Manuel Bertrand Meyer

Victor Rivera

Jean-Michel Bruel

Florian Galinier

Manuel Mazzara

Andrey Sadovykh

Cially Mansur Khazeev

Hamna Aslam

Sophie Ebersold

Tanya Stanko

Sir Charles Antony

Richard Hoare

Many people were helping me in different ways while I was working on the thesis. As a human being with an imperfect memory, however, I can only highlight some of them here.

Introduction Seamless development

It affects project organization, and the very nature of the software profession; in line with modern trends in other industries, it tends to remove barriers between narrow specialtiesanalysts who only deal in ethereal concepts, designers who only worry about structure, implementers who only write code -and to favor the emergence of a single category of generalists: developers in a broad sense of the term, people who are able to accompany part of a project from beginning to end.

Bertrand Meyer

Definition 0.0.1 Seamlessness is the use of a continuous process throughout the software lifecycle [START_REF] Meyer | Object-Oriented Software Construction[END_REF].

Bertrand Meyer, in his "Object-Oriented Software Construction" (OOSC) book [START_REF] Meyer | Object-Oriented Software Construction[END_REF], presented the idea of developers in a broad sense of the term -as people who are able to accompany part of a project from beginning to end. This idea, originating from the first edition of the OOSC book back in 1988, was prophetic: companies more and more value individual contributors who alone can take a software feature from the analysis through construction to maintenance. Software processes and tools should support such contributors, collectively called developers. As opposed to the skills of the people performing specific tasks, such as analysts, architects, programmers and testers, developers' skills crosscut these tasks. Software processes' continuity stands on the developers' shoulders, and the present dissertation has the objective of simplifying their lives at the conceptual level, as DevOps [START_REF] Ebert | DevOps[END_REF] does at the level of tools automating mundane tasks, such as building and testing. People naturally want to solve creative tasks, everything else should be automated. DevOps tools not only automate 1 tasks within individual software development lifecycle (SDLC) phases, but also trigger execution of a next phase when observing certain events in the previous phase.

While tools may help, several conceptual gaps remain, one of which is the notational gap. Individual SDLC phases have been historically relying on their own notations, which was sensible when people were given specific tasks and mastering one notation would be enough to handle one task. With individual contributors taking responsibility for entire features, the following problems emerge:

• The developers must learn and practice several notations.

• Dedicated traceability tools must be in place.

• The developers must have enough discipline to record traceability links.

The seamless approach [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF], [START_REF] Meyer | Object-Oriented Software Construction[END_REF] attempts to remove the notational gap by applying the implementation programming language throughout the SDLC. Success of this effort would have the following implications:

• Knowing the implementation programming language would be enough to practice the entire SDLC.

• The native code traceability features of integrated development environments (IDEs) would also serve for tracing requirements.

• The developers would not need to record traceability links between different kinds of artifacts -requirements, code, tests, etc.

The idea to use programming languages as requirements notations is gaining support. Many groups of stakeholders prefer descriptions of operational activity paths over declarative requirements specifications [START_REF] Sindre | A Reuse-Based Approach to Determining Security Requirements[END_REF]. A demand exists for educating developers capable of both abstracting in a problem space and automating the transition to a solution space [START_REF] Whittle | The State of Practice in Model-Driven Engineering[END_REF]. The decision to express requirements in programming languages may also be the only way to bring the developers closer to the requirements they implement: industry practitioners are generally not keen to switching their tools [START_REF] Dalpiaz | Natural Language Processing for Requirements Engineering: The Best Is Yet to Come[END_REF].

The real situation does not meet these needs, however. The state-of-the-practice [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF] and the literature [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF] studies show no evidence that existing requirements approaches consider connecting the problem and the solution spaces. The studied approaches focus on reusing natural language, use cases, domain models and several other artifacts disjoint from the solution space.

The thesis

The object-oriented paradigm builds on the idea of supporting developers at the level of language and environment [START_REF] Meyer | Object-Oriented Software Construction[END_REF]. This aspiration does not meet the reality, however. Developers specify requirements in natural language or modeling notations, implement them in programming languages, verify correctness of the solutions using tests and sometimes "reuse" the requirements through copying and pasting. Modern IDEs pay a lot of attention to implementation and testing, sometimes to modeling. Requirements are left out to specialized tools working with their own notations and semantics. The Seamless Object-Oriented Requirements approach attempts to make requirements full citizens of the IDEs. Martin Glinz, in his "Should Requirements Be Objects?" position paper [Gli], discusses arguments in favor and against treating requirements as objects. The "in favor" section concludes with the following remark:

"Furthermore, if we employ state-of-the-art object-oriented design and implementation techniques, an object-oriented requirements specification would allow a seamless application of object-oriented software engineering methods through the complete development cycle, from inception to deployment. We would get a smooth transition from requirements into architecture and design and could apply round-trip engineering methods and tools. So why longer hesitate? Just let requirements become objects."

The "against" section then downplays that inspirational argument. It opens with several examples of requirements that are "clearly not objects": "The promises of abstraction and comprehensibility sound good, buttreating requirements as objects is like making a problem fit a solution, instead of doing it vice-versa. What is a requirement? A requirement may be a goal, for example "The new CRM system shall reduce the number of customer complaints by at least 50%." Is this an object? What does it encapsulate? Has it a state or behavior? Not really. So let's try another kind of requirement. A requirement may be a function, for example "The system shall compute the maximum speed that the train can run with on the current track segment." Is a function an object? Definitely not. So let's again try another kind of requirement. A requirement can be a constraint, for example "In normal operating mode, the lift shall never move when the doors are not closed completely." But again, a constraint is no object."

The analysis of these examples, leading to the negative conclusion, looks superficial. Yes, all these requirements are objects -textual objects at a minimum. Natural language text constitutes one dimension of requirements. The developers will eventually write executable tests to verify correctness of candidate solutions against these requirements. These tests will form another dimension of the same requirements. Other dimensions, such as graphical, or audio representations may exist. Requirements frequently follow, as empirical evidence suggests, several patterns (SRPs -software requirement patterns) along some of these dimensions [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Requirements Patterns for Embedded Systems[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF]; these SRPs should be reusable. Here comes the main thesis of my dissertation:

Requirements, with their recurring structure and multidimensional nature, constitute natural input for the object-oriented analysis.

The answer to the Martin Glinz' "Should Requirements Be Objects?" question is a clear "yes". Here are the sub-theses that refine the main one:

1. Requirements are objects instantiated from requirement classes.

Construction of requirement classes follows the object-oriented

principles [START_REF] Meyer | Object-Oriented Software Construction[END_REF].

3. The requirements' dimensions are implemented through the requirement classes' features.

The requirement classes map to recurring requirement patterns, some of which reccur especially often [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF]. Such patterns should be reusable, and object orientation provides the reusability mechanisms that have already found their place in the developers' daily practices. The requirements' dimensions -textual, graphical, verifiable etc. -constitute their meaning [START_REF] Meyer | Multirequirements[END_REF]. Different software engineering activities favor different dimensions; it is natural, therefore, for a single requirement to exist in different notations serving different purposes. It seems natural to represent requirements as classes with the features supporting the multidimensional analysis. Bertrand Meyer stated the initial principles behind object-oriented requirements in the "Thesis B" section of his "Multirequirements" article [START_REF] Meyer | Multirequirements[END_REF]. The present dissertation develops these principles to cover more practical problems and situations. Part I discusses these problems and situations in detail.

Summary of contribution

The thesis presents Seamless Object-Oriented Requirements -a practial requirements methodology optimized for the purposes of seamless development. It reuses the existing features of the modern IDEs for specifying, validating, verifying, reusing and tracing requirements. The IDEs become the single working environment for developers who take full responsibility for complete software features. The methodology relies on the following key notions:

• Seamless object-oriented requirement (SOOR).

• Seamless object-oriented requirement template (SOORT).

Section 3.3 precisely defines and interconnects these notions, and Section 3.4 presents activities in which these notions serve as the main artifacts. The rest of the dissertation uses the "SOOR" abbreviation to refer either to the approach, or to an individual requirement specified according to the approach; the actual meaning will be clear from the context. The dissertation presents a unified seamless approach that features a wide range of technical capabilities for specifying, validating, implementing and verifying requirements. The following list summarizes these capabilities:

1. Handling realistic systems with hard to formalize requirements [START_REF] Naumchev | Unifying Requirements and Code: An Example[END_REF].

2. Specifying arbitrary abstract data types (ADTs) [START_REF] Naumchev | Complete Contracts through Specification Drivers[END_REF] 3. Statically checking contracts' well-definedness, correctness and completeness [START_REF] Naumchev | Complete Contracts through Specification Drivers[END_REF].

4. Static proof-oriented detection of inconsistent contracts [START_REF] Naumchev | Detection of Inconsistent Contracts Through Modular Verification[END_REF].

5. Incrementally-iterative proof-oriented software process reusing the underlying IDE for handling requirements [START_REF] Naumchev | Seamless requirements[END_REF].

6. Specifying and verifying control software temporal properties and timing constraints [START_REF] Naumchev | AutoReq: Expressing and verifying requirements for control systems[END_REF].

7. Capturing software requirement patterns (SRPs) as object-oriented templates for faster specification, validation and verification of new requirements [START_REF] Naumchev | Object-oriented requirements: reusable, understandable, verifiable[END_REF]. A ready-to-use library of templates capturing known SRPs [START_REF] Naumchev | Seamless Object-Oriented Requirement Templates[END_REF] supports this capability.

How to read the dissertation

Part I describes the problem in more detail. Part II presents the solution. Chapters 3 -5 present the key ideas. Chapters 7 -12 provide the technical details behind these ideas and conduct several experiments to showcase these ideas in practice. Chapter 6 provides the connection between key ideas and the details behind them. Part III reflects on the results, drawing conclusions and paving the road towards future work. I recommend the following ways of reading the present manuscript:

1. Read it completely, skipping chapters 7 -12, to overview the most important ideas and develop intuition behind them. This way of reading will require staying focused: the material is dense and contains only the essentials of the thesis.

2. Sequentially read chapters 7 -12. This will increase the amount of reading but lower its density: the chapters incrementally develop the essential ideas, building each on top of the previous ones in a bottom-up fashion.

3. Read the dissertation completely. Chapter 6 connects chapters 7 -12 with the essentials overview. This way of reading will give the full picture and require the biggest amount of time.

Part I

The Problem

Chapter 1

State of the Art

The present chapter discusses existing approaches leading to seamlessness (Definition 0.0.1) in some sense. These approaches may not explicitly focus on requirements or seamlessness, rather focusing on some other aspects, such as testing; seamlessness may come as a side effect. Section 1.1 characterizes approaches that are clearly relevant to the discussion, while Section 1.2 characterizes clearly irrelevant approaches.

Inclusion criteria

We only discuss approaches that lead to seamlessness at the software development life cycle (SDLC) level, in all directions: if a change happens in one SDLC phase, its consequences are observable in the other phases. Such approaches lead to the possibility of using the same set of notations and tools throughout the entire SDLC. Two notations are clearly unavoidable: the implementation programming language and the natural language.

Exclusion criteria

Some approaches, such as seamless model-based requirements engineering [START_REF] Teufl | Seamless Model-based Requirements Engineering: Models, Guidelines, Tools[END_REF], develop seamlessness within the analysis phase alone, with little concern for bridging the gap between requirements and other SDLC phases. The present dissertation has a clear objective: simplifying lives of individual generalists -software developers.

Multiplying the notations disjoint from the implementation programming language and focusing on individual SDLC phases do not contribute to this objective. Model-verify-generate approach assume modeling the system formally, verifying correctness of the model and then generating source code from the model. The wellknown Event-B [START_REF] Abrial | Modeling in Event-B -System and Software Engineering[END_REF] and LTSA [START_REF] Magee | Concurrency -state models and Java programs[END_REF] methods fall into this approach.

The present dissertation excludes the model-verify-generate approach from the discussion for the following reasons:

• Entering the solution space too early. The model-verify-generate approaches require a model of the future system already at the requirements specification stage. Requirements are not self-contained in these approaches: they become assertions (invariants, guards, trigger conditions, etc.) in the context of the chosen model. While design decisions must ensure satisfaction of the requirements, with the model-based approaches formulation of requirements themselves depends on pre-taken design decisions.

• Seamlessness in one direction. All changes start with changing the model, from which the source code is then re-generated. There is no way to modify the generated code and see if the modification violates the model. This is a critical problem: in practice it is always necessary to optimize the source code to meet non-functional requirements, such as performance and security, and the modelverify-generate approach does not provide mechanisms for expressing such requirements. While some of these approaches perform the model-to-code translation automatically, the need to modify the code will raise the demand for an additional effort of keeping the model consistent with the source code.

• Difficulty to master. The model-verify-generate approaches rely on mathematical formalisms that require specialized education. Forcing an existing, sometimes jelled, development team to learn these formalisms may ruin the project. These may not be a problem for companies developing mission-critical software, but we cater to generalists.

• Capturing the requirements as assertions in the modeling formalism. This may be realistic if both the customer and the contractor understand the modeling notation well enough to agree on the resulting document. Early requirements take the natural language form, and the model-verify-generate approach leaves the problem of connecting these early requirements with models open.

The model-verify-generate approach generally targets mission-and life-critical systems. This focus allows its practitioners to rely on additional strong assumptions about the process' high maturity level, the input requirements' high quality, the developers' awareness of formal methods and the project's generous schedule and budget. These assumptions rarely hold for the mass market software development.

Design by Contract

The first attempt to achieve full seamlessness and bring requirements to the developers' fingertips belongs to Design by Contract (DbC) [START_REF] Meyer | Applying "Design by Contract[END_REF]. The method equips classes and their features with two-state assertions visible to their clients. DbC benefits seamlessness at the following levels: Specification: contracts, when written during the analysis phase, prescribe the desired software behavior.

MULTIREQUIREMENTS

Construction: developers may rely on the IDE's intelligent facilities displaying the components' contracts; this greatly simplifies choosing the most appropriate components.

Verification: DbC enables both static and dynamic verification. Running an application equipped with contracts makes the runtime environment check these contracts; a contract violation forces the developer to debug both the contract and the code implementing it. Program proving, on the other hand, makes it possible to statically verify the absence of runtime violations before the first run of the program [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF].

Documentation: together with natural language comments, contracts may serve as comprehensive documentation for ready-to-use components.

With all its benefits, DbC in its pure form lacks specifications' incrementality. An individual requirement may crosscut more than two states and several concepts from the problem space. In this case, the contract assertions reflecting the requirement will be spread across several classes and features, which may inhibit the process' continuity. Individual requirements often take the form of standalone prescriptive statements [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF], and establishing traceability links between a single statement and several contract assertions will require specialized tools. Requirements that promote the process' continuity, or seamlessness-oriented requirements, should be standalone entities to eliminate the issue.

Multirequirements

The multirequirements method [START_REF] Meyer | Multirequirements[END_REF] makes specifications incremental. The following principles define the method:

1. Develop individual requirements incrementally on several layers, including the following three: formal, graphical, natural language.

2. Use these layers both in a complementary way (when one of them is more appropriate to the description of a system property) and redundantly (for example to combine the precision of formal descriptions with the convincing power of graphical descriptions).

3. Model systems through object-oriented techniques: classes as the basic unit of decomposition, inheritance to capture abstraction variants, contracts to capture semantics.

4. Use an object-oriented language (e.g. Eiffel) to write the formal layer according to the principles of 3).

5. Use the contract sublanguage of the programming language as the notation for the formal layer.

6. As the goal is to describe models, not implementations, ignore the imperative parts of the programming language (such as assignment).

Figure 1.1: Multirequirement describing relationships between requirements and projects (taken from the original work [START_REF] Meyer | Multirequirements[END_REF]). The three representation layers present the same meaning in different notations: natural language, Eiffel and BON. The natural language representation contains traceability links framed with the '/' symbol.

7. Use an appropriate graphical notation (BON [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF]) for the graphical layer.

8. Weave the layers to produce requirements descriptions, including a comprehensive requirements document if requested, but also any other appropriate views.

9. Enforce and assess traceability between the layers and all products of the requirements process, and between requirements and other product artifacts, both down and up.

10. Rely on appropriate tools to support the process, including incremental development.

These principles expressly pursue seamlessness at the level of requirements to object-oriented software [START_REF] Meyer | Object-Oriented Software Construction[END_REF] designed around the DbC principles.

Multirequirements interweave natural language prose with pieces of contracted code and BON [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF] diagrams (Figure 1.1). The prose encloses names of important concepts in slash symbols to enable traceability across the three layers.

Parameterized unit tests

Parameterized unit tests (PUTs) may lead to seamlessness in the world of programming languages without native support for contracts. Their invention was motivated by the poor reuse of closed unit tests: several unit tests may check software correctness against the same abstract data type (ADT) axiom on different test inputs. In this case, these unit tests would duplicate the axiom's structure. Tillmann and Schulte [START_REF] Tillmann | Parameterized unit tests[END_REF] proposed to replace closed unit tests with parameterized methods, where the parameters would serve as universally quantified variables of the respective ADT axioms. For example, instead of writing closed unit test (in C#): and then rewrite the original unit test as:

[TestMethod] void TestAddWithOverflow() { TestAdd(new ArrayList(0), new object()); } Adding another test checking the same axiom becomes straightforward:

[TestMethod] void TestAddWithNoOverflow() { TestAdd(new ArrayList(1), new object()); } PUTs promote separation of concerns by splitting ADT axioms and test inputs, where the inputs may be automatically generated from the axioms [START_REF] Tillmann | Pex-White Box Test Generation for .NET[END_REF]. The approach promotes seamlessness, though the original purpose was to increase the level of reuse: requirements, in the form of ADT axioms, become expressed in the implementation programming language.

PUTs' contributions are (taken from the original work [START_REF] Tillmann | Parameterized unit tests[END_REF]):

• They allow unit tests to play a greater role as specifications of program behavior.

In fact, PUTs are axiomatic specifications.

• They enable automatic case analysis, which avoids writing implementationspecific unit tests.

• Their generated test cases often result in complete path coverage of the implementation, which amounts to a formal proof of the PUTs' assertions.

PUTs found their place in open source projects [START_REF] Lam | Parameterized Unit Testing in the Open Source Wild[END_REF] and in a software process that replaces test-driven development (TDD) [START_REF] Fraser | Test Driven Development (TDD)[END_REF] with parameterized TDD (PTDD) [START_REF] Paul | Parameterized test driven development[END_REF].

Theory-based testing

Theory-based testing [START_REF] Saff | Theories in practice: Easy-to-write specifications that catch bugs[END_REF] leads to seamlessness in the same way as the PUT-based testing does. Theories are partial specifications of program behavior [START_REF] Saff | Theories in practice: Easy-to-write specifications that catch bugs[END_REF]. Their syntax shares a lot with the PUTs' syntax: both represent unit tests parameterized over universally quantified paramenters:

@Theory defnOfSquareRoot(double n) { // Assumptions assumeTrue(n >= 0); double result = sqrRoot(n) * sqrRoot(n); // Assertions assertEquals(n, result, / * precision: * / 0.01); assertTrue(result >= 0); } JUnit, a unit testing framework for Java programs, contains an implementation of theories in version 4.4 and later.

Theory-based testing and PUT-based testing differ in how they handle the respective artifacts -theories and PUTs. Where Tillman and Schulte generate provably minimal test suites based on complete specifications, Saff et al. [START_REF] Saff | Theories in practice: Easy-to-write specifications that catch bugs[END_REF] accept heuristics that generate data points designed to exercise as many code paths as possible in a short time. Theory-based testing relaxes the requirement for the specifications to be complete. From the seamlessness viewpoint, the two approaches are equal. Both encode ADT axioms in the implementation programming language and have interchangeable formats. Choosing one of them amounts to comparing the respective tools for generating test inputs.

Abstract testing

Abstract testing [START_REF] Merz | Bridging the gap between test cases and requirements by abstract testing[END_REF] expressly attempts to bridge the gap between requirements and test cases, while PUT-and theory-based testing were targeting reuse of unit tests 1.8. REFLECTIONS and high coverage of code with tests. Syntactically, abstract tests rely on the same idea that PUTs and theories build upon: specifying behaviors through contracted routines, possibly parameterized. The approach treats these routines, however, not as abstractions of closed unit tests, but as formalizations of requirements. In this regard, Merz et al. [START_REF] Merz | Bridging the gap between test cases and requirements by abstract testing[END_REF] detach the approach from testing and discuss it in the broader context of verifiable requirements. Abstract testing focuses on control software, for which it is necessary to non-deterministically initialize environment variables. The approach achieves this initialization through auxiliary routine nondeterministically _ initialize _ environment. Implementing this routine becomes a task of the test engineer.

The following example presents the common structure of abstract tests:

abstract _ test() {
nondeterministically _ initialize _ environment(); assume(precondition(x1));

.. . The first instruction non-deterministically initializes the environment; the assume statements make assumptions about the environment; the assert statement requires the postcondition to hold under the stated assumptions. Abstract testing contributes to seamlessness by explicitly proposing PUT-like constructs as a requirements notation.

Reflections

The authors of the PUT-like approaches (PUTs, theory-based testing and abstract testing) sometimes perceive DbC as a competing approach [START_REF] Lam | Parameterized Unit Testing in the Open Source Wild[END_REF], which prevents the two views from benefitting each other.

Contracts are irreplaceable in how they document software components. Figure 1.2 depicts EiffelStudio during the programming process. More concretely, it depicts a situation in which the programmer has just entered a dot symbol after a variable and is looking for a feature to call. EiffelStudio offers the list of features callable on the variable. Going through the list causes the selected feature's documentation to appear in the rightmost pop-up window. It contains the natural language description of the feature along with its semantics in the form pre-and postconditions. The ability to see the callable features' meanings may significantly speed-up the programming process.

PUTs, on the other hand, offer incrementality: two PUTs may specify different components but reside in the same class, which will simplify searching and modifying them. DbC, on the contrary, assumes that the specified components contain their own specifications in the form of contracts. This approach, also known as "Single-Product Principle" [START_REF] Meyer | Object-Oriented Software Construction[END_REF], ensures the great documenting capability of contracts. As a side effect, it results in specifications spread across the specified components, which complicates their management.

The present dissertation shows that contracts and the PUT-like specification approaches are, in fact, fundamentally connected and may benefit each other when prac-Figure 1.2: EiffelStudio displaying hints, including contracts and natural language comments. ticed together, thanks to program proving. To illustrate the concepts, the dissertation uses AutoProof [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] -the prover of Eiffel programs.

Chapter 2

Important Qualities of Requirements

The present chapter describes important qualities of a practical requirements approach and briefly evaluates the state-of-the-art approaches against the stated qualities; we evaluate the SOOR approach in Chapter 13 and Chapter 14.

We map the stated qualities to the recommendations of the ISO/IEC/IEEE 29148 "Requirements engineering" standard [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF], sections "5.2.5 Characteristics of individual requirements" and "5.2.6 Characteristics of a set of requirements". The document recommends, among other characteristics, to keep requirements singular -a requirement statement should include only one requirement with no use of conjunctions. The standard does not explain, however, why this characteristic is important. Neither does it define the very notion of conjunction, widely known as a Boolean operator, in the context of requirements. If defined, conjunction would most probably apply to a pair of requirements expressed in the same notation. The dissertation focuses exactly on what this hypothetical notation should look like, and defining operations on top of it seems to be a concern for the future work. Given these arguments, we decided to exclude the singularity characteristic from the discussion.

Most of the standardized characteristics support what we discuss as understandability (Section 2.4). Expressiveness (Section 2.1) characterizes requirements approaches rather than requirements themselves, which is why the standard does not discuss it. We find this quality important, however, because we are exploring applicability of programming languages as requirements notations; while natural languages have enormous expressive power, programming languages' expressiveness needs to be explored.

Expressiveness

Definition 2.1.1 Expressiveness is the suitability of an approach for capturing requirements of different forms.

Software takes the following forms:

• Control software works in an infinite loop and continuously reacts to events in the environment.

• Software components process input data in finite time and produce some output data.

Software components serve as building blocks for control software and other software components. They take the form of command-line utilities, program modules and any other form that meets the definition of a software component. Requirements to software components take the form of abstract data type (ADT) specifications [START_REF] John V Guttag | The Design of Data Type Specifications[END_REF]. Arrays, stacks, strings are a few examples of software components; they come inside standard libraries of programming languages.

Specification of control software, on the other hand, relies on temporal properties [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF] and timing constraints [START_REF] Konrad | Real-time specification patterns[END_REF] -requirements that the theory of ADTs does not cover.

A practical approach thus should be suitable for expressing at least:

• ADT axioms,

• Temporal properties,

• Timing constraints.

The state-of-the-art approaches fail to meet this expressiveness standard. Multirequirements fundamentally rely on contracts, and contracts cannot capture multicommand ADT axioms; they also cannot capture temporal properties nor timing constraints. PUTs, theories and abstract tests can capture multicommand requirements, but not temporal properties and timing constraints.

The SOOR approach combines the expressive power of contracts and PUT-like specifications for capturing all the three kinds of requirements.

Verifiability

Definition 2.2.1 A requirement is verifiable if it has the means to prove that the system satisfies the specified requirement. [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] The standard [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] does not specify how these "means to prove" should technically look like. In this section we come up with several desired properties that such means should have.

• Verifiability should be modular. The state-of-the-art approaches have problems with verifiability. In multirequirements, the requirements in the form of contracts become an integral part of the solution, which makes it conceptually impossible to fully separate the problem from the solution. Contracts represent a powerful verification mechanism suitable both for testing [START_REF] Meyer | Programs That Test Themselves[END_REF] and program proving [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF]. Their nature, however, assumes instrumentation of the verified code, which may not be possible for already implemented components. Even if a component is available for modification, the instrumentation may alter it. A modular specification and verification mechanism should be in place that would not require modifying the verified components.

• Verifiability should be twofold -both static and dynamic. The PUT-like approaches are free of the modularity problem: they do not require instrumenting the verified solution. They are perceived, however, as purely testing approaches, which is not the case for Design by Contract -it is equipped with tools for both static [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] and dynamic [START_REF] Meyer | Programs That Test Themselves[END_REF] verification. Seamlessness-oriented requirements should have this duality and at the same time support verification modularity.

• Verifiability should be reusable, in the sense of reusing requirements' verifiable semantics. Requirements for finite-state verification mostly follow several software requirement patterns (SRPs) [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF], yet the secondary studies of requirements reuse approaches do not evaluate the approaches' suitability for producing not just reusable but also verifiable requirements. This concern applies to both state-of-the-practice [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF] and state-of-the-literature [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF] secondary studies.

Reusability

Definition 2.3.1 Reusability is the suitability of recurring requirements' structures to be reused across projects for simplifying specification, comprehension and verification of the new requirements.

The ISO/IEC/IEEE 29148 "Requirements engineering" standard [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] mentions requirements reusability only in the context of product lines and sends the reader to the corresponding standard, ISO/IEC 26551 "Tools and methods of requirements engineering and management for product lines". We think, however, that requirements reuse should not be limited to product lines. Empirial studies [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF] uncovered recurring patterns in requirements not intended for development of product lines. In our opinion, requirements reuse is at least as important as software reuse. It might help not only save resources in the analysis phase, but also obtain requirements specifications of better quality both in content and syntax. It might also decrease the risk of writing low quality requirements and lead to the reuse of design, code, and test artifacts.

Reusability has become a success story in the reuse of code [START_REF] Zaimi | An Empirical Study on the Reuse of Third-Party Libraries in Open-Source Software Development[END_REF] and tests [START_REF] Tillmann | Parameterized unit tests[END_REF], but not requirements. Despite the existence of many requirements reuse approaches [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF] the actual level of requirements reuse is low [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF]. Textual copy and subsequent modification of requirements from previous projects are still the most commonly used requirements reuse techniques [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF], which has already been long recognized as deficient in the world of software reuse.

Control software requirements follow several SRPs. Dwyer et al. analyzed 555 specifications for finite-state verification from different domains and successfully matched 511 of them to 23 known SRPs [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. The SRPs were encoded in modeling notations with no guidance on how to reuse them across projects for verifying software solutions and put to an online catalogue. In 2005, Konrad and Cheng [START_REF] Konrad | Real-time specification patterns[END_REF] emphasized the importance of real-time requirements and created a catalogue of realtime verification-oriented SRPs, inspired by the catalogue of Dwyer et al. The new SRPs have the same qualitative semantics as the original ones but add the real-time quantitative semantics in terms of three commonly used real-time temporal logics. How to make these SRPs seamlessly reusable across projects?

The most critical factors inhibiting the industrial adoption of requirements reuse through SRP catalogues are [PQF17]:

• The lack of a well-defined reuse method,

• The lack of quality and incompleteness of requirements to reuse,

• The lack of convenient tools and access facilities with suitable requirements classification.

Scientific literature studying requirements reuse approaches pays little attention to these factors when measuring the studied approaches [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF]. The degree of reuse is the most frequently measured variable, but it is measured under the assumption that the evaluated approach is fully practiced. This assumption does not meet the reality: most of the practitioners who declare to practice requirements reuse approaches, apply them very selectively [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF]. Secondary studies, which study other studies, equally ignore the factors that matter to practitioners [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF].

Neither multirequirements, nor the PUT-like specification mechanisms consider the reusability concern extensively. PUTs achieve some reuse at the level of tests: they capture ADT axioms often repeated in closed test methods, and testing reduces to replacing the PUTs' parameters with actual values. PUTs do not abstract away the typing information, so they are not reusable across differently typed components. Contracts, on which multirequirements rely, offer reusability across test methods by design [START_REF] Meyer | Programs That Test Themselves[END_REF]: preconditions check relevance of the test input, and postconditions check correctness of the tested software. From the typing perspective, contracts offer reusability within the same inheritance tree: descendants inherit contracts from their ancestors. The semantics of such inheritance depends on whether it is a precondition, a postcondition, or a class invariant. DbC does not provide, however, explicit mechanism to reuse recurring contracts across components not connected through the inheritance relation.

Understandability

Definition 2.4.1 Understandable requirements have the same meaning to all stakeholders and can immediately serve as input to their activities.

Seamlessness would allow individual stakeholders to quickly see how a change on someone else's side affects their work. Requirements should serve as the main communication vehicle in responding to change. This places high demands on their understandability. Early requirements typically come in the natural language form, suffering from many understandability problems raised by Bertrand Meyer back in 1985 [START_REF] Meyer | On Formalism in Specifications[END_REF]. These problems happened to map very well to the standardized recommended characteristics of requirements and their compositions [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF]:

• Noise -the presence in the text of an element that does not carry information relevant to any feature of the problem [START_REF] Meyer | On Formalism in Specifications[END_REF]. Variants: redundancy; remorse. Removing noise results in necessary [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] requirements.

• Silence -the existence of a feature of the problem that is not covered by any element of the text [START_REF] Meyer | On Formalism in Specifications[END_REF]. Removing silence results in complete [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] specifications.

• Overspecification -the presence in the text of an element that corresponds not to a feature of the problem but to features of a possible solution [START_REF] Meyer | On Formalism in Specifications[END_REF]. Removing overspecification results in bounded [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] specifications consisting of implementation free [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] requirements.

• Contradiction -the presence in the text of two or more elements that define a feature of the system in an incompatible way [START_REF] Meyer | On Formalism in Specifications[END_REF]. Removing contradiction results in consistent [ISO11] specifications.

• Ambiguity -the presence in the text of an element that makes it possible to interpret a feature of the problem in at least two different ways [START_REF] Meyer | On Formalism in Specifications[END_REF]. Removing ambiguity results in unambiguous [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] specifications.

• Forward reference -the presence in the text of an element that uses features of the problem not defined until later in the text [START_REF] Meyer | On Formalism in Specifications[END_REF]. Forward referencing is a special case of non-traceable requirements. Removing forward referencing results in upwards traceable requirements. Adding downwards traceability results in fully traceable [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] requirements.

• Wishful thinking -the presence in the text of an element that defines a feature of the problem in such a way that a candidate solution cannot realistically be validated with respect to this feature [START_REF] Meyer | On Formalism in Specifications[END_REF]. Removing wishful thinking results in affordable [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] specifications consisting of feasible [START_REF]ISO/IEC/IEEE International Standard -Systems and software engineering -Life cycle processes -Requirements engineering[END_REF] requirements.

The characteristics recommended by the standard promote requirements' understandability. The state-of-the-art approaches lack evaluation against these characteristics. The PUT-like mechanisms are:

• Implementation free: they have the form of external test methods that call exported implementations' features.

• Unambiguous: they have unique meaning as programming language constructs.

• Downwards traceable: the calls to the specified features become the traceability vehicle.

The PUT-like approaches lack explicitly defined mechanisms that would guarantee the remaining characteristics.

Multirequirements are specified at several representation layers; one of the layers consists of piecemeal contracts. This makes multirequirements:

• Unambiguous: contracts have a precise mathematical semantics.

• Downwards traceable: the multirequirements' piecemeal contracts are part of the implementation.

• Upwards traceable: multirequirements collocate contracts' pieces with representations of the same requirements at the other layers.

Multirequirements promote completeness, consistency, unambiguity and feasibility: the several representations of the same requirement may force the reader to think deeper about its meaning. They inhibit implementation freedom, however: as piecemeal contracts, they will become part of the future implementation.

Meyer proposed the process of passing requirements through a formal notation to produce their more understandable natural language versions -"The Formal Picnic Approach" [START_REF] Meyer | The Formal Picnic approach to requirements[END_REF]. The state-of-the-art approaches do not include a similar-purpose mechanism.

Our task is to reuse the existing mechanisms of PUTs, multirequirements and formal picnics to promote the desired understandability characteristics and remove the mechanisms that inhibit them.

Part II

The Unified Solution Chapter 3

Essentials

The solution to the problem of finding a seamlessness-oriented requirements approach for object-oriented software construction is the object-oriented software construction itself [START_REF] Meyer | Object-Oriented Software Construction[END_REF]. Requirements should be classes, in the object-oriented sense. Recurring requirement patterns should become abstract template classes with deferred features that, when implemented, will turn into concrete requirements. Technically, project-specific requirements inherit from these template classes and become clients of the specified software components. Methodologically, object-oriented software construction [START_REF] Meyer | Object-Oriented Software Construction[END_REF] becomes the requirements specification method, and DbC [START_REF] Meyer | Applying "Design by Contract[END_REF] becomes the requirements verification method. The dissertation presents a ready-to-use library of Eiffel classes that capture already identified SRPs for control software and software components. The library provides a starting point for practicing the approach that we called Seamless Object-Oriented Requirements (SOOR).

The SOOR process takes natural language requirements on input and produces on output object-oriented requirements that are reusable and verifiable. Every objectoriented requirement also contains a function that automatically generates paraphrased natural language version of the input natural language requirement. The main purpose of having the paraphrased natural language version is to validate the original input requirement: the developer looking at the two versions will unconsciously start comparing them and possibly correcting the original requirement. This process is currently known as "The Formal Picnic Approach" [START_REF] Meyer | The Formal Picnic approach to requirements[END_REF] and was justified more than 30 years ago [START_REF] Meyer | On Formalism in Specifications[END_REF]. Object-oriented requirements also contain preprogrammed contracted routines for verifying correctness of candidate solutions. They encode in the verifiable form either ADT axioms, if the task is to implement a software component, or temporal properties and timing constraints, if the task is to implement a control software.

The present chapter details the key artifacts of the process and the core activities consuming and producing these artifacts. 25

The choice of notation and technology

The main task of the thesis was to explore applicability of object-oriented programming languages at the analysis phase. We chose Eiffel as the representative language to illustrate our concepts. It has human-friendly syntax, natively supports contracts and builds around object-oriented concepts. An advanced technology stack accompanies Eiffel. Contracts-based program proving and testing with AutoProof [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] and AutoTest [START_REF] Meyer | Programs That Test Themselves[END_REF], traceability to and from external sources with the Eiffel Information System (EIS) allowed us work at the cutting edge of the programming technology. AutoProof has been playing a key role in our studies. It is a program prover based on Hoare logic [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF] extended with semantic collaboration [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF] -reasoning framework that covers phenomena specific to object-oriented programming, such as aliasing, callbacks and information hiding. Polikarpova et al. demonstrated practical applicability of AutoProof by using it to fully verify EiffelBase2 -a specified library of containers [START_REF] Polikarpova | A fully verified container library[END_REF]. We have been using EiffelBase2 extensively as a valuable source of data for testing our ideas.

Specification drivers

Design by Contract [START_REF] Meyer | Applying "Design by Contract[END_REF] was originally designed under the assumption that the contracts would be checked at run time. Practitioners were perceiving code solely as an executable artifact. AutoProof makes it possible to use program elements as statically verifiable statements that may never be executed. This possibility has been the main thinking vehicle driving the development of the thesis.

Specification drivers operationalize this possibility and a key hypothesis of the thesis: Hoare logic is the best notation for capturing software requirements formally. The dissertation describes several innovative concepts, among which the notion of specification driver is the most fundamental. Understanding this concept is essential for understanding the rest of the work: the other concepts build on top of specification drivers. Syntactically, a specification driver is an object-oriented Hoare triple, or a selfcontained contracted routine. The following specification driver formally captures one of the axioms of stack:

push _ then _ pop (s _ 1, s _ 2: STACK [G]; x: G) --pop (push (s, x)) = s
--Popping a stack after pushing an element on it results in the original stack, --assuming that these operations modify only the stack itself. require

s _ 1 ~s_ 2 modify s _ 1 do s _ 1.push (x) s _ 1.pop ensure s _ 1 ~s_ 2 end
The natural language comment captures the axiom's mathematical representation and informal description. The push _ then _ pop routine depends only on its formal parameter and is self-contained in that sense. The routine may be submitted for static verification to AutoProof, or run as a parameterized unit test for dynamic verification. The modify clause captures the frame condition, critical for static verification. The require and ensure clauses capture the routine's pre-and postcondition, respectively. Definition 3.2.1 A specification driver is a self-contained contracted routine that captures some behavioral property of its formal parameters through the contract.

Chapter 8 gives more intuition behind specification drivers and how to apply them in the presence of a program prover. The subsequent chapters develop this idea further and find for it more complex applications -way more complex than specification and verification of stack. The specification drivers' syntax inherits a lot from the PUTlike approaches, which focus on the testing-based verification of ADTs and oppose themselves to contracts. Specification drivers:

• Capture temporal properties and timing constraints in addition to ADT axioms.

• Capture contracts' well-definedness and inconsistency axioms for checking with AutoProof.

• Serve as PUTs in testing-based verification.

• Capture requirement's formal semantics in a form reusable across projects.

The remaining chapters expand, detail and illustrate these benefits of specification drivers. The dissertation concludes with the generalized object-oriented treatment of requirements with specification drivers serving as the verification mechanism. They became the main thinking vehicle taking us to the general notions of seamless objectoriented requirement (SOOR) and SOOR template (SOORT).

Artifacts

Definition 3.3.1 Natural-language requirements (NLR) are requirements relying on the natural language and serving as the initial input to the software process. Execution of the software process derives other artifacts from the initial input.

NLRs may take the form of completely informal statements, user stories, use cases, etc. Their specific structure has no importance in the context of the present work.

Definition 3.3.2 Seamless Object-Oriented Requirement Templates (SOORT) are generic and deferred classes capturing SRPs. The formal generic parameters and deferred features represent blank sections of the templates to fill in.

SOORTs represent the key mechanism for achieving reusability of object-oriented requirements.

Definition 3.3.3 Seamless Object-Oriented Requirements (SOOR) are non-generic concrete classes capturing NLRs and inheriting from a SOORT.

Activities

Several major activities characterize the SOOR approach. Chapter 5 provides technical details to help developing new SOORTs. Chapter 4 presents a ready-to-use library of SOORTs capturing already known SRPs. Chapter 6 introduces chapters detailing the remaining activities. These chapters not only detail the respective processes, but also give illustrative examples to develop better intuition behind the approach.

Developing a SOORT

Developing a SOORT requires the same skills as developing any other object-oriented class. It assumes identification of a pattern, hardcoding its immutable part and parameterizing its variable part through abstraction and genericity.

1. Identify the pattern's formal semantics.

2. Declare the SOORT class and name it to reflect the identified semantics.

3. Encode the identified semantics through specification drivers and put them inside the SOORT class.

4. Make the specification drivers work with generic, not actual types; make the generic types part of the enclosing SOORT's declaration.

5. Implement the function (we call it out in the rest of the discussion remaining text) producing the template's string representation; use avaialable reflection facilities to extract the generic types' names.

Specifying a SOOR

Converting an NLR to a SOOR assumes identifying patterns to which the NLR belongs, inheriting from the SOORTs capturing these patterns and implementing the SOORTs' variable parts. The resulting class must be fully defined.

1. Identify the NLR's formal semantics.

2. Find the SOORT encoding the identified semantics.

3. Create a concrete class inheriting from the found SOORT.

4. Replace the SOORT's formal generic parameters with actual generic parameters.

5. Implement the SOORT's deferred features.

6. Make sure that the newly implemented SOOR successfully compiles.

Having a formal picnic

Having a formal picnic for an NLR includes instantiating the SOOR corresponding to the NLR, getting the instance's natural language representation produced by the out function (Section 3.4.1), and comparing the result with the NLR. This comparison should trigger rethinking and refinement of the input NLR.

1. Construct an object from the SOOR class resulting from the "Specifying a SOOR" process.

2. Generate the object's string representation by calling the standard out function.

The SOORT, from which the SOOR inherits, redefines the function according to the SOORT's semantics.

3. Compare the generated string with the input NLR.

4. If the generated string reflects the intended requirement's meaning more accurately than the input NLR, fix the NLR; go to step 3.

5. If the generated string does not reflect the intended requirement's meaning, inherit the SOOR from a different SOORT that would capture the NLR's meaning more accurately; go to step 1.

Verifying through testing

Testing correctness of a candidate implementation against a SOOR consists of running the specification drivers inside the SOOR, passing instances of the candidate implementation as formal arguments. The specification drivers serve as PUTs in this case.

1. Instantiate an object from the SOOR.

2. Call the object's specification drivers one by one, providing all the necessary actual arguments.

3. If a call fails with a precondition violation, fix the caller; go to step 2.

4. If a call fails with a loop variant violation, fix the implementation; go to step 2.

5. If a call fails with a postcondition violation, fix the implementation; go to step 2.

6. If a call fails with a loop invariant violation, identify the root cause of the failure.

7. Depending on the identified root cause, fix either the caller or the implementation; go to step 2.

8. If all the calls succeed, consider the tested implementation correct with respect to the SOOR.

The AutoTest technology [START_REF] Meyer | Programs That Test Themselves[END_REF] automates steps 1 through 3. The practitioner will only need to trace the AutoTest failures to their route causes and fix them.

Verifying through program proving

Proving correctness of a candidate implementation against a SOOR consists of running AutoProof on the SOOR. In this case, AutoProof will check correctness of the SOOR's specification drivers against the candidate solution's contracts. This may require writing additional annotations on the specification drivers that capture the SOOR's formal semantics.

1. Run AutoProof on the SOOR.

2. If AutoProof rejects the input, fix the implementation contract; go to step 1.

3. If AutoProof accepts the input, consider the implementation contract correct.

4. Implement the derived contract and check the implementation's correctness with AutoProof.

Chapter 4

Technical Contribution

The chapter presents two Eiffel libraries of SOORTs publicly available in [START_REF] Naumchev | Seamless Object-Oriented Requirement Templates[END_REF] and as appendices of this dissertation:

• For specifying control software requirements (Appendix A). SOORTs of this kind capture recurring behaviors. They contain only one specification driver for verifying concrete SOORs.

• For specifying requirements to software components (Appendix B). SOORTs of this kind capture recurring concepts from the problem space. They contain several specification drivers capturing the ADT axioms describing the target concepts.

For a better intuition behind this separation, here are examples of typical requirements that might be handled using the two kinds of SOORTs:

• "Turning on air conditioning always results in the specified room temperature within one hour".

• "A store inventory behaves as a stack".

In the first case, the system has only one goal: achieving the necessary temperature in the room. The system achieves this goal by adjusting two parameters: the output air temperature and intensity of blowing out the air. Using a SOORT in this case assumes inheriting from it and connecting the system's main feature to the SOORT. The SOORT encodes the "Global Response" SRP, capturing its semantics through a single specification driver (Appendix A.20). Verification will consist in this case of calling or proving the specification driver.

A store inventory has the following key features: adding a new item and removing the topmost item. Applying the SOOR approach to the second requirement assumes inheriting from and implementing the "Stack ADT" SOORT (Appendix B.22), connecting the inventory's and the stack's features. The SOORT contains several specification drivers capturing the ADT axioms of stack. Verification will consist in this case of calling or proving all these specification drivers. The two libraries offer a starting point for practicing the SOOR approach. The present chapter discusses their internals.

SOORTs for control software

Formal specifications of control software follow several known SRPs [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF]. We have developed an object-oriented library of Eiffel classes capturing the SRPs' verification semantics and natural language representations. The classes are generic and abstract enough to remain reusable across systems.

In 1999, Dwyer et al. [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF] published an article summarizing their study of 555 verification-oriented requirements taken from different software domains (Table 4.1). The authors report that 511 out of the 555 requirements map into 23 known SRPs. The SRPs are available online in 5 notations: LTL, CTL, GIL, Inca, QRE.

The online library of SOORTs [START_REF] Naumchev | Seamless Object-Oriented Requirement Templates[END_REF] captures in Eiffel the SRPs identified by Dwyer et al. The templates are configurable and thus can be used both in the purely qualitative form and with the real-time semantics added. The SOORTs include the real-time semantics anyway to limit the verification time through loop variants. The templates have the maximum integer [Var] as the default time boundary value. Because both the SOORTs and SOORs are classes, where SOORs implement the SOORTs through the inheritance relation, specifying real-time semantics in SOORs becomes an optional activity. The specifier may stay with the default time boundary provided by the template or redefine it through the standard object-oriented redefinition techniques. The object-oriented nature of SOORTs thus eliminates the need to maintain different catalogues for qualitative and real-time semantics: choosing one of the two becomes a matter of keeping or redefining the default time boundaries in the descendant SOORs.

SOORTs for software components

We found no studies like the one conducted by Dwyer et al. that would identify SRPs in ADT specifications of software components. After searching the available literature for such specifications, we concluded that few idiomatic ADTs and their variations often illustrate specification and verification approaches. Studying industrial applications of ADTs might be an interesting and challenging task as a possible continuation of the present analysis.

Table 4.2 maps the studied literature to the identified ADTs. Some ADTs are especially popular, and some sources study especially many ADTs. The most discussed ADTs are Stack and Queue plus their variations (5 occurrences each), Symbol table (2 occurrences) and Set plus its variation. The contributions by John V Guttag and his colleagues [START_REF] John V Guttag | The Design of Data Type Specifications[END_REF], [START_REF] Guttag | Abstract Data Types and the Development of Data Structures[END_REF], [START_REF] John V Guttag | Abstract Data Types and Software Validation[END_REF], [START_REF] Guttag | The Algebraic Specification of Abstract Data Types[END_REF] comprise most of the ADTs' studies. Axel van Lamsweerde in his book [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF] discusses two examples of ADTs, Book directory and Library, that are not basic data structures but information systems. Do these studies and ADTs matter at all? Having empirical data from the industry would objectively reflect the actual situation, but we have no such data yet; we present a literature-based analysis instead. Besides looking at the number of ADTs discussed in individual papers, we took into account the popularity of these works in terms of citations on Google Scholar.

Table 4.3 maps the studied literature sources to the number of analyzed ADTs and to the number of citations on Google Scholar (as of February, 2019). 2 out of the 8 sources have more than 1000 citations; 5 sources have more than 500 citations, 4 sources out of the 5 analyze 2 or more ADTs. Given the high citation level, we conclude that the analyzed ADTs have practical value and are worth encoding them as reusable templates. The SOORTs encoding the ADTs reside in the "software components" directory of our GitHub repository [START_REF] Naumchev | Seamless Object-Oriented Requirement Templates[END_REF] and in Appendix B of this dissertation. Chapter 5

[GHM78] [GH78] [GHM76] [Lam09] [KW91] [Tho87] [Gut76] [LZ74]

Internals of Seamless Object-Oriented Requirement Templates

Construction of SOORTs follows the same algorithm (Section 3.4.1), which is why detailing one of them should suffice for understanding the overall idea. The SOORTs' structure follows the philosophy of capturing as much complexity as possible, to simplify specification of concrete SOORs. Specifying a SOOR from a SOORT consists of the following steps:

1. Inheriting from the SOORT.

2.

Replacing the SOORT's formal generic parameters with the specified types.

3. Connecting the SOORT's deferred features with the specified types' concrete features.

From the extensibility viewpoint, the approaches to specifying SOORTs for control software and for software components differ as follows:

• A SOORT for control software represents an SRP capturing a finalized behavior.

• A SOORT for software components is an extensible collection of related behaviors.

The following sections illustrate this difference on specific examples.

Requirement templates for control software

(P ⇒ 3S) (5.1)
where P is called "stimulus" and S is called "response"; " " and "3" encode for the "always" and "eventually" temporal logic [START_REF] Pnueli | The Temporal Logic of Programs[END_REF] operators. Line 2 in Figure 5.1 captures the string representation of the SRP, where S and P vary between requirements. Line 3 provides a named hyperlink to a OneNote page detailing the SRP in the initial 5 notations provided by Dwyer et al. [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. Line 4 provides a named hyperlink to the location of the class on GitHub. The EIS (Eiffel Information System) mechanism of EiffelStudio makes it possible to construct, maintain and follow named hyperlinks. Lines 6-7 declare the class capturing the SRP. The declaration depends on three formal generic parameters -G, S and P:

• G stands for the specified type.

• S formalizes the "S" in the string representation.

• P formalizes the "P" in the string representation.

The S and P parameters are constrained: they must be conditions over the specified type G. Requiring these types to be expanded allows them to have default objects; the benefits of this possibility are coming shortly. Lines 13-28 implement the verify routine that captures the SRP's formal semantics as a specification driver. The routine accepts a formal argument of the specified type and expresses the SRP's semantics in terms of this variable. Lines 16-17 require the stimulus to hold through the precondition, where:

• p _ holds is a tag for easier debugging.

• ({P}).default returns the default object of type P.

• holds is a deferred Boolean function declared in class CONDITION, from which P inherits.

• The ({P}).default.holds (system) assertion requires the stimulus to hold for system, the formal parameter of verify.

Lines 19-20 initialize the timer variable declared in the parent REQUIREMENT class. Lines 21-22 capture the response S through the loop exit condition. Lines 23-24 modify the system's state, where:

• The iterate command is implemented in the REQUIREMENT class.

• iterate calls deferred command main of that class and decreases the timer.

• main is deferred for being implemented in concrete SOORs inheriting from the SOORT.

Lines 25-26 guarantee termination of the loop through the timer used as the loop variant. The verify routine, when called appropriately on a SOOR implementing the template, becomes a test method; this maps to the "Verifying through testing" activity (Section 3.4.4). When submitted to AutoProof, it becomes a Hoare logic theorem capturing the requirement's correctness axiom; this maps to the "Verifying through program proving" activity (Section 3.4.5).

String function requirement _ specific _ ouput on lines 32-35 returns the SRP-dependent natural language representation. The REQUIREMENT class implements, among other features, string function out which, in its turn, takes the value of requirement _ specific _ ouput and embeds it into the SRP-independent natural language representation. The SRPindependent part includes the name of the requirement derived from the SOOR's class name, the name of the specified type and the real-time constraint.

The time _ boundary function returns the default time boundary for finite state verification. This value comes from the REQUIREMENT ancestor class and is set to {INTEGER}.max _ value, the maximum integer avaiable on the current system. Concrete SOORs may override this default. The verification process will simulate up to that number of executions of iterate to observe the required response. If the response is not observed after the last iteration, the verification process will fail. • Line 2 in Figure 5.2 provides a general description of the template.

ADT templates for software components

• Lines 3-4 provide a hyperlink to the source of the specification in the literature.

• Line 5 provides a named hyperlink to the location of the class on GitHub.

• Lines 7-8 declare type B intended to behave as a binary tree containing elements of I; Q stands for the queue type returned by the in _ ord function. To show that Q, indeed, behaves as a queue of Is, the template's implementers must supply type QS conforming to the QUEUE _ WITH _ APPEND _ ADT template applied to Q and I.

• Lines 13-15 reflect the fact that the current SOORT inherits the regular binary tree behavior.

• Lines 17-22 declare the new function, in _ ord ("in order").

• Lines 24-50 state the ADT axioms due to the new function.

• Lines 52-61 state the well-definedness axiom for the contract of in _ ord.

Unlike the SOORTs for control software (Section 5.1), ADT SOORTs have several specification drivers for verification. In the example on Figure 5.2, the new SOORT adds two axioms, a _ 11 and a _ 12, to the axioms inherited from the parent SOORT. Because the new ADT declares another function, in _ ord, these new axioms are required note description: "Reusable abstract data type specification of binary tree with ''inord'' operation." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y3peoll5"

deferred class BINARY _ TREE _ WITH _ INORD _ ADT [B, I, Q, QS →QUEUE _ WITH _ APPEND _ ADT [Q, I]]
--Binary trees ''B'' contain elements of ''I''.

--They rely on queues ''Q'' with elements of ''I'' conforming to the The SOORT for the ADT specification of binary tree with function "in order" Appendix B.4). It inherits specification drivers of the BINARY _ TREE _ ADT SOORT encoding the ADT specification of binary tree without that function.

for completeness of the resulting ADT specification. The in _ ord _ well _ defined auxiliary axioms requires the contract of in _ ord to be well-defined. Well-definedness axioms apply only to verification with AutoProof: they make sure that the respective features' contracts are strong enough to maintain the equivalence classes.

To specify a SOOR stating that objects of a custom type T behave as binary trees with elements of E, convertible to queues F with elements of E:

1. Inherit from the BINARY _ TREE _ WITH _ INORD _ ADT class with T for B, E for I, F for Q.

2. For QS, provide a SOOR that specifies F as queue with elements of E.

3. Implement the SOORT's deferred definitions in terms of the features of types T, E and F.

To verify correctness of T against the binary tree axioms:

1. Run the specification drivers with names a _ * on relevant test input (that is, satisfying the specification driver's precondition) if you practice testing.

2. If you practice program proving, submit the resulting SOOR to AutoProof.

ADT SOORTs differ conceptually from control software SOORTs with their extensibility. If a variation of an ADT emerges, then making the new SOORT a subclass of the original ADT's SOORT will automatically include its specification drivers. SOORTs for control software have finer granularity: they represent finalized behavioral patterns.

Chapter 6

Navigating the Solution

To maximize understanding of the SOOR approach, the dissertation presents the idea incrementally. The multirequirements approach serves as the starting point. Every important idea that underpins the SOOR approach builds on top of the previous one. At the same time, each idea is practically applicable alone, regardless of the ideas building on top of it.

Chapter 7 demonstrates practical applicability of seamlessness in the sense of multirequirements [START_REF] Naumchev | Unifying Requirements and Code: An Example[END_REF] by applying it to a well-known example from the requirements literature [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF]. The resulting specification relies on the Mathematical Model Library (MML) [START_REF] Polikarpova | A fully verified container library[END_REF] -a library of immutable classes used in model-based contracts [START_REF] Schoeller | Making Specifications Complete Through Models[END_REF].

Multirequirements rely on contracts to achieve seamlessness, but contracts suffer from the incompleteness problem [START_REF] Schoeller | Making Specifications Complete Through Models[END_REF]. Chapter 8 proposes an AutoProof-based reasoning framework relying on the notion of specification driver to achieve contracts' correctness and well-definedness [START_REF] Naumchev | Complete Contracts through Specification Drivers[END_REF], which maps to steps 1-6 of the "Verifying through program proving" activity (Section 3.4.5). Chapter 9 additionally describes an AutoProof-driven technique for catching inconsistent contracts through specification drivers [START_REF] Naumchev | Detection of Inconsistent Contracts Through Modular Verification[END_REF], which maps to steps 7-9 of the "Verifying through program proving" activity (Section 3.4.5).

Chapter 10 improves multirequirements by replacing contracts with specification drivers that do not suffer from the problems of contracts. The two specification approaches remain fundamentally connected through AutoProof, however. The chapter describes an example of an incremental AutoProof-driven software process relying on seamless requirements [START_REF] Naumchev | Seamless requirements[END_REF]. Contracts remain vital part of the process, but they move from the problem space to the solution space. Seamless requirements serve as a driving force for specifying good contracts with the help of AutoProof. The chapter presents a complete software process detailing the "Verifying through program proving" activity (Section 3.4.5).

As empirical results demonstrate, frequently recurring verification-oriented SRPs often take the form of temporal properties [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF] and timing constraint [START_REF] Konrad | Real-time specification patterns[END_REF] in the control software domain. How good are seamless requirements for specifying such requirements? Chapter 11 presents AutoReq -an AutoProof-driven approach that ex-CHAPTER 6. NAVIGATING THE SOLUTION tends the notion of seamless requirements for specifying and verifying temporal properties and timing constraints of control software [START_REF] Naumchev | AutoReq: Expressing and verifying requirements for control systems[END_REF]. AutoReq identifies and emphasizes the fundamental connection between requirements expressiveness, verifiability and reusability. In AutoReq, the three aspects reinforce each other. The chapter provides detailed principles behind the "Specify a SOOR" (Section 3.4.2) and "Verify through program proving" (Section 3.4.5) activities in the context of temporal properties and timing constraints.

The recurring SRPs [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF] raise a question: how to make these SRPs reusable across projects while keeping the expressiveness and verifiability introduced by specification drivers, seamless requirements and AutoReq? Chapter 12 not only makes seamless requirements reuse-oriented, but also adds a round trip requirements engineering mechanism relying on formal picnics into the very notion of requirement [START_REF] Naumchev | Object-oriented requirements: reusable, understandable, verifiable[END_REF]. The chapter presents a ready-to-use library of Eiffel SOORTs encoding the known verification-oriented SRPs [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF]. The classes contain reusable features for performing formal picnics and verifying candidate implementations. The chapter maps to the "Specify a SOOR" (Section 3.4.2), "Have a formal picnic" (Section 3.4.3) and "Verify through testing" (Section 3.4.4) activities. SOOR-based development through testing conceptually builds on top of paramenterized test-driven development (PTDD) [START_REF] Paul | Parameterized test driven development[END_REF], adding the possibility to test temporal properties and timing constraints -types of requirements not covered by the PUT-based approaches.

Appendix A and Appendix B provide the full collection of the SOORTs for control software and software components, respectively.

Chapter 7

Unifying Requirements and Code: an Example

Requirements and code, in conventional software engineering wisdom, belong to entirely different worlds. Is it possible to unify these two worlds? A unified framework could help make software easier to change and reuse. To explore the feasibility of such an approach, the case study reported here takes a classic example from the requirements engineering literature and describes it using a programming language framework to express both domain and machine properties. The chapter describes the solution, discusses its benefits and limitations, and assesses its scalability.

Introduction

According to the standard view in software engineering, the tasks of requirements, design and implementation require distinct techniques and produce different artifacts.

What if instead of focusing on the differences we recognized the fundamental unity of the software construction process through all its stages? The principle of "seamlessness" (see e.g. [START_REF] Meyer | Object-Oriented Software Construction[END_REF]) follows from this assumption that the commonalities are more fundamental than the differences, and that it pays to use the same set of concepts, notations and tools throughout the development, from the most general and user-oriented initial steps down to the most technical tasks.

A consequence of the seamlessness principle is that requirements are just another software artifact, susceptible to many of the same techniques as code and design. Assuming a modern programming language with powerful abstraction facilities, the requirements can be written in the same notation as the program.

The notion of multirequirements [START_REF] Meyer | Multirequirements[END_REF] adds to this principle the idea of using several interleaved descriptions: natural language, graphical, and formal (Eiffel text) serving as the reference.

How realistic is the seamless multirequirements approach, what are its limits, and what benefits does it bring? To help answer this question, the present chapter takes the example used in a classic paper of the requirements literature, Jackson's and Zave's zoo software controller, and describes it entirely in a seamless style, including the key formal constraints of the example.

The goal of the chapter is not advocacy but experimentation. The advocacy is present in the earlier references cited above. We practice a seamless approach to software construction and consider it fruitful, but the present discussion does not attempt to establish its superiority; rather it starts from the seamlessness hypothesis -the hypothesis that a single notation, Eiffel, is applicable to requirements analysis just as much as to programming -and applies this hypothesis fully and consistently to a significant example. While we draw some conclusions, the important part is the result of the experiment as presented here, enabling readers to form their own conclusions as to the benefits and limits of the approach.

Section 7.2 briefly explains why it is interesting to put into question the traditional separation between software development tasks. Section 7.3 proposes an approach to unify software development tasks by combining the approaches described in [START_REF] Meyer | Multirequirements[END_REF] and [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF]. Section 7.4 introduces some theoretical and technical background. Section 7.5 presents the approach applied to an example. Finally, Section 7.6 concludes and mentions future work.

Summary of contributions

Experimentation mentioned at the end of Section 7.1 resulted in the following key outcomes.

• An evidence suggesting that it is possible to use Multirequirements approach [START_REF] Meyer | Multirequirements[END_REF] for describing cyber-physical systems like zoo turnstile controller. At the same time, different types of exemplar statements go far beyond just the relational statements used in [START_REF] Meyer | Multirequirements[END_REF].

• An evidence suggesting that a real programming language notation may be even more expressive than most of the popular formal notations. Section 7.5.5 contains all the details.

• An example showing how object orientation helps to effectively manage complexity in specifications. The approach used in [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF], where the specification is basically a linear list of statements, does not scale to the case of large systems, when the number of requirements is too big. Object orientation provides a way to relate the conceptual objects so that the resulting specification will be scattered across the classes in an intuitive way.

The drawbacks of too much separation of concerns

Historically, there was a reason for emphasizing the distinction between development tasks. The goal was to highlight the specific needs of requirements and design, moving away from the "code first, think later" way of building software. But as the precepts of software engineering have gained wide acceptance and programming languages have moved from low-level machine-coding notations to descriptive formalisms with high expressive power, the reverse approach is worth exploring: instead of emphasizing the differences, show the fundamental unity of the software process.

The traditional approach is subject to five criticisms.

i Insufficient information. Requirements analysts do not know what details are important for developers. They are good at expressing customer needs in a form the customer is ready to sign, but they typically do not know what is implementable and what is not. [START_REF] Meyer | On Formalism in Specifications[END_REF] discusses some typical flaws of natural language requirements specifications.

ii Lack of communication. When developers see ambiguous or contradictory elements in the requirements, they will not always go back and ask, but will often interpret the requirement according to their own understanding, which may or may not coincide with user wishes.

iii Impedance mismatches [START_REF] Meyer | Object-Oriented Software Construction[END_REF]. The use of different formalisms at different stages requires translations and creates risks of mistakes.

iv Impediment to change. With different formalisms, it is difficult [START_REF] Meyer | Object-Oriented Software Construction[END_REF] to ensure that a change at one level is reflected at other levels.

v Impediment to reuse. The presence of requirements as a document specific to each project may mask the commonality between projects and make the team miss potential reuse of existing developments.

A seamless approach 7.3.1 Unifying processes

Consideration of the problems listed above leads to trying a completely different approach, which recognizes that beyond the obvious differences between tasks of software development they share fundamental needs, concepts, principles, techniques, and can be addressed through a common notation. Modern programming languages are not just coding tools to talk to a machine, but powerful tools for expressing abstract concepts and modeling complex systems. The Eiffel notation used in the experiment uses object-oriented principles of classes, genericity, polymorphism and inheritance, which have proved adept at describing sophisticated systems (independently of their technical programming aspects) in a modular, flexible, reusable and evolutionary way. Thanks to the presence of Design by Contract mechanisms, it can describe not only the structure of systems but their abstract semantics.

The hypothesis

The hypothesis explored in the experiment, in light of the above analysis, is that it is possible to design a software development process that:

i Uses for requirements the same notation and tools as for design and implementation.

ii Links the resulting documents (requirements, design, code) together, ensuring a major goal of software engineering: traceability.

iii Makes it possible to prove, formally, the correctness of the implementation against the specification.

iv Supports extendibility by ensuring that small changes in the requirements will cause a proportionally small change in the design and the implementation.

How to test the hypothesis

The experiment relies on the following scenario for testing the preceding hypothesis at least in part:

i Propose a candidate process.

ii Select examples and apply the process.

iii Analyze the outcome.

[Mey13] sketches such a process, based on using object orientation for representing the relationships between the conceptual objects in the requirements document. The basic idea was to have an object-oriented code along with the natural language description of a requirement. It is also possible to represent each code fragment graphically as a BON diagram [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF].

[Mey13], however, uses as example the very notion of requirements process. In other words, it is self-referential. This confers (we hope) a certain elegance to the example, but makes it look artificial. For our experiment we take a more standard example, coming from a classic requirements paper by Jackson and Zave [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF].

More precisely, the requirements from the example are represented using the modelbased [START_REF] Polikarpova | A fully verified container library[END_REF] contracts-equipped [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF] object-oriented [START_REF] Meyer | Object-Oriented Software Construction[END_REF] notation (Eiffel).

Theoretical and technical background 7.4.1 Design By Contract

Work [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF] gives a comprehensive description of Design By Contract. Design By Contract integrates Hoare-style assertions [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF] within object-oriented programs [START_REF] Meyer | Object-Oriented Software Construction[END_REF] constraining the data that run time objects hold. This approach equips each class feature (member) with a predicate expression, that specify its behavior, in the form of pre-and postcondition. The postcondition has to hold whenever the precondition held and the feature finished its computation before the program execution process invokes the next feature. Design By Contract equips the class itself with an invariant predicate expression which holds in all states of the corresponding objects.

Model-based contracts

If classical contracts are for constraining the data that run time objects actually hold, model-based contracts are "meta" contracts for constraining the objects as mathematical entities (sets, sequences, bags, relations etc.), and an execution process does not instantiate the corresponding mathematical representations at run time as parts of the objects. Model-Based Contracts are useful when it is not possible to capture all the nuances by means of classical contracts. Works [START_REF] Schoeller | Making Specifications Complete Through Models[END_REF] and [START_REF] Polikarpova | A fully verified container library[END_REF] give some examples of such situations and a comprehensive description of the concept.

AutoProof

The AutoProof [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] tool is capable of formally proving the correctness of contractequipped object-oriented programs, both classical and model-based. AutoProof proves for every routine that the conjunction of the precondition and the class invariant before invocation ensures the conjunction of the postcondition and the class invariant after invocation. The class is verified if and only if all the class features are verified.

Unifying the two worlds: an example

Avoiding the problems analyzed in Section 7.2 means unifying the worlds of requirements and code in a unified framework. This section illustrates the approach. It takes the example from the work [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] and shows how to express requirements of various types in the style of work [START_REF] Meyer | Multirequirements[END_REF] -namely, using Eiffel as a formal specification language for expressing each requirement. Originally the authors used this example to demonstrate the process of deriving specifications from requirements, and the unified approach captures all the nuances of this process.

Example overview

The authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] start with giving the overall context: "...Our small example concerns the control of a turnstile at the entry to a zoo. The turnstile consists of a rotating barrier and a coin slot, and is fitted with an electrical interface..." This small paragraph mostly describes the relationships between the conceptual objects. Figure 7.1 contains specification of the context in the style of work [START_REF] Meyer | Multirequirements[END_REF].

Translating the specification from Figure 7.1 back to natural language using the object-oriented semantics results in almost the same initial description: "A ZOO has a TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a BARRIER barrier so that coinslot has Current TURNSTILE as turnstile and barrier has Current TURNSTILE as turnstile..." COINSLOT and BARRIER hold references to the TURNSTILE instances in order to capture the "electrical interface" phenomena: the word "interface" means something over which the parties are able to communicate with each other; communicating means sending messages to each other, and to send message to someone in the object-oriented world is to take a reference to the object and perform a qualified call on it. So at the very least the parties should hold references to each other to be able to communicate in two directions.

The designation set

After stating the problem context the authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] describe the designation set.

Each designation basically corresponds to a separate type of events observed in the problem area. The authors give the designations as a set of predicates as in Figure 7 model: enters in Figure 7.3 says that enters is a model query. The enters query models the sequence of timestamps corresponding to moments when people enter the zoo.

The deferred keyword states that the specification gives only formal definitions of the events (in terms of pre-and postconditions [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF]) and does not give the corresponding operational reactions of the machine on the events. The ensure clause is the postcondition of the feature. It describes how the system changes after reacting on an event of the corresponding type. These specifications are intuitively plausible: an event occurrence should result in extending the corresponding history with the moment in time when the event took place, and the time of the new event should be strictly bigger than the time of the previous event, as shown, for instance, by the postcondition in feature unlock of Figure 7.3. The keyword old is used to indicate expressions that must be evaluated in the pre-state of the routine, and "~" makes a comparison by value.

Shared phenomena

The authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] introduce the notion of shared phenomena -that is, the phenomena visible to both the world (the environment) and the machine (the notions of the world and the machine were introduced by Jackson in [START_REF] Jackson | The World and the Machine[END_REF]). In the multirequirements approach this notion is covered by using the "has a" relationships between the ZOO and the TURNSTILE classes, accompanied with the model-based contracts. Namely, since a ZOO has a turnstile as its feature, it can see any phenomena hosted by the turnstile: locks, unlocks, coins, pushes; since a TURNSTILE does not hold any references to a ZOO, it can not observe nor control the enter events modeled by ZOO.

Specifying the system

Work [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] introduces a set of criteria by means of which it is possible to identify whether the machine is specified or not. One of the criteria states that all requirements should be expressed in terms of shared phenomena only. Requirements refinement is the process of converting the requirements stated in terms of both shared and nonshared phenomena to the form in which they are expressed in terms of shared phenomena only. Refinement process consists of identifying some laws, which hold in the environment regardless of the machine behaviour, and constraining the machine behaviour. The resulting constraints imposed on the machine together with the laws of the environment should logically imply the requirements stated in the beginning.

The authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] state that the laws of the environment are always expressed in the indicative mood, while the restrictions imposed on the machine behavior are expressed in the optative mood.

All properties of the problem derived in [JZ95] -be they optative or indicative descriptions -can be conceptually divided into the two main categories.

Properties which hold at any moment in time:

an example of such property is the OPT1 requirement (expressed in Figure 7.4) saying that entries should never exceed payments (the authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] requirement can be expressed in the following way. The "something always holds" semantics fits perfectly into the semantics of Eiffel invariant: "something holds in all states of the object", as expressed in Figure 7.4.

Properties which hold depending on the type of the next event to occur: the indicative property IND2 saying that it is impossible to push the barrier if the turnstile is locked will serve as an example (the authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] use IND * for labeling properties expressed in the indicative mood). Figure 7.5 depicts the corresponding specification. The initial description is divided into the two different requirements:

1. The turnstile should have received at least one unlock signal.

2. If the turnstile has ever received lock signals, the most recent lock signal should be older than the most recent unlock signal.

If the two requirements hold together, the turnstile will be in the unlocked state.

Real time properties:

the authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] derive several timing constraints on the events processing. For example, the OPT7 requirement says that the amount of time between the moment when the number of the barrier pushes becomes equal to the number of coins inserted and the moment when the machine locks the turnstile should be less than 760 milliseconds. This is basically a constraint for the reaction on the push event: if the next push event uses the last coin, the machine should ensure that the turnstile is locked in a timely fashion, so that a human being will not have time to enter without paying. The 760 quantity reflects the fact that it takes at least 760 milliseconds for a human being to rotate the barrier completely and enter the Zoo.

Taking this reasoning into consideration, the multirequirements specification approach handles the timing constraint by putting it into the push feature postcondition (as depicted in Figure 7.6). The antecedent of the implication assumes the situation when before the push event the turnstile was locked (old turnstile.unlocks.last > old turnstile.locks.last expression in Figure 7.6), and after the event occurrence the number of barrier pushes became equal to the number of coins inserted (pushes.count = turnstile.coinslot.coins.count expression in Figure 7.6). The consequent reflects the requirement that, having in place the situation that the antecedent describes, there should be a lock event which is more late than the last push event (turnstile.locks.last > pushes.last expression in Figure 7.6), and the distance between them should be less than 760 milliseconds ((turnstile.locks.lastpushes.last)<760 expression in Figure 7.6).

Specifying the "unspecifiable"

One of the requirements mentioned in [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] was OPT2 saying that the visitors who pay are not prevented from entering the Zoo. The authors give only informal statement of this requirement: ∀ v, m, n • ((Enter#(v, m) ∧ Coin#(v, n) ∧ (m < n)) ⇒ "The machine will not prevent another Enter event .

The antecedent of this implication should be read like "the number of entries is less than the number of coins inserted". The authors of [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] do not formalize the consequent and leave it in the natural language form. The multirequirements specification approach handles this requirement using standard Eiffel mechanism called agents (see Figure 7.7).

The agent clause treats a feature (the enter feature in this particular case) as a separate object so that the feature precondition becomes one of the boolean-type features of the resulting object.

Summary

Software construction involves different activities. Typically these activities are performed separately. For instance, requirements and code, as developed nowadays, seem to belong to different worlds. The presented experiment shows the feasibility of unifying requirements and code in a single framework.

In this experiment, we take the classic Zoo Turnstile example [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] and implement it using Eiffel programming language. Eiffel is used not just to express the domain properties but also the properties of the machine [START_REF] Jackson | The World and the Machine[END_REF], enabling users to combine requirements and code in a single framework. The complete implementation of the example can be reached in the GitHub project [Naua].

The multirequirements approach is suitable not only for formalizing the statements that [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] formalizes, but also for formalizing those which are not possible to formalize with classical instruments like predicate or temporal logic (like OPT2 requirement, see Figure 7.7).

The multirequirements approach is not only expressively powerful -it enables smooth transition to design and implementation. GitHub project [Naua] contains a continuation of the experiment in the form of a complete implementation of the Zoo Turnstile example.

In order to understand the benefits of the multirequirements approach better it seems feasible to evaluate it against the hypothesis stated in Section 7.3.2: i Unity of software development tasks: indeed, all the code fragments corresponding to different specification items merged together will bring a complete design solution available at [Naua] (the classes ending with _ ABSTRACT).

ii Traceability between the specification and the implementation: the classes ending with _ CONCRETE available at [Naua] contain the implementation and relate to the specification classes by means of inheritance.

iii Provability of the classes: the AutoProof system [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] is capable of formally proving both classical and model-based contracts in Eiffel. However, it is not yet capable of proving "higher-level" agents-based contracts like the one used in Figure 7.7 for expressing requirement OPT2 from the work [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF]. Adding this functionality to AutoProof is one of the next work items.

iv Extendibility of the solution: since Eiffel artifacts used in the formalizations of the requirements items correspond to their natural language counterparts, it is visible right away how a change in one representation will affect the second.

Speaking about scalability of the approach, a formal representation of a requirements item specified with Eiffel is as big as the scope of the item and its natural language description are, so the overall complexity of the final document should not depend on the size of the project. Anyway, this is something to test by applying the approach to a bigger project.

The future actions plan include:

i to prove formally that the features' specifications are consistent -that they preserve the invariants of their home classes, and the invariants by themselves are consistent. For example, it should not be possible for P(x) and ¬P(x) to hold at the same time.

ii to design machinery for translating model-based contract-oriented requirements to their natural language counterpart so that the result will be recognizable by a human being.

iii to apply the approach to a bigger project.

iv to extend AutoProof technology [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] so that it will be able to handle agents in specifications (like in Figure 7.7).

It seems feasible to utilize AutoProof technology [Tsc+15] for achieving goal (Item i).

AutoProof is already capable of proving that a feature implementation preserves its specification (except specifications with agents), and it seems logical to empower it with the capabilities for working solely on the specifications level. Work [START_REF] Martín | Proofs and proof transformations for object-oriented programs[END_REF] contains a formal proof that it is possible to achieve goal (Item iv). As a result of implementing the plan a powerful framework for expressing all possible views on the software under construction should emerge. The threshold of success includes the possibility to generate the specification classes (their names end with _ ABSTRACT) available at [Naua] automatically, using requirements documents produced according to the multirequirements process as input.

Chapter 8

Making Contracts Complete

Existing techniques of Design by Contract do not allow software developers to specify complete contracts in many cases. Incomplete contracts leave room for malicious implementations. This chapter complements Design by Contract with a powerful technique that removes the problem without adding syntactical mechanisms. The proposed technique makes it possible not only to derive complete contracts, but also to rigorously check and improve completeness of existing contracts without instrumenting them.

Introduction

The main contribution of this chapter is a new approach to seamless software development, bridging the heretofore wide gap between two fundamental and widely used techniques: Abstract Data Types (ADTs) and Object-Oriented Programming (OOP). These techniques seem made for each other, but trying to combine them in practice reveals a glaring impedance mismatch. We explain the problem, provide a remedy, and subject it to formal verification.

ADTs [START_REF] Guttag | The Algebraic Specification of Abstract Data Types[END_REF] are a clear, widely known way to specify systems precisely. OOP [START_REF] Meyer | Object-Oriented Software Construction[END_REF] is the realization of ADT ideas at the design and programming level, with Design by Contract (semantic properties embedded in the program) providing the connection. At least, that is the accepted view. However, the correspondence is far less simple than this view would suggest. While it would seem natural to use ADTs for specification and OOP for design and implementation, in practice this combination hits an impedance mismatch:

• At the ADT level, some axioms involve two or more commands. For example, an axiom for stacks (the standard example of ADTs, which remains the best for explanatory purposes) will state that if you push an element onto a stack and then pop the stack, you end up with the original stack.

• In a class, the standard unit of OOP, the contracts can only talk about one command, such as push or pop, but not both. Specifically, the postcondition of a command such as push can describe the command's effect on queries such as top 57 (after you have pushed an element, that element is the new top), but there is no way to refer to the effect on pop as expressed by the ADT axiom.

The present chapter introduces a practical solution to this mismatch. The essence of the solution is that classes reflecting ADTs, such as a class STACK, cannot by themselves capture such multi-command (or "second-degree") ADT axioms, but this does not mean that the OOP approach fails us. The idea will be to introduce auxiliary classes whose role is to "talk about" the features of the basic classes such as STACK (the ones corresponding to ADTs). Such a class has features that combine those of basic classes, e.g. a command push _ then _ pop that works on an arbitrary stack, pushing an element on a stack and then popping the stack. Then the postcondition of push _ then _ pop can specify that the resulting stack is the same as the original.

We call such features specification drivers by analogy with "test drivers", which are similarly added to the basic units of a system for the sole purpose of testing them. Like test drivers, specification drivers serve purely verification purposes, rather than providing system functionality. The difference is of course that test drivers appear in dynamic verification (testing), whereas specification drivers are for static verification (for example, as in this chapter, correctness proofs). But the basic idea is the same. Specification drivers are not just a specification technique; we also submit them to formal, mechanical verification. As part of the AutoProof formal verification tool [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF], we have mechanically proved the correctness of the presented examples.

Section 8.2 explains the problem through a working example. Section 8.4 describes the essentials of the solution. Section 8.5 compares this approach with other possible ones. Section 8.6 presents our experience with mechanical verification. Section 8.7 draws conclusions and outlines future research prospects. • The name of the class is derived from the name of the ADT it implements.

Motivating example

• The signatures of the implementation features are derivatives of the ADT functions' descriptions.

• Preconditions of the ADT functions go to require clauses of the implementation features.

• Postconditions of the implementation features capture ADT axioms A1, A3 and A4.

• The create clause lists the implementation feature new to highlight its special mission of instantiating new stacks. Axiom A2 introduces the problem. The axiom constrains two functions simultaneously, extend and remove: the former one should do nothing but extend the stack with the given element, and the latter should do nothing but remove the topmost element of the stack. As a consequence, it is not possible to capture the axiom in a single implementation feature postcondition. Postconditions operate on two objects: the target object before calling the feature and the target object after invoking the feature. If the feature has formal parameters, they also parameterize the postcondition. Axiom A2 involves three stacks: the original one s, s 1 resulting from applying function extend to s, and finally s 2 resulting from applying remove to s 1 . Formally:

TYPES • STACK[G] FUNCTIONS • extend : STACK[G] × G → STACK[G] • remove : STACK[G] → STACK[G] • item : STACK[G] → G • is empty : STACK[G] → BOOLEAN • new : STACK[G] AXIOMS For any x : G, s : STACK[G] (A1) item(extend(s, x)) = x (A2) remove(extend(s, x)) = s (A3) is empty(new) (A4) not is empty(extend(s, x)) PRECONDITIONS (P1) remove(s : STACK[G]) require not is empty(s) (P2) item(s : STACK[G]) require not is empty(s)
∀ s, s 1 , s 2 : STACK[G]; x : G • (s 1 = extend(s, x) ∧ s 2 = remove(s 1) ⇒ s 2 = s
Or, writing the quantified expression in terms of postconditions:

(Post extend (s, s 1 , x) ∧ Post remove (s 1 , s 2)) ⇒ s 2 = s (8.1)
On one hand, it is not possible to capture A2 in a single postcondition. On the other hand, postconditions of extend and remove should exist and be strong enough to satisfy Equation (8.1).

Failures to capture such important properties as A2 in postconditions leave room for invalid implementations. The inability to capture axiom A2 allows for implementing stacks which store only the last added element and thus are useless as data containers. Still, such an implementation satisfies all the other axioms as its postconditions capture them.

Figure 8.3 depicts such an invalid implementation. For the sake of simplicity, it ignores preconditions, but this does not render the reasoning invalid: an empty precondition defaults to TRUE, the weakest conceivable precondition. According to the rule of consequence for preconditions [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF], correctness against a weaker precondition implies correctness against a stronger one. Submitting the class STACK _ IMPLEMENTATION to AutoProof confirms the point: the tool successfully proves "correctness" of the implementation.

For purist developers the problem of underspecified postconditions may become a reason for not using them at all. Intuitively, it seems better to keep all the properties written in a single place, and the described problem prevents doing this: although it is possible to capture some ADT axioms in postconditions, some of them will have to exist in separate documents and thus carry the risk of misuse and all the associated traceability costs.

Axioms as specification drivers

The example in Figure 8.2 translates axiom A1 to the postcondition of the implementation feature extend. Is it in fact the only way to do the translation of the axiom? A closer look at the original axiom and its translation in Figure 8.2 reveals two facts:

• The axiom uses the function extend in a sense of applying it, while its translation in Figure 8.2 specifies the implementation feature without invoking it. Is it possible to devise a translation of axiom A1 that would be closer to the origin? Existing techniques of DbC completely ignore a large family of program constructs: features with pre-and postconditions whose only purpose is to serve as proof obligations. Such features do not implement any ADT functions and are not to be invoked. Instead, they are intended solely for static verification.

class STACK _ IMPLEMENTATION [G]
Figure 8.4 gives an example. The feature extend _ updates _ item is an alternative translation of axiom A1. It possesses the following properties:

• It operates on explicit objects s and x.

• It uses an explicit invocation of implementation feature extend.

The example in Figure 8.4 takes the whole feature extend _ updates _ item as the translation of the axiom, as opposed to the one in Figure 8.2, where the axiom is captured with the assertion item = x in the postcondition of implementation feature extend.

Using this approach, it is possible to capture axiom A2 in the form of the feature remove _ then _ extend in Figure 8.5. Again, the whole feature is the translation of the axiom. The feature is _ equal defines an equivalence relation over run time objects representing stacks. It is declared by default in all Eiffel classes and compares its operands by value. The notion of equality deserves a separate analysis; Section 8.4.2 gives the details.

Henceforth, we will use the term specification drivers for specified features serving as translations of certain ADT axioms. A specification driver can be proven correct only if the implementation features it invokes have strong enough postconditions.

Consequently, specification drivers, as their name suggests, drive specifying stronger postconditions.

Specification drivers in practice

The present section derives the complete set of specification drivers for the stacks ADT (Figure 8.1). This set includes not only specification drivers that represent the original axioms of stacks because some specification drivers stem from a fundamental difference between ADT specifications and object-oriented programs: in the former it is not possible to have more than one occurrence of one and the same abstract stack, while in the latter it is possible to instantiate two run time objects denoting one and the same abstract stack. Section 8.4.2 and Section 8.4.3 discuss the issue in detail and derive additional specification drivers caused by it.

ADT axioms

Specification drivers do not bring any functional value to the system: they exist only to be eventually discharged as proof obligations. Consequently, they should not pollute implementation classes like STACK _ IMPLEMENTATION in Figure 8.2. Concerning where to store them, the simplest option is to create a separate class within the source code project. The ADT _ AXIOMS _ SPECIFICATION _ DRIVERS class in Figure 8.6 contains specification drivers capturing the ADT axioms of stacks. This class is generic: since it talks about instances of a generic concept, STACK _ IMPLEMENTATION [G] in this case, it needs to assume existence of type G to keep the genericity. The {NONE} clause suggests that the features listed within the corresponding feature block do not supply any useful functionality. The deferred keyword in front of the class declaration suggests that it is not possible to instantiate any objects of this class, which makes sense as the class serves as a document containing specification drivers rather than a blueprint for creating run time objects.

Equivalence

It is possible to see that the specification drivers in Figure 8.6 use two different operators for objects comparison: = and is _ equal, while the original ADT specification in Figure 8.1 invokes only =. This section discusses the difference between comparing instances of ADTs and comparing objects instantiated from object-oriented classes and introduces a set of specification drivers capturing the difference.

ADT specifications operate on sets of instances in the mathematical sense of the word "set": an abstract data type cannot contain two instances of one and the same abstract object. For example, the range of the function new consists of the only stack instance, which is the empty stack, as axiom A4 suggests. When an object-oriented program is running, it is perfectly fine for it to have two run time objects in its memory denoting one and the same instance of the ADT. For example, it is possible to declare two variables of type STACK _ IMPLEMENTATION [INTEGER] and make them both refer to two different stack objects in the memory, as in Figure 8.7. Consequently, run time objects form not a set of abstract objects, but a multiset, or bag [START_REF] Blizard | Multiset Theory[END_REF]. That is why there are two different comparison operators: the = operator checks whether the operands refer to identical run time objects, and is _ equal checks whether the objects referenced by the operands represent the same instance of the ADT implemented by the class. As a consequence, if specification drivers representing ADT axioms use the feature is _ equal, the corresponding implementation class should redefine the feature and its postcondition should be strong enough to satisfy the definition of equivalence relations. A relation over stacks is an equivalence relation if and only if it possesses the following properties:

deferred class ADT _ AXIOMS _ SPECIFICATION _ DRIVERS [G] feature {NONE} axiom _ a1 (s: STACK _ IMPLEMENTATION [G]; x: G) do s.extend (x) ensure s.item = x end axiom _ a2 (s1, s2: STACK _ IMPLEMENTATION [G]; x: G) require s1.is _ equal (s2) do s1.extend (x) s1.remove ensure s1.is _ equal (s2) end axiom _ a3 (s: STACK _ IMPLEMENTATION [G]; x: G) do s.extend (x)
deferred class EQUIVALENCE _ SPECIFICATION _ DRIVERS [G] feature {NONE} reflexivity (s: STACK _ IMPLEMENTATION [G]) do ensure s.is _ equal (s) end symmetry (s1, s2: STACK _ IMPLEMENTATION [G]) require s1.is _ equal (s2) do ensure s2.is _ equal (s1) end transitivity (s1, s2, s3: STACK _ IMPLEMENTATION [G]) require s1.is _ equal (s2) s2.is _ equal (s3) do ensure s1.is _ equal (s3) end end
• Reflexivity: every stack is equal to itself.

• Symmetry: if stack s 1 is equal to stack s 2 , then s 2 is equal to s 1 as well.

• Transitivity: if stack s 1 is equal to stack s 2 , and s 2 is equal to s 3 , then s 1 is equal to s 3 .

As Figure 8.8 illustrates, the three properties may be captured by a separate class created specifically for this goal. If all the features of class EQUIVALENCE _ SPECIFICATION _ DRIVERS are correct, then the postcondition of is _ equal indeed defines an equivalence relation over run time objects instantiated from

STACK _ IMPLEMENTATION [G].
It is worth noting that because equivalence definition is static, specification drivers for equivalence may be generated automatically for every class.

Well-definedness

The ADT specification in Figure 8.1 lists certain functions over stacks. It is necessary to ensure that they maintain equivalence relations over stacks. Invoking a given implementation feature for two run time objects, which represent a single ADT object, should be indistinguishable from applying the ADT function implemented by this feature to that ADT object. Since a function application produces only one element from its range set, the two run time objects should also be considered equal after the invocation. This property is called well-definedness under an equivalence relation. The class WELL _ DEFINEDNESS _ SPECIFICATION _ DRIVERS in Figure 8.9 contains specification drivers that encode well-definedness for every stack implementation feature. The specification drivers item _ is _ well _ defined and remove _ is _ well _ defined contain assertions not s1.is _ empty and not s2.is _ empty. These specification drivers invoke implementation features item and remove, which have preconditions that need to be satisfied. The purpose of the mentioned assertions is exactly this. The s1 = s2 assertion in the precondition of the specification driver remove _ is _ well _ defined is there for a very specific reason. If s1 and s2 are identical, the precondition for the s2.remove call may not hold: even if the stack object referenced by s1 and s2 is not empty in the beginning, it may not be the case anymore after the s1.remove call. This additional assertion does not remove any generality: indeed, identity always implies equality, and proving the latter is exactly the purpose of this specification driver, according to its postcondition.

Specification driver new _ is _ well _ defined deserves special attention too. In fact, it encodes something stronger than just the well-definedness of the implementation feature new. It says that two empty stacks are always equal. This makes perfect sense and at the same time implies the necessary well-definedness property: from the ADT specification in Figure 8.1 and its first approximation in Figure 8.2, it is known that instantiating a stack with function new results in the empty abstract stack. Consequently, the new _ is _ well _ defined specification driver covers this case, since it applies to every pair of run time objects denoting the empty abstract stack.

Similarly to equivalence, the notion of well-definedness is long-established; as such, it may be possible to generate the corresponding specification drivers automatically.

Complete contracts

Although some works ([PTF18], [START_REF] Schoeller | Making Specifications Complete Through Models[END_REF]) talk about contract (in)completeness, they do not define this notion precisely. In light of the fundamental difference between ADT specifications and object-oriented programs, which causes the notion of equivalence over run time objects to appear (Section 8.4.2), the definition cannot be implicitly equal to the definition of sufficiently complete ADT specifications [START_REF] Guttag | The Algebraic Specification of Abstract Data Types[END_REF] and needs to be written down explicitly.

As the other details of the original definition in [START_REF] Meyer | Object-Oriented Software Construction[END_REF] do not bring any value to the discussion, we use a simplified definition of a contract. Definition 8.4.1 A contract is a set composed of all pairs of the form (Precondition(f), Postcondtion(f)) for every implementation feature f . This definition ignores the possible presence of class invariants as it is always possible to get rid of them by appending to pre-and postconditions of the implementation features.

deferred class WELL _ DEFINEDNESS _ SPECIFICATION _ DRIVERS [G] feature {NONE} new _ is _ well _ defined (s1, s2: STACK _ IMPLEMENTATION [G]) require s1.is _ empty s2.is _ empty do ensure s1.is _ equal (s2) end is _ empty _ is _ well _ defined (s1, s2: STACK _ IMPLEMENTATION [G]) require s1.is _ equal (s2) do ensure s1.is _ empty = s2.is _ empty end item _ is _ well _ defined (s1, s2: STACK _ IMPLEMENTATION [G]) require not s1.is _ empty not s2.is _ empty s1.is _ equal (s2) do ensure s1.item = s2.item end extend _ is _ well _ defined (s1, s2: STACK _ IMPLEMENTATION [G]; x: G) require s1.is _ equal (s2) do s1.extend (x) s2.extend (x) ensure s1.is _ equal (s2) end remove _ is _ well _ defined (s1, s2: STACK _ IMPLEMENTATION [G]) require not s1.is _ empty not s2.is _ empty s1.is _ equal (s2) s1 = s2 do s1.remove s2.remove ensure s1.is _ equal (s2)
Definition 8.4.2 A contract is correct if and only if:

• Its postconditions are strong enough to ensure correctness of the specification drivers derived from the input ADT axioms (Section 8.4.1)

• In the event that specification drivers for the input ADT axioms use equivalence, its postconditions are strong enough to ensure correctness of the specification drivers for equivalence (Section 8.4.2).

Definition 8.4.3 A contract is well-defined if and only if its postconditions are strong enough to ensure correctness of the specification drivers for well-definedness (Section 8.4.3).

Definition 8.4.4 A contract is complete if and only if it is correct and well-defined.

Related work

Work [START_REF] Polikarpova | A fully verified container library[END_REF] uses features with pre-and postconditions for checking completeness of model-based contracts (discussed later in this section). The definition of a complete model-based contract is not related to the definition of completeness in Section 8.4.4.

According to [START_REF] Polikarpova | A fully verified container library[END_REF], completeness is what we call well-definedness, expressed in terms of abstract mathematical concepts.

Although the specification driver approach allows capturing ADT axioms in their original form, it does specify how to actually build complete contracts having a set of specification drivers. As Section 8.2 suggests, in many cases it is not possible to specify strong enough postconditions in terms of the ADT specification itself. This is where the need for representation appears: the implementation class has to stick to some already implemented data structure in order to enable stronger postconditions expressed it terms of this data structure. The problem of choosing an ideal representation has been aptly handled in multiple publications, therefore we do not propose our own methodology, but instead reference these publications.

Work [START_REF] Meyer | A Framework for Proving Contract-Equipped Classes[END_REF] shows that it makes sense to use mathematical abstractions for representations: for example, it seems reasonable to think about stacks as mathematical sequences. That work also shows how to prove correctness against contracts strengthened with precise mathematical abstractions. Work [START_REF] Schoeller | Making Specifications Complete Through Models[END_REF] introduces the Mathematical Model Library (MML) -Eiffel library containing core abstractions: sets, sequences, bags, tuples etc. A later work [START_REF] Polikarpova | A fully verified container library[END_REF] introduces EiffelBase2, a usable library of essential data structures, including stacks, represented as mathematical abstractions from MML. EiffelBase2 is fully verified with the AutoProof verifier. The underlying verification methodology [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF] assumes writing quite a number of assertions related to program execution semantics, so giving complete examples here would introduce confusion rather than clarity. Instead, Figure 8.10 presents the idea in a nutshell. The STACK _ SEQUENCE _ IMPLEMENTATION class is the abstract model of stacks from the EiffelBase2 standpoint. EiffelBase2 equips classes implementing stacks with the sequence attribute and strengthens postconditions of the implementation features in terms of it. Class MML _ SEQUENCE cannot be instantiated into any run time objects and exists only for verification purposes: it maps to the data structure representing mathematical sequences in the underlying proving engine. The sequence attribute is further connected to meaningful data structures by means of abstraction and refinement techniques [START_REF] Hoare | Proof of Correctness of Data Representations[END_REF]. Work [START_REF] Polikarpova | A fully verified container library[END_REF] gives more implementation details.

class STACK _ SEQUENCE _ IMPLEMENTATION [G] inherit ANY redefine is _ equal end create new --
In Figure 8.10, the implementation features are formally defined with assertions over the sequence attribute (marked with the "definition" tag) added to the features' postconditions. The comparison feature is _ equal is redefined so that two stacks are considered equal if and only if the sequences representing them are equal. Two sequences are considered equal if and only if their sizes are equal and they contain same objects. The feature extended models a sequence where an object is appended to the target sequence on to which the feature is invoked; feature but _ last models the target sequence, but without the last element; feature last models the element added to the target sequence last; feature is _ empty models the indication whether the target sequence is empty or not; finally, feature count models the size of the target sequence.

Mathematical concepts from MML are abstract, but they still form particular representations in EiffelBase2, though mathematically precise. The concept of model-based contracts helps to specify complete contracts, but does not say how to rigorously check contracts with representations for completeness. Furthermore, it fails to define what complete contracts are. The notion of specification drivers bridges this gap. All the specification drivers derived in the present chapter are expressed in terms of the original ADT specification (Section 8.4.1) plus the abstract equivalence (Section 8.4.2 and Section 8.4.3), whose presence is inevitable due to the nature of computing which allows programs to keep in their memory several instances of one and the same abstract object. They do not require making any assumptions about possible representations and enable defining complete contracts precisely.

Proving contracts completeness

It is possible to give a manual proof of completeness of the contract depicted in Figure 8.10. Fortunately, this work may be done automatically. This advantage makes it possible to apply the specification drivers approach to legacy implementations. Indeed, if there is a source code project with a number of classes in it, then it is possible to devise an additional class, write all the applicable specification drivers into it and submit the resulting class to the prover. Instead of showing how to derive complete contracts having a set of specification drivers from scratch, we show how to apply the approach to existing contracts.

The EiffelBase2 library seems to be a natural choice for the experiment. The library contains a complete implementation of stacks specified as mathematical sequences. The corresponding implementation class is V _ LINKED _ STACK. In order to perform the experiment, it is necessary to take the stacks specification drivers from Section 8.4 and modify them so that the name of the implementation class would be

V _ LINKED _ STACK in- extend _ is _ well _ defined (s1, s2: V _ LINKED _ STACK [G]; x: G) require s1.is _ wrapped s2.is _ wrapped s1.observers.is _ empty s2.observers.is _ empty modify([s1, s2]) s1.is _ equal (s2) do s1.extend (x) s2.extend (x) ensure s1.is _ equal (s2) end Figure 8
.11: Specification driver for verifying by AutoProof.

stead of STACKS _ IMPLEMENTATION. The specification driver axiom _ a4 comes with a pitfall: the V _ LINKED _ STACK class does not introduce its own creation feature, but redefines the default creation feature defined for all classes. Hence, the create Result.new instruction is not applicable here; one should use create Result instead. After these modifications, the specification drivers should successfully compile and be ready for verification. The initial verification attempt using AutoProof will result in numerous precondition violations. As Section 8.5 suggests, the verification methodology [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF] behind AutoProof assumes writing additional non-stack related assertions. For example, the extend _ is _ well _ defined specification driver can be verified by AutoProof only in the form depicted in Figure 8.11. The five assertions in the beginning of the require precondition clause seem to be worth explaining them briefly. The s1.is _ wrapped assertion says that reference s1 is assumed to be non-void and not participating in any call; the s1.observers.is _ empty assertion says that the set of objects interested in the state of s1 should be empty -it is a part of the precondition of feature extend of class V _ LINKED _ STACK; finally, the modify([s1, s2]) assertion is a frame specification: it says that the enclosing feature, extend _ is _ well _ defined in this case, is going to modify objects referenced by s1 and s2 (square brackets [] denote set constants in Eiffel). The precondition needs the modify assertion because the extend _ is _ well _ defined feature uses feature invocations with side effects, extend in this case, on references s1 and s2. Although the verification failures caused by the absence of these assertions do not bear any relation to stacks, they uncover certain weaknesses in the verification methodology: namely, the defaults do not seem sufficiently reasonable. For example, a violation of the s1.is _ wrapped assertion would detect a callback situation, and callbacks are not so common as to assume them by default. The observers.is _ empty requirement makes extending stack objects applicable only in situations when no other objects depend on their states. The modify frame specification may be generated automatically based on the presence of invocations with side effects in the implementation body.

After complementing the specification drivers with all necessary assertions related to verification methodology and rerunning AutoProof, it uncovers some stack-related issues. This is visible from the fact that this time the verification errors come from the postconditions. Namely, AutoProof fails to prove correctness of all the verification drivers from classes EQUIVALENCE _ SPECIFICATION _ DRIVERS and WELL _ DEFINEDNESS _ SPECIFICATION _ DRIVERS as well as verification driver axiom _ a2 from the ADT _ AXIOMS _ SPECIFICATION _ DRIVERS class. As all of these specification drivers involve implementation feature is _ equal, the first guess is that V _ LINKED _ STACK does not redefine it. This guess appears to be right: the class defines its own custom feature for comparing run time objects, but does not redefine the standard comparison feature in terms of the new one. Giving this flaw's fix here would not bring much value to the discussion, so it seems better to move on. After redefining feature is _ equal, AutoProof succeeds in proving classes ADT _ AXIOMS _ SPECIFICATION _ DRIVERS and EQUIVALENCE _ SPECIFICATION _ DRIVERS completely, but still fails to prove specification driver new _ is _ well _ defined from the WELL _ DEFINEDNESS _ SPECIFICATION _ DRIVERS class. As this specification driver uses the is _ empty implementation feature, it falls under suspicion. Apparently, its postcondition does not have a clause corresponding to the definition clause in its abstract model in Figure 8.10. After fixing this flaw, everything verifies successfully, including the V _ LINKED _ STACK implementation class.

Summary

The chapter makes the following main contributions:

• Presents the notion of specification driver for encoding ADT axioms, which are not possible to encode using traditional DbC techniques.

• Illustrates the process of axiomatizing abstract equivalence using the new approach.

• Introduces an exhaustive definition of contract completeness.

• Demonstrates how to apply completeness checks to legacy implementations.

The new approach allows adding, changing or removing ADT axioms at any given moment of the development process without necessarily modifying the implementation classes. Although specification drivers occupy separate classes completely disjoint from implementation classes, they are simultaneously expressed in terms of objects instantiated from the implementation classes. The result is a seamless integration of software axiomatization and implementation driven by automatic verification of functional correctness. Attempts to check specification drivers can uncover weak postconditions of implementation features. Once strengthened, these postconditions potentially yield firmer executable instructions.

In light of the presence of different kinds of specification drivers described in Section 8.4 it seems feasible to propose the following changes to the Eiffel Verification Environment tool set:

• Develop a template for fast creation of classes intended to keep specification drivers.

• Automate generation of specification drivers for equivalence and welldefinedness.

• Revise verification methodology underlying AutoProof: specification drivers are a new syntactical specification construct, which may remove some verification challenges.

Work [START_REF] Meyer | Multirequirements[END_REF] introduces the notion of multirequirements, and Chapter 7 illustrates how to apply this notion in practice. The underlying idea is that a separate item in a software requirements document should be expressed using several interwoven notations, e.g. natural language, graphical form and formal notation. For the formal notation, it was suggested to use a rather expressive programming language. The present chapter talks about expressing ADT axioms in a programming language with pre-and postconditions. Since ADT specifications are one of the languages for expressing software requirements, it makes sense to revisit the original multirequirements approach to see how the idea of specification drivers could improve it.

Chapter 9

Making Contracts Consistent

Existing techniques of Design by Contract do not prevent developers from specifying inconsistent contracts. Any attempt to write a program to meet an inconsistent contract will fail, leading to wasted resources. In the present chapter we describe a technique for catching inconsistent contracts in the development time. Applying the technique may save projects' resources and lower the likelihood of failure.

Introduction

In the world of program correctness, it takes two to tango: a specification and implementation. A program is correct if the implementation satisfies the specification. If they do not match, the program is incorrect. In general, work on program verification takes the specification for granted and blames any fault on the implementation. But it is possible to write a specification that no implementation can satisfy. Given the routine contract

require a > 0 ensure b > old a b <0
one cannot implement the routine, since it would have to yield a value of b that is both negative and greater than the positive initial value of a. Little work has addressed the issue of "wrong" specifications, perhaps because the general notion of "wrong" is difficult to define and assess: wrong with respect to what? Most likely to another, higher-level specification, but this is just an escalation of the problem. As the example suggests, however, a specific case of "wrong" does not raise this problem: a specification can be inconsistent, hence impossible to implement. Then we want to know right away; and even if we have written an implementation and the verification processinevitably -cannot prove it correct, it should direct us to looking for the bug where it lies: in the specification. This chapter presents a technique to find out automatically that a specification is inconsistent.

Empirical studies of contracted programs reveal that the problem is not limited to artificial examples such as this one, but in fact arises widely in practice. Ciupa et al [START_REF] Ciupa | On the number and nature of faults found by random testing[END_REF] (also [START_REF] Ciupa | Finding Faults: Manual Testing vs. Random+ Testing vs. User Reports[END_REF], [START_REF] Meyer | Systematic evaluation of test failure results[END_REF]), in their studies of bugs in contracted programs, found that an astounding 62.42% of contract violations during random testing of their program sample resulted from incorrect specifications (rather than incorrect implementations), although they do not state which ones are inconsistencies.

The technique presented here, enjoying automatic tool support thanks to the Au-toProof verification environment [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF], is powerful enough to catch the following inconsistencies in classes with a contract:

• Inconsistency of the invariant, which results in impossibility to have instances of the class (Section 9.3).

• Inconsistency of a routine's postcondition, which invalidates the client's state after calling a routine (Section 9.4).

• Inconsistency of a routine's precondition, which makes calling the routine of the class impossible (Section 9.5).

The approach also handles some nuances related to non-exported routines, which may be called only in the non-qualified way (Section 9.6).

Why detect?

If a contract is inconsistent, this will eventually become apparent in any case. For example, if a class has an inconsistent invariant, it will not be possible to develop a correct creation procedure: all creation procedures must establish the class invariant on their completion [START_REF] Meyer | Applying "Design by Contract[END_REF]. If a routine's precondition is inconsistent, no client of the class will be able to call the routine. If the precondition is satisfiable, but the postcondition is not, the outcome will be like the one for an inconsistent invariant: no one will be able to implement the routine correctly.

The biggest problem with this trial and error approach is the waste of resources: it may take multiple man-hours before the developer understands that the specification is not implementable at all. We describe an alternative approach, capable of catching inconsistencies before they turn into problems.

Example

To illustrate our approach, we use a class that describes an ordered triple of integers (Figure 9.1), in which the order is represented by the class invariant. From the description of the approach it will be visible that it scales to classes of unlimited complexity, which is why it does not seem bad to pick an artificial and simplified example. There are no inconsistencies in the INTEGER _ TRIPLE class' contract, which consists only of the invariant yet. Throughout the chapter we extend the example, intentionally introduce various inconsistencies to it and show how to detect them.

All the experiments are reproducible in the Eiffel verification environment [START_REF] Tschannen | Usable Verification of Object-Oriented Programs by Combining Static and Dynamic Techniques[END_REF].

The basic idea

If there is an inherent inconsistency in either the signature, the precondition, or the execution part, it should be possible to prove the following specification driver (Chapter 8):

routine (ARGS) require pre(ARGS) do execution(ARGS) ensure False end
This equation basically encodes a proof by contradiction of a potential inconsistency: prove false, assuming the possibility to use routine, pre and execution together. If the assumption is a logical contradiction, the prover will accept the proof.

We successively examine how to apply this general form to express and prove inconsistency of invariants (Section 9.3), postconditions (Section 9.4) and preconditions (Section 9.5). The examples are written in Eiffel and checked with AutoProof.

Class Invariants

A class invariant is a property that applies to all instances of the class, transcending its routines [START_REF] Meyer | Applying "Design by Contract[END_REF]. From this definition, an immediate conclusion follows: if the class invariant is inconsistent, then no objects can have it as their property. This conclusion leads us to the following definition. Definition 9.3.1 Class TARGET _ CLASS has an inconsistent invariant, if, and only if, the following specification driver is provable:

class _ invariant (n: TARGET _ CLASS) do ensure False end
The class _ invariant routine represents a proof by contradiction, in which the proof assumption is that there can be an object of TARGET _ CLASS. If its invariant is inconsistent, 2). Following from the transitivity of the > relation on integers, the last assertion is inconsistent with the first two. According to the Definition 9.3.1, it is necessary to encode the corresponding specification driver and submit it to AutoProof; but a specification driver must exist in some class, which is a minimal compilable program construct in Eiffel. Assume there is such a class, INTEGER _ TRIPLE _ CONTRADICTIONS (Figure 9.3). If the class compiles, the next step is to submit the proof to AutoProof1 . AutoProof accepts the proof (Figure 9.4), from which we conclude the existence of an inconsistency in the invariant of the INTEGER _ TRIPLE class. Removal of the problematic assertion from the invariant makes AutoProof reject the class _ invariant proof (Figure 9.5). For the remaining examples, you can download AutoProof and check them locally.

Postconditions

According to the principles of Design by Contract [START_REF] Meyer | Applying "Design by Contract[END_REF], a routine will never complete its execution, if it fails to assert its postcondition; consequently, to express the contradiction, the corresponding specification driver needs to assume the termination and assert False in its postcondition. Two definitions follow for commands (Section 9.4.1) and functions (Section 9.4.2); the definitions differ according to the ways in which clients use commands and functions.

Commands

Commands are state-changing routines, which is why clients can use command calls only in routines' bodies, not in contracts. To prove the inconsistency of a command's postcondition, it is necessary to assume that it is possible to call the command and continue execution of the program. Definition 9.4.1 An exported command c with a precondition pre and a list of formal arguments ARGS from class TARGET _ CLASS has an inconsistent postcondition, if, and only if, the following specification driver is provable:

c _ post (t: TARGET _ CLASS; ARGS) require t.pre (ARGS) do t.c (ARGS) ensure False end
This is a proof by contradiction in which the assumption is the possibility to call the c command so that the execution reaches checking the postcondition of c _ post. If the postcondition of c is inconsistent alone or is not consistent with the invariant of TARGET _ CLASS, the execution will stop right after the call, and the outer postcondition will never be checked.

Assume the task is to implement command move _ c that should somehow change the value of the c attribute in the INTEGER _ TRIPLE class: The last line in the postcondition of the move _ c command makes the value of c bigger than that of a, which is not consistent with the invariant.

The move _ c _ post specification driver (Figure 9.7) reflects a proof by contradiction of the inconsistency 2 .

AutoProof accepts the move _ c _ post specification driver, from which one can see the presence of an inconsistency in the postcondition of move _ c; removal of its last line will make AutoProof rejecting the proof.

Functions

Functions are state-preserving value-returning routines, which may be used in other routines' pre-and postconditions. To prove by contradiction inconsistency of a function's postcondition, it is necessary to assume that the function can produce some value. Definition 9.4.2 An exported function f with a return type T, precondition pre, and a list of formal arguments ARGS from class TARGET _ CLASS has an inconsistent postcondition, if, and only if, the following specification driver is provable:

f _ post (t: TARGET _ CLASS; ARGS; res: T) require t.f (ARGS) = res do ensure False end
If the postcondition of f is inconsistent alone, or is not consistent with the class invariant, it will never return any result. The require block in the Definition 9.4.2 states the opposite: there is some value res of type T, such that it equals the value of the function; this statement is the assumption of the proof by contradiction. Assume the task is to implement a function diff _ ab that returns the difference ba between a and b. From the invariant of INTEGER _ TRIPLE, one can see that this difference should always be negative, but the developer may confuse operators > and <, in which case the postcondition of diff _ ab becomes inconsistent (Figure 9.8).

Specification driver diff _ ab _ post (Figure 9.9) reflects the proof by contradiction corresponding to the given example. AutoProof accepts diff _ ab _ post, thus disclosing the presence of an inconsistency.

Preconditions

Precondition of a routine constitutes requirements that every client has to meet to call the routine. If a precondition is inconsistent, no client will be able to meet it. Assume the move _ c command requires the result of the diff _ ab function to be greater than 0, which is not consistent with the class invariant, according to the postcondition of diff _ ab (Figure 9.10).

The move _ c _ pre specification driver reflects the Definition 9.5.1 as applied to the precondition of the move _ c command. It has the same precondition as does the move _ c command, where every non-qualified call is replaced with its qualified counterpart; the target for the call comes from the move _ c _ pre's list of formal arguments.

Note that the move _ c _ post (Figure 9.7) specification driver needs to be updated: the move _ c command now has a precondition that has to be guaranteed by all its callers.

AutoProof discloses the presence of a contradiction by accepting the move _ c _ pre specification driver.

Non-exported routines

A non-exported routine is a routine that cannot be invoked using a qualified call [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF]. Consequently, the definitions, which were presented so far, are not applicable to nonexported routines: those definitions rely on the ability to do qualified calls. The present section gives definitions applicable to non-exported routines. Definition 9.6.1 The non-exported command c with precondition pre and list of formal arguments ARGS has an inconsistent postcondition, if, and only if, the following specification driver is provable: In Definition 9.6.1, Definition 9.6.2, and Definition 9.6.3 the routine calls do not have targets, which means the calls can occur only in the class where the routines are defined or in one of its descendants. [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF].

c _ post (ARGS)
Assume the INTEGER _ TRIPLE class with all its routines non-exported (Figure 9.12), which is denoted by the {NONE} specifier next to the feature keyword. For such an example, the specification drivers class may be a descendant of the INTEGER _ TRIPLE class so that it will be able to call its routines in the unqualified way (Figure 9.13).

Related Work

The problem of inconsistent specifications receives noteworthy attention in Z ([START_REF] Abrial | Specification Language[END_REF]). Without an explicit syntactical separation of Z assertions into pre-and postconditions and in the absence of an imperative layer, it is not clear how to apply the techniques from the present chapter. Detection of inconsistencies in Z may occasionally lead to development of complicated theories and tools [START_REF] Miarka | Handling Inconsistencies in Z Using Quasi-Classical Logic[END_REF]. We are not aware of any work specifically targeting detection of inconsistencies in Design by Contract.

The problem of inconsistent contracts may also be viewed through the prism of liveness properties in concurrency [START_REF] Magee | Concurrency -state models and Java programs[END_REF]:

• An inconsistent class invariant makes the class "non-alive": it is not even possible to instantiate an object from the class.

• An inconsistent routine precondition makes the routine never callable.

• An inconsistent routine postcondition leads to its clients' always crashing after calling the routine.

Summary

A strength of the approach is the possibility to employ it for real-time detection of inconsistencies. Once generated, the specification driver for the invariant (Section 9.3) never changes; consequently, it is enough to recheck it whenever the invariant changes and display a warning in the event of successful checking. The same applies to detection of inconsistent pre-/postconditions, with the only difference that it will be necessary to update the preconditions of the corresponding specification drivers in the event of modifying the routine's precondition. In any case, such an update amounts to copying the precondition with possibly adding targets in front of the class' queries (Section 9.5). Another strength of the approach is its applicability. Eve is not the only environment in which it is possible to write and statically check contracts: there is a similar environment for .net developers [START_REF] Barnett | Code Contracts for .NET: Runtime Verification and So Much More[END_REF], in which the techniques presented here are applicable. There are several programming languages that natively support contracts, for which the presented approach is applicable conceptually, but still needs development of a verifier capable of checking specification drivers.

Limitations of the approach

Results interpretation

In the presented approach, a positive response from the prover means something bad, which is detection of an inconsistency. This may be misleading: the developer may think, instead, that everything is correct. This requires fixing, possibly by development of a separate working mode in AutoProof.

Precision

The approach shows the presence of a contradiction but does not show its location. This is not a problem when developing from scratch: background verification may catch the contradiction as soon as it is introduced. However, if the task is to check an existing codebase, the only way to locate origins of contradictions seem to be in commenting/uncommenting specific lines of the contracts.

Frozen classes

The approach for non-exported routines relies on the ability to inherit from the supplier class. It is not possible to inherit from a class, if it is declared with the frozen specifier [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF]. Nevertheless, it is always possible to apply the technique to exported routines of the supplier class.

Future work

The present chapter describes the approach conceptually, yet no tools exist that could generate and check the necessary proofs automatically. Two main possibilities exist in this area:

• Build a contradiction detection functionality into AutoProof, without letting developers see the proofs.

• Develop a preprocessing engine on the level of Eiffel code that would generate classes with proofs for checking them with AutoProof in its current state.

Apart from automating the approach, it seems reasonable to investigate whether the proof by contradiction technique may be of any help with other problems of program verification.

Chapter 10

Seamless Requirements

Popular notations for functional requirements specifications often ignore developers' needs, target specific development models, or require translation of requirements into tests for verification; the results can give out-of-sync or downright incompatible artifacts. Seamless Requirements, a new approach to specifying functional requirements, contributes to developers' understanding of requirements and to software quality regardless of the process, while the process itself becomes lighter due to the absence of tests in the presence of formal verification. A development case illustrates these benefits, and a discussion compares seamless requirements to other approaches.

Introduction

Seamless Requirements is a technique to close the various gaps that have long plagued the practice of software requirements:

• The gap between customers and developers (Section 10.1.1).

• The gap between agile and formal development (Section 10.1.2).

• The gap between construction and verification (Section 10.1.3).

To reach this goal, seamless requirements build on ideas coming from diverse sources, including literate programming [START_REF] Knuth | Literate Programming[END_REF], multirequirements [START_REF] Meyer | Multirequirements[END_REF], and formal verification [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF]. A seamless requirement combines two elements: a contracted self-contained routine, which doubles as a proof obligation, and an associated natural language comment.

The approach assumes object-oriented non-concurrent setting and does not handle non-functional requirements.

Customers vs. developers

By adding programming languages with contracts to the family of requirements specification notations, seamless requirements improve developers' understanding of re-89 quirements that typically exist in some declarative form that has nothing to do with programming.

The modern taxonomy of requirements specification languages ([Lam09, Chapter 4 "Requirements Specification and Documentation"]) provides a number of formal and semi-formal notations, and programming languages are not a part of this taxonomy. This implicitly isolates people (customers) who state requirements from people (developers) who implement them. As soon as the customers elicit and document requirements, demonstrate some "good" properties of the requirements within the chosen notation, the developers will have to map the notation into the semantics of the target programming language. Is there any way to check the translation at the same level of rigor used to derive those "good" properties of the requirements? Some approaches advocate modeling software at different angles using different notations to ensure its proper understanding by developers, but such an approach raises the problem of potential inconsistency between the views.

Seamless requirements express software functionality using the language best understood by developers: the programming language. The idea is not new [START_REF] Meyer | Multirequirements[END_REF], but its implementation is (Section 10.5.6 gives more details). A seamless requirement is a compilable contracted self-contained routine -specification driver (Section 8.3) -equipped with a structured natural language comment. The comment delivers the meaning of the requirement to the customers, and the program construct -to the developers. Specification drivers are expressive enough to fully capture algebraic specifications (Section 8.4), and exercising their expressiveness is a driving force of the present research.

The idea of combining formal and natural language descriptions is present in goaloriented requirements engineering [START_REF] Van Lamsweerde | Goal-Oriented Requirements Engineering: A Guided Tour[END_REF], but the approach does not consider a programming language as a formal notation.

Agile vs. formal development

By nature both self-contained and formal, seamless requirements boost reliability of software produced using agile processes.

Compatibility of agile development and formal methods has long been a concern for software engineers ([TFR14], [START_REF] Black | Formal Versus Agile: Survival of the Fittest[END_REF]), including those developing mission and life-critical software ([DNR04], [START_REF] Samy | Determining the Applicability of Agile Practices to Mission and Life-Critical Systems[END_REF]). The studies have something in common: their main concern is integration of agile practices into development of software that has to be reliable and is currently developed using some conservative process. In the same time there is a lack of research that studies applicability of formal methods to agile development of not so critical mass-market software for increasing its reliability. This problem is among the concerns of the seamless requirements approach.

In agile development a functional requirement typically takes a form of a scenario describing user interaction with the to-be software. The scenario is then translated into a set of unit tests for ensuring functional correctness of the software with respect to the scenario. Scenarios and unit tests naturally fit the agile philosophy of frequently delivering software in small increments: they both are self-contained information units suitable for grouping into arbitrary sized sets. It is the very nature of tests that limits the level of formality in agile development: they exercise only a subset of the possible execution paths. Although there are scientific approaches for making a test suit cover the software well enough, agile methods do not consider tests as a very important artifact and do not advocate improving tests coverage too much.

Seamless requirements replace unit tests with specification drivers, testing with formal verification, and move structured natural language scenarios to comments on specification drivers. Specification drivers can capture scenarios in their abstract form (as opposed to unit tests), which is why it makes sense to conjoin them. The resulting requirement form keeps the fine granularity of tests and scenarios, while being mathematically formal.

Construction vs. verification

Seamless requirements enable straightforward verification of existing software with respect to requirements without introduction of intermediate artifacts such as tests.

The modern software mass market rests on testing as the primary mechanism for checking functional correctness. Although tests are fundamentally imprecise (Section 10.1.2), there are scientific approaches to testing that enable production of test suits having reasonable code coverage with respect to some predefined criteria [START_REF] Paul | Software testing -a craftsman's approach[END_REF]. Such an approach may be suitable for greenfield software construction, but not always for verification of existing software that already works somehow. The problem is real: software quality cannot be higher than that of its least quality component. This means that, in order to reuse a third-party component, the development team has to make sure that its quality conforms to the quality standards defined in the project through generating and running sufficient number of tests on the component. It is not surprising that such an effort is often considered as waste: why test something that is already on the market and works instead of putting more effort into construction?

Seamless requirements fix the issue by replacing testing with formal verification of specification drivers, which are formal and abstract representations of software usage scenarios. The only assumption upon which the approach rests is existence of a contract in the component, which is dictated by modularity of the verification approach [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF].

Motivating example

An example illustrates the idea of seamless requirements. The task is to implement a clock class that features seconds, minutes, hours, and days of week. The clock state should be updated through a special command, tick, that advances the seconds counter. There is also an existing class CLOCK that does not feature the current day of week. The class is implemented and specified in Eiffel [START_REF] Meyer | Eiffel: A language and environment for software engineering[END_REF]. The implementation is closed: only a specification in the form of a contract is available. Figure 10.1 contains the visible part of the class. The frozen specifier prohibits inheriting from the CLOCK class and thus makes it usable only for instantiating and using its instances. It is also known that the hidden implementation of the tick command is provably correct with respect to its postcondition in Figure 10.1, and the correctness was established with the AutoProof verifier [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] for Eiffel programs with contracts.

Existing code

This section takes a closer look at the visible parts of the CLOCK class in Figure 10.1. The space between the do and ensure keywords of the tick feature would typically contain executable instructions, which are hidden in this case. Logical assertions between the ensure and the closest end keyword constitute the postcondition of the feature. The postcondition logically connects the clock pre-state, which precedes any invocation of tick, with the post-state, which results from the invocation. The old keyword before some identifiers denotes values of the respective queries in pre-states. Accordingly, identifiers that go without the old keyword denote values of the respective queries in post-states.

Since it is not possible to modify the CLOCK class, it seems reasonable in this context to implement the required extended class through the composition relation: in the new class declare a reference to an object of type CLOCK and reuse its functionality. In order to do so it is necessary to make sure that objects of the existing class, indeed, behave like a real clock. The extended clock development plan thus consists of the following major steps:

1. Identifying requirements to an extended clock.

2. Identifying requirements that are applicable to a non-extended clock.

3. Verifying the existing CLOCK class with respect to the requirements for a nonextended clock.

4. Reusing the existing class in the event of its successful verification.

Developing a completely new class otherwise.

A clock tick:

(REQ1) Increments current

Natural-language requirements

Implementation of the first two steps of the plan starts with enumeration of the requirements in their natural language form in Figure 10.2. Requirements (REQ1)-(REQ8) do not talk about the current day of week and thus are applicable to the existing implementation. Requirements (REQ9)-(REQ11) talk about the days counter and thus are applicable only to the extended implementation. For simplicity, days are represented with numbers from 0 to 6, where 0 corresponds to Monday, and 6 -to Sunday.

In many cases natural language requirements are less clear and precise than the ones in Figure 10.2. This particular issue is irrelevant to the present discussion, which is why the example relies on the assumption that the natural language requirements in the clock example are of high enough quality.

Step 3 of the plan from Section 10.2.1 is to check whether the CLOCK class meets requirements (REQ1)-(REQ8). This step, along with steps 4 and 5, is far less trivial than steps 1 and 2 and raises a number of questions.

Research questions RQ1

How to express precise semantics of the natural language scenarios (REQ1)-(REQ8) using programming language constructs? Natural-language statements in Figure 10.2 are comfortable for reading by human beings. This may be not enough, however, for those who will potentially implement the requirements. Natural language is a source of misinterpretations and ambiguities, which is why it is not enough to have requirements in this form [START_REF] Meyer | On Formalism in Specifications[END_REF]. What do statements (REQ1)-(REQ8) mean exactly in terms of the programming language abstractions? It would benefit the software developers to be able to precisely express the requirements in the programming language that will later be used for their implementation.

The question does not assume replacement of natural language requirements with their programmatic counterparts: the goal is to have a representation which would encompass both views with the possibility of extracting only one of them.

RQ2

How to make each requirement both self-contained and formal?

Requirements (REQ1)-(REQ11) are already self-contained and thus are suitable for agile development of arbitrary sized increments. How to enrich them with formality without sacrificing their granularity?

RQ3

How to understand whether the partially available implementation in Figure 10.1 meets requirements (REQ1)-(REQ8)?

It is possible to take requirements (REQ1)-(REQ11) and mentally convert them to a correct implementation, but the task assumes reuse of the existing class CLOCK in case of its correctness. How can one prove automatically that it meets requirements (REQ1)-(REQ8)? The only available part of the CLOCK class is its contract -the postcondition of command tick. It is also known that the hidden implementation of tick provably meets its postcondition. The question then reduces to the following one: how can one understand if the postcondition of tick meets requirements (REQ1)-(REQ8)?

Seamless requirements

Figure 10.3 contains the (REQ1) requirement in the form of a seamless requirement -a contracted routine with a natural language comment1 . The comment contains the natural language representation of (REQ1) in Figure 10.2. The routine part, together with the signature and the contract parts, constitutes a proof obligation: "for any object clock of type CLOCK and any value current _ second of type INTEGER, such that clock.second <59 and clock.second = current _ second, an execution of clock.tick results in clock.second = current _ second + 1". The modify (clock) clause in the precondition limits side effects of the tick routine: the routine is allowed to modify only the target object clock plus any object owned by clock [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF]. It is possible to submit such a proof obligation to an automatic prover. AutoProof verifier fulfills this role for Eiffel programming language used in this example. The idea to use auxiliary routines with pre-and postconditions for complete specification of programs was proposed in Chapter 8. The routines are assumed to be expressed only in terms of their formal arguments. That work introduces a new term "specification drivers" to denote such routines and shows that they are expressive enough to fully capture functional semantics of classes. Since specification drivers are, syntactically speaking, routines, it is possible to comment on them with natural language statements -the ability to comment on routines is natural for any modern programming language. A seamless requirement consists of two important parts:

• Specification driver that captures the formal semantics for the requirement.

• Natural-language comment on the specification driver that informally captures the semantics.

A specification driver is a contracted routine expressed only in terms of its formal arguments and is understandable to AutoProof as a proof obligation.

The structure of a seamless requirement, together with the properties of specification drivers, answers the questions from Section 10.2.3 and ensures the core properties of seamless requirements, as the following sections illustrate.

RQ1: understandability to developers

Seamless requirements are contracted routines, which are programming language constructs understandable to programmers. Natural-language comments on these routines capture the informal representation of requirements that is understandable to customers. This duality makes a seamless requirement understandable to the two principal groups of stakeholders and semantically connects natural language requirements to the CLOCK class, thus answering the RQ1 question from Section 10.2.3.

The idea of interweaving natural language prose with programming language constructs was first proposed by Knuth in [START_REF] Knuth | Literate Programming[END_REF]. One of the underlying theses of the seamless requirements approach is that it makes sense to use the standard commenting mechanism of the underlying programming language for this purpose.

RQ2: introducing formality into agile development

As their specification driver components are mathematically precise, seamless requirements do not accumulate ambiguity. Specification drivers are expressed completely in terms of their formal arguments, which is why they are also self-contained. The combination of the two properties benefits agile development with formality and does not interfere with its incrementality.

RQ3: utility for development activities

A seamless requirement is a natural language statement and, at the same time, is a proof obligation. Consequently, to prove correctness of an implementation with respect to a natural language requirement is to extend this requirement to the seamless form and then try to prove its proof obligation part. The approach also contributes to the following development activities.

Requirements documentation

A requirements document becomes an auxiliary class in the same namespace with the implementation classes. Since seamless requirements are self-contained routines, there is no place for a naming conflict in the event of putting together multiple seamless requirements within a single class. Section 10.4.1 illustrates this concept on the clock example.

Specification validation

Seamless requirements, being proof-obligations understandable to AutoProof, introduce the notion of proving a requirement. Verification by AutoProof is modular: for example, for proving the req _ 1 requirement in Figure 10.3 AutoProof will use only the postcondition of the tick command. The modularity means that it is possible to verify a program with a hidden implementation with respect to a seamless requirement, when only a contract of the program is available. Section 10.4.2 illustrates the validation process for the existing CLOCK class.

Specification inference

It is possible to use seamless requirements for proof-driven development of programs from scratch. The automatic prover drives the process in this case. To infer a specification from a set of seamless requirements is to equip the implementation classes with contracts strong enough to prove the requirements. Once the requirements pass verification by AutoProof, the development process switches to the implementation phase.

To infer an implementation from a specification is to implement all the implementation classes correctly with respect to their contracts [START_REF] Meyer | Object-Oriented Software Construction[END_REF]. The correctness is proved with the same verifier.

Requirements documentation

The first step is to document requirements (REQ1)-(REQ8) in the seamless form. Figure 10.4 contains the respective requirements class 2 . The deferred keyword means that the class is not implemented: it is not possible to instantiate any objects from it.

Since a seamless requirements document is a class, such techniques as inheritance are applicable to it. For example, if a new set of requirements arrives, it is not necessary to add them to the CLOCK _ REQUIREMENTS class. It is possible to create a subclass where only new requirements are enumerated, and the old ones will be inherited automatically. Section 10.4.4 illustrates this approach on the clock example.

The CLOCK _ REQUIREMENTS class is provable by AutoProof: to prove it is to prove each of the seamless requirements it contains. Section 10.4.2 describes the meaning of this process.

Specification validation

To prove correctness of the CLOCK class with respect to requirements (REQ1)-(REQ8) is to execute AutoProof on the CLOCK _ REQUIREMENTS class. Verification by AutoProof is modular: verification of a requirements class does not need access to the implementation classes' internals, only to their contracts. AutoProof assumes that these implementations meet their respective contracts. Figure 10.5 contains a screenshot of Eiffel verification environment (Eve) [START_REF] Tschannen | Usable Verification of Object-Oriented Programs by Combining Static and Dynamic Techniques[END_REF] with an AutoProof pane on the right side. The AutoProof pane contains the results of verifying the CLOCK _ REQUIREMENTS class. Apparently, the postcondition of the tick feature in Figure 10.1 is insufficiently strong to meet the (REQ8) requirement. Although the hidden implementation of the CLOCK class is known to meet its contract, it is possible for the implementation not to meet the requirements. Double-clicking the red line in the AutoProof pane retargets Eve to the req _ 8 routine, which represents the seamless form of (REQ8).

Since the specification of CLOCK failed validation with respect to requirements, step 5 of the development plan from Section 10.2.1 becomes active. This step consists of developing a completely new CLOCK class. Section 10.4.3 describes development of the regular clock functionality (REQ1)-(REQ8), and Section 10.4.4 incrementally extends it with the days counter functionality (REQ9)-(REQ11). The starting point is a blank class CLOCK in Figure 10.6, which does not have any contract or executable instructions. It only declares the clock features so that the requirements class in Figure 10.4 could compile.

Increment 0: the basic functionality

This section describes development of the basic clock functionality increment. The development occurs as follows: once all requirements for the increment are collected, software specification is inferred from them; then, an implementation is inferred to meet the specification. The present section illustrates how application of seamless requirements may facilitate the transitions between the adjacent phases with the help of AutoProof. Section 10.4.3 describes inference of a correct CLOCK specification based on the seamless requirements from the CLOCK _ REQUIREMENTS class. Section 10.4.3 infers an implementation of the CLOCK class that meets the inferred specification. one infer postconditions from seamless requirements? This problem does not seem to be solvable in the general case; however, the seamless requirements from the CLOCK _ REQUIREMENTS class possess some common properties:

Specification inference

• Each of them involves only one feature call.

• Each of them involves only one object of type CLOCK.

• The tick feature does not have formal parameters.

These observations enable application of the following inference logic. The resulting assertion takes the form of a logical implication. If a seamless requirement involves some object o: TYPE, then for every expression of the form o.q, where q is a query of class TYPE, the following rules apply:

• If o.q occurs in the precondition of the requirement, it translates to old q in the antecedent of the implication.

• If o.q occurs in the postcondition of the requirement, it translates to q in the consequent of the implication.

A requirement may also use an auxiliary formal argument a: SUPPLEMENTARY _ TYPE, such as current _ hour: INTEGER in req _ 6. Assume that the following conditions hold together:

• The precondition of the requirement contains an expression of the form o.p = a.

• The postcondition of the requirement contains an expression of the form o.q = f(a).

In this case these conditions translate to q = f(old p) in the consequent of the resulting implication.

Each assertion from the postcondition in Figure 10.7 is the result of an application of these inference rules to the respective seamless requirement.

Implementation inference

Once there is a contract that meets the requirements class, and the latter passes verification by AutoProof, it makes sense to proceed to inference of an implementation that meets the inferred contract. Figure 10.8 contains an implementation of the tick feature, which is correct with respect to the postcondition in Figure 10.7. As in the case of specification inference from requirements, the correctness may be established by an application of AutoProof, but this time it should be executed on the CLOCK class, which implements the required functionality. The details of the inference process are omitted because they are studied very well [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF] and are irrelevant to the central idea of behind seamless requirements.

Added functionality

The regular clock functionality was implemented in Section 10.4.3 as one increment. The present section extends the basic functionality in smaller increments consisting of one requirement each.

There are three requirements in Section 10.2 that describe the desirable behavior of the clock with a day counter: (REQ9), (REQ10), and (REQ11). Figure 10.9 shows them as a part of a requirements class EXTENDED _ CLOCK _ REQUIREMENTS. This class is inherited from the original CLOCK _ REQUIREMENTS class, together with all the existing seamless requirements, to which it adds its own. In the present section, each of the newly added requirements corresponds to a separate increment.

Compilation of the new requirements class fails: seamless requirements req _ 9req _ 11 use feature day, which is not a part of the CLOCK class yet. To fix the compilation error is to add the respective attribute to the existing list of clock attributes:

Increment 1

Implementation of the first increment starts with submitting the EXTENDED _ CLOCK _ REQUIREMENTS class to formal verification by AutoProof. The new seamless requirements req _ 9, req _ 10 and req _ 11 fail the verification attempt: the postcondition of the tick command does not say anything about the day attribute, which has just been added to the implementation class. We choose to implement the req _ 9 requirement in the first increment.

According to the inference rules from Section 10.4.3, it should suffice to strengthen the postcondition of tick with the following assertion: Now that req _ 9 passes verification, it is necessary to verify the CLOCK class. The verification attempt fails because the implementation of tick has not been updated yet to meet the new assertion in the postcondition.

The following if block meets the new assertion, which may be confirmed with AutoProof: Attempts to verify the CLOCK class fail, which means that the current implementation of the tick feature does not meet the new postcondition assertion. The antecedent of the assertion is different from the preceding one only in the day-related part. This naturally leads to extending the if block, introduced in Section 10.4.4, with an else block:

Increment 3

The last increment consists of implementing the seamless requirement req _ 11. The requirement states that nothing happens to the current day in the event of a tick if the current second is smaller than 59.

Here is the new assertion that results from applying the postcondition inference rules to req _ 11: old second <59 implies day = old day. This time not only the seamless requirement passes verification by AutoProof: the existing implementation of the tick feature does not need any changes, which follows from the fact that the CLOCK class passes verification. Since the req _ 11 is a safety requirement ("nothing bad happens"), this result should not come as a surprise: no malicious code was introduced during implementation of the preceding requirements.

Implementation of the new seamless requirements is done: both the requirements class EXTENDED _ CLOCK _ REQUIREMENTS and the respective implementation class CLOCK pass verification by AutoProof.

Related work 10.5.1 Dafny

Dafny [Lei10] is a direct example of a setting other than Eiffel/AutoProof in which the seamless requirements method is applicable. The verification approach which Auto-Proof currently uses is more complicated than that of Dafny (partially because Dafny does not support inheritance and information hiding, but not only), which is why it may make more sense to use the latter for getting familiar with seamless requirements.

Test-driven development

Although testing is fundamentally different from program proving, software development through seamless requirements have much in common with test-driven development (TDD) [START_REF] Fraser | Test Driven Development (TDD)[END_REF] in terms of the software process. It may be convenient to perceive the new software process as test-driven development where specification drivers replace tests, natural language comments on the specification drivers capture user stories, and program proving replaces testing. One may talk about verification-driven development to emphasize these analogies with TDD.

Goal Maintain[TrackSegmentSpeedLimit]

InformalDef A train should stay below the maximum speed the track segment can handle FormalDef ∀ tr : Train, s : TrackSegment • On(tr, s) ⇒ tr.Speed ≤ s.SpeedLimit

State-based notations

State-based specifications characterize the admissible system states at some arbitrary snapshot [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. Languages such as Z, VDM, B, Alloy, OCL rely on the state-based paradigm. The absence of the imperative layer is what makes state-based notations inapplicable for specification of abstract requirements. State-based notations are purely declarative notations in which one cannot say "if some property holds for a set of objects and I modify some of them through some commands, then another property will hold for these objects".

Goal-oriented requirements engineering

Goal-oriented requirements [START_REF] Van Lamsweerde | Goal-Oriented Requirements Engineering: A Guided Tour[END_REF] are suitable for addressing the gap between agile and formal development (Section 10.1): goals are self-contained and have place for both formal and informal semantics of requirements. Goals are self-contained because they can be modified locally. With diagrammatic notations, for example, one has to project a self-contained requirement statement onto different portions of a diagram, thus threatening locality of future modifications. Self-contained representations maintain locality during the requirements formalization process. The goal in Figure 10.10, for example, formalizes an informal requirement as a first-order logic formula, which is as self-contained as the informal version.

Goals, on the other hand, do not bridge the semantical gap between formal requirements notations and programs because the approach does not treat a programming language as a formal notation. Goals also fail to bridge the gap between construction and verification: the need to translate them into tests is still there.

Seamless requirements approach, while bringing the same benefits as goals do, offers strong pairwise connection between requirements, specifications and code. The maintain _ track _ segment _ speed _ limit seamless requirement (Figure 10.11) captures the semantics of the corresponding goal (Figure 10.10) in terms of Eiffel programming constructs understandable to Eiffel programmers, though it may be rewritten without contracts at all through if and check (known as assert in other languages) statements (Figure 10.12). The last option may be useful in languages without contracts. Successful verification of the maintain _ track _ segment _ speed _ limit requirement assumes strong enough specification of classes TRAIN and TRACK _ SEGMENT (Figure 10.13). Successful verification of the specified classes assumes, in its turn, implementing the TRAIN::on routine correctly.

Literate programming

Knuth was the first one to apply interwoven notations in programming [START_REF] Knuth | Literate Programming[END_REF]. Meyer criticized the approach as inapplicable to object-oriented programming and proposed the multirequirements [START_REF] Meyer | Multirequirements[END_REF] method (Section 10.5.6):

When I first read about literate programming I was seduced by the elegance of the approach, but found it inapplicable to modern, object-oriented programming which (as discussed in several publications including [START_REF] Meyer | Object-Oriented Software Construction[END_REF]) is fundamentally bottom-up as implied by the focus on reuse; literate programming seemed inextricably tied to the top-down, function-driven programming style of the nineteen-seventies. In that traditional view, a program implements a single "main" function; as a consequence the "literate" text is the sequential telling, cradle to grave, of a single story.

Multirequirements

A multirequirement is a combination of a natural language statement and a small piece of the resulting program; the program piece should rephrase what the natural language part says. The multirequirements method [Mey13] adapts Knuth's idea of interwoven notations to object-oriented programming, while focusing on traceability. The method suggests using three notation layers: natural language layer, formal layer, and graphical layer. For the formal layer, it suggests usage of pieces of the presumable final program. When the requirements specification phase is over, specialized tools then take those pieces and merge them into the program skeleton. The tools are also responsible for taking care of both up-and down-traceability. The approach conceptually removes the fundamental flaw of literate programming, which is the need to write a complete story from the beginning to the end.

Michael Jackson in his work [START_REF] Jackson | Topsy-turvy requirements[END_REF] criticizes piecemeal construction of cyberphysical systems. Apart from the details of that particular work, the multirequirements method possesses several flaws that are of concern for us:

• The presumed additional tools responsible for keeping the requirements document and the resulting program in sync do not seem trivial to implement. The method assumes that any person responsible for requirements specification admits the concern for traceability and connects natural language descriptions with the corresponding program pieces through special anchors. As a consequence, the tools should also be able to detect mistakenly placed anchors as well as to warn of their potential absence.

• The method is applicable only to "forward" development. There is no way to prove that an existing program meets a multirequirement. The programmatic part of a multirequirement is, conceptually, a small piece of the program itself.

In order to submit a multirequirement to formal verification, it is necessary first to integrate that piece into the main program. This process changes the original program, which is why the very notion of verifying a program with respect to a multirequirement does not exist.

• The multirequirements method assumes a strong bias of the requirements specification notation toward features of a specific programming language (Eiffel in that particular work). A seamless requirement is a command with a pre-and a postcondition expressed in terms of its formal arguments. Such commands are a kind of construct available in any modern programming language with contracts, such as Dafny, Spec# or D.

Applicability of the multirequirements method was studied on a realistic example in Chapter 7.

Summary

As the development case illustrates, seamless requirements empower software engineering with the following properties:

• Unity of software construction and verification: seamless requirements stimulate construction and, at the same time, are suitable for checking correctness of the deliverables.

• Unity of functional requirements and code: the requirements document becomes one of the classes in the source code repository, readable by both customers and developers.

• Independence from a particular development model choice: there is no need to adjust the requirements notation in the event of switching the development model on the go.

• Traceability for free: existing features of the underlying IDE are suitable for traceability management in the following form:

to trace a seamless requirement to specification (downward traceability [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]) is to retarget the IDE to the definitions of the implementation classes and features that occur in the requirement; this functionality is present in some form in any modern IDE.

tracing a class or a feature to requirements that constrain it (upward traceability [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]) reduces to an application of the "Show Callers" feature, which is also present in all modern IDE's (up to a name); every call from the requirements class is done by some seamless requirement.

Limitations of the example

Several potential complications were ignored in favour of simplicity of the narrative:

• There is only one command in the clock example: tick. Despite this, the approach scales to multi-command examples. Specification drivers, which serve as the formal layer of seamless requirements, are capable of handling cases with an arbitrary number of commands (Chapter 8).

• The tick command does not accept any formal arguments. In fact, the approach scales to the case with formal arguments: if a seamless requirement describes desirable behavior of a command with a formal argument, the corresponding routine may assume the presence of the argument through extending the list of its own formal arguments (Equation (8.1)).

The postcondition inference logic from Section 10.4.3 only work in the context of these two simplifications. In general, inference of a sufficiently strong postcondition does not seem to be a solvable problem. 10.6. SUMMARY

Limitations of the approach

As the primary concern of the approach is functional correctness, all questions related to the suitability of seamless requirements for non-functional requirements lie expressly outside of the chapter's scope.

Another assumption that underlies this approach is the use of a programming language with contracts plus the existence of a prover for this language. This assumption is adequate: Eiffel plus AutoProof is not the only representative of this technology combination. The "Code Contracts for .NET" project [START_REF] Barnett | Code Contracts for .NET: Runtime Verification and So Much More[END_REF] offers similar benefits in the .NET world.

Seamless requirements approach is applicable to non-concurrent programs. Although the approach may have potential in concurrent setting too, the question is not studied yet.

Future work Translation between the notations

The seamless requirements approach poses an immediate question: how to check the consistency between the natural language and the programming language components? Currently there is no way to do that. Work [START_REF] Meyer | On Formalism in Specifications[END_REF] describes a requirements refinement process that relies on round trip engineering: given a natural language requirement translate it into a formal form and then back and see how close the result is to the original statement. This process needs support in the form of two tools that would perform the necessary translations. Development of these tools is the immediate goal of the present research.

Consistency of seamless requirements

Another research question is: how to understand if seamless requirements are consistent with each other? With an inconsistent set of requirements it will never be possible to develop a provably correct solution. With trial-and-error considerable amount of resources may be spent before the inconsistency becomes apparent. How could one detect inconsistencies in requirements before initiating implementation of a solution?

Chapter 11

Specifying and Verifying Control Software

The considerable effort of writing requirements is only worthwhile if the result meets two conditions: the requirements reflect stakeholders' needs, and the implementation satisfies them. In usual approaches, the use of different notations for requirements (often natural language) and implementations (a programming language) makes both conditions elusive. AutoReq, presented in this chapter, takes a different approach to both the writing of requirements and their verification. Applying the approach to a well-documented example, a landing gear system, allowed for a mechanical proof of correctness and uncovered an error in a published discussion of the problem.

Overview and main results

A key determinant of software quality is the quality of requirements. Inconsistent or incomplete understanding of the requirements can lead to catastrophic results. We present a tool-supported method, AutoReq, for producing verified requirements, with applications to control software. It illustrates it on a standard case study, an airplane Landing Gear System (LGS). The goal is to obtain requirements of high quality:

• Easy to write.

• Clear and explainable to domain experts.

• Amenable to change.

• Supporting traceability through close connections to later development steps.

• Amenable to mechanical verification and validation.

As the last point indicates, AutoReq includes techniques for not only expressing requirements but also verifying their correctness. The LGS case study illustrated the 111 effectiveness of such verification by uncovering a significant error in a previous description of this often-studied example (Section 11.6.5).

AutoReq takes natural language requirements and environment assumptions as an input and converts them into a format having the above properties. The new format relies on a programming language with contracts. This viewpoint brings one of the biggest advantages of AutoReq -it makes the requirements verifiable both against the underlying assumptions and future candidate implementations, while maintaining their readability through natural language comments on the code. We take the natural language statements from the LGS case study and translate them to seamless statements, readable and verifiable. The ASM treatment of the case study [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF] provides the candidate implementation -an executable ASM specification [GH94] of the system. This by no means implies applicability of AutoReq to ASMs only. The approach applies to any candidate implementation that follows the small step semantics of ASMs. More precisely, the implementation should run in an infinite loop polling the system environment's state and sending appropriate control signals. To the best of our knowledge, most control software implementations follow this approach.

The method of expressing requirements does not introduce any new formalism but instead relies on a standard programming language, Eiffel, using mechanisms of Design by Contract (DbC) [START_REF] Meyer | Applying "Design by Contract[END_REF] to state semantic constraints. While DbC relies on Hoare logic [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF], which at first sight does not cover temporal and timing properties essential to the specification of control software, we show that it is, in fact, possible to express such properties in the DbC framework.

The verification part relies on an existing tool, associated with the programming language: AutoProof [Tsc+15], a program proving framework, which can verify the temporal and timing properties expressed in the DbC framework. Applying it to LGS automatically and unexpectedly uncovered the error. Hoped-for advantages include:

• Expressiveness: requirements benefit both from the expressive power of declarative assertions and from that of imperative instructions.

• Ease of learning: anyone familiar with programming languages has nothing new to learn.

• Continuity with the rest of the development cycle: design and implementation may rely on the same formalism, avoiding the impedance mismatches that arise from the use of different formalisms, and facilitating change.

• Precision: formal specifications (contracts) cover the precise semantics of the system and its environment.

• Existing tools, as available in modern IDEs, that support the requirements process: a compiler for a typed language performs many checks that are as useful for requirements as for code.

The AutoReq approach, while not claiming to have fully reached these ambitious goals, makes the following contributions:

• The outline of a general method for requirements engineering with application to control software.

• The use of a programming language as an effective mechanism for requirements specification.

• A precisely defined concept of verifying requirements for control software (complementing the usual concept of verifying programs). This idea originates from seamless requirements (Chapter 10).

• A translation scheme from temporal and timing properties to Hoare logic properties (first-order predicates on states) as traditionally used in Design by Contract.

• A way to combine environment and machine aspects (the two components of requirements in the well-known Jackson-Zave approach).

• A direct mapping of these requirements concepts into well-known verification concepts, assume and assert.

• The demonstration that it is possible to use an existing program prover to verify requirements.

Section 11.2 discusses consequences of poor requirements. Section 11.3 presents LGS. Section 11.4 describes the methodology: how to specify and verify requirements. Section 11.5 shows how to translate common requirements patterns (originally expressed through temporal logic, timing constraints or Abstract State Machines) into a form suitable for AutoReq. Section 11.6 sketches the method's application to the case study, including an analysis of the uncovered error. Section 11.7 discusses related work, and Section 11.8 discusses limitations and future work.

The importance of verifying requirements

Control software in aerospace, transportation, and other mission-critical areas raise tough reliability demands. Ensuring reliability begins with the quality of requirements: the best implementation is useless if the requirements are inconsistent or do not reflect needs. Requirements for software deserve as much scrutiny as other artifacts such as code, designs, and tests.

The literature contains many examples of software disasters arising from requirements problems of two kinds:

• In the requirements themselves: inconsistencies, incompleteness, inadequate reflection of stakeholders' needs.

• In their relationship to other tasks: design, implementation etc. may wrongly understand, implement or update them.

Examples of the first kind include [Lak10]:

• The year 2000, National Cancer Institute, Panama City: patients undergoing radiation therapy get wrong doses because of a software miscalculation.

• In 1996, Ariane 5 maiden flight fails from flight computer's code crash, out of an uncaught arithmetic exception, in code that was reused from Ariane 4 but relied on assumptions that no longer hold in the new technology.

• In 1990, a bug in software for AT&T's #4ESS long-distance switches crashes computers upon receipt of a specific message sent out by neighbors when recovering from a crash.

Analysis of these examples suggests that the problem lies in part from the use of different methods and of different notations for requirements and other tasks such as implementation. This observation is a basis for the seamless approach ([Mey97], [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF], [START_REF] Meyer | Multirequirements[END_REF], following ideas in [START_REF] Rumbaugh | Object-Oriented Modeling and Design[END_REF]), which AutoReq applies by using a single notation throughout.

Examples of the second kind include [Lam09]:

• London underground system: several cases [START_REF] Peter | Computer-related risks[END_REF] of passenger deaths from doors opening or closing unexpectedly, without an alarm notification being sent to the train driver.

• An aerospace project [START_REF] Ivy | Customer-centered products: creating successful products through smart requirements management[END_REF] where 49% of requirements errors were due to incorrect facts about the problem world.

• An inadequate assumption about the environment of the flight guidance system, which may have contributed to the crash of a Boeing 757 in Cali [START_REF] Modugno | Integrated Safety Analysis of Requirements Specifications[END_REF].

Location information for the pilot to extend the flap arrived late, causing the guidance software to send the plane into a mountain.

These examples and others in the literature illustrate the importance of verifying requirements. We will see that it is possible to apply to requirements both the concept of verification, as commonly applied to code, and modern proof-oriented verification tools devised initially for code.

The Landing Gear System

To illustrate AutoReq, we will use, rather than examples of our own making, the LGS [START_REF] Boniol | The Landing Gear System Case Study[END_REF], probably the most widely discussed case study in the control software literature, e.g. [START_REF] Su | Aircraft landing gear system: approaches with Event-B to the modeling of an industrial system[END_REF], [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF], [START_REF] Dhaussy | Context-Aware Verification of a Landing Gear System[END_REF], [START_REF] Ladenberger | Validation of the ABZ landing gear system using ProB[END_REF], [START_REF] Mammar | Modeling a landing gear system in Event-B[END_REF], [START_REF] Berthomieu | Model-checking Real-Time Properties of an Aircraft Landing Gear System Using Fiacre[END_REF], [START_REF] Banach | The landing gear system in multi-machine Hybrid Event-B[END_REF].

The Landing Gear System physically consists of the landing set, a gear box that stores the gear in the retracted position, and a door attached to the box (Figure 11.1). A digital controller independently actuates the door and the gear. The controller initiates either gear extension or gear retraction depending on the current position of a handle in the cockpit. The task is to program the controller so that it sends the correct signals to the door's and the gear's actuators.

The discussion will restrict itself to the system's normal mode (there is also a failure mode). The defining properties are the following: R 11 bis: When the landing gear handle has been pushed down and stays down, then eventually the gear will be seen extended and the doors will be seen closed. We interpret this requirement in LTL as (handle down ⇒ 3(gear extended ∧ door closed)) where stands for the always temporal operator, and 3 stands for the eventually temporal operator.

R 12 bis: When the landing gear handle has been pulled up and stays up, then eventually the gears will be seen retracted and the doors will be seen closed. We interpret this requirement in LTL as (handle up ⇒ 3(gear up ∧ door closed)).

R 21 : When the landing gear handle remains in the down position, then retraction sequence is not observed. We interpret this requirement in LTL as (handle down ⇒ d ¬ gear retracting) where d stands for the next temporal operator.

R 22 : When the landing gear handle remains in the up position, then outgoing sequence is not observed. We interpret this requirement as (handle up ⇒ d ¬ gear extending).

We will work not from the original description of the LGS but from one of the most interesting treatments of case study [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF], which uses the abstract state machine (ASM) approach and applies a process of successive refinements:

1. Start with a ground model covering a subset of the requirements.

Model-check it.

3. Repeatedly extend (refine) it with more properties of the system, proving the correctness of each refinement.

The AutoReq specification discussed in the next sections starts from the ASM ground model. Some of its features are a consequence of this choice:

• It only accounts for properties specified in the first of the successive models in [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF].

• As already noted, it only covers normal mode.

• Like the ASM model, it assumes that the only environment-controlled machinevisible phenomenon is the pilot's handle [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF]. In the failure mode, there might be others.

• It takes over from the ASM model such instructions as gears := RETRACTED which posit that the control software has a way to send the gear to the retracted position in one step. This assumption is acceptable at the modeling level but not necessarily true in the actual LGS system.

• The ASM-to-Eiffel translation scheme (Section 11.5.4) ensures preservation of the one-step semantics of ASM.

Requirements methodology

AutoReq builds on the ideas of seamless development [START_REF] Meyer | Object-Oriented Software Construction[END_REF], [START_REF] Walden | Seamless Object-Oriented Software Architecture -Analysis and Design of Reliable Systems[END_REF], multirequirements [START_REF] Meyer | Multirequirements[END_REF] and seamless requirements (Chapter 10). The new focus is on requirements verification and reuse of previous requirements through a routine call mechanism. We examine in turn how to specify and reuse requirements and environment assumptions (Section 11.4.1), and what it means to verify them (Section 11.4.2).

Specifying requirements

Specifications in AutoReq, often in practice translated from a document in structured natural language, take the form of contracted Eiffel routines with natural language comments. These routines are further consumed by:

• The verification tool. Since the routines coming out of the translation process are equipped with contracts, they may be formally verified by a Hoare logic based prover.

• Possible implementers of the system. The combination of a programming language and natural language helps developers, who will use the same programming language for implementation, understand the requirements. The contracts state the semantics.

Previous work ([Mey13]

, Chapter 10) explains the reasons for choosing this mixed notation: unity of software construction and verification, unity of functional requirements and code, use of complementary notations geared towards different stakeholders.

Additional properties are specific to control software:

• Specification of temporal assumptions and requirements.

REQUIREMENTS METHODOLOGY

• Specification of timing assumptions and requirements.

• Reuse of assumptions and requirements in stating new ones.

The basic notation is Eiffel. All the examples have been processed by the Eiffel-Studio IDE [Eif], compiled, and processed by the AutoProof verification environment. The interest of compilation is not in the generated code, since at this stage the Eiffel texts represent requirements only, but in the many correctness controls, such as type checking, of a modern compiler.

The requirements can and do take advantage of object-oriented mechanisms such as classes, inheritance and genericity.

There is sometimes an instinctive resistance to using a programming language for requirements, out of the fear of losing the fundamental difference between the goals of the two steps: programming languages normally serve for implementation, while requirements should be descriptive. The AutoReq approach, however, uses the programming language not for implementation but for specification, restricting itself to requirements patterns discussed next. The imperative nature of these patterns does not detract from this goal; empirical evidence indeed suggests [START_REF] Fahland | Declarative versus Imperative Process Modeling Languages: The Issue of Understandability[END_REF], [START_REF] Pichler | Imperative versus Declarative Process Modeling Languages: An Empirical Investigation[END_REF], [START_REF] Fahland | Declarative versus Imperative Process Modeling Languages: The Issue of Maintainability[END_REF] that operational reasoning works well not just for programmers but for other requirements stakeholders. An added benefit is the availability of program verification tools, which AutoReq channels towards the goal of verifying requirements.

For this verification goal, there seems to be a mismatch between the standard properties that program verification tools address and the needs of control software. Program verification generally relies on Hoare logic properties as embodied in Eiffel's Design by Contract: properties of the program state (or, for postconditions, two states). The specification of control software generally relies on temporal and timing requirements, involving properties of an arbitrary number of (future) states of the system. A contribution of this work is to resolve the mismatch, using the programming language to emulate temporal and timing properties, through schemes described in Section 11.5.

Verifying requirements

Verification of AutoReq requirements relies on AutoProof [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF], the prover of contracted Eiffel programs. AutoProof is a Hoare logic [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF] based verifier that follows semantic collaboration [Pol+14] -a specification and verification methodology adapting Hoare logic to specific needs of object-oriented programming. The verification unit of AutoProof is feature with contracts. AutoReq assumptions and requirements take the form of such features, with natural language comments for better readability, to enable their direct verification with AutoProof.

Contracts for verification with AutoProof may be modular -visible to the feature's callers, and non-modular -visible only in the feature's implementation. Modular contracts take the following forms:

• Precondition imposes obligations on the feature's callers and benefits the callees' implementation.

• Postcondition guarantees benefits to the callers and imposes obligations on the callees' implementation.

Non-modular contracts take the following forms, going back at least as far as ESC-Java [CK04]:

• assume X end allows the verification to take advantage, at the given program point, of property X, adding X to the set of properties that the prover may use (assumption).

• assert X end requires the verification to establish X before going beyond the program point, adding X to the set of properties that the prover must prove (proof obligation).

Both precondition and assume contracts add information to verifying the postcondition and assert contracts, but preconditions impose verification obligations on their own: they have to hold whenever the respective features are called. AutoReq requirements take the form of features with non-modular contracts because of their fundamental connection with the core requirements engineering terminology, as discussed further. From the purely technological perspective, AutoReq depends on the ability of AutoProof to inline callees' non-modular contracts into the callers' code.

AutoReq specifications include formal properties which can be submitted to proof tools for verification. Jackson & Zave's seminal work [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF], also van Lamsweerde [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]), introduced a fundamental division of these properties:

• Environment (or domain) assumptions characterize the context in which the system must operate. The development team has no influence on them.

• Machine (or system) properties characterize what the system must do. It is the job of the development team to work on them.

Although each of these two distinctions is well-known and widely used in the corresponding sub-community of software engineering, respectively requirements and formal verification, the existing literature does not, to our knowledge, connect them. The AutoReq approach, covering both requirements and verification concepts, unifies them into a single distinction:

• assume E end specifies an environment assumption E.

• assert E end specifies a machine property E.

Verifying requirements in AutoReq means proving that all assert hold, being permitted to take assume for granted.

Notational convention: the above notations are for presentation. The actual texts verified through the process reported in the next sections use the following standard Eiffel equivalents:

• For assert X end, the notation in the actual Eiffel texts is check X end (check is a standard part of Eiffel's Design by Contract mechanism).

• For assume X end, the Eiffel notation is check assume: X end. The assume tag is a standard part of the notation for programs to be verified by AutoProof. old e, in a routine body, denotes the value of an expression e on routine entry.

The only difference with verifying programs comes from the elements that appear between these assertions: in program verification, they may include any instructions; in requirements verification, we only permit patterns discussed below (Section 11.5.1). In addition, specifications include timing properties, using the translation into classic assertions described in Section 11.5.2 and Section 11.5.3.

Formal methods and notations are essential for one of the goals of AutoReq (precision/completeness, see Section 11.1), but non-technical stakeholders sometimes find them cryptic at first sight, hampering other goals such as readability and ease of use. The multirequirements approach [START_REF] Meyer | Multirequirements[END_REF], which AutoReq extends, addresses the problem by using complementary views, kept consistent, in various notations: formal (such as Eiffel or a specification language), graphical (such as UML) and textual (such as English). In line with this general idea, AutoReq specifications rely on systematic commenting conventions (somewhat in the style of Knuth's literate programming [Knu84]). A typical example from the specification in the next section is --Assume the system run _ in _ normal _ mode

The second line is formal; the comment in the first line puts it in context. Such seemingly informal comments follow precise rules. For non-expert users, and for the sake of discussion, it is enough to treat them as natural language explanations.

Structuring a control software specification

The mechanisms of the preceding section enable us to write the requirements for control software and verify them. Such specifications will follow standard patterns:

• Overall structure of control software implementations (Section 11.5.1).

• Translation rules for temporal properties (Section 11.5.2).

• Translation rules for timing properties (Section 11.5.3).

• Translation rules for ASM properties (Section 11.5.4). These schemes and translation patterns are fundamental to the methodology because they govern the use of the programming language. While the methodology relies on a programming language for expressing requirements, it does not use its full power, since some of its mechanisms are only relevant for programs. Programming language texts expressing requirements stick to the language subset relevant to this goal.

The translation schemes of Section 11.5.2, Section 11.5.3 and Section 11.5.4 guarantee that their output will conform to these patterns. A goal for future work (Section 11.8) is to formalize the input languages, timed temporal logic and ASM, and turn the translation patterns into formal rules and automatic translation tools.

Pending such formalization, we did not for now address the soundness of the translation. The translation uses four patterns that look like Eiffel features with non-modular (assume and assert) contracts. These patterns are not part of AutoProof, but they serve as blueprints for features that AutoProof can verify. P1 and P2 (Section 11.5.2) are time-independent (although temporal in the sense of temporal logic). P3 and P4 (Section 11.5.3) take timing into account. These cases suffice for the examples addressed with AutoReq so far. Translation schemes are possible for more general LTL/CTL/TPTL schemes if the need arises in the future.

The patterns use the Jackson-Zave distinction (Section 11.4.2) between describing an environment assumption and prescribing an expected system (machine) property. Specifically: P1 and P3 correspond to environment assumptions (respectively timeindependent and timed); P2 and P4 correspond to system obligations (with the same distinction). The Eiffel translations accordingly use assume for P1 and P3 and assert for P2 and P4. When asked to verify an AutoReq requirement, AutoProof tries to infer the assert statements by simulating an execution of the requirement's body to a state satisfying the assume statements. Table 11.1 maps the patterns according to the taxonomy of system properties used in the present chapter.

Translating temporal properties

In the control software world, the starting point for requirements is often a description expressed in a temporal logic, usually LTL [START_REF] Pnueli | The Temporal Logic of Programs[END_REF], CTL [START_REF] Ben-Ari | The Temporal Logic of Branching Time[END_REF], or a timed variant such as propositional temporal logic (TPTL [START_REF] Alur | A Really Temporal Logic[END_REF]). Even if not using a specific formalism, they often state temporal properties such as all future system states must satisfy a given condition or some future state must satisfy a given condition. The LGS properties given in Section 11.3 are an example.

• P1 (environment assumption)

Consider the system running in mode cs under assumption c. The LTL formulation is (c ∧ cs).

• P2 (system obligation)

The system running in mode cs should immediately meet property p. The LTL formulation is (cs ⇒ d p). This property constrains the system to maintain response p whenever stimulus cs holds.

The translation scheme for P1 is:

--Assume the system run _ under _ condition _ c do assume c end main _ under _ conditions _ cs end where main _ under _ conditions _ cs is of the form P1 or P3. The run _ under _ conditions routine should be used instead of the original main in all requirements that talk about the system operating in mode c. This pattern may be useful for encoding c in properties of the form (c ⇒ 3d).

The translation scheme for P2 is:

--Require the system to immediately _ meet _ property _ p do main _ under _ conditions _ cs assert p end end where main _ under _ conditions _ cs is of the form P1 or P3.

Translating timing properties

Although not all approaches to requirements take time into account, timing requirements, such as the response time must not exceed 1 second, are essential to the proper specification and implementation of control software. AutoReq recognizes the following timing-related patterns:

• P3 (environment assumption)

Assume the system running in mode cs spends t time units to meet property p. The TPTL formulation is x.((cs ∧ ¬ p) ⇒ d y.(p ⇒ y = x + t)). x. and y. record the current time of corresponding states [START_REF] Alur | A Really Temporal Logic[END_REF].

• P4 (system obligation)

The system running in mode cs should spend no more than t time units to meet property p. In TPTL: x.(cs ⇒ 3y.(p ∧ y ≤ x + t)).

The translation scheme for P3 is:

--Assume it takes t time units to take the system from _ not _ p _ to _ p: do main _ under _ conditions _ cs if (not old p and p) then duration := duration + t

end end

The technique for timing system obligations of the P4 form differs from the others by using loops as the core mechanism:

--Require that meeting _ p _ under _ persistent _ conditions _ cs --never takes more than t time units: do from main _ under _ conditions _ cs until p or (durationold duration) > t loop main _ under _ conditions _ cs end assert p and (durationold duration)≤ t end end where main _ under _ conditions _ cs is of the form P1 or P3. The (durationold duration)> t exit timeout condition ensures termination of the loop, and assertion (durationold duration)≤ t checks that the timeout condition has not been reached.

The technique for handling the timing-related patterns relies on an integer, nondecreasing auxiliary variable duration. It has the same role as x and y in the TPTL formulations. The duration variable is part of the AutoReq approach -not a predefined variable nor part of AutoProof. It does not play a role in the actual execution of the system but caters to static reasoning about the system's timing properties. The from _ not _ p _ to _ p routine updates the value of duration instead of using assume, which would lead to a contradiction: the prover would detect that the variable was not, in fact, updated, and would infer False from assuming the opposite.

Translating ASM specifications

Abstract State Machines [START_REF] Gurevich | Evolving Algebras and Partial Evaluation[END_REF], are a commonly used specification formalism for control software, and the treatment of the LGS case study in [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF] served as a starting point for our own treatment of the example. We do not formally prove soundness of the ASM-to-Eiffel translation. The decision to work with the ASM treatment was motivated by the general ASM specifications' executability: fundamentally, they are verifiable abstractions of infinitely running control software. Such software may be implemented in a general-purpose programming language, and the present chapter demonstrates that such a language may serve as a verifiable abstraction of itself, in the presence of a program prover.

Below comes the ASM-to-Eiffel translation scheme. The translation scheme omits the nondeterministic version of the ASM formalism. The original work [START_REF] Gurevich | Evolving Algebras and Partial Evaluation[END_REF] presents "Nondeterministic Sequential Algebras" as an extension to the basic model. As Section 11.1 explains, the ASM formalism serves as an implementation language example in the present discussion of AutoReq, with no intent of covering every aspect of ASMs. Nondeterministic updates seem to be inappropriate for implementing mission-and lifecritical software, such as the LGS controller, and control software in general. Every possible environment's state should be predictably handled in such systems. The ASM treatment of the LGS, for example, does not use nondeterminism.

A basic ASM specification is a collection of rules taking one of three forms [Gur00]: assignment, do-in-parallel and conditional. An ASM assignment reads:

f (t 1 , .., t j) := t 0 (11.1)
The semantics is: update the current content of location λ = (f , (a 1 , .., a j)), where a i:{1..j} are values referenced by t i:{1..j} , with the value referenced by t 0 . The Eiffel representation for an ASM location is an attribute (field) of the class; the representation for a location update is an attribute assignment.

The ASM do-in-parallel operator applies several assignments in one step. Eiffel offers no native support for do-in-parallel, but it can emulate one sequentially without changing the behavior. The following example gives intuition behind the translation idea:

a, b := max(a -b, b), min(a -b, b) (11.2)
The instruction in Equation (11.2), when run infinitely, reaches the fixpoint in which a contains the greatest common divisor of a and b. The Eiffel translation of this instruction is: The translation of an ASM conditional (if t then R else Q) is an Eiffel conditional instruction.

The ASM-to-Eiffel translation scheme scales out to the multiple classes case. The translation overhead in this case consists of implementing assigner procedures for the supplier classes' attributes. The assigner procedures will make it possible for the clients to update the suppliers' attributes while keeping them consistent. The LGS example is simple enough to avoid the multiple classes case, which is why this translation rule does not apply to the analyzed example.

The Landing Gear System in AutoReq

Equipped with the AutoReq mechanisms as described, we can now see the core elements of the AutoReq specification of the LGS example. The entire example is available in a public GitHub repository [START_REF] Naumchev | Landing Gear System ground model specification and requirements in Eiffel[END_REF].

Normal mode of execution

Execution runs in normal mode if all the parameter values are in the expected ranges and meet the system invariant. Application of the run _ under _ condition _ c pattern results in the following Eiffel model of normal mode: The first three assume express that attribute values fall into specific ranges. The last two express the LGS invariant. Ranges, the invariant and the definition of normal mode come from the original. run _ in _ normal _ mode is a multiple application of the run _ under _ condition _ c pattern (Section 11.5.2). It wraps around main to make additional assumptions before calling it.

Timing properties

The ASM treatment of the LGS case study ignores timing properties stated in the original description. For a practical system, timing is essential; an otherwise impeccable LGS that takes two hours to perform extend landing gear would not be attractive. We rely on AutoReq's timing mechanisms of the AutoReq methodology (Section 11.5.3) and the from _ not _ p _ to _ p pattern (Section 11.5.3). Timing values, e.g. 8 units for door closing, are for illustration only. Each of the translations that follow are produced by applying the same pattern, which is why only the first translation is accompanied by a detailed explanation.

• It takes 8 time units for the door to close. Replacing p with door _ status = closed _ position, and t with 8 in the from _ not _ p _ to _ p pattern yields:

- • It takes 5 time units for the gear to extend:

--Assume it takes 5 time units to take the gear from _ retracted _ to _ extended --position: do from _ extended _ to _ retracted if (old gear _ status = extended _ position and gear _ status = extended _ position) then duration := duration + 5 end end from _ retracted _ to _ extended will include all the previously stated assume instructions together with main.

Baseline requirements

Section 11.3 introduced a set of core LGS requirements, R 11 bis to R 22 , which we now express in AutoReq. R 11 bis and R 21 talk about the system running with the handle pushed down. Application of the run _ under _ condition _ c pattern (Section 11.5.2) with handle _ status = down _ position for c results in the following routine to model the required mode of operation:

--Assume the system run _ with _ handle _ down do assume handle _ status = down _ position end from _ retracted _ to _ extended end run _ with _ handle _ down is an application of the run _ under _ condition _ c pattern (Section 11.5.2). It calls from _ retracted _ to _ extended to include all assumptions so far. Now that the execution mode with the handle pushed down is formally defined, it is possible to express the requirements in terms of it. Property R 21 requires the controller to prevent retraction immediately whenever the handle is pushed down. Application of the immediately _ meet _ property _ p pattern (Section 11.5.2) with gear _ status = retracting _ state for p yields, for R 21 :

--Require the system to never _ retract _ with _ handle _ down do run _ with _ handle _ down assert gear _ status = retracting _ state end end --known as R _ {21}

R 11 bis requires the system eventually to extend the gear and close the door if the handle stays down. The absence of timing makes it unsuitable for the specification of control software: we need to specify an upper bound on the time the system may spend on gear extension. That bound is the sum of the maximal times for door closing, door opening and gear extension. Under earlier assumptions, this value is 25. Applying meeting _ p _ under _ persistent _ conditions _ cs (Section 11.6.2) with gear _ status = extended _ position and door _ status = closed _ position for p, run _ with _ handle _ down for main _ under _ conditions _ cs and 25 for t turns R 11 bis into:

--Require that extension _ duration --never takes more than 25 time units: Requirements R 12 bis and R 22 talk about the system running with the handle pulled up. Application of run _ under _ condition _ c (Section 11.5.2) with handle _ status = up _ position for c yields:

--Assume the system run _ with _ handle _ up do assume handle _ status = up _ position end from _ retracted _ to _ extended end

The rest of the requirements can rely on the specification of the execution mode with handle up, as we have now obtained.

R 22 requires the system to prevent immediate extension whenever the handle is pulled up. Application of immediately _ meet _ property _ p (Section 11.5.2) with gear _ status = extending _ state for p yields, for R 22 :

--Require the system to never _ extend _ with _ handle _ up do run _ with _ handle _ up assert gear _ status = extending _ state end end --known as R _ {22} R 12 bis requires the system eventually to retract the gear and close the door if the handle stays up. Like R 11 bis, it does not include timing. The upper bound for R 12 bis is the sum of the maximal times for door closing, door opening and gear extension, 30 from earlier assumptions. Applying meeting _ p _ under _ persistent _ conditions _ cs (Section 11.6.2) with gear _ status = retracted _ position and door _ status = closed _ position for p, with run _ with _ handle _ up for main _ under _ conditions _ cs and 30 for t yields:

--Require that retraction _ duration --never takes more than 30 time units: do from run _ with _ handle _ up until (gear _ status = retracted _ position and door _ status = closed _ position) or (durationold duration) > 30 11.6.4 Complementary requirements R 11 bis and R 12 bis talk about reaching a desired state under some conditions, but not about preserving it. For example, even if the gear becomes extended and the door closed with the handle down, this situation must not change without the handle pulled up. The following application of immediately _ meet _ property _ p (Section 11.5.2) with gear _ status = extended _ position and door _ status = closed _ position for p captures this property:

--Require the system to keep _ gear _ extended _ door _ closed _ with _ handle _ down do run _ with _ handle _ down _ gear _ extended _ door _ closed assert gear _ status = extended _ position and door _ status = closed _ position end end under the assumption that the doors are already closed, the gear is extended, and the handle is down. Application of run _ under _ condition _ c (Section 11.5.2) with gear _ status = extended _ position and door _ status = closed _ position for c yields, for this assumption:

--Assume the system run _ with _ handle _ down _ gear _ extended _ door _ closed do assume gear _ status = extended _ position and door _ status = closed _ position end run _ with _ handle _ down end

The state with the gear retracted, the door closed and the handle pulled up should be stable without pushing the handle down. The following application of immediately _ meet _ property _ p (Section 11.5.2) with gear _ status = retracted _ position and door _ status = closed _ position for p yields:

--Require the system to keep _ gear _ retracted _ door _ closed _ with _ handle _ up do run _ with _ handle _ up _ gear _ retracted _ door _ closed assert gear _ status = retracted _ position and door _ status = closed _ position end end under the assumption that the doors are already closed, the gear is retracted, and the handle is up. Application of run _ under _ condition _ c pattern (Section 11.5.2) with gear _ status = retracted _ position and door _ status = closed _ position for c yields, for this assumption:

--Assume the system run _ with _ handle _ up _ gear _ retracted _ door _ closed do assume gear _ status = retracted _ position and door _ status = closed _ position end run _ with _ handle _ up end 11.6.5 An error in the ground model Contracts do not just yield expressive power: they also make automatic verification possible in the AutoReq approach thanks to AutoProof. One of the principal potential benefits would be to uncover errors in the requirements.

Our work on the LGS example shows that this benefit is not just a theoretical possibility. Applying the AutoReq method and tools to the published ASM specification of the LGS system [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF] uncovered an error. The verification process applied the following sequence of steps.

1. Start from the ASM specification. The language in which the ASM specification is expressed contains syntactic sugar in addition to the standard ASM operators. The first step consisted of analyzing these additional constructs to understand how they should translate to Eiffel.

2.

Translate it into Eiffel. This step consisted of manual translation of the specification and the requirements to Eiffel. One can find the original ASM specification in an online archive [START_REF]Formal Methods and Software Engineering Laboratory. Landing Gear System ASM specification[END_REF], inside the LandingGearSystemGround.asm file. File ground model.e in the GitHub repository [START_REF] Naumchev | Landing Gear System ground model specification and requirements in Eiffel[END_REF] contains the result of the translation.

3. Verify it with AutoProof. Note that AutoProof, by default, performs modular contract-based verification. AutoReq specification techniques rely on assume and assert rather than traditional contracts. These specification techniques require tuning AutoProof command-line options. The GitHub repository [START_REF] Naumchev | Landing Gear System ground model specification and requirements in Eiffel[END_REF] with the Eiffel translation includes a readme file that says in detail how to launch AutoProof.

4. Identify the error. When AutoProof reports a verification failure, it does not point at its root cause. The last step was devoted to identifying that cause.

The error uncovered by this procedure is subtle and revealing: The specification does not meet the R 11 bis requirement, which states that pushing the handle down should lead to the gear extended and the door closed. Normally, when the crew pushes the LGS handle down, the controller should initiate the gear extension process. Regardless of the initial system's state, this process should end up correctly -so that in the end the gear is extended and the LGS latch is closed.

There exists, however, a state from which the erroneous ASM specification will not bring the system to the correct configuration. This state corresponds to a situation in which the gear has just been retracted, the door is closing, and the crew decides to cancel retraction by pushing the handle down. A correctly working system would cancel the retraction sequence and initiate gear extension. State 15 on Figure 11.2 illustrates this situation: the start opening outgoing action cancels the door closing process initiated by action start closing back in state 7. The state machine proceeds with the gear extension procedure. The erroneous ASM specification models a system that waits for the crew to pull the handle up again to let the system complete the gear retraction process. State 15 on Figure 11.3 features only one outgoing transition: pulling the handle up again. Instead of canceling the door closing process (Figure 11.2), the system starts waiting for the crew to pull the handle up. Imagine a situation in which the crew tries to retract the gear during take-off, and some physical obstacle prevents the latch from closing completely. In this case a possible solution might be to extend the gear back, and then try to retract it again. A real controller implemented around the erroneous specification would make extension with the latch partially closed impossible.

The published Eiffel translation of the specification does not have the error. To catch it with the AutoReq method one needs first to introduce the error back by commenting out two lines in the open _ door routine of the Eiffel translation: when closing _ state then door _ status := opening _ state and then submit routine extension _ duration to the AutoProof tool; the verification will fail. The "README" file in the accompanying GitHub repository [START_REF] Naumchev | Landing Gear System ground model specification and requirements in Eiffel[END_REF] provides detailed instructions on submitting AutoReq requirements to AutoProof. Internally, AutoProof transforms the Eiffel routine to Boogie code and submits it to the Boogie executable [START_REF] Barnett | Boogie: A Modular Reusable Verifier for Object-Oriented Programs[END_REF]. The Boogie executable converts its input to first-order logic formulae and submits them to the Z3 SMT solver [START_REF] Mendonça De Moura | Z3: An Efficient SMT Solver[END_REF].

AutoProof detects the error in the following major steps:

1. Inline the unqualified calls inside of the extension _ duration routine to the level of attribute updates and assume statements.

2.

Unroll the loop inside of extension _ duration. How much to unroll is a configurable setting; the default configuration suffices for the LGS example.

3. Check the assert statements based on the outcome from the Inline step.

The intent of applying AutoReq to this example was not to look for errors but to try out the approach, illustrate it on a widely used problem, and compare it with other treatments of that problem. No error had been reported and we did not expect to find one. To ascertain its presence, we contacted one of the authors of the original article describing the ASM implementation. He confirmed the presence of the error in the paper. (He also noted that the private repository used by his colleagues and him had a correct specification.)

Related work 11.7.1 Similar studies

The ASM treatment of the LGS example comes from a collection including other treatments [START_REF] Boniol | The Landing Gear System Case Study[END_REF], such as Event-B [SA17], [START_REF] Ladenberger | Validation of the ABZ landing gear system using ProB[END_REF], [START_REF] Mammar | Modeling a landing gear system in Event-B[END_REF], Fiacre [START_REF] Berthomieu | Model-checking Real-Time Properties of an Aircraft Landing Gear System Using Fiacre[END_REF] and Hybrid Event-B [START_REF] Banach | The landing gear system in multi-machine Hybrid Event-B[END_REF]. The original collection [START_REF] Boniol | The Landing Gear System Case Study[END_REF] discusses pros and cons of these approaches, and we do not repeat that discussion. AutoReq complements these approaches with the following:

• Language reuse: AutoReq captures temporal and timing properties in a general purpose programming language. This will inevitably save resources for software teams that want to apply formal methods.

• Technology reuse: AutoReq relies on AutoProof, a Hoare logic based program prover. The original use case of AutoProof was specifying and verifying programs according to the principles of Design by Contract. With AutoReq, software teams can use the tool throughout the whole software lifecycle, starting from the requirements phase.

• Specification reuse: AutoReq makes it possible to avoid copying-and-pasting already stated assertions through the standard routine call mechanism, familiar to any post-Assembly programmer.

• Implementation reuse: AutoReq does not require translating programs to models and back for further formal verification. If a change in the program breaks an AutoReq requirement, the prover will immediately notice this.

These advantages need stronger support in the form of successful industrial applications of AutoReq. Such applications may also uncover additional problems to solve. The application of AutoReq to the LGS example inherits the questionable assumptions (Section 11.3) from the original work by Arcaini et al. Applying AutoReq to an example with weaker assumptions would provide more evidence of its benefits.

The applicability studies will follow the LGS-based experiment that focuses on illustrating the approach alone. Combining the first description of AutoReq with its applicability studies would bear the risk of making the chapter difficult to read.

Existing formalisms

Reasoning about programs, imperative and concurrent, has been the focus of computer science researchers for decades [START_REF] Jones | The Early Search for Tractable Ways of Reasoning about Programs[END_REF], and it traces back as early as Turing's work [START_REF] Jones | Turing's 1949 Paper in Context[END_REF]. Different techniques have been developed over time, and it soon became clear that, while post facto verification can be successful for small programs, an effective verification strategy should support and be part of the software development itself and be fully embedded in the process.

The AutoReq method follows this idea and relies on DbC verification; however, one should understand that DbC is not well suited for control software as it is. The possibility of unexpected changes in the values of environment-controlled variables introduces the gap between DbC and control software. Traditional DbC relies on invariant-based reasoning, on the principle of invariant stability [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF]: it should be impossible for an operation to make an object inconsistent without modifying the object. This principle does not work with control software because of the unpredictable environment-controlled variables. In other words, any attempt to constrain an environment-controlled variable through a contract will inevitably lead to the contract's failure.

Control software communicates asynchronously with the environment. This introduces another gap with DbC, which is designed from the beginning to deal with synchronous software. For non-life-critical systems [START_REF] Jackson | Deriving Specifications from Requirements: An Example[END_REF] one may sacrifice the asynchrony under additional assumptions (Section 7.5.2), but the Landing Gear System does not fall into this category.

An interesting technique for including environment properties is the notion of monitor introduced by Zave [START_REF] Zave | An Operational Approach to Requirements Specification for Embedded Systems[END_REF]. A monitor is an executable requirement that runs in a dedicated process and observes the system from outside logging possible anomalies. A monitor continuously polls the state of nondeterministic variables and checks if the system evolves accordingly. This is, however, a run-time mechanism; with AutoReq, we seek requirements techniques that lend themselves to static verification.

The general aspiration towards sound static verification resulted in numerous modeling approaches that rely on a declarative logic. Alloy [START_REF] Jackson | Software Abstractions -Logic, Language, and Analysis[END_REF] is one of these declarative modeling languages, based on first-order logic, that are used to express complex behavior of software systems. Alloy is a successor of Z [START_REF] Abrial | Specification Language[END_REF] with its own formal syntax and semantics, that adds automatic verification and tool support to Z specifications. A model created in Alloy can indeed be automatically checked for correctness by using a dedicated tool: the Alloy Analyzer, a SAT-based constraint solver that provides fully automatic simulation and checking. Alloy is one of the tools used for requirements verification. There are several examples of successful applications of the modeling languages in different fields: from pedagogical to enterprise modeling to transportation. A list documenting some of these applications can be found in [START_REF] Jackson | Alloy Applications[END_REF].

The declarative view simplifies static reasoning, but the system will eventually have to physically operate. C. A. R. Hoare introduced an imperative logic to statically reason about software way back in 1969. This invention has been treated as a verification mechanism. We are interested in requirements specification notations. The notion of seamless requirements (Chapter 10) uses generalized Hoare triples, specification drivers (Chapter 8), as a requirements notation.

The AutoReq method steps forward by applying the idea of seamless requirements to the nondeterministic setting. It empowers the operational view of Pamela Zave on requirements with AutoProof -a Hoare logic based prover of Eiffel programs with contracts that relies on the Boogie technology [START_REF] Barnett | Boogie: A Modular Reusable Verifier for Object-Oriented Programs[END_REF]. In AutoReq a requirement is a routine enriched with assume statements capturing environment assumptions and assert statements that capture the obligations for AutoProof corresponding to the assumptions. The resulting method respects environment-controlled phenomena as monitors do but does not assume the requirements to physically run. The AutoReq method will benefit the development process even when there is no static prover like AutoProof: an operational requirement will become a subject to testing as a parameterized unit test (PUT) [START_REF] Tillmann | Parameterized unit tests[END_REF]. The testing will consist in this case of running the requirement in the simulated environment described in its assume statements.

Timing properties

Representation of real-time requirements, expressed in general or specific form, is a challenging task that has been attacked through several formalisms both in sequential and concurrent settings, and in a broad set of application domains. The difficulty (or impossibility) to fully represent general real-time requirements other than in natural language or making use of excessively complicated formalisms (unsuitable for software developers), has been recognized.

In [START_REF] Mazzara | On Modelling and Analysis of Dynamic Reconfiguration of Dependable Real-Time Systems[END_REF] the domain of real-time reconfiguration of systems is discussed, emphasizing the necessity of adequate formalisms. The problem of modeling real time in the context of services orchestration in Business Process, and in presence of abnormal behavior has been examined in [START_REF] Mazzara | Timing Issues in Web Services Composition[END_REF] and [START_REF] Ferrucci | An LTL semantics of business workflows with recovery[END_REF] by means, respectively, of process algebra and temporal logic. Modeling protocols also requires real-time aspects to be represented [START_REF] Berger | The Two-Phase Commitment Protocol in an Extended pi-Calculus[END_REF]. Event-B has also been used as a vector for real-time extension [START_REF] Iliasov | Augmenting Event-B modelling with real-time verification[END_REF] to handle control software requirements.

In all these studies, the necessity emerged of focusing on specific typology of requirements using ad-hoc formalisms and techniques and making use of abstractions. The notion of real-time is often abstracted as number of steps, a metric commonly used.

The AutoReq method works with the explicit notion of time distance between events by stating operational assumptions on the environment; it also supports the abstraction of time as number of steps through finite loops with integer counters.

Summary

The AutoReq approach presented above is a comprehensive method for requirements analysis based on ideas from modern object-oriented software engineering and the application of a seamless software process that relies on the notation of a programming language as a modeling tool throughout the software process. AutoReq also clarifies the notion of verifying requirements and shows how to use a program prover to perform the verification. In addition, it connects fundamental concepts, heretofore considered independent, from two different areas of research: verification (assume/assert) and requirements (environment/machine).

AutoReq has the following limitations, also suggesting areas of improvement:

• While the idea of seamless requirements has been widely applied, its AutoReq development as described here needs more validation on diverse examples in an industrial setting, with actual stakeholders involved.

• The patterns given are not necessarily complete; here too experience with more examples is necessary to determine if there is a need for other patterns.

• The idea of using a programming language for requirements runs counter to accepted ideas; while there are strong arguments supporting it, and ample discussions in some of the OO literature, some people may still hesitate to adopt it.

• More work is required to determine how applicable AutoReq would be to a software process relying on technologies other than Eiffel and AutoProof. In line with this goal, we applied AutoReq [START_REF] Galinier | Specification of the London Ambulance System in Au-toReq[END_REF] to the London Ambulance System case [START_REF] Alrajeh | Elaborating Requirements Using Model Checking and Inductive Learning[END_REF], [START_REF] Letier | Reasoning about agents in goal-oriented requirements engineering[END_REF] and continue working on other examples.

• As discussed in Section 11.5, parts of the process may benefit from more automation. Such further tool support is currently under development.

With these reservations, we believe that AutoReq and the associated case study demonstrate the benefits and contributions listed in the introduction and point to a promising approach to producing and verifying effective requirements for control software.

Chapter 12

Making Seamlessness Reusable

Insufficient requirements reusability, understandability and verifiability jeopardize software projects. Empirical studies show little success in improving these qualities separately. Applying object-oriented thinking to requirements leads to their unified treatment. An online library of reusable requirement templates implements recurring requirement structures, offering a starting point for practicing the unified approach.

Introduction

The industry is not actively applying requirements reuse [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF], which is regrettable: it might help, if practiced, not only to save resources in the requirements specification phase, but also to obtain documents of better quality both in content and syntax. It might also decrease the risk of writing low quality requirements and lead to the reuse of design, code, and tests.

Bertrand Meyer in 1985 described seven understandability problems common to natural language specifications [START_REF] Meyer | On Formalism in Specifications[END_REF] and proposed the process of passing them through a formal notation to produce their more understandable versions. He has later given a name to the approach -"The Formal Picnic Approach" 1 . Formal picnics should be practiced more actively and should be reusable across projects.

The general problem of reuse finds itself in requirements' verifiability too. Requirements' verifiable semantics follows several recurring patterns in most of the cases [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. If a pattern exists, it should be reused, and to be reused it should be encoded as a template. The template should also be connected to the main instruments of software verification -tests and contracts.

Applying object-oriented thinking to the problems of requirements reusability, understandability and verifiability draws a new roadmap towards addressing them simultaneously. A reusable library of requirement templates, taking the familiar form of object-oriented classes, provides a starting point for practicing the approach. Each template encodes a formal semantics pattern [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF] as a generic class reusable across 1 https://tinyurl.com/ycn526rm 137 projects and components, for verifying candidate solutions through either testing or program proving.

The problem explained

Chapter 2 introduces some problems with reusability, understandability and verifiability of requirements. The present section refines these problems further. The preceding chapters of the dissertation target individual qualities of requirements. The discussion that follows the section explains how to address these concerns within a single requirements process at once.

Reusability

Reusability has become a success story in the reuse of code [START_REF] Zaimi | An Empirical Study on the Reuse of Third-Party Libraries in Open-Source Software Development[END_REF] and tests [START_REF] Tillmann | Parameterized unit tests[END_REF], but not requirements. On that side too, many patterns recur again and again, causing undue repetition of effort and mistakes. The practice of industrial projects, however, involves little reuse of requirements. Textual copy and subsequent modification of requirements from previous projects are still the most commonly used requirements reuse techniques [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF], which has already been long recognized as deficient in the world of code reuse.

The most critical factors inhibiting the industrial adoption of requirements reuse through software requirement patterns (SRP) catalogues are [PQF17]:

• The lack of a well-defined reuse method.

• The lack of quality and incompleteness of requirements to reuse.

• The lack of convenient tools and access facilities with suitable requirements classification.

Scientific literature studying requirements reuse approaches pays little attention to these factors when measuring the studied approaches [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF]. The degree of reuse is the most frequently measured variable, but it is measured under the assumption that the evaluated approach is fully practiced. This assumption does not meet the reality: most of the practitioners who declare to practice requirements reuse approaches, apply them very selectively [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF]. Secondary studies, which study other studies, equally ignore the factors that matter to practitioners [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF].

Understandability

Bertrand Meyer, in his work "On Formalism in Specifications" [START_REF] Meyer | On Formalism in Specifications[END_REF], described "the seven sins of the specifier" -a classification of the frequently recurring flaws in requirements specifications. Analyzing a specification of a well-known text-processing problem illustrated that even a small and carefully written natural language requirements document may suffer from the following problems:

• Noise -the presence in the text of an element that does not carry information relevant to any feature of the problem. Variants: redundancy; remorse.

• Silence -the existence of a feature of the problem that is not covered by any element of the text.

• Overspecification -the presence in the text of an element that corresponds not to a feature of the problem but to features of a possible solution.

• Contradiction -the presence in the text of two or more elements that define a feature of the system in an incompatible way.

• Ambiguity -the presence in the text of an element that makes it possible to interpret a feature of the problem in at least two different ways.

• Forward reference -the presence in the text of an element that uses features of the problem not defined until later in the text.

• Wishful thinking -the presence in the text of an element that defines a feature of the problem in such a way that a candidate solution cannot realistically be validated with respect to this feature.

Identified in the times when software processes were following the Waterfall model, which takes good care of every software development lifecycle phase, these problems remain. Nowadays processes pursue continuity, and requirements analysts have little time to process new requirements before passing them to the developers. The processes are iterative and collecting requirements for another iteration often starts before the current iteration finishes. The pace of work lowers availability of expert developers for evaluating the new requirements' verifiability. The pervasiveness of Internet technologies like Google Search brings problems too. Many sources of unclear origins now offer tons of potentially unchecked information, which is sometimes overly trusted.

Denying the progress makes no sense, however. Requirements engineering tools should help the practitioners to improve the quality of information they consume and rely on. The improved information should be reusable across projects.

Verifiability

The reusability concern applies to requirements' verifiability as well. Dwyer et al. analyzed 555 specifications for finite-state verification from different domains and successfully matched 511 of them against 23 known patterns [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. The patterns were encoded in modeling notations without a guidance on how to reuse them across projects for verifying candidate solutions. The gap still exists, and the state-of-thepractice [START_REF] Palomares | Requirements reuse and requirement patterns: a state of the practice survey[END_REF] and literature reviews [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF] of requirements reuse approaches, as well as the studies they cite, do not evaluate requirements' verifiability in the studied approaches.

Requirements reuse approaches should properly address the verifiability aspect: reusing non-verifiable requirements makes little sense. The approaches should make it clear how to capture and reuse recurring verifiable semantics' structures.

Running example

Wikipedia represents a notable example of an intensely used and trusted Internet resource. The rest of the discussion relies on a Wikipedia page describing a 24-hour clock2 as a requirements document example. The "24-hour clock" document is prone to the seven requirements understandability problems [START_REF] Meyer | On Formalism in Specifications[END_REF]. It only has few statements relevant to clock behavior:

1. The 24-hour clock is a way of telling the time in which the day runs from midnight to midnight and is divided into 24 hours, numbered from 0 to 24.

2. A time in the 24-hour clock is written in the form hours:minutes (for example, 01:23), or hours:minutes:seconds (01:23:45).

3. Numbers under 10 usually have a zero in front (called a leading zero); e.g. 09:07.

4. Under the 24-hour clock system, the day begins at midnight, 00:00, and the last minute of the day begins at 23:59 and ends at 24:00, which is identical to 00:00 of the following day.

5. 12:00 can only be mid-day.

6. Midnight is called 24:00 and is used to mean the end of the day and 00:00 is used to mean the beginning of the day.

The rest of the text is noise. The "or" connective in Statement 2 results in wishful thinking: is it acceptable to decide between the two options for every clock object, or should the decision be taken once and uniformly applied to all objects? None of the requirements after Statement 2 talk about seconds, from which it follows that the author silently made the choice in favor of the "hours:minutes" format. This "sin" falls into the silence category. The "usually" qualification introduces the wishful thinking problem to Statement 3: how are the developers expected to check candidate solutions against this requirement? Statements 4 and 6 result in a contradiction each other: statement 4 says that midnight is 00:00, while statement 6 defines 24:00 as midnight and 00:00 as the beginning of the day. The contradiction may arise as a result of forward referencing: 24:00 and 00:00 are only defined in 6, while first used in 1 and 4. The last part of Statement 4 is a remorse: the author implicitly admits that the first part of the statement was not enough and adds the "which is. . . " part. Statement 5 introduces an ambiguity, since the document never defines the "mid-day". Moreover, terms like "mid-day", "midnight", "afternoon" should be defined through specific clock states; it is not clear then what the author means by saying that a specific state can only be mid-day/midnight/afternoon: it can be whatever, depending on the terminology. The illustration of the object-oriented requirements approach handles a fragment of Statement 1: "the day runs from midnight to midnight", referred to as "Statement 1.1". Understanding this requirement's treatment will suffice to understand the approach. A GitHub repository3 hosts the complete treatment of the "24-hour clock" example.

Reuse methodology

Requirements reuse methodologies are bidimensional [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF]. The first dimension, known as development for reuse, describes the procedure of identifying and capturing new requirement patterns. The second dimension, known as development with reuse, describes the process of searching and reusing the captured patterns for specifying new requirements with lower efforts as compared to specifying them without the patterns.

Development for reuse

Given a collection of requirements:

1. Perform the standard commonality and variability analysis on the collection.

2. Capture the identified commonality in an object-oriented class.

3. Capture the semantical commonality through a specification driver (Chapter 8) to support verification.

4. Capture the structural commonality through a string function to support formal picnics.

5. Parameterize the identified variability points through abstraction and genericity.

Development with reuse

Given an informal requirement:

1. Analyze the requirement's meaning and structure.

2. Find the most appropriate requirement template class through the IDE's search facilities.

3. Inherit from the found template in a new class representing the requirement.

4. Refine the abstractions into domain definitions.

5. Replace the genericity with the specified types and domain definitions.

6. Perform a formal picnic to see if the new string representation of the requirement has a different meaning from the original one.

7. Verify candidate solutions through running [START_REF] Tillmann | Parameterized unit tests[END_REF] or proving (Section 8.4) the contracted routine.

Technical artifacts

Two major technical contributions support the method.

Library of templates

A ready-to-use online Eiffel library4 of template classes captures known requirement patterns [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. The library represents a result of applying the development for reuse process to the patterns and provides basis for development with reuse. The library is written in Eiffel for readability, but the method scales to other object-oriented languages with support for genericity. 12.6 Applying a template

Library of multirequirement patterns

The following illustration handles the "Statement 1.1" requirement by applying a reusable template class from the Eiffel library. The requirement fits into the "Global Response" pattern [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]. The pattern reads: "S responds to P globally", for events S and P. It is the most frequently used pattern: out of the 555 analyzed requirements [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], 241 represented this pattern. For "Statement 1.1", both S and P map to the midnight event: "midnight responds to midnight globally". This new statement paraphrases the original one, "the day runs from midnight to midnight". Class STATEMENT _ 1 _ 1 (Figure 12.1(a)) captures the requirement. The class inherits from:

• A generic application of class RESPONSE _ GLOBAL to classes CLOCK and MIDNIGHT, where RESPONSE _ GLOBAL is a generic template encoding the "Global Response" pattern (Appendix A.20). The RESPONSE _ GLOBAL [CLOCK, MIDNIGHT, MIDNIGHT] application reads: "for type CLOCK, MIDNIGHT response to MIDNIGHT globally".

• Class CLOCK _ REQUIREMENT recording domain information common to all clock requirements: the fact that the tick routine advances a clock's state, and the start routine initializes a new clock.

The CLOCK class is a candidate solution implementing the "clock" concept, and the MIDNIGHT class captures the definition of midnight through effecting the deferred holds Boolean function inherited from generic class CONDITION applied to the CLOCK class. The generic application emphasizes the fact that the notion of midnight applies to the notion of clock.

The classes have something in common: the "note" section at the bottom with Web links of two kinds. Links named "Source", when followed, highlight the fragments in the original requirements documents from which the enclosing requirement classes were derived. Links named "GitHub", when followed, lead to the enclosing classes' locations on GitHub. The "Source" link in STATEMENT _ 1 _ 1, for example, highlights, when followed, the "the day runs from midnight to midnight" phrase in the Google document7 , and brings the comment on this phrase to the reader's attention (Figure 12.1(b)). The comment contains the GitHub link leading back to the STATEMENT _ 1 _ 1 class on GitHub; this link is identical to the "GitHub" link in the STATEMENT _ 1 _ 1 class' "note" section.

Formal picnic

The RESPONSE _ GLOBAL class (Figure 12.2) implements its string representation through redefining the standard out function present in all Eiffel classes. Any instruction that expects a string argument, such as print, automatically invokes this function to get the argument's string representation if the argument has a non-string type.

Routine run of class TESTER (Section 12.7) is a configurable entry point of the console application illustrating formal picnics and verification of object-oriented requirements.

Line 11 of TESTER outputs the structured string representation of the STATEMENT _ 1 _ 1 object-oriented requirement. The .default expression returns the default object of the STATEMENT _ 1 _ 1 class, and the print instruction puts the object's string representation to the "Output" window below the "TESTER" window. The requirement's name, STATEMENT _ 1 _ 1, goes before the colon and its string representation goes after.

The requirements analyst now has two comparable string representations of the requirement: the original and the generated one. Comparing them facilitates analysis and may result in asking clarifying questions to the customer and in additional communication.

Verification

The template classes (Appendix A), including RESPONSE _ GLOBAL (Appendix A.20), contain instruments of their own verification in the form of a contracted routine called verify. The run routine of the TESTER class may call verify to test a candidate solution.

Line 15 of the TESTER class (Figure 12.3) tests class CLOCK as a candidate solution of the STATEMENT _ 1 _ 1 requirement. Line 13 instantiates a CLOCK variable, while lines 14 and 15 use the variable as test input. The following discussion explains the nature of line 14. The line is commented to illustrate the problem that the line fixes when uncommented.

The verify routine has a precondition. For the STATEMENT _ 1 _ 1 class, the precondition becomes the holds Boolean function from the MIDNIGHT class. This function re- turns True only for the 24:00 time, and the newly instantiated clock variable is set to time 00:00. Line 14 fixes this mismatch, and its removal crashes the execution. The "Call Stack" window provides information related to the failure: a precondition tagged p _ holds is violated in STATEMENT _ 1 _ 1, inherited from the RESPONSE _ GLOBAL template class (Appendix A.20). The testing code should set the clock variable's state to time 24:00 before testing STATEMENT _ 1 _ 1; line 14 does exactly this. STATEMENT _ 0 is a requirement class saying that the midnight state should be in principle achievable by CLOCK. The EXISTENCE _ GLOBAL pattern [DAC99] captures this semantics. Line 14 tests CLOCK against STATEMENT _ 0 by trying to reach the midnight state on the input variable. Uncommenting the line will remove the precondition violation.

The process of deriving STATEMENT _ 0 is an example of how the verification process may help identify a new requirement and learn a new template.

Program proving and Design by Contract may be used instead of testing. The automatic prover (AutoProof [START_REF] Tschannen | AutoProof: Auto-Active Functional Verification of Object-Oriented Programs[END_REF] in the context of Eiffel) should be applied to the requirements classes, STATEMENT _ 0 and STATEMENT _ 1 _ 1. The prover will statically check the contracted verify routine according to the principles of Hoare logic [START_REF] Hoare | An Axiomatic Basis for Computer Programming[END_REF]. The prover will only accept the routine if the CLOCK class has a strong enough and correct contract (Section 8.4.4). The illustration relies on testing because AutoProof, in its current state, requires a lot of additional annotations to check classes like STATEMENT _ 1 _ 1, and explaining these annotations goes beyond the object-oriented requirements idea's essentials.

Summary

The approach helps to fix the identified problems undermining the lack of requirements reuse:

• The lack of a well-defined reuse method: the reuse method is object-oriented software construction, which is a well-defined method.

• The lack of quality and incompleteness of requirements to reuse: the templates library implements the existing collection of specification patterns proven to cover most of the cases, which makes the library complete and quality in that sense.

• The lack of convenient tools and access facilities with suitable requirements classification: the tools and access facilities are object-oriented IDEs and GitHub, with all their powerful features. The classification is that of the Dwyer et al.'s collection, proven to be practically relevant.

The approach helps to fix the requirements understandability problems:

• Noise: only those requirements remain that fall into an existing verifiable requirement template.

• Silence: an attempt to verify existing object-oriented requirements may uncover missing requirements, as it was the case with STATEMENT _ 0.

• Overspecification: only those requirements remain that fall into an existing verifiable requirement template. Implementation details cannot map to a requirement template.

• Contradiction: one notion may be defined in only one way, otherwise the IDE will raise a compilation error. The contradiction caused by two inconsistent definitions of midnight was resolved by defining this notion in the form of the MIDNIGHT class.

• Ambiguity: little can be done to remove the possibility for different interpretations -the requirements interpretation process is performed by a cognitive agent anyway. If an interpretation is identified as erroneous, however, switching to another template will automatically update both the generated string representation and the underlying verifiable semantics. In other words, the templates may help to reduce the effort spent on fixing the consequences of the misinterpretation.

• Forward reference: the approach removes this problem. There is no notion of requirements' order in the object-oriented approach, and meaningful statements are connected by the standard "client-supplier" relationship, extensively supported by the object-oriented IDEs.

• Wishful thinking: only those requirements remain that fall into an existing verifiable requirement template. The compiler will not accept a template's application in which the verifiable semantics is not fully defined.

The approach helps to fix the requirements verifiability problem. The library of Eiffel classes fixes the lack of reusable templates covering the identified verifiable specification patterns. The approach makes it possible to capture and reuse newly identified patterns using the existing object-oriented techniques complemented with contracts.

Besides the benefits, the approach has some limitations:

• Requirements analysts' familiarity with the principles of object-oriented analysis and design.

• Software developers' familiarity with the principles of Hoare logic based reasoning.

Intelligent tools should be embedded into existing text editors for:

• Detecting known patterns in what requirements analysts specify manually.

• Proposing reusable templates corresponding to the identified patterns.

• Identifying new patterns in requirements that do not map to existing patterns.

Natural language processing (NLP) would be an appropriate instrument for implementing these tools [START_REF] Dalpiaz | Natural Language Processing for Requirements Engineering: The Best Is Yet to Come[END_REF].

Part III Discussion 149

Chapter 13

Qualitative Evaluation

The present chapter discusses qualitative arguments supporting the claim that the SOOR approach improves requirements' expressiveness, verifiability, reusability and understandability.

Expressiveness

SOORs can capture requirements of the following kinds:

• ADT axioms: specification drivers, which capture SOORs' formal semantics, inherit their syntax from the PUT-like tests: they are routines equipped with pre-and postconditions, and prover specific annotations [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF]. The routines' implementations may contain as many command calls as necessary, which makes them suitable for capturing multicommand requirements.

• Temporal properties: specification drivers containing contracted loops in their implementations capture temporal properties. Loops' contracts consist of loop variants and invariants -constructs not present in most programming languages. According to Wikipedia, only Eiffel and Wiley programming languages have native support for loop invariants, and only Eiffel -for loop variants. PUT-like approaches emerged in the world of more widespread programming languages like Java and C# lacking support for loop contracts. This may explain the lack of support for temporal properties in these approaches.

• Timing constraints: specification drivers capturing temporal properties may capture timing constraints through the loop variants. A loop variant is a decreasing non-negative integer function. The loop variants' semantics maps to the notion of time, which monotonically goes in one direction. The rate at which a loop variant decreases corresponds to how the time flows in the problem space. The implementation of the loop variant may reflect the timing properties of the problem space.

Verifiability

The approach can verify what it can express: multicommand ADT axioms, temporal properties and timing constraints. Besides these, it helps remove the following requirements verifiability problems:

• The modularity problem: verification with SOORs does not assume instrumenting the verified code. Specification drivers, forming the verification core of SOORs, are clients of the verified components.

• The lack of suitability for both testing and program proving: specification drivers, unlike PUTs, are fully compatible with modular program proving after some tailoring consisting of adding some annotations [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF] for AutoProof. The prover accepts a specification driver if the implementation contract is correct. AutoProof makes it possible for the two specification approaches to benefit each other; specification drivers, at the same time, remain applicable to the PUT-based testing. Well-definedness properties are specification drivers that call the same feature on two equal sets of inputs and assert preservation of the equivalence in their postconditions. AutoProof will only accept such specification drivers if the called feature's postcondition is well-defined. Contracts' inconsistency properties are specification drivers that assert False in their postconditions. The precondition and the implementation body depend on what is checked for an inconsistency -a feature's precondition, postcondition, or a class invariant. In any case, being able to prove False signals an inconsistency in the verified contract.

• Lack of reusable templates covering the identified verification-oriented SRPs: the online library of SOORTs captures exactly these SRPs.

Reusability

The approach helps fix the identified problems undermining requirements reuse:

• Copy and paste in requirements reuse: the SOOR approach builds on top of the object-oriented principles, which boosted software reuse and made the copy-andpaste approach a Stone Age practice. Applying object orientation to software requirements gives some hope for removing the copy-and-paste approach from requirements reuse.

• The lack of a well-defined reuse method: the reuse method is object-oriented software construction, which is a well-defined method.

• The lack of quality and incompleteness of requirements to reuse: the library of Eiffel SOORTs implements the existing SRP catalogues shown [START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF], [START_REF] Konrad | Real-time specification patterns[END_REF] to cover a significant portion of control software requirements, which makes the library complete and quality in that sense.

• The lack of convenient tools and access facilities with suitable requirements classification: the SOOR approach reuses the powerful tools and access facilities of the object-oriented IDEs and GitHub. The requirements classification in the Eiffel library of SOORTs inherits the classification of the catalogue developed by Dwyer et al., proven to be practically relevant.

The two libraries of SOORTs implemented during the thesis work, have different contexts and levels of reuse:

• The control software SOORTs encode finalized behavior patterns; they are intended for being reused across projects, not for developing SOORTs. This maps well to the original SRP catalogues [DAC99], [START_REF] Konrad | Real-time specification patterns[END_REF], in which the SRPs do not depend on each other.

• The software component SOORTs encode ADT specifications and may reuse each other, just like regular classes do in object-oriented programming.

Understandability

The formal picnic approach improves requirements' understandability [START_REF] Meyer | On Formalism in Specifications[END_REF], [START_REF] Meyer | The Formal Picnic approach to requirements[END_REF] by paraphrasing them by passing through an intermediate formal representation. SOORs provide a concrete tool support for this process in the form of functions that implement the paraphrasing parameterized with variable parts of requirement patterns. Section 2.4 discusses how PUTs and multirequirements promote and inhibit the important characteristics of understandable requirements. Thought of as a combination of PUTs and multirequirements, SOORs inherit their best characteristics: implementation freedom, unambiguity, traceability, feasibility. Specification drivers, forming the semantical core of SOORs, additionally provide a formal framework for achieving completeness and detecting inconsistencies in the presence of a DbC-based program prover. We currently do not know how SOORs may affect the amount of noise in specifications.

Falsification experiment

The best way to test applicability of an approach is to apply it to unusual cases that were not considered from the beginning. One of the reviewers guessed that the approach applies only to atomic components, non-decomposable into finer-grained subcomponents:

Reading the rest of the thesis and analyzing the examples, however, I have understood that, at least in its current form, the proposed approach does not aim at dealing with high level requirements expressed referring to a complex software made of many different components and subsystems acting as controllers. In fact, the approach appears to assume that there is a direct mapping between a SOOR and a single component (e.g., the bounded stack) which is either a control system, handling a finite and limited set of inputs, or a single data type (this is also mentioned at page 18 where it is said that requirements to software components take the form of abstract data type, but no justification for this assumption is provided). Indeed, individual SOORTs from the presented library apply only to one atomic component each. This does not necessarily imply, however, that the general approach does not scale to the multiple components case. Applying the approach to the following cases would help to test its applicability:

1. Software component composed of collaborating sub-components.

2. Software controller composed of collaborating sub-controllers.

3. Composition of software components collaborating with software controllers.

The section presents applying the SOOR approach to a software component composed of collaborating sub-components. The remaining two cases require more carefully designed experiments. Designing and conducting such experiments would be a perfect continuation of the present work.

Design patterns were the obvious choice for the case of a software component composed of collaborating sub-components. In this section we present a SOORT encoding the observer pattern as interpreted in an article by Polikarpova et al [START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF]. The listing below captures the corresponding SOORT. Generic types S and O abstract the subject and observer concrete types. The V generic type abstracts the type of the state that the subject stores and broadcasts across its observers. Lines 12-42 declare the essential deferred features of the observer pattern. The specifier will need to implement these features in terms of the concrete types provided for S, O and V. Lines 46-91 capture the axioms of the observer pattern in the form of specification drivers.

The observer pattern consists of two equally important components -the subject and the list of observers. This plurality does not add, however, to the complexity of the method.

Chapter 14

Quantitative Evaluation

The present chapter discusses quantitative arguments showing that SOORs promote expressiveness, verifiability and reusability. We currently have no quantitative evidence for understandability; the benefits of SOORs for understandability may follow as selfevident, however, from the discussion in Chapter 13 and Chapter 2.

Expressiveness

The evidence of the SOORTs' expressiveness comes from the possibility to capture:

• The 23 temporal SRPs for control software [DAC99] (Section 4.1).

• The real-time semantics [START_REF] Konrad | Real-time specification patterns[END_REF], as an optional feature inside the SOORTs for temporal properties.

• The 21 ADTs recurring in the requirements literature, some of which are essential components (Section 4.2).

Some of the control software SRPs have tricky formal semantics. For example, the "Bounded Existence Between Q and R" SRP, where the bound is at most 2 designated states, looks as follows in LTL:

((Q ∧3R) ⇒ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U (R ∨ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U(R ∨ (¬ PUR))))) (14.1)
We were able to encode this formula as a specification driver inside the BOUNDED _ EXISTENCE _ BETWEEN SOORT (Appendix A.6). Moreover, representing requirements' formal semantics as specification drivers allows us to generalize from the 2states to the k-states case. Three out of the five notations used by Dwyer et al. -LTL, CTL and GIL -lack expressiveness for performing such generalization. Using the programming language as a requirements notation makes it possible to perform the generalization through enclosing the bounded existence semantics into an additional loop that runs exactly k times.

Verifiability

Modularity of the SOOR-based verification from its definitions, which is why it does not require evaluation. Applicability of SOORs to both program proving and testing immediately follows from the definition as well. Specification drivers syntactically are PUTs equipped with the prover-specific annotations; the compiler ignores these annotations, which is why specification drivers may be used as PUTs without modification.

What may deserve an empirical evaluation is how useful specification drivers are for analyzing contracts' well-definedness and consistency. The EiffelBase2 library [START_REF] Polikarpova | A fully verified container library[END_REF] seems to be a perfect data set for such evaluation. We analyzed welldefinedness of feature copy _ in the EiffelBase2 classes. The feature copies the given object into the current one. Out of the 17 versions of the feature, 6 were underspecified. They come from the following classes:

• V _ ARRAY2 • V _ LINKED _ QUEUE • V _ LINKED _ STACK • V _ ARRAYED _ LIST _ ITERATOR • V _ ARRAY _ ITERATOR • V _ HASH _ SET _ ITERATOR
Deeper analysis revealed that the most common problem was not taking into consideration the possibility of aliasing between the copied and the current objects. For the V _ HASH _ SET _ ITERATOR class, however, AutoProof did not accept the well-definedness axiom even with the aliasing prohibited in the precondition. AutoProof did not terminate when checking the well-definedness axiom for the following 2 classes:

• V _ DOUBLY _ LINKED _ LIST _ ITERATOR • V _ LINKED _ LIST _ ITERATOR
The non-termination may be interpreted as if the features were underdefined. Summarizing the results of the analysis, out of the 17 versions AutoProof accepted the well-definedness axiom only for 9. Underdefined contracts may have security implications. Consider appending the following code to the implementation of feature copy _ in class V _ ARRAY2: The else clause describes the aliasing situation, which is ignored in the contract of the feature. The added code wipes out the current array's data. AutoProof accepts the modified implementation, which is not what we expect: a feature responsible for copying from another array should not erase the current one. The published presentation of EiffelBase2 claims well-definedness of the flawed classes [START_REF] Polikarpova | A fully verified container library[END_REF]. The EiffelBase2 library contains software components. As for control software, expressing their properties as specification drivers was also fruitful. Chapter 11 details uncovering an error in a published abstract state machine (ASM) implementation [START_REF] Arcaini | Rigorous development process of a safety-critical system: from ASM models to Java code[END_REF] of the Landing Gear System (LGS) [BW14] -a commonly used example for evaluating applicability of formal specification and verification techniques.

Reusability

We might evaluate the extent to which the SOOR approach improves reusability by following the common approach -measuring the amount of duplication removed from requirements [START_REF] Irshad | A systematic literature review of software requirements reuse approaches[END_REF]. Such evaluation would make little sense, however: the SOOR approach just applies the object-oriented principles to the construction of requirements. This makes the evaluation straightforward: the amount of duplication may be removed completely -this is exactly what happens to software built around the same principles. We prefer then to evaluate the extent to which the reuse approach simplifies specification of individual requirements.

Recall the "Bounded Existence Between Q and R" SRP (Equation (14.1)):

((Q ∧3R) ⇒ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U (R ∨ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U(R ∨ (¬ PUR))))) (14.2)
Repeatedly instantiating this SRP as it is and then translating it into unit tests may become challenging. In the SOOR approach, the complexity of specifying a SOOR does not depend on the SOORT's internal complexity. For example, a SOOR expressing requirement "equinox happens not more than two times during a year" for a calendar system would roughly look as follows:

class EQUINOX _ FREQUENCY inherit BOUNDED _ EXISTENCE _ BETWEEN [CALENDAR, EQUINOX, YEAR _ BEGINNING, YEAR _ END] CALENDAR _ REQUIREMENT end
where: class CALENDAR represents the specified type; EQUINOX captures the equinox condition; YEAR _ BEGINNING and YEAR _ END capture the beginning and the end of the year, respectively; CALENDAR _ REQUIREMENT captures phenomena common to calendar requirements. Consider now requirement "the beginning of the year is always followed by the end of the year". This requirement represents the "Global Response" SRP, in LTL:

(P ⇒ 3S)
The complexity of this SRP is incomparably smaller than the complexity of the previous one. The SOOR capturing the new requirement would look as follows:

class YEAR _ END _ RESPONDS _ TO _ YEAR _ BEGINNING inherit RESPONSE _ GLOBAL [CALENDAR, YEAR _ END, YEAR _ BEGINNING] CALENDAR _ REQUIREMENT end
This SOOR is simpler only in one way: it provides 3 actual generic parameters to its SOORT, while the previous one provides 4. We may say that the SOOR's complexity depends linearly on the number of formal generic parameters in the SOORT from which the SOOR inherits. For the existing control software SRP's, however, this number never exceeds 4.

As for specifying SOORs for software components from the ADT SOORTs: the number of ADT axioms depends quadratically on the number of operations in the specified ADT [START_REF] Van Lamsweerde | Requirements Engineering -From System Goals to UML Models to Software Specifications[END_REF]. Specifying a SOOR from an ADT SOORT requires only to connect the deferred features of the SOORT with the concrete features of the specified type. This does not remove the need to verify all the ADT axioms present in the SOORT in the form of specification drivers. Technologies like AutoProof and Au-toTest solve the verification problem, however. The approach replaces the specification complexity from quadratic to linear.

Understandability

We currently have no empirical evidence that the SOOR approach improves requirements understandability: it requires feedback from people applying the SOOR approach. We consider industrial evaluation of this aspect as important part of the future work.

Chapter 15

Thesis Summary

The present chapter wraps-up the discussion by drawing conclusions, admitting some limitations and showing future research directions.

Conclusions

The dissertation presents Seamless Object-Oriented Requirements (SOOR) -a requirements approach that treats software requirements as regular input to the object-oriented analysis and design. The approach makes requirements full citizens of integrated development environments (IDEs) and removes the notational gap between requirements and their implementations. The object-oriented treatment makes requirements:

• Expressive, through the expressive power of Design by Contract (Chapter 7, Chapter 10).

• Verifiable, through specification drivers contained inside the requirement classes and contracts inside the implementation classes (Chapter 8, Chapter 9, Chapter 11).

• Reusable, through the standard object-oriented techniques -genericity and abstraction (Chapter 11, Chapter 12).

• Understandable, through the automatic paraphrasing mechanism embedded into requirement classes (Chapter 12).

Both qualitative (Chapter 13) and quantitative (Chapter 14) arguments show the improvements in expressiveness, verifiability and reusability, while understandability is currently lacking a supporting quantitative data. We expect to have such data soon, however, from applying the SOOR approach in an industrial setting.

The SOOR approach comes with a ready-to-use library of Seamless Object-Oriented Requirement Templates (SOORTs) -deferred generic requirement classes capturing known software requirement patterns (SRPs). Studying several SOORTs' internals will give intuition behind constructing new SOORTs. The thinking discipline behind 161 SOORTs' construction and reuse is identical to the object-oriented thinking, which decreases the learning curve for seasoned developers. In the SOOR approach, requirements become the junction point of the software process:

• The automatic paraphrasing implemented as part of the SOORTs supports requirements validation and understandability. A developer looking at a requirement and its paraphrased form may consider rewriting it.

• The SOORTs also contain a reusable requirements verification mechanism. This mechanism may either drive specification of strong enough and correct contracts (Chapter 8) or serve as input to a Parameterized Test-Driven Development (PTDD)-style [START_REF] Paul | Parameterized test driven development[END_REF] construction process.

• The SOOR's verification mechanism makes it possible to instantly see if the existing solution correctly implements an added or updated requirement (Chapter 10).

• Symmetrically, the same verification mechanism makes it possible to instantly see if an updated solution correctly implements the existing requirements (Chapter 10).

• Analysis of a set of SOORs may reveal commonality among them, leading to creation of a new SOORT capturing the identified commonality. The original SOORs will become descendants of the new SOORT and will only include the variable part; as a consequence, they will look simpler.

• Seamless requirements may literally be programmed and reused for programming other requirements, as Chapter 11 shows.

• They may serve as building blocks for contracted implementations (Chapter 7) in the context of Design by Contract.

All these technical traits of Seamless Object-Oriented Requirements will bring the following sensible business effects:

• Better reusability of requirements.

• Higher responsiveness of the software process to changing requirements.

• Decreased learning curve for software developers.

• Higher confidentiality in requirements validity.

• Higher confidentiality in software correctness.

• Smaller number of software tools to buy and maintain.

• Possibility to formally prove software correct, even in the context of Agile development.

• Faster detection of defects in requirements.

LIMITATIONS

"Different tasks will of course remain. To take extreme examples, you are not doing the same thing when defining general properties of a system that has yet to be built and performing the last rounds of debugging. But the idea of seamlessness is to downplay differences where the traditional approach exaggerated them; to recognize, behind the technical variations, the fundamental unity of the software process. Throughout development the same issues arise, the same intellectual challenges must be addressed, the same structuring mechanisms are needed, the same forms of reasoning apply and, as shown in this book, the same notation can be used." [START_REF] Meyer | Object-Oriented Software Construction[END_REF] This citation from the OOSC book remains valid. The SOOR approach adapts the inital object-oriented software process to the everchanging nature of modern requirements. The approach treats requirements as early input to the object-oriented analysis process, resulting in the requirements enjoying the traditional benefits of object orientation and leading to higher levels of seamlessness.

Limitations

The SOOR approach has limitations. It applies at the conceptual level to any generalpurpose programming language with "assume"/"assert" statements, as Chapter 11 demonstrates. Having a native support for contracts, however, would greatly simplify its application. Having a program prover like AutoProof would maximize outcome from practicing the approach, though it remains powerful even with testing-based verification. Successfully applying contracts and program proving will require some additional training; luckily, there are plenty of resources on these topics, from online tutorials [START_REF] Rustan | Verification Corner[END_REF] to fundamental literature [START_REF] Meyer | Object-Oriented Software Construction[END_REF].

The necessity to learn contracts and proof-based verification is better, in our opinion, than the existing necessity to learn separate requirements notations disjoint from the solution space. We justify this opinion as follows: the skills required for applying the SOOR approach may pay not only at the requirements but also at the construction. Developers that master contracts and program proving for requirements may start applying these techniques in their programming activities, which will result in better documented and verified programs.

We could not come up with any practical limitations for applying the SOOR approach. This should not surprise -the objective was exactly to remove the existing limitations. Industrial studies of the approach should be conducted, however, to reveal possible concerns from the practitioners. We leave this important task as the future work.

Future work

The following work is necessary to show stronger evidence of the SOOR's approach benefits:

• Applying and measuring the approach in an industrial setting.

• Proving formally that the presented library of seamless requirement templates correctly resembles the encoded SRPs' semantics.

The dissertation creates opens up the following research directions:

• Automatic generation of seamless requirement templates for a given programming language from a given pattern expressed in a mathematical formalism. The dissertation present an Eiffel library of seamless requirement templates that. The library encodes requirement patterns from an existing catalogue. The input patterns are encoded in several mathematical formalisms. Because the concepts behind the templates' construction apply not only to Eiffel, it makes sense to develop tools that would automatically generate similar templates for other widely used programming languages. Such tools might accept the mathematical formalisms on input and produce the corresponding seamless requirement templates on output.

• Extending the existing IDEs for better support of seamless requirements and their templates. Specification of seamless requirements currently relies on the typical programming-style activities, such as inheritance and generic derivation. While software engineers with programming background may find this process comfortable, former requirements engineers may need a "friendlier" environment that would give them more familiar user experience. Because the ultimate long-term goal of our research is to unify requirements engineering and software construction, catering to practitioners from the both camps is important.

• Detecting known patterns in natural language requirements with their subsequent translation to seamless requirement templates. A huge body of software requirements exists expressed in numerous notations: natural language, UML diagrams, goal diagrams, temporal logics, Z notations and so forth. Manually converting them to the seamless form will take ages and will be considered as waste in the software engineering world dominated by agile methodologies. Also, we think that early requirements will still be captured in natural language anyway. Early requirements elicitation sessions' success relies mainly on the quality of human communication. Nothing beats quickly drafted natural language notes in their ability to capture the conversation's context and the participants' mood and perception.

• Identifying new patterns in recurring requirements that do not map to existing patterns. Natural language requirements' meaning may recur and still not map to any existing pattern. Tools should exist that would identify new patterns and propose ways to capture them in the form of seamless requirement templates.

• Enriching the Eiffel's contract layer with annotations corresponding to the SOORTs. Ait-Ameur and Méry [START_REF] Aït | Making explicit domain knowledge in formal system development[END_REF] propose integrating domain knowledge and design models through annotations. The annotations enrich the models with semantic information from the target domain. The verification process then automatically takes these annotations into account. In the world of programming languages, this idea maps to the single product principle [START_REF] Meyer | Touch of Class: Learning to Program Well with Objects and Contracts[END_REF] violated when one states requirements separately from the source code, which is the case with SOORs. With a programming language, design models will map to contracts, and domain knowledge will map to SOORTs. The task will be to develop the annotations corresponding to SOORTs at the level of contracts and thus obey the single product principle. The next task will be to update the existing verification mechanisms, AutoTest and AutoProof, to take the new annotations into account.

• Investigate the possibility of developing general rules for translating temporal properties to a programming language. The SOORTs presented in the dissertation are translations of entire requirement patterns, but it is not clear yet how to generalize the translation to the level of distinct temporal operators. Having such a translation scheme would make it possible to translate arbitrary temporal properties to SOORs and SOORTs.

Part

:= make (b _ tree _ left, item _ 1, b _ tree _ right) check is _ in (b _ tree, item _ 2) = (item _ 1 ~item _ 2 or is _ in (b _ tree _ left, item _ 2) or is _ in (b _ tree _ right, item
(v _ 1, v _ 2: G) require v _ 1 ~v_ 2 do ensure v _ 2 ~v_ 1 end frozen equality _ transitivity (v _ 1, v _ 2, v _ 3: G) require v _ 1 ~v_ 2 v _ 2 ~v_ 3 do ensure v _
GRAPH _ ADT [G, N, E, SN, SE, ES →EDGE _ ADT [E, N], SNS →SET _ WITH _ ISEMPTYSET _ ADT [SN, N], SES → SET _ WITH _ ISEMPTYSET _ ADT [SE, E]]
--Graphs ''G'' contain edges ''E'' connecting nodes ''N'' --conforming to the ''EDGE _ ADT'' specification.

--They depend on sets ''SE'' of edges ''E'' conforming to the --''SET _ WITH _ ISEMPTYSET _ ADT'' specification.

--They depend on sets ''SN'' of nodes ''N'' conforming to the --''SET _ WITH _ ISEMPTYSET _ ADT'' specification. " EIS: "src= https://link.springer.com/article/10.1007/BF00260922" description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" description: "Found in ''Implementing Algebraically Specified Abstract Data Types in an imperative Programming Language '' by Thomas:" EIS: "src= http://www.dcs.gla.ac.uk/~muffy/papers/Tapsoft_87.pdf" description: "Found in ''Abstract Data Types and the Development of Data Structures'' by Guttag:" EIS: "src= http://tinyurl.com/y45o32hq" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y4qv86kz" i := i + 1 end ensure frontq (q) ~t end frozen a _ 6 (q: Q; t: T; old _ size: INTEGER) require size (q) ~old _ size do addq (q, t) ensure size (q) ~old _ size + 1 end frozen a _ 7 (q: Q; t: T; old _ size: INTEGER) require size (q) ~old _ size not isnewq (q) do deleteq (q) ensure size (q) ~old _ size -1 end frozen a _ 9 (q: Q; t: T) do addq (q, t) ensure not isnewq (q) end frozen a _ 10 local q: Q do q := newq check isnewq (q) end end frozen a _ 11 local q: Q do q := newq check size (q) ~0 end end frozen a _ 12 local q _ 1, q _ 2: Q do q _ 1 := newq q _ 2 := newq deleteq (q _ 1) check q _ 1 ~q_ 2 end end frozen a _ 13 (t: T) local q _ 1, q _ 2: Q do q _ 1 := newq q _ 2 := newq addq (q _ 1, t) deleteq (q _ 1) check q _ 1 ~q_ 2 end end frozen a _ 14 (q _ 1, q _ 2: Q; t _ 1, t _ 2: T) require q _ 1 ~q_ 2 q _ 1 = q _ 2 do addq (q _ 1, t _ 1) addq (q _ 1, t _ 2) deleteq (q _ 1) addq (q _ 2, t _ 1) deleteq (q _ 2) addq (q _ 2, t _ 2) ensure q _ 1 ~q_ 2 end frozen a _ 15 (t: T) local q: Q do q := newq addq (q, t) check frontq (q) ~t end end frozen a _ 16 (q _ 1, q _ 2: Q; t _ 1, t _ 2: T) require q _ 1 ~q_ 2 q _ 1 = q _ 2 do addq (q _ 1, t _ 1) addq (q _ 1, t _ 2) addq (q _ 2, t _ 1) ensure frontq (q _ 1) ~frontq (q _ 2) end frozen a _ 17 (t: T) local q: Q do q := newq check frontq (q) /~t end end feature --Well-definedness axioms.

frozen new _ well _ defined local q _ 1, q _ 2: Q do q _ 1 := newq q _ 2 := newq check q _ 1 ~q_ 2 end end frozen add _ well _ defined (q _ 1, q _ 2: Q; t: T) require q _ 1 ~q_ 2 do addq (q _ 1, t) addq (q _ 2, t) ensure q _ 1 ~q_ 2 end frozen dequeue _ well _ defined (q _ 1, q _ 2: Q) require q _ 1 ~q_ 2 q _ 1 = q _ 2 not isnewq (q _ 1) not isnewq (q _ 2) do deleteq (q _ 1) deleteq (q _ 2) ensure q _ 1 ~q_ 2 end frozen front _ well _ defined (q _ 1, q _ 2: Q) require q _ 1 ~q_ 2 do ensure frontq (q _ 1) ~frontq (q _ 2) end frozen empty _ well _ defined (q _ 1, q _ 2: Q) require q _ 1 ~q_ 2 do ensure isnewq (q _ 1) ~isnewq (q _ 2) end frozen size _ well _ defined (q _ 1, q _ 2: Q) require q _ 1 ~q_ 2 do ensure size (q _ 1) ~size (q _ 2) end end B.19 Queue with Append note description: "Reusable abstract data type specification of queue with the ''append'' operation." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y44w738n"

1

 State of the Art 1.1 Inclusion criteria . 1.2 Exclusion criteria . 1.3 Design by Contract . 1.4 Multirequirements . 1.5 Parameterized unit tests . 1.6 Theory-based testing . 1.7 Abstract testing . 1.8 Reflections .

[

 TestMethod] void TestAdd() { ArrayList a = new ArrayList(0); object o = new object(); a.Add(o); Assert.IsTrue(a[0] == o); } they proposed to define a parameterized test axiom: [TestAxiom] void TestAdd(ArrayList a, object o) { Assume.IsTrue(a!=null); int i = a.Count; a.Add(o); Assert.IsTrue(a[i] == o); }

 assume(precondition(xn)); y = f(x1,.. .,xn); assert(postcondition(x1,.. .,xn,y)); }

2 :

 2 Mapping the ADTs to the literature sources analyzing them. An 'x' symbol means that the source from the topmost row analyzes the ADT from the leftmost column.Source [GHM78] [GH78] [GHM76] [Lam09] [KW91] [Tho87] [Gut76][START_REF] Liskov | Programming with Abstract Data Types[END_REF] 3: Mapping the literature sources to the number of the studied ADTs and the number of citations on Google Scholar.

Figure 5 . 1 :

 51 Figure 5.1: The SOORT encoding the "Global Response" SRP from the catalogue of Dwyer et al (Appendix A.20). Specification driver verify encodes the formal semantics of the SRP. String function requirement _ specific _ output produces the natural language representation of the SRP parameterized with the formal generic parameters' names. Integer function time _ boundary, inherited from REQUIREMENT, specifies the default time boundary for finite verification.

Figure 5 . 2

 52 Figure 5.2 depicts the SOORT capturing the Binary Tree ADT specification with the in _ ord function (Appendix B.4). The class consists of the following important parts:

-

 Figure5.2: The SOORT for the ADT specification of binary tree with function "in order" Appendix B.4). It inherits specification drivers of the BINARY _ TREE _ ADT SOORT encoding the ADT specification of binary tree without that function.

Figure 7 Figure 7 . 2 :

 772 Figure 7.1: Expressing the context formally.

Figure 7 . 3 :

 73 Figure 7.3: Specifying the designation set formally.

Figure 7 . 5 :

 75 Figure 7.5: It is impossible to use locked turnstile.

Figure 7 . 7 :

 77 Figure 7.7: The turnstile let people who pay enter.

Figure 8 .

 8 Figure 8.1 contains the standard ADT specification of stacks. The standard names of the functions are changed in favor of the mechanical verification experiment in Section 8.6: the existing implementation, to which the experiment is applied, uses exactly these names.Figure8.2 contains the result of applying the traditional process of DbC [Mey97] to the specification in Figure8.1:

Figure 8 . 1 :Figure 8 . 2 :

 8182 Figure 8.1: ADT specification of stacks.

 Figure 8.3: Underspecified postconditions may lead to invalid implementations.

Figure 8

 8 Figure 8.6: Specification drivers capturing the axioms of stacks.

Figure 8 . 7 :

 87 Figure 8.7: Creating two instances of the empty stack.

Figure 8 . 8 :

 88 Figure 8.8: Capturing the definition of equivalence.

Figure 8 . 9 :

 89 Figure 8.9: Specification drivers for well-definedness.

Figure 8 . 10 :

 810 Figure 8.10: Abstract model of stacks as sequences.

class

 Figure 9.1: Example: an ordered triple of integers.

Figure 9 . 2 :Figure 9

 929 Figure 9.2: Example of an inconsistent invariant.

Figure 9 .

 9 Figure 9.4: Proving an inconsistency of the invariant.

Figure 9 .

 9 Figure 9.5: Failure to find an inconsistency in the invariant.

 Figure 9.7: Specification driver for detection of the move _ c command's inconsistent postcondition.

 Figure 9.8: A function with an inconsistent postcondition.

Figure 9 . 9 :

 99 Figure 9.9: Specification driver for detection of a function with an inconsistent postcondition.

Definition 9 .Figure 9 . 10 :

 9910 Figure 9.10: The move _ c command with an inconsistent precondition.

Figure 9 .

 9 Figure 9.11: Specification driver for catching the inconsistent precondition.

 callable _ pre (t: TARGET _ CLASS; ARGS) require t.pre (ARGS) do ensure False end

2

 2 The non-exported function f with return type T, precondition pre, and list of formal arguments ARGS, has an inconsistent postcondition, if, and only if, the following specification driver is correct: f _ post (ARGS; res: T) require f (ARGS) = res do ensure False end Definition 9.6.3 The non-exported routine r with precondition pre and list of formal arguments ARGS has an inconsistent precondition, if, and only if, the following specification driver is correct: r _ pre (ARGS) require pre (ARGS) do ensure False end

Figure 9 .

 9 Figure 9.12: The INTEGER _ TRIPLE class with all the features non-exported.

 Figure 10.1: The existing clock class.

Figure 10 . 2 :

 102 Figure 10.2: Natural-language requirements to clock.

req _ 1

 1 Figure 10.3: Requirement (REQ1) in the seamless form.

Figure 10 .

 10 Figure 10.4: The seamless requirements document corresponding to (REQ1)-(REQ8).

Figure 10

 10 Figure 10.5: Eiffel Verification Environment with the AutoProof pane.

10. 4

 4 Seamless requirements in practiceSection 10.4.1 and Section 10.4.2 implement step 3 of the development plan from Section 10.2.1 by verification of the existing class in Figure 10.1 with respect to requirements (REQ1)-(REQ8). Section 10.4.3 and Section 10.4.4 use the verification results as input. The resulting artifacts are publicly available on GitHub [Naub].

Figure 10 . 6 :

 106 Figure 10.6: Blank clock implementation.

Figure 10 .

 10 Figure 10.7 depicts a postcondition of the tick feature, which meets the CLOCK _ REQUIREMENTS class, so that the latter passes verification by AutoProof. How can

Figure 10

 10 Figure 10.8: Implementation of tick that meets req _ 1-req _ 8.

Figure 10 . 9 :

 109 Figure 10.9: The seamless requirements document for extended clock.

 old second = 59 and old minute = 59 and old hour = 23 and old day <6 implies day = old day + 1

2

 2 lines of code else hour := 0 if day <6 then day := day + 1 end end endThe new code goes after the existing hour := 0 line: the current day updates only when the current hour resets to 0, meaning at midnight. The first increment is done: Auto-Proof successfully verifies both the req _ 9 seamless requirement and the implementation class CLOCK.IncrementSeamless requirements req _ 10 and req _ 11 still fail verification of the EXTENDED _ CLOCK _ REQUIREMENTS class. The second increment consists of implementing the req _ 10 requirement. This requirement describes the conditions, under which a clock tick resets the current day to Monday.Applying the rules from Section 10.4.3 to req _ 10 results in the following postcondition assertion: old second = 59 and old minute = 59 and old hour = 23 and old day = 6 implies day = 0 Correctness of the inferred assertion follows from the fact that req _ 10 now passes verification by AutoProof.

 lines of code else hour := 0 if day <6 then day := day + 1 else day := 0 end end end An application of AutoProof to the CLOCK class confirms correctness of the modified implementation.

Figure 10 . 10 :

 1010 Figure 10.10: An example of a goal-oriented requirement from [Lam01].

Figure 10 .

 10 Figure 10.12: The goal-oriented requirement Maintain[TrackSegmentSpeedLimit] (Figure 10.11) in the form of a seamless requirement without a contract.

Figure 11. 1 :

 1 Figure 11.1: Landing set (from Boniol et al. [BW14]).

 local a _ intermediate, b _ intermediate: INTEGER do a _ intermediate := max (a-b, b) b _ intermediate := min (a-b, b) a := a _ intermediate b := b _ intermediate end The generalization should be clear at this point: instead of updating the target locations, introduce and update intermediate local variables, and then assign them to the target locations.

--

 Assume the system run _ in _ normal _ mode do --the handle status range: assume handle _ status = up _ position or handle _ status = down _ position end --the door status range: assume door _ status = closed _ position or door _ status = opening _ state or door _ status = open _ position or door _ status = closing _ state end --the gear status range: assume gear _ status = extended _ position or gear _ status = extending _ state or gear _ status = retracted _ position or gear _ status = retracting _ state end --the gear may extend or retract only with the door open: assume (gear _ status = extending _ state or gear _ status = retracting _ state) implies door _ status = open _ position end --closed door assumes retracted or extended gear assume door _ status = closed _ position implies (gear _ status = extended _ position or gear _ status = retracted _ position) end main end

-•

 Assume it takes 8 time units to take the door from _ open _ to _ closed --position: do run _ in _ normal _ mode if (old door _ status = closed _ position and door _ status = closed _ position) then duration := duration + 8 end end • It takes 12 time units for the door to open: --Assume it takes 12 time units to take the door from _ closed _ to _ open --position: do from _ open _ to _ closed if (old door _ status = open _ position and door _ status = open _ position) then duration := duration + 12 end end It takes 10 time units for the gear to retract: Replacing p with gear _ status = retracted _ position, and t with 10 in the from _ not _ p _ to _ p pattern leads to: --Assume it takes 10 time units to take the gear from _ extended _ to _ retracted --position: do from _ closed _ to _ open if (old gear _ status = retracted _ position and gear _ status = retracted _ position) then duration := duration + 10 end end

 do from run _ with _ handle _ down until (gear _ status = extended _ position and door _ status = closed _ position) or (durationold duration) > 25 loop run _ with _ handle _ down end assert gear _ status = extended _ position end assert door _ status = closed _ position end assert (durationold duration)≤ 25 end end --known as R _ {11}bis

 loop run _ with _ handle _ up end assert gear _ status = retracted _ position and door _ status = closed _ position and (durationold duration)≤ 30 end end --known as R _ {12}bis

Figure 11

 11 Figure 11.2: A correctly working LGS state machine. Pushing the handle down cancels the gear retraction process and initiates gear extension. The bottom-right box contains the trace leading to state 15.

Figure 11

 11 Figure 11.3: The erroneous LGS state machine. Pushing the handle down fails to cancel the gear retraction process. It puts the system to waiting for the crew to pull the handle up again. The bottom-right box contains the trace leading to state 15.

 An online OneNote notebook 5 rearranges the original collection of patterns 6 in the form of multirequirements[START_REF] Meyer | Multirequirements[END_REF] to support their understanding. Dwyer et al. have initially developed the patterns in 5 notations: LTL, CTL, GIL, Inca, QRE. Their online collection consists of 5 large pages corresponding to these notations. The alternative collection consists of 23 pages making it possible to study individual patterns in all the 5 notations simultaneously. The representations are clickable and lead to their sources in the original repository developed by Dwyer et al. Each page includes a link leading to the corresponding template in the online Eiffel library.

Figure 12. 2 :

 2 Figure 12.2: The executable code (the upper window) outputs the automaticaly generated string representation of the requirement to the console (the lower window).

Figure 12 . 3 :

 123 Figure 12.3: An exception caused by violating the requirement's verification precondition.

 note description: "Reusable abstract data type specification of the observer pattern." description: "Found in ''Flexible Invariants Through Semantic Collaboration'' by Polikarpova et al." EIS: "src= https://cseweb.ucsd.edu/~npolikarpova/publications/fm14.pdf" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y2x2xeat" deferred class SUBJECT _ OBSERVER [S, O, V] --Types ''S'' and ''O'' form an observer pattern with shared state of type ''V''. feature --Deferred definitions. value (s: S): V deferred end subscribers (s: S): LIST [O] deferred end update (s: S; v: V) deferred end register (s: S; o: O) deferred end subject (o: O): S deferred end cache (o: O): V deferred end make (o: O; s: S) deferred end notify (o: O) deferred end feature --Abstract data type axioms.

frozen a _ 1 B. 2

 12 (new _ first, new _ last: INTEGER) local new _ array: A do new _ array := make (new _ first, new _ last) check first (new _ array) ~new _ first end end frozen a _ 2 (array: A; index: INTEGER; element: E; old _ first: INTEGER) require first (array) ~old _ first do put (array, index, element) ensure first (array) ~old _ first end frozen a _ 3 (new _ first, new _ last: INTEGER) local new _ array: A do new _ array := make (new _ first, new _ last) check last (new _ array) ~new _ last end end frozen a _ 4 (array: A; index: INTEGER; element: E; old _ last: INTEGER) require last (array) ~old _ last do put (array, index, element) ensure last (array) ~old _ last end frozen a _ 5 (new _ first, new _ last: INTEGER; index: INTEGER; element: E) local array: A do array := make (new _ first, new _ last) check eval (array, index) /~element end end frozen a _ 6 (array: A; index _ put, index _ eval: INTEGER; element _ 1, element _ 2: E) require index _ eval <first (array) do put (array, index _ put, element _ 1) ensure eval (array, index _ eval) /~element _ 2 end frozen a _ 7 (array: A; index _ put, index _ eval: INTEGER; element _ 1, element _ 2: E) require index _ eval > last (array) do put (array, index _ put, element _ 1) ensure eval (array, index _ eval) /~element _ 2 end frozen a _ 8 (array: A; index: INTEGER; element: E) require index ≥ first (array) index≤ last (array) do put (array, index, element) ensure eval (array, index) ~element end frozen a _ 9 (array: A; index _ put: INTEGER; element: E; index _ eval: INTEGER; old _ element: E) require index _ eval ≥ first (array) index _ eval≤ last (array) index _ put /~index _ eval eval (array, index _ eval) ~old _ element do put (array, index _ put, element) ensure eval (array, index _ eval) ~old _ element end feature frozen make _ well _ defined (new _ first, new _ last: INTEGER) local array _ 1, array _ 2: A do array _ 1 := make (new _ first, new _ last) array _ 2 := make (new _ first, new _ last) check array _ 1 = array _ 2 end check array _ 1 ~array _ 2 end end frozen put _ well _ defined (array _ 1, array _ 2: A; index: INTEGER; element: E) require array _ 1 ~array _ 2 do put (array _ 1, index, element) put (array _ 2, index, element) ensure array _ 1 ~array _ 2 end frozen first _ well _ defined (array _ 1, array _ 2: A) require array _ 1 ~array _ 2 do ensure first (array _ 1) ~first (array _ 2) end frozen last _ well _ defined (array _ 1, array _ 2: A) require array _ 1 ~array _ 2 do ensure last (array _ 1) ~last (array _ 2) end frozen eval _ well _ defined (array _ 1, array _ 2: A; index: INTEGER) require array _ 1 ~array _ 2 do ensure eval (array _ 1, index) ~eval (array _ 2, index) end end Bag note description: "Reusable abstract data type specification of bag." description: "Found in ''The Algebraic Specification of Abstract Data Types'' by Guttag and Horning: " EIS: "src= https://link.springer.com/article/10.1007/BF00260922" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yyensvjt" deferred class BAG _ ADT [B, E] --Bags ''B'' contain elements of ''E''. inherit EQUALITY _ ADT [B] feature --Deferred definitions. empty _ bag: B deferred end insert (bag: B; element: E) deferred end delete (bag: B; element: E) deferred end member _ of (bag: B; element: E): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 (element: E) local bag: B do bag := empty _ bag check not member _ of (bag, element) end end frozen a _ 2 _ 1 (bag: B; element: E) do insert (bag, element) ensure member _ of (bag, element) end frozen a _ 2 _ 2 (bag: B; element _ 1, element _ 2: E; old _ member _ of: BOOLEAN) require element _ 1 /~element _ 2 member _ of (bag, element _ 2) ~old _ member _ of do insert (bag, element _ 1) ensure member _ of (bag, element _ 2) ~old _ member _ of end frozen a _ 3 (element: E) local bag _ 1, bag _ 2: B do bag _ 1 := empty _ bag bag _ 2 := empty _ bag delete (bag _ 1, element) check bag _ 1 ~bag _ 2 end end frozen a _ 4 _ 1 (bag _ 1, bag _ 2: B; element: E) do check assume: bag _ 1 ~bag _ 2 end insert (bag _ 1, element) delete (bag _ 1, element) check assert: bag _ 1 ~bag _ 2 end end frozen a _ 4 _ 2 (bag _ 1, bag _ 2: B; element _ 1, element _ 2: E) require bag _ 1 ~bag _ 2 element _ 1 /~element _ 2 do insert (bag _ 1, element _ 1) delete (bag _ 1, element _ 2) delete (bag _ 2, element _ 2) insert (bag _ 2, element _ 1) ensure bag _ 1 ~bag _ 2 end feature --Well-definedness axioms. frozen empty _ bag _ well _ defined local bag _ 1, bag _ 2: B do bag _ 1 := empty _ bag bag _ 2 := empty _ bag check assert: bag _ 1 = bag _ 2 end check assert: bag _ 1 ~bag _ 2 end end frozen insert _ well _ defined (bag _ 1, bag _ 2: B; element: E) require bag _ 1 ~bag _ 2 do insert (bag _ 1, element) insert (bag _ 2, element) ensure bag _ 1 ~bag _ 2 end frozen delete _ well _ defined (bag _ 1, bag _ 2: B; element: E) require bag _ 1 ~bag _ 2 do delete (bag _ 1, element) delete (bag _ 2, element) ensure bag _ 1 ~bag _ 2 end frozen member _ of _ well _ defined (bag _ 1, bag _ 2: B; element: E) require bag _ 1 ~bag _ 2 do ensure member _ of (bag _ 1, element) ~member _ of (bag _ 2, element) end end B.3 Binary Tree note description: "Reusable abstract data type specification of binary tree." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y2rhrktn" deferred class BINARY _ TREE _ ADT [B, I] --Binary trees ''B'' contain elements of ''I''. inherit EQUALITY _ ADT [B] feature --Deferred definitions. empty _ tree: B deferred end make (b _ tree _ left: B; item: I; b _ tree _ right: B): B deferred end is _ empty _ tree (b _ tree: B): BOOLEAN deferred end left (b _ tree: B): B deferred end data (b _ tree: B): I deferred end right (b _ tree: B): B deferred end is _ in (b _ tree: B; item: I): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 local b _ tree: B do b _ tree := empty _ tree check is _ empty _ tree (b _ tree) end end frozen a _ 2 (b _ tree _ left: B; item: I; b _ tree _ right: B) local b _ tree: B do b _ tree := make (b _ tree _ left, item, b _ tree _ right) check not is _ empty _ tree (b _ tree) end end frozen a _ 3 local b _ tree _ 1, b _ tree _ 2: B do b _ tree _ 1 := empty _ tree b _ tree _ 2 := empty _ tree check left (b _ tree _ 1) ~b_ tree _ 2 end end frozen a _ 4 (b _ tree _ left: B; item: I; b _ tree _ right: B) local b _ tree: B do b _ tree := make (b _ tree _ left, item, b _ tree _ right) check left (b _ tree) ~b_ tree _ left end end frozen a _ 5 (item: I) local b _ tree: B do b _ tree := empty _ tree check data (b _ tree) /~item end end frozen a _ 6 (b _ tree _ left: B; item: I; b _ tree _ right: B) local b _ tree: B do b _ tree := make (b _ tree _ left, item, b _ tree _ right) check data (b _ tree) ~item end end frozen a _ 7 local b _ tree _ 1, b _ tree _ 2: B do b _ tree _ 1 := empty _ tree b _ tree _ 2 := empty _ tree check right (b _ tree _ 1) ~b_ tree _ 2 end end frozen a _ 8 (b _ tree _ left: B; item: I; b _ tree _ right: B) local b _ tree: B do b _ tree := make (b _ tree _ left, item, b _ tree _ right) check right (b _ tree) ~b_ tree _ right end end frozen a _ 9 (item: I) local b _ tree: B do b _ tree := empty _ tree check not is _ in (b _ tree, item) end end frozen a _ 10 (b _ tree _ left: B; item _ 1, item _ 2: I; b _ tree _ right: B) local b _ tree: B do b _ tree

 -definedness axioms. frozen empty _ tree _ well _ defined local b _ tree _ 1, b _ tree _ 2: B do b _ tree _ 1 := empty _ tree b _ tree _ 2 := empty _ tree check b _ tree _ 1 = b _ tree _ 2 end check b _ tree _ 1 ~b_ tree _ 2 end end frozen make _ well _ defined (b _ tree _ left: B; item: I; b _ tree _ right: B) local b _ tree _ 1, b _ tree _ 2: B do b _ tree _ 1 := make (b _ tree _ left, item, b _ tree _ right) b _ tree _ 2 := make (b _ tree _ left, item, b _ tree _ right) check b _ tree _ 1 = b _ tree _ 2 end check b _ tree _ 1 ~b_ tree _ 2 end end frozen is _ empty _ tree _ well _ defined (b _ tree _ 1, b _ tree _ 2: B) require b _ tree _ 1 ~b_ tree _ 2 do ensure is _ empty _ tree (b _ tree _ 1) ~is _ empty _ tree (b _ tree _ 2) end frozen left _ well _ defined (b _ tree _ 1, b _ tree _ 2: B) require b _ tree _ 1 ~b_ tree _ 2 do ensure left (b _ tree _ 1) ~left (b _ tree _ 2) end frozen data _ well _ defined (b _ tree _ 1, b _ tree _ 2: B) require b _ tree _ 1 ~b_ tree _ 2 do ensure data (b _ tree _ 1) ~data (b _ tree _ 2) end frozen right _ well _ defined (b _ tree _ 1, b _ tree _ 2: B) require b _ tree _ 1 ~b_ tree _ 2 do ensure right (b _ tree _ 1) ~right (b _ tree _ 2) end frozen is _ in _ well _ defined (b _ tree _ 1, b _ tree _ 2: B; item: I) require b _ tree _ 1 ~b_ tree _ 2 do ensure is _ in (b _ tree _ 1, item) ~is _ in (b _ tree _ 2, item) end end B.4 Binary Tree with Inord note description:"Reusable abstract data type specification of binary tree with ''inord'' operation." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y3peoll5"deferred class BINARY _ TREE _ WITH _ INORD _ ADT [B, I, Q, QS →QUEUE _ WITH _ APPEND _ ADT [Q, I]]--Binary trees ''B'' contain elements of ''I''.--They rely on queues ''Q'' with elements of ''I'' conforming to the --''QUEUE _ WITH _ APPEND _ ADT'' specification. inherit BINARY _ TREE _ ADT [B, I] feature --Deferred definitions. in _ ord (b _ tree: B): Q deferred end feature --Abstract data type axioms. frozen a _ 11 local b _ tree: B do b _ tree := empty _ tree check in _ ord (b _ tree) ~({QS}).default.newq end end frozen a _ 12 (b _ tree _ left: B; item: I; b _ tree _ right: B; q _ left, q _ right: Q) require in _ ord (b _ tree _ left) ~q_ left in _ ord (b _ tree _ right) ~q_ right local b _ tree: B do b _ tree := make (b _ tree _ left, item, b _ tree _ right)({QS}).default.addq (q _ left, item) ({QS}).default.appendq (q _ left, q _ right) check in _ ord (b _ tree) ~q_ left end end feature --Well-definedness axioms. frozen in _ ord _ well _ defined (b _ tree _ 1, b _ tree _ 2: B) require b _ tree _ 1 ~b_ tree _ 2 do ensure in _ ord (b _ tree _ 1) ~in _ ord (b _ tree _ 2) end end B.5 Book Directory note description: "Reusable abstract data type specification of searchable book directory." description: "Found in ''Requirements engineering: From system goals to UML models to software.'' by van Lamsweerde:" EIS: "src= http://tinyurl.com/yxd3zxd2" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y6ft5d3a" deferred class BOOK _ DIRECTORY _ ADT [D, B, BC, T, L, LS →LIST _ ADT [L, B]] --Book directories ''D'' contain books ''B'' with topics ''T'' and book copies ''BC''. --Searching by topics returns lists ''L'' of books ''B'' conforming to the --''LIST _ ADT'' specification. inherit EQUALITY _ ADT [D] feature --Deferred definitions. empty _ dir: D deferred end add _ entry (d: D; b: B; bc: BC; t: T) deferred end biblio _ search (d: D; t: T): L deferred end feature --Abstract data type axioms. frozen a _ 1 (tp: T) local dir: D do dir := empty _ dir check biblio _ search (dir, tp) ~({LS}).default.nil end end frozen a _ 2 (dir: D; b: B; bc: BC; tp: T; bs: L) require biblio _ search (dir, tp) ~bs do ({LS}).default.cons (bs, b) add _ entry (dir, b, bc, tp) ensure biblio _ search (dir, tp) ~bs end frozen a _ 3 (dir: D; b: B; bc: BC; tp _ 1, tp _ 2: T; bs: L) require biblio _ search (dir, tp _ 1) ~bs do add _ entry (dir, b, bc, tp _ 2) ensure biblio _ search (dir, tp _ 1) ~bs end feature --Well-definedness axioms frozen empty _ dir _ well _ defined local d _ 1, d _ 2: D do d _ 1 := empty _ dir d _ 2 := empty _ dir check d _ 1 = d _ 2 end check d _ 1 ~d_ 2 end end frozen add _ entry _ well _ defined (dir _ 1, dir _ 2: D; b: B; bc: BC; tp: T) require dir _ 1 ~dir _ 2 do add _ entry (dir _ 1, b, bc, tp) add _ entry (dir _ 2, b, bc, tp) ensure dir _ 1 ~dir _ 2 end frozen biblio _ search _ well _ defined (dir _ 1, dir _ 2: D; tp: T) require dir _ 1 ~dir _ 2 do ensure biblio _ search (dir _ 1, tp) ~biblio _ search (dir _ 2, tp) end end B.6 Bounded Queue note description: "Reusable abstract data type specification of bounded queue." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yybezkrm" deferred class BOUNDED _ QUEUE _ ADT [B, I] --Bounded queues ''B'' contain elements of ''I''. inherit EQUALITY _ ADT [B] feature --Deferred definitions. newq (capacity: INTEGER): B deferred end addq (bounded _ queue: B; item: I) deferred end deleteq (bounded _ queue: B) deferred end frontq (bounded _ queue: B): I deferred end isnewq (bounded _ queue: B): BOOLEAN deferred end appendq (bounded _ queue, other: B) deferred end size (bounded _ queue: B): INTEGER deferred end limit (bounded _ queue: B): INTEGER deferred end enq (bounded _ queue: B; item: I) deferred end deq (bounded _ queue: B): I deferred end feature --Abstract data type axioms. frozen a _ 1 (capacity: INTEGER) local bounded _ queue: B do bounded _ queue := newq (capacity) check isnewq (bounded _ queue) end end frozen a _ 2 (bounded _ queue: B; item: I) --ISNEWQ(ADDQ(q,i)) = false do addq (bounded _ queue, item) ensure not isnewq (bounded _ queue) end frozen a _ 3 (capacity: INTEGER) local bounded _ queue _ 1, bounded _ queue _ 2: B do bounded _ queue _ 1 := newq (capacity) bounded _ queue _ 2 := newq (capacity) deleteq (bounded _ queue _ 1) check bounded _ queue _ 1 ~bounded _ queue _ 2 end end frozen a _ 4 (bounded _ queue: B; item: I; capacity: INTEGER) require isnewq (bounded _ queue) local new _ queue: B do new _ queue := newq (capacity) addq (bounded _ queue, item) deleteq (bounded _ queue) check bounded _ queue ~new _ queue end end frozen a _ 5 (bounded _ queue _ 1, bounded _ queue _ 2: B; item: I) require bounded _ queue _ 1 ~bounded _ queue _ 2 do addq (bounded _ queue _ 1, item) deleteq (bounded _ queue _ 1) deleteq (bounded _ queue _ 2) addq (bounded _ queue _ 2, item) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen a _ 6 (capacity: INTEGER; item: I) local bounded _ queue: B do bounded _ queue := newq (capacity) check frontq (bounded _ queue) /~item end end frozen a _ 7 (bounded _ queue: B; item: I) require isnewq (bounded _ queue) do addq (bounded _ queue, item) ensure frontq (bounded _ queue) ~item end frozen a _ 8 (bounded _ queue: B; item: I; old _ frontq: I) require not isnewq (bounded _ queue) frontq (bounded _ queue) ~old _ frontq do addq (bounded _ queue, item) ensure frontq (bounded _ queue) ~old _ frontq end frozen a _ 9 (bounded _ queue _ 1, bounded _ queue _ 2: B; capacity: INTEGER) require bounded _ queue _ 1 ~bounded _ queue _ 2 local new _ queue: B do new _ queue := newq (capacity) appendq (bounded _ queue _ 1, new _ queue) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen a _ 10 (bounded _ queue _ 1, bounded _ queue _ 2, other _ 1, other _ 2: B; item: I) require bounded _ queue _ 1 ~bounded _ queue _ 2 other _ 1 ~other _ 2 do addq (other _ 1, item) appendq (bounded _ queue _ 1, other _ 1) appendq (bounded _ queue _ 2, other _ 2) addq (bounded _ queue _ 2, item) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen a _ 11 (capacity: INTEGER) local new _ queue: B do new _ queue := newq (capacity) check limit (new _ queue) ~capacity end end frozen a _ 12 (bounded _ queue: B; item: I; old _ limit: INTEGER) require limit (bounded _ queue) ~old _ limit do addq (bounded _ queue, item) ensure limit (bounded _ queue) ~old _ limit end frozen a _ 13 (bounded _ queue _ 1, bounded _ queue _ 2: B; item: I) require size (bounded _ queue _ 1) <limit (bounded _ queue _ 1) bounded _ queue _ 1 ~bounded _ queue _ 2 do enq (bounded _ queue _ 1, item) addq (bounded _ queue _ 2, item) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen a _ 14 (bounded _ queue _ 1, bounded _ queue _ 2: B; item: I) require size (bounded _ queue _ 1) = limit (bounded _ queue _ 1) do enq (bounded _ queue _ 1, item) ensure bounded _ queue _ 1 /~bounded _ queue _ 2 end frozen a _ 15 (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 local item: I do item := deq (bounded _ queue _ 1) deleteq (bounded _ queue _ 2) check item ~frontq (bounded _ queue _ 2) end end frozen a _ 16 (capacity: INTEGER) local bounded _ queue: B do bounded _ queue := newq (capacity) check size (bounded _ queue) ~0 end end frozen a _ 17 (bounded _ queue: B; item: I; old _ size: INTEGER) require size (bounded _ queue) ~old _ size do addq (bounded _ queue, item) ensure size (bounded _ queue) ~1 + old _ size end feature --Well-definedness axioms. frozen newq _ well _ defined (capacity: INTEGER) local bounded _ queue _ 1, bounded _ queue _ 2: B do bounded _ queue _ 1 := newq (capacity) bounded _ queue _ 2 := newq (capacity) check bounded _ queue _ 1 ~bounded _ queue _ 2 end end frozen addq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B; item: I) require bounded _ queue _ 1 ~bounded _ queue _ 2 do addq (bounded _ queue _ 1, item) addq (bounded _ queue _ 2, item) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen deleteq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 bounded _ queue _ 1 = bounded _ queue _ 2 not isnewq (bounded _ queue _ 1) not isnewq (bounded _ queue _ 2) do deleteq (bounded _ queue _ 1) deleteq (bounded _ queue _ 2) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen frontq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 do ensure frontq (bounded _ queue _ 1) ~frontq (bounded _ queue _ 2) end frozen isnewq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 do ensure isnewq (bounded _ queue _ 1) ~isnewq (bounded _ queue _ 2) end frozen appendq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2, other: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 do appendq (bounded _ queue _ 1, other) appendq (bounded _ queue _ 2, other) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen size _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 do ensure size (bounded _ queue _ 1) ~size (bounded _ queue _ 2) end frozen limit _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 do ensure limit (bounded _ queue _ 1) ~limit (bounded _ queue _ 2) end frozen enq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B; item: I) require bounded _ queue _ 1 ~bounded _ queue _ 2 size (bounded _ queue _ 1) <limit (bounded _ queue _ 1) size (bounded _ queue _ 2) <limit (bounded _ queue _ 2) do enq (bounded _ queue _ 1, item) enq (bounded _ queue _ 2, item) ensure bounded _ queue _ 1 ~bounded _ queue _ 2 end frozen deq _ well _ defined (bounded _ queue _ 1, bounded _ queue _ 2: B) require bounded _ queue _ 1 ~bounded _ queue _ 2 local item _ 1, item _ 2: I do item _ 1 := deq (bounded

B. 9

 9 data type axioms. frozen a _ 1 (a, b, c: R) do ensure sum (sum (a, b), c) ~sum (a, sum (b, c)) end frozen a _ 2 (a, b: R) do ensure sum (a, b) ~sum (b, a) end frozen a _ 3 (a: R) do ensure sum (a, zero) ~a end frozen a _ 4 (a: R) do ensure sum (a, additive _ inverse (a)) ~zero end frozen a _ 5 (a, b, c: R) do ensure product (product (a, b), c) ~product (a, product (b, c)) end frozen a _ 6 (a: R) do ensure product (a, one) ~a product (one, a) ~a end frozen a _ 7 (a, b, c: R) do ensure product (a, sum (b, c)) ~sum (product (a, b), product (a, c)) end frozen a _ 8 (a, b, c: R) do ensure product (sum (b, c), a) ~sum (product (b, a), product (c, a)) end frozen a _ 9 (a, b: R) do ensure product (a, b) ~product (b, a) end feature --Well-definedness axioms. frozen one _ well _ defined local r _ 1, r _ 2: R do r _ 1 := one r _ 2 := one check r _ 1 ~r_ 2 end end frozen zero _ well _ defined local r _ 1, r _ 2: R do r _ 1 := zero r _ 2 := zero check r _ 1 ~r_ 2 end end frozen sum _ well _ defined (summand _ 1, summand _ 2, other: R) require summand _ 1 ~summand _ 2 do ensure sum (summand _ 1, other) ~sum (summand _ 2, other) end frozen product _ well _ defined (multiplier _ 1, multiplier _ 2, other: R) require multiplier _ 1 ~multiplier _ 2 do ensure product (multiplier _ 1, other) ~product (multiplier _ 2, other) end frozen additive _ inverse _ well _ defined (r _ 1, r _ 2: R) require r _ 1 ~r_ 2 do ensure additive _ inverse (r _ 1) ~additive _ inverse (r _ 2) end end Edge note description: "Reusable abstract data type specification of graph edge." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y4g93wpo" deferred class EDGE _ ADT [E, N] --Edges ''E'' connect nodes ''N''. inherit EQUALITY _ ADT [E] feature --Deferred definitions. rel (node _ 1, node _ 2: N): E deferred end feature --Well-definedness axioms.frozen rel _ well _ defined (node _ 1, node _ 2: N)local edge _ 1, edge _ 2: E do edge _ 1 := rel (node _ 1, node _ 2) edge _ 2 := rel (node _ 1, node _ 2)note description: "Reusable abstract data type specification of environment." description: "Found in ''An abstract data type for name analysis'' by Kastens and Waite:" EIS: "src= http://tinyurl.com/y2ghqjq7" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yyb6uwxy" deferred class ENVIRONMENT _ ADT [E, I, D] --Environments ''E'' contain keys ''D'' inentified by elements of ''I''. inherit EQUALITY _ ADT [E] feature --Deferred definitions. new _ env: E deferred end new _ scope (env: E) deferred end add (env: E; id: I; key: D) deferred end key _ in _ scope (env: E; id: I): D deferred end key _ in _ env (env: E; id: I): D deferred end add _ idn (env: E; id: I; key: D): BOOLEAN deferred end define _ idn (env: E; id: I): D deferred end feature --Abstract data type axioms. frozen a _ 1 (id: I; key: D) local env: E do env := new _ env check key _ in _ scope (env, id) /~key end end frozen a _ 2 (env: E; id: I; key: D) do new _ scope (env) ensure key _ in _ scope (env, id) /~key end frozen a _ 3 _ 1 (env: E; id: I; key: D) do add (env, id, key) ensure key _ in _ scope (env, id) ~key end frozen a _ 3 _ 2 (env: E; id _ 1, id _ 2: I; key, old _ key _ in _ scope: D) require id _ 1 /~id _ 2 key _ in _ scope (env, id _ 2) ~old _ key _ in _ scope do add (env, id _ 1, key) ensure key _ in _ scope (env, id _ 2) ~old _ key _ in _ scope end frozen a _ 4 (id: I; key: D) local env: E do env := new _ env check key _ in _ env (env, id) /~key end end frozen a _ 5 (env: E; id: I; old _ key _ in _ env: D) require key _ in _ env (env, id) ~old _ key _ in _ env do new _ scope (env) ensure key _ in _ env (env, id) ~old _ key _ in _ env end frozen a _ 6 _ 1 (env: E; id: I; key: D) do add (env, id, key) ensure key _ in _ env (env, id) ~key end frozen a _ 6 _ 2 (env: E; id _ 1, id _ 2: I; key, old _ key _ in _ env: D) require id _ 1 /~id _ 2 key _ in _ env (env, id _ 2) ~old _ key _ in _ env do add (env, id _ 1, key) ensure key _ in _ env (env, id _ 2) ~old _ key _ in _ env end feature --Well-definedness axioms. frozen new _ env _ well _ defined local env _ 1, env _ 2: E do env _ 1 := new _ env env _ 2 := new _ env check env _ 1 = env _ 2 end check env _ 1 ~env _ 2 end end frozen new _ scope _ well _ defined (env _ 1, env _ 2: E) require env _ 1 ~env _ 2 do new _ scope (env _ 1) new _ scope (env _ 2) ensure env _ 1 ~env _ 2 end frozen add _ well _ defined (env _ 1, env _ 2: E; id: I; key: D) require env _ 1 ~env _ 2 do add (env _ 1, id, key) add (env _ 2, id, key) ensure env _ 1 ~env _ 2 end frozen key _ in _ scope _ well _ defined (env _ 1, env _ 2: E; id: I) require env _ 1 ~env _ 2 do ensure key _ in _ scope (env _ 1, id) ~key _ in _ scope (env _ 2, id) end frozen key _ in _ env _ well _ defined (env _ 1, env _ 2: E; id: I) require env _ 1 ~env _ 2 do ensure key _ in _ env (env _ 1, id) ~key _ in _ env (env _ 2, id) end end B.11 Equality note description: "Reusable abstract data type specification of a type with equality." description: "Found in Wikipedia:" EIS: "src= http://tinyurl.com/pfafsvd" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yxb98wrq" deferred class EQUALITY _ ADT [G] --Elements of ''G'' form an equivalence relation. feature --Abstract data type axioms. frozen equality _ reflexivity (v: G)

ensure graph _ 1 ~graph _ 2 end

 2 frozen a _ 22 (graph _ 1, graph _ 2: G; edge _ 1, edge _ 2: E) require edge _ 1 /~edge _ 2 graph _ 1 ~graph _ 2 do add _ edge (graph _ 1, edge _ 1) edge _ out (graph _ 1, edge _ 2) edge _ out (graph _ 2, edge _ 2) add _ edge (graph _ 2, edge _ 1) ensure graph _ 1 ~graph _ 2 end feature --Well-definedness axioms. frozen empty _ graph _ well _ defined local graph _ 1, graph _ 2: G do graph _ 1 := empty _ graph graph _ 2 := empty _ graph check graph _ 1 = graph _ 2 end check graph _ 1 ~graph _ 2 end end frozen add _ node _ well _ defined (graph _ 1, graph _ 2: G; node: N) require graph _ 1 ~graph _ 2 do add _ node (graph _ 1, node) add _ node (graph _ 2, node) ensure graph _ 1 ~graph _ 2 end frozen add _ edge _ well _ defined (graph _ 1, graph _ 2: G; edge: E) require graph _ 1 ~graph _ 2 do add _ edge (graph _ 1, edge) add _ edge (graph _ 2, edge) ensure graph _ 1 ~graph _ 2 end frozen nodes _ well _ defined (graph _ 1, graph _ 2: G) require graph _ 1 ~graph _ 2 do ensure nodes (graph _ 1) ~nodes (graph _ 2) end frozen edges _ well _ defined (graph _ 1, graph _ 2: G) require graph _ 1 ~graph _ 2 do ensure edges (graph _ 1) ~edges (graph _ 2) end frozen adjac _ well _ defined (graph _ 1, graph _ 2: G; node: N) require graph _ 1 ~graph _ 2 do ensure adjac (graph _ 1, node) ~adjac (graph _ 2, node) end frozen nod _ out _ well _ defined (graph _ 1, graph _ 2: G; node: N) require graph _ 1 ~graph _ 2 do nod _ out (graph _ 1, node) nod _ out (graph _ 2, node) ensure graph _ 1 ~graph _ 2 end frozen edge _ out _ well _ defined (graph _ 1, graph _ 2: G; edge: E) require graph _ 1 ~graph _ 2 do edge _ out (graph _ 1, edge) edge _ out (graph _ 2, edge) ensure graph _ 1 ~graph _ 2 end end B.14 Library note description: "Reusable abstract data type specification of library." description: "Found in ''Requirements engineering: From system goals to UML models to software.'' by van Lamsweerde:" EIS: "src= http://tinyurl.com/yxd3zxd2" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y4jnocr4" deferred class LIBRARY _ ADT [L, B] --Libraries ''L'' contain books ''B''. inherit EQUALITY _ ADT [L] feature --Deferred definitions. empty _ lib: L deferred end add _ copy (l: L; b: B) deferred end remove _ copy (l: L; b: B) deferred end check _ out (l: L; b: B) deferred end return (l: L; b: B) deferred end copy _ exists (l: L; b: B): BOOLEAN deferred end copy _ borrowed (l: L; b: B): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 (lib: L; bc: B) local new _ lib: L do new _ lib := empty _ lib check not copy _ exists (new _ lib, bc) end end frozen a _ 2 (lib: L; bc: B) do add _ copy (lib, bc) ensure copy _ exists (lib, bc) end frozen a _ 3 (lib: L; bc _ 1, bc _ 2: B; bc _ 2 _ exists: BOOLEAN) require bc _ 1 /~bc _ 2 copy _ exists (lib, bc _ 2) ~bc _ 2 _ exists do add _ copy (lib, bc _ 1) ensure copy _ exists (lib, bc _ 2) ~bc _ 2 _ exists end frozen a _ 4 (lib: L; bc _ 1, bc _ 2: B; bc _ 2 _ exists: BOOLEAN) require copy _ exists (lib, bc _ 2) ~bc _ 2 _ exists not copy _ borrowed (lib, bc _ 1) do check _ out (lib, bc _ 1) ensure copy _ exists (lib, bc _ 2) ~bc _ 2 _ exists end frozen a _ 5 (lib: L; bc: B) local new _ lib: L do new _ lib := empty _ lib check not copy _ borrowed (lib, bc) end end frozen a _ 6 (lib: L; bc _ 1, bc _ 2: B; bc _ 2 _ borrowed: BOOLEAN) require copy _ borrowed (lib, bc _ 2) ~bc _ 2 _ borrowed do add _ copy (lib, bc _ 1) ensure copy _ borrowed (lib, bc _ 2) ~bc _ 2 _ borrowed end frozen a _ 7 (lib: L; bc: B) require not copy _ borrowed (lib, bc) do check _ out (lib, bc) ensure copy _ borrowed (lib, bc) end frozen a _ 8 (lib: L; bc _ 1, bc _ 2: B; bc _ 2 _ borrowed: BOOLEAN) require bc _ 1 /~bc _ 2 copy _ borrowed (lib, bc _ 2) ~bc _ 2 _ borrowed not copy _ borrowed (lib, bc _ 1) do check _ out (lib, bc _ 1) ensure copy _ borrowed (lib, bc _ 2) ~bc _ 2 _ borrowed end frozen a _ 9 (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 do add _ copy (lib _ 1, bc) remove _ copy (lib _ 1, bc) ensure lib _ 1 ~lib _ 2 end frozen a _ 10 (lib _ 1, lib _ 2: L; bc _ 1, bc _ 2: B)require lib _ 1 = lib _ 2 lib _ 1 ~lib _ 2 bc _ 1 /~bc _ 2 copy _ exists (lib _ 1, bc _ 2) copy _ exists (lib _ 2, bc _ 2) do add _ copy (lib _ 1, bc _ 1) remove _ copy (lib _ 1, bc _ 2) remove _ copy (lib _ 2, bc _ 2) add _ copy (lib _ 2, bc _ 1) ensure lib _ 1 ~lib _ 2 end frozen a _ 11 (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 = lib _ 2 lib _ 1 ~lib _ 2 not copy _ borrowed (lib _ 1, bc) copy _ exists (lib _ 1, bc) copy _ exists (lib _ 2, bc) do check _ out (lib _ 1, bc) remove _ copy (lib _ 1, bc) remove _ copy (lib _ 2, bc) ensure lib _ 1 ~lib _ 2 end frozen a _ 12 (lib _ 1, lib _ 2: L; bc _ 1, bc _ 2: B) require lib _ 1 = lib _ 2 lib _ 1 ~lib _ 2 bc _ 1 /~bc _ 2 not copy _ borrowed (lib _ 1, bc _ 1) copy _ exists (lib _ 1, bc _ 2) copy _ exists (lib _ 2, bc _ 2) not copy _ borrowed (lib _ 2, bc _ 1) do check _ out (lib _ 1, bc _ 1) remove _ copy (lib _ 1, bc _ 2) remove _ copy (lib _ 2, bc _ 2) check _ out (lib _ 2, bc _ 1) ensure lib _ 1 ~lib _ 2 end frozen a _ 13 (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 not copy _ borrowed (lib _ 1, bc) do check _ out (lib _ 1, bc) return (lib _ 1, bc) ensure lib _ 1 ~lib _ 2 end frozen a _ 14 (lib _ 1, lib _ 2: L; bc _ 1, bc _ 2: B) require lib _ 1 = lib _ 2 lib _ 1 ~lib _ 2 bc _ 1 /~bc _ 2 not copy _ borrowed (lib _ 1, bc _ 1) copy _ borrowed (lib _ 1, bc _ 2) copy _ borrowed (lib _ 2, bc _ 2) not copy _ borrowed (lib _ 2, bc _ 1) do check _ out (lib _ 1, bc _ 1) return (lib _ 1, bc _ 2) return (lib _ 2, bc _ 2) check _ out (lib _ 2, bc _ 1) ensure lib _ 1 ~lib _ 2 end frozen a _ 15 (lib _ 1, lib _ 2: L; bc _ 1, bc _ 2: B) require lib _ 1 = lib _ 2 lib _ 1 ~lib _ 2 bc _ 1 /~bc _ 2 copy _ borrowed (lib _ 1, bc _ 2) copy _ borrowed (lib _ 2, bc _ 2) do add _ copy (lib _ 1, bc _ 1) return (lib _ 1, bc _ 2) return (lib _ 2, bc _ 2) add _ copy (lib _ 2, bc _ 1) ensure lib _ 1 ~lib _ 2 end feature --Well-definedness axioms. frozen empty _ lib _ well _ defined local lib _ 1, lib _ 2: L do lib _ 1 := empty _ lib lib _ 2 := empty _ lib check lib _ 1 = lib _ 2 end check lib _ 1 ~lib _ 2end end frozen add _ copy _ well _ defined (lib _ 1, lib _ 2: L; bc: B)require lib _ 1 ~lib _ 2 do add _ copy (lib _ 1, bc) add _ copy (lib _ 2, bc) ensure lib _ 1 ~lib _ 2 end frozen remove _ copy _ well _ defined (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 lib _ 1 = lib _ 2 copy _ exists (lib _ 1, bc) copy _ exists (lib _ 2, bc) do remove _ copy (lib _ 1, bc) remove _ copy (lib _ 2, bc) ensure lib _ 1 ~lib _ 2 end frozen check _ out _ well _ defined (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 lib _ 1 = lib _ 2 not copy _ borrowed (lib _ 1, bc) not copy _ borrowed (lib _ 2, bc) do check _ out (lib _ 1, bc) check _ out (lib _ 2, bc) ensure lib _ 1 ~lib _ 2 end frozen return _ well _ defined (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 lib _ 1 = lib _ 2 copy _ borrowed (lib _ 1, bc) copy _ borrowed (lib _ 2, bc) do return (lib _ 1, bc) return (lib _ 2, bc) ensure lib _ 1 ~lib _ 2 end frozen copy _ exists _ well _ defined (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2do ensure copy _ exists (lib _ 1, bc) ~copy _ exists (lib _ 2, bc) end frozen copy _ borrowed _ well _ defined (lib _ 1, lib _ 2: L; bc: B) require lib _ 1 ~lib _ 2 do ensure copy _ borrowed (lib _ 1, bc) ~copy _ borrowed (lib _ 2, bc) end end B.15 List note description: "Reusable abstract data type specification of list." description: "Found in Wikipedia:" EIS: "src= http://tinyurl.com/yxu9yze9" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yym548bu" deferred class LIST _ ADT [L, E] --Lists ''L'' contain elements of ''E''. 2 (l: L; e: E; old _ l: L) require l ~old _ l do cons (l, e) ensure rest (l) ~old _ l end feature --Well-definedness axioms. frozen nil _ well _ defined local list _ 1, list _ 2: L do list _ 1 := nil list _ 2 := nil check assert: list _ 1 = list _ 2 end check assert: list _ 1 ~list _ 2 end end frozen cons _ well _ defined (list _ 1, list _ 2: L; element: E) require list _ 1 ~list _ 2 do cons (list _ 1, element) cons (list _ 2, element) ensure list _ 1 ~list _ 2 end frozen first _ well _ defined (list _ 1, list _ 2: L) require list _ 1 ~list _ 2 do ensure first (list _ 1) ~first (list _ 2) end frozen rest _ well _ defined (list _ 1, list _ 2: L) require list _ 1 ~list _ 2 do ensure rest (list _ 1) ~rest (list _ 2) end end B.16 Mapping note description: "Reusable abstract data type specification of mapping." description: "Found in ''Abstract Data Types and Software Validation'' by Guttag, Horowitz and Musser:" EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yxnkehv8" deferred class MAPPING _ ADT [M, D, R] --Mappings ''M'' map domains ''D'' to ranges ''R''. inherit EQUALITY _ ADT [M] feature --Deferred definitions. new _ map: M deferred end def _ map (map: M; dval: D; rval: R) deferred end ev _ map (map: M; dval: D): R deferred end is _ defined (map: M; dval: D): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 (dval: D; rval: R) local map: M do map := new _ map check ev _ map (map, dval) /~rval end end frozen a _ 2 (map: M; dval: D; rval: R) do def _ map (map, dval, rval) ensure ev _ map (map, dval) ~rval end frozen a _ 3 (map: M; dval _ 1, dval _ 2: D; rval, old _ ev _ map: R) require ev _ map (map, dval _ 2) ~old _ ev _ map dval _ 1 /~dval _ 2 do def _ map (map, dval _ 1, rval) ensure ev _ map (map, dval _ 2) ~old _ ev _ map end frozen a _ 4 (dval: D) local map: M do map := new _ map check not is _ defined (map, dval) end end frozen a _ 5 (map: M; dval: D; rval: R) do def _ map (map, dval, rval) ensure is _ defined (map, dval) end frozen a _ 6 (map: M; dval _ 1, dval _ 2: D; rval: R; old _ is _ defined: BOOLEAN) require is _ defined (map, dval _ 2) ~old _ is _ defined dval _ 1 /~dval _ 2 do def _ map (map, dval _ 1, rval) ensure is _ defined (map, dval _ 2) ~old _ is _ defined end feature --Well-definedness axioms. frozen new _ map _ well _ defined local map _ 1, map _ 2: M do map _ 1 := new _ map map _ 2 := new _ map check map _ 1 = map _ 2 end check map _ 1 ~map _ 2 end end frozen def _ map _ well _ defined (map _ 1, map _ 2: M; dval: D; rval: R) require map _ 1 ~map _ 2 do def _ map (map _ 1, dval, rval) def _ map (map _ 2, dval, rval) ensure map _ 1 ~map _ 2 end frozen ev _ map _ well _ defined (map _ 1, map _ 2: M; dval: D) require map _ 1 ~map _ 2 do ensure ev _ map (map _ 1, dval) ~ev _ map (map _ 2, dval) end frozen is _ defined _ well _ defined (map _ 1, map _ 2: M; dval: D) require map _ 1 ~map _ 2 do ensure is _ defined (map _ 1, dval) ~is _ defined (map _ 2, dval) end end B.17 Polynomial note description: "Reusable abstract data type specification of polynomial." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y5u8hubc" deferred class POLYNOMIAL _ ADT [P, C, CS →COMMUTATIVE _ RING _ ADT [C]] --Polynomials ''P'' have coefficients from the commutative ring ''C''. inherit COMMUTATIVE _ RING _ ADT [P] rename sum as add, product as mult end feature --Deferred definitions. add _ term (polynomial: P; coefficient: C; exponent: INTEGER) deferred end rem _ term (polynomial: P; exponent: INTEGER) deferred end mult _ term (polynomial: P; coefficient: C; exponent: INTEGER) deferred end reductum (polynomial: P) deferred end is _ zero (polynomial: P): BOOLEAN deferred end coef (polynomial: P; exponent: INTEGER): C data type axioms. frozen a _ 11 (exponent: INTEGER) local polynomial _ 1, polynomial _ 2: P do polynomial _ 1 := zero polynomial _ 2 := zero rem _ term (polynomial _ 1, exponent) check polynomial _ 1 ~polynomial _ 2 end end frozen a _ 12 (polynomial _ 1, polynomial _ 2: P; coefficient: C; exponent: INTEGER)require polynomial _ 1 ~polynomial _ 2 do add _ term (polynomial _ 1, coefficient, exponent) rem _ term (polynomial _ 1, exponent) rem _ term (polynomial _ 2, exponent) ensure polynomial _ 1 ~polynomial _ 2 end frozen a _ 13 (polynomial _ 1, polynomial _ 2: P; coefficient: C; exponent _ 1, exponent _ 2: INTEGER) require exponent _ 1 /~exponent _ 2 polynomial _ 1 ~polynomial _ 2 do add _ term (polynomial _ 1, coefficient, exponent _ 1) rem _ term (polynomial _ 1, exponent _ 2) rem _ term (polynomial _ 2, exponent _ 2) add _ term (polynomial _ 2, coefficient, exponent _ 1) ensure polynomial _ 1 ~polynomial _ 2 end frozen a _ 14 (coefficient: C; exponent: INTEGER) local polynomial _ 1, polynomial _ 2: P do polynomial _ 1 := zero polynomial _ 2 := zero mult _ term (polynomial _ 1, coefficient, exponent) check polynomial _ 1 ~polynomial _ 2 end end frozen a _ 15 (polynomial _ 1, polynomial _ 2: P; coefficient _ 1, coefficient _ 2: C; exponent _ 1, exponent _ 2: INTEGER) require polynomial _ 1 ~polynomial _ 2 do add _ term (polynomial _ 1, coefficient _ 1, exponent _ 1) mult _ term (polynomial _ 1, coefficient _ 2, exponent _ 2) mult _ term (polynomial _ 2, coefficient _ 2, exponent _ 2) add _ term (polynomial _ 2, ({CS}).default.product (coefficient _ 1, coefficient _ 2), exponent _ 1 + exponent _ 2)ensure polynomial _ 1 ~polynomial _ 2 end frozen a _ 16 (polynomial: P) local zero _ p: P do zero _ p := zero check add (polynomial, zero _ p) ~polynomial end end frozen a _ 17 (p, q, s: P; d: C; f: INTEGER) require add (p, q) ~s do add _ term (q, d, f) add _ term (s, d, f) ensure add (p, q) ~s end frozen a _ 18 (polynomial: P) --MULT(p,ZERO) = ZERO local zero _ p: P do zero _ p := zero check mult (polynomial, zero _ p) ~zero _ p end end frozen a _ 19 (p _ 1, p _ 2, p _ 3, q _ 1, q _ 2: P; d: C; f: INTEGER) require p _ 1 ~p_ 2 q _ 1 ~q_ 2 do add _ term (q _ 1, d, f) mult _ term (p _ 2, d, f) ensure mult (p _ 1, q _ 1) ~add (mult (p _ 1, q _ 2), p _ 2) end frozen a _ 20 (polynomial _ 1, polynomial _ 2: P) require polynomial _ 1 ~polynomial _ 2 do reductum (polynomial _ 1) rem _ term (polynomial _ 2, degree (polynomial _ 2)) 22 (polynomial _ 1, polynomial _ 2: P; coefficient: C; exponent: INTEGER) require coef (polynomial _ 1, exponent) ~({CS}).default.additive _ inverse (coefficient) polynomial _ 1 ~polynomial _ 2 do add _ term (polynomial _ 1, coefficient, exponent) rem _ term (polynomial _ 2, exponent) ensure is _ zero (polynomial _ 1) ~is _ zero (polynomial _ 2) end frozen a _ 23 (polynomial: P; coefficient: C; exponent: INTEGER) require coef (polynomial, exponent) /~({CS}).default.additive _ inverse (coefficient) do add _ term (polynomial, coefficient, exponent) ensure not is _ zero (polynomial) end frozen a _ 24 (exponent: INTEGER) local polynomial: P do polynomial := zero check coef (polynomial, exponent) ~({CS}).default.zero end end frozen a _ 25 (polynomial: P; coefficient: C; exponent: INTEGER; old _ coefficient: C) require coef (polynomial, exponent) ~old _ coefficient do add _ term (polynomial, coefficient, exponent) ensure coef (polynomial, exponent) ~({CS}).default.sum (coefficient, old _ coefficient) end frozen a _ 26 (polynomial: P; coefficient: C; exponent _ 1, exponent _ 2: INTEGER; old _ coefficient: C) require coef (polynomial, exponent _ 2) ~old _ coefficient do add _ term (polynomial, coefficient, exponent _ 1) ensure coef (polynomial, exponent _ 2) ~old _ coefficient 28 (polynomial: P; coefficient: C; exponent: INTEGER) require exponent > degree (polynomial) do add _ term (polynomial, coefficient, exponent) ensure degree (polynomial) ~exponent end frozen a _ 29 (polynomial: P; coefficient: C; exponent: INTEGER; old _ degree: INTEGER) require exponent <degree (polynomial) degree (polynomial) ~old _ degree do add _ term (polynomial, coefficient, exponent) ensure degree (polynomial) ~old _ degree end frozen a _ 30 (polynomial _ 1, polynomial _ 2: P; coefficient: C; exponent: INTEGER; old _ degree: INTEGER) require exponent = degree (polynomial _ 1) coef (polynomial _ 1, exponent) ~({CS}).default.additive _ inverse (coefficient) polynomial _ 1 ~polynomial _ 2 do add _ term (polynomial _ 1, coefficient, exponent) reductum (polynomial _ 2) ensure degree (polynomial _ 1) ~degree (polynomial _ 2) end frozen a _ 31 (polynomial: P; coefficient: C; exponent: INTEGER; old _ degree: INTEGER) require exponent = degree (polynomial) coef (polynomial, exponent) /~({CS}).default.additive _ inverse (coefficient) degree (polynomial) ~old _ degree do add _ term (polynomial, coefficient, exponent) ensure degree (polynomial) ~old _ degree end frozen a _ 32 (polynomial: P) do ensure ldcf (polynomial) ~coef (polynomial, degree (polynomial)) polynomial _ 1 ~polynomial _ 2 do ensure coef (polynomial _ 1, exponent) ~coef (polynomial _ 2, exponent) end frozen degree _ well _ defined (polynomial _ 1, polynomial _ 2: P) require polynomial _ 1 ~polynomial _ 2 do ensure degree (polynomial _ 1) ~degree (polynomial _ 2) end frozen ldcf _ well _ defined (polynomial _ 1, polynomial _ 2: P) require polynomial _ 1 ~polynomial _ 2 do ensure ldcf (polynomial _ 1) ~ldcf (polynomial _ 2) end end B.18 Queue note description: "Reusable abstract data type specification of queue." description: "Found in ''The Algebraic Specification of Abstract Data Types'' by Guttag and Horning:

 _ APPEND _ ADT [Q, T] --Queues ''Q'' with appending other queues contain elements of ''T''. inherit QUEUE _ ADT [Q, T] feature --Deferred definitions. appendq (queue, other: Q) deferred end feature --Abstract data type axioms. frozen a _ 18 (queue _ 1, queue _ 2: Q) require queue _ 1 ~queue _ 2 local other: Q do other := newq appendq (queue _ 1, other) ensure queue _ 1 ~queue _ 2 end frozen a _ 19 (queue _ 1, queue _ 2, other _ 1, other _ 2: Q; element: T) require queue _ 1 ~queue _ 2 other _ 1 ~other _ 2 do addq (other _ 1, element) appendq (queue _ 1, other _ 1) appendq (queue _ 2, other _ 2) addq (queue _ 2, element) ensure queue _ 1 ~queue _ 2 end feature --Well-definedness axioms.frozen appendq _ well _ defined (queue _ 1, queue _ 2, other: Q) require queue _ 1 ~queue _ 2 do appendq (queue _ 1, other) appendq (queue _ 2, other) note description: "Reusable abstract data type specification of set." description: "Found in ''The Algebraic Specification of Abstract Data Types'' by Guttag and Horning: " EIS: "src= https://link.springer.com/article/10.1007/BF00260922" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y2thcfbr" deferred class SET _ ADT [S, E] --Sets ''S'' contain elements of ''E''. inherit EQUALITY _ ADT [S] feature --Deferred definitions. empty _ set: S deferred end insert (set: S; element: E) deferred end delete (set: S; element: E) deferred end member _ of (set: S; element: E): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 (element: E) local set: S do set := empty _ set check not member _ of (set, element) end end frozen a _ 2 _ 1 (set: S; element: E) do insert (set, element) ensure member _ of (set, element)end frozen a _ 2 _ 2 (set: S; element _ 1, element _ 2: E; old _ member _ of: BOOLEAN) require element _ 1 /~element _ 2 member _ of (set, element _ 2) ~old _ member _ of do insert (set, element _ 1) ensure member _ of (set, element _ 2) ~old _ member _ of end frozen a _ 3 (element: E) local set _ 1, set _ 2: S do set _ 1 := empty _ set set _ 2 := empty _ set delete (set _ 1, element) check set _ 1 ~set _ 2 end end frozen a _ 4 _ 1 (set _ 1, set _ 2: S; element: E) require set _ 1 ~set _ 2 do insert (set _ 1, element) delete (set _ 1, element) delete (set _ 2, element) ensure set _ 1 ~set _ 2 end frozen a _ 4 _ 2 (set _ 1, set _ 2: S; element _ 1, element _ 2: E) require set _ 1 ~set _ 2 element _ 1 /~element _ 2 do insert (set _ 1, element _ 1) delete (set _ 1, element _ 2) delete (set _ 2, element _ 2) insert (set _ 2, element _ 1) ensure set _ 1 ~set _ 2end feature --Well-definedness axioms. frozen empty _ set _ well _ defined local set _ 1, set _ 2: S do set _ 1 := empty _ set set _ 2 := empty _ set check assert: set _ 1 = set _ 2 end check assert: set _ 1 ~set _ 2 end end frozen insert _ well _ defined (set _ 1, set _ 2: S; element: E) require set _ 1 ~set _ 2 do insert (set _ 1, element) insert (set _ 2, element) ensure set _ 1 ~set _ 2 end frozen delete _ well _ defined (set _ 1, set _ 2: S; element: E) require set _ 1 ~set _ 2 do delete (set _ 1, element) delete (set _ 2, element) ensure set _ 1 ~set _ 2 end frozen member _ of _ well _ defined (set _ 1, set _ 2: S; element: E) require set _ 1 ~set _ 2 do ensure member _ of (set _ 1, element) ~member _ of (set _ 2, element) end end B.21 Set with IsEmptySet note description: "Reusable abstract data type specification of set with ''is_empty_set'' operation." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y5lh2hro" deferred class SET _ WITH _ ISEMPTYSET _ ADT [S, I] --Sets ''S'' contain elements of ''I''. inherit EQUALITY _ ADT [S] feature --Deferred definitions. empty _ set: S deferred end is _ empty _ set (set: S): BOOLEAN deferred end insert (set: S; item: I) deferred end del _ set (set: S; item: I) deferred end has (set: S; item: I): BOOLEAN deferred end feature --Abstract data type axioms. frozen a _ 1 local set: S do set := empty _ set check is _ empty _ set (set) end end frozen a _ 2 (set: S; item: I) do insert (set, item) ensure not is _ empty _ set (set) end frozen a _ 3 (item: I) local set: S do set := empty _ set check not has (set, item) end end frozen a _ 4 (set: S; item: I) do insert (set, item) ensure has (set, item) end frozen a _ 5 (set: S; item _ 1, item _ 2: I; old _ has: BOOLEAN) require item _ 1 /~item _ 2 has (set, item _ 2) ~old _ has do insert (set, item _ 1) ensure has (set, item _ 2) ~old _ has end frozen a _ 6 (set: S; item: I) local e _ set: S do e _ set := empty _ set del _ set (e _ set, item) check e _ set /~set end end frozen a _ 7 (set _ 1, set _ 2: S; item: I)require set _ 1 ~set _ 2 do insert (set _ 1, item) del _ set (set _ 1, item) del _ set (set _ 2, item) ensure set _ 1 ~set _ 2 end frozen a _ 8 (set _ 1, set _ 2: S; item _ 1, item _ 2: I) require item _ 1 /~item _ 2 set _ 1 ~set _ 2 do insert (set _ 1, item _ 1) del _ set (set _ 1, item _ 2) del _ set (set _ 2, item _ 2) insert (set _ 2,item _ 1) ensure set _ 1 ~set _ 2 end feature --Well-definedness axioms. frozen empty _ set _ well _ defined local set _ 1, set _ 2: S do set _ 1 := empty _ set set _ 2 := empty _ set check set _ 1 = set _ 2 end check set _ 1 ~set _ 2 end end frozen is _ empty _ set _ well _ defined (set _ 1, set _ 2: S) require set _ 1 ~set _ 2 do ensure is _ empty _ set (set _ 1) ~is _ empty _ set (set _ 2) end frozen insert _ well _ defined (set _ 1, set _ 2: S; item: I) require set _ 1 ~set _ 2 do insert (set _ 1, item) insert (set _ 2, item) ensure set _ 1 ~set _ 2 end frozen del _ set _ well _ defined (set _ 1, set _ 2: S; item: I) require set _ 1 ~set _ 2 do del _ set (set _ 1, item) del _ set (set _ 2, item) ensure set _ 1 ~set _ 2 end frozen has _ well _ defined (set _ 1, set _ 2: S; item: I) require set _ 1 ~set _ 2 do ensure has (set _ 1, item) ~has (set _ 2, item) end end B.22 Stack note description: "Reusable abstract data type specification of stack." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" description: "Found in ''Abstract Data Types and the Development of Data Structures'' by Guttag:" EIS: "src= http://tinyurl.com/y45o32hq" description: "Found in ''Programming with Abstract Data Types'' by Liskov and Zilles:" EIS: "src= http://tinyurl.com/y5dc5k9h" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y62gkzyz" deferred class STACK _ ADT [S, T] --Stacks ''S'' contain elements of ''T''. data type axioms.

 3 _ empty (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 local empty _ : BOOLEAN do empty _ := is _ new (s _ 1) ensure s _ 1 ~s_ 2 end frozen a _ 3 _ size (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 local size _ : INTEGER do size _ := size (s _ 1) ensure s _ 1 ~s_ 2 end frozen a _ 3 _ top (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 local top _ : T do top _ := top (s _ 1) 7 (s: S; t: T; old _ size: INTEGER) require size (s) ~old _ size do push (s, t) ensure size (s) ~old _ size + 1 end frozen a _ 8 (s: S; t: T; old _ size: INTEGER) require size(s) ~old _ size not is _ new (s) do pop (s) ensure size (s) ~old _ size -1 end frozen a _ 9 (s: S; t: T) push _ well _ defined (s _ 1, s _ 2: S; t: T) require s _ 1 ~s_ 2 do push (s _ 1, t) push (s _ 2, t) ensure s _ 1 ~s_ 2 end frozen pop _ well _ defined (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 s _ 1 = s _ 2 not is _ new (s _ 1) not is _ new (s _ 2) do pop (s _ 1) pop (s _ 2)ensure s _ 1 ~s_ 2 end frozen top _ well _ defined (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 do ensure top (s _ 1) ~top (s _ 2) end frozen empty _ well _ defined (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 do ensure is _ new (s _ 1) ~is _ new (s _ 2) end frozen size _ well _ defined (s _ 1, s _ 2: S) require s _ 1 ~s_ 2 do ensure size (s _ 1) ~size (s _ 2) end end B.23 Stack with Replace note description: "Reusable abstract data type specification of stack with ''replace'' operation." description: "Found in ''Abstract Data Types and Software Validation '' by Guttag, Horowitz and Musser:" EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf" description: "Found in ''Abstract Data Types and the Development of Data Structures'' by Guttag:" EIS: "src= http://tinyurl.com/y45o32hq" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y4ql2lgn" deferred class STACK _ WITH _ REPLACE _ ADT [S, E] --Stacks ''S'' with replacing contain elements of ''E''. inherit STACK _ ADT [S, E] feature --Deferred definitions. replace (stk: S; elm: E) deferred end feature --Abstract data type axioms. frozen a _ 12 local stk _ 1, stk _ 2: S do stk _ 1 := new stk _ 2 := new pop (stk _ 1) check stk _ 1 ~stk _ 2 end end frozen a _ 13 (elm: E) local stk: S do stk := new check top (stk) /~elm end end frozen a _ 14 (stk _ 1, stk _ 2: S; elm: E) require stk _ 1 ~stk _ 2 do replace (stk _ 1, elm) pop (stk _ 2) push (stk _ 2, elm) ensure stk _ 1 ~stk _ 2 end feature --Well-definedness axioms. frozen replace _ well _ defined (stk _ 1, stk _ 2: S; elm: E) require stk _ 1 ~stk _ 2 do replace (stk _ 1, elm) replace (stk _ 2, elm) ensure stk _ 1 ~stk _ 2 end end B.24 String note description: "Reusable abstract data type specification of stting." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y3ezsvro" deferred class STRING _ ADT [S, C] --Strings ''S'' contain characters ''C''. inherit EQUALITY _ ADT [S] feature --Deferred definitions. null: S deferred end is _ null (string: S): BOOLEAN deferred end len (string: S): INTEGER deferred end add _ char (string: S; character: C) deferred end concat (string _ 1, string _ 2: S) string := null concat (string _ 1, string) ensure string _ 1 ~string _ 2 end frozen a _ 6 (string _ 1, string _ 2, string _ 3, string _ 4: S; character: C) require string _ 1 ~string _ 4 string _ 2 ~string _ 3 do add _ char (string _ 1, character) concat (string _ 2, string _ 1) concat (string _ 3, string _ 4) add _ char (string _ 3, character) ensure string _ 2 ~string _ 3 end frozen a _ 7 (start, finish: INTEGER) local string _ 1, string _ 2: S do string _ 1 := null string _ 2 := null check substr (string _ 2, start, finish) ~string _ 1 end end frozen a _ 8 (string: S; start, finish: INTEGER; character: C) require finish ~0 local null _ string: S do null _ string := null add _ char (string, character) check substr (string, start, finish) ~null _ string end end frozen a _ 9 (string _ 1, string _ 2: S; start, finish: INTEGER; character: C) require finish /~0 finish ~len (string _ 1)start + 2 string _ 2 ~substr (string _ 1, start, finish -1) do add _ char (string _ 1, character) add _ char (string _ 2, character) ensure string _ 2 ~substr (string _ 1, start, finish) end frozen a _ 10 (string _ 1, string _ 2: S; start, finish: INTEGER; character: C) require end frozen a _ 15 (string _ 1, string _ 2, string _ 3: S; character _ 1, character _ 2: C) require string _ 1 ~string _ 3 character _ 1 /~character _ 2 do add _ char (string _ 1, character _ 1) add _ char (string _ 2, character _ 2) check assume: index (string _ 3, string _ 2) ~0 end ensure index (string _ 1, string _ 2) ~0 end frozen a _ 16 (string _ 1, string _ 2, string _ 3: S; character _ 1, character _ 2: C) require string _ 1 ~string _ 3 index (string _ 1, string _ 2) /~len (string _ 1)len (string _ 2) + 1 do add _ char (string _ 1, character _ 1) add _ char (string _ 2, character _ 2) check assume: index (string _ 3, string _ 2) ~0 end ensure index (string _ 1, string _ 2) ~0 end feature --Well-definedness axioms. frozen null _ well _ defined local string _ 1, string _ 2: S do string _ 1 := null string _ 2 := null check string _ 1 = string _ 2 end check string _ 1 ~string _ 2 end end frozen is _ null _ well _ defined (string _ 1, string _ 2: S) require string _ 1 ~string _ 2 do ensure is _ null (string _ 1) ~is _ null (string _ 2) end frozen len _ well _ defined (string _ 1, string _ 2: S) require SYMBOL _ TABLE _ ADT [S, I, A] --Symbol tables ''S'' contain elements of ''A'' --indexed by elements of ''I''. inherit EQUALITY _ ADT [S]

 , id _ 1, attrs) ensure retrieve (symtab, id _ 2) ~old _ retrieve end feature --Well-definedness axioms. frozen init _ well _ defined local symtab _ 1, symtab _ 2: S do symtab _ 1 := init symtab _ 2 := init check symtab _ 1 ~symtab _ 2 end end frozen enter _ block _ well _ defined (symtab _ 1, symtab _ 2: S) require symtab _ 1 ~symtab _ 2 do enter _ block (symtab _ 1) enter _ block (symtab _ 2) ensure symtab _ 1 ~symtab _ 2 end frozen leave _ block _ well _ defined (symtab _ 1, symtab _ 2: S) require symtab _ 1 ~symtab _ 2 do leave _ block (symtab _ 1) leave _ block (symtab _ 2) ensure symtab _ 1 ~symtab _ 2 end frozen is _ in _ block _ well _ defined (symtab _ 1, symtab _ 2: S; id: I) require symtab _ 1 ~symtab _ 2 do ensure is _ in _ block (symtab _ 1, id) ~is _ in _ block (symtab _ 2, id) end frozen add _ well _ defined (symtab _ 1, symtab _ 2: S; id: I; attr: A) require symtab _ 1 ~symtab _ 2 do add (symtab _ 1, id, attr) add (symtab _ 2, id, attr) ensure symtab _ 1 ~symtab _ 2 end

 The choice of notation and technology 3.2 Specification drivers . 3.3 Artifacts . 3.4 Activities . 3.4.1 Developing a SOORT . 3.4.2 Specifying a SOOR . 3.4.3 Having a formal picnic . Verifying through program proving

	x	CONTENTS
	3.4.5	
	II The Unified Solution	
	3 Essentials	
	3.1 ix	

2 Important Qualities of Requirements 2.1 Expressiveness . 2.2 Verifiability . 2.3 Reusability . 2.4 Understandability . 3.4.4 Verifying through testing .

Table 4

 4

	Scope

.1: Distribution of the requirements analyzed by Dwyer et al.

[START_REF] Matthew | Patterns in Property Specifications for Finite-State Verification[END_REF]

among known SRPs. Out of the 40 SRPs, 23 proved to be useful for covering some requirements. "Global Response" and "Global Universality" were the most frequently used SRPs, covering 351 out of the 555 requirements.

 use OPT * for labeling properties expressed in an optative mood). Within the multirequirements approach this

	deferred class ZOO
	feature
	turnstile: TURNSTILE
	enters: MML _ SEQUENCE[INTEGER _ 64]
	invariant
	enters.count≤ turnstile.coinslot.coins.count
	end
	Figure 7.4: Entries should never exceed payments.
	deferred class BARRIER
	feature
	push
	require
	not turnstile.unlocks.is _ empty
	(not turnstile.locks.is _ empty) implies
	(turnstile.unlocks.last > turnstile.locks.last)
	deferred
	end
	end

 second if it is smaller than 59.

	(REQ2) Resets current second to 0 if it equals 59.
	(REQ3) Increments current minute if the time is HH:MM:59 for MM smaller than 59.
	(REQ4) Resets current minute to 0 if it equals 59 and current second equals 59.
	(REQ5) Keeps current minute if current second is smaller than 59.
	(REQ6) Increments current hour if the time is HH:59:59 for HH smaller than 23.
	(REQ7) Resets current hour to 0 if the time is 23:59:59.

(REQ8) Keeps current hour if current second is smaller than 59. (REQ9) Increments current day at 23:59:59 if it is not Sunday. (REQ10) Resets current day to Monday after a clock tick at 23:59:59 on Sunday. (REQ11) Keeps current day if current second is smaller than 59.

 Now that the new requirements class compiles, it is possible to proceed to the first increment.

		req _ 10 (clock: CLOCK)
		--resets current day to Monday after
	note explicit:wrapping deferred class EXTENDED _ CLOCK _ REQUIREMENTS --The present class contains requirements --for a clock equipped with a days counter. inherit CLOCK _ REQUIREMENTS feature --A clock tick: req _ 9 (clock: CLOCK; current _ day: INTEGER) --increments current day at 23:59:59, --if it is not Sunday. require modify (clock) clock.second = 59 clock.minute = 59 clock.hour = 23 clock.day <6 clock.day = current _ day do clock.tick ensure clock.day = current _ day + 1 end	--a clock tick at 23:59:59 on Sunday. require modify (clock) clock.second = 59 clock.minute = 59 clock.hour = 23 clock.day = 6 do clock.tick ensure clock.day = 0 end req _ 11 (clock: CLOCK; current _ day: INTEGER) --keeps current day if current --second is smaller than 59. require modify (clock) clock.second <59 clock.day = current _ day do clock.tick ensure clock.day = current _ day
		end
		end
	second, minute, hour, day: INTEGER	

 AFTER [S, expanded P →CONDITION [S], expanded Q →CONDITION [S]] UNTIL [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → CONDITION [S]]

	end invariant until A.8 Existence After feature r _ does _ not _ hold: not ({R}).default.holds (system) A.12 Existence Until until timer := time _ boundary q _ holds: ({Q}).default.holds (system) invariant variant do deferred class timer := time _ boundary do
	inherit until REQUIREMENT [G] inherit init (system) do timer Result := ({S}).name + " responds to " + ({P}).name + " globally" p _ does _ not _ hold: not ({P}).default.holds (system) ({R}).default.holds (system) or else ({P}).default.holds (system) ({S}).default.holds (system) r _ does _ not _ hold: not ({R}).default.holds (system) UNIVERSALITY _ BEFORE [S, expanded P →CONDITION [S], expanded R →CONDITION [S]] invariant Result := ({P}).name + " is true globally" eval (array: A; index: INTEGER): E
	IV Appendices A.2 Absence Before end note description: "P is false before R" EIS: "name= Multirequirement", "src= http://tinyurl.com/y28f8xxg" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yykmrtwe" deferred class ABSENCE _ BEFORE [S, expanded P →CONDITION [S], expanded R →CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) do from timer := time _ boundary invariant p _ does _ not _ hold _ or _ else _ r _ holds: not ({P}).default.holds (system) or else ({R}).default. holds (system) until ({R}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " is false before " + ({R}).name end end A.3 Absence Between note description: "P is false between Q and R" REQUIREMENT [S] feature frozen verify (system: S) require q _ holds: ({Q}).default.holds (system) r _ does _ not _ hold: not ({R}).default.holds (system) do from timer := time _ boundary invariant p _ does _ not _ hold _ or _ else _ r _ holds: not ({P}).default.holds (system) or else ({R}).default. holds (system) until ({R}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " is false between " + ({Q}).name + " and " + ({R}).name end end A.4 Absence Global note description: "P is false globally" EIS: "name= Multirequirement", "src= http://tinyurl.com/y5a6bb8u" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yx9cd6va" deferred class ABSENCE _ GLOBAL [S, expanded P →CONDITION [S]] inherit REQUIREMENT [S] feature until timer = 0 loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " is false globally" end end A.5 Absence Until note description: "P is false after Q until R" EIS: "name= Multirequirement", "src= http://tinyurl.com/y3onr2bn" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y69x5dlr" deferred class ABSENCE _ UNTIL [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) require q _ holds: ({Q}).default.holds (system) r _ does _ not _ hold: not ({R}).default.holds (system) do from timer := time _ boundary invariant p _ does _ not _ hold _ or _ else _ r _ holds: not ({P}).default.holds (system) or else ({R}).default. holds (system) until ({R}).default.holds (system) or else timer = 0 loop requirement _ specific _ output: STRING do Result := ({P}).name + " is false after " + ({Q}).name + " until " + ({R}).name end end A.6 Bounded Existence Between note description: "Transitions to P occur at most 2 times between Q and R." EIS: "name= Multirequirement", "src= http://tinyurl.com/y4nr2h8x" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yypy2pgb" deferred class BOUNDED _ EXISTENCE _ BETWEEN [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R →CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) require q _ holds: ({Q}).default.holds (system) do from timer := time _ boundary until ({R}).default.holds (system) or else not ({P}).default.holds (system) loop iterate (system) variant timer end from until ({R}).default.holds (system) or else ({P}).default.holds (system) loop iterate (system) variant timer end from until ({R}).default.holds (system) or else not ({P}).default.holds (system) loop iterate (system) variant timer end from until ({R}).default.holds (system) or else not ({P}).default.holds (system) loop iterate (system) variant timer end from invariant ({R}).default.holds (system) or else not ({P}).default.holds (system) until ({R}).default.holds (system) loop iterate (system) variant timer end ensure r _ holds: ({R}).default.holds (system) end feature requirement _ specific _ output: STRING do Result := "transitions to " + ({P}).name + " occur at most 2 times between " + ({Q}).name + " and " + ({R}).name end end A.7 Condition note description: "Condition over S." EIS: "name= Location on GitHub", "src= http://tinyurl.com/yya4fncg" deferred class CONDITION [S] feature note description: "P becomes true after Q" EIS: "name= Multirequirement", "src= http://tinyurl.com/y644k9hl" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y2psqqzk" deferred class EXISTENCE _ AFTER [S, expanded P →CONDITION [S], expanded Q →CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) do from timer := time _ boundary init (system) until ({Q}).default.holds (system) loop iterate (system) variant timer end from until ({P}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " becomes true after " + ({Q}).name end end A.9 Existence Before note REQUIREMENT [S] feature frozen verify (system: S) do from timer := time _ boundary invariant r _ does _ not _ hold: not ({R}).default.holds (system) until ({P}).default.holds (system) or else timer = 0 loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " becomes true before " + ({R}).name end end A.10 Existence Between note description: "P becomes true between Q and R" EIS: "name= Multirequirement", "src= http://tinyurl.com/y2prdopt" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y5vq9hg9" deferred class EXISTENCE _ BETWEEN [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) require ({P}).default.holds (system) or else timer = 0 loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " becomes true between " + ({Q}).name + " and " + ({R}).name end end A.11 Existence Global note description: "P becomes true globally" EIS: "name= Multirequirement", "src= http://tinyurl.com/y5rrbsrk" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yxgvkktt" deferred class EXISTENCE _ GLOBAL [S, expanded P →CONDITION [S]] inherit REQUIREMENT [S] feature frozen verify (system: S) do from timer := time _ boundary init (system) until ({P}).default.holds (system) loop iterate (system) variant timer end end feature loop invariant from until end end end deferred p _ holds _ or _ else _ r: ({P}).default.holds (system) or else ({R}).default.holds (system) note feature iterate (system) p _ does _ not _ hold _ or _ else _ s _ holds: not ({P}).default.holds (system) or else ({S}).default. timer := time _ boundary ({S}).default.holds (system) from inherit until end description: "P becomes true after Q until R" variant holds (system) until loop until end ({R}).default.holds (system) end EIS: "name= Multirequirement", "src= http://tinyurl.com/y55xy2aq" frozen verify (system: G) timer until ({P}).default.holds (system) or else timer = 0 iterate (system) ({P}).default.holds (system) REQUIREMENT [S] loop feature EIS: "name= Location on GitHub", "src= http://tinyurl.com/yy5we3xq" CONDITION [S]] inherit feature frozen verify (system: S) require q _ holds: ({Q}).default.holds (system) r _ does _ not _ hold: not ({R}).default.holds (system) do from timer := time _ boundary invariant r _ does _ not _ hold: not ({R}).default.holds (system) until ({P}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({P}).name + " becomes true after " + ({Q}).name + " until " + ({R}).name end end A.13 Precedence After note description: "S precedes P after Q" EIS: "name= Multirequirement", "src= http://tinyurl.com/y54958zw" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y4bqc3eb" until ({S}).default.holds (system) or else timer = 0 loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({S}).name + " precedes " + ({P}).name + " after " + ({Q}).name end end A.14 Precedence Chain Global note description: "S, T precedes P globally." EIS: "name= Multirequirement", "src= http://tinyurl.com/y22s7fed" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yxgqazkn" deferred class PRECEDENCE _ CHAIN _ GLOBAL [G, expanded S →CONDITION [G], expanded T →CONDITION [G], expanded P →CONDITION [G]] inherit REQUIREMENT [G] feature frozen verify (system: G) iterate (system) variant timer end from until ({P}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({S}).name + ", " + ({T}).name + " precedes " + ({P}).name + " globally" end end A.15 Precedence Global note description: "S precedes P globally" EIS: "name= Multirequirement", "src= http://tinyurl.com/y5rmuwef" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y3d6xscj" deferred class PRECEDENCE _ GLOBAL [G, expanded S →CONDITION [G], expanded P →CONDITION [G]] inherit REQUIREMENT [G] feature requirement _ specific _ output: STRING do Result := ({S}).name + " precedes " + ({P}).name + " globally" end end A.16 Requirement note description: "Verifiable requirement over S." EIS: "name= Location on GitHub", "src= http://tinyurl.com/y5rqwzs9" deferred class REQUIREMENT [S] inherit ANY undefine out end feature init (system: S) deferred end main (system: S) deferred end iterate (system: S) from until ({S}).default.holds (system) loop iterate (system) variant timer end end feature requirement _ specific _ output: STRING do Result := ({S}).name + " responds to " + ({P}).name + " after " + ({Q}).name + "." end end A.18 Response Before note description: "S responds to P before R" EIS: "name= Multirequirement", "src= http://tinyurl.com/y2b69k9o" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y56g5ok5" deferred class RESPONSE _ BEFORE [G, expanded S →CONDITION [G], expanded P →CONDITION [G], expanded R → CONDITION [G]] inherit REQUIREMENT [G] feature variant timer end end feature requirement _ specific _ output: STRING do Result := ({S}).name + " responds to " + ({P}).name + " before " + ({R}).name end end A.19 Response Chain Global note description: "P responds to S, T globally." EIS: "name= Multirequirement", "src= http://tinyurl.com/y32tgtcm" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yyr8xw2b" deferred class RESPONSE _ CHAIN _ GLOBAL [G, expanded P →CONDITION [G], expanded S →CONDITION [G], expanded T →CONDITION [G]] inherit REQUIREMENT [G] feature frozen verify (system: G) require ({S}).default.holds (system) do from requirement _ specific _ output: STRING do Result := ({P}).name + " responds to " + ({S}).name + ", " + ({T}).name + " globally" end end note description: "S responds to P globally" EIS: "name= Multirequirement", "src= http://tinyurl.com/y44wbnbs" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y2crlkjc" deferred class inherit feature frozen verify (system: G) require p _ holds: ({P}).default.holds (system) do from timer := time _ boundary until ({S}).default.holds (system) loop iterate (system) variant timer timer end end feature do end end feature variant timer end A.22 Universality Before inherit REQUIREMENT [S] iterate (system) end loop Result := ({P}).name + " is true after " + ({Q}).name + " until " + ({R}).name timer = 0 do until requirement _ specific _ output: STRING p _ holds: ({P}).default.holds (system) Result := ({P}).name + " is true after " + ({Q}).name UNIVERSALITY _ BETWEEN [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → CONDITION [S]] invariant feature init (system) requirement _ specific _ output: STRING note EIS: "name= Multirequirement", "src= http://tinyurl.com/yxmkw6s5" EIS: "name= Location on GitHub", "src= http://tinyurl.com/yypj6uhf" deferred class timer := time _ boundary end from end do timer frozen verify (system: S) variant description: "P is true between Q and R" iterate (system) feature loop REQUIREMENT [G] timer = 0 loop iterate (system) variant ({R}).default.holds (system) or else timer = 0 REQUIREMENT [S] until A.23 Universality Between system) inherit p _ holds _ or _ else _ r _ holds: ({P}).default.holds (system) or else ({R}).default.holds (RESPONSE _ GLOBAL [G, expanded S →CONDITION [G], expanded P →CONDITION [G]] require q _ holds: ({Q}).default.holds (system) do from timer := time _ boundary invariant p _ holds: ({P}).default.holds (system) until requirement _ specific _ output: STRING do Result := ({P}).name + " is true before " + ({R}).name end invariant UNIVERSALITY _ GLOBAL [S, expanded P →CONDITION [S]] timer := time _ boundary deferred class from end do EIS: "name= Location on GitHub", "src= http://tinyurl.com/y46rbz87" r _ does _ not _ hold: not ({R}).default.holds (system) EIS: "name= Multirequirement", "src= http://tinyurl.com/y3hrpltn" q _ holds: ({Q}).default.holds (system) description: "P is true globally" require note frozen verify (system: S) feature frozen verify (system: S) A.20 Response Global deferred class UNIVERSALITY _ inherit feature end feature A.24 Universality Global end REQUIREMENT [S] timer REQUIREMENT [S] ({P}).default.holds (system) or else ({R}).default.holds (system) until ({R}).default.holds (system) loop iterate (system) variant requirement _ specific _ output: STRING Result := ({P}).name + " is true between " + ({Q}).name + " and " + ({R}).name end end UNIVERSALITY _ inherit do deferred class REQUIREMENT [S] from timer := time _ boundary invariant p _ does _ not _ hold _ or _ else _ s: not ({P}).default.holds (system) or else ({S}).default.holds (system) invariant not ({P}).default.holds (system) or else ({T}).default.holds (system) until ({T}).default.holds (system) loop variant timer end end timer end check assume: ({P}).default.holds (system) end from until ({R}).default.holds (system) loop iterate (system) timer end end feature note description: "P is true after Q" EIS: "name= Multirequirement", "src= http://tinyurl.com/y3e7vrvx" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y35pz34n" frozen verify (system: S) do timer := time _ boundary invariant EIS: "name= Location on GitHub", "src= http://tinyurl.com/y65zzxke" feature EIS: "name= Multirequirement", "src= http://tinyurl.com/y3mgklvw" from end description: "P is true after Q until R" end note EXISTENCE _ UNTIL [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → do iterate (system) iterate (system) variant end variant timer deferred class require q _ holds: ({Q}).default.holds (system) end from ({S}).default.holds (system) or else timer = 0 loop loop iterate (system) variant timer loop iterate (system) A.21 Universality After feature iterate (system) variant A.25 Universality Until --Abstract data type axioms.
	EIS: "name= Multirequirement", "src= http://tinyurl.com/y4nkt92q" iterate (system) description: "P becomes true before R" loop q _ holds: ({Q}).default.holds (system) requirement _ specific _ output: STRING do do frozen verify (system: G) timer := time _ boundary end frozen verify (system: S) end
	EIS: "name= Location on GitHub", "src= http://tinyurl.com/y4ltn92p" frozen verify (system: S) variant iterate (system) holds (system: S): BOOLEAN EIS: "name= Multirequirement", "src= http://tinyurl.com/y584yaqr" r _ does _ not _ hold: not ({R}).default.holds (system) do deferred class from feature main (system) require iterate (system) end note require end
	do variant EIS: "name= Location on GitHub", "src= http://tinyurl.com/yyufzv2g" timer deferred do Result := ({P}).name + " becomes true globally" PRECEDENCE _ AFTER [G, expanded S →CONDITION [G], expanded P →CONDITION [G], expanded Q → timer := time _ boundary timer := timer -time _ growth p _ holds: ({P}).default.holds (system) until description: "P is true before R" q _ holds: ({Q}).default.holds (system)
	deferred class end end from CONDITION [G]] init (system) from timer end frozen verify (system: G) end do ({T}).default.holds (system) feature EIS: "name= Multirequirement", "src= http://tinyurl.com/yxmn65yo" r _ does _ not _ hold: not ({R}).default.holds (system) feature
	ABSENCE _ BETWEEN [S, expanded P →CONDITION [S], expanded Q →CONDITION [S], expanded R → timer := time _ boundary end end timer := time _ boundary invariant do from loop EIS: "name= Location on GitHub", "src= http://tinyurl.com/y42m9uth" do
	CONDITION [S]] invariant inherit init (system) from end not ({P}).default.holds (system) from out: STRING end timer := time _ boundary iterate (system) requirement _ specific _ output: STRING from requirement _ specific _ output: STRING

deferred class EXISTENCE _ BEFORE [S, expanded P →CONDITION [S], expanded R →CONDITION [S]]

 "Reusable abstract data type specification of commutative ring." description: "Found in Wikipedia:" EIS: "src= https://en.wikipedia.org/wiki/Commutative_ring#Definition" EIS: "name= Location on GitHub", "src= https://tinyurl.com/yytyfmqj"

	deferred end	frozen a _ 5 (stack: B; element: E)
	end		require frozen size _ well _ defined (stack _ 1, stack _ 2: B)
	size (stack) <limit (stack) frozen a _ 11 (stack: B; element: E; old _ size: INTEGER) require
	size (stack: B): INTEGER do require stack _ 1 ~stack _ 2
	deferred size (stack) ~old _ size push (stack, element) do
	end size (stack) ~limit (stack) ensure ensure
	do			top (stack) ~element size (stack _ 1) ~size (stack _ 2)
	limit (stack: B): INTEGER end push (stack, element) end
	deferred ensure	
	end size (stack) ~old _ size frozen a _ 6 (stack: B; element _ 1, element _ 2: E) frozen limit _ well _ defined (stack _ 1, stack _ 2: B)
	end			require require
	feature			top (stack) ~element _ 2 stack _ 1 ~stack _ 2
	_ queue _ 1) size (stack) ~limit (stack) --Abstract data type axioms. feature do
	item _ 2 := deq (bounded _ queue _ 2) do --Well-definedness axioms. ensure
	check frozen a _ 1 (lim: INTEGER) push (stack, element _ 1) limit (stack _ 1) ~limit (stack _ 2)
	item _ 1 ~item _ 2 ensure frozen new _ stack _ well _ defined (lim: INTEGER) local end
	end stack _ 1, stack _ 2: B top (stack) ~element _ 2 local
	ensure end stack _ 1, stack _ 2: B do end
	bounded _ queue _ 1 ~bounded _ queue _ 2 stack _ 1 := new _ stack (lim) do
	end stack _ 2 := new _ stack (lim) pop (stack _ 1) frozen a _ 7 (lim: INTEGER) local stack _ 1 := new _ stack (lim) stack _ 2 := new _ stack (lim) B.8 Commutative Ring
	check check	end	stack: B
		stack _ 1 ~stack _ 2 do stack _ 1 = stack _ 2
	end end end check	stack := new _ stack (lim) B.7 Bounded Stack check
		limit (stack) ~lim stack _ 1 ~stack _ 2
	frozen a _ 2 (stack _ 1, stack _ 2: B; element: E) end end
	require end	note end
	description: "Reusable abstract data type specification of bounded stack." stack _ 1 ~stack _ 2
	description: "Found in ''Abstract Data Types and Software Validation '' by Guttag, Horowitz and size (stack _ 1) <limit (stack _ 1) frozen a _ 8 (stack: B; element: E; old _ limit: INTEGER) frozen push _ well _ defined (stack _ 1, stack _ 2: B; element: E) deferred class
	do require	Musser:" require COMMUTATIVE _ RING _ ADT [R]
	EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf" push (stack _ 1, element) limit (stack) ~old _ limit stack _ 1 ~stack _ 2
	EIS: "name= Location on GitHub", "src= https://tinyurl.com/y4wswh3t" pop (stack _ 1) size (stack) ~limit (stack) do
	ensure push (stack _ 1, element) do
	deferred class stack _ 1 ~stack _ 2 push (stack, element) push (stack _ 2, element)
	end ensure	BOUNDED _ STACK _ ADT [B, E] ensure
	--Bounded stacks ''B'' contain elements of ''E''. limit (stack) ~old _ limit stack _ 1 ~stack _ 2
	frozen a _ 3 (stack _ 1, stack _ 2: B; element: E) end end
	require	inherit
	stack _ 1 ~stack _ 2 frozen a _ 9 (lim: INTEGER) frozen pop _ well _ defined (stack _ 1, stack _ 2: B)
	EQUALITY _ ADT [B] size (stack _ 1) ~limit (stack _ 1) local require
	do stack _ 1 ~stack _ 2 stack: B
	feature push (stack _ 1, element) do stack _ 1 = stack _ 2
	ensure do	--Deferred definitions. stack := new _ stack (lim)
	stack _ 1 ~stack _ 2 check pop (stack _ 1)
	new _ stack (lim: INTEGER): B size (stack) ~0 pop (stack _ 2) end
	ensure		deferred end
	end frozen a _ 4 (lim: INTEGER; element: E) end stack _ 1 ~stack _ 2
	local end	
	stack: B	push (stack: B; element: E) frozen a _ 10 (stack: B; element: E; old _ size: INTEGER)
	deferred require frozen top _ well _ defined (stack _ 1, stack _ 2: B) do
	end stack := new _ stack (lim) size (stack) ~old _ size require
	check stack _ 1 ~stack _ 2 size (stack) <limit (stack)
	do	pop (stack: B) top (stack) /~element do
	end ensure		deferred push (stack, element)
	end ensure top (stack _ 1) ~top (stack _ 2) end
	end			size (stack) ~old _ size + 1
			top (stack: B): E

note description:

 1 ~v_ 3 "Reusable abstract data type specification of graph." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y5y6l6ax"

		write (file _ 2, record)
		skip (file _ 2, 0) frozen read _ well _ defined (file _ 1, file _ 2: F)
		ensure	require
		file _ 1 ~file _ 2 file _ 1 ~file _ 2
		end	do
			ensure
	frozen a _ 5 (file _ 1, file _ 2: F; record: R; gap: INTEGER) read (file _ 1) ~read (file _ 2)
		require	end
		file _ 1 ~file _ 2
		do	end
		write (file _ 1, record)
		skip (file _ 1, gap) reset (file _ 1) B.13 Graph
		write (file _ 2, record)
		skip (file _ 2, 0)
		ensure	note
	file _ 1 ~file _ 2 end frozen a _ 6 local file: F description: deferred class
		end do
		file := empty _ file
	end	check
		is _ eof (file)
	end B.12 File end
	frozen a _ 7 (file: F; record: R)
		do
		write (file, record)
		ensure
		is _ eof (file)
		end
	deferred class frozen a _ 8 (file: F; record: R)
	FILE _ ADT [F, R] do
	--Files ''F'' contain records ''R''. write (file, record)
		skip (file, 0)
	inherit ensure
		not is _ eof (file)
	EQUALITY _ ADT [F] end
	feature frozen a _ 9 (file _ 1, file _ 2: F; record: R; gap: INTEGER)
	--Deferred definitions. require
		gap /~0
	empty _ file: F file _ 1 ~file _ 2
		deferred do
		end write (file _ 1, record)
		skip (file _ 1, gap)
	write (file: F; record: R) skip (file _ 2, gap -1)
		deferred ensure
		end file _ 1 ~file _ 2
		end
	skip (file: F; gap: INTEGER)
	deferred frozen a _ 10 (file _ 1, file _ 2: F; record: R; gap: INTEGER)
		end

note

description: "Reusable abstract data type specification of file." description: "Found in ''The design of data type specifications'' by Guttag, Horowitz and Musser:" EIS: "src= http://tinyurl.com/yxmnv23w" EIS: "name= Location on GitHub", "src= https://tinyurl.com/y5phfw2h"

The note explicit: wrapping expression in the first line of the class is a verification annotation for AutoProof[START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF]; its meaning is not related to the ideas under the discussion.

The modify(n) expression inside the require block is a frame specification for AutoProof[START_REF] Polikarpova | Flexible Invariants through Semantic Collaboration[END_REF].

Comments start with a double hyphen --in Eiffel

The "note explicit: wrapping" expression at the top of the class is a verification annotation [Pol+14] not related to the example.

https://tinyurl.com/ybocy485

https://tinyurl.com/y6w7nlcs

https://tinyurl.com/ybd4b5un

https://1drv.ms/u/s!AsXOYPvbmuEyh4IsDdYj-i6V5yX0OA

http://patterns.projects.cs.ksu.edu

https://tinyurl.com/y96rj2v3

Acknowledgment

We are indebted to the authors of the ASM version of the LGS case study [AGR17] for their careful work on this problem. We are particularly grateful to Professor Angelo Gargantini for his openness, patience and insights in discussing the ASM work with us.

The "Source" link in the STATEMENT _ 1 _ 1 class leads to the corresponding commented fragment in the Google document. The comment contains the GitHub location of the fragment's object-oriented version, equal to the location in the "GitHub" EIS link in STATEMENT _ 1 _ 1.

Appendix A Control Software SOORTs

A.1 Absence After note description: "P is false after Q" EIS: "name= Multirequirement", "src= http://tinyurl.com/yxcwu8vw" EIS: "name= Location on GitHub", "src= http://tinyurl.com/y5h2pw8o"