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Titre : Méthodes informatiques pour la prévention et la prédiction du vieillissement du visage 

Mots clés : Modèle actif d'apparence ; Réseau neuronal convolutionnel ; Vieillissement du visage ; 
Progression de l'âge ; Modélisation des rides ; Perception de la santé 

Résumé : L'utilisation de la simulation 
informatique pour comprendre comment les 
visages humains vieillissent est un domaine de 
recherche en pleine croissance depuis des 
décennies. Cela a été appliqué à la recherche 
d'enfants disparus ainsi qu'aux domaines du 
divertissement, des cosmétiques et de la 
recherche en dermatologie. Notre objectif est de 
modéliser les changements  des traits du visage 
liés à l'âge, afin de mieux les prédire. 
Dans ce travail, une nouvelle perspective pour 
faire vieillir un visage est proposée : un modèle 
actif d'apparence axé sur les rides. Tout d'abord, 
les visages sont décomposés en termes 
d'apparence et de forme à l'aide d'un modèle 
actif d'apparence. Ensuite, les rides de chaque 
visage sont transformées en paramètres 
d'apparence et de forme.  Une façon nouvelle et 
efficace de modéliser la distribution des 
paramètres des rides dans un visage est 
introduite.  

Il est démontré que les visages artificiellement 
vieillis produits par le système influencent 
mieux la perception de l'âge que ceux produits 
par deux autres systèmes. Cet outil est une 
première étape dans la construction d'un 
système de vieillissement du visage plus 
précis. 
En outre, une nouvelle méthode d'estimation 
de la santé utilisant un réseau neuronal   
convolutionnel est proposée. Ce système est 
capable de reproduire le jugement humain 
dans l'évaluation de la santé perçue. Il est 
présenté comment cet outil utilise les mêmes 
traits du visage que l'humain pour effectuer sa 
prédiction. Enfin, l'impact de caractéristiques 
faciales spécifiques jamais étudié auparavant  
sur la perception de la santé est établi. 

 

Title: Computing methods for facial aging prevention and prediction 

Keywords: Active Appearance Model; Convolutional Neural Network; Facial Aging; Age 
Progression; Modeling of wrinkles; Health Perception 

Abstract:   The use of computer simulation to 
understand how human faces age has been a 
growing area of research since decades. It has 
been applied to the search for missing children 
as well as to the fields of entertainment, 
cosmetics and dermatology research. Our 
objective is to elaborate a model for the age-
related changes of facial cues which affect the 
perception of age, so that we may better predict 
them.  
In this work, a new framework to make a face 
age is proposed: Wrinkle Oriented Active 
Appearance Model. First, faces are 
decomposed in terms of appearance and shape 
using Active Appearance Model. In addition, 
wrinkles in each face are transformed in 
appearance and shape parameters. 

A new effective way to model the distribution of 
wrinkle parameters in a face is introduced. 
Finally, it is shown that artificially aged faces 
produced by the system better influence age 
perception than those produced by two other 
systems. This framework is a first step in the 
construction of a more accurate facial aging 
system. 
In addition, a new health estimation system 
using a convolutional neural network is 
introduced. This system is able to estimate how 
a face is perceived in terms of health by 
humans. It is shown how this tool reacts in the 
same way as health perception by humans. 
Finally, the impact of specific facial features on 
health perception that have never been studied 
before is etablished. 
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Séguier pour sa gestion exemplaire de cette thèse, son dynamisme, son pragma-
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Résumé

Dans ce travail, nous avons étudié la problématique de la simulation du vieillis-
sement du visage. Une application de vieillissement artificiel du visage doit tenir
compte des changements morphologiques liés à l’âge ainsi que des modifications
de l’apparence de la peau afin d’obtenir des résultats réalistes. Le changement
le plus important du visage avec l’âge est morphologique et résulte de la crois-
sance du visage ; il se produit de la naissance jusqu’au début de l’âge adulte.
Une autre modification morphologique liée à l’âge concerne les volumes du vi-
sage sous la peau dus aux variations de répartition des graisses ; ces volumes
varient tout au long de la vie, de la naissance à la fin de l’âge adulte. Au cours
de l’âge adulte, la peau du visage subit également des changements avec l’âge :
l’apparition de rides, de l’affaissement et une augmentation des irrégularités pig-
mentaires. Toutes ces caractéristiques sont liées à l’âge de la peau et impactent la
perception de l’âge du visage chez les adultes. Notre objectif est de modéliser les
changements des traits du visage liés à l’âge, afin de mieux les prédire.

Dans la section suivant l’introduction, nous avons effectué un état de l’art des
différentes méthodes de vieillissement du visage. Nous montrons que la simula-
tion du vieillissement du visage peut être réalisée en utilisant une grande variété
de techniques, mélangeant traitement d’images, statistiques, optimisation et réseaux
neuronaux profonds. Les premières méthodes ont introduit des déformations de
formes de visages directement inspirées de l’anthropométrie.
Des approches plus récentes ont proposé d’intégrer l’apparence à la forme. L’ap-
plication de méthodes statistiques à l’image (analyses en composantes principales
et régressions pour le modèle actif d’apparence) ont permis de ne pas avoir à
intégrer beaucoup de connaissances a priori pour vieillir artificiellement un vi-
sage, ce qui est souhaitable pour comprendre le processus de vieillissement.
La plupart des méthodes développées par la suite se sont concentrées sur l’intégration
des détails de texture dans la modélisation, en prenant comme base un modèle
actif d’apparence, un prototype ou un réseau neuronal profond.

Dans cette thèse, nous avons proposé WOAAM, Wrinkle Oriented Active Appea-
rance Model, un modèle actif d’apparence qui intègre explicitement les rides du
visage (Fig. 1).
Tout d’abord, les visages sont décomposés en termes d’apparence et de forme
à l’aide d’un modèle actif d’apparence. Les formes sont alignées sur la forme
moyenne par transformation affine (analyse Procrustéenne). Les pixels du visage
sont quant à eux déformés (warped) dans la forme moyenne par une transforma-
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8 RÉSUMÉ

FIGURE 1 – Schéma du Wrinkle Oriented AAM.

tion affine par morceau (Piecewise Affine Transform). Une analyse en composantes
principales (ACP) est ensuite effectuée pour la forme, et une autre pour l’appa-
rence. Les poids de sortie de la forme et de l’apparence sont concaténés.
Dans WOAAM, en plus de la forme et de l’apparence, un troisième canal est ra-
jouté pour les rides. Les rides de chaque visage sont transformées en paramètres
d’apparence et de forme. Nous proposons 5 paramètres de forme définis tel que :

— les deux paramètres (cx, cy) représentent le centre de la ride

— la taille ` qui est égale à la distance géodésique entre le premier point et le
dernier point de l’annotation de la ride

— l’angle a en degrés

— la courbure C calculée comme une minimisation aux moindres carrées de :

min ‖ Y− CX2 ‖2
2 (1)

avec Y (resp. X) l’ordonnée (resp. l’abscisse) de la ride centrée sur l’origine,
et dont le premier et le dernier point sont alignés horizontalement.

Pour modéliser l’apparence d’une ride, un filtre à différence de Gaussiennes est
utilisé pour ne conserver que les hautes fréquences, puis le résultat est converti
du RGB vers des niveaux de gris. Ensuite, la ride est déformée (warped) dans une
forme de ride de référence. Enfin, une fonction de Lorentz dérivée seconde définit
dans l’équation 2 est adaptée (fitted) sur chaque colonne de la ride.

A ∗
2σ
(

3 (x− µ)2 − σ2
)

(
(x− µ)2 + σ2

)3 + o (2)
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Les paramètres µ et o sont des paramètres de translations horizontale et verticale
de la courbe utile à l’optimisation ; ils ne seront pas conservés à l’issue celle-ci. Les
paramètres A et σ représentent respectivement l’intensité et la largeur de la ride.
Les paramètres obtenus sur chaque colonne sont moyennés pour obtenir deux
paramètres A et σ représentant l’intensité et la largeur moyennes de la ride.
Ainsi, une ride sera codée par 7 paramètres : (cx, cy, `, a, C , A, σ).

La répartition de ces paramètres de rides dans un visage et dans chaque zone du
visage est codée par plusieurs informations :

— le nombre de rides

— la ride moyenne

— un ensemble de densités de probabilité jointes

Cet ensemble contient toutes les densités de probabilité jointe des dimensions
prises deux à deux {P(cx, cy), P(cx, `), . . . , P(A, σ)}, déterminées par estimation
par noyau (Kernel Density Estimation). Cet ensemble ainsi qui le nombre de rides et
la ride moyenne définissent une représentation efficace des rides dans une zone
du visage. Le même procédé est réalisé pour toutes les zones du visage et les
représentations produites sont concaténées pour obtenir une représentation des
rides au sein d’un visage. Une analyse en composantes principales est ensuite
effectuée sur ces représentations (une par visage) pour ensuite être ”reliée” au
modèle actif d’apparence. Ainsi, en plus des deux canaux de forme et d’appa-
rence de l’AAM, ce travail intègre un troisième canal dédié à l’intégration des
rides. L’espace WOAAM résultant modélise les variations du visage en forme,
apparence, et ride.
Nous avons introduit également une légère modification du canal d’apparence.
Le visage est découpé en blocs et en bandes de fréquences avant l’analyse en
composantes principales. Cette altération permet d’intégrer la micro texture et
les pores de la peau dans le système de vieillissement.
Ainsi à chaque visage de la base correspond un point dans l’espace final. Pour
réaliser un réel système de vieillissement, une régression cubique f est effectuée
entre les poids de l’analyse en composantes principales, et les âges perçus cor-
respondant. Pour faire vieillir un visage Xi de la base, il est projeté dans l’espace
ACP final :

Wi = (Xi − X̄)CT (3)

Les poids subissent une translation ∆age sur la trajectoire de vieillissement f :

Ŵi = Wi + ( f−1(age + ∆age)− f−1(age)) (4)

Dans cette équation f−1 est calculée par simulation de Monte Carlo. Enfin, le
point synthétique de l’espace final est reconstruit en forme, apparence, et rides.

X̂i = ŴiC + X̄ (5)

Les résultats expérimentaux montrent que le système peut générer des visages
réalistes pour le vieillissement et le rajeunissement, et que les visages vieillis et
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rajeunis avec notre système influencent mieux la perception de l’âge que ceux
produits avec deux autres systèmes.

Enfin, nous nous sommes intéressés à la façon dont un visage est perçu, non plus
en termes d’âge, mais en termes de santé. Nous avons développé un système pour
prédire comment un visage est perçu par d’autres personnes en termes de santé
(Fig. 2). Le système est composé d’un réseau de neurones convolutionnel pré en-
trainé pour l’estimation de l’âge biologique qui va générer une représentation peu
sensible aux variations de pose et d’illumination à partir d’une photo de visage.
Ensuite une régression de type Ridge est utilisée pour prédire un score de santé
perçue à partir d’une représentation générée à l’étape précédente. Les résultats
montrent comment un tel système peut être utilisé pour comprendre plus en
détail la perception humaine de la santé. De plus, il est montré en conclusion
comment le système peut être utilisé pour évaluer des effets de maquillages sur
la perception humaine de l’âge et de la santé.

FIGURE 2 – Chaı̂ne de calcul pour estimer un score de santé.
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Résumé 7

Publications 11

Introduction 15

1 Related Works 19
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Modeling based on shape . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 Modeling based on appearance and shape . . . . . . . . . . . . . . . 22

1.3.1 Aging Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.2 Texture Enhanced AAM . . . . . . . . . . . . . . . . . . . . . 24
1.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Modeling based on prototype . . . . . . . . . . . . . . . . . . . . . . 28
1.4.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Modeling based on graph . . . . . . . . . . . . . . . . . . . . . . . . 32
1.5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.6 Modeling based on deep neural networks . . . . . . . . . . . . . . . 34
1.6.1 Generative Adversarial Network . . . . . . . . . . . . . . . . 34
1.6.2 Age Conditional Generative Adversarial Network . . . . . . 35
1.6.3 Recurrent Neural Network . . . . . . . . . . . . . . . . . . . 36
1.6.4 Conditional Adversarial Autoencoder . . . . . . . . . . . . . 38
1.6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Face Aging 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Active Appearance Model . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Shape Normalization . . . . . . . . . . . . . . . . . . . . . . . 47
2.2.2 Appearance Normalization . . . . . . . . . . . . . . . . . . . 48
2.2.3 Principal Components Analysis . . . . . . . . . . . . . . . . 48
2.2.4 Usage of Active Appearance Model in Face Aging Simulation 51

2.3 Wrinkle Oriented Active Appearance Model . . . . . . . . . . . . . 54
2.3.1 Wrinkle Model . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.2 Robust Feature . . . . . . . . . . . . . . . . . . . . . . . . . . 56

13



14 CONTENTS

2.3.3 Linking with AAM . . . . . . . . . . . . . . . . . . . . . . . . 58
2.3.4 Synthesizing Wrinkles . . . . . . . . . . . . . . . . . . . . . . 59
2.3.5 AAM Modifications . . . . . . . . . . . . . . . . . . . . . . . 65

2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.1 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
2.4.2 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . 70
2.4.3 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . 74

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Health Perception & Aging 79
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.3 Health Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Method description . . . . . . . . . . . . . . . . . . . . . . . . 81
3.3.2 Experiment: System versus Human performance . . . . . . 86

3.4 Understanding Health Perception and Facial Cues . . . . . . . . . . 87
3.4.1 Study on known criteria . . . . . . . . . . . . . . . . . . . . . 87
3.4.2 Study on new criteria . . . . . . . . . . . . . . . . . . . . . . 89

3.5 Age & Health . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Conclusion 95

A Appendices 103
A.1 Tables: Aging & Wrinkles . . . . . . . . . . . . . . . . . . . . . . . . 103

A.1.1 Biological Age . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.1.2 Perceived Age . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.2 La∗b∗ color space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.1 RGB to XYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.2.2 XYZ to La∗b∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

A.3 Makeup Mirror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109

List of Figures 121

List of Tables 127



Introduction

Context & Motivation

The entity Chanel Recherche & Technologie from the Chanel Parfums Beauté fuels the
scientific credibility of the brand and innovates in many fields. Within the entity,
the Biology & Women’s Beauty (BWB) department has three goals:

— conduct innovative research projects to develop high-level and original knowl-
edge on skin and women’s beauty,

— offer innovative cosmetic solutions (products, services, accessories) that meet
women’s needs,

— contribute to Chanel Parfums Beauté scientific credibility.

Among its main research themes, the department conducts multidisciplinary works
on aging, to support skincare and cosmetic products development and communi-
cation. This work brings together scientists from different fields: biophysics, epi-
demiology, genetics, biology, and psychology. It is performed in multiple coun-
tries across the globe and focus on studying the aging of women’s face, and more
specifically the aging of facial skin. This works on aging spans from the under-
standing of the biological mechanisms involved to its clinical description, from
the understanding of the influence of ethnics and environmental factors, to its
consequences for face perception.

Aging of the skin and face in general is subject to genetic, morphological, and
environmental factors.
Genetic Multiple studies conducted on several countries have shown differ-
ences due to ethnicities with regard to the age at which signs of aging appear
(e.g. wrinkles, dark spots, facial sagging), and the severity of these signs. Nev-
ertheless, the signs of skin aging are the same for all women, no matter their
origins or environments (Guinot et al., 2006). Genome Wide Association Studies
(GWAS) conducted by the BWB have shown the impact of the gene receptor of
the melanocortine-1 (MC1R) on the severity of skin aging (Latreille et al., 2009).
Morphological Also, it appears that facial morphology – which differs between
ethnic groups – partly explains the differences in skin aging (Farkas et al., 2004).
For example, Asian female faces retain a so-called ”babyface” appearance during
aging unlike Caucasian female faces (Shirakabe et al., 2003). The skeleton of the
face of Asian women helps to support the upper lip and avoids the sagging of
this area with aging. Hence, the lips of these women maintain a relatively con-
stant thickness with age; which is not the case concerning Caucasian women’s
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16 INTRODUCTION

lips which lengthen and narrow with age.
Environmental Studies carried out by Chanel R&T, as others in the literature
have highlighted the influence of extrinsic factors such as access to health care,
depression, marital status, education and social status, on the appearance and
evolution of facial cues with aging (Mayes et al., 2010; Rexbye et al., 2006) Among
the most studied factors, there are sun exposure over the lifetime and the use of
UV protection, but also smoking (Malvy et al., 2000; Rexbye et al., 2006). These
studies show that aging and environmental factors influence the appearance of
signs of aging, but also the change of apparent age (or perceived age) of a face.

Indeed, in addition to the biological age, the age perceived from a face by hu-
mans is measured. Looking old or young for one’s age – perceived age - is an ac-
curate measurement of the global biological aging process and is correlated with
health condition (Christensen et al., 2004; Gunn et al., 2008, 2009). The perceived
age, controlled for chronological age and sex, is also correlated with a molecu-
lar biomarker of aging, the leucocyte telomere length; and is a good predictor
of longevity (Christensen et al., 2004, 2009). A methodology has been published
and widely used in the literature to generate perceived age as a biomarker of fa-
cial aging. The methodology uses facial images of subjects to be presented to a
group of ”naive” age assessors, and show that the generated perceived age can
be a reproducible measure to investigate facial aging.
Linked to age perception, the BWB is involved since years in researches on hu-
man perception of health from faces. Recent studies show that health perception
from faces by humans is a good predictor of good health and healthy behaviors
(Whitehead et al., 2012; Zebrowitz et al., 2014). People who are judged healthy
are more attractive and receive more positive judgments (Feingold, 1992; Stephen
et al., 2012). In addition, naive people would acutely detect signs of sickness from
the face in an early phase after exposure to infectious stimuli and potentially con-
tagious people (Axelsson et al., 2017). As one would expect, perceived health
decreases with age (Fink et al., 2011b).
As a company selling cosmetics and skincare products, we are particularly inter-
ested in the perception of a face in terms of age and health, and of course how to
alter this perception by applying products.

In this context, the BWB has teamed up with the Facial Analysis Synthesis and
Tracking (FAST) team from CentraleSupelec Rennes led by Renaud Séguier. The
ambition of this thesis is to deepen the understanding of the aging process. Our
ultimate objective is to develop a model to make an input face age in a plausi-
ble manner, and to gather knowledge from such a model. More specifically, the
integration of wrinkles and studying its interaction with aging was identified as
a promising first step. Moreover, we thought it could be interesting to evaluate
an aging path. A face that ages while maintaining a healthy appearance could be
a ”positive” aging. Hence, we expected that perceived health estimation could
represent a good indicator of a positive or negative aging path. An additional
goal for the BWB was to know if a computer vision profile might help the team.
Indeed, the BWB uses a lot of image processing techniques in their process, and
was interested in being advised on this subject.
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Constraints & Insights

Our objective is to develop a system able to make a face age and to gather knowl-
edge on aging from such a system. This objective gives rise to several specific
constraints:

— Alterations applied to faces due to aging might be learned from a dataset,
integrating the less prior knowledge as possible. Hence, shape, color and
high-frequency details might be added or removed following statistic rules
learned from data.

— Linked with the precedent item, the objective is to generate, not the most
photo-realistic, but the most plausible aged face from an input face image.
Thus, adding arbitrary texture to give the produced face a natural look as
in some approaches is not something desirable.

— Ideally, the system would use human interpretable parameters to help un-
derstand the facial aging process.

— Understanding the facial aging process means that using low resolution im-
ages (< 256 ∗ 256) as it’s often used in face aging applications is not possible,
as lot of details are lost at that resolution.

Contributions

In view of our objectives and constraints, we base our work on the Active Appear-
ance Model (AAM) to simulate facial aging, to which we incorporate a specific
channel to fully integrate wrinkles; computed aging trajectories will take into ac-
count shape, appearance and wrinkles, differing from other methods which use
classic AAM and add a post-processing step to include wrinkles.

Concerning the face aging simulation, we propose 3 contributions.

1. The first contribution is the parametrization of each wrinkle where shape
and texture are represented altogether by a very understandable 7-length
vector. Conversely, such a vector can be used to produce a wrinkle in shape
and texture just from parameters.

2. To represent a group of wrinkles in one facial zone, we propose an approx-
imation of an arbitrary joint probability of n random variables, as the set of
every joint probability for every random variable taken two at a time; that is
our second contribution. A new method of sampling for our approximated
density is introduced.

3. The parametrization of skin micro-texture and its integration is our third
contribution.
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In addition, we worked on health estimation from faces and its link with aging.
The way that humans perceive health from faces has been a growing area of psy-
chology research the last decades. Researchers gather health ratings from humans
before pointing differences in faces that could explain differences of ratings. We
aimed to automatize this task by training a Convolutional Neural Network on a
related task (age estimation) combined with a Ridge Regression to rate faces. The
first system able to estimate health scores from faces is introduced. We propose 3
other contributions.

4. As often in psychology research, the database we have at our disposal is
quite scarce. We experiment to show whether a Convolutional Neural Net-
work trained on a similar task with larger datasets available like biological
age estimation combined with a simple estimator allows us to achieve great
performance on our task.

5. We propose a new methodology where we show that our system is not only
able to imitate judgments by humans, but more importantly that it uses the
same main facial cues as humans.

6. In our last contribution, we highlight new links between facial features and
heath perception.

Thesis Organization

In the next chapter, we describe existing age progression systems and classify
them according to the assumptions used in their paradigm and highlight their
limitations according to our context.
In the chapter 3, a novel age progression method is presented. Active Appear-
ance Model is taken as a basis to model faces to which wrinkles are explicitly
integrated. Results are presented and compared to results from existing solu-
tions. We showed that the system can generate realistic faces for aging and re-
juvenating, and such age-progressed faces better influence age perception than
other methods.
In the chapter 4, a system able to imitate human judgments of health from faces is
provided. A Convolutional Neural Network trained on a related task (biological
age estimation) is used in conjunction with a Ridge Regression trained on health
estimation. We evaluate the performance of our system and compare it with hu-
man performance on the same dataset. More importantly, we highlight the fact
that our system is influenced by the same facial cues as humans to judge health
from a face. Finally, we show how such a system can be employed to study the
influence of several facial cues on health perception.



Chapter 1

Related Works

1.1 Introduction

Age progression has been an ever-growing field for several decades. It has been
applied to the search for missing children (Scherbaum et al., 2007; Simonite, 2006),
entertainment (Sydell, 2009), cosmetics (Aarabi, 2013; Boissieux et al., 2000) and
dermatology research (Aarabi, 2013; Restylane, 2012). In this kind of applica-
tions, facial aging simulation must consider age-related morphological changes
as well as skin appearance modifications in order to provide realistic results. The
most dramatic change of the face with age is morphological and results from
facial growth; it occurs from birth to early adulthood (Farkas et al., 2004). An-
other age-related morphological modification concerns the facial volumes due to
fat distribution variations; they vary all along life, from birth to late adulthood
(Donofrio, 2000). During adulthood facial skin also undergoes dramatic changes
with age, including wrinkling and sagging, increases of pigmented irregularities
(Yaar and Gilchrest, 2007). All these skin age-related features are keys in the per-
ception of facial age in adults (Burt and Perrett, 1995; Fink et al., 2006; Mark et al.,
1980; Samson et al., 2010).

Given the diversity of potential applications of facial aging and the growing vari-
ety of computer vision techniques, many methods have been developed in recent
decades (Fu et al., 2010; Ramanathan et al., 2009). The figure 1.1 can give us an
intuition about the state of the art of age progression.
One of the pitfalls of developing age progression applications lies in the results
evaluation part. Indeed, it is necessary to evaluate the quality of the predictions,
i.e. to evaluate if the faces aged by the algorithm are close to the real faces aged
by time, which is not always possible, depending of the dataset used. Various
other evaluation methods can be used: assessing the photorealism of produced
faces, quantifying the preservation of identity, and assessing the difference be-
tween the expected age and the perceived age (e.g. if a face has been artificially
aged 10 years, will this face be perceived 10 years older by humans?). The dif-
ferent evaluation methods are accounted for each paper in the Table 1.1. In this
table, evaluation methods were abbreviated as follows:

19
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CRAF Close to ”real” aged faces.
PHOTO Photorealism of produced faces.
IP Preservation of identity.
DEPA Difference between expected age and perceived age.

1990 2000 2010

Shape-based

Prototype-based

Pure Active Appearance Model Texture-Augmented Active Appearance Model

Graph-based

Deep Neural Networks

Figure 1.1 – A chronological overview of different families of methods applied to
age progression.

Table 1.1 – State-of-the-art on age progression.
Authors Main Methods Dataset Evaluation Methods

CRAF PHOTO IP DEPA
Ramanathan and Chellappa (2006, 2008) Revised cardioidal strain FG-NET, Passport X X
Lanitis et al. (1999) AAM Custom X X
Lanitis et al. (2002) AAM Custom X X X
Geng et al. (2007) AAM + Subspace FG-NET, MORPH X X
Tsai et al. (2014) AAM + Patches Improv FG-NET X X

Bukar et al. (2017) AAM + Patches Improv HQFaces,
Dartmouth faces X

Burt and Perrett (1995) Prototype Custom X
Tiddeman et al. (2001) Wavelet Prototype Custom X
Tiddeman et al. (2005) MRF Wavelet Prototype Custom X X
Jinli Suo et al. (2009, 2010) AAM + Graph Custom, MORPH X X
Antipov et al. (2017) acGAN IMDb + Wiki X

Wang et al. (2016, 2018) PCA + RNN LFW, MORPH,
CACD, Custom X X X

Zhang et al. (2017) CAAE MORPH, CACD
Custom X

1.2 Modeling based on shape

In the book ”On Growth and Form”, Thompson (1942) argues that biologists rely
too much on evolution to explain the determination of shapes and structures in
living organisms. Rather than evolution, Thompson reminds the importance of
the physics and mechanics laws in shape determination. He analyses the physical
constraints applied to biological forms as an explanation of their shape. Based on
Thomson’s work, Shaw et al. (1974) propose to model the growth of facial shape
as mathematical operations. They identify two types of variations : the cardioidal
strain and the affine shear, two types of affine transformations applied to the
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contour of profile faces. Todd et al. (1980) revisit this approach and introduce the
”revised” cardioidal strain transformation. This approach models human head
growth as a fluid-filled spherical object with pressure. Each facial feature in polar
coordinates (Ri, θi) is transformed with an internal pressure k using:

R̂i = Ri(1 + k(1− cos(θi)))

θ̂i = θi (1.1)

Leveraging the ”revised” cardioidal strain transformation model, Ramanathan
and Chellappa (2006, 2008) propose an age progression application to analyze
shape variations due to age for children under 18 years of age. Shapes are defined
by a set of facial landmarks, and a model of facial deformation for aging during
childhood is introduced. Then, faces are warped according to the deformation
model to rejuvenate or age. This model permits them to estimate an age based
on a face and to mock-up the face aging process for children. This model only
takes on board shape variations because that is considered the principal source of
variations from birth to adolescence. We can see on Figure 1.3 the transformation
model (Fig. 1.2) being applied to two children’s faces to make them look older.

Figure 1.2 – The identified growth pattern from childhood to adolescence.

Figure 1.3 – The identified growth pattern is applied to two children’s faces.
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Figure 1.4 – Active Appearance Model Scheme

Figure 1.5 – Results from Lanitis et al. (2002). First and second column are orig-
inal and age-progressed images, respectively. The third column shows the same
subject at the target age.

1.3 Modeling based on appearance and shape

When elaborating a model for facial aging during adulthood, in addition to shape,
appearance changes also need to be considered. The work of Lanitis et al. (1999,
2002) is the first to use Active Appearance Model on age progression (Fig. 1.4).
We will now briefly present the functioning of Active Appearance Model (more
explanation can be found in Sec 2.2 p. 46).
Active Appearance Model (Cootes et al. (1998)) is a statistical model which cre-
ates a subspace modeling appearance and shape variations from an annotated
dataset of faces.
Firstly, landmarks are placed on facial features as eyes, mouth, nose and facial
outline, and the coordinates of these points define the shape. Afterwards, shapes
are rigidly aligned in translation, scaling and rotation with a procrustean analysis
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using the mean shape as a reference.
Appearance information is then computed by warping every image into the mean
shape, using each individual annotation. At last, only the pixels inside the con-
vex hull of the facial outline defined by annotation are kept, and we have now
the appearance feature.
After that, Principal Component Analysis (PCA) is carried out separately for
shape and appearance, and a final PCA is made on the concatenation of shape
weights and appearance weights. This creates a subspace which models varia-
tions of shape and appearance present in the dataset (Fig. 1.4). Regression of
coordinates from this newly created space on age indicates the direction of facial
aging. Finally, they can project a new face in this subspace, translate it in the face
aging direction and reconstruct a shape and appearance to obtain an aged face.
For this regression, they assess different strategies in their article:

Global Aging Function They test linear, quadratic and cubic functions to model
the relation between all PCA weights and ages.

Person-Specific Aging Function As they use the FG-NET aging database which
contains for each subject several photos at different ages, they compute a
quadratic aging function for each subject. Assuming that similar faces age
in a similar way, when a new face has to be aged, the aging function is a
mixture of aging functions of closest faces in parameters space.

Lifestyle In addition to the previous method, they concatenate the raw PCA pa-
rameters with a vector quantifying lifestyle like sun exposition, health, eco-
nomic situation or stress level, thus, the aging function is not only selected
based on appearance but also on a lifestyle profile.

Qualitative results of this method can be seen in Fig. 1.5.

1.3.1 Aging Pattern

Geng et al. (2007) introduce the subspace named AGES (AGing pattErn Subspace)
where each point represents the aging pattern of each subject. Taking advantage
of having images of the same subject taken at different times in the FG-NET aging
database (Fig. 1.6), they encode the whole aging pattern from a subject into a
vector: they compute AAM parameters as Lanitis et al. (2002) for each image from
the same subject before concatenating them in a sparse vector as in Fig. 1.7. If face
images are available for certain ages, they are filled into the positions of the sparse
vector corresponding to these ages. If not, the positions are zero-filled. After that,
they wanted to create a subspace modeling these aging patterns, however, they
couldn’t directly use PCA as aging pattern vectors are largely incomplete/sparse.
Thus, they propose to learn this subspace: with xi an aging pattern, xa

i and xm
i

respectively the available and missing components, they find the transformation
matrix W which minimizes:

1
N

N

∑
i=1

(xa
i − x̂a

i )
T(xa

i − x̂a
i ) with x̂a = x̄a + Wa(WaT(xa − x̄a)) (1.2)
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using an Expectation-Maximization algorithm combined with PCA. In simpler
words, they find a W to project aging pattern vectors while minimizing the mean
reconstruction error of available features.

Figure 1.6 – Two subjects taken at different times in the FGNET database. As
we can see, the amount of photos for each subject varies from one individual to
another.

Thus, with an incomplete aging pattern xtest, they can generate the fulfilled pat-
tern x̂test by projecting xtest, and back-projecting it as:

x̂test = x̄ + W(WT(xtest − x̄)) (1.3)

We can see examples of fulfilled patterns in Figure 1.8.

1.3.2 Texture Enhanced AAM

Nevertheless, AAM-based age progression is known to produce a blurry texture
because wrinkles and spots are never perfectly aligned between people.
Facing this problem, more recent approaches (Bukar et al. (2017); Gandhi (2004);
Tsai et al. (2014)) use AAM to produce appearance and shape, and add a post-
processing step on appearance to superimpose patches of high-frequency details.
Bukar et al. (2017) propose to use AAM with an addition, they linearly convert
pixel intensities from the RGB colorspace to i1i2i3 colorspace (Ohta et al., 1980) to
decorrelate each color channel from each other such as:

i1 = 1
3(R + G + B)

i2 = 1
2(R− B) (1.4)

i3 = 1
4(2G− R− B)

After that, they carry out PCA on each of the 3 new channels. Like the classic
AAM, the concatenated vectors representing shape and appearance – here, 1 for
shape, and 3 for appearance – before carrying out a final PCA creating a subspace
modeling both shape and appearance variations.
The final PCA weights are regressed with sPLS, sparse Partial Least Squares re-
gression. Given a n ∗m matrix C = {c1, c2, . . . , cn}T of facial features, and a n ∗ 1
vector a of ages, Partial Least Squares will find a decomposition describing both
the covariate space of C and a. Adding the L1 penalty, thus making the PLS
sparse, improves variable selection performance, because the optimization pro-
cess will try to explain as much information as possible with the lowest number
of variables.
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Figure 1.7 – Vectorization of the
aging pattern. Ages (0-8) are
marked at the top-left to the cor-
responding positions and above
the corresponding feature vec-
tors. The missing parts in the
aging pattern vector are marked
by ’m’.

Figure 1.8 – Results from the AGES method
of Geng et al. (2007). Original images with
the corresponding ages are on the first row.
Generated images and ’real’ aged images
with the corresponding ages are on the sec-
ond and third row, respectively.

At this step, they can simulate aging on faces, but the texture produced will suf-
fer from the same burden defined earlier, i.e a blurry texture. Therefore, after the
blurry face has been generated from AAM, they add an extra step to enhance tex-
ture. The generated face is divided into 72 overlapping patches and each patch
will be replaced by a patch emanating from a real face from the database. With
Finit and Faged , the input face reconstructed and aged by AAM, respectively, the
patch selection is done following 3 rules.

1. Stating that similar faces may have similar high-frequency details, authors
propose to replace the patch Paged

k from Faged by the most similar patch Pk
from the database.

2. When dealing with faces recomposed in patches, we have to be careful to
choose matching adjacent patches. The overlapping region of the patch Pk

has to be similar with the overlapping region of the patch above Paged
i and

to its left Paged
j , both on the face Faged.

3. Finally, the chosen patch Pk has to match the corresponding patch Pinit
k on

the original face Finit.
To compare patches between them, authors choose to use the Image Euclidean
Distance from Li and Lu (2009). Indeed, simple euclidean distance is very sensi-
tive to small translations, small rotations, noise or illumination. With two patches
Pa and Pb with fixed size M ∗ N, Pk

a the kth pixel of Pa, the euclidean distance can
be written as follows:

ED(Pa, Pb) =
MN

∑
k=1

(Pk
a − Pk

b )
2 (1.5)
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Authors propose to use Image Euclidean Distance defined as:

IMED(Pa, Pb) =
MN

∑
i=1

MN

∑
j=1

gij(Pi
a − Pi

b)(Pj
a − Pj

b) (1.6)

With gij a Gaussian distance function between two pixels position:

gij =
1

2πσ2 exp

−dS
ij

2

2σ2

 (1.7)

dS
ij being the euclidean distance between the spatial positions of pixels i and j,

and σ, the standard deviation of the Gaussian function.
In simpler words, this distance is an euclidean distance where the correlation of
pixels intensities in a neighborhood is integrated. The width of this neighborhood
is defined by the parameter σ.

Figure 1.9 – Results from Bukar et al. (2017). Each row represents a different
identity. Images on the left column are the original images prior to age synthe-
sis. Middle images are AAM-synthesized and those on the right are enhanced
outputs with the patch enhancement method.

We can see a subsample of their results in Figure 1.9.

Very similarly to the just described work from Bukar et al. (2017), Tsai et al.
(2014) employ a patch enhancement method to counterbalance the blurriness of
PCA generated appearance. More specifically, they base their work on the AGES
method defined earlier, at which they add patch-based texture synthesis inspired
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Figure 1.10 – Two examples of interactive aging enhancement from Tsai et al.
(2014). The 1st column shows the original reference or predicted faces; the 2nd
column shows the detailed face by patch-based transfer; the 3rd column shows
indication curves assigned by users; the 4th column shows the results by interac-
tive enhancement.

by Mohammed et al. (2009). The distance between two patches is defined as the
sum between the euclidean distance between the two patches, and the euclidean
distance between the gradient of the two patches:

D(Pa, Pb) = ∑
i
‖ Pi

a − Pi
b ‖

2 + ‖ ∇Pi
a −∇Pi

b ‖
2 (1.8)

In addition to this metric, several constraints are added to improve the synthe-
sized face. To keep smooth stitching, the authors require that the distance D at
boundary of adjacent patches should also be under a user-defined threshold. To
keep the symmetry of faces, they restrict the two symmetric patches in the left
and right parts of a face to be selected from the same image. However, even with
this kind of constraints, authors argues that faces composed with selected patches
cannot be smooth, and thus boundaries between patches appear in synthesized
faces. That’s why authors propose to use the famous Poisson image editing algo-
rithm from Pérez et al. (2003) to remove color differences between patches while
keeping gradient.
An interesting part of their method is the addition of an optional interactive step
to synthesize wrinkles. As synthesized faces don’t have gradient information, the
selected patches from the database won’t have a lot of gradient either. Authors
propose to draw wrinkles directly on the blurry synthesized face, thus adding
high frequency details, and only after to enhance the face. As a consequence, the
patch selection step will take into account the drawn lines. We can assess the
results of interactive synthesizing and aging in Figure 1.10 and 1.11, respectively.

1.3.3 Conclusion

However, about the two described method, while faces produced are plausible
and better than AAM in terms of photo-realism, details added are not statisti-
cally learned for age progression, as texture patches that contain details are cho-
sen with a similarity measure, and not with respect to a precise age. Thus, the
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Figure 1.11 – Results from Tsai et al. (2014)’s work. The 1st rows: input images
from the FG-NET. The 2nd rows: aged images of the 1st rows by their method.

key idea can be defined in simple terms: the high-frequency details of close faces
in the database are transferred onto the generated blurry face. There is room for
improvement.

1.4 Modeling based on prototype

Another approach creates a prototype (Burt and Perrett (1995); Rowland and Per-
rett (1995)), an average face from faces within a constrained age group, meant to
represent typical features from this group. A younger face can be then warped
in the mean shape, and the prototype blended on the texture of the younger face
to make it look older. As for AAM-based methods, prototype-based methods
suffer from the same problem; making an average face will blur out every non-
aligned high frequency detail. Tiddeman et al. (2001, 2005) propose to add a
post-processing step to enhance high frequency information on the average face.
Tiddeman et al. (2001) extract fine details with wavelet decomposition for every
face to add them on the final average face, with a parameter σ controlling the level
of details to transfer. They choose to decompose faces using an over-complete
wavelet basis. Images can be decomposed using a critical-basis of wavelets, de-
composition has the same size as the original image, and reconstruction is guar-
anteed to be strictly equal to the original image. However, authors note that with
a critical-basis decomposition, alteration of frequency bands can lead to artifacts
after reconstruction. Thus, they choose to use an over-complete basis of 2D Ga-
bor wavelets. A 2D Gabor function g can be formulated as a Gaussian function
modulated by a cosine function:

g(x, y; λ, θ, ψ, σ, γ) = exp
(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ψ

)
(1.9)

with λ the wavelength of the cosine function, θ the orientation, ψ the phase, σ the
standard deviation of the Gaussian envelope, and γ the spatial aspect ratio.
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As shown in Figure 1.12, authors choose to build a wavelet pyramid in two di-
rections at three scales.

Figure 1.12 – A typical image (left) and the corresponding wavelet decomposition
pyramid (right). The coefficients of the filters H and G are (1, 4, 6, 4, 1)/16 and (1,
-4, 6, -4, 1)/16 respectively.

After that, they measure an edge strength σw by smoothing with two 1D cubic
B-spline Bx, By, the magnitude in a frequency band w:

σw = Bx ∗ By ∗ |w| (1.10)

Hence, the mean values of σ in a specific frequency band across the set of N facial
images gives a measure of the average edge size in each region. Finally, we can
enhance the texture in each frequency band w̄ of the average face by multiplying
it by the ratio between the average smoothed magnitude σ̄ and the smoothed
magnitude of the average face σw̄. We can see an example in Figure 1.13 where
this method is used to transfer a texture from a face to another.

w̄new = w̄
σ̄

σw̄
(1.11)

In Tiddeman et al. (2005), they combine wavelet decomposition with Markov
Random Field to regenerate fine details on the average face, which produces
more realistic results. Given an input face Z belonging to a young person, several
young persons faces Ai, and several older persons faces Bi. The average face B is
superimposed on the face Z, to produce an aged face Ẑ. However, the newly aged
face won’t have any wrinkle as an average face is often blurry. Hence, high fre-
quency details of the face Ẑ are synthesized pixel by pixel on the different scales
and orientations, starting from the lowest scale to the highest. With a pixel pẐ(x,y)
to synthesize and its known neighborhood N(pẐ(x, y)), the goal is to maximize
the following probability:

arg max
pẐ(x,y)

P(pẐ(x,y)|N(pẐ(x, y)), N(pA1..N(x, y)), N(pB1..N(x, y)), pA1..N(x, y), pB1..N(x, y)))

(1.12)
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Figure 1.13 – One example of the texture enhanced transformation process from
Tiddeman et al. (2001) where a texture from an target face (top right) is trans-
ferred to the original image (top left). The original image is transformed using
the shape and color method and the target prototype is warped into the new
shape. Wavelet pyramids are then built from these two images and their magni-
tudes are calculated. After rescaling, the subject’s pyramid is collapsed to give
the new image.

As specified by the authors, the neighborhood in Ẑ only contains pixels already
synthesized, at the same scale, and at other scales. The neighborhood is com-
posed of the 12 closest pixels already synthesized, plus the 9 closest pixels at the
precedent scale, and one pixel in each precedent scale remaining. To find the
value of pixel pẐ(x,y), they empirically construct the conditional probability den-
sity with the faces used to make the average face, for the younger group A and
for the older group B, using the Parzen-Rosenblatt window method. Given two
1D histograms HA, HB initialized with zeros, they can be computed for a precise
pixel as:

HA(pAi(x, y)) += G(N(pAi(x, y)), N(pẐ(x, y)), Σ)
HB(pBi(x, y)) += G(N(pBi(x, y)), N(pẐ(x, y)), Σ)

(1.13)

with G the multi-dimensional Gaussian function evaluated at N(pAi(x, y)), cen-
tered on N(pẐ(x, y)), and with a uniform standard deviation matrix Σ. In simpler
terms, the probability to synthesize the value pAi is equal to the sum of the Gaus-
sian distance function between the neighborhoods of images N(pAi(x, y)) in the
database having this exact pixel value pAi , and the neighborhood of the face to
enhance N(pẐ(x, y)). Thus, the choice of the pixel value to synthesize in image Ẑ
is influenced by the closer neighborhoods in the database from its own neighbor-
hood. A 1D Gaussian smoothing is applied on the two histograms HA, HB to turn
them into probability densities. In addition, the two probability density functions
are converted in cumulative density functions FA, FB. At last, the value of pixel
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pẐ(x, y) is found with the following equation:

pẐ(x, y) = F−1
B (FA(pẐ(x, y))) (1.14)

In other words, the pixel value pẐ is transformed into a cumulative probability
with FA, before being remapped to a pixel value with F−1

B . We note that, as FB
is a 1D cumulative density function, strictly increasing, we can trivially inverse
it. The described process is done for every scale at every orientation, then, the
whole pyramid can be collapsed to produce a real face. Results from this method
are shown in Figure 1.14.

Figure 1.14 – Results from Tiddeman et al. (2005). The original East-Asian face
images (left) are rejuvenated using European faces as examples (center). Clamp-
ing the output values to within 3 s.d. of the conditional mean (right) improves
the stability of the synthesis.

1.4.1 Conclusion

Despite the dates of publication of these papers (2001-2005), we can notice inter-
esting ideas.
First, this approach based on prototype alter both shape and appearance of faces
with aging.
Secondly, the two methods to improve the high frequency details of faces are very
different. The wavelet smoothing approach superimposes high frequency details
shared by several faces in a specific age group. Thus, superimposed high fre-
quency details are in a way representative of the target age group. On the other
hand, the MRF method developed after uses the neighborhood of the original
image and the neighborhood of the target age group to creates sharper and more
realistic faces. However, details generated with this method are not very repre-
sentative of the target age group, they can be linked to a specific identity.
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1.5 Modeling based on graph

Jinli Suo et al. (2009, 2010) decompose faces in three levels: global face and hair
as the first level, the different face parts (eyes, nose, mouth, . . . ) composed the
second level, and the third level represents wrinkles. Their database is split into
five age intervals, spaced over ten years. The face and facial parts are modeled by
several AAMs. Thus, an AAM is used for the face, and others AAM are made for
every local parts (eyes, mouth, . . . ). For the wrinkle level, they divided the face
in 6 zones, and each wrinkle in each zone are annotated. Wrinkles are annotated
and their properties (numbers, lengths, positions, orientations) are modeled by a
Poisson distribution, for each property.

Figure 1.15 – Left: A high resolution face image It at age group t is represented at
three resolutions – I f ace,t, Icmp,t and Iwkl,t. Middle: All face images at age group t
are represented collectively by a hierarchic And-Or graph GAO

t . The And nodes
(in solid ellipses) in the graph GAO

t represent coarse-to-fine decomposition of a
face image into its parts and components. The Or-nodes (in dashed ellipses) rep-
resent alternative configurations. By choosing the Or-nodes, we obtain a parse
graph Gt for a specific face instance. Right: Dictionary ∆t includes ∆hair,t, ∆ f ace,t,
∆cmp,t and ∆wkl,t at three levels from coarse to fine.

The three face levels are distributed into an And-Or Graph (Fig. 1.15). And nodes
represent different parts of the face, whereas Or nodes represent the different re-
alizations of these parts for the population in every age group. They use a first
order Markov chain to model aging of parts of the face. Artificial aging can be
created by decomposing a face, present in age group t, in a And-Or graph Gt, and
to sample the probability p(Gt+1|Gt) with Gibbs sampling algorithm; the graph
Gt+1 can be collapsed to generate a new face (Fig. 1.16). During synthesis, the
low-frequency face is generated. Generated face parts are pasted on the gener-
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Figure 1.16 – Modeling the aging process as a Markov chain on parse graphs.
Top row is a face image sequence at different ages, with the leftmost one being
the input image and the other four being synthetic aged images. The second row
is the parse graphs of the image sequence. The third row shows the Markov chain
and θdyn includes the parameters for Markov chain dynamics.

ated face and blended with Poisson Image Editing from Pérez et al. (2003). About
wrinkles, their number in a zone is randomly sampled from the prior distribution.
After that, wrinkle shapes and appearances are picked randomly from wrinkles
in the corresponding age group. Finally, the probability density for each wrinkle
property (length, position, orientation) is randomly sampled and wrinkle shapes
are modified to follow these properties. Thus, the wrinkle appearances can be
warped in the wrinkle shapes, and blended on the synthesized face, again with
the help of Poisson Image Editing. We can see some results in Figure 1.17.

1.5.1 Conclusion

We can note that’s the first work to explicitly integrate hair and wrinkles in a face
aging model. Hence, produced images are more realistic and more useful for a
real-world application. However, aging of each face part is done independently
of others, despite the known correlation between face parts (e.g eyebrows and
hair color are correlated, eye lightness and face color as well). As a consequence,
the combination of several facial parts can produce some unrealistic results, even
if the realism of faces has not been addressed in these articles.
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Figure 1.17 – Some aging simulation results from Jinli Suo et al. (2010)’s work.
The leftmost column is the original images of the individuals in group 1. The 2nd
to 5th columns are synthetic aged images at 4 consecutive age groups.

1.6 Modeling based on deep neural networks

Promising approaches (Antipov et al., 2017; Liu et al., 2017; Wang et al., 2016,
2018; Zhang et al., 2017) propose to use Deep Neural Networks to produce aged
faces.

1.6.1 Generative Adversarial Network

Figure 1.18 – Typical GAN architecture.

Goodfellow et al. (2014) introduced the Generative Adversarial Network (GAN)
architecture (Fig. 1.18). This architecture is composed by a generator G and a
discriminator D. The goal of G is to generate a realistic picture given a latent
vector z. At the same time, the discriminator D has to discriminate between real
pictures originating from the database, and images generated from G. The clever
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trick of this architecture lies in the fact that the 2 networks are trained together
and improve at the same time. The generator uses the classification from the
discriminator as a loss to improve. The discriminator improves more and more to
discriminate between real and generated images, while the generator gets better
and better at fooling the discriminator. Thus, as the loss function for the generator
G is not defined in the pixels space like PCA or Autoencoder, generated images
are sharper than in previously methods like Section 1.3 and Section 1.4.

1.6.2 Age Conditional Generative Adversarial Network

To extend GAN to age progression, Antipov et al. (2017) propose age conditional
Generative Adversarial Network (acGAN).
As we can see in Figure 1.19, a face passes through an encoder E to project the
face in a latent vector z0. The vector y0 defines the person’s age, one-hot encoded
with six age categories: 0-18, 19-29, 30-39, 40-49, 50-59, 60+ years old. A recon-
struction of the face x̄0 can be obtained by feeding the generator the two vectors:
x̄0 = G(z0, y0). After that, to age a face, we can modify the vector y0 with the
desired target age and keep z0 vector unmodified, and feed again the generator
with the two vectors. We will explain with more detail, the training process of
such a system.

Figure 1.19 – acGAN scheme. (a) approximation of the latent vector to reconstruct
the input image; (b) switching the age condition at the input of the generator G
to perform face aging.

First, the conditional GAN (cGAN) is trained in a classic manner: cGAN training
can be expressed as an optimization of the function v(θG, θD), where θG and θD
are parameters of G and D, respectively:

min
θD

max
θG

v(θG; θD) = Ex,y∼pdata [logD(x, y)] +Ez∼pz(z),ỹ∼py [log(1−D(G(z, ỹ), ỹ))]

(1.15)
Thus, the discriminator will learn to associate pictures with age classes, and the
generator, thanks to the discriminator will be able to generate faces correspond-
ing to a specific age class.
Secondly, they introduce an encoder E: they generated 100K pairs (x̄i, G(zi, yi))
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where zi ∼ N(0, I) are random latent vectors, yi ∼ U are random age condi-
tions uniformly distributed between six age categories, G(z, y) is the generator
of the priorly trained cGAN, and x̄i = G(zi, yi) are the synthetic face images.
Afterwards, E is trained to minimize the Euclidean distances between estimated
latent vectors E(xi) and the ground truth latent vectors zi. Thirdly, they intro-
duce an identity-preserving latent vector optimization. Using a pretrained face
recognition neural network embedding FR, and z0 as an initial latent vector, they
optimize z∗IP such that:

z∗IP = arg min
z

‖ FR(x)− FR(x̄) ‖L2 (1.16)

In simpler terms, starting from z0, they find a latent vector z∗IP that retains identity
better after reconstruction, than the initial reconstruction from z0.

Figure 1.20 – Examples of face reconstruction and aging from acGAN. (a) orig-
inal test images, (b) reconstructed images generated using the initial latent ap-
proximations: z0, (c) reconstructed images generated using the ”Pixelwise” and
”Identity-Preserving” optimized latent approximations, and (d) aging of the re-
constructed images generated using the identity-preserving latent approxima-
tions and conditioned on the respective age categories y (one per column).

Results show that faces can be aged/rejuvenated for long-term period, taking
into account facial features like hair or beard (Fig. 1.20).

1.6.3 Recurrent Neural Network

Wang et al. (2016, 2018) introduce a Recurrent Face Aging (RFA) framework using
a Recurrent Neural Network (RNN) which takes as input a single image and auto-
matically outputs a series of aged faces. They divide the faces of each gender into
9 age groups, as shown in Figure 1.21. For training, their model requires the faces
of the same person covering two adjacent groups. The RNN transforms a face
across different age groups by decomposing the complex image generation pro-
cess into a sequence of intermediate states with smaller and subtle changes. To be
specific, RNN is applied to construct complex images iteratively where the rough
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outlines are gradually replaced by precise forms, and lines are sharpened.Their
method includes two main contributions: Face Normalization and RNN-based
Face Aging Model.

Figure 1.21 – The recurrent face aging (RFA) framework exploits a RNN to model
the aging pattern. The aged face is synthesized by referring to the autoregressive
memory of the previous faces. The intermediate transitional faces can also be
synthesized.

Face normalization is an important preprocessing step for face aging. To nor-
malize the faces, many works rely on facial landmarks and warping. To avoid
distortions with landmarks-based warping, authors prefered to use optical flow.
As shown in Figure 1.22, they mask images to keep only the face and, for each
age group, they compute a PCA to define an eigenface space. Keeping the k first
components, they project each image I in the low rank eigenface space and re-
construct it, to get I′. Afterwards, the optical flow can be computed from I′ to
I, and we can use it to obtain Î, the warped version of I. As Î can have ghost
artifacts due to complex optical flows, authors decided to make this process iter-
ative. Starting with k = 4, and with n the number of faces in an age group, the
images [I1, . . . , In] are warped to get [ Î1, . . . , În]. After that, a new PCA is com-
puted with the newly warped faces [ Î1, . . . , În], and with k incremented by 1. The
same process described above repeats until k = 80.
After that, for each couple of adjacent age groups, a RNN is trained to learn
the transformation between the weights from the younger age group xy and the
weights from the older one xo. With x′o being the generated weights from the
RNN, the loss is defined as a least square minimization of a difference between
ground truth and predicted weights:

J =‖ (xo − x′o) ‖2
2 (1.17)

The authors used Whitening PCA - eigenvectors are divided by their correspond-
ing eigenvalues, thus each eigenvector has a unit variance - to give each PCA di-
mensions the same importance.

To make a face age in a nutshell, an input face is aligned with optical flow and
projected in the eigenface space corresponding to its age group. Its weights wy
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Figure 1.22 – In Wang et al’ work, face normalization process consists of two steps.
Step 1, shown in (a), is to learn a robust eigenface space incrementally which is
insensitive to the errors brought by the optical flow. Step 2, shown in (b), is to
neutralize the facial expressions progressively by decreasing the dimensionality
of the eigenface space.

Figure 1.23 – Texture transfer with the nearest neighbor from Wang et al’ work.

are fed to the RNN to predict the weights ŵo corresponding to an older face. The
nearest neighbours weights wnearest ŵo from the database are found. An older face
can be synthesized by reconstructing a face from ŵo, and by adding to it the high
frequency details from the face in the database corresponding to wnearest ŵo (Fig.
1.23).
We can see aging results in Figure 1.24.

1.6.4 Conditional Adversarial Autoencoder

Zhang et al. (2017) propose Conditional Adversarial Autoencoder (CAAE). They
use an Autoencoder combined with 2 discriminators working on latent variables
and output images to impose photo-realistic results (Fig. 1.25). The first discrim-
inator Dz imposes latent variables z to be uniformly distributed to avoid ”holes”
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Figure 1.24 – Aging results from Wang et al’ work.

in the latent space, and thus to produce a smooth age progression. The second
discriminator Dimg, inspired by the GAN architecture, discriminates between real
images and generated images, and its loss is used to improve the photo-realism
of pictures. Age progression is achieved by regressing the latent variables with
respect to age.

First, authors propose to use a Conditional Autoencoder. An autoencoder is a
neural network taking a face as input, and compressing it to a low dimension
manifold of latent variables, that’s the encoder E part. The second part of the
neural network - the decoder, or in this case the generator G - takes the latent
variables and reconstructs the input faces. The encoder and generator parts are
trained as one neural network taking an input image and outputting the same
image, with a L2 loss. Age is divided into ten categories: 0–5, 6–10, 11–15, 16–20,
21–30, 31–40, 41–50, 51–60, 61–70, and 71–80. Each age is one-hot vector encoded,
and concatenated to the latent variables during training, making the autoencoder
conditional (Fig. 1.25). With l the one hot encoded age label, and x a face image,
such an autoencoder can be trained with the following loss:

min
E,G
‖ x− G(E(x), l) ‖L2 (1.18)

In addition to that, authors propose 3 types of regularization.
First, they introduce a multi layer perceptron Dz with the purpose of imposing
a uniform distribution on latent variables. As encoder E learns a highly non-
linear mapping of the input, authors argue that forcing a uniform distribution
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Figure 1.25 – Structure of the proposed CAAE network for age progres-
sion/regression. The encoder E maps the input face to a vector z (personality).
Concatenating the label l (age) to z, the new latent vector [z, l] is fed to the gen-
erator G. Both the encoder and the generator are updated based on the L2 loss
between the input and output faces. The discriminator Dz imposes the uniform
distribution on z, and the discriminator Dimg forces the output face to be photo-
realistic and plausible for a given age label.

will reduce holes in this space. Thus, a displacement in this space will unlikely
create faces far from faces from the database. Therefore, at each training step of
encoder E, latent variables z and generated z∗ following a uniform distribution
p(z) are fed to Dz to improve E and Dz:

min
E

max
Dz

Ez∗∼p(z)[logDz(z∗)] + Ex∼pdata(x)[1− log(Dz(E(x)))] (1.19)

with pdata being the distribution of the training data, and z∗ ∼ p(z) being the
random sampling from the prior p(z). Encoder E learns to output a uniform dis-
tribution while Dz learns to discriminate between samples following a uniform
distribution and those that don’t, that’s an adversarial configuration.
Secondly, authors introduce a second adversarial regularization, the Convolu-
tional Neural Network Dimg. This ConvNet corresponds to the Discriminator in
a typical GAN architecture (Fig. 1.18), as explained in Section 1.6.1 page 34. The
discriminator Dimg takes an input face, and a age label, making it Conditional ac-
tually, and outputs the probability that the picture is close to faces in the database.
Similarly, the Generator G tries to fool the Discriminator Dimg by generating bet-
ter faces, and the Discriminator tries to discriminate between real and generated
images. The loss to minimize is:

min
G

max
Dimg

Ex,l∼pdata(x,l)[logDimg(x, l)] + Ex,l∼pdata(x,l)[1− log(Dimg(E(x), l))]

(1.20)
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Thirdly, to avoid ghosting artifacts in faces generated by GANs, authors argue to
minimize the total variance of each batch images. Such a regularization forces the
generated faces to be less diverse, more average.
Finally, with TV(·) being the total variance calculation, the function to optimize
is:

min
E,G

min
Dz ,Dimg

λ ‖ x− G(E(x), l) ‖L2 +γTV(G(E(x), l))

Ez∗∼p(z)[logDz(z∗)] + Ex∼pdata(x)[1− log(Dz(E(x)))]+

Ex,l∼pdata(x,l)[logDimg(x, l)] + Ex,l∼pdata(x,l)[1− log(Dimg(E(x), l))]
(1.21)

The coefficients λ and γ balance the smoothness and high resolution.

Figure 1.26 – Results from CAAE. The first column shows input faces, and the
rest columns are their results from both age progression and regression.

We can see the results of their methods in Figure 1.26.

1.6.5 Conclusion

These Deep Learning methods, by their specificities, present interesting advan-
tages compared to other techniques. First of all, a precise annotation of facial
features is not needed for acGAN and CAAE. A face detector is used to crop
faces, and the cropped results are fed to the network without attenuating vari-
ations of pose and expression. Above all, these systems can handle a learning
with millions of samples as they are trained with the Stochastic Gradient Descent
families of methods. In addition, as their methods use the adversarial loss intro-
duced by Goodfellow et al. (2014), where high frequency details are taken into
account by the discriminator, theoretically, fine facial details can be generated by
the network.
However, age progression algorithms based on neural networks can produce in
some cases unrealistic faces (e.g the 2 eyes of a reconstructed face can have dif-
ferent shapes). In addition, lots of these algorithms work on low resolution faces,
at most 128x128 (Antipov et al., 2017; Liu et al., 2017; Zhang et al., 2017). Thus, as
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the used faces are too small to show fine details, these face aging systems cannot
generate faces with fine wrinkles.
Concerning the work from Wang et al. (2016, 2018) introducing the Recurrent
Face Aging (RFA) framework, Recurrent Neural Networks are only used to make
the transition from an eigenface from one age group to another. Hence, as faces
are represented by PCA, this system suffers from the same burden as PCA-based
methods. This work does not take advantage of the representation power of Con-
volutional Neural Networks as the previously mentioned methods.

1.7 Discussion

As the reader will have noticed, the simulation of facial aging involves a wide
variety of techniques, mixing image processing, statistics, optimization and deep
neural networks. The first methods introduced ”carefully” chosen shape defor-
mations of faces directly inspired by anthropometry. Approaches based on pro-
totype and Active Appearance Model both proposed two enhancements. First, to
embed the appearance along with the shape. Secondly, the use of statistics - PCA
and regressions for AAM, average in an age group for prototype-based meth-
ods - allows us not to have to integrate much prior knowledge to make a face
age, which is desirable to understand the face aging process. Active Appearance
Model offers the advantage of continuous modeling. Most of the methods devel-
oped later focused on the integration of texture details in the produced results,
taking as a basis Active Appearance Model, prototype, or Deep Neural Networks.

In the light of our objectives, we can draw up a number of remarks on the state
of the art to better understand which research direction to follow to achieve it.
First of all, we can observe that a large majority of these methods models the face
aging process as a discrete process. Indeed, in all methods, except Active Ap-
pearance Model, authors split their dataset in several age groups of approxima-
tively 10 years, and their aging system model the transition from one age group
to another. More specifically, Texture-Enhanced AAM methods model facial ag-
ing as continuous thanks to AAM, but split their dataset in age groups too when
it comes to enhance produced faces. In view of the fact that face aging is a con-
tinuous process, this splitting, despite being convenient for algorithmic purpose,
does not reflect the reality of face aging. Furthermore, it doesn’t allow short-term
aging and smooth transitions between faces at different ages.
Secondly, we can notice some weaknesses concerning approaches trying to in-
clude texture details. The key idea in most approaches is to assign to the aged
face, the texture of the closest face in the database. Recent works decompose
faces in patches, and the same assignation is made patch after patch. This pro-
cess is made on the assumption that faces with close low frequency information
will have the same high frequency details, which is quite reasonable but imper-
fect. It would be desirable to dispose of a system able to model the texture for the
shape and the appearance, in statistically learning its distribution in faces of the
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database.
Thirdly, as one of our objectives is to understand the process of facial aging, the
way of superimposing facial details on faces is not optimal. Ideally, we would
have a representation of facial details which would be human understandable,
and in the same time, able to regenerate facial details on a face from this repre-
sentation.
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Chapter 2

Face Aging

2.1 Introduction

As defined in the introduction, our objective is to develop a system able to make
a face age and to gather knowledge on aging from such a system. This objective
gives rise to several specific constraints:

— Alterations applied to faces due to aging might be learned from a dataset,
integrating the less prior knowledge as possible. Hence, shape, color and
high-frequency details might be added or removed following statistic rules
learned from data.

— Linked with the precedent item, the objective is to generate, not the most
photo-realistic, but the most plausible aged face from an input face image.
Thus, adding arbitrary texture to give the produced face a natural look as
in some approaches is not something desirable.

— Ideally, the system would use human interpretable parameters to help un-
derstand the facial aging process.

— As shown in the previous chapter, low resolution images (< 256 ∗ 256) are
often used in face aging applications. Understanding the facial aging pro-
cess means that using low resolution images is not possible, because lot of
details are lost at that resolution.

In view of the current state of art and our constraints, we based our work on the
Active Appearance Model to simulate facial aging. Active Appearance Model has
the advantage to learn the modifications due to aging without integrating much
prior knowledge. We will explain in detail the functioning of Active Appearance
Model in Section 2.2. After showing some lacks of the model and its usage in
facial aging simulation (Sec. 2.2.4.2), we will introduce our main contribution,
the Wrinkle Oriented Active Appearance Model in Section 2.3. Results from our
new model are shown in Section 2.4 and discussed in Section 2.5. The whole
scheme of our system is shown in Figure 2.1.

45
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Figure 2.1 – Wrinkle Oriented AAM Scheme.

To analyze faces in the light of facial aging, we propose 4 contributions.

1. The first contribution is the parametrization of each wrinkle where shape
and texture are represented altogether by a very understandable 7-length
vector. Conversely, such a vector can be used to produce a wrinkle in shape
and texture just from parameters (Sec. 2.3.1).

2. To represent a group of wrinkles in one facial zone, we propose an approx-
imation of an arbitrary joint probability of n random variables, as the set of
every joint probability for every random variable taken two at a time; that
is our second contribution (Sec. 2.3.2). To sample from such a set, a new
method of sampling is proposed (Sec. 2.3.4).

3. The parametrization of skin micro-texture and its integration is our forth
contribution (Sec. 2.3.5.3).

2.2 Active Appearance Model

In this section, we will briefly present the functioning of the AAM and its usage
in face aging simulation. More importantly, the limitations of AAM and proposi-
tions to circumvent them will be pointed out at the end.

Active Appearance Model (Cootes et al., 1998) is a statistical model which creates
a subspace modelling appearance and shape variations in an annotated dataset
of faces (Fig. 2.2).
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Figure 2.2 – AAM Scheme

2.2.1 Shape Normalization

Firstly, landmarks are placed on facial features as eyes, the mouth, the nose and
the facial outline, and the coordinates of these points define the shape. After-
wards, shapes are rigidly aligned in translation, scaling and rotation with a pro-
crustean analysis using the mean shape as a reference. For this analysis, each
shape Si is aligned to the mean shape S̄ as a least square minimization of Eq. 2.1.

arg min
A,θ,b

‖ S̄−
(

A× Si ·
[

cos θ − sin θ
sin θ cos θ

]
+ b
)
‖2

2 (2.1)

with A, θ, and b respectively the scaling, rotation and translation parameters.

Non-Aligned Shape Mean Shape Aligned Shape Mean Shape

Figure 2.3 – Left: the shape of a face from the base (blue) and the mean shape
(orange). Right: the two shapes are aligned using procrustean analysis.
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2.2.2 Appearance Normalization

Secondly, face images are warped in the mean shape. The face is paved with trian-
gles using a Delaunay Triangulation maximizing the minimum angle of all trian-
gles. The same triangulation is made for the mean shape. After that, the inverse
warping algorithm starts: for each triangle T′i in the mean shape and each corre-
sponding triangle Ti in the face to be warped, an affine function f−1

i is determined
so that f−1

i (T′i ) = Ti. Finally, to find the value of the pixel I′x′ ,y′ in the warped im-
age I′, we identify the triangle this pixel belongs to, we express it as a barycenter
of the 3 vertices (A′, B′, C′) of this triangle as

(x′, y′) =
(
w1A′ + w2B′ + w3C′

)
with

3

∑
j=1

wj = 1 (2.2)

with w1, w2, and w3 the 3 new relative coordinates of the pixel I′x′ ,y′ .
Afterwards, we compute the corresponding position in the original image I as

(x, y) :=
(

w1 f−1
i (A′) + w2 f−1

i (B′) + w3 f−1
i (C′)

)
(2.3)

Now, with the bicubic interpolation, we can assign I′x′ ,y′ := B(I, (x, y)) with
B(I, (x, y)) a cubic combination of the 16 closest pixels to (x, y) in I. The pro-
cess is repeated for each pixel in Iw (Fig. 2.4). At last, we take only the pixels
inside the convex hull of the facial outline defined by annotation, and we have
now the appearance feature (Fig. 2.5).

A

B
C

A'

B'

C'

f-1

Figure 2.4 – Illustration of inverse warping.

2.2.3 Principal Components Analysis

Two Principal Component Analysis (PCA) are carried out, one for appearance,
and one for shape. Principal Component Analysis transforms observations with
correlated variables into values with new linearly uncorrelated variables. These
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Original Triangulation Avg. Triang. Warped Masked

Figure 2.5 – The process to compute the appearance feature from an annotated
face.

new variables are called the principal components. The n observations with d
variables are projected into n vectors of dimensionality min(d, n− 1). This trans-
formation is made such as a principal component accounts for as much variance
as possible while being linearly uncorrelated from other components. In addition,
each principal component explains more variance from the original observations
than the following components. As a consequence, it often takes a few first com-
ponents to explain much of the variance in the original set of observations.

2.2.3.1 PCA Calculation

Mathematically speaking, PCA on a set of observations X can be computed using
a Singular Value Decomposition (SVD) of the covariance matrix of X. We will
detail the calculation of a classical Principal Component Analysis.

Mean Subtraction First, the mean vector X̄ is subtracted from X of dimensions
(n, p):

X̂ = X− X̄ (2.4)

Covariance Matrix Second, X̂ having a mean of zero, X̂T ⊗ X̂ defines the sum
of the product of the differences from the mean for every pair. Dividing by the
number of products n − 1 gives us an average, thus a covariance matrix C of
dimensions (p, p):

C =
X̂T ⊗ X̂

n− 1
(2.5)

Eigenvalue Calculation Third, eigenvalues λ of the covariance matrix C have
to be computed. For that, we can use a property of eigenvalues:

det(C− λI) = 0 (2.6)

with det the determinant operator, I the identity matrix of dimension (p, p), and
λ a scalar.
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Eigenvector Calculation Forth, now that eigenvalues are found, eigenvectors
V have to be computed. For that, we can use a property of eigenvectors and
eigenvalues:

(C− λI)V = 0 (2.7)

PCA Projection Finally, the projection of X in the PCA space is made by:

W = (X− X̄)VT (2.8)

and the perfect reconstruction of X from W can be achieved by:

X = WV + X̄ (2.9)

2.2.3.2 Usage in the Active Appearance Model

PCA is used in Active Appearance Model to encode shape and appearance. Each
shape are vectorized - e.g. 250 landmarks represented by a matrix of dimensions
(250, 2) are ”flattened” to obtain a vector of dimensions (500, ). For appearance,
as defined earlier, only the pixels inside the convex hull of the facial outline are
kept. Once again, the matrices of dimensions (P, 3) are flattened to vectors of
dimensions (P ∗ 3, ). A PCA is made for each features independently - one for
shape and one for appearance. After that, shape weights Wsha are normalized to
have the same global standard deviation as appearance weights Wapp. In order
to do so, shape weights are divided by the sum of eigenvalues of shapes, and
multiplied by the sum of eigenvalues of appearances.

Wsha :=
Wsha ∑m

i=1 λapp,i

∑n
i=1 λsha,i

(2.10)

Afterwards, the shape and appearance weights are concatenated to produce a
matrix Wapp&shape. Finally, a third PCA is carried out on Wapp&shape to generate
a subspace modeling variations in faces both in shape and appearance. The nor-
malization made in Equation 2.10 prevents the final PCA to favor appearance
weights, as these weights have larger variance in comparison to shape weights.
The final weights Wall produced by the third PCA will be used by the next step
to make a face age in terms of shape and appearance.

At this state, two remarks can be made.
First, as defined earlier PCA is perfectly reconstructible. Hence, a face used to
construct the PCA can be projected in the final PCA subspace, and back-projected
to recreate the original shape and appearance. The appearance can be warped to
the reconstructed shape to get the original face.
Second, PCA is generative. A point can be synthetically created in the final sub-
space - at a random position for example - and back-projected to generate a new
face.
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2.2.4 Usage of Active Appearance Model in Face Aging Simula-
tion

2.2.4.1 Trajectories & Simulation

To each image in the database corresponds a point in the final subspace. Our goal
in this section is to identify a face aging direction. For each face, we have the
age of the corresponding person. Hence, an arbitrary regression f can be made
between faces in PCA space Wall, and ages. For example, a cubic polynomial can
be chosen for f :

f (Wall) = ATW3
all + BTW2

all + CTWall + D (2.11)

Therefore, function f is able to estimate an age given a weight from a face. To
make a face with a perceived age a look older/younger of k years, we have to
project it on the final subspace to obtain weights Wi , apply the Equation 2.12,
and reconstruct an aged face from modified Wi.

Wi := Wi + ( f−1(a + k)− f−1(a)) (2.12)

In Equation 2.12, the function f−1 outputs PCA weights given an age. As mul-
tiple different faces can match the same age, f (a) will return the average PCA
weights Wmean,a of this specific age.
To inverse f , a Monte Carlo simulation is made as in Lanitis et al. (2002). A
lot of plausible weights W are generated; the corresponding age for each weight
w ∈ W is found by applying f (w), and f−1 is a lookup table where for a given
age a, f−1(a) is an average of all weights Wa ⊂W such as f (Wa) = a.

To sum up, the final PCA models variations of faces in shape and texture. In this
PCA space, a regression on age is made to identify an aging trajectory. A face
projected in this subspace is translated in the direction identified as an aging di-
rection thanks to the regression. The translated point is reconstructed to a face,
keeping the same identity, but looking older/younger.
We can note that multiple trajectories can be made for different aging trajecto-
ries. For example, after AAM calculation, the population could be divided into
2 groups, one with people who have been very sun-exposed, and another group
with people who have not. Thus, two regressions could be made, one for each
group. Finally, a new face could be projected in the subspace and translated using
the most suitable trajectory to achieve the most precise aging simulation.

2.2.4.2 Problems encountered

When applying the previous method to make a face age, we obtain the result in
Figure 2.6. Aging in terms of shape and color variations is quite well modeled by
AAM. However, new wrinkles don’t appear and existing wrinkles aren’t ampli-
fied. That’s the same for freckles.
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Figure 2.6 – Left: Original image. Right: After an aging of 15 years.

Explanation PCA computes an average appearance and creates its dimensions
using deviations of appearances from this average. As wrinkles/freckles aren’t
perfectly aligned between people, PCA puts in different dimensions similar signs
of facial aging.
This problem of misalignment can be seen from another angle in Figure 2.7. An
average face made of 15 faces of aged people with a large amount of wrinkles.
This average face, supposed to represent the group of 15 faces, is less wrinkled
than the least wrinkled face of the group, and is perceived younger.

Proposition A representation of wrinkles less sensible to slight misalignments
has to be found. With this representation, AAM would produce rejuvenated faces
without wrinkles and aged faces with wrinkles. Similarly, an average face with
this representation would present a level of wrinkles representative of the group
used to make the average; wrinkles on the average face would have average pa-
rameters: an average number of wrinkles, average intensities, average lengths,
. . .
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Figure 2.7 – An average face made of 15 old women faces. Faces are warped in
the mean shape and an average is computed for each pixel.
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2.3 Wrinkle Oriented Active Appearance Model

In view of the current state of art and our constraints, we base our work on the
Active Appearance Model to simulate facial aging, to which we incorporate a spe-
cific channel to fully integrate wrinkles (Sec 2.3.1 & 2.3.2) in this subspace, com-
puted aging trajectories will take into account shape, appearance and wrinkles,
differing from other methods which use classic AAM and add a post-processing
step to include wrinkles.
Afterwards, we detail how to synthesize aged faces from our new wrinkle ori-
ented AAM (Sec. 2.3.4).
Finally, we propose to study the quality of our aging system by presenting im-
ages resulting from the aging and rejuvenating of faces (Sec. 2.4.2). Then, we
show that this approach increases/decreases perceived age more precisely than
the unmodified Active Appearance Model with an age estimation convolutional
neural network (Sec. 2.4.3).

Figure 2.8 – Wrinkle Oriented AAM Scheme.

To analyze faces in the light of facial aging, we propose 3 contributions.

1. The first contribution is the parametrization of each wrinkle where shape
and texture are represented altogether by a very understandable 7-length
vector. Inversely, a wrinkle can be produced in shape and texture just from
parameters from such a vector (Sec. 2.3.1).

2. To represent a group of wrinkles in one facial zone, we propose an approx-
imation of an arbitrary joint probability of n random variables, as the set of
every joint probability for every random variable taken two at a time; that
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is our second contribution (Sec. 2.3.2). A new method of sampling for our
approximated density mentioned above (Sec. 2.3.4).

3. Our third contribution is the parametrization of skin micro-texture and its
integration within the Active Appearance Model (Sec. 2.3.5.3).

2.3.1 Wrinkle Model

We propose a separate model to analyze the shape and appearance variations of
wrinkles.
First, wrinkles are annotated with 5 points for each wrinkle as shown in Figure
2.9. Afterwards, these 5 points are transformed into more explainable pose pa-
rameters containing:

— center (cx, cy) of wrinkle
— length ` which is equal to the geodesic distance between the first point and

the last point of annotation
— angle a in degrees
— curvature C computed as least squares minimization of

min ‖ Y− CX2 ‖2
2 (2.13)

with Y (resp. X) the ordinates (resp. abscissa) of the wrinkle centered with
the origin, and with first and last points horizontally aligned.

Here we just transformed the shape of a wrinkle in a 5-length vector (cx, cy, `, a, C).

In addition, each texture wrinkle is extracted by making a bounding box around
annotation and only keeping high frequency information by Difference of Gaus-
sians (see Fig. 2.10). Here we blur texture with parameter σb = 6 and subtract
blurring result with the untouched texture to make a high-pass filter and extract
wrinkles. This filter has the advantage of being able to reconstruct perfectly the
original image by simply summing the low and high frequency versions of the
image. Here, as the wrinkle is high frequency information, we only keep the high
frequency image and drop the low frequency version which contains skin color.
After that, wrinkle appearance is warped in the mean shape and then trans-
formed in pose parameters. A second derivative Lorentzian function (Eq. 2.14) is
fitted on each column and the average of every parameter found by fitting is kept
(Fig. 2.11).

A ∗
2σ
(

3 (x− µ)2 − σ2
)

(
(x− µ)2 + σ2

)3 + o (2.14)

where µ and σ are respectively location and scale of the second derivative Lorentzian
function, and, A and o are tweaking parameters to adjust the curve. Only A and
σ are kept to characterize respectively depth and width of wrinkles.
Thus, we constructed a model able to transform a wrinkle in a set of 7 under-
standable parameters (cx, cy, `, a, C , A, σ), 5 for shape and 2 for appearance. On
a side note, we can say that other pose parameters could have been computed.
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Figure 2.9 – Example of wrinkles annotation in a face. Each wrinkle is annotated
with 5 points, and a spline approximates its curve for visualization purpose. Two
wrinkles of different colors are belonging to two different groups. The different
groups will be listed in the next section (Sec. 2.3.2 p 56).

Taking the curvature parameter C as minimization of Eq. 2.13 is implicitly mod-
eling wrinkle shapes as second order polynomials. For more accurate but more
complex modeling, third or fourth order polynomials, or any parametric curve,
could be used. Also, concerning appearance pose parameters, our modeling im-
plicitly defines wrinkles as having uniform intensity and width. Instead of taking
the average parameters (A, σ), several parameters (Ai, σi) could have been taken
at different locations for each wrinkle appearance.
As wrinkles are analyzed in a separate channel (Fig. 2.8), wrinkles are removed
from the appearance.

2.3.2 Robust Feature

The objective remains to obtain a representation of wrinkles for each face and to
analyze them by applying PCA. As people have different numbers of wrinkles,
we cannot just compute parameters for each wrinkle in a face and concatenate
them to create a fixed-length representation usable with PCA. We have to find a
fixed-length representation vector of wrinkles for each face.

We propose to estimate the probability density modeling the structure of wrin-
kles for each face and each zone.
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Figure 2.10 – High frequencies extraction. Left: original image. Middle: Image
Gaussian blurred with σb = 6. Right: Difference of Left and Middle Image to
extract high frequencies. The parameter σb is relative to image resolution (i.e
higher resolution implies higher σb), and can be found empirically.
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Figure 2.11 – Texture Fitting Example. Left: warped wrinkle; fitted column is
highlighted. Right: in blue the pixels intensity variations and in green the fitting
result.

Using the system introduced in Section 2.3.1, each wrinkle is represented by a
7-length vector. Faces are divided into 15 zones:

— 2 nasolabial folds

— 2 cheeks

— 2 crow’s-feet

— 2 zones at the corner of the mouth

— 2 zones: below and above the

mouth

— 2 zones below each eye

— forehead

— chin

— frown lines

We aim to compute a joint probability P(d1, . . . , d7) of wrinkles from each zone
and each face. Unfortunately, such joint probabilities can have a very large mem-
ory footprint because of dimensionality, as the memory size of densities grows
exponentially with dimensionality. To circumvent this problem, we propose an
approximation of an arbitrary joint probability of n random variables by com-
puting every joint probability for every random variable taken two at a time
(Fig. 2.12). More precisely, we propose to approximate P(d1, . . . , dn) by the set
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{P(d1, d2), P(d1, d3), . . . , P(dn−1, dn)}. From now, when the number of dimen-
sions n grows linearly, work memory no longer grows exponentially but quadrat-
ically Θ(n(n−1)

2 ).
Joint probabilities are computed by Kernel Density Estimation (KDE) with a Gaus-
sian kernel of standard deviation σkde = 1.5 for 60x60 densities; σkde parameter
controlling the tradeoff between accuracy of wrinkles representation with a low
σkde, and generalization with a higher σkde.

To better understand this approach, Figure 2.12 shows a forehead and the corre-
sponding computed densities. The top left density p(cx, cy) encodes the relation-
ship between the position of wrinkles in abscissa and their positions in ordinate.
Looking at this density, we see two Gaussians with high cx values and two others
with lower cx values. It corresponds to the 4 wrinkles on the forehead, two on
the left (low cx values), and two on the right (high cx values). Similarly, the next
density p(cx, `) codes the relationship between the position in abscissa of wrin-
kles and their lengths. Looking at the picture, there are 3 wrinkles with a similar
length, and a wrinkle shorter than others. As a consequence, the density p(cx, `)
contains one Gaussian with a low ` value, and others with higher ` values.

Thus, for one face, we propose to extract a vector containing, for each of the 15
zones:

— number of wrinkles nw in current zone,
— average wrinkle,
— densities computed with KDE on wrinkles where the average wrinkle was

subtracted,
and to concatenate all 15 vectors to create the representation of wrinkles in one
face. The number of elements in such a representation is: 15 ∗ (1 + 7 + 7(7−1)

2 ∗
60 ∗ 60) = 1134120.

2.3.3 Linking with AAM

To sum up, we introduced three chained levels of representation.
1. The wrinkle level transforms each wrinkle on a picture of a face into 7 param-
eters (cx, cy, `, a, C , A, σ).
2. The zone level uses wrinkles in a zone, already converted to parameters at the
previous level. At this stage, the number of wrinkles, the average wrinkles, and
the ensemble of densities are computed and flattened to a vector to encode the
variations of wrinkles in this zone. Such a vector will be named a zone wrinkles
representation vector.
3. The face level concatenates all 15 vectors generated at the previous level to
create the representation of wrinkles in one face. Such a representation will be
named a wrinkles representation vector.
A third PCA is made for the new feature representing wrinkles. As for shape
(Sec. 2.2.3.2 p 50), the PCA weights of wrinkles Wwri are normalized to have the
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Figure 2.12 – Left: a forehead with 4 wrinkles. Right: ensemble of joint proba-
bilities for the 4 wrinkles. With n = 7, there are n(n−1)

2 = 21 densities; however,
we only show 10 densities for convenient purpose (with n = 5 corresponding to
(cx, cy, `, a, C)).

same global standard deviation as appearance weights Wapp with Equation 2.15.

Wwri :=
Wwri ∑m

i=1 λapp,i

∑n
i=1 λwri,i

(2.15)

with λapp (λwri), the eigenvalues of appearance (wrinkles) weights.
The final weights used for trajectories calculation are a concatenation of appear-
ance weights, shape weights, and wrinkles weights.

2.3.4 Synthesizing Wrinkles

We now have a representation of wrinkles that we are able to incorporate in the
classic AAM as seen on Fig. 2.8. PCA being perfectly invertible, we can re-
construct a shape, an appearance and a wrinkles representation vector from any
point in the final PCA space.
The Sections 2.3.1 and 2.3.2 defined how to create a wrinkles representation vec-
tor from annotated wrinkles in one face. In this section, the inverse path is pre-
sented: how to generate wrinkles on a face from a wrinkles representation vector.
First, the wrinkles representation vector is split into 15 zone wrinkles representa-
tion vectors encoding the variations of wrinkles in each zone. However we must
define how to generate wrinkles from each of our zone wrinkles representation
vectors.
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We propose a new sampling method able to extract plausible wrinkles from a
zone wrinkles representation vector, which contains joint probabilities. Algo-
rithm’s main point is finding a point iteratively, dimension after dimension, whose
projections in each density is above a probability threshold; the threshold is de-
creased from 0.9 to 0.1 progressively to find the best candidate (Alg. 1 p 65).
First of all, peaks are found in P(cx, cy) and SAMPLE function is called for each
peak (px, py) found, from the peak with highest probability to the lowest.
We will present a step-by-step running of the function SAMPLE for a given peak
(39, 41). A vector p = (39, 41, 0, 0, 0, 0, 0) is created which will contain the point’s
coordinate created by the function (Fig. 2.13).

Cy

C
x

p=(39, 41, ?, ?, ?, ?, ?)

Figure 2.13 – The first two values of p are found by peak detection (the green
point of coordinates (39, 41)).

After that, function GET ARGMAX MIN will extract two 1-D densities, P(cx =
39, `) and P(cy = 41, `), apply the minimum operator element-wise on them, and
finally find the coordinate with highest probability ii such as ii = argmax(min (P(cx = 39, `), P(cy = 41, `)))
(Fig. 2.14 and 2.15). With p3 = ii, if P(p3) is below the reference Pre f = 0.9, Pre f
is decreased at 0.8; otherwise the search for p4 begins with Pre f still equals to 0.9
and p = (39, 41, p3, 0, 0, 0, 0).
Here, p3 = 1 and P(p3) = 0.52, so Pre f is sequentially decreased from 0.9 to 0.8,
then 0.7, then 0.6, and finally 0.5, where the value of P(p3) is accepted and the
search for p4 begins with Pre f equals to 0.5 and p = (39, 41, 1, 0, 0, 0, 0).
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Figure 2.14 – The algorithm has to find ` = p3 a value that maximizes the proba-
bility in P(cx = 39, `) and P(cy = 41, `).
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Figure 2.15 – The two extracted red lines on Figure 2.14 are the first two curves at
the top, the third curve is the result of the element-wise minimum operator. We
find that the maximum is obtained for ` = 1.

For p4, the same processing is made with the three 1-D densities P(cx = 39, a),
P(cy = 41, a) and P(` = 1, a). With a = p4 found (Fig. 2.16 and 2.17), if P(p4) is
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below the reference Pre f = 0.5, then backtracking starts: P(cx = 39, ` = 1) and
P(cy = 41, ` = 1) are set to 0 and a new p3 has to be found; otherwise the search
for p5 begins with p = (39, 41, 1, p4, 0, 0, 0).
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Figure 2.16 – The algorithm has to assign p4 a value that maximizes the probabil-
ity in P(cx = 39, a), P(cy = 41, a) and P(` = 1, a).
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Figure 2.17 – The three extracted red lines on Figure 2.16 are the first three curves
at the top, the fourth curve is the result of the element-wise minimum operator.
We find that the maximum is obtained for a = 25.

As the algorithm keeps running, more and more cases are explored to finally
get a point p which maximizes probabilities in densities given the starting peak
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(px, py), and thus corresponds to a plausible wrinkle.
The zone wrinkles representation vector contains the number of wrinkles nw to
generate, the average wrinkle and the densities. We can create the nw wrinkles
parameters by running this algorithm nw times and adding them to the average
wrinkle.

Afterwards, we trivially have to produce wrinkles shape and appearance from
parameters (see Sec.2.3.1 p.55 for definition of these parameters).
Shape is created from (cx, cy, `, a, C) by sampling the polynomial defined by the
curvature C until the specified geodesic length ` is reached. After that, points
composing the shape are rotated according to angle a and finally center (cx, cy) is
added to shape.
Appearance is produced by creating an empty image and variations of a second
derivative Lorentzian function (see Eq. 2.14) of parameters (A, σ) are affected to
each column (Fig. 2.18).
Finally, texture is warped in the newly created shape, for every wrinkle, and wrin-
kles are subsequently blended by adding the gradient of wrinkles with gradient
of the underlying face.
To better understand the texture generation part, we will detail the synthesis of
a wrinkle of parameters (cx, cy, `, a, C , A, σ) = (376, 757, 40, 91, 6.4e−3, 15, 6). Fig-
ure 2.19 shows an example of a wrinkle warped and merged under a mouth.
The input face is decomposed into a low frequency and a high frequency compo-
nents, and the wrinkle texture in Figure 2.18 is warped into the shape defined at
the previous step. An add operation is made between the warped wrinkle and
the high frequency component. Finally, the face is reconstructed by adding the
low frequency component and the modified high frequency component. We can
appreciate how the added wrinkle integrates well with the other wrinkles and the
underlying micro-texture, despite having only 7 parameters to encode wrinkles.

Figure 2.18 – Synthesized wrinkle using a second derivative Lorentzian function
of parameters (A, σ) = (15, 6). To generate a smooth wrinkle that will fit well
with its environment on the face, a fade-in and a fade-out are applied at the start
and at the end of the wrinkle on the parameters A and σ.
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Original Low Freq. High Freq. Warped Added Reconstr.

Figure 2.19 – Synthesis of a wrinkle of parameters (cx, cy, `, a, C , A, σ) =

(376, 757, 40, 91, 6.4e−3, 15, 6). Parameters have a simple interpretation. As a =
91, the wrinkle is rotated by 91◦, that’s why it’s vertical. As ` = 40, the wrinkle
generated has a length of exactly 40 pixels.
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Algorithm 1 Sample one point from an ensemble of joint probabilities
Require: D, list of every 2D joint probabilities

1: function GET ARGMAX MIN(D, n, p, i)
2: index ← i
3: lines← zeros(i, Dindex.ncols)
4: for j = 1 to i do
5: lines[j, :] = Dindex[pj, :]
6: index = index + (n− 2)− j
7: min line = min(lines) . Min Pooling between lines
8: ii← argmax min line
9: return ii, min line[ii]

10: function SAMPLE(D, n, px, py) . densities, n dimensions and peak detected
11: p = zeros(n)
12: p1, p2 ← px, py
13: for Pre f = 0.9 to 0.1 do
14: i← 3
15: while 3 <= i <= n do
16: pi, P(pi) = Get argmax min(D, n, p, i)
17: if P(pi) > Pre f then . Move on
18: i = i + 1
19: else . Backtracking and removing path
20: i = i− 1
21: index ← i
22: for j = 1 to i do
23: Dindex[pj, pi] = 0
24: index = index + (n− 2)− j
25: return p

2.3.5 AAM Modifications

2.3.5.1 Removing the final PCA

In addition to adding a new channel dedicated to wrinkle analysis as mentioned
earlier, we decided to remove the final PCA from the classical AAM.
Historically, Active Appearance Model were first introduced to automate land-
marking of images. For example, let’s state that we want to landmark a face,
given an AAM trained on faces. Using algorithms of optimization as gradient
descent or metaheuristics, the goal is to find, iteratively, the best vector in the
final subspace which reconstruction minimizes the square error with the input
face, in pixels space. Thus, the final PCA is used as a mean of reducing the num-
ber of parameters in the search space, to speed up and facilitate the optimization
process.
In the use we make of AAM, we don’t need this additional reduction. Worse than
that, the final PCA - in an unsupervised manner - could put on a same dimension
variations linked with age and others which are not, perturbing the following
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trajectories computation. Therefore, we removed the final PCA computation and
used the concatenated weights Wapp,sha,wri.

2.3.5.2 Aging Trajectory

The regression f such as f (Wapp,sha,wri) = age is a polynomial of degree 3. To
reduce computational cost only interactions between the 10 first principal com-
ponents of each of the 3 channels are kept.
We are going to explain our approach on a simple case: polynomial regression of
degree 2 with 2 variables (x1, x2). A polynomial regression can be seen as a linear
regression of polynomial variables.

Polynomial Variables First, a new set of 5 variables is computed from (x1, x2):
x2

1, x2
2, x1 ∗ x2, x1, x2 (the interaction term is bolded).

Linear Regression Second, a linear regression is made on the new variables as
in Equation 2.16.

f (x2
1, x2

2, x1 ∗ x2, x1, x2) = a1x2
1 + a2x2

2 + a3x1 ∗ x2 + a4x1 + a5x2 + a6 (2.16)

Hence, interactions are new variables which are products of different variables.
For example, for a polynomial regression of degree 2 and 200 variables, a large
number of variables has to be defined: 200 simple variables, 200 square variables,
and 200(200− 1)/2 = 19900 interactions variables. The number of interactions
variables grows quadratically with the number of variables and exponentially
with the degree. Therefore, we decided to make a polynomial regression of de-
gree 3, and to keep only interactions between the 10 first principal components of
each of the 3 channels.

2.3.5.3 Skin Parameters

In addition to wrinkles, the micro-texture is an important cues to take into ac-
count to obtain a precise aging of faces, and to generate photo-realist images (Fig.
2.20).

Figure 2.20 – Two persons at different ages. Besides wrinkles, micro-texture is an
important cue which help to distinguish these two faces.
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The micro-texture in faces suffers from the same lack of modeling as wrinkles,
due to the same problem as wrinkles: misalignment. As an attempt to integrate
micro-texture, we developed a representation of the face accounting for texture
in different spatial locations and frequencies. As shown in Figure 2.21, the face
is divided in several blocks. In addition, the same face is split into 4 bands of
frequencies as Figure 2.22. The split in frequencies is made using Differences of
Gaussians, which is fast and perfectly reconstructible. Moreover, modification
of one band or more does not produce many artifacts on the final reconstruction
compared to critical-basis wavelet decomposition (Tiddeman et al., 2005; Zhang
and Blum, 1999). Only the 3 first bands are kept as the last band with low fre-
quency information does not contains any texture information.
Afterwards, for each block in each band of frequencies, the mean RGB (3 param-
eters) and the standard deviation RGB (3 parameters) are taken. With 600 blocks
and 3 bands of frequencies, 600 ∗ 3 ∗ 6 = 10800 skin parameters are obtained.

Figure 2.21 – The face is divided in several blocks.
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Figure 2.22 – The face is split into 4 bands of frequencies.

The parameters are concatenated with the appearance vector containing the warped
face. During aging, these parameters are likely to change. For reconstruction, we
dispose of the warped face and the skin parameters, both modified by the AAM.
From the new face, the same splitting in blocks and frequencies is made. Finally,
mean and standard deviation of a block in a specific band of frequencies are al-
tered to match the corresponding parameters.
This method helps the system learn correlation between micro-texture variations
and aging without incorporating much knowledge on aging as for shape, appear-
ance, and wrinkles.
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2.4 Experiments

In this section, we present the database used in the experiments (Sec. 2.4.1). In
the next section, we first present examples of aged and rejuvenated faces resulting
from our model (Sec. 2.4.2), and after that we quantify the correlation between
age progressed faces and the perception of these faces by an independent age
estimation algorithm (Sec. 2.4.3). We show that our system is better correlated
with the perception of age than the classic AAM (Sec. 2.4.3.2) and a state-of-the-
art deep learning method.

2.4.1 Database

Our database consists of 400 Caucasian women taken in 2014, in frontal pose with
a neutral expression and with the same lightning (Fig. 2.23). All faces are resized
to 667x1000 resolution and annotated with 270 landmarks to locate eyebrows,
eyes, mouth, nose, and facial contour (Fig. 2.24). Each face has been rated by 30
untrained raters to obtain a precise perceived age; perceived ages in the dataset
range from 43 to 85 years with an average of 69 years. From this set of 400 faces,
a subset with the same age range of 70 faces are chosen and 5 landmarks are
placed on each wrinkle. Wrinkles annotation wasn’t done on the whole database
because it’s a time-consuming task. Hence, the 400 faces are used to create the
shape and appearance PCA subspaces, and the subset of 70 faces is used to create
the wrinkle subspace and for the trajectory computation part.

43.6 72.1 58.4 61.8 66.3 46.2

Figure 2.23 – A subsample of our database with their corresponding perceived
ages.
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Figure 2.24 – One face with an annotated shape (left) and annotated wrinkles
(right). Each wrinkle is annotated with 5 points, and a spline approximates its
curve for visualization purpose.

2.4.2 Qualitative Results

As seen on Figure 2.25, aging changes several known cues on a face (Donofrio,
2000; Farkas et al., 2004; Yaar and Gilchrest, 2007).
Concerning shape, the size of the mouth is reduced, especially the height of the
lower mouth; eyebrows and eyes are both reduced as well, and we can see facial
sagging at the lower ends of the jaw. Of course, the inverse phenomenon is ob-
served with rejuvenating.
Concerning appearance, the face globally becomes whiter and yellowish, eye-
brows and eyelashes are less present, and the mouth loses its red color as aging
progresses.
With aging, more wrinkles appear and existing wrinkles are deeper, wider and
longer. As we can see, new wrinkles created by our system are plausibly located
with realistic texture (Figs. 2.26 and 2.27).
Furthermore, young skins are globally smoother than older ones. As shown in
Figure 2.28, the performance of the system is improved by the addition of skin
parameters.
The 3 faces shown here were not cherry-picked. The alterations made in terms
of shape, appearance and wrinkles are representative of alterations made with
aging/rejuvenating on the whole database.

In Figure 2.29, we check that our representation of wrinkles can be useful to gen-
erate more accurate average faces. With this representation, the average face con-
tains wrinkles and their number, length and intensity are average in each area.
As shown in Figure 2.30, the average operation made in the space of the wrinkles
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-20 Original +20

Figure 2.25 – Face aging results. Left: Rejuvenating of 20 years. Middle: Original.
Right: Aging of 20 years.

representation vectors, did not dampen the signal to the point where it disap-
pears, in comparison to the same operation made in the pixels space.
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Figure 2.26 – Before and after aging wrinkles under the left eye. As we can see,
the method doesn’t produce any artifact nor suppress underlying micro-texture.

Figure 2.27 – Before and after aging wrinkles around the mouth. As we can see,
the method amplifies existing wrinkles and create new ones.
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Figure 2.28 – Rejuvenating with classic AAM (left) and with WOAAM (right).
These pictures shows the effect of skin parameters. The right picture is slightly
blurred in comparison to the left one due to a decrease of standard deviations in
this location, thus, producing a face perceived younger.

Figure 2.29 – Average face made of 40 faces in the classic way (left), and using the
representation of wrinkles (right). The right picture contains wrinkles and their
number, length and intensity are average in each area.
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Figure 2.30 – The densities corresponding to wrinkles on the forehead for an av-
erage face made of 40 faces (Fig. 2.29).

2.4.3 Quantitative Results

2.4.3.1 Age Estimation

As in Rothe et al. (2015), we employed a pre-trained VGG-16 CNN (Simonyan
and Zisserman, 2014) to create a face representation less sensitive to pose and il-
lumination: we feed a picture as input where the face has been cropped and the
representation produced is the output from block5 pool, the last pooling output.
Afterwards, a Ridge regression is made in a 40-fold manner. As seen on Fig. 2.31,
we obtain a R2 score of 0.92 and an average absolute error and maximum abso-
lute error of respectively, 2.8 years and 13.7 years. On the very same database, the
average human estimates perceived age with an average absolute error and max-
imum absolute error of respectively, 5.5 years and 17.1 years. Here, the ground
truth is the average of perceived ages by human, hence, that is not surprising that
the regression performed better as it was trained to predict averages of perceived
ages.
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Figure 2.31 – Performance of our age estimation algorithm.

2.4.3.2 Comparison with prior works

For this experiment, we compare the perception of aged faces and the percep-
tion of rejuvenated faces for Active Appearance Model (AAM) (Lanitis et al.,
2002), Conditional Adversarial Autoencoder (CAAE) (Zhang et al., 2017) and our
method Wrinkle Oriented Active Appearance Model (WOAAM). For that, we
used the age estimation system presented in the previous section. To test facial ag-
ing, we use faces with a perceived age of less than 60 years, and, for rejuvenating
faces, a perceived age of 70 years and more. For AAM and WOAAM, each face is
aged/rejuvenated 2 years at a time, and we compare, on average, the difference
between estimated and expected age. For CAAE, each face is aged/rejuvenated
10 years at a time because this method use 10 discrete labels, and each label ac-
count for a 10-year interval.

As we can see on Figure 2.32 and 2.33, our method produces faces that are per-
ceived as older than classic AAM and CAAE for aging, and younger for rejuve-
nating. In other words, a facial aging with WOAAM of y years better reduces
the gap between the expected age and the age estimated by the age estimation
system than a classic AAM or CAAE. For a 10-year aging period, the estimation
of age has increased by 4.9 years for WOAAM, by 3.4 years for AAM, and by 2.9
years for CAAE. Also, for a 10-year rejuvenating period, the estimation of age
has decreased by 4 years for WOAAM, by 2.3 years for AAM, and by 1.5 years
for CAAE. On average, we improved performance by a factor of 1.5 over AAM,
and by a factor of 2.5 over CAAE.
However, we can note that for a 10-year period of aging and rejuvenating, the
estimation of age has been altered too slightly: respectively, by only 4 years and
-3.4 years, which is low. This can be explained by the fact that we used only one
aging trajectory, and because our model does not consider age spots.
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Figure 2.32 – Perception of faces aged of y years, in function of y going from 0 to
30 years, for the classic AAM, CAAE, and our Wrinkle Oriented AAM.
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Figure 2.33 – Perception of faces rejuvenated of y years, in function of y going
from 0 to -30 years, for the classic AAM, CAAE, and our Wrinkle Oriented AAM.
Our rejuvenating system decreases the perception of age by only 4 years despite
trying to rejuvenate by 10 years.

2.4.3.3 Understanding the effect of Aging on Wrinkles

Using our representation of wrinkles, age effects can be measured more accu-
rately; we can quantify the effect of aging on wrinkles parameters. For each zone,
various correlations between each wrinkle parameter and biological age are com-
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puted. The same process is made using perceived age instead of biological age.
The large tables containing the results are located in the annex of the document,
Section A.1.1 p 103 for biological age and Section A.1.2 p 105 for perceived age.
We use the following parameters in each zone: length, curvature, width, and in-
tensity. For each parameter, average and maximum values are taken. Taking only
the average could be confusing. As aging goes, new fine wrinkles appear, and
the average length decreases. Hence, we could conclude that wrinkles length de-
creases with aging, which is known as false, despite being desirable. Therefore,
the maximum value is taken in addition to the average. Besides these parame-
ters, the number of wrinkles in each zone is taken too. We note that the results
brought in this study are only valid for the population in our database i.e Cau-
casian women from 43 to 85 years with an average of 69 years.

Results shows as expected that the number of wrinkles increases with aging in
most facial zones. In addition, the number of wrinkles is more correlated with
perceived age than biological age. In terms of number of wrinkles, zones around
the mouth are the most impacted by aging (Right & Left corner of the mouth, Top
of & Below the mouth). Low correlation scores for forehead and frown lines, re-
spectively 9% and 8%, can be explained by the fact that wrinkles usually appear
at a younger age in these areas and are largely due to facial expressions.
Looking at the tables, the intensity of wrinkles are the most affected by aging
(80% correlated with perceived age) – more than any other parameters. The most
affected zones are the nasolabial folds and the corners of the mouth. Also, wrin-
kles width and length are 63% and 57% correlated, respectively, to perceived age.
The area around the mouth is the most impacted zone (Top of & Below the mouth,
Right & Left corner of the mouth). We can link this results with the work of Ezure
et al. (2011): facial sagging is the most important visual cue affected by facial
aging, and wrinkles at the corners of the mouth and nasolabial folds are mostly
consequences of facial sagging; hence, the modeling of wrinkles seems to be con-
sistent with clinical evaluation.
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2.5 Discussion

We presented a new framework to analyze facial aging taking into account shape,
appearance and wrinkles. We showed that the system can generate realistic faces
for aging and rejuvenating, and such age-progressed faces better influence age
perception than with Active Appearance Model or Conditional Adversarial Au-
toencoder. On average, we demonstrated an improvement factor of 2.0 over prior
works.
Usually, image analysis software computes a global score from the face to assess
the effects of skincare products or for dermatological analysis. The accuracy of
the wrinkles modeling allows to go further in this kind of analysis.

Nevertheless, the model can be improved in several ways.
Firstly, the realism of the faces produced by the model has not been rated in this
study.
Moreover, we know that facial aging is influenced by environmental factors like
sun exposure, alcohol consumption or eating practices (Guyuron et al., 2009; La-
treille et al., 2012). A potential next step could be to compute multiple trajectories
in function of those factors.
Skin parameters as defined here are an easy way to integrate micro-texture. Skin
parameters cannot create new pores or skin relief from a smooth skin, unlike the
more complex wrinkles integration. The method can only amplify or dampen ex-
isting micro-texture. Thus, if the system learns that micro-texture increases with
aging and we try to age a face with a smooth skin, change will be seen in terms of
shape, appearance, and wrinkles, but nothing about skin relief and micro-texture.
To circumvent this problem, a more complex representation of micro-texture has
to be added to AAM, as we did for wrinkles.
In addition, dark spots must be included in the model to increase the accuracy of
facial aging. Age spots could be incorporated in our model by creating a dedi-
cated channel in our system, as we did for wrinkles. Afterwards, pose parame-
ters of each age spots shape could be computed by fitting an ellipse to shapes and
taking parameters of the fitted ellipses. Also, pose parameters of each age spots
appearance could be computed by taking their mean RGB color. After that, we
can carry out the same processing that we made for wrinkles. Firstly, to estimate
the probability density modeling the structure of age spots for each face and each
zone. Secondly, we can compute a PCA on our age spots representation vectors
and connect the output to the final weights. Thus, aging trajectories would take
into account age spots, in addition to shape, appearance and wrinkles.
Using only 2D images is not the best way to model a precise aging. Indeed, mod-
eling in 2D does not fully catch 3D variations with ages as facial sagging, cheek-
bones alterations, or other variations of the distribution of fat mass in the face.
An improvement could be to acquire a 3D database of faces, and to use WOAAM
on it; shape would be composed of multiple 3D points, and appearance would be
the texture flattened.



Chapter 3

Health Perception & Aging

3.1 Introduction

Judgments of a person’s health based on facial appearance are a daily occurrence
in social interactions. Understanding how we perceive health from a face is im-
portant because this judgment drives a wide array of social behaviors. Looking
healthy has many positive real-life outcomes such as preferential treatment in the
professional context, in the justice system or in dating interactions (Efran, 1974;
Marlowe et al., 1996; Ritts et al., 1992; Spisak et al., 2014). Inversely, looking un-
healthy is associated to lower self-esteem (Feingold, 1992) and may lead to a risk
of social stigmatization and isolation (Henderson et al., 2016). A better under-
standing of how health is perceived and which facial cues alter this perception is
likely to help reducing the negative social consequences which can follow.
Scientific recent evidences also show that facial healthy appearance is a good pre-
dictor of healthy behaviors (Whitehead et al., 2012) and good health (Re et al.,
2011; Stephen et al., 2009a; Zebrowitz et al., 2014). Faces with an increase of
oxygenated blood skin coloration are perceived healthier, and blood oxygenation
level is known to be associated with cardiovascular fitness (Re et al., 2011). Peo-
ple with a healthy diet, such as daily consumption of fruits and vegetables, have
a more attractive skin color and are perceived healthier (Whitehead et al., 2012).
Sleep deprived people appear less healthy compared with when they are well
rested (Axelsson et al., 2010). And people would acutely detect signs of sickness
from the face in an early phase after exposure to infectious stimuli and potentially
contagious people (Axelsson et al., 2017).
Previous works (Fink et al., 2011a,b, 2012) showed that perceived age and per-
ceived health are correlated, however, facial cues used for the two perceptions
aren’t the same; health perception is influenced by facial adiposity and skin color
while age perception is mostly predicted by skin aging signs.
Although several facial cues have been already identified as relevant cues to
judge apparent health or to detect a general sickness state; more research are still
necessary to better understand the mechanisms behind the perception of health.

79
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To this end, we aimed to automatize human health perception by training a Con-
volutional Neural Network on a related task (age estimation) combined with a
Ridge Regression to rate faces. Indeed, contrary to health ratings, large datasets
with labels of biological age exist. The results show that our system outperforms
average human judgments for health. Moreover, we highlight the fact that our
system is influenced by the same facial cues as humans to judge health from a
face. In this work, we introduce the first system able to estimate health scores
from faces.

That’s why we propose 3 contributions.
Firstly, as often in psychology research, the database we have at our disposal is
quite scarce. We experiment to show whether a Convolutional Neural Network
trained on a similar task with larger datasets available like biological age estima-
tion combined with a simple estimator allows us to achieve great performance on
our task.
Our second contribution is a new methodology where we show that our system
is not only able to imitate judgments by humans, but more importantly that it
uses the same main facial cues as humans.
In our last and third contribution, we highlight new links between facial features
and heath perception.

3.2 Related Works

To the best of our knowledge, we introduce in this chapter the first work on auto-
matic health estimation from face. Thus, the related works rely on the automatic
age estimation from face.

Early works have been made by Kwon and Lobo (1999, 1994), they computed
several distance ratios between landmarks at specific locations on faces to distin-
guish between the 3 classes babies, young adults, and seniors.
Lanitis et al. (2002, 2004) proposed to obtain a compact parametric description
of face images using Active Appearance Model and to use this description to es-
timate ages. The authors tested a range of classifiers and regressions like linear
regression, quadratic regression, cubic regression, and artificial neural network.
This method presents the advantages of using both shape and appearance infor-
mation from the face, and also to be more interpretable as we can display the
most age correlated principal components.
Guo et al. (2009) proposed the Biological Inspired Features. Face images are
firstly convoluted with several Gabor kernels extracting specific details in terms
of scales and orientations. Secondly, the result undergoes a max pooling com-
pensating for small translations and small rotations. Finally, the pooled feature
is used with Support Vector Machines to estimate age with a low Mean Absolute
Error.
Recent uses of deep convolutional neural networks have demonstrated great per-
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Figure 3.1 – An excerpt of the Internet Movie Database with their corresponding
biological age. As we see it above, the database contains faces with large varia-
tions in pose, illumination and color distribution. Pictures are resized to 224x224
before training.

formance and robustness on big datasets with large variations in pose and illumi-
nation. Rothe et al. (2015) proposed to use the ConvNet VGG-16 (Simonyan and
Zisserman, 2014) pretrained on the ImageNet database for image classification.
Thereafter, they finetuned it with a database of 500k celebrity faces to estimate
biological age. Finally, they finetuned it again on the database of the ChaLearn
LAP 2015 challenge which they won.

More recently, some researchers have begun to study whether it is possible to es-
timate less common attributes from the face such as intelligence (Qin et al., 2016),
attractiveness (Chen et al., 2017; Chen and Zhang, 2016; Fan et al., 2017; Liu et al.,
2016) or social relation traits (Zhang et al., 2015).

In view of the current state of art and our constraints, we use a Convolutional
Neural Network trained on biological age combined with a Ridge Regression to
assess health perception from faces (Sec. 3.3.1). Thereafter, we evaluate the sys-
tem performance on our database and we compare it with human performance
on the same database (Sec. 3.3.2). To validate our approach, we alter several facial
cues known to influence human perception and we demonstrate that our health
estimation system reacts in the same way as health perception by humans (Sec.
3.4.1). Finally, we establish the impact of specific facial features on health percep-
tion that have never been studied before (Sec. 3.4.2).

3.3 Health Estimation

3.3.1 Method description

Based on the age estimation method of Rothe et al. (2015), we employ the Con-
volutional Neural Network VGG-16 pre-trained on the ImageNet database (Si-
monyan and Zisserman, 2014) to detect 1,000 classes of objects, and trained it
on the Internet Movie Database (IMDb) of celebrities (Fig. 3.1). We filtered the
≈ 500K images to keep only those containing faces with resolution greater than
120x120 pixels, no more than one face detected in each image, and only picture
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Figure 3.2 – Label distribution encoding with N = 120, x = 32, o = 20 and σ = 5.
A vector of size 120 containing a discretized Gaussian centered on 32 + 20 of
standard deviation 5.

depicting people from 11 to 85 years old. Indeed, we want our application to
work mainly on adult faces – the youngest faces being very different from the
others, they were excluded. For each picture, we have the date of birth of the
celebrity pictured and the date of the photo acquisition, thus we can deduce the
biological age of the depicted person.
In addition, from the original VGG-16 architecture, we replace the final Multi
Layer Perceptron containing a large part of the parameters, by a lighter one with
one layer of 1024 units (Fig. 3.4) and an output layer of 120 units. The objective
of doing so is to shift the learning effort onto the convolutional layers because
the final Multi Layer Perceptron will be dropped as we want to estimate health
and not biological age – thus, having the fastest training with the lowest score is
not the main goal here. Using the same method as Antipov et al. (2016); Rothe
et al. (2015), biological age estimation is seen as a classification method using label
distribution encoding (Geng et al., 2013). An age x ∈ R, is encoded by a vector of
size N containing a discretized Gaussian centered on x + o of standard deviation
σ, with o an arbitrary offset. With N = 120, x = 32, o = 20 and σ = 5, Figure 3.2
display an encoded vector. With y the output vector of size 120 from the neural
network, the age can be computed as: x̃ = ∑120

1 yi ∗ i− 20.

Thus, the last 3 convolutional blocks and the fully connected layers has been
trained on IMDb with Stochastic Gradient Descent with a Learning Rate of 10−4

on 1000 epochs with 10 steps per epoch and a batch size of 16. The decrease of the
Mean Absolute Error for the training set and validation set can be seen in Figure
3.3.

After that, we have to develop our system of health estimation with only 140 im-
ages annotated with health scores (Fig. 3.5). Our database contains 140 photos of
Caucasian women faces with a neutral expression in a controlled environment.



3.3. HEALTH ESTIMATION 83

0 200 400 600 800 1000
Epochs

6

8

10

12

14
M

ea
n 

Ab
so

lu
te

 E
rro

r f
or

 A
ge

 E
st

im
at

io
n MAE Train

MAE Validation

Figure 3.3 – Decrease of the Mean Absolute Error during the training for the train
set and the validation set.

Figure 3.4 – Our architecture takes a 224x224 image and produces a probability
distribution over all possible ages. The blue part has not been modified from the
original VGG-16 architecture.

58.3 43.6 81.2 28.4 18.6 76.2

Figure 3.5 – An excerpt of our database with their corresponding perceived health
scores. Faces were anonymized in this figure.
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For every face, 74 raters were asked to evaluate health and to give a score from 0
to 100; 0 being perceived in ”very bad health” and 100 being perceived in ”very
good health”. Finally, for each image, we took the average of the 74 ratings to
determine a reliable perceived health score.
We want to compute a representation of our faces from the newly trained Con-
vNet using only the convolutions and pooling blocks, and use a regression to
estimate health scores from representations. The blue part in Figure 3.4 is kept to
compute representations (feature extraction) and the green part is replaced by a
regression. From an input image of size 224x224, the blue part outputs a vector
of dimension d=512x7x7=25088 (512 features maps of dimension 7x7). The image
and produced feature maps will pass through 5 successive 2x2 pooling layers -
reducing its dimensions by two, five times (224/25 = 7).
The question remains, at which epoch can we stop the training for health estima-
tion? If we take the weights at an early epoch, the system will be underfitted. In
the same way, as biological age prediction is not the final goal, taking the weights
corresponding to an advanced epoch with a low MAE is not the go-to choice to
make.
We evaluate the suitability of ConvNet weights at each epoch for Health Estima-
tion with a simple Linear Regression trained with a 40-fold configuration. We can
see in Fig. 3.6 how the training on a different, but related, task can increase perfor-
mance on our health estimation problem. At epoch 0, learning for biological age
hasn’t started yet and we get a relatively high MAE (9.0) for health estimation.
In a second stage, learning for biological age greatly decreases Mean Absolute
Error from 9.0 to 6.2. Finally, as learning progresses and the model specializes in
biological age estimation, the error for health estimation increases. An optimal
period is found around epoch 60 to take the weights for health estimation.

Now that we found the ConvNet weights to compute representations from faces,
we test several estimators to asses health scores from representations. For each es-
timator, we evaluate a broad range of parameters and report those producing the
best performance in Table 3.1. We used several estimators: linear regression with-
out penalty, with `1 penalty (lasso), and with `2 penalty (ridge), support vector
regression with a linear kernel and a Gaussian kernel, partial least squares regres-
sion, extremely randomized trees (Geurts et al., 2006), and K-nearest-neighbors.
In the table, the Multi Layer Perceptron is composed of two layers containing n
neurons for the first layer and 120 for the output layer.
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Figure 3.6 – Variation of the Mean Absolute Error in function of the epoch at
which we choose the weights. Epoch 0 corresponds to VGG-16 just trained on
ImageNet. The red curve has been Gaussian smoothed with σ = 25.

Table 3.1 – List of tested estimators. The estimator with the lowest Mean Absolute
Error is bolded.

Estimator MAE
Linear Regression 6.240
Ridge α = 10−3 6.232
Lasso α = 10−2 6.437
Linear SVR C = 103 6.355
RBF Gaussian SVR C = 104, γ = 10−4 6.269
PLS Regression n = 100 14.64
Multi Layer Perceptron n = 2048 8.543
Extremely Randomized Trees n = 200 8.446
K-NN K = 15 8.778

As we can see on Table 3.1, simple estimators as a Linear Regression or a Linear
Regression regularized with a low `2 penalty (Ridge Regression) can achieve the
best performance given our dataset and the feature extraction method we chose
earlier. We can explain the fact that simpler estimators perform better than more
complex estimators as Random Forests or Multi Layer Perceptron by the scarce
number of samples n = 140 in regard of the dimensionality of our features d =
512 ∗ 7 ∗ 7 = 25088.
The final architecture of our system is described in Figure 3.7. An input image
pass through the network trained for biological age estimation freezed at epoch
60 and the output of the last pooling layer (feature extraction) is fed to a Ridge
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Figure 3.7 – The whole computation chain.

regression that will be trained for health estimation.

3.3.2 Experiment: System versus Human performance

We have 2 databases at our disposal:

A. 140 pictures of faces from Caucasian women , with perceived health scores
given by 74 Caucasian women from the same age range (Fig. 3.5). Ages
ranging from 20 to 60.

B. 140 pictures of faces from Chinese women with perceived health scores
given by 74 Chinese women from the same age range. Ages ranging from
20 to 60.

Exploiting the previously described system, we trained the Ridge Regression in
a 140-fold manner to assess its performance for each ethnicity.
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Figure 3.8 – Left graph: The predictions of the system compared to the perceived
health scores for Caucasian faces. Right graph: The same has been done for Chi-
nese faces.

As we can see on Figure 3.8, we can achieve good performance on our dataset
with a scarce amount of data. The estimated health scores are 90.4% and 82.1%
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correlated, for Caucasians and Chineses respectively, to the perceived health rat-
ings. Using mean absolute error MAE, coefficient of determination R2 and Pear-
son correlation PC, Table 3.2 shows that our system estimates health more accu-
rately than an average human working on the same dataset.
In addition, among the 74 judges, one judge with the lowest MAE (i.e smallest
difference in average between his ratings and the average ratings) is selected and
placed in the table below under the name Best Human.

Table 3.2 – Performance of our health estimation system compared to human per-
formance.

Caucasians Chineses
MAE PC R2 MAE PC R2

System 6.21 90.4% 0.817 6.43 82.1% 0.671
Average Human 18.4 64.7% -0.387 20.23 46.6% -2.60
Best Human 9.37 81.3% 0.637 9.04 77.1% 0.384

3.4 Understanding Health Perception and Facial Cues

The newly created system is able to estimate health scores from faces with a good
performance on our datasets. We want now to employ our tool to understand
how facial features influence the perception of health.
To this end, we alter several facial features known to influence health perception
and assess the difference of health scores between the modified and the unmodi-
fied faces to highlight how our system use the same criteria as human to evaluate
health (Sec. 3.4.1). Finally, we carry out the same process with several facial fea-
tures which have never been studied before (Sec. 3.4.2).

3.4.1 Study on known criteria

As defined in the literature (Henderson et al., 2016), facial features like skin lu-
minosity (Fink and Matts, 2008; Stephen et al., 2009a,b), red color of lips (Russell
et al., 2016) or smile expression of the lips (Jones et al., 2018; Ostir et al., 2004) are
known to greatly influence health perception in humans. Here, we test how these
features influence the estimation of health of our system.
First, we convert our face images from RGB to the La∗b∗ color space largely used
in face perception research because it corresponds roughly to the color channel
of the human visual system (see Appendix A.2 page 106 for more information
on this color space). Second, we automatically modify them to amplify or soften
each of the features (Fig. 3.9). Afterwards, we estimate health scores of newly
modified faces, and we assess the average difference of health scores between the
modified and the unmodified faces; we called this average the Delta Score in Table
3.3. In addition to compute the effect of each facial feature on health estimation,
we compute a p-value with a paired t-test to quantify the statistical significance
of the effect. Alterations displayed in Figure 3.9 were chosen empirically to be
high enough to produce a visual effects while keeping a realistic rendering.
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Original Lip: a∗ +10 Lip: a∗ −10 Lip: Smiling Face: L +10

Figure 3.9 – Example of manipulation for facial features (”known features”). Four
manipulations are shown: increase of lip redness a∗ (+10 units), decrease of lip
redness a∗ (-10 units), modification of lip curvature (”smiling lips”) and increase
of facial skin luminosity L∗ (+10 units).

In this study, we modified the smiling aspects of the face by manipulating the
curvature of the lips only. With this simple manipulation we did not produce an
authentic smile on the faces (Korb et al., 2014), so the effect of smiling on health
estimation may have been underestimated.

Table 3.3 – Influence of ”known features” modifications on health estimation.
Modification Delta Score p-value
Lip: a∗ +10 0.61 7.7e-10
Lip: a∗ −10 -0.60 1.3e-07
Lip: Smiling 1.38 2.1e-08
Face: L∗ +10 5.56 9.0e-32
Face: a∗ +03 0.71 8.1e-13
Face: b∗ +03 0.84 5.8e-18

The results in Table 3.3 show positive and significant effects of increasing skin
luminosity, redness and yellowness, and increasing lips redness and smiling on
health estimation; but a negative and significant effect of reducing lips redness.
In other words, female faces with redder and smiling lips, more luminous, yellow
and red skin look healthier. These results are consistent with previous findings in
psychology research performed with human judgments (Jones et al., 2018; Russell
et al., 2016; Stephen et al., 2009b).
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Original Eyebrow: W +20% Eyebrow: H +20% Mouth: H +20% Eye: −15%

Figure 3.10 – Example of morphological manipulation for the eyebrows (width &
height), the mouth (height), and the eyes (size).

3.4.2 Study on new criteria

Here, we repeat the previous process but, this time, by altering specific facial
features with unknown relationship to health perception. In literature, barely any
work have considered the link between morphological changes and perception of
health, only the link between facial adiposity and perceived health (Coetzee et al.,
2009; Henderson et al., 2016). That’s why we propose to apply morphological
changes to facial features such as the lips, eyes, and eyebrows, to quantify their
impact on health estimation, and to discuss those results in light of literature.
Figure 3.10 presents 4 examples of facial features manipulation in terms of their
shape.

Table 3.4 – Influence of ”unknown features” modifications on health estimation.
Modification Delta Score p-value
Eyebrow: Width +20% 1.77 2.0e-14
Eyebrow: Height +20% 0.06 0.51
Mouth: Width +20% 0.42 5.8e-05
Mouth: Height +20% -0.001 0.97
Eye: Size -15% -0.79 1.9e-4
Eyebrow: Distance with Eyes -50% -1.20 1.1e-3

Using our system we determined the influence of facial features shape on health
estimation. The relative size of the eyebrows, the mouth and the eyes is known to
be sexually dimorphic (Bruce and Young, 1998; Re et al., 2013) and changes with
age (Burt and Perrett, 1995; George and Hole, 1995; Samson et al., 2010). Here we
show that the width of the eyebrows and the mouth, the size of the eyes and the
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-20% -15% -10% -5% 0% +5% +10% +15%

Figure 3.11 – Incremental modifications of eye size.

distance between the eyes and eyebrows influence the estimation of health. We
found no correlation between eyebrow thickness and health perception, as the re-
ported p-value is not significant. Female faces with bigger eyes, a larger distance
eyes-eyebrows, larger lips and eyebrows look healthier.

In addition to determining the influence of facial features on health estimation,
we can use our system to characterize this influence. We decide to modify eye
size of faces from our dataset incrementally from -20% to +15% with a step of 5%
(Fig. 3.11). Figure 3.12 shows the effect of this alteration on health estimates.
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Eye size scaling factor (%)
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Figure 3.12 – Impact of eye size on health estimates. At each step, the variation of
health scores is significant (with p being the p-value: p < 0.01).

Based on Figure 3.12, the modification of eye size influences linearly the estima-
tion of health: the bigger the size of the eyes, the higher the health estimation.
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Using this tool, the same process could be done with other facial cues to analyze
their links with health perception.

3.5 Age & Health

In this section, we deepen the link between age and health perception. As shown
in Figure 3.13, age and health perception are negatively correlated (−68%). With
aging, health estimates decrease. Figure 3.14 shows the decrease of health esti-
mates along aging using WOAAM. The 10 first individuals aged using WOAAM
were taken from Section 2.4.3.2 p 75. Each color is an individual at a specific
age. There are 31 points per individual as each face of age y has been rejuve-
nated/aged from y− 30 to y + 30 years, 2 years at a time. As we can see, during
aging, our Wrinkle Active Appearance Model alters facial cues not only linked
with age, but also cues linked with perceived health, consistently with a ”real”
aging.
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Correlation between Age and Health: -68.1%

Figure 3.13 – Correlation between age and health perception of Caucasians.
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Figure 3.14 – Age in function of health estimated from rejuvenated/aged faces.

To give the reader an insight about distinctions between age and health percep-
tion, we present average faces made using health ratings decorrelated from age
ratings.
Here, the database used have never been rated in terms of health by humans, the
tool presented earlier was in charge of giving health ratings. As health perception
and age are known to be correlated (Fink et al., 2011b), health ratings are linearly
decorrelated with perceived age. To make this decorrelation, first we define a
linear regression to predict health h from perceived age a:

argmin
β0,β1

n

∑
i=1

(hi − f (ai))
2 with f (ai) = β1ai + β0 (3.1)

Afterwards, decorrelated health ratings are defined as the residuals of the func-
tion f :

h′i = hi − f (ai) (3.2)

In doing so, we remove the variability in health ratings due to age ratings.
Finally, the ten faces with the greatest decorrelated estimated health are warped
in a mean shape and averaged pixel-by-pixel into one average face; the left face in
Figure 3.15. The same has been done for the ten faces with the lowest estimated
health.
As we can see, two different faces are produced, highlighting facial cues that in-
fluence the estimation of health without influencing the estimation of age: light-
ness, colors, and facial expressions (smiling face at left vs. non-smiling face at
right) seems to be important cues for health estimation decorrelated with per-
ceived age.
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Figure 3.15 – Average face of the 10 faces with the greatest estimated health to the
left, and with the lowest estimated health to the right. Health ratings have been
decorrelated from perceived age.

3.6 Discussion

This chapter described how we managed to develop an automatic system able
to imitate human judgments of health. We trained a Convolutional Neural Net-
work to estimate biological age and we used representations produced by the
network of our scarce database to train a simpler estimator. We observed a very
good performance of the system when we compared it to human judgments of
health. More importantly we found that the system bases its health estimation
on the same facial information than humans. We took advantage of that finding
to identify new links between facial features and health perception. Similarly, we
presented links between health estimation by our system and aging using faces
from different individuals, and faces from the same individuals rejuvenated and
aged with WOAAM.

Nevertheless, we identified several areas of improvement.
First, the use of a Linear Regression to rank the different ConvNet weights (Fig.
3.6) tends to favor this type of estimators in the next step where we compare the
performance of different estimators (Tab. 3.1). We could have ranked the differ-
ent weights using a multitude of estimators. In the same way, the use of a dataset
to rank the weights can be seen as a form of learning on this specific dataset, in-
troducing a risk of overfitting. However, the use of the never used before dataset
with Chineses faces shows that this ranking generalizes well with other datasets
and ethnic groups.
Moreover, by using more images annotated with health ratings, we could im-
prove the performance of our system and make it more robust to variations in
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pose and illumination.
To augment our database, we tested to generate new faces from our scare dataset
by making specific average faces. One’s facial cues are ”pasted” onto the head of
another face and the shape of the facial cues are warped into an average of the
facial cues from both faces (Fig. 3.16). The Poisson blending (Pérez et al., 2003) is
used to smoothly remove potential skin color differences. Afterwards, this new
faces were annotated by humans in terms of health. Unfortunately, adding this
new database in our training set has only increased our performance by a few
percent.

1+2 1+3 1+4 10+11 10+12 10+13

Figure 3.16 – The first face is the first picture of our dataset mixed with the second
one. The second face is the first picture of our dataset mixed with the third one.
The third face is the first picture of our dataset mixed with the forth one. For the
next three faces, the same process was done starting not from the first face but
from the tenth one.

Additional work will be necessary to test its performance on other demographic
groups such as other ethnicities and men.

To conclude, we developed the first automatic health estimation system able to
reproduce human judgments and show how it can contribute to better under-
stand the perception of health. Such a system will help to further explore the use
of facial cues and, more importantly, their validity in health judgments. More-
over, this tool will improve the evaluation of the properties of different makeup
conditions, as we can see in the Additional Works section in the next chapter.



Conclusion

Preamble

We presented a framework able to age an input face in terms of appearance,
shape, wrinkles, and microtexture. This work is the first to directly integrate
wrinkles in the Active Appearance Model. First by introducing a new model of
wrinkles, second by representing wrinkles distribution in a facial zone in an in-
novative manner. We showed that this approach outperforms classical AAM and
a GAN-based approach. We believe that this method could be extended to in-
tegrate dark spots in AAM. The accuracy of our representation of wrinkles can
help us, first to understand more precisely the effects of cosmetic and skincare
products on the face, second, to build a better skincare evaluation process in an-
alyzing wrinkles evolution over time more finely.

After that, we introduced a new system able to estimate health from faces to
study the link between perceived health and aging. We showed how using a
similar task with a large amount of annotated data available (biological age es-
timation) allows us to obtain a good performance with a scarce amount of data
on our task (perceived health estimation). More importantly we found that the
system bases its health estimation on the same facial information than humans.
We took advantage of that finding to identify new morphological links between
facial features and health perception. As perceived health is linked to the ”real”
biological health state, the system could be used on a daily basis to detect early
signs of sickness. We suggest that a quick decrease of this index over time for a
face could be an alert on a potential declining health condition, but this has to be
demonstrated.

Future Work

During our investigation, some points have not been deepened sufficiently. Some-
times, they are related to the model, sometimes to the methodology. We consider
that treating these points would enhance efficiency, we report them as follows:

— Using 3D faces could help the precision of face aging. Indeed, the facial
aging process is largely influenced by 3D fat displacement under the skin
and alterations of the facial skeleton (Bellity and Bellity, 2017; Mendelson
and Wong, 2012). Facial sagging can cause wrinkle formations on the skin
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surface. Thus, in using only 2D images, ones cannot integrate all the com-
plexity of facial aging. Using 3D images would allow to model 3D shape
deformations and to understand the causal effects between them and alter-
ations of the skin surface.

— We focused our latest work on health estimation, but we could have fol-
lowed the work on face aging making multiple aging trajectories. Indeed,
we know that facial aging is influenced by environmental factors like sun
exposure, alcohol consumption or eating practices (Guyuron et al., 2009; La-
treille et al., 2012). A potential improvement could be to compute multiple
trajectories in function of those factors. With such multiple trajectories, we
could more precisely make a face ages. In addition, we could make a face
ages in different aging directions and to show the results for prevention
purpose, and to motivate healthy behaviors. However, computing multi-
ple trajectories instead of one is trivial, and the focus on perceived health
seemed more interesting from the company’s point of view, thus we pre-
ferred to explore a new path in choosing to develop a health estimation
system.

— As the datasets used contains only Caucasians, or Chineses concerning the
work on health estimation, the obtained results are only valid for these
specific ethnic groups. Despite being confident in the intrinsic qualities of
our systems to generalize to other ethnicities as well, we cannot ensure it.
Hence, to use databases with faces from other ethnic groups would be de-
sirable to reinforce our systems robustness. Similarly, our work is focused
only on women’s faces, men could be added to our datasets.

— Similarly, this work could be extended to less constrained databases. We
are currently working on extending it to ”selfie” images shot with various
illumination conditions; allowing us to deploy it on mobile devices.

Additional Work

When making a thesis in the industry, it’s rare to work on only one subject dur-
ing the 3 years. Thus, we had the opportunity to work on small but interesting
projects.

Automatic clinical evaluation

In the department, dermatologists are asked to rate the severity of clinical aging
signs. For example, when they are shown a picture of a face zoomed onto a na-
solabial fold (Fig. 3.17), they have to rate on a scale from 1 to 7 the severity of
aging of this zone. However, this clinical evaluation is very time-consuming: to
evaluate all signs in a face, it takes a dermatologist between 10 and 15 minutes.
We introduced a Proof-of-Concept able to give clinical score to zoomed pictures
of nasolabial folds, with the same accuracy than dermatologists.
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First, pictures are convoluted with several Gabor kernels followed by a Max Pool-
ing operation for the feature extraction part, and Extremely Randomized Trees are
used to make the decision. The system is trained with 300 images with ratings of
a dermatologist, in a 10-fold configuration. In the first line of Table 3.5, we can see
that ratings estimated with our system are 90% correlated with the ratings pro-
duced by the dermatologist on new input images. To give the reader an insight
about this accuracy, we propose to measure intervariability and intravariability.
The same dataset is rated by two dermatologists, and we see that ratings made
by the first dermatologist is 85% correlated with the ratings produced by the sec-
ond one, that’s the intervariability. In addition, we asked the first dermatologist
to rate the same dataset a second time, one month after the first scoring session,
that’s the intravariability. We see that ratings made by the first dermatologist is
91% correlated with the ratings produced one month later. We can observe that
our system seems to have an accuracy close to dermatologists. However, more
experiments would be needed to reinforce the robustness of this system.

1 4 0 7

Figure 3.17 – Nasolabial folds and corresponding ratings by a dermatologist.

Table 3.5 – System Performance versus Human Performance.
MAE R2 PC

Human1 vs System 0.71 0.78 90%
Human1 vs Human2 0.81 0.68 85%
Human1 T1 vs Human1 T2 0.65 0.81 91%

Microscopic Image Analysis

Biologists in the department have to assess the hydration power of active molecules
on living cells on a regular basis. They apply on cells a solution containing the ac-
tive molecule to test, before analyzing these cells with a microscope. The higher
the fluorescence seen in the image, the better the hydration. We proposed a soft-
ware to automatically extract the level of fluorescence from a cell image, thus
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allowing to rank multiple molecules by hydration power.

The fluorescence is determined by the intensity of each cell. As the first image A
in Figure 3.18, the intensity of the light is not the same in every zone of the image,
avoiding an accurate measure of fluorescence. Using difference of Gaussians,
we achieve to greatly dampen this variation of lightness. After that a simple
thresholding is made to extract the average intensity value from cells. In Figure
3.19, the variations in the hydration power of vitamin E with time were computed
with this tool.

A Original B Blurred C = A - B

Figure 3.18 – A: Microscopic image. B: Gaussian Blurred. C: The difference be-
tween the original image and its blurred version.
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Figure 3.19 – Decrease in the hydration power of vitamin E on human cells with
time (T+0, T+30min, T+2h, T+6h).
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Virtual Makeup

Finally, we came up the idea of proposing the simple skin parametrization ob-
tained in Section 2.3.5.3 page 66 as a virtual makeup simulation method. The
split in space and frequency is well adapted to model a foundation or lipstick
application in terms of color alterations and smoothing effect.
In Figure 3.20, the skin parameters from a face with foundation is applied to a
face without make-up. We can see how the lightness and colors change (low fre-
quency information) and how the skin texture (high frequency information) is
realistically smoothed by the virtual make-up - pores and spots are greatly soft-
ened. Several artifacts due to the patch decomposition appear near the eyes and
eyebrows. They could be mitigated using a blending operation at the edge of
each patch, using for example the Poisson blending method (Pérez et al., 2003).

A Original B Virtual Foundation C Real Foundation

Figure 3.20 – Skin parameters computed from a face with foundation is applied
to image A, to give image B. In image C, the real foundation is applied.

Makeup evaluation

Usually, makeups are evaluated using distinct specific metrics. For example,
foundations are compared using their coverage effect, brightness effect, homo-
geneity effect, and many more. We propose to assess makeup in terms of age
and health perception, more meaningful for consumers. We use the age estima-
tion system presented in Section 3.3.2 p 86 and the health estimation system pre-
sented in Section 2.4.3.1 p 74. Both systems have been trained on faces without
any makeup.
We disposed of facial photographs of 32 women taken under controlled illumina-
tion with a neutral pose. Each woman was made up by a makeup artist, to obtain
7 independent conditions:

1. without makeup
2. with concealer and foundation
3. the precedent condition where blush was added
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4. the precedent condition where lipstick and lip liner were added
5. the condition 3 where eye liner, eye shadow, mascara, and eyebrow pencil

were added
6. with full face makeup where the makeup artist where asked to give a natu-

ral look
7. with full face makeup where the makeup artist where asked to give a in-

tense look

No Makeup Natural Intense

Figure 3.21 – Exemple of 2 faces under 3 conditions: no makeup, with makeup
to give a natural look, and with makeup to give an intense look. These faces are
average faces of women in their 30’s (first line) and in their 50’s (second line).

The Figure 3.21 shows 3 conditions for two average faces for 2 age ranges, 30
years and 50 years.
Leveraging the previously described systems, first we estimated the ages and
health scores from faces without makeup (condition 1). After that, we estimated
the ages and health scores from faces in one of the 6 other conditions. Finally,
we computed an average difference between estimates to account the effect of a
specific condition.
The influence of makeup conditions on estimated age and health is presented in
Table 3.6. The effect of makeup appears to be low on estimated age but stronger
on estimated health.
Only condition 3 shows a significant and positive influence on estimated age,
while all conditions except condition 3 impact significantly and positively the es-
timation of health.
In the light of the literature we might explain the result on age estimation by re-
cent findings showing differential effects of makeup on perceived age according
to the age of the women (Dayan et al., 2015; Russell et al., 2018). Russell et al.
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(2018) found that 40 - and especially 50-year-old-women did appear significantly
younger when wearing makeup, 30-year-old women looked no different in age
with or without makeup, while 20-year-old women looked older with makeup.
Based on these results, we conducted a supplementary analysis by splitting our
set of faces in four age groups, women in their 20s, 30s, 40s and 50s, with 8 women
by age groups.
The results are shown on Figure 3.22. The graphs show similar pattern of re-
sults with our system compared to the results observed with human perception
in Russell et al. (2018). We tested whether differential effects of makeup also exist
on the estimation of health according to age, these results are shown on Figure
3.23. The pattern of results shows positive effects of makeup on health estima-
tion that vary according to age groups; however the effect was significant only
for women in their 30s. The small number of faces by age group might explain
the non significant effects of makeup on the other age groups.

Table 3.6 – Influence of different makeup conditions on the estimation of age and
health. Non significant values are grayed out.

Age Health
Delta Score p-value Delta Score p-value

2. Foundation 1.02 0.07 1.97 0.03
3. Blush 1.98 0.003 0.85 0.41
4. Lipstick 1.13 0.05 3.72 0.002
5. Eye shadow -0.40 0.52 2.96 0.003
6. Natural -0.088 0.86 3.85 0.002
7. Intense 0.13 0.84 3.23 0.002

This new method aims to improve modeling of cosmetics effects on beauty. It
should contribute to better understand the visual effects of the products on facial
appearance and better predict consumer preferences.
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Intense Look

Figure 3.22 – We measure the average difference of scores for makeup giving a
natural look (left) and makeup giving an intense look (right) for four age groups.
Non significant variations are grayed out.
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Intense Look

Figure 3.23 – We did an analysis similar to the one in Figure 3.22, but for health
estimation. We measure the average difference of health scores for makeup giv-
ing a natural look (left) and makeup giving an intense look (right) for four age
groups. Non significant variations are grayed out.
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Appendices

A.1 Tables: Aging & Wrinkles

These tables are the results of the analysis introduced on Section 2.4.3.3 page 76.
Using our representation of wrinkles, we can quantify the effect of aging on wrin-
kles parameters. For each zone, we computed various correlation between each
wrinkle parameter and biological age (Sec. A.1.1). We did the same using per-
ceived age instead of biological age (Sec. A.1.2).

A.1.1 Biological Age

Table A.1 – Correlation between number of wrinkles and biological age for each
zone.

Zone Number
PC p-value

Right Corner of the Mouth 39% 6.7e-03
Left Corner of the Mouth 59% 1.4e-05
Forehead 12% 4.1e-01
Top of the mouth 44% 1.8e-03
Right Cheek 34% 1.8e-02
Left Cheek 28% 5.5e-02
Chin 29% 4.6e-02
Right Crow’s-feet 37% 1.1e-02
Left Crow’s-feet 41% 4.1e-03
Frown lines 8% 5.8e-01
Right Nasolabial Fold 40% 4.9e-03
Left Nasolabial Fold 40% 4.9e-03
Below the Mouth 49% 4.1e-04
Below Right Eye 18% 2.2e-01
Below Left Eye 13% 3.7e-01
All Zones 46% 1.0e-03
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Table A.2 – Correlation between length and curvature of wrinkles and biological
age for each zone. The mean and max values were taken for each parameter. The
curvature is in fact the absolute value of the curvature parameter.

Zone Mean Length Mean Curvature Max Length Max Curvature
PC p-value PC p-value PC p-value PC p-value

Right Corner of the Mouth 22% 1.4e-01 39% 6.4e-03 31% 3.1e-02 45% 1.4e-03
Left Corner of the Mouth 2% 9.0e-01 7% 6.4e-01 23% 1.2e-01 -4% 7.9e-01
Forehead 5% 7.3e-01 1% 9.7e-01 16% 2.7e-01 20% 1.7e-01
Top of the mouth 25% 9.1e-02 7% 6.2e-01 36% 1.3e-02 25% 9.2e-02
Right Cheek -9% 5.3e-01 -14% 3.5e-01 3% 8.6e-01 25% 8.6e-02
Left Cheek -0% 9.8e-01 -5% 7.5e-01 18% 2.2e-01 25% 8.5e-02
Chin 10% 5.1e-01 14% 3.6e-01 17% 2.4e-01 32% 3.1e-02
Right Crow’s-feet 21% 1.6e-01 5% 7.4e-01 28% 5.3e-02 18% 2.3e-01
Left Crow’s-feet 4% 8.0e-01 2% 9.0e-01 23% 1.2e-01 5% 7.4e-01
Frown lines 16% 3.0e-01 -4% 7.7e-01 20% 1.7e-01 29% 5.1e-02
Right Nasolabial Fold 38% 7.9e-03 -1% 9.6e-01 38% 7.9e-03 -1% 9.6e-01
Left Nasolabial Fold 31% 3.1e-02 7% 6.3e-01 31% 3.1e-02 7% 6.3e-01
Below the Mouth 34% 1.8e-02 20% 1.8e-01 40% 5.4e-03 40% 5.7e-03
Below Right Eye 9% 5.3e-01 20% 1.8e-01 31% 3.2e-02 23% 1.2e-01
Below Left Eye 15% 3.3e-01 1% 9.3e-01 21% 1.6e-01 20% 1.7e-01
All Zones 37% 1.1e-02 0% 9.8e-01 48% 7.1e-04 41% 4.0e-03

Table A.3 – Correlation between intensity and width of wrinkles and biological
age for each zone. The mean and max values were taken for each parameter.

Zone Mean Intensity Mean Width Max Intensity Max Width
PC p-value PC p-value PC p-value PC p-value

Right Corner of the Mouth 39% 7.1e-03 45% 1.4e-03 54% 9.0e-05 46% 1.0e-03
Left Corner of the Mouth 49% 5.0e-04 46% 1.3e-03 62% 3.2e-06 49% 4.4e-04
Forehead 16% 3.0e-01 -20% 1.9e-01 28% 5.8e-02 -10% 5.0e-01
Top of the mouth 37% 9.7e-03 34% 1.9e-02 23% 1.1e-01 32% 2.7e-02
Right Cheek 10% 5.0e-01 -1% 9.6e-01 27% 6.9e-02 4% 7.9e-01
Left Cheek 9% 5.6e-01 9% 5.5e-01 20% 1.8e-01 14% 3.3e-01
Chin 38% 9.0e-03 24% 1.1e-01 43% 2.6e-03 27% 6.6e-02
Right Crow’s-feet 24% 1.0e-01 29% 4.8e-02 28% 6.0e-02 33% 2.2e-02
Left Crow’s-feet 29% 4.7e-02 19% 2.1e-01 42% 3.4e-03 25% 9.1e-02
Frown lines 33% 2.2e-02 16% 2.7e-01 40% 5.7e-03 13% 3.7e-01
Right Nasolabial Fold 57% 3.0e-05 43% 2.5e-03 57% 3.0e-05 43% 2.5e-03
Left Nasolabial Fold 66% 4.1e-07 44% 2.2e-03 66% 4.1e-07 44% 2.2e-03
Below the Mouth 44% 2.0e-03 47% 8.8e-04 42% 3.1e-03 48% 7.0e-04
Below Right Eye 25% 8.7e-02 -17% 2.6e-01 34% 2.1e-02 -1% 9.7e-01
Below Left Eye 22% 1.3e-01 -24% 1.1e-01 36% 1.3e-02 9% 5.3e-01
All Zones 69% 1.1e-07 50% 3.8e-04 69% 9.1e-08 52% 1.5e-04
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A.1.2 Perceived Age

Table A.4 – Correlation between number of wrinkles and perceived age for each
zone.

Zone Number
PC p-value

Right Corner of the Mouth 60% 7.6e-06
Left Corner of the Mouth 62% 3.3e-06
Forehead 9% 5.5e-01
Top of the mouth 56% 5.1e-05
Right Cheek 38% 8.5e-03
Left Cheek 40% 5.6e-03
Chin 31% 3.3e-02
Right Crow’s-feet 35% 1.7e-02
Left Crow’s-feet 41% 4.5e-03
Frown lines 8% 5.9e-01
Right Nasolabial Fold 38% 7.9e-03
Left Nasolabial Fold 38% 7.9e-03
Below the Mouth 51% 2.5e-04
Below Right Eye 35% 1.6e-02
Below Left Eye 18% 2.2e-01
All Zones 55% 5.5e-05

Table A.5 – Correlation between length and curvature of wrinkles and perceived
age for each zone. The mean and max values were taken for each parameter. The
curvature is in fact the absolute value of the curvature parameter.

Zone Mean Length Mean Curvature Max Length Max Curvature
PC p-value PC p-value PC p-value PC p-value

Right Corner of the Mouth 22% 1.3e-01 29% 4.9e-02 39% 6.2e-03 41% 4.3e-03
Left Corner of the Mouth 15% 3.1e-01 9% 5.3e-01 38% 8.5e-03 7% 6.3e-01
Forehead -2% 8.7e-01 7% 6.5e-01 9% 5.3e-01 24% 1.1e-01
Top of the mouth 42% 3.0e-03 18% 2.2e-01 50% 3.4e-04 44% 2.2e-03
Right Cheek 11% 4.6e-01 -1% 9.6e-01 27% 6.4e-02 30% 4.1e-02
Left Cheek 20% 1.7e-01 3% 8.6e-01 39% 6.3e-03 32% 3.0e-02
Chin -1% 9.4e-01 7% 6.3e-01 7% 6.5e-01 23% 1.2e-01
Right Crow’s-feet 21% 1.5e-01 4% 8.0e-01 26% 8.0e-02 11% 4.8e-01
Left Crow’s-feet 11% 4.6e-01 -4% 7.9e-01 25% 8.9e-02 -1% 9.5e-01
Frown lines 24% 1.0e-01 1% 9.2e-01 34% 2.0e-02 19% 2.1e-01
Right Nasolabial Fold 41% 4.5e-03 -18% 2.1e-01 41% 4.5e-03 -18% 2.1e-01
Left Nasolabial Fold 31% 3.5e-02 -6% 7.1e-01 31% 3.5e-02 -6% 7.1e-01
Below the Mouth 46% 1.2e-03 31% 3.7e-02 47% 9.5e-04 42% 3.6e-03
Below Right Eye 11% 4.7e-01 41% 4.3e-03 42% 3.5e-03 29% 4.7e-02
Below Left Eye 20% 1.9e-01 12% 4.3e-01 26% 7.2e-02 25% 9.3e-02
All Zones 43% 2.6e-03 -17% 2.6e-01 57% 2.5e-05 46% 1.3e-03
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Table A.6 – Correlation between intensity and width of wrinkles and perceived
age for each zone. The mean and max values were taken for each parameter.

Zone Mean Intensity Mean Width Max Intensity Max Width
PC p-value PC p-value PC p-value PC p-value

Right Corner of the Mouth 40% 5.0e-03 50% 3.0e-04 56% 4.6e-05 53% 1.1e-04
Left Corner of the Mouth 60% 9.2e-06 50% 3.1e-04 70% 3.4e-08 57% 3.3e-05
Forehead 14% 3.6e-01 -12% 4.0e-01 19% 2.0e-01 -14% 3.6e-01
Top of the mouth 43% 2.3e-03 51% 2.2e-04 29% 4.5e-02 52% 1.6e-04
Right Cheek 29% 4.9e-02 16% 2.9e-01 42% 3.0e-03 19% 1.9e-01
Left Cheek 19% 1.9e-01 27% 6.6e-02 31% 3.1e-02 35% 1.6e-02
Chin 31% 3.4e-02 19% 2.1e-01 38% 8.6e-03 23% 1.2e-01
Right Crow’s-feet 31% 3.5e-02 25% 9.5e-02 34% 2.1e-02 26% 7.9e-02
Left Crow’s-feet 26% 7.8e-02 1% 9.3e-01 47% 9.1e-04 17% 2.6e-01
Frown lines 42% 3.2e-03 31% 3.6e-02 42% 3.1e-03 22% 1.3e-01
Right Nasolabial Fold 69% 6.4e-08 40% 5.4e-03 69% 6.4e-08 40% 5.4e-03
Left Nasolabial Fold 73% 7.2e-09 41% 3.8e-03 73% 7.2e-09 41% 3.8e-03
Below the Mouth 57% 2.4e-05 60% 1.0e-05 51% 2.8e-04 59% 1.2e-05
Below Right Eye 48% 6.7e-04 -4% 7.9e-01 51% 2.8e-04 14% 3.6e-01
Below Left Eye 37% 9.8e-03 -7% 6.4e-01 46% 1.2e-03 14% 3.6e-01
All Zones 80% 2.1e-11 61% 4.7e-06 80% 2.4e-11 63% 2.2e-06

A.2 La∗b∗ color space

The goal of La∗b∗ color space is to better represent colors in terms of human
visual perception. Uniform changes in the L*a*b* color space aim to correspond
to uniform changes in perceived color by humans. The three components are:

— L is the lightness value, ranging from 0 (black) to 100 (white)

— a∗ is the green-red component, usually ranging from −128 (green) to +127
(red)

— b∗ is the blue-yellow component, usually ranging from−128 (blue) to +127
(yellow)

To convert from RGB to La∗b∗, first RGB is converted to XYZ, then XYZ is con-
verted to La∗b∗.

A.2.1 RGB to XYZ

RGB is first converted to XYZ (XYZ, 2018):2,768 9 1,751 7 1,130 2
1,000 0 4,590 7 0,060 100
0,000 0 0,056 508 5,594 3

R
G
B

 =

X
Y
Z

 (A.1)
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A.2.2 XYZ to La∗b∗

Then, from XYZ to La∗b∗ (LAB, 2018):

L? = 116 f
(

Y
Yn

)
− 16 (A.2)

a? = 500
(

f
(

X
Xn

)
− f

(
Y
Yn

))
(A.3)

b? = 200
(

f
(

Y
Yn

)
− f

(
Z
Zn

))
(A.4)

where:

f (t) =

{
3
√

t if t > δ3

t
3δ2 +

4
29 otherwise

(A.5)

δ =
6

29
(A.6)

Here, (Xn, Yn, Zn) represents the standard illuminant.

A.3 Makeup Mirror

Our age estimation algorithm was implemented on a smart mirror to give instant
age estimates, and observe how they vary according to different kinds of makeup.
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Figure A.1 – The color and the brightness of the lights are controlled by the mirror.
The red number is the instant estimate and the two green numbers are the mean
and standard deviation over the 40 last estimates.
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Victor Martin, Renaud Séguier, Aurélie Porcheron, and Frédérique Morizot. Face
aging simulation with a new wrinkle oriented active appearance model. Multi-
media Tools and Applications, pages 1–19, July 2018a. ISSN 1380-7501, 1573-7721.
doi: 10.1007/s11042-018-6311-z. URL https://link.springer.com/article/

10.1007/s11042-018-6311-z.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.2009.00594.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1751-1097.2009.00594.x
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435270/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3435270/
http://www.sciencedirect.com/science/article/pii/S0031320308003130
http://www.sciencedirect.com/science/article/pii/S0031320308003130
https://link.springer.com/article/10.1007/s11042-016-3830-3
https://link.springer.com/article/10.1007/s11042-016-3830-3
http://doi.acm.org/10.1145/3123266.3123431
http://www.sciencedirect.com/science/article/pii/S0190962200900082
http://www.sciencedirect.com/science/article/pii/S0190962200900082
https://link.springer.com/article/10.3758/BF03204298
https://link.springer.com/article/10.3758/BF03204298
http://doi.org/10.1037/0021-9010.81.1.11
http://doi.org/10.1037/0021-9010.81.1.11
https://link.springer.com/article/10.1007/s11042-018-6311-z
https://link.springer.com/article/10.1007/s11042-018-6311-z


116 BIBLIOGRAPHY
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