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ABSTRACT  

L'Élucidation de la Signalisation du Sulfure d'Hydrogène par Persulfidation 

Le sulfure d’hydrogène (H2S), auparavant considéré comme un gaz toxique, est aujourd’hui reconnu 

comme gazotransmetteur. De nombreuses études ont révélé le rôle de l’ H2S en tant que molécule de 

signalisation redox contrôlant d’importantes fonctions physiologiques et pathologiques. Le mécanisme 

sous-jacent proposé pour expliquer ses effets est la persulfidation (R-SSH, aussi connue sous le nom 

de S-sulfhydration), une modification post-traductionnelle oxydative des thiols de résidus cystéines. La 

persulfidation des protéines est restée sous-étudiée en raison de son instabilité et de sa réactivité 

chimique similaire à celle d’autres modifications de la cystéine, faisant d’elle une modification très 

difficile à marquer sélectivement. De là, nous avons développé une nouvelle méthode chimiosélective 

en deux étapes, aisément adaptable à des applications diverses, pour la détection et le marquage des 

protéines persulfidées, connue sous le nom de méthode “Dimedone-switch”. Nous avons confirmé la 

cinétique et la sélectivité de la méthode, tout en montrant que la persulfidation des protéines est une 

modification conservée au cours de l’évolution et aussi contrôlée par l’H2S produit dans les voies de 

transsulfuration et de catabolisme de la cystéine.  Nous avons adapté la méthode à une détection 

directe sur gel à différents organismes-modèles, à la microscopie à fluorescence, à une approche de 

antibody microarray et à l’analyse protéomique par spectrométrie de masse. 

Par la suite, nous avons étudié le rôle de l’ H2S dans la signalisation redox via la persulfidation. 

Pour cela, nous avons étudié l’interconnexion entre R-SSH et les modifications séquentielles des thiols 

de cystéines, à savoir la sulfenylation (R-SOH), la sulfinylation (R-SO2H) et la sulfonylation (R-SO3H), 

formées lors de l’exposition au stress oxydatif (espèces réactives à l’oxygène). Nos études ont montré 

une corrélation directe entre R-SSH et ces modifications de manière temporelle et dose-dépendante. 

Nous avons observé un net décalage de phase dans la réponse entre les deux modifications de 

cystéines, R-SSH et R-SOH, qui mettent en évidence la présence de “vagues de protection” par la 

persulfidation des protéines. Couplés à des études mécanistiques montrant la réduction efficace de R-

SSH par le système thiorédoxine, ces résultats suggèrent que la persulfidation des protéines est la voie 

principale par laquelle les acides sulféniques sont reconvertis en thiols originaux, et donc éliminés lors 

du stress oxydatif. A ce titre, nous avons proposé un mécanisme général (potentiel vestige des temps 

anciens où la vie a émergé et proliféré dans un environnement riche en H2S) dans lequel la 

persulfidation figure une boucle de sauvetage face à l’hyper-oxydation des cystéines et au dommage 

cellulaire oxydatif subséquent. 

De plus, dans le but de faire la lumière sur l’intérêt biologique de cette protection naturelle 

des persulfides, nous avons exploré une possible corrélation entre les niveaux de persulfides et le 

vieillissement.  En nous appuyant sur la capacité des persulfides à piéger les oxydants qui s’accumulent, 

nous avons mené une série d’études visant à obtenir une meilleure compréhension du rôle de la voie 

de transsulfuration dans la résistance au stress et sur la durée de vie. Nous avons observé une 

corrélation directe entre la capacité à produire des persulfides et la résistance au stress oxydant, ainsi 

qu’une diminution de la persulfidation au cours du vieillissement chez C. elegans, le rat et les cellules 

humaines. 

 

Mots clés: Sulfure d'hydrogène, Persulfidation (S-sulfhydration), S-Sulfenylation, Oxydation de thiol, 

Modification post-traductionnelle oxidative, Signalisation Redox, Cystéine, Protéomique. 

 



 II 

The Elucidation of Hydrogen Sulfide Signalling through Persulfidation 

Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognised gasotransmitter. 

Numerous studies have revealed the role of H2S as a redox signalling molecule that controls important 

physiological/pathophysiological functions. The underlying mechanism postulated to serve as an 

explanation of these effects is protein persulfidation (R-SSH, also known as S-sulfhydration), an 

oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained 

understudied due to its instability and chemical reactivity similar to other cysteine modifications, 

making it very difficult to selectively label. Herein, we developed a novel, versatile, two-step 

chemoselective method for the detection and labelling of protein persulfides, called the Dimedone-

switch method. We confirmed the method’s kinetics and selectivity and showed that protein 

persulfidation is an evolutionarily conserved modification controlled by H2S generated by 

transsulfuration pathway and cysteine catabolism. We adapted the method for direct in-gel detection 

in different model organisms, fluorescence microscopy, antibody microarray approach and proteomic 

analysis by mass spectrometry.  

Next, we studied the role of H2S in redox signalling through persulfidation. To do this we 

investigated the interconnection between R-SSH and the sequential modifications of cysteine thiols, 

sulfenylation (R-SOH), sulfinylation (R-SO2H) and sulfonylation (R-SO3H), formed when exposed to 

oxidative stress (reactive oxygen species). Our studies showed a direct correlation between R-SSH and 

these modifications in a time- and dose- dependent manner. We observed a clear phase shifted 

response between the two cysteine modifications, R-SSH and R-SOH, revealing the presence of 

‘protective waves’ of protein persulfidation. Coupled with mechanistic studies showing the efficient 

reduction of R-SSH by the thioredoxin system, these results suggest that protein persulfidation is the 

main pathway by which sulfenic acids are resolved under oxidative stress. As such, we proposed a 

general mechanism (potentially an evolutionary remnant of the times when life emerged and flourished 

in a H2S environment) in which persulfidation represents a rescue loop from cysteine overoxidation and 

subsequent oxidative cellular damage. 

Furthermore, in order to shed light on the biological relevance of this protective nature of 

persulfides, we explored a possible correlation between persulfide levels and aging. This was explored 

through a range of studies, from the persulfide’s chemical ability to scavenge the build-up of oxidants, 

to gaining a better understanding of the role of transsulfuration pathway in stress resistance and 

lifespan. We observed a direct correlation between ability to make persulfides and oxidative stress 

resistance, and a decrease in persulfidation with aging, in C. elegans, rats and human cells. 

 

Keywords: Hydrogen sulfide, Persulfidation (S-sulfhydration), S-Sulfenylation, Thiol oxidation, 

Oxidative posttranslational modification, Redox Signalling, Cysteine, Proteomics. 
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1.1 General Properties of Hydrogen Sulfide (H2S) 

Hydrogen sulfide (H2S) is a small colourless gas that has sparked large controversy 

over the past decade. Before the discovery that eukaryotes synthesise H2S and the 

recognition that it has a physiological purpose, for hundreds of years, H2S was viewed 

solely as a toxic gas released into the atmosphere by volcanic eruptions and utilised 

by bacteria and microbes. However, it was H2S that was used to synthesise the 

building blocks of life such as RNA, lipids and nucleic acids and early life forms thrived 

in an H2S-rich environment for hundreds of millions of years.1 The recognition of the 

physiological importance of H2S started to evolve from the first report in 1996, by Abe 

and Kimura, which identified that H2S is a neurological modulator in the brain.2 This 

initiated a wave of research demonstrating a wide range of biological roles and effects 

of H2S, such as: a smooth muscle relaxation, regulation of inflammation, protection 

against myocardial ischemic damage, induction of a suspended-like animation state 

in mice among others.2–9 H2S has been recognised as a member of the group of 

endogenously-produced small molecule signalling agents known as 

‘gasotransmitters’, alongside nitric oxide (NO) and carbon monoxide (CO),10 with a 

growing body of evidence linking it to various signalling pathways.8,11 In spite of this 

growth in interest in H2S  and its biological effects in recent years, the ways in which 

this gasotransmitter relays its signal to control all those physiological processes is not 

yet well understood. 

1.1.1 Physiochemical Properties of H2S 

H2S is a toxic and flammable gas, with a characteristic smell of rotten eggs. It is a 

water-soluble gas, which remains in equilibrium with its gas phase when dissolved in 

a solvent. It is soluble up to 120 mM at 20°C and 80 mM at 37°C in water, and 600 

mM at 20°C in absolute ethanol. Consequently, its high solubility, coupled with its 

inability to form hydrogen bonds and its slightly hydrophobic nature allows it to freely 

permeate across biological membranes and act as a paracrine-signalling molecule. It 

has been suggested, however, that membranes may partially impede the diffusion of 
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H2S, resulting in local aggregation in compartments where it is produced.12 H2S is a 

weak acid and ionises instantly in aqueous solution existing in fast equilibrium 

(dependent on pH) between hydrogen sulfide, hydrosulfide anion and sulfide anion 

(H2S/HS–/S2–) species. 

H2S ⇌ H+ + HS–    (1)	

HS– ⇌ 2H+ + S2– (2) 

In aqueous solutions, its pKa1 is 6.9 and pKa2 ≥17, suggesting that, at 

physiological pH and at 37 °C, it primarily exists (81%) in its anionic deprotonated 

form, HS–, with negligible amounts of S2–.8 Sulfur has six valence electrons and an 

empty 3d orbital allowing it to exist in a range of oxidation states (-2 to +6). It is known 

that H2S is a reducing agent, with a standard two-electron reduction potential of -0.23 

V at pH 7.0, similar to that of cysteine (Cys) and glutathione (GSH) redox couples.8 

Even though it is thermodynamically unfavourable for H2S and HS– to react with O2, 

under aerobic conditions H2S solutions have a tendency for autoxidation, similar to 

solutions of other thiols (R-SH, such as Cys or GSH).13 This reaction is most likely 

facilitated by the traces of metal ions which could act as catalysts leading to the 

formation of a range of sulfur species, sulfite (SO3
2–), sulfate (SO4

2–), thiosulfate (S2O3
2–

), polythionates (SnOn
2–, n≥2), and polysulfides (Sn

2–, n≥2), and other oxidised mixed 

polysulfide species.8 The term ‘H2S’ in this thesis is used to denote the gas and the 

mixture of species (H2S and HS–) in aqueous solution, unless otherwise specified.  

The chemical reactivity of H2S in biological systems, through which it has been 

suggested that it can relay its signalling properties, can be classified into three types 

of reactions (Fig.1): a) binding to metal centres of proteins, reducing them or allowing 

for catalysis in sulfide oxidation chemistry; b) cross-talk with or scavenging of reactive 

oxygen species (ROS)/reactive nitrogen species (RNS) which can lead to the formation 

of other signalling molecules; and c) the oxidative posttranslational modification 

(oxPTM) of cysteines, called persulfidation (RSSH; also known as S-sulfhydration), 

which is described in further detail in Section 1.5. 
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Figure 1 - Reactivity of H2S in biological systems. 

1.1.2 Inorganic Sources and Donors of H2S  

H2S-releasing compounds (i.e. donors) have become increasingly important in the 

understanding of the biological mechanisms and functions of H2S. In order to further 

study the physiological importance of H2S, donors with variable triggers and rates of 

release have become essential. However, due to the wide range of available donors, 

from inorganic to synthetic, with very different releasing mechanisms, conflicting 

results arise in the literature. This is partly due to the different releasing capabilities of 

each donor used and the uncontrolled by-products, with unclear biological effects, 

which may lead to disparate results. As such, this section provides a brief overview on 

the types of H2S-releasing agents available and their possible limitations. 

1.1.2.1 – Sulfide Salts 

The most common types of H2S donors used in biological studies are sulfide salts, 

such as sodium hydrogen sulfide (NaSH) and sodium sulfide (Na2S). These salts are 

usually used in their hydrated forms (NaSH•xH2O or Na2S•xH2O) or anhydrous Na2S. 

They have been employed over the past decade as H2S equivalents toward the 

understanding of the signalling/physiological roles of H2S and used to investigate the 

therapeutic potential of exogenous H2S delivery.14  

Sulfide salts hydrolyse instantly to give H2S; therefore, they cannot be 

considered as donors of H2S inasmuch as a source of H2S. It is important to note, 

moreover, that the use of these salts carries certain caveats. For instance, the question 

of the purity of the sulfide salt requires caution, considering that impurities such as 
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However, recent studies have proposed that sulfane sulfur compounds (such as 

persulfides, polysulfides etc.), derived from H2S, can help to explain the biological 

effects of H2S. Sulfane sulfurs (sometimes abbreviated as S0) refer to sulfur atoms 

covalently bonded to 2 or more sulfur atoms (RS(S)nSR), or to 1 sulfur atom and an 

ionisable hydrogen.8 Additionally, the active principles from garlic are also very 

electrophilic and could modify Cys residues directly. Therefore, caution should be 

taken when using these substances as H2S donors.14 

1.1.2.3 – Synthetic H2S Donors 

The development of novel H2S donors is currently a rapidly growing field. As 

promising biological tools with therapeutic potential, several classes of synthetic H2S 

donors have been published. These donors demonstrate different mechanisms of 

release and unlike sulfide salts, they exhibit a slow(er) -release of H2S, mimicking 

physiological H2S production. In this section, the main H2S donors have been classified 

according to their mechanism of H2S release: (i) thiol-triggered release; (ii) hydrolysis-

triggered release; (iii) light- or ROS-triggered release; and (iv) bicarbonate-triggered 

release (Fig. 3). 

Thiol-triggered H2S release  

Since free thiols are abundant in the cells, thiol-triggered donors (Fig. 3A) are 

designed to release H2S through thiol exchange, following nucleophilic addition. The 

first reported class of thiol-activated donors with controllable H2S release rates were 

N-(benzoylthio)benzamides, published by Zhao et al..21 These donors have an N-

mercapto template (N-SH), with an acylated thiol group for enhanced stability (Fig. 

3A). The proposed thiol-triggered mechanism of H2S release was established in the 

presence of thiols, such as N-acetylcysteine (NAC) and GSH. They also displayed 

tuneable release rates with respect to structural modifications (electron 

withdrawing/donating groups, EWG/EDG).14 These donors have been evaluated in 

cell studies where they prevented methylglycoxal-induced cell damage and 
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dysfunction, and in animal models where they displayed cardioprotective effects in 

myocardial ischemia/reperfusion (I/R) injury.22,23 

In perthiol-based donors (R-C(O)SS-R’), first reported by Xian et al. Fig. 3A,24 

an acyl group was also used as a protecting group but this time for the unstable S-SH 

moiety, enhancing its stability and H2S-releasing capacity.14 Analogous to N-SH and 

S-SH donors are dithioperoxyanhydrides donors, reported by Galardon and co-

workers (Fig. 3A).25 However, it is important to note that both types of donors result 

in the formation of mixed disulfides, which could cause alternative protein 

modifications and signalling.8 Nevertheless, penicillamine-perthiols have shown 

protective effects towards myocardial I/R injury,24 and dithioperoxyanhydrides a 

concentration-dependent vasorelaxation of pre-contracted rat aortic rings.14 

In addition to these donors, tetrasulfide donors (R-(S)4-R’), 26,27 arylthioamides, 

14,28 and S-aroylthiooximes (SATOs)29 have shown thiol-dependent H2S release but 

have not yet found broad application as experimental tools (Fig. 3A).  

 
Figure 3 – Structures of commonly used H2S donors. (A) Structural scaffolds of thiol-triggered H2S 

donors. (B) Hydrolysis-triggered scaffolds and donors. (C) Structures of light- and ROS- triggered H2S 

donors. (D) H2S release by bicarbonate-triggered H2S donors. 
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Hydrolysis-triggered H2S release  

Widely used H2S donors are 2,4-Bis(4-methoxyphenyl)-1,3,2,4-dithiadiphosphetane-

2,4-disulfide derivatives (Lawesson’s reagent, Fig 3B), which have been reported to 

spontaneously hydrolyse in aqueous solutions, releasing H2S.30 Lawesson’s reagent 

has been proven to regulate ion channels, anti-inflammatory effects and to be 

beneficial in reducing severity of colitis in rats.31 However, due to the insolubility of 

this reagent and uncontrolled hydrolysis and release of H2S in solution, its applicability 

is limited. On the contrary, one of the most commonly used commercially available 

H2S donors is a water-soluble derivative of the Lawesson’s reagent known as GYY4137 

(morpholin-4-ium 4-methoxyphenyl(morpholino) phosphine-dithioate) (Fig 3B).32 It 

has been reported that upon in vitro hydrolysis, GYY4137 releases H2S more slowly 

than a sulfide salt, and its rate of release is pH- and temperature-dependent (the more 

acidic the pH or the higher the temperature, the greater the release).28,33 GYY has 

been reported to have vasorelaxatory, anti-hypertensive, anti-inflammatory and anti-

cancer properties.8,34 Analogues of GYY4137 have been developed with different H2S 

release rates and biological applications, such as in I/R injury where the pH of the 

tissue has been suggested to drop.35,36 (Fig 3B) 

Dithiolethiones represent another class of hydrolysis-triggered H2S donors9,37 

(Fig 3B), and the H2S releasing moiety is commonly conjugated to pharmacologically 

active components such as non-steroidal anti-inflammatory drugs (NSAIDs),9,14 

adenosine,38 or even to triphenylphosphonium cations (TPP+) as mitochondrial 

anchors.39–41 The mitochondria-targeted analogue, known as AP39, has shown at low 

nanomolar concentrations, compartmental specificity, an increase in protein 

persulfide levels,42 and antioxidative properties suppressing mitochondrial cell death 

cascades.41,43 

Other classes of H2S donors 

In addition to those widely used classes of H2S-releasing compounds, light-triggered 

and ROS-triggered H2S donors were developed to allow for a more specific triggering 

mechanism (Fig. 3C).44–48 
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Finally, thioaminoacids, such as thioglycine and thiovaline, have been reported 

to react with bicarbonate at mild pH, while simultaneously releasing their respective 

N-carboxyanhydride amino acid and H2S (Fig. 3D).49  

1.1.3 Methods for H2S Measurement 

Endogenous levels of H2S have been investigated over the past decade, with reported 

values ranging from undetectable to >500 µM. Complex biological samples contain 

labile sulfur compounds that release H2S upon certain chemical treatments.50,51 

Furthermore, acidic pH liberates H2S from iron sulfur clusters, which constitute the 

acid-labile sulfur pool, while the addition of reductants, such as 1,4-dithiothreitol 

(DTT), liberates H2S from sulfane sulfur compounds, particularly from persulfides, 

polysulfides and elemental sulfur. Alkaline conditions also result in H2S release from 

various other sulfur-containing species, particularly thiols and disulfides. All these 

potential artefacts have contributed to estimates of H2S concentrations in biological 

samples varying by five orders of magnitude.   

 Before H2S became recognised as a physiological mediator, essentially all 

measurements of H2S in blood either failed to detect it, or produced extremely low 

values, consistent with the fact that H2S cannot be detected by its odour from a wound 

or when a patient has their blood drawn. Since 2000, however, the reported 

concentrations of H2S in blood have risen to an average of ~50 µM.52 In tissues, 

measurements performed with gas chromatography coupled with chemiluminiscence 

detection have revealed that basal H2S levels are quite low. According to one study, 

the basal H2S level is ~10-15 nM in murine liver and brain.53 Another study reported 

levels of 0.004-0.055 µmoles kg-1 of H2S or 0.03-0.39 µmoles (kg protein)-1, 

corresponding to 6-80 nM in murine liver, brain, heart, muscle, oesophagus and 

kidney.54 In agreement with these low estimates, the steady-state concentration 

extrapolated from measurements of H2S production and consumption rates in murine 

liver, kidney and brain were calculated to be 12-25 nM.55 Interestingly, H2S levels in 

the aorta are significantly higher (~1.5 µM).54 
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 The steady-state concentration of H2S is the net result of its formation and 

decay rates. At the physiologically relevant concentration of 0.1 mM Cys, the H2S 

production rate is 0.484 mmol h-1 (kg tissue)-1 (i.e. ~ 12 µM min-1) in murine liver and 

~ 0.025 mmol h-1 (kg tissue)-1 (i.e. 0.6 µM min-1) in murine brain.55 The decay rates are 

high and as expected, they decrease dramatically under hypoxic conditions.55 The 

apparent first order rate constant of H2S decay in murine liver under aerobic 

conditions was reported to be 277 min-1.55 Thus, the very low steady-state tissue 

concentrations are primarily due to high rates of H2S oxidation.55 

1.1.3.1 Methylene Blue Method 

The methylene blue technique of H2S measurement is based on the formation of the 

well-known blue phenothiazine dye, methylene blue (MB+), detectable at 670 nm. 

Though this method is widely used, it suffers from a number of drawbacks, including 

low sensitivity, lack of specificity to H2S and cross-reactivity with other sulfur species.8 

The starting material N,N-dimethyl-p-phenylenediamine (DMPD), reacts with H2S and 

Fe3+ (e.g. ferric chloride, sodium nitroprusside) in acidic conditions. Zinc chloride is 

also added to trap volatile H2S (Fig. 4A).56,57 The amount of MB+ is usually measured 

spectrophotometrically, chromatographically or using mass spectrometry (MS), and 

H2S concentration is estimated based on the calibration curves. 

1.1.3.2 Lead Acetate 

Lead acetate is a simpler, semi-quantitative method of H2S measurement with low 

sensitivity. In the presence of H2S, black insoluble lead sulfide is formed. This can be 

determined either by soaking native gels in solutions containing H2S donors or 

densitometrically, on commercially available lead acetate-soaked filter paper.8  

1.1.3.3 Electrochemical Sensors 

Polarographic sensors have been used with higher sensitivity and shorter response 

rates, allowing real-time monitoring of the H2S levels/production. The sensors’ 

limitations lie mainly in practical aspects, such as leakage and the presence of 
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impurities.8 This sensor is comprised of an alkaline potassium ferricyanide solution 

with an H2S permeable membrane. H2S diffuses through the membrane, reducing 

ferricyanide to ferrocyanide. As a result, electrons are donated to the anode, creating 

a measurable current proportional to the H2S present.58  

1.1.3.4 Gas Chromatography  

Gas chromatography (GC) methods have been used in the past with very high 

sensitivity for H2S; however, the drawback of this approach is that specialised and 

expensive (gastight) equipment is needed. One of the approaches is derivatisation of 

H2S to bis(pentafluorobenzyl)sulfide followed by extraction into an organic phase and 

analysis by GC. Some GC instruments have highly sensitive sulfur chemiluminescence 

detectors and could analyse the gas phase samples directly, without derivatisation.8,50 

1.1.3.5 Monobromobimane 

Bromobimanes were originally used as fluorogenic labels for thiols (RSH)59, however 

monobromobimane (MBB) derivatisation was later introduced as another method of 

measuring H2S and for quantifying persulfides and polysulfides.50,60 The mechanism of 

detection relies on the nucleophilic attack of H2S on MBB to form a bimane-

substituted thiol, which in turn can react with another equivalent of MBB to form 

dibimane sulfide, a fluorogenic molecule that can then be extracted and analysed 

using reverse-phase HPLC coupled to an MS (Fig. 4B). 

 

Figure 4 – H2S detection methods. (A) Mechanism of methylene blue method. (B) Reaction of 

monobromobimane and H2S. 
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1.1.3.6 Fluorescent Probes 

A range of fluorescent probes have been developed over the years due to the 

increasing interest in understanding the importance, amounts and distribution of H2S 

in cells, tissue and organs. Different probes have become available, some of which 

are summarised in Fig 5.61–63 One approach is H2S-mediated reduction of azide (R-N3) 

or nitro (R-NO2) groups, attached to a range of different fluorogenic scaffolds such as 

rhodamine (e.g. MeRho-Az), dansyl or naphthalimide (Fig. 5A). A further improved 

strategy is the use of a probe with 2 electrophilic centres, which can exploit H2S’ 

double nucleophilicity (Fig. 5B). A different strategy is used in copper centred probes 

attached to a fluorophore, where the affinity of H2S to metal centres has been 

exploited (Fig. 5C). 

 

Figure 5 - Scaffolds and structures of fluorescent H2S sensors. (A) H2S-mediated reduction of azide 

(R-N3) or nitro (R-NO2) groups attached to a range of fluorescent moieties. (B) Fluorescent probes 

with two fluorogenic centres. (C) Cu2+-based sensor. 
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1.2 Enzymatic Biosynthesis and Oxidation of H2S 

1.2.1 Enzymatic H2S Biosynthesis 

Despite the growing interest in the biological relevance of H2S, its endogenous 

biosynthetic regulation and production for signalling are not yet well understood. To-

date, there are three main enzymes involved in its formation. Two of the enzymes are 

pyridoxal 5′-phosphate (PLP)-dependent enzymes, cystathionine β-synthase (CBS) and 

cystathionine γ-lyase (CSE; also known as CTH), linked to the (canonical and reverse) 

transsulfuration pathway (TP). These enzymes are predominantly located in the 

cytosol, though their presence in other compartments, such as the nucleus and 

mitochondria, has also been reported.64–66 The third enzyme is the PLP-independent, 

3-mercaptopyruvate sulfurtransferase (MST; also known as MPST), which is located in 

the mitochondria and the cytoplasm.67 The key role of the transsulfuration pathway is 

the synthesis of cysteine (canonical TP), which in turn results in a wide range of 

metabolic conversions, some of which lead to the production of H2S. It still remains 

unclear how the cell responds to cellular demands and switches from synthesising 

cysteine to catabolising cysteine and generating a controlled H2S flux. Further 

understanding of the regulation of H2S-producing and -oxidising enzymes may shed 

light on the biological relevance of H2S. 

CBS was the first H2S-producing enzyme to be identified, and is an enzyme 

interlinking the methionine cycle and the TP, providing sulfur for the synthesis and 

catabolism of cysteine and leading to H2S production. CBS alone, via a ping-pong 

mechanism, catalyses a spectrum of reactions through its ability to house substrates 

such as serine, and homocysteine (Hcy) and Cys following the elimination of H2S, 

shown in Fig. 6, reviewed by Filipovic et al..8 It has been proposed that its regulation 

is based on substrate affinity and concentration, such as Cys or Hcy. CBS is a cytosolic 

homodimer, with a subunit of ~63 KDa, and is both a PLP enzyme and a heme protein. 

At its N-terminal domain, it houses the PLP cofactor and a regulatory heme cofactor, 

which has been proposed to sensitise CBS to the binding of metal ions and oxidation. 
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Finally, it has also been reported that the activity of CBS can be modulated by 

hormones (insulin and testosterone), the transcription factor cAMP and covalent 

modifications, such as SUMOylation, S-glutathionylation (R-SG) and 

phosphorylation.70 For instance, SUMOylation of CBS has been reported to cause an 

inactivation of the enzyme and its translocation to the nucleus.64 On the other hand, 

both glutathionylation (under oxidative stress conditions) and phosphorylation have 

been shown to activate it to produce more H2S.72,73 CBS expression has been detected 

in different types of systems, such as the cardiovascular and respiratory, 

gastrointestinal tract, kidneys, liver, lymphocytes, uterus, plasma and pancreas islets, 

and has been suggested to be the determining H2S generator in the central nervous 

system.74  

CSE is a tetramer with a 45 KDa subunit, which also houses a PLP cofactor. It 

catalyses an array of reactions within the transsulfuration pathway, some of which 

result in the production of H2S (Fig. 6). The possible regulation of its activity stems 

from its ability to accommodate different substrates competing for the same binding 

pocket, such as cystathionine, Hcy and Cys.8 It has been reported that the 

concentration of Hcy can modulate H2S formation of CSE-catalysed reactions. In 

addition, CSE catalyses the synthesis of cysteine and homocysteine persulfides (Cys-

SSH and Hcy-SSH) from their respective disulfide analogues.8  

CSE has been proposed to be one of the major H2S-producing enzymes; 

however, very little is known about its regulation. One possible site of regulation is at 

its two CXXC motifs, with a possible redox-sensitive allosteric regulation.8 CSE 

responds to Endoplasmic reticulum (ER) stress, with ER stressors inducing an increase 

in CSE expression levels (and subsequently H2S) and upregulating the activating 

transcription factor 4 (ATF4).75 Furthermore, CSE has been suggested to be 

inactivated by phosphorylation,76 may be activated by increased concentrations of 

calcium/calmodulin6 and possibly modified by SUMOylation77 however, the 

physiological relevance of these regulations is unknown. CSE is expressed in a range 

of  different mammalian tissues, and has been reported to be the main H2S-producing 
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enzyme in the kidneys, liver, uterus, pancreatic islet cells, and largely expressed in the 

cardiovascular and respiratory systems.74,78  

The third H2S-producing enzyme is MST, predominantly located in the 

mitochondria, but also found in the cytoplasm.67 In the Cys catabolism pathway, L-Cys 

is initially converted to 3-mercaptopyruvate (3-MP) by the PLP-dependent 

cysteine/alanine aminotransferase (CAT or AAT, respectively; Fig. 6).8 3-MP then 

serves as a substrate for MST, catalysing its conversion to pyruvate and forming a 

persulfidated form of MST. Persulfidated MST is then reduced in the presence of a 

reductant, such as a LMW thiol or thioredoxin (Trx), simultaneously eliminating H2S.79,80 

An alternative route for the formation of 3-MP has been reported, which includes the 

oxidation of D-cysteine, catalysed by D-amino acid oxidase (DAO).81 The regulation 

of the synthesis of H2S via the CAT/MST or DAO pathways is not understood, except 

for the possible inhibition of CAT by calcium.8 MST alone appears to be redox-

regulated, as three redox-sensitive cysteines (Cys154, Cys248 and Cys263) have been 

reported in its structure, and the activity of MST seems to be decreased under 

oxidative stress.82 Similar to CBS and CSE, MST is expressed in the heart, liver, lung, 

brain, while the kidneys seem to have a higher activity of the enzyme.74 

1.2.2 Enzymatic H2S Oxidation 

The accumulation of H2S would be toxic to organs (through its inhibition of Complex 

IV in the mitochondria); therefore, there are tightly regulated oxidation processes in 

place for its catabolism. The most efficient known mechanism of H2S oxidation within 

mammalian cells takes place in the mitochondria, where H2S is oxidised to S2O3
2- or 

SO4
2- (Fig. 6). The first step in this oxidation pathway involves the oxidation of H2S by 

sulfide quinone oxidoreductase (SQR) to either an LMW persulfide, glutathione 

persulfide (GSSH) or S2O3
2-. SQR is a membrane-bound protein expressed in the 

mitochondrial matrix, with two important redox centres, an active site trisulfide and a 

flavin adenine dinucleotide (FAD) cofactor (Fig. 6), through which it can use this 

oxidation to funnel electrons to coenzyme Q (CoQ) and hence, the electron transport 
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chain (ETC).83,84 The formed GSSH can be further oxidised to S2O3
2- by the 

sulfurtransferase, Rhodanese (Rho; also known as TST), or to SO3
2- by the 

mitochondrial matrix protein, persulfide dioxygenase (ETHE1; also known as PDO).  

SO3
2- can then be quickly oxidised to SO4

2- by sulfite oxidase (SO) found in the 

mitochondrial intermembrane space (Fig. 6).8 The majority of H2S is finally excreted as 

SO4
2-, or is further metabolised through the urine.  

Another mechanism for the catabolism of H2S that remains largely 

understudied is its methylation, which takes place in the cytosol. This reaction is 

catalysed by thiol S-methyltransferase (TMT) and sulfur from H2S is incorporated into 

organic compounds methanethiol (MeSH) and dimethylsulfide (Me2S) (Fig. 6).10,85 

1.2.3 Synthetic Inhibitors of H2S Biogenesis 

The development of selective inhibitors of H2S-producing enzymes has been limited; 

however, a vast amount of more generalised H2S inhibitors displaying only partial 

selectivity have been reported. A common strategy for the inhibition of H2S synthesis 

is the use of PLP-binding site inhibitors, i.e. aminooxyacetic acid (AOAA – originally 

used as a CBS inhibitor, Fig. 7) and hydroxylamine.2 These types of inhibitors are 

commonly used as more generalised H2S inhibitors, as they have demonstrated a lack 

of selectivity between CBS and CSE.8,86 Other CBS inhibitors identified through 

different high-throughput screenings are tangeritin, 1,4-napthaquinone, flavinoids 

and benserazide.87 

A commonly employed CSE inhibitor is L-propargylglycine (PG; also known as 

PAG, Fig. 7), originally developed for irreversible inhibition at the active site of CSE; 

however, PG is reported to also have off-target effects with alanine transferase.88–90 

Other CSE targeted inhibitors used are b-cyano-L-alanine (BCA, Fig. 7) and 

aminoethoxyvinyl glycine.86,89  

Another commonly used strategy is the indirect inhibition of MST via the use 

of CAT/AAT inhibitors, such as aspartate or MST substrate mimics, but they display 

low selectivity towards MST.91  
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1.3.1 Antioxidant & Cytoprotective Capacity of H2S 

Oxidative stress is the consequence of an imbalance in the reduction-oxidation (redox) 

capacity of cells, due to a non-physiological increase in ROS and RNS concentrations. 

Excessive ROS/RNS can result in molecular and cellular disruption through organelle 

injury, protein misfolding and DNA damage.92 H2S has been found to improve disease 

or oxidative stress conditions in various pathological settings.8,78 Different H2S donors 

have been described as direct scavengers of the cytotoxic oxidant, peroxynitrite 

(ONOO–), in dying neuronal cells.93 Several studies have also found that 

pharmacological H2S donors display antioxidative (protective) effects in I/R injury in 

different organs. A relevant example of this is the capacity of H2S to scavenge other 

ROS, such as hydrogen peroxide (H2O2) and superoxide (O2
–),15 which, in the case of 

myocardial I/R injury, shows a significant reduction in the extent of infraction following 

H2S treatment.94 These observed cytoprotective effects of H2S are associated with its 

direct antioxidant effects. Similar protective effects have been reported in kidney I/R 

injury where H2S reduced mortality and inflammation. However, these observations 

are controversial, given that conflicting evidence has emerged regarding kidney 

I/R.95,96 In the case of lung diseases, the pharmacological administration of H2S (in the 

form of NaSH) has shown beneficial antioxidant effects. This was investigated in rats 

with bleomycin-induced pulmonary fibrosis, whereby H2S treatment was shown to 

reduce free radical generation and lipid peroxidation in lung tissue.97  

H2S has additionally been linked to aging, as experimental observations in 

Caenorhabditis elegans (C. elegans) showed that H2S treatment increases 

thermotolerance and longevity.98 Recently, Hine et al. postulated that the 

endogenous production of H2S may be the mechanism driving the benefits behind 

caloric and dietary restriction (CR and DR, respectively).99 However, the mechanism 

by which H2S relays these beneficial effects was not shown.  

Although the antioxidant activity of H2S is widely used as an explanation for the 

effects of H2S, H2S itself is a weak antioxidant. Its rate constants with either 

peroxynitrite,100 superoxide15 or H2O2
15 are not fast enough to compete with other 
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thiol pools.8 Therefore, it remains unclear how H2S exhibits all those antioxidant 

properties reported in the literature. 

1.3.2 Signalling Roles in Different Tissues  

H2S was initially described as an endogenous neuromodulator, selectively increasing 

N-methyl-D-aspartate (NMDA)-mediated processes and, at high levels, inhibiting 

synaptic transmissions in the hippocampus.2 A number of ion channels have also been 

reported to be modulated by H2S. In addition, there have also been multiple reports 

of pro- and anti-nociceptive effects of H2S donors in the nervous system.8 Its 

mechanisms of pronociceptive effects have been suggested to proceed via transient 

receptor potential (TRP) channels, in contrast to its reported anti-nociceptive effects 

linked to ATP-dependent potassium channels (KATP). 

Numerous effects of H2S in the cardiovascular system have been published in 

the literature, with CSE being the predominant H2S-producing enzyme. H2S was 

originally labelled as a gasotransmitter that regulates blood pressure.6 Cross-talk 

between H2S and NO signalling pathways have been described in many different 

settings, specifically, in the regulation of vasorelaxation and angiogenesis.8,101 The role 

of H2S as a smooth muscle cell relaxant was first reported in the vascular system.3,6,102 

The pharmacological administration of H2S has also been shown to cause a decrease 

in blood pressure and to exert vasodilatory effects. These effects have been 

associated with the activation of the KATP channel, which has been found to be 

persulfidated (Section 1.5.3.4), and with the activation of endothelial nitric oxide 

synthase (eNOS).8,103–105 Furthermore, it has been reported that the activation of the 

vascular endothelial growth factor receptor (VEGFR) by VEGF causes an increase in 

CSE levels, generating H2S and resulting in the subsequent activation of eNOS.106  

1.3.3 Roles in Specific Diseases/Disorders  

There is a growing body of literature linking H2S to different disease states. Within the 

brain, neurodegenerative conditions, such as Alzheimer’s disease, Huntington’s 
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disease, Parkinson’s disease (PD), spinocerebellar ataxia 3 (SCA3) and traumatic brain 

I/R injury exhibit positive modulation by H2S (or persulfidation).8 Alzheimer’s and 

Huntington’s disease patients reported lower levels of endogenous H2S in comparison 

to healthy patients.107–110 Following the administration of H2S (in the form of NaSH), 

rodent models of Alzheimer’s disease showed an improvement in learning and 

memory.108 In patients with Huntington’s disease, reduced CSE expression was found 

to be caused by the inhibition of specificity protein 1 (Sp1, transcriptional activator of 

CSE) by the mutant huntingtin (Htt) protein.110 Furthermore, the beneficial effects of 

H2S in SCA3 (polyQ repeats in ataxin 3) were tested using a Drosophila model 

overexpressing CSE, where the authors showed reversal of the disease phenotype.111 

The effects of H2S in both SCA3 and PD have been linked to the persulfidation of 

proteins by H2S.8 

H2S has also been suggested to act as a physiological mediator of 

inflammation; however, its precise role is controversial in different settings and 

organs.112 Pro-inflammatory effects of H2S have been reported in acute 

pancreatitis,113,114 lung and neurogenic inflammation,113 renal I/R injury96 and sepsis.115–

117 Anti-inflammatory responses of H2S have been associated with intestinal ischemic 

injury, inflammatory bowel diseases, intestinal I/R and different conditions of the 

gut.8,112 The pharmacological administration of the slow-releasing H2S donor, GYY417, 

showed anti-inflammatory effects through the inhibition of the transcription factor, 

nuclear factor kB (NF-kB), in contrast to the biphasic response caused by the addition 

of NaSH.118,119 The exact mechanisms by which H2S affects inflammation are still 

unclear. 

Types 1 and 2 diabetes have been demonstrated to be affected by H2S, as well. 

Decreased expression levels of CSE were observed in diabetic mouse models,120 and 

low H2S levels in patients suffering from diabetic neuropathy.121 Vasoconstriction and 

reduced blood flow were ameliorated with the administration of NaSH.120 

Additionally, TST has been described as an anti-diabetic target. Its overexpression in 

adipocytes of mice proved to decrease the likelihood of diet-induced obesity and 
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insulin-resistant diabetes. Moreover, TST-deficient mice showed increased incidence 

of developing diabetes.122 

The relationship between H2S and cancer remains controversial, with H2S 

exhibiting opposing effects in cancer progression; at low concentrations H2S is 

cytoprotective, but it becomes cytotoxic at high doses74. H2S was shown to affect 

cancer cells by interfering with cellular bioenergetics, angiogenesis, apoptosis and 

intracellular signalling.74,123,124  

1.4 Cysteine-based Redox Signalling 

Life is maintained by a limited number of chemical reactions, of which sulfur-centered 

chemistry is particularly important. The Cys residue can undergo an extensive range 

of redox modifications that are exploited in multiple cellular processes and, in 

particular, cell signalling. Redox signalling is a biological response caused by a specific 

redox oxygen, nitrogen or sulfur (RSS) species. The highly reactive nature of these 

aforementioned species (oxidants) render them toxic if their levels were to be left 

unchecked, leading to cellular damage and an array of pathological conditions.125,126 

Over the past decades, increasing evidence has suggested that these reactive species 

are integrated into the physiology of non-stressed cells. As such, they have been 

defined as cellular secondary messengers.8,127–130  

Given the reactive nature of these species, their specificity - a prerequisite for 

signalling - comes into question. An important mechanism by which a reactive oxidant 

signal is converted into a biological response is via site-specific, covalent 

modifications of targeted biological macromolecules. The amino acid cysteine is a 

commonly known target due to its ideally suited chemical reactivity, such as its 

sensitivity to oxidation. To that effect, most ROS/N/SS signalling proceed via 

posttranslational modification of specific Cys residues.126  

Two general mechanisms have been proposed for the general regulation of 

redox signalling: a thermodynamic model and direct targetting.131 The first occurs 

through the thermodynamic equilibrium of intracellular redox buffers, such as 
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GSH/oxidised glutathione (GSSG). The second mechanism entails the direct targeting 

of Cys residues in proteins, which then serve as molecular switches. The important 

reversible thiol oxPTMs, used by cells to convey signalling, are S-nitrosylation (S-

nitrosothiols, R-SNO), S-glutathyonylation (R-SG), disulfides (R-SS-R), S-sulfenylation 

(sulfenic acids, R-SOH) and persulfidation (persulfides, R-SSH) (Fig. 9). In parallel to 

these modifications, some important irreversible thiol modifications occur, such as 

sulfinylation (sulfinic acids, R-SO2H) and sulfonylation (sulfonic acids, R-SO3H), 

discussed further below. 

 

Figure 9 - Reversible oxPTMs of Cysteine. 
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pKa and nucleophilicity, such as the local environment of the protein/the 
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An example of this is seen in the 23isulphide oxidoreductase, bacterial thiol 

23isulphide oxidoreductase A (DsbA), which carries 2 Cys residues in the same active 
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pKa. Peroxiredoxin-2 (Prx2) has an active site Cys with a pKa of 5-6 and a rate constant 

of 1-2 x 107 M-1 s-1 for the reaction with H2O2, while protein tyrosine phosphatase (PTP), 

PTP1B, with a Cys pKa of 5.4, reacts with H2O2 with a rate constant of 10-20 M-1 s-1.133,134 

Hence, this substantial difference in specific reactivity of each protein, coupled with 

the selective reactivity of the oxidants themselves (H2O2), feeds into the idea that 

redox signalling by reactive species is highly target-specific, as opposed to just being 

a result of an alteration in the redox equilibrium.131  

1.4.1 ROS Production & Metabolism 

The group of ROS encompasses a variety of molecules, such as H2O2, O2
•– and 

hydroxyl radicals (OH.). These molecules differ in their reactivity and are therefore 

differentially explored by the cells as either damaging oxidants or signalling 

molecules.125,127,131 The difference in reactivity is reflected by the fact that the non-

radical species H2O2 engages in 2-electron oxidation reactions, while the radical 

species, O2
•– and OH,. Serve as 1-electron oxidants. Therefore, they form different 

products when reacting with thiols.  

The species claimed to be involved in cellular signalling are H2O2 and upon its 

dismutation O2
•–. Despite the high production rate, O2

•– is maintained intracellularly 

at low concentrations. Superoxide is not only intrinsically unstable (undergoes 

spontaneous dismutation), but it is also efficiently cleared out enzymatically by 

superoxide dismutases (SOD). By contrast, H2O2 is much more stable, shows more 

selective reactivity and is tightly regulated at nM to low µM steady-state levels by 

detoxifying enzymes (Fig. 10).127 Detoxification is achieved by enzymes such as 

catalase or peroxiredoxins (Prx) and glutathione peroxidases (GPx)  (Fig. 10).135 The 

latter two recycle back to their active reduced forms by nicotinamide adenine 

dinucleotide phosphate (NADPH)-dependent Trx/thioredoxin reductase (TrxR) or 

GSH/glutathione reductase (GR) systems.126  

Therefore, H2O2 has been viewed as the most likely secondary messenger in 

redox signalling. Unlike O2
•–, H2O2 is uncharged and can easily diffuse across 

membranes. However, it has been reported that H2O2 can also exploit protein 
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Another important source of ROS is the NOX family of enzymes. NOX proteins 

are O2
•– and H2O2 producing proteins, working in conjunction with the local SOD and 

associated to a more controlled and physiologically deliberate ROS release (Fig. 11C). 

This family of multi-unit complexes consists of membrane-bound NOX1-5 and Duox1 

or Duox2, with different tissue distribution and subcellular localisation.152 A range of 

stimuli have been identified to modulate NOX proteins and subsequently the 

production of ROS, such as VEGF, epidermal- and platelet-derived growth factors 

(EGF and PDGF, respectively), angiotensin II, transforming growth factor β (TGF-β) 

and cytokines.85,127,152–154 Given their multi-unit structure and depending on the 

isoform, these complexes require the formation of regulatory membrane (or cytosolic) 

co-activator subunits, the assembly of specific cofactors (such as FAD or heme), or the 

association of calcium ions (Ca2+).152 Furthermore, the roles in cell signalling of the 

different NOX members are largely dependent on their compartmentalisation within 

the cell. Following their activation and O2
•– production, O2

•– is dismutated to H2O2, 

which subsequently diffuses (or is transported via AQP) into the cytosol (Fig. 11C). The 

resulting cytosolic H2O2 has been reported to mediate physiological responses 

through a cascade of events, such as proliferation, differentiation and 

apoptosis.127,155,156 

1.4.2 Cysteine SulfE/I/Onylation 

Protein thiols’ nucleophilicity and propensity for oxidation makes them excellent 

targets for redox-based modulation of proteins. The modification of protein thiols by 

H2O2 (and NO), creating the starting point for a path by which cells can ‘sense’ 

intracellular alterations in the redox balance. This can lead to a cascade of cellular 

redox responses or to oxidative stress and cellular damage. H2O2 has the ability to 

react directly with cysteine thiols in their thiolate form, via a 2-electron oxidation, 

forming the first oxPTM, sulfenic acid (by S-sulfenylation). As such, a portion of H2O2-

mediated redox signalling is understood to propagate through thiol oxidation, 

specifically, R-SOH formation. Sulfenic acids can also undergo further irreversible 
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Overall, sulfenylation of proteins has been shown to play a key role in immune 

responses, cell growth, proliferation and apoptosis, growth factor signalling and 

diseases such as cancer and neurodegeneration.127,163 This wide range of responses 

reflects the importance of S-sulfenylation as an integral global signalling mechanism, 

analogous to phosphorylation, consequently propelling advances in the development 

of selective detection methods of this oxPTM.  

Sulfenic acids are unstable species of transient nature, with an estimated half-

life in the range of minutes, though some of them can be further stabilised by the 

protein microenvironment.164,165 The sulfur of sulfenic acids has a formal oxidation 

state of 0, allowing it to exhibit both electrophilic and nucleophilic character.  

One of the first indirect methods used to detect sulfenic acids was a differential 

alkylation approach, whereby free thiols are blocked (by N-ethylmaleimide, NEM or 

Iodoacetamide, IAA), followed by a sulfenic acid reduction step by arsenite. A 

subsequent alkylation step is performed on the nascent thiol, with a conjugated 

blocking agent for detection.127 However, the selectivity of arsenite as a selective 

reductant of sulfenic acids came into question. In addition to this, a direct labelling of 

R-SOH was achieved by an electrophilic blocking reagent, 4-chloro-7-nitrobenzo-2-

oxa-1,3-diazole (NBD-Cl), but this approach is limited to isolated proteins, given the 

reagent’s reactivity with other nucleophilic groups in a more complex system.127,166  

The probes that found widespread use are in fact nucleophiles attacking the 

electrophilic sulfur (Fig. 14). To date, the most common method of sulfenic acid 

detection is the direct labelling with probes based on a 1,3- carbonyl scaffold, mainly 

5,5-dimethyl-1,3-cyclohexadione (dimedone) and its derivatives. These types of 

scaffolds have been found to be selective for sulfenic acids and, under physiological 

aqueous conditions, to not react with other Cys modifications, such as thiols and 

sulfinic acids and other common functional groups. Currently, a library of dimedone 

derivatives has been developed for different applications (Fig. 14). For example, 

dimedone itself has been used to label R-SOH in samples and in combination with 

anti-dimedone antibody (developed by the Carroll group) used for protein microarray 

detection and immune-blotting (Fig. 14).167,168 Moreover, the biotinylated derivative 
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detection relied on the difference in a mass shift in MS; however, this approach is 

questionable, given that the similar mass change is found for persulfidation, as well.184 

In addition, antibodies recognising sulfinic acids of specific proteins have been 

developed, but they were not applicable for a more global understanding of protein 

sulfinylation.182,185 Over the past few years, the Carroll group have made some 

advances in the development of chemical probes for the selective labelling of R-SO2H. 

In 2015, the group introduced the Sulfinic acid Nitroso Ligation (SNL) method using 

an NO-Bio probe, and showed the specificity of this approach in single proteins and 

whole cell lysates (Fig. 15).186 More recently, the group reported electrophilic diazene 

probes with ‘clickable’ alkyne-derivatives, as well as biotinylated and fluorescent 

analogues, called DiaAlk, BioDiaAlk and DiaFlu, respectively (Fig. 15).187 These probes 

were applied for in-gel, mass spectrometry-based and even proteomic identification 

of sulfinic acids, allowing for a chemoselective profiling of the S-sulfinylome.  

Finally, the last step in cysteine thiol hyper-oxidation is sulfonylation, which is 

an irreversible modification (Fig. 12). As such, sulfonic acids are potential biomarkers 

of intracellular oxidative stress. Given the scarce availability of detection methods, 

only a handful of biomolecules have been identified, one of which is Cu,Zn-SOD, 

implicated in pathogenesis of amyotrophic lateral sclerosis.188 Redox sensitive protein, 

DJ-1, undergoes oxidation to a sulfinic187 and sulfonic acid,189 particularly at its Cys106 

(Fig. 16). Sulfonylation of DJ-1 controls its intracellular localisation and is implicated 

in protection against neuronal cell death.180 

 

 

Figure 16 - Mechanism of DJ-1 oxidation. The antioxidative action of DJ-1 is modulated by its 

Cys106, which can be oxidised to R-SOH, R-SO2H and R-SO3H. Given the stability of its R-SO2H, it is 

postulated that this is its active form. Under high oxidative stress C106 hyperoxidation results in 

protein inactivation. 
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1.5 Protein Persulfidation: Biochemistry & Signalling 

In order to explain the plethora of biological effects of H2S, researchers have turned 

their attention towards protein persulfidation.8,191 Protein persulfidation (also known 

as S-sulfhydration) is an oxPTM of cysteine residue (Fig. 1) and its role has been 

compared to protein S-sulfenylation (responsible for H2O2–mediated responses) or S-

nitrosylation (responsible for NO-mediated responses). However, biological targets 

affected by persulfidation, the mechanism(s) of persulfide formation and the actual 

physiological outcomes of this modification remain unclear, given the lack of selective 

tools for their detection (described further in Section 1.6 and Chapter 2).  

1.5.1 Properties of Persulfides 

Papain-, glutathione- and glutathione peroxidase 3- persulfides were among 

the first protein models prepared.192,193 Since, protocols have also been developed for 

the in situ preparation of human and bovine serum albumin (HSA and BSA, 

respectively).194 In addition, the synthesis of LMW persulfides have been reported, 

such as penicillamine-derived persulfides (N-Methoxycarbonyl penicillamine 

persulfide, nmc-PSSH),195 Cys,196 Hcy197 and others. All model persulfides are prepared 

in situ due to their instability and susceptibility to decomposition via the 

disproportionation of two persulfides in aqueous solution (Eq. 3).8  

RSSH + RSS– → RSSSR + HS–  (3) 

This inherent instability of persulfides is the reason why there is limited 

information on the reactivity of persulfides. Moreover, another challenge in their 

detection is that their chemical properties tend to overlap with other Cys-thiol 

modifications, such as thiols and disulfides. 

The persulfide group, R-SSH, is a type of unsymmetrical disulfide, which bears 

two sulfur atoms of different properties (Fig. 18A). Its inner sulfur, R-SSH, is considered 

a sulfane sulfur with an oxidation state of 0, which naturally is of slightly electrophilic 

nature (thus a target for nucleophilic attack).198 However, its outer sulfur, R-SSH, has 
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Figure 18 - Protective Effect of Protein Persulfidation from Cysteine Over-oxidation. (A) Dual 

chemical nature of protein persulfides, with one sulfur atom being electrophilic and the other 

nucleophilic. (B) Due to their increased nucleophilicity, persulfides are better scavengers of ROS than 

cysteines, resulting in the formation of S-sulfonates, which could potentially be reduced by 

thioredoxin (Trx) (restoring back the thiolates). On the other hand, when exposed to persistent ROS, 

cysteine residues are irreversibly hyperoxidised leading to protein inactivation. 

1.5.2 Persulfide Formation and Depersulfidation 

The estimated percentage of persulfidated proteins varies from 5 – 25% of the entire 

proteome, depending on the method of detection and cellular model used.8 The 

intracellular formation of this modification is based on two general mechanisms: (i) 

through non-enzymatic mechanisms achieved either by oxidation of H2S or oxidation 

of thiols; or (ii) enzymatically, where persulfides are formed in the catalytic cycle.  

1.5.2.1 - Non-Enzymatic Formation of Persulfides 

One common misconception is that persulfides are formed via the direct reaction of 

H2S and a cysteine thiolate. However, this reaction is thermodynamically 

unfavourable.15,194 The main mechanism by which persulfides are non-enzymatically 

formed are through reactions of H2S with oxidised Cys, such as R-SS-R, R-SOH and R-

SNOs, or in the reaction of Cys residues with radicals, polysulfides and other 

persulfides (so called transpersulfidation). 

H2S and Sulfenic Acids 

Sulfenic acids are known weak nucleophiles, soft electrophiles and typically unstable. 

The reaction of R-SOH with H2S generating a persulfide and water has been 

documented, with a 4-fold higher pH-independent rate constant when compared to 

the reaction with thiols.199 Additionally, this reaction is the mechanism by which the 

persulfidated forms of proteins glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), BSA and HSA are prepared.194,199  

A few studies have shown that upon the treatment of cells with H2O2, or under 

conditions of ER stress known to have elevated levels of ROS (specifically R-SOH), 

there is an increase in endogenous persulfide levels.199,202,203 This suggests that the 
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reaction of R-SOH and H2S could be the main mechanism for persulfide formation in 

cells. It is important to take into account the competing reaction of R-SOH with 

glutathione, given the higher estimated cellular concentrations of glutathione 

compared to H2S.198 However, H2S is freely diffusible across membranes,  has a very 

high flux of production, and could reach deeper into the protein without any 

constrains.12,55 The hypothesis that R-SOH serve as precursors for R-SSH formation is 

investigated in detail in this thesis. 

H2S and Disulfides 

GSSG, protein inter- or intra- molecular disulfides or an S-glutathionylated protein Cys 

residue, represent the majority of disulfides generally found in a cell. H2S can react 

with disulfides, in a sulfur exchange reaction (Eq. 4), yielding an R-SSH and R-S–; 

however, due to the very slow rate constants and low steady-state concentrations of 

H2S under physiological conditions (compared to other LMW thiols), this is an unlikely 

mechanism for persulfide formation.8,199  

R-SS-R + HS– ⇌ R-SS– + RSH  (4) 

The likelihood of this reaction depends on the pKa of the thiol which forms the 

disulfide. Additionally, studies showed no formation of a persulfide upon the reaction 

of BSA or immunoglobulins (both of which contain intramolecular disulfides) with H2S 

at physiological conditions.15,194 The slow reaction of H2S with disulfides may be more 

relevant for specific proteins or in some compartments, such as the ER.194 This reaction 

can also represent a possible route for the clearance of H2S in compartments with high 

levels of disulfides. 

H2S and S-Nitrosothiols 

S-nitrosation is one of the most important posttranslational modifications of thiols 

through which NO conveys some of its signalling properties. The –SNO group has an 

unusual electronic structure, giving rise to its ambiguous reactivity. The reaction of S-

nitrosated thiols (R-SNO) and RS– proceeds via trans-nitrosation reaction, forming RS– 
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and RSNO, or with RSH forming the disulfide R-SS-R and nitroxyl (HNO) - the latter 

being thermodynamically unfavourable.8 With regards to its reactivity with H2S, R-SNO 

can react and form a thiol and the smallest S-nitrosothiol, HSNO.204 HSNO represents 

a carrier of “NO+” (nitrosonium) moiety and can serve as a trans-nitrosation agent, as 

it can freely diffuse through membranes.204 R-SNO and H2S can also form a persulfide 

and HNO (Eq. 5); however, this reaction has thermodynamic limitations and depends 

largely on the protein microenvironment of the –SNO bond.205  

RSNO + HS–  ® RSS– + HNO  (5) 

Overall, even though S-nitrosation and persulfidation may affect protein 

function differently, there is some evidence of a 36% proteomic overlap202 of the two 

modifications, giving rise to the need for further deciphering of the intertwined nature 

of these modifications.8 

Radical Reactions 

Protein metal centres or strong 1-electron oxidants can contribute to the formation of 

persulfides through their reactivity with H2S and RSH, forming the sulfanyl (HS•) and 

thiyl (RS•) radicals, respectively. Following the formation of these radicals, a likely route 

of persulfide formation can be: (i) the radical-radical combination (Eq. 6); or (ii) reaction 

between HS– and RS• or RS– and HS• to form the radical anion R-SSH•– (Eq. 7-8). This 

radical anion can subsequently react with O2, forming RSSH (Eq. 9).8 It has been 

reported that GAPDH, BSA and Hsp70 are persulfidated upon exposure to H2S and 

water-soluble heme iron.194  

HS• + RS• → RSSH     (6) 

HS• + RS– → RSSH•–     (7) 

RS• + HS– → RSSH•–     (8) 

RSSH•– + O2 → RSSH + O2
•–   (9) 

A few recent studies have demonstrated the importance of this mechanism for 

persulfide formation. The reaction of H2S with cyt c results in the initial formation of a 

HS•/S•– radical. Cyt c-assisted protein persulfidation might represent a previously 



 40 

unrecognised source of reactive sulfur species, which mediates the protective effects 

attributed to protein persulfidation (Fig. 19).206 This was not only important for 

mitochondrial persulfidation, but also for apoptosis where cyt c-mediated 

persulfidation of procaspase 9 inhibited its pro-apoptotic function.  

 

Figure 19 - Protein persulfidation catalysed by cyt c/H2S couple. 

Far more intriguing was the observation that H2S can interact with zinc finger 

(ZF) proteins.207 ZF coordinates HS–, serving as a catalyst for the shuttling of electrons 

from HS– to O2 forming superoxide and HS•/S•–. Subsequent ZF persulfidation disrupts 

the protein structure and abrogates RNA binding, resulting in higher TNFa mRNA 

levels which offers an explanation for the proinflammatory properties assigned to H2S. 

Thiols and Polysulfides 

Polysulfides (HSn
–) are products of the incomplete oxidation of H2S, mainly caused by 

the presence of metal ion impurities. Smaller chain polysulfides are more stable (n = 

4/5). As sulfane-sulfur-containing compounds, they are susceptible to nucleophilic 

attack by thiolates, resulting in the formation of persulfides.198 Given their presence in 

contaminated solutions of H2S or media, they can be responsible for some of the 

effects assigned to H2S.8 An example is the activation of TRP channels by polysulfides, 

a phenomenon not seen upon the treatment with clean H2S solutions.208,209 Although 

the intracellular presence of polysulfides is inevitable, their role as signalling 

molecules or their targeted role in forming persulfides remains doubtful, given their 

unspecific stochastic reactivity, slow diffusibility across membranes, and unregulated 

production.8,198 
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Thiols and Persulfides (Transpersulfidation) 

As already mentioned, persulfides contain two sulfur atoms, the inner (proximal or 

sulfenyl) sulfur (the S atom bound to carbon) and the outer (terminal or sulfhydryl) 

sulfur atom, which is negatively charged (due to the low pKa). Therefore, the reaction 

with thiolates as nucleophiles predominantly proceeds via an SN2 nucleophilic attack 

on the inner sulfur, with formation of disulfide and release of H2S (Eq. 10). This has 

been documented for both LMW persulfides as well as protein persulfide 

models.193,195,210 

RSSH + R’S– ⇌ RSSR’ + HS–  (10) 

However, transpersulfidation, a transfer of terminal sulfur atom, between thiols and 

persulfides, has been suggested in the literature (Eq. 11).  

RSSH + R’S– ⇌ RSH + R’SS–  (11) 

The existence of the tautomeric thiosulfoxide form (RS(H)=S) is often cited as an 

explanation for the transpersulfidation (Eq. 11),211–213 which would then act as a perfect 

donor of sulfane sulfur. The SS bond in thiosulfoxides (R2S=S) may be considered as 

either double214 or “semipolar”,215 depending on the electronegativity of substituents. 

Computational studies and bond energies, however, suggest that thiosulfoxide 

tautomers cannot be formed as the energy barrier for the isomerisation is >100 

kJ/mol.216 In case of persulfides, the isomerisation requires the protonated forms to 

tautomerise to RS(S)H,216 but considering that at physiological pH most of the 

persulfides exist in deprotonated form, the tautomerisation is additionally slowed.  

Yet, this type of reaction has been documented in the reactions/catalytic cycles of 

some proteins where protein microenvironment facilitates this process (discussed in 

greater detail below). 

1.5.2.2 - Enzymatic Formation of Persulfides 

Several enzymes involved in cysteine metabolism have been reported to get 

persulfidated in their catalytic cycle, or to form an LMW persulfide through sulfur 
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transfer reactions. These persulfidated enzymes/LMW thiols generally have the ability 

to further transfer a sulfane sulfur. TST, an enzyme responsible for the detoxification 

of cyanide (Fig. 6) and the conversion of thiosulfate to sulfite, forms an intramolecular 

persulfide in its catalytic cycle (Fig. 20A).8,217 The enzyme cycles between a 

persulfidated and a free thiol form of its active site Cys.218  

The main enzymes involved in the carbon-sulfur bond cleavage are cysteine 

desulfurases or MSTs. Cysteine desulfurases are a family of PLP-dependent enzymes 

that catalyse the removal of sulfur from L-Cys, forming L-alanine and a sulfane sulfur.219 

The proposed mechanism proceeds via the generation of a labile protein-bound Cys-

SSH intermediate. These enzymes are particularly important for the iron sulfur cluster 

assembly.219,220  

 

Figure 20 - Mechanism of Persulfide Formation in Catalytic Cycles of TST, MST and SQR. 
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MSTs, on the other hand, do not require a cofactor and are involved in the 

cysteine catabolism and the production of H2S.8 As mentioned in Section 1.2 (Fig. 6), 

MST catalyses the conversion of 3-MP to pyruvate, proceeding via a two-step 

mechanism. In the first reaction, a sulfur atom is transferred from 3-MP to the Cys 

residue of MST, forming a Cys-SSH intermediate on MST and pyruvate (Fig. 20A). The 

second step involves the transfer of the nucleophilic sulfur of Cys-SSH to a 

nucleophilic acceptor, such as Trx, and the subsequent release of H2S from the 

acceptor.8,221 Studies have shown that upon the treatment of cells with D-Cys 

(substrate of DAO), which feeds into the production of 3-MP (substrate of MST), there 

is an increase of persulfidation.8,42 

SQR, an enzyme involved in H2S clearance in the mitochondria, is another 

example of an enzyme which forms an intermediate persulfide on its catalytic cysteine 

(Fig. 20B).222 The intermediate SQR persulfide transfers its sulfane sulfur to GSH 

forming GSSH.223 Alternatively, it can transfer it to SO3
2– to form S2O3

2–.8  

Finally, it is worth mentioning that both CBS and CSE could produce Cys-SSH 

from cystine (Cys-SS-Cys).8,196,224 

1.5.2.3 - Mechanism of Depersulfidation 

Persulfidation is considered to be a reversible PTM and, given the increasing evidence 

of it having a prominent signalling role, its endogenous removal is essential. It has 

been postulated that the Trx/TrxR system can enzymatically reduce persulfides. Trx is 

a disulfide oxidoreductase and an important intracellular redox regulator. It is known 

to mediate the 2-electron reduction of disulfides and regenerate reduced Trx, 

catalysed by TrxR. Studies have suggested that the Trx/TrxR system can reduce both 

R-SNO225–227 and possibly R-SOH165, and that it also takes part in the sulfur transfer 

reaction catalysed by MST.8 Initial in vitro evidence showed that Trx has an 

approximately 200-fold higher efficiency at reducing Cys-SSH of PTP1B compared to 

the reducing agent DTT.228  
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conditions as a replacement for Trx.231 The reduction of polysulfides and HSA-SSH by 

glutaredoxin (Grx)/ GR systems have also been shown in vitro (Fig. 21B).231 Overall, 

further studies must be performed in order to reach a clear understanding of the full 

mechanism of depersulfidation. 

1.5.3 Signalling via Persulfidation 

As mentioned earlier within this introduction, the progress of research in the area of 

persulfides has led to the identification of multiple persulfidated target proteins. 

Below is a brief summary of the biological effects controlled by the persulfidation of 

specific targets.8,11 

1.5.3.1 – Cytoprotection and Stress Signalling 

As discussed in Chapter 1.3.1 above, H2S is involved in the regulation of antioxidant 

response genes, a process that involves the binding of Nrf2 to the antioxidant 

response element (ARE). Nrf2 is considered a ‘master regulator’ of intracellular 

antioxidant response, and is involved in attenuating apoptosis and initiating 

mitochondrial biogenesis.232–234 Under non-stress conditions, Kelch-like ECH-

associated protein 1 (Keap1) binds to Neh2 domain of Nrf2 and sequesters it in the 

cytoplasm, where it becomes targeted for proteasomal degradation (Fig. 22). Keap1 

bears reactive cysteines which can be targeted by different electrophiles.  

H2S has been reported to exhibit its cardioprotective effects under ischemic 

stress, by persulfidating Keap1 and promoting nuclear translocation of Nrf2 and the 

activation of the expression of antioxidant enzymes (Fig. 22).234–236 The persulfidation 

of Keap1 was also decreased in CSE knockout mice and mouse embryonic fibroblasts 

(MEF), both of which show elevated levels of oxidative stress and signs of 

senescence.236 Moreover, upon the activation of the Keap1-Nrf2 pathway, there is an 

increase in the expression levels of the enzymes involved in H2S production CBS and 

CSE and SQR.237 
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regulator ATF4 is up-regulated, which in turn increases the expression of CSE and 

intracellular H2S levels.75 Consequently, this causes persulfidation of many target 

proteins, some of which are involved in the glycolysis and tricarboxylic acid (TCA) 

cycle.202 ER-stress induced persulfidation of targets may be aided by the elevated 

levels of ROS, which cause the initial sulfenylation of proteins, priming them for 

persulfidation.8 Moreover, ER stress also induces the persulfidation of PTPs, most 

importantly, PTP1B, which plays a central role in ER stress signalling.153,228 

Persulfidation of PTP1B was shown to inhibit its activity and consequently inhibit 

protein translation through the activation of phosphorylated extracellular signal-

related kinase (PERK). 

 Persulfidation-induced MEK1 activation has been associated with increased 

DNA damage repair.242  

 Finally, it has been demonstrated that H2S in the bone marrow modulates self-

renewal and osteogenic differentiation.243 CBS deficiency (decreased levels of H2S), 

common in patients with osteoporosis, caused the reduction in persulfidation of 

multiple transient receptor channels, invoking a decreased Ca2+ influx and down-

regulation of signalling pathways controlling osteogenic differentiation.243 

1.5.3.2 – Neuroprotection 

Protein persulfidation has also been associated with many neurodegenerative 

diseases, one of which is Parkinson’s disease (PD). Parkin is an E3 ubiquitin ligase with 

reactive Cys at the active site, prone to oxPTMs. Parkin is known to be regulated by 

oxidative/nitrosative stress via sulfenylation and nitrosylation. Persulfidation of Parkin, 

demonstrated even under basal conditions, leads to enzyme activation and clearance 

of damaged proteins (Fig. 23).244 Persulfidation of Parkin has been observed in vivo in 

samples from patients with PD, which contained lower levels of persulfidated Parkin 

but increased levels of its nitrosylated form.244 
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1.5.3.4 – Vasodilation 

Multiple studies demonstrate that H2S promotes vasorelaxation through its interaction 

with NO; however, H2S-induced vasodilatory effects are probably caused by several 

different mechanisms.8 One such mechanism is persulfidation of the ATP-dependent 

potassium channel (KATP) in vascular smooth muscle cells. Persulfidation causes 

channel opening by increasing its binding to phosphatidylinositol-4,5-bisphosphate 

(PIP2), which results in potassium ion (K+) influx and consequent vasorelaxation.105 

1.6 Methods of Persulfide Detection 

Due to their greater nucleophilicity, persulfides react faster with commonly used thiol-

blocking electrophiles than the corresponding thiols, and they yield distinct products. 

Thus, alkylation of thiols yields thioethers, while disulfides are formed from 

persulfides. Several methods exploit these characteristics of persulfides for their 

detection and are briefly summarised below.  

Persulfides could be detected directly by spectrophotometry via their prior 

derivatisation with the electrophilic blocking agent, 1-fluoro-2,4-dinitrobenzene 

(FDNB) (Fig. 24).248 Once persulfides react with FDNB, they form a mixed disulfide, 

which can be subsequently treated with a reducing agent to release 2,4-

dinitrobenzenethiol, a molecule with distinct spectre in visible light region. Another 

direct approach is MS.191 However, this approach has many limitations, including that 

protein persulfides are quite unstable and that mass shift of 32 KDa is 

indistinguishable from sulfinylation. In order to avoid their instability, the initial use of 

a blocking reagent, such as NEM or IAA, can be installed to stabilise the proteins (Fig. 

24).192,193 



 50 

 

Figure 24 - Strategies used for the characterisation of protein persulfides. Pure protein persulfides 

can be analysed directly by Mass Spectrometry (MS), UV-visible, IR or NMR spectroscopy (top left). 

Protein persulfides can be labelled by different approaches (top right). Persulfides can either be 

labeled with the blocking reagent, 1-fluoro-2,4-dinitrobenzene (FDNB) and reduced with DTT to 

release fluorogenic adduct which absorbs at 408 nm at alkaline conditions (bottom right), or they can 

be blocked using blocking reagents (NEM or IAA) and analysed by MS (bottom left). 

The first method for persulfidation detection that found wide application was 

published by Snyder et al., and is known as the Modified Biotin Switch assay (Fig. 

25).191 This method relies on the premise that thiol blocking reagent S-

methylmethanethiosulfonate (MMTS) would not react with persulfides but will block 

all other thiols, so that in the next step persulfides could be selectively labelled with 

N-(6-(biotinamido)hexyl)-3′-(2′-pyridyldithio)-propionamide (biotin-HPDP). However, 

it has been demonstrated that MMTS reacts readily with persulfides (if not even better 

than with thiols), rendering this method problematic.193 

 

Figure 25 - Modified Biotin Switch assay for protein persulfide detection. 
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1.7 Project Aims 

As a third gasotransmitter, H2S has been implicated in mediating a plethora of 

(patho)physiological functions. However, as described above, the exact mechanism(s) 

of action responsible for these effects are still elusive. One of the main mechanisms 

by which biological effects of H2S may be explained is through persulfidation. 

Therefore, understanding protein persulfidation does not only have fundamental 

potential, for instance in unravelling new signalling pathways, but it also has 

pharmacological potential, particularly in fighting aging and neurodegenerative 

diseases. To date, the underlying mechanisms of H2S-mediated R-SSH formation 

remain unclear, mainly due to the lack of reliable and selective tools for persulfide 

labelling. The overall aim of this study was to develop a robust, chemoselective 

method for persulfide labelling, which can then be used for positioning this oxPTM in 

the global cell redox signalling scheme. The goals of this thesis were: 

 

1. Development and characterisation of a selective method for persulfide labelling. 

The chemoselectivity of the novel two-step approach for persulfide labelling, 

named Dimedone Switch method, was shown through kinetic and proteomic 

studies with LMW and protein persulfides and in different cell models. 

 

2. Development of the method’s applicability. 

To establish the method’s versatility, protocols were developed for the in-gel 

fluorescence, microscopy, anti-body microarray-like and proteomic analysis of 

intracellular persulfidation. Furthermore, the method was used in different model 

organisms such as cells, organs, C. elegans, E. coli and S. cerevisiae to 

demonstrate that persulfidation is evolutionarily conserved and controlled by the 

H2S-producing enzymes in the transsulfuration pathway and cysteine catabolism. 
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3. Investigation of persulfide’s intertwined nature with H2O2 signalling and their 

importance for protecting cysteines from hyperoxidation. 

The reversibility of R-SH→R-SSH→R-SSO3H cycle, catalysed by Trx, was 

demonstrated in kinetic and mass spectrometry studies. Moreover, the protective 

effect of R-SSH from cysteine over-oxidation was shown through dynamic spatio-

temporal studies of R-SSH and oxPTMs, such as R-SOH and R-SO2H, revealing the 

presence of ‘protective waves’ of protein persulfidation.  

 

4. Study of the biological relevance of the protective effect of persulfidation, its 

correlation with oxidative stress resistance and aging. 

To determine how persulfide levels affect oxidative stress resistance and aging, 

stress assays were performed with different model organisms in vitro and in vivo. 

The ability to form persulfides was directly correlated to oxidative resistance and 

lifespan extension. Additionally, using C. elegans lifespan assays and aging 

models (human patients and rodents), persulfide and H2S-producing enzymes 

levels were shown to inversely correlate with aging. 
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Measurement of Protein Persulfidation: Improved
Tag-Switch Method

Emilia Kouroussis, Bikash Adhikari, Jasmina Zivanovic,

and Milos R. Filipovic

Abstract

Hydrogen sulfide (H2S) is an endogenously produced signaling gasotransmitter, generated by the enzymes

cystathionine γ-lyase, cystathionine β-synthase, and 3-mercaptopyruvate sulfurtransferase. The involvement

of H2S in numerous physiological, as well as pathophysiological conditions, was established over the past

decade. However, the exact mechanism(s) of regulation of the biological functions by H2S are under active

investigations. It is proposed that the oxidative posttranslational modification of protein cysteine residues,

known as persulfidation, could be the main mechanism of action of H2S. Protein persulfides show similar

reactivity to thiols, which represents one of the main obstacles in the development of a reliable method for

detection of this specific protein modification. Subsequently, having a selective method for persulfide

detection is of utmost importance in order to fully understand the physiological and pathophysiological

role of H2S. Several methods have been proposed for the detection of protein persulfidation, all of which are

highlighted in this chapter. Furthermore, we provide a detailed description and protocol for the first

selective persulfide labeling method, a tag-switch method, developed in our group.

Key words Hydrogen sulfide, Gasotransmitter, Oxidative posttranslational modification, Persulfide,

Tag-switch assay, CN-BOT, CN-Cy3, MSBT

1 Introduction

1.1 Protein

Persulfidation

Over the past decade, hydrogen sulfide (H2S) has emerged as the
third gasotransmitter alongside nitric oxide (NO) and carbon mon-
oxide (CO) [1, 2]. The production of H2S in the cell has been
found to be controlled by at least three enzymes, cystathionine
β-synthase (CBS), cystathionine γ-lyase (CSE), and
3-mercaptopyruvate sulfur transferase (MPST). These enzymes
are expressed at different levels in different tissues and control
H2S production with different efficiencies. H2S has been shown
to completely or partially regulate various physiological and patho-
physiological processes [3–8]. The main mechanism by which H2S
has been proposed to regulate biological functions is the formation
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of persulfides on specific protein cysteine residues (referred to as
S-sulfhydration or persulfidation), an oxidative posttranslational
modification that could change the protein structure and activity
[9].

Protein persulfidation can potentially explain the ample effects
that H2S has been documented to exhibit in the cell [10]. For
example, parkin, a key Parkinson’s disease (PD)-associated protein,
is a documented case of a protein affected by oxidative/nitrosative
stress [11–16]. Parkin functions as an E3 ubiquitin ligase, i.e., it
catalyzes the thioester transfer of ubiquitin moieties to a variety of
proteins. The loss of protein activity has been shown to be a reason
for PD [17]. A recent study by Snyder’s group demonstrated that
parkin gets persulfidated, which consequently causes an increase of
its activity [18]. This overactivation of parkin’s function could
rescue neurons from cell death by removing damaged proteins.
The use of H2S donors may therefore help in the early treatment
of PD.

Despite the growing interest for protein persulfidation, there is
still limited evidence in the literature regarding the exact mecha-
nism(s) by which proteins are persulfidated. Initial studies of pro-
tein persulfidation were based on the incorrect assumption that the
deprotonated form of free thiols (thiolates) could react directly
with H2S, resulting in the formation of persulfides. This reaction
is, however, thermodynamically unfavorable and does not occur
[19–21]. The exact mechanism by which proteins are modified by
H2S is an important question, which, when clearly understood,
could be a crucial linker toward the unraveling of H2S signaling.
Several mechanisms have been proposed [21], but the most plausi-
ble is the reaction of H2S with oxidized thiols, more precisely,
disulfides or sulfenic acids.

The proposed reaction of H2S with disulfides could represent a
route for H2S consumption in the extracellular matrix and plasma,
for example, where higher levels of disulfides are present. However,
recent studies suggested that the reaction of H2S with disulfides is
too slow to be of physiological relevance [22]. Interestingly, the
reaction of H2S with sulfenic acids (RSOH) has a rate constant
higher than that of the reaction of other biological thiols with
RSOH [22]. The treatment of cells with hydrogen peroxide
(H2O2) showed increased intracellular levels of protein persulfida-
tion, a process that could be completely suppressed by inhibiting
endogenous H2S production [22].

The pKa of persulfides is lower than that of their corresponding
thiols [21–23] suggesting that at physiological conditions, the
majority of persulfides would be in their deprotonated form
(R-S-S!), making them “super” nucleophilic. This should dramati-
cally increase persulfides’ reactivity when compared to their
corresponding thiols. Indeed the rate constant of the reaction of
protein persulfides with peroxynitrite (powerful oxidant formed in
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the diffusion controlled reaction of superoxide with nitric oxide) is
found to be one order of magnitude greater than for the reaction of
peroxynitrite with its corresponding thiol [22].

All of these observations led to a suggestion that protein per-
sulfidation could serve as a protection mechanism where, via pro-
tein persulfidation, the cellular milieu gets protected from
irreversible protein hyper-oxidation, induced by a high amount of
reactive oxygen (ROS) and nitrogen species (RNS) [21]. Namely,
thiol oxidation, which initially starts with the formation of sulfenic
acids (still reversible modification) could proceed further with the
irreversible formation of sulfonic acids. H2S could react with the
sulfenic acids instead, preventing this oxidation. In addition, per-
sulfidated protein will react faster with ROS/RNS and form an
adduct that could be cleaved by the action of certain enzymes
restoring the free thiol.

To exert a regulatory function similar to that of phosphoryla-
tion/dephosphorylation or S-nitrosation/denitrosation, S-persul-
fidation levels must be enzymatically modulated [24]. Intracellular
protein disulfides and S-glutathionylation levels are controlled by
the thioredoxin (Trx) system [25]. The enzymatic system, consist-
ing of Trx, thioredoxin reductase (TrxR), and NADPH, represents
the main disulfide reductase system in cells. In addition to its
disulfide reductase activity Trx cleaves the persulfides one order of
magnitude more efficiently than it reduces corresponding disul-
fides. The inhibition of the Trx system leads to an increase of
intracellular persulfides, confirming that this process occurs in the
cells as well. Significantly lower total sulfane sulfur levels were
detected in HIV patients with high viral load (and high circulatory
Trx levels) compared to the treated patients, which provides evi-
dence that Trx acts as depersulfidase additionally in vivo [26].

Recent studies have shown that proteins such as NF-κB, Keap1,
GAPDH, KATP-channels, PTP1B, etc. undergo protein persulfi-
dation [2, 19, 27–30]. It has been estimated that up to 25% of
proteins are persulfidated [31] making this modification almost as
abundant as phosphorylation, and thus being of crucial importance
for cells. However, due to the lack of an accurate and selective
method for persulfide detection, the total amount of persulfidated
protein remains questionable.

Persulfides are made of two sulfurs with different electronega-
tivities, which results in it demonstrating two modes of reactivity.
The sulfur covalently bound to carbon (RSSH) is considered a
sulfane sulfur, with a formal charge of 0. Subsequently, this sulfane
sulfur is susceptible to nucleophilic attack [32]. The persulfide’s
terminal sulfur (RSSH), however, possesses a formal charge of !1,
which makes it susceptible to reaction with electrophiles [32]. As a
consequence, one of the main obstacles in the development of a
reliable and selective detection method for persulfides is the similar
reactivity of persulfides to other sulfur species, especially thiolates.
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According to literature, there has been a lot of debate on whether
the detection methods used for persulfide labeling are indeed selec-
tive for protein persulfides [21]. This chapter provides an overview
of the currently reported methods for protein persulfide labeling,
with particular emphasis on the tag-switch method developed in
our group.

1.2 Modified Biotin-

Switch Method

The first method proposed in the literature for the labeling and
detection of protein persulfides was by Mustafa et al. [31]. This
method was a modification of the method originally used for the
detection of protein S-nitrosation in proteins, known as the biotin-
switch assay [33]. This assay for S-nitrosothiols was developed as a
three-step method, where free thiols were initially blocked with the
electrophilic alkylating agent, S-methyl methanethiosulfonate
(MMTS), and after removing the excess of MMTS, ascorbate was
added to reduce the S-nitrosothiols to free thiols. The released
thiols were then selectively conjugated with N-[6-(biotinamido)
hexyl]-30-(2-pyridyldithio) propionamide (biotin-HPDP) and cap-
tured by streptavidin beads.

Mustafa and colleagues proposed a modified biotin-switch
technique (modified-BST), illustrated in Fig. 1, in which protein
persulfides were postulated to remain unreacted after the blocking
of thiols with MMTS. Hence after the excess MMTS is removed,
the free persulfides can be labeled with the use of biotin-HPDP, as
shown in Fig. 1. Using this method, Mustafa et al. claimed that up
to 25% of proteins in cell lysates are modified by H2S, under basal
conditions [31].

MMTS is extensively used for the detection of protein S-nitro-
sation and used in the in vivo trapping of the thiol-disulfide state of
proteins [34, 35]. However, caution must be taken when using
MMTS as Karala and Ruddock documented that MMTS generates
artificial intermolecular and intramolecular protein disulfide bonds,
which can give rise to the misinterpretation of results [36].

The chemical foundation of the modified biotin-switch tech-
nique was the selective reactivity of MMTS with thiols. However,

Fig. 1 Schematic overview of modified biotin-switch assay. The first step of this method was based on a

chemically questionable premise that protein persulfides would not react with electrophilic thiol-blocking

reagent S-methyl methanethiosulfonate (MMTS). In the subsequent step, persulfides are labeled with N-

[6-(biotinamido) hexyl]-30-(20-pyridyldithio) propionamide (biotin-HPDP)
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the potential nucleophilicity and hence reactivity of persulfides with
the electrophilic MMTS was not investigated. Pan and Carroll [32]
tested the reactivity of MMTS using low molecular weight (GSH
persulfide) and protein persulfide models (papain persulfide and
glutathione peroxidase 3 (Gpx3) persulfide). Their results demon-
strated that the alkylated products were present in the product
mixture following the reaction with MMTS. In the case of the
low MW model, GSH persulfide, the alkylated product was
obtained as a minor product, while with Gpx3 persulfide and papain
persulfide, the alkylated product was obtained as the major prod-
uct. Additionally, the reactivity of these persulfide models toward
electrophilic and nucleophilic reagents was tested, giving a further
insight into persulfide reactivity. The nucleophilicity of the terminal
sulfur of tested persulfides (RSSH) was reaffirmed, showing with-
out a doubt that they react with MMTS (and its brominated
analogue BBMTS) as readily as free thiols.

1.3 Cy5-Maleimide

Labeling and Further

Modifications

of the Method

Snyder’s group also [27] proposed a modified NEM (N-ethylma-
leimide) method for the persulfide labeling of purified proteins
(Fig. 2). Cy-5 labeled maleimide was used as a thiol-blocking
reagent, to block both the persulfides and free thiol of tested
protein sample. The product of Cy5-maleimide and persulfide is
actually a disulfide that can be cleaved by dithiothreitol (DTT). The
samples were then treated with DTT and the decrease of in-gel
fluorescent signal monitored as readout for the persulfide levels
(Fig. 2). Simplicity of this method, as well as commercial availability
of the reagents, represents the two main advantages; however the
analysis of complex protein mixtures becomes more difficult.

Fig. 2 Schematic overview of Cy5-maleimide method. In this method both persulfide and free thiol would be

blocked by the thiol fluorescently labeled N-ethyl maleimide (Cy5-conjugated maleimide). The adduct of

persulfide and Cy5-maleimide is a disulfide that will be then cleaved by the DTT leading to a decrease of the

in-gel fluorescence signal in the samples containing persulfides
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We described a slight modification of the method proposed by
Snyder’s group [22], which has since been used by several other
authors with minor modifications (Fig. 3). In this methodological
approach, free thiols and persulfides are initially labeled with bioti-
nylated maleimide. Labeled proteins are then digested using trypsin
and biotinylated peptides separated using streptavidin agarose
beads. The alkylation of persulfides leads to the formation of a
disulfide, making the elution of persulfidated peptides from strep-
tavidin beads by DTT rather easy. After centrifugation, the eluant
was analyzed by LC-MS/MS. Gao et al. [37] used a similar method
to detect persulfides in cell lysates. For the blocking step, an alter-
native reagent was used, maleimide-PEG2-biotin (NM-biotin),
which was followed by the binding of the biotin-labeled proteins
on an avidin column.

Other thiol-blocking reagents could be used instead of malei-
mides, such as Iodoacetyl-PEG2-Biotin (IAB). Some authors tried
to name this method, calling it ProPerDP [38] or qPerS-SID
[39]. In the ProPerDP method, instead of digesting the alkylated
proteins prior to streptavidin separation, Dóka et al. [38] separated
the whole proteins on streptavidin beads, eluting the persulfidated
proteins with TCEP (tris(2-carboxyethyl)phosphine). Separating
the whole proteins by this approach is more prone to artifacts. In
addition to inevitable elution of proteins connected by inter- and
intramolecular disulfides and which do not necessarily have to
contain any persulfides, the actual yield of eluted persulfidated
proteins is underestimated. For example, if a protein contains two
cysteine residues, of which only one is persulfidated, then the
chances for the persulfidated protein to be eluted from streptavidin
beads are 50%. For example, in case of another protein TRPA1 [40]
whose persulfidation is postulated to contains 21 cysteine residues,
those chances would be 1/21. Therefore, it is not surprising that

Fig. 3 Chemical modifications of method proposed by Sen et al. [27]. Proteins get initially labeled with

alkylating agent such as biotin-maleimide, maleimide-PEG-biotin, or iodoacetyl-PEG-biotin which label both

thiols and persulfides. Labeled proteins then get pulled down by streptavidin (or avidin) beads, cleaned from

the rest of the mixture, and persulfidated proteins get eluted by some reducing reagent such as DTT or TCEP.

Cuevasanta et al. [22], Gao et al. [37], and Longen et al. [39] trypsinized the labeled protein first and then

pulled down the peptides with streptavidin beads, while Dóka et al. [38] worked with intact proteins
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Dóka et al. [38] reported very low protein persulfidation using the
ProPerDP approach.

In the qPerS-SID method, Longen and colleagues [39] used
this approach for quantitative proteomic analysis of protein persul-
fidation, where control cells were grown on standard cell medium,
while the cells treated with H2S donors were grown on SILAC
(stable isotope labeling with amino acid in culture) medium. The
cells were treated with iodoacetyl-PEG2-biotin (IAB) to block
thiols and persulfides, samples were mixed in a ratio of 1:1 and
digested by trypsin. Peptides containing cysteine and persulfide
were separated from other peptides in the mixture using streptavi-
din beads. Bound persulfidated peptides were separated from the
bound peptides with cysteine using the reducing agent (TCEP) to
cleave the disulfide bond in the persulfides. In the following step,
peptides were treated with iodoacetamide (IAM) to improve their
detection by LC-MS/MS analysis. However, certain limitations
arise concerning this method. The critical step of this method,
similar to that of the ProPerDP method [38], is its reduction step
and subsequent breaking of the disulfide bonds, hence not being
selective only to persulfides. As a result, the intramolecular disulfide
bonds will also be reduced causing false-positive results. Further-
more, following the reduction, the use of IAM as a thiol-blocking
reagent can additionally label primary amines [41] and sulfenic
acids [42], as the authors suggested. Indeed, the authors did not
see any significant increase of protein persulfidation in the cells
treated with the most used H2S donors, NaHS or Na2S, contrary
to all other published studies, which further questions this meth-
odological approach.

To determine the persulfidation of protein tyrosine phospha-
tase 1B (PTP1B) in the cell lysate, Krishnan and colleagues [28]
used iodoacetic acid (IAA) as a thiol-blocking reagent (Fig. 4). Free
thiols and persulfides will be blocked since the persulfide reactivity
is similar to that of the free thiols. However, in the second step, they
used DTT to cleave the alkylated persulfides in order to form free
thiols. Next, the free thiols were labeled with iodoacetamide-linked

Fig. 4 Schematic overview of persulfide labeling approach proposed by Krishnan et al. [28]. In this method,

iodoacetic acid (IAA) is used to initially block both free thiols and protein persulfides. In the subsequent steps,

alkylated persulfide is cleaved with DTT and then labeled with iodoacetamide-linked biotin (IAP). Although DTT

would indeed cleave this adduct, it is unclear how this method distinguishes the persulfides from intra- and

intermolecular disulfides and S-nitrosothiols, which would also be reduced by DTT

Measurement of Protein Persulfidation: Improved Tag-Switch Method 43



biotin (IAP) and purified on streptavidin beads. The main concern
with this method is the use of DTT as a reducing reagent in the
second step of the protocol. Namely, DTT would cleave the alky-
lated persulfides, but it would also cleave all the disulfide bonds in
the protein and consequently cause false-positive results.

1.4 Tag-Switch

Method

We proposed that persulfidation can be selectively detected by the
tag-switch method (i.e., using two reagents to label protein persul-
fides in two steps) [10, 19]. In the first step, a thiol-blocking
reagent should be introduced and tagging both P-SH and P-SSH
to form an intermediate product (Fig. 5a). If an appropriate thiol
blocking reagent is employed, the disulfide bonds in the persulfide
adducts may show enhanced reactivity to certain nucleophiles than
common disulfides in proteins. We screened a series of carbon-
based nucleophiles as potential candidates [19]. Among these can-
didates, methyl cyanoacetate was particularly attractive as its ester
group could allow easy installation of reporting molecules. There-
fore, we could introduce a tag-switching reagent (containing both
the nucleophile and a reporting molecule, such as biotin) to label
only the persulfide adducts. It should be noted that thiol adducts
from the first step are thioethers, which are not expected to react
with the nucleophile. Moreover, in contrast to previous methods,
even if the free thiol is not completely blocked, we should not
expect any misidentification of persulfidated proteins because the
tag-switch reagent is a nucleophile, not an electrophile.

Fig. 5 Tag-switch method for persulfide labeling. (a) Schematic overview of labeling steps in tag-switch

method. Methylsulfonyl benzothiazole (MSBT) is used to block thiols and persulfides in the first step, followed

by the tag switch with cyanoacetate derivatives that carry a reporting molecule, in the second step. (b)

Structures of reporting molecules used to label protein persulfides from the cells
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A major challenge in this technology was whether the newly
generated disulfide linkages from persulfidemoieties could display a
unique reactivity to a suitable nucleophile to an extent that it is
differentiated from common protein disulfides. We envisioned that
a reagent, which would give a mixed aromatic disulfide linkage
when reacting with persulfides (-S-SH), could exert the reactivity
criteria for our tag-switch technology (Fig. 5a). Indeed, by com-
bining methylsulfonyl benzothiazole (MSBT-A) as a thiol-blocking
reagent in the first step, and a biotinylated derivative of methyl
cyanoacetate as a nucleophile in the second step, we could effi-
ciently label protein persulfides (Fig. 5a) [19]. To test the selectivity
of this method, we produced P-SSH on bovine serum albumin
(BSA) and compared its reactivity with the tag-switch assay using
glutathionylated, sulfenylated, and normal BSA (which by defini-
tion contains both intramolecular disulfides and one reactive cyste-
ine). Only P-SSH was labeled and could be pulled down by
streptavidin beads, suggesting the applicability of tag-switch assay
for wide proteomic analysis [43].

The original assay used was with a biotinylated cyanoacetic acid
tag, which required Western blot transfer and streptavidin or anti-
bodies for visualization [10, 19]. To increase sensitivity, we synthe-
sized two new cyanoacetic acid derivatives, with a fluorescent
BODIPY moiety (CN-BOT) or a Cy3-dye (CN-Cy3) (Fig. 5b)
[26]. Both new tags labeled persulfidated human serum albumin
(HSA-SSH) resulting in the formation of fluorescent products.
CN-BOT was used for the labeling of cells for microscopy
(Fig. 6) and CN-Cy3 for the labeling of cell lysates. This is because
the former showed low fluorescence after gel fixation, while the
latter proved to be very difficult to wash out from fixed cells. This
lead to the discovery that the thioredoxin/thioredoxin reductase
system is essentially involved in the removal of protein persulfida-
tion, thus acting as protein depersulfidase system. Using this
improved tag-switch assay, we also demonstrated the role of protein
persulfidation in aD. melanogaster disease model of spinocerebellar
ataxia type 3 (SCA3) [44].

2 Materials

2.1 “Improved

Tag-Switch” Assay for

In-gel Detection

1. Ham’s F12: DMEM (1:1) medium supplemented with 2 mM
glutamine, 1% nonessential amino acids, and 10% fetal bovine
serum.

2. PBS.

3. HEN buffer: 50 mM HEPES, 0.1 mM EDTA, 1.5% SDS, 1%
NP-40, 1% protease inhibitor cocktail, and 10 mM MSBT
pH 7.4. See Note 1.

4. Methanol.
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5. Chloroform.

6. 50 mM HEPES with 3% SDS (pH 7.4).

7. Neocuproine hydrate.

8. 2.5 mM CN-Cy3 in acetonitrile.

2.2 “Improved

Tag-Switch” Assay

for In Situ Detection

of Intracellular

Persulfide

1. PBS.

2. Methanol.

3. Acetone.

4. 50 mM HEPES buffer (pH 7.4).

5. 10 mM MSBT dissolved into 70% 50 mM HEPES (pH 7.4)/
30% methanol.

6. Triton X-100.

7. 2.5 mM CN-BOT in acetonitrile.

8. DAPI.

Fig. 6 The use of the improved tag-switch method for the in situ labeling of intracellular persulfides in

SH-SY5Y neuroblastoma cells. Cells were treated with 100 μM Na2S or 2 mM D-cysteine (substrate for

3-mercaptopyruvate sulfur transferase, MPST) for 1 h, to increase the levels of intracellular persulfidation.

Labeling was performed as described in the protocol, with the green fluorescence originating from CN-BOT

and blue from the use of DAPI to stain the nuclei. An obvious increase of intracellular persulfidation was

achieved with exogenous treatment with Na2S and even stronger effect was visible in the cells treated with

2 mM D-cysteine
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3 Methods

3.1 “Improved

Tag-Switch” Assay

1. Grow SH-SY5Y cells in Ham’s F12: DMEM medium, supple-
mented with 2 mM glutamine, 1% non-essential amino acids,
and 10% fetal bovine serum at 37 !C and 5% CO2 in T-75 cell
culture flasks.

2. Treat the cells with respective compounds over 1 h.

3. Wash the cells twice with warm sterile PBS.

4. Lyse the cells by adding 800 μL HEN buffer that contains
10 mM MSBT to the T-75 flasks.

5. Incubate the cells on ice for 10 min with occasional scrapping
of the flask surface with a cell scrapper.

6. Transfer the lysate to tubes and incubate for 1 h at 37 !C.

7. Precipitate the proteins from the lysate by chloroform/metha-
nol precipitation. Start by adding methanol (MeOH) first
(1/1, v/v) followed by vigorous vortexing and then add chlo-
roform (final: 4/4/1, water/MeOH/CHCl3). Vortex the sam-
ple and centrifuge (20,000 " g, 20 min, 4 !C). Proteins
will form a visible intermediate layer pellet between the chloro-
form and MeOH/water fraction. To wash the protein pellet,
remove the upper fraction, and replace with MeOH, mix, and
centrifuge again (20,000 " g, 20 min, 4 !C).

8. Dry the precipitated pellet and resuspend in 300 μL 50 mM
HEPES with 3% SDS.

9. Incubate the protein solutions with 60 μMCN-Cy3 (by adding
3 μL of a 25 mM stock solution) for 1 h at 37 !C. See Note 2.

10. Resolve by SDS-PAGE under non-reducing conditions, and
record the gels on a Cy3 channel.

3.2 “Improved

Tag-Switch” Assay

for In Situ Detection

of Intracellular

Persulfide

1. Grow cells in μ-dishes (35 mm, high) obtained from Ibidi®

(Martinsried, Germany), following manufacturer’s
instructions.

2. Treat the cells with respective compounds over 1 h.

3. After treatments, wash the cells twice with warm sterile PBS.

4. Fix the cells by incubation with ice-cold methanol at #30 !C
for 20 min. Remove methanol, and add ice-cold acetone to the
cells for 5 min at #30 !C. Wash the dishes with PBS buffer.

5. Incubate the cells with 0.5 mL MSBT/HEPES/methanol
solution at room temperature overnight.

6. Wash the cells five times with PBS, and incubate with 0.5 mL of
25 μM CN-BOT (obtained by adding 5 μL of CN-BOT stock
solution) in HEPES at 37 !C for 1 h.
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7. Wash the cells five times with PBS and stain with DAPI, fol-
lowing manufacturer’s instruction.

8. Wash the cells again and visualize using an LSM 780 confocal
laser scanning system (Carl Zeiss MicroImaging).

4 Notes

1. MSBT shows poor solubility. Phosphate buffers further
decrease its solubility leading to the precipitation. Stock solu-
tions should be prepared in methanol and added into HEN
buffer which already contained 1.5% SDS, 1% NP-40, and 1%
protease inhibitor cocktail.

2. Sulfenic acids could react with cyanoacetic acid-derived probes.
Although the chances that they remain intact in the cells
after the first five steps are minor (indeed we confirm that
they do not interfere with the labeling [19]). An additional
step could be introduced immediately after the fixation where
the cells would be incubated with 1 mM dimedone in 70%
50 mM HEPES (pH 7.4)/30% methanol for 1 h at 37 !C,
washed carefully, and then continue labeling as described in
step 5.
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38. Dóka É, Pader I, Bı́ró A et al (2016) A novel
persulfide detection method reveals protein
persulfide- and polysulfide-reducing functions
of thioredoxin and glutathione systems. Sci

Adv 2:e1500968. https://doi.org/10.1126/
sciadv.1500968

39. Longen S, Richter F, Köhler Y et al (2016)
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ABSTRACT 

 

Life on Earth emerged in a hydrogen sulfide (H2S)-rich environment eons ago and with it protein 

persulfidation mediated by H2S evolved as a signaling mechanism. Protein persulfidation or S-

sulfhydration is a posttranslational modification of reactive cysteine residues, which modulate 

protein structure and/or function. Persulfides are difficult to label and study due to their reactivity 

and similarity with cysteine. Here, we report a facile strategy for chemoselective persulfide 

bioconjugation using dimedone-based probes, to achieve highly selective, rapid, and robust 

persulfide labeling in biological samples with broad utility. Using this method, we show that 

persulfidation is an evolutionarily conserved modification and that waves of persulfidation are 

employed by cells to resolve sulfenylation and prevent irreversible cysteine overoxidation to 

preserve protein function. We report an age-associated decline in persulfidation which is conserved 

across evolutionary boundaries. Accordingly, dietary or pharmacological interventions to increase 

persulfidation associate with increased longevity and improved capacity to cope with stress 

stimuli. 

 

Keywords: hydrogen sulfide, protein persulfidation, hydrogen peroxide, sulfenylation, 

sulfinylation, sulfonylation, redox signalling, aging, calorie restriction 
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INTRODUCTION 

Although considered a toxic gas for more than a century, hydrogen sulfide (H2S) was one 

of the essential ingredients required for life to emerge on Earth (Patel et al., 2015). Early anaerobic 

bacteria flourished in H2S-rich environments and even used H2S instead of water for the first 

photosynthetic process (Filipovic et al., 2018; Wang, 2012). Two decades ago H2S re-emerged as 

an important signaling molecule produced by cells (Filipovic et al., 2018; Paul and Snyder, 2012; 

Szabó, 2007; Wang, 2012). Genetic deletion of the H2S producing enzyme cystathionine γ-lyase 

(CSE) can lead to hypertension (Yang et al., 2008). Animals exposed to H2S enter a suspended 

animation-like state (Blackstone, 2005), while dietary restriction-induced stress resistance and 

lifespan extension depends on intracellular H2S production (Hine et al., 2015). Despite beneficial 

effects of H2S, observed in a plethora of pathological states (Filipovic et al., 2018; Paul and Snyder, 

2012; Szabó, 2007; Wallace and Wang, 2015), the mechanism or mechanisms underlying these 

effects remain poorly characterized. However, its role in the oxidative posttranslational 

modification (oxPTM) of cysteine residues, known either as protein S-sulfhydration or 

persulfidation, is thought to be one of its main beneficial mechanisms of action (Paul and Snyder, 

2015) .  

Cysteine is a rare amino acid residue that often occurs in functional sites of proteins and 

represents a site for redox control of protein function (Marino and Gladyshev, 2010; Paulsen and 

Carroll, 2013). For example, hydrogen peroxide (H2O2) signals via the oxidation of cysteine 

residues to sulfenic acids (P-SOH), while part of nitric oxide signaling could be explained by 

cysteine S-nitrosation (Foster et al., 2009; Paulsen and Carroll, 2013). A variety of chemical 

approaches have been used to label and study cysteine modifications, leading to a broad range of 

fundamental and applied advances (Furdui and Poole, 2014; Paulsen and Carroll, 2013). However, 

protein persulfides (P-SSH) and their role in cell signaling managed to remain understudied, due 

to the fact that P-SSH are very reactive and their reactivity is similar to that of cysteine residues 

(Cuevasanta et al., 2015; Filipovic et al., 2018; Pan and Carroll, 2013). Consequently, this has 

made it difficult to design tools for selective labeling, hampering a better understanding of the 

function of this specific oxPTM. Current methods rely on blocking both thiols and persulfides with 

electrophiles and then releasing the latter with a reducing agent, but this approach is linked to many 

caveats (Dóka et al., 2016; Filipovic et al., 2018; Reisz et al., 2013). 

Nonetheless, due to their enhanced nucleophilicity persulfides react readily with  reactive 

oxygen species (ROS), while H2S itself is a poor ROS scavenger (Cuevasanta et al., 2015; Filipovic 
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et al., 2018; Ono et al., 2014). Given the fact that ROS play an important role in signaling 

(D’Autréaux and Toledano, 2007; Finkel, 2011) and aging (Finkel and Holbrook, 2000), it is 

tempting to speculate that the general beneficial effects of H2S are evolutionary conserved and 

conveyed through protein persulfidation.  

To better understand persulfidation in vivo, we explored the phenomenon that, if first 

transformed to mixed aromatic disulfides, protein persulfides could be selectively labeled by 

certain nucleophiles. Here we report the development of a new, dimedone-based method that 

enables chemoselective persulfide bioconjugation of proteins from a wide range of source 

materials in vitro and in vivo. Using this new method, we report that persulfidation plays an integral 

role in hydrogen peroxide-based signal transduction. We also found that protein persulfidation 

decreases with age and is maintained by interventions that increase lifespan across evolutionary 

boundaries, and may thus play a previously unrecognized protective role against aging. 

RESULTS  

Development of dimedone switch method  

To be able to use nucleophilic substitution to tag persulfides, P-SSH need to first be transformed 

into a mixed disulfide (Wedmann et al., 2016; Zhang et al., 2014) in such a way that one of the 

sulfurs in the S-S bond possesses a much more enhanced electrophilicity (Figure S1A). Despite 

their selectivity in sulfenic acid labeling (Klomsiri et al., 2010; Paulsen and Carroll, 2013; Yang 

et al., 2014), dimedone-based probes (Figure 1A) could be an excellent candidate in the second 

step, serving as the nucleophile. They are additionally attractive candidates since a plethora of 

those probes are commercially available with different reporting moieties and have been 

thoroughly tested (Furdui and Poole, 2014; Paulsen and Carroll, 2013). However, for dimedone-

based probes to be used in P-SSH labeling, the initial step needs to involve a reagent which not 

only reacts with P-SSH and thiols but also blocks sulfenic acids. 4-chloro-7-nitrobenzofurazan 

(NBF-Cl) fulfils these criteria. It is used as a tool for the blocking and detection of thiols, amines 

and sulfenic acids (Bernal-Perez et al., 2012; Ellis and Poole, 1997) and it should form a mixed 

disulfide upon its reaction with P-SSH (Figure 1B). We initiated our study by monitoring the 

labeling of the low molecular weight persulfide, N-methoxycarbonyl penicillamine persulfide  

(nmc-PSSH, (Artaud and Galardon, 2014)) (Figure 1C). Nmc-PSSH reacted readily with NBF-Cl 

resulting in a characteristic absorbance maximum at 412 nm (Figure 1D). Next, the addition of an 

equimolar amount of dimedone led to a fast disappearance of the 412 nm peak, suggesting that 



 5

switching did occur (Figure 1E). ESI-TOF MS/MS analysis of the reaction mixture confirmed 

that the two main products are the NBF-SH and dimedone labeled nmc-PSSH (Figure 1C, Figure 

S1B-F).  

We then evaluated the selectivity of the dimedone switch method by using human serum 

albumin (HSA) as a model (Cuevasanta et al., 2015). HSA has 17 disulfides and 1 free thiolate 

and is therefore both a good control and an example of a protein with an oxPTM of cysteine. 

Human serum albumin (HSA-SH), its sulfenylated (HSA-SOH) and persulfidated (HSA-SSH) 

forms reacted with NBF-Cl to generate products with distinct absorbance maxima that fit well to 

those reported in the literature (Ellis and Poole, 1997) (Figure S1G, I, K). The subsequent addition 

of dimedone caused tag-switching only in the HSA-SSH sample (Figure 1F,G, Figure S1H,J) 

resulting in the loss of HSA-SS-NBF absorbance and formation of both HSA-S-dimedone and 

NBF-SH products. Separation of treated samples by electrophoresis and subsequent 

immunoblotting with anti-dimedone antibody (Seo and Carroll, 2009) gave a positive signal for 

HSA-SSH only (Figure 2A). To confirm the labeling of naturally occurring persulfides, we used 

Thiosulfate Sulfur Transferase (TST, also known as Rhodanese), an enzyme that forms a persulfide 

during its catalytic cycle, as a model (Filipovic et al., 2018). Both immunoblotting with anti-

dimedone antibody (Figure 2B) and ESI-TOF-MS (Figure 2C) revealed TST labeled with 

dimedone. 

With these data in hand, we envisioned that the dimedone switch method could enable the 

installation of various payloads onto a protein of interest that would allow specific 

identification/visualization. We first used DCP-Bio1, a biotinylated form of dimedone (Figure 

1A). Persulfides of HSA and GAPDH showed positive staining (Figure S2A, B), as detected by 

Cy5-streptavidin. Separation of samples by streptavidin magnetic beads and subsequent in-gel 

detection of green fluorescence originating from amino groups labeled with NBF-Cl (Figure 1B), 

showed the selective labeling of P-SSH but not other oxPTM (Figure S2A, B).  

Next, we tested if the method can be used for proteomic analysis. TST persulfide was tag-

switched with DCP-Bio1 and subjected to either trypsin or chymotrypsin digestion. Combined 

they covered 95% of the structure (Figure S2C, Supporting Dataset S1, S2) and only C248, present 

as a persulfide in the active site of the enzyme, was found to be labeled (Figure S2C). Other 

cysteine residues and several lysine residues were labeled with NBF alone (Supporting Data S1, 

S2), according to the reaction scheme in Figure 1B.  
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(C) Model switch reaction with 100 µM N-methoxycarbonyl penicillamine persulfide (nmc-PSSH), 100 µM NBF-Cl 

and 500 µM dimedone. MS analysis reveals formation of 4-thio-7-nitrobenzofurazan (535 nm) and dimedone labeled 

nmc-penicillamine, which under MS/MS conditions decomposes along the blue or red dash line. Numbers given in 

the brackets represent calculated m/z for the observed ions.  

(D) Time-resolved spectra for the reaction of 100 µM nmc-PSSH with 100 µM NBF-Cl (pH 7.4, 23 °C). Arrows 

indicated disappearance of NBF-Cl and appearance of nmc-PSS-NBF adduct at 412 nm. 

(E) Time-resolved spectral changes upon addition of 200 µM dimedone to a reaction mixture shown in (D) (pH 7.4, 

23 °C). Inset: Kinetics of decay of 412 nm absorbance maximum after addition of dimedone. 

(F-G) 23 µM HAS-SSH was left to react with 100 µM NBF-Cl over 30 min in phosphate buffer (50 mM, pH 7.4) 

with 1% SDS, at 37 °C and then 200 µM dimedone was added. UV-Vis spectral changes (F) and kinetic traces (G) 

show the decay of the 422 nm absorbance and the appearance of a 535 nm peak.  

 

We also tested the possibility of detecting P-SSH directly in gel, by installing a Cy5-

fluorescence moiety through Copper(I)-catalyzed Azide-Alkyne Cycloaddition (CuAAC, click 

chemistry). In addition to labeling cysteines, NBF-Cl also reacts with amino groups giving a 

characteristic fluorescence with lex at 488 nm (Bernal-Perez et al., 2012). Commercially available 

TST (already partially present as a persulfide) was incubated with either thiosulfate or 

dithiothreitol (DTT) to form a fully persulfidated or reduced TST, respectively. 20 µM reduced or 

persulfidated TST was mixed with 50 µM NBF-Cl and the persulfide was visualized using DAz-

2/Cy5 CuAAC. On the one hand, while both untreated (lane 1, Figure S2D) and thiosulfate treated 

(lane 3, Figure S2D) TST showed Cy5 signal, the green fluorescence signal was significantly 

reduced in the fully persulfidated enzyme, despite the same load. On the other hand, the green 

fluorescence signal was much stronger in the fully reduced enzyme (lane 2, Figure S2), suggesting 

that at low NBF-Cl/protein ratio, switching caused by the dimedone-based probe could affect the 

intensity of green fluorescence (Figure S2D), so we opted for using at least 10-fold excess of NBF-

Cl (Figure S2E). This use of NBF-Cl in excess additionally offered the opportunity to use the green 

fluorescence as a measure of the total protein load and to therefore quantify the persulfidation 

levels by measuring the Cy5/488 fluorescence signal ratio. Different components of click 

chemistry did not show any interference with the labeling in the presence of NBF-Cl (Figure S2F). 

Together these data display the utility of the dimedone switch approach in biological 

environments. 

To be able to label cell extracts, we had to ensure that the method shows sufficient 

selectivity. The selectivity of dimedone probes for sulfenic acids have been demonstrated 

previously and no cross-reactivity with disulfides, S-nitrosothiols, HNE-modified cysteines or any 

other nucelophilic centers could be observed (Charles et al., 2007; Klomsiri et al., 2010; Yang et 

al., 2014). In fact, a blind proteomic search for off-targets of dimedone did not identify any 
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unwanted labeling (Yang et al., 2014). However, in the dimedone-switch labeling (i) incomplete 

blocking of sulfenic acids by NBF-Cl and (ii) potential interference of sulfenamides could 

represent possible caveats (Figure S2G).  

To ensure efficient and selective labeling we decided to perform the cell lysis under 

denaturing conditions, which will permit fast unfolding and exposure of all cysteine and amine 

residues to NBF-Cl. Large excess of NBF-Cl and incubation at 37 °C should provide an efficient 

kinetic push for fast and complete labeling and blocking. Protein unfolding will also expose cyclic 

sulfenamides to more water, and since they exist in the equilibrium with sulfenic acids this 

equilibrium will be shifted towards sulfenic acids (Gupta and Carroll, 2016). Furthermore, NBF-

Cl has been demonstrated to efficiently react with cyclic sulfenamides (Figure S2G) (Gupta and 

Carroll, 2016). Nonetheless, we used protein tyrosine phosphatase 1B (PTP1B), which forms a 

stable cyclic sulfenamide, as a model system (Paulsen and Carroll, 2013). PTP1B treated with 

H2O2 (to form a mixture of sulfenic acid and cyclic sulfenamide) was labeled with DAz-2 (that 

bears a biorthogonal azide group) and then subsequently coupled to Cy5-alkyne via a CuAAC 

reaction, as expected, but not if it first reacted with NBF-Cl (lanes 1 and 2, Figure S2H). PTP1B 

persulfide however, could be labeled only if it first reacted with NBF-Cl and then with DAz-2/Cy5 

CuAAC (lane 3, Figure S2H). Labeling was absent when NBF-Cl step was omitted (lane 4, Figure 

S2H).  

The method’s selectivity was further confirmed in cell lysates. HeLa cells lysed with NBF-

Cl and tag switched with DAz-2/Cy5 CuAAC resulted in the labeling and in-gel detection of a red 

fluorescence signal only when all reagents were used (Figure 2D, Figure S2I). Barely any signal 

could be detected in a control sample where NBF-Cl was absent (Figure 2D), confirming that 

lysis, incubation and protein precipitation (Figure S2I) would already be sufficient to get rid of 

reactive sulfenic acids and cyclic sulfenamides that could have remained uncapped by NBF-Cl. 

We found that lysis with 5 mM NBF-Cl is already sufficient to give maximal persulfide signal 

(Figure S2J). Treatment of cell lysates with DTT to reduce the disulfide bond formed in the 

reaction of NBF-Cl and protein persulfides, abolished the detected Cy5 fluorescence (Figure 2E), 

confirming the chemical mechanism of the dimedone switch approach proposed in Figure 1B. 

Lysis with dimedone to trap all sulfenic acids (Figure S2K) and subsequent labeling with NBF-Cl 

and then DCP-Bio1 (Figure S2L) or DAz-2/Cy5 CuAAC (Figure S2M) to switch tag persulfides, 

showed that the removal of sulfenic acids prior to persulfide labeling did not affect the detected 

signal, further confirming that our dimedone switch approach shows no cross-reactivity with 
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sulfenic acids and/or cyclic sulfenamides (Figures S2K-M). Additionally, treatment of HeLa cells 

with different sources of H2S increased the intracellular persulfidation levels several-fold (Figure 

2F, G). 200 nM mitochondria-targeted H2S donor, AP39, induced comparable increase as 200 µM 

Na2S, confirming the strong pharmacological potential of this compound (Figure 2F, G). 

We used DCP-Bio1 labeling to identify the endogenously persulfidated proteins in human 

erythrocytes (Figure 2H, Table S1). Out of 56 identified proteins, more than half were previously 

identified to bear oxidized cysteine residues. These proteins were either found to be prone to 

cysteine oxidation in red blood cells (RBC) depleted of haemoglobin (Delobel et al., 2016) or 

treated with diamide (Zaccarin et al., 2014), in RBC from peroxiredoxin II deficient mice (Yang 

et al., 2012) or are found to be directly persulfidated (Valentine et al., 1987). More importantly, 

both enzymes involved in H2S production in erythrocytes were also found to be persulfidated: 3-

mercaptopyruvate sulfur transferase (MPST or MST) and methanethiol oxidase. The former is 

known to form a persulfide during the catalytic cycle (Yadav et al., 2013) while the latter produces 

both H2O2 and H2S (Pol et al., 2018), facilitating the oxidation of a cysteine residue to a sulfenic 

acid first and then to form a persulfide. In addition, peroxiredoxins, known to form sulfenic acid 

during the catalytic cycle (Wood et al., 2003), were found to be persulfidated as well. It is also 

worth noting that all identified peptides, even those not falling within selection criteria (at least 2 

reliable peptides and -10logP>50) originated from cysteine containing proteins, indicative of the 

very high selectivity of this approach. 
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(C) Deconvoluted mass spectra 20 µM rhodanese (black), rhodanese treated with 100 µM NBF-Cl (blue) and 

rhodanese treated first with 100 µM NBF-Cl then with 500 µM dimedone (red). 

(D) In-gel detection of P-SSH levels in cells using the dimedone switch method. HeLa cells were lysed with or without 

supplementation of 10 mM NBF-Cl, and probed for persulfide labeling with or without DAz-2, followed by Cy5-

alkyne using CuAAC. Gels were also stained with Coomassie Brilliant Blue. Fire pseudo-colouring was used to 

visually enhance the signal. Green fluorescence corresponds to the total protein load (NBF-protein adducts).  

(E) MEF cells lysed with or without 20 mM NBF-Cl samples and then treated with or without 20 mM DTT and labeled 

with DAz-2/Cy5-alkyne using CuAAC.  

(F-G) Protein persulfidation levels in HeLa cells treated with different H2S donors: 200 µM Na2S (H2S) for 45 min, 

200 µM GYY4137 for 2 hr, 200 nM AP39 for 2 hr and 2 mM D-cysteine (D-Cys) for 1 hr. Ratio of Cy5/488 signals 
is used for the quantification (G). Data shown as a mean ± SD. of 3 individual experiments. ** p<0.01 vs. control. 

(H) Schematic depiction of the protocol used for the proteomic analysis of endogenous persulfidation in RBC. 

 

 

Persulfidation is evolutionarily conserved and controlled by H2S generation from transsulfuration 

pathway and cysteine catabolism 

Although initial studies suggested that the main source of intracellular persulfides is H2S, produced 

predominantly by CSE (Figure 3A) (Filipovic et al., 2018; Mustafa et al., 2009; Paul and Snyder, 

2012), recent findings questioned this by claiming that persulfides are synthesized during protein 

translation and are not related to the transsulfuration pathway or cysteine catabolism (Figure 3A) 

(Akaike et al., 2017). Persulfidation levels were significantly reduced in mouse embryonic 

fibroblasts (MEFs) originating from CSE-/- animals (Figure 3B). Interestingly, repeated cell 

splitting of the same cell line leads to less pronounced differences in these levels due to 

compensatory overexpression of cystathionine-β-synthase (CBS, Figure S3A, B). CSE is 

profoundly diminished in Huntington’s Disease (HD), a neurodegenerative disease triggered by 

the expansion of  polyglutamine repeats in the huntingtin protein (Paul et al., 2014). In striatal cell-

line models of HD (STHdhQ7/Q7 and STHdhQ111/Q111) harbouring 7 and 111 polyglutamine repeats, 

we now show that the lack of CSE results in the barely detectable P-SSH levels in the 

STHdhQ111/Q111 cells (Figure 3C). CSE is known to be the predominant source of H2S in this cell 

type (Paul et al., 2014; Sbodio et al., 2016). Furthermore, the inhibition of cystine transporter, 

system xc
¯ with erastin also resulted in the loss of protein persulfidation (Figure 3D). Additionally, 

pharmacologically induced overexpression of CSE by Golgi stressor, monensin (Sbodio et al., 

2018), on the other hand, resulted in an increase of intracellular persulfidation (Figure 3E).  

We expanded the screening to different phyla and regna, and in all of them endogenous 

persulfidation was found to be controlled by H2S produced via the transsulfuration pathway or 

cysteine catabolism (Figure 3A). We used an E. coli strain that is transformed with the phsABC 

operon (pSB74 plasmid) encoding for thiosulfate reductase, causing increased H2S production. 
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Treatment of these bacteria with thiosulfate resulted in a two-fold increase of bacterial protein 

persulfidation when compared to control (Figure 3F). On the other hand, cth-1 and mpst-3 mutants 

of C. elegans (lacking CSE and MPST, respectively, Figure 3G) showed lower P-SSH levels. 

Drosophila melanogaster flies overexpressing CSE (Snijder et al., 2015) showed increased P-SSH 

levels (Figure 3H), while kidneys from CSE-/- mice showed reduced persulfidation levels (Figure 

3I). Finally, endogenous persulfidation could be observed in human RBC, in both membrane and 

cytoplasm, confirming the proteomic data (Figure 3J, Table 1). 

The dimedone switch method was also successfully applied for the visualization of 

intracellular persulfides by confocal microscopy (Figure 3K, Figure S3C). MEFs lacking CSE 

showed barely any detectable intracellular levels of P-SSH, while both H2S and D-cysteine 

treatments increased those levels several-fold. Independent of CSE, both sources of H2S increased 

the P-SSH levels highlighting the essential role of H2S in protein persulfide formation (Figure 3K, 

Figure S3C). Furthermore, wide-field fluorescence deconvolution microscopy provided the first 

high-resolution images of intracellular persulfidation (Figure S3D-F). The P-SSH signal is 

dispersed throughout the cell, with some of it being detected even in the nucleus. The P-SSH signal 

in D-cysteine treated cells seems to be predominantly localized in mitochondria, in accordance 

with the fact that D-cysteine is a substrate for cysteine catabolism path via MPST (Shibuya et al., 

2013) (Figure S3F).  

Broad applicability of dimedone switch method: antibody microarray  

To further showcase the applicability of the dimedone switch method, we used an antibody 

microarray-like approach, where antibodies for specific proteins were immobilized on an NHS-

activated surface (Figure 3L). As the samples carry both green and red fluorescence, reflecting 

the total load and P-SSH levels respectively, proteins of interest could be analyzed by this approach 

and their P-SSH levels assessed. We selected antibodies against a series of proteins (Figure 3L) 

for which persulfidation has been shown, or which form persulfides in their catalytic cycles. In 

general, the lack of CSE reduced P-SSH levels of target proteins while D-cysteine treatment 

increased it, albeit with different efficiencies. The selectivity of the method is once more 

demonstrated, as enzymes reported to form persulfides at their active sites during the H2S 

oxidation, such as sulfide:quinone oxidoreductase (SQOR or SQR) and TST, showed high 

endogenous P-SSH levels with minimal changes upon further D-cysteine treatment. However, a 

significant decrease of steady-state persulfide levels of those enzymes was observed in cells 

lacking CSE. Aside from the proteins whose persulfidation has already been demonstrated 
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(GAPDH, HSP70, Keap 1, ß-actin, Parkin) (Mustafa et al., 2009; Vandiver et al., 2013; Yang et 

al., 2013; Zhang et al., 2014), this approach led to the observation that manganese superoxide 

dismutase (MnSOD) could be persulfidated as well (Figure 3L). Unlike prokaryotes, most 

eukaryotic MnSOD have at least one cysteine residue (Figure 3M, Figure S3G) and exhibit strong 

product inhibition by H2O2 (Hearn et al., 2001). Our experiments with human recombinant 

MnSOD showed that a 15 min exposure to a 3-fold excess of H2O2, inhibited MnSOD activity 

(0.15 ± 0.06 x 103 U/mg vs. 2.91 ± 0.07 x 103 U/mg in the control) while the co-treatment with 5-

fold excess of H2S rescued the enzymatic activity (1.92 ± 0.07 x 103 U/mg) (Figure 3N). MS/MS 

analysis of human recombinant MnSOD treated with H2O2 and H2S and labeled by the dimedone 

switch method (using DCP-Bio1 as a switching agent) confirmed that C193 was indeed 

persulfidated (Figure S3H, I, Dataset S3, S4). Other studies have pointed out that the same cysteine 

residue is redox sensitive (Matsuda et al., 1990). Furthermore, persulfidated MnSOD was more 

resilient to tyrosine nitration by peroxynitrite (yield of nitration per subunit 3±2%) when compared 

to the control (15±4%/subunit), suggesting that persulfidation of MnSOD might serve as a 

protective mechanism against detrimental enzyme nitration found in many disease states (Szabó 

et al., 2007). 
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(H) P-SSH levels in wild type (y1w118) Drosophila melanogaster and flies with different levels of CSE overexpression. 

3-4 flies per samples. Ratio of Cy5/488 signals is used for the quantification. n = 3. * p<0.05, ** p<0.01 

(I) P-SSH levels in kidney extracts form wild type (C57BL/6J) and CSE-/- mice. Ratio of Cy5/488 signals is used for 

the quantification.  n = 3 animals. ** p<0.01 

(J) Protein persulfidation in RBC membrane and cytosol from a healthy human donor.  

(K) Confocal microscopy images of intracellular protein persulfide levels of CSE+/+ and CSE-/- MEFs treated or not 

with 200 µM Na2S (H2S) or 2 mM D-Cys for 1 hr. Cy5 signal corresponds to protein persulfides, 488 nm signal 

corresponds to NBF-adducts. Nuclei stained with DAPI. Scale bar 20 µm. 
(L) Antibody microarray-like approach to study persulfidation status of specific proteins. Schematic depiction of the 

method (lower part) and the actual readout (upper part) for the ten listed proteins. Cell lysates from CSE+/+, CSE-/- and 

CSE+/+ MEFs treated with D-Cys (2 mM, 1 hr) were compared. Results are presented as a mean ± SD. from 3 

independent experiments.  

(M) Ribbon structure of two subunits from human MnSOD (PDB: 1pl4), highlighting the cysteine residues and 

manganese containing active site. 

(N) SOD activity of 13 µM MnSOD, MnSOD pretreated with 3-fold excess of H2O2 (15 min, 37 °C) and MnSOD 

pretreated with both 3-fold excess of H2O2 and 5-fold excess of H2S. SOD activity was measured using cytochrome c 

as a reporting molecule which is reduced by the superoxide generated from the xanthine/xanthine oxide system. The 

increase in absorption at 550 nm recorded is proportional to the reduction of ferricytochrome c, and was measured 

over 2 minutes. Results are presented as a mean ± SD. from 3 independent experiments.  

 

 

 

Persulfidation is intrinsically linked to H2O2  

For H2S to be able to modify cysteine residues, an oxidant is required - a role that could be played 

by H2O2. Protein sulfenylation, as a consequence of H2O2 production, represents an important 

signaling event (Paulsen and Carroll, 2013; Poole et al., 2004). However, P-SOH formation should 

be controlled in order to prevent overoxidation of cysteine residues to sulfinic (P-SO2H) and 

sulfonic acids (P-SO3H) that results in a loss of protein function (Figure 4A). Previous studies 

showed that protein P-SOH react two orders of magnitude faster with H2S, than with glutathione 

at pH 7.4 (Cuevasanta et al., 2015) and our proteomic analysis of persulfidated proteins in RBC 

showed a significant overlap with proteins known to be sulfenylated (Table S1). We hypothesized 

that the reaction of H2S with P-SOH could represent an integral part of H2O2-induced redox 

signaling and the main way for resolving P-SOH back to thiols. To test this, we first exposed wild 

type (CSE+/+ or WT) and CSE-/- MEFs to H2O2. While 100 µM H2O2 induced no detectable increase 

in P-SOH levels in CSE+/+ cells, a massive increase in sulfenylation was detected in CSE-/- that 

decreased as exposure time increased (Figure 4B). 500 µM H2O2 was required to cause the same 

magnitude of P-SOH formation in CSE+/+ cells (Figure 4B). This effect could be completely 

abolished by pre-incubating the cells with 100 µM H2S donor, GYY4137 (Figure S4A). 

Conversely, the P-SSH levels in CSE+/+ cells increased time-dependently when treated with 100 

and 500 µM H2O2
 but remained very low in CSE-/- cells (Figure 4C). Recent development of 

selective probes for sulfinic acids (P-SO2H) (Akter et al., 2018) allowed us to test how sulfinylation 
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changes in cells lacking endogenous H2S. A strong overall increase of sulfinylation was observed 

in CSE-/- cells treated with 100 µM H2O2 for 15 min, but this P-SO2H dropped back to normal after 

30 min suggesting that those cysteines either became hyperoxidized or reduced back by 

sulfiredoxin (Akter et al., 2018) (Figure 4D). 500 µM H2O2
 caused increase of sulfinylation only 

on a selected group of proteins in CSE+/+ cells. Sulfinylation of CSE-/- cells, caused by 500 µM 

H2O2, seems to be somewhat lower than with 100 µM dose, presumably due to their higher 

sensitivity and a stronger cysteine hyeproxidation to sulfonic acid. 

To address how endogenous H2S controls H2O2-induced cysteine oxidation on a molecular 

level we monitored the cysteine oxidation status in a redox sensitive protein, DJ-1. C106 is known 

to undergo oxidation to a sulfinic (Akter et al., 2018) and even sulfonic acid (Fernandez-Caggiano 

et al., 2016), while our proteomic analysis identified DJ-1 as a target for persulfidation as well 

(Supporting Table S1). CSE+/+ and CSE-/- cells were treated with 100 µM H2O2
 for 15 and 30 min, 

labeled for P-SOH (using DCP-Bio1), P-SSH (using DCP-Bio1 as a switching reagent) and P-

SO2H (using BioDiaAlk) and immunoprecipitated. In parallel, using an antibody selective for DJ-

1 C106 sulfonic acid, we assessed the DJ-1-SO3H levels in those samples (Figure 4E, Figure S4B). 

H2O2 treatment of CSE+/+ cells resulted in increased persulfidation of DJ-1 (in 15 and 30 min) and 

increased sulfenylation and sulfonylation (P-SO3H) after 30 min. However, in CSE-/- cells already 

low P-SSH levels continued to decrease in cells treated with H2O2. The basal levels of  DJ-1-SOH, 

DJ-1-SO2H and DJ-1-SO3H were much higher in untreated CSE-/- cells when compared to CSE+/+. 

While the DJ-1-SOH decreased with H2O2 treatment in CSE-/- cells, DJ-1-SO2H and DJ-1-SO3H 

levels continued to further increase (Figure 4E, Figure S4B) confirming that the lack of H2S to 

trap P-SOH results in cysteine hyperoxidation. Taken together these data confirmed that 

persulfidation, controlled by endogenous H2S production, is an integral part of H2O2-induced 

redox changes in proteins. 
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PSOH and PSSH values are normalized to the levels found in untreated cells. **p<0.01 compared to the untreated 

CSE+/+ cells; #p<0.05 compared to the untreated CSE-/- cells. 

(E) Persulfidation, sulfenylation, sulfinylation and sulfonylation of DJ-1. WT and CSE-/- MEF cells were treated with 

100 µM H2O2 for 15 or 30 min, labeled for P-SSH, P-SOH and P-SO2H using biotinylated reagents, 

immunoprecipitated with anti-DJ-1 antibody immobilized to agarose beads and immunoblotted with anti-biotin 

antibody. For sulfonylated DJ-1, antibody selective for C106 sulfonic acid of DJ-1 was used. n = 4. **p<0.01 vs. 

untreated WT. # p<0.05, ##p<0.01 vs. untreated CSE-/- cells. 

 

P-SSH waves follow P-SOH formation: implications for RTK-H2O2 signaling 

The importance of P-SOH signaling is best exemplified by the receptor tyrosine kinase 

(RTK) activation (Finkel, 2011; Paulsen et al., 2011; Sundaresan et al., 1995), thus we looked for 

the temporal correlation between P-SOH and P-SSH (Figure 5A). HeLa cells treated with 100 

ng/ml of epithelial growth factor (EGF) responded by a sharp rise in P-SOH within the first 5-15 

min that dropped back to basal values by 30 min (Figure 5B). P-SSH levels however, followed a 

phase shifted curve, with the levels initially dropping at 5 min and then reaching a maximum at 30 

min (Figure 5B). This correlated well with the increase in expression of all three H2S producing 

enzymes with EGF (Figure S4C).  

To confirm the interplay between of P-SOH and P-SSH, we pretreated HeLa cells with 

GYY4137 (Figure 5C, Figure S4D) or with a mix of CSE and CBS inhibitors (propargylglycine 

and aminooxyacetic acid, Figure 5D, Figure S4E) for 30 min to either increase or decrease, 

respectively, the intracellular H2S and P-SSH levels. Pretreatment with GYY4137 indeed induced 

an increase of P-SSH, and upon EGF stimulation these levels continued to rise over 30 min, while 

P-SOH initially dropped and remained low and unchanged (Figure 5C, Figure S4D). In contrast, 

the pharmacological inhibition of endogenous H2S production resulted in a sharp rise of P-SOH 

levels, peaking at 5 min, and being fully resolved at 15 min, presumably due to cysteine 

overoxidation, as P-SSH levels remained very low and unchanged (Figure 5D, Figure S4E). These 

results strongly suggested that persulfidation represents the innate mechanism that cells use to 

resolve signaling by sulfenylation. At the same time, as both labeling approaches use dimedone-

based probes (for PSSH using at a switching agent), these data confirmed once more that the 

dimedone switch method can distinguish P-SSH from P-SOH.  

 We then tested other RTK pathways. The treatment of human umbilical endothelial vein 

cells (HUVEC) with 40 ng/ml of vascular endothelial growth factor (VEGF) showed similar phase-

shift curves for P-SOH and P-SSH, with P-SOH peaking at 5 min and reverting back to basal levels 

already after 15 min, while P-SSH levels peaked at 15 min and stayed high even after 30 min 
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(Figure 5E, Figure S4F). P-SSH increased ~ 9 times in cells exposed to VEGF for 15 min, in 

accordance with the very high H2S production rate that these cells possess (Filipovic et al., 2018; 

Lin et al., 2013). The treatment of neuroblastoma cells (SH-SY5Y) with insulin, produced again a 

distinct peak of P-SSH levels, with the peaking time and the intensity of change correlating directly 

with the dose of insulin (Figure 5F, Figure S4G). A sharp peak of sulfenylation was observed after 

2 min of exposure to 100 ng/mL insulin and it was followed by a wave of persulfidation that peaked 

at 5 min (Figure 5F, Figure S4G). When 200 ng/mL was used, the P-SSH wave of greater 

amplitude was detected, with peaking time being 2 min, presumably due to a stronger and faster 

H2O2 flux produced by higher insulin dose. The kinetics of intracellular sulfenylation preceded the 

P-SSH wave in a phase shifted manner (Figure S4H). Finally, we used CSE+/+ and CSE-/- MEFs 

and treated them with 100 ng/ml EGF. The temporal profile of P-SSH in CSE+/+ was quite similar 

to that observed for HeLa cells and was inhibited in CSE-/- cells (Figure S4I,J). On the other hand, 

sulfenylation was much stronger in CSE-/- cells (Figure S4I,J). 

 Next, we turned our attention to understanding the biological relevance of these waves of 

persulfidation. EGF receptor activation is regulated by sulfenylation (Paulsen et al., 2011) so we 

focused on understanding if and how persulfidation could control the duration of EGF signaling. 

We first looked for the persulfidation of EGFR using commercially available antibody microarray 

plates for the EGFR pathway. Pentaplicates of two different antibodies for EGFR showed a strong 

increase in EGFR persulfidation in HeLa cells treated with EGF for 30 min (Figure 5G). 

Persulfidation of EGFR had a functional effect on the downstream signaling. Phosphorylation of 

Y1068, activated by cysteine sulfenylation, was strongly impaired in GYY4137 pretreated HeLa 

cells (Figure 5H). Correspondingly, the activation of the EGF receptor monitored in live cells also 

revealed a stronger receptor activation in cells pretreated with CSE and CBS inhibitors (PG and 

AOAA), an effect that could be reduced by GYY4137 pretreatment (Figure 5I). Furthermore, the 

inhibition of H2S production to increase the half-life of EGFR sulfenylation caused a significant 

increase of extracellular signal-regulated kinase (ERK) phosphorylation even without EGF 

stimulation (Figure S4K). 

Many of the cysteine containing phosphatases important for EGFR signaling have been 

already shown to be sulfenylated (Paulsen et al., 2011). This is particularly true for PTEN, PTP1B 

and SHPTP2, which we now find to be persulfidated as well (Figure S4L). In addition, using the 

EGFR pathway antibody microarray, we also assessed the persulfidation status of kinases 

downstream of EGFR (Figure 5J, Dataset S5). Numerous protein targets were identified with an 
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(A) Schematic representation of the signaling events triggered by the epidermal growth factor receptor (EGFR) 

activation. Nox: NADPH oxidase; AQP: aquaporin.  

(B) HeLa cells treated with 100 ng/mL EGF for 5, 15, 30 or 60 min were analyzed for protein sulfenylation (labeled 

using DCP-Bio1 and visualized with streptavidin-488, levels calculated using b-tubulin as a loading control) and 

protein persulfidation (using dimedone switch method with Cy5 as a reporting molecule, levels calculated as a ratio 

of Cy5/488 fluorescence readouts). (Right) In-gel fluorescence of P-SSH levels and Western blots for P-SOH levels.  

(Left) Temporal dynamics of P-SSH and P-SOH changes upon EGF exposure. n³3. Values are presented as a mean ± 

SD. ** p<0.01. 

(C) Quantification of P-SSH and P-SOH changes as a function of time upon EGF exposure in HeLa cells, pretreated 

with GYY4137 (100 µM) for 30 min, prior the EGF treatment. n³3. Values are presented as a mean ± SD. ** p<0.01. 

(D) Quantification of P-SSH and P-SOH changes as a function of time upon EGF exposure in HeLa cells, pretreated 

with 2 mM mixture of inhibitors, aminooxyacetic acid (AOAA) and propargylglycine (PG) (1:1, 30 min), prior the 

EGF treatment. n³3. Values are presented as a mean ± SD. ** p<0.01. 

(E) Quantification of P-SSH and P-SOH changes in HUVEC as a function of time upon VEGF (40 ng/mL) exposure. 

n³3. Values are presented as a mean ± SD. ** p<0.01. 

(F) The effect of different insulin concentrations on P-SSH levels in neuroblastoma (SHSY5Y) cells as a function of 

time of insulin exposure. n³3. Values are presented as a mean ± SD. ** p<0.01 vs. untreated, ## p<0.01 100 nM vs. 
200 nM. 

(G) Persulfidation of EGF receptor of HeLa cells treated with 100 ng/mL EGF for 30 min, detected by two different 

antibodies using antibody microarray slides. Each antibody was spotted in pentaplicated. 2 technical replicates were 

performed. Values are presented as a mean ± SD. ** p<0.01. 

(H) Time-dependent phosphorylation of EGF receptor tyrosine 1068 (Y1068) as a response to EGF. HeLa cells were 

pretreated or not with GYY4137 (100 µM) for 2 hr prior to exposure to EGF (100 ng/mL). n = 3. ** p<0.01 GYY4137 

treated vs untreated. 

(I) Real-time measurement of EGF receptor activation in living cells recorded with xCELLigence RTCA DP system. 

HeLa cells were also pretreated with GYY4137 (100 µM, 30 min) or with 2 mM mixture of AOAA and PG (1:1, 30 

min). EGF receptor activation was initiated by the addition of 150 ng/mL EGF. n = 4. Values are presented as a mean 

± SD. ** p<0.01. 

(J) Antibody microarray analysis of persulfidation of different kinases involved in the EGF signaling. HeLa cells were 

treated with 100 ng/mL EGF for 30 min. Each antibody was spotted in pentaplicated. 2 technical replicates were 
performed. 

(K) Schematic presentation of protein targets involved in actin remodeling, cytoskeleton regulation and cell motility, 

found to be persulfidated in cells treated with 100 ng/mL EGF for 30 min. 

 

Protein persulfidation as a rescuing path from cysteine hyperoxidation 

While protein sulfenylation (and even sulfinylation for some proteins) represents a signaling event, 

uncontrollable production of H2O2 or any of the ROS would result in cysteine hyperoxidation and 

loss of function (Figure 6A). Our initial hypothesis was that due to its small size, diffusibility and 

high production flux (Cuevasanta et al., 2012; Filipovic et al., 2018; Vitvitsky et al., 2012), H2S 

could react as the first line of cellular defence against cysteine hyperoxidation (Figure 6A). 

Formed persulfides would be much better nucleophiles than cysteines alone, and could scavenge 

(Cuevasanta et al., 2015) more of the damaging oxidants. Owing to their reducible S-S bond, the 

ensuing S-sulfocysteine should be readily reduced by disulfide reductases, such as thioredoxin 

(Trx) (Figure 6A) creating a reduction pathway which would recycle it back to its thiol form. It 

has been already demonstrated that Trx could reduce S-sulfocysteine formed in the active site of 

3′-phosphoadenosine-5′-phosphosulfate reductase (Palde and Carroll, 2015).  

1  
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To address the reversibility of persulfide oxidation, we used S-sulfocysteine (SSC) as a 

model system (Figure 6B). Incubation of human recombinant Trx with SSC at an equimolar ratio 

resulted in the complete oxidation of Trx, as observed by the leftward mass shift (Dm/z = -2), 

corresponding to the formation of a disulfide bond (Figure 6C). When the C32S mutant, which is 

catalytically inactive, was incubated with the same amount of SSC, no spectral change could be 

observed (Figure S5A); whilst incubation with the C35S mutant, which initially reacts with the 

substrate but cannot complete the catalytic cycle, resulted in the characterization of the disulfide 

adduct of Trx with cysteine (Figure 6D, Figure S5B). Spectrofluorometric kinetic analysis of the 

reaction (Figure 6E, S5C) derived an estimated rate constant of 6.1 ± 0.2 x 104 M-1 s-1, one order 

of magnitude faster than the reaction of Trx with cysteine persulfide and two orders of magnitude 

faster than the reaction with cystine (Wedmann et al., 2016). Coupled with thioredoxin reductase 

(TrxR), the reaction was also faster than with cystine (Figure S5D). Thioredoxin-related protein 

(TRP14) however, was not as efficient in cleaving SSC as human Trx (Figure S5E).  

We then assessed how persulfidation levels of different living systems correlate with their 

ability to resist stress. CSE-/- MEFs showed slower growth and were much more sensitive to H2O2 

when compared to the CSE+/+ cells (Figure 6F); S. cerevisiae proved to be no exception either. 

Despite a slightly different cysteine and H2S metabolism (Figure S5F), the S. cerevisiae mutant 

Dcys3 (CSE) showed growth retardation (Figure S5G) and had lower P-SSH and H2S levels 

(Figure S5H,I). In parallel to this the mutant was found to be more sensitive to H2O2 than the wild 

type (Figure 6G, H). Dcys4 (CBS), on the other hand, exhibited somewhat higher H2S and P-SSH 

levels (Figure SH,I) and was seen to be more resistant to H2O2 (Figure 6H). 

We also tested the sensitivity of C. elegans to different ROS-inducing stressors. cth-1 

(CSE) and mpst-3 C. elegans mutants showed enhanced sensitivity to paraquat (Figure 6I) with ~ 

50% of cth-1 animals dead within 4 hr of exposure (compared to ~80% alive for N2). Another 

ROS stressor, sodium arsenite, also proved to be more toxic to cth-1 mutants compared to N2 

(Figure 6J). Enhanced sensitivity of cth-1 to paraquat and arsenite could be rescued by 

pretreatment with H2S donors to increase the intracellular P-SSH levels (Figure 6K, Figure S5J, 

L). Even the N2 showed better survival after exposure to paraquat or arsenite, just by a 3 hr 

pretreatment with either GYY4137 or AP39 (Figure S5J, K).  
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(F) Toxicity of H2O2 in CSE+/+ and CSE-/- MEFs. Values presented as a mean ± SD. n = 3. 

(G-H) Flow cytometry analysis of cell death using propidium iodide (FL2A channel). Different S. cerevisiae strains 

were cultured overnight, adjusted to OD600 = 2, and grown for 27 hr without or with 10 mM and 20 mM H2O2. Upper 

left quadrant was used as a measure of dead cells. 150000 cells were analysed per measurement. n=2. **p<0.01 vs. 

untreated cells in the same group, ##p<0.01 vs. corresponding treatment of BY4742 cells. 

(I-J) Survival curves of N2, cth-1 and mpst-3 C. elegans strains exposed to 60 mM paraquat (I) and 5 mM sodium 

arsenite (J). N>80 worms. Experiments were performed in triplicate. ** p< 0.01. 

(K) The effect of short-term (3 hr) pre-exposure to GYY4137 (500 µM) or AP39 (100 nM) on survival rate of cth-1 
C. elegans mutants treated with 60 mM paraquat. N>80 worms. Experiments were performed in triplicate. ** p<0.01. 

 

 

Protein persulfidation decreases with aging 

With aging there is an imbalance between ROS production and removal, resulting in an increase 

in oxidative damage (Balaban et al., 2005; Finkel and Holbrook, 2000; Liochev, 2013; Redman et 

al., 2018). Moreover, two independent quantitative proteomics studies found that in C. elegans, 

CSE is decreased during aging (Aging et al., 2015; Narayan et al., 2016). Here we tested the 

hypothesis that protective pools of intracellular P-SSH decline with age and correlate with the 

lifespan of individuals within a given species. While the cth-1 C. elegans mutants did not display 

an overall significantly shorter median/maximal life span, they initially exhibited a much higher 

death rate (Figure S6A). Mpst-3 mutants, which had an even lower P-SSH pool (Figure 3G), lived 

significantly shorter (Figure S6A). Additionally, the persulfidation levels in wild type N2 worms 

gradually decreased from day 1 to day 7 of adulthood (Figure S6B). To confirm the evolutionary 

conservation of this phenomenon, we looked at Wistar rats of 1, 3, 6, 12, and 24 months of age. In 

brain extracts, reduced protein persulfidation levels were observed beginning at 6 months of age, 

with an approximately 50% lower persulfidation in 24 -month-old rats relative to 1-month-old rats 

(Figure 7A). The reduction of P-SSH correlated with the loss of protein expression of all three 

H2S producing enzymes (Figure 7B, Figure S6C). We also observed a profound decrease in 

protein persulfidation and H2S-generating enzyme levels (CSE, MPST) in rat hearts as a function 

of age (Figure 7C), while in liver P-SSH and CSE and CBS levels trended lower but were not 

significantly different between 12- and 24-month-old rats (Figure S6D). 

Finally, as a proof-of-concept experiment we analyzed the persulfidation and sulfinylation 

levels in human fibroblasts originating from the same individual but collected at different ages (31 

and 48 years of age). The results displayed a decrease in P-SSH levels and an increase in P-SO2H 

(Figure 7D) in accordance with our hypothesis (Figure 6A).  

 

Life-span extension by dietary restriction is caused by increased protein persulfidation 
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Recent studies suggest that dietary restriction (DR) increases endogenous H2S production (Hine et 

al., 2015; Mitchell et al., 2016) and that this increase is associated with multiple benefits including 

extended longevity in different species. However, the mechanism by which H2S contributes to DR 

benefits remains poorly characterized. We tested the hypothesis that DR increases longevity in 

part by increasing protein persulfidation. We started with C. elegans by using the eat-2 genetic 

model of DR which eats less and lives longer than N2 controls. An additional deletion of either 

cth-1 or mpst-3 reduced the lifespan of the eat-2 mutant back to control levels (Figure 7E). 

Interestingly, this was in excellent concordance with the total P-SSH pool in these worms; eat-2 

mutants had approximately 3 times higher P-SSH levels than N2, while double mutants had P-

SSH levels close to or even lower than N2 (Figure 7F). Furthermore, lifespan extension induced 

by 2-deoxy-D-glucose (DOG) treatment in wildtype N2 worms was completely reversed in cth-1 

and mpst-3 mutants (Figure 7G). 

 We next looked at 7- and 20-month-old C57BL/6J mice fed ad libitum (AL) or subject to 

daily 30% calorie restricted (CR) from the age of 2 months. Liver persulfidation levels declined 

with age, but were higher in both CR groups compared to AL (Figure 7H).  

 Considering that glucose and insulin tolerance are affected with aging (Fink et al., 1983), 

and that we already observed that persulfidation is an integral part of insulin signaling (Figure 5F) 

we monitored P-SSH changes in young and old mice (2- vs 12-month-old) challenged with i.p. 

glucose injection. A lower persulfidation in old mice, as well as a decrease of the H2S producing 

enzymes (Figure S6E) were obvious. The peak of persulfidation was observed in the muscle tissue 

of young mice treated with glucose but was blunted in the 12-month-old animals (Figure 7I), 

suggesting that the loss of persulfidation capacity with aging is also affecting the insulin signaling 

and that the beneficial effects of CR to a glucose load (Fontana et al., 2010) could partially be due 

to the increased persulfidation.  

Finally, we tested whether pharmacological interventions to increase persulfidation levels 

could extend lifespan. While many H2S donors have shown considerable pre-clinical efficacy and 

are currently undergoing clinical evaluation (Wallace and Wang, 2015), we opted for testing an 

established FDA approved therapeutic drug, sodium thiosulfate, which does not release H2S itself 

but exhibits beneficial effects mimicking those of H2S (Snijder et al., 2015). We observed that 

treatment of cell lysates with either thiosulfate, TST or both increased the persulfidation levels 

several fold (Figure S6F). C. elegans grown on medium supplemented with 1 mM thiosulfate 

showed higher persulfidation levels (Figure 7J) as such, we decided to test its effect on lifespan. 
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(C) Protein persulfidation levels of 1-, 12- and 24-month-old hearts of male Wistar rats (top). Expression levels of 

CSE, CBS and MPST in hearts of 1- ,6- , 12- and 24-month-old male Wistar rats (bottom). Images are representative 

of 3 animals/experimental group. 

(D) PSSH (labeled with the dimedone switch method; DAz-2:Cy5-alkyne switch agent) and PSO2H (labeled with 

BioDiaAlk) levels in human fibroblasts originating from the same donor but collected at the age of 31 and 48. PSSH 

were calculated as a ratio of Cy5/488 signal. PSO2H levels were visualized with streptavidin-488, and calculated using 

GAPDH as a loading control. Quantification of thiol modifications, marked on y axis as PSX, represents average ± 

SD. of n = 3. ** p< 0.01. 
(E) Survival curves for N2, eat-2, eat-2;cth-1 and eat-2; mpst-3 double mutants. n > 100 per line. N2 = 17.8±0.5 days; 

eat-2 = 24.5±0.9 days; eat-2;cth-1 = 20.3±0.6 days; eat-2;mpst-3 = 20.2±0.7 days. For eat-2;cth-1 vs. eat-2 and eat-

2;mpst-3 vs. eat-2 p<0.001. 

(F) Persulfidation levels in N2, eat-2, eat-2;cth-1 and eat-2; mpst-3 C. elegans mutants. For the fluorescence in-gel 

detection, P-SSH levels were calculated as a ratio of Cy5/488 fluorescence readouts. Values are presented as average 

± SD. Protein extracts from ~16000 worms were used for each lane. Experiments were performed in triplicates. ** p 

< 0.01 vs. N2, ## p < 0.01 vs. eat-2. 

(G) Survival curves for N2 and cth-1 mutants grown in the absence or presence of 5 mM 2-deoxy-D-glucose (DOG). 

n = 110 per each line. N2 = 14.2±0.4 days, N2 50 mM DOG = 17.2 ± 1.0 days; cth-1 = 13.3 ± 0.4 days; cth-1 50 mM 

DOG = 13.7 ± 1.0 days. For N2 vs. N2 50 mM DOG p= 0.005; for cth-1 vs. cth-1 50 mM DOG p = n.s, for N2 vs. 

cth-1 p=0.0565. 

(H) Age-induced PSSH changes in mice fed ad libitum (AL) and mice fed with calorie restriction diet (CR). PSSH 
levels were calculated as a ratio of Cy5/488 fluorescence readouts. Values are presented as a mean ± SD. n=5. ** p < 

0.01. 

(I) Time-dependent PSSH changes in the muscle tissue of 2-month and 12-month old mice injected i.p. with D-glucose 

(2 g/kg body weight). PSSH levels were calculated as a ratio of Cy5/488 signal. Values are presented as a mean ± SD. 

n ³ 3. ** p < 0.01 control vs. 2-month old mice, ## p<0.01 2-month vs. 12-month old mice. 

(J) Persulfidation levels in N2 worms with and without treatment of 1 mM thiosulfate. PSSH levels were calculated 

as a ratio of Cy5/488 fluorescence readouts. Values are presented as a mean ± SD. ** p < 0.01. 

(K) Survival curves for N2 C. elegans, and N2 treated with 1 mM thiosulfate. n > 160 per group. N2 = 18.5 ± 0.3 

days, 1 mM thiosulfate = 20.3 ± 0.4 days. p<0.0001 

 

DISCUSSION 

Versatility and selectivity of dimedone switch method 

By combining commercially available and well-characterized chemicals, our novel dimedone 

switch method is a simple, versatile and robust approach for selectively labeling protein 

persulfides, that enables the installation of various groups to proteins and the use of a global of 

detection methods. Moreover, our chemical method allows for a wide scale analysis of metabolic 

pathways that could be controlled by persulfidation and the identification of new redox switches. 

The constant green fluorescence introduced by the NBF-Cl probe provides not only the 

information about total load but could also be harnessed for high-throughput screening. It is easy 

to envision a setup where by measuring only the green fluorescence in microplates with 

immobilized neutravidin, total persulfidation labeled with DCP-Bio1 could be screened. The 

versatility of dimedone based probes also permits site-centric identification and quantitation of 

persulfides by MS, as done for protein sulfenylation (Yang et al., 2014). The installation of 

different fluorophores through CuAAC and almost undetectable unselective background in 
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microscopic analysis also carries a potential for further exploration of protein persulfidation in 

tissue sections. Finally, the use of simple in-gel detection prevents all the problems associated with 

column separation and Western blot transfer, commonly used in other persulfide detection methods 

(Dóka et al., 2016). Caution should be exercised however, to ensure that sulfenic acids and cyclic 

sulfenamides are completely blocked by NBF-Cl prior to the reaction with dimedone-based probes. 

Protein persulfidation is controlled by the transsulfuration pathway and cysteine catabolism 

From the data presented here, we conclude that protein persulfidation is almost exclusively 

controlled by the three H2S producing enzymes involved in the transsulfuration pathway and 

cysteine catabolism (Figure 3A). This is evident in all tested life forms. However, in mammalian 

cells and under basal substrate availability (assuming that all 3 enzymes are present in the cell), 

CSE is expected to be the major source of H2S (Filipovic et al., 2018). CBS would predominantly 

be involved in cystathionine production while the activity of MPST would depend on thioredoxin 

availability and CAT activity (Figure 3A). MPST could nonetheless play a significant role in 

controlling protein persulfidation given that D-cysteine causes a dramatic increase in protein 

persulfidation representing an interesting venue for drug development.  

Persulfidation as integral part of H2O2 signaling or/and as evolutionary conserved route to rescue 

cysteines 

As life emerged in an H2S-enriched environment (Olson and Straub, 2016) and under 

conditions of extensive radiation where ROS were formed by photolysis of water (Liang et al., 

2006), protection of cysteine residues was necessitated. The formation of persulfides poses as the 

simplest answer. In persulfides, sulfur atoms are oxidized, however concurrently sulfur is 

deprotonated and highly nucleophilic, reducing ROS at least one order of magnitude faster than its 

corresponding thiolate (Cuevasanta et al., 2015; Filipovic et al., 2018). In other words, while a 

cysteine gets oxidized to form a persulfide, it forms a strong reducing agent at the same time.  

H2O2 as main ROS player is now widely accepted as a signaling molecule (D’Autréaux 

and Toledano, 2007; Holmström and Finkel, 2014; Yang et al., 2014). This is best exemplified in 

the case of growth factor receptor signaling (Paulsen and Carroll, 2013; Sundaresan et al., 1995). 

Approximately 1000 cysteine sites have been found to be sulfenylated, raising the question of how 

these sites are rescued. In our study, waves of persulfidation are observed following sulfenylation, 

as a response to RTK activation, confirming that persulfidation is an integral part of RTK 

signaling. A recent study demonstrated that a large number of proteins undergo further oxidation 
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to sulfinic acid as well (Akter et al., 2018). Our results demonstrate that without H2S/persulfidation 

proteins undergo a substantial thiol oxidation (sulfenylation, sulfinylation and sulfonylation) even 

with H2O2 concentrations that cause no change in normal cells. This overlooked phenomenon 

questions whether and in which concentration range H2O2 acts as a signaling molecule without 

H2S.  

We demonstrate that as cells age their persulfidation levels decrease due to the loss of H2S 

producing enzymes. Reacting with ROS, a persulfide will form a S-sulfonate which we show could 

be readily reduced back to a thiolate by thioredoxin (Figure 6A). This rescue loop for preserving 

cysteine residues in proteins and preventing their loss of function is probably an evolutionary 

remnant used as a general protective mechanism in all life forms. This is best documented by the 

enhanced sensitivity of different life forms with low P-SSH levels to oxidant stressors and their 

increased resistance once the intracellular P-SSH pool is increased even by a short-term 

pretreatment with H2S donors. This unifying mechanism explains the beneficial effects of DR, 

already known to result in H2S overproduction (Hine et al., 2015), as well as lifespan extension 

caused by pharmacological increase of protein persulfidation. Thus, our results further strengthen 

the ROS theory of aging (Redman et al., 2018). 

It is worth mentioning that beside a general protection, persulfidation of specific proteins 

could result in an alteration of their function (Filipovic et al., 2018; Paul and Snyder, 2015; 

Vandiver et al., 2013), as we observe in the case of MnSOD, whose activity is preserved after 

persulfidation. It is possible that DR-induced decrease of ROS (Redman et al., 2018) could also 

be partially related to better activity of ROS removing enzymes.  

Beside aging, general protective effects of protein persulfidation could be translated to 

many other disease states. HD and neurodegeneration are strongly linked to CSE expression and 

pharmacological interventions to increase CSE levels, such as monensin treatment, show 

promising therapeutic effects (Paul et al., 2014; Sbodio et al., 2016, 2018). Decreased 

persulfidation in HD cells and increased P-SSH levels by upregulating CSE expression reported 

in our study could provide a general explanation for this. Taken together, our data represent a good 

starting point for the fine tuning of targeted therapeutic approaches to improve healthspan and 

lifespan. 
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D. melanogaster: y1w1118 From Professor Ody Sibon 

(University of Groningen) 

(Snijder et al., 2015) 

D. melanogaster: Eip55E From Professor Ody Sibon 
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Cystine Sigma Aldrich Cat# 30200 
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Dimedone Sigma Aldrich Cat# D153303 
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DAz-2 Cayman Chemicals Cat# 13382 

BioDiaAlk (Akter et al., 2018)  N/A 

DiaAlk (Akter et al., 2018)  N/A 

Cyanine5 alkyne Lumiprobe Cat# FP-OO5590 

Copper(II)-TBTA Lumiprobe Cat# 21050 

L-Ascorbic acid Sigma Aldrich Cat# 795437 

5-Fluoro-2′-deoxyuridine  Sigma Aldrich #F0503 

Nmc-penicillamine (Artaud and Galardon, 2014) N/A 

EGF human recombinant PromoKine Cat# 60170 

VEGF-165, human, recombinant PromoCell Cat# C-64422 

Insulin human Sigma Aldrich Cat# I0908 

Paraformaldehyde Sigma Aldrich Cat# P6148 

Sodium thiosulfate  PROLABO Cat# 27 910.291 

Paraquat hydrochloride hydrate Sigma Aldrich Cat# 36541 

Sodium (meta)arsenite Sigma Aldrich Cat# S7400 

2-Deoxy-D-glucose Sigma Aldrich Cat# D8375 

Thiazolyl Blue Tetrazolium Bromide  Sigma Aldrich Cat# M5655 

Protease Inhibitor Sigma Aldrich Cat# P8340 

His-Pur Ni-NTA Superflow Agarose Thermo Fisher Scientific Cat# 25216 

Streptavidin Magnetic Beads Sigma Aldrich Cat# 11 641 778 001 

NeutrAvidin Agarose Resin Thermo Fisher Scientific Cat# 29201 

High Capacity NeutrAvidin Agarose Resin Thermo Fisher Scientific Cat# 29202 

Trypsin from porcine pancreas Sigma Aldrich Cat# T6567 

Chymotrypsin Sequencing Grade Sigma Aldrich Cat# 

000000011418467001 

Human Serum Albumin (HSA) Sigma Aldrich Cat# A1887 

GAPDH Sigma Aldrich Cat# G2267 

Rhodanese from bovine liver (TST) Sigma Aldrich Cat# R1756 

MnSOD Creative BioMart Cat# SOD2-1039H 

Cytochrome c Sigma Aldrich Cat# 30398 

Xanthine Sigma Aldrich Cat# X0626 

PTP1B human recombinant Abcam, Cambridge, UK Cat# ab51277 

Xanthine Oxidase Sigma Aldrich Cat# X1875 

Thioredoxin Reductase (TrxR) from rat liver Sigma Aldrich Cat# T9698 

TRP14 (From human fibroblast cDNA) For this paper N/A 

hsTrx C32S For this paper N/A 

hsTrx C35S For this paper N/A 

hsTrx1 For this paper N/A 

NADPH Sigma Aldrich Cat# N5130 

DAPI Euromedex Cat# 1050-A 

MeRho-Az From Michael D. Pluth’s lab 

(Dept. of Chemistry and 

Biochemistry, Eugene, OR) 

N/A 

Propidium Iodide Sigma Aldrich Cat# P4864 
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Histowax® Histolab Product AB, Sweden Cat# 00405 

Normal swine serum  Dako, Denmark Cat# X0901 

Normal donkey serum Abcam, Cambridge, UK Cat# X0903 

3,3′-Diaminobenzidine tetrahydrochloride 

(DAB) 

Dako North America, Inc. 

Carpinteria, CA, USA 

Cat# K3468 

DPX medium Sigma-Aldrich Cat# 06522 

Experimental Models: Cell Lines   

Human: HeLa ECACC Cat# 93021013 

Human: HUVEC PromoCell Cat# C-12203 

Human: SH-SY5Y ECACC Cat# 94030304 

Human: Fibroblasts Coriell Institute  AG08790 and AG14245 

Mouse: MEF CSE+/+ (WT) From Prof. Snyder’s lab (Johns 

Hopkins University School of 

Medicine) 

(Sbodio et al., 2016) 

Mouse: MEF CSE-/- From Prof. Snyder’s lab (Johns 

Hopkins University School of 

Medicine) 

(Sbodio et al., 2016) 

Mouse: Striatal progenitor cells STHdhQ7/Q7 M. MacDonald (Massachusetts 

General Hospital, Boston, MA) 

N/A 

Mouse: Striatal progenitor cells STHdhQ111/Q111 M. MacDonald (Massachusetts 

General Hospital, Boston, MA) 

N/A 

Experimental Models: C.elegans mutants  

Wild-type Bristol N2 Caenorhabditis Genetic Center N/A 

cth-1(ok3319)V Caenorhabditis Genetic Center VC2569 

mpst-3(tm4387)V MITANI Lab, National Bio-

Resource Project of the MEXT, 

Japan 

FX04387 

eat-2(tm5786)II MITANI Lab, National Bio-

Resource Project of the MEXT, 

Japan 

FX19451 

eat-2(tm5786)II;cth-1(ok3319)V This paper N/A 

eat-2(tm5786)II;mpst-3(tm4387)V This paper N/A 

Experimental Models: Strains/Organisms  

S. cerevisiae: BY4742 (WT) Euroscarf N/A 

S. cerevisiae: Δcys4 Euroscarf ACCNO Y16696 

S. cerevisiae: Δcys3 Euroscarf ACCNO Y16865 

S. cerevisiae: Δtum1 Euroscarf ACCNO Y12507 

Male Wistar Rat 

 

 

Institute for Biological Research 

“Siniša Stanković”, Belgrade, 

Serbia 

N/A 

Male C57BL/6J mice NIA Aging Colony Resource at 

Charles River Laboratories (CRL) 

N/A 

C57BL/6 mice Department of Pharmacology and 

Molecular Sciences, Johns 

Hopkins University School of 

Medicine, Baltimore, MD 

N/A 

Oligonucleotides   

5’-GAAGGAGATATACCATGGTGAAGC-3’ 
(fwd) 

Sigma Aldrich hsTrx in pET28a 

5’-CGGATCTCAGTGGTGGTG-3’ (rev) Sigma Aldrich hsTrx in pET28a 

5’-CACGTGGTCTGGGCCTTG-3’ (fwd) Sigma Aldrich hsTrx C32S mutagenesis 

5’-CAAGGCCCAGACCACGTG-3’ (rev) Sigma Aldrich hsTrx C32S mutagenesis 

5’-GTGTGGGCCTTCCAAAATGATCAAG-3’ 

(fwd) 
Sigma Aldrich hsTrx C35S mutagenesis 
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5’-CTTGATCATTTTGGAAGGCCCACAC-3’ 

(rev) 
Sigma Aldrich hsTrx C35S mutagenesis 

5’-

ACCATCACGGATCCATGGCCCGCTATGA

GGAGG-3’ (fwd) 

Sigma Aldrich hsTRP14 in pQE-80L 

5’-

CCGGGGTACCGTTAATCTTCAGAGAACA

ACATTTCCACCAG-3’ (rev) 

Sigma Aldrich hsTRP14 in pQE-80L 

Recombinant DNA   

Plasmid: pET-28a(+) Novagen Cat# 69864-3 

Plasmid: pQE-80L Qiagen N/A 

Software and Algorithms   

ImageJ NIH https://imagej.nih.gov/ij/do

wnload.html 

GraphPad Prism 5.0 GraphPad Software https://www.graphpad.com 

PEAKS Studio Bioinformatics Solutions Inc. http://www.bioinfor.com/ 

OriginPro 8 OriginLab https://www.originlab.com

/ 

RTCA Software Version 2.0 ACEA Biosciences, Inc. https://www.aceabio.com/

products/rtca-dp/ 

CFLow Plus Version 1.0.202.1 BD Biosciences http://www.bdbiosciences.

com 

 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to, and will be fulfilled by the Lead 

Contact, Milos Filipovic (milos.filipovic@ibgc.cnrs.fr) 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Cell Lines 

HeLa cells and Neuroblastoma cells (SH-SY5Y) were both obtained from ECACC. HeLa cells were cultured in 

Dulbecco’s modified Eagle’s media (DMEM, high glucose and sodium pyruvate) supplemented with 2 mM L-

glutamine, 1% penicillin-streptomycin and 10% calf serum at 37 °C and 5% CO2.  

SH-SY5Y cells were cultured in Ham's F12 : DMEM (1 : 1) media, supplemented with  2 mM glutamine, 1% 

penicillin-streptomycin and 10% calf serum at 37 °C and 5% CO2.  

C-pooled human umbilical vein endothelial cells (HUVEC) were obtained from PromoCell, Germany and 

cultured in Endothelial Cell Growth Medium Kit (C-22110, PromoCell, Germany) at 37 °C and 5% CO2.  

Mouse Embryonic Fibroblasts (MEF) were generated from wild type (CSE+/+) and CSE−/− mice and 

immortalized using SV40T antigen (Sbodio et al., 2016). MEF cells were cultured in DMEM (high glucose), 
supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin and 10% calf serum at 37 °C and 5% CO2.  

The striatal progenitor cell line STHdhQ7/Q7, expressing wild-type huntingtin, and STHdhQ111/Q111, expressing 

mutant huntingtin, harbouring 111 glutamine repeats (referred to as Q7 and Q111 cells, respectively), were from M. 

MacDonald (Massachusetts General Hospital, Boston, MA). The cells were maintained in DMEM (low glucose, no 

pyruvate) supplemented with 2 mM L-glutamine, 1% penicillin-streptomycin and 10% calf serum at 33 °C and 5% 

CO2.  

Human Fibroblasts cell lines AG08790 (31 years old) and AG14245 (48 years old - a culture initiated from 

a biopsy taken 17 years earlier from this same donor is AG08790) were obtained from Coriell Institute for Medical 

Research. Fibroblasts were cultured in DMEM supplemented with 2 mM L-glutamine and 10% calf serum at 37 °C 

and 5% CO2.  

 

C. elegans 

The following strains were used in this study: Wild-type Bristol N2, cth-1(ok3319)V, mpst-3(tm4387)V, eat-

2(tm5786)II, eat-2(tm5786)II;cth-1(ok3319)V, eat-2(tm5786)II;mpst-3(tm4387)V. The original isolate VC2569 cth-
1(ok3319)V was provided by the Caenorhabditis Genetics Center whereas the original isolates FX04387 mpst-

3(tm4387)V and FX19451 eat-2(tm5786)II were provided by the MITANI Lab through the National Bio-Resource 

Project of the MEXT, Japan. All mutant strains were outcrossed at least 4 times before use. Double-mutant strains 

were constructed by using standard techniques (Brenner, 1974; Sulston and Hodgkin, 1988) and the presence of both 
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mutations were checked by PCR. Worms were grown at 20 °C on standard nematode growth medium (NGM) plates, 

unless otherwise stated, using standard C. elegans techniques (Stiernagle, 2006) with sufficient food (E. coli OP50-1) 

for at least two generations prior to use. 

 

S. cerevisiae 

Yeast cells were grown in liquid YPD media (1% yeast extract, 1% bactopeptone, and 2% glucose), unless otherwise 

stated. 

 

Wistar rats 

Male Wistar rats used in the experiment were bred and housed at the Institute for Biological Research “Siniša 

Stanković”, Belgrade, Serbia, under constant laboratory conditions (22±2˚C, 12–12 hr light-dark cycle). Food and 

water were available ad libitum. The animals were decapitated at the ages of 1, 3, 6, 12 and 24 month(s). All animal 
procedures were in compliance with the EEC Directive (86/609/EEC) on the protection of animals used for 

experimental and other scientific purposes and were approved by the Ethical Committee for the Use of Laboratory 

Animals of the Institute for Biological Research "Siniša Stanković", University of Belgrade.  

 

Male C57BL/6J mice (AL and CR experiments) 

All experiments were performed with the approval of the Harvard Medical Area Institutional Animal Care and Use 

Committee (IACUC). Male C57BL/6J mice were obtained from the NIA Aging Colony Resource at Charles River 

Laboratories (CRL) at 6 months (young) and 19 months (old) of age. Mice were allowed to acclimatize to the facility 

for one month to ensure weight stabilization after shipment, so at sacrifice were 7mo old (young) and 20 months (old). 

Initiation of caloric restriction (CR) was performed as previously described (Turturro et al., 1999) (starting at 14 weeks 

of age, CR is initiated in a step-down fashion, where it its increased to 25% restriction at 15 weeks, and the full 40% 

restriction imitated at 16 weeks where it is maintained throughout the life of the animal. Ad libitum (AL) animals were 

fed NIH-31 diet, while CR animals are fed NIH-31 fortified diet (Turturro et al., 1999). Other details about the 

husbandry conditions at CRL can be found here: https://www.nia.nih.gov/research/dab/aged-rodent-colonies-
handbook/barrier-environmental-information.  

Mice were single housed for the duration of their life in standard mouse cages. Upon arrival at Harvard, mice 

were housed in the barrier facility at HSPH in microisolator cages with corncob bedding, a nestlet and one shepherd 

shack. Mice receive free access to water, and either AL NIH-31, or fortified NIH-31 (1 pellet per day for the CR mice). 

CR mice were fed daily between the hours of 7:00-8:00am by feeding the ration of food onto the floor of the cage. 

Any remaining food was removed the next day prior to giving the new food ration. Mice were housed in a room on a 

12/12 hr light/dark cycle (7am-7pm) with temperature between 20–23 °C with 30%–70% relative humidity. Cages 

were changed weekly using full sterile technique and performed in Class II laminar flow change stations with spot 

changes as required.  

 

Male C57BL/6J mice (Glucose Tolerance Test) 

Animals were housed on a 12-h light–dark schedule and received food and water ad libitum, except for the glucose 

tolerance experiment, where the mice were starved overnight before injection with glucose. All animals were treated 

in compliance with the recommendations of the National Institutes of Health and approved by the Johns Hopkins 
University Committee on Animal Care. 

 

METHOD DETAILS 

 

All chemicals were purchased from Sigma Aldrich, unless otherwise mentioned. All buffers were prepared with 

nanopure water and treated with Chelex-100 resins to remove traces of metal ions. Na2S solutions were prepared and 

handled as recommended (Wedmann et al., 2014). Nmc-penicillamine was synthesized, as previously described 

(Artaud and Galardon, 2014). Morpholin-4-ium 4 methoxyphenyl(morpholino) phosphinodithioate (GYY4137) and 

(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5-yl)phenoxy)decyl)triphenylphosphonium bromide (AP39) were 

synthesized in house according to (Alexander et al., 2015; Le Trionnaire et al., 2014). 

 

Preparation of Specific oxPTM of Proteins 

Preparation of HSA-SH, HSA-SOH and HSA-SSH 

Different oxPTM of HSA were prepared and their concentrations quantified as previously reported (Cuevasanta et al., 

2015).  

Preparation of GAPDH persulfide 

GAPDH persulfide was prepared as previously described for HSA derivatives (Cuevasanta et al., 2015). 
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Preparation of TST and TST persulfide 

Bovine TST (Sigma Aldrich) (already largely present as a persulfide) was used to prepare the fully persulfidated 
enzyme, by incubating with a 10-fold excess of sodium thiosulfate in 10 mM Tris buffer (pH 8) at 37 °C for 30 min 
and then cleaning with mini biospin column from Bio-Rad. The reduced enzyme was prepared by incubating with a 
10-fold excess of DTT at 37 °C for 30 min and then cleaned on a mini biospin column. 
 
Dimedone Switch Method for Purified Proteins  

Protein was incubated with 5 or 10 mM NBF-Cl in 50 mM PBS (40mM Na2HPO4, 10 mM NaH2PO4 and 135 mM 
NaCl, pH 7.4) supplemented with SDS (final conc. 2%) for 30 min at 37 °C. The solution was then precipitated by 
methanol/chloroform precipitation; Sample/MeOH/CHCl3, 4/4/1 (v/v/v) was added and centrifuged (14000 x g, 15 
mins, 4 °C). The protein pellet obtained will be between the organic and aqueous layers, both layers was aspirated and 
H2O/MeOH/CHCl3, 4/4/1 (v/v/v) was added to the protein pellet and centrifuged. Supernatant was aspirated again and 
the pellet was subsequently washed with MeOH 2-3 times. Pellet was resuspended in 50 mM PBS containing 2% 
SDS, incubated with either 50 µM dimedone or DCP-Bio1 for 1 hr at 37 °C, precipitated with methanol/chloroform 
as previously mentioned, and re-suspended in PBS containing 2% SDS. 1 equivalent of Laemmli (4X) buffer (BioRad) 
supplemented with 10% β-mercaptoethanol, was then added to 3 equivalents of sample for SDS-PAGE and boiled at 
95 °C for 5 min protected from light.  

For some experiments, the DCP-Bio1-labeled samples were redissolved in 50 mM PBS only, incubated with 
neutravidin beads (Thermo Fischer Scientific) for 2 hr at room temperature (RT) with continuous mixing. Beads were 
then washed with 10 volumes of PBS supplemented with 0.01% Tween-20 and bound proteins were eluted by boiling 
the beads in a minimum volume of Laemmli buffer supplemented with 10% β-mercaptoethanol (1X with PBS) buffer 
for SDS-PAGE for 5 min. Samples were resolved by SDS-PAGE and gels were fixed in fixation buffer for 30 min, 
protected from light. The gel was recorded, at 635 nm for the Cy5 signal and 473 nm for NBF-Cl signal, on the 
Typhoon FLA 9500 (GE Healthcare). 
 

ESI-TOF MS of the dimedone switch reaction with LMW persulfides 

Mass spectrometry was performed on maXis 5G, Bruker Daltonic (Bremen, Germany), an ESI-TOF MS capable of 
resolution of at least 40,000 FWHM. Detection was in positive-ion mode. 100 µM nmc-penicillamine persulfide was 
mixed with 100 µM NBF-Cl in ammonium bicarbonate buffer, (pH 7.4, 23 °C) and the reaction monitored for 15 min. 
500 µM dimedone was then added and the reaction monitored for an additional 15 min.  
 
MS of Protein Persulfide Models Labeled with DCP-Bio1 

Protein persulfides switch labeled with DCP-Bio1 as previously described and resolved by SDS-PAGE, and protein 
bands excised and digested with either trypsin or chymotrypsin following previously described protocol (Crouzet et 
al., 2017). Digested peptides were analyzed by LC-MS/MS on a Thermo Scientific Q Exactive Orbitrap mass 
spectrometer in conjunction with a Proxeon Easy-nLC II HPLC (Thermo Fisher Scientific) and Proxeon nanospray 
source at Bordeaux Proteomic Platform. The digested peptides were loaded a 100 micron x 25 mm Magic C18 100Å 
5U reverse phase trap where they were desalted online before being separated with a 75 micron x 150 mm Magic C18 
200Å 3U reverse phase column. Peptides were eluted using a 120 min gradient with a flow rate of 300 nL/min. An 
MS survey scan was obtained for the m/z range of 350-1600; MS/MS spectra were acquired using a top 12 method, 
where the top 12 ions in the MS spectra were subjected to High Energy Collisional Dissociation (HCD). An isolation 
mass window of 2 m/z was used for the precursor ion selection, and normalized collision energy of 27% was used for 
fragmentation. Five second duration was used for the dynamic exclusion. Peptide identification was performed using 
PEAKS Studio (BSI, Canada) (Zhang et al., 2012). The search settings were: precursor ∆m tolerance = 10 ppm, 
fragment ∆m tolerance = 0.2 Da, missed cleavages = 2, modifications of lysine: NBF (163.0012), modifications of 
cysteine: NBF (163.0012), DCP-Bio1 (394.1557), or hydrolyzed DCP-Bio1 (168.0786). 
 
Proteomic Analysis of Persulfidated Proteins in Red Blood Cell Lysates 

9 mL of peripheral whole blood from participants of this study, who provided informed consent in accordance with 
the Declaration of Helsinki, was collected in citrate and processed immediately following previously described 
protocol (Pasini et al., 2006) with the modification that the lysis buffer contained 5 mM NBF-Cl. After 30 min of 
incubation with lysis buffer at 4 °C, additional NBF-Cl was added (to final concentration of 15 mM NBF-Cl) with 
SDS (to final concentration of 2%) and incubated for 30 min. Methanol/chloroform precipitation was performed as 
previously described, and the protein pellet obtained was redissolved in 50 mM PBS supplemented with 0.1% SDS.  
Endogenously biotinylated proteins were precleared by incubating with Pierce™ NeutrAvidin™ Agarose (Thermo 
Fisher Scientific) at RT for 2 hr with agitation. The resins were subsequently removed on a Pierce™ Disposable 
Column (Thermo Fisher Scientific) and the solution obtained was precipitated by methanol/chloroform. The resulting 
protein pellet was redissolved in 50 mM PBS supplemented with 2% SDS and was incubated with 50 µM DCP-Bio1 
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at 37 °C for 1.5 hr. Solution was precipitated with methanol/chloroform and redissolved in 50 mM PBS supplemented 
with 0.1% SDS. The protein solution was incubated with Pierce™ High Capacity NeutrAvidin™ Agarose (Thermo 
Fisher Scientific) at 4 °C overnight with agitation. Samples were then brought to RT and loaded on a column. The 
resins were washed with 8 column volumes of 50 mM PBS supplemented with 0.001% Tween-20, 2 column volumes 
of 50 mM PBS and finally with 1 column volume of H2O. After washing, the resins were collected from the column 
and incubated with 2.25 M ammonium hydroxide at RT, overnight with agitation. The sample was then neutralized 
with formic acid and protein concentration was determined. 1 equivalent of enzyme digestion buffer was added (for 
trypsin digestion: 100 mM ammonium bicarbonate buffer; for chymotrypsin digestion: 100 mM Tris and 10 mM 
CaCl2, pH 7.8). Digestion was performed at an enzyme-to-substrate ratio of 1:50 (wt:wt) and incubated at 37 °C 
overnight with agitation. Enzyme was added again to solution at an enzyme-to-substrate ratio of 1:20 (wt:wt) and re-
incubated at 37 °C for 5 hr with agitation. The resulting peptide sample was then quenched by bringing to pH 3, with 
conc. HCl, and analyzed at Bordeaux Proteomic Platform. Trypsin digested peptides were analyzed by LC-MS/MS 
on a Thermo Scientific Q Exactive Orbitrap mass spectrometer in conjunction with a Proxeon Easy-nLC II HPLC 
(Thermo Fisher Scientific) and Proxeon nanospray source. Samples were separated on 300-µm ID x 5-mm C18 
PepMapTM precolumn and 75 µm ID x 25 cm nanoViper C18, 2 µm, 100 Å – Acclaim® PepMap RSLC column using 
4-40% gradient of B (A: H2O/MeCN/HCOOH, 95/05/0.1, B: H2O/MeCN/HCOOH, 20/80/0.1). Peptides were eluted 
using a 120 min gradient with a flow rate of 300 nL/min. An MS survey scan was obtained for the m/z range of 350-
1600; MS/MS spectra were acquired using a top 12 method, where the top 12 ions in the MS spectra were subjected 
to High Energy Collisional Dissociation (HCD). An isolation mass window of 2 m/z was used for the precursor ion 
selection, and normalized collision energy of 27% was used for fragmentation. Five second duration was used for the 
dynamic exclusion. Peptide identification was performed using PEAKS Studio (BSI, Canada). The search settings 
were: precursor ∆m tolerance = 10 ppm, fragment ∆m tolerance = 0.2 Da, missed cleavages = 2, -10logP>50, 
modifications of lysine: NBF (163.0012), modifications of cysteine: NBF (163.0012), DCP-Bio1 (394.1557), or 
hydrolyzed DCP-Bio1 (168.0786). 
 
In Gel Detection of Persulfidation (Dimedone Switch Method) 

Preparation of DAz-2:Cy-5 Click Mix 

Final concentrations of 1 mM DAz-2 (Cayman Chemical), 1 mM Cyanine5 alkyne (Lumiprobe), 2 mM copper(II)-
TBTA complex (Lumiprobe) and 4 mM ascorbic acid made in situ, were added sequentially in 15 mM PBS buffer 
mixed with 30% (vol/vol) acetonitrile. The solution was mixed at RT overnight and then quenched with 20 mM 
ethylenediaminetetraacetic acid (EDTA) and mixed at RT for 2 hr. 
 
Persulfidation of PTP1B 

PTP1B, human recombinant, was purchased from Abcam at 1 mg/mL. Protein was desalted on biospin 
columns (BioRad) and concentration adjusted to 10 µM. Samples were either left untreated, exposed to 50 µM H2O2, 
or combination of 50 µM H2O2 and H2S for 15 min at 37 °C. Samples were then desalted and treated with or without 
1 mM NBF-Cl in HEPES buffer supplemented with 2 % SDS for 1 h at 37 °C. Following a desalting step on biospin 
column, the same samples were treated with 20 µM DAz-2:Cy-5 Click Mix for 30 min at at 37 °C. Unreacted reagent 
was removed by desalting on biospin columns and samples mixed with Laemmli buffer supplemented with 10% β-
mercaptoethanol. 
 
Persulfide Detection in Cell Lysates 

Cells were grown to 80-90% confluency in a 10 cm Petri dish, and following respective treatments, were gently 
washed twice with cold 15 mM PBS. 1 ml of cold HEN lysis buffer (50 mM Hepes, 1 mM EDTA, 0.1 mM 
Neocuproine, 1% IGEPAL and 2% SDS, adjusted to pH 7.4, 1% protease inhibitor) supplemented with 5 mM 4-
chloro-7-nitrobenzofurazan (NBF-Cl) was then added onto the cells. Cells were gently scrapped, lysates were 
collected, homogenized with a syringe and needle and immediately placed for incubation at 37 °C for 30 min, protected 
from light. A methanol/chloroform precipitation was performed, as previously described, protected from light. Protein 
pellets obtained were then redissolved in 50 mM Hepes (Euromedex, adjusted pH 7.4) supplemented with SDS (2% 
final conc.). Once fully dissolved, protein concentration was determined using a DC Assay (BioRad) and adjusted to 
approx. 3 mg/ml. DAz-2:Cy-5 click mix (final. conc. 25 µM), prepared as described above, was added to the adjusted 
samples and incubated at 37 °C for 30 min, protected from light. The sample was then precipitated by 
methanol/chloroform and the protein pellet obtained was redissolved in Hepes with SDS (final conc. 2%). The protein 
concentration was adjusted to 2-2.5 mg/ml and sample was prepared for SDS-PAGE and recorded, as previously 
described. A step-by-step protocol is provided as External Database S6. 

For H2S donor treatments were performed with 200 µM Na2S for 45 min, 200 µM GYY4137 for 2 hr, 200 
nM AP39 for 2 hr and 2 mM D-Cysteine for 1 hr. Erastin treatments were performed by treating cells with 1 µM and 
10 µM erastin for 18.5 hr. Monensin treatments were performed with 1 µM monensin for 18 hr.  
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For P-SSH labeling in thiosulfate and TST treated HeLa lysates, cells were lysed with RIPA lysis buffer (50 

mM Tris-HCl, 150 mM NaCl, 2 mM EDTA, 1% IGEPAL and 2% SDS, adjusted to pH 7.4) supplemented with 1% 

protease inhibitor, as previously described. Lysates were precipitated by TCA precipitation; 100% TCA stock solution 

was added to sample to obtain a final mixture of 20% TCA. The mixture was incubated on ice for 10 min followed by 

centrifugation (30000 x g, 10 min, 4 °C) and supernatant was aspirated. Protein pellet was then washed with cold 

acetone and centrifuged (30000 x g, 10 min, 4 °C) twice, and left to dry. Protein pellet was redissolved in 50 mM 

Hepes and treated with or without 500 µM thiosulfate, 5µM thiosulfate sulfur transferase (TST) or a co-treatment of 

both, for 1 hr at 37 °C. Next, 10 mM NBF-Cl was added to the mixtures, incubated for 1 hr at 37 °C and cleaned by 

methanol/chloroform precipitation. Samples were then switch labeled with DAz-2:Cy5 preclick mix and processed 

for SDS PAGE as previously described.   
 

Persulfide Detection in Escherichia coli Lysates 

The laboratory strain E. coli MG1655 was transformed with the pSB74 plasmid that contains the phsABC operon of 

S. Enterica serovar Typhimurium for H2S production. As a negative control, E. coli was transformed with an empty 

vector (pTrc99a). Both strains were streaked on TSA plates supplemented with ampicillin 50 mg/ml, and incubated 

overnight at 37 °C. The next day, one colony of each strain was inoculated into TSB medium supplemented with 50 

mg/ml of ampicillin and grown at 37 °C with agitation (100 rpm), as a starter inoculum. 10 µl of each of these 

overnight-grown cultures were transferred into 10 ml of fresh TSB medium supplemented with the appropriate 

antibiotic. Both strains were treated with or without 20 mM sodium thiosulfate for 4 hr at 37 °C with agitation (120 

rpm). After the incubation time, samples were harvested by centrifugation at 5000 rpm for 4 min, washed with ice-

cold PBS and resuspended in HEN lysis buffer supplemented with 1% protease inhibitor and 25 mM NBF-Cl. Cells 

were disrupted on ice by sonication, 20 seconds at 190 MHz 2 times with a 2 min pause, and incubated at 37 °C for 1 

hr, protected from light. Samples were then precipitated and protein pellets were processed as previously described 
for persulfide labeling, with 50 µM DAz-2:Cy5 preclick mix, for 1 hr at 37 °C protected from light. 

 

Persulfide Detection in Saccharomyces cerevisiae Lysates 

200 µL of yeast cell strains WT, Δcys3, Δcys4 and Δtum1 were mixed with 1 mL HEN lysis buffer supplemented with 

1% protease inhibitor for yeast and 20 mM NBF-Cl. Mixture was added dropwise into liquid nitrogen and grinded 

using a mortar and pestle together with glass beads, reaching a fine powder consistency. Samples were transferred in 

2 ml tubes and centrifuged (1500 x g, 15 min at 4 °C). Supernatants were collected and incubated at 37 °C for 1 hr, 

protected from light. After precipitation, protein pellets were processed as previously described with 50 µM DAz-

2:Cy5 preclick mix for 45 min at 37 °C. 

 

Persulfide Detection in Caenorhabditis elegans Lysates 

Synchronous populations of embryos were obtained by lysing gravid hermaphrodites in alkaline bleach as previously 

described (Emmons et al., 1979). Once washed free of the alkaline bleach by centrifugation, the embryos were 

inoculated on standard NGM agar plates seeded with E. coli OP50-1, ~4000 embryos/plate. At Day-1 adult stage 

worms of different strains (N2, cth-1, mpst-3, eat-2, eat-2;cth-1, eat-2;mpst-3) were collected from the NGM plates, 

4 plates/strain, into 15 ml falcons using M9 buffer and washed three times. Worm pellets were frozen in liquid nitrogen 
and 500 µl of glass beads was added in every tube. Samples were put in the bead beater (FastPrep-24, MP Biomedicals, 

California, USA) for 35 seconds at speed 6.5 m/s, followed by an additional cycle at the same speed for 20 seconds. 

HEN lysis buffer supplemented with 1% protease inhibitor and 20 mM NBF-Cl was added to each tube, and 

centrifuged for 15 min at 13000 rpm at 4°C. Supernatants were collected and incubated at 37 °C for 45 min. Samples 

were then precipitated and protein pellets were switch labeled for persulfides and processed as previously described. 

Synchronous populations of embryos were obtained as described above and inoculated on standard NGM agar or 

NGM agar plates supplemented with 1 mM sodium thiosulfate seeded with E. coli OP50-1. The plates were then 

incubated at 20 °C until worms reached Day-1 adult stage. Worms were collected from the plates and processed for 

persulfide labeling, as previously described. For the detection of persulfide levels in aging N2 worms (Day-1, Day-3 

and Day-7) synchronous populations of embryos were placed on standard NGM-agar plates seeded with E. coli OP50-

1. L4 staged worms were transferred to NGM agar plates containing 25 µM 5-Fluoro-2’-deoxyuridine (FUdR). One 
day after transfer, worms were collected with M9 buffer and filtered (Cell Strainer 40 µm, ClearLine) in order to 

remove the eggs. Worms were either directly lysed and processed for persulfide labeling as previously described (for 

Day-1 of adulthood) or placed back onto FUdR containing plates and grown for respective times (Day-3 and -7 of 

adulthood), whilst filtering and transferring to fresh FUdR plates every 2-3 days. 

 

Persulfide Detection in Drosophila melanogaster Lysates 

As wild-type control, the y1w1118 Drosophila line was used. Eip55E (Drosophila CSE)-overexpressing lines were a 

kind gift from Professor Ody Sibon (University of Groningen). 3-4 whole flies were grinded in dounce homogenizer 
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with 50 µL of HEN lysis buffer supplemented with 1% protease inhibitor and 20 mM NBF-Cl on ice. Homogenates 

were centrifuged at 30000 x g for 20 min and the supernatant was incubated for 30 min at 37 °C, protected from light. 

Samples were then precipitated and protein pellets were switch labeled for persulfides and processed as previously 

described. 

 

Persulfide Detection in Mouse Kidney Lysates 

CSE +/+ and CSE −/− C57BL/6 mice were generated and previously characterized (Markó et al., 2016). CSE+/− males 

and females were bred to obtain CSE+/+ and CSE−/− littermates. Mice were allowed free access to standard chow and 

water. The mice were kept in a 12:12-hr light-dark cycle. The kidneys from these mice were kind gift from Professor 

Maik Gollasch (Charité Medical Faculty). 5-10 mg of kidney tissue was homogenized with 500 µL of HEN lysis 

buffer supplemented with 1% protease inhibitor and 20 mM NBF-Cl on ice in dounce homogenizer. Homogenates 

were centrifuged at 30 000 x g for 20 min and the supernatant was incubated for 30 min at 37 °C, protected from light. 

Samples were then precipitated and protein pellets were switch labeled for persulfides and processed as previously 

described. 

 

Persulfide Detection in Rat Tissue Lysates  

Immediately after decapitation, the brain, heart and liver were quickly removed and snap frozen in liquid nitrogen. 

The organs were shredded and homogenized in HEN lysis buffer supplemented with 1% protease inhibitor and 20 

mM NBF-Cl using a dispersion system (Ultra-Turax T25, Janke & Kunkel, IKA-Labortechnik, Germany) at 8000 rpm 

on ice. After 1 hr incubation at 37 °C protected from light, samples were precipitated, processed for persulfidation 
labeling (with 50 µM DAz-2:Cy5 preclick mix) as previously described. 

 

Persulfide Detection in Liver of Aging Mice following dietary restriction (AL and CR) 

On the day of the experiment, mice were brought to the procedure room (6.30 am) and placed in clean cages. Food 

for AL mice was transferred to the hopper, and CR mice were fed per usual at 7am with one pellet per mouse on the 

floor of the cage. They were allowed to eat for 2 hr and then starting at 9am, mice were anesthetized with isoflurane 

(2-5% in oxygen) and a cardiac puncture was performed to withdraw blood. Cervical dislocation was performed to 

ensure euthanasia and tissues were excised and snap frozen in liquid nitrogen. From the time of cervical dislocation 

to excision and snap freezing of the liver, this period did not exceed 30 seconds (mice were not fasted for this 

experiment). 20 mg of liver was cut into small pieces with a scalpel placed in 1 ml of HEN buffer supplemented with 

1% protease inhibitor and 20 mM NBF-Cl, which were then homogenized using a dispersion system on ice and switch 

labeled with 50 µM DAz-2:Cy5 preclick mix and processed as previously above.  

 

Persulfide Detection in Skeletal Muscle of Mice following a Glucose Tolerance Test 

A glucose tolerance test (GTT) was performed on 2-month old and 12-month-old mice which were fasted for 16 hr 
prior to being injected with D-glucose (i.p. 2 g/kg body weight). Blood glucose level was recorded by tail vein bleeding 

immediately before and at indicated time points (15 min and 60 min) after injection using an Ascensia Contour blood 

glucose meter and test strips. At the indicated time points, the mice were euthanized by cervical decapitation and the 

skeletal muscle was isolated and snap frozen in liquid nitrogen. 20 mg of frozen muscle was cut in to small pieces 

with a scalpel and placed in 2 ml of HEN buffer supplemented with 1% protease inhibitor and 20 mM NBF-Cl. The 

suspension was then homogenized using a dispersion system on ice and processed for persulfidation labeling (50 µM 

DAz-2:Cy5 preclick mix), as previously described. 

 

Persulfide Detection in Human Erythrocyte Lysates 

Erythrocyte lysates were prepared in two ways, to obtain membranes and cytosol. Packed erythrocytes were lysed 

with 5 volumes of 10 mM phosphate buffer containing 5 mM NBF-Cl for 30 min at 4 °C with frequent vortexing. 

After 20 min centrifugation (30,000 x g) supernatant was separated from cell membrane pellet. SDS (for a final conc. 
of 2%) and 10 mM NBF-Cl (final conc.) were added to the supernatant and incubated for an additional 60 min at 4 

°C. Membrane pellets were washed 3 times with PBS containing 5 mM NBF-Cl, and then resuspended in PBS 

containing 5 mM NBF-Cl and SDS (final conc. 2%) and incubated for 30 min at 37 °C. Both membrane and cytosol 

proteins were precipitated and processed for persulfidation labeling (50 µM DAz-2:Cy5 preclick mix) as previously 

described. 

 

Persulfidation Detection by Confocal Microscopy and Epifluorescence Deconvolution Microscopy 

CSE+/+ and CSE-/- MEF cells were grown in µ-Dish (35 mm, high Glass Bottom, 81158) obtained from Ibidi® 

(Martinsried, Germany) following manufacturer's instructions. The treatments with 2 mM D-cysteine and 200 µM 

Na2S (H2S) were performed over 1 hr at 37 °C. After treatments, the cells were washed twice with warm sterile PBS, 
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and incubated with 1 mM NBF-Cl in PBS for 30 min at 37 °C. Fixation was carried out by incubation with ice-cold 

methanol at -20 °C for 20 min and subsequent permeabilization with ice-cold acetone at -20 °C for 5 min. The dishes 

were washed with PBS and incubated with an additional 1 mM (final conc.) NBF-Cl in 2 ml PBS for 1 hr at 37 °C.  

Cells were washed with PBS overnight with agitation, and incubated with 10 µM (final conc.) DAz-2:Cy-5 click mix 

in 2 ml PBS for 1 hr at 37 °C. For the negative control cells were incubated with 10 µM DAz-2:Cy-5 click mix 

prepared without DAz-2. After overnight washing with PBS, cells were washed with methanol 3 x 10 min, followed 

by an additional washing with PBS. DAPI staining was performed by incubating cells with 300 nM DAPI (final conc.)  

in 2 ml 15 mM PBS, for 5 min with agitation, protected from light, and then cells were washed 5 times gently with 15 
mM PBS. Images were obtained using a Confocal Leica TCS SP5 microscope equipped with an Argon laser (458, 

476, 488, 514 nm), a diode laser (405 nm) and Helium-Neon laser (633 nm). A x40 oil objective lens was used. For 

examination of co-localization of immunofluorescence, single optical sections at the same focus plane were taken 

separately and the 3 corresponding channels (405 nm (DAPI), 488 nm (NBF-adducts) and 633 nm (Cy5  for PSSH)) 

were merged into a 8-bit RGB tiff-file using ImageJ. Z-stack images were taken on Olympus IX81 inverted 

fluorescence microscope using x 100 oil objective lens, used for image deconvolution.   

 

Antibody Array-like Approach for Detection of Persulfidation 

Each antibody was added into the appropriate wells of a 96 well plate with 3D-NHS Surface (PolyAn, Berlin) at a 

final volume of 50 µl in PBS buffer (150 mM Na2HPO4 / NaHPO4 and 50 mM NaCl, pH 8.5). Additionally, in the 

negative control wells 50 µl of 5% BSA in TBST (137 mM NaCl and 20 mM Trizma base, pH 7.4, supplemented with 

0.1% Tween) and 0.002% NaN3 was added.  The plate was covered and incubated at 4 °C overnight with agitation. 

The solutions were discarded and the wells were washed 5 times with 15 mM PBS buffer supplement with 0.01% 

Tween, using a multi-channel and inverting the clean plate against paper towels for complete removal of liquid. All 
wells were then blocked with 50 mM ethanolamine in 100 mM Tris at pH 9 for 2 hr at RT with agitation. The blocking 

solution was discarded and wells were re-blocked with 5% BSA in TBS with 0.01% Tween-20 for a further 1 hr at 

RT with agitation. Wells were washed again as described above. Following complete removal of liquid, 100 µl of 

treated samples were added to appropriate wells and incubated at 4 °C, overnight with agitation. After washing, the 

plate was recorded on Typhoon FL9500 at 473 nm and 635 nm. 

For experiments where CSE+/+, CSE−/− and CSE+/+ treated with D-cysteine MEF cells, lysates were obtained 

and labeled for persulfides, as previously described and redissolved in 50 mM Hepes at a concentration of 0.3 mg/ml. 

The following antibodies were used: 1. β-actin (0.04 mg/ml, sc-47778, Santa Cruz Biotechnology); 2. β-tubulin (0.04 

mg/ml, T0198, Sigma Aldrich); 3. GAPDH (0.04 mg/ml, G8795, Sigma Aldrich); 4. HSP70 (0.04 mg/ml, ab5439, 

Abcam); 5. KEAP1 P586 (0.0062 mg/ml, 4678, Cell Signalling); 6. eNOS (0.0025 mg/ml, 32027, Cell Signalling); 7. 

Parkin (0.04 mg/ml, sc-136989, Santa Cruz Biotechnology); 8. SOD-2 (0.04 mg/ml, sc-137254, Santa Cruz 
Biotechnology); 9. Anti-TST (0.04 mg/ml, GTX114858, GeneTex); 10. Anti-SQR (0.04 mg/ml, HPA017079, Sigma 

Aldrich). 

For experiments with lysates of HeLa cells treated in a time-dependent manner with EGF and labeled as 

described above. The following antibodies were used: PTEN (1:1000, sc-7974, Santa Cruz Biotechnology,); 2. PTP1B 

(1:1000, sc-133259, Santa Cruz Biotechnology); 3. SH-PTP2 (0.04 mg/ml, sc-7384, Santa Cruz Biotechnology); 4. 

EGFR (0.04 mg/ml, sc-03-G, Santa Cruz Biotechnology). 

 

MnSOD Persulfidation and Activity Experiments 

Human recombinant MnSOD was purchased from Creative BioMart. SOD activity was measured using cytochrome 

c assay, as described previously (Liu et al., 2007). Peroxynitrite was prepared following well established protocol 

(Filipovic et al., 2012) and tyrosine nitration assessed using characteristic spectral properties: an increase in the 

absorbance at 430 nm was attributed to nitrotyrosine formation due to the characteristic shift (from 430 to 357 nm) 

observed with decreasing pH (Filipovic et al., 2012). 

 

Detection of Protein Sulfenylation 

Following respective treatments, cells were lysed in cold HEN lysis buffer supplemented with 1% protease inhibitor 
and 100 µM DCP-Bio1. Cells were gently scrapped, lysate was collected, homogenized with a syringe and needle and 

immediately placed for incubation at 37 °C for 1 hr. A methanol/chloroform precipitation was performed as previously 

described, and protein pellet obtained was redissolved in 50 mM Hepes with SDS (final conc. 2%). Protein pellets 

were prepared for SDS-PAGE, as previously explained. After resolving samples using SDS-PAGE, protein transfer 

was performed on nitrocellulose membrane, followed by blocking in 5% dry-milk in PBS supplemented with 0.1% 

Tween (PBST) and incubated with Streptavidin Protein DyLight 488 in 50 mM PBS (1:10000, 21832, Thermo Fisher 

Scientific) for 1 hr protected from light. Nitrocellulose membrane was recorded at 473 nm, using a Typhoon FLA 

9500 (GE Healthcare). Membrane was then striped using 0.04M NaOH, incubated with agitation for 5 mins twice, 

and then washed with PBST (5 times, 5 min), blocked as previously described and incubated with GAPDH or b-
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tubulin as a loading control. Membranes were washed and incubated with respective secondary horseradish-

conjugated antibodies for 2 hr at RT. Membranes were then washed and visualized using Clarity™ Western ECL 

Substrate (BioRad) on a G:Box Chemi-XT4 (Syngene). 

 

Detection of Protein Sulfinylation 

Following respective treatments, cells were lysed in cold HEN lysis buffer supplemented with 1% protease inhibitor 

and 5 mM NBF-Cl or 20 mM NEM. Cells were gently scrapped, lysate was collected, homogenized with a syringe 

and needle and immediately placed for incubation at 37 °C for 30 min or 1 hr respectively. A methanol/chloroform 

precipitation was performed and protein pellet obtained was redissolved and protein concentration adjusted as 

previously described. Samples were treated with 1 mM BioDiaAlk at RT for 1 hr, protected from light. Reaction was 
quenched by the addition of 1 mM DTT incubated overnight at 4 °C or by a methanol/chloroform precipitation. 3 

equivalents of sample was then mixed with 1 equivalent of Laemmli buffer (4X) supplemented with 10% β-

mercaptoethanol and incubated for 20 min at 55 °C. After resolving samples using SDS-PAGE, protein transfer was 

performed, followed by blocking in 5% dry-milk in PBST and incubated with Cy5-Streptavidin (1:4000, 21832, 

Thermo Fisher Scientific) for 1 hr protected from light. Nitrocellulose membrane was recorded at 635 nm, using a 

Typhoon FLA 9500 (GE Healthcare). GAPDH was used as a loading control as described above. 

 

Receptor Tyrosine Kinase Activation of Cells 

Activation Conditions 

EGF (PromoKine) treatments in HeLa and MEF cells, and insulin treatments in SH-SY5Y cells, were performed with 

cells cultured in 100 mm cell culture dishes at a 80-90% confluency. VEGF (PromoCell) treatments were performed 

with HUVECs cultured in T25 flasks (Greiner) at a 70-80% confluency. For pretreatments, media was replaced with 

complete media supplemented with 100 µM GYY4137 or inhibitor mix (PG and AOAA, 1 mM of each), incubated at 

37 °C and 5% CO2 for 30 min and then washed with warm sterile PBS. Subsequently, media was replaced with 

complete media (as described above) for control and media supplemented with respective treatments (100 or 200 

ng/ml EGF; 100 nM or 200 nM insulin; 40 ng/ml VEGF). Following treatments, cells were washed with cold PBS 
twice and lysed for persulfide or sulfenic acid labeling, as previously explained.  

 

Real-time activity of EGFR in HeLa cells 

Cells were seeded at 1 × 104 cell/well in an equilibrated E-Plate VIEW 16 PET (ACEA Biosciences, San Diego, USA) 

and grown overnight at 37 °C with 5% CO2. Next, cells were incubated in serum-free complete medium for 4 hr prior 

to experiments and pretreated with 100 µM of GYY4137 or inhibitor mix (PG and AOAA, 1 mM of each), as indicated. 

Basal receptor tyrosine kinase activity in cells was recorded for 20 min and upon the addition of 150 ng/ml EGF, cells 

were further recorded in 2 hr with the integration time of 1 minute using xCELLigence RTCA DP system (ACEA 

Biosciences, San Diego, USA). 

 

Antibody Microarray Detection of Persulfidation of EGFR Pathway kinases 

The persulfidation of the proteins associated to the EGFR pathways were assessed using an EGF pathway phospho 

antibody array comprising of 214 antibodies related to the EGF pathway (Full Moon Biosystems, CA), performed in 

duplicates. The glass strips (barcode: 4000026018, 4000026019, 4000026022 and 4000026023) were equilibrated to 

RT for 1 hr and dried for 45 min. They were then blocked with 5% BSA in TBST by rocking at 55 rpm at RT for 45 

mins. The slides were then washed with TBST (twice), TBS (twice) and then with H2O (5 times). Lysates of HeLa 
cells treated with or without 100 ng of EGF for 30 mins and labeled for persulfides, as previously explained. Samples 

were then dissolved in 50 mM Hepes with SDS (final conc. 2%) and further diluted 60 times with 1% BSA in TBS 

up to 6 ml. The glass strips were then submerged in the samples and incubated by rocking at 55 rpm for 2 hr. The 

slides were washed as done previously, left to dry and recorded at 473 nm and 635 nm, using a Typhoon FLA 9500 

(GE Healthcare). Persulfide levels of each dot for each type of antibody (in pentaplicates on glass strip) were averaged. 

The intensity of their cy5 (635 nm) signal was adjusted to the 473 nm signal for the internal standards, GAPDH and 

b-actin. 

 

Immunoblotting 

Untreated or specifically treated cells were washed twice with cold PBS and harvested in RIPA lysis buffer 

supplemented with 1% protease inhibitor. Cells were scrapped, lysates were collected, homogenized with syringe and 

needle, and centrifuged at 30,000 x g for 5 min at 4 °C. Clear lysate was transferred to a new tube. Protein concentration 

of lysate was determined using the DC assay (BioRad). Protein samples were resolved by SDS-PAGE and transferred 

to a nitrocellulose membrane (GE Healthcare). 

Primary antibodies used: CBS (1:1000, sc-133154, Santa Cruz Biotechnology), MPST (1:4000, HPA001240, Sigma 
Aldrich), CTH (MEF cells, 1:4000), CTH (HeLa cells, 1:1000, sc-374249,  Santa Cruz Biotechnology), p-ERK 
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(1:1000, sc-7383, Santa Cruz Biotechnology), total-ERK (1:1000, sc-271269, Santa Cruz Biotechnology), DJ-1 

(1:250, sc-55572, Santa Cruz Biotechnology), DJ-1 Oxidized At C106 (1:1000, HCA024, BioRad) and β-tubulin 

(1:5000, T0198, Sigma Aldrich). Species-specific horseradish-conjugated secondary antibodies (1:5000, Santa Cruz 

Biotechnology) were used for antigen detection and visualized using Clarity™ Western ECL Substrate (BioRad) on 

a G:Box Chemi-XT4 (Syngene). 

 

Immunoprecipitation and detection of DJ-1 Persulfidation, Sulfinylation and Sulfenylation Following H2O2 

Treatment 

MEF cells (CSE+/+ and CSE-/-) were treated with 100 µM H2O2 for 15 or 30 min. Samples were labeled for oxPTMs 

as previously described; for the detection of persulfides NBF-Cl was used and switched with DCP-Bio1; for sulfenic 

acid labeling DCP-Bio1 was used; for sulfinic acid labeling NEM was used and then labeled with BioDiaAlk. Proteins 

were then precipitated and resuspended in 50 mM Hepes with SDS (final conc. 0.01%) at 1 mg/ml. Samples were 

incubated overnight at 4 °C with anti-DJ-1 agarose coupled antibody (Santa Cruz Biotechnology, sc-55572 AC). After 

incubation agarose resins were collected by centrifugation (2,000 x g, 10 min) and washed with 10 mM TBS 

supplemented with 0.001% Tween (3 times) and with 10 mM TBS  (twice). DJ-1 protein was eluted from the resins 

for 10 min at 95 °C in 10 mM TBS  with  3.5% SDS. This was then mixed with Laemmli buffer (4X) supplemented 

with 10% β-mercaptoethanol (3 eq. sample : 1 eq. buffer) and incubated overnight at 55 °C. Elution fractions were 

collected by centrifugation (30,000 x g, 20 min) and supernatants were resolved by SDS-PAGE. Protein transfer was 

performed, followed by blocking in 1% BSA in TBST. Monoclonal anti-Biotin-Peroxidase-conjugated antibody 

(1:1000, Sigma Aldrich) was used for detection and visualized using Clarity™ Western ECL Substrate (BioRad) on 

a G:Box Chemi-XT4 (Syngene). 

 

Trx-catalyzed reduction of S-sulfocysteine (SSC) 

Cloning and Mutagenesis of Human TRP14 and Trx1 

Genetic sequence of human TRP14 was obtained by generating cDNA from mRNA isolated from human fibroblasts. 

The target sequence was amplified by PCR using forward primer 5’-

ACCATCACGGATCCATGGCCCGCTATGAGGAGG-3’ containing a BamHI restriction site (underlined) and a 

start codon (boldface type), in combination with reverse primer 5’-

CCGGGGTACCGTTAATCTTCAGAGAACAACATTTCCACCAG-3’ 3’containing a KpnI restriction site 

(underlined) and a stop codon (boldface type). The sequence of the target band was verified by commercial sequencing 

(GATC Biotech). The PCR product was ligated into a pQE80-L expression vector (Qiagen). Human Thioredoxin 1 

(Trx1) was expressed in E. coli using pET28a expression vector. Mutagenesis of the C32S & C35S variants were 

conducted using PCR-mediated site-directed mutagenesis, and the Trx1-pET28a expression plasmid was used as a 
scaffold. 

 

Expression and Purification of Human TRP14 and Trx1 

E. coli BL21 (DE3) Rosetta cells were transformed with the respective expression plasmid and cultured at 37 °C, 140 

rpm in LB medium supplemented with the necessary antibiotics and grown until OD600 = 0.5. Protein expression was 

induced using isopropyl-β-ᴅ-thiogalactopyranosid (IPTG) at a final concentration of 250 µM. The expression 

temperature and rotation was changed to 30 °C, 120 rpm for TRP14, and 18 °C, 120 rpm for Trx1 variants; expression 

was conducted for ~16 hr. Cells were harvested and lysed in lysis buffer (50 mM potassium phosphate, pH 7.4, 250 

mM NaCl, 10 mM imidazole) supplemented with complete EDTA-free protease inhibitor (Roche). Cells were lysed 

using egg white lysozyme (VWR) and homogenized in an Emulsiflex. Residual nucleic acids were disrupted using a 

sonication rod at 25% amplitude, 10 seconds. The cell lysate was centrifuged at 48000 x g for 45 min, and His-tagged 

proteins were isolated using His-Pur Ni-NTA Superflow Agarose (Thermo Fisher Scientific) in accordance with the 

manufacturer’s protocol. Elution was performed using lysis buffer supplemented with 250 mM imidazole. Elution 

fractions were analyzed using SDS-PAGE and subsequent Coomassie Brilliant Blue staining, and fractions containing 
increased amounts of target protein were further purified using anion exchange chromatography (Source 15Q, GE 

Healthcare; low salt buffer: 50 mM sodium phosphate, pH 7.4; high salt buffer: 50 mM sodium phosphate, pH 7.4, 1 

M NaCl). Elution was performed in a gradient over 5 column volumes. Elution fractions were again analyzed using 

SDS-PAGE and Coomassie Brilliant Blue staining. Relevant fractions were buffer exchanged into storage buffer (50 

mM sodium phosphate, pH 7.4, 150 mM NaCl, 100 µM DTT), flash-frozen in liquid nitrogen and stored at -80 °C. 

Proteins were again buffer exchanged after thawing into the relevant experimental buffer. 

 

Coupled Assay of Trx1 / TRP14 and TrxR with Cystine / SSC 
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Activities of hTrx and TRP14 with cystine and SSC were recorded measuring NADPH oxidation on a Tecan Infinite 

M200 plate reader, set to record absorption at 340 nm. 3 µM hTrx1 or TRP14, 30 nM TrxR from rat liver (Sigma 

Aldrich) and 250 µM NADPH were used in all measurements. The concentration of cystine or SSC were set at 1 mM. 

Absorption at 340 nm were recorded in 10 seconds intervals over 900 seconds. The initial rate of A340 decrease was 

fitted linearly, and consumption of NAPDH over time was determined using an NADPH extinction coefficient ε340 of 

6020 M-1 cm-1. 

 

Kinetics of Direct Reaction of Human Trx with SSC 

Kinetics of the reaction of hTrx with cysteine persulfide was monitored on a FP-8200 spectrofluorometer (Carry 

Eclipse, Agilent) using an excitation wavelength of 280 nm and a maximal emission of 345 nm. Concentration of the 
enzyme was kept at 4 µM while substrate concentrations ranged between 25 µM and 100 µM. Given pseudo first-

order conditions, observed rate constants kobs were obtained by fitting the decrease in emission at 345 nm at a given 

SSC concentration using a first order exponential decay fit in Origin® analysis software.  

 

Ultra High Resolution ESI-TOF Mass Spectrometry of Reaction Between Trx and SSC 

10 µM of human recombinant Trx, Trx C35S or Trx C32S were incubated with 10 µM SSC in 20 mM ammonium 

carbonate buffer pH 7.8 for 5 min and recorded on maXis 5G (Bruker Daltonics) ESI-TOF MS capable of resolution 

of at least 40,000 FWHM, following previously described protocol (Wedmann et al., 2016). 

 

MEF cells Stress Assays  

MEF cells (CSE+/+ and CSE-/-) were plated in 96-well plates at 5 × 104 cells/well. Cells were treated with H2O2, as 

indicated, for 24 hr and the cell survival was assessed by an MTT assay as previously described (Liu et al., 2015). 

 

C. elegans Stress Assays 

Worms were initially synchronised by picking approximately 100 young adult worms per strain onto NGM-plates, 

and allowed to lay eggs over 4 hr at 20 °C. The young adults were then removed, and the remaining embryos were 

washed off and collected from the NGM-plates using M9 buffer, and centrifuged (850 x g, 1 min) and washed with 

M9 buffer 3 times. The resulting pellet of embryos was re-suspended in 12 ml of M9 buffer, and incubated with 
agitation (100 rpm) for 24 hr at 20 °C. The synchronised L1 worms were collected, centrifuged (850 x g, 1 min) and 

re-suspended in S-basal buffer. The number and synchronicity of L1 worms was determined and the worms were 

transferred to an Erlenmeyer, diluted in the respective amount of HB101 in S-Basal buffer for a final conc. of 60 

worms/10 mg of HB101/ml of S-basal buffer. They were then incubated with agitation (115 rpm) for 48 hr at 20 °C. 

The worms were then collected, centrifuged (400 rpm, 1 min), washed with M9 buffer 3 times and re-suspended in 

M9 buffer. 

For experiments with the pretreatment of worms, synchronised young adults (as described above) were 

transferred in an Erlenmeyer with 12 ml of M9 buffer in which GYY4137 (final conc. 500 µM) or AP39 (final conc. 

100 nM) was added. Worms were then incubated for 3 hr at 20 °C with agitation (115 rpm). Worms were centrifuged 

(400 rpm, 1 min) and re-suspended in M9 buffer. To assess the effect of CTH on stress resistance, paraquat dichloride 

hydrate (final conc. 60 mM) or sodium (meta) arsenite (final conc. 5 mM) was added to the synchronised young adult 

worm suspension and plated on a 96 well plate with approximately 5 - 10 worms per well. Viability was monitored 
by counting dead worms over 5 - 6 hr, whilst incubating the plate at 20 °C, with agitation (110 rpm). 

 

Yeast stress Assays and H2S production 

Spot assays were carried out by spotting 5 µl of early exponential phase cultures (OD600=0.5) of different strains of S. 

cerevisiae, sequentially diluted (approximately 3.5 x 104 to 3.5 cells) on plates with YPD media supplemented with 

different concentrations of H2O2 (0, 1 mM, 2 mM and 5 mM). Growth was recorded after incubation of 24 and 48 hr, 

at 30 °C. Survival assays were done by preparing overnight cultures in YPD media (cell in stationary phase), from 

which the experimental cultures were set, by diluting to OD600=2 in a 5 ml final volume, with or without respective 

concentrations of H2O2 (0, 10 mM and 20 mM). The cultures were subsequently grown in culture tubes for 27 hr at 

30 °C with agitation (180 rpm). Yeast cells were then washed once in PBS and collected by centrifugation (5000 x g, 

3 min). Cells were then resuspended in PBS supplemented with 2 µM propidium iodide, at 1×106 cells/ml and 

incubated for 5 min in the dark. Analysis was performed by flow cytometry using 150,000 cells per condition, on a 

BD Accuri™ C6 (BD Biosciences) and results were analysed using the CFlow Plus Software. For the quantification 
of H2S levels, overnight cultures were washed with PBS and diluted as described for survival assays. Cell suspensions 

were incubated with 20 µM MeRho-Az sensor for 45 mins at 30 °C and analysed by flow cytometry, on a BD Accuri™ 

C6 (BD Biosciences). 

 

C. elegans Lifespans 



 52 

For the lifespan experiments a synchronous population of worms was obtained by transferring 5-6 young adults on 

medium plates and allowing them to lay eggs over 3 hr at 20 °C. Lifespan measurements were conducted at 20 °C, 

worms were transferred daily during the reproductive period. Death was scored by failure of the animal to move in 

response to gentle prodding with a platinum wire. For lifespan analysis with 1 mM sodium thiosulfate treatment or 5 

mM 2-deoxy-D-glucose (DOG), new plates containing treatments in NGM agar were prepared every second day. 

Lifespan measurements were repeated at least twice unless otherwise stated.  

 

Immunohistochemistry on Rat Brains 

Brains were fixed in 4% paraformaldehyde for 24 hr, dehydrated in a series of increasing concentrations of ethanol 

(30%–100%), enlightened in xylene and embedded in Histowax® (Histolab Product AB, Göteborg, Sweden). Sagittal 
plane of each brain was sectioned at 5 µm thickness on a rotary microtome (RM 2125RT Leica Microsystems, Wetzlar, 

Germany). Sections were placed on Superfrost Ultra Plus® manufactured slides and used for immunohistochemical 

staining. After tissue deparaffinization, brain sections were exposed to heat-induced antigen retrieval to demask target 

antigens. Slides were placed in a container and covered with 0.01 mol/l sodium citrate buffer pH 6.0, and then heated 

at 750 W in microwave oven for 3 x 7 min. Next, sections were incubated with 0.3% H2O2 in MeOH for 15 min to 

block endogenous peroxidase. Slides were washed in PBS (pH 7.4) and reduction of non-specific background staining 

was achieved by incubation with normal swine (1:10, X0901, Dako) and donkey serum (1:10, X0903, Abcam) for 45 

min at RT. Next, sections were incubated with primary antibodies; CBS (1:200, sc-67154, Santa Cruz Biotechnology), 

MPST (1:500, HPA001240, Sigma Aldrich), or with CTH/CSE antibody (1:200, sc-365382, Santa Cruz 

Biotechnology), overnight at 4 °C. For the negative control, the primary antibody was substituted with PBS. After 

washing for 5 min in PBS, brain tissue sections were incubated with swine-anti-rabbit (1:100, P0399, Dako) and 

donkey-anti-mouse IgG-HRP (1:100, ab6820, Abcam) for 1 hr at RT. Slides were washed in PBS and visualization 
was performed using Dako liquid 3,3′-diaminobenzidine tetrahydrochloride (DAB) substrate chromogen system 

(Dako) at concentrations suggested by the manufacturer. Hematoxylin was used as counterstain and slides were 

mounted in DPX medium (Sigma Aldrich). 

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

The experiments were performed in at least in triplicates by at least 2 different researchers. Key methodological 

experiments were verified by at least three different researchers in three different labs. Protein expression levels, 

persulfidation, sulfenylation and sulfinylation levels were compared with an unpaired t test with *p < 0.05 and **p < 

0.01. Lifespan data were analyzed using Kaplan-Meier survival analysis to detect statistical differences. Plotting of 

the data were performed using GraphPad Prism 5.0, Origin 8 and Microsoft Excel. 
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was monitored by ESI-TOF-MS. (C-E) Speciation of the observed (red) peaks and simulation of the isotopic 

distribution for each species (black).  

(F) MS/MS spectrum of m/z 344 peak. Asterisk marks the position of m/z 344 peak that decomposed to fragments 

which correspond to species shown in Figure 1C.  

(G) UV-vis spectral changes upon addition of 100 µM NBF-Cl to 23 µM HSA-SH (50 mM phosphate buffer, pH 7.4 

with 1% SDS, at 37 °C). 

(H) UV-vis spectral changes caused by subsequent addition of 100 µM dimedone to the reaction mixture from (G). 

Inset: Kinetic trace at 420 nm. 
(I) UV-vis spectral changes upon addition of 100 µM NBF-Cl to 23 µM HSA-SOH (50 mM phosphate buffer, pH 7.4 

with 1% SDS, at 37 °C).  

(J) UV-vis spectral changes caused by subsequent addition of 100 µM dimedone to the reaction mixture from (I). 

Inset: Kinetic trace at 420 nm.  

(K) UV-vis spectral changes upon addition of 100 µM NBF-Cl to 23 µM HSA-SSH (50 mM phosphate buffer, pH 7.4 

with 1% SDS, at 37 °C). 
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100 µM DCP-Bio1 for 30 min at 37 °C. Following precipitation, proteins were resuspended in 50 mM phosphate 

buffer, pH 7.4 and spotted on a nitrocellulose membrane. Detection of dimedone-labeled adduct was done with 

streptavidin-Cy5. In addition, the same samples were incubated with streptavidin magnetic beads and after careful 

washing, the bound protein was eluted by boiling with Laemmli buffer for 5 min at 95 °C. Eluted proteins were 

separated by electrophoresis and in-gel fluorescence of NBF-protein adduct detected by Typhoon FLA 9500.  

(B) Detection of GAPDH and GAPDH-persulfide switch labeled with DCP-Bio1. Proteins were spotted on a 

nitrocellulose membrane and detection of dimedone-labeled (PSSH) adduct was done with streptavidin-Cy5. Green 

fluorescence (NBF-protein adduct) served as a measure of protein load.  

(C) MS/MS of peptide fragment obtained by trypsin digestion of bovine rhodanese (TST) shows labeling of C248 

with hydrolyzed DCP-Bio1. Full MS data are given in Data S1-2. 
(D) Commercially available TST was either incubated with thiosulfate (TS) or DTT to form, the fully persulfidated 

or reduced form, respectively. 20 µM enzyme was mixed with 50 µM NBF-Cl and switch tagged for persulfide 

detection with DAz-2:Cy5 CuAAC. While both untreated and thiosulfate treated showed a Cy5 signal, the green 

fluorescence signal was significantly reduced in the fully persulfidated enzyme, despite having the same load. On the 

other hand, the green fluorescence signal was much stronger in the fully reduced enzyme, suggesting that at low NBF-

Cl/protein ratio, switching caused by the dimedone-based probe could affect the intensity of green fluorescence. Top 

image: Coomassie Brilliant Blue (CBB, protein load); Middle image: 488 signal (NBF adduct); Bottom image: Cy5 

image (persulfides). 

(E) 1 mM NBF-Cl (excess) was used to initially react with 20 µM of TST, in an experiment similar to that shown in 

(D). The Cy5 signal was reduced when DTT treated TST was used, whilst the green fluorescence (488 nm) signal 

remained stable, suggesting that the green fluorescence can be used as a measure of the total protein load when excess 

NBF-Cl is used. It is worth mentioning that it is known that DTT is unable to fully reduce TST persulfide (Tandon 

and Horowitz, 1989). Top image: Coomassie Brilliant Blue (CBB, protein load); Middle image: green fluorescence 

signal (488, NBF adduct – protein load); Bottom image: Cy5 image (persulfides) 
(F) The reaction of HSA-SH with CuAAC reagents in all possible combinations (left) show no nonselective labeling. 

The same samples run 2 weeks after being kept at -20 °C show some small unselective labeling in the sample treated 

with Cy5-alkyne, Cu(II)-TBTA and ascorbate (due to the side reaction of alkynes with thiols – as a result of no NBF-

Cl used), but the signal was still negligible when compared to the signal obtained for fully labeled HSA-SSH. Top 

row: Cy5 signal; Middle row: 488 nm signal (NBF-adducts); Bottom row: Coomassie Brilliant Blue (CBB). 

(G) Cyclic sulfenamides exist in equilibrium with sulfenic acids and react with NBF-Cl (Gupta and Carroll, 2016). 

(H) Dimedone switch method efficiently distinguishes between protein sulfenic acid (and cyclic sulfenamide) and 

protein persulfides. PTP1B was used as a model system. Top row: Cy5 signal; Middle row: 488 nm signal (NBF-

adducts); Bottom row: Coomassie Brilliant Blue. 

(I) Depiction of experimental design used to test method’s selectivity, shown in Figure 2D. 

(J) In-gel detection of protein persulfidation levels (left; fire image) in HeLa cells, labeled with DAz-2/Cy5-alkyne 

CuAAC, with different concentrations of NBF-Cl. Green fluorescence (right) corresponds to NBF-protein adducts.  
(K-L) Depiction of experimental design used to test method’s cross reactivity with intracellular sulfenic acids and 

sulfenamides (K) and obtained Westernblot analysis visualized by streptavidine Cy5 (L). Blotting for vinculin was 

used to visualized the load. 

(M) Effect of dimedone pretreatment on persulfidation signal in MEF cells. Following steps depicted in (K), MEF 

cell lysates were labelled for protein persulfidation using DAz-2:Cy5 preclick mix. Bands were visualized using 

Typhoon 9500. Green signal corresponds to the protein load, and pseudocoloring with fire was used for PSSH signal. 
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Figure S3. Broad applicability of dimedone switch method. Related to Figure 3. 

(A-B) Protein persulfidation levels (A) and corresponding CSE and CBS expression levels (B) in CSE+/+ and CSE-/- 

cells of passage (P) 2 and 10. Green fluorescence (NBF adducts) used as a loading control for gels and GAPDH as a 

loading control for blots for normalization of signal. 

(C) Confocal microscopy of in situ labeling of intracellular protein persulfidation. Negative control cells were 

incubated with DAz-2:Cy5 preclick mix prepared without DAz-2 (switching agent). CSE-/- MEF cells treated with 

200 µM Na2S (H2S) or 2 mM D-Cys for 1 hr. Cy5 signal corresponds to protein persulfides, 488 nm signal corresponds 

to NBF-adducts. Nuclei stained with DAPI. Scale bar 20 µm. Related to the Figure 3K. 
(D-F) High-resolution images of protein persulfidation in CSE+/+ (D), CSE-/- (E) and CSE+/+ MEF cells treated with 

D-Cys (2 mM, 1 hr) (F), obtained by wide-field fluorescence deconvolution. 

(G) Protein evolution phylogenic tree showing the common origin of cysteine containing MnSOD. 

(H-I) MS/MS spectra of peptide obtained by chymotrypsin (H) and trypsin (I) digestion of persulfide labeled by 

Dimedone switch method (switch agent DCP-Bio1) MnSOD containing C193 labeled with hydrolyzed DCP-Bio1. 
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Figure S4. Protein persulfidation is an integral part of the cellular response to H2O2 and RTK activation. 

Related to Figures 4 and 5.  

(A) Representative blot showing the effect of GYY4137 (100 µM, 30 min) on time-dependent H2O2 (500 µM)-induced 

sulfenylation in CSE+/+ and CSE-/- MEF cells. Sulfenylation was labeled with DCP-Bio1 and visualized by 

streptavidin-488 and normalized to GAPDH. n=3. 

(B) Persulfidation, sulfenylation, sulfinylation and sulfonylation of DJ-1. WT and CSE-/- MEF cells were treated with 

100 µM H2O2 for 15 or 30 min, labeled for P-SSH, P-SOH and P-SO2H using biotinylated reagents, 

immunoprecipitated with anti-DJ-1 antibody immobilized to agarose beads and immunoblotted with anti-biotin 

antibody. For sulfonylated DJ-1, antibody selective for C106 sulfonic acid of DJ-1 was used. Related to Figure 4E.  

(C) Expression levels of H2S producing enzymes, MST, CBS and CSE in HeLa cells after treatment with 100 ng/ml 

EGF for the indicated amount of time. Densitometric analysis of data from 3 independent experiments was normalized 

to β-tubulin. Values represent mean ± SD. * p< 0.05, ** p<0.01. 
(D-E) Representative images showing protein persulfidation and sulfenylation, used for Figure 5C and 5D 

respectively. HeLa cells were pretreated with 100 µM GYY4137 (30 min, D) or with 2 mM mixture of AOAA and 

PG (1:1, 30 min, E) and then exposed to 100 ng/ml EGF for the indicated amount of time. Persulfidation was detected 

in-gel by measuring Cy5/488 signal ratio. Sulfenylation was visualized by streptavidin-488 and normalized to β-

tubulin. n=3.  

(F) Representative images showing protein persulfidation and sulfenylation, used for Figure 5E. HUVEC were treated 

with 40 ng/ml VEGF for the indicated amount of time. Persulfidation was detected in-gel by measuring Cy5/488 signal 

ratio. Sulfenylation was visualized by streptavidin-488 and normalized to β-tubulin. n=3. 

(G) Representative images showing protein persulfidation used for Figure 5F. SH-SY5Y cells were treated with either 

100 nM or 200 nM insulin for indicated time points. Persulfidation was detected in-gel by measuring Cy5/488 signal 

ratio. n=3. 
(H) Sulfenylation changes in SH-SY5Y cells treated with either 100 nM or 200 nM insulin for indicated time points. 

Sulfenylation was visualized by streptavidin-488 and normalized to GAPDH. n = 3. 

(I-J) Changes in persulfidation and sulfenylation dynamics in WT (CSE+/+) and CSE-/- MEF cells after treatment with 

100 ng/ml of EGF for indicated time points. Representative images (I) and quantification of the change (J). Values 

are given as a mean ± SD. from n = 3. * p< 0.05, ** p<0.01. 

(K) Inhibition of H2S production by the pretreatment of HeLa cells with 2 mM mixture of AOAA and PG (1:1, 30 

min) and subsequent treatment with 100 ng/ml EGF for indicated time points causes changes in phosphorylation levels 

of pERK. Expression levels of pERK were normalized against total ERK expression in the same immunoblot, while 

total ERK was normalized to β-tubulin. Densitometric analysis of the data from 3 independent experiments is shown 

as a mean ± SD. * p< 0.05, ** p<0.01. 

(L) Antibody microarray-like approach was used to address persulfidation status of EGFR, PTEN, PTP1B and 

SHPTP2 from HeLa cells lysates treated with 100 ng/mL EGF for the indicated amount of time. Negative control 
represents wells were samples were added, but 5% BSA was added instead of an antibody. Original readouts obtained 

by Typhoon FLA 9500 are pseudo-coloured in ImageJ to visually enhance the changes in the signal (right). 

Quantification of the data from two independent experiments (left). * p< 0.05, ** p<0.01. 

(M-R) Persulfidation levels of b-catenin (M), actin (N), E-cadherin (O), Dok-2 (P), VAV1 (Q), RhoA (R) in HeLa 

cells lysates treated with or without 100 ng/ml EGF for 30 min and labeled for persulfides (switching agent DAz-

2:Cy5), measured using EGFR pathway microarray glass slips. Related to Figures 5J, K. Each antibody was spotted 

in pentaplicates. Values are given as a mean ± SD. from two independent experiments. * p< 0.05, ** p<0.01. 
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(B) ESI-TOF-mass spectra of 10 µM C35S Trx before (black) and after the reaction with 10 µM SSC (red). The arrow 

indicates the TrxS-S-Cys peak that is absent in the control spectrum. Related to Figure 6D. 

(C) Kinetics of human Trx (4 µM) oxidation with 25 µM (blue line) and 50 µM SSC (red line), followed by tryptophan 

fluorescence (λex 280 nm) changes. Spontaneous oxidation of Trx alone (Control) is shown in black.  

(D-E) Activities of human Trx (D) with cystine (Cys2, black) or SSC (red) and, Trx1 (black) or TRP14 with SSC (E)  

where NADPH oxidation was recorded on a Tecan Infinite M200 plate reader, set to record absorption at 340 nm. 3 

µM human Trx1 or TRP14, 30 nM TrxR from rat liver and 250 µM NADPH were used in all measurements. 

Concentration of cystine or SSC were set at 1 mM. The initial rate of A340 decrease was fitted linearly, and 

consumption of NAPDH over time was determined using an NADPH extinction coefficient ε340 of 6020 M-1 cm-1. 

(F) Metabolic pathways for H2S biosynthesis in S. cerevisiae. 
(G) Growth curves for wild type, Δcys3, Δcys4 and Δtum1 mutants of S. cerevisiae. ** p<0.01. 

(H) Persulfidation level in wild type, Δcys3, Δcys4 and Δtum1 mutants of S. cerevisiae. Green fluorescence (488, 

NBF-adducts) was used as a loading control. Persulfidation was detected in-gel by measuring Cy5/488 signal ratio. 

Quantification of persulfidation levels in different mutants (right). Values represent mean ± SD. ** p<0.01. 

(I) Flow cytometric analysis of H2S levels (green fluorescence, FL1A) in BY4247 (WT) and the Δcys3 mutant of S. 

cerevisiae. Cells were incubated with 20 µM MeRho-Az sensor (45 min, 30 °C). ** p<0.01. 

(J) The effect of short-term (3 hr) pre-exposure to GYY4137 (500 µM) or AP39 (100 nM) on the percentage of dead 

C. elegans after 5 hr of 60 mM paraquat. N>50 worms. ** p<0.01. 

(K) The effect of short-term (3 hr) pre-exposure to GYY4137 (500 µM) on the survival rate of N2 and cth-1 mutant 

C. elegans mutants exposed to 5 mM sodium arsenite over 5 hr. N>50 worms. ** p<0.01. 
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Table S1. List of proteins found to be endogenously persulfidated in human red blood cells.* 

Related to Figure 2D. 

No 
Protein name 

(UniProtKB database) 
UniProtKB -10logP Peptides 

Coverage 

% 
MW (Da) Modification/Ref.** 

1 Carbonic anhydrase 1 P00915 308.61 54 73 28,870 
PSX/(Delobel et al., 

2016) 

2 
Spectrin alpha chain, 
erythrocytic 1 

P02549 266.65 101 43 280,014 
PSX/(Zaccarin et 
al., 2014) 

3 
Spectrin beta chain, 

erythrocytic 
P11277 248.03 61 30 246,468 

PSX/(Zaccarin et 

al., 2014) 

4 Ankyrin 1 P16157 218.79 32 21 206,265 

PSX/(Yang et al., 

2012; Zaccarin et 

al., 2014) 

5 Catalase P04040 218.65 35 45 59,756 

PSX/(Delobel et al., 

2016; Yang et al., 

2012) 

6 Flavin reductase P30043 197.55 17 64 22,119 
PSX/(Delobel et al., 

2016) 

7 
Band 3 anion transport 

protein 
P02730 197.26 23 26 101,792 

PSX/(Zaccarin et 

al., 2014) 

8 Carbonic anhydrase 2 P00918 192.22 25 65 29,246 
PSX/(Delobel et al., 

2016) 

9 Peroxiredoxin 2 P32119 187.35 26 59 21,892 

PSX/(Delobel et al., 

2016; Zaccarin et 

al., 2014) 

10 
Bisphosphoglycerate 
mutase 

P07738 135.16 14 51 30,005 
PSX/(Delobel et al., 
2016) 

11 

Glyceraldehyde-3-

phosphate 

dehydrogenase 

P04406 131.26 9 39 36,053 

PSX,PSSH/ 

(Valentine et al., 

1987; Zaccarin et 

al., 2014) 

12 
Protein/nucleic acid 

deglycase DJ-1 
Q99497 129.49 8 50 19,891 

PSX/(Delobel et al., 

2016) 

13 Peroxiredoxin 1 Q06830 123.63 10 45 22,110 
PSX/(Delobel et al., 

2016) 

14 
Protein DDI1 homolog 

1 
Q8WTU0 121.85 6 22 44,124  

15 
Fructose-bisphosphate 

aldolase A 
P04075 116.71 9 20 39,420 

PSOH/(Valentine et 

al., 1987) 

16 
Purine nucleoside 

phosphorylase 
P00491 114.54 7 30 32,118 

PSX/(Delobel et al., 

2016) 

17 Methanethiol oxidase  Q13228 112.56 7 17 52,391  

18 Protein 4.1 P11171 112.26 7 10 97,017 

PSX/(Yang et al., 

2012; Zaccarin et 

al., 2014) 

19 
Transitional 
endoplasmic reticulum 

ATPase 

P55072 164.3 16 21 89,322 
PSX/(Yang et al., 
2012) 

20 Peroxiredoxin 6 P30041 153 11 52 25,035 
PSX/(Delobel et al., 

2016) 

21 
Stress-induced-

phosphoprotein 1 
P31948 140.13 11 19 62,639 

PSX/(Delobel et al., 

2016) 

22 
Triosephosphate 

isomerase 
P60174 125.54 6 31 30,791 

PSX/(Delobel et al., 

2016) 

23 
Phosphoglycerate 

kinase 1 
P00558 120.79 8 19 44,615 

PSSH/(Valentine et 

al., 1987) 
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24 
Heat shock cognate 71 

kDa protein 
P11142 119.28 10 20 70,898 

PSX/(Delobel et al., 

2016; Yang et al., 

2012) 

25 
Tropomyosin alpha-3 

chain 
P06753 112.7 6 25 32,950  

26 
L-lactate 

dehydrogenase B chain 
P07195 111.71 10 25 36,638 

PSX/(Delobel et al., 

2016) 

27 Alpha enolase P06733 107.69 7 21 47,169 

PSX, PSSH/ 

(Delobel et al., 

2016; Valentine et 

al., 1987; Yang et 

al., 2012) 

28 
T-complex protein 1 
subunit theta 

P50990 106.44 7 16 59,621  

29 

Low molecular weight 

phosphotyrosine protein 

phosphatase 

P24666 103.76 5 38 18,042  

30 Alpha adducin P35611 99.94 7 11 80,955 
PSX/(Yang et al., 

2012) 

31 

Erythrocyte band 7 

integral membrane 

protein 

P27105 98.78 7 29 31,731 
PSX/(Zaccarin et 

al., 2014) 

32 
Eukaryotic translation 

initiation factor 5 alpha 
P55010 95.91 4 31 49,223  

33 
Heat shock protein HSP 

90-alpha 
P07900 94.83 7 13 84,660  

34 Peroxiredoxin 4 Q13162 93.27 6 11 30,540  

35 
Adenylate kinase 

isoenzyme 1 
P00568 91.30 5 23 21,635 

PSSH/(Valentine et 

al., 1987) 

36 
Ubiquitin-like modifier-

activating enzyme 1 
Q5JRR6 89.97 4 5 56,852 

PSX/(Yang et al., 

2012) 

37 
Ubiquitin carboxyl-

terminal hydrolase 14 
P54578 87.61 4 13 56,069 

PSX/(Yang et al., 

2012) 

38 β adducin P35612 87.23 3 5 80,854  

39 
Hsc70 interacting 
protein 

P50502 85.19 4 12 41,332  

40 
Proteasome subunit 

alpha type-5 
P28066 82.21 3 18 26,411  

41 Thioredoxin P10599 79.82 4 31 11,737  

42 
Rab GDP dissociation 

inhibitor β 
P50395 79.5 4 10 50,663 

PSX/(Delobel et al., 

2016) 

43 
Glutathione S-

transferase A1 
P08263 78.34 3 13 25,631 

PSX/(Delobel et al., 

2016) 

44 
Erythrocyte membrane 

protein band 4.2 
P16452 75.97 4 8 77,009 

PSX/(Zaccarin et 

al., 2014) 

45 
Rho GDP dissociation 

inhibitor 1 
P52565 75.91 3 16 23,207  

46 Dematin Q08495 75.59 4 12 45,514  

47 Ankyrin 3 Q12955 75.45 5 1 480,410 
PSX/(Zaccarin et 

al., 2014) 

48 
3-mercaptopyruvate 

sulfur transferase 
P25325 68.09 4 9 33,178  

49 Carbonic anhydrase 3 P07451 69.76 3 14 29,557 
PSX/(Delobel et al., 

2016) 

50 
Ubiquitin conjugating 

enzyme E2 
P51668 72.33 3 30 16,602  
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51 
Serine/threonine protein 

kinase OSR1 
O95747 68.46 4 8 58,022  

52 
Copper chaperone for 

superoxide dismutase 
O14618 67.22 3 10 29,041  

53 Transaldolase P37837 66.97 4 9 37,540 
PSX/(Delobel et al., 

2016) 

54 Protein S100-A6 P06703 80.68 5 43 10,180  

55 Malate dehydrogenase P40925 60.29 3 13 36,426 
PSX/(Delobel et al., 

2016) 

56 
Glutamate--cysteine 

ligase catalytic subunit 
P48506 59.76 2 10 72,766  

57 
Proteasome subunit 

alpha type-1 
P25786 59.18 2 10 29,556  

58 
14-3-3 protein 

beta/alpha 
P31946 50.89 2 8 28,082  

* The table consists of proteins identified by at least 2 reliable peptides and -10logP>50, obtained by trypsin and/or 

chymotrypsin digestion.  

**PSX denotes any kind of DTT-reducible cysteine oxidation (PSSH, PSOH, PSSP). PSSH denotes protein 

persulfidation specifically. 
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INTRODUCTORY PARAGRAPH 22 

The ability to adapt to the harsh conditions imposed by a host is fundamental for pathogens’ 23 

infective capacity and, concomitantly, the host cellular response must be finely tuned to mount an 24 

efficient response against the pathogen and clear infection. Post-translational modifications (PTMs) 25 

are important for adaptation to stress and therefore are expectedly crucial for both pathogen and 26 

host. Here we investigated the relevance of the PTM persulfidation for virulence of the human 27 

fungal pathogen Aspergillus fumigatus and for antifungal host defence in mammalian lung cells. We 28 

show that a weakly persulfidating A. fumigatus mutant is more susceptible to host-mediated killing 29 

and displays reduced virulence in a murine model of infection. Besides, we found that a single 30 

nucleotide polymorphism (SNP) in the human gene encoding cystathionine-γ-lyase, the main enzyme 31 

responsible for protein persulfidation in the lungs, predisposes to invasive pulmonary aspergillosis in 32 

hematopoietic stem cell transplant recipients, and we further show that correct levels of 33 

persulfidation are required for optimal antifungal activity of lung-resident host cells. Interestingly, 34 

levels of host protein persulfidation determine the levels of fungal persulfidation, reflecting a direct 35 

host-pathogen cross-talk.  36 

 37 

MAIN 38 

Post-translational modifications (PTMs) constitute a rapid acting response mechanism that permits 39 

fast adaptation to short-lasting and varying stresses. Therefore, appropriately timed and executed 40 

PTM modifications are likely crucial for the survival of pathogens inside their hosts [1] as well as for 41 

optimal host responses [2]. Hydrogen sulphide (H2S) is a gaseous signalling molecule or 42 

gasotransmitter, which is produced in mammalian tissues by at least three enzymes —cystathionine 43 

β-synthase (CBS), cystathionine γ-lyase (CSE) and 3-mercaptopyruvate-sulphurtransferase (MST)— 44 

[3, 4]. It has been postulated that H2S exerts its signalling via protein persulfidation [5], a post-45 
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translational modification that consists of the conversion of a thiol (-SH) into a persulfide (–SSH) 46 

group in cysteine residues of target proteins [6]. The exact mechanism by which H2S becomes 47 

activated to modify specifically target cysteine residues remains unclear [7]. H2S is. Persulfidation 48 

can increase or decrease function or activity of a given protein, which translates into a prominent 49 

regulatory role for various physiological functions [8], including inflammation and counteracting 50 

endoplasmic reticulum stress [5]. Furthermore, the number of proteins discovered to undergo 51 

persulfidation is steadily increasing [8]. Nevertheless, despite evidence of its importance, little is 52 

known about the role and relevance of protein persulfidation for mammalian immunity. 53 

In contrast to extensive research undertaken on H2S signalling and persulfidation in mammalian 54 

cells, insights about their relevance in microbes are limited. H2S production has been shown to be 55 

important for antibiotic susceptibility of several bacteria [9] and their defence against the host 56 

immune response [10] and inflammation [11]. The relevance of persulfidation specifically, has only 57 

been studied so far in Staphylococcus aureus, where it could be linked to resistance against 58 

antibiotics and cellular redox stress and to the global regulation of the production of virulence 59 

factors [12].  60 

Here we address the relevance of persulfidation for adaptation of the human pathogenic fungus 61 

Aspergillus fumigatus to its mammalian host, and for host defence against pathogen challenge. In 62 

the wild, A. fumigatus produces millions of airborne spores that, due to their small size, can 63 

penetrate the human respiratory tract. Inhalation of A. fumigatus spores rarely has any adverse 64 

effects in immunocompetent individuals, since the spores are efficiently eliminated by host innate 65 

immunity. However, immune disorders may lead to a spectrum of diseases collectively named 66 

aspergilloses [13, 14]. In Europe, the number of clinical conditions caused by A. fumigatus exceeds 67 

two millions cases per year, including around 50,000 cases of lethal invasive pulmonary aspergillosis 68 

(IPA) [15].  69 
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Here we reveal that disruption of the cystathionine-γ-lyase encoding gene in both A. fumigatus and 70 

human alveolar epithelial cells diminishes their protein persulfidation levels. Reduced persulfidation 71 

of A. fumigatus proteins is correlated with decreased virulence, as we have shown that this PTM 72 

modulates the activity of at least two proteins relevant for fungal pathogenicity, a peroxiredoxin 73 

(Aspf3) and an alcohol dehydrogenase (AlcA). We further show that correct host persulfidation levels 74 

are required for maximum antifungal potency of alveolar macrophages and epithelial cells, which 75 

correlates with the observed higher incidence of IPA in hematopoietic stem cell transplant recipients 76 

carrying a single nucleotide polymorphism (SNP) in the gene coding for cystathionine-γ-lyase. Finally, 77 

we show that the extent of host protein persulfidation, which directly correlates with its capacity to 78 

defend against A. fumigatus infection, determines the level of A. fumigatus persulfidation, which 79 

correlates with its capacity to adapt to the conditions imposed by the host in the course of infection. 80 

 81 

RESULTS 82 

Persulfidation is an essential PTM in Aspergillus fumigatus 83 

Making use of the BLAST tool at the NCBI server (http://www.ncbi.nlm.nih.gov/Blast.cgi) and using 84 

the three human proteins described to be involved in H2S production as query, we identified the A. 85 

fumigatus orthologue genes encoding cystathionine-γ-lyase (mecB, AFUA_8G04340), cystathionine-86 

β-synthase (mecA, AFUA_2G07620) and 3-mercaptopyruvate sulphurtransferase (mstA, 87 

AFUA_8G01800). MecB and MecA are highly similar to their human counterparts (MecB 53% 88 

identity, 69% similarity; MecA 54% identity, 69% similarity) strongly suggesting a conserved activity, 89 

whilst MstA has a lower similarity rate (37% identity, 51% similarity), which might still indicate an 90 

analogous function. 91 

To gain insight into the intrinsic control of persulfidation in A. fumigatus, we constructed deletion 92 

strains for the three identified genes by homologous gene replacement in the wild-type ATCC46645 93 
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strain, employing a self-excising recyclable marker [16]. Persulfidation levels were monitored by 94 

both in-gel detection (Fig. 1a) and fluorescence microscopy (Fig. 1c), via the dimedone switch 95 

method [17]. Relative to wild-type, quantification of persulfidation levels in whole protein extracts 96 

revealed a significantly decreased persulfidation in ΔmecA (32.4% P=0.005) and ΔmecB (41.6% 97 

reduction, P=0.001) deletion mutants, which was more pronounced in the ΔmecB strain (Fig. 1b). 98 

Microscopy mediated quantification of persulfidation levels in hyphae growing in minimal medium 99 

(MM) and in DMEM revealed a reduction, relative to wild-type, in the ΔmecA and ΔmecB mutants, 100 

which was statistically significant for the latter (P=0.0013 in MM and P=0.046 in DMEM) (Fig. 1d). 101 

Aiming to reduce the levels of persulfidation further, we attempted to construct a double ΔmecA 102 

ΔmecB mutant by targeting each gene for deletion the corresponding single mutant strain but 103 

repeatedly failed. We therefore tested if loss of function in both genes could have a synthetic lethal 104 

phenotype by using the heterokaryon rescue technique, a method designed for identification of 105 

essential genes in Aspergillus species [18]. We indeed observed that conidia from primary 106 

transformants could be propagated in non-selective media but not in selective medium, which 107 

means that the double transformant nuclei can only be maintained in heterokaryosis and therefore 108 

that the loss of function of both gene products has synthetic lethal outcome. Hence, we postulate 109 

that persulfidation is an essential PTM for A. fumigatus viability and cannot be completely disrupted.  110 

We evaluated the sensitivity of all three single mutants to a variety of common stressors, and found 111 

that in most conditions they displayed identical growth rate to the wild-type (Fig. S1). Remarkably, 112 

all mutants were more sensitive than the wild-type to H2O2 (Fig. S1a) and the glutathione-disturbing 113 

antifungal Fludioxonil (Fig. S1b); in addition ΔmecB was more sensitive to the thiol-oxidizing drug 114 

diamide (Fig. S1c) and slightly to menadione (Fig. S1d). Besides, the ΔmecA mutant was sensitive to 115 

the cell wall stressor SDS (Fig. S1e). None of the mutants was sensitive to high temperature (48ᵒC), 116 

hypoxia (1% O2), osmotic stress (NaCl or KCl) or other cell wall disturbing agents (Congo Red, 117 

Calcofluor White or Caffeine) (Fig. S1e). Persulfidation is known to be very important for cellular 118 

redox processes (for a review see [19]), due to its role in preventing cysteine hyperoxidation [17]. 119 
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Therefore, it is not surprising that reduced levels of persulfidation cause sensitivity to oxidative 120 

stressors in A. fumigatus, as has been described in other organisms [17]. Besides, the ΔmecB mutant 121 

showed the same sensitivity profile to the antifungals Amphotericin B, Voriconazole and 122 

Anidulafungin, respectively representing polyenes, azoles and echinocandins, as the wild-type (table 123 

S1), suggesting that persulfidation is not important for antifungal resistance.  124 

Therefore, to investigate if persulfidation dependent responses are relevant for pathogen 125 

adaptation to host conditions, we selected the low-level persulfidation mutant ΔmecB for 126 

subsequent analyses. It is important to note that all phenotypes displayed by the ΔmecB mutant are 127 

due to a ~45% reduction of persulfidation, rather than absolute absence of this PTM. 128 

 129 

Persulfidation affects the activity of proteins known to be relevant for A. fumigatus pathogenicity 130 

Seeking A. fumigatus proteins which are highly persulfidated, we utilised two independent 131 

methodologies, the Biotin Thiol Assay
 
[20] and the improved switch tag technique [21], and we 132 

observed that a number of A. fumigatus proteins are persulfidated (Fig. 2a). By mass-spectrometry 133 

of cut-off bands we identified highly persulfidated proteins, and among them we found proteins 134 

described to be important for A. fumigatus pathogenic potential. Remarkably, we identified the 135 

peroxiredoxin Aspf3 (AFUA_6G02280), which is strictly required for A. fumigatus pathogenicity [22], 136 

and the alcohol dehydrogenase AlcA (AFUA_7G01010). The latter  is of potential relevance given that 137 

at least one of the three alcohol dehydrogenases encoded by the A. fumigatus’ genome has been 138 

implicated in virulence, AlcC (AFUA_5G06240) [23]. To confirm that the level of persulfidated Aspf3 139 

is indeed diminished by ~20% in the ΔmecB isolate compared to the wild-type progenitor, we 140 

enriched the persulfidation fraction of full protein lysates and specially detected Asp3 by Western-141 

blot (Fig 2b and S2a). In order to investigate whether reduced persulfidation levels affect the activity 142 

of this protein, extracellular peroxiredoxin activity of fungal mycelia was measured by the 143 
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degradation rate of tert-butyl hydroperoxide [24] (Fig. S2b). A. fumigatus ΔmecB showed a 144 

significant decrease ~35% in Aspf3 activity (P=0.0082) relative to the wild-type (Fig. 2c). This 145 

demonstrated that reduced persulfidation levels impact peroxiredoxin activity, probably due to a 146 

lower capacity to prevent hyperoxidation of the enzyme’s catalytic site [17, 25]. We also measured 147 

alcohol dehydrogenase activity from crude protein extracts and found that the activity was 148 

significantly increased by ~25% (P=0.025) in the low persulfidation ΔmecB mutant, compared to the 149 

wild-type strain, whilst the activity of the ΔalcC strain was strongly diminished, as expected (Fig 2d 150 

and S3c). 151 

Correct persulfidation levels are relevant for A. fumigatus pathogenic potential 152 

Given the importance of Aspf3 for oxidative stress resistance during infection [22] and the observed 153 

higher susceptibility of ΔmecB to oxidative stressors (Fig. S1), we speculated that the lower 154 

peroxiredoxin activity in the ΔmecB mutant would translate into a higher susceptibility to killing by 155 

immune effector cells. Therefore, we performed spore killing assays using murine (Raw624.7) and 156 

human (THP-1) macrophage cell lines. In both cases the percentage of killed ΔmecB conidia was 157 

significantly higher than that of the wild-type (28.3% VS 16.7% for Raw624.7, P<0.0001, and 14.3 VS 158 

10.8 for THP-1, P= 0.0111) (Fig. 3a). This suggests that altered activity of relevant fungal proteins in 159 

the ΔmecB mutant results in a higher susceptibility to killing by effector immune cells. We then 160 

investigated the ΔmecB pathogenic potential in a leukopenic murine model of invasive pulmonary 161 

aspergillosis (IPA) (Fig. 3b). We observed that the ΔmecB mutant indeed showed a significant (P= 162 

0.0265) reduction in virulence compared to the wild-type strain. Mice infected with ΔmecB survived 163 

slightly longer and at day 7 after infection four out of eleven mice were alive and had recovered 164 

from infection. In addition, fungal burden at day +3 post-infection was significantly lower in mice 165 

infected with ΔmecB than in mice infected the wild-type strain (P=0.0229) (Fig. 3c). 166 

In summary, these results demonstrate that a moderate reduction in A. fumigatus persulfidation of 167 

~45% correlates with a significant decreased in its virulence. 168 
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A SNP in the human cystathionine-γ-lyase encoding gene predisposes hematopoietic stem cell 169 

transplant recipients to invasive pulmonary aspergillosis. 170 

Cystathionine-γ-lyase has been implicated in various hyperinflammatory conditions [26, 27]. 171 

Therefore, we speculated that balanced persulfidation in host cells based on correct cystathionine-γ-172 

lyase activity must be required to properly defend against invading pathogens. To evaluate this 173 

hypothesis we investigated the relationship between genetic variability of the cystathionine-γ-lyase 174 

encoding gene NG_00804 (mainly responsible for persulfidation in lung tissues [28]) and the 175 

incidence of IPA after hematopoietic stem cell transplantation. We observed that the presence of 176 

the mutant homozygous (TT) genotype of the non-synonymous SNP S403I (rs1021737) in transplant 177 

recipients resulted in a 10% increase in cumulative incidence of IPA after transplant relative to the 178 

other genotypes (32 % for TT vs. 22% GG+GT, P=0.22) (Fig. 4a). Actually, the SNP is more frequent in 179 

IPA patients than in controls (11.3% in IPA vs 7.1% in controls, P=0.14) (Table 1), suggesting an 180 

association with disease. These increments were not statistically significant, probably due to the low 181 

number of patients (n=36) that carry this SNP in homozygosis. However the genotype-dependent 182 

trend towards increased incidence of IPA in recipients prompted us to analyse the cytokine 183 

environment in the bronchoalveolar lavage (BAL) of patients with IPA, according to S403I genotypes. 184 

Since only one BAL sample from a homozygous patient was available, we also included samples from 185 

IPA patients with the SNP in heterozygosis. In general, the presence of the SNP was associated with 186 

an increase in concentration of several cytokines (IFN-γ, IL-18 and TNF-α) and chemokines (eotaxin, 187 

IP10, RANTES and MCP-1) (Fig. S3a and b), which tended to be more pronounced in the TT 188 

homozygous sample. This could suggest that the heightened risk of fungal infection derives from a 189 

prevalent hyper-inflammatory environment that is permissive to fungal infection. A remarkable 190 

exception was IL-8, which was strongly diminished in patients with the SNP (P=0.02) (Fig. 4b). IL-8 is 191 

known to be important for the defence against A. fumigatus [29, 30] and often reflects a more 192 

specific contribution of epithelial cells [31], which is in agreement with an increased risk of infection 193 

when the SNP is on the recipient side. Interestingly, in contrast to the general tendency of increased 194 
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cytokine presence in patients’ BAL samples, macrophages derived from donors’ PBMCs carrying the 195 

SNP in homozygosis showed a decreased production of pro-inflammatory cytokines upon 196 

stimulation with A. fumigatus conidia compared to macrophages derived from non-carriers of the 197 

SNP (Fig. S4). Together, these results suggest that the SNP causes a general imbalance in cytokine 198 

production with likely consequences to the antifungal immune response.  199 

Low persulfidation levels correlate with a decrease in the antifungal potency of alveolar 200 

macrophages and epithelial cells 201 

The fact that an increase in IPA incidence occurs in when the SNP is in the recipient but not in the 202 

donor suggests that the effect of persulfidation is more relevant in non-hematopoietic cells (e.g. 203 

epithelial cells) and immune cells that are resistant to conditioning treatments (e.g. alveolar 204 

macrophages, AMs [32]). To further investigate this line of reasoning, we made use of the 205 

cystathionine-γ-lyase knock-out C57BL/6
CSE-/- 

[33] mouse line, which was previously demonstrated to 206 

have decreased levels of persulfidation in the lung tissues [34]. We isolated bone marrow 207 

neutrophils (representative of donor derived cells in a transplant recipient) and AMs (representative 208 

of host recipient cells) from C57BL/6 and C57BL/6
CSE-/- 

and challenged them with A. fumigatus wild-209 

type and ΔmecB conidia ex vivo. Both immune effector cells killed ΔmecB spores to a ~10% higher 210 

degree (Fig. 5a), further supporting the relevance of persulfidation in the pathogen. Interestingly, 211 

C57BL/6
CSE-/- 

AMs, but not neutrophils, showed a defect in conidial killing (~11% for wild-type 212 

P<0.0001, and ~9% for ΔmecB P=0.0007), which supports the notion that correct persulfidation is 213 

required in host resident cells to sufficiently control A. fumigatus infection. 214 

Aiming to investigate the contribution of non-hematopoietic cells in more detail, we disrupted the 215 

cystathionine-γ-lyase encoding gene in the human alveolar epithelial cell line A549 using a 216 

commercial CRISPR/Cas9 strategy, which inserts a puromycin resistance gene in three locations 217 

within the targeted ORF. The resulting CSE
-/-

 cell line (Fig S5a) showed a significant reduction in 218 

persulfidation levels (Fig. S5b). As in A. fumigatus, persulfidation was not completely abrogated in 219 
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this cell line and, hence the effects described below are correlated with the significant reduction of 220 

~55% in the persulfidation levels. We challenged the A549 and CSE
-/-

 cell lines with A. fumigatus 221 

wild-type and ΔmecB strains and measured epithelial cell detachment to evaluate the degree of host 222 

damage incurred by the pathogen (Fig. 5b). Interestingly, we observed that the A. fumigatus ΔmecB 223 

strain induced slightly less detachment than the wild-type in both A549 and CSE
-/-

 cell layers (5.5% 224 

and 9.7% less damage respectively). In addition, the CSE
-/-

 cell monolayer suffered a higher 225 

detachment rate during incubation with both wild-type (113.2%, P=0.0306) and ΔmecB (109%, not 226 

significant) spores. This experiment suggests that persulfidation is relevant for both the fungal 227 

potential to cause damage as well as the host capacity to withstand assault. In order to investigate 228 

the killing capability of the epithelial cells, we calculated the percentage of dead conidia after 6 229 

hours of co-incubation (Fig. 5c) and observed that 1) the A. fumigatus ΔmecB conidia were killed to a 230 

higher extent than wild-type (31.1% VS 21.1% conidia killed by A549 P<0.001 and 26.8% VS 16.7% by 231 

CSE
-/-

 P<0.001) and 2) the CSE
-/-

 cells were less efficient in killing fungal conidia compared with the 232 

progenitor A549 cells (16.7% VS 21.1% killed wild-type conidia P=0.0727 and 26.8% VS 31.1% killed 233 

ΔmecB P=0.0549). Therefore, correct persulfidation levels are important for fungal survival and also 234 

for the capacity of epithelial cells to kill A. fumigatus. Surprisingly, we found that CSE
-/-

 cells had 235 

internalised significantly more spores than A549 cells 4 hours after challenge (Fig. 5d and S6), 236 

suggesting that this process is more efficient with low persulfidation. Hence, low persulfidation more 237 

likely causes a defect in pathogen killing rather than in phagocytosis. However, since the exact 238 

mechanism that epithelial cells utilise to kill A. fumigatus spores has not been elucidated yet [35] we 239 

could not determine the underlying reason of this defect. We then measured IL-8 production in 240 

challenged and unchallenged cells and detected that CSE
-/-

 cells produce significantly more IL-8 than 241 

A549 cells (Fig. 5e). This result might seem to be in conflict with the lower level of IL-8 detected in 242 

patients’ BAL; however, the total cytokine levels in patients’ BAL are derived from several cell 243 

populations [36, 37], and the reduced persulfidation level may affect other IL-8 producing cells 244 

differently. Altogether, our observations suggest that deficiency in cysthathionine-γ-lyase, and 245 
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consequently low persulfidation levels, favour the development of a pro-inflammatory environment 246 

in the airways, which is consistent with other studies reporting the relevance of this enzyme for 247 

hyperinflammatory conditions [26, 27]. 248 

Host persulfidation determines the level of persulfidation in A. fumigatus  249 

Our observations suggest that the level of persulfidation in host cells correlates with their capacity to 250 

kill A. fumigatus and, inversely, the level of persulfidation in the fungus correlates with its capacity to 251 

survive in the host. We thus hypothesised that correct persulfidation levels in the host (reflecting 252 

high killing capacity) may directly increase the persulfidation levels in the fungal pathogen in order 253 

to better survive the more potent host antifungal activity. To test that hypothesis, we measured the 254 

level of persulfidated Aspf3 (a fungal protein serving as reporter of persulfidation specifically in A. 255 

fumigatus), in A. fumigatus wild-type and ΔmecB strains infecting A549 or CSE
-/- 

cell lines (Fig. 6a and 256 

S7). As expected, the level of persulfidated Aspf3 was always higher in wild-type than in ΔmecB. 257 

Interestingly, the amount of persulfidated Aspf3 was higher when infecting A549 than CSE
-/-

, which 258 

suggests that a higher level of host persulfidation triggers a higher level of the same modification in 259 

the pathogen. The increase in persulfidation was significant in A. fumigatus wild-type (162%, 260 

P=0.0017%) but not in in ΔmecB (139%, P=0.107), which points to MecB as an important fungal 261 

protein involved in the specific response to host challenge. We also measured total levels of 262 

persulfidation in hyphae challenged with cell lines, using the persulfidation fluorescence imaging 263 

protocol [17] and an automated image processing and analysis macro created to mask the fungus 264 

from the human cells based on fungal-specific Calcofluor White staining (Fig. S8). As expected, the 265 

absolute mean persulfidation fluorescence signal in A. fumigatus wild-type hyphae significantly 266 

exceeded the overall level in ΔmecB mutant in all conditions. In agreement with the previous result, 267 

the level of persulfidation was higher when A. fumigatus was in contact with A549 than with CSE
-/-

 268 

cells and the increment was significant in wild-type (124%, P<0.0001) but not in ΔmecB (106%, 269 

P=0.89) hyphae (Fig. 6b and S8). Therefore, the level of host persulfidation influences the level of A. 270 
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fumigatus persulfidation. We hypothesised that this interaction may occur through two alternative 271 

mechanisms, either by host-produced H2S diffusing to fungal cells and directly impacting the level of 272 

persulfidation, or by an active response in A. fumigatus to the stress caused by the host cells. To gain 273 

some further insight, we tested A. fumigatus persulfidation levels in vitro in the presence of a 274 

sulphide donor or an oxidative stressor. Addition of the H2S donor GYY4137 did not affect A. 275 

fumigatus persulfidation levels, whilst incubation of mycelia in the presence of peroxide significantly 276 

increased the persulfidation levels of the wild-type strain by ~1.4 fold (P=0.0138), and of the ΔmecB 277 

by ~1.3 fold (P=0.052,) (Fig 6c). This suggests that the increase in persulfidation of A. fumigatus in 278 

the presence of epithelial cells is due to an active response to stress caused by the effector cells, 279 

such as oxidative stress, which is partly dependent on the activity of MecB. 280 

DISCUSSION 281 

Adaptation is paramount in host-pathogen interactions. Pathogens must be able to adapt to the 282 

harsh and varying conditions encountered inside a host. Concomitantly, host cells must respond 283 

properly to the challenge to kill the pathogen and mount a proper immune response. Persulfidation 284 

is a post-translational modification known to be important for a variety of physiological processes 285 

[8]. In pathogens, it has only been studied in Staphylococcus aureus, in which it has been related to 286 

the production of virulence factors and cytotoxicity [12, 38]. However, the impact of low 287 

persulfidation for S. aureus virulence in the context of infection was not well defined. In a mouse 288 

model of infection a low persulfidation mutant was reported to cause reduced bacterial burden, but 289 

the consequences of low persulfidation for bacterial fitness and/or resistance to host killing was not 290 

investigated. Interestingly, in S. aureus a double mutant of the cystathionine-β-synthase (CBS) and 291 

cystathionine-γ-lyase (CSE) encoding genes (ΔCBSΔCSE) had decreased persulfidation, produced 292 

supernatants with higher cytotoxic potential, but did not have reduced virulence [12]. We have 293 

shown that a partial reduction of persulfidation levels in A. fumigatus affects the activity of at least 294 

two proteins known to be important for virulence, increases susceptibility to host-mediated killing 295 
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and accordingly decreases its pathogenic potential. Furthermore, our results suggest that 296 

persulfidation cannot be completely abolished in A. fumigatus and therefore appears to be an 297 

essential process for viability. This could seem to be in disagreement with S. aureus, where a 298 

ΔCBSΔCSE mutant is viable [12]. However, the level of persulfidation in this double mutant was 299 

approximately 45% of the wild-type, which is similar to the reduction we observed in our single A. 300 

fumigatus ΔmecB mutant (CSE). Therefore, it is likely that other enzymes (as MST) or mechanisms 301 

are more relevant for persulfidation in this bacterial pathogen than in A. fumigatus. Moreover, 302 

persulfidation seems to be an essential process in mammalian cells as well, as to or knowledge there 303 

is no report of a double ΔCBSΔCSE cell line constructed. Therefore, we presume that persulfidation 304 

might be an essential PTM for all organisms.  305 

The presence of the SNP S403I (rs1021737) in the human cystathionine-γ-lyase encoding gene 306 

appears to partially contribute to an increased incidence of invasive pulmonary aspergillosis (IPA) in 307 

hematopoietic stem cell transplant recipients. This SNP has been proposed to affect phosphorylation 308 

sites and decrease protein-substrate affinity, therefore it is believed to reduce the activity of the 309 

encoded enzyme [39]. In addition it seems to decrease expression of the gene [40]. Actually, it has 310 

been associated with cystathioninuria and higher homocysteine plasma concentration [41], which 311 

could be a direct result of a reduction in enzyme amount and activity. We demonstrated that lack of 312 

cystathionine-γ-lyase enzymatic activity in alveolar epithelial cells reduces the level of persulfidation, 313 

which decreases their antifungal potency and de-regulates cytokine production. A previous study 314 

found increased pro-inflammatory cytokine production upon inhibition of CSE expression in human 315 

macrophages [42] and cystathionine-γ-lyase is known to play a role in various chronic pro-316 

inflammatory airway diseases [27]. The underlying mechanism could be related to the persulfidation 317 

of NF-κB, which has been described to affect its activity [34]. Therefore, we propose that 318 

hematopoietic stem cell transplant recipients carrying the SNP S403I in homozygosis are more prone 319 

to develop IPA because reduced enzymatic activity and thus persulfidation levels lead to the 320 

development of a hyperinflammatory environment that is permissive to fungal infection, which 321 
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cannot be properly controlled as their alveolar epithelial cells and alveolar macrophages have 322 

reduced antifungal potency. Optimal activity of CSE has been shown to be important for the defence 323 

against respiratory syncytial virus in vitro [43] and in a murine model [44], which supports the notion 324 

that the action of this enzyme is important for the defence against pathogens.  325 

Interestingly, we have shown that host persulfidation influences the level of persulfidation in A. 326 

fumigatus. We explored the possibility that a higher production of H2S in the host could directly 327 

diffuse to fungal cells and affect their persulfidation level. However, in contrast to other organisms 328 

[12, 17, 20, 45], the sulphide donor GYY4137 alone did not significantly alter persulfidation levels in 329 

A. fumigatus. We speculate this could be due to a lower diffusion of H2S through the A. fumigatus 330 

cell wall and/or a low capacity to oxidize non-enzymatically derived H2S [46, 47]. Alternatively, we 331 

hypothesised that the elevated host antifungal potency in competent persulfidating cells may induce 332 

more oxidative stress to A. fumigatus, which could then be sensed by protein sulfenylation [48] and 333 

in turn increase persulfidation in the fungal cell [17]. In agreement, we have shown that H2O2 alone 334 

could trigger an increase in persulfidation levels. Therefore, we propose that the persulfidation 335 

levels in A. fumigatus are modulated as a direct response to host cell defence mechanisms, which 336 

are balanced by its own persulfidation levels. 337 

In summary, we show that correct protein persulfidation is important for both A. fumigatus 338 

pathogenic potential and host antifungal defence and also that host persulfidation determine the 339 

level of persulfidation in the fungal pathogen. Furthermore, we propose that persulfidation is an 340 

essential cellular process. Therefore, persulfidation must be considered as a relevant post-341 

translational modification for infection, where its modulation may be a promising and novel strategy 342 

to target both pathogens and immune responses. 343 
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Table 1. Association of SNP with disease 498 

SNP rs# 

number 

Alleles: status Genotype, n (%) P value 

G/G + G/T T/T 

Recipient 

rs1021737 

 

IPA 102 (88.7) 13 (11.3) 0.14 

Controls 301 (92.9) 23 (7.1) 
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Fig. S1. Decreased persulfidation levels affect A. fumigatus sensitivity to oxidative stress.   

A. fumigatus mutants were not sensitive to high temperature (48 ᵒC), hypoxia, or osmotic stress 

(300 mM NaCl and KOH). The ΔmecA mutant was slightly more sensitive to the cell wall stressor 

SDS (0.01%), but not Congo Red (30 µg/ml), CalcofluorWhite (200 µg/ml) and Caffeine (5 mM). 

All mutants were more sensitive to H202 and Fludioxonil and the ΔmecB mutant was also more 

sensitive to Diamide and slightly to Menadione.  











Fig. S6 

Bright Field TdTomato CW 

TdTomato and CW overlay All channels 

Fig. S6. Phagocytosis Microscopy 

Representative images of the quantification of phagocytosis. Red colour 

displays the TdTomato signal, which constitutes the whole conidia population. 

Green colour displays the Calcofluor White signal, which constitutes the 

extracellular (i.e. non-phagocytosed) conidia population. Scale bar =30 µm. 





Fig. S8 

Green signal Cy5 signal 

CW signal CW Mask 

Fig. S8. Measurement of fungal persulfidation in infection experiments by 

epifluorescence microscopy. 

Representative images of in-gel detection of persulfidation levels in protein 

extracts of A. fumigatus wild-type and mutants ΔmecB (cystathionine-γ-lyase), 

ΔmecA (cystathionine-β-synthase) and ΔmstA (3-mercaptopyruvate 

sulphurtransferase. The green signal reflects all proteins and is used to normalise 

the red signal, which specifically labels persulfidated proteins (as described in 

materials and methods) b) Quantification of persulfidation levels, measured as 

the level of red signal normalised to green signal, showed a significant decrease in 

persulfidation level of ΔmecB relative to wild-type (n=3). Representative images 

of the measurement of persulfidation levels in hyphae infecting an epithelial cell 

monolayer 4-chloro-7-nitrobenzofurazan (NBF-Cl) labels persulfides, thiols, 

sulfenic acids, and amino groups; reaction with amino groups produces the green 

signal, therefore it reflects the whole protein context and is used to normalise the 

persulfidation levels. The red signal is produced by the dimedone-Cy5 labelled 

probe, which selectively switches NBF-Cl in persulfide groups [17]. Calcofluor 

White dye specifically stains chitin in the fungal cell wall. This blue channel can be 

used to automatically segment hyphae (mask) and hence permits to measure the 

green and red signals exclusively from fungal cells in images containing mixed 

fungal and human cells. Scale bar= 30 µm. 
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INTRODUCTION 

Currently approved for the treatment of diabetes, metformin is a widely-used drug whose 

benefits on a cellular level extend far beyond insulin and glucose regulation.1–3 Metformin has 

been shown to inhibit mTOR,4 inhibit mitochondrial complex 1 in the electron transport chain 

and reduce production of reactive oxygen species (ROS),5,6 activate AMP-activated kinase 

(AMPK),7,8 and reduce DNA damage,9 among other effects.  

Overall, metformin is considered to favourably influence metabolic and cellular 

processes closely associated with age-related conditions.3 This goes some way to explain the 

reasons why metformin treatment has been shown to be capable of extending the lifespan of 

different animals.10,11 To date, there is no evidence to suggest similar effects in humans, while 

it is currently not clear whether metformin has multiple effects on multiple pathways, or 

whether effects reflect downstream consequences of a primary action on a single mechanism 

of aging. 

 A recent study by the Gladyshev group showed that one of the general features of 

interventions resulting in lifespan extension is the overexpression of CSE.12 According to the 

results of our study, CSE-controlled H2S production and subsequent protein persulfidation (R-

SSH) represents an evolutionarily conserved path to protect proteins from inactivation caused 

by cysteine hyperoxidation.13 Furthermore, we also observed that CSE-controlled 

persulfidation is downregulated in a Huntington’s disease model. 

 The earlier work of the Paul and Snyder lab has identified the important role of CSE in 

Huntington’s disease.14–16 CSE was found to be downregulated in brain samples of CSE 

knockout mice and humans, and CSE knockout animals showed Huntington’s disease-like 

features. The latter is caused by the disordered amino acid homeostasis, which results in 

dysfunctions of the transcription factor ATF4, a master regulator of amino acid disposition. 

The regulation of CSE by ATF4 is particularly interesting and could unravel new venues for 

pharmacological manipulation. 

 In this study, we tested the hypothesis that the master pathway for the beneficial 

effects of metformin is ATF4-CSE-H2S-RSSH, and that metformin could be used as a 

pharmacological tool to increase CSE expression levels (and persulfidation levels) in 

Huntington’s disease. 
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Metformin Rescues CSE and Protein Persulfide Depletion in HD Cell Lines. Huntington’s 

Disease (HD) is a neurodegenerative disorder triggered by gluatamate repeats (111) in the 

huntingtin protein (Htt), and has been associated with having increased oxidative stress and 

mitochondrial dysfunction.17 Paul et al. showed that the HD model cell line, STHdhQ111/Q111 

(Q111), has severely depleted CSE levels and, consequently, is more sensitive to oxidative 

stress compared to the control cells, STHdhQ7/Q7 (Q7).14  

More recently, we have additionally shown that this lack of CSE in the HD cell line 

causes a significant drop in persulfide levels of the disease model (Q111) (Fig. 2A).13 This 

substantial decrease in R-SSH levels in the cells of the HD model provides an explanation for 

its increased oxidative stress levels, which can also be seen by their increased endogenous 

levels of cysteine sulfenic acids (R-SOH) (Fig. 2A).  

Subsequently, we moved to look at whether metformin can alleviate the endogenous 

stress of HD by rescuing its CSE expression and persulfide levels. We first treated both striatal 

cell lines, Q7 and Q111, for 24 hours with metformin in a dose-dependent manner, and 

observed a correlative increase in the CSE levels of both lines, with a rescue of CSE in Q111 

cells (Fig. 2B). We then went on to show that the treatment of HD cells with metformin caused 

an immediate increase in persulfide levels in the same dose-dependent manner when treated 

for 24 hours (Fig. 2C). This CSE-controlled increase in persulfides was also seen in the control 

of Q7 cells upon treatment with metformin for an even shorter period of 9 hours (Fig. 2C). 

Furthermore, we tested the oxidation status of these cells with metformin and observed that 

they responded by decreasing their R-SOH levels, with the lowest being with 5 mM metformin 

(Fig. 2D). This exemplified the hypothesis that metformin can relay its beneficial effects by 

increasing CSE and subsequently R-SSH levels to protect against overoxidation.  







 6 

REFERENCES   

1. Thomas, I. & Gregg, B. Metformin; a review of its history and future: from lilac to longevity. 

Pediatric Diabetes 18, 10–16 (2017). 

2. Pernicova, I. & Korbonits, M. Metformin-Mode of action and clinical implications for diabetes 

and cancer. Nature Reviews Endocrinology 10, 143–156 (2014). 

3. Barzilai, N., Crandall, J. P., Kritchevsky, S. B. & Espeland, M. A. Metformin as a Tool to Target 

Aging. Cell Metabolism 23, 1060–1065 (2016). 

4. Nair, V. et al. Mechanism of metformin-dependent inhibition of mammalian target of rapamycin 

(mTOR) and Ras activity in pancreatic cancer. J. Biol. Chem. 289, 27692–27701 (2014). 

5. Batandier, C. et al. The ROS production induced by a reverse-electron flux at respiratory-chain 

complex 1 is hampered by metformin. J. Bioenerg. Biomembr. 38, 33–42 (2006). 

6. De Haes, W. et al. Metformin promotes lifespan through mitohormesis via the peroxiredoxin 

PRDX-2. Proc. Natl. Acad. Sci. U. S. A. 111, (2014). 

7. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic 

glucose production in rats. Nat. Med. 21, 506–511 (2015). 

8. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. 

Invest. 108, 1167–1174 (2001). 

9. Algire, C. et al. Metformin reduces endogenous reactive oxygen species and associated DNA 

damage. Cancer Prev. Res. 5, 536–543 (2012). 

10. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and 

methionine metabolism. Cell 153, 228–239 (2013). 

11. Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 

4, (2013). 

12. Tyshkovskiy, A. et al. Identification and Application of Gene Expression Signatures Associated 

with Lifespan Extension. Cell Metab. 30, 573-593.e8 (2019). 

13. Zivanovic, J. et al. Selective Persulfide Detection Reveals Evolutionarily Conserved Anti-Aging 

Effects of S-Sulfhydration. Cell Metab. In Press (2019). 

14. Paul, B. D. et al. Cystathionine γ-lyase deficiency mediates neurodegeneration in Huntington’s 

disease. Nature 509, 96–100 (2014). 

15. Sbodio, J. I., Snyder, S. H. & Paul, B. D. Transcriptional control of amino acid homeostasis is 

disrupted in Huntington’s disease. Proc. Natl. Acad. Sci. 113, 8843–8848 (2016). 

16. Sbodio, J. I., Snyder, S. H. & Paul, B. D. Golgi stress response reprograms cysteine metabolism 

to confer cytoprotection in Huntington’s disease. Proc. Natl. Acad. Sci. U. S. A. 115, 780–785 

(2018). 

17. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative 

diseases. Nature 443, 787–795 (2006). 

 



 190 

CHAPTER 6: Conclusions and Future 

Perspectives 

The past decade has witnessed a burgeoning of literature on H2S signalling, with a 

plethora of physiological and pathophysiological functions claimed to be controlled 

by this gaseous molecule. This is perhaps best exemplified by the reports in which 

H2S is claimed to be the main reason for the caloric restriction–induced lifespan 

extension. Understanding molecular mechanisms by which such a small molecule can 

provide almost a universal protection remains, however, a long-sought goal.  
One of the main ways through which H2S relays its signalling properties is by 

modification of cysteine residues – a process known as S-sulfhydration or 

persulfidation. Yet, H2S cannot directly modify cysteine residues, meaning that the 

mechanism for persulfide formation remains unclear. In order to gain a deeper 

understanding of their role in signalling, one must selectively label protein persulfides, 

which represents a major obstacle due to their instability and similarity to cysteine 

residues. 

In the present thesis, we report a new and selective method which combines 

the availability and familiarity of the toolset widely used for the detection of sulfenic 

acids (dimedone-based probes) with a unique chemical ‘switch’, making this approach 

easy to use and widely applicable. The method is robust and is adapted for high-

throughput screening, as well as for proteomic analysis or analysis by confocal 

microscopy. There are many possible applications of this method, all of which suggest 

that persulfidation is an evolutionarily conserved modification controlled by the 

transsulfuration pathway and cysteine catabolism in all tested life forms (from bacteria 

to humans). 

The main way of persulfide formation is the reaction of sulfenic acids with H2S. 

Waves of protein persulfidation always follow waves of sulfenylation, suggesting that 

they are an integral part of H2O2/sulfenic acid signalling (like in the case of receptor 

tyrosine kinases) – which has not been considered before. In fact, it seems that in the 
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absence of H2S to resolve sulfenylation, H2O2 leads to cysteine hyperoxidation, even 

at signalling concentrations. 

We also provide evidence that persulfidation levels decrease with aging in C. 

elegans, mice and rats, and that dietary restriction results in a strong increase of 

protein persulfidation. The reduction of protein persulfidation by genetic 

manipulation abolishes beneficial effects of dietary restriction on lifespan, while the 

pharmacological increase of persulfidation levels results in longer lifespan and 

improved ability to cope with oxidative stress. This further strengthens the ROS theory 

of aging.  

A general mechanism is proposed (which we believe is an evolutionary remnant 

of the times when life emerged and flourished in a H2S environment) in which 

persulfidation represents a rescue loop from cysteine hyper-oxidation and subsequent 

loss of protein function (expected to accumulate with aging). In other words, the 

higher the persulfidation, the longer the life.  

 Protective effects of protein persulfidation are used by pathogens such as 

Aspergilus fumigatus to survive cells’ defence mechanism, which mainly consists of 

ROS/RNS. Higher levels of pathogens’ persulfidation suggest higher virulence, as 

well. 

 Finally, metformin’s beneficial effects may largely be mediated by its ability to 

stimulate the ATF4-CSE expression pathway, resulting in higher persulfidation levels 

and lower levels of cysteine oxidation. CSE is essential for metformin’s lifespan 

extension effects. 

Dimedone switch method opens doors to a new chapter of redox biochemistry, 

by allowing us to visualise, quantify and understand the role of persulfidation. The 

results presented within this thesis appear to be only the tip of the proverbial iceberg. 

Further studies should clarify to what extent persulfidation is only protective, and to 

what extent it is regulatory. Quantitative, site-centric proteomic analysis of 

persulfidated cysteines, combined with metabolomic analysis and individual structural 

analysis of modified targets, would provide further insights about the functional 

impact of this posttranslational modification.  
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The intertwined nature of H2O2 and H2S signalling described in our work 

warrants further investigation. We show this to be the case for receptor tyrosine kinase 

signalling, though H2O2 signalling has been implicated in many other physiological 

processes. The role of H2S (i.e. persulfidation) in these processes remains to be further 

investigated, in order to position this PSOH/PSSH switch globally in the signalling 

scheme. 

Finally, the ways in which and reasons why H2S-producing enzymes decrease 

with aging remains to be understood, as well as the exact mechanism by which 

increased persulfidation correlates with lifespan extension.  
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APPENDIX 1: Buffers and Media 

The following buffers and media were used in this study 
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• NBF-Cl stock solution (500 mM) Dissolve 49.9 mg of 4-Chloro-7-nitrobenzofurazan 

(MW. 199.55) in 500 µl DMSO. Critical. Prepare right before use and keep light 

protected. 

• DAz-2 stock solution (50 mM) Dissolve 5 mg DAz-2 (MW. 195.2) in 502.3 µl of 

argonated DMSO. At -20 oC it can be aliquoted and stored long term. 

• Ascorbate solution (100 mM) Dissolve 1.76 mg of L-Ascorbic acid (MW. 176.12) in 

200 µl dH2O. Critical. Prepare solution directly before addition. 

• Tris buffer (1 M, pH 9) Dissolve 24.2 mg in 200 µl of dH2O and adjust pH to 9. 

• EDTA stock solution (300 mM EDTA in Tris buffer) Dissolve 55.8 mg EDTA (MW. 

372.24) in 500 µl Tris buffer (1M). Stored in 4 oC. 

• DAz-2:Cy5 preclick mix (1 mM DAz-2, 1 mM Cy5-alkyne, 2 mM Copper(II)-TBTA, 4 

mM Ascorbate solution in PBS and 30% v/v acetonitrile) Add 43 µl acetonitrile to 

60.5 µl PBS, and add 3 µl of 50 mM DAz-2, 7.5 µl of 20 mM Cy5-alkyne and 6 µl 

Ascorbate solution, consecutively whilst vortexing after each reagent addition. 

Solution should be mixed at RT overnight. Mixture is quenched with 10 µl of EDTA 

stock solution for 2 hr with agitation.  

• HEN buffer (50 mM Hepes, 1 mM EDTA, 0.1 mM Neocuproine, 1% IGEPAL and 

2% SDS, pH 7.4) Dissolve 5.96 g of Hepes, 186.12 mg of EDTA, 10.4 mg 

Neocuproine, 5 ml IGEPAL and 50 ml of 20% SDS in 500 ml H2O, and adjust pH to 

7.4. Critical. Stir with Chelex-100 overnight before use. 

• RIPA buffer (50 mM Trizma base, 150 mM NaCl, 2 mM EDTA, 1% IGEPAL, 0.5% 

Sodium deoxycholate and 2% SDS, pH 7.4) Dissolve 1.51 g Trizma base, 2.19 g 

NaCl, 0.18 g EDTA, 2.5 ml IGEPAL, 1.25 ml sodium deoxycholate  and 5 g SDS in 

250 ml dH2O and adjust to pH 7.4. Critical. Stir with Chelex-100 overnight before 

use. 

• HEPES buffer (50 mM, pH 7.4) Dissolve 5.96 g Hepes (MW. 238.30) in 500 ml dH2O 

and adjust pH to 7.4. Critical. Stir with Chelex-100 overnight before use. 

• Laemmli buffer (4X Laemmli and 10% v/v b-Mercaptoethanol) Add 100 µl of β-

Mercaptoethanol to 900 of 4X Laemmli. 



 195 

• 10X Running Buffer (250 mM Tris Base, 2 M Glycine and 35 mM SDS) Dissolve 30.3 

g Tris base, 144.0 g glycine and 10 g SDS in 1000 ml dH2O. 

• Fixation Buffer (83.5% v/v H2O, 12.5% v/v methanol and 4% v/v acetic acid) Dilute 

125 ml methanol in 835 ml of water and add 40 ml acetic acid. 

• 10X Transfer Solution (250 mM Tris base and 2 M Glycine) Dissolve 30.3 g Tris base 

and 144.0 g glycine in 1000 ml dH2O. 

• Transfer Buffer (10% v/v 10X Transfer solution and 20% v/v EtOH) Dissolve 100 ml 

10X Transfer solution into 200 ml MeOH in 700 ml dH2O. 

• 5X PBS buffer (500 mM) (200mM Na2HPO4, 50 mM NaH2PO4 and 680 mM NaCl, 

pH 7.4) Dissolve 35.6 g of Na2HPO4 
. 2H2O, 39.7 g NaCl and 7.8 g NaH2PO4 

. 2H2O 

in 1000 ml dH2O. 

• 5X TBS buffer (500 mM) (137 mM NaCl, 20 mM Trizma base, pH 7.4) Dissolve 40 g 

NaCl and 12.1 g of Trizma Base in 1000 ml dH2O and adjust to pH 7.4. 

• PBST or TBST Add 0.1% Tween and 1X PBS or TBS, respectively. 

• 10X Phosphate Buffer (500 mM) Dissolve 68.9 g of Na2HPO4 
. 2H2O and 17.61 g 

NaH2PO4 
. 2H2O in 1000 ml dH2O and adjust to pH 7.4. 

• Chymotrypsin Buffer (100 mM Tris.HCl and 10 mM CaCl2) Dissolve 15.76 g Tris.HCl 

and 1.11 g CaCl2 in 1000 ml dH2O and adjust to pH 7.8. Critical. Stir with Chelex-

100 overnight before use. 

• Ponceau S (1.5 mM Ponceau S and 5% v/v acetic acid) Dissolve 250 mg Ponceau S 

(MW. 672.63) and 12.5 ml acetic acid and added dH2O up to 250 ml. 

• Coomassie Brilliant Blue (1.2 mM CBB, 10% v/v acetic acid and 40% v/v MeOH) 

Dissolve 0.5 g Coomassie Brilliant Blue R250 (825.97), 50 ml acetic acid, 200 ml 

MeOH in 250 ml dH2O. 

• S-Basal (102.7 mM NaCl, 6.9 mM K2HPO4 and 44 mM KH2PO4) Dissolve 3 g NaCl, 

0.6 g K2HPO4 and 3 g KH2PO4 in 500 ml dH2O. Autoclave at 120 °C for 30 min. 

Before use, add 0.5 ml cholesterol (50 mg ml-1 in ethanol). 

• M9 Buffer (85.6 mM NaCl, 42.3 mM Na2HPO4 and 22 mM KH2PO4) Dissolve 5 g 

NaCl, 3 g KH2PO4, and 6 g Na2HPO4 in 1000 ml dH2O. Autoclave at 120 °C for 30 

min. Before use, add 1 ml 1M MgSO4. 
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• Potassium phosphate (1 M, pH 6) Dissolve 136.1 g KH2PO4 in 800 ml dH2O and 

adjust to pH 6 with KOH(s). Autoclave at 120 °C for 20 min. 

• NGM Agar (1 L) Add 3 g NaCl, 17 g bactoagar and 2.5 g bactopeptone (10 g 

bactopeptone for Enriched NGM Agar) in 975 ml dH2O. Autoclave at 110 °C for 30 

min. Supplement media before use after melting 1 ml cholesterol (50 mg ml-1 in 

ethanol), 1 ml CaCl2 (1 M), 1 ml MgSO4 (1 M) and 1 ml potassium phosphate (1 M). 

• YPD Media (500 ml) Add 5 g Yeast extract, 5 g bactopeptone (12 g agar if YPD 

Agar) and 25 ml glucose (40 %) in 500 ml dH2O. Autoclave at 110 °C for 30 min. 

• LB Broth Dissolve 10 g LB Broth (Lennox) (add 15 g bactoagar for solid media) in 

500 ml dH2O. Autoclave 121 °C for 15 min. 

• Complete Media for MEF and HeLa (2mM Glutamine, 1% Penicillin-Streptomycin, 

DMEM and 10% FCS) 500 µl L-Glutamine 100 X, 500 µl Penicillin-Streptomycin, 44 

ml DMEM and 5 ml FCS. 
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APPENDIX 2: Protocols 

The following protocols of the Dimedone Switch Method on different 

model systems, were used in this study. 
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Selective labelling of protein persulfidation in cells. 

1. Grow cells in 100 mm cell culture dishes in respective medium to 80-90% 

confluency. 

Critical. Cells should be cultured carefully (i.e., regular schedule for splitting with 

no overgrowing, no more than 15 passages, mycoplasma testing) to avoid cell 

stress. 

2. (Optional) For cell treatments, aspirate medium from cells and replace it with 

medium supplemented with treatment and incubate for respective time. 

3. Aspirate medium, wash cells twice, gently but quickly, with 7 ml of cold PBS and 

add 1 ml of cold lysis buffer supplemented with 5 mM 4-chloro-7-

nitrobenzofurazan onto cells.  

Critical. 4-Chloro-7-nitrobenzofurazan (NBF-Cl) should be supplemented right 

before step 3 if ≤ 5 mM is used. If > 5mM is used (typically for larger cell culture 

flasks; 10 mM NBF-Cl in 3 ml lysis buffer for T75 flaks) it should be added during 

the 2nd wash with PBS before aspiration, and lysis buffer should be RT. From this 

point on sample should always be protected from light. 

4. Using a cell scraper, gently scrape cells off dish and collect them into two 1.5 ml 

Eppendorf tubes (600 µl cell suspension per tube). Homogenize cells with a 1 ml 

syringe and a 23G needle 7 times, and place tubes immediately for incubation at 

37 oC for 30 min. 

Critical. Avoid formation of excess bubbles during homogenization. Steps 3 and 

4 need to be done consecutively, 1 dish at a time within 2-3 min. 

5. Precipitate proteins by methanol/chloroform precipitation 

(lysate:methanol:chloroform = 4:4:1, v/v/v) and centrifuge samples at 14,000g for 

15 min at 4 oC.  

Critical. Methanol used for precipitation is typically stored at -20 oC. After the 

addition of each solvent during precipitation, suspension should be vortexed. 

6. Remove aqueous and organic layers, keeping protein pellet. Repeat precipitation 

by adding H2O:methanol:chloroform (4:4:1, v/v/v) to protein pellet obtained and 
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centrifuge samples at 14,000g for 15 min at 4 oC. Remove aqueous and organic 

layers and keep protein pellet. Wash pellet 2 times with ice cold methanol and 

leave to dry for 5-10 min. 

Pause Point. The protein pellet can be stored at -20 oC for several weeks. 

7. Re-dissolve each protein pellet by first adding 10 µl of 20% SDS onto pellet, and 

then 90 µl Hepes buffer (for a 2% final conc. of SDS). Vortex sample and then 

place for sonication to ensure pellet is completely dissolved. Combine the 2 

protein solutions from the same dish. 

8. Use a DC Assay to determine the protein concentration. Adjust protein 

concentration to approx. 3 mg ml-1 by diluting sample with Hepes buffer 

supplemented with SDS (final conc. 2%). The final volume prepared is typically 

100 µl of protein suspension. 

9. Add a final concentration of 25 µM of DAz-2:Cy5 preclick mix to adjusted sample 

and incubate at 37 oC for 30 min.  

Critical. For samples of protein concentrations > 3 mg/ml, 50 µM of DAz-2:Cy5 

preclick mix should be used and incubated at 37 oC for 1hr. 

Alternative. For other applications such as persulfide detection using ECL, 

proteomics or immunoprecipitation, the alternative switch label 100 µM DCP-

Bio1 can be added instead at this point to adjusted sample, and incubated at 37 

oC for 1 hr.  

10. Repeat Precipitation Steps 5, 6 and 7. 

Pause Point. The protein pellet can be stored at -20 oC for a week. 

11. Use a DC Assay to determine the protein concentration. Dilute the protein 

solution with Hepes buffer supplemented with SDS (final conc. 2%), to a protein 

concentration of approx. 2-2.5 mg ml-1. 

Alternative. For other applications, protein pellet obtained should be 

redissolved in appropriate buffer (without SDS). Protocol can be stopped here 

and samples are fully labeled and ready for appropriate use. Limitations. It 

should be noted that for applications where no SDS should be present, complete 

re-dissolving of a fully labelled protein pellet may pose a problem. For 
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immunoprecipitation studies, it is possible that  NBF labelling may interfere with 

some antibody epitope attachment, thus antibody of interest should be 

previously tested with fully labeled sample. Troubleshooting. If ≤ 0.1% SDS can 

be used, dissolve pellet in a minimal volume of buffer with 1 % SDS as a final 

concentration and once fully dissolved, dilute with only buffer ≤ 10 times. If no 

SDS is possible, add 0.1 M urea as a final concentration to dissolve the proteins. 

12. Add Laemmli buffer:sample, 1:3, v/v, boil mixture at 95 oC for 5 min and allow to 

cool to RT. 

13. Resolve sample by SDS PAGE. Typically load 20 µl of sample into well (approx. 

40-50 µg of protein). 

Alternative. For samples switch labeled with DCP-Bio1, after resolving they can 

at this point be transferred on a nitrocellulose membrane, followed by blocking 

in 1 % BSA in TBST supplemented with 0.1% Tween (PBST) for 30 min, washed 

with TBST and incubated with anti-Biotin-Peroxidase (1:1000 in 1% BSA in TBST) 

at 4 oC overnight. Membrane should then be washed and visualized using 

Clarity™ Western ECL Substrate (BioRad) on a G:Box Chemi-XT4 (Syngene). 

14. Wash the gel once in dH2O and replace with fixation buffer. Fix gel for 30 min 

with agitation. 

15. Record the gel at 635 nm for the Cy5 signal and 473 nm for NBF-Cl signal, on a 

Typhoon FLA 9500 (GE Healthcare). 
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Selective labelling of protein persulfidation in C. elegans 

1. Collect and transfer worms from NGM plate with M9 buffer, using a Pasteur 

pipette, into 15 ml falcons. 

Troubleshooting. Need approximately  15,000 worms / condition. 

2. Centrifuge worm suspension at 400 rpm for 1 min. 

3. Remove supernatant and add 8 ml of M9 buffer to worms. 

Critical. Do not let worms dry, leave some buffer above worm pellet. 

4. Repeat steps 2 and 3 two times. 

5. Using forceps, fill one 2 ml fast prep tube with liquid nitrogen and then quickly 

drop the concentrated worm suspension into the fast prep tube. 

Troubleshooting. Approximately 8,000 worms / fast prep tube. 

6. Fill half the fast prep tube containing the frozen worms with glass beads, and keep 

on ice. 

7. Cool FastPrep 24 machine with dry ice, by spinning at 4 m/s for 10 s with a few 

pieces of dry ice.  

8. Break samples in the FastPrep24 machine by spinning at 6.5 m/s for 35 s and 6.5 

m/s for 30 s. 

9. Add 1 ml of lysis buffer supplemented with 20 mM NBF-Cl into tubes with beads 

and broken worms. 

10. Incubate on ice for 10 min. 

11. Centrifuge at 13,000 rpm for 15 min, at 4 oC. 

12. Collect supernatant, above beads, into two 1.5 Eppendorf tubes. 

13. Incubate samples at 37 oC for 1 h. 

14. Follow Steps 5-15 of protocol for ‘Selective labelling of protein persulfidation in 

cells’. 
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Selective labelling of protein persulfidation in S. cerevisiae 

1. Add 200 µl of yeast cell pellet into 2 ml cold lysis buffer, supplemented with 20 

mM 4-chloro-7-nitrobenzofurazan (NBF-Cl). 

Critical. NBF-Cl should be supplemented right before use. As > 10 mM NBF-Cl is 

only partially soluble in aqueous buffers, the lysis buffer should not be too cold 

and needs to be resuspended a few times in lysis buffer, with a pipette. Any 

precipitate formed will dissolve during incubation step From this point on sample 

should always be protected from light. 

2. Add this yeast cell suspension dropwise into a mortar containing liquid nitrogen. 

Add glass beads and grind frozen cells with a pestle until a fine powder 

consistency is reached. 

Troubleshooting. Add liquid nitrogen whilst grinding when necessary to keep 

sample frozen. 

3. Collect ground sample into a two tubes and centrifuge at 1500 x g for 15 min at 

4 oC.  

4. Collect supernatant and incubate for 1 hr at 37 oC. 

5. Split sample into four 1.5 ml Eppendorf tubes, and follow Steps 5-15 of protocol 

for ‘Selective labelling of protein persulfidation in cells’. 

 

 

 

 

 

 

 

 

 

 

 



 203 

Selective labelling of protein persulfidation in organs 

1. Weigh out 15-20 mg of snap frozen organ sample on a balance, and then place 

on a petri dish, on ice.  

2. Mince organ with a scalpel and transfer directly into a 5ml tube containing 1.5 ml 

of cold lysis buffer, supplemented with 20 mM 4-chloro-7-nitrobenzofurazan.  

Critical. NBF-Cl should be supplemented right after step 1 as it is not very soluble. 

Always mix lysis buffer suspension by pipetting up and down twice before use. 

From this point on sample should always be protected from light. 

3. Homogenize organ with a 1 ml syringe and a 23G needle 10 times, and a 

homogenizer for 5 s. 

Troubleshooting. For lysing of liver samples or muscles, organs need to be 

minced more thoroughly with the scalpel on ice, and the homogenizer needs to 

be used for longer. 

4. Place tube for incubation at 37 oC for 1 hr. 

5. Transfer lysate into a 2 ml tube and centrifuge sample at 30,000g for 10 min at 4 

oC. 

6. Collect supernatant into two 1.5 ml Eppendorf tubes. 

7. Follow Steps 5-15 of protocol for ‘Selective labelling of protein persulfidation in 

cells’. 
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APPENDIX 3: Supplementary Dataset S1 

MS/MS data of the persulfidated TST digested with trypsin  

Related to CHAPTER 3 – Article I (Figure 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Peptide -10lgP Mass Length ppm m/z RT Scan
Source 

File
Accession PTM AScore

GSVNMPFMN

FLTEDGFEKS

PEELR

122,14 2773,2727 24 2,1 925,4335 40,76 12931
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GSVNMPFMN

FLTEDGFEKS

PEELR

87,76 2773,2727 24 4,2 925,4354 41,28 13116
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GSVNMPFMN

FLTEDGFEKS

PEELR

19,63 2773,2727 24 0 925,4315 41,79 13290
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
113,52 2023,9962 19 3,1 1013,0085 22,25 6034

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
109,96 2023,9962 19 4,5 675,6757 23,81 6619

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
109,21 2023,9962 19 3,6 675,6751 22,25 6033

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
108,41 2023,9962 19 3,4 675,675 23,3 6428

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
105 2023,9962 19 3,3 675,6749 22,77 6228

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
80,48 2023,9962 19 2,5 675,6744 45,19 14464

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
74,64 2023,9962 19 3,1 675,6747 46,22 14816

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
73,58 2023,9962 19 3,2 675,6749 38,49 12114

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
73,42 2023,9962 19 3,9 675,6753 46,74 14995

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
71,2 2023,9962 19 1,6 675,6738 33,88 10403

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
71,02 2023,9962 19 4 675,6754 43,63 13928

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
69,26 2023,9962 19 4 675,6754 41,07 13039

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
68,82 2023,9962 19 2,3 675,6743 52,9 17110

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
61,55 2023,9962 19 2,3 675,6743 40,56 12858

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
60,34 2023,9962 19 10,1 675,6795 20,54 5423

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGLDSGHIR
48,92 2023,9962 19 71,8 675,7211 40,41 12804

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
110,77 1976,9955 18 4,4 989,5093 16,07 3787

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
101,51 1976,9955 18 0,1 660,0059 16,48 3938

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
94,69 1976,9955 18 3,6 660,0081 15,97 3749

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
93,29 1976,9955 18 2,4 660,0073 16,98 4118

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



EGHPVTSEP

SRPEPAIFK
77,34 1976,9955 18 1,6 660,0068 17,49 4294

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
74,42 1976,9955 18 3,3 660,0079 18,51 4672

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
72,47 1976,9955 18 4,4 660,0087 18 4479

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
63,91 1976,9955 18 -10,9 659,9986 19,85 5176

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
61,54 1976,9955 18 0,9 989,5059 15,55 3593

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
38,07 1976,9955 18 1 989,506 16,64 3997

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
31,03 1976,9955 18 3,3 660,0079 29,71 8822

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
27,61 1976,9955 18 0,8 660,0063 24,86 7016

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFK
22,66 1976,9955 18 3,7 660,0082 44,74 14311

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
98,34 1607,8154 13 2,4 804,9169 25,48 7250

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
97,71 1607,8154 13 2,7 536,9472 26,48 7623

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
95,03 1607,8154 13 4,2 536,948 25,95 7425

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
91,49 1607,8154 13 3,2 804,9176 25,98 7435

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
91,27 1607,8154 13 4,2 536,948 25,44 7236

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
89,8 1607,8154 13 3,7 536,9478 26,99 7808

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
89,22 1607,8154 13 4,4 536,9481 29,97 8922

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
88,96 1607,8154 13 0,7 536,9461 27,49 7988

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
88,93 1607,8154 13 3,7 536,9478 28,52 8369

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
88,34 1607,8154 13 2 804,9166 24,96 7055

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
87,01 1607,8154 13 2,5 536,9471 29,46 8725

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
85,13 1607,8154 13 3,6 536,9477 32,01 9693

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
82,3 1607,8154 13 -0,9 536,9453 28 8175

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
81,65 1607,8154 13 1,1 536,9464 31 9313

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
81,14 1607,8154 13 2,1 536,9469 30,48 9112

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



TYEQVLENLE

SKR
80,83 1607,8154 13 2,6 804,9171 26,59 7663

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
79,09 1607,8154 13 2,3 536,947 31,51 9502

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
78,99 1607,8154 13 4,2 536,948 34,7 10716

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
77,88 1607,8154 13 4,4 804,9185 27,13 7862

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
77,5 1607,8154 13 2,1 536,9469 33,15 10120

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
77,09 1607,8154 13 5,9 536,9489 37,85 11885

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
76,33 1607,8154 13 2,8 536,9473 35,21 10904

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
76,11 1607,8154 13 6 536,949 39,41 12443

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
74,24 1607,8154 13 2,4 536,947 38,36 12066

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
72,71 1607,8154 13 6,4 536,9492 41,47 13180

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
72,52 1607,8154 13 3,6 536,9477 35,75 11110

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
72,41 1607,8154 13 3,7 536,9478 46,68 14973

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
72,28 1607,8154 13 5,8 536,9489 34,18 10517

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
72,25 1607,8154 13 7,4 536,9497 42,5 13534

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
71,91 1607,8154 13 2,4 536,947 37,31 11689

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
70,2 1607,8154 13 -1,3 536,9451 36,27 11300

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
68,93 1607,8154 13 7,4 536,9497 43,52 13891

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
68,46 1607,8154 13 4,2 536,948 52,22 16870

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
68,34 1607,8154 13 5,9 536,9489 39,93 12628

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
68,31 1607,8154 13 4,5 536,9482 48,92 15759

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
67,78 1607,8154 13 7,5 536,9498 41,99 13358

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
67,38 1607,8154 13 3,2 536,9474 40,44 12815

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
66,43 1607,8154 13 3,7 536,9478 40,97 13000

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
65,46 1607,8154 13 17,6 536,9552 45,07 14423

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



TYEQVLENLE

SKR
64,75 1607,8154 13 3,8 536,9478 43,02 13709

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
64 1607,8154 13 0,3 536,9459 47,36 15213

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
61,16 1607,8154 13 16,5 536,9546 44,03 14071

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
61,02 1607,8154 13 2,4 536,947 36,8 11494

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
60,34 1607,8154 13 3,5 536,9476 51,58 16649

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
59,81 1607,8154 13 5,9 536,9489 48,4 15573

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
59,47 1607,8154 13 4,2 536,948 47,89 15397

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
59,14 1607,8154 13 5,9 536,9489 38,89 12258

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
58,43 1607,8154 13 17,3 536,955 45,59 14606

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
56 1607,8154 13 6,6 536,9493 49,43 15937

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
55,61 1607,8154 13 17,6 536,9552 44,55 14246

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
55,14 1607,8154 13 7,7 536,9499 46,1 14777

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
53,26 1607,8154 13 6,7 536,9493 49,99 16121

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
50,86 1607,8154 13 -3,1 804,9125 27,64 8043

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
46,49 1607,8154 13 0,1 536,9458 53,38 17280

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
42,58 1607,8154 13 -3,1 804,9125 29,08 8582

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
24,72 1607,8154 13 -4,6 804,9113 34,04 10464

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE

SKR
23,07 1607,8154 13 0,9 804,9157 31,37 9449

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TYEQVLENLE
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TYEQVLENLE
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mf18031
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31,61 1795,8628 15 3,8 599,6305 23,58 6535

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 52,34 863,4501 7 6,1 432,735 17,7 4370
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 52,13 863,4501 7 4,2 432,7341 18,21 4560
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 50,09 863,4501 7 3,6 432,7339 18,73 4750
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 42,35 863,4501 7 4,4 432,7342 34,26 10550
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 41,05 863,4501 7 -0,7 432,732 36,42 11355
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 39,53 863,4501 7 1,9 432,7331 32,73 9959
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 38,27 863,4501 7 5 432,7345 37,82 11875
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 38,27 863,4501 7 2,1 432,7332 32,22 9766
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 37,97 863,4501 7 1,5 432,733 33,24 10155
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 37,88 863,4501 7 8,2 432,7359 39,68 12538
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 37,71 863,4501 7 3 432,7336 30,46 9106
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 36,92 863,4501 7 5,6 432,7347 45,71 14643
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 35,84 863,4501 7 3,3 432,7337 34,78 10748
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSR 34,63 863,4501 7 0,7 432,7326 36,93 11543
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TVSVLNGGF

RNWLK
52 1589,8678 14 0,2 530,9633 28,94 8526

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TVSVLNGGF

RNWLK
46,89 1589,8678 14 2,7 530,9647 29,46 8726

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

TVSVLNGGF

RNWLK
15,17 1589,8678 14 -8,9 530,9585 34,8 10755

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 50,37 923,4476 6 4,6 462,7332 35,29 10934
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 50,14 923,4476 6 3 462,7325 34,78 10749
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 49,67 923,4476 6 2,4 462,7322 35,81 11133
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



VWWMFR 47,97 923,4476 6 -0,2 462,731 36,32 11317
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 47,24 923,4476 6 4,7 462,7333 37,87 11893
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 46,7 923,4476 6 2,9 462,7324 38,39 12078
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 46,38 923,4476 6 2,3 462,7321 37,34 11701
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 46,37 923,4476 6 4,5 462,7332 38,91 12265
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 46,09 923,4476 6 0 462,7311 36,82 11504
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 45,98 923,4476 6 4,9 462,7333 42,52 13541
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 45,66 923,4476 6 3,1 462,7325 40,47 12823
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 45,23 923,4476 6 2,8 462,7324 43,04 13720
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 44,92 923,4476 6 5,9 462,7338 41,49 13186
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 44,89 923,4476 6 4,3 462,7331 42,01 13367
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 44,66 923,4476 6 3,6 462,7328 39,42 12448
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 43,6 923,4476 6 3,9 462,7329 51,42 16597
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 43,39 923,4476 6 2,5 462,7322 40,98 13007
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 43,18 923,4476 6 2,9 462,7325 39,95 12637
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 42,32 923,4476 6 2 462,732 44,08 14089
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 41,6 923,4476 6 4,6 462,7332 44,59 14260
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 41,5 923,4476 6 4,8 462,7333 45,62 14614
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 41,32 923,4476 6 2,9 462,7324 51,95 16778
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 41,09 923,4476 6 1,2 462,7317 48,88 15746
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 41,07 923,4476 6 3,8 462,7328 50,91 16428
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 40,22 923,4476 6 3,2 462,7326 43,57 13906
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 39,86 923,4476 6 1,4 462,7317 54,07 17524
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 39,61 923,4476 6 3,3 462,7326 52,49 16963
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



VWWMFR 39,58 923,4476 6 1,6 462,7318 47,35 15211
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 37,75 923,4476 6 1,7 462,7319 53,02 17149
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 35,96 923,4476 6 3,2 462,7326 45,11 14436
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 35,62 923,4476 6 4,1 462,733 49,89 16091
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 35,35 923,4476 6 2,8 462,7324 49,39 15924
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 35,03 923,4476 6 3,7 462,7328 48,37 15563
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 32,2 923,4476 6 2,7 462,7323 46,13 14788
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 31,84 923,4476 6 4,1 462,733 50,4 16257
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 31,71 923,4476 6 5,5 462,7336 46,64 14960
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 31,3 923,4476 6 3,2 462,7326 47,86 15387
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VWWMFR 30,55 923,4476 6 1 462,7315 53,54 17338
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

HQVLYR 50,21 814,4449 6 1,6 408,2304 11,28 2083
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 50,17 836,4392 6 10,3 419,2312 10,83 1925
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 49,73 836,4392 6 1,1 419,2273 11,34 2104
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 43,74 836,4392 6 10,3 419,2312 11,85 2281
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 35,56 836,4392 6 1,4 419,2274 12,37 2457
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 34,29 836,4392 6 25,7 419,2376 15,22 3473
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KEYLER 30,6 836,4392 6 -0,9 419,2265 13,31 2794
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EYLER 48,72 708,3442 5 0,4 355,1795 12,09 2368
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KVDLTKPL 48,02 912,5644 8 4 457,2913 16,03 3774
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

AVGLDSGHIR 47,89 1023,5461 10 2,2 512,7815 13,13 2729
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

APPETWVSQ

GKGGK
47,73 1440,7361 14 -13,9 481,246 18,17 4543

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

APPETWVSQ

GKGGK
16,47 1440,7361 14 68,5 481,2856 18,05 4497

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

WLAESVR 47,13 859,4552 7 6,4 430,7376 17,54 4314
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



WLAESVR 40,84 859,4552 7 2,1 430,7358 20,72 5484
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

WLAESVR 40,02 859,4552 7 5,3 430,7372 20,21 5316
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

ATLNRSLLK 45,76 1014,6185 9 1,6 508,3174 13,68 2928
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

K(+163.00)EY

LER
41,32 999,4404 6 4,7 500,7298 22,44 6105

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K1:NBF-

N:1000.00

FQLVDSRAQ

GR
41,01 1275,6683 11 3 426,2313 14,82 3328

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FQLVDSRAQ

GR
19,02 1275,6683 11 1,5 638,8424 14,85 3338

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

DASWYSPGT

R
39,38 1138,5043 10 3,6 570,2615 19,52 5052

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

DASWYSPGT

R
16,97 1138,5043 10 -0,6 570,2591 24,59 6912

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VHQVLYR 37,52 913,5134 7 2,4 457,7651 12,38 2463
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VHQVLYR 36,69 913,5134 7 0,6 457,7643 11,87 2290
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

AMFEAK(+163

.00)K
36,3 986,4274 7 1,9 494,2219 26,23 7523

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K6:NBF-

N:24.44

ALVSTK(+163.

00)WLAESVR
35,74 1621,8207 13 1,7 811,919 39,2 12367

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K6:NBF-

N:1000.00

PEPDAVGLD

SGHIR
34,67 1461,7212 14 -3,4 731,8654 21,8 5864

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

APPETWVSQ 32,88 1013,4818 9 4,4 507,7504 23,16 6374
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

APPETWVSQ 26,89 1013,4818 9 5,9 507,7512 23,67 6566
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SR
32,32 1194,5629 11 7,4 598,2932 9,94 1596

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NWLKEGHPV

TSEPSRPEPA
30,58 2130,0493 19 3,4 711,0261 16,09 3795

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD 29,11 1018,4607 9 1,7 510,2385 17,52 4305
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

PSRPEPAIFK 28,46 1140,629 10 -1,4 571,321 15,69 3643
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GSWFEWFH

R
26,67 1250,5621 9 -18,2 626,277 35,36 10963

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

QPEPDAVGL

DSGHIR
24,58 1589,7798 15 1,1 795,898 22,02 5952

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KVDLTKPLIAT

C(+163.00)R
20,56 1619,8447 13 1 810,9304 24,04 6704

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-C
C12:NBF-

C:1000.00

KPLIATC(+16

8.08)RK
19,91 1196,6951 9 7,4 399,9245 19,25 4948

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

Dio-

cleaved

C7:Dio-

cleaved:1000.

00

QVLENLESK 19,83 1058,5608 9 -8,9 530,283 15,32 3510
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



TYEQVLENLE

SK(+163.00)R
17,99 1770,8167 13 9,6 886,4241 41,72 13263

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K12:NBF-

N:1000.00

EGHPVTSEP

SRPEPAIFKA

TLNR

17,7 2532,3083 23 -6,3 845,1047 22,49 6126
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EGHPVTSEP

SRPEPAIFKA

TLNR

16,53 2532,3083 23 -10,4 845,1013 21,71 5831
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

KVDLTK(+163

.00)PLIATC(+1

68.08)R

17,57 1787,9235 13 -39 596,9585 24,29 6796
mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N; 

Dio-

cleaved

K6:NBF-

N:5.81;C12:Di

o-

cleaved:1000.

00

EPDAVGLDS

GHIR
15,93 1364,6685 13 23,1 683,3573 13,11 2724

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YLGTQPEPD

AVGL
15,65 1358,6718 13 1,7 680,3443 31,43 9473

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GHPVTSEPS

RPEPAIFK
15,02 1847,9529 17 -3,1 616,9897 15,2 3463

mf18031

3_02.raw

protein1|sp|

P00586|TH

TR_BOVIN
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APPENDIX 4: Supplementary Dataset S2 

MS/MS data of the persulfidated TST digested with chymotrypsin  

Related to CHAPTER 3 – Article I (Figure 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Peptide -10lgP Mass Length ppm m/z RT Scan
Source 

File
Accession PTM AScore

LTEDGFEKSP

EEL
82,53 1492,6932 13 7,4 747,3594 24,46 5819

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LTEDGFEKSP

EEL
36,21 1492,6932 13 2,4 747,3557 24,97 5971

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 66,07 1139,5511 9 4,4 570,7853 17,38 3712

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 65,54 1139,5511 9 3,1 570,7846 16,88 3571

mf18031

3_Chymo

02 raw

protein1|sp|

P00586|TH

TR BOVIN

FHRAPPETW 57,59 1139,5511 9 3,2 570,7847 16,36 3410

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 54,65 1139,5511 9 2,8 380,8587 16,88 3573

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 51,61 1139,5511 9 3,5 570,7849 17,89 3886

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 51 1139,5511 9 5,9 570,7862 18,41 4049

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 48,33 1139,5511 9 4,4 380,8593 17,4 3719

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 47,59 1139,5511 9 3,2 380,8589 16,37 3411

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 33,48 1139,5511 9 5,1 570,7858 18,91 4198

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 30,98 1139,5511 9 6,1 570,7863 19,43 4343

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 28,06 1139,5511 9 7,6 570,7872 19,95 4515

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

FHRAPPETW 18,66 1139,5511 9 4,8 570,7856 21,5 4955

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EAKKVDLTKP

L
61,23 1240,739 11 3,4 621,3789 15,41 3114

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EAKKVDLTKP

L
52,37 1240,739 11 0,7 621,3772 14,9 2969

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EAKKVDLTKP

L
49,46 1240,739 11 3 414,5882 15,89 3263

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EAKKVDLTKP

L
47,41 1240,739 11 5,2 414,5891 15,38 3106

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EAKKVDLTKP

L
25,64 1240,739 11 0,4 414,5871 14,87 2959

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LERHVPGAS

FF
59,09 1258,6458 11 3,2 420,5572 24,09 5697

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LERHVPGAS

FF
55,31 1258,6458 11 6,9 630,3345 23,6 5545

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LERHVPGAS

FF
52,05 1258,6458 11 7 420,5588 23,57 5538

mf18031

3_Chymo
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P00586|TH

TR_BOVIN

LKEGHPV 32,19 778,4337 7 -0,8 390,2238 10,67 1634

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

ENLESKRF 32,15 1021,5192 8 1,3 511,7675 13,1 2396

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LAESVRAGK 31,79 929,5294 9 0 465,772 10,67 1635

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VGPGLRVL 31,37 809,5123 8 4,6 405,7653 22,89 5334

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

QLVDSRAQG

R
30,9 1128,6 10 -1 377,2069 10,92 1704

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

QLVDSRAQG

R
22,11 1128,6 10 0,1 565,3073 10,92 1703

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VHQVLY 30,84 757,4122 6 2,2 379,7142 15,81 3239

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LAESVRAGK

VGPG
30,8 1239,6935 13 -1,6 414,2378 13,51 2522

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN



LAESVRAGK

VGPG
29,31 1239,6935 13 0,6 620,8544 13,49 2518

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

YAPRVWW 27,66 976,4919 7 0,3 489,2534 29,56 7259

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

EKSPEEL 26,19 830,4021 7 -1,4 416,2077 13,05 2379

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LAESVRAG 26,07 801,4344 8 -0,9 401,7242 12,02 2053

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

QLVDSRAQ 25,49 915,4774 8 -0,9 458,7455 11,69 1943

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

SEPSRPEPAI

F
25 1228,6088 11 -1,2 615,3109 22,73 5289

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

SLLKTY 24,87 723,4167 6 2,8 362,7166 17,44 3730

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

SPGTREARK

EYL
23,96 1405,7313 12 2,9 469,5858 13,29 2460

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VSQGK(+163.

00)GGK
23,87 922,4251 8 56,3 462,2458 14,81 2941

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K5:NBF-

N:28.36

RVLDASW 23,77 845,4395 7 3,8 423,7286 22,06 5109

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GGFRNW 21,71 735,3452 6 2,5 368,6808 17,47 3746

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

VSQGKGGK(+

163.00)
21,18 922,4251 8 1,6 462,2206 15,1 3026

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K8:NBF-

N:0.00

DIEEC(+163.0

0)RDKASPY
20,58 1587,6254 12 7,7 530,2198 22,23 5162

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-C
C5:NBF-

C:1000.00

DIEEC(+163.0

0)RDKASPY
16,23 1587,6254 12 1,1 794,8208 21,74 5022

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-C
C5:NBF-

C:1000.00

VGSLGISNDT

HVVVY
18,32 1558,7991 15 3,7 780,4097 28,38 6926

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

DGDDLGSFY

APR
18,12 1311,5731 12 2,5 656,7955 28,41 6935

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

GHRTVSVLN 17,96 981,5356 9 0,7 491,7754 13,11 2398

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

ERHVPGASF

F
17,84 1145,5618 10 17,1 573,798 53,39 13453

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

ERHVPGASF

F
17,79 1145,5618 10 19,6 573,7994 53,9 13615

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

K(+163.00)AT

LNR
17,32 864,4196 6 4,1 433,2188 19,54 4378

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-N
K1:NBF-

N:1000.00

EVMLPSEAG

F
16,44 1078,5005 10 8,6 540,2621 36,23 8942

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

ALVSTKW 16,27 803,4541 7 7,4 402,7373 20,65 4717

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

LC(+163.00)G

KPDVAIY
15,98 1240,5541 10 12,6 621,2921 29,81 7328

mf18031

3_Chymo

_02.raw

protein1|sp|

P00586|TH

TR_BOVIN

NBF-C
C2:NBF-

C:1000.00
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APPENDIX 5: Supplementary Dataset S3 

MS/MS data of the persulfidated MnSOD digested with trypsin  

Related to CHAPTER 3 – Article I (Figure 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Peptide -10lgP Mass Length ppm m/z RT Scan
Source 

File
Accession PTM AScore

YMAC(+168.0

8)K(+163.00)
21,63 945,3355 5 18,2 473,6837 17 4122

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

Dio-

cleaved; 

NBF-N

C4:Dio-

cleaved:1000.

00;K5:NBF-

N:1000.00

YMAC(+168.0

8)K(+163.00)
19,41 945,3355 5 12,6 473,681 13,6 2873

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

Dio-

cleaved; 

NBF-N

C4:Dio-

cleaved:1000.

00;K5:NBF-

N:1000.00

YMAC(+168.0

8)K(+163.00)
18,09 945,3355 5 19,2 473,6841 17,51 4294

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

Dio-

cleaved; 

NBF-N

C4:Dio-

cleaved:1000.

00;K5:NBF-

N:1000.00

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

103,24 2704,2625 22 7,7 902,4351 30,12 8832
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:44.72

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

89,35 2704,2625 22 -2 902,4263 29,58 8630
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:28.95

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

79,6 2704,2625 22 -3,5 902,4249 32,87 9860
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:27.66

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

73,45 2704,2625 22 0 902,4281 21,42 5694
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:14.15

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

61,03 2704,2625 22 1,8 902,4297 26,41 7489
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:21.15

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

54,74 2704,2625 22 2,3 1353,1416 29,73 8689
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:6.08

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

40,5 2704,2625 22 4,5 902,4321 24,51 6807
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:47.00

HHAAYVNNL

NVTEEK(+163

.00)YQEALAK

20,5 2704,2625 22 18,6 902,4448 20,9 5522
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K15:NBF-

N:21.15

DFGSFDKFK(

+163.00)EK
89,53 1509,6519 11 4,8 755,8368 34,54 10505

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K9:NBF-

N:33.18

DFGSFDKFK(

+163.00)EK
70,18 1509,6519 11 3,7 504,2264 34,47 10478

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K9:NBF-

N:15.73

DFGSFDKFK(

+163.00)EK
68,8 1509,6519 11 2,2 504,2257 38,64 12095

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K9:NBF-

N:0.00

DFGSFDKFK(

+163.00)EK
54,62 1509,6519 11 2,8 504,226 40,18 12713

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K9:NBF-

N:0.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

87,37 2482,1772 22 3,9 828,403 45,3 14732
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

72,19 2482,1772 22 5 1242,1021 45,54 14828
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

44,54 2482,1772 22 4 828,403 53,83 18003
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

23,02 2482,1772 22 0,3 828,4 50,31 16664
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

20,73 2482,1772 22 2 1242,0984 53,88 18024
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00



LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

18,58 2482,1772 22 5,2 828,404 51,58 17143
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ER

17,51 2482,1772 22 4,8 828,4037 49,69 16428
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K20:NBF-

N:1000.00

DFGSFDKFK

EK(+163.00)
77,4 1509,6519 11 5,5 755,8373 34,01 10299

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K11:NBF-

N:26.31

DFGSFDKFK

EK(+163.00)
69,04 1509,6519 11 3,4 504,2263 33,96 10279

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K11:NBF-

N:13.67

DFGSFDK(+1

63.00)FKEK
75,86 1509,6519 11 4,5 755,8366 35,57 10901

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:22.85

DFGSFDK(+1

63.00)FKEK
75,81 1509,6519 11 3,1 504,2261 35,6 10911

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:32.28

DFGSFDK(+1

63.00)FKEK
56,45 1509,6519 11 3,5 755,8359 36,12 11118

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:18.53

DFGSFDK(+1

63.00)FKEK
40,72 1509,6519 11 4,8 755,8368 40,22 12729

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:11.10

DFGSFDK(+1

63.00)FK
71,66 1252,5143 9 4,1 627,267 44,4 14383

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:22.85

DFGSFDK(+1

63.00)FK
71,01 1252,5143 9 4,1 627,267 43,88 14180

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:18.53

DFGSFDK(+1

63.00)FK
69,71 1252,5143 9 4,1 627,267 41,66 13304

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:18.53

DFGSFDK(+1

63.00)FK
69,7 1252,5143 9 3,7 627,2667 44,92 14584

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:20.41

DFGSFDK(+1

63.00)FK
58,84 1252,5143 9 3,9 627,2668 45,43 14784

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:14.63

DFGSFDK(+1

63.00)FK
44,26 1252,5143 9 5,4 627,2678 49,41 16321

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:12.81

DFGSFDK(+1

63.00)FK
42,42 1252,5143 9 3,5 627,2666 42,82 13765

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:12.81

DFGSFDK(+1

63.00)FK
40,13 1252,5143 9 1,2 627,2652 48,9 16123

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:14.63

DFGSFDK(+1

63.00)FK
25,99 1252,5143 9 2,4 627,2659 45,95 14985

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:5.99

GDVTAQIALQ

PALK(+163.00

)

66,29 1586,8047 14 6,4 794,4147 47,05 15423
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K14:NBF-

N:1000.00

RDFGSFDK(+

163.00)FK
59,78 1408,6154 10 -0,1 470,5457 32,55 9737

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K8:NBF-

N:18.53

NVRPDYLK(+

163.00)
57,92 1166,5463 8 4 584,2827 28,15 8122

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K8:NBF-

N:1000.00

GELLEAIK(+1

63.00)R
57,8 1190,6038 9 4,4 596,3118 36,83 11404

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K8:NBF-

N:1000.00

GELLEAIK(+1

63.00)R
56,71 1190,6038 9 4,6 596,3119 37,36 11609

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K8:NBF-

N:1000.00

DFGSFDKFK(

+163.00)
56,6 1252,5143 9 2,7 627,2661 43,37 13978

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K9:NBF-

N:15.73



DFGSFDK(+1

63.00)FK(+163

.00)EK

54,17 1672,6531 11 4 837,3372 52,16 17370
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N

K7:NBF-

N:11.01;K9:NB

F-N:6.59

YMAC(+163.0

0)K
42,34 777,2569 5 3,4 389,6371 15,36 3526

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C4:NBF-

C:1000.00

GGGEPK(+16

3.00)GELLEAI

KR

39,27 1715,8585 15 4,3 572,9626 33 9910
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K6:NBF-

N:47.82

LTAASVGVQ

GSGWGWLG

FNKERGHLQI

AAC(+163.00)

PNQDPLQ

39,26 4067,9443 37 32 1357,0321 38,26 11963
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C30:NBF-

C:1000.00

YMAC(+163.0

0)KK
38,33 905,3518 6 3,6 453,6848 12,23 2382

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C4:NBF-

C:1000.00

YMAC(+163.0

0)KK
33,83 905,3518 6 2,9 453,6845 12,74 2564

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C4:NBF-

C:1000.00

YMAC(+163.0

0)KK
32,4 905,3518 6 0,2 453,6833 14,1 3048

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C4:NBF-

C:1000.00

YMAC(+163.0

0)KK
28,83 905,3518 6 1,9 453,6841 13,41 2799

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C
C4:NBF-

C:1000.00

NVRPDYLK(+

163.00)AIWNV

INWENVTER

35,68 2891,4097 22 4,1 964,8145 50,61 16776
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K8:NBF-

N:1000.00

LTAASVGVQ

GSGWGWLG

FNK(+163.00)

ERGHLQIAAC

(+163.00)PNQ

28,74 3777,7231 33 51,3 1260,3129 38,7 12121
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N; 

NBF-C

K20:NBF-

N:1000.00;C30

:NBF-

C:1000.00

HINHSIFWTN

LSPNGGGEP

KGELLEAIK(+

163.00)RDFG

SFDK

27,74 4173,0088 36 -7,1 1392,0004 18,51 4671
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K28:NBF-

N:0.00

YMAC(+163.0

0)K(+163.00)K
27,15 1068,353 6 3,9 535,1859 27,5 7879

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-C; 

NBF-N

C4:NBF-

C:1000.00;K5:

NBF-N:7.65

NGGGEPK(+1

63.00)GELLE

AIKR

20,58 1829,9014 16 8,5 915,9658 42,15 13500
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NBF-N
K7:NBF-

N:49.35

DFGSFDKFK

EK(+163.00)L

TAASVGVQG

18,77 2393,1282 21 25,3 798,7368 17,83 4411
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P04179|SO

DM_HUMAN

TAASVGVQG

SGWGWLGF

NK

26,88 1920,9482 19 2,8 641,3251 36 11068
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

GWLGFNKER 26,68 1105,5669 9 3,5 553,7927 18,08 4503
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN



AIWNVIN 26,36 828,4494 7 2,2 415,2329 33,96 10281
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

SIFWTNLSPN

GGGEPKGEL

LEAIK

26,24 2556,3223 24 -34,7 853,0851 30,3 8905
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

PYDYGALEP

HINAQIMQLH

HSKHHAAYV

26,03 3239,5723 28 2,1 1080,8669 31,92 9498
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

GWGWLGFN

KER
25,95 1348,6676 11 -16,2 675,3301 36,12 11117

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

GSRQKHSLP

DLPYDYGALE

PHINAQIMQL

HHSK

24,37 3779,8953 33 -15,6 1260,9528 26,94 7682
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

NNLNVTEEKY

QEALAK
24,24 1862,9374 16 -0,4 932,4756 18,86 4788

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

EPHINAQIMQ

LHHSK
24,1 1781,8995 15 7 594,978 28,45 8231

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

EPHINAQIMQ

LHHSK
16,18 1781,8995 15 -33,5 594,9539 28,39 8213

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

EKLTAASVGV

QGSG
23,68 1302,6779 14 -4,6 652,3432 15,69 3647

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

RPDYLK 19,4 790,4337 6 0,4 396,2243 12,65 2535
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

RPDYLK 18,94 790,4337 6 0,6 396,2244 13,15 2698
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

RPDYLK 18,92 790,4337 6 1 396,2245 12,14 2349
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

AIWNVINW 18,02 1014,5287 8 3 508,2732 45,98 15000
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

SFDKFK 16,29 770,3962 6 3 386,2065 21,73 5802
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

HHAAYVNNL

NVTEE
16,07 1609,7484 14 4,7 805,8853 15,99 3768

mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN

HAYYLQYKN

VRPDYLKAIW

NVINWENVT

15,2 3794,9321 30 -3,1 1265,9807 38,59 12079
mf18031

3_03.raw

protein1|sp|

P04179|SO

DM_HUMAN
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APPENDIX 6: Supplementary Dataset S4 

MS/MS data of the persulfidated MnSOD digested with chymotrypsin  

Related to CHAPTER 3 – Article I (Figure 3) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Peptide -10lgP Mass Length ppm m/z RT Scan
Source 

File
Accession PTM AScore

K(+163.00)HS

LPDLPY
17,07 1231,5616 9 2,6 616,7897 36,74 10508

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

NBF-N
K1:NBF-

N:1000.00

K(+163.00)NV

RPDYL
28,38 1166,5463 8 3,3 584,2823 30,31 8507

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

NBF-N
K1:NBF-

N:1000.00

MAC(+163.00)

KK
19,35 742,2885 5 3,3 372,1528 13,11 2561

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

NBF-C
C3:NBF-

C:1000.00

MAC(+163.00)

KK
18,23 742,2885 5 1,3 372,152 11,48 1952

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

NBF-C
C3:NBF-

C:1000.00

TNLSPNGGG

EPK(+163.00)

GELL

17,45 1744,801 16 37,5 873,4405 25,08 6659

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

NBF-N
K12:NBF-

N:1000.00

MAC(+394.16)

KK
33,99 973,443 5 4,2 487,7308 18,68 4451

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DCP-

Bio1

C3:DCP-

Bio1:1000.00

AASVGVQGS

GW
37,46 1017,4879 11 3,2 509,7528 24,92 6603

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

AKGDVTAQIA

LQPALKF
45,06 1770,0039 17 -0,8 591,0081 30,55 8588

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ALEPHIN 15,55 792,413 7 4,5 397,2155 15,42 3361

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ALEPHINAQI

M
34,16 1235,6332 11 8,1 618,8289 26,21 7061

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

AQIALQPALK

F
53,54 1198,7074 11 5,4 600,3642 31,37 8858

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

AQIALQPALK

F
34,03 1198,7074 11 9,3 600,3666 31,88 9017

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

AQIMQLHHSK

HHAAY
33,59 1770,8737 15 2,7 591,3001 14,01 2880

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

AQIMQLHHSK

HHAAY
23,56 1770,8737 15 2,8 591,3002 14,52 3064

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ASVGVQGSG

W
17,11 946,4508 10 0,2 474,2328 24,56 6476

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DFGSFDKF 18,36 961,4181 8 6,4 481,7194 32,55 9234

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DKFKEKL 44,1 906,5174 7 1,3 454,2665 12,12 2203

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N



DVTAQIALQP

ALKF
22,25 1513,8503 14 3 757,9348 39,05 11210

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPH 35,44 900,3977 8 4,5 451,2082 19,47 4728

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPH 28,29 900,3977 8 1,3 451,2067 18,96 4550

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN 55,96 1127,5247 10 5,7 564,7728 25,82 6925

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN 52,65 1127,5247 10 5,3 564,7726 26,33 7105

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN 38,37 1127,5247 10 5,5 564,7727 25,31 6740

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN 36,99 1127,5247 10 1,7 564,7706 26,86 7292

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN 19,4 1127,5247 10 3,3 564,7715 27,39 7477

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

A
34,31 1198,5618 11 -0,4 600,2879 26,8 7274

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQ
36,68 1326,6204 12 5 664,3208 25,52 6818

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIM
68,16 1570,745 14 6,4 786,3848 35,3 10096

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIM
46,5 1570,745 14 4,7 786,3835 35,82 10235

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIM
40,08 1570,745 14 5,1 786,3838 34,79 9933

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIM
19,59 1570,745 14 -1,5 786,3786 36,83 10540

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIM
15,94 1570,745 14 9,5 786,3872 36,33 10392

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIMQL
45,9 1811,8876 16 8,1 906,9584 40,6 11648

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIMQL
25,25 1811,8876 16 5,2 906,9558 41,11 11787

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

DYGALEPHIN

AQIMQLH
25,4 1948,9465 17 6,4 650,6603 33,58 9556

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N



DYGALEPHIN

AQIMQLH
18,21 1948,9465 17 3,7 650,6585 34,08 9721

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFG 28,76 934,4872 8 2,8 468,2522 12,65 2403

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF 64,66 1168,5876 10 4,8 585,3039 19,66 4793

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF 16,21 1168,5876 10 2,7 390,5375 19,32 4678

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF

D
17,15 1283,6145 11 4,9 642,8177 19,12 4607

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF

DKF
71,46 1558,778 13 0,9 780,397 22,77 5839

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF

DKF
60,88 1558,778 13 1,9 520,6009 22,74 5831

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EAIKRDFGSF

DKF
31,8 1558,778 13 5,6 520,6028 23,54 6107

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

EHAYYLQY 48,08 1085,4818 8 4,8 543,7508 23,22 5988

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 45,09 909,4192 7 1,7 455,7177 13,44 2680

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 44,75 909,4192 7 3,2 455,7183 13,95 2860

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 41,84 909,4192 7 2,8 455,7181 12,93 2498

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 36,74 909,4192 7 3,7 455,7186 14,47 3043

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 22,26 909,4192 7 193,9 455,805 20,64 5121

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 20,52 909,4192 7 156 455,7878 19,63 4781

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 20,47 909,4192 7 154,4 455,7871 19,05 4584

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERY 20,03 909,4192 7 5,5 455,7194 18 4214

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

ENVTERYM 30,64 1040,4597 8 5,7 521,2401 17,18 3939

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N



GALEPHIN 18,1 849,4344 8 5,1 425,7267 17,15 3929

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ 17,4 1048,5302 10 2,4 525,2736 16,69 3778

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

I
19,63 1161,6141 11 3 581,8161 24,24 6355

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IM
51,66 1292,6547 12 5,1 647,3379 27,4 7484

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IM
46,36 1292,6547 12 -1 647,334 26,9 7307

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IM
41,87 1292,6547 12 4,5 647,3375 27,91 7665

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IM
28,85 1292,6547 12 5 647,3378 28,42 7851

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IM
25,9 1292,6547 12 5,4 1293,6689 27,16 7398

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IMQL
54,18 1533,7974 14 6,4 767,9109 33,62 9571

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IMQL
18,74 1533,7974 14 -13,1 767,8959 30,1 8438

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IMQLH
41,01 1670,8562 15 4,4 557,9618 27,69 7592

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GALEPHINAQ

IMQLH
26,01 1670,8562 15 3,4 836,4382 27,2 7412

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GDVTAQIALQ

PALKF
37,48 1570,8718 15 6,4 786,4482 36,41 10417

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GFNKERGHL 47,68 1056,5464 9 1,6 529,2813 11,48 1953

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GFNKERGHL 37,77 1056,5464 9 0,9 353,1897 11,48 1954

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GFNKERGHL

Q
36,72 1184,605 10 -0,2 593,3096 11,03 1773

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GFNKERGHL

Q
23,07 1184,605 10 -13,7 395,8702 11,05 1784

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GGGEPKGEL

L
28,73 955,4974 10 5,1 478,7584 17,1 3910

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N



GGGHINHSIF

W
49,77 1223,5836 11 1,9 612,8002 22,7 5818

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GGGHINHSIF

W
47,81 1223,5836 11 5,7 408,8708 22,91 5883

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GGGHINHSIF

W
25,14 1223,5836 11 2,3 612,8005 22,19 5649

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GGHINHSIF 40,05 980,4828 9 3,4 491,2503 15,68 3451

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GGHINHSIFW 19,06 1166,5621 10 0,4 584,2886 22,36 5712

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GHINHSIF 22,51 923,4613 8 2,9 462,7393 15,91 3531

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GSFDKF 41,9 699,3228 6 3,2 350,6698 17,9 4179

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

GSRQKHSLP

DLPYDY
36,95 1774,8638 15 -31,3 592,61 21,41 5381

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

HHSKHHAAY 54,43 1086,5107 9 1 544,2632 10,33 1551

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

HHSKHHAAY 44,26 1086,5107 9 -8,1 363,1746 10,18 1493

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

HSKHHAAY 27,9 949,4518 8 2,2 475,7342 10,16 1485

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

HSLPDLPY 35,07 940,4654 8 5,6 471,2426 25,83 6928

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

HSLPDLPYDY 35,27 1218,5557 10 4,4 610,2878 29,85 8346

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 36,94 999,6116 9 5,7 500,8159 31,37 8857

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 35,62 999,6116 9 3,2 500,8147 30,87 8692

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 33,58 999,6116 9 7,9 500,817 31,88 9016

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 28,36 999,6116 9 5,9 500,816 32,9 9342

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 27,34 999,6116 9 4,9 500,8156 32,39 9183

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N



IALQPALKF 26,41 999,6116 9 4,2 500,8152 30,22 8479

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO

DM_HUMA

N

IALQPALKF 16,1 999,6116 9 0,5 500,8133 34,92 9973

mf18031

3_Chymo

_03.raw

protein1|sp|

P04179|SO
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APPENDIX 7: Supplementary Dataset S5 

Antibody microarray analysis of protein persulfidation 

Related to CHAPTER 3 – Article I (Figure 5) 
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