers obtained with α ≥ 0.5 are more accurate than those obtained with
ADMM. Accordingly, we perform the following Marmousi II and BP salt experiments with
PRSM using α=0.5.

Waveform inversion linearization and iteration strategy

The IR-WRI algorithm potentially embeds two levels of nested iterations, Algorithm 1. The
outer loop over k manages the iterations of the nonlinear multi-variate optimization. Inside one
cycle, we can refine the wavefield several times through the iterative updating of d and b for the
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current mk, lines 4-6 in Algorithm 1, before refining the parameters several times through the
iterative updating of b for the current uk+1, lines 9-10 in Algorithm 1. For sake of compactness,
these two successive inner loops are not explicitly written in Algorithm 1, where one iteration
of the wavefield reconstruction and parameter estimation are performed per cycle. Let’s denote
by n the number of inner iterations for the wavefield reconstruction and the parameter update.
We perform IR-WRI for several values of n and show the wavefield and model errors as well
as the wave-equation misfit and data misfit as functions of the number of PDE resolution (each
inner iteration pair requires one additional PDE resolution) in Figure 2.24. The results clearly
show that the best choice is n=1. This can be intuitively understood by reminding that the orig-
inal nonlinear multivariate optimization for u and m has been recast as two subproblems for u
and m that are solved in sequence. Moreover, this operator splitting allows for the linearization
of the model update around the reconstructed wavefield, equation 2.36. This operator splitting
strategy implies that, during the resolution of each subproblem, the optimization variable is
updated from an inaccurate passive variable. Therefore, the resulting residuals cannot be de-
creased efficiently by inner iterations due to the inaccuracy of the passive variable which is kept
fixed. A more efficient procedure is therefore to pass the residuals and the optimization variable
of one subproblem to the next one as soon as they have been updated by one inner iteration.
This conclusion is similar to the one reached by Goldstein and Osher (2009, section 3.2) in the
different framework of l1-regularized constrained optimization problem solved with the split
Bregman method, namely an operator splitting method similar to ADMM.

Marmousi model

We consider now the more complex Marmousi II model, which covers a 13750 m×3800 m
spatial domain (Figure 2.25a). We perform WRI and IR-WRI in the 3 Hz - 15 Hz frequency
band and we re-sample the original model on a 25 m grid accordingly. The fixed-spread surface
acquisition consists of 137 sources spaced 100 m apart and 548 receivers spaced 25 m apart at
the surface.

A PML absorbing boundary condition is implemented on top of the grid (i.e., free-surface
multiples are not involved in the inversion) and the source signature is a Ricker wavelet with a
10 Hz dominant frequency. We design the inversion with a classical multiscale frequency con-
tinuation proceeding from the low frequencies to the higher ones. One frequency is processed at
a time between 3 Hz and 15 Hz with a 0.5 Hz interval, leading to 25 successive mono-frequency
inversions. This frequency continuation strategy does not guarantee that, when the subsurface
model is updated at a given frequency, the lower-frequency data are still fitted. To overcome
this issue, we perform three cycles of multiscale inversion using the final model of the previous
cycle as the initial model of the current cycle and starting the second and third cycles at 5 Hz
and 7.5 Hz, respectively. For each frequency, the stopping criterion of iteration is

kmax = 10 or (‖A(mk)uk − b‖F ≤ δ and ‖Puk − d‖F ≤ εn), (2.37)

with δ=1e-3 and εn=1e-5 and kmax is the maximum number of iterations. Here, F refers to the
Frobenius norm.
The initial velocity model is a crude laterally homogeneous velocity model in which the veloc-
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Figure 2.20 – Box-shape anomaly example. (a) True model. The star points the source position,
while circles denote receivers. (b-c) WRI (b) and IR-WRI (c) final models for λ=1000 (see
Figure 2.21a,e). (d) Wavefield (real part) scattered by the true inclusion for the 7 Hz frequency.
(e-f) Wavefield (real part) scattered by the inclusion reconstructed by (e) WRI and (f) IR-WRI
for the 7 Hz frequency. (g) Final 7 Hz data residuals Puk−d (real part) at the receiver positions
for WRI (solid line) and IR-WRI (dashed line). (h) Difference between scattered wavefields
shown in (d) and (e). (i) Same as (h) for scattered wavefields shown in (d) and (f).

ity linearly increases with depth (Figure 2.25b).

The comparison between a common-shot gather computed in the true and initial models
highlights the kinematic inaccuracy of the initial velocity model (Figure 2.26). Considering
noiseless data, this inaccuracy makes the reduced-space frequency-domain FWI to be stuck in
a local minimum during the 3-Hz inversion (Figure 2.25c). Here, we perform FWI with the
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Figure 2.21 – Box-shape anomaly example. Sensitivity of WRI and IR-WRI to λ. (a-d) WRI
results. (a-b) Convergence history of (a) model error function ‖mk − m∗‖2/‖m∗‖2 and (b)
wavefield error function ‖uk − u∗‖2/‖u∗‖2 in the (λ-k) plane. (c-d) Convergence history of
(c) wave-equation misfit function ‖A(mk)uk − b‖2 and (d) data misfit function ‖Puk − d‖2

as function of k for several λ. (e-h) Same as (a-d) for IR-WRI. The vertical dashed line in (a),
(b), (e) and (f) points the value of the highest eigenvalue of matrix A−TPTPA−1 (namely, 1e7)
and the horizontal dashed line in (c) and (g) shows the preset stopping criteria based upon the
wave-equation misfit function ‖A(mk)uk − b‖2.
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Figure 2.22 – Box-shape anomaly example. Convergence history of WRI (a,c) and IR-WRI
(b,d) (see also Figure 2.21). (a-b) Convergence path in the (‖Puk − d‖2 − ‖A(mk)uk − b‖2)
plane for several values of λ. (c-d) Convergence path in the (‖uk − u∗‖2/‖u∗‖2 − ‖mk −
m∗‖2/‖m∗‖2) plane for several values of λ.

limited-memory Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) quasi-Newton optimization and
a line search procedure for step length estimation that satisfy the Wolfe conditions. The final
velocity models obtained with WRI and IR-WRI are shown in Figure 2.25d,e. For WRI and
IR-WRI, we use a constant penalty parameter λ = 1e-2 µ1 during iterations. WRI and IR-WRI
performed 615 and 533 iterations, respectively. A direct comparison between the true model,
the initial model and the final WRI and IR-WRI models along three vertical logs at horizontal
distances of 4.5 km, 7 km and 9.5 km are shown in Figure 2.27a. These results show that IR-
WRI successfully converges toward a satisfying model. WRI leads to an acceptable velocity
model in the shallow part down to roughly 2.5 km depth, with however a much poorer resolu-
tion and less accurate positioning of sharp reflectors at depth than the IR-WRI model.

To emphasize the key role of wavefield reconstruction to make the inversion resilient to cycle
skipping, we compare, for the first shot (x=0km), the recorded and the modeled data computed
by FWI and WRI/IR-WRI at the first iteration (before model update) and for the 3-Hz frequency
(Figure 2.28a). Note that the wavefields reconstructed by WRI and IR-WRI are identical at the
first iteration. We show that WRI/IR-WRI allow for a quite good data fit from the first iteration
when a small value of λ is used, unlike FWI. After the first wavefield reconstruction, WRI/IR-
WRI updates the initial velocity model by least-squares minimization of the source residuals
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Figure 2.23 – Box-shape anomaly example. Comparison between ADMM and PRSM and
sensitivity of PRSM to the step length α applied to the b updates. (a-d) Convergence history
of (a) the model error function ‖mk −m∗‖2/‖m∗‖2, (b) the wavefield error function ‖uk −
u∗‖2/‖u∗‖2, (c) the wave-equation misfit function ‖A(mk)uk − b‖2, and (d) the data misfit
function ‖Puk − d‖2.

to push back the reconstructed wavefields toward the wave-equation constraint. The source
residual for the first shot after the first wavefield reconstruction is shown in Figure 2.28i. The
wavefield scattered by this source residual using the initial model as background is shown in
Figure 2.28c. To gain some qualitative insight on the extent to which the model updating will
be driven toward the true model perturbation, it is therefore instructive to check how much this
scattered reconstructed wavefield is close to the true scattered wavefield (the difference between
the wavefields computed in the true and initial models) (Figure 2.28b). Comparison between
Figure 2.28b and 2.28c shows that the true and reconstructed wavefields are in phase in most
parts of the subsurface, the differences being more related to amplitude mismatches. This phase
agreement between the true and reconstructed wavefields might explain why IR-WRI converges
toward an accurate velocity model in this case. Indeed, the wavefield reconstruction procedure
fails in some parts of the subsurface, which are poorly illuminated by the surface acquisition or
because the wavefields that have propagated through these parts of the subsurface are recorded
at the receivers with weak amplitudes (for example, deep short-spread reflections). However,
these wavefield misfit in the deep part progressively vanish with iteration according to a depth
continuation updating.

To emphasize the role of the iterative right hand sides updating on IR-WRI, we now compare
the WRI and IR-WRI scattered wavefields with the true scattered wavefield (Figure 2.28b,d,e) as
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Figure 2.24 – Box-shape anomaly example. Sensitivity of the IR-WRI convergence to the
number n of inner iterations (see text for details). (a-b) Convergence history of (a) the model
error function ‖mk −m∗‖2/‖m∗‖2, (b) the wavefield error function ‖uk −u∗‖2/‖u∗‖2, (c) the
wave-equation misfit function ‖A(mk)uk − b‖2, and (d) the data misfit function ‖Puk − d‖2.
The horizontal axis is labeled with the number of PDE solve. In the figure, n ranges from 1 to
6 and the same n is used during the update of u and m.

well as the WRI and IR-WRI data and source residuals (Figure 2.28g,h,j,k) at the final iteration.
First, IR-WRI manages to cancel out the data and source residuals at the final iteration, unlike
WRI (Figure 2.28g,h,j,k). This highlights how the augmented Lagrangian method embedded
in IR-WRI manages to satisfy the data fitting and wave equation constraints at the convergence
point with a fixed penalty parameter thanks to the Lagrange multiplier updating, unlike WRI.
Moreover, although the WRI scattered wavefield is in phase with the true scattered wavefield
in most part of the subsurface, the IR-WRI scattered wavefield matches better subtle wavefield
variations and amplitudes in particular in the deep part of the model. The imprint of this final
improved wavefield reconstruction achieved by IR-WRI relative to WRI on the reconstructed
velocity models can be assessed by comparing Figure 2.25d and 2.25e.

As a final quality control of the inversion results, we compute synthetic seismograms in the
final WRI and IR-WRI models to assess how the errors in the velocity reconstruction translate
into phase and amplitude data fit. We first superimpose in transparency the seismograms com-
puted in the WRI and IR-WRI models on those computed in the true model to assess whether
WRI and IR-WRI were affected by cycle skipping (Figure 2.29a,b). This direct comparison
confirms that none of the inversion was significantly hampered by cycle skipping, although we
show small traveltime mismatches for deep reflections in the case of WRI (Figure 2.29a,b, black
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Figure 2.25 – Marmousi II example. (a) True Marmousi II model. (b) Initial velocity model. (c)
Reduced approach. (d-e) For noiseless data, velocity models built by (d) WRI and (e) IR-WRI.
(f-g) Same as (d-e) for noisy data with a SNR of 10 db.

arrow). These traveltime mismatches can be related to the poor reconstruction of the deep re-
flectors above mentioned. Second, we show the residuals between the seismograms computed
in the true model and the final WRI/IR-WRI models (Figure 2.30a,b). These residuals clearly
show that the iterative data and source residual updating allows for a better amplitude fit of both
diving waves and reflections. This improved amplitude fit reflects the improved reconstruction
of small-scale structures and velocity contrasts in the subsurface models when this updating is
performed (Figures 2.25d,e and 2.27a).
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Figure 2.26 – Marmousi II example. Synthetic common-shot gather computed in the true ve-
locity model (a) and the initial velocity model (b). The seismograms are plotted with a reduction
velocity of 1900 m/s (origin time of each seismograms is |offset|/1900 s) to compress the time
scale.

To reproduce more realistic conditions, we add random noise to the recorded data with a
signal-to-noise ratio (SNR) of 10 db. We added the noise in the frequency domain which means
that each frequency involved in the inversion has the same SNR. We used the same experimental
setup as above performing three inversion paths through the frequency batches. We used δ=1e-3
and we set εn equal to the noise level of each frequency. The final WRI and IR-WRI models
are obtained after 461 and 396 iterations, respectively, and are shown in Figure 2.25f,g). A
direct comparison between the true model, the initial model and the final WRI/IR-WRI models
along the vertical logs are shown in Figure 2.27b. While the noise weekly impacts upon the
IR-WRI results (compare Figures 2.25e and 2.25g and Figures 2.27a and 2.27b, red curves),
the resolution of the model inferred from WRI is significantly degraded relative to that inferred
from noiseless data, leading to a quite smooth reconstruction (compare Figure 2.25d and 2.25f
and Figures 2.27a, bleue curves and 2.27b, blue curves). This highlights the higher resilience
to noise of IR-WRI.

The data fit assessment for noisy data is shown in Figures 2.29c,d and 2.30c,d). The di-
rect comparison between the seismograms computed in the true and WRI/IR-WRI models still
reveal a good traveltime match without obvious evidence of cycle skipping (Figures 2.29c,d).
However, as for the noiseless case, we notice small traveltime mismatches in the case of WRI
due to the poor focusing and mispositioning of deep reflectors shown in Figure 2.27b, red
curves. More significantly, this direct comparison shows that the WRI fails to match the am-
plitudes of several deep short-spread reflections due to poorly resolved model reconstruction
(Figures 2.29c, white arrows), unlike IR-WRI (Figure 2.29d). This is further confirmed by the
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Figure 2.27 – Marmousi II example. Direct comparison between true (black), initial (gray),
WRI (blue) and IR-WRI (red) velocity models along three logs at X=4.5km, 7km, 9.5km from
left to right. (a) Noiseless data case (Figure 2.25d,e). (b) Noisy data case (Figure 2.25f,g). Note
the deficit of resolution and mispositioning of deep reflectors in WRI results. These defaults
increase significantly with noise, while IR-WRI reconstructions are more resilient to noise.

data residuals shown in Figure 2.30c,d. For both inversion, the amplitudes of the residuals as
well as their low frequency content (due to the increase smoothness of the velocity reconstruc-
tion) have increased compared to those inferred from noiseless data. However, this increase is
much more moderate in the case of IR-WRI.
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Figure 2.28 – Marmousi II example. For a source at x=0 m and the 3-Hz frequency: (a) Direct
comparison between data (real part) computed in the initial (blue) and true (black) models and
by WRI wavefield reconstruction at first iteration (orange). Note the almost perfect agreement
between true and WRI data. (b) True scattered wavefield (difference between the wavefield
computed in the true and initial velocity models). (c) Scattered wavefield reconstructed by WRI
at first iteration (difference between the wavefield reconstructed by WRI and the wavefield
computed in the initial model). (d-e) Scattered wavefields reconstructed by WRI (d) and IR-
WRI (e) at final iteration. (f-h) Data residual (Pu − d) at first WRI iteration (f), at final WRI
iteration (g) and at final IR-WRI iteration (h). (i-k) Wave-equation residual at first iteration of
wavefield reconstruction, namely (A(m0)u1−b) (i), final iteration of wavefield reconstruction
for WRI (j) and final iteration of wavefield reconstruction for IR-WRI (k) (A(mk−1)uk − b)

2004 BP salt model

Finally, we assess WRI and IR-WRI against a target of the challenging 2004 BP salt model
(Figure 2.31a) when a crude stating model is used (Figure 2.31b). The selected target corre-
sponds to the left part of the 2004 BP salt model and was previously used in Métivier et al.
(2016a) for an application of FWI based upon an optimal-transport distance. It is represen-
tative of the geology of the deep offshore Gulf of Mexico and mainly consists of a simple
background with a complex rugose multi-valued salt body, sub-salt slow velocity anomalies
related to over-pressure zones and a fast velocity anomaly to the right of the salt body (Billette
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Figure 2.29 – Marmousi II example. Direct comparison between synthetic seismograms com-
puted in true (red/white/blue scale scale) and WRI/IR-WRI (black/gray/white scale) models.
Seismograms computed in the WRI/IR-WRI models are superimposed in transparency on seis-
mograms computed in the true model. The two sets of seismograms are in phase if black/white
wiggles of seismograms computed in the WRI/IR-WRI models match red/blue wiggles of seis-
mograms computed in the true model. Seismograms are plotted with a reduction velocity of
1900 m/s. (a-b) For noiseless data, black/white seismograms are computed in (a) WRI and (b)
IR-WRI models shown in Figure 2.25d,e. (c-d) Same as (a-b) for noisy data (WRI/IR-WRI
models are shown in Figures 2.25f,g). Arrows point the most obvious differences in the data
fit achieved by WRI and IR-WRI. In the WRI results, data misfit take the form of significant
amplitude underestimation (white arrows) and small time mismatches resulting from poorly
resolved model reconstruction (black arrows).

and Brandsberg-Dahl, 2004). As for the Marmousi II model, we perform WRI and IR-WRI
for noiseless and noisy data. The subsurface model is 16250 m wide and 5825 m deep and is
discretized with a 25 m grid interval. We used 162 sources spaced 100 m apart on the top side
of the model. The source signature is a Ricker wavelet with a 10 Hz dominant frequency. A
line of receivers with a 25 m spacing are deployed at the surface leading to a stationary-receiver
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Figure 2.30 – Marmousi II example. Residuals between seismograms computed in the true
and WRI/IR-WRI models. Each panel is plotted with the amplitude scale used in Figure 2.26.
(a-b) For noiseless data, residuals are computed from (a) WRI and (b) IR-WRI models. See
Figure 2.29a,b for a direct comparison of the two sets of seismograms. (c-d) Same as (a-b) for
noisy data. See Figure 2.29c,d for a direct comparison of the two sets of seismograms.

acquisition.

We used a smoothed version of the true velocity model as initial model (Figure 2.31b).
Following Métivier et al. (2016a), we design the correlation length of the smoother such that
the imprint of the salt body is canceled out.

Comparison between a common shot gather computed in the true and initial models show
significant traveltime mismatches (Figure 2.32) that drive reduced-space FWI to a local mini-
mum when the starting frequency is 3Hz (Figure 2.31c).

To perform WRI and IR-WRI, we used small batches of three frequencies with one fre-
quency overlap between two consecutive batches, moving from the low frequencies to the higher
ones according to a classical frequency continuation strategy. The starting and final frequencies
are 3 Hz and 15 Hz and the sampling interval in one batch is 0.5 Hz. For each batch, the stop-
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Figure 2.31 – 2004 BP salt case study. (a) True 2004 BP model. (b) Initial velocity model.
(c) Reduced approach. (d-e) Final WRI (d) and IR-WRI (e) velocity models for noiseless data.
(f-g) Same as (d-e) for noisy data for a SNR of 10 db.

ping criterion of iteration is given by equation 2.37 with kmax=20. We use δ=1e-3 for noiseless
and noisy data, while εn is set to 1e-5 and the noise level of the batch for noiseless and noisy
data, respectively. For the penalty parameter, we use λ=1e-3 µ1 and λ=2e-2 µ1 for noiseless
and noisy data, respectively. We perform three paths through the frequency batches to improve
the inversion results (the starting frequency of the second and third path is 5 Hz and 7.5 Hz,
respectively). The WRI and IR-WRI models inferred from noiseless data are shown in Figures
2.31d,e. WRI and IR-WRI perform 561 and 448 iterations, respectively. Direct comparison
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Figure 2.32 – 2004 BP salt case study. Synthetic common-shot gather computed in the (a) true
and (b) initial velocity models. Seismograms are plotted with a reduction velocity of 2500 m/s
(the origin time of each seismograms is |offset|/2500 s) to compress the time scale.

between the true model, the starting model and the two WRI models along three vertical logs
cross-cutting the salt body at 5 km, 7.5 km and 10 km distance is shown in Figure 2.33a. We
show that IR-WRI recovers with a quite high resolution the precise geometry of the rugose salt
body, the sub-salt low-velocity anomalies as well as the shallow fast anomaly to the right (Fig-
ure 2.31e). In contrast, WRI successfully recovers the upper part of the salt but fails to retrieve
the bottom part of the salt body. Moreover, the sub-salt structures are not recovered and the
image of the fast anomaly to the right is blurred (Figure 2.31f).

We compare the 3-Hz recorded and modeled data computed by FWI and WRI/IR-WRI at
the first iteration in Figure 2.34a. Again, WRI/IR-WRI allow for a good data fit from the first
iteration, while the smooth initial model generates strong amplitude and phase mismatches be-
tween the recorded and the FWI modeled data. IR-WRI has canceled out more efficiently the
data and source residuals at the convergence point than WRI (Figure 2.34g,h,j,k. The scattered
wavefield reconstructed by IR-WRI is also more accurate than the one reconstructed by WRI
at the convergence point even if the differences look like quite subtle in terms of phase and
amplitude (Figure 2.34d,e). These subtle differences in the wavefield reconstruction performed
by WRI and IR-WRI translate however in quite different velocity reconstruction as shown in
Figure 2.31d,e.
As for the Marmousi example, the direct comparison between seismograms computed in the
true and WRI/IR-WRI models does not show any evidence of cycle skipping (Figure 2.35a,b).
However, the residuals have much lower amplitudes in case of IR-WRI (Figure 2.36a,b) due
to the improved reconstruction of the velocity contrasts and high wavenumbers highlighted in
Figures 2.31e and 2.33a. When noisy data are used (Figures 2.31f,g and 2.33b), the shallow
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Figure 2.33 – 2004 BP salt case study. Direct comparison between true (black), initial (gray),
WRI (blue) and IR-WRI (red) velocity models along three logs at X=5km, 7.5km, 10km from
left to right. (a) Noiseless data. (b) Noisy data.

imaging performed by the IR-WRI is weakly impacted upon by the noise. WRI and IR-WRI
perform 461 and 396 iterations, respectively, and confirms again that the iterative residual up-
dating not only improves the quality of the minimizer but fastens also the convergence. The
sub-salt imaging is more affected by noise. However, the slow velocity anomalies below the
salt body is still fairly well identified in the IR-WRI model. In the WRI case, we show the same
trend as the one revealed by the Marmousi example. The noise further degrades the results by
hampering the reconstruction of short-scale features below the top of the salt but also in the
overburden as revealed by the poor reconstruction of the fast anomaly on the right. The com-
parison of the seismograms computed in the true model and the WRI/IR-WRI models and the
data residuals are shown in Figures 2.35c,d and 2.36c,d. A similar trend than for the Marmousi
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Figure 2.34 – Same as Figure 2.28 for the 2004 BP salt case study.

model is shown: When noise is added to the data, the amplitudes of the data residuals increase
in much larger proportion in the WRI case.

2.3.5 Discussion

We have presented a significant yet easy-to-implement improvement of the WRI method of
van Leeuwen and Herrmann (2013). In Appendix A (section 2.3.7), we have first recast the
original FWI problem as a feasibility problem where both data and source misfit are processed
as constraints. This feasibility problem is equivalent to constrained optimization problem where
the objective function is identically zero. We solve this constrained problem with an augmented
Lagrangian method (method of multiplier). A scaled form of the augmented Lagrangian func-
tion shows that it is equivalent to a quadratic penalty function formed by the squares of the
constraint violations (data and source misfit), to which are added the running sum of the data
and source residuals of previous iterations. In the objectives of the penalty function, the data and
the source represent the right-hand side of the constraints, and the running sum of the data and
source residuals correspond to the scaled Lagrange multipliers. Following van Leeuwen and
Herrmann (2013), we perform the refinement of the two primal variables (the wavefield and
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Figure 2.35 – 2004 BP salt case study. Direct comparison between synthetic seismograms com-
puted in true model (red/white/blue scale) and WRI/IR-WRI models (black/gray/white scale).
Same showing as in Figure 2.29 is used to compare the two sets of seismograms. (a-b) For noise-
less data, black/white seismograms are computed in (a) WRI and (b) IR-WRI models shown in
Figure 2.31d,e. (c-d) Same as (a-b) for noisy data (WRI and IR-WRI models are shown in
Figure 2.31f,g). For WRI, data misfit take the form of significant amplitude underestimation
and small time mismatch resulting from poorly resolved model reconstruction. Seismograms
are plotted with a reduction velocity of 2500 m/s as in Figure 2.32.

the subsurface parameters) in alternating mode, using the solution of one primal subproblem
as a passive variable for the next subproblem. Compared to a classical application of ADMM
where separable convex subproblems are solved in parallel, this sequential resolution of the two
primal subproblems allows us, on the one hand to linearize the parameter-estimation problem
around the reconstructed wavefield and, on the other hand to manage the non-separability of the
wavefield reconstruction and parameter estimation. This sequential solving of the two primal
subproblems also prompts us to update the dual variable associated with the source residuals
two times, once after each primal subproblem.
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Figure 2.36 – 2004 BP salt case study. Residuals between seismograms computed in true model
and WRI/IR-WRI models. Each panel is plotted with the amplitude scale used in Figure 2.32.
(a-b) For noiseless data, residuals are computed from (a) WRI and (b) IR-WRI models. See
Figure 2.35a,b for a direct comparison of the two sets of seismograms. (c-d) Same as (a-b) for
noisy data. See Figure 2.35c,d for a direct comparison of the two sets of seismograms.

The convergence properties and the error bounds on the solution of penalty and augmented
Lagrangian methods are discussed in the framework of nonlinear programming by (Nocedal and
Wright, 2006, Chapter 17). As mentioned in the above reference (page 519), the augmented
Lagrangian method gives us two ways of improving the accuracy of the minimizer: improve the
accuracy of the Lagrange multiplier (namely, decrease the data and source residuals enough)
or increase the penalty parameter, whereas the quadratic penalty approach gives us only one
option: increase the penalty parameter. Accordingly and considering that we perform all of
the numerical experiments with a fixed penalty parameter, the augmented Lagrangian approach
implemented in IR-WRI has logically converged to more accurate minimizers with a smaller
number of iterations than the penalty method implemented in WRI. The two leverages that
control the accuracy of the IR-WRI minimizer also allow us to use moderate values of the
penalty parameter without impacting prohibitively convergence speed. This moderate values
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allows the method to fit the data during the early iterations with large wave-equation error,
which provides the most suitable framework to enlarge the search space and account for large
time shifts, while satisfying the wave-equation constraint with small error at the convergence
point. According to the analogy between WRI and IR-WRI highlighted by the scaled-form
Lagrangian, IR-WRI can be viewed as a self-adaptive penalty method, where a tedious and
potentially unstable continuous increasing of the penalty parameter is replaced by a stable dual
steepest-ascent updating of the data and source residuals. This iterative residual updating in a
quadratic misfit function is a well known procedure to refine solution of a wide class of linear
inverse problems with gradient or Gauss-Newton steps as reminded in Appendix B (section
2.3.8).

The second key ingredient in IR-WRI is operator splitting implemented with an alternating
direction strategy. IR-WRI relies on a generalization of the alternating-direction method of
multiplier (ADMM) to biconvex problems (Boyd et al., 2010, section 9.2). A biconvex problem
is one in which two variables can be partitioned into sets over which the problem is convex
when the other variable is fixed (Shen et al., 2017). IR-WRI is bi-convex because the wave-
equation constraint is bilinear. This property leads to the linearization of the subproblem for m
around u in our alternating-direction algorithm. Accordingly, the standard form of the ADMM
can be readily implemented in IR-WRI, without however guarantee that IR-WRI benefits from
the convergence properties of classical ADMM for convex problems. The interested reader
is referred to Brás et al. (2012) for additional discussion on the applicability of ADMM on
biconvex problems in the framework of elliptic PDE constraint.

As a variant of WRI based upon the above-mention alternating direction strategy, van Leeuwen
and Herrmann (2016) recast WRI as a reduced variable projection penalty method which leaves
the parameter estimation subproblem nonlinear. Aravkin et al. (2017) analyze the conver-
gence properties of the reduced penalty method when the full Hessian is taken into account
and conclude (their Theorem 2.5) that the variable projection penalty method is insensitive to
the penalty parameter. We can view to develop a reduced formulation of our augmented La-
grangian method by enforcing the closed-form expression of the reconstructed wavefield in the
subsurface parameter estimation problem. More theoretical and numerical investigations are
necessary to assess whether it is worth paying the price to solve a more complex nonlinear sub-
problem for m in the variable projection method compared to the ADMM-based IR-WRI which
alternates two linear problems.

Although we have shown that the accuracy of the minimizer found by IR-WRI is weakly
sensitive to the penalty parameter for a wide range of moderate values, the value which max-
imizes the convergence speed may be found accordingly to mitigate the computational cost.
It is also worth reminding that updating the right-hand sides of the objectives in the IR-WRI
penalty function does not introduce significant computational overhead in one iteration of IR-
WRI compared to the WRI counterpart.

The reader familiar with the Bregman optimization method for constrained convex problem
may have noticed that IR-WRI borrows some ingredients from this approach. The original
Bregman method (Bregman, 1967) has been recast by Yin et al. (2008); Goldstein and Osher
(2009) as a penalty method where the right-hand side of the constraint is iteratively updated with
the errors of previous iterations. Analogy between Bregman method and augmented Lagrangian
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method is recognized in Yin et al. (2008), while Esser (2009) reviewed the connection between
ADMM and the split Bregman method. The split Bregman method has been developed to
solve l1-regularization problems for image denoising applications. The strategies used in the
split Bregman method to decouple l1 and l2 objectives via auxiliary variables have been used
by Aghamiry et al. (2018b) to interface total-variation regularization with IR-WRI, where the
identically-zero objective function in equation 2.39 is replaced by the total variation norm of the
subsurface model. A short discussion on the choice of the penalty parameter in the framework
of the Bregman optimization method is provided in Goldstein and Osher (2009, section 2.2)
and is consistent with the results obtained with IR-WRI.

The original motivation of WRI was to make waveform inversion more resilient to cycle
skipping. We apply WRI and IR-WRI on two complex synthetic examples to assess their abil-
ity to account for large time shifts. The results show that both methods remain immune to cycle
skipping for these case studies. However, only IR-WRI shows accurate reconstruction of deep
targets such as the base of salt bodies and subsalt structures due to improved convergence his-
tory. This improved convergence manifests in the seismograms by a better amplitude fit of weak
phases such as deep short-spread reflections. The improved convergence also makes IR-WRI
more resilient to noise. Indeed, IR-WRI still needs to be assessed against more realistic appli-
cations. The subsurface parameters are updated by minimizing the source residuals generated
by the previously-reconstructed wavefield. The wavefield is reconstructed by fitting the sparse
seismic observables through the relaxation of the wave equation constraint. The accuracy with
which the wavefield should be reconstructed to make IR-WRI converge toward an accurate ve-
locity model and the relative role of the acquisition geometry and initial velocity model on the
accuracy of this wavefield reconstruction still need to be better understood.

Perspective work aims to extend IR-WRI to 3D configuration and multiparameter recon-
struction and assess the method on real stationary-receiver sea-bottom case studies as those
tackled by Operto et al. (2015); Operto and Miniussi (2018) where sharp contrasts generated
by gas and chalky reservoir provide a suitable environment to assess the ability of IR-WRI to
image large-contrast media and account for significant amplitude attenuation effects in realistic
setting.

2.3.6 Conclusion

We have presented a new formulation of frequency-domain FWI based on wavefield recon-
struction, which converges faster and improves the ability of the method to reconstruct short-
scale structures, while preserving the resilience of the original formulation to cycle skipping.
The improvement relies on an augmented Lagrangian method, which makes the method far less
sensitive to the penalty parameter, when the value of this later is kept fixed in iterations. Accord-
ingly, moderate values of the penalty parameter can be used such that the search space is signifi-
cantly enlarged during the early iterations by relaxing the wave equation constraint without pre-
venting to honor it with good accuracy at the final iteration. As the original penalty method, the
augmented Lagrangian method is implemented with a splitting strategy, during which the wave-
field reconstruction and the parameter estimation are performed in an alternating way and the
solution of one subproblem is passed as a passive variable for the next problem. This splitting
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strategy linearizes the parameter estimation around the reconstructed wavefield and manages
the non-separability of the wavefield reconstruction and parameter estimation subproblems. A
scaled form of the augmented Lagrangian also shows that the new method is equivalent to a
self-adaptive penalty method, where the dual updating of the Lagrange multipliers is recast as
the iterative updating of the data and source right-hand sides in the objectives of the penalty
function. Therefore, the new method does not generate significant computational overhead rel-
ative to the original penalty method. Numerical examples suggest that the iterative updating
of both the data and source residuals dynamically manage the two competing objectives of the
penalty function leading to improved convergence history. Application on the BP salt model re-
veals the ability of the method to reconstruct large-contrast structures including salt bodies and
sub-salt structures, starting from crude initial models and a 3-Hz starting frequency. Synthetic
seismogram modeling confirms that the inversion didn’t suffer from cycle skipping for this case
study and manages to reasonably fit amplitudes of weak phases such as deep short-spread re-
flections. Perspectives deal with regularization, multiparameter reconstruction, extension to 3D
and application to real data.
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2.3.7 Appendix A: WRI based upon augmented Lagrangian

In this appendix, we develop WRI in the framework of augmented Lagrangian implemented
with the method of multiplier and alternated directions. In particular, we show how we end up
with two quadratic penalty subproblems for u and m similar to those of WRI, except that the
objectives of the penalty functions embed now an error correction term in the form of right-hand
side updating (equation 2.30). Let us first recast FWI as the following feasibility problem

find m and u subject to A(m)u = b and Pu = d, (2.38)

where the term Pu = d is now processed as an equality constraint in case of noiseless data. In
presence of noise, this equality constraint becomes an inequality constraint, ‖Pu − d‖2

2 < εn,
where εn represents the noise level. We assume that the feasible set is nonempty, namely the
constraints are consistent or there are vectors m and u satisfying the constraints. The feasibility
problem can be considered as a special case of a constrained optimization problem where the
objective function is identically zero (Boyd and Vandenberghe, 2004, pages 128-129).

66



Wavefield reconstruction inversion

Accordingly, the feasibility problem, equation 2.38, is recast as the constrained problem

min
u,m

0 subject to A(m)u = b and Pu = d. (2.39)

where the first and second constraints are bilinear and linear, respectively. The non-linear fea-
sibility problem 2.39 can be written in more compact form as

min
u,m

0 subject to F(m)u = s, (2.40)

where

s =

[
d
b

]
∈ C(M+N)×1 and F(m) =

[
P

A(m)

]
∈ C(M+N)×N .

The augmented Lagrangian function, Boyd et al. (2010, their equation 2.6) and Nocedal and
Wright (2006, their equation 17.36), for the problem defined by equation 2.40 is

L(m,u,v) = vT [F(m)u− s] + ‖F(m)u− s‖2
Γ, (2.41)

where ‖x‖2
Q = xTQx and

Γ =


γ0 0

. . .
0 γ0

0 M

0 γ1 0

. . .
0 γ1

N

 .

Applying the method of multipliers, Boyd et al. (2010, their equations 2.7-2.8) and Nocedal
and Wright (2006, their equation 17.39), we get

(mk+1,uk+1) = arg min
m,u

L(m,u,vk), (2.42a)

vk+1 = vk + Γ[F(mk+1)uk+1 − s], (2.42b)

for k = 0, 1, ... beginning from v0 = 0. This iteration can be interpreted as follows: we
begin with a prior estimate v0 of the dual variable v and minimize the objective function with
respect to the primal variables m and u, equation 2.42a. Then, we update the dual variable v
via a steepest ascent method by keeping the primal variables m and u fixed (equation 2.42b).
This process is iterated until convergence, i.e., when F(mk+1)uk+1 = s. To highlight more
explicitly the key role of iterative right-hand side updating in our method and the relationship
with the penalty method of van Leeuwen and Herrmann (2013), we rewrite the Lagrangian,
equation 2.41, in a scaled form (Boyd et al., 2010, Section 3.1.1). Introducing the scaled dual
variable sk = −Γ−1vk in the Lagrangian and adding the constant terms 1

2
‖sk‖2

Γ to it, we find

L(m,u, sk) = ‖F(m)u− s− sk‖2
Γ. (2.43)
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Without modifying its minimum, we can scale the augmented Lagrangian function 2.43 by 1/γ0

to eliminate one of the penalty parameters and get

L(m,u, sk) = ‖F(m)u− s− sk‖2
Λ, (2.44)

where

Λ =


1 0

. . .
0 1

0 M

0 λ 0
. . .

0 λ

N

 ,

and λ = γ1/γ0. Method of multipliers for the scaled-form Lagrangian reads as

(mk+1,uk+1) = arg min
m,u

‖F(m)u− s− sk‖2
Λ, (2.45a)

sk+1 = sk + s− F(mk+1)uk+1, (2.45b)

with s0 = 0.
The scaled-form Lagrangian, equation 2.44, is similar to the penalty function of van Leeuwen
and Herrmann (2016), equation 2.27, except that the original right-hand side s (which gathers
d and b according to our compact notation) is updated at each iteration with the scaled dual
variable sk. This scaled dual variable gathers the running sum of the constraint violations of
previous iterations, namely, the data and source residuals. This right-hand side (or residual)
updating can be viewed as the counterpart of the residual updating performed at each iteration
of the reduced FWI, this residual updating being limited to the data misfit term in this later case
(since the wave equation error is 0 in reduced FWI).

Alternating-direction method of multipliers

The joint update of the primal variables (m,u) in equation 2.45a is computationally too
intensive. A splitting method can be useful here to decouple the optimization tasks with respect
to m and u (the readers can refer to Glowinski et al., 2017, for an overview of splitting
methods). Instead of joint updating, the alternating-direction method of multipliers (ADMM)
(Boyd et al., 2010) updates the variables m and u with Gauss-Seidel like iterations, i.e., fixing
one variable and solving for the other. Using ADMM, we end up with the following iteration:

uk+1 = arg min
u

‖F(mk)u− s− sk‖2
Λ, (2.46a)

mk+1 = arg min
m

‖F(m)uk+1 − s− sk‖2
Λ, (2.46b)

sk+1 = sk + s− F(mk+1)uk+1. (2.46c)

ADMM algorithm has decoupled the full problem into two subproblems associated with primal
variables u and m. Compared to classical ADMM for separable convex problems and linear
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constraints, the non-separability between wavefield reconstruction and parameter estimation is
managed by passing the solution of one primal subproblem as a passive variable for the next
subproblem. We will show soon that this alternating-direction approach linearizes the primal
subproblem for m around the reconstructed wavefield u. As such, our approach can also be
seen as a linearly constrained augmented Lagrangian method, the linearization simply resulting
from the splitting procedure (Nocedal and Wright, 2006, pages 522-523). The fact that the
primal update of one subproblem is passed to the next subproblem implies obviously that the
two subproblems are solved in sequence rather than in parallel as in classical ADMM.
For reasons that will become apparent below, we reintroduce explicitly the two components d
and b of the scaled dual vector s in the notations

uk+1 = arg min
u

‖Pu− d− dk‖2
2 + λ‖A(mk)u− b− bk‖2

2, (2.47a)

mk+1 = arg min
m

‖A(m)uk+1 − b− bk‖2
2, (2.47b)

dk+1 = dk + d−Puk+1, (2.47c)
bk+1 = bk + b−A(mk+1)uk+1. (2.47d)

A second modification related to classical ADMM resides in the updating of the dual variables.
In classical ADMM, the dual variables are updated only once per iteration after the residuals
generated by each primal subproblem have been gathered, equations 2.47c-2.47d. As reviewed
by Boyd et al. (2010, page 23) and Esser (2009, page 3), a variant of ADMM, referred to as
the Peaceman-Rachford splitting method (PRSM) (Peaceman and Rachford, 1955), consists of
updating the Lagrange multipliers several times, once after the update of each primal variable
(see He et al. (2014, equations 1.3 versus 1.4). One issue with PRSM relative to ADMM is
to require more restrictive assumptions to ensure its convergence, while it is always faster than
ADMM whenever it is convergent (He et al., 2014). This issue prompts He et al. (2014) to
implement relaxation factors (or, step lengths) α ∈ (0, 1) to guarantee the strict contraction of
the PRSM iterative sequence. Accordingly, applying the strictly contractive PRSM algorithm
to our minimization problem gives

uk+1 = arg min
u

‖Pu− d− dk‖2
2 + λ‖A(mk)u− b− bk‖2

2, (2.48a)

dk+1 = dk + d−Puk+1, (2.48b)
bk+ 1

2 = bk + α[b−A(mk)uk+1], (2.48c)

mk+1 = arg min
m

‖A(m)uk+1 − b− bk+ 1
2‖2

2, (2.48d)

bk+1 = bk+ 1
2 + α[b−A(mk+1)uk+1], (2.48e)

where α ∈ (0, 1). The dual variable bk is updated twice with a step α, once after the update
of u and once after the update of m, since it depends upon both primal variables, while dk is
updated only once after the update of u. In the numerical section, we use the PRSM formulation,
equation 2.48 at the expense of ADMM, equation 2.47, as we found that it was leading to a faster
convergence provided that α < 1 to guarantee stability.
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2.3.8 Appendix B: Iterative solution refinement for linear inverse prob-
lems

When one solves a system of equations, the computed solution may deviate from the de-
sired one. In linear algebra, this might result from round-off errors in large-scale problems
(e.g. Press et al., 2007, page 61). In convex and nonlinear optimization, this might arise when
regularization or penalty methods are used to solve an ill-conditioned problem (Gholami and
Gheymasi, 2016). Another example deals with approximate solution of nonlinear inverse prob-
lem through linearization, as for example least-squares migration/inversion, where the Born
approximation, sometimes combined with ray theory, is used to linearize the wave equation
around a background velocity model (Lambaré et al., 1992; Jin et al., 1992) or linearized AVO
inversion (Gholami et al., 2018). The residual errors in the computed solution may require to
solve repeatedly the problem to iteratively refine the solution accuracy. In this appendix, we
review this iterative solution refinement procedure which amounts to update at a given itera-
tion the right-hand side of the linear problem with the running sum of the residuals of previous
iterations.

Let’s solve iteratively
Ax = b. (2.49)

At iteration 1, we find an approximate solution x1 by solving the quadratic program in a least-
squares sense

x1 = arg min
x
‖Ax− b‖2

2 = A−gb, (2.50)

where A−g denotes the generalized or pseudoinverse of A, A−g =
[
ATA + βI

]−1
AT and β

is a stabilizing parameter (Menke, 2012).
The solution b1 of the forward problem is given by

b1 = Ax1, (2.51)

and fits b with an error δb1 = b−b1. We search the perturbation δx = x−x1 that needs to be
applied on x1 to correct the residual δb1:

δx = arg min
x
‖Aδx− δb1‖2

2 = A−gδb1 = A−g [b−Ax1] . (2.52)

The refined solution is given by

x2 = x1 + A−gδb1 = A−gb + A−g [b−Ax1] . (2.53)

Proceeding with the next iteration leads to the following refined solution

x3 = x2 + A−g[b−Ax2] = A−gb + A−g [b−Ax1] + A−g[b−Ax2]. (2.54)
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Repeating this procedure k times, we obtain

xk = A−gb +
k−1∑
i=1

A−g [b−Axi] = A−g

[
b +

k−1∑
i=1

[b−Axi]

]
. (2.55)

Analogy between equations 2.50 and 2.55 allows us to write xk as the solution of the quadratic
program

xk = arg min
x
‖Ax− b− bk−1‖2

2, (2.56)

where the original right-hand side b has been updated with the running sum of the residuals of
the first k − 1 iterations, bk−1 =

∑k−1
i=1 [b−Axi]. This means that, instead of looking for a so-

lution perturbation and adding this perturbation to the current solution to refine it, the imprint of
the current solution is directly injected in the objective function via its linear relationship with
the residuals of previous iterations. This iterative updating of the right-hand sides of a linear
problem describes the approach that is used in this study to refine the solutions of the wave-
field reconstruction and subsurface model estimation subproblems when the initial Lagrangian
method is recast as a penalty method after scaling the dual variables by the penalty parameter,
equation 2.44.

2.4 Local convergence proof

To the best of our knowledge, there is no global convergence result in general for non-
convex problems, although the global convergence of bi-convex problems is an open problem.
As in Xu et al. (2012b), we show the necessary condition for local convergence. We provide a
convergence property under some assumptions.
We can claim that algorithm 1 has a local convergence property if the solution at k-iteration
satisfies Karush-Kuhn-Tucker (KKT) condition for augmented Lagrangian

LA(m,u, b̄, d̄) = λ‖A(m)u− b + b̄‖2
2 + ‖Pu− d + d̄‖2

2 − λ‖b̄‖2
2 − ‖d̄‖2

2. (2.57)

From mathematical point of view, the primals and duals at k-iteration (uk,mk, b̄k, d̄k) satisfy
KKT condition for augmented Lagrangian (equation 2.57) if

∂LA
∂m

= 0→ L(uk)T [L(uk)mk + b− b̄k −∆uk] = 0 (2.58a)

∂LA
∂u

= 0→ λA(mk)T [A(mk)uk − b− b̄k] + PT [Puk − d− d̄k] = 0 (2.58b)

∂LA
∂b̄

= 0→ A(mk)uk − b = 0 (2.58c)

∂LA
∂d̄

= 0→ Puk − d = 0. (2.58d)

Theorem 1. Let (uk,mk, b̄k, d̄k) be the primals and duals which are generated at the k-th
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iteration of ADMM (Algorithm 1). If the duals (b̄k, d̄k) are bounded and satisfy

∞∑
k=0

[
‖b̄k+1 − b̄k‖2

2 + ‖d̄k+1 − d̄k‖2
2

]
<∞, (2.59)

then any accumulation point of mk and uk satisfies the KKT conditions 2.58

Proof. We claim that

mk+1 −mk → 0 (2.60a)
uk+1 − uk → 0 (2.60b)
b̄k+1 − b̄k → 0 (2.60c)
d̄k+1 − d̄k → 0. (2.60d)

The third and the forth terms are directly extracted from 2.59 as k →∞. We begin the proof
of the first and the second one by the bi-convexity of augmented Lagrangian (equation 2.43).
Because of the bi-convexity, LA is strongly convex w.r.t each primal variable (u,m), and so the
following inequality hold (Nishihara et al., 2015)

LA(mk,u, b̄, d̄)−LA(mk+1,u, b̄, d̄) ≥ ∂mLA(mk+1,u, b̄, d̄)T [mk−mk+1]+‖mk−mk+1‖2
2.

(2.61)
In addition, if mk+1 be a minimizer of LA w.r.t m, we have

∂mLA(mk+1,u, b̄, d̄)T [mk −mk+1] ≥ 0 (2.62)

and so
LA(mk,u, b̄, d̄)− LA(mk+1,u, b̄, d̄) ≥ ‖mk −mk+1‖2

2. (2.63)

In the same way, we can have the following inequality for u

LA(m,uk, b̄, d̄)− LA(m,uk+1, b̄, d̄) ≥ ‖uk − uk+1‖2
2. (2.64)

Using equations 2.63 and 2.64, the change in augmented Lagrangian value at iteration k and
k + 1 will be

LA(mk,uk, b̄k, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k+1)

= LA(mk,uk, b̄k, d̄k)− LA(mk+1,uk, b̄k, d̄k)

+LA(mk+1,uk, b̄k, d̄k)− LA(mk+1,uk+1, b̄k, d̄k)

+LA(mk+1,uk+1, b̄k, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k)

+LA(mk+1,uk+1, b̄k+1, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k+1)

≥ ‖mk −mk+1‖2
2 + ‖uk − uk+1‖2

2 + ‖b̄k − b̄k+1‖2
2 + ‖d̄k − d̄k+1‖2

2, (2.65)
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where

LA(mk+1,uk+1, b̄k, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k) ≥ ‖b̄k − b̄k+1‖2
2,

LA(mk+1,uk+1, b̄k+1, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k+1) ≥ ‖d̄k − d̄k+1‖2
2,

are easily extracted using the triangle inequality when the values are substituted in the aug-
mented Lagrangian (equation 2.57).
Taking summation of the inequality equation 2.65 from 1 to ∞, and consider that augmented
Lagrangian is below bounded (which observed from the boundness of b̄ and d̄ and the positivity
of other terms in augmented Lagrangian [equation 2.57]), then we have

∞∑
k=0

[
‖mk −mk+1‖2

2 + ‖uk − uk+1‖2
2 + ‖b̄k − b̄k+1‖2

2 + ‖d̄k − d̄k+1‖2
2

]
(2.66a)

≤
∞∑
k=0

[
LA(mk,uk, b̄k, d̄k)− LA(mk+1,uk+1, b̄k+1, d̄k+1)

]
<∞ (2.66b)

Since the third and forth term of equation 2.66a are bounded (equation 2.59), we have

∞∑
k=0

[
‖mk −mk+1‖2

2 + ‖uk − uk+1‖2
2

]
<∞, (2.67)

from which we immediately have mk+1 −mk → 0 and uk+1 − uk → 0 as k →∞.

We can get the following corollary from the proof of Theorem 1 as

Corollary 1 Let (uk,mk, b̄k, d̄k) be the primals and duals at k-iteration of Algorithm 1.
(uk,mk, b̄k, d̄k) satisfies Karush-Kuhn-Tucker (KKT) condition for problem 2.57.

Proof. First we subtract uk and mk from both side of equation 2.31 and 2.36, respectively, and
we rearrange them and dual variables update equations as

L(uk+1)TL(uk+1)
[
mk+1 −mk

]
= L(uk+1)T [b− b̄k −∆uk+1]− L(uk+1)TL(uk+1)mk, (2.68a)[

λA(mk)TA(mk) + PTP
][

uk+1 − uk
]

= λA(mk)T [b− b̄k] + PT [d− d̄k]−
[
λA(mk)TA(mk) + PTP

]
uk, (2.68b)

b̄k+1 − b̄k = A(mk+1)uk+1 − b, (2.68c)
d̄k+1 − d̄k = Puk+1 − d. (2.68d)

Theorem 1 implies that the left side of equation 2.68 goes to zero as soon as k → ∞ and the
right side of equation 2.68 is exactly KKT condition of the augmented Lagrangian (equation
2.58).
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Chapter 3

Regularization and bound constraints in
ADMM-WRI

Chapter overview: The focus of this chapter is the implementation of suitable regularization
and constraint for subsurface imaging in IR-WRI as well as its applications. The failure that we
saw in the inversion results of IR-WRI has not resulted from cycle skipping but from a poor con-
vergence of the optimization, which generates subsurface model of limited resolution in areas
that are located far away from the receivers. Seismic surveys perform only a sparse recording of
the wavefields at the receiver positions and so the inverse problem has a huge null space, which
means that there are a lot of models that can fit the recorded data. To tackle this ill-conditioned
problem, we need to inject prior information via regularization to drive the inversion toward
a good model everywhere. Selecting a suitable regularization function is directly related to
the statistical properties of the model that we are interested in. The two most popular regu-
larizations in seismic imaging are Tikhonov regularization, which drives FWI toward smooth
reconstruction by minimization of the roughness of the estimated model, and total-variation
(TV) regularization, which drives the inversion toward piecewise constant or blocky models by
fostering the sparsity of the first differences of the estimated model. According to our geolog-
ical knowledge of the earth’s interior, the earth usually can be viewed as a piecewise smooth
medium, that is a combination of blocky and smooth media. Therefore, neither Tikhonov nor
TV are fully representative of such models. To reconstruct a better model, we can use more com-
plicated regularization functions or combine simple regularizations to jointly catch the smooth
and blocky trends of the model. Independently from the choice of a suitable regularization
function, sometimes applying regularization is difficult because of the non-differentiability of
the associated function, as is the case of sparse regularizations.
In this chapter, I begin by reviewing the basic concepts and definitions of regularization. Then,
I apply TV regularization and bound constraints to the IR-WRI method using splitting meth-
ods and ADMM (split- Bregman) to overcome the non-differentiability of TV regularization.
This section contains our article which has been published in the Geophysical journal interna-
tional (Aghamiry et al., 2019b). As I mentioned, because of the piecewise smooth nature of
the earth, TV is not the best choice as only the blocky components of the model are properly
reconstructed with such regularization. I continue by combining simple regularization func-
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tions via convex combination and infimal convolution to find a better regularization function
for earth imaging. This section contains the article which has been published in IEEE Trans-
actions on Geoscience and Remote Sensing journal (Aghamiry et al., 2020b). Finally, I finish
this chapter with the application of sparse regularization in a compressive sensing process to
assess the robustness of IR-WRI against sparse long-offset stationary-recording acquisitions.

3.1 Introduction to regularization

Regularization is the process of adding some prior and statistical information to an ill-posed
inverse problem to prevent over-fitting and obtain a unique and stable solution among all the
possible solutions.
In order to obtain a unique and stable solution, it is possible to reformulate the problem as an
optimization problem with a regularization term, so that, out of all the models that fit the data
to some extent we keep the one that matches the regularization priors. In regularization, the
original ill-posed problem will be replaced with a well-posed problem, which has a solution
close to the correct solution.
The regularization term can be added to the optimization problem via a penalty term or a con-
straint. With penalty term, it reads

min
u,m

P(m,u) + γR(m) (3.1a)

subject to C(m,u) = 0, (3.1b)

where γ > 0 is the regularization weight andR(m) is the regularization function.
Also, it can take the form of an extra constraint as

min
u,m

P(m,u) (3.2a)

subject to

{
C(m,u) = 0,

R(m) < τ,
(3.2b)

where τ > 0 is the reconstructed model regularization value.
It can be shown that these two optimization problems can reach the same minimizer using a
specific relation between γ and τ (Hansen, 2005).
The regularization term R(m) contains a measure of the model coefficients in a specific do-
main. Most of the time this measure is a p-norm function. The selected norm for regularization
is directly related to the statistical distribution of the model coefficient in the regularization
domain. For simple regularization functions it will be

R(m) = ‖Xm‖p, (3.3)
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where X is the regularization domain and ‖•‖p is the p-norm of •. If • has a normal distribution,
2-norm can be a good choice, while 1-norm is a good choice for long-tail distributions.
In Tikhonov family regularizations, p is equal to 2 and X is identity matrix or derivative oper-
ators. In total variation regularization family, the 1-norm is applied on the first or higher order
derivative of the model coefficients. The derivative is not the only choice for regularization
domain. It can be every kind of transform like wavelet, Fourier, curvelet etc. For example, spar-
sity in the Fourier domain can be achieved by R(m) = ‖Fm‖1, where F denotes the Fourier
transform.
When the regularization function is non-differentiable, finding the minimizer is more challeng-
ing. Among plenty of methods that were proposed to tackle this kind of non-differentiable
optimization (Glowinski et al., 2017, chapter 7), I am going to use splitting methods and specif-
ically the split-Bregman method (Goldstein and Osher, 2009) in this thesis. According to the
split-Bregman method, I recast the unconstrained problem as a constrained problem by defin-
ing some auxiliary variables that are equal to the non-differentiable terms and build the aug-
mented Lagrangian and find its stationary point using ADMM. The splitting techniques allow
for breaking down the original problems to a few easy to solve convex subproblems. I describe
the split-Bregman algorithm completely in the following sections.
The other priors that I am going to add to the optimization problem are bound constraints or
box constraints, which bound the estimated model values between a preset bounds as

min
u,m

P(m,u) (3.4a)

subject to

{
C(m,u) = 0

ml ≤m ≤mu

, (3.4b)

where ml and mu are the lower and upper bound, respectively. Split-Bregman is also a straight-
forward method to apply such constraints. It will be discussed precisely in the second section.

3.2 Implementing bound constraints and total-variation reg-
ularization in extended full waveform inversion with the
alternating direction method of multiplier: application to
large contrast media

This section includes our paper about applying TV regularization and bound constraints on
IR-WRI using splitting techniques and ADMM (Aghamiry et al., 2019b).
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Implementing bound constraints and total-variation regularization in
extended full waveform inversion with the alternating direction method of

multiplier: application to large contrast media
Hossein S. Aghamiry, Ali Gholami and Stéphane Operto

Geophysical Journal International, 2019, 218(2), pages 855-872
DOI:10.1093/gji/ggz189

3.2.1 Summary

Full waveform inversion (FWI) is a waveform matching procedure, which can provide a sub-
surface model with a wavelength-scale resolution. However, this high resolution makes FWI
prone to cycle skipping, which drives the inversion to a local minimum when the initial model
is not accurate enough. Other sources of nonlinearities and ill-posedness are noise, uneven
illumination, approximate wave physics and parameter cross-talks. All these sources of error
require robust and versatile regularized optimization approaches to mitigate their imprint on
FWI while preserving its intrinsic resolution power. To achieve this goal, we implement bound
constraints and total variation (TV) regularization in the so-called frequency-domain wavefield-
reconstruction inversion (WRI) with the alternating direction method of multipliers (ADMM).
In the ADMM framework, WRI relies on an augmented Lagrangian function, a combination
of penalty and Lagrangian functions, to extend the FWI search space by relaxing the wave-
equation constraint during early iterations. Moreover, ADMM breaks down the joint wavefield
reconstruction plus parameter estimation problem into a sequence of two linear subproblems,
whose solutions are coordinated to provide the solution of the global problem. The decompos-
ability of ADMM is further exploited to interface in a straightforward way bound constraints
and TV regularization with WRI via variable splitting and proximal operators. The resilience
of our regularized WRI formulation to cycle skipping and noise as well as its resolution power
are illustrated with two targets of the large-contrast BP salt model. Starting from a 3Hz fre-
quency and a crude initial model, the extended search space allows for the reconstruction of
the salt and subsalt structures with a high fidelity. The TV regularization filters out the imprint
of ambient noise and artifacts associated with multi-scattering and Gibbs effects, while foster-
ing large-contrast reconstruction. Compared to other TV-regularized WRI implementations, the
proposed method is easy to tune due to its moderate sensitivity to penalty parameters and does
not require a prior guess of the TV-norm ball.

3.2.2 Introduction

During the last decade, full waveform inversion (FWI) has been used to estimate subsurface
parameters (P and S wavespeeds, density, attenuation, anisotropic parameters) with a resolution
close to the seismic wavelength by matching recorded and synthetic seismograms (Tarantola,
1984; Pratt et al., 1998; Virieux and Operto, 2009). From the numerical optimization viewpoint,
the data-fitting/parameter-estimation problem underlying FWI is a nonlinear partial differential
equation (PDE)-constrained optimization problem, where the equality constraint is the wave
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equation and the optimization parameters are embedded in the coefficients of the PDE. Due to
the computational burden of multiple source modelling and the size of the data and parameter
spaces, this PDE-constrained optimization problem is solved with iterative local (linearized) op-
timization techniques, namely gradient-based methods (Nocedal and Wright, 2006). Moreover,
it is often solved with a reduced-space formulation, which means that the full search space that
encompasses the unknown wavefield and the subsurface parameters is first projected onto the
parameter space by computing exactly the incident wavefields in the current subsurface model
before updating this later (Haber et al., 2000; Askan et al., 2007; Epanomeritakis et al., 2008).
It is well acknowledged that the oscillating nature of seismic signals makes the reduced-space
formulation highly nonlinear as the modelled seismograms computed in the current subsurface
model may be too far away from the recorded ones to satisfy the cycle-skipping criterion, that
is the modelled seismograms should predict the recorded traveltimes with an error lower than
half a period (e.g. Virieux and Operto, 2009).

Beyond cycle skipping, other sources of nonlinearity and ill-posedness such as noise, un-
even subsurface illumination, approximate wave physics and parameter cross-talks in multi-
parameter reconstruction require the use of stabilizing or regularization techniques that drive
the inversion towards subsurface models that satisfy some a priori assumptions. Among the
penalization techniques, Tikhonov regularization is probably the most popular one and seeks to
penalize the roughness of the subsurface model to force smooth reconstruction (see Benning and
Burger (2018) for a review). As the subsurface may be better represented by piecewise smooth
media with potentially sharp contrasts as in presence of salt, edge-preserving techniques such
as total-variation (TV) regularization have been proposed to steer the inversion to the space of
blocky structured models. TV regularization has been applied on several geophysical applica-
tions such as FWI (Askan et al., 2007; Anagaw and Sacchi, 2011; Guitton, 2012; Maharramov
and Biondi, 2015; Peters and Herrmann, 2017; Brandsberg-Dahl et al., 2017; Esser et al., 2018),
seismic tomography (Gholami and Siahkoohi, 2010; Loris and Verhoeven, 2012), impedance in-
version (Gholami, 2015, 2016), amplitude versus offset (AVO) inversion (Gholami et al., 2018),
and seismic deconvolution (Gholami and Sacchi, 2013). For FWI applications, TV regulariza-
tion can be implemented as a penalty function (Askan et al., 2007; Anagaw and Sacchi, 2011;
Brandsberg-Dahl et al., 2017) or as a constraint (Peters and Herrmann, 2017; Esser et al., 2018).
Choosing the most suitable implementation strategy may depend on the prior information on
the TV norm of the model and on the optimization method that is used to minimize the objective
function (Alkhalifah et al., 2018). If the information about the value of TV norm of the model is
available, TV regularization can be implemented as a constraint in the FWI objective function.
Otherwise, one may resort to a penalty method with the difficulty to design an adaptive penalty
parameter, which optimally balances over iterations the relative weight of the data misfit and
the total variation of the model in the objective.

In this context, the objective of this study is to present a novel implementation of TV regular-
ization and bound-constraints in frequency-domain FWI based upon wavefield reconstruction
inversion (WRI). WRI has been originally proposed by van Leeuwen and Herrmann (2013)
to extend the search space and mitigate the risk of cycle skipping accordingly. WRI recasts
the PDE-constrained optimization problem underlying FWI into an unconstrained quadratic
penalty method, where the penalty term is the `2 norm of the source residuals (namely, the PDE-
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constraint violation) that is weighted by a positive penalty parameter λ. The penalty method re-
laxes the wave-equation constraint at the benefit of the data fitting during early iterations, hence
mitigating the risk of cycle skipping. To make WRI computationally tractable, van Leeuwen
and Herrmann (2013) perform the wavefield reconstruction and the subsurface parameter esti-
mation in an alternating way: first, keeping the current subsurface model fixed, the wavefields,
which best jointly fit the observations and satisfy the wave equation in a least-squares sense, are
reconstructed for each source; Second, keeping the previously-reconstructed wavefields fixed,
the subsurface parameters are estimated by least-squares minimization of the source residu-
als the wave-equation relaxation generated. This cycle being iterated until convergence. A
nice property of the alternating-direction strategy is to linearise the parameter-estimation sub-
problem around the reconstructed wavefield because the wave equation constraint is bilinear.
However, a significant pitfall of WRI resides in the tuning of the penalty parameter λ. Ideally,
increasing values should be used during iterations to progressively enforce the wave-equation
constraint and, hence satisfy the first-order optimality conditions of the original constrained
problem with acceptable precision at the minimizer. A significant issue is that this continuation
approach is tedious to implement and the Hessian is ill conditioned for large λ. Therefore, van
Leeuwen and Herrmann (2013) implement WRI with a small preset value of λ, which leads to
slow convergence and a subsurface model of limited accuracy.
Later, van Leeuwen and Herrmann (2016) reformulated WRI as a reduced penalty method im-
plemented with a variable projection approach: the closed-form expression of the extended-
domain reconstructed wavefield is injected as a function of the subsurface parameters in the
penalty function instead of using this wavefield as a passive variable (i.e., independent to
the subsurface parameters). Unlike the alternating-direction approach, this variable projection
leaves the parameter-estimation subproblem non linear. van Leeuwen and Herrmann (2016) as-
sess their method with a Gauss-Newton method (by opposition to the full Newton counterpart)
to mitigate the computational burden. Moreover, using a sparse approximation of the Gauss-
Newton Hessian makes the descent direction of the reduced approach identical to that of the
alternating-direction WRI of van Leeuwen and Herrmann (2013). Also, Aravkin et al. (2017)
analysed the convergence properties of the reduced penalty method when the full Hessian is
taken into account and concluded that the variable projection penalty method is insensitive to
the penalty parameter. However, this convergence property still needs to be verified against
realistic numerical experiments.

To make the alternating-direction WRI of van Leeuwen and Herrmann (2013) (referred to as
WRI in the following for sake of brevity) more independent to the penalty parameter, Aghamiry
et al. (2019c, 2018c) have replaced the penalty method by an augmented Lagrangian method
(Nocedal and Wright, 2006), leading to the so-called iteratively-refined (IR)-WRI method. As
in WRI, IR-WRI performs the primal wavefield and parameter updates in an alternating mode,
while the Lagrange multipliers (i.e., the dual variables) are updated with a gradient ascent
method. As above mentioned, this alternating direction strategy makes the parameter estimation
subproblem linear due to the bilinearity of the wave equation constraint. It follows from this
linearization that the alternating direction strategy combined with the augmented Lagrangian
method is equivalent to an extension of the alternating direction method of multiplier (ADMM)
to biconvex problem (Boyd et al., 2010). Also, using a scaled form of the augmented La-
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grangian, we recast IR-WRI as a penalty method where the right-hand sides (the data and the
sources) in the objective functions are iteratively updated with the running sum of the data and
source residuals (the dual gradient steps). This reformulation of IR-WRI as a penalty method
with right-hand side updating clearly draws some similarities and differences with WRI. The
right-hand side updating makes IR-WRI largely insensitive to the penalty parameter for a wide
range of preset values (Aghamiry et al., 2019c, Their Figures 2 and 3). Using a moderate value
of the penalty parameter allows for significant wave equation error and improved data fitting
during early iterations for search space extension, without preventing the fulfilment of the wave
equation constraint with small error at the minimizer (Nocedal and Wright, 2006, Chapter 17,
Theorem 17.6). This adaptivity makes IR-WRI resilient to cycle skipping as WRI with how-
ever a much faster convergence toward a more accurate minimizer. The reader is referred to
Aghamiry et al. (2019c) for a thorough comparative convergence and accuracy analysis of WRI
and IR-WRI based upon toy and complex large-contrast synthetic examples.

The objective of this study is to show how to interface TV regularization and bound con-
straints (hereafter, we refer to it as BTV regularization) with IR-WRI by taking advantage of
the alternating-direction strategy implemented in ADMM and the split-Bregman variable split-
ting scheme developed by Goldstein and Osher (2009). More precisely, we recast the BTV
regularized IR-WRI as a TV minimization problem subject to constraints, that are the mod-
elled wavefield fit the observables and satisfy the wave equation with prescribed errors, and the
model parameters preset bounds. As in WRI and IR-WRI, we solve the wavefield and sub-
surface parameter subproblems in an alternating mode. However, the later one involves now a
combination of `1 and `2 norms related to the TV minimization and wave-equation error mini-
mization, respectively, with additional bound constraints. This is managed by the split-Bregman
variable splitting scheme, which de-couples the `1 and `2 components and bound constraints of
the functional through the introduction of auxiliary variables and solves each related subprob-
lem in sequence (Goldstein and Osher, 2009).

We first apply our method on a toy example corresponding to a high-velocity box-shape
anomaly embedded in a background model where the velocity increases with depth. Then, we
consider two more realistic examples corresponding to the left and central parts of the large-
contrast 2004 BP salt model (Billette and Brandsberg-Dahl, 2004). We show that the BTV
regularized IR-WRI converges to accurate minimizers when we start from a crude initial model
and a realistic 3 Hz frequency. We also compare the results of WRI and IR-WRI without
any priors, and when performed only with bound constraints and with BTV regularization to
highlight the impact of each ingredient upon the quality of the results and the computational
burden. We also assess the resilience of the method to noise by comparing the results that are
obtained with noiseless and noisy data.

This paper is organized as follows. In the first section, we review the principles of WRI
and IR-WRI. We first recast FWI as a feasibility problem and review different approaches that
are suitable to solve PDE-constrained optimization problems such as penalty and augmented
Lagrangian methods. Then, we review how we can easily interface some stabilizing terms with
the feasibility problem through variable splitting and ADMM. In the second part, we present
the results of the synthetic examples involving the inclusion model with two different starting
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models and the two targets of the BP2004 model with noiseless and noisy data. The results
confirm that the combined use of TV regularization and bound constraint in the ADMM-based
IR-WRI method defines a suitable framework to make high-resolution FWI immune to cycle
skipping in large-contrast media.

3.2.3 Method

In the following, we first recast frequency-domain FWI as a bi-convex feasibility problem,
which can be formulated as a constrained optimization problem with identically-zero objective
function (Aghamiry et al., 2019c, their appendix A). Then, we review the penalty and aug-
mented Lagrangian methods as optimization techniques to solve this constrained optimization
problem with an extended search-space, leading to WRI and IR-WRI, respectively. Finally, we
interface bound constraints and the isotropic TV regularization with IR-WRI by replacing the
identically-zero objective function by the TV norm of the subsurface model, and we show how
to solve efficiently the regularized IR-WRI with ADMM and split Bregman iterations.

WRI and IR-WRI principles

FWI can be formulated in the frequency domain as the following bi-convex feasibility prob-
lem (Aghamiry et al., 2019c):

Find m and u (3.5a)
subject to F(m)u = s (3.5b)

with

s =

[
d
b

]
, F(m) =

[
P

A(m)

]
, (3.6)

where m ∈ RN×1 denotes the vector of discrete model parameters (here, the squared slowness),
u ∈ CN×1 the wavefield, b ∈ CN×1 the source term, d ∈ CM×1 the recorded wavefield (data)
at receiver locations, and P ∈ RM×N is a linear observation operator that samples the modelled
wavefield at the receiver positions. The matrix A(m) ∈ CN×N represents the discretized PDE
Helmholtz operator (Pratt et al., 1998; Plessix, 2007; Chen et al., 2013).

A(m) = ∆ + ω2C(m)diag(m)B, (3.7)

where ω is the angular frequency and ∆ is the discretized Laplace operator. The operator C
encloses boundary conditions, which can be a function of m (e.g., Robin paraxial conditions,
Engquist and Majda, 1977) or independent from m (e.g., sponge-like absorbing boundary con-
ditions such as perfectly-matched layers, Bérenger, 1994). Also, the linear operator B can
be used to spread the "mass" term ω2C(m)diag(m) over all the coefficients of the stencil to
improve its accuracy following an anti-lumped mass strategy (Marfurt, 1984; Jo et al., 1996;
Hustedt et al., 2004).
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In the feasibility problem 3.5, we just want to find m and u that satisfy the constraint (we
assume that the feasible set is non-empty, namely the constraint is consistent). The feasibility
problem can be formulated as the following constrained optimization problem with identically-
zero objective function (Boyd and Vandenberghe, 2004, Page 128)

min
u,m

0 (3.8a)

subject to F(m)u = s. (3.8b)

WRI penalty method

WRI implements this constrained optimization problem with a penalty method.

min
u,m

0 + ‖F(m)u− s‖2
Λ, (3.9)

where ‖x‖2
Q := xTQx for a vector x and a square matrix Q with superscript T denoting matrix

transposition. In equation 3.9, Λ is a diagonal matrix which includes the penalty parameters λ0,
λ1 > 0 on its main diagonal,

Λ =


λ0 0

. . .
0 λ0

0 M

0 λ1 0

. . .
0 λ1

N

 . (3.10)

The objective function in equation 3.9 is a compact written version of the penalty function of
van Leeuwen and Herrmann (2013)

min
u,m
‖Pu− d‖2

2 + λ‖A(m)u− b‖2
2, (3.11)

where λ = λ1/λ0. They solve this biconvex minimization problem with an alternating-direction
approach to break down the full problem into a sequence of two linear sub-problems: A cycle
of the algorithm first reconstructs, for each source, the wavefield u that best fits the data and
satisfies the wave equation in a least-squares sense for the current subsurface model. Then,
the subsurface model is updated by minimization of the source residuals with a Gauss-Newton
algorithm keeping the reconstructed wavefields fixed. A difficulty with the penalty method
given by equation 3.11 resides in the tuning of the penalty parameter λ during iterations. An
increasing values of λ should be used during iterations, known as the penalty algorithm, to
progressively enforce the wave-equation constraint in iterations and hence satisfy the Karush-
Kuhn-Tucker (KKT) optimality conditions (Nocedal and Wright, 2006) associated with the
original constrained problem with acceptable precision. The main problem is that this contin-
uation strategy is tedious to implement and a large λmakes the problem severely ill-conditioned.

82



Regularization and bound constraints in ADMM-WRI

IR-WRI augmented Lagrangian method

To bypass this difficulty, IR-WRI implements the original constrained problem, equation
3.8, with the augmented Lagrangian (AL) method (Hestenes, 1969; Nocedal and Wright, 2006;
Boyd et al., 2010; Bertsekas, 2016).

min
u,m

max
v

0 + vT [F(m)u− s] +
1

2
‖F(m)u− s‖2

Λ, (3.12)

where Λ is defined as in equation 3.10 and v ∈ C(M+N)×1 is the Lagrangian multiplier (known
as dual variable). Comparing the penalty function, equation 3.9, and the augmented Lagrangian
function, equation 3.44, clearly shows that the augmented Lagrangian combines a penalty
method with a Lagrangian method. A first advantage of the augmented Lagrangian method
relative to the penalty method is to prevent ill-conditioning by introducing explicit estimate of
the Lagrange multiplier in the optimization (Nocedal and Wright, 2006, chapter 17). Moreover,
the Lagrange multiplier gives the augmented Lagrangian method one more way of improving
the accuracy of the minimizer in addition to the penalty parameter, hence allows fixed value to
be used for this latter (Nocedal and Wright, 2006, Theorem 17.6). Applying the alternating
direction strategy of WRI on the augmented Lagrangian method leads to an adaptation of the
alternating-direction method of multiplier (ADMM) to biconvex problem (Boyd et al., 2010,
Section 9.2). One ADMM iteration first minimizes the augmented Lagrangian function with
respect to the primal variables u and m via a single Gauss-Seidel like iteration (namely, fix one
variable and solve for the other) and then update the Lagrangian multiplier via a gradient ascent
method.

In the following section, we review each step of the ADMM-based IR-WRI algorithm when
equipped with TV regularization and bound constraints. The reader is also referred to Aghamiry
et al. (2019c) for the detailed IR-WRI algorithm when no regularization is used.

BTV-regularized ADMM-based IR-WRI

To implement TV regularization and bound constraints in IR-WRI, we first recast FWI as a
constrained TV minimization problem given by

min
u,m∈C

‖m‖TV (3.13a)

subject to F(m)u = s, (3.13b)

where F and s are defined as in equation 3.6, ‖m‖TV =
∑√

|∇1m|2 + |∇2m|2 is the blockiness-
promoting isotropic TV norm (Rudin et al., 1992), and∇1 and∇2 are first-order finite-difference
operators in the horizontal and vertical directions, respectively. With notation abuse, the abso-
lute sign, square power, and the square root operations are done component-wise, and the sum
runs over all elements (the domain of parameters). Also C = {x ∈ RN×1 |ml ≤ x ≤ mu} is
the set of all feasible models bounded by the lower bound ml and the upper bound mu.
Compared to the FWI definition given in the previous section, equation 3.8, we have replaced
the identically-zero objective function by the TV norm of the model and restricted the space of
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feasible models to C. Accordingly, the augmented Lagrangian function for the problem defined
by equation 3.13 is

LA(m,u,v) = ‖m‖TV + vT [F(m)u− s] +
1

2
‖F(m)u− s‖2

Λ, (3.14)

where the same notations as those of equation 3.44 are used.
Equation 3.14 can also be written in a more compact form as

LA(m,u, s̄) = ‖m‖TV +
1

2
‖F(m)u− s− s̄‖2

Λ −
1

2
‖s̄‖2

Λ, (3.15)

where s̄ = −Λ−1v is the scaled dual variable and equation 3.15 is the scaled form of the
augmented Lagrangian (Boyd et al. (2010, Page 15) and Appendix A, section 3.2.7). The
scaled form recasts the augmented Lagrangian function as a quadratic penalty function where
the right-hand sides are updated with the scaled dual variables. This highlights similarities and
differences between WRI and IR-WRI, since this right-hand side updating is lacking in the
former.
The method of multipliers seeks to find the saddle point of the scaled augmented Lagrangian
3.15 through a primal descent - dual ascent updating resulting in the following iteration:

mk+1,uk+1 = arg min
u,m∈C

‖m‖TV +
1

2
‖F(m)u− s− s̄k‖2

Λ (3.16a)

s̄k+1 = s̄k + s− F(mk+1)uk+1, (3.16b)

for k = 0, 1, ... beginning with a prior estimate s̄0 = 0. The iteration 3.16 can be viewed as
follows: we begin with a prior estimate of the dual s̄0, and minimize the objective function with
respect to the primal variables m and u, equation 3.16a. Subsequently, we maximize the objec-
tive function with respect to the dual variable s̄ with a gradient ascent method when m and u
are kept fixed, equation 3.16b. The steepest-ascent step, equation 3.16b, shows that the scaled
dual variable s̄ is updated with the residual constraint violation of the current iteration. Re-
membering that the constraint combines the observation equation Pu = d and the wave equa-
tion A(m)u = b, equation 3.6, the scaled dual variable s̄ updates the right-hand sides of the
quadratic penalty function, equation 3.16a, with the running sum of the data and source residuals
in iterations. This right-hand side updating describes the well-known iterative solution refine-
ment procedure for ill-posed linear inverse problems as reviewed by Aghamiry et al. (2019c,
Their appendix B). This process is iterated until convergence, i.e., when F(mk+1)uk+1 = s. In
the following, we remove the bar of s̄k for the sake of simplicity.
Solving the subproblem 3.16a jointly for the primal variables (m, u) is computationally too in-
tensive. A splitting method is useful here to break down the joint optimization over m and u into
two subproblems (the readers can refer to Glowinski et al. (2017) for an overview of splitting
methods). The alternating-direction method of multipliers (ADMM) (Boyd et al., 2010) pro-
vides a simple framework to achieve this goal via a single Gauss-Seidel like iteration leading to
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the following iteration:

uk+1 = arg min
u

1

2
‖F(mk)u− s− sk‖2

Λ (3.17a)

mk+1 = arg min
m∈C

‖m‖TV +
1

2
‖F(m)uk+1 − s− sk‖2

Λ (3.17b)

sk+1 = sk + s− F(mk+1)uk+1. (3.17c)

The ADMM iteration has decomposed the full problem into two subproblems associated with
primal variables u and m by passing the primal update of one subproblem as a passive variable
for the next subproblem. We show below that, taking advantage of the bi-convexity of the prob-
lem, this alternating-direction approach has linearized the primal subproblem for m around the
reconstructed wavefield u. The fact that the primal update of one subproblem is passed to the
next subproblem implies obviously that the two subproblems are solved in sequence rather than
in parallel as in ADMM for linear separable problems.
A second modification related to ADMM resides in the updating of the dual variable. In
ADMM, the dual variables are updated only once per iteration after the primal-variable updates,
equation 3.17c. A variant of ADMM, referred to as the Peaceman-Rachford splitting method
(PRSM) (Peaceman and Rachford, 1955), consists of updating the Lagrange multipliers several
times, once after the update of each primal variable (see He et al. (2014, Compare equations
1.3 and 1.4). One issue with PRSM relative to ADMM is that PRSM requires more restrictive
assumptions to ensure its convergence, while it is always faster than ADMM whenever it is con-
vergent (He et al., 2014) . This issue prompted He et al. (2014) to implement a relaxation factor
(or, step length) α ∈ (0, 1) to guarantee the strict contraction of the PRSM iterative sequence.
Applying the strictly contractive PRSM algorithm to our minimization problem gives

uk+1 = arg min
u

1

2
‖F(mk)u− s− sk‖2

Λ (3.18a)

sk+ 1
2 = sk + α[s− F(mk)uk+1] (3.18b)

mk+1 = arg min
m∈C

‖m‖TV +
1

2
‖F(m)uk+1 − s− sk+ 1

2‖2
Λ (3.18c)

sk+1 = sk+ 1
2 + α[s− F(mk+1)uk+1]. (3.18d)

The reader is referred to Aghamiry et al. (2019c, Their Figure 4) for a comparative numerical
analysis of the convergence speed of ADMM and PRSM in IR-WRI. In our numerical tests we
found that α = 0.5 can serve as a suitable value.
We now provide the closed-form solution of the two primal subproblems associated with u and
m.
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Solving for u

The primal subproblem associated with u, equation 3.18a, is a linear optimization problem
whose solution satisfies in a least-squares sense the following system of linear equations:[

λ
1
2
0 P

λ
1
2
1 A(mk)

]
uk+1 =

[
λ

1
2
0 [d + dk]

λ
1
2
1 [b + bk]

]
, (3.19)

where dk and bk are the components of the dual variable sk associated with the observation-
equation and wave-equation constraints, and are formed by the running sum of the data and
source residuals in iteration (see equation 3.16). The closed-form expression of the recon-
structed wavefield is given by

uk+1 =
[
λ0P

TP + λ1A(mk)TA(mk)
]−1[

λ0P
T [d + dk] + λ1A(mk)T [b + bk]

]
. (3.20)

The reconstructed wavefield can be computed numerically with linear algebra methods (direct
or iterative methods) suitable for sparse matrices as reviewed by van Leeuwen and Herrmann
(2016).

Solving for m

In order to solve the bound-constrained TV regularized nonlinear problem described by
equation 3.18c, we first tackle the nonlinearity issue by considering the special structure of the
Helmholtz operator A given in equation 3.7. Using the following approximation

A(m)uk+1 = ∆uk+1 + ω2C(m)diag(m)Buk+1,

≈ ∆uk+1 + ω2C(mk)diag(Buk+1)︸ ︷︷ ︸
L(uk+1)

m, (3.21)

we linearise the operator A with respect to m by building the matrix C from mk to manage
potential nonlinear boundary conditions. Note that this linearization step is not necessary when
the PML absorbing conditions are used. We also exploit the bilinearity of the wave equation
to permute Bu and m in the operator L(uk+1). With these manipulations, the sub-problem
associated with m is recast as

mk+1 = arg min
m∈C

‖m‖TV +
λ1

2
‖L(uk+1)m− yk‖2

2. (3.22)

where
yk = b + bk −∆uk+1. (3.23)

We solve the constrained optimization problem described by equation 3.22 with the split Breg-
man method (Goldstein and Osher, 2009) to decouple the TV minimization subproblem (first
term in equation 3.22) from the `2 subproblem (second term in equation 3.22) and force the
box constraint. We introduce the auxiliary variables p0, p1 and p2 to perform this splitting, in
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which these variables being related to m by means of a simple equality constraint. The auxiliary
variable p0 is used to enforce the box constraint, while p1 and p2 are the variables of the TV
minimization problem. Let us define (p1 p2) as a two-column matrix, ‖(p1 p2)‖ =

√
p2

1 + p2
2

be a vector which contains the `2 norm of each row of (p1 p2), and
∑
‖(p1 p2)‖ be the mixed

`2,1 norm (`1 norm of ‖(p1 p2)‖), which promotes sparsity. Then by defining the objective
function J as

J(m,p) =
∑
‖(p1 p2)‖+

λ1

2
‖L(uk+1)m− yk‖2

2, (3.24)

the unconstrained optimization problem described by equation 3.22 can be written in a split and
constrained form as

arg min
m,p,p0∈C

J(m,p) (3.25a)

subject to p = ∇m, (3.25b)

where

∇ =

 I
∇1

∇2

 ∈ R3N×N , p =

p0

p1

p2

 ∈ R3N×1,

and I is the identity matrix.

The scaled augmented Lagrangian function (Appendix A, section 3.2.7) for the problem
defined by equation 3.25 is

LA(m,p, q̄) = J(m,p) +
1

2
‖∇m− p− q̄k‖2

Γ −
1

2
‖q̄k‖2

Γ, (3.26)

where q̄ is the scaled Lagrangian multipliers and

Γ =



γ0 0

. . .
0 γ0

0 0 N

0 γ1 0

. . .
0 γ1

0 N,

0 0 γ2 0

. . .
0 γ2

N


(3.27)

with the penalty parameters γ0, γ1, γ2 > 0. Again, applying the method of multipliers to find
the saddle point of the problem 3.26 gives

mk+1,pk+1 = arg min
m,p,p0∈C

J(m,p) +
1

2
‖∇m− p− qk‖2

Γ (3.28a)

qk+1 = qk + pk+1 −∇mk+1. (3.28b)

where the bar of q̄k is removed for simplicity.
Substituting the explicit expression of J , equation 3.24, into equation 3.28a leads to the follow-
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ing PRSM iteration:

mk+1 = arg min
m

λ1

2
‖L(uk+1)m− yk‖2

2 +
1

2
‖∇m− pk − qk‖2

Γ (3.29a)

qk+ 1
2 = qk +

1

2
[pk −∇mk+1]. (3.29b)

pk+1 = arg min
p0∈C,(p1,p2)

∑
‖(p1 p2)‖+

1

2
‖∇mk+1 − p− qk+ 1

2‖2
Γ (3.29c)

qk+1 = qk+ 1
2 +

1

2
[pk+1 −∇mk+1]. (3.29d)

Note that the weight 1
2

in equations 3.29b and 3.29d has a similar role as α in equations 3.18b
and 3.18d. Now we come up with a linear inverse subproblem for m, equation 3.29a. Ac-
cordingly, the update mk+1 is obtained by solving the following system of linear equations in a
least-squares sense: [

λ
1
2
1 L(uk+1)

Γ
1
2∇

]
mk+1 =

[
λ

1
2
1 [b + bk −∆uk+1]

Γ
1
2 [pk + qk]

]
, (3.30)

where we have substituted yk by its explicit expression, equation 3.23. In equation 3.30, the
first line describes the information carried out by the reconstructed wavefield to update m via
the wave-equation rewriting, while the second line describes the action of the TV regularization
and bound constraints on m via its linear relation with the auxiliary variable p.
The closed-form expression of m is given by

mk+1 =
[
λ1L(uk+1)TL(uk+1) +∇TΓ∇

]−1[
λ1L(uk+1)T [b + bk−∆uk+1] +∇TΓ[pk + qk]

]
.

(3.31)
As for the linear system 3.20, m can be computed numerically with any suitable sparse linear
algebra method.
The sub-problem for p, equation 3.29c, is straightforward to solve. The objective function is
separable with respect to the variable p0 and the variables p1 and p2 (i.e., the optimization can
be performed for p0 and p1, p2 separately). The variable p0 is solution of the following linear
inverse problem

pk+1
0 = arg min

p0∈C

γ0

2
‖mk+1 − p0 − qk0‖2

2. (3.32)

The ith element of the solution, pk+1
0 (i), is the closest element of mk+1(i)−qk0(i) to the desired

set [ml(i),mu(i)]. Therefore,

pk+1
0 = projC(m

k+1 − qk0), (3.33)

where the projection operator is projC(•) = min(max(•,ml),mu).
The variables p1 and p2 are updated via the following proximity operator:

pk+1
1 ,pk+1

2 = arg min
(p1 p2)

∑
‖(p1 p2)‖+

γ

2
‖(p1 p2)− (z1 z2)‖2

2, (3.34)
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where γ = γ1 = γ2, and zi = ∇im
k+1 − qki i = 1, 2. Proximity operators are generalization

of projection operators (Combettes and Pesquet, 2011). Equation 3.34 describes a separable
optimization problem with respect to p1 and p2. Furthermore, p1 and p2 have closed-form
expressions (Goldstein and Osher, 2009)

pk+1
i = proxγ(zi), i = 1, 2, (3.35)

where
proxγ(zi) =

zi
‖(z1 z2)‖

max(‖(z1 z2)‖ − γ, 0). (3.36)

It can be seen that, for a single vector, the proximity operator defined in equation 3.36 reduces
to soft thresholding.

Considering all the above-mentioned processes, a pseudocode for the BTV-regularized IR-
WRI algorithm is summarized in Algorithm 2. Note that the lines 6-11 of the algorithm cor-
respond to one ADMM iteration of the model-parameter updating. These operations could be
iterated in an inner loop to update the BTV-regularized model several times after the wavefield
reconstruction at each outer iteration. However, we observed numerically that only a single
iteration of the inner loop guarantees the most efficient convergence of the full algorithm. This
property has been noticed by Goldstein and Osher (2009) and is discussed more extensively in
the framework of IR-WRI by Aghamiry et al. (2019c). The inefficiency of the inner iterations
can be understood by the fact that the original nonlinear problem is solved with an alternating-
direction strategy (managed by the outer loop). This implies that each subproblem is solved
from potentially inaccurate passive variables, this inaccuracy preventing an efficient minimiza-
tion of the objective during inner iterations. Furthermore, in order to drive the algorithm, we
assumed that the constraint is feasible. However, it has been shown that in the case of infeasible
linear constraints the ADMM iteration can still produce approximate solutions that are stable
(Frick et al., 2011; Jiao et al., 2016).

Algorithm 2: BTV regularized IR-WRI algorithm based on the PRS algorithm.
Initialize: set the RHS errors k = 0, s0 = 0, q0 = 0
Input: m0 (initial model parameters)
while convergence criteria not satisfied do

uk+1 ← update according to 3.20

sk+ 1
2 ← sk + 0.5[s− F(mk)uk+1]

mk+1 ← update according to 3.30

qk+ 1
2 ← qk + 0.5[pk −∇mk+1]

pk+1
0 ← projC(m

k+1 − q
k+ 1

2
0 )

pk+1
1 ← proxγ(∇1m

k+1 − q
k+ 1

2
1 )

pk+1
2 ← proxγ(∇2m

k+1 − q
k+ 1

2
2 )

qk+1 ← qk+ 1
2 + 0.5[pk+1 −∇mk+1]

sk+1 ← sk+ 1
2 + 0.5[s− F(mk+1)uk+1]

k ← k + 1

89



Regularization and bound constraints in ADMM-WRI

3.2.4 Numerical examples

Experimental setup and parameter tuning

We assess the performance of our BTV regularized IR-WRI against 2D mono-parameter
synthetic examples. We start with a toy example built with a high-velocity inclusion model that
is embedded in a background medium where velocity linearly increases with depth . To tackle
more realistic applications, we proceed with two scaled targets of the challenging 2004 BP salt
model (Billette and Brandsberg-Dahl, 2004). With the BP salt case study, we seek to illustrate
the potential of IR-WRI equipped with our BTV regularization to image salt bodies and sub-salt
structures starting from crude initial models and realistic frequencies.
For all the numerical examples, forward modelling is performed with a 9-point stencil imple-
mented with anti-lumped mass and PML absorbing boundary conditions (Chen et al., 2013). In
this setting the diagonal matrix C contains the damping PML coefficients and does not depend
on m. With this setting, equation 3.21 does not require any approximation for linearization.
We will compare the results of WRI and IR-WRI to highlight the improved convergence history
of IR-WRI resulting from the iterative updating of the right-hand sides in the penalty function
associated with the scaled-form augmented Lagrangian, equations 3.15-3.18. We assume that
our IR-WRI algorithm, when this right-hand side updating is not activated, is representative of
the WRI penalty method (van Leeuwen and Herrmann, 2013). For a fair comparison, we will
use the same experimental setup (penalty parameters and stopping criterion of iteration) for the
two methods. We also compare the WRI and IR-WRI results when they are obtained without
any priors (γ0 = γ = 0), with only bound constraints (γ = 0) and with BTV regularization
(γ0 6= 0 and γ 6= 0), where it is reminded that γ0 and γ are the penalty parameters that control
the weight of the bound constraints and TV regularization, respectively, in the objective func-
tion (see equation 3.27).
We tune the different penalty parameters according to the following guideline. We start from
the last subproblem of the splitting procedure and set the parameter γ, which controls the soft
thresholding performed by the TV regularization, equation 3.35-3.36. In this study, we find that
γ = 2% max ‖(z1 z2)‖ was a good pragmatical value. This tuning can be refined according to
prior knowledge of the geological structure, coming from well logs for example. In this study,
we use the same weight for the bound constraints and the TV regularization: γ0 = γ. Once we
set γ, we define λ1 such that γ/λ1 is a percentage of the mean absolute value of the diagonal
coefficients of LTL during the parameter estimation subproblem, equation 3.31. This percent-
age is set according to the weight that we want to assign to the TV regularization and the bound
constraints relative to the wave equation constraint during the parameter estimation. Parameter
λ1 may be increased during iterations to reduce the weight of TV regularization and bound con-
straints near the convergence point. We found this adaptation useful when we start from very
crude initial models. Finally, we set λ0 such that λ = λ1/λ0 is a small fraction of the highest
eigenvalue ξ of the normal operator A(m)−TPTPA(m)−1 during the wavefield reconstruction
subproblem, equation 3.20, according to the criterion proposed by van Leeuwen and Herrmann
(2016). In all the numerical tests, we use λ = 1e-5ξ and λ = 1e-3ξ for noiseless and noisy
data, respectively. This tuning of λ is indeed important because it controls the extension of the
search space. A too high value of λ reduces the weight of ‖Pu− d‖2

2 during the wavefield
reconstruction and makes IR-WRI behave like a reduced approach. Conversely, using a small
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value for λ fosters data fitting and expends the search space accordingly. However, a too small
value can lead to a prohibitively high number of iterations of the augmented Lagrangian method
before the wave equation constraint is fulfilled with sufficient accuracy. Moreover, when data
are contaminated by noise, a too small value for λ will make the wavefield reconstruction over-
fit the data and drive WRI to be a poor minimizer. We always use λ as a fixed percentage of
ξ in iterations for both WRI and IR-WRI. This does not prevent IR-WRI to converge towards
accurate minimizers thanks to the iterative error correction performed by the Lagrange multi-
plier updating. The reader is referred to Aghamiry et al. (2019c) for a more thorough sensitivity
analysis of IR-WRI to the penalty parameter λ.

Inclusion model

The subsurface model contains a sharp box-shape anomaly of sides 0.2 × 0.3 km with a
velocity (VP ) of 5 km/s. It is embedded in a smooth background model where VP increases
linearly with depth from 1.5 to 3.5 km/s (Figure 3.1). The model is 1.5 km long and 1 km deep,
and is discretized with a 10 m grid interval. The regular surface acquisition consists of five
sources (as depicted with yellow stars in Figure 3.1) and 65 receivers deployed on the surface.
The source signature is a Ricker wavelet with a 5 Hz dominant frequency. We start the inver-
sion from the true background model and invert simultaneously three frequency components
(2.5, 5 and 7 Hz) with noiseless data. This frequency bandwidth has been selected to cover a
significant band of vertical wavenumbers in the waveform-inversion sensitivity kernels, consid-
ering the limited aperture illumination provided by the surface acquisition. Moreover, a realistic
starting frequency of 2.5Hz allows us to assess the resilience to cycle skipping of IR-WRI. A
maximum number of iterations set to 70 is used as a stopping criterion for all of the tests shown
in Figure 3.2. When bound constraints are used, the bounds ml and mu, equation 3.33, are set
to the true minimum and maximum square slownesses, respectively.

We first compare WRI and IR-WRI results when bound constraints and TV regularization
are not activated, i.e. γ0 = γ = 0 (Figure 3.2(a-b)). WRI and IR-WRI reconstruct only the
top of the anomaly with strongly overestimated velocities. Then, we add bound constraints in
WRI and IR-WRI, using γ0/λ1 = 0.01ζ , where ζ is the mean absolute value of the diagonal
coefficients of LTL. The bound-constrained WRI and IR-WRI only reconstruct the top of the
anomaly as in Figure 3.2(a-b). However, the inclusion velocities are now well controlled by
the bound constraints (Figure 3.2(c-d)). These first two tests show that IR-WRI reconstructs
better the shape of the anomaly than WRI with however more significant artifacts on both sides
of the anomaly. These artifacts may have resulted from the deficit in horizontal-wavenumber
illumination provided by the sparse limited-offset surface acquisition and by multi-scattering
pollutions.
Then, we apply BTV regularization with γ/λ1 = γ0/λ1 = 0.01ζ (Figure 3.2(e-f)). Since the
initial model matches the true velocity-gradient background model, we use a small value of
γ/λ1 (i.e., a high value of λ1) and keep it constant in iterations to preserve the smooth compo-
nents of the subsurface model. We show that the BTV regularized WRI still fails to reconstruct
the full anomaly (Figure 3.2e). In contrast, BTV regularized IR-WRI keeps on improving the
reconstruction of the anomaly in depth, while efficiently mitigating the oscillating artifacts (Fig-
ure 3.2f).
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A vertical profile across the reconstructed anomaly also highlights some limitations of the BTV
regularization (Figure 3.2f): below the anomaly, the BTV regularization superimposes staircase
artifacts on the velocity gradient, consistently with the piecewise constant assumption underly-
ing TV regularization.
To emphasize the resilience to cycle skipping of the BTV regularized WRI and IR-WRI, we

repeat this toy example using a 2.2 km/s homogeneous velocity model as initial model (Fig-
ure 3.3). We perform a first test without any prior. Compared to the previous test, we just
stabilize the inversion by adding a small damping term (=0.01ζ) to LTL. Compared to Fig-
ure 3.2(a-b), the artifacts have a much stronger imprint due to the inaccuracy of the starting
model (Figure 3.3(a-b)). Then, we move to bound-constrained and TV regularized tests (Fig-
ure 3.3(c-f)). To decrease the above-mentioned artifacts, we assign a high initial weight to the
BTV regularization (γ/λ1 = γ0/λ1 = ζ) and decrease it by a factor 2 every 10 iterations until
it reach a minimal value set to 0.01ζ (i.e., the constant value previously used). In accordance
with the former test, bound constraints alone are not sufficient to reconstruct the bottom part of
the anomaly and cancel out the oscillating artifacts (Figure 3.3(c-d)). In contrast, BTV IR-WRI
achieves these two goals, although it leaves a significant staircase footprint below the anomaly
(Figure 3.3f). Compared to Figure 3.2f, the edges of the anomaly are better reconstructed at
the expense of the background velocity-gradient model. This results, because of the more ag-
gressive TV regularization was used during the early iterations of this test, allowing for a better
reconstruction of the blocky components of the medium, while injecting undesired staircase
footprint on its smooth components. As for the former test, IR-WRI clearly outperforms WRI
due to the more efficient solution refinement procedure resulting from the right-hand side up-
dating.
We also show the joint evolution in iterations of the observation-equation and wave-equation

errors (Figure 3.4) and the wavefield and subsurface model errors (Figure 3.5), when the initial
model is the true velocity-gradient background model and the homogeneous model. IR-WRI fits
the data and wave equation better than WRI after 70 iterations with both initial models because
the right-hand side updating embedded in IR-WRI cancels out more efficiently the data and
source residuals in iterations and, hence better refines the solution accordingly. Moreover, BTV
regularization in IR-WRI further improves the data and wave equation fit for both initial models
because it reduces more efficiently the oscillating artifacts in the reconstructed velocity model

Figure 3.1 – The true velocity of the box-shaped anomaly example. The yellow stars show the
source positions.
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Figure 3.2 – A box-shaped anomaly example with the true background velocity gradient as the
initial model. Velocity models reconstructed by (a) WRI. (b) IR-WRI. (c-d) Bound constrained
WRI (c) and IR-WRI (d). (e-f) BTV regularized WRI (e) and IR-WRI (f). Horizontal and
vertical profiles across the center of the inclusion from the true (black), initial (dash blue) and
reconstructed (red) models are shown below and on the left-hand side of the models.

and better reconstructs the edges of the anomaly (Figure 3.2f). As above mentioned, the oscillat-
ing artifacts may result from the deficit of horizontal wavenumber illumination generated by the
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Figure 3.3 – The box-shape anomaly example. Same as Figure 3.2 for a homogeneous initial
velocity model (VP=2.2km/s).

limited-offset surface acquisition. In this framework, the prior contained in the BTV regulariza-
tion efficiently narrows the null space of the inversion. The more complex zigzag path followed
by IR-WRI relative to WRI in the (‖Puk − d‖2 − ‖A(mk)uk − b‖2) plane highlights how
the joint updating of the data and source by their associated residuals dynamically balances the
weight of the two objective functions in iterations. This more complex convergence history of
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IR-WRI, which has been already noticed in Aghamiry et al. (2019c), suggests that the right-hand
side updating perform a self-adaptive weighting of the two competing objective functions driven
by the relative reduction of the data and source residuals in iterations. This zigzag convergence
trend translates also into more complex path in the (‖uk−u∗‖2/‖u∗‖2−‖mk−m∗‖2/‖m∗‖2)
plane (m∗ and u∗ denote the true model and wavefields, respectively), which illustrates how the
solution refinement is pushed toward the wavefield reconstruction or the velocity model esti-
mation according to the self-adaptive weighting of the observation-equation and wave-equation
objective functions (Figure 3.5). Note that the relative model errors increase in the case of
the initial velocity-gradient model (Figure 3.5a,b). This results from the fact that the smooth
background model is degraded by the oscillating artifacts and the staircase footprint during the
sharp inclusion reconstruction. Indeed, this degradation of the smooth components has a much
higher weight in the `2 misfit function than the more accurate reconstruction of the blocky com-
ponents. However, this increase is much more moderate in IR-WRI (Figure 3.5b) than in WRI
(Figure 3.5a). Finally, we plot the TV norm of the reconstructed models in iterations for the
different tests (Figure 3.6). As expected, the models reconstructed with bound constraints and
TV regularization match better the TV of the true model. When the homogeneous initial model
is used, BTV IR-WRI smoothly converges to the TV of the true model after iteration 20 (when
bound constraints are activated), while the weight of the TV regularization is progressively de-
creased (Figure 3.6b, blue curve). The BTV WRI model matches slightly better the TV of the
true model than the BTV IR-WRI one when the initial model is the true background model.
Indeed, this does not reflect that WRI better reconstructs the anomaly than IR-WRI. Instead,
it reflects the slower convergence of WRI relative to IR-WRI which contributes to keep the
background model smooth (namely, which a TV close to that of the true background model).

2004 BP salt model - central target

We now consider a more realistic application with a first target of the challenging 2004
BP salt model. The 2004 BP salt model is representative of the geology of the deep water
offshore Gulf of Mexico and mainly consists of a simple background with a complex rugose
multi-valued salt body, sub-salt slow velocity anomalies related to over-pressure zones and a
fast velocity anomaly to the right of the salt body (Billette and Brandsberg-Dahl, 2004). The
first selected target corresponds to the central part of the 2004 BP salt model characterized by
a deeply rooted salt body (Figure 3.7a). Note that we rescale the spatial dimensions and the
sampling of the original target for sake of computational efficiency.
Accordingly, our subsurface model is 8.8 km wide and 2.9 km deep, and is discretized with a
25 m grid interval. We used 50 sources spaced 175 m apart on the top side of the model. The
source signature is a Ricker wavelet with a 10 Hz dominant frequency. A line of receivers with
a 50 m spacing are deployed at the surface leading to a stationary-receiver acquisition.
We start the inversion from a smoothed version of true velocity model where the imprint of the
salt body and other structures were cancelled out (Figure 3.7b) and invert the 3-Hz frequency
with noiseless data.
We compare the results of WRI and IR-WRI with bound constraints and BTV regularization. To
highlight the specific role of bound constraints, we activate them after 21 iterations. Since we
start from a rough initial model, we set γ0/λ1 = γ/λ1 = ζ and decrease them during iterations
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Figure 3.4 – The box-shape anomaly example. Convergence history in the (‖Puk − d‖2 −
‖A(mk)uk − b‖2) plane of WRI and IR-WRI without priors, with bound constraints and with
BTV regularizations. (a,c) WRI. (b,d) IR-WRI. Initial model is (a-b) the true velocity-gradient
background model, and (c-d) the homogeneous velocity model. All the panels are plotted with
the same horizontal and vertical logarithmic scale. The black arrow points the starting point.

in a manner similar to the box-shape anomaly test with a homogeneous starting model. Also, we
add a damping term to LTL with a weight equal to 0.01ζ to further stabilize the inversion. We
stop inversion after 70 iterations. The estimated models are shown in Figure 3.7 together with
horizontal profiles at 1.65 km depth and vertical profiles at 4.15 km distance extracted from
the true, initial and reconstructed models. As for the inclusion test, WRI fails to reconstruct
the salt body and the subsalt structure because the data and source residuals are not re-injected
in the right-hand sides of the penalty function at each iteration as in equation 3.17, leading to
a stagnant convergence of the inversion (Figure 3.7c,e). When IR-WRI is applied with bound
constraints alone, the reconstructed model is affected by noise with a periodic horizontal pattern.
This noise likely results from the monochromatic nature of the inversion, multi-scattering within
the salt body and limited illumination of the horizontal wavenumbers of the salt body leading to
wraparound (Figure 3.7d). The BTV regularized IR-WRI mitigates efficiently this noise without
degrading the resolution of the salt body and the sub-salt structures (Figure 3.7f).
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Figure 3.5 – The box-shaped anomaly example. Convergence history in the (‖uk −
u∗‖2/‖u∗‖2 − ‖mk − m∗‖2/‖m∗‖2) plane of WRI and IR-WRI without priors, with bound
constraints and with BTV regularization and for the two initial models. The wavefield misfit
function ‖uk − u∗‖2/‖u∗‖2 is computed by summation over all the shots. (a,c) WRI. (b,d)
IR-WRI. The initial model is (a-b) the true velocity-gradient background model, and (c-d) the
homogeneous velocity model. Note the increase of ‖mk −m∗‖2/‖m∗‖2 over iterations in (a-
b) (see text for explanations). All the panels are plotted with the same horizontal and vertical
logarithmic scale. The black arrow indicates the starting point.

Figure 3.8(a) shows the joint evolution in iterations of the data misfit and the wave-equation
error. As for the inclusion test, note the zigzag path followed by the IR-WRI objective functions
over iterations. Also, the joint evolution of wavefield and subsurface model errors and the
evolution of TV norm over iteration are shown in Figure 3.8(b,c). The TV norm evolution
emphasizes how the bound constraints fasten the convergence of TV-regularized IR-WRI after
iteration 20.

We continue the inversion at higher frequencies using the final models of the 3 Hz inversion
as initial models (Figure 3.7c-f). We used small batches of two frequencies with one frequency
overlapping between two consecutive batches, moving from the low frequencies to the higher
ones according to a classical frequency continuation strategy. We set γ0/λ1 = γ/λ1 = 0.01ζ
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Figure 3.6 – The box-shape anomaly example. TV norm history over iterations of bound con-
strained, BTV regularized and ordinary WRI and IR-WRI for (a) velocity-gradient and (b) ho-
mogeneous initial model. The TV norm of true model is plotted with dashed-black line.

and remove the damping of LTL. The starting and final frequencies are 3.5 Hz and 12 Hz and
the sampling interval in one batch is 0.5 Hz. The algorithm performs at most 15 iterations per
frequency batch and the number of iterations that have been performed is 170. The inversion
results are shown in Figure 3.9. WRI with bound constraints and BTV (Figure 3.9(a,c)) fails
to converge toward satisfactory results, while BTV-regularized IR-WRI converges to accurate
velocity model, although a significant imprint of the TV regularization is shown (Figure 3.9d).
When IR-WRI is performed with only bound constraints, the oscillating artifacts are not can-
celled out (Figure 3.9b). This highlights the role of TV regularization in reconstructing blocky
structures and removing wraparound artifacts.

2004 BP salt model - Left target

We now consider a second target of the 2004 BP salt model located on the left side of the
model (Figure 3.10a). This target was previously used by among others Métivier et al. (2016a),
Brandsberg-Dahl et al. (2017) and Esser et al. (2018) for FWI applications. After rescaling
of the original model with the ratio used by Métivier et al. (2016a), our subsurface target is
16250 m wide and 5825 m deep, and is discretized with a 25 m grid interval. We used 108
sources spaced 150 m apart on the top side of the model. The source signature is a Ricker
wavelet with a 10 Hz dominant frequency. A line of receivers with a 25 m spacing are deployed
at the surface leading to a stationary-receiver acquisition. We perform IR-WRI with bound
constraints alone and with BTV regularization, for noiseless and noisy data.

We used a crude laterally-homogeneous velocity-gradient model as initial model (Figure
3.10b). We used small batches of two frequencies with one frequency overlap between two
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Figure 3.7 – 2004 BP salt model - Central target. 3-Hz frequency. (a) True model. (b) Starting
model. (c-d) Bound constrained WRI(c) and IR-WRI(d) models. (e-f) BTV regularized WRI(e)
and IR-WRI(f) models. Horizontal and vertical profiles at 4.15 km distance and 1.65 km depth
from the true (black), initial (dash blue) and reconstructed (red) models are shown below and
on the left-hand side of the models.

Figure 3.8 – 2004 BP salt model - Central target. 3-Hz frequency. Convergence history (a) in
the (‖Puk−d‖2−‖A(mk)uk−b‖2) plane (b) in the (‖uk−u∗‖2/‖u∗‖2−‖mk−m∗‖2/‖m∗‖2)
plane. (c) Evaluation of TV norm ‖mTV ‖ over iterations. Note again the more complex conver-
gence history of IR-WRI compared to WRI due to the self-adaptive weighting of the data-fitting
and wave-equation objective functions performed by right-hand side updating. The iteration 22
are located with cyan stars in (a) and (b).
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Figure 3.9 – 2004 BP salt case study. Central target. (a) Final bound constrained WRI with
Figure 3.7(c) as initial model.(b) Final bound constrained IR-WRI with Figure 3.7(d) as initial
model. (c) Final BTV regularized WRI with Figure 3.7(e) as initial model. (d) Final BTV
regularized IR-WRI with Figure 3.7(f) as initial model.

consecutive batches, moving from the low frequencies to the higher ones according to a classical
frequency continuation strategy. The starting and final frequencies are 3 Hz and 13 Hz and the
sampling interval in one batch is 0.5 Hz. The stopping criterion of iteration for each batch is
given by

kmax = 15 or (‖A(mk+1)uk+1 − b‖2 ≤ εb and ‖Puk+1 − d‖2 ≤ εd), (3.37)

where kmax denotes the maximum iteration count, εb=1e-3, and εd=1e-5 for noiseless data and
εb=1e-3 , εd= noise level of batch for noisy data. We perform three paths through the frequency
batches to improve the IR-WRI results, using the final model of one path as the initial model
of the next one (these cycles can be viewed as outer iterations of IR-WRI). The starting fre-
quency of the second and third path is 6 Hz and 8.5 Hz, respectively. The IR-WRI models
inferred from noiseless data with bound constraints and with BTV regularization are shown in
Figure 3.10(c-d). The number of iterations that have been performed with bound constraints
and with BTV regularization are 441 and 340, respectively. Direct comparison between the
true model, the starting model and the IR-WRI models along three vertical logs cross-cutting
the salt body at 5 km, 7.5 km and 10 km distance (vertical dashed lines in Figure 3.10a) are
shown in Figure 3.11a. The results show the resilience of IR-WRI to cycle skipping with a
pretty accurate reconstruction of the salt body and sub-salt structures (Figure 3.10(c-d)). How-
ever, the model obtained with bound constraints alone shows high-frequency noise in the salt
body and below (Figure 3.10c). This noise can result from Gibbs phenomenon caused by the
frequency decimation and artifacts resulting from multi scattering (Alkhalifah et al., 2018). The
BTV regularization efficiently removes these artifacts except those resulting from truncation
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Figure 3.10 – The 2004 BP salt case study. Left target. (a) True BP model. The vertical dashed
lines indicate the location of vertical logs of Figure 3.11. (b) Initial velocity model. (c-d) Final
IR-WRI velocity models obtained with bound constraints (c) and with BTV regularization (d)
for noiseless data. (e-f) Same as (c-d) for noisy data for a SNR of 10 db.

of the acquisition near the left end of the model at 5-km depth (Figure 3.10d). The inversion
captures reasonably well the subsalt structures, including the low-velocity over-pressure zone
at (x,z)=(7.5km,4km) as well as the smooth velocity variations.
When noisy data are used (Figure 3.10(e-f) and 3.11b), the number of iterations that have been
performed with bound constraints alone and with BTV regularization is 263 and 254, respec-
tively. As for the noiseless case, a direct comparison between the true model, the starting model
and the two IR-WRI models along three vertical logs cross-cutting the salt body at 5 km, 7.5 km
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and 10 km distance is shown in Figure 3.11b. The artifacts have now a more significant imprint
when only bound constraints are used (Figure 3.10e). Accordingly, we apply a more aggres-
sive TV regularization to obtain the results shown in Figure 3.10f. The artifacts have been
efficiently removed with however a more obvious imprint of the piecewise-constant approxi-
mation underlying BTV regularization. This blocky pattern is clearly visible in deep part of
the vertical profiles of Figure 3.11b where velocity gradients have been replaced by stack of
constant-velocity layers.

Figure 3.11 – 2004 BP salt case study - Left target. Direct comparison between the true velocity
model (black), the initial model (dashed line) and the IR-WRI models obtained with bound
constraints (red) and with BTV regularization (blue) along three logs at x=4.5 km, 7 km, 10 km
(vertical dashed lines in Figure 3.10a) from left to right. (a) Noiseless data. (b) Noisy data.
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3.2.5 Discussion

We have implemented bound constraints and TV regularization in the wavefield reconstruc-
tion inversion (WRI) method (van Leeuwen and Herrmann, 2013) which has been recently
improved by Aghamiry et al. (2019c) in the framework of the alternating-direction method of
multiplier (ADMM), leading to the iteratively-refined WRI (IR-WRI).

There are some key differences between our implementation of BTV-regularized WRI and
previous ones based upon projected-gradient method (Peters and Herrmann, 2017) and primal
dual hybrid gradient (PDHG) methods (Esser et al., 2018; Yong et al., 2018) that we review
below. In the projected-gradient method, Peters and Herrmann (2017) first update model pa-
rameters with FWI or WRI and then project the updated model into the intersection of the TV
and bound constraint with Dykstra projection algorithm (Boyle and Dykstra, 1986), an alter-
nating projection onto some constraints until satisfying all of them. Therefore, their workflow
is subdivided in two different parts, that are the model update followed by the projection onto
intersection of all constraints (Peters and Herrmann, 2017, their equation 7). Unlike Peters and
Herrmann (2017) method, which relies on independent update and projection steps, all the in-
gredients of BTV-regularized IR-WRI (i.e., wavefield reconstruction, parameter estimation, TV
regularization and bound constraints) are consistently integrated in the theoretical framework
of ADMM optimization (the readers can also refer to Maharramov and Levin, 2015).
Esser et al. (2018); Yong et al. (2018) implemented TV regularization and bound constraints in
the reduced variable projection WRI of van Leeuwen and Herrmann (2016) with PDHG. PDHG
is a method to solve constrained optimization problems by alternating gradient descent (for pri-
mal variable) and gradient ascent (for dual variable), which can be interpreted as linearized
ADMM (Goldstein et al., 2015). PDHG can be helpful if the least squares minimizations em-
bedded in ADMM are difficult to solve efficiently (Goldstein et al., 2015). This is not really the
case in WRI, which mainly requires to solve two sparse linear systems for u and m. Meanwhile,
the selection of step size in PDHG that guarantees fast convergence, or even convergence at all,
is not intuitive at all and can make PDHG impractical. This issue prompted Goldstein et al.
(2015) to develop step size tuning rules which contribute to make PDHG self-adaptive as illus-
trated recently by Yong et al. (2018) in the frame of WRI. Beyond PDHG method, Esser et al.
(2018); Yong et al. (2018) minimize data and source residuals with a penalty method, which
lacks the convergence property of the augmented Lagrangian method promoted in IR-WRI.
Moreover, they implement TV regularization as a hard constraint in the parameter-estimation
subproblem through a Lagrangian function, whose saddle point is estimated with PDHG. In
contrast, we implement the TV regularization as a soft constraint after introducing the auxil-
iary variable p and solve the regularized sub-problem for m with the split Bregman method (or
equivalently ADMM), equation 3.26. This gives us the necessary flexibility to implement ag-
gressive regularization during early iterations and relax it progressively, when very crude initial
models are used. With more accurate initial models, the augmented Lagrangian embedded in the
split Bregman method, equation 3.26, allows for constant penalty parameter to be used. These
penalty parameters are used as step lengths in the augmented Lagrangian method, hence leading
to a self-adaptive TV regularization implementation rid of tedious TV-norm ball continuation
strategies and/or adaptive step lengths (Esser et al., 2018; Yong et al., 2018). Third, while Esser
et al. (2018, equation 18) and Yong et al. (2018, equation 41) implement bound constraints
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as hard constraints by projection at each iteration of the TV-regularized perturbation model
onto the feasible set defined by the bound constraints, we implement bound constraints consis-
tently with TV regularization in the framework of the method of multiplier, equations 3.30-3.34.
Finally, our approach does not require prior guess of TV-norm ball because we implement TV
regularization as a minimization problem rather than as a constraint. That being said, Esser et al.
(2018) show promising results with the τ continuation approach and asymmetric TV norm on
the BP salt model starting from a very crude initial model. It will be interesting in future work
to assess the benefit of asymmetric TV norm in BTV IR-WRI.
Indeed, implementation of BTV-regularized IR-WRI requires to setup different parameters,
which have been discussed at the beginning of the section Experimental setup and parameter
tuning. The penalty parameter which controls the relative weight between the wave equation
objective and the data fitting objective during the wavefield-reconstruction subproblem has been
discussed in length in Aghamiry et al. (2019c). They have concluded that a fixed penalty pa-
rameter can be used during iterations because the accuracy of the minimizer in the method of
multiplier is controlled both by the penalty parameter and the accuracy of the updated multi-
plier (Nocedal and Wright, 2006, Theorem 17.6). In this study, we suggest good pragmatical
values of this penalty parameter as a percentage of the maximum eigenvalue of the augmented
wave-equation normal operator for noiseless and noisy data. Optimal values may be refined
by trial and error to prevent noisy data over-fitting and keep the iteration count within reason-
able limits. The TV and bound parameters should be easily determined from well logs or a
priori geological knowledge. Finally, the relative weight between the TV regularization and
the wave-equation constraint, which is controlled by λ1, needs also to be estimated during the
parameter-estimation subproblem. As above mentioned, this penalty parameter is kept fixed
during iterations or is progressively decreased to relax the TV regularization and bound con-
straints near the convergence point, depending of the accuracy of the initial model. The reader
is also referred to Goldstein and Osher (2009, section 2.2) who discuss the sensitivity of the
split Bregman method (an optimization method similar to ADMM (Esser, 2009)) to the penalty
parameter for `1-regularized problems.
One drawback of the BTV regularization is related to the piecewise constant approximation un-
derlying TV regularization, which tends to superimpose some blocky patterns on the smooth
part of the subsurface. To overcome this issue, ongoing work seeks to optimally combine
Tikhonov and TV regularization in IR-WRI (Gholami and Hosseini, 2013; Aghamiry et al.,
2018a, 2020b).
Other perspective developments involve extension to multiparameter reconstruction, 3D geome-
tries and application to real data to further assess the potential and limits of IR-WRI. For 3D ap-
plications, the wavefield reconstruction in the frequency domain requires to solve a large-scale
linear algebra problem, equation 3.20. Operto et al. (2015), Amestoy et al. (2016), and Operto
and Miniussi (2018) have shown the computational efficiency of 3D frequency-domain FWI
based on sparse direct solvers in the 3.5-10 Hz frequency band for dense stationary-recording
ocean-bottom cable acquisitions. Mary (2017) showed that block low-rank multifrontal solver
allows one to tackle numerical problems involving up to 100 million unknowns. The symme-
try of the normal operator, equation 3.20, should balance the computational overhead resulting
from the higher number of non-zero coefficients relative to the impedance matrix A. Note
that A was processed as an unsymmetric matrix in the above-mentioned references due to dis-
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cretization issues, although more suitable discretisations which preserve the symmetry of the
impedance matrix may be considered in the future (Pratt and Smithyman, 2018). Alternatively,
domain decomposition methods suitable for Helmholtz problems can be interfaced with hybrid
direct-iterative solvers to perform wavefield reconstruction in bigger computational domains
(Dolean et al., 2015). These approaches may be suitable for stationary-receiver acquisition
involving a more limited number of reciprocal sources such as ocean bottom seismometer ac-
quisitions.

3.2.6 Conclusion

We have presented a new method to implement TV regularization and bound constraints in
frequency-domain FWI based on wavefield reconstruction (WRI). In a previous study, we have
reformulated WRI in the framework of the alternating-direction method of multiplier (ADMM),
leading to the iteratively-refined wavefield-reconstruction inversion method (IR-WRI). We have
shown how the augmented Lagrangian embedded in ADMM makes IR-WRI weakly sensitive
to a wide range of penalty parameter thanks to the Lagrange multiplier updating. Using a
small value of this penalty parameter efficiently extends the search space during early itera-
tions to foster data fitting without preventing the wave-equation constraint to be fulfilled at the
convergence point with a preset prescribed error. IR-WRI performs a first ADMM step to al-
ternate wavefield reconstruction and subsurface parameter estimation as in the original WRI
method. When BTV regularization is used, we perform a second ADMM step to decompose
the BTV-regularized parameter estimation sub-problem into a sequence of two simpler sub-
problems through the introduction of auxiliary variables. This variable splitting allows for the
de-coupling between the `1 and the `2 components of the penalty function according to the
so-called split Bregman method. An interesting property exploited by WRI methods is the bi-
linearity of the wave equation constraint with respect to the wavefield and the parameter, which
makes the `2 wave-equation objective of the second sub-problem quadratic. Our implementa-
tion of BTV-regularization in IR-WRI with ADMM (or, equivalently split Bregman) provides
a versatile framework to cascade constraints and regularization of different nature and is rea-
sonably easy-to-tune due to the limited sensitivity of the augmented Lagrangian method to the
choice of the penalty parameters. For challenging subsurface targets with contrasted structures
such as salt bodies, we have shown that our BTV-regularized WRI shows a high resilience
to cycle skipping and noise and efficiently mitigates high-frequency artifacts associated with
incomplete illumination and multi scattering without detriment to the resolution of the imaging.
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3.2.7 Appendix A: Scaled form of augmented Lagrangian

Let’s start with the following constrained problem

min
x

‖P (x)‖2
2 subject to Q(x) = 0. (3.38a)

The augmented Lagrangian function for the problem is (Nocedal and Wright, 2006)

LA(x,v) = ‖P (x)‖2
2 + vTQ(x) +

λ

2
‖Q(x)‖2

2. (3.39)

The problem 3.39 can be written in a more compact form by introducing the scaled dual variable
q̄ = −v

λ
and adding and subtracting the term λ

2
‖q̄‖2

2 to the augmented Lagrangian 3.39. In this
case, we arrive at the following scaled-form of the method of multipliers:

LA(x, q̄) = ‖P (x)‖2
2 − λq̄TQ(x) +

λ

2
‖Q(x)‖2

2 +
λ

2
‖q̄‖2

2 −
λ

2
‖q̄‖2

2 (3.40a)

= ‖P (x)‖2
2 +

λ

2
‖Q(x)− q̄‖2

2 −
λ

2
‖q̄‖2

2. (3.40b)

3.3 Compound Regularization of Full-waveform Inversion for
Imaging Piecewise Media

This section includes our paper about applying compound regularization, combination of
simple regularizations, and bound constraints on IR-WRI using splitting techniques and ADMM
(Aghamiry et al., 2020b).
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Compound Regularization of Full-waveform Inversion for Imaging
Piecewise Media

Hossein S. Aghamiry, Ali Gholami and Stéphane Operto
IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(2), pages

1192-1204, DOI:10.1109/TGRS.2019.2944464

3.3.1 Summary

Full waveform inversion (FWI) is an iterative nonlinear waveform matching procedure,
which seeks to reconstruct unknown model parameters from partial waveform measurements.
The nonlinear and ill-posed nature of FWI requires sophisticated regularization techniques to
solve it. In most applications, the model parameters may be described by physical properties
(e.g., wave speeds, density, attenuation, anisotropy) which are piecewise functions of space.
Compound regularizations are thus beneficial to capture these different functions by FWI. We
consider different implementations of compound regularizations in the wavefield reconstruc-
tion inversion (WRI) method, a formulation of FWI that extends its search space and prevents
the so-called cycle skipping pathology. Our hybrid regularizations rely on Tikhonov and total
variation (TV) functionals, from which we build two classes of hybrid regularizers: the first
class is simply obtained by a convex combination (CC) of the two functionals, while the second
relies on their infimal convolution (IC). In the former class, the model parameters are required
to simultaneously satisfy different priors, while in the latter the model is broken into its basic
components, each satisfying a distinct prior (e.g. smooth, piecewise constant, piecewise linear).
We implement these compound regularizations in WRI using the alternating direction method
of multipliers (ADMM). Then, we assess our regularized WRI for seismic imaging applications.
Using a wide range of subsurface models, we conclude that the compound regularizer based on
IC leads to the lowest error in the parameter reconstruction compared to that obtained with the
CC counterpart and the Tikhonov and TV regularizers when used independently.

3.3.2 Introduction

Full waveform inversion (FWI) seeks to estimate constitutive parameters by nonlinear min-
imization of a distance between recorded and simulated wavefield measurements. This technol-
ogy was originally developed in geophysical imaging (Tarantola, 1984), and has spread more
recently into other fields of imaging sciences such as medical imaging (Sandhu et al., 2015) and
oceanography (Wood et al., 2008). This partial-differential equation (PDE)-constrained nonlin-
ear inverse problem is classically solved with local reduced-space optimization methods (Haber
et al., 2000). In this linearized framework, a challenging source of non linearity is the so-called
cycle skipping pathology which occurs when the initial model does not allow to match the data
with a kinematic error smaller than half a period (Virieux and Operto, 2009; Virieux et al.,
2017). Other sources of error are noise, approximate wave physics and ill-posedness resulting
from parameter cross-talk, coarse acquisition sampling and uneven illumination of the targeted
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structure. Designing regularization techniques that mitigate these source of errors is therefore a
key challenge for the success of FWI applications.

A proper regularization should be driven by the shape and statistical characteristics of the
medium to be imaged. For example, in geophysical imaging, the subsurface can be represented
by a piece-wise smooth medium, that is a model which contains smoothly varying and blocky
components. The widespread Tikhonov regularizations (Tikhonov et al., 2013) rely on the
smoothness assumption and hence fail to recover sharp interfaces of such media. Conversely,
first order total variation (TV) regularizations (Rudin et al., 1992) are based on a blockiness
assumption and hence are more suitable to image large contrasts. However, they generate unde-
sirable staircase imprints in smooth regions (Gholami and Hosseini, 2013). Hereafter we refer
TV to as first order TV regularization, unless we explicitly mention the order of the TV reg-
ularization. Regions characterized by smoothly-varying properties and those containing sharp
contrasts have different statistical properties. The former are characterized by the normal prior,
while the latter by a heavy tailed prior (Polson and Sokolov, 2019). Consequently, simultaneous
recovery of both properties is difficult when one type of regularization is used (Tikhonov, TV,
etc). To overcome this issue, a combination of different regularizations can be used (Gholami
and Siahkoohi, 2010; Benning and Burger, 2018; Bioucas-Dias and Figueiredo, 2008). A naive
approach consists of the simple additive coupling or convex combinations (CC) of regulariza-
tions. Alternatively, Gholami and Hosseini (2013) proposed to explicitly decompose the model
into several components of different statistical properties and use an appropriate regularization
to reconstruct each component. Using this strategy, they combined Tikhonov and TV regular-
izations (referred to as TT regularization) to reconstruct piece-wise smooth media. The smooth
components are captured by the Tikhonov regularization, while the blocky ones are determined
by the TV counterpart. In many applications, it has been shown that a compound regulariza-
tion based upon infimal convolution (IC) outperforms the one based upon additive coupling
(Bergmann et al., 2018).

TT regularization based upon IC has been successfully applied to FWI for seismic sub-
surface imaging in the framework of iteratively-refined wavefield reconstruction inversion (IR-
WRI) (Aghamiry et al., 2018a). IR-WRI extends the search space of FWI and decreases cycle
skipping through a relaxation of the wave-equation constraint (van Leeuwen and Herrmann,
2013; Aghamiry et al., 2019c, 2018c). Taking advantage of the bilinearity of the wave equa-
tion, IR-WRI breaks down FWI into two linear subproblems which are solved in an alternat-
ing mode: wavefield reconstruction driven by the observables and model-parameter estima-
tion by minimization of the source residuals the relaxation generated. Furthermore, Aghamiry
et al. (2019a) extended the method to acoustic multiparameter inversion. The linearity of the
parameter-estimation subproblem provides a suitable framework to implement sophisticated
nonsmooth regularizations.

In this study, following Gholami and Hosseini (2013) and Aghamiry et al. (2018a), we de-
velop a general framework to combine a couple of regularization terms in IR-WRI through IC.
Then, we specifically develop this framework for Tikhonov and TV regularizations, which are
suitable for seismic subsurface imaging applications. Compared to Aghamiry et al. (2018a),
we jointly update the blocky and the smooth components through a variable projection process
rather than in an alternating mode. We first show that our new IC-based TT regularization out-
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performs the CC-based counterpart with several well-documented numerical benchmarks in the
field of seismic imaging. We also compare the results obtained with these two TT regulariza-
tions with those obtained with total generalized variation (TGV) regularization, a combination
of first and second order TV, and those obtained with Tikhonov and TV regularizations when
used independently.

3.3.3 Notation

The mathematical symbols adopted in this paper are as follows. We use italics for scalar
quantities, boldface lowercase letters for vectors, and boldface capital letters for matrices and
tensors. We use the superscript T to denote the adjoint of an operator. The ith component
of the column vector x is shown by xi and its absolute value is returned by |xi|. For the
real-valued n-length column vectors x and y the dot product is defined by 〈x,y〉 = xTy and
their Hadamard product, denoted by x ◦ y, is another vector made up of their component-
wise products, i.e. (x ◦ y)i = xiyi. The `2- and `1-norms of x are, respectively, defined by
‖x‖2 =

√
〈x,x〉 =

√∑n
i=1 |xi|2 and ‖x‖1 =

∑n
i=1 |xi|.

3.3.4 Method

In this section, we briefly review the frequency-domain FWI as a bi-convex feasibility prob-
lem and describe the extended forms of FWI. We show how the problem can be solved with the
alternating direction method of multipliers (ADMM) (Boyd et al., 2010) for a general regular-
ization function.

Full-waveform inversion

Frequency-domain FWI with a general regularization term and bounding constraints can be
formulated as (Aghamiry et al., 2019c,b)

min
u,m∈C

Φ(m)

subject to A(m)u = b,

Pu = d,

(3.41)

where m ∈ Rn×1 gathers unknown squared slowness, n is the number of discrete grid points,
Φ(m) is an appropriate regularization term which we assume to be convex, C = {x ∈ Rn×1 |ml ≤
x ≤mu} is the set of all feasible models bounded by the lower bound ml and the upper bound
mu.

The first constraint in (3.41), A(m)u = b, is a partial-differential equation (PDE) wherein
u ∈ Cn×1 is the wavefield and b ∈ Cn×1 is the source term. In this study, A(m) ∈ Cn×n is the
discretized PDE Helmholtz operator (Pratt et al., 1998; Chen et al., 2013) given by

A(m) = ∆ + ω2C(m)diag(m)B, (3.42)
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with ω the angular frequency and ∆ the discretized Laplace operator. The diagonal matrix
C embeds boundary conditions and can be dependent or independent on m depending on the
kinds of absorbing boundary conditions (radiation versus sponge) (Aghamiry et al., 2019c).
Also, B is used to spread the mass term ω2C(m)diag(m) over all the coefficients of the stencil
to improve its accuracy following an anti-lumped mass strategy (Marfurt, 1984; Jo et al., 1996;
Hustedt et al., 2004).

The second constraint in (3.41), Pu = d, is the observation equation, in which d ∈ Cm×1 is
the recorded seismic data, m is the number of recorded data and P ∈ Rm×n is a linear operator
that samples the wavefield at the receiver positions.

WRI approach to solving (3.41)

The extended approach, known as wavefield reconstruction inversion (WRI) (van Leeuwen
and Herrmann, 2013), recasts the constrained optimization problem, equation (3.41), as an un-
constrained problem where both constraints are implemented with quadratic penalty functions.

min
u,m∈C

Φ(m) +
λ0

2
‖Pu− d‖2

2 +
λ1

2
‖A(m)u− b‖2

2, (3.43)

where λ0, λ1 > 0 are the penalty parameters. For the unregularized case where Φ(m) = 0 and
also without the bounding constraint, van Leeuwen and Herrmann (2013) solved this biconvex
minimization problem with an alternating-direction algorithm, whereby the joint minimization
over u and m is replaced by an alternating minimization over each variable separately. The
main property of the penalty formulation given by equation (3.43) is that the PDE constraint in
the original problem is replaced by a quadratic penalty term, which enlarges the search space
and mitigates the inversion nonlinearity accordingly (van Leeuwen and Herrmann, 2013). Its
main drawback, however, is the difficulty related to the adaptive tuning of the penalty parameter,
which is common to all penalty methods (Nocedal and Wright, 2006).

IR-WRI approach to solving (3.41)

To overcome the above limitation, the iteratively-refined WRI (IR-WRI) implements the
original constrained problem (3.41) with the augmented Lagrangian (AL) method (Nocedal
and Wright, 2006; Hestenes, 1969).

min
u,m∈C

max
v0,v1

Φ(m) +
λ0

2
‖Pu− d‖2

2 +
λ1

2
‖A(m)u− b‖2

2

+ vT0 [Pu− d] + vT1 [A(m)u− b],

(3.44)
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where v0 ∈ Cm×1 and v1 ∈ Cn×1 are the dual variables (the Lagrangian multipliers). The
min-max problem (3.44) can also be written in a more compact form (the scaled form AL) as

min
u,m∈C

max
v0,v1

Φ(m) +
λ0

2
‖Pu− d +

1

λ0

v0‖2
2 −

λ0

2
‖v0

λ0

‖2
2

+
λ1

2
‖A(m)u− b +

1

λ1

v1‖2
2 −

λ1

2
‖v1

λ1

‖2
2.

(3.45)

Applying a gradient ascent to (3.45) with respect to the duals, after a simple change of variables
dk = −vk0/λ0 and bk = −vk1/λ1, gives the following iteration:

min
u,m∈C

Φ(m) +
λ0

2
‖Pu− d− dk‖2

2

+
λ1

2
‖A(m)u− b− bk‖2

2,

dk+1 = dk + d−Pu,

bk+1 = bk + b−A(m)u,

(3.46)

beginning with d0 = 0 and b0 = 0. Capitalizing on the bilinearity of the wave equation in m
and u, ADMM Boyd et al. (2010) is a powerful method to solve this kind of multivariate opti-
mization problem. ADMM updates m and u separately through a Gauss-Seidel like iteration,
i.e., fixing m and solving for u and vice versa. Accordingly, beginning with an initial guess
m0, we end up with the following iteration to solve (3.46) (Aghamiry et al., 2019c,b):

uk+1 = arg min
u

∥∥∥∥
[√

λ0
λ1

P

A(mk)

]
u−

[√
λ0
λ1

(d + dk)

b + bk

]∥∥∥∥2

2

(3.47a)

mk+1 = arg min
m∈C

Φ(m) +
λ1

2
‖A(m)uk+1 − b− bk‖2

2, (3.47b)

dk+1 = dk + d−Puk+1, (3.47c)

bk+1 = bk + b−A(mk+1)uk+1. (3.47d)

The subproblem (3.47a) associated with the wavefield reconstruction is quadratic and admits a
closed-form solution. It relaxes the requirement to satisfy exactly the wave equation (A(mk)u =
b) for the benefit of improved data fitting (Pu = d). This is achieved by reconstructing the
wavefields that best jointly fit the observations and satisfy the wave equation in a least-squares
sense. While wavefields generated by the reduced approach (Appendix A, section 3.3.8) satisfy
exactly the wave equation, ur = A(mk)−1b, this makes classical FWI highly non-convex.

Equation (3.46) shows that the duals are updated with the running sum of the data and source
residuals in iterations and are used to update the right-hand sides in the penalty functions of the
scaled AL. These error correction terms in the AL method are the key ingredients that allow
for a constant penalty parameter to be used in iterations, while guaranteeing convergence to
accurate minimizer (Nocedal and Wright, 2006). In the next section we focus on the solution
of the model subproblem (3.47b) when compound regularizations are used as the regularization
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term.

3.3.5 Model Subproblem

This section presents compound regularization functionals and the details of our approach
to solve the model subproblem (3.47b) with these functionals.

Compound regularizers

Simple regularizers, Appendix B (section 3.3.9), are effective for recovering models which
can be characterized by a single prior and structure e.g. smooth, blocky, piecewise linear, etc.
The compound regularizers are more effective for recovering complicated models that are repre-
sented by more than one prior. They are constructed by combining two or more separate simple
regularizers. This can be done by either a convex combination (CC) or an infimal convolution
(IC).

Convex combination of simple regularizers

A CC of r simple regularizer functionals Φ1, ...,Φr is a compound regularizer functional of
the form

Φα(x) = α1Φ1(x) + ...+ αrΦr(x), (3.48)

where weights αi satisfy αi ≥ 0 and

α1 + α2, ...,+αr = 1. (3.49)

Definitely, if all of the functions Φ1, ...,Φr are convex then Φ is so. In CC models, the reg-
ularized solution is forced to satisfy the individual priors simultaneously. As an example, a
compound regularizer functional constructed by a CC of `1- and squared `2-norms (`1 + `2),
known as an elastic net (Zou and Hastie, 2005; Gholami, 2013), is

Φα(x) = (1− α)‖x‖2
2 + α‖x‖1, (3.50)

with 0 ≤ α ≤ 1. The convexity of `1- and `2-norms implies that Φα(x) in (3.50) is convex.
One may also construct a compound regularizer functional by a CC of two `1-norms which
are applied in different domains, such as those spanned by two different wavelet transforms, or
those spanned by a wavelet transform and the gradient operator (Gholami and Siahkoohi, 2010).

Infimal convolution of simple regularizers

In IC models, the solution is decomposed into simple components and then each component
is regularized by an appropriate prior. Accordingly, the IC of r simple regularizer functionals
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Φ1, ...,Φr is a compound functional of the form

Φα(x) = min
x=x1+...+xr

{α1Φ1(x1) + ...+ αrΦr(xr)}. (3.51)

In the case of two functionals, Φα in (3.51) takes the form

Φα(x) = min
z
{(1− α)Φ1(x− z) + αΦ2(z)}, (3.52)

which is similar to the classical formula of convolution, and hence the term infimal convolution.

The IC of `1- and (squared) `2-norms (`1�`2) is

Φα(x) = min
z
{(1− α)‖x− z‖2

2 + α‖z‖1}, (3.53)

which is a denoising problem whose solution is unique and is given by the well-known soft-
threshold function (Donoho, 1995):

z = max

(
1− α

2(1− α)|x|
, 0

)
◦ x, (3.54)

Putting z from (3.54) into (3.53) gives that

Φα(x) =

{
(1− α)|x|2 if |x| ≤ α

2(1−α)

α|x| − α2

4(1−α)
if |x| > α

2(1−α)

, (3.55)

which is nothing other than the Huber function (Huber, 1973). As seen, this function has a
hybrid behavior: it has a quadratic behavior for small values of |x| and linear behavior for large
values. The parameter α

2(1−α)
determines where the transition from quadratic to linear behavior

takes place.

Geometrical illustrations of the `1-norm, `2-norm, (`1+`2)-norm, and (`1�`2)-norm for α =
0.7 are shown in Fig. 3.12. This figure shows that the `1- and `2-norms have a uniform behavior
for all values, while the CC norm (the (`1 + `2)-norm) has a hybrid behavior: it approaches
the `1-norm near zero, where it behaves as a linear function, but approaches the `2-norm for
large values, where it behaves as a quadratic function. Unlike `1 + `2, the IC function `1�`2

approaches the `2-norm near zero but is linear and approaches the `1-norm for large values.

In this paper, we consider (3.52) in the following settings, though other configurations are
possible:

ΦTT
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖2
2 + α‖∇x1‖1, (3.56)

and
ΦTGV
α (x) = min

x=x1+x2

(1− α)‖∇2x2‖1 + α‖∇x1‖1, (3.57)

where, in both (3.56) and (3.57), the norms are applied on the absolute valued components of
∇2x2 ((3.79) and (3.81)) and ∇x1 (3.77). The compound regularizer ΦTT

α is a combination
of the second order Tikhonov and TV (TT) regularizations (Gholami and Hosseini, 2013) and
ΦTGV
α is a combination of the first and second order TV regularizations, called total generalized
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variation (TGV) (Bredies et al., 2010; Setzer et al., 2011). The former is suitable for recovering
piecewise-smooth models, while the latter is better suited for piecewise linear models. The next
section gives a solution procedure to solve (3.47b) with these regularizers.

(a) (b)

(c) (d)

Figure 3.12 – Geometrical illustration of different regularizers. (a) the `1-norm, (b) the `2-norm,
(c) the (`1 + `2)-norm, and (d) the (`1�`2)-norm.

Solving the subproblem (3.47b)

In this section we present how to solve the subproblem (3.47b) with TT regularization. The
solution procedure for the TGV regularizer follows easily. From the definition of A in (3.42),
we get that

A(m)u = ∆u + Lm, (3.58)

where

L =
∂A(m)

∂m
u = ω2Cdiag(Bu), (3.59)

and we assume that C does not depend on m (this is the case for perfectly-matched absorbing
boundary conditions (Aghamiry et al., 2019c)). From the explicit decomposition m = m1 +m2

and (3.58), the solution of the optimization problem (3.47b) can be expressed as

arg min
m=m1+m2

m∈C

ΦTT
α (m1,m2) +

λ1

2
‖L[m1 + m2]− y‖2

2, (3.60)

where y = b + bk − ∆uk+1. Defining auxiliary variables p = ∇m1 ∈ R2n×1 and q =
m1 + m2 ∈ Rn×1 and recasting (3.60) as a constrained problem and then applying ADMM
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leads to the following iteration (Aghamiry et al., 2019b, Section 2.2.2)[
mk+1

1

mk+1
2

]
= arg min

m1,m2

C(m1,m2,q
k, q̃k,pk, p̃k), (3.61a)

pk+1 = arg min
p

α‖p‖1 +
γ1

2
‖∇mk+1

1 − p− p̃k‖2
2, (3.61b)

qk+1 = arg min
q∈C

γ0

2
‖mk+1

1 + mk+1
2 − q− q̃k‖2

2, (3.61c)

where γ0, γ1 > 0 and

C(m1,m2,q
k, q̃k,pk, p̃k) =

λ1

2
‖L[m1 + m2]− y‖2

2

+ (1− α)‖∇2m2‖2
2 +

γ1

2
‖∇m1 − pk − p̃k‖2

2

+
γ0

2
‖m1 + m2 − qk − q̃k‖2

2.

The auxiliary primal variables p and q are introduced to decouple the `1 and the `2 minimiza-
tion problems and solve the former ones with proximal algorithms following operator splitting
methods. The dual variables p̃ and q̃ are updated through a gradient ascent step according to
the method of multipliers (Nocedal and Wright, 2006)

p̃k+1 = p̃k + pk+1 −∇mk+1
1 , (3.62a)

q̃k+1 = q̃k + qk+1 − [mk+1
1 + mk+1

2 ], (3.62b)

We now discuss how to solve the subsubproblems given in (3.61).

The subsubproblem (3.61a)

A solution of subsubproblem (3.61a) occurs at the point where the derivatives of the objec-
tive function C with respect to m1 and m2 vanish simultaneously. Accordingly, we end up with
the following linear system of equations:[

G11 G12

G21 G22

] [
m1

m2

]
=

[
h1

h2

]
, (3.63)

with 
G11 = λ1L

TL + γ1∇T∇+ γ0I,

G12 = G21 = λ1L
TL + γ0I,

G22 = λ1L
TL + (1− α)(∇2)T∇2 + γ0I,

and {
h1 = λ1L

Ty + γ1∇T [pk + p̃k] + γ0[qk + q̃k],

h2 = λ1L
Ty + γ0[qk + q̃k],

where I is the identity matrix.
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Aghamiry et al. (2018a) broke down the 2n × 2n problem (3.63) into two smaller n ×
n systems and updates m1 and m2 in alternating mode at the expense of convergence speed
(Aghamiry et al., 2018a, their eqs. 10 and 11). Instead, we solve here the original system
exactly using a variable projection scheme, thus leading to faster convergence and more accurate
results. From the first equation of (3.63), we find that

m2 = G−1
12 [h1 −G11m1] (3.64)

and plugging this into the second equation of (3.63) we get the following:

m1 = [G11 −G22G
−1
12 G11]−1[h2 −G22G

−1
12 h1]. (3.65)

Interestingly, L is diagonal, implying that G12 is also diagonal. Thus we only need to solve an
n× n system to estimate m1, from which m2 easily follows.

The subsubproblem (3.61b)

The sub-problem for p, equation (3.61b), is a denoising problem and is straightforward to
solve. Note that p has two components associated with the gradient in each direction:

p =

[
px
pz

]
. (3.66)

Equation (3.61b) is solved with a generalized proximity operator (Combettes and Pesquet, 2011)
leading to

pk+1 = proxα/γ1(z) =

[
ξ ◦ zx
ξ ◦ zz

]
, (3.67)

where

z = ∇mk+1
1 − p̃k =

[
zx
zz

]
, (3.68)

and
ξ = max(1− α

γ1

√
z2
x + z2

z

, 0). (3.69)

The subsubproblem (3.61c)

The optimization problem (3.61c) also has an entrywise solution given by

qk+1 = projC(m
k+1
1 + mk+1

2 − q̃k), (3.70)

where the projection operator projects its argument onto the desired box [ml,mu] according
to projC(•) = min(max(•,ml),mu). Based on the above, the proposed ADMM based TT
regularized IR-WRI algorithm is summarized in Algorithm 3. It should be noted that the total
algorithm consists of two levels of iterations: an outer iteration (lines 4-13) given in (3.47) and
an inner iteration (lines 5-11) given in (3.61) corresponding to the model subproblem (3.47b).
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Numerical results, however, show that only one inner iteration suffices for convergence of the
algorithm, hence significantly reducing the total computational cost (Goldstein and Osher, 2009;
Aghamiry et al., 2019c). The main computational cost of the algorithm is on lines 4 and 5
where we need to solve the augmented PDE and the n × n sparse system given in equation
3.65. The other steps don’t introduce significant computational overheads. The computational
overhead introduced by compound regularizer compared to single regularizer results from the
larger numerical bandwidth of the matrix [G11 − G22G

−1
12 G11] in equation 3.65 compared to

that associated with a single regularizer, either G11 or G22.

Algorithm 3: ADMM based TT regularized IR-WRI algorithm
1: Initialize: set the dual variables b0, d0, p̃0 and q̃0 equal to 0
2: Input: m0 (initial model parameters)
3: while convergence criteria not satisfied do
4: uk+1 ←

[
λ0
λ1

PTP + A(mk)TA(mk)
]−1[λ0

λ1
PT [d + dk] + A(mk)T [b + bk]

]
5: mk+1

1 ← update according to eq. (3.65)
6: mk+1

2 ← update according to eq. (3.64)
7: mk+1 ←mk+1

1 + mk+1
2

8: pk+1 ← proxα/γ1(∇mk+1
1 − p̃k)

9: qk+1 ← projC(m
k+1 − q̃k)

10: p̃k+1 ← p̃k + pk+1 −∇mk+1
1

11: q̃k+1 ← q̃k + qk+1 −mk+1

12: dk+1 ← dk + d−Puk+1

13: bk+1 ← bk + b−A(mk+1)uk+1

14: end while

3.3.6 Numerical examples

We assess the performance of our algorithm against 1D and 2D mono-parameter synthetic
examples. In Table 3.1 we give different regularization functions which are applied for stabiliz-
ing the FWI solution. We start with zero-offset Vertical-Seismic-Profiling (VSP) examples (1D
IR-WRI) where the targeted wave speed profiles are selected from well-documented 2D bench-
mark subsurface velocity models in exploration seismic. To tackle more realistic applications,
we proceed with a target of the 2D challenging 2004 BP salt model (Billette and Brandsberg-
Dahl, 2004) with noiseless and noisy data when a crude initial model and realistic frequencies
are used as starting points.

Performance comparison using 1D test on benchmark models

First, we assess the performance of our regularized IR-WRI against 1D mono-parameter
synthetic examples when the true models are 100 vertical profiles selected from the 2004 BP
salt (Billette and Brandsberg-Dahl, 2004), Marmousi II (Martin et al., 2006), SEG/EAGE over-
thrust (Aminzadeh et al., 1997), SEG/EAGE salt (Aminzadeh et al., 1997) and synthetic Valhall
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(Prieux et al., 2011) benchmark velocity models (we extracted 20 profiles from each bench-
mark model). For all of the experiments, a single source is used at the surface and the receivers
are evenly deployed along the entire profile. A single frequency, whose value is set so that
the reduced-space inversion is prone to cycle skipping, is considered for inversion. The model
dimension, the inverted frequency and the receiver spacing are outlined for each model in Ta-
ble 3.2. We perform forward modeling with a 3-point O(∆x2) staggered-grid finite-difference
stencil and PML absorbing boundary conditions at the two ends of the model. The starting
model for IR-WRI is a homogeneous velocity model in which the velocity is the mean value
of each profile. We set the penalty parameters according to the guideline given in Appendix
C (section 3.3.10). Moreover, for a fair comparison of the compound regularizers (JTT, TT
and TGV), we select for each of them the optimum value of α among a range of preset values
that minimizes the error in the models estimated by the IR-WRI. Also, we set the parameter
bounds ml and mu equal to 50% and 150% of the minimum and maximum velocities of the
true model, respectively. The monochromatic inversion is performed with noiseless data when
a maximum number of iterations, equal to 100, is used as a stopping criterion. The average
error of the estimated velocity profiles for the five benchmark models and the different regu-
larizations are plotted in Fig. 3.13. In this paper, the model error is defined as the energy of
the difference between the true model and the estimated one compared to the energy of the
true model. The errors in each model for different regularizations are normalized to 1 for sake
of clarity (the error of DMP regularizer is not shown because of its worse performance). Fig.
3.13 clearly shows that the compound regularizations based upon infimal convolution (TT and
TGV) always behave better than the CC regularization and the single regularization functionals
(TV and Tikhonov). To emphasize the effects of the different regularization functions, we plot
some close-ups of the reconstructed profiles in Fig. 3.14. These results show that TT provides
the most accurate reconstruction for the 2004 BP salt (Fig. 3.14a) and Overthrust (Fig. 3.14c)
models. This is consistent with the fact that the velocity trends of these two models match well
the piecewise smooth prior. In contrast, TGV behaves slightly better than TT for the Valhall
model, whose velocity trend is the closest one to the piecewise linear prior (Fig. 3.14d). For
Marmousi II (Fig. 3.14b), TT and TGV give similar results.

Table 3.1 – Different regularization functions.

Abbreviation Expression of Φ(m)

DMP ‖m‖2
2

Tikhonov ‖∇2m‖2
2

TV ‖∇m‖1

JTT (1− α)‖∇2m‖2
2 + α‖∇m‖1

TT min
m=m1+m2

{(1− α)‖∇2m2‖2
2 + α‖∇m1‖1}

TGV min
m=m1+m2

{(1− α)‖∇2m2‖1 + α‖∇m1‖1}
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Table 3.2 – Experimental setup of 1D model tests

Length
(km)

Inverted
frequency

(Hz)

Grid
interval

(m)

Receiver
interval

(m)
2004 BP salt 11.46 5 6 180
Marmousi II 3.75 12 5 85
Overthrust 4.6 12 20 120

SEG/EAGE salt model 4.2 10 20 120
Synthetic valhall 5.22 5 25 175

Figure 3.13 – Zero offset VSP test. Average model error in estimated 1D profiles for different
velocity models and different regularization functions.

2004 BP salt model

We now consider a more realistic application with a target of the challenging 2004 BP
salt model (Billette and Brandsberg-Dahl, 2004). The 2004 BP salt model is representative of
the geology of the deep offshore Gulf of Mexico and mainly consists of a simple background
with a complex rugose multi-valued salt body, sub-salt slow velocity anomalies related to over-
pressure zones and a fast velocity anomaly to the right of the salt body. The selected subsurface
model is 16250 m wide and 5825 m deep, and is discretized with a 25 m grid interval (Fig.
3.15a). We used 108 sources spaced 150 m apart on the top side of the model. We perform
forward modeling with a staggered-grid 9-point finite-difference method (Chen et al., 2013)
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Figure 3.14 – Zero offset VSP test. Some part of (a) 2004 BP salt, (b) Marmousi II, (c) Over-
thrust, and (d) synthetic Valhall models estimated with different regularizations.
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with PML boundary conditions along the four edges of the model. The source signature is
a 10 Hz Ricker wavelet. A line of receivers with a 25 m spacing are deployed all along the
surface leading to a long-offset stationary-receiver acquisition. We used small batches of two
frequencies with one frequency overlap between two consecutive batches, moving from the
low frequencies to the higher ones according to a classical frequency continuation strategy.
We use α = 0.7 and set the rest of hyperparameters according to the guidelines reviewed in
appendix C (section 3.3.10). We set the parameter bounds ml and mu equal to the minimum
and maximum velocity of the true model, respectively. The starting and final frequencies are
3 Hz and 13 Hz and the sampling interval in one batch is 0.5 Hz. The initial velocity model
is a crude laterally-homogeneous velocity-gradient model with velocities ranging between 1.5
to 4.5 km/s (Fig. 3.15b). We start with inverting the first batch of frequencies ({3, 3.5} Hz)
with noiseless data using a maximum number of iterations equal to 45 as a stopping criterion.
To highlight the specific role of bound constraints, we activate them after 20 iterations. To
emphasize the effect of regularization, the result of bound constrained IR-WRI with a simple
DMP regularization is shown in Fig. 3.16a, while the bound-constrained IR-WRI results with
Tikhonov and TV regularizations are shown in Figs. 3.16b and 3.16c, respectively. Although
the TV reconstruction is better than the Tikhonov one, it provides a velocity model which is far
from the optimal one. A direct comparison between the true model, the starting model and the
estimated models is shown in Fig. 3.17a along three vertical logs at 2.5, 9.0 and 15.0 km distance
(as depicted with dashed white lines in Fig. 3.15a). We continue with compound regularization
results which are shown in Fig. 3.16d-f and Fig. 3.17b. Clearly, the TT regularizer better
captures the long wavelengths of the salt body and the smooth subsalt background model. The
joint evolution in iterations of the observation-equation (‖Pu− d‖2) and wave-equation errors
(‖A(m)u− b‖2), Fig. 3.18a-b, and the relative model errors in iterations, Fig. 3.18c-d, further
confirm the relative performance of each regularizer during the inversion of the first frequency
batch. Note the complex zigzag path followed by the inversion to jointly minimize the data
residuals and the wave equation error in Fig. 3.18a-b. As already highlighted by Aghamiry
et al. (2019c), this results from the dynamic balancing in iterations of the observation-equation
and wave-equation constraints performed by the dual updates with the data and source residuals.

Figure 3.15 – 2004 BP salt case study. (a) True velocity model. The vertical dashed lines
indicate the location of vertical logs of Figs. 3.17, 3.20 and 3.26. (b) The velocity-gradient
initial model.
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Figure 3.16 – Noiseless 2004 BP salt case study. Velocity models obtained after the {3, 3.5} Hz
inversion when the velocity-gradient model (Fig. 3.15b) is used as initial model. (a-f) Bound
constrained IR-WRI with (a) DMP, (b) Tikhonov, (c) TV, (d) JTT, (e) TT and (f) TGV regular-
ization.

We continue the inversion at higher frequencies using the final models of the {3, 3.5} Hz
inversion, Fig. 3.16a-f, as initial models when the stopping criteria is either kmax = 15 or

‖A(mk+1)uk+1 − b‖2 ≤ εb, ‖Puk+1 − d‖2 ≤ εd, (3.71)

where kmax denotes the maximum iteration count, εb=1e-3, and εd=1e-5. We perform three
paths through the frequency batches to improve the IR-WRI results, using the final model of
one path as the initial model of the next one (these cycles can be viewed as outer iterations of
IR-WRI). The starting and finishing frequencies of the paths are [3.5, 6], [4, 8.5], [6, 13] Hz re-
spectively, where the first element of each pair shows the starting frequency and the second one
is the finishing frequency. The bound-constrained IR-WRI models obtained from noiseless data
are shown in Fig. 3.19. As for the inversion of the first batch, direct comparison between the
true model, the starting model and the estimated models are shown in Fig. 3.20 along three ver-
tical logs at 2.5 km, 9.0 km and 15 km distance (vertical dashed lines in Fig. 3.15a). The TT and
TGV regularizers lead to high-quality velocity models, that capture both the fine-scale structure
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Figure 3.17 – Noiseless 2004 BP salt case study. Direct comparison along the logs shown
in Fig. 3.15a between the true velocity model (black), the initial model (dashed line) and the
estimated models obtained after the {3, 3.5} Hz inversion (Fig. 3.16) with (a) simple regulariza-
tions (DMP in olive-green, Tikhonov in blue and TV in red) and (b) compound regularizations
(JTT in orange, TT in green and TGV in pink).

of the rugose large-contrast salt body and the high-velocity shallow anomaly on the right, as
well as the smoother sub-salt background model including the low-velocity over-pressure struc-
ture. It is also worth noting the significant differences between the JTT and TT IR-WRI models
in particular in the deep part of the model. Moreover, the number of iterations performed by
IR-WRI for each regularization shows that TT has the best convergence speed (Table 3.3).

As a final quality control of the different IR-WRI models, it is instructive to check the
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Figure 3.18 – Noiseless 2004 BP salt case study. {3, 3.5} Hz inversion with the velocity-
gradient initial model. (a-b) convergence history of the algorithm in the (‖Puk − d‖2 −
‖A(mk)uk − b‖2) plane for (a) simple regularizations and (b) compound regularizations. The
black arrow points the starting point. (c-d) evaluation of ‖mk −m∗‖2/‖m∗‖2 during the itera-
tion where m∗ is the true model. The panels (a) and (b) as well as (c) and (d) are plotted with
the same horizontal and vertical scale.

wave-equation and data residuals left by the different regularization methods for the starting
3-Hz frequency (Fig. 3.21 and 3.22). The real part of wave-equation error (Fig. 3.21) and data
residuals (Fig. 3.22) are plotted at the first and final iterations of the inversion. Both of the
final data and source residuals suggest that the TT regularizer slightly outperforms the TGV
counterpart at low frequencies. To further illustrate the ability of compound regularizations
to manage the blocky and smooth components of the subsurface, we show separately the two
model components of IC based regularizations (m1 and m2) estimated with TT (Fig. 3.23a-b)
and TGV regularizations (Fig. 3.23c-d) as well as histograms of ∇m1 and ∇2m2 (Fig. 3.24).
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The trend of the reconstructed m1 and m2 shows that the IC based compound regularizations
mostly succeeded in de-coupling the reconstruction of the blocky structure from that of the
smooth background for TT regularization (Fig. 3.23a-b) and de-coupling the reconstruction of
the blocky structure from that of the piecewise linear background for TGV regularization (Fig.
3.23c-d). This statement is further supported by the long-tail shape and the Gaussian shape of
the histograms of the ∇m1 and ∇2m2 components of TT regularization (Fig. 3.24a-b) and the
long-tail shapes of the∇m1 and ∇2m2 components of TGV regularization (Fig. 3.24c-d).

Figure 3.19 – Noiseless 2004 BP salt case study. Final inversion results with the velocity
models of Fig. 3.16a-f as initial models. The display of the panels is the same as that of Fig.
3.16.

Table 3.3 – Total number of IR-WRI iterations for each regularization.

DMP Tikhonov TV JTT TT TGV
Noiseless data 426 448 399 415 361 394

Noisy data 285 293 264 271 270 274
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Figure 3.20 – Noiseless 2004 BP salt case study. Direct comparison of final inversion results
with Fig. 3.16a-f as initial models. The panels are same as Fig. 3.17 for final results of Fig.
3.19.

We continue by assessing the resilience of the different regularization strategies to noise
when data are contaminated with a Gaussian random noise with a SNR=10 db, where SNR is
defined as

SNR = 20 log

(
Asignal
Anoise

)
, (3.72)

in which A denotes root mean square (RMS) amplitude. We use the same setup and the same
initial velocity model (Fig. 3.15b) as those used for the noiseless case. The stopping criterion is
defined by (3.71), where εd is now set to the noise level. The final models of bound-constrained
IR-WRI obtained from noisy data are shown in Fig. 3.25. The number of iterations performed
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Figure 3.21 – Noiseless 2004 BP salt case study. For a source at x=8.12 km and the 3-Hz
frequency: (a) Real part of wave-equation residual at first iteration of wavefield reconstruction,
namely (A(m0)u1−b). (b-g) Real part of wave-equation residual at the final iteration achieved
respectively with DMP, Tikhonov, TV, JTT, TT, and TGV regularization.

by IR-WRI with the different regularizations are outlined in Table 3.3. As for the inversion of
the first batch, direct comparison between the true model, the starting model and the estimated
models are shown in Fig. 3.26 along three vertical logs at 2.5 km, 9.0 km and 15 km distance.
The results further confirm that TT regularization provides the most reliable results and illustrate
the resilience of this compound regularization to noise.

3.3.7 Conclusions

In this study, we first show how to efficiently implement different kinds of regularization and
bound constraints in the wavefield reconstruction inversion method with the alternating direc-
tion method of multipliers (ADMM). Then, we show the capability of IR-WRI when equipped
with compound Tikhonov and TV regularizations to accurately reconstruct large-contrast sub-
surface media when starting from a very crude initial model. This compound regularization
is suitable for seismic imaging of the subsurface as it can often be represented by piecewise
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Figure 3.22 – Noiseless 2004 BP salt case study. For a source at x=8.12 km and the 3-Hz
frequency: (a) Real part of data residual (Pu − d) at first iteration. (b-g) Real part of data
residual at the final iteration achieved respectively with DMP, Tikhonov, TV, JTT, TT, and TGV
regularization.

smooth media. We show that the infimal convolution (IC) of the Tikhonov and TV regularizers
captures much more accurately the blocky and smooth components of the subsurface than the
convex combination of the two regularizers. It also outperforms the Tikhonov and TV regular-
izers when used alone. We also show how the infimal-convolution regularizer can be efficiently
implemented by jointly updating the smooth and blocky subsurface components through vari-
able projection. Alternatively, TGV regularized IR-WRI can be a suitable tool to reconstruct
piecewise linear media and provides similar results than TT IR-WRI. We conclude that such hy-
brid regularizations in the extended search-space IR-WRI potentially provide a suitable frame-
work to reconstruct, without cycle skipping, large-contrast subsurface media from ultra-long
offset seismic data. It should also find applications in other fields of imaging sciences such as
medical imaging.

128



Regularization and bound constraints in ADMM-WRI

Figure 3.23 – Noiseless 2004 BP salt case study. Final blocky and smooth components, m1 and
m2, reconstructed by IR-WRI with (a-b) TT and (c-d) TGV regularizations. The corresponding
velocity models are shown in Figs. 3.19e and 3.19f. (a,c) m1. (b,d) m2. Note that m1 and m2

are parametrized with squared slownesses.
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3.3.8 Appendix A: Reduced approach to solving (3.41)

The reduced approach, which is more commonly used for sake of computational efficiency,
strictly enforces the PDE constraint at each iteration by projection of the full space onto the
parameter search space, leading to the following unconstrained optimization problem (Virieux
and Operto, 2009; Pratt et al., 1998; Plessix, 2006)

min
m∈C

Φ(m) +
λ0

2
||PA−1(m)b− d||22, (3.73)
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Figure 3.24 – Noiseless 2004 BP salt case study. Histograms of the model components shown
in Fig. 3.23. The red lines show the probability density functions fitted to the histograms.

where λ0 > 0 is the penalty parameter. A number of methods have been proposed to solve
the optimization problems of the form (3.73), either for unregularized form Φ(m) = 0 (Pratt
et al., 1998), or the regularized form (Asnaashari et al., 2013; Esser et al., 2018). Although this
reduced approach is more computationally tractable than the full-space approach, the highly-
oscillating nature of the inverse PDE operator A−1 makes the inverse problem highly nonlinear,
and hence prone to convergence to a spurious local minima when the initial m is not accurate
enough (Virieux and Operto, 2009; Symes, 2008). The extended approach described in this
paper (section 3.3.4) is an alternative way which is more immune to local minima.

3.3.9 Appendix B: Simple regularizers

The two most widely used regularizers rely on the (squared) `2 and `1-norms. The squared
`2-norm, defined as

‖x‖2
2 =

n∑
i=1

|xi|2, (3.74)

promotes smooth reconstruction, since the minimization of the squared value of components
will penalize large components more severely than small ones.
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Figure 3.25 – Noisy 2004 BP salt case study. Final inversion results with Fig. 3.15b as initial
model. (a-f) bound constrained IR-WRI with (a) DMP, (b) Tikhonov, (c) TV, (d) JTT, (e) TT
and (f) TGV regularization.

In contrast, the `1-norm, defined as

‖x‖1 =
n∑
i=1

|xi|, (3.75)

promotes sparse reconstruction (with many zero components), since the minimization of the
absolute value of components will penalize small components more severely than the large
counterparts.

The priors can be defined under a suitable transformation. For example, one may minimize
the `1- or `2-norms of the first and/or second order differences of the model. The first order
forward differences for discrete scalar field f in x- and z-direction are denoted by ∇xf and
∇zf , with {

(∇xf)i,j = fi,j − fi,j−1,

(∇zf)i,j = fi,j − fi−1,j,
(3.76)
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Figure 3.26 – Noisy 2004 BP salt case study. Direct comparison (along the logs shown in
Fig. 3.15a) between the true velocity model (black), the initial model (dashed line) and the
estimated models with (a) simple regularizations (DMP in olive-green, Tikhonov in blue and
TV in red) and (b) compound regularizations (JTT in orange, TT in green and TGV in pink).

with appropriate boundary conditions, where i and j run over the domain of the model pa-
rameters. Accordingly, the discrete first order operator in 2D is defined as ∇ =

[
∇T
x ∇T

z

]T
with

(|∇f |)i,j =
√

(∇xf)2
i,j + (∇zf)2

i,j. (3.77)

The squared `2-norm of |∇f | gives the first order Tikhonov regularization (Tikhonov et al.,
2013), which returns a flat regularized model (with a small gradient), while its `1-norm gives
the total variation regularization (Rudin et al., 1992), which returns a piecewise constant model
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(with a sparse gradient).

Analogously, the second order forward differences are denoted by∇xxf and ∇zzf , with{
(∇xxf)i,j = fi,j−1 − 2fi,j + fi,j+1,

(∇zzf)i,j = fi−1,j − 2fi,j + fi+1,j,
(3.78)

with appropriate boundary conditions, where again i and j run over the domain of the model
parameters. Accordingly, the discrete second order operator is defined as ∇2 =

[
∇T
xx ∇T

zz

]T
with

(|∇2f |)i,j =
√

(∇xxf)2
i,j + (∇zzf)2

i,j. (3.79)

The squared `2-norm of |∇2f | gives the second-order Tikhonov regularization, which returns
a smooth regularized model (with a small Laplacian), while its `1-norm gives the second order
TV regularization, which returns a piecewise linear model (with a sparse Laplacian).

Mixed second-order differences can also be constructed as∇xzf ≡ ∇z∇xf with

(∇xzf)i,j = fi,j − fi,j−1 − fi−1,j + fi−1,j−1. (3.80)

A discrete second-order operator, which includes mixed differences is defined as∇2 =
[
∇T
xx

√
2∇T

xz ∇T
zz

]T
with

(|∇2f |)i,j =
√

(∇xxf)2
i,j + 2(∇xyf)2

i,j + (∇yyf)2
i,j, (3.81)

which equals the Frobenius norm of the Hessian matrix (Lefkimmiatis et al., 2012; Gholami
and Sacchi, 2013; Gholami and Naeini, 2019).

3.3.10 Appendix C: Parameter tuning

Here, we provide some guidelines to tune the different hyperparameters in the regularized
IR-WRI method. The reader is also referred to Aghamiry et al. (2019b) for more details. We
start with γ1 (step 8 of Algorithm 3), which controls the soft thresholding performed by the
TV regularization, and set it equal to 0.02 × max |∇mk

1 − p̃k|. This tuning can be refined
according to prior knowledge of the geological structure, coming from well logs for example.
Also, we use the same weight for the bound constraints and the TV regularization: γ0 = γ1.
Once we set γ1, we define λ1 such that γ1/λ1 is a percentage of mean absolute value of the
diagonal coefficients of LTL. Parameter λ1 may be increased during iterations to reduce the
weight of TV regularization and bound constraints near the convergence point. Finally, we set
λ0 such that λ = λ1/λ0 is a small fraction of the highest eigenvalue ξ of the normal oper-
ator A(m)−TPTPA(m)−1 during the wavefield reconstruction subproblem according to the
criterion proposed by van Leeuwen and Herrmann (2016). In all the numerical tests, we use
λ = 1e-5ξ and λ = 1e-3ξ for noiseless and noisy data, respectively.
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3.4 Application of sparse regularization to compressive sens-
ing for sparse acquisition

Ultra-long offset stationary-recording acquisitions as those carried out with Ocean Bottom
Nodes (OBN) are emerging in the industry for deep water exploration (Beaudoin and Ross,
2007; Shen et al., 2018; Huang et al., 2019). Indeed, ultra-long offsets are obtained with a
limited pool of autonomous instruments at the expense of the receiver spacing (acquisition
sampling). Moreover, even the shot dimension may be downsampled in the cross direction to
maintain reasonable acquisition time. This subsampling of the acquisition parameters can trans-
late in a subsampling of the spectral components of the subsurface model below the Nyquist
rate, which translates itself to wraparound of subsurface heterogeneities in the spatial domain
(Plessix and Mulder, 2004). In this section, I discuss sparsity-promoting regularization in IR-
WRI as a tool to mitigate the footprint of sparse acquisition in FWI.
Ultra-long offsets are beneficial for FWI for at least two reasons which are resolution and redun-
dancy. Long offsets provide a broad illumination of scattering, dip and azimuth angles (Figure
3.27), which translates into an extension of the wavenumber spectrum towards long wavelengths
and steep dips (Figure 3.28a). Furthermore, as maximum offset increases, frequency and scat-
tering angles sample wavenumbers more and more redundantly (Figure 3.28b).
To illustrate further these points, we remind that the wavenumber vector that is mapped at a
given position in a 2D subsurface model is related to the frequency f , the scattering angle θ and
the dip angle φ by (Thierry et al., 1999):

k = k [cos(φ), sin(φ)] with k =
2f

c
cos(θ/2), (3.82)

where c is the local wavespeed (Figure 3.27). Equation 3.82 shows that the sampling of the

S R

kr

ks

k

q

f

Figure 3.27 – Resolution analysis (diffraction tomography). Two rays starting from the source
S and the receiver R connects a diffractor point in the subsurface with a scattering angle θ. The
local wavenumber vector at the diffractor position shown by k while φ defines the orientation
of k relative to source and receiver wavenumber vectors ks and kr.

wavenumber modulus k is controlled by the frequency and θ samplings, the samplings of the
angle θ being mostly controlled by the sampling of the finer acquisition dimension, while the
sampling of φ is controlled by the source and receiver spacings. Also, it shows that frequencies
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and scattering angles can sample the wavenumber spectrum of the subsurface in a redundant
way, namely, several pairs of frequency and scattering angle sample the same wavenumber. I
show the wavenumber components that would be injected in a smooth background model by
FWI of 7 Hz monochromatic data sets with different maximum offsets in figure 3.28a. The
wavenumber spectrum is extended toward the low wavenumber as the result of increasing the
maximum offset and, hence improving the FWI resolution. Also, the wavenumber components
of three different monochromatic data sets with same maximum offsets are shown in figure
3.28b. The figure shows that three frequencies are sufficient to continuously sample the do-
main of interest of the wavenumber space (the one spanned by the wavenumber bandwidth
of the subsurface). This redundancy can be reduced by subsampling frequencies to design

a)

Offset =2kmmax

Offset =5kmmax

Offset =10kmmax

Offset =20kmmax

b)

7Hz

5Hz

3Hz

Figure 3.28 – Local wavenumber spectrum at the diffractor position in 3 km depth when a
fixed-spread acquisition is used. (a) for 7 Hz monochromatic data set spanned by four different
maximum offsets 2 (yellow), 5 (blue), 10 (orange) and 20 km (black). (b) for three discrete
frequencies 3 (blue), 5 (red) and 7 Hz (green) and with 20 km maximum offset.

computationally-efficient frequency-domain FWI (Pratt et al., 1998; Sirgue and Pratt, 2004).
Alternatively, this redundancy can be preserved to sample each wavenumber with a wide range
of scattering angles, hence mitigating parameter cross-talks during multi-parameter reconstruc-
tion.
In a classical reduced-space formulation, the full search space is projected onto the parameter
space by enforcing the closed-form expression of the wavefields as a function of the parameters
in the data-misfit objective function. This variable projection makes FWI highly sensitive to
cycle skipping. Many data-driven continuation approaches have been proposed to mitigate this
non-linearity, the most classical one proceeding from low frequencies to higher ones. Further-
more, efficient frequency-domain FWI have been designed by limiting the inversion to a few
discrete frequencies when long-offset stationary-receiver acquisitions provide a broad aperture
illumination of the subsurface. This frequency decimation is tuned such that the redundancy of
the wavenumber coverage is decreased, while preserving a wavenumber sampling that fulfills
the Nyquist criterion and prevent aliasing accordingly (Sirgue and Pratt, 2004).
Also, equation 3.82 shows that a combination of coarse frequency, source and receiver sam-
plings can easily subsample the two polar coordinates of k, leading to wraparound artifacts in
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space. I show the wavenumber components that would be injected in a smooth background
model by FWI of 7 Hz monochromatic data set with maximum offset 15 km in Figure 3.29
when two different source and receiver spacings are used. Figure 3.29a shows the wavenum-
ber spectrum for 1 km source and receiver spacings, while Figure 3.29b is for 100 m source
and receiver spacings. This figure clearly shows for a surface acquisition how the wavenumber
spectrum is sparsified when the source and receiver spacings increase from 100 m to 1 km.
Ultra-long offset acquisition implemented with multi-component Ocean Bottom Nodes (OBN)

Figure 3.29 – Local wavenumber spectrum at the diffractor position in 3 km depth for 7 Hz
monochromatic data set when a fixed-spread acquisition maximum offset 15 km is used. (a-b)
source and receiver interval are equal to 1 km (a) and 100 m (b).

is a suitable technology for deep offshore subsalt imaging by FWI because of undershooting
the deepest targeted structures with diving waves. Ultra-long offsets can be only designed via
sparse stationary-recording acquisitions such as OBN (Vermeer, 2012). These acquisition de-
signs raise however two major issues, cycle skipping and undersampling of the wavenumber
spectrum. The cycle skipping is exacerbated by long propagation distances as shown by the
condition that should be satisfied by the relative traveltime error. This condition reads as

∆t

L
<

1

Nλ

, (3.83)

where ∆t is traveltime error, L propagation time, Nλ number of propagated wavelengths (Pratt,
2008). The subsampled acquisition parameters can potentially translate into subsampling of the
FWI kernel resulting in spectral leakage in the model domain.
In this section, I want to design a FWI technology which is resilient to cycle skipping as well
as subsampling of the acquisition parameters. Regardless of cycle skipping issue that can be
solved using WRI, the subsampled wavenumber issue must be addressed. There are mainly
three strategies to manage these sampling issues. The first is to recover finely-sampled data by
means of compressive sensing (Donoho, 2006a,b; Candès et al., 2006; Candès and Wakin, 2008)
and then perform FWI on the interpolated dataset (Herrmann, 2010). Indeed, this approach is
demanding in terms of computational cost and storage. The second is to perform FWI of the

136



Regularization and bound constraints in ADMM-WRI

sparse data followed by denoising of the FWI model. This projection approach is however not
efficient. The third one that we propose is to interface sparsity-promoting regularization in the
optimization algorithm to manage subsampling effects on the fly during FWI (Li et al., 2016).
The ability of BTT-regularized IR-WRI (TT regularized and bound constrained IR-WRI) for
imaging large-contrast media from stationary-recording acquisition was shown in Aghamiry
et al. (2020b). The resilience to cycle skipping makes IR-WRI amenable to ultra-long offset
stationary-recording acquisitions. In this section we are going to show how the blockiness and
sparsity-promoting `1 TV regularization embedded in BTT-regularized IR-WRI efficiently re-
moves aliasing artifacts in the subsurface model, and narrow the FWI null space resulting from
incomplete illumination when complex large-contrast media are reconstructed from sparse long-
offset acquisitions.

3.4.1 Numerical results

Removing aliasing artifacts: illustration with a spike test

To illustrate the potential of sparsity-promoting TV regularization to filter out aliasing ar-
tifacts in the subsurface model (i.e., wavenumber subsampling along some spatial directions)
generated by sparse acquisitions, we image a point diffractor in a 2 × 2 km2 homogeneous
background model (Fig. 3.30). The velocities at the point diffractor and in the homoge-
neous background are 5 km/s and 1.75 km/s, respectively. For all numerical examples, the
Helmholtz equation is solved with a 9-point stencil finite-difference method implemented with
anti-lumped mass and PML absorbing boundary conditions. The source signature is a Ricker
wavelet with a 15 Hz dominant frequency. We start the inversion from the homogeneous back-
ground model and invert simultaneously frequencies between 2 to 34 Hz with 2 Hz interval.
We consider noiseless data and perform 20 iterations. We first design a full-illumination albeit
sparse acquisition centered on the scatterer with 8 sources and 180 receivers regularly spaced
along a circle of radius 1 km. The estimated model with IR-WRI without any regularization
is shown in Fig. 3.30a, while the result of this test with TV regularization is shown in Fig.
3.30b. The results show how TV regularization removes the moderate aliasing and focus the
perturbation at the diffractor position. To strengthen aliasing, we repeat the previous test with
only 8 receivers regularly deployed along the circle. The estimated models without and with
TV regularization are shown in Fig. 3.30c-3.30d, respectively. Again, the TV regularization
efficiently removes wraparound artifacts. Finally, we test a surface acquisition using one source
in the middle of the model and a line of receivers spaced 20 m apart. The results of IR-WRI
without regularization shows the smearing of the diffractor point resulting from the acquisi-
tion truncation and the spatial wraparound of the diffractor point with a period of around 1 km
(≈ 1/∆kzmax = vpdiff/(2∆f) = 5000/4 = 1.25 km) resulting from the coarse frequency
sampling and the narrow scattering angle illumination. The TV regularization cancels out the
undesired truncation and wraparound effects to focus the perturbation along a small horizontal
reflector segment related to the Fresnel zone. Also, the `1 regularization fosters the reconstruc-
tion of intermediate vertical wavenumbers, which belongs to the null space of the un-regularized
IR-WRI (inset in Fig. 3.30f).
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2004 BP salt model

For a more realistic test, we consider a target of the 2004 BP salt model located on the left
side of the model (Figure 3.15a). The 2004 BP salt model consists of a simple background
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Figure 3.30 – Spike test. IR-WRI results (a,c,e) without regularization (b,d,f) with TV regularization.
(a-b) Circular acquisition with 8 sources and 180 receivers. (c-d) Same as (a-b) for 8 receivers. (e-f)
Single-source surface acquisition. In (f), the inset shows the spectral amplitudes of the vertical profile
cross-cutting the reconstructed spikes shown in (e) and (f) (black and gray curves, respectively). Note
the reconstruction of the intermediate wavenumbers fostered by `1 regularization in the gray curve and
aliasing in the black curve.

with a complex rugose multi-valued salt body, sub-salt slow velocity anomalies related to over-
pressure zones and a fast velocity anomaly to the right of the salt body. The selected subsurface
model is 16250 m wide and 5825 m deep and is discretized with a 25 m grid interval. We
perform forward modeling with a staggered-grid 9-point finite-difference method with PML
boundary conditions using a 10 Hz Ricker wavelet as source signature. We used small batches
of two frequencies with one frequency overlap between two consecutive batches, moving from
the low frequencies to the higher ones according to a classical frequency continuation strategy.
The starting and final frequencies are 3 Hz and 13 Hz, and the sampling interval in one batch is
0.5 Hz. We perform three paths through the frequency batches to improve the IR-WRI results,
using the final model of one path as the initial model of the next one (these cycles can be
viewed as outer iterations of IR-WRI). The starting and finishing frequencies of the paths are
[3,6], [4,10], [6,13] Hz respectively, where the first element of each pair shows the starting
frequency and the second one shows the finishing frequency.
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We consider five regular source devices on the top side of the model with 66, 34, 16, 12, and
8 sources, respectively. First, we used 131 receivers regularly spaced 125 m apart on the top
side of the model. We perform two IR-WRIs for noiseless data: without TT regularization but
with bound constraints (Fig. 3.31, left column) and with BTT regularization (Fig. 3.31, right
column). The hyper parameters in BTT IR-WRI are set following the guidelines provided in
Aghamiry et al. (2019b) and 10 iterations are performed per frequency batch. Therefore, all the
results are obtained with the same number of iterations. Using the same setup, we repeat these
tests with only 66 receivers regularly spaced 250 m apart (Fig. 3.32). We proceed by repeating

Figure 3.31 – 2004 BP test. IR-WRI results for different number of sources. The recording
system involves 131 receivers regularly spaced 125 m apart. (a,c,e,g,i) Bound constrained IR-
WRI with 66(a), 34(c), 16(e), 12(g) and 8(i) sources. (b,d,f,h,j) Same as (a,c,e,g,i) with BTT
regularization. The number of sources and estimated model error are provided in each panel.
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Figure 3.32 – 2004 BP test. Same as Fig. 3.31 for 66 receivers regularly spaced 250 m apart.

the tests shown in Fig. 3.31 and 3.32 for a random distribution of source locations. The source
positions are generated such that the source interval ranges between 0.5 and 1.5 of the source
interval of the regular acquisition. The results of BTT regularized IR-WRI with 131 and 66
receivers are shown in the left and right columns of Fig. 3.33, respectively.
Finally, we sparsify the frequency interval when 131 receivers and 66 sources are used. We
set the frequency interval to 0.5 Hz, 1 Hz and 2 Hz for the first, second and third batch of
frequencies, respectively. The IR-WRI results without and with TT regularization are shown in
Fig. 3.34.
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Figure 3.33 – 2004 BP test. BTT regularized IR-WRI with 131 receivers spaced 125 m apart (left
column), and 66 receivers regularly spaced 250 m apart (right column). Sources are randomly distributed.
The number of sources are (a-b) 66, (c-d) 34, (e-f) 16, (g-h) 12 and (i-j) 8 sources. The number of sources
and estimated model error are written in each panel.

Figure 3.34 – 2004 BP test. IR-WRI results with coarse frequency interval. The acquisition involves 66
sources and 131 receivers regularly spaced 250 m and 125 m apart, respectively. (a) Bound constrained
IR-WRI. (b) BTT regularized IR-WRI. The estimated model error is provided in each panel. Reliable
reconstruction is shown in (b).
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Chapter 4

Extension of ADMM-based WRI to
multi-parameter

Chapter overview: The focus of this chapter is to extend ADMM-based FWI or IR-WRI to
multi-parameter reconstruction. Since bi-linearity of the wave-equation in model parameters
and wavefields has a vital role in IR-WRI, I start this chapter by showing the bi-linearity of
the elastodynamic equations for the most general triclinic anisotropic media. I will consider
both stiffness and compliance notations for the first and second order elastodynamic equations.
By showing this, I proof that IR-WRI can be extended to every kind of physics to perform
mono/multi-parameter imaging in visco-acoustic/elastic media.
In the second section of this chapter, I perform a proof of concept study by extending IR-
WRI to multiparameter reconstruction for VTI acoustic media. By investigating the structure
of the IR-WRI gradient, I find that the radiation patterns of the virtual sources generate simi-
lar wavenumber filtering and parameter cross-talks as in classical FWI. I develop VTI IR-WRI
more specifically for parameterization involving vertical wavespeed and Thomsen’s parameters
δ and ε, although other parameterization can be used as reviewed in the "Discussion" of this
section. I investigate different situations when some of the parameters are used as active pa-
rameters during inversion, while others are kept fixed as passive parameters. I equipped VTI
IR-WRI with bound constraints and TV regularization to remove undesired effects. Of course,
compound regularizations (Aghamiry et al., 2020b) are also a relevant alternative for the reg-
ularization of each parameter class reconstruction. This section contains the article which has
been published in the Geophysical journal international (Aghamiry et al., 2019a).
Finally, for exploiting the full potential of FWI in attenuating media, viscous effects are taken
into account by processing the complex-valued wavespeed as two real variables, squared-slowness
and attenuation. I update these two classes of parameter in alternating mode which means that
IR-WRI is recast as a multi-convex optimization on wavefield, squared-slowness and attenua-
tion. This description of the complex-valued wavespeed as two real variables also allows me
to taylor more easily the regularization to the squared-slowness and attenuation. I implement
bound constraints and TV regularization on visco-acoustic IR-WRI and show the key role of
TV regularization to decrease the ill-posedness of the problem. This section contains the article
which has been published in the Geophysics journal (Aghamiry et al., 2020d).
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4.1 Bi-linearity of the wave-equation in triclinic media

The wave equation is a non-linear function of the wavefield (state variable) and earth pa-
rameters (optimization variable). However, when the wavefield is known, the wave equation
becomes a linear function of the earth parameters and vice versa (Aghamiry et al., 2019c). This
property, which is called bi-linearity, makes FWI be a bi-convex optimization problem which
can be solved efficiently with the alternating direction method of multipliers (ADMM) (Boyd
et al., 2010). In this section, we show that the bi-linearity of the wave-equation is valid for all
types of wave-equation which are used in acoustic and elastic multiparameter FWI. First, we
show the bi-linearity of elastodynamic in triclinic media, which is the most general case, with
stiffness and compliance notations. Then we move to the acoustic wave equation when vertical
transversely isotropy (VTI) anisotropy is considered. Finally, we show the bi-linearity of the
acoustic equation for isotropic media. For all the above-mentioned cases, we describe first and
second order equations and investigate their bi-linearity.

4.1.1 First-order equations with stiffness notation

The governing equations of FWI in elastic anisotropic media of size n = nx × ny × nz are
the equation of motion and the constitutive Hooke’s law (e.g., Carcione, 2015) as:

diag(ρ(x))∂tvi(x, t) = ∂jσij(x, t) + fi(x, t) (4.1a)
σij(x, t) = diag(cijkl(x))εkl(x, t) + si(x, t), (4.1b)

where the independent variables of each component are shown inside parenthesis, x = (x, y, z)
denote the spatial coordinates in 3D, t denotes the time coordinate and diag(•) denotes a di-
agonal matrix. Also, fi ∈ Rn×1 denotes i’th component of external forces, si ∈ Rn×1 denotes
i’th component of explosive sources or fracture, ρ ∈ Rn×1 density, vi ∈ Rn×1 particle veloc-
ities, σij ∈ Rn×1 the ij’th component of stress tensor, cijkl ∈ Rn×1 the ijkl’th component
of stiffness tensor, εkl ∈ Rn×1 the kl’th strain tensor component with i, j, k, l ∈ [x, y, z] and
∂i ∈ Rn×n discrete derivative operator in i’th direction. We introduce perfectly-matched layer
(PML) (Bérenger, 1994) absorbing conditions in equations 4.1 through a change of coordinates
in the complex space such that ∂x̃ = 1

ξx
∂x, ∂ỹ = 1

ξy
∂y, and ∂z̃ = 1

ξz
∂z. We have ξx = 1 + îγx

ω
,

ξy = 1 + îγy
ω

and ξz = 1 + îγz
ω

, where î =
√
−1, ω is angular frequency and the functions γx,

γy and γz control the damping of the wavefield in the PMLs (Operto et al., 2007b). For sake of
simplicity, we remove tilde from partial derivative in the rest of this section and the effects of
PML boundary condition is considered for all the following partial derivative operators.
It is recalled that strains are related to displacement ui ∈ Rn×1 by

εij(x, t) =
1

2
[∂iuj(x, t) + ∂jui(x, t)], i, j ∈ {x, y, z}. (4.2)

143



Extension of ADMM-based WRI to multi-parameter

Next, according to the Voigt’s notation convention (e.g., Helbig, 2013), we change the double-
index notation for stresses to be single-indexes asσxx σxy σxz

σyx σyy σyz
σzx σzy σzz

 =

σ1 σ6 σ5

σ6 σ2 σ4

σ5 σ4 σ3

 . (4.3)

For strain, aiding by the Voigt’s index rule we haveεxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

ε1 ε6 ε5

ε6 ε2 ε4

ε5 ε4 ε3

 = (4.4)

 ∂xux
1
2
[∂xuy + ∂yux]

1
2
[∂xuz + ∂zux]

1
2
[∂yux + ∂xuy] ∂yuy

1
2
[∂yuz + ∂zuy]

1
2
[∂zux + ∂xuz]

1
2
[∂zuy + ∂yux] ∂zuz

 ,
and it can be used to rewrite elastic parameters cijkl i, j, k, l ∈ [x, y, z] as cIJ I, J ∈ [1, 2, 3, 4, 5, 6].
We now introduce Auld differential matrix (Auld, 1990) as

∇T =


∂x 0 0
0 ∂y 0
0 0 ∂z
0 ∂z ∂y
∂z 0 ∂x
∂y ∂x 0︸ ︷︷ ︸

3n




6n. (4.5)

The matrix form of strain-displacement relation, equation 4.2, by using ∇T , equation 4.5,
can be written as

ε = ∇Tu, (4.6)

where

ε =


ε1

ε2

ε3

ε4

ε5

ε6

 ∈ R6n×1 and u =

ux
uy
uz

 ∈ R3n×1, (4.7)

are vectors that contain components of the strain and wavefield, respectively.
With the Voigt’s convention the stress-strain relation, equation 4.1b, in matrix form becomes

σ = Mcε+ s. (4.8)
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where

Mc =


diag(c11) diag(c12) diag(c13) diag(c14) diag(c15) diag(c16)
diag(c21) diag(c22) diag(c23) diag(c24) diag(c25) diag(c26)
diag(c31) diag(c32) diag(c33) diag(c34) diag(c35) diag(c36)
diag(c41) diag(c42) diag(c43) diag(c44) diag(c45) diag(c46)
diag(c51) diag(c52) diag(c53) diag(c54) diag(c55) diag(c56)
diag(c61) diag(c62) diag(c63) diag(c64) diag(c65) diag(c66)︸ ︷︷ ︸

6n




6n, (4.9)

s =


s1

s2

s3

s4

s5

s6

 ∈ R6n×1, (4.10)

and

σ =


σ1

σ2

σ3

σ4

σ5

σ6

 ∈ R6n×1. (4.11)

Plugging the expression of ε, equation 4.6, in equation 4.8 gives the strain-displacement relation
in matrix form as

σ = Mc∇Tu + s. (4.12)

In the other hand, the equation of motion,4.1a, can be written in matrix form as

∂tv = Mb∇σ + f , (4.13)

where

Mb =

 diag(b) 0 0
0 diag(b) 0
0 0 diag(b)︸ ︷︷ ︸

3n

 3n, (4.14)

b = 1
ρ
∈ Rn×1 is the buoyancy vector,

v =

vx
vy
vz

 ∈ R3n×1, (4.15)
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is the particle velocities vector and

f =

fx
fy
fz

 ∈ R3n×1, (4.16)

is the external forces vector.
Because in this Ph.D. thesis, we work on the frequency domain FWI, we continue with fre-
quency domain form of equations. By taking Fourier transform of problem 4.13 with respect to
time, the derivative ∂t changes to −îω and also the independent variable t changes to ω.
By multiplying equation 4.12 by −îω, we have

− îωσ = Mc∇Tv − îωs. (4.17)

It is possible to combine equations 4.17 and the frequency form of equation 4.13 which is

− îωv = Mb∇σ + f , (4.18)

to write the velocity-stress elastodynamic equation in triclinic media as

MDw + îωw = S, (4.19)

where

w =

[
v
σ

]
∈ C9n×1 and S =

[
−f

îωs

]
∈ C9n×1, (4.20)

M =

[
Mb 0
0 Mc

]
∈ C9n×9n and D =

[
0 ∇
∇T 0

]
∈ C9n×9n. (4.21)

Equation 4.19 is a bi-linear function, which is linear in w with fixed M and vice versa. The
9n × 9n linear system with fixed subsurface properties (M) on velocity and stress wavefields
(w) reads as

[MD + îωI]w = S, (4.22)

where I is the identity matrix.
The 9n× 37n linear system with fixed w with respect to subsurface parameters reads

diag(∂xσ1 + ∂yσ6 + ∂zσ5) 0 0 0 0 0 0
diag(∂xσ6 + ∂yσ2 + ∂zσ4) 0 0 0 0 0 0
diag(∂xσ5 + ∂yσ4 + ∂zσ3) 0 0 0 0 0 0

0 Dv 0 0 0 0 0
0 0 Dv 0 0 0 0
0 0 0 Dv 0 0 0
0 0 0 0 Dv 0 0
0 0 0 0 0 Dv 0
0 0 0 0 0 0 Dv





b
c1

c2

c3

c4

c5

c6


= S− îωw (4.23)
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where

Dv =
[
diag(∂xvx) diag(∂yvy) diag(∂zvz) diag(∂zvy + ∂yvz) ...

diag(∂zvx + ∂xvz) diag(∂yvx + ∂xvy)
]
∈ Cn×6n (4.24)

and

ci =


ci1
ci2
ci3
ci4
ci5
ci6

 ∈ C6n×1. (4.25)

4.1.2 Second-order equations with stiffness notation

Alternatively, we can recast the elastodynamic equations as a system of second-order PDEs
by elimination of the auxiliary stress wavefields (inject equation 4.12 in equation 4.18) as[

ω2Mρ +∇Mc∇T
]
u = −Mρf −∇s︸ ︷︷ ︸

f̃

. (4.26)

where

Mρ =

 diag(ρ) 0 0
0 diag(ρ) 0
0 0 diag(ρ)︸ ︷︷ ︸

3n

 3n, (4.27)

MbMρ = I and v = −îωu.
Equation 4.26 is linear in u with fixed Mc and Mρ. Also, the 3n × 37n linear system with
subsurface properties as unknown and fixed wavefields (u) reads

 ω2diag(ux) Dx
u 0 0 0 Dz

u Dy
u

ω2diag(uy) 0 Dy
u 0 Dz

u 0 Dx
u

ω2diag(uz) 0 0 Dz
u Dy

u Dx
u 0




ρ
c1

c2

c3

c4

c5

c6


= f̃ , (4.28)
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where

Dx
u =

[
diag(∂xxux) diag(∂xyuy) diag(∂xzuz) diag(∂xzuy + ∂xyuz) ...

diag(∂xzux + ∂xxuz) diag(∂xyux + ∂xxuy)
]
∈ Cn×6n,

Dy
u =

[
diag(∂yxux) diag(∂yyuy) diag(∂yzuz) diag(∂yzuy + ∂yyuz) ...

diag(∂yzux + ∂yxuz) diag(∂yyux + ∂yxuy)
]
∈ Cn×6n,

Dz
u =

[
diag(∂zxux) diag(∂zyuy) diag(∂zzuz) diag(∂zzuy + ∂zyuz) ...

diag(∂zzux + ∂zxuz) diag(∂zyux + ∂zxuy)
]
∈ Cn×6n, (4.29)

∂ij i, j ∈ {x, y, z} is the second order derivative and its subscript shows the direction and ci is
defined in equation 4.25.

4.1.3 First-order equations with compliance notation

We can also introduce the compliance matrix M∫ = M−1
c in order to manipulate symmetric

(self-adjoint) operator in the right-hand side of equation 4.19 and to decouple the subsurface
properties from the differential operators. By multiplying both sides of equation 4.8 by M∫ we
have

M∫σ = ε+ M∫s︸︷︷︸
s̃

, (4.30)

where

M∫ =


diag(∫11) diag(∫12) diag(∫13) diag(∫14) diag(∫15) diag(∫16)
diag(∫21) diag(∫22) diag(∫23) diag(∫24) diag(∫25) diag(∫26)
diag(∫31) diag(∫32) diag(∫33) diag(∫34) diag(∫35) diag(∫36)
diag(∫41) diag(∫42) diag(∫43) diag(∫44) diag(∫45) diag(∫46)
diag(∫51) diag(∫52) diag(∫53) diag(∫54) diag(∫55) diag(∫56)
diag(∫61) diag(∫62) diag(∫63) diag(∫64) diag(∫65) diag(∫66)︸ ︷︷ ︸

6n




6n, (4.31)

and ∫ij ∈ Cn×1.

By putting ε = ∇Tu ,equation 4.6, into equation 4.30 and multiplying by −îω we have

− îωM∫σ = ∇Tv − îωs̃, (4.32)

then by combining equations 4.18, when both sides are multiplied by Mρ, and 4.32 we have the
first-order velocity-stress elastodynamic equation in triclinic media as

îωM̃w + Dw = S, (4.33)

where

M̃ =

[
Mρ 0
0 M∫

]
∈ C9n×9n, (4.34)
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S =

[
−Mρf

îωs̃

]
∈ C9n×1, (4.35)

and definition of D and w are same as before.
Again, the first-order velocity-stress equation, equation 4.33, defines a bilinear function with
respect to the subsurface parameters (M̃) and the wavefield (w). This 9n × 9n linear system
with fixed M̃ and w as unknown reads

[̂iωM̃ + D]w = S, (4.36)

and with fixed w, the 9n× 37n linear system on subsurface parameters reads

îωdiag(vx) 0 0 0 0 0 0

îωdiag(vy) 0 0 0 0 0 0

îωdiag(vz) 0 0 0 0 0 0
0 Dσ 0 0 0 0 0
0 0 Dσ 0 0 0 0
0 0 0 Dσ 0 0 0
0 0 0 0 Dσ 0 0
0 0 0 0 0 Dσ 0
0 0 0 0 0 0 Dσ





ρ
∫1
∫2
∫3
∫4
∫5
∫6


= S−Dw, (4.37)

where

Dσ = îω
[

diag(σ1) diag(σ2) diag(σ3) diag(σ4) diag(σ5) diag(σ6)
]
∈ Cn×6n, (4.38)

and

∫i =


∫i1
∫i2
∫i3
∫i4
∫i5
∫i6

 ∈ C6n×1. (4.39)

4.1.4 Second-order equations with compliance notation

It is possible to recast the elastodynamic equations with compliance notation as a system
of second-order PDEs by elimination of the particle velocity (inject equation 4.18 in equation
4.32) as

[∇TMb∇+ ω2M∫ ]σ = ω2s̃−∇T f︸ ︷︷ ︸
s̃

, (4.40)
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Equation 4.40 is linear in σ with fixed M∫ and Mb. Also, the 6n × 37n linear system with
subsurface properties as unknown and fixed stress wavefields (σ) reads


∂xdiag(∂xσ1 + ∂yσ6 + ∂zσ5) Dσ 0 0 0 0 0
∂ydiag(∂xσ6 + ∂yσ2 + ∂zσ4) 0 Dσ 0 0 0 0
∂zdiag(∂xσ5 + ∂yσ4 + ∂zσ3) 0 0 Dσ 0 0 0

0 0 0 0 Dσ 0 0
0 0 0 0 0 Dσ 0
0 0 0 0 0 0 Dσ





b
∫1
∫2
∫3
∫4
∫5
∫6


= s̃, (4.41)

where

Dσ = ω2
[

diag(σ1) diag(σ2) diag(σ3) diag(σ4) diag(σ5) diag(σ6)
]
∈ Cn×6n. (4.42)

4.2 Application of ADMM-based WRI to anisotropy

This section presents a proof of concept study of multi-parameter IR-WRI in acoustic media
where transverse isotropy with a vertical symmetry axis (VTI) is implemented. I apply TV reg-
ularization and bound constraint in IR-WRI using splitting techniques and ADMM as reviewed
in the previous chapters to stabilize the multi-parameter reconstruction. Although VTI acoustic
media are non physical (e.g., Grechka et al., 2004), the VTI acoustic approximation has been
intensively used by the oil industry for FWI since the proof of concept study of Operto et al.
(2009) who have shown its validity in weak anisotropic media from both the kinematic and
dynamic viewpoints.

The source is a pressure explosive source which is applied on the normal stress components.
In this section, I denote the normal stress components by ux and uz instead of σ1 and σ3 as
used in section 1 for sake of notation consistency with previous chapters where wavefields are
denoted by u. Also, the notations used in this section introduce explicitly multiple sources with
matrix notations in contrast to the vector notations used in previous chapters.
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ADMM-based multi-parameter wavefield reconstruction inversion in VTI
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4.2.1 Summary

Full waveform inversion (FWI) is a nonlinear waveform matching procedure, which suffers
from cycle skipping when the initial model is not kinematically-accurate enough. To mitigate
cycle skipping, wavefield reconstruction inversion (WRI) extends the inversion search space by
computing wavefields with a relaxation of the wave equation in order to fit the data from the
first iteration. Then, the subsurface parameters are updated by minimizing the source residuals
the relaxation generated. Capitalizing on the wave-equation bilinearity, performing wavefield
reconstruction and parameter estimation in alternating mode decomposes WRI into two linear
subproblems, which can solved efficiently with the alternating-direction method of multiplier
(ADMM), leading to the so-called iteratively refined wavefield reconstruction inversion (IR-
WRI). Moreover, ADMM provides a suitable framework to implement bound constraints and
different types of regularizations and their mixture in IR-WRI. Here, IR-WRI is extended to
multiparameter reconstruction for VTI acoustic media. To achieve this goal, we first propose
different forms of bilinear VTI acoustic wave equation. We develop more specifically IR-WRI
for the one that relies on a parametrisation involving vertical wavespeed and Thomsen’s parame-
ters δ and ε. With a toy numerical example, we first show that the radiation patterns of the virtual
sources generate similar wavenumber filtering and parameter cross-talks in classical FWI and
IR-WRI. Bound constraints and TV regularization in IR-WRI fully remove these undesired ef-
fects for an idealized piecewise constant target. We show with a more realistic long-offset case
study representative of the North Sea that anisotropic IR-WRI successfully reconstruct the ver-
tical wavespeed starting from a laterally homogeneous model and update the long-wavelengths
of the starting ε model, while a smooth δ model is used as a passive background model. VTI
acoustic IR-WRI can be alternatively performed with subsurface parametrisations involving
stiffness or compliance coefficients or normal moveout velocities and η parameter (or horizon-
tal velocity).

4.2.2 Introduction

Full waveform inversion (FWI) is a waveform matching procedure which provides subsur-
face model with a wavelength resolution. However, it suffers from cycle skipping when the
initial model is not accurate enough according to the lowest available frequency. To mitigate
cycle skipping, the search space of frequency-domain FWI can be extended by wavefield recon-
struction inversion (WRI) (van Leeuwen and Herrmann, 2013, 2016). In WRI, the search space
is extended with a penalty method to relax the wave-equation constraint at the benefit of the
observation equation (i.e., the data fit) during wavefield reconstruction. Then, the subsurface

151



Extension of ADMM-based WRI to multi-parameter

parameters are estimated from the reconstructed wavefields by minimizing the source residuals
the relaxation generated. If these two subproblems (wavefield reconstruction and parameter
estimation) are solved in alternating mode (van Leeuwen and Herrmann, 2013) rather than by
variable projection (van Leeuwen and Herrmann, 2016), WRI can be recast as a sequence of
two linear subproblems capitalizing on the bilinearity of the scalar Helmholtz equation with re-
spect to the wavefield and the squared slownesses (the Helmholtz equation is linear with respect
to the wavefield for a given squared slowness model and is linear with respect to the squared
slownesses for a given wavefield).
Aghamiry et al. (2019c) improved WRI by replacing the penalty method with the augmented
Lagrangian method (Nocedal and Wright, 2006) and solve it using the alternating-direction
method of multipliers (ADMM) (Boyd et al., 2010), leading to iteratively-refined WRI (IR-
WRI). Although ADMM was originally developed for separable convex problems, the bilinear-
ity of the wave equation makes IR-WRI biconvex, which allows for the use of ADMM as is
(Boyd et al., 2010, Section 3.1.1). Moreover, a scaled form of ADMM draws clear connection
between WRI and IR-WRI in the sense that it shows that IR-WRI reduces to a penalty method
in which the right-hand sides (RHSs) in the quadratic objective functions associated with the
observation equation and the wave equation are iteratively updated with the running sum of the
data and source residuals in iteration (namely, the scaled Lagrange multipliers). This RHS up-
dating, the lacking feature in WRI, efficiently refines the solution of the two linear subproblems
when a fixed penalty parameter is used (Aghamiry et al., 2018c, 2019c). Later, Aghamiry et al.
(2018b, 2019b) interfaced bound constraints and edge-preserving regularizations with ADMM
to manage large-contrast media. Also, to preserve the smooth components of the subsurface
when edge preserving regularizations are used, Aghamiry et al. (2018a, 2020b) combine blocky
and smooth promoting regularization in the framework of IR-WRI by using infimal convolution
of Tikhonov and Total Variation (TV) regularization functions.

IR-WRI was mainly assessed for wavespeed estimation from the scalar Helmholtz equation.
The objective of this study is to develop and assess the extension of IR-WRI to multi-parameter
reconstruction in VTI acoustic media. To achieve this goal, we first need to review different
formulations of the VTI acoustic wave equation and different subsurface parametrisations for
which bilinearity of the wave equation is fulfilled, in order to keep the parameter estimation
subproblem linear. Since the wavefield reconstruction requires to solve a large and sparse sys-
tem of linear equations, second-order or fourth-order wave equation for pressure will be favored
at the expense of first-order velocity-stress formulations to mitigate the number of unknowns
during wavefield reconstruction. However, we stress that different forms of the wave equation
can be used to perform wavefield reconstruction and parameter estimation, provided they pro-
vide consistent solutions (Gholami et al., 2013b, Their Appendix A and B).
Also, we will favor subsurface parametrisation involving the vertical wavespeed v0 and the
Thomsen’s parameter ε and δ at the expense of that involving stiffness coefficients according to
the trade-off analysis of Gholami et al. (2013b, Their Appendix A and B).

When bilinearity of the wave equation is fulfilled, IR-WRI can be extended to multi-parameter
estimation following the procedure promoted by Aghamiry et al. (2019b), where TV regulariza-
tion and bound constraints are efficiently implemented in the parameter-estimation subproblem
using variable splitting schemes (Glowinski et al., 2017). The splitting procedure allows us to
break down the non-differentiable TV regularization problem into two easy-to-solve subprob-
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lems: a least-squares quadratic subproblem and a proximity subproblem (Goldstein and Osher,
2009).

In this study, we perform a first assessment of multi-parameter IR-WRI for v0 and ε using a
toy inclusion example and the more realistic synthetic North Sea case study tackled by Gholami
et al. (2013b) and Gholami et al. (2013a). With the toy example, we first show that the radia-
tion patterns and the parameter cross-talks have the same effects as in classical FWI when TV
regularization is not applied. Then, we show how TV regularization fully removes bandpass
filtering and cross-talk effects generated by these radiation patterns for this idealized piecewise
constant target. With the North Sea example, we first show the resilience of IR-WRI against
cycle skipping when using a crude initial v0 model. The reconstruction of the v0 model is
accurate except in the deep smooth part of the subsurface which suffers from a deficit of wide-
angle illumination, while the reconstruction of ε is more challenging and requires additional
regularization to keep its update smooth and close to the starting model. However, we manage
to update significantly the long-to-intermediate wavelengths of ε by IR-WRI, unlike Gholami
et al. (2013a). Also, comparison between mono-parameter IR-WRI for v0 and multi-parameter
IR-WRI for v0 and ε allows us to gain qualitative insights on the sensitivity of the IR-WRI to ε
in terms of subsurface model quality and data fit.

This paper is organized as follow. We first discuss the bilinearity of the acoustic VTI
wave equation as well as its implication on the gradient and the Gauss-Newton Hessian of the
parameter-estimation subproblem. From the selected bilinear formulation of the wave equation,
we develop bound-constrained TV-regularized IR-WRI for VTI acoustic media parametrized
by 1/v2

0, 1 + 2ε and
√

1 + 2δ. Third, we assess IR-WRI for VTI acoustic media against the
inclusion and North Sea case studies. Finally, we discuss the perspectives of this work.

4.2.3 Theory

In this section, we first show that the VTI acoustic wave equations is bilinear with respect
to the wavefield and model parameters. Then, we rely on this bilinearity to formulate multi-
parameter IR-WRI in VTI acoustic media with bounding constraints and TV regularization.

Bilinearity of the wave equation: preliminaries

If we write the wave equation in a generic matrix form as

A(m)u = s, (4.43)

where A ∈ C(n×nc)×(n×nc) is the wave-equation operator, u ∈ C(n×nc)×1 is the wavefield vector,
s ∈ C(n×nc)×1 is the source vector, m ∈ R(n×nm)×1 is the subsurface parameter vector, n is the
number of degrees of freedom in the spatial computational mesh, nc is the number of wavefield
components, nm is the number of parameter classes, then the wave equation is bilinear if there
exists a linear operator L(u) ∈ C(n×nm)×(n×nm) such that

L(u)m = y(u), (4.44)
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where y(u) ∈ C(n×nm)×1. Bilinearity is verified when the left-hand side of the wave equation
can be decomposed as:

A(m)u = B M(m) Cu + Du, (4.45)

where M(m) is a block matrix, whose blocks of dimension n × n are either 0 or of the form
diag(mi), and matrices B, C and D don’t depend on m. The operator diag(•) denotes a diag-
onal matrix of coefficients • and mi is the subsurface parameter vector of class i. By noting
that diag(x)z = diag(z)x, the block diagonal structure of M allows one to rewrite the term
B M(m) Cu as B C′(u)m, where C′(u) is a block matrix, whose blocks of dimension n × n
are either 0 or diagonal with coefficients depending on u.

It follows from equation 4.45 and the above permutation between u and m that the wave
equation can be re-written as

A(m)u− s = B C′(u)m + Du− s = L(u)m− y(u). (4.46)

Moreover, in the framework of multi-parameter analysis, it is worth noting that

∂A(m)

∂mk

u = L(u)ek, (4.47)

where the left-hand side is the so-called virtual source associated with mk (Pratt et al., 1998)
and ek ∈ C(n×nm)×1 denotes a column vector whose kth component is one while all the others
are zeros.

Accordingly, the normal operator LTL, i.e., the Gauss-Newton Hessian of the parameter
estimation subproblem in IR-WRI, is formed by the zero-lag correlation of the virtual sources
and, hence is extremely sparse. We also point that L and its associated normal operator LTL
are block diagonals if B is diagonal. This means that, if the model parameters are first sorted
according to their position in the mesh (fast index) and second according to the parameter class
they belong to (slow index), then the diagonal coefficients of the off-diagonal blocks describe
the inter-parameter coupling. In the following section, we show the bilinearity of the acoustic
VTI wave equation based upon the above matrix manipulations.

Bilinearity of the acoustic VTI wave equation

First-order velocity-stress wave equation

We first consider the frequency-domain first-order velocity-stress wave equation in 2D VTI
acoustic media (Duveneck et al., 2008; Duveneck and Bakker, 2011; Operto et al., 2014)

−îωvx,l = diag(b)∇xux,l,
−îωvz,l = diag(b)∇zuz,l,
−îωux,l = diag(c11)∇xvx,l + diag(c13)∇zvz,l − îωsl,

−îωuz,l = diag(c13)∇xvx,l + diag(c33)∇zvz,l − îωsl, (4.48)
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where î =
√
−1, ω is the angular frequency, vx,l ∈ Cn×1 and vz,l ∈ Cn×1 are the horizontal and

vertical particle velocity wavefields, sl ∈ Cn×1 denote the pressure sources, and ux,l ∈ Cn×1

and uz,l ∈ Cn×1 are the so-called horizontal and vertical pressure wavefields (Plessix and Cao,
2011). The subscript l ∈ {1, 2, ..., ns} is the source index, where ns denotes the number of
sources. The subsurface properties are parametrized by the buoyancy b ∈ Rn×1 (inverse of
density) and the stiffness coefficients cij ∈ Rn×1. Operators ∇x and ∇z are finite difference
approximation of first order derivative operators with absorbing perfectly matched layer (PML)
coefficients (Bérenger, 1994). Gathering equation 4.48 for all sources leads to the following
matrix equation: ([

Mb 0
0 Mc

] [
0 ∇
∇ 0

]
+ îωI

)[
V
U

]
= îω

[
0
S

]
, (4.49)

where I is the identity matrix,

∇ =

[
∇x 0
0 ∇z

]
,

U =

[
Uh

Uv

]
, V =

[
Vx

Vz

]
, S =

[
Sx
Sz

]
, (4.50)

with
Vx =

[
vx,1 vx,2 ... vx,ns

]
∈ Cn×ns ,

and analogously for Vz, Uh, Uv, and

Sx = Sz =
[
s1 s2 ... sns

]
∈ Cn×ns .

Furthermore,

Mb =

[
diag(b) 0

0 diag(b)

]
,Mc =

[
diag(c11) diag(c13)
diag(c13) diag(c33)

]
.

Note that, according to the decomposition introduced in the previous section, M =

[
Mb 0
0 Mc

]
,

B = I, C = ∇ and D = îωI. Equation 4.49 is linear in U and V when the model parameters
embedded in Mb and Mc are known. When U and V are known, this system can be also recast
as a new linear system in which the unknowns are the model parameters, thus highlighting the
bilinearity of the wave equation. For the lth source, the new equations become

L11 0 0 0
L21 0 0 0
0 L32 L33 0
0 0 L43 L44




b
c11

c13

c33

 = îω


0− vx,l
0− vz,l
sl − ux,l
sl − uz,l

 , (4.51)

where 
L11 = diag(∇xux,l),
L21 = diag(∇zuz,l),
L32 = L43 = diag(∇xvx,l),
L33 = L44 = diag(∇zvz,l).
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Equations 4.49 and 4.51 are equivalent forms of the original equation 4.48. The former ex-
presses the discretized wavefields as the unknowns of a linear system, whose coefficients de-
pend on the known subsurface parameters, while the latter expresses the model parameters as
the unknowns of an another linear system, whose coefficients depend on the known wavefields.
In the framework of WRI, this bilinearity allows one to recast the waveform inversion problem
as two linear subproblems for wavefield reconstruction and parameter estimation, which can
be solved efficiently in alternating mode with ADMM (Aghamiry et al., 2019c,b). In the next
section, we show the bilinearity of the second-order frequency-domain wave equation, which
may be more convenient to solve with linear algebra methods than the first-order counterpart,
since it involves fewer unknowns for a computational domain of given size.

Second-order wave equation

Following a parsimonious approach (e.g., Operto et al., 2007a), we eliminate vx,l and vz,l
from equation 4.48 to derive a system of two second-order partial differential equations as

− ω2ux,l = diag(c11)∇xdiag(b)∇xux,l
+ diag(c13)∇zdiag(b)∇zuz,l − ω2sl,

− ω2uz,l = diag(c13)∇xdiag(b)∇xux,l
+ diag(c33)∇zdiag(b)∇zuz,l − ω2sl.

(4.52)

Equation 4.52 defines a tri-linear equation with respect to buoyancy, stiffness parameters and
pressure wavefields. A tri-linear function is a function of three variables which is linear in one
variable when the other two variables are fixed. In this study, we will assume that density is
constant and equal to 1 to focus on the estimation of the anisotropic parameters. If hetero-
geneous density needs to be considered, the second-order wave equation can be recast as a
bilinear system if the first-order wave equation is parametrized with compliance coefficients in-
stead of stiffness coefficients (see Appendix A, section 4.2.7, and Vigh et al., 2014; Yang et al.,
2016b). Alternatively, the parameter estimation can be performed with the bilinear first-order
wave equation, equation 4.51, while wavefield reconstruction is performed with the second-
order wave equation, equation 4.52, or the fourth-order wave equation reviewed in Appendix C
(section 4.2.9) for sake of computational efficiency.

We continue by assuming that the density is constant and equal to 1 and parametrize the
VTI equation in terms of vertical wavespeed v0 and Thomsen’s parameters ε and δ (Thomsen,
1986). Accordingly, we rewrite equation 4.52 as

− ω2diag
(
1/v2

0

)
ux,l = diag(1 + 2ε)∇xxux,l

+ diag(
√

1 + 2δ)∇zzuz,l − diag(1/v2
0)sl,

− ω2diag
(
1/v2

0

)
uz,l = diag(

√
1 + 2δ)∇xxux,l

+∇zzuz,l − diag
(
1/v2

0

)
sl,

(4.53)

where ∇xx = ∇x∇x and ∇zz = ∇z∇z. We write this 2n × 2n linear system in a more compact
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form as
A(m)U = S, (4.54)

where ST = ω2
[
STx STz

]
, U is defined as in equation 4.50, and the matrix A is given by[

ω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz
diag(mδ)∇xx ω2diag(mv0) +∇zz

]
,

where the model parameters are

m =

mv0

mε

mδ

 =

 1/v2
0

1 + 2ε√
1 + 2δ

 .
Equation 4.54 is linear in wavefields U when the model parameters m are known. When U
is known, this system can be recast as a linear system in which the unknowns are the model
parameters. 

L1
...

Ll
...

Lns

m =


y1
...
yl
...

yns

 , (4.55)

where Ll is given by [
ω2diag(ux,l) diag(∇xxux,l) diag(∇zzuz,l)
ω2diag(uz,l) 0 diag(∇xxux,l)

]
and

yl =

[
ω2sl

ω2sl −∇zzuz,l

]
.

Note that each block of Ll is diagonal. In the next section, we develop multi-parameter acoustic
VTI IR-WRI with bound constraints and TV regularization. We give the most general formula-
tion in which all the tree parameter classes mv0 , mε, mδ are optimization parameters (updated
by the inversion). However, one may process some of them as passive parameters or update
the parameter classes in sequence rather than jointly. In this case, the linear system associated
with the parameter estimation subproblem, equation 4.55, will change. Table 4.1 presents this
system for the different possible configurations.
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Table 4.1 – The linear systems corresponding to the update of mv0 , mε and mδ when they
are active or passive during the inversion. In the first three columns, « a. » denotes an active
parameter and « p. » denotes a passive parameter.

mv0 mε mδ The corresponding linear system for updating the model

a. p. p.
[
ω2diag(ux,l)
ω2diag(uz,l)

]
︸ ︷︷ ︸

Ll∈C2n×n

[
mv0

]︸ ︷︷ ︸
m∈Rn×1

=

[
ω2sl − diag(mε)∇xxux,l − diag(mδ)∇zzuz,l

ω2sl −∇zzuz,l − diag(mδ)∇xxux,l

]
︸ ︷︷ ︸

yl∈C2n×1

p. a. p.
[
diag(∇xxux,l)

]︸ ︷︷ ︸
Ll∈Cn×n

[
mε

]︸ ︷︷ ︸
m∈Rn×1

=
[
ω2sl − ω2diag(mv0)ux,l − diag(mδ)∇zzuz,l

]︸ ︷︷ ︸
yl∈Cn×1

p. p. a.
[

diag(∇zzuz,l)
diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×n

[
mδ

]︸ ︷︷ ︸
m∈Rn×1

=

[
ω2sl − ω2diag(mv0)ux,l − diag(mε)∇xxux,l

ω2sl −∇zzuz,l − ω2diag(mv0)uz,l

]
︸ ︷︷ ︸

yl∈C2n×1

p. a. a.
[

diag(∇xxux,l) diag(∇zzuz,l)
0 diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mε

mδ

]
︸ ︷︷ ︸

m∈R2n×1

=

[
ω2sl − ω2diag(mv0)ux,l

ω2sl −∇zzuz,l − ω2diag(mv0)uz,l

]
︸ ︷︷ ︸

yl∈C2n×1

a. a. p.
[
ω2diag(ux,l) diag(∇xxux,l)
ω2diag(uz,l) 0

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mv0

mε

]
︸ ︷︷ ︸
m∈R2n×1

=

[
ω2sl − diag(mδ)∇zzuz,l

ω2sl −∇zzuz,l − diag(mδ)∇xxux,l

]
︸ ︷︷ ︸

yl∈C2n×1

a. p. a.
[
ω2diag(ux,l) diag(∇zzuz,l)
ω2diag(uz,l) diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mv0

mδ

]
︸ ︷︷ ︸
m∈R2n×1

=

[
ω2sl − diag(mε)∇xxux,l

ω2sl −∇zzuz,l

]
︸ ︷︷ ︸

yl∈C2n×1

ADMM-based acoustic VTI wavefield reconstruction inversion

We consider the following bound-constrained TV-regularized multivariate optimization prob-
lem associated with the wave equation described by equation 4.54:

min
U,m∈C

∑√
|∂xm|2 + |∂zm|2,

subject to

{
PU = D,

A(m)U = S,

(4.56)

where ∂x and ∂z are, respectively, first-order finite-difference operators in the horizontal and
vertical directions with appropriate boundary conditions, C = {x ∈ R3n×1 |ml ≤ x ≤ mu} is
the set of all feasible models bounded by a priori lower bound ml and upper bound mu,

D =
[
d1 d2 ... dns

]
∈ Cnr×ns
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with dl denoting the recorded data for the lth source, each including nr samples (the number
of receivers), P ∈ Rnr×2n is a linear observation operator which samples the wavefields at the
receiver positions. Here, we assume that the sampling operator is identical across all sources
(stationary-recording acquisitions). However, one may used a specific operator for each source.

We solve this constrained optimization problem with ADMM (Boyd et al., 2010; Aghamiry
et al., 2019b), an augmented Lagrangian method with operator splitting, leading to the following
saddle point problem

min
U,m∈C

max
D̄,S̄

∑√
|∂xm|2 + |∂zm|2

+
〈
D̄,PU−D

〉
+ λ0‖PU−D‖2

F

+
〈
S̄,A(m)U− S

〉
+ λ1‖A(m)U− S‖2

F ,

(4.57)

where ‖ • ‖2
F denotes the Frobenius norm of •, λ0, λ1 > 0 are penalty parameters and D̄ ∈

Cnr×ns and S̄ ∈ Cn×ns are the Lagrange multipliers (dual variables).

The last two lines of Equation 4.57 shows that the augmented Lagrangian function com-
bines a Lagrangian function (left terms) and a penalty function (right terms). Also, scaling the
Lagrange multipliers by the penalty parameters, D̃ = −D̄/λ0 and S̃ = −S̄/λ1, allows us to re-
cast the augmented Lagrangian function in a more convenient form (Boyd et al., 2010, Section
3.1.1)

min
U,m∈C

max
D̄,S̄

∑√
|∂xm|2 + |∂zm|2

+ λ0‖PU−D− D̃‖2
F − ‖D̃‖2

F

+ λ1‖A(m)U− S− S̃‖2
F − ‖S̃‖2

F ,

(4.58)

where the scaled dual variables have been injected in the penalty functions.

In the WRI framework, the augmented Lagrangian method provides an efficient and easy-to-
tune optimization scheme that extends the parameter search space by introducing a significant
relaxation of the wave equation at the benefit of the observation equation during the early iter-
ations, while satisfying the two equations at the convergence point. We solve the saddle point
problem, equation 4.58, with the method of multiplier, in which the primal variables, U and
m, and the dual variables, D̃ and S̃, are updated in alternating mode. The dual problem is
iteratively solved with basic gradient ascent steps. Accordingly, we immediately deduce from
equation 4.58 that the scaled dual variables D̃ and S̃ are formed by the running sum of the con-
straint violations (the data and source residuals) in iterations. They update the RHSs (the data
and the sources) of the quadratic penalty functions in equation 4.58 to refine the primal vari-
ables U and m at a given iteration from the residual source and data errors (this RHS updating
is a well known procedure to iteratively refine solutions of ill-posed linear inverse problems).
The bi-variate primal problem, equation 4.56, is biconvex due to the bilinearity of the wave
equation highlighted in the previous section. Therefore, it can be broken down into two linear
subproblems for U and m, which can be solved efficiently in alternating mode with ADMM
after noting that the TV regularizer is convex (Aghamiry et al., 2019b).

As pointed out by Aghamiry et al. (2019c), a key advantage of augmented Lagrangian meth-
ods compared to penalty methods is that fixed penalty parameters λ0 and λ1 can be used in
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iterations, because the Lagrange multipliers progressively correct for the constraint violations
generated by the penalty terms through the above mentioned RHS updating.

Starting from an initial model m and zero-valued dual variables, the kth ADMM iteration
embeds the following steps (see Appendix B, section 4.2.8, for the complete development):

Step 1: The primal wavefield reconstructions.

Build regularized wavefields by solving the following multi-RHS system of linear equations
with direct or iterative methods suitable for sparse matrices:[

λ0P
TP + λ1A(mk)TA(mk)

]
U =[

λ0P
T [D + D̃k] + λ1A(mk)T [S + S̃k]

]
.

(4.59)

By choosing a small value of λ0/λ1, the reconstructed wavefields closely fit the observations
during the early iterations, while only weakly satisfying the wave equation. Problem 4.59 can
be also interpreted as an extrapolation problem to reconstruct U, when the observation equation
(i.e. PU = D) is augmented with the wave equation.

To mitigate the computational burden of the wavefield reconstruction, we solve equation
4.59 with a fourth-order wave equation operator following the parsimonious approach of Operto
et al. (2014), while the subsequent model estimation subproblem relies on the bilinear wave
equation provided in equation 4.53. The elimination procedure allowing to transform the system
of two second-order wave equations for ux and uz, equation 4.53, into a fourth-order wave
equation for ux coupled with the closed-form expression of uz as a function of ux is reviewed
in Appendix C (section 4.2.9).

Step 2: The primal model estimation.

The reconstructed wavefields, equation 4.59, are injected in the linearized equation 4.55 to
update the subsurface parameters by solving the following system of linear equations:[

λ1

ns∑
l=1

LT
l Ll +∇T

Γ∇+ ZI

]
m = λ1

ns∑
l=1

LT
l (ykl + s̃kl )

+∇T
Γ(pk + p̃k) + Z(qk + q̃k),

(4.60)

where

∇ =

[
∂x
∂z

]
. (4.61)

In equation 4.60, p and q are auxiliary primal variables, which have been introduced to solve
the bound-constrained TV-regularized parameter estimation subproblem with the split Bregman
method (Appendix B, section 4.2.8). The vectors p̃ and q̃ are the corresponding dual variables.
These auxiliary primal and dual variables are initialized to 0 during the first ADMM iteration.
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The operator Z is a diagonal weighting matrix defined as

Z =

ζv0I 0 0
0 ζεI 0
0 0 ζδI

 ∈ R3n×3n
+ , (4.62)

where ζv0 , ζε, ζδ > 0 control the relative weights assigned to the bound constraints applied on
the three parameter classes. Note that the bound constraints introduce also a damping (DMP)
or zero-order Tikhonov regularization in the Hessian of equation 4.60.

In the same way, Γ is a diagonal matrix defined as

Γ =

[
Γ11 0
0 Γ22

]
, (4.63)

where

Γ11 = Γ22 =

γv0I 0 0
0 γεI 0
0 0 γδI

 ∈ R3n×3n
+ ,

and γv0 , γε, γδ > 0 control the soft thresholding that is performed by the TV regularizer, equa-
tion 4.65. We remind that augmented Lagrangian methods seek to strictly satisfy the constraints
at the convergence point only, not at each iteration. Therefore, the relative values of these
penalty parameters have a significant impact upon the path followed by the inversion to con-
verge toward this convergence point.

Step 3: The TV primal update.

Update the TV primal variable p via a TV proximity operator. Set

z← ∇mk+1 − p̃k =

[
zx
zz

]
,

then

pk+1 ← proxΓ−1(z) =

[
ξ ◦ zx
ξ ◦ zz

]
, (4.64)

where
ξ = max(1− 1

Γ
√

z2
x + z2

z

, 0) (4.65)

and x ◦ y denotes the Hadamard (component-wise) product of x and y. Also, the power of 2
indicates the Hadamard product of x with itself, i.e. x2 = x ◦ x.
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Step 4: The bounding constraint primal update.

Update the primal variable q via a projection operator, which has the following component-
wise form

qk+1 ← projC(m
k+1 − q̃k), (4.66)

where the projection operator is given by

projC(x) = min(max(x,ml),mu).

Step 5: Dual updates.

Update the scaled dual variables with gradient ascent steps
S̃k+1 ← S̃k + S−A(mk+1)Uk+1,

D̃k+1 ← D̃k + D−PUk+1,

p̃k+1 ← p̃k + pk+1 −∇mk+1,

q̃k+1 ← q̃k + qk+1 −mk+1,

(4.67)

Step 6: Check the stopping condition.

Exit if the preset stopping conditions are satisfied else go to step 1. We will describe the
stopping criteria of iterations in the following "Numerical example" section for each numerical
example

Hyperparameter tuning

We tune the different penalty parameters by extending the procedure reviewed by Aghamiry
et al. (2019b, 2020b) to multiparameter reconstruction.

We start from the last subproblem of the splitting procedure and set the penalty parameters
contained in Γ. These hyperparameters control the soft thresholding performed by the TV reg-
ularization, equation 4.64. We set γi = 2% max

√
z2
ix

+ z2
iz

, where the subscript i ∈ {v0, ε, δ}
denotes the parameter class (mv0 , mε, mδ). This tuning can be refined by using a different
thresholding percentage for each parameter class adaptively during iterations or according to
prior knowledge of the geological structure, coming from well logs for example. Also, we use
the same weight for the damping regularization associated with the bound constraints and the
TV regularization: ζi = γi.
Then, we select λ1 as a percentage of the mean absolute value of the diagonal coefficients of∑ns

l=1 LT
l Ll during the parameter estimation subproblem, equation 4.60. This percentage is set

according to the weight that we want to assign to the TV regularization and the bound con-
straints relative to the wave equation constraint during the parameter estimation. Parameter λ1

may be increased during iterations to reduce the weight of TV regularization and bound con-
straints near the convergence point. We found this adaptation useful when we start from very
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crude initial models. Finally, we set λ0 such that λ = λ1/λ0 is a small fraction of the highest
eigenvalue ξ of the normal operator A(m)−TPTPA(m)−1 during the wavefield reconstruction
subproblem, equation 4.59, according to the criterion proposed by van Leeuwen and Herrmann
(2016). In all the numerical tests, we use λ = 1e-2ξ and λ = 1e-0ξ for noiseless and noisy data,
respectively. This tuning of λ is indeed important because it controls the extension of the search
space. A too high value of λ reduces the weight of ‖PU−D‖2

2 during the wavefield recon-
struction and makes IR-WRI behave like a reduced approach. Conversely, using a small value
for λ fosters data fitting and expends the search space accordingly. However, a too small value
can lead to a prohibitively high number of iterations of the augmented Lagrangian method be-
fore the wave equation constraint is fulfilled with sufficient accuracy. Moreover, when data are
contaminated by noise, a too small value for λ will make the wavefield reconstruction over-fit
the data and drive the algorithm to be a poor minimizer. We always use λ as a fixed percentage
of ξ in iterations.

4.2.4 Numerical examples

Inclusion test

We first assess multi-parameter IR-WRI with a simple inclusion example for noiseless data.
The experimental setup in terms of model, acquisition geometry and frequency selection is
identical to that used by Gholami et al. (2013b). The vertical velocity v0 and the Thomsen’s
parameters δ and ε are 3 km/s, 0.05 and 0.05, respectively, in the homogeneous background
model and 3.3 km/s, 0.1 and 0.2, respectively, in the inclusion of radius 100 m. Nine frequencies
between 4.8 Hz and 19.5 Hz are processed simultaneously during IR-WRI and a maximum of
25 iterations is used as stopping criterion for iterations. An ideal fixed-spread acquisition is
used, where 64 sources and 320 receivers surround the inclusion, hence providing a complete
angular illumination of the target.

Although we use (1/v2
0,
√

1 + 2δ, 1 + 2ε) as optimization parameters during our inversions,
we show the reconstructed models under the form of v0, δ and ε for comparison with the re-
sults of Gholami et al. (2013b). Note that the radiation patterns of the (1/v2

0,
√

1 + 2δ, 1 + 2ε)
parametrisation are scaled versions of those of the (v0, δ, ε) parametrisation: namely, they ex-
hibit the same amplitude variation with scattering angle, with however different amplitudes.
This means that, for an equivalent regularization and parameter scaling, we expect similar res-
olution and trade-off effects with these two parametrisations. Note that v0 is provided in km/s
in our inversion such that the order of magnitude of 1/v2

0 is of the order of δ and ε.

We start with bound-constrained IR-WRI with damping (DMP) regularization only (γi =
0, i ∈ {v0, ε, δ} in equation 4.60) and perform three independent mono-parameter reconstruc-
tions for mv0 , mδ and mε, respectively. For each mono-parameter inversion, the true model
associated with the optimization parameter contains the inclusion, while the true models asso-
ciated with the two passive parameters are homogeneous (Fig. 4.1). For all three inversions,
the starting models are the true homogeneous background models. In other words, the data
residuals contain only the footprint of the mono-parameter inclusion to be reconstructed. This
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test is used to assess the intrinsic resolution of IR-WRI for each parameter reconstruction, in-
dependently from the cross-talk issue (Gholami et al., 2013b). It is reminded that this intrinsic
resolution is controlled by the frequency bandwidth, the angular illumination provided by the
acquisition geometry and the radiation pattern of the optimization parameter in the chosen sub-
surface parametrisation. As this test fits the linear regime of classical FWI, we obtain results
(Fig. 4.1) very similar to those obtained by Gholami et al. (2013b, Their Fig. 9), where the
shape of the reconstructed inclusions is controlled by the radiation pattern of the associated
parameter. The reader is referred to Gholami et al. (2013b) for a detailed analysis of these radi-
ation patterns.
Then, we perform the joint reconstruction of mv0 , mδ and mε, when the true model contains
an inclusion for each parameter class (Fig. 4.2). With our parameter scaling and subsurface
parametrisation, v0, ε and δ are reconstructed with well balanced amplitudes compared to the
results of Gholami et al. (2013b, Their Fig. 10), where v0 has a dominant imprint in the in-
version. Comparing the models reconstructed by the mono-parameter and multi-parameter in-
versions highlights however the wavenumber leakage generated by parameter cross-talks (Figs.
4.1 and 4.2).

Then, we complement DMP regularization with TV regularization during bound-constrained
IR-WRI for the above mono-parameter and multi-parameter experiments (Figs. 4.3 and 4.4).
The results show how TV regularization contributes to remove the wavenumber filtering per-
formed by radiation patterns (compare for example Figs. 4.1 and 4.3) as well as the cross-talk
artifacts during the multi-parameter inversion (compare Figs. 4.2 and 4.4). Although this toy
example has been designed with a piecewise constant model which is well suited for TV regu-
larization, yet it highlights the potential role of TV regularization to mitigate the ill-posedness
of FWI resulting from incomplete wavenumber coverage and parameter trade-off.

Synthetic North Sea case study

Experimental setup

We consider now a more realistic 16 km × 5.2 km shallow-water model representative of
the North Sea (Munns, 1985). The reader is also referred to Gholami et al. (2013a) for an
application of acoustic VTI FWI on this model. The true model and the initial (starting) models
for v0, δ and ε are shown in Fig. 4.5. The subsurface model is formed by soft sediments in
the upper part, a pile of low-velocity gas layers above a chalk reservoir, the top of which is
indicated by a sharp positive velocity contrast at around 2.5 km depth, and a flat reflector at
5 km depth (Fig. 4.5a). The initial v0 model is laterally homogeneous with velocity linearly
increasing with depth between 1.5 to 3.2 km/s (Fig. 4.5b), while the δ and ε initial models are
Gaussian filtered version of the true models. Note that our initial/background v0, δ and εmodels
are cruder than those used by Gholami et al. (2013a). The fixed-spread surface acquisition
consists of 80 (reciprocal) explosive sources spaced 200 m apart at 75 m depth on the sea bottom
and 320 (reciprocal) hydrophone receivers spaced 50 m apart at 25 m depth. Accordingly,
the pressure wavefield is considered for the acoustic VTI inversion. A free-surface boundary
condition is used on top of the grid and the source signature is a Ricker wavelet with a 10 Hz
dominant frequency. We compute the recorded data in the true models (Figs. 4.5a,c,e) with the
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Figure 4.1 – Inclusion test: Mono-parameter IR-WRI results. For v0 (first column), δ (second
column), and ε (third column). The initial models are the true homogeneous background mod-
els. The vertical and horizontal profiles in the true model (blue) and estimated model (red) are
extracted across the center of the inclusions.

forward modelling engine described in Appendix C (section 4.2.9). During IR-WRI, we use the
same forward engine to compute the modelled data according to an inverse crime procedure.
Common-shot gathers computed in the true model and in the initial model for a shot located at
14 km are shown in Fig. 4.6. The seismograms computed in the true model are dominated by
the direct wave, the diving waves from the sedimentary overburden, complex packages of pre-
and post-critical reflections from the gas layers, the top of the reservoir and the deep reflector.
The refracted wave from the deep reflector is recorded at a secondary arrival between -14km
and -10km offset in Fig. 4.6a. Also, energetic reverberating P-wave reflections are generated
by the wave guide formed by the shallow water layer and the weathering layer. They take the
form of leaking modes with phase velocities higher than the water wave speed (Operto and
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Figure 4.2 – Inclusion test: Multiparameter IR-WRI results for joint update of v (first column),
δ (second column), and ε (third column). The initial models are the homogeneous background
models.

Miniussi, 2018). The seismograms computed in the starting model mainly show the direct wave
and the diving waves, these latter being highly cycle skipped relative to those computed in the
true model.

We perform both mono-parameter IR-WRI for mv0 and multi-parameter IR-WRI for mv0

and mε. In both cases, we compare the results that are obtained when bound-constrained IR-
WRI is performed with DMP regularization only (γi = 0) and with DMP + TV regularization.
When mε is involved as an optimization parameter, we had to introduce an additional regu-
larization term ‖m − m0

ε‖ in the parameter-estimation subproblem, equation 4.82a, in order
to force the updates of ε to be smooth and close to ε0. The background models used for the
passive anisotropic parameters (either ε and δ or δ alone) are the smooth models (Fig. 4.5d,f),
which means that the IR-WRI results will be impacted upon by the smoothness of the passive
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Figure 4.3 – Inclusion test: Same as Fig. 4.1, but with TV regularization.

parameters.

We perform IR-WRI with small batches of two frequencies with one frequency overlap
between two consecutive batches, moving from the low frequencies to the higher ones according
to a classical frequency continuation strategy. The starting and final frequencies are 3 Hz and
15 Hz and the sampling interval in one batch is 0.5 Hz. The stopping criterion for iterations and
for each batch is given by kmax = 15 or

‖A(mk+1)Uk+1 − S‖F ≤ εb & ‖PUk+1 −D‖F ≤ εd, (4.68)

where kmax denotes the maximum iteration count. For noiseless data, εb and εd are set to 1e-3
and 1e-5, respectively. For noisy data, they are set to 1e-3 and the noise level of the batch,
respectively.

We perform three paths through the frequency batches to improve the IR-WRI results, using
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Figure 4.4 – Inclusion test: Same as Fig. 4.2, but with TV regularization.

the final model of one path as the initial model of the next one (these cycles can be viewed as
outer iterations of IR-WRI). The starting and finishing frequencies of the paths are [3, 6], [4,
8.5], [6, 15] Hz respectively, where the first element of each pair shows the starting frequency
and the second one is the finishing frequency.

Convexity and sensitivity analysis

Before discussing the IR-WRI results, we illustrate how WRI extends the search space of
FWI for the North Sea case study. For this purpose, we compare the shape of the FWI misfit
function with that of the parameter-estimation WRI subproblem for the 3 Hz frequency and for
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Figure 4.5 – North Sea case study. (a) True v0 model. (b) Initial v0 model. (c) True δ model.
(d) Smoothed δ model, which is used as passive background model during inversion tests. (e)
True ε model. (f) Smoothed ε model, which is used as a passive background model during the
mono-parameter inversion and as an initial model during the joint reconstruction of v0 and ε.
The vertical dashed lines in (b) and (f) indicate the location of vertical logs.
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Figure 4.6 – North Sea case study. Time domain seismograms computed in (a) the true model
(Fig. 4.5a,c,e) and in (b) the initial model (Fig. 4.5b,d,f). The seismograms are plotted with a
reduction velocity of 2.5 km/s.

a series of v0 and ε models that are generated according to

v0(α) = v0true + |α|[v0init − v0true ], (4.69a)
ε(β) = εtrue + |β|[εinit − εtrue], (4.69b)

where v0true and v0init denote the true and the initial v0 models, respectively (Fig. 4.5a,b) and
−1 ≤ α ≤ 1. Similarly, εtrue and εinit are the true and the initial ε models, respectively (Fig.
4.5e,f) and −1 ≤ β ≤ 1. Finally, we use the true δ model (Fig. 4.5c) to generate the recorded
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data and the smoothed version (Fig. 4.5d) as a passive parameter to evaluate the misfit function.
The misfit functions of the classical reduced-approach FWI as well as that of WRI are shown in
Fig. 4.7. The WRI misfit function is convex, while that of FWI exhibits spurious local minima
along both the α and β dimensions. Also, the sensitivity of the misfit function to v0 is much
higher than that of ε for the considered range of models as already pointed out by Gholami et al.
(2013b), Gholami et al. (2013a) and Cheng et al. (2016, Their Fig. 2). The weaker sensitivity
of the misfit function to ε makes the joint update of v0 and ε challenging.
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Figure 4.7 – North Sea case study. 3-Hz misfit function for the first iteration when v0 and
ε are active parameters and δ is kept fixed to the smooth background model (Fig. 4.5f). (a)
Classical reduced approach, (b) WRI. The variables α and β parametrize the v0 and ε models,
respectively, for which the misfit function is computed (see text for details).

Mono-parameter IR-WRI

We start with mono-parameter bound-constrained IR-WRI when v0 is the optimization pa-
rameter and δ and ε are passive parameters. We first consider noiseless data.
The final v0 models inferred from bound-constrained IR-WRI with DMP regularization only
and DMP+TV regularizations are shown in Fig. 4.8. Also, direct comparisons between the
logs extracted from the true model, the initial model, and the IR-WRI models at x = 3.5 km,
x = 8.0 km and x = 12.5 km are shown in Fig. 4.9. Although the crude initial v0 model and
the smooth δ and ε passive models, the shallow sedimentary part and the gas layers are fairly
well reconstructed with the two regularization settings. The main differences are shown at the
reservoir level and below. Without TV regularization, the reconstruction at the reservoir level
is quite noisy and the inversion fails to reconstruct the smoothly-decreasing velocity below the
reservoir due to the lack of diving wave illumination at these depths. This in turn prevents the
focusing of the deep reflector at 5 km depth by migration of the associated short-spread reflec-
tions. When TV regularization is used, IR-WRI provides a more accurate and cleaner image of
the reservoir and better reconstructs the sharp contrast on top of it. It also reconstructs the deep
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reflector at the correct depth in the central part of the model, while the TV regularization has
replaced the smoothly-decreasing velocities below the reservoir by a piecewise constant layer
with a mean velocity (Fig. 4.9).

Figure 4.8 – North Sea case study with noiseless data. Mono-parameter IR-WRI. Vertical
wavespeed v0 models inferred from IR-WRI with (a) DMP regularization, (b) TV regulariza-
tion.

To generate more realistic test, we add random noise with Gaussian distribution to the data
with SNR=10 db and re-run the mono-parameter bound-constrained IR-WRI with DMP and TV
regularizations (Fig. 4.10). The direct comparison between the true model, the initial model and
the IR-WRI models of Fig. 4.10 at distances x = 3.5 km, x = 8.0 km and x = 12.5 km are
shown in Fig. 4.11. The noise degrades the reconstruction of the gas layers both in terms of
velocity amplitudes and positioning in depth when only DMP regularization is used. Also, the
sharp reflector on top of the reservoir is now unfocused and mis-positioned in depth accordingly
(Fig. 4.11). The TV regularization significantly reduces these amplitude and mis-positioning
errors (Figs. 4.10b and 4.11) and hence produces v0 models which are much more consistent
with those obtained for noiseless data (Figs. 4.8b and 4.9).

To assess how the differences between the velocity models shown in Fig. 4.8 impact wave-
form match, we compute time-domain seismograms in these models as well as the differences
with those computed in the true model (Figs. 4.12 and 4.13). The time-domain seismograms
and the residuals shown in Fig. 4.12 give an overall vision of the achieved data fit, while the
direct comparison between the recorded and modelled seismograms shown in Fig. 4.13 allow
for a more detailed assessment of the waveform match for a specific arrival.

A first conclusion is that, for all of the models shown in Fig. 4.8, the main arrivals, namely
those which have a leading role in the reconstruction of the subsurface model (diving waves,
pre- and post-critical reflections), are not cycle skipped relative to those computed in the true
model. We note however more significant residuals for the reverberating guided waves when
TV regularization is used. These mismatches were generated by small wavespeed errors gener-
ated in the shallow part of the model by the TV regularization. These artifacts can be probably
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Figure 4.9 – North Sea case study with noiseless data. Direct comparison along the logs at
x = 3.5 (left), x = 8.0 (center) and x = 12.5 km (right) between the true velocity model
(black), the initial model (dashed line) and the bound constrained IR-WRI models shown in
Fig. 4.8. The logs of the IR-WRI models obtained with DMP regularization and DMP+TV
regularization are the green lines and the red lines, respectively.

corrected by deactivating or decreasing the weight of the TV regularization locally. For noise-
less data, the direct comparison between the seismograms computed in the true model and in the
reconstructed ones show how the DMP+TV regularization improves the waveform match both
at pre- and post-critical incidences relative to the DMP regularization alone (Fig. 4.13a,b). For
noisy data, the data fit is slightly degraded by noise when DMP regularization is used, while the
TV regularization produces a data fit which is more consistent with that obtained with noiseless
data (Compare Figs. 4.13a and 4.13c for DMP regularization, and Figs. 4.13b and 4.13d for
DMP+TV regularization). It is striking to see the strong impact of noise on the quality of the
v0 reconstruction when DMP regularization is used (compare Figs. 4.8a and 4.10a, and Figs.
4.9 and 4.11, green curves), compared to its more moderate impact on the data fit (Compare
Figs. 4.13a and 4.13c). This highlights the ill-posedness of the FWI, which is nicely mitigated
by the prior injected by the TV regularization as illustrated by the consistency of the v0 models
inferred from noiseless and noisy data (Compare Figs. 4.13b and 4.13b).

Multi-parameter IR-WRI

We continue with multi-parameter bound-constrained IR-WRI when v0 and ε are optimiza-
tion parameters and δ is a passive parameter. As for the mono-parameter inversion, we start with
noiseless data. The final v0 and ε models inferred from bound-constrained IR-WRI with DMP
and DMP+TV regularizations are shown in Fig. 4.14. The direct comparisons between the logs
extracted from the true v0 model, the initial model, the bound constrained IR-WRI models with
DMP and DMP+TV regularization at x = 3.5 km, x = 8.0 km and x = 12.5 km are shown
in Fig. 4.15a, and the same comparisons for ε are depicted in Fig. 4.15b. Compared to the
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Figure 4.10 – North Sea case study with noisy data (SNR=10 db). Mono-parameter bound
constrained IR-WRI with (a) DMP (b) TV regularization.

Figure 4.11 – North Sea case study with noisy data (SNR=10 db). Direct comparison along the
logs at x = 3.5 (left), x = 8.0 (center) and x = 12.5 km (right) between the true velocity model
(black), the initial model (dashed line) and the bound constrained IR-WRI estimated models
with DMP, Fig. 4.8a, (green) and TV regularization, Fig. 4.8b, (red).

mono-parameter inversion results, involving ε as an optimization parameter clearly improves
the reconstruction at the reservoir level down to around 3 km depth (compare Figs. 4.8 and
4.14a,b). The long to intermediate wavelengths of the ε model are primarily updated according
to the radiation pattern of this parameter in the (v0, ε, δ) parametrisation. The main effect of
TV regularization relative to DMP regularization is to remove high-frequency noise from the ε
model (Fig. 4.15b).

The time-domain seismograms computed in the multi-parameter models inferred from bound-
constrained IR-WRI when DMP and DMP+TV regularizations are used are shown in Fig.
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Figure 4.12 – North Sea case study. Time-domain seismograms computed in the subsurface
models obtained by (v0) mono-parameter IR-WRI. (a-b) Noiseless data: (a) DMP regulariza-
tion, (b) DMP+TV regularization. (c-d) Same as (a-b) for noisy data. (e-h) Residuals between
the seismograms computed in the true model (Fig. 4.6a) and those shown in (a-d). The seismo-
grams are plotted with a reduction velocity of 2.5 km/s.

4.18. The direct comparison between the recorded and modelled seismograms is shown in
Fig. 4.19a,b. Clearly, using both v0 and ε as optimization parameters allows us to better con-
ciliate the fit of the pre- and post-critical reflections (Compare Figs. 4.13a and 4.19a for DMP
regularization, and Figs. 4.13b and 4.19b for DMP+TV regularization). With noiseless data,
DMP regularization is enough to achieve a high-fidelity data fit, which looks better than that
obtained with DMP+TV regularization (Compare Figs. 4.19a and 4.19b).

We repeat now the joint inversion when data are contaminated by Gaussian random noise
with a SNR=10 db. The final v0 and ε models inferred from bound-constrained IR-WRI with
DMP and DMP+TV regularization are shown in Fig. 4.16. Direct comparisons along logs
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Figure 4.13 – North Sea case study. Mono-parameter bound-constrained IR-WRI results. Di-
rect comparison between seismograms computed in the true model (black) and in the IR-WRI
models (red). (a-b) Noiseless data (IR-WRI models of Fig. 4.8). (a) DMP regularization. (b)
DMP+TV regularization. (c-d) Same as (a-b) for noisy data (IR-WRI models of Fig. 4.10). The
seismograms are plotted with a reduction velocity of 2.5 km/s. True amplitudes are shown after
a gain with offset and time for amplitude balancing. The solid box delineates post-critical re-
flections from the reservoir and the refracted wave from the deep interface, while the dot boxes
delineate pre-critical reflections from the reservoir and the deep reflector. The amplitudes of the
reverberating guided waves at long offsets are clipped for sake of clarity.

extracted from the true models, the initial models, and the models inferred from the bound
constrained multi-parameter IR-WRI with DMP and DMP+TV regularization at x = 3.5 km,
x = 8.0 km and x = 12.5 km are shown in Fig. 4.17. For the v0 reconstruction, a trend similar
to that shown for the mono-parameter inversion is shown, with a more significant impact of
the noise on the velocity model reconstructed with DMP regularization compared to the one
reconstructed with DMP+TV regularization (Compare Figs. 4.14 and 4.16). As expected, the
impact of noise is more significant on the second-order εmodel, even when TV regularization is
used, in the sense that the estimated perturbations of the initial model have smaller amplitudes
compared to the noiseless case (Fig. 4.17b).

The time-domain seismograms are shown in Figs. 4.18 and 4.19c,d. The data fit obtained
with DMP regularization has been significantly degraded compared to that obtained with noise-
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Figure 4.14 – North Sea case study with noiseless data. Multi-parameter IR-WRI results. (a-b)
v0 models obtained with (a) DMP (a) and (b) DMP+TV regularizations. (c-d) Same as (a-b) for
ε.

less data (compare Figs. 4.19a and 4.19c), while the data fit obtained with DMP+TV regular-
ization is more consistent with noiseless and noisy data (compare Figs. 4.19b and 4.19d). This
is consistent with the previous conclusions drawn from the mono-parameter inversion.

4.2.5 Discussion

We have extended the ADMM-based wavefield reconstruction inversion method (IR-WRI),
originally developed for mono-parameter wavespeed reconstruction (Aghamiry et al., 2019c,b),
to multi-parameter inversion in VTI acoustic media. We have first discussed which formulations
of the VTI acoustic wave equation are bilinear in wavefield and subsurface parameters. First-
order velocity stress form is often more convenient than the second-order counterpart to fulfill
bilinearity, in particular if density (or buoyancy) is an optimization parameter. However, it may
be not the most convenient one for frequency-domain wavefield reconstruction as the size of
the linear system to be solved scales to the number of wavefield components. To bypass this
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Figure 4.15 – North Sea case study with noiseless data. Multi-parameter bound-constrained IR-
WRI results. Direct comparison along logs at x = 3.5 (left), x = 8.0 (center) and x = 12.5 km
(right) between the true model (black), the initial model (dashed line) and the models inferred
from IR-WRI with DMP (green) and DMP+TV regularization (red) for (a) v0 and (b) ε (Fig.
4.14).

issue, wavefield reconstruction and parameter estimation can be performed with different wave
equations, provided they give consistent solutions (Gholami et al. (2013a) and this study).

Bilinearity allows us to recast the parameter estimation subproblem as a linear subproblem
and hence the waveform inversion as a biconvex problem. Although ADMM has been orig-
inally developed to solve distributed convex problems, it can be used as is to solve biconvex
problem (Boyd et al., 2010). From the mathematical viewpoint, biconvex problems should have
superior convergence properties compared to fully nonconvex problem (this discussion is out
of the scope of this study but we refer the interested reader to Benning et al., 2015). Alterna-
tively, ADMM-like optimization can be used to perform IR-WRI heuristically without bilinear
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Figure 4.16 – North Sea case study with noisy data (SNR=10 db). Multi-parameter bound-
constrained IR-WRI results. (a-b) v0 models obtained with (a) DMP (a) and (b) DMP+TV
regularizations. (c-d) Same as (a-b) for ε.

wave equation, hence keeping the parameter estimation subproblem, equation 4.82a, nonlin-
ear. Accordingly, equation 4.82a would be solved with a Newton algorithm rather than with
a Gauss-Newton one. This nonlinear updating of the parameters may however require several
inner Newton iterations per IR-WRI cycle, while Aghamiry et al. (2019c) showed that one inner
Gauss-Newton iteration without any line search was providing the most efficient convergence
of IR-WRI when bilinearity is fulfilled.

Indeed, the bilinearity specification limits the choice of subsurface parametrisation for pa-
rameter estimation. In the general case of triclinic elastodynamic equations, a subsurface
parametrisation involving buoyancy and stiffness or compliance coefficients will be the most
natural ones, as they correspond to the coefficients of the equation of motion and the Hooke’s
law. In the particular case of the VTI acoustic wave equation, we have developed a bilinear wave
equation whose coefficients depend on the vertical wavespeed v0 and the Thomsen’s parameters
δ and ε. Although v0 and ε are coupled at wide scattering angles, the (v0, ε, δ) parametrisation
was promoted by Gholami et al. (2013b) and Gholami et al. (2013a) because the dominant pa-
rameter v0 has a radiation pattern which doesn’t depend on the scattering angle, and hence can
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Figure 4.17 – North Sea case study with noisy data. Multi-parameter bound-constrained IR-
WRI results. Direct comparison along logs at x = 3.5 (left), x = 8.0 (center) and x = 12.5 km
(right) between the true model (black), the initial model (dashed line) and the models inferred
from IR-WRI with DMP (green) and DMP+TV regularization (red) for (a) v0 and (b) ε (Fig.
4.16).

be reconstructed with a high resolution from wide-azimuth long-offset data. The counterpart
is that updating the long wavelengths of the secondary parameter ε is challenging and requires
so far a crude initial guess of its long wavelengths (Fig. 4.5e,f), which can be used as prior to
regularize the ε update. Comparing the results of IR-WRI when ε is used as a passive parameter
and as an optimization parameter shows that the sensitivity of the inversion to ε remains small
provided that a reasonable guess of its long wavelengths are provided in the starting model (for
the models, compare Figs. 4.8-4.10 and Figs. 4.14-4.16; for the data fit, compare Fig. 4.13 and
Fig. 4.19). This limited sensitivity of FWI to the short-to-intermediate wavelengths of ε in the
(v0, ε, δ) prompted for example Debens et al. (2015) to estimate a crude ε background model
with a coarse parametrisation by global optimization.
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Figure 4.18 – North Sea case study. Same as Fig. 4.12 for (v0,ε) multi-parameter IR-WRI.

Among the alternative parametrisations proposed for VTI acoustic FWI, Plessix and Cao (2011)
proposed the (vn,vh, δ) or the (vn, η, δ) parametrisations for long-offset acquisition, while
Alkhalifah and Plessix (2014) promoted the (vh, η, ε) parametrisation, where vn = v0

√
1 + 2δ

is the so-called NMO velocity, vh = v0

√
1 + 2ε is the horizontal velocity and η = (ε− δ)/(1 +

2δ) represents the anellipticity of the anisotropy. For the parametrisation promoted by Plessix
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Figure 4.19 – North Sea case study. Same as Fig. 4.13 for (v0,ε) multi-parameter IR-WRI.

and Cao (2011), the VTI equation developed by Zhou H. (2006) given by

ω2diag
(

1

v2
n

)
uq + 2diag(η)∇xx(up + uq) = sq,

ω2diag
(

1

v2
n

)
up +∇xx(up + uq) +

diag
(

1√
1 + 2δ

)
∇zzdiag

(
1√

1 + 2δ

)
up = sp, (4.70)

is bilinear in wavefields and parameters (1/v2
n, η), where up =

√
1 + 2δuz and uq = ux −√

1 + 2δuz. Note that if δ is assumed to be smooth, the above equation can be approximated as

ω2diag
(

1

v2
n

)
uq + 2diag(η)∇xx(up + uq) = sq,

ω2diag
(

1

v2
n

)
up +∇xx(up + uq) +

diag
(

1

1 + 2δ

)
∇zzup = sp (4.71)
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which is bilinear in wavefields and parameters (1/v2
n, η, 1/(1 + 2δ). This implies that δ can be

involved as an optimization parameter if necessary. Note that, if this smoothness approximation
is used to update the parameters during the primal problem, the modelled data and the source
residuals can be solved with the exact equation to update the dual variables with more accuracy.
For the (vh, η, ε) parametrisations (Alkhalifah and Plessix, 2014), according to Zhou H. (2006)
the VTI equations with smooth δ can be written as

ω2diag
(

1

v2
h

)
uq +∇xx(up + uq)− diag

(
1

1 + 2η

)
∇xx(up + uq) = sq,

ω2diag
(

1

v2
h

)
up + diag

(
1

1 + 2η

)
∇xx(up + uq) +

diag
(

1

1 + 2ε

)
∇zzup = sp,

(4.72)

which is bilinear in wavefields and parameters (1/v2
h, 1/(1 + 2η), 1/(1 + 2ε)).

4.2.6 Conclusion

We have shown that ADMM-based IR-WRI can be extended to multi-parameter reconstruc-
tion for VTI acoustic media. The gradient of the misfit function for the parameter estimation
subproblem involves the so-called virtual sources, which carry out the effect of the parameter-
dependent radiation patterns. This suggests that, although IR-WRI extends the search-space of
FWI to mitigate cycle skipping, it is impacted by ill-posedness associated with parameter cross-
talk and incomplete angular illumination as classical FWI. We have verified this statement with
a toy numerical example for which we have reproduced the same pathologies in terms of res-
olution and parameter cross-talks as those produced by classical FWI during a former study.
We have illustrated how equipping IR-WRI with bound constraints and TV regularization fully
remove the ill-posedness effects for this idealized numerical example. We have provided some
guidelines to design bilinear wave equation of different order for different subsurface parametri-
sations. Although bilinearity puts some limitations on the choice of the subsurface parametrisa-
tion, it recasts the parameter estimation subproblem as a quadratic optimization problem, which
can be solved efficiently with Gauss-Newton algorithm. Application on the long-offset syn-
thetic case study representative of the North Sea has shown how IR-WRI can be started from
a crude laterally-homogeneous vertical velocity model without impacting the inversion with
cycle skipping, when a smooth δ parameter is used as a passive background model. However,
a smooth initial ε model, albeit quite crude, is necessary to guarantee the convergence of the
method to a good solution, either when ε is used as a passive or as an optimization parameter.
For this case study where the low velocity gas layers and the smooth medium below the reser-
voir suffer from a deficit illumination of diving waves, the TV regularization plays a key role to
mitigate the ill-posedness.
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4.2.7 Appendix A: First and second-order wave equation with compliance
notation

We consider the frequency-domain first-order velocity-stress equation in 2D VTI acoustic
media with compliance notation as

−îωvx,l = diag(b)∇xux,l,
−îωvz,l = diag(b)∇zuz,l,

−îω[diag(∫11)ux,l + diag(∫13)uz,l] = ∇xvx,l − îωsl,

−îω[diag(∫13)ux,l + diag(∫33)uz,l] = ∇zvz,l − îωsl, (4.73)

where ∫ij ∈ Rn×1 are the compliance coefficients, and the other notations are defined after
equation 4.48. Gathering equation 4.73 for all sources results in the following matrix equation:[

îωI B∇
∇ îωS

] [
V
U

]
= îω

[
0
S

]
, (4.74)

where

S =

[
diag(∫11) diag(∫13)
diag(∫13) diag(∫33)

]
,

and the other notations are defined in equation 4.49. Equation 4.74 is linear in U and V when
the model parameters embedded in B and S are known. When U and V are known, this system
can be recast as a new linear system in which the unknowns are the model parameters, and
hence the bilinearity of the wave equation. For the lth source, the new equation becomes

L11 0 0 0
L21 0 0 0
0 L32 L33 0
0 0 L43 L44




b
∫11

∫13

∫33

 =


0− îωvx,l
0− îωvz,l
îωsl −∇xvx,l
îωsl −∇zvz,l

 , (4.75)
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where 
L11 = diag(∇xux,l),
L21 = diag(∇zuz,l),
L32 = L43 = îωdiag(ux,l),

L33 = L44 = îωdiag(uz,l).

To develop the second-order wave equation, we eliminate vx,l and vz,l from equation 4.73. We
obtain the following equation

1

ω2
∇xdiag(b)∇xux,l + diag(∫11)ux,l + diag(∫13)uz,l = sl,

1

ω2
∇zdiag(b)∇zuz,l + diag(∫13)ux,l + diag(∫33)uz,l = sl,

(4.76)

which is bilinear with respect to buoyancy, compliance parameters and pressure wavefields.
With known buoyancy and compliance parameters, we get the following 2n× 2n linear system
to estimate wavefields for all sources

A(m)U = S, (4.77)

where A is given by[
1
ω2∇xdiag(b)∇x + diag(∫11) diag(∫13)

diag(∫13) 1
ω2∇zdiag(b)∇z + diag(∫33)

]
.

and

m =


b
∫11

∫13

∫33

 ,
and S is defined in equation 4.50. When U is known, this system can also be recast as a new
linear system in which the unknowns are the model parameters as

L1
...

Ll
...

Lns

m =


y1
...
yl
...

yns

 , (4.78)

where Ll is given by[
1
ω2∇xdiag(∇xux,l) diag(ux,l) diag(uz,l) 0
1
ω2∇zdiag(∇zuz,l) 0 diag(ux,l) diag(uz,l)

]
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and

yl =

[
sl
sl

]
.

4.2.8 Appendix B: Solving the optimization problem, equation 4.58, with
ADMM

Starting from an initial model m0, and setting the dual variables D̃ and S̃ equal to zero, the
kth ADMM iteration for solving equation 4.58 reads as (see Aghamiry et al., 2019c,b,e, for
more details)

Uk+1 ← arg min
U

Cmk,D̃k,S̃k(U), (4.79a)

mk+1 ← arg min
m∈C

CUk+1,S̃k(m), (4.79b)

S̃k+1 ← S̃k + S−A(mk+1)Uk+1, (4.79c)
D̃k+1 ← D̃k + D−PUk+1, (4.79d)

where

Cmk,D̃k,S̃k(U) = λ0‖PU−D− D̃k‖2
F + λ1‖A(mk)U− S− S̃k‖2

F (4.80)

and

CUk+1,S̃k(m) =
∑√

|∂xm|2 + |∂zm|2 + λ1‖A(m)Uk+1 − S− S̃k‖2
F . (4.81)

The regularized wavefields U are the minimizers of the quadratic cost function Cmk,D̃k,S̃k(U),
equation 4.80, where mk, D̃k and S̃k are kept fixed. Zeroing the derivative of Cmk,D̃k,S̃k(U)
gives the wavefields as the solution of a linear system of equations defined by equation 4.59 (step
1 of the algorithm). The regularized wavefields are then introduced as passive quantities in the
cost function CUk+1,S̃k(m), equation 4.81, which is minimized to estimate m over the desired
set C. We solve this minimization subproblem with the splitting techniques. Accordingly, we
introduce the auxiliary primal variables p and q to decouple the `1 and `2 terms and split the
parameter estimation subproblem into three sub-steps for m, p and q (Goldstein and Osher,
2009; Aghamiry et al., 2019b):

mk+1 ← arg min
m

λ1‖A(m)Uk+1 − S− S̃k‖2
F ,+‖∇m− pk − p̃k‖2

Γ + ‖m− qk − q̃k‖2
Z ,

(4.82a)

pk+1 ← arg min
p

∑√
|px|2 + |pz|2 + ‖∇mk+1 − p− p̃k‖2

Γ, (4.82b)

qk+1 ← arg min
q∈C

‖mk+1 − q− q̃k‖2
Z , (4.82c)
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where∇ is defined in equation 4.61,

p =

[
px
pz

]
, (4.83)

‖x‖2
• = xT•x, Z and Γ are diagonal matrices defined in equation 4.62 and 4.63, respectively.

From the linearized equation 4.55, the subproblem for m, equation 4.82a, can be written as

mk+1 ← arg min
m

∥∥∥∥∥


L1
...

Lns

∇
I

m−


yk1 + s̃k1

...
ykns + s̃kns
pk + p̃k

qk + q̃k


∥∥∥∥∥

2

Ξ

, (4.84)

where the diagonal weighting matrix Ξ is defined as

Ξ =

λ1I 0 0
0 Γ 0
0 0 Z

 ∈ R[3+ns]n×[3+ns]n.

Equation 4.84 is now quadratic and admits a closed form solution as given in equation 4.60
(step 2 of the algorithm).

The only remaining tasks consist in determining the auxiliary primal variables (p,q), equa-
tions 4.82b,c, and the auxiliary dual variables (p̃, q̃). They are initialized to 0 and are updated
as follows: The primal variables p is updated through a TV proximity operator, which admits
a closed form solution given by equation 4.64 (see Combettes and Pesquet, 2011) (step 3 of
the algorithm). The primal variable q is updated by a projection operator, which also admits
a closed form solution given by equation 4.66 (step 4 of the algorithm). Finally, the duals are
updated according to gradient ascend steps (step 5 of the algorithm){

p̃k+1 = p̃k + pk+1 −∇mk+1

q̃k+1 = q̃k + qk+1 −mk+1.
(4.85)

4.2.9 Appendix C: Using fourth-order equation for wavefield reconstruc-
tion (Step 1 of the algorithm)

The wavefield reconstruction subproblem, equation 4.59, can be written as the following
over-determined systemω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz

diag(mδ)∇xx ω2diag(mv0) +∇zz
1
2
P̃ 1

2
P̃

[Ux

Uz

]
=

Sx
Sz
D

 , (4.86)

where P̃ is the sampling operator of each component of the wavefield at receiver positions and
P = [1

2
P̃ 1

2
P̃] (the coefficient 1

2
results because the (isotropic) pressure wavefield u recorded
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in the water is given by u = 1
2

(ux + uz)). We can eliminate Uz from the equation 4.86 to
develop a fourth-order partial-differential equation for Ux and then update Uz from its explicit
expression as a function of Ux without any computational burden.
By multiplying the second row of equation 4.86 by diag(mδ) and taking the difference with the
first row, we find ω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz
ω2diag(mv0) + diag(mε −m2

δ)∇xx −ω2diag(mδ ◦mv0)
1
2
P̃ 1

2
P̃

[Ux

Uz

]
=

 Sx
Sx − diag(mδ)Sz

D

 .
(4.87)

where m2
δ = mδ ◦mδ. The second equation of 4.87 provides us the closed-form expression of

Uz as a function of Ux

Uz = AzUx + Bz, (4.88)

where {
Az =

diag(mε−m2
δ)∇xx+ω2diag(mv0 )

ω2diag(mv0◦mδ)
,

Bz = diag(mδ)Sz−Sx
ω2diag(mv0◦mδ)

.
(4.89)

Injecting equation 4.89 into the first equation of 4.87 leads to the over-determined system satis-
fied by Ux[

ω2diag(mv0) + diag(mε)∇xx + diag(mδ)∇zzAz
1
2
P̃ + 1

2
P̃Az

]
Ux =

[
Sx − diag(mδ)∇zzBz

D− 1
2
P̃Bz

]
. (4.90)

So, instead of solving the (nr + 2n) × 2n linear system 4.86 to update U, Ux is updated by
solving the (nr+n)×n linear system 4.90 and then Uz is updated using 4.89 without significant
computational overhead. The wave equation operator in equation 4.89 has been broken down
into an elliptic wave equation operator and anelliptic correction term (the term of Az related
to diag(mε −m2

δ), equation 4.89). The former can be accurately discretized with the 9-point
finite-difference method of Chen et al. (2013), while the anelliptic term can be discretized with
a basic second-order accurate 5-point stencil without generating significant inaccuracies in the
modelling (Operto et al., 2014).
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4.3 Application of ADMM-based WRI to attenuation

This section presents our paper dealing with the extension of ADMM-based WRI to viscoa-
coustic media. Viscoacoustic effects are easily included in the time-harmonic wave equation
with frequency-dependent complex-valued velocities as function of phase velocity and attenua-
tion factor (the inverse of quality factor) which are both real-valued parameters (e.g., Toksöz and
Johnston, 1981; Carcione, 2015). Classical approaches process the real and imaginary parts of
the complex-valued wavespeed as two independent real-valued parameters during the inversion.
In this case, the Hessian of viscoacoustic IR-WRI can be singular (Ribodetti et al., 2000; Mulder
and Hak, 2009; Hak and Mulder, 2011). Alternatively, it is possible to process the velocity as
a complex parameter in frequency-domain visco-acoustic inversion to recast the optimization
as a mono-parameter problem. In that case, one can show that the mono-parameter Hessian
of viscoacoustic IR-WRI is not singular. This complex-valued inverse problem is an ongoing
work in our team (Aghamiry et al., 2019d). In this thesis, the phase velocity and the attenua-
tion parameters are updated in an alternating mode with ADMM-based WRI, taking advantage
that the wave equation can be recast as a multi-linear function of the three parameter classes
(wavefield, squared-slowness and attenuation factor). As attenuation model, I use a first-order
approximation of the complex-valued Kolsky-Futterman model. I regularize the multi-variate
inversion with the bound constraints and TV regularization, which are taylored to the squared
slowness and attenuation factor.

Multi-parameter wavefield reconstruction inversion for wavespeed and
attenuation with bound constraints and total variation regularization

Hossein S. Aghamiry, Ali Gholami and Stéphane Operto
Geophysics, 2020, DOI: 10.1190/geo2019-0596.1

4.3.1 Summary

Wavefield reconstruction inversion (WRI) extends the search space of Full Waveform In-
version (FWI) by allowing for wave equation errors during wavefield reconstruction to match
the data from the first iteration. Then, the wavespeeds are updated from the wavefields by min-
imizing the source residuals. Performing these two tasks in alternating mode breaks down the
nonlinear FWI as a sequence of two linear subproblems, relaying on the bilinearity of the wave
equation. We solve this biconvex optimization with the alternating-direction method of multi-
pliers (ADMM) to cancel out efficiently the data and source residuals in iterations and stabilize
the parameter estimation with appropriate regularizations. Here, we extend WRI to viscoacous-
tic media for attenuation imaging. Attenuation reconstruction is challenging because of the
small imprint of attenuation in the data and the cross-talks with velocities. To address these
issues, we recast the multivariate viscoacoustic WRI as a triconvex optimization and update
wavefields, squared slowness, and attenuation factor in alternating mode at each WRI iteration.
This requires to linearize the attenuation-estimation subproblem via an approximated trilinear
viscoacoustic wave equation. The iterative defect correction embedded in ADMM corrects the
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errors generated by this linearization, while the operator splitting allows us to tailor `1 regular-
ization to each parameter class. A toy numerical example shows that these strategies mitigate
cross-talk artifacts and noise from the attenuation reconstruction. A more realistic synthetic
example representative of the North Sea validates the method.

4.3.2 Introduction

Full waveform inversion (FWI) is a high-resolution nonlinear imaging technology which can
provide an accurate subsurface model by matching observed and calculated waveforms (Taran-
tola, 1984; Pratt et al., 1998; Virieux and Operto, 2009). However, it is well acknowledged that
it suffers from two main pathologies. The first one is the nonlinearity associated with cycle
skipping: when the distance between the observed and calculated data is the least-squares norm
of their differences, FWI remains stuck into spurious local minima when the initial velocity
model does not allow to match traveltimes with an error lower than half a period. To mitigate
cycle skipping, many variants of FWI have been proposed with more convex distances such
as those based on matching filters (Warner and Guasch, 2016; Guasch et al., 2019) or optimal
transport (Métivier et al., 2018) among others. The second pathology is ill-posedness resulting
from uneven subsurface illumination provided by limited-aperture surface acquisitions (e.g.,
Tang, 2009) and parameter crosstalks during multiparameter reconstruction (see Operto et al.,
2013, for a tutorial). Mitigating this ill-posedness requires accounting for the Hessian in local
optimization methods (e.g. Métivier et al., 2017) and regularizing the inversion with prior infor-
mation such as physical bound constraints (e.g. Asnaashari et al., 2013; Duan and Sava, 2016).
Among the methods proposed to mitigate cycle skipping, wavefield reconstruction inversion
(WRI) (van Leeuwen and Herrmann, 2013, 2016) extends the parameter search space of frequency-
domain FWI by processing the wave-equation as a soft constraint with a penalty method. The re-
sulting wave equation relaxation allows for data fitting with inaccurate velocity models through
the reconstruction of data-assimilated wavefields, namely wavefields satisfying the observation
equation relating the wavefields to the observations (Aghamiry et al., 2020a). The algorithm
then updates the model parameters by least-squares minimization of the wave equation errors
(or source residuals) so that the assimilated wavefields explain both the wave equation and the
data as well as possible. Performing wavefield reconstruction and parameter estimation in an
alternating mode (van Leeuwen and Herrmann, 2013) rather than by variable projection (van
Leeuwen and Herrmann, 2016) recasts WRI as a sequence of two linear subproblems as a re-
sult of the bilinearity of the wave equation in wavefield and squared slowness. The reader is
also referred to Aghamiry et al. (2019a) for a more general discussion on the bilinearity of
the elastic anisotropic wave equation. Aghamiry et al. (2019c) solved this biconvex problem
with the alternating direction method of multipliers (ADMM) (Boyd et al., 2010). ADMM is
an augmented Lagrangian method which makes use of operator splitting and alternating direc-
tions to solve convex separable multivariate constrained problems. The augmented Lagrangian
function combines a penalty function and a Lagrangian function (Nocedal and Wright, 2006,
Chapter 17). The penalty function relaxes the constraints during early iterations as in WRI,
while the Lagrangian function progressively corrects the constraint violations via the action of
the Lagrange multipliers. The leverage provided by the Lagrange multipliers guarantees to sat-
isfy the constraints at the convergence point with constant penalty parameters (Aghamiry et al.,
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2019c). Accordingly, Aghamiry et al. (2019c) called their approach iteratively refined WRI
(IR-WRI). Alternatives to satisfy the constraints at the convergence point with penalty methods
rely on multiplicative (da Silva and Yao, 2017) or discrepancy-based (Fu and Symes, 2017) ap-
proaches. Aghamiry et al. (2019b) implemented bounding constraints and total variation (TV)
regularization (Rudin et al., 1992) in IR-WRI with the split Bregman method (Goldstein and
Osher, 2009) to improve the imaging of large-contrast media, with however undesirable stair-
case imprints in smooth regions. To overcome this issue and capture both the blocky and smooth
components of the subsurface, Aghamiry et al. (2020b) combine in IR-WRI Tikhonov and TV
regularizations by infimal convolution.
The objective of this paper is to extend frequency-domain IR-WRI to viscoacoustic media for
attenuation imaging. Attenuation reconstruction by FWI raises two potential issues. The first
is related to the crosstalks between wavespeed and attenuation. The ambiguity between ve-
locity and attenuation perturbation in least-squares migration has been emphasized by Mulder
and Hak (2009). Many combinations of velocity and attenuation perturbations can fit equally
well reflection amplitudes since they are basically related by a Hilbert transform. This ambigu-
ity can be simply illustrated by the radiation pattern of velocity and attenuation perturbations,
which have the same amplitude versus angle behavior and a 90◦ phase shift (Malinowski et al.,
2011; da Siva et al., 2019). The conclusions of Mulder and Hak (2009) substantiate those
of Ribodetti et al. (2000) who show that the Hessian of ray+Born least-squares migration of
single-offset reflection data is singular if the reflector is not illuminated from above and be-
neath. On the other hand, Hak and Mulder (2011) show that wavespeed and attenuation can be
decoupled during nonlinear waveform inversion of multi-offset/multi-frequency data provided
that the causality term is properly implemented in the attenuation model. This conclusion has
been further supported by several realistic synthetic experiments and real data case studies in
marine and land environments, which manage to reconstruct trustworthy attenuation models
(Hicks and Pratt, 2001; Askan et al., 2007; Kamei and Pratt, 2008; Malinowski et al., 2011;
Takougang and Calvert, 2012; Prieux et al., 2013; Stopin et al., 2016; Operto and Miniussi,
2018; Lacasse et al., 2019). This decoupling between velocity and attenuation can be further
argued on the basis of physical considerations. In the transmission regime of wave propagation,
wavespeeds control the kinematic of wave propagation. This implies that FWI is dominantly
driven toward wavespeed updating to match the traveltimes of the wide-aperture data (diving
waves, post-critical reflections) and update the long wavelengths of the subsurface accordingly,
while attenuation has a secondary role in matching amplitude and dispersion effects (e.g., see
Operto and Miniussi, 2018, for an illustration). This weak imprint of the attenuation in the seis-
mic response was illustrated by the sensitivity analysis carried out by Kurzmann et al. (2013)
who concluded that a crude homogeneous background attenuation model might be enough to
perform reliable FWI, while da Siva et al. (2019) proposed to reconstruct an under-parametrized
attenuation model by semi-global FWI. When a high-resolution attenuation model is sought, the
ill-posedness of the attenuation reconstruction may be managed with different recipes including
data and model-driven inversions (joint versus sequential updates of the velocity and attenuation
of selected subdatasets), parameter scaling, bound constraints and regularizations (e.g. Prieux
et al., 2013; Operto et al., 2013).
In this context, the contribution of this study is two fold: first, we show how to implement veloc-
ity and attenuation reconstruction in frequency-domain viscoacoustic IR-WRI when equipped
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with bound constraints and nonsmooth regularizations. Second, we discuss with numerical
examples whether the alternating-direction algorithm driven by the need to expand the search
space is suitable to manage ill-conditioned multi-parameter reconstruction. It is well acknowl-
edged that viscous effects are easily included in the time-harmonic wave equation with frequency-
dependent complex-valued velocities as a function of phase velocity and attenuation factor (the
inverse of quality factor), which are both real-valued parameters (Toksöz and Johnston, 1981).
Accordingly, the objective function of viscoacoustic IR-WRI requires to be minimized over a set
of three-parameter classes (wavefield, squared slowness, attenuation factor). In this study, we
consider the Kolsky-Futterman model as attenuation model (Kolsky, 1956; Futterman, 1962).
With this model, the viscoacoustic wave equation is bilinear in wavefield and squared slowness,
while it is nonlinear in attenuation factor. This prompts us to introduce a first-order approxima-
tion of the viscoacoustic function to form a trilinear viscoacoustic wave equation. This equation
allows us to recast the multivariate viscoacoustic IR-WRI as a sequence of three linear subprob-
lems for wavefields, squared slowness and attenuation factor estimation, which are solved in al-
ternating mode following the block relaxation strategy of ADMM. Then, the errors generated by
the approximated wave equation during attenuation estimation are corrected by the action of the
Lagrange multipliers (dual variables), which are formed by the source residuals computed with
the exact wave equation. Another application of the augmented Lagrangian method in AVO in-
version is presented in Gholami et al. (2018), where the linearized Zoeppritz equations are used
to simplify the primal problem, while the dual problem compensates the linearization-related
errors by computing the residuals with the exact Zoeppritz equations. Also, the decomposi-
tion of the viscoacoustic IR-WRI into three linear subproblems provides a suitable framework
to tailor `1 regularizations to each parameter-estimation subproblem (Aghamiry et al., 2019b,
2020b).
The alternating update of the squared slowness and attenuation factor at each IR-WRI iteration
is probably non-neutral on how the inversion manages the parameter crosstalks and the con-
trasted sensitivity of the data to each parameter class, as the multi-parameter inversion is broken
down as a sequence of two mono-parameter inversions. This approach differs from those com-
monly used in the multi-parameter inversion. The most brute-force approach consists in the
joint updating of the multiple parameter classes, with the issue of managing multi-parameter
Hessian with suitable parameter scaling (e.g., Stopin et al., 2014; Métivier et al., 2015; Yang
et al., 2016a). Other approaches rely on ad-hoc hierarchical data and model-driven inversion
where the dominant parameter is updated during a first mono-parameter inversion, before in-
volving the secondary parameter in a subsequent multi-parameter inversion (e.g., Prieux et al.,
2013; Cheng et al., 2016). Another possible model-driven strategy consists of performing the
joint updating of the multiple parameter classes during a first inversion, then reset the secondary
parameters to their initial values and restart a multi-parameter inversion involving all the param-
eter classes (Yang et al., 2014).
In this study, we assess our approach against two synthetic experiments, a toy example and a
more realistic well-documented synthetic example representative of the North Sea (Prieux et al.,
2013). A comparison of our approach with those reviewed above remains however beyond the
scope of this paper. One reason is that all the above approaches have been implemented in
conventional FWI, which would remain stuck in a local minimum when starting from the crude
initial model used in this study. This is to remind that IR-WRI provides a practical framework
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to conciliate the search space expansion to mitigate cycle skipping and easy-to-design multi-
parameter reconstruction via the alternating update of the multiple parameter classes.
This paper is organized as follows. In the method section, we first review the forward prob-
lem equation before going into the details of viscoacoustic IR-WRI: We first formulate the
constrained optimization problem to be solved and recast it as a saddle point problem with an
augmented Lagrangian function (Appendix A, section 4.3.7). Then, we review the solution of
the three primal subproblems for wavefields, squared slowness and attenuation factor in the
framework of ADMM, as well as the expression of the dual variables or Lagrange multipliers
that capture the history of the solution refinement in iterations. The Appendix B (section 4.3.8)
reviews in a general setting the split Bregman method to solve `1-regularized convex problem.
This recipe can be easily applied to the squared slowness and attenuation reconstruction sub-
problems. The final section presents two synthetic examples, which are performed without and
with bound constraints and TV regularization in order to discriminate the role of the augmented-
Lagrangian optimization from that of the priors. A toy example allows us to illustrate in a simple
setting how well IR-WRI manages the parameter crosstalk and the ill-posedness of the attenua-
tion reconstruction and how bound constraints and TV regularization remove the corresponding
artifacts. A second synthetic example representative of the North Sea environment allows one
to assess the method in a more realistic setting.

4.3.3 Notation

As we implement IR-WRI in the frequency domain, we use discrete matrix notations. Italics
refer to scalar quantities, boldface lowercase letters refer to vectors, and boldface capital letters
refer to matrices and tensors. By default, vectors are considered as column vectors. We use
the superscript T to denote the adjoint of an operator. The ith element of x is denoted by [x]i
and its absolute value is returned by | [x]i |. For real-valued vectors x and y of length n, the
dot product is defined by 〈x,y〉 = xTy =

∑n
i=1 [x]i [y]i and their Hadamard product, denoted

by x ◦ y, is another vector made up of their component-wise products, i.e. [x ◦ y]i = [x]i [y]i.
By an abuse of notation, other arithmetic operations on vectors are performed component wise.
For example, [x2]i = [x]2i and [x/y]i = [x]i / [y]i. Also, let ρ(σ) be a function of σ. In
discrete form, [ρ(σ)]i = ρ([σ]i). The `1- and `2-norms of x are, respectively, defined by

‖x‖2 =
√
〈x,x〉 =

√∑n
i=1 [x]2i and ‖x‖1 =

∑n
i=1 | [x]i |.

4.3.4 Theory

In this section, we first review the viscoacoustic wave equation in the frequency-space do-
main. Then, we use this wave equation to formulate the iteratively-refined wavefield recon-
struction inversion (IR-WRI) for velocity and attenuation.
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Forward problem

The viscoacoustic wave equation in the frequency-space domain is given by(
∆ +

ω2

c(x)2

)
u(x, ω) = b(x, ω), (4.91)

where ∆ is the Laplacian operator, ω is the angular frequency, x = (x, z) denotes the position in
the subsurface model and b(x, ω) and u(x, ω) are respectively the source term and the wavefield
for frequency ω. In this paper we limit ourselves to the wave equation with a constant density
(equal to 1), but the proposed method can be extended to variable density case. Viscoacoustic
(attenuative) media can be described by complex-valued velocity c(x). The velocity associated
with the Kolsky-Futterman model is given by (Kolsky, 1956; Futterman, 1962)

1

c(x)
=

1

v(x)

[
1− 1

πQ(x)
log | ω

ωr
|+ ι

sign(ω)

2Q(x)

]
, (4.92)

where v(x) denotes the phase velocity, Q(x) the frequency-independent quality factor, both
real-valued, and ι =

√
−1. Also, sign(•) is the sign function that extracts the sign of a real

number •. The logarithmic term with reference frequency ωr = 2πfr implies causality (Aki
and Richards, 2002; Hak and Mulder, 2011). In this study, same as Toverud and Ursin (2005),
fr is chosen to be 50 Hz .

Inverse problem

From now on, we use the aforementioned discrete matrix notations. We discretize the 2D
partial-differential equation (PDE), equation 4.91, with a N = Nx × Nz grid points, where
Nx and Nz are the number of points in the horizontal and vertical directions, respectively. We
parametrize the inversion by squared slowness (inverse of squared velocity) and attenuation
factor (inverse of quality factor) that are respectively denoted by column vectors m,α ∈ RN .
Accordingly, equation 4.92 in discrete form reads as

1

c2
= m ◦ ρ(α). (4.93)

In equation 4.93, ρ is given by

ρ(α) = (1 + β(ω)α)2 , β(ω) = ι
sign(ω)

2
− 1

π
log | ω

ωr
|. (4.94)
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The model parameters m and α are defined as solution of the following nonlinear PDE-constrained
optimization problem (Aghamiry et al., 2019c)

min
u,m∈M,α∈A

µE(m) + νF (α)

subject to

{
A(m,α)u = b

Pu = d,
(4.95)

where u ∈ CN×1 is the wavefield, b ∈ CN×1 is the source term, and A(m,α) ∈ CN×N is
the matrix representation of the discretized Helmholtz PDE, in equation 4.91. The observation
operator P ∈ RM×N samples the reconstructed wavefields at the M receiver positions for
comparison with the recorded data d ∈ CM×1 (we assume a single source experiment for the
sake of compact notation; however, the extension to multiple sources is straightforward). The
functions E and F are appropriate regularization functions for m and α, respectively, which
are weighted by the penalty parameters µ and ν > 0, respectively. M and A are convex sets
defined according to our prior knowledge of m and α. For example, if we know the lower and
upper bounds on m and α then

M = {m|mmin ≤m ≤mmax}, (4.96)

and
A = {α|αmin ≤ α ≤ αmax}. (4.97)

The PDE constraint A(m,α)u = b in equation 4.95 is nonlinear in m and α and indefi-
nite (Dolean et al., 2015), while the data constraint Pu = d is linear but the operator P is
rank-deficient with a huge null space because M � N . Therefore, determination of the opti-
mum multivariate solution (u∗,m∗,α∗) satisfying both constraints (the wave equation and the
observation equation) simultaneously is extremely difficult, and requires sophisticated regular-
izations. In this paper, we use the first-order isotropic TV regularization (Rudin et al., 1992)
for both m and α, i.e. E(m) = ‖m‖TV and F (α) = ‖α‖TV. However, other regularizations
such as compound regularizations (Aghamiry et al., 2020b) can be used in a similar way. The
isotropic TV norm of a 2D image w ∈ RN is defined as

‖w‖TV =
∑√

(∇xw)2 + (∇zw)2, (4.98)

where ∇x and ∇z are respectively first-order difference operators in the horizontal and vertical
directions with appropriate boundary conditions (Gholami and Naeini, 2019).

Beginning with an initial model m0 and α0 = 0, b0 = 0, d0 = 0, ADMM solves iteratively
the multivariate optimization problem, equation 4.95, with alternating directions as (see Boyd
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et al., 2010; Benning et al., 2015; Aghamiry et al., 2019c,b, for more details)

uk+1 = arg min
u

Ψ(u,mk,αk,bk,dk)

mk+1 = arg min
m∈M

Ψ(uk+1,m,αk,bk,dk)

αk+1 = arg min
α∈A

Ψ(uk+1,mk+1,α,bk,dk)

bk+1 = bk + b−A(mk+1,αk+1)uk+1

dk+1 = dk + d−Puk+1,

(4.99a)

(4.99b)

(4.99c)

(4.99d)

(4.99e)

where

Ψ(u,m,α,bk,dk) = µ‖m‖TV + ν‖α‖TV (4.100)

+ λ‖bk + b−A(m,α)u‖2
2 + γ‖dk + d−Pu‖2

2,

is the augmented Lagrangian function written in scaled form (Appendix A, section 4.3.7), •k
is the value of • at iteration k, the scalars λ, γ > 0 are the penalty parameters assigned to
the wave equation and observation equation constraints, respectively, and bk, dk are the scaled
Lagrange multipliers, which are updated through a dual ascent scheme by the running sum of
the constraint violations (source and data residuals) as shown by equations 4.99d-4.99e. The
penalty parameters λ, γ > 0 can be tuned in equation 4.100 such that a dominant weight γ is
given to the observation equation at the expense of the wave equation during the early iterations
to guarantee the data fit, while the iterative update of the Lagrange multipliers progressively
correct the errors introduced by these penalizations such that both of the observation equation
and the wave equation are satisfied at the convergence point with acceptable accuracies. In the
next three subsections, we show how to solve each optimization subproblem 4.99a-4.99c.

Update wavefield (subproblem 4.99a)

The objective function Ψ is quadratic in u and its minimization gives the following closed-
form expression of u(

λATA + γPTP
)
uk+1 = λAT (bk + b) + γPT (dk + d), (4.101)

where A ≡ A(mk,αk) and AT denotes the Hermitian transpose of A.

Update squared slowness (subproblem 4.99b)

The PDE operator
A(m,α) = ∆ + ω2Cdiag(m ◦ ρ(α))B (4.102)

is discretized with the finite-difference method of Chen et al. (2013) where ∆ is the dis-
cretized Laplace operator, C introduces boundary conditions such as perfectly matched lay-
ers (Bérenger, 1994), B is the mass matrix (Marfurt, 1984) which spreads the mass term
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ω2Cdiag(m ◦ρ(α)) over all the coefficients of the stencil to improve its accuracy following an
anti-lumped mass strategy, and diag(•) denotes a diagonal matrix. From equation 4.102 we get
that

A(m,α)u = A(0,α)u + ω2Cdiag(Bu ◦ ρ(α))m, (4.103)

where A(0,α) ≡∆. Therefore, subproblem 4.99b can be written as

mk+1 = arg min
m∈M

µ‖m‖TV + λ‖Lm− yk‖2
2, (4.104)

where
L = ω2Cdiag(Buk+1 ◦ ρ(αk)), (4.105)

and
yk = bk + b−∆uk+1. (4.106)

Equation 4.104 describes the box-constrained TV-regularized subproblem for m which is con-
vex but non-smooth. This box-constrained TV-regularized problem can be solved efficiently
with ADMM and splitting methods, also referred to as the split Bregman method (Goldstein
and Osher, 2009). Using splitting methods, the unconstrained subproblem 4.104 is recast as a
multivariate constrained problem, through the introduction of auxiliary variables. These auxil-
iary variables are introduced to decouple the `2 subproblem from the `1 subproblem such that
they can be solved in alternating mode with ADMM. Moreover, a closed-form expression of
the auxiliary variables is easily obtained by solving the `1 subproblem with proximity operators
(Combettes and Pesquet, 2011; Parikh and Boyd, 2013). We refer the reader to Appendix B
(section 4.3.8) for a more detailed review of this method.

Update attenuation factor (subproblem 4.99c)

Subproblem 4.99c is nonlinear due to the nonlinearity of the PDE with respect to α. We
linearize this subproblem by using a first-order approximation of ρ(x), equation 4.94, as

ρ(x) ≈ 1 + 2β(ω)x, (4.107)

which is accurate for |x| � 1 (Hak and Mulder, 2011), and gives

A(m,α)u ≈ A(m,0)u + 2ω2β(ω)Cdiag(Bu ◦m)α. (4.108)

Accordingly, subproblem 4.99c can be written as the following linear problem

αk+1 ≈ arg min
α∈A

ν‖α‖TV + λ‖Hα− hk‖2
2, (4.109)

where
H = 2ω2β(ω)Cdiag(Buk+1 ◦mk+1), (4.110)

and
hk = bk + b−A(mk+1,0)uk+1. (4.111)

196



Extension of ADMM-based WRI to multi-parameter

Equation 4.109 is also a box-constrained TV-regularized convex problem, which can be
solved with ADMM (Appendix A, section 4.3.7) in a manner similar to the previous subprob-
lem for squared slowness. It is important to stress that the errors generated by the first-order
approximation of ρ(x) during the update of α are iteratively compensated by the action of the
scaled Lagrange multiplier bk. These Lagrange multipliers are formed by the running sum of
the wave equation errors, which are computed with the exact wave-equation operator (namely,
without linearization of ρ(x)). The overall workflow described above is summarized in Algo-
rithm 4.

Practical implementation

The ADMM optimization that is used to solve equations 4.104 and 4.109 is reviewed in
Appendix B (section 4.3.8). We also refer the reader to Goldstein and Osher (2009), Boyd et al.
(2010) and Aghamiry et al. (2019b) as complements. A key property of the ADMM algorithm,
equation 4.99, is that, at iteration k, we don’t need to solve each optimization subproblems
4.99a-4.99c exactly via inner iterations. The intuitive reason is that the updating of the primal
variable performed by one subproblem is hampered by the errors of the other primal variables
that are kept fixed. In this framework, the errors at each iteration k are more efficiently compen-
sated by the gradient-ascent update of the Lagrange multipliers (dual variable). This statement
was corroborated by numerical experiments which showed that one (inner) iteration of each
subproblem per ADMM cycle k generates solutions which are accurate enough to guarantee the
fastest convergence of the ADMM algorithm (Goldstein and Osher, 2009; Boyd et al., 2010;
Gholami et al., 2018; Aghamiry et al., 2019a,b). Moreover, this error compensation is more
efficient when the dual variables are updated after each primal subproblem 4.99a-4.99c rather
than at the end of an iteration k as indicated in Algorithm 4 for sake of compactness. This
variant of ADMM is referred to as the Peaceman-Rachford splitting method (Peaceman and
Rachford, 1955; He et al., 2014) and will be used in the following numerical experiments. The
reader is referred to Aghamiry et al. (2019c) for more details about the improved convergence
of the Peaceman-Rachford splitting method compared to ADMM in the framework of IR-WRI.

We properly scale the different parameters to reduce the ill-conditioning of the multi-parameter
optimization resulting from the different order of magnitude of m and α (Operto et al., 2013).
In this paper, we scale m by 1e6 to make it dimensionless as α. Also, for tuning the penalty
parameters, we follow the guideline presented in Aghamiry et al. (2019b, section 3.1). The
overall procedure is as follow: we first set µ=0.6 and ν=0.4 to tune the relative weight of the
regularizations of the squared slowness (m) and attenuation factor (α), equation 4.100. Then,
we set the ratios µ/ξm and ν/ξα, lines 7, 9, 10, 12 in Algorithm 4, to tune the soft thresholding
performed by the TV regularization of m and α (subproblems 4.99b and 4.99c). We refer the
reader to Appendix B (section 4.3.8) for the role of the penalty parameters ξm and ξα in TV
regularization (denoted generically by ξ in equation 4.120). We set µ/ξm and ν/ξα equal to
0.02×max(r), in equations 4.136. These values can be refined according to our prior knowl-
edge of the subsurface medium. Then, we set a constant λ to balance the relative weight of
the regularization and the wave equation misfit function during the parameter-estimation sub-
problems, equations 4.104 and 4.109, and lines 5 and 6 in Algorithm 4. If necessary, λ can
be increased during iterations to mitigate the imprint of the regularization near the convergence
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Algorithm 4: Viscoacoustic Wavefield Inversion with Bound Constrained TV Regular-
ization. Lines 4 to 6 are the primal subproblems for wavefield reconstruction and parame-
ter estimation. Lines 7 to 12 are primal subproblems for auxiliary variables introduced to
implement nonsmooth regularizations and bound constraints (Appendix B, section 4.3.8).
Lines 13 to 20 are the dual subproblems solved with gradient ascent steps.

1: Begin with k = 0, an initial squared slowness m0, and attenuation α0,

2: Set to zero the values of d0, b0,p0
x,m,p

0
y,m,p

0
z,m,p

0
x,α,p

0
y,α,p

0
z,α,q

0
x,m,q

0
y,m,q

0
z,m,q

0
x,α,q

0
y,α,q

0
z,α,

3: while convergence criteria not satisfied do

4: uk+1 =
[
λATA + γPTP

]−1[
λAT [bk + b] + γPT [dk + d]

]
5: mk+1 =

[
λLTL + ξm∇Tx ∇x + ξmI + ξm∇Tz ∇z

]−1[
λLTyk + ξm∇Tx [pkx,m + qkx,m] + ξm[pky,m +

qky,m] + ξm∇Tz [pkz,m + qkz,m]
]

6: αk+1 =
[
λHTH + ξα∇Tx ∇x + ξαI + ξα∇Tz ∇z

]−1[
λHThk + ξα∇Tx [pkx,α + qkx,α] + ξα[pky,α + qky,α] +

ξα∇Tz [pkz,α + qkz,α]
]

7: pk+1
x,m = max(1− µ/ξm√

|∇xmk+1−qkx,m|2+|∇zmk+1−qkz,m|2
, 0) ◦ (∇xmk+1 − qkx,m)

8: pk+1
y,m = projM(mk+1 − qky,m)

9: pk+1
z,m = max(1− µ/ξm√

|∇xmk+1−qkx,m|2+|∇zmk+1−qkz,m|2
, 0) ◦ (∇zmk+1 − qkz,m)

10: pk+1
x,α = max(1− ν/ξα√

|∇xαk+1−qkx,α|2+|∇zαk+1−qkz,α|2
, 0) ◦ (∇xαk+1 − qkx,α)

11: pk+1
y,α = projA(αk+1 − qky,α)

12: pk+1
z,α = max(1− ν/ξα√

|∇xαk+1−qkx,α|2+|∇zαk+1−qkz,α|2
, 0) ◦ (∇zαk+1 − qkz,α)

13: qk+1
x,m = qkx,m + pk+1

x,m −∇xmk+1

14: qk+1
y,m = qky,m + pk+1

y,m −mk+1

15: qk+1
z,m = qkz,m + pk+1

z,m −∇zmk+1

16: qk+1
x,α = qkx,α + pk+1

x,α −∇xαk+1

17: qk+1
y,α = qky,α + pk+1

y,α −αk+1

18: qk+1
z,α = qkz,α + pk+1

z,α −∇zαk+1

19: bk+1 = bk + b−A(mk+1,αk+1)uk+1

20: dk+1 = dk + d−Puk+1

21: k = k + 1

22: end while

point. Finally, we set γ for wavefield reconstruction such that λ/γ is a small fraction of the
highest eigenvalue of the regularized normal operator, equation 4.101 and line 1 in Algorithm
4 (van Leeuwen and Herrmann, 2016). This parameter γ can be kept constant during iterations.
The reader is referred to Aghamiry et al. (2019c) for an analysis of the sensitivity of IR-WRI to
the choice of the weight balancing the role of the observation equation and the wave equation
during wavefield reconstruction.
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4.3.5 Numerical examples

Simple inclusions test

We first consider a simple 2D example to validate viscoacoustic IR-WRI without and with
TV regularization. The true velocity model is a homogeneous background model with a wavespeed
of 1.5 km/s, which contains two inclusions: a 250-m-diameter circular inclusion at position
(1 km,1.6 km) with a wavespeed of 1.8 km/s and a 0.2 × 0.8 km rectangular inclusion at the
center of the model with a wavespeed of 1.3 km/s (Figure 4.20a). Also, the true α model is a
homogeneous background model with attenuation 0.01, which contains two inclusions of values
0.1. The first is a 250-m-diameter circular inclusion at position (1 km,0.4 km) and the second is
a 0.2× 0.8 km rectangle inclusion at the center of the model (Figure 4.20b). The wavespeed and
α rectangular inclusions share the same size and position, while the position of the wavespeed
and α circular inclusions are different to test different parameter trade-off scenarios. A vertical
and horizontal logs which cross the center of v and α models are plotted in the left and bottom
side of the models, respectively, for all the figures of this test. An ideal acquisition is used
with eight sources and 200 receivers along the four edges of the model, and three frequency
components (2.5, 5.0, 7.0 Hz) are jointly inverted using a maximum of 30 iterations as stopping
criterion of iteration.

We performed viscoacoustic IR-WRI without and with TV regularization starting from ho-
mogeneous velocity model 1.5 km/s and zero attenuation. The final (v,α) models estimated by
IR-WRI without and with TV regularization are shown in Figures 4.20c and 4.20d and 4.20e
and 4.20f, respectively. The IR-WRI results without TV regularization show an acceptable ve-
locity model and a quite noisy attenuation reconstruction (Figure 4.20c and 4.20d). The velocity
reconstruction is, however, hampered by significant limited bandwidth effects. We also show
underestimated wavespeeds in the rectangular inclusion along with the horizontal log. These
underestimated wavespeeds are clearly correlated with underestimated α values, hence high-
lighting some trade-off between v and α. Other moderate trade-off artifacts are shown in the
vertical log of the α model, which shows undesired high-frequency perturbations at the posi-
tion of the circular velocity inclusion. The TV regularization removes all of these pathologies
very efficiently: it extends the wavenumber bandwidth of the models and removes to a large ex-
tent the parameter crosstalk as the subsurface medium perfectly matches the piecewise-constant
prior associated with TV regularization (Figure 4.20e and 4.20f). Note though that α remains
slightly underestimated in the circular inclusion (Figure 4.20f). This correlates with a barely-
visible velocity underestimation at this location in Figure 4.20e. The relative magnitude of these
errors gives some insight on the relative sensitivity of the data to m and α.

Synthetic North Sea case study

Experimental setup

We consider a more realistic 16.0 km × 5.2 km shallow-water synthetic model representa-
tive of the North Sea (Munns, 1985). The true v and α models are shown in Figures 4.21a and
4.21b, respectively. The velocity model is formed by soft sediments in the upper part, a pile of
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Figure 4.20 – (a) True velocity model. (b) True attenuation model. (c-d) Reconstructed velocity
(c) and attenuation (d) from viscoacoustic IR-WRI without TV regularization. (e-f) Same as (a-
b) when TV regularization is applied. Profiles of the true (blue) and reconstructed (red) models
running across the center of the models are shown on the left and bottom of the reconstructed
models.

low-velocity gas layers above a chalk reservoir, the top of which is indicated by a sharp positive
velocity contrast at around 2.5 km depth, and a flat reflector at 5.0 km depth (Figure 4.21a). The
α model has two highly attenuative zones in the upper soft sediments and gas layers, and the α
value is relatively low elsewhere (Figure 4.21b).

The fixed-spread surface acquisition consists of 320 explosive sources spaced 50 m apart at
25 m depth, and 80 hydrophone receivers spaced 200 m apart on the seafloor at 75 m depth.
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For the sake of computational efficiency, we use the spatial reciprocity of Green’s functions
to process sources as receivers and vice versa. A free-surface boundary condition is used on
top of the grid, and the source signature is a Ricker wavelet with a 10 Hz dominant frequency.
We perform forward modeling with a nine-point stencil finite-difference method implemented
with anti-lumped mass and PML absorbing boundary conditions, where the stencil coefficients
are optimized to the frequency (Chen et al., 2013). We solve the normal-equation system for
wavefield reconstruction, equation 4.101, with a sparse direct solver (Duff et al., 1986). The

Figure 4.21 – North Sea case study. (a) True v model. (b) True α model. (c) Initial v model.

initial model for v is a highly Gaussian filtered version of the true model (Figure 4.21c), while
the starting α model is homogeneous without attenuation. The common-shot gathers computed
in the true and initial models are compared in Figure 4.22 for a shot located at 16.0 km. The
latter mainly show the direct wave and the diving waves, which are highly cycle skipped relative
to those computed in the true model.

We perform the inversion with small batches of three frequencies with one frequency overlap
between two consecutive batches, moving from the low frequencies to the higher ones according
to a classical frequency continuation strategy. The starting and final frequencies are 3.0 Hz and
15.0 Hz, and the sampling interval in each batch is 0.5 Hz. We perform three paths through the
frequency batches to improve the results, using the final model of one path as the initial model
of the next one (these paths can be viewed as outer iterations of the algorithm). The starting and
finishing frequencies of the paths are [3, 6] Hz, [4, 10] Hz, [6, 15] Hz, respectively, where the
first and second elements of each pair show the starting and finishing frequencies, respectively.
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Figure 4.22 – Time domain seismograms computed in the true and initial models. The true
seismograms are shown in the left and right panels, while those computed in the initial model
are shown in the middle panel with a mirror representation such that the two sets of seismo-
grams can be compared at long and short offsets. The seismograms are plotted with a reduction
velocity of 2.5 km/s for sake of time axis compression.

Moreover, as we proceed over the three paths, we increase the number of frequencies par batch
from two to five, and the frequency overlap from one to three. The motivation behind this
frequency management is to keep the bandwidth of each patch narrow during the first path to
mitigate nonlinearities through a progressive frequency continuation, before broadening this
bandwidth during the second and third paths to strengthen the imprint of dispersion in the
inversion and decouple velocity and attenuation more efficiently.

Comparison of FWI and WRI objective Functions

Before showing the inversion results, it is worth illustrating how WRI extends the search
space of FWI for this North Sea case study. For this purpose, we compare the shape of the
classical FWI misfit function based upon the `2 norm of the data residuals (e.g., Pratt et al.,
1998) with that of the parameter-estimation WRI subproblem for the 3 Hz frequency and for a
series of v and α models that are generated according to

va = vtrue + a2(vinit − vtrue), (4.112a)
αb = αtrue + b2(αinit −αtrue), (4.112b)

where −1 ≤ a, b ≤ 1. In this case, (va,αb) lies on the line-segment joining the initial point
(vinit,αinit) and final point (vtrue,αtrue). We set vtrue and αtrue as those shown in Figures
4.21a and 4.21b, vinit as the initial v model shown in Figure 4.21c, and αinit as a homoge-
neous model of attenuation 0.004. The misfit functions of FWI and WRI are shown in Figures
4.23a and 4.23b, respectively. The FWI objective function exhibits spurious local minima with
respect to both velocity and attenuation (a and b dimensions), while only one minimum is seen
in the WRI objective function. Indeed, this highlights the search space expansion generated by
the wave equation relaxation during WRI. This search space expansion is displayed through a
wider and flatter attraction basin compared to that of FWI. This wide attraction basin exacer-
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bates the contrast between the sensitivities of the objective function to velocity and attenuation,
with a quite weak sensitivity to the latter. These contrasted sensitivities would likely make the
parameter estimation subproblem poorly scaled if the velocity and attenuation were jointly up-
dated during WRI based on variable projection (van Leeuwen and Herrmann, 2016). In this
context, the alternating-direction strategy can be viewed as an heuristic to overcome this scal-
ing issue. Indeed, the lack of sensitivity to attenuation during the early WRI iterations requires
aggressive regularization and bound constraints to stabilize the attenuation estimation. As WRI
proceeds over iterations and the wave equation constraint is satisfied more accurately, the in-
version should recover a significant sensitivity to attenuation as that highlighted in Figure 4.23a
allowing for a relaxation of the regularization. These statements highlight the need to reconcile
search space expansion to manage nonlinearity and regularization plus bound constraints to re-
strict the range of feasible solutions for α.

Figure 4.23 – The objective function for the 3 Hz wavefield as a function of va and αb generated
using equation 4.112. (a) Classical reduced-space FWI. (b) WRI.

Viscoacoustic FWI results

To show the need of search space expansion and regularization, we first perform a classical
viscoacoustic FWI for noiseless data (e.g., Kamei and Pratt, 2013; Operto and Miniussi, 2018).
We use squared-slowness and attenuation as optimization parameters and update them simul-
taneously with the L-BFGS quasi-Newton optimization and a line search procedure for step
length estimation (that satisfies the Wolfe conditions). Neither TV regularization nor bound
constraints are applied. Owing the limited kinematic accuracy of the initial models highlighted
by the seismograms mismatches in Figure 4.22, the reconstruction of the velocity model re-
mains stuck in a local minimum during the first frequency batch inversion (Figure 4.24a), while
the estimated attenuation model shows unrealistic values due to the lack of bound constraints
(Figure 4.24b). This failure prompts us to stop the inversion at this stage.
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Figure 4.24 – Viscoacoustic FWI results after inverting the first frequency batch. (a) Recon-
structed velocity model. (b) Reconstructed attenuation model. TV regularization and bound
constraints are not applied.

Viscoacoustic IR-WRI results

We now update v and α with IR-WRI according to the optimization workflow described
in Algorithm 4. IR-WRI is performed without and with bound constraints + TV regularization
(referred to as BTV regularization in the following). The lower and upper bounds are 1.2 km/s
and 4.0 km/s for velocities, and 0.001 and 0.025 for α. For each case, the stopping criterion for
each batch is given to be either reaching a maximum iteration count of 20 or∑

‖A(mk+1,αk+1)uk+1 − b‖2
2 ≤ εb and∑

‖Puk+1 − d‖2
2 ≤ εd, (4.113)

where the sums run over the frequencies of the current batch, εb=1e-3 and εd=1e-5. We start
with inversion of noiseless data. The final v and α models, estimated by IR-WRI without
and with BTV regularization, are shown in Figure 4.25a-4.25d after 360 and 321 iterations,
respectively. A direct comparisons between the logs extracted from the true models, the ini-
tial model and the IR-WRI velocity models reconstructed without/with BTV regularization at
x = 3.5 km, x = 8.0 km and x = 12.0 km are shown in Figure 4.26a. Although a crude
initial velocity model was used, the velocities in the shallow sedimentary cover and the gas
layers are fairly well reconstructed in both cases (Figure 4.25a and 4.25c. Also, IR-WRI with-
out BTV regularization manages to reconstruct an acceptable velocity model, unlike classical
FWI (Figure 4.24). The main differences between the IR-WRI velocity models built with and
without BTV regularization are shown at the reservoir level and below. Without BTV regular-
ization, the top of the reservoir is mispositioned (Figure 4.26a, x = 8.0 km, green versus red
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curves), and the inversion fails to reconstruct the smoothly decreasing velocity below it due to
the lack of diving wave illumination at these depths (Figure 4.26a). This, in turn, prevents the
focusing of the deep reflector at 5 km depth by the migration of the associated short-spread
reflections (Figure 4.25a). When BTV regularization is used, viscoacoustic IR-WRI provides
more accurate and cleaner reservoir images and better reconstructs the sharp contrast on top of
it (Figure 4.25c). As expected, the TV regularization replaces the smoothly-varying velocities
below the reservoir (between 3 km to 5 km depth) by a piecewise-constant layer due to the lack
of wave illumination in this part of the model (Figure 4.26a, green curves). However, this does
not prevent a fairly accurate reconstruction of the deep reflector at 5 km depth.

A direct comparisons between the logs extracted from the true and the IR-WRI attenuation
models at x = 3.5 km, x = 8.0 km and x = 12.0 km are shown in Figure 4.26b. The re-
construction of α without BTV regularization is quite unstable, with an oscillating trend and
overestimated values (Figures 4.25b and red curves in Figure 4.26b). This highlights fairly well
the ill-posedness of the attenuation reconstruction. In contrast, the α model reconstructed with
BTV regularization captures the large-scale attenuation trend in the shallow sedimentary cover,
in the gas layers and below the reservoir (Figures 4.25d and green curves in Figure 4.26b). We
note, however, that the attenuation is underestimated on top of the gas layers between 1.0 km and
1.4 km depth (Figure 4.26b, x = 8.0 km, green curve). This error in the attenuation reconstruc-
tion might be correlated with subtle underestimation of velocities at these depths (Figure 4.26a,
x = 8 km, green curve). This might indicate, on the one hand, some mild amplitude-related
crosstalk effects between velocities and attenuation and, on the other hand, the higher sensitivity
of the data to velocities compared to attenuation (in the sense that a small error in the velocity
contrasts can compensate more significant attenuation errors). Similar crosstalk artifacts have
been previously discussed during the toy inclusion test (Figure 4.20e and 4.20f).

We continue by assessing the resilience of the proposed viscoacoustic IR-WRI to noise
when data are contaminated with a Gaussian random noise with a SNR=10 db. Here, SNR is
defined based on the root mean square (RMS) amplitude of the signal and that of noise as

SNR = 20 log

(
Signal RMS Amplitude

Noise RMS Amplitude

)
. (4.114)

We use the same setup and the same initial models as those used for the noiseless case. The
stopping criterion is defined by equation 4.113, where εd is now set to the noise level. The final
models of IR-WRI obtained without and with BTV regularization are shown in Figure 4.25e-
4.25h. The total number of IR-WRI iterations are 196 and 185, respectively, for these results.
In a similar manner to the noiseless case, a direct comparisons between the logs extracted from
the true models, the initial model and the IR-WRI velocity models at x = 3.5 km, x = 8.0 km
and x = 12.0 km are shown in Figure 4.27. Overall, a similar trend as for the noiseless case
is shown. However, the presence of noise in the data leads to a mispositioning of the reservoir
at 8 km distance in the BTV IR-WRI velocity model, which was not observed in the noiseless
case (compare Figures 4.26a and 4.27a, x= 8.0 km, green curves). This mispositioning of the
reservoir may be correlated with a poorer reconstruction of the attenuating gas layers between
1.0 km and 2.5 km depth (compare Figures 4.26b and 4.27b, x= 8.0 km, green curves). Note
also that the velocity model built from noisy data without TV regularization (Figure 4.25e) looks
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smoother than that built from noiseless data (Figure 4.25a). This results because the stopping
criterion was reached earlier in the noisy case compared to the noiseless case (196 iterations in
the noisy case against 360 iterations in the noiseless case).

We also compute a common-shot gather for a shot located at 16.0 km in the IR-WRI models

Figure 4.25 – Viscoacoustic IR-WRI results. (a-d) Noiseless data. (a-b) Velocity (a) and atten-
uation (b) models reconstructed without BTV regularization. (c-d) Same as (a-b) when BTV
regularization is applied. (e-h) Same as (a-d) for noisy data (SNR=10db).

inferred from noiseless/noisy data with/without BTV regularization (Figure 4.28). The time-
domain seismograms computed in the IR-WRI models obtained without regularization (Figure
4.28a and 4.28c) show underestimated amplitudes and do not match late dispersive arrivals due
to the overestimated and oscillating values of α (Figures 4.25b and 4.26b for noiseless data and
Figures 4.25f and 4.27b for noisy data).
In the case of noiseless data, the bound constraints and the TV regularization allow for a high-
quality data fit (Figure 4.28c), consistently with the accuracy of the models shown in Fig-
ure 4.25c and 4.25d. In the case of noisy data, the bound constraints and the TV regularization
improve significantly the data match (compare Figure 4.28c and Figure 4.28d). However, the
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Figure 4.26 – For noiseless data, direct comparison along the logs at x = 3.5 km (left), x = 8.0
km (center) and x = 12.0 km (right) between the true model (black), the initial model (dashed
line) and the IR-WRI models without (red) and with BTV (green) regularization (Figure 4.25a-
4.25d). (a) Estimated v , (b) estimated α.

imprint of the crosstalk artifacts mentioned above are clearly seen at long offsets with a de-
graded fit of deeply-propagating waves (for example, the refracted wave from the deep reflector
at around 1.5s traveltime and the late dispersive waves at around 4 s traveltime) relative to the
noiseless-data results (compare Figure 4.28b and 4.28d).

4.3.6 Conclusions

We extended the recently proposed ADMM-based iteratively-refined wavefield reconstruc-
tion inversion (IR-WRI) for attenuation imaging by inversion of viscoacoustic wavefields. The
proposed viscoacoustic IR-WRI treats the nonlinear viscoacoustic waveform inversion as a mul-
ticonvex optimization problem. To achieve this goal, the original nonlinear multi-parameter
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Figure 4.27 – Same as Fig. 4.26 but for noisy data with SNR=10db. The corresponding IR-WRI
models are shown in Figure 4.25e-4.25h.

problem for squared slowness and attenuation factor is replaced by three recursive linear mono-
parameter subproblems for wavefield, squared slowness and attenuation factor that are solved in
alternating mode at each IR-WRI iteration. The attenuation-reconstruction subproblem requires
to introduce an approximate multilinear viscoacoustic wave equation in wavefield, squared
slowness, and attenuation factor. However, the errors generated by this approximate viscoa-
coustic wave equation during the attenuation reconstruction are efficiently compensated by the
Lagrange multipliers (namely, the running sum of the wave equation errors) that are computed
with the exact viscoacoustic equation.
This new formulation first has the flexibility to tailor the regularization to the squared slowness
and attenuation factor. Moreover, it simplifies the multi-parameter optimization workflow and
mitigates its computational cost since the original poorly-scaled multi-parameter inversion is
recast as two interlaced mono-parameter inversions. A realistic synthetic example suggests that
the search space extension embedded in IR-WRI efficiently mitigates cycle skipping when a
crude initial velocity model is used, while the TV-regularized alternating-direction optimization

208



Extension of ADMM-based WRI to multi-parameter

reasonably manages the crosstalks between squared slowness and attenuation as well as the
limited sensitivity of the data to the attenuation.
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4.3.7 Appendix A: Scaled form of augmented Lagrangian

In this appendix, we briefly review how augmented Lagrangian (AL) function, as the one
shown in equation 4.100, is used to solve constrained problems with the method of multiplier
(Nocedal and Wright, 2006, Chapter 17). Let’s start with the following constrained problem

min
x
‖P(x)‖2

2 subject to Q(x) = 0. (4.115)

The AL function associated with the problem 4.115 combines a Lagrangian function and a
penalty function as

LA(x,v) = ‖P(x)‖2
2 + 〈v,Q(x)〉︸ ︷︷ ︸

Lagrangian

+
ξ

2
‖Q(x)‖2

2︸ ︷︷ ︸
Augmentation

, (4.116)

where 〈·, ·〉 denotes inner product and v and ξ denotes the Lagrange multiplier (dual variable)
and the penalty parameter, respectively.
This AL function can be written in a compact form by introducing the scaled dual variable
q = −v/ξ and adding and subtracting the term ξ

2
‖q‖2

2 to the function 4.116 (See Boyd et al.,
2010, page 15 for more details):

LA(x,q) = ‖P(x)‖2
2 − ξ〈q,Q(x)〉+

ξ

2
‖Q(x)‖2

2 +
ξ

2
‖q‖2

2 −
ξ

2
‖q‖2

2

= ‖P(x)‖2
2 +

ξ

2
‖Q(x)− q‖2

2 −
ξ

2
‖q‖2

2. (4.117)

Equation 4.117 shows the augmented Lagrangian method can be seen as a penalty method with
an error correction term in the penalty function, ξ

2
‖Q(x) − q‖2

2, corresponding to the scaled
Lagrange multipliers. This correction term controls how well the constraint is satisfied at the
convergence point. In the framework of the method of multipliers, the AL function is minimized
with respect to the primal variable x and maximized with respect to the scaled dual variable q
in an alternating mode. Expression 4.117 shows that the dual variable is simply updated with
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the constraint violation when a gradient ascent method is used. This recipe has been used to
derive equation 4.99 with ADMM (AL method with an alternating update of multiple classes of
primal variable). The reader is referred to Aghamiry et al. (2019c) for the detailed development.

4.3.8 Appendix B: Bound constrained TV-regularization using ADMM

In this appendix, we review step by step how to solve a bound-constrained TV-regularized
convex problem (such as those in equations 4.104 and 4.109) using variable splitting and
ADMM (Boyd et al., 2010). Let us consider a general bound-constrained TV-regularized con-
vex problem of the form

min
x∈X

N∑
i=1

√
| [∇xx]i |2 + | [∇zx]i |2 +

λ

2
‖Gx− y‖2

2, (4.118)

for some column vector y and matrix G. The model x is an N -length column vector, ∇x and
∇z are square first-order difference matrices, and X is the desired convex set. The penalty pa-
rameter λ > 0 balances the relative weight of the TV regularizer and the misfit term. Following
Aghamiry et al. (2019b, section 2.2.2), equation 4.118 can be solved via the following three
easy approaches.

1) Variable splitting. Since the variable x appears simultaneously in the TV, misfit, and
bounding terms, it “couples" these terms and makes it difficult to solve the problem. To de-
couple them, new auxiliary variables px = ∇xx, py ∈ X , and pz = ∇zx are substituted in
the TV term and the bound constraint, respectively, and their expression as a function of the
original variable x are introduced as new equality constraints. This recasts equation 4.118 as
the following constrained problem

min
x,px,py∈X ,pz

N∑
i=1

√
| [px]i |2 + | [pz]i |2 +

λ

2
‖Gx− y‖2

2 (4.119)

subject to


px = ∇xx,
py = x,

pz = ∇zx.

2) Augmented Lagrangian. The second trick is to relax these new linking constraints with
an augmented Lagrangian function. This recasts 4.119 as the following min-max optimization
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problem

min
x,px,py∈X ,pz

max
qx,qy ,qz

N∑
i=1

√
| [px]i |2 + | [pz]i |2 +

λ

2
‖Gx− y‖2

2

+ 〈qx,px −∇xx〉+
ξ

2
‖px −∇xx‖2

2

+ 〈qy,py − x〉+
ξ

2
‖py − x‖2

2

+ 〈qz,pz −∇zx〉+
ξ

2
‖pz −∇zx‖2

2, (4.120)

where qx,qy,qz are Lagrange multipliers (dual variables), and ξ > 0 is the penalty parameter.
Note that, here we used the same penalty parameter for all three constraints but one may use
different parameter for each of them. The augmented Lagrangian method (a.k.a. method of
multipliers, Hestenes, 1969) maximizes the objective in equation 4.120 with respect to the dual
variables iteratively by using a simple steepest ascent algorithm (with step length ξ)

qk+1
x = qkx + ξ(pk+1

x −∇xxk+1) (4.121)

qk+1
y = qky + ξ(pk+1

y − xk+1) (4.122)

qk+1
z = qkz + ξ(pk+1

z −∇zxk+1) (4.123)

where xk+1 and pk+1
x ,pk+1

y ,pk+1
z are obtained by solving

arg min
x,px,py∈X ,pz

N∑
i=1

√
| [px]i |2 + | [pz]i |2 +

λ

2
‖Gx− y‖2

2

+ 〈qkx,px −∇xx〉+
ξ

2
‖px −∇xx‖2

2

+ 〈qky,py − x〉+
ξ

2
‖py − x‖2

2

+ 〈qkz ,pz −∇zx〉+
ξ

2
‖pz −∇zx‖2

2, (4.124)

beginning with p0
x = p0

y = p0
z = 0.

Equations 4.121-4.124 can be simplified by using a change of variables (qx ← 1
ξ
qx,qy ←

1
ξ
qy,qz ← 1

ξ
qz) using the fact that for two real vectors a and b the following holds:

〈a,b〉+
ξ

2
‖b‖2

2 =
ξ

2
‖b +

1

ξ
a‖2

2 −
ξ

2
‖1

ξ
a‖2

2. (4.125)
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Accordingly,

qk+1
x = qkx + pk+1

x −∇xxk+1 (4.126)

qk+1
y = qky + pk+1

y − xk+1 (4.127)

qk+1
z = qkz + pk+1

z −∇zxk+1 (4.128)

and

arg min
x,px,py∈X ,pz

N∑
i=1

√
|px|2i + |pz|2i +

λ

2
‖Gx− y‖2

2

+
ξ

2
‖px −∇xx + qkx‖2

2 −
ξ

2
‖qkx‖2

2

+
ξ

2
‖py − x + qky‖2

2 −
ξ

2
‖qky‖2

2

+
ξ

2
‖pz −∇zx + qkz‖2

2 −
ξ

2
‖qkz‖2

2. (4.129)

3) Alternating minimization. The basic augmented Lagrangian method minimizes the objec-
tive function in equation 4.129 (augmented Lagrangian function) jointly over x,px,py, and pz,
the third trick is to perform this minimization by alternating minimizing with respect to each
variable separately (Goldstein and Osher, 2009; Boyd et al., 2010) to arrive at the so-called
ADMM.

xk+1 = arg min
x

λ

2
‖Gx− y‖2

2 +
ξ

2
‖pkx −∇xx + qkx‖2

2

+
ξ

2
‖pky − x + qky‖2

2 +
ξ

2
‖pkz −∇zx + qkz‖2

2. (4.130)

(pk+1
x ,pk+1

z ) = arg min
px,pz

N∑
i=1

√
| [px]i |2 + | [pz]i |2

+
ξ

2
‖px −∇xxk+1 + qkx‖2

2

+
ξ

2
‖pz −∇zxk+1 + qkz‖2

2. (4.131)

pk+1
y = arg min

py∈X

ξ

2
‖py − xk+1 + qky‖2

2. (4.132)

The subproblem expressed in equation 4.130 is an easy-to-solve least-squares problem, which
has a closed-form solution obtained by setting the derivative of the objective function with
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respect to x equal to zero.

xk+1 =
[
λGTG + ξ∇T

x ∇x + ξI + ξ∇T
z ∇z

]−1 (4.133)[
λGTy + ξ∇T

x [pkx + qkx] + ξ[pky + qky] + ξ∇T
z [pkz + qkz ]

]
.

The subproblem expressed in equation 4.131 also has a closed form solution, given by the
generalized soft thresholding function (Goldstein and Osher, 2009),

pk+1
x = max(1− 1/ξ

r
, 0) ◦ (∇xxk+1 − qkx), (4.134)

and

pk+1
z = max(1− 1/ξ

r
, 0) ◦ (∇zxk+1 − qkz), (4.135)

where
r =

√
|∇xxk+1 − qkx|2 + |∇zxk+1 − qkz |2. (4.136)

The subproblem expressed in equation 4.132 is a projection operator given by

qk+1 = projX (xk+1 − qky). (4.137)

In the case that X is a box set of form

X = {x|xmin ≤ x ≤ xmax}, (4.138)

then the projection operator admits a closed form solution

projX (xk+1 − qky) = min(max(xk+1 − qky,xmin),xmax),

where xmin and xmax are lower and upper bounds of x, respectively.
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Figure 4.28 – Time domain seismograms computed in (a) IR-WRI without regularization and
(b) BTV regularized IR-WRI for noiseless data (Figure 4.25a-4.25d). (c-d) Same as (a-b), but
for noisy data (Figure 4.25e-4.25h). The true seismograms are shown in the first and the last
panel of the above mentioned seismograms (folded) to have a comparison at short and long
offset with true seismograms. The seismograms are plotted with a reduction velocity of 2.5
km/s to compress the time axis.
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Chapter 5

Extending the linear regime of
ADMM-based WRI with phase retrieval

Chapter overview: The focus of this chapter is to extend the search space of ADMM-based
WRI using phase retrieval (e.g., Fienup, 1982). Phase retrieval refers to any process which
seeks to reconstruct a complex-valued signal from the magnitude of linear measurement (e.g.,
Fourier transform). To introduce my motivation behind the use of phase retrieval in ADMM-
based WRI, I would like to start with some limitations of ADMM-based WRI in complex media
when the initial model is very far away from the true model. In this case, the reconstructed wave-
fields are accurate only near the receivers (where the measurements are performed). Moreover,
it is well acknowledged that the phase has a stronger imprint in a signal relative to amplitude
(Oppenheim and Lim, 1981). Accordingly, it sounds reasonable to believe that the inaccura-
cies of the phase of the reconstructed wavefields may me the leading factor that can drive the
inversion towards spurious minimizers. To overcome this issue, I propose to update the pa-
rameters with phase retrieval during the early stages of the inversion (i.e., at low frequencies)
to mitigate the role of the phase when the background subsurface model is inaccurate. Then,
I switch back to the classical form of ADMM-based WRI introduced in the previous chapters
to process the higher frequencies with the full-information content of the data. Using a large
contrast model with salt bodies as benchmark, I show that phase retrieval combined with effi-
cient regularizations leads to a more accurate reconstruction of the shallow structure and more
accurate positioning of the contrasts at low frequencies. The final model obtained after the in-
version of the full frequency band shows improved subsalt reconstruction when phase retrieval
is used during the early stages of the inversion. This reflects the fastest convergence of classical
ADMM-based WRI when it starts from a more accurate low-resolution velocity model built
with phase retrieval. This chapter includes our paper, entitled Robust Wavefield Inversion via
Phase Retrieval , which has been published in Geophysical journal international (Aghamiry
et al., 2020e).
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Robust Wavefield Inversion via Phase Retrieval
Hossein S. Aghamiry, Ali Gholami and Stéphane Operto

Geophysical Journal International, 2020, 221(2), pages 1327 - 1340
DOI: 10.1093/gji/ggaa035

5.1 Summary

Extended formulation of Full Waveform Inversion (FWI), called Wavefield Reconstruction
Inversion (WRI), offers potential benefits of decreasing the nonlinearity of the inverse prob-
lem by replacing the explicit inverse of the ill-conditioned wave-equation operator of classical
FWI (the oscillating Green functions) with a suitably defined data-driven regularized inverse.
This regularization relaxes the wave-equation constraint to reconstruct wavefields that match
the data, hence mitigating the risk of cycle skipping. The subsurface model parameters are
then updated in a direction that reduces these constraint violations. However, in the case of
a rough initial model, the phase errors in the reconstructed wavefields may trap the waveform
inversion in a local minimum leading to inaccurate subsurface models. In this paper, in order
to avoid matching such incorrect phase information during the early WRI iterations, we design
a new cost function based upon phase retrieval, namely a process which seeks to reconstruct
a signal from the amplitude of linear measurements. This new formulation, called Wavefield
Inversion with Phase Retrieval (WIPR), further improves the robustness of the parameter es-
timation subproblem by a suitable phase correction. We implement the resulting WIPR prob-
lem with an alternating-direction approach, which combines the Majorization-Minimization
(MM) algorithm to linearise the phase-retrieval term and a variable splitting technique based
upon the alternating direction method of multipliers (ADMM). This new workflow equipped
with Tikhonov-total variation (TT) regularization, which is the combination of second-order
Tikhonov and total variation regularizations and bound constraints, successfully reconstructs
the 2004 BP salt model from a sparse fixed-spread acquisition using a 3 Hz starting frequency
and a homogeneous initial velocity model.

5.2 Introduction

Full waveform inversion (FWI) is a waveform matching procedure which provides a sub-
surface model with a resolution reaching to the half of the smallest propagated wavelength
(Virieux and Operto, 2009). Ultra-long offset wide-azimuth stationary-recording acquisitions
provide a varied angular illumination of the subsurface, which is amenable to the development
of the broadband velocity model (Sirgue and Pratt, 2004). However, the large number of propa-
gated wavelengths generated by these acquisitions makes FWI prone to cycle skipping or phase
wrapping (Shah, 2014; Choi and Alkhalifah, 2015). Various continuation strategies in frequen-
cies, travel-times and offsets can be used to mitigate this pathology (e.g., Shipp and Singh,
2002; Górszczyk et al., 2017). However, these multi-scale approaches can be tedious to imple-
ment and still require quite accurate initial velocity models and low frequencies to prevent cycle
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skipping at long offsets.

To increase the resilience of FWI to cycle skipping, frequency-domain wavefield recon-
struction inversion (WRI) has been proposed by van Leeuwen and Herrmann (2013, 2016). The
governing idea of the method relies on the following statement: if we would be able to record
a monochromatic wavefield generated by a single source everywhere in the subsurface, then
it would be straightforward to reconstruct the subsurface model exactly in virtue of the wave
equation bilinearity (Fig. 5.1). Since we cannot record wavefields everywhere, the best we can
do to approach the true wavefields is to find those that best match the sparse observations and
satisfy the wave equation in a least-squares sense. This least-squares problem can be imple-
mented by solving an overdetermined linear system gathering the weighted wave equation and
the observation equation (the equation relating the data to the wavefield through a sparse sam-
pling operator). The observation equation generates a wave equation relaxation whose strength
depends on the accuracy of the available subsurface model and the weight assigned to the wave
equation. Then, the subsurface parameters are updated from the reconstructed wavefields by
the least-squares minimization of the wave equation errors (source residuals), and this two-step
cycle is iterated until both the observation equation and the wave equation are satisfied with a
prescribed accuracy. Typically, a small weight is assigned to the wave equation during early
iterations to foster data fitting and prevent cycle skipping accordingly. This weight is progres-
sively increased to guarantee that the wave equation is fulfilled near the convergence point. The
parameter-estimation subproblem can be solved through a variable projection approach (van
Leeuwen and Herrmann, 2016) or through alternating optimization (van Leeuwen and Her-
rmann, 2013). In this latter case, the parameter-estimation subproblem is linearized around the
reconstructed wavefield according to the wave-equation bilinearity.

WRI has been originally implemented with a penalty method, which requires a tedious dy-
namic control of the penalty parameter as above mentioned (Fu and Symes, 2017). To overcome
this issue, Aghamiry et al. (2019c) proposed to replace the penalty method with an augmented
Lagrangian method equipped with operator splitting, namely the alternating-direction method of
multiplier (ADMM) (Boyd et al., 2010). Contrary to penalty methods, augmented Lagrangian
methods converge to an accurate solution with a fixed penalty parameter by iteratively updat-
ing the Lagrange multipliers with the running sum of the constraint violations (Nocedal and
Wright, 2006, Chapter 17). This defines what is sometimes referred to as an iterative refine-
ment or defect correction algorithm. Accordingly, Aghamiry et al. (2019c) called their method
iteratively-refined (IR-) WRI.

ADMM also provides a suitable framework to implement bound constraints and `1-based
nonsmooth regularizations (such as total variation (TV) regularization) in IR-WRI (Aghamiry
et al., 2019b). IR-WRI with TV regularization was further improved by using more versa-
tile Tikhonov-TV (TT) regularization combining second-order Tikhonov and TV regularizers
through infimal convolution (Aghamiry et al., 2020b). Infimal convolution means that the TT
regularization explicitly decomposes the model into two components of different statistical
properties (a smooth one and a blocky one) such that a suitable regularization can be tailored to
each component (Tikhonov and TV) (Gholami and Hosseini, 2013).

Although IR-WRI, when equipped with basic frequency continuation strategies and ad-
vanced regularization techniques, mitigates cycle skipping and helps to overcome nonlinearity
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issues broadly speaking, still it can be trapped in a local minimum when the initial model is very
far from the true model. In this case, the phase and amplitude of the reconstructed wavefields
match those of the true wavefields only in the vicinity of the receivers, while they can be quite
inaccurate elsewhere. In IR-WRI, the inaccuracies of the reconstructed wavefields are directly
mapped into the subsurface model through a linear deconvolution-like processing. This implies
that only the shallow part of the subsurface model is expected to be reliably updated during the
early iterations of IR-WRI for surface acquisitions. It remains unclear from a theoretical view-
point how these inaccuracies are progressively canceled out by IR-WRI in iterations through a
depth-continuation process.

It is well acknowledged that the phase often has a more dominant role than amplitude in
image processing and waveform inversion methods (Oppenheim and Lim, 1981; Shechtman
et al., 2015). Therefore, the inaccuracies in the phase of the reconstructed wavefields may be
those which can more likely drive the inversion toward spurious local minima. Accordingly,
the objective of this study is to assess whether a reformulation of the parameter-estimation
subproblem that mitigates the role of the phase during the early stages of the IR-WRI at the
benefit of the more robust amplitude counterpart contributes to stabilizing the inversion.

To achieve this goal, we recast the parameter-estimation subproblem of IR-WRI as a phase
retrieval problem (Fienup, 1982). Phase retrieval considers the fundamental problem of how
to reconstruct a signal from the magnitude of linear measurements (e.g., the magnitude of its
Fourier transform). The name phase retrieval arose because if the phase of the linear mea-
surements can be retrieved, then it is easy to reconstruct the signal by solving a linear problem
(Waldspurger et al., 2015). It has a long history of applications in science and engineering when
the phase of the linear measurements cannot be recorded or is inaccurate., e.g., optics (Walther,
1963), X-ray crystallography (Millane, 1990; Harrison, 1993), astronomy (Fienup, 1982). Also,
it has recently attracted renewed interest in many imaging problems (Fogel et al., 2016), such as
X-ray medical imaging (Pfeiffer et al., 2006; Burvall et al., 2011), optical imaging (Shechtman
et al., 2015) and seismic processing (Gholami, 2014).

In IR-WRI, the linear operator of the parameter estimation subproblem is formed by the so-
called virtual sources (Pratt et al., 1998), while the right-hand sides (the linear measurements)
depend on the source and the Laplacian of the wavefields (considering the Helmholtz equation
as wave equation). According to the above definition of phase retrieval, we update the subsur-
face parameters from the magnitude of the right-hand sides rather than from their phase and
amplitude. A potential downside of the phase-retrieval algorithm is ill-posedness generated by
the rapidly-decreasing sensitivity of the inversion with depth, in particular in large contrast or
attenuating media when a small amount of the seismic energy is transmitted in the deep subsur-
face. This makes the use of efficient regularization necessary, as we will show. As in IR-WRI,
we implement the iterative refinement procedure in the phase retrieval algorithm to design an
adaptive control on the regularization parameters and achieve a faster convergence to the desired
model. Once the velocity model estimation has been stabilized by phase retrieval during a first
low-frequency band inversion, we switch to classical IR-WRI to process the higher frequencies
with the phase information.

We assess our phase-retrieval based waveform inversion, referred to as WIPR, against two
complex synthetic case studies, the Marmousi II and the large contrast 2004 BP salt models
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with a sparse long-offset fixed-spread acquisition. We show how WIPR helps to reconstruct
more accurately the phase of the reconstructed wavefields, which is translated into more accu-
rate velocity estimation. Then, we show the impact of this more accurate early-stage velocity
reconstruction on the convergence of IR-WRI at higher frequencies.

This paper is organized in a method, numerical, and discussion sections. In the method
section, we first introduce phase retrieval in a general context. Second, we review the principles
of WRI with iterative refinement and show how we implement phase retrieval in the underlying
parameter-estimation subproblem. Then, we briefly review how compound regularizations can
be implemented in WIPR. In the numerical experiment section, we show the application on the
Marmousi and 2004 BP salt models. In the discussion section, we further discuss the resolution
power of amplitudes in WIPR and show its impact on the phase reconstruction.

5.3 Notation

The mathematical symbols adopted in this paper are as follows. We use italics for scalar
quantities, boldface lower-case letters for vectors, and boldface capital letters for matrices and
tensors. We use the superscript T to denote the adjoint of an operator and ∗ to show the complex
conjugate. We use diag(•) to show a square diagonal matrix which includes vector • on its main
diagonal. The ith component of the column vector x is shown by xi . For a complex number
x = ae jb with j =

√
−1, |x | = a denotes the magnitude of x and∠x = b denotes its phase. For

the n-length column vectors x and y, the dot product is defined by 〈x,y〉 = xTy =
∑n

i=1 x
∗
i yi

and their Hadamard product, denoted by x ◦ y, is another vector made up of their component-
wise products, i.e. (x ◦ y)i = xiyi . The `1- and `2-norms of x are, respectively, defined by
‖x‖1 =

∑n
i=1 |xi | and ‖x‖2 =

√
〈x,x〉 =

√∑n
i=1 |xi |2 .

5.4 Method

In this section, we briefly review the phase retrieval problem (Gerchberg, 1972) and a sim-
ple majorization-minimization (MM) (Lange, 2016) algorithm to solve this non-convex prob-
lem. Then we review the frequency-domain FWI (Pratt et al., 1998), its WRI alternative
(van Leeuwen and Herrmann, 2016), and its improved version called iteratively refined WRI
(IR-WRI) (Aghamiry et al., 2019c). Finally, we introduce phase retrieval in the parameter-
estimation subproblem of IR-WRI. In the following of this study, we refer to IR-WRI with phase
retrieval as WIPR. WIPR is solved efficiently with the alternating direction method of multi-
pliers (ADMM) (Boyd et al., 2010) and MM algorithms, which provide a suitable framework
to implement bound constraints and TT regularization in the parameter estimation subproblem
and tackle large data sets.
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5.4.1 Phase retrieval

Phase retrieval refers to the reconstruction of a complex signal from the amplitude of linear
measurements. Consider the complex-valued linear problem Lx = y with L ∈ Cm×n, x ∈
Cn×1, and y ∈ Cm×1 and assume that only the amplitude of the right hand side, |y|, can be
measured or is reliable. The corresponding phase-retrieval problem can be written as (Gholami,
2014)

min
x

f(x) = min
x

1

2
‖|Lx| − |y|‖2

2. (5.1)

Problem (5.1) is non-convex where this non-convexity finds its root in removing the phase of
the right hand side (|Lx| = |y| is non-unique and there are many x that can fit the magnitude
of y).
Several algorithms have been proposed to solve the problem ranging from the Gerchberg-Saxton
algorithm (Gerchberg, 1972) as a first algorithm to more modern optimization techniques (Can-
des et al., 2013; Netrapalli et al., 2013; Eldar et al., 2016). In this paper, we present a simple
algorithm based on the MM technique (Appendix A, section 5.8) to find a local minimum of
f(x) iteratively. Based on the proposed algorithm, the minimizer of the convex surrogate func-
tion

xk+1 = arg min
x

1

2
‖Lx− |y|ej∠Lxk‖2

2. (5.2)

converges to the minimizer of f(x) as iteration number, k, tends to infinity. The quadratic
problem 5.2 is the same as the least-squares norm of the original system Lx = y, when the
phase of y is replaced with the phase of Lxk, which is extracted from the solution of k’th
iteration.

5.4.2 FWI versus wavefield inversion

The reduced formulation of frequency-domain FWI can be written as (Pratt et al., 1998;
Plessix, 2006)

min
m
‖Pu(m)− d‖2

2, (5.3)

where d denotes the recorded seismic data, P is the linear observation operator that samples
the wavefield u(m) at the receiver positions, and m denotes the subsurface parameters. The
wavefield u(m) is the solution of the wave equation

u(m) = A−1(m)b, (5.4)

where b is the source term and A(m) ∈ Cn×n is the discretized wave-equation operator. In this
study, the wave equation is the Helmholtz equation, whose operator A(m) is given by

A(m) = ∆ + ω2Cdiag(m)B, (5.5)

where ω is the angular frequency, m contains the squared slownesses, ∆ is the discretized
Laplace operator, C introduces boundary conditions (e.g., sponge-like absorbing boundary con-
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ditions such as perfectly-matched layers (Bérenger, 1994)) and B spreads the « mass » term
ω2Cdiag(m) over all the coefficients of the stencil to improve its accuracy following an anti-
lumped mass strategy (Chen et al., 2013).

A main drawback of the reduced formulation in equation (5.3) is that the objective function
depends on the model parameters m through the oscillating inverse operator A−1(m). This
makes the inverse problem highly nonlinear, and hence prone to convergence to inaccurate
minimizer when the initial m is not accurate enough.

An alternative objective function as proposed by van Leeuwen and Herrmann (2016) is
defined as

min
m
‖A(m)u(m)− b‖2

2 (5.6)

in which the wavefield is given by

u(m) =
(
λA(m)TA(m) + PTP

)−1 (
λA(m)Tb + PTd

)
. (5.7)

The wavefield u(m) is the solution of an augmented wave equation system, which gathers
the wave equation A(m)u(m) = b weighted by the scalar penalty parameter λ > 0 and the
observation equation Pu(m) = d (van Leeuwen and Herrmann, 2013, their equation 6).

A main advantage of equation (5.6) over equation (5.3) is that its objective function de-
pends on the model parameters m through a regularized inverse of the wave-equation opera-
tor
(
λA(m)TA(m) + PTP

)−1, where the regularizer injects the prior information on the true
wavefields, namely their sparse measurements d, through the sampling operator P. This wave-
field reconstruction driven by the observations introduces a relaxation of the wave equation,
namely source residuals, which are minimized to update the model parameters, equation 5.6,
such that the wavefields, equation 5.7, are pushed back toward the wave equation.

The minimization problem, equation (5.6), can be solved with a variable projection ap-
proach by enforcing the closed-form expression of u, equation 5.7, in the objective function,
equation 5.6 (van Leeuwen and Herrmann, 2016), or with an alternating-direction strategy for u
and m through a Gauss-Seidel like iteration (van Leeuwen and Herrmann, 2013). We will fol-
low the latter option, where the model estimation problem, equation (5.6), reduces to a quadratic
optimization problem

mk+1 = arg min
m

‖A(m)uk − b‖2
2, (5.8)

which, in virtue of the wave-equation bilinearity (van Leeuwen and Herrmann, 2013; Aghamiry
et al., 2019c), can be recast as

mk+1 = min
m
‖L(uk)m− y(uk)‖2

2, (5.9)

with {
L(uk) = ω2Cdiag(Buk),

y(uk) = b−∆uk.
(5.10)

and uk ≡ u(mk).
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During wavefield reconstruction, equation 5.7, a small value of λ is used during the early
iterations to foster the data fit, hence mitigating cycle skipping, at the expense of the fidelity
with which the wave equation is satisfied. Then, λ is progressively increased in iterations such
that the wave equation is satisfied at the convergence point (Fu and Symes, 2017). To avoid
the tedious dynamic control of penalty parameters and converge in an automatic way toward
accurate solution with fixed λ, Aghamiry et al. (2019c) introduced iteratively-refined WRI (IR-
WRI). IR-WRI relies on an iterative refinement procedure, which finds its root in augmented
Lagrangian method (Nocedal and Wright, 2006, Chapter 17). In the end, it simply consists of
updating at the end of each iteration the right-hand sides of the wave equation and the observa-
tion equation, namely the data d and the source b, with the running sum of the data and source
residuals in iteration

bk+1 = bk + b−A(mk+1)uk+1, (5.11a)

dk+1 = dk + d−Puk+1. (5.11b)

In the framework of linear inverse problems, dk+1 and bk+1 record the wavefield and model re-
finements performed at previous iterations to refine the wavefields and the model parameters at
the current iteration from the residual errors only. This iterative refinement or defect correction
(Böhmer and Stetter, 1984) procedure, which is lacking in WRI, is the key ingredient which
controls the accuracy of the wavefield and model solutions at the convergence point when fixed
λ is used. The reader is also referred to Gholami et al. (2018); Gholami and Naeini (2019) for
other recent applications of iterative refinement in the field of geophysics.

IR-WRI has shown promising results even for complicated velocity models when equipped
with frequency continuation strategies and appropriate regularization (Aghamiry et al., 2019b,
2020b). However, when the initial model is far from the true model, the phase of the recon-
structed wavefields becomes inaccurate in areas that are located far away from the receivers.
These phase inaccuracies can lead to an inaccurate model reconstruction of these regions, hence
trapping the inversion into a local minimum. In order to mitigate this issue, we show in the next
section how to solve the quadratic optimization problem, equation 5.9, with phase retrieval.

5.4.3 Wavefield inversion with phase retrieval (WIPR)

To estimate the model parameters without involving inaccurate phase information, we pro-
pose to replace the IR-WRI parameter-estimation problem given by equation 5.9 by the follow-
ing phase retrieval problem

mk+1 = arg min
m

‖|L(uk)m| − |y(uk)|‖2
2. (5.12)

In order to solve (5.12), we replace it by a surrogate majorizing function (as described in section
5.4.1 and Appendix A (section 5.8)

mk+1 = arg min
m

‖L(uk)m− |y(uk)|ej∠L(uk)mk‖2
2. (5.13)
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This objective function is now quadratic and admits a closed form solution.

In order to better understand why phase retrieval helps to improve the solution, we give
a tentative interpretation hereafter. From equation (5.7) it is seen that, at each iteration, the
wavefield approximately satisfies the wave equation

A(mk)uk ≈ b (5.14)

or
L(uk)mk ≈ y(uk), (5.15)

where the approximation level is controlled by the parameter λ and the approximation becomes
an equality as λ → ∞. The next iterate mk+1 is then found such that it minimizes the wave-
equation errors generated by the wave-equation relaxation, equation (5.8). In this way, simple
minimization via equation (5.8) forces the model to match both the amplitude and phase infor-
mation of y(uk). In order to reduce the imprint of the phase errors, a phase correction or phase
alignment step can be applied to equation (5.15) before updating the model parameters:

min
φ
‖L(uk)mk − |y(uk)|ejφ‖2

2. (5.16)

The optimal minimizer of equation (5.16) is given by φ = ∠L(uk)mk. Using the optimal φ, the
next iterate is found by minimizing the corrected quadratic problem, as presented in equation
(5.13). In this way, the solution of the inverse problem is less affected by the phase errors in
u and thus hopefully less prone to convergence to a local minimum. The reader is referred to
Jiang et al. (2017); Qian et al. (2017) for other applications of phase retrieval with alternating
optimization.

Furthermore, we apply the iterative refinement procedure to WIPR in the same way as for
IR-WRI by updating b and d according to equations 5.11a and 5.11b as outlined in the Algo-
rithm 5. This implies that, although we recast the parameter-estimation subproblem as a phase
retrieval problem (Algorithm 5, Line 5), we use both the phase and amplitude of the source
and data residuals to update the right-hand sides of the wavefield-reconstruction and parameter-
estimation subproblems (Algorithm 5, Lines 8 and 9).

5.4.4 Tikhonov-Total variation (TT) regularized WIPR with bounding
constraints

In this section, we implement TT regularization and bounding constraints in WIPR to stabi-
lize the updates of the model parameters. By adding a convex regularization term ‖m‖TT to the
cost function of WIPR, we get the following optimization for the m-subproblem

mk+1 = arg min
m∈C

‖m‖TT + λ‖L(uk)m− |y(uk)|ej∠L(uk)mk‖2
2, (5.17)

where C = {x ∈ Rn×1 |ml ≤ x ≤ mu} is the set of all feasible models bounded by the lower
bound ml and the upper bound mu and ‖m‖TT is the TT regularization functional as defined by
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Algorithm 5: WIPR algorithm
1: Input: m0

2: initialize: A←∆ + ω2Cdiag(m0)B, b0 ← 0, d0 ← 0
3: while convergence conditions not satisfied do
4: uk+1 ←

[
PTP + λATA

]−1
[PT (d + dk) + λAT (b + bk)]

5: L← ω2Cdiag(Buk+1)
ỹ← |b + bk −∆uk+1|ej∠Lmk

6: mk+1 ←
[
LTL

]−1
LT ỹ

7: A←∆ + ω2Cdiag(mk+1)B
8: bk+1 ← bk + b−Auk+1

9: dk+1 ← dk + d−Puk+1

10: end while

Aghamiry et al. (2019b, 2020b)

‖m‖TT = min
m=m1+m2

‖m1‖TV + α‖m2‖Tikh, (5.18)

with {
‖m‖TV =

∑√
|∇xm|2 + |∇zm|2,

‖m‖Tikh =
∑

(|∇xxm|2 + 2|∇xzm|2 + |∇zzm|2) ,
(5.19)

in which the sum runs over all element, ∇i are first order difference operators in direction i and
∇ij are second-order differential operators in directions i and j.

The TT regularization is an infimal convolution-based combination of the second-order
Tikhonov and TV regularizations and is suitable for recovering piecewise-smooth models (Gho-
lami and Hosseini, 2013; Aghamiry et al., 2020b). It decomposes the model m explicitly into
two components, m1 and m2, which have different statistical properties. Here, the blocky
component m1 and the smooth component m2 are captured by the TV and the Tikhonov regu-
larizations, respectively.

Subproblem (5.17) is solved with ADMM and the split-Bregman scheme, which de-couples
the `1 and `2 components and bound constraints of the function through the introduction of aux-
iliary variables and solves each related subproblem in sequence (Goldstein and Osher, 2009).
By doing this, we come up with a least-squares problem with a closed-form expression to up-
date m1 and m2, a proximity subproblem to update the auxiliary variables and a gradient ascent
step to update dual variables. The reader is referred to Aghamiry et al. (2020b) and Aghamiry
et al. (2019b, Section 2.2.2) for the detailed derivation of the algorithm.

5.5 Numerical examples

We assess our workflow against the Marmousi II model (Martin et al., 2006) and the large-
contrast 2004 BP salt model (Billette and Brandsberg-Dahl, 2004) when the inversion is started
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from a homogeneous velocity model and a 3 Hz frequency such that a considerable phase error
is generated. In both cases, we consider a long-offset fixed-spread acquisition and perform the
frequency-domain inversion in the 3 Hz - 13 Hz frequency band with a frequency interval of
0.5 Hz. Small batches of two frequencies with one frequency overlapping between two con-
secutive batches are successively inverted following a classical frequency continuation strategy.
We apply the phase retrieval algorithm only during the first frequency batch processing to sta-
bilize the inversion. Then, we proceed with regular IR-WRI at higher frequencies. The IR-WRI
results obtained from an early WIPR stage will be referred to as IR-WRIpr to prevent confu-
sions with results obtained when IR-WRI is applied from the first frequency-batch inversion.
During IR-WRI/IR-WRIpr, we perform three paths through the frequency batches to improve
the inversion results, using the final model of one path as the initial model of the next one (these
cycles can be viewed as outer iterations of the algorithms). The starting and finishing frequen-
cies of the paths are [3.5, 6], [4, 8.5], [6, 13] Hz, respectively, where the first element of each
pair shows the starting frequency and the second one is the finishing frequency. We will com-
pare the results of IR-WRIpr and IR-WRI to assess the improvements resulting from the initial
WIPR step. We will also compare the results of IR-WRI and IR-WRIpr when regularization is
applied or not such that the relative role of phase retrieval and regularization can be discrimi-
nated. Namely, we will illustrate that the role of phase retrieval is to extend the linear regime of
the waveform inversion further when an inaccurate starting model is used, while regularization
injects suitable prior to manage non-uniqueness of the solution in the poorly illuminated area.
When regularization is applied, the same tuning is used during WIPR and IR-WRI, and during
IR-WRI and IR-WRIpr. For all the numerical tests, we use a 9-point finite-difference staggered-
grid stencil with PML boundary condition along the four edges of the model (no free-surface
boundary condition is used) and anti-lumped mass to solve the Helmholtz equation, where the
stencil coefficients are optimized to the frequency (Chen et al., 2013).

5.5.1 Marmousi II model

The Marmousi II model covers a 11500 m× 4200 m spatial domain (Fig. 5.1a). The fixed-
spread surface acquisition consists of 56 sources spaced 200 m apart, and 230 receivers spaced
50 m apart at the surface. The source signature is a 10 Hz Ricker wavelet, and the wavespeed
in the homogeneous starting model is 3 km/s.

We first compare the results of WIPR and IR-WRI after 45 iterations of the [3,3.5] Hz
frequency batch inversion when bound constraints are applied without any additional regular-
ization (Fig. 5.2a-b). Bound constraints are used for all of the tests of this section from the
first iteration. WIPR manages to reconstruct an accurate long-wavelength approximation of the
Marmousi model (Fig. 5.2b), while IR-WRI clear fails to capture the kinematic trend of the
model (Fig. 5.2a). This statement is clearly illustrated by the direct comparison between the
true model, the initial model, and the reconstructed IR-WRI and WIPR models along with three
vertical logs at horizontal distances of 4, 8.2, and 10 km (Fig. 5.3a). We also apply TT regular-
ization during WIPR and IR-WRI (Figures 5.2c-d and 5.3b). The TT regularization improves
the WIPR and IR-WRI results in the poorly-illuminated area, although it does not remove high-
velocity artefacts near the left-bottom end of the IR-WRI velocity model (Fig. 5.3b, x=4 km).
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Since the model parameters are updated from the reconstructed wavefields, the accuracy of

Figure 5.1 – Illustration of the wave-equation bilinearity. (a) True Marmousi II velocity model.
(b) Three-Hz wavefield (real part) for the source located at the surface and a distance of 6 km.
(c) Velocity model inferred from the amplitude and phase of the monochromatic wavefield,
equation 5.24. The same model can be inferred from the sole amplitude of the monochromatic
wavefield, equation 5.25. The reconstructed velocity model exactly matches the true velocity
model.

these wavefields is a visible indicator of the reliability of the estimated model parameters. We
compare the real part of the 3 Hz wavefields reconstructed by IR-WRI and WIPR without and
with TT regularization (Fig. 5.4) with the true wavefield (Fig. 5.1b) for a source located at the
horizontal distance of 6 km. Both IR-WRI and WIPR wavefields are in phase with the true
wavefield along the receiver line since we tune the penalty parameter such that the data are
matched from the first iteration. However, the WIPR wavefield matches much better the true
wavefield than the IR-WRI counterpart in depth. When regularization is used, the accuracy of
the wavefield reconstruction is mostly improved in the poorly-illuminated zones, mainly near
the bottom ends of the model.
We continue with IR-WRI at higher frequencies using the final IR-WRI and WIPR models of

the [3, 3.5] Hz inversion (Fig. 5.2) as initial models. The stopping criterion of iterations is a

226



Extending the linear regime of ADMM-based WRI with phase retrieval

Figure 5.2 – Marmousi II example. Velocity models after the {3,3.5} Hz inversion. (a) IR-
WRI, (b) WIPR, (c) TT regularized IR-WRI, and (d) TT regularized WIPR. Bound constraints
are used for all of the tests from the first iteration.

maximum of 30 iterations per batch or

(‖A(mk)uk − b‖F ≤ 10−3 and ‖Puk − d‖F ≤ 10−5), (5.20)

where F refers to the Frobenius norm. The final IR-WRI and IR-WRIpr velocity models are
shown in Fig. 5.5, while a direct comparison between them and the true model are plotted in
Fig. 5.6 at distances 4, 8.2 and 10 km. IR-WRI performed a total of 382 and 369 iterations
without and with TT regularization, respectively (Fig. 5.5a,c), while IR-WRIpr performed a
total of 201 and 234 iterations (Fig. 5.5b,d). The smaller number of iteration required to satisfy
the stopping criterion of iterations performed by IR-WRIpr compared to IR-WRI highlights the
role of the initial model built by WIPR during the [3, 3.5] Hz inversion (Fig. 5.2b,d). Without
regularization, IR-WRIpr outperforms IR-WRI in the deep part, namely near the reservoir at
around 8 km distance and near the salt layers near the ends of the models. Regularization
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Figure 5.3 – Marmousi II example. Direct comparison along with three vertical logs at x =
4, 8.2, and 10 km between the true velocity model (black), the initial model (dashed black), and
the IR-WRI (red) and WIPR (green) models shown in Fig. 5.2. (a) Without TT regularization.
(b) With TT regularization.

improves significantly both IR-WRI and IR-WRIpr results in these areas. However, IR-WRIpr
still provides superior results in the deep part.

5.5.2 The large contrast 2004 BP salt model

We consider now a target of the large contrast 2004 BP salt model located on the left side of
the model (Fig. 5.7a). The 2004 BP salt model mainly consists of a simple sediment background
with a complex rugose multi-valued salt body, sub-salt slow velocity anomalies related to over-
pressure zones, and a fast velocity anomaly to the right of the salt body. The selected subsurface
model is 16250 m wide and 5825 m deep and is discretized with a 25 m grid interval. The
surface fixed-spread acquisition consists of 66 sources spaced 250 m apart, and 131 receivers
spaced 125 m apart. We perform forward modelling using a 10 Hz Ricker wavelet as a source
signature. The starting velocity model for inversion is homogeneous with a velocity of 3 km/s.
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Figure 5.4 – Marmousi II example. Three-Hz wavefields (real part) reconstructed after the
first frequency batch inversion for the source located at 6 km. (a) IR-WRI, (b) WIPR, (c) TT
regularized IR-WRI, and (d) TT regularized WIPR. The corresponding velocity models are
shown in Fig. 5.2. These wavefields can be compared with the true one shown in Fig. 5.1b.

IR-WRI versus WIPR at low frequencies

We first perform 45 iterations of bound-constrained WIPR and IR-WRI for a starting [3,3.5] Hz
frequency batch. Note that we turn on the bound constraints after 20 iterations to discriminate
their role from those of the TT regularization and optimization scheme (see later discussion in
the text). The velocity models reconstructed by bound-constrained IR-WRI and WIPR with
and without TT regularization are shown in Fig. 5.8, while the direct comparison between the
true model, the initial model, and the models reconstructed by IR-WRI and WIPR are shown
in Fig. 5.9 along three vertical logs at horizontal distances of 3.5 km, 7.7 km, and 12 km. The
most striking feature is that IR-WRI overestimates velocities above the salt and mispositions
the top of the salt layers accordingly, while WIPR captures the top salt much more accurately
(Fig. 5.9a, green versus red curves, x=3.5 km and 7.7 km). This overestimation of the shallow
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Figure 5.5 – Marmousi II example. Final velocity models obtained by IR-WRI (a,c) and IR-
WRIpr (b,d). (a,b) Without TT regularization. (c,d) With TT regularization.

velocities by IR-WRI is also shown in the right part of the model away from the salt (Fig. 5.9a,
red curve, x=12 km). On the other hand, WIPR fails to reconstruct the bottom part of the thick
salt body and overprints unrealistic variations on the subsalt area when TT regularization is
not used (Fig. 5.8b and Fig. 5.9a, green curve, x=3.5 km). These artefacts are likely gener-
ated by the increased ill-posedness of WIPR with depth, which itself results from the lack of
phase information. This ill-posedness is however, efficiently mitigated by the TT regularization
(Fig. 5.8d). The TV component of the TT regularization helps to sharpen the top and bottom
of the salt layers (Fig. 5.9b, green curve, x=7.7km), recovers better the geometry of the salt
layer (Fig. 5.9b, green curve, x=3.5km), while the Tikhonov component stabilizes the inversion
in-depth and drives it toward smooth reconstruction of the poorly-illuminated subsalt structures
(Fig. 5.9b, green curve, x=12km). During IR-WRI, TT regularization fails to achieve these
goals (Fig. 5.8c) because the mispositioning in depth of the velocity structures generated by the
increased nonlinearity of IR-WRI are too heavy to be corrected by the regularization (Fig. 5.9b,
red curve).

230



Extending the linear regime of ADMM-based WRI with phase retrieval

Figure 5.6 – Marmousi II example. Direct comparison at x = 4, 8.2, and 10 km between
the true velocity model (black), the initial model (dashed line), and the models estimated by
IR-WRI (red) and IR-WRIpr (green) (Fig. 5.5). (a) Without TT regularization. (b) With TT
regularization.

We compare the true 3-Hz wavefield shown in Fig. 5.7b with the wavefields reconstructed by
IR-WRI and WIPR without and with TT regularization (Fig. 5.10). Like the Marmousi test,
both IR-WRI and WIPR wavefields are in phase with the true wavefield along the receiver line
since we tune the penalty parameter such that the data are matched from the first iteration. How-
ever, the WIPR wavefields match much better the true wavefield than the IR-WRI counterpart
in the first two kilometers of the model. This is pointed by the arrows in Fig. 5.10, which show
that the IR-WRI wavefield transmitted into the salt body is out-of-phase with respect to the true
wavefield, unlike the WIPR wavefield.
We also computed time-domain seismograms in the TT-regularized IR-WRI and WIPR models

(Fig. 5.8c,d) with a 10-Hz Ricker wavelet for a source located at 15.8 km (Fig. 5.11). We show
quite significant travel-time mismatches at long offsets between the true seismograms and those
computed in the IR-WRI model (Fig. 5.11a), which result from the overestimated velocities
above the salt shown in Fig. 5.8c, while the match between the true seismograms and those
computed in the WIPR model is far better. This poor data fit achieved by IR-WRI highlights
both the inaccuracies of the reconstructed velocity model and the limited accuracy with which
the wave equation has been satisfied at the convergence point.
This is further supported by Fig. 5.12, which shows the relative model error (Fig. 5.12a) and

the joint evolution of the data misfit (‖Puk−d‖2) and wave-equation error (‖A(mk)uk−b‖2)
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Figure 5.7 – (a) True 2004 BP salt velocity model. (b) Real part of the 3-Hz wavefield computed
in (a) for the source located at 7 km.

in iterations (Fig. 5.12b). Also, the evolution of the data misfit and wave-equation error in it-
erations are shown separately in Figs. 5.12c and 5.12d, respectively. First, these error curves
show that WIPR converges toward a more accurate velocity model than IR-WRI (Fig. 5.12a).
Accordingly, it shows that WIPR satisfies more accurately the wave-equation constraint than
IR-WRI (Fig. 5.12d), although the parameter estimation has been recast as a phase retrieval
problem rather than as a wave-equation error minimization. Fig. 5.12a also shows that bound
constraints have the least impact on the TT regularized WIPR (blue curve) since the descent
direction is rather continuous around iteration 20 (when bound constraints are activated) . This
highlights the more stable descent direction followed by TT regularized WIPR relative to IR-
WRI.

IR-WRI versus IR-WRIpr

We continue with IR-WRI at higher frequencies using the final IR-WRI and WIPR models
of the [3, 3.5] Hz inversion (Fig. 5.8) as initial models. The stopping criterion of iterations is
10 iterations per batch. The final velocity models built by IR-WRI and IR-WRIpr are shown in
Fig. 5.13, while a direct comparison between them and the true model are plotted in Fig. 5.14
at distances 3.5 km, 7.7 km and 12 km.
Let’s first focus on the results obtained without TT regularization (Fig. 5.13a,b). IR-WRI
apparently reconstructs the salt body with good accuracy (Fig. 5.13a), although the shallow
kinematic inaccuracies of the starting IR-WRI model shown in Figs. 5.8a and 5.9, red curves.
This highlights the potential of the search-space expansion implemented in IR-WRI to man-
age cycle skipping. The final IR-WRIpr velocity model shows low-velocity artefacts in the salt
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Figure 5.8 – BP salt example. Velocity models inferred from the inversion of the {3,3.5} Hz
frequencies. (a) IR-WRI, (b) WIPR, (c) IR-WRI with TT regularization, and (d) WIPR with TT
regularization.

body at around 3 km distance (Fig. 5.13b), which are probably inherited from the underesti-
mated velocities below the top of the salt shown in Figs. 5.8b and 5.9a, green curve, x=3.5 km.
For both inversions, the reconstruction of the subsalt structures are quite noisy. To gain more
quantitative insights on the relative accuracy of the IR-WRI and IR-WRIpr models, we show
the difference between these velocity models and the true model in Fig. 5.15(a-b) and outline
the model error (ME) for the velocity models as well as the least-squares data and source misfit
at the convergence point in Table 5.1. Figure 5.15(a-b) clearly shows that the IR-WRIpr model
is as a whole more accurate than the IR-WRI counterpart, although the above-mentioned lo-
cal artefacts. The TT regularization removes the local artefacts shown in the salt body of the
IR-WRIpr model and improves the subsalt imaging (Fig. 5.13d) more significantly than for the
IR-WRI model (Fig. 5.13c). The difference between the true model and the IR-WRI/IR-WRIpr
models (Fig. 5.15(c-d)) and the model error (ME) provided in Table 5.1 outline the superior
accuracy of the IR-WRIpr model relative to the IR-WRI counterpart. These relative model ac-
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Figure 5.9 – BP salt example. Direct comparison along logs located at x = 3.5, 7.7 and 12 km
between the true velocity model (black), the initial model (dashed line) and the models esti-
mated by IR-WRI (red) and WIPR (green) shown in Fig. 5.8. (a) Without TT regularization.
(b) With TT regularization.

curacies are consistent with the data and source misfit achieved by IR-WRIpr and IR-WRI at
the convergence point (Table 5.1).

5.6 Discussion

With the large contrast BP salt model, we have shown that the phase inaccuracies of the
reconstructed wavefields prevent accurate estimation of the shallow sediments and accurate po-
sitioning in depth of the top of the salt after the first frequency batch inversion. In contrast,
WIPR reconstructs more accurately the velocity gradient in the sedimentary cover as well as
the sharp velocity contrast on top of the salt. This accurate positioning of the top salt is indeed
important to speed up the convergence and improve the solution at higher frequencies.
To further illustrate the sensitivity of IR-WRI to wavefield amplitudes and phases in large con-
trast media, we show in Figs. 5.16 and 5.17 the amplitude and phase of ∆u for the 3 Hz
frequency and a source located at 7 km of distance. In these figures, ∆u have been computed in
the true velocity model, and in the TT regularized IR-WRI and WIPR velocity models obtained
after the first frequency batch inversion (Figs. 5.8c,d). We remind that ∆u is one of the terms
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Figure 5.10 – BP salt example. Three-Hz wavefields (real part) reconstructed after the first
frequency batch inversion. (a) IR-WRI, (b) WIPR, (c) TT regularized IR-WRI, and (d) TT
regularized WIPR. The corresponding velocity models are shown in Fig. 5.8. The source is
located at 7 km distance. These wavefields can be compared with the true wavefield shown in
Fig. 5.7b. The arrows point where the incident wavefields interact with the top salt.

forming the right-hand side ỹ of the quadratic parameter-estimation subproblem together with
the updated source b + bk, Algorithm 5, Line 5. As such, ∆u can be viewed as the observable
of the parameter-estimation subproblem.
The amplitudes of ∆u computed in the true velocity model show the dominant imprint of the
reflection and the refraction from the top of the salt (Fig. 5.16a, shallow black zone). Also, the
geometry of the seismically-transparent salt body is almost perfectly delineated. This shows
that the amplitudes of ∆u intrinsically embeds high-resolution information on the subsurface.
This high-resolution potential can be simply illustrated with the wave-equation bilinearity as
discussed below. Let us remind the wave equation for a single source and a single frequency

∆u + ω2diag(m)u = b (5.21)
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Figure 5.11 – BP salt example. Comparison between time-domain seismograms computed in
the true velocity model (left panel) and those computed in the velocity models obtained by (a)
IR-WRI (Fig. 5.8c) and (b) WIPR (Fig. 5.8d) (right panel). The seismograms are plotted with a
reduction velocity of 2.5 km/s. Note the significant travel-time mismatch in (a) at long offset.

which leads to the following linear equation of the parameter-estimation subproblem:

ω2diag(m)u︸ ︷︷ ︸
L(u)m

= b−∆u︸ ︷︷ ︸
y(u)

. (5.22)

Compared to equation 5.5, we drop the matrix B and C which are not important for the dis-
cussion. The equality implies that |L(u)m| = |y(u)| and ∠L(u)m = ∠y(u). If u is the true
wavefield (if it would be recorded everywhere) then we would be able to recover the true model
exactly by minimizing

‖L(u)m− y(u)‖2
2 = ‖(|L(u)m| − |y(u)|)ej∠L(u)m‖2

2

= ‖L(u)m− |y(u)|ej∠L(u)m‖2
2. (5.23)

236



Extending the linear regime of ADMM-based WRI with phase retrieval

Figure 5.12 – BP salt example. Convergence path of {3,3.5} Hz inversion. (a) Evolution of
‖mk−m∗‖2/‖m∗‖2 during iterations (m∗ denotes the true model). (b) Convergence history of
the algorithm in the (‖Puk−d‖2−‖A(mk)uk−b‖2) plane. (c-d) Evolution of (c) ‖Puk−d‖2,
(d) ‖A(mk)uk−b‖2 during iterations for IR-WRI (green), WIPR (red), TT regularized IR-WRI
(black), and TT regularized WIPR (blue).

It is seen that, basically, the true model is the solution of a weighted phase retrieval problem (as
indicated by the middle term) where the complex exponential of the phase serves as the weight.
Indeed, for an approximate wavefield which is obtained from eq. (5.7) with a rough velocity
model or a large penalty parameter the equality in eq. (5.23) is not necessarily satisfied because,
in this case, ∠L(u)m 6= ∠y(u). The proposed WIPR algorithm simply forces this equality to
be satisfied at each iteration by aligning the phase of y with that of L(u)m (right term in
equation 5.23).
The ability to reconstruct the true model from amplitude information only can be illustrated
more explicitly if we assume that m is real in equation 5.21 (non attenuating medium). The
matrix L(u) is diagonal and contains the so-called virtual source (equation 5.22).

m =
1

ω2

(
1

u

)
◦ y(u), (5.24)

where ◦ denotes element wise multiplication. Indeed, we can equally reconstruct the true m
from the magnitude of y as

m =
1

ω2

(
1

|u|

)
◦ |y(u)|, (5.25)
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ME ‖A(m)u− b‖2 ‖Pu− d‖2

It
er

at
io

n
N

o.
45

IR-WRI 23.23 0.5954 7.8550
WIPR 13.97 0.0672 1.8450

IR-WRI+TT 19.81 0.5640 4.4630
WIPR+TT 9.49 0.04926 0.6706

Fi
na

l
ite

ra
tio

n IR-WRI 7.57 0.2046 2.8911
IR-WRIpr 6.50 0.0647 1.6009

IR-WRI+TT 4.89 0.1272 1.6470
IR-WRIpr+TT 3.16 0.0359 0.6350

Table 5.1 – Model error (ME) for the velocity models and least-squares data and source misfit at
the end of the first frequency batch inversion and at the convergence point of the four inversion
tests (with or without phase retrieval, with or without TT regularization). Here, ME is defined
as 100‖mk−m∗‖1

‖m∗‖1 , where m∗ denotes the true model.

where 1/u and 1/|u| are element-wise reciprocal of u and |u|, respectively. The Marmousi II
model computed with equations 5.24 and 5.25 by using the true wavefield (Fig. 5.1b) is shown
in Fig. 5.1c and matches exactly the true one (Fig. 5.1a).
The Fig. 5.16c, as well as the vertical profile extracted at 6.5 km of distance, confirm that WIPR
manages to match the amplitudes of the true ∆u down to the top of the salt at 1.25 km depth,
while IR-WRI (Fig. 5.16b) allows for an amplitude fit down to a maximum depth of 0.5 km
only, consistently with the accuracy of the velocity fields reconstructed by IR-WRI and WIPR
(Fig. 5.8c,d).
It is also instructive to look at the phase of ∆u (Fig. 5.17). To facilitate the comparison of the
phases computed in the true model (Fig. 5.17a) and in the reconstructed models (Fig. 5.17b,c),
we superimpose in Fig. 5.17b,c the contours of the phase computed in the true model at the spa-
tial positions where the phase wraparounds, namely when it jumps from±π to∓π (Fig. 5.17b,c).
We clearly show that WIPR reconstructs the phase of ∆u much more accurately than IR-WRI
around the salt body. This is further illustrated by the difference between the phases computed
in the true model and the reconstructed models along the vertical profile at 6.5 km distance
(Fig. 5.17d). The phase difference associated with IR-WRI (solid red curve) reaches a value of
−π at the top of the salt (1.25 km depth) showing that at these depths the two wavefields are
cycle skipped, while the phase differences associated with WIPR (solid green curve) remains
far below this limit down to around 2.7 km depth.
Conversely, it is worth noting that IR-WRI matches better the phase of the true wavefield than
WIPR in the smooth bottom-right part of the model (Compare Figs. 5.17b and 5.17c). This
highlights that the sensitivity of the inversion to amplitudes decreases rapidly with depth due
to lack of illumination, geometrical spreading effects and energy partitioning at interfaces. We
also want to stress that, although we update the wavespeeds from the amplitudes of y, we update
y at each iteration with the phase and amplitude of the wave equation error (the source residu-
als) in the framework of the ADMM optimization (Algorithm 5). This right-hand side updating
re-injects at each iteration the phase error as a defect correction term in the optimization.
For sake of completeness, we show also the amplitude and phase of ∆u for the Marmousi case
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Figure 5.13 – BP salt example. Final velocity models estimated by IR-WRI (a,c) and IR-WRIpr
(b,d). (a-b) Without TT regularization. (c-d) With TT regularization.

study in Figs. 5.18 and 5.19. Fig. 5.18 shows how WIPR reproduces more accurately the wide-
angle reflection from the dipping layer on the left side of the source than IR-WRI. Fig. 5.19
shows that WIPR better reconstructs the true phase of ∆u than IR-WRI.
Although the application of the phase retrieval algorithm has been limited to the scalar Helmholtz
equation in this study, the method has been formulated such that more complex physics and
multi-parameter reconstruction can be viewed (the reader is referred to Aghamiry et al. (2019d)
and Aghamiry et al. (2019a) for application of IR-WRI in visco-acoustic VTI media). The key
feature allowing for these extensions is the linearization of the non-convex phase retrieval prob-
lem performed by the MM approach, as reviewed in Appendix A (section 5.8).
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Figure 5.14 – BP salt example. Direct comparison along logs located at x = 3.5, 7.7 and
12 km between the true velocity model (black), the initial model (dashed line) and the models
estimated by IR-WRI (red) and IR-WRIpr (green) shown in Fig. 5.13. (a) Without TT. (b) With
TT regularization.

5.7 Conclusions

We present a preliminary application of bound-constrained and TT regularized WIPR. Using
the large contrast BP salt model, we show that, when the inversion is started from scratch (ho-
mogeneous initial velocity model), WIPR improves significantly the reconstruction of the sed-
imentary background and the top of the salt during the early iterations of the inversion (that is,
when the wavefields are not yet accurately reconstructed far away from the receivers). Sparsity-
promoting regularization is a necessary ingredient to stabilize the phase retrieval inversion at
greater depths where the amplitude information becomes more challenging to extract. Sparsity-
promoting regularization combined with phase retrieval maybe also two complementary tools
to relax the need for finely-sampled stationary-recording acquisitions. Phase retrieval can also
be implemented in classical FWI. Also, WIPR can be theoretically extended to multi-parameter
reconstruction in attenuating media. Further theoretical and numerical works are, however,
necessary to flesh out the potential and limits of phase retrieval in the FWI technology.
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Figure 5.15 – BP salt example. Difference between the true velocity model and the velocity
models shown in Fig. 5.13. (a,c) IR-WRI. (b,d) IR-WRIpr. (a-b) Without TT regularization.
(c-d) With TT regularization.

Acknowledgments

We would like to thank editors H. Yao, L. Alexander, and reviewers H. Zhu and an anony-
mous for their comments which help improving the manuscript. This study was partially
funded by the SEISCOPE consortium (http://seiscope2.osug.fr), sponsored by AKERBP, CGG,
CHEVRON, EQUINOR, EXXON-MOBIL, JGI, PETROBRAS, SCHLUMBERGER, SHELL,
SINOPEC, and TOTAL. This study was granted access to the HPC resources of SIGAMM in-
frastructure (https://www.oca.eu/fr/ mesocentre-sigamm) and CINES/IDRIS/TGCC under the
allocation A0050410596 made by GENCI.

241



Extending the linear regime of ADMM-based WRI with phase retrieval

Figure 5.16 – Amplitude of ∆u for 2004 BP model. (a) The wavefield u is computed in the
true velocity model for the 3 Hz frequency. (b-c) The wavefields are computed in the velocity
models inferred from TT-regularized (b) IR-WRI (Fig. 5.8c) and (c) WIPR (Fig. 5.8d) for the
first frequency batch. (d) Comparison between vertical profiles extracted from (a) (black line),
(b) (red line), (c) (green line) at a distance of 6.5 km.

5.8 Appendix A: Majorization-minimization to solve phase
retrieval problem

Here, we present a simple algorithm to solve phase retrieval problem based on the majorization-
minimization (MM) (Lange, 2016) technique. The governing idea of MM is to find the min-
imum of non-convex/convex function f(x) via the iterative minimization of a simpler convex
surrogate function g(x,xk) that majorizes f(x) at step k (i.e. g(x,xk) ≥ f(x)). Figure 5.20
shows a schematic of the MM process. The non-convex function f(x) is shown in blue while
a few surrogate functions g(x,xk) for points xk, k ∈ {0, 1, 2, 3}, are shown in orange. This
figure shows how the iterative MM algorithm approaches a local minimum of f(x) through the
minimum of easy to minimize surrogate functions g(x,xk).
The phase-retrieval problem for linear system Lx = y can be written as (Gholami, 2014)

min
x

f(x) = min
x

1

2
‖|Lx| − |y|‖2

2, (5.26)

where L ∈ Cm×n, x ∈ Cn×1, and y ∈ Cm×1. Problem (5.26) is non-convex where this non-
convexity finds its root in removing the phase of the right hand side.
Let us introduce the auxiliary variable z = Lx, then the objective function in (5.26) can be
written as

f̃(z) =
1

2
‖
√

zz∗ − |y|‖2
2. (5.27)
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Figure 5.17 – Phase of ∆u for 2004 BP model. Same as Fig. 5.16 for the phase of ∆u. (d)
Difference between the phases computed in the true model and the reconstructed models at the
first iteration (dashed red and green lines), after the first frequency batch inversion for IR-WRI
(red line) and WIPR (green line) at a distance of 6.5 km. Note the phase mismatch between the
phase computed in the true model and in the IR-WRI model below 0.5 km depth.

Figure 5.18 – Amplitude of ∆u for Marmousi II model. (a) The wavefield u is computed in the
true velocity model for the 3 Hz frequency. (b-c) The wavefields are computed in the velocity
models inferred from TT-regularized (b) IR-WRI (Fig. 5.2c) and (c) WIPR (Fig. 5.2d) for the
first frequency batch. (d) Comparison between vertical profiles extracted from (a) (black line),
(b) (red line), (c) (green line) at a distance of 6.0 km.

243



Extending the linear regime of ADMM-based WRI with phase retrieval

- - /2 0 /2

Figure 5.19 – Phase of ∆u for Marmousi II model. Same as Fig. 5.18 for the phase of ∆u. (d)
Difference between the phases computed in the true model and the reconstructed models at the
first iteration (dashed red and green lines), after the first frequency batch inversion for IR-WRI
(red line) and WIPR (green line) at a distance of 6.0 km.
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Figure 5.20 – Sketch of the iterative MM algorithm to solve optimization problem 5.26. The
function f(x) is shown in blue while a few surrogate functions g(x,xk), k ∈ {0, 1, 2, 3} are
shown in orange. The MM algorithm seeks to find a local minimizer of f(x), red point, by
iteratively minimizing easy to minimize functions g(x,xk). The surrogate function g(x,xk) is
greater than or equal to f(x), and the equality holds at the current optimal point xk. Minimiza-
tion of g(x,xk) gives a new optimal point and it reaches to x∗ when k tends to infinity.

Using the Wirtinger calculus (Kreutz-Delgado, 2009), the quadratic approximation of f(x)
around an initial guess xk is

g(x,xk) = f(xk) +∇f(xk)T∆x + ∆xTH(xk)∆x, (5.28)
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where ∆x = x− xk, ∇f is the gradient of f(x) and H denotes the Hessian, both evaluated at
xk. Simple algebra shows that the gradient of f(x) is given by

∇f(x) = 2LT ∂f̃(z)

∂z∗
(5.29)

= LTdiag(1− |y|
|Lx|

)Lx (5.30)

= LT (Lx− |y|ej∠Lx), (5.31)

where 1 is an all-ones vector, and the Hessian operator is given by

H(x) = 2LT

(
∂2f̃(z)

∂z∂z∗
+
∂2f̃(z)

∂z∗∂z∗
Ω

)
L (5.32)

= LT

(
diag(1− |y|

2|Lx|
) + diag(

|y|ej2∠Lx

2|Lx|
)Ω

)
L,

where Ω(z) = z∗ denotes the complex conjugate operator.
Ignoring the nonlinear terms of Hessian leads to the following Gauss-Newton approximation

g(x,xk) = f(xk) +∇f(xk)T∆x + ∆xTLTL∆x, (5.33)

or equivalently

g(x,xk) =
1

2
‖Lx− |y|ej∠Lxk‖2

2. (5.34)

The quadratic function g(x,xk) majorizes f(x) at the point xk provided that the following MM
conditions are satisfied: {

g(xk,xk) = f(xk)

g(x,xk) ≥ f(x) for all x.

(5.35a)

(5.35b)

Equality (5.35a) can easily be confirmed by substituting x by xk in f(x) and g(x,xk). Fur-
thermore, let zi = (Lx)i and θi = ∠(Lxk)i then according to the backward triangle inequality
(Meyer, 2000)

1

2
|zi − |yi|ejθi |2 ≥

1

2
(|zi| − ||yi|ejθi |)2 (5.36)

=
1

2
(|zi| − |yi||ejθi|)2

=
1

2
(|zi| − |yi|)2.

Hence,
1

2

∑
i

|zi − |yi|ejθi |2 ≥
1

2

∑
i

(|zi| − |yi|)2, (5.37)
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which confirms that the inequality (5.35b) is also satisfied and thus g(x,xk) majorizes f(x).
These conditions guarantee that iterative minimization of g(x,xk) converge to a local mini-
mum of f(x) as k tends to infinity (Wu et al., 1983).
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Chapter 6

Toward time-domain ADMM-based WRI:
efficient wavefield reconstruction

Chapter overview: This chapter is a first attempt toward the implementation of ADMM-based
WRI in the time domain. Wavefield reconstruction inversion (WRI) extends the search space
of Full Waveform Inversion (FWI) by computing wavefields with a wave-equation relaxation
such that the observation equation is satisfied (i.e., the data are fitted) with inaccurate velocity
models. This wavefield reconstruction can be easily implemented in the frequency domain by
solving in a least-squares senses an overdetermined linear system gathering the weighted wave
equation and the observation equation. Wavefield reconstruction in the time domain with ex-
plicit time stepping methods is more challenging because I will show that the right-hand side of
the wave equation to be solved depends on a back-propagated wavefield, whose excitation term
is formed by the residuals between the data and the sought (unknown) wavefield. To bypass
this issue, I start with the residuals between the data and the exact solution of the wave equa-
tion and I refine the reconstructed wavefield iteratively with a majorize-minimization algorithm
(Lange, 2016). Although this iterative refinement procedure generates computational overheads
during one WRI iteration, it allows to preserve the capability of WRI to extend the search space
and hence allows for the converge toward a more accurate velocity models. This chapter in-
cludes our paper, entitled Accurate and efficient data-assimilated wavefield reconstruction in
the time domain which is published in Geophysics journal as a geophysical letter (Aghamiry
et al., 2020a).

Accurate and efficient data-assimilated wavefield reconstruction in the
time domain

Hossein S. Aghamiry, Ali Gholami and Stéphane Operto
Geophysics, 2019, 85(2), pages A7-A12

DOI: 10.1190/GEO2019-0535.1
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6.1 Summary

Wavefield reconstruction inversion (WRI) mitigates cycle skipping in Full Waveform In-
version by computing wavefields that do not exactly satisfy the wave-equation to match data
with inaccurate velocity models. We refer these wavefields to as "data assimilated wavefield"
because they are obtained by combining the physics of wave propagation and the observations.
Then, the velocity model is updated by minimizing the wave equation errors, namely the source
residuals. Computing these data-assimilated wavefields in the time domain with explicit time
stepping is challenging. This is because the right-hand side of the wave equation to be solved
depends on the back-propagated residuals between the data and the unknown wavefields. To by-
pass this issue, a previously proposed approximation replaces these residuals by those between
the data and the exact solution of the wave equation. This approximation is questionable dur-
ing the early WRI iterations when the wavefields computed with and without data-assimilation
differ significantly. We propose a simple backward-forward time-stepping recursion to refine
the accuracy of the data-assimilated wavefields. Each iteration requires us to solve one back-
ward and one forward problem, the former being used to update the right-hand side of the latter.
An application to the BP salt model shows that a few iterations are enough to reconstruct data-
assimilated wavefields accurately with a crude velocity model. Although this backward-forward
recursion leads to increased computational overheads during one WRI iteration, it preserves its
capability to extend the search space.

6.2 Introduction

Wavefield reconstruction inversion (WRI) (van Leeuwen and Herrmann, 2013) decreases
the nonlinearity of full waveform inversion (FWI) (Virieux and Operto, 2009) by extending the
parameter search space. WRI first computes wavefields such that the modeled and recorded data
are matched to each other (hence, mitigating cycle skipping) despite inaccurate velocity models
by relaxing the constraint that the modeled data satisfy the wave equation exactly. This data
fit is achieved during wavefield reconstruction by jointly solving in a least-squares sense the
weighted wave equation and the observation equation, namely the equation relating the wave-
field to the data via a sparse sampling operator. This describes a data-assimilation procedure
since the wavefield reconstruction is driven not only by the physics of wave propagation but also
by the observations. Accordingly, we refer these wavefields to as data-assimilated wavefields in
the following study. This wave-equation relaxation generates source residuals, namely extended
sources (Huang et al., 2018a), that are minimized in a second step to update the velocity model.
When the starting velocity model is inaccurate, wavefields are reconstructed with aggressive re-
laxation of wave-equation to guarantee the data fit. In that case, the data-assimilated wavefields
can differ significantly from the wavefields that satisfy the wave equation exactly.

Data-assimilated wavefields are reconstructed in the frequency domain by solving with di-
rect or iterative methods an overdetermined sparse linear system gathering the weighted time-
harmonic wave equation and the observation equation. In contrast, the wavefield reconstruction
in the time domain with explicit time stepping is more challenging because the right-hand side
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of the wave equation to solve depends on the final state of the unknown assimilated wave-
field. The approaches that have been proposed so far rely on an approximation, which pre-
vents aggressive wave equation relaxation and hence inaccurate starting velocity models to be
used (Wang et al., 2016). A first aim of this letter is to propose an efficient backward-forward
time-stepping recursion for data-assimilated wavefield reconstruction. Then we show that the
approximation used by Wang et al. (2016) is obtained at the first iteration of the proposed al-
gorithm. We assess the accuracy and the convergence speed of our method on the 2004 BP
salt model. We show that it reconstructs wavefields which are close to those obtained in the
frequency domain after a few iterations when the background model is far away from the true
model. Then, we illustrate the significant impact of the accuracy of the wavefield reconstruction
on the velocity model built by iteratively-refined (IR-)WRI (Aghamiry et al., 2019c).

6.3 Method

6.3.1 Problem statement

FWI seeks the subsurface parameters m ∈ RN×1 by solving the following partial-differential
equation (PDE) constrained optimization problem (van Leeuwen and Herrmann, 2013; Aghamiry
et al., 2019c):

min
m,u

||Pu− d||22 subject to A(m)u = b, (6.1)

where ‖ · ‖2 denotes the Euclidean norm. In the frequency domain, the source b ∈ CN×1, the
wavefield u ∈ CN×1, the data d ∈ CM×1 and the PDE operator A(m) ∈ CN×N are complex
valued. The linear observation operator P ∈ RM×N samples u at the receiver positions. The
number of degrees of freedom which discretize the parameter and the data spaces are denoted
byN andM , respectively. In the time domain, b ∈ R(N×Nt)×1, u ∈ R(N×Nt)×1, d ∈ R(M×Nt)×1

and A(m) ∈ R(N×Nt)×(N×Nt) are real valued, where Nt is the number of time steps.

Eliminating u from equation 6.1, we recast FWI (Pratt et al., 1998) as a reduced-space
unconstrained problem

min
m
‖PA(m)−1b− d‖2

2, (6.2)

where the misfit function depends on m through the highly nonlinear inverse operator A(m)−1.

The WRI method (van Leeuwen and Herrmann, 2013) solves problem 6.1 with a penalty
method to mitigate the nonlinearity of the reduced-space FWI, problem 6.3, via a relaxation of
the constraint

min
u,m
‖Pu− d‖2

2 + λ‖A(m)u− b‖2
2, (6.3)

where λ is the penalty parameter. A small value of λ is typically used to foster the data fit within
the first iterations at the expense of the fidelity with which the wave equation is satisfied. Alter-
natively, IR-WRI (Aghamiry et al., 2019c) uses an augmented Lagrangian method, which can
be recast as a penalty method where the right-hand sides b of the wave equation are iteratively
updated with the wave-equation errors. This right-hand side updating progressively corrects the
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errors generated by the penalization and allows us to satisfy the wave-equation constraint at the
convergence point when a constant λ is used.

The bivariate problem 6.3 can be solved efficiently in alternating mode, namely, estimate u
keeping m fixed and vice versa. The wavefield reconstruction requires us to solve(

λA(m)TA(m) + PTP
)

u = λA(m)Tb + PTd, (6.4)

where the left-hand side operator is the Gauss-Newton Hessian, the right-hand side is the steep-
est descent direction and T denotes the transpose operator. We refer to the solution of equation
6.4 as the data-assimilated wavefield as it jointly satisfies the weighted wave-equation and the
observation equation (i.e. fits the data) in a least-squares sense. Then, m is updated by mini-
mizing the wave equation residual ‖A(m)u− b‖2

2 keeping u fixed.

We focus now on the solution of the first subproblem. In the frequency domain, the system
6.4 can be solved accurately for a limited number of discrete frequencies with either direct or
iterative methods. In the time domain, the size of the system would be prohibitively large due
to the extra temporal dimension.

6.3.2 Reconstruction of data-assimilated wavefield by backward-forward
recursion

In this section, we show how to solve the augmented wave equation system, equation 6.4,
with explicit (matrix free) time stepping via an iterative majorize-minimization (MM) algorithm
(Lange, 2016). Let us write equation 6.4 in a compact matrix form Bu = y, where B =
λATA+PTP is a symmetric positive definite matrix and y = λATb+PTd (for compactness,
we ignore the argument m of A, while recalling that m is kept fixed during the wavefield
reconstruction). Solving Bu = y is equivalent to minimizing the quadratic function

f(u) =
1

2
uTBu− yTu. (6.5)

The governing idea of MM is to find the minimum of f via the iterative minimization of a
simpler surrogate function f̃k that majorizes f at step k (i.e. f̃k ≥ f ). For reasons which will
become clear later, we define f̃k as

f̃k(u) = f(u) +
c

2
‖Au−Auk‖2

2 −
1

2
‖Pu−Puk‖2

2, (6.6)

where the scalar c is determined such that the Hessian of the added terms is positive definite

cATA−PTP � 0. (6.7)

This condition makes f̃k strictly convex and guarantees that the following surrogate conditions
are satisfied (Lange, 2016) {

f̃k(uk) = f(uk),

f̃k(u) ≥ f(u), ∀u, k.
(6.8)
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Figure 6.1 shows a schematic of the MM process. The convex function f is shown in blue while
a few surrogate functions f̃k for points uk, k ∈ {0, 1, 2, 3}, are shown in orange. This figure
shows how the iterative MM algorithm approaches the minimum of f through the minimum of
easy to minimize surrogate functions f̃k.

It follows from equation 6.8 that iterative minimization of f̃k will converge to the global
minimum of f since

f(uk+1) ≤ f̃k(uk+1) ≤ f̃k(uk) = f(uk). (6.9)

Zeroing the gradient of f̃k, equation 6.6, gives the wavefield at iteration k + 1

uk+1 = uk + αB̃−1 (y −Buk) , (6.10)

where B̃−1 = (ATA)−1 is an approximate inverse of B and α = 1
λ+c

serves as the step length.
Accordingly, our method can be viewed as a quasi-Newton inversion. Note that, since A does
not change during the wavefield-reconstruction iterations, a suitable constant c can be found to
satisfy the positive definite condition, equation 6.7, at each step k. However, α can be updated
at each iteration by a line search to optimize the convergence speed of the wavefield reconstruc-
tion. Starting from an initial guess u0, a recursive procedure (Aghamiry et al., 2019c, their
Appendix B) gives immediately

uk+1 = u0 + α
k∑
i=0

B̃−1 (y −Bui) . (6.11)

If we substitute B̃−1, B and y by their expression (B = λATA+PTP and y = λATb+PTd)
and multiply the left- and right-hand sides by A, we obtain

Auk+1 = Au0 + α
k∑
i=0

(ūi + λ∆bi) , (6.12)

where ∆bi = b −Aui denotes the source residuals at iteration i. The backward wavefield ūi
satisfies the so-called adjoint equation

AT ūi = PT (d−Pui) = PT∆d, (6.13)

which propagates the data residuals ∆d backward in time (e.g. Pratt et al., 1998).

The most natural choice for u0 is the (exact) solution of the wave equation

u0 = A−1b. (6.14)

Accordingly, equation 6.12 simplifies to

Auk+1 = b + α
k∑
i=0

(ūi + λ∆bi) = b + b̄k, (6.15)

where b̄k denotes the extended source. Noting from the above equation that ∆bk+1 = −b̄k, the
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f(u)

f(u0)

f(u1)

f(u2)

1

Figure 6.1 – Sketch of the iterative MM algorithm. The function f is shown in blue while a
few surrogate functions f̃k, k ∈ {0, 1, 2, 3} are shown in orange. The MM algorithm seeks to
find the minimizer of f , red point, by iteratively minimizing easy to minimize functions f̃k. The
surrogate function f̃k is greater than or equal to f , and the equality holds at the current optimal
point uk. Minimization of f̃k gives a new optimal point.

extended source reduces to the following series of backward wavefields

b̄k = α
k∑
i=0

(
ūi − λb̄i−1

)
= (1− αλ) b̄k−1 + αūk

= α
k∑
i=0

(1− αλ)k−i ūi. (6.16)

We summarize now the key results of our approach. We have designed the surrogate func-
tion f̃k of the MM algorithm, equation 6.6, such that it allows us to recast the normal-equation
system, equation 6.4, in a form which is amenable to explicit time stepping, equation 6.15. This
is indeed shown by the left hand side of equation 6.15 which reduces now to the wave equation
operator A. The MM method also provides us with the mathematical framework to prove the
convergence of our algorithm. The iterative refinement of the wavefields performed by the right-
hand side updating in equation 6.15 corrects the errors generated by the use of the approximate
inverse B̃−1 of B, equation 6.10, associated with f̃k. In fact, the series of backward wavefields
in equation 6.16 converges to the backward wavefield that would have been generated by the
back-propagated residuals between the data and the data-assimilated wavefield sought. This is
shown by the re-writing of equation 6.4 as

Au = b +
1

λ
A−TPT (d−Pu) , (6.17)

where the unknown data-assimilated wavefield u appears both in the right- and left-hand sides.

The approximate wavefield reconstructed by Wang et al. (2016, their equations 7 and 8) is
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the one obtained at the first iteration of our approach (k=0 and c=0 in equation 6.15).

A(m)u1 = b + ū0/λ, (6.18)

In this case, the backward wavefield ū0 on the right-hand side is computed from the data resid-
uals generated by the forward wavefield u0, which exactly satisfies the wave equation 6.14. In-
stead, the data residuals should be generated from the data-assimilated wavefield, i.e. the right-
hand side of equation 6.17. This is a gross approximation when a significant wave-equation
relaxation is necessary to match the data during the early WRI iterations, which is why further
improvements to the method are necessary.

The wavefield reconstruction requires one backward and one forward solve at each iteration
(Algorithm 1), hence we call it a backward-forward time stepping recursion. The storage re-
quirement scales to the full time history of the sum of the backward wavefields (i.e. N × Nt).
The backward-wavefields can be recomputed on the fly forward in time during the wavefield
reconstruction if one wants to avoid its storage on disk.

Algorithm 6: Data-assimilated wavefield reconstruction by backward-forward recursion.
Initialize: k = 0; u0 = A(m)−1b, b̄−1 = 0.

Step 1: solve the adjoint equation for ūk (equation 6.13) and update the extended source (equation
6.16).

Step 2: solve the forward equation for uk+1 (equation 6.15).
Step 3: if ‖uk+1 − uk‖ ≤ ε exit, else set k = k + 1 go to Step 1.

6.4 Numerical examples

Although this study is dedicated to the time-domain implementation, we assess the accuracy
and the convergence of the algorithm in the frequency domain because we can easily generate
an accurate data-assimilated wavefield by solving equation 6.4 with a direct solver. We compute
the assimilated wavefield with a constant value of c that satisfies the positive definite condition,
equation 6.7, and a small value of λ to generate a significant wave equation relaxation and fit
the data accordingly. We refer to the wavefield computed by the backward-forward method at
iteration k as BFIk. We assess the method against a part of the 2004 BP salt model (Figure 6.2a).
The selected subsurface model is 16.25 km wide and 5.825 km deep, and is discretized with a
25 m grid interval. We compute the wavefields with a finite-difference method (Chen et al.,
2013), using absorbing boundary conditions along the bottom, right and left sides of the model
and a free-surface boundary condition at the surface. We consider a long-offset fixed-spread
acquisition designed with a line of 80 sources on the sea floor spaced 200 m apart and a line of
215 receivers spaced 75 m apart at 25 m depth.

We compute the data-assimilated wavefields in a laterally homogeneous velocity model in
which the velocity linearly increases with depth from 1.5 km/s to 4.5 km/s. The wavefield
computed in the true model and the data-assimilated wavefield computed with a direct solver
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(the data-assimilated wavefield targeted by our recursive approach) are shown in Figures 6.2b
and 6.2c for the 3 Hz frequency and a source located at 450-m distance. A direct comparison
between the two wavefields at the receiver positions shows that the chosen λ allows the data
to be matched (Figure 6.2d). We show the BFI1 wavefield, namely the one used by Wang
et al. (2016), and the difference with the targeted wavefield (Figure 6.2c) in Figures 6.3a and
6.3d, respectively. The significant mismatch between the two wavefields, highlighted by their
direct comparison at three depths (z = 0, 2.0, 4.0 km) in Figure 6.3g, illustrates the need for
more iterations. The BFI3 and BFI5 wavefields show that three to five iterations are enough to
achieve the desired accuracy (Figures 6.3b,c,e,f and Figures 6.3h,i, respectively).

Figure 6.2 – (a) 2004 BP salt velocity model. (b) 3 Hz wavefield computed in (a). (c) Data-
assimilated wavefield computed in the laterally-homogeneous velocity model described in the
text. (d) Direct comparison between (b, blue) and (c, dashed red) at receiver positions.

To emphasize the impact of the wavefield accuracy on the velocity estimation, we compare
the two velocity models inferred from IR-WRI when the BFI1 and BFIk,k≥1 wavefields are used
at each (outer) IR-WRI iteration (Figures 6.4a and 6.4b). In the latter case (k ≥ 1), we stop
the inner wavefield-reconstruction iterations when ‖uk+1 − uk‖ ≤ 1e−3‖uk‖. We perform IR-
WRI with hybrid Tikhonov + TV (TT) regularization (Aghamiry et al., 2020b). The inversion
setup and the hyperparameter tuning for IR-WRI are the same as those reviewed in the above
reference. We use a classical continuation frequency strategy in the [3-13]Hz frequency band
by proceeding over small batches of two frequencies with a frequency interval of 0.5Hz. We
also perform three paths through the batches, where the starting and finishing frequencies of
the paths are [3, 9.5], [3.5, 11.5], [5, 13] Hz respectively. A total of 45 frequency batches are
processed. A direct comparison between the true velocity model, the initial model and the final
IR-WRI velocity models at x = 5 km, x = 9 km and x = 15 km distances are shown in
Figure 6.4c. As expected, the results show that the accuracy of the wavefield reconstruction has
a significant impact on the quality of the estimated velocity model.

Indeed, the number of backward-forward iterations that is required to satisfy the stopping
criterion is directly related to the accuracy of the velocity model. To gain some insights on
the real computational overhead generated by our iterative wavefield reconstruction during a
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Figure 6.3 – Reconstructed wavefields BFIk at iterations (a) 1, (b) 3, (c) 5 and (d-f) their dif-
ference with the target wavefield (Figure 6.2c). (g-i) Direct comparison between (g) BFI1, (h)
BFI3 (i) BFI5 (blue) and target (red) wavefields at different depths.

Figure 6.4 – Velocity models inferred from IR-WRI. (a) BFI1 wavefields are used at each IR-
WRI iteration. (b) BFIk wavefields are used at each IR-WRI iteration in which k is determined
with the stopping criterion described in the text. (c) A direct comparison at distances 5, 9 and
15 km between the true velocity model (solid black), the initial model (dash black), and the
estimated velocity models shown in (a) (red) and (b) (green).
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full run of IR-WRI, we show in Figure 6.5 the average number of backward-forward iterations
per frequency batch. Although, these forward-backward recursions generate computational
overhead, they keep the capability of the method to extend the search space. In addition, this
number decreases as the IR-WRI proceeds over the frequency batches and it reduces to one at
around the mid-point of the IR-WRI inversion.

Figure 6.5 – The average number of backward-forward iterations required for wavefield recon-
struction per frequency batch.

6.5 Conclusions

We have proposed a simple backward-forward time-stepping recursion to perform accurate
data-assimilated wavefield reconstruction with explicit time stepping methods in the framework
of WRI. Although this recursion introduces a computational overhead in the wavefield recon-
struction during the early stages of the waveform inversion, they preserve the ability of WRI to
extend the search space when crude initial velocity models are used. Therefore, the computa-
tional overhead introduced in the wavefield reconstruction should be easily compensated by the
improved convergence speed of the WRI and the improved accuracy of the estimated velocity
model.
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Chapter 7

Conclusion and perspectives

7.1 General conclusion

7.1.1 A new FWI framework: ADMM-based WRI

I developed the ADMM based wavefield reconstruction approach as a new framework for
full waveform inversion. First, I recast the original FWI problem as a feasibility problem where
both data and source misfit are processed as constraints. This feasibility problem is equivalent to
constrained optimization problem where the objective function is identically zero. I solved this
constrained problem with an augmented Lagrangian method (method of multiplier). A scaled
form of the augmented Lagrangian shows that it is equivalent to a quadratic penalty function
formed by the square of the constraint violations (data and source misfit), to which are added
the running sum of the data and source residuals of previous iterations. In the objectives of the
penalty function, the data and the source represent the right-hand side of the constraints, and
the running sum of the data and source residuals correspond to the scaled Lagrange multipliers.
Following van Leeuwen and Herrmann (2013), I performed the refinement of the two primal
variables (the wavefield and the subsurface parameters) in alternating mode, using the solution
of one primal subproblem as a passive variable for the next subproblem. Compared to a clas-
sical application of ADMM where separable convex subproblems are solved in parallel, this
sequential resolution of the two primal subproblems allows me, on the one hand to linearize
the parameter-estimation problem around the reconstructed wavefield and, on the other hand
to manage the non-separability of the wavefield reconstruction and parameter estimation. This
sequential solving of the two primal subproblems also prompts me to update the dual variable
associated with the source residuals two times, once after each primal subproblem.
The augmented Lagrangian method gives me two ways of improving the accuracy of the mini-
mizer: improve the accuracy of the Lagrange multiplier (namely, decrease the data and source
residuals enough) or increase the penalty parameter, whereas the quadratic penalty approach
gives me only one option: increase the penalty parameter. Accordingly the augmented-Lagrangian
approach implemented in IR-WRI has logically converged to more accurate minimizers with a
smaller number of iterations than the penalty method implemented in WRI when a fixed penalty
parameter is used. The two leverages that control the accuracy of the IR-WRI minimizer also
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allow me to use moderate values of the penalty parameter without impacting prohibitively con-
vergence speed. This moderate values allows the method to fit the data during the early iter-
ations with large wave-equation error, which provides the most suitable framework to enlarge
the search space and account for large time shifts, while satisfying the wave-equation constraint
with small error at the convergence point. According to the analogy between WRI and IR-WRI
highlighted by the scaled-form Lagrangian, IR-WRI can be viewed as a self-adaptive penalty
method, where a tedious and potentially unstable continuous increasing of the penalty parame-
ter is replaced by a stable dual steepest-ascent updating of the data and source residuals. This
iterative residual updating in a quadratic misfit function is a well known procedure to refine
solution of a wide class of linear inverse problems.

7.1.2 Implementing regularization and bound constraints in WRI

At the next step to decrease the non-uniqueness of the possible minimizers and decrease the
ill-posedness of the problem, I applied bound constraints and total-variation (TV) regularization
on IR-WRI. To do this, I formulated IR-WRI as a TV minimization problem subject to data-
fitting, wave-equation and bound constraints. At each iteration of the workflow, I performed
a first ADMM step to break down the wavefield reconstruction and the parameter estimation
into a sequence of two subproblems. Once one iteration of the wavefield reconstruction has
been performed, I tackled the parameter estimation subproblem which involves the mixed `1,2

TV norm of the model, the `2 wave-equation objective and the bound constraints. I applied a
second ADMM step to decompose this multi-objective optimization problem into a sequence
of simpler subproblems. Thanks to the introduction of auxiliary variables, I decoupled `1 and
the `2 components of the penalty function following the split Bregman method proposed by
Goldstein and Osher (2009). After this de-coupling, the subsurface parameter are first updated
by minimizing the source residuals with one Gauss-Newton iteration involving the resolution of
a sparse bound constrained and TV regularized system, before updating the auxiliary variables
with proximal operators. This cycle is iterated until convergence.
My implementation of bound constrained and TV regularized IR-WRI with ADMM (or, equiv-
alently split Bregman) provides a versatile framework to cascade constraints and regularization
of different nature and is reasonably easy-to-tune due to the limited sensitivity of the augmented
Lagrangian method to the choice of the penalty parameters. For challenging subsurface target
with large-contrast structures such as salt bodies, my bound constrained and TV regularized
IR-WRI has shown a high resilience to cycle skipping and noise and has efficiently mitigated
high-frequency artifacts associated with Gibbs effects and multi scattering without detriment
to the resolution of the imaging. However, one drawback of the TV regularization was related
to the piecewise constant approximation underlying TV regularization, which tends to super-
impose some blocky patterns on the smooth part of the subsurface. To overcome this issue, I
used more complicated regularization function with the ability to reconstruct more complicated
structures. A proper regularization should be driven by the shape and statistical characteris-
tics of the medium to be imaged. For example, in geophysical imaging, the subsurface can be
represented by a piece-wise smooth medium, that is a model which contains smoothly vary-
ing and blocky components. The widespread Tikhonov regularizations (Tikhonov et al., 2013)
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rely on the smoothness assumption and hence fail to recover sharp interfaces of such media.
Conversely, TV regularizations are based on blockiness assumption and hence are more suit-
able to image large contrasts. However, they generate undesirable staircase imprints in smooth
regions. Regions characterized by smoothly-varying properties and those containing sharp con-
trasts have different statistical properties. The former are characterized by the normal prior,
while the latter by a heavy tailed prior (Polson and Sokolov, 2019). Consequently, simultane-
ous recovery of both properties is difficult when one type of regularization is used (Tikhonov,
TV, etc). To overcome this issue, a combination of different regularizations can be used (Gho-
lami and Siahkoohi, 2010; Benning and Burger, 2018). A naive approach consists of the simple
additive coupling or convex combinations (CC) of regularizations. Alternatively, Gholami and
Hosseini (2013) proposed to explicitly decompose the model into several components of differ-
ent statistical properties and use an appropriate regularization to reconstruct each component.
Using this strategy, they combined Tikhonov and TV regularizations (TT regularization) to re-
construct piece-wise smooth media. The smooth components are captured by the Tikhonov
regularization, while the blocky ones are determined by the TV counterpart. I showed that a
compound regularization based upon infimal convolution outperforms the one based upon addi-
tive coupling (Bergmann et al., 2018). I also showed how the infimal convolution regularizer can
be efficiently implemented by jointly updating the smooth and blocky subsurface components
through variable projection. Alternatively, TGV regularized IR-WRI can be a suitable tool to
reconstruct piecewise linear media and provides similar results than TT IR-WRI. I showed that
such hybrid regularizations in the extended search-space IR-WRI potentially provide a suitable
framework to reconstruct, without cycle skipping, large-contrast subsurface media from ultra-
long offset seismic data.

7.1.3 Multi-parameter imaging: anisotropy and attenuation

At the next level, I extended IR-WRI to multi-parameter inversion in VTI acoustic media.
I discussed different formulations of the VTI acoustic wave equation which fulfill the bilinear-
ity w.r.t wavefield and subsurface parameters. First-order velocity stress form is often more
convenient than the second-order counterpart to fulfill bilinearity, in particular if density (or
buoyancy) is an optimization parameter. However, it may be not the most convenient one for
frequency-domain wavefield reconstruction as the size of the linear system to be solved scales
to the number of wavefield components. To bypass this issue, wavefield reconstruction and
parameter estimation can be performed with different wave equations, provided they give con-
sistent solutions. Bilinearity allows me to recast the parameter estimation subproblem as a
linear subproblem and hence the waveform inversion as a biconvex problem. Also, ADMM-
like optimization can be used to perform IR-WRI heuristically without bilinear wave equation,
hence keeping the parameter estimation subproblem nonlinear. Accordingly, the nonlinear sub-
problem can be solved with a Newton algorithm rather than with a Gauss-Newton one. This
nonlinear approach would amount to solve the multivariate nonlinear programming problem
with the Augmented Lagrangian method when the two primal subproblems are solved in al-
ternating mode. This nonlinear updating of the parameters may however require several inner
Newton iterations per IR-WRI cycle, while Aghamiry et al. (2019c) showed that one inner
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Gauss-Newton iteration without any line search was providing the most efficient convergence
of IR-WRI when bilinearity is fulfilled. Indeed, the bilinearity specification limits the choice of
subsurface parametrisation for parameter estimation. In the general case of triclinic elastody-
namic equations, a subsurface parametrisation involving buoyancy and stiffness or compliance
coefficients will be the most natural ones, as they correspond to the coefficients of the equation
of motion and the Hooke’s law. In the particular case of the VTI acoustic wave equation, I
have developed a bilinear wave equation whose coefficients depend on the vertical wavespeed
v0 and the Thomsen’s parameters δ and ε. Although v0 and ε are coupled at wide scattering an-
gles, the (v0, ε, δ) parametrisation was promoted by Gholami et al. (2013b) and Gholami et al.
(2013a) because the dominant parameter v0 has a radiation pattern which doesn’t depend on
the scattering angle, and hence can be reconstructed with a high resolution from wide-azimuth
long-offset data. The counterpart is that updating the long wavelengths of the secondary param-
eter ε is challenging and requires so far a crude initial guess of its long wavelengths which can
be used as prior to regularize the ε update. Comparing the results of IR-WRI when ε is used as
a passive parameter and as an optimization parameter showed that the sensitivity of the inver-
sion to ε remains small provided that a reasonable guess of its long wavelengths are provided
in the starting model. Among the alternative parametrisations proposed for VTI acoustic FWI,
Plessix and Cao (2011) proposed the (vn,vh, δ) or the (vn, η, δ) parametrisations for long-offset
acquisition, while Alkhalifah and Plessix (2014) promoted the (vh, η, ε) parametrisation, where
vn = v0

√
1 + 2δ is the so-called NMO velocity, vh = v0

√
1 + 2ε is the horizontal velocity and

η = (ε− δ)/(1 + 2δ) represents the anellipticity of the anisotropy. I showed that the bilinearity
of second order wave-equation is still valid for all of these parameterizations.

7.1.4 On the contribution of phase retrieval in WRI

FWI is a biconvex optimization problem for the wavefields and the subsurface parameters.
Although the alternating optimization linearizes the two subproblems around one passive vari-
able, their solutions are indeed impacted upon by the inaccuracies of these passive variables. In
particular, it remains unclear how the phase inaccuracies of the reconstructed wavefields away
from the receivers impact upon the parameter estimation during IR-WRI. To gain insights on
this issue, I recast the parameter-estimation subproblem of IR-WRI as a phase retrieval prob-
lem (WIPR) in order to mitigate the role of the phase of the reconstructed wavefields during
parameter estimation. By doing so, I indeed transform the linearized parameter-estimation sub-
problem into a nonconvex ill-posed problem. To overcome this issue, I further linearize this
nonconvex problem around the subsurface model of the previous iteration with a majorization-
minimization technique and manage the ill-posedness with suitable sparsity-promoting regu-
larization. With the large contrast BP salt model, I first showed that the phase inaccuracies of
the reconstructed wavefields prevent accurate estimation of the shallow sediments and accurate
positioning in depth of the top of the salt after the first frequency batch inversion when I start
the inversion from scratch (homogeneous initial velocity model). Then, I showed how WIPR
improved significantly the reconstruction of the sedimentary background and the top of the salt
during the early iterations of the inversion (that is, when the wavefields are not yet accurately
reconstructed far away from the receivers). Sparsity-promoting regularization is however a nec-
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essary ingredient to stabilize the phase retrieval inversion at greater depths where the amplitude
information becomes more challenging to extract. This accurate positioning of the top salt is
indeed important to speed up the convergence and improve the solution at higher frequencies
when the phase information is re-injected in the inversion.

7.1.5 Toward effective time-domain WRI

The reconstructed wavefield has a crucial role in the IR-WRI technology. It is easy to recon-
struct data-assimilated wavefields in the frequency domain by solving in the least-squares sense
an overdetermined linear system gathering the weighted time-harmonic wave equation and the
observation equation for each frequency, separately. Wavefield reconstruction in the time do-
main needs to be implemented with explicit (namely, matrix free) time stepping methods to be
tractable. However, this explicit implementation is tricky because I have shown that it would
require solving the wave equation with a right-hand side which depends on the adjoint-state
wavefield associated with the unknown state wavefield. A previously proposed approximation
to tackle this issue (Wang et al., 2016) replaces this adjoint wavefield by the one generated with
the state wavefield that has been computed without data assimilation. This approximation can
be questioned during the early WRI iterations when the wavefields computed with and with-
out data assimilation differ significantly. I propose to refine the wavefield reconstruction with
a simple iterative procedure. Each iteration of the wavefield refinement requires to solve one
adjoint-state and one state problem with data-related and source-related correction terms in the
right-hand sides. A numerical test performed with the BP salt model shows that a few itera-
tions are enough to achieve accurate wavefield reconstruction with a crude velocity background
model. Although this iterative refinement procedure generates computational overheads dur-
ing one WRI iteration, it allows to preserve the capability of WRI to extend the search space.
Also the computational overhead introduced in the wavefield reconstruction should be easily
compensated by the improved convergence speed of the WRI and the improved accuracy of the
estimated velocity model.

7.2 Perspectives

Here I review the main perspectives for the future extensions of the wavefield inversion
technology which are under investigation. Therefore, I only address the key points of these
extensions. The applications and validations of the proposed extensions are among our future
work-plans and publications.

7.2.1 Assessing the limits of WRI with ultra long offset real data

All the proposed methods must be applied on real-data case studies to asses the actual limits
of IR-WRI. I target two main long-offset case studies that were recently tackled at Geoazur.
The first one involves a 3D Ocean Bottom Cable (OBC) data set collected above the shallow
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water Valhall oil field in the North Sea. This oil field involves a large contrast chalky reser-
voir overlain by a gas cloud (Sirgue et al., 2010). So far, relevant results have been obtained
by classical FWI starting from an accurate velocity model developed by reflection traveltime
tomography (Operto et al., 2015). The goal will be to assess whether IR-WRI manages large
contrasts generated by the chalk and the gas when the inversion starts from a crude initial ve-
locity models and a 3 Hz starting frequency. Also, the waveguide generated by the water layer
and the soft sediments as well as the gas cloud generate significant absorption and dispersion
effects (Operto and Miniussi, 2018). It will be interesting to check that the viscous extension of
IR-WRI manages to reconstruct attenuation by matching these wave phenomena.
The second case study is an ultra-long offset Ocean Bottom Seismometer (OBS) data set col-
lected across the eastern Nankai subduction zone, offshore Japan (Dessa et al., 2004). The
maximum offset reaches a value of 140 km. Indeed, the long propagation distances induced by
these ultra long offsets make FWI highly sensitive to cycle skipping. Moreover, the structure
of the subduction zone is extremely heterogeneous due to the subduction of several topogra-
phy highs. Relevant results were also obtained for this case study by classical FWI (Górszczyk
et al., 2017). However, a kinematically-accurate starting velocity model was developed by first-
arrival traveltime tomography with a very careful quality control of the traveltime picking and
residuals. Moreover, a Laplace-Fourier FWI with aggressive time damping allowed Górszczyk
et al. (2017) to start the inversion with a frequency as small as 1.5 Hz. Finally, a quite tedious
hierarchical workflow was designed where increasing frequencies, traveltimes and offsets are
progressively injected in the inversion. In this context, reproducing these results with IR-WRI
starting from a crude initial velocity model, a 3 Hz starting frequency and a basic frequency
continuation strategy would be a major breaktrough. At this exploration scale, a key open ques-
tion is related to the ability of IR-WRI to progressively image the crust from the surface, where
observations are collected, down to Moho depths (15 to 30 km).

7.2.2 Efficient compressive sensing strategies for sparse OBN acquisitions

The resilience to cycle skipping makes IR-WRI amenable to ultra-long offset stationary-
recording acquisitions such as those carried out with OBS (or Ocean Bottom Node (OBN)
following the terminology used by the industry). These acquisitions are extensively used for
deep crustal imaging by the academic community and are emerging in the oil industry for deep
water exploration (Beaudoin and Ross, 2007; Shen et al., 2018). These acquisitions record a
wide variety of wave types, including diving waves that undershoot the deepest targeted struc-
tures, and hence are amenable to broadband subsurface imaging provided that FWI manages
properly nonlinearities. These wide-azimuth areal acquisitions are necessarily carried out at the
expense of the receiver sampling, in particular in 3D. This coarse sampling of the acquisition
parameters can in turn downsample the wavenumber spectrum of the FWI gradient below the
Nyquist criterion, hence leading to spatial aliasing artifacts (Vermeer, 2012). A strong challenge
is therefore to design optimal sparse acquisitions and efficient compressive sensing strategies
allowing for the reconstruction of complex structures without aliasing.
I perform a first attempt in this direction by showing the ability of IR-WRI equipped with
sparsity-promoting regularization in the parameter space for imaging large-contrast media from
2D stationary-recording acquisition (Aghamiry et al., 2020b). This preliminary study must
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continue with the extension to 3D acquisition and more efficient regularization in the wavefield
domain.

7.2.3 Regularization of the reconstructed wavefield

As I explained in this thesis, the wavefield reconstruction subproblem in IR-WRI can be
viewed as the extrapolation of the wavefield in depth from its parcimonious measurements at
the surface. This underdetermined problem is regularized by a physical constraint provided
by the wave equation. Wavefields have a sparse representation in some domains. Therefore,
implementing a sparsity-promoting regularization on the wavefield will complement efficiently
the wave-equation constraint to extrapolate more accurately the wavefield in depth during the
wavefield-reconstruction subproblem. This is indeed a key issue since the accuracy of the es-
timated model parameters critically depends on the accuracy of the reconstructed wavefields.
This regularization will also complement the sparsity-promoting regularization in the model-
domain to design efficient compressive sensing strategies in the framework of sparse acquisi-
tions as discussed in the previous section.

7.2.4 Efficient wavefield reconstrucion for 3D IR-WRI

Which solver for 3D wavefield reconstruction?

Frequency-domain wavefield reconstruction is the most expensive task of the WRI cycle.
This will become even more critical in 3D. Wavefield reconstruction requires the solution of
a large and sparse system of linear equations with multiple right-hand sides. These solutions
can be computed with direct or iterative solvers depending on the size of the computational do-
main and the number of right-hand sides. Continuous advances in the development of efficient
sparse direct solvers with efficient low-rank compression strategies allow to tackle problems of
increasing size, while the sparsity of the seismic sources can be exploited during the solution
step (Amestoy et al., 2015, 2016; Mary, 2017; Amestoy et al., 2018). Alternatively, iterative
solvers equipped with suitable preconditioners for Helmholtz problems can be used when the
number of unknowns exceeds 100 millions (Dolean et al., 2015). The choice of the optimal
solver and the discretization of the wave equation will be a key issue to tackle efficiently realis-
tic 3D IR-WRI applications.
When direct solvers can be used, the computational effort can be significantly reduced by lim-
iting the number of LU factorization during the IR-WRI iterations. One possible strategy to
achieve this goal is to recast the contrast-source inversion method in the framework of IR-WRI.
In contrast-source inversion, the unknowns are the contrast (which can be viewed as model
parameter perturbations) and the contrast source (which represents the interaction of the wave-
field with the contrasts) (Abubakar et al., 2009, 2011). This re-parametrization of the waveform
inversion allows one to perform a single LU decomposition in iterations of one frequency inver-
sion (instead of one LU decomposition per iteration). As in WRI, the contrast source method
linearly combines two objective functions related to the observation equation and the wave
equation. These two functionals are combined with fixed weights such that the two objective
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functions are made dimensionless. This technology should be readily recast in the framework
of IR-WRI by estimating these weights through the scaled Lagrangian multipliers such that a
versatile search space extension can be applied.
Alternatively, we can view to avoid performing a new LU factorization for wavefield recon-
struction when the parameter updates of the previous iteration were small (for example, during
the late iterations of one frequency inversion). Instead, we can reconstruct the wavefields more
efficiently from the LU factors of the previous iteration by iterative refinement.

Sparse storage of the dual variables

The dual variables or Lagrange multipliers must be stored during the inversion. Since keep-
ing dual variables is memory demanding, it will be an obstacle to use IR-WRI for 3D and large
scale applications. Because of sparse representation of dual variables in some specific domains,
it will be possible to store their sparse coefficients or most of their energy by keeping only a
few coefficients and overcome the memory issue.

7.2.5 Extending IR-WRI to elastic FWI

I showed in this thesis the bilinearity of the wave-equation in triclinic media. So, it will
be conceptually possible to extend IR-WRI to more complicated physics even if the 3D elastic
wavefield reconstruction will be a significant computational challenge.

7.2.6 Extension of ADMM-based WRI to RWI

RWI (Reflection Waveform Inversion) is an adaptation of FWI for reflection data (Xu et al.,
2012a; Brossier et al., 2015; Zhou et al., 2015, 2018). For narrow-azimuth/short-angle acqui-
sitions, it is well acknowledged that intermediate wavelengths belong to the null space of the
seismic imaging problem (Claerbout, 1985; Jannane et al., 1989; Neves and Singh, 1996). Ac-
cordingly, unlike FWI, RWI relies on an explicit scale separation between a long-wavelength
background velocity model and a short-wavelength reflectivity model. In RWI, the smooth
background velocity model is reconstructed by a tomography-like waveform inversion, while
the reflectivity is built either by a linear or nonlinear migration-like waveform inversion. These
two sub-problems are generally solved in alternating mode, the reflectivity being used as a pas-
sive variable when the velocity model is updated and vice versa. Two difficulties related to
the velocity model building step is the nonlinearity of the problem as in FWI and the potential
inaccuracies of the passive reflectivity, which inject undesired amplitude-related residuals dur-
ing the velocity update (these amplitude-related residuals can update the background velocities
even if these velocities are kinematically accurate). It will be interesting to recast RWI in the
IR-WRI framework to mitigate the impact of cycle skipping during the velocity model estima-
tion and better account for the errors in the reflectivity. Some attempts have been proposed
to mitigate the non linearity of the velocity model estimation by adding an extra dimension in
the model space through time lags (Biondi and Almomin, 2014). However, these approaches
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are very computationally intensive. Therefore, a clear assessment of the computational cost of
ADMM-based RWI compared to these concurrent approaches will have to be done.

7.2.7 IR-WRI with adaptive regularization on model parameters

Since model reconstruction subprobem is linear in IR-WRI, it is easy to apply different kind
of regularization. Finding an optimum regularization for IR-WRI is still an open problem. For
example improving regularization with prior on structural dips can be one possibility to enhance
the reconstructed model.
Another possibility can be using data-driven regularizations. The base of a good regulariza-
tion is the prior expressed by the regularizer. The TT regularization (Aghamiry et al., 2020b)
goes one step further and inject normal as well as long-tail distribution to the inversion, si-
multaneously. Nevertheless, tailoring a suitable and easy to implement prior for describing
geophysical models is a nontrivial task. We are working on a general black-box regularization
algorithm for solving linear/nonlinear inverse problems which admits data-driven or empirical
priors estimated by sophisticated denoising algorithms. The solution is gradually fed by the
prior provided by the denoiser without asking for any information about its functional form,
thus treating the denoiser as a black-box regularizer. Beyond efficiency of such methods, they
show a local behavior and they can handle models that have different structures with different
priors in different parts of the models. Aghamiry et al. (2020c) shows our preliminary efforts
for adaptive regularization on FWI/IR-WRI to update velocity model.

7.2.8 Improving the convergence speed of ADMM-based WRI: adaptive
ADMM

ADMM has a linear convergence rate when one of the objective function terms is strongly
convex. Using new versions of ADMM such as adaptive ADMM (Goldstein et al., 2015) for
example) to speed up the convergence rate of IR-WRI is another avenue for research which
deserves further investigations.

7.2.9 Introducing other priors in ADMM-based WRI: empirical param-
eter relationships and well logs

FWI is an ill-posed problem with a huge null space. I have shown that ADMM provides
a versatile framework to inject various priors in IR-WRI. Two obvious priors which can be
injected in waveform inversion problems are well logs (Asnaashari et al., 2013; Baumstein,
2013, 2014, 2015) and empirical relationships between parameters of different nature (Duan
and Sava, 2016).
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7.2.10 Computationnally efficient time-domain ADMM-based WRI

I showed our preliminary efforts for time-domain IR-WRI. There are some issues that must
be solved for time-domain IR-WRI. One of them is the storage of source residuals and the ad-
joint wavefields. Another possible compression strategy is to perform wavefield reconstruction
in the time domain and parameter estimation in the coarsified frequency domain following the
original idea of Nihei and Li (2007) and Sirgue et al. (2008).

7.2.11 Application of IR-WRI to medical imaging

Multi-parameter frequency-domain IR-WRI for wavespeed, attenuation and density equipped
with bound constraints and sparsity-promoting regularizations should find obvious applications
in medical imaging (e.g. Sandhu et al., 2015).

7.2.12 Complex-valued optimization to joint estimation of velocity and
attenuation

Attenuation is classically implemented in frequency-domain wave simulation with complex
velocity (Toksöz and Johnston, 1981). Classical frequency-domain FWI and also the method
which is proposed in this thesis for velocity and attenuation reconstruction is generally per-
formed by processing the complex velocity as two independent real variables. In complex-
valued optimization, we jointly reconstruct the velocity and attenuation with regularized IR-
WRI by using the complex velocity as the optimization parameter. Aghamiry et al. (2019d)
shows our preliminary efforts for complex-valued optimization to joint estimation of velocity
and attenuation.
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