
HAL Id: tel-02872242
https://theses.hal.science/tel-02872242

Submitted on 17 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Seamless Object-Oriented Requirements
Alexandr Naumchev

To cite this version:
Alexandr Naumchev. Seamless Object-Oriented Requirements. Software Engineering [cs.SE]. Univer-
sité Paul Sabatier - Toulouse III, 2019. English. �NNT : 2019TOU30132�. �tel-02872242�

https://theses.hal.science/tel-02872242
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 12 juillet 2019 par :
Alexandr Naumchev

Exigences orientées objets dans un cycle de vie continu
Seamless Object-Oriented Requirements

JURY
M. YAMINE AIT-AMEUR Président du Jury
MME SUSANNE GRAF Examinatrice
MME CATHERINE DUBOIS Rapporteure
MME ELISABETTA DI NITTO Rapporteure
M. JEAN-MICHEL BRUEL Directeur de thèse
M. BERTRAND MEYER Co-directeur de thèse

École doctorale et spécialité :
EDMITT - Ecole Doctorale Mathématiques, Informatique et Télécommunications de Toulouse

Unité de Recherche :
IRIT: Institut de Recherche en Informatique de Toulouse

Directeur(s) de Thèse :
M. Jean-Michel Bruel et M. Bertrand Meyer

Rapporteurs :
Mme Catherine Dubois et Mme Elisabetta Di Nitto

ii

To Mary

Acknowledgement

Many people were helping me in different ways while I was working on the thesis. As
a human being with an imperfect memory, however, I can only highlight some of them
here.

Bertrand Meyer, for proposing an amazingly interesting research topic. Bertrand
Meyer and Jean-Michel Bruel, for continuously correcting my path and relentlessly
exercising all the crazy ideas coming out of my head. Bertrand Meyer, Manuel Maz-
zara and Victor Rivera from Innopolis University; Jean-Michel Bruel, Florian Galinier
and Sophie Ebersold from the University of Toulouse, for actively helping me grow my
research ideas into publications. Manuel Mazzara, Andrey Sadovykh and Sergey Masi-
agin from Innopolis University, for supporting my research administratively and finan-
cially. Mansur Khazeev and Hamna Aslam from Innopolis University; Jean-Michel
Bruel, Sophie Ebersold and Florian Galinier, for giving me the luxury of having them
in the room when I was rehearsing the thesis defense. Alexander Chichigin and Larisa
Safina from Innopolis University, for always willing to give their valuable technical
advice. Elisabetta di Nitto from Politecnico di Milano and Catherine Dubois from
ENSIIE, for providing their insightful feedback on the dissertation that allowed me to
better understand the directions for further improvement. Susanne Graf from VER-
IMAG, for the enormous amount of technical feedback on the dissertation that allowed
me to greatly improve the writing and see future research directions. Tanya Stanko
from Innopolis University, for introducing me to Manuel and Bertrand and thus initi-
ating our fruitful collaboration. Inna Baskakova, for always smiling and helping with
tons of paperwork appearing along the way.

My wife Mary, for her unimaginable love and patience. My kids Mark and Kate, for
giving rest to my brain, heart and soul. My parents Vladimir and Galina, my brother
Yuri, for constantly expressing their pride of my work. My grandfather Georgy, for
being an in-memory example of how passionate I should be about what I do. My
grandfather Ruben, for being an invisible example of how brave I should be in what I
do. My brother Nikolay, for being an example of how persistent I should be in what I
do. With their help I can achieve everything that I can imagine.

I would like to book a special place in this chapter, and in my heart, to the confer-
ence and journal reviewers who rejected my submissions, thus forcing me to improve,
improve and improve.

iii

iv

The most important property of a
program is whether it accomplishes
the intention of its user.

Sir Charles Antony Richard Hoare

Résumé

L’évolution constante des besoins des clients et des utilisateurs exige une réponse
rapide de la part des équipes logicielles. Cela crée une forte demande pour un fonc-
tionnement sans rupture des processus logiciels. L’intégration, la livraison et le dé-
ploiement continus, également connus sous le nom de DevOps, ont fait d’énormes
progrès en rendant les processus logiciels réactifs au changement. Ces progrès n’ont
toutefois eu que peu d’effets sur les exigences en matière de logiciels. Aujourd’hui,
la plupart des besoins sont exprimés en langage naturel. Cette approche a un grand
pouvoir expressif, mais au détriment d’autres aspects de la qualité des exigences telles
que la traçabilité, la réutilisabilité, la vérifiabilité et la compréhensibilité. Le défi est
ici d’améliorer ces aspects sans sacrifier l’expressivité.

Bertrand Meyer, dans sa méthode multi-exigences, relève ce défi et propose
d’exprimer les besoins individuels en trois couches: sous-ensemble déclaratif d’un lan-
gage de programmation orienté objet, langage naturel et notation graphique. Cette ap-
proche a motivé et inspiré les travaux de la présente thèse. Alors que l’approche multi-
exigences se concentre sur la traçabilité et la compréhensibilité, l’approche Seamless
Object-Oriented Requirements (SOOR) présentée dans cette thèse prend en compte la
vérifiabilité, la réutilisabilité et la compréhensibilité.

Cette thèse explore l’hypothèse de Martin Glinz selon laquelle, pour soutenir la
continuité, les exigences logicielles devraient être des objets. L’exploration confirme
l’hypothèse et aboutit à un ensemble de méthodes basées sur des outils pour spécifier,
valider, vérifier et réutiliser les exigences orientées objets. La contribution technique
réutilisable la plus importante de cette thèse est une bibliothèque Eiffel prête à l’emploi
de patrons de classes, qui capturent les modèles d’exigences logicielles récurrents. Les
exigences orientées objets, concrètes et sans rupture, héritent de ces patrons et devien-
nent des clients du logiciel spécifié. La construction de logiciels orientés objets devient
la méthode de spécification, de validation et de réutilisation des exigences; la concep-
tion par contrat devient la méthode de vérification de l’exactitude des implémentations
par rapport aux exigences.

Cette thèse s’appuie sur plusieurs expériences et montre que la nouvelle approche
proposée favorise la vérifiabilité, la réutilisabilité et la compréhensibilité des exigences
tout en maintenant l’expressivité à un niveau acceptable. Les expérimentations met-
tent en oeuvre plusieurs exemples, dont certains sont des standards de l’état de l’art de
l’ingénierie des exigences. Chaque expérimentation illustre un problème par un exem-
ple, propose une solution générale et montre comment la solution règle le problème.
Alors que l’expérimentation s’appuie sur Eiffel et son support d’outils avancés, tels

v

vi

que la preuve et les tests automatisés, chaque idée présentée dans l’approche SOOR
s’adapte conceptuellement à tout langage de programmation orienté objet typé sta-
tiquement, possédant un mécanisme de généricité et un support élémentaire pour les
contrats.

Abstract

The constantly changing customers’ and users’ needs require fast response from soft-
ware teams. This creates strong demand for seamlessness of the software processes.
Continuous integration, delivery and deployment, also known as DevOps, made a huge
progress in making software processes responsive to change. This progress had little
effect on software requirements, however. Specifying requirements still relies on the
natural language, which has an enormous expressive power, but inhibits requirements’
traceability, verifiability, reusability and understandability. Promoting the problematic
qualities without inhibiting the expressiveness too much introduces a challenge.

Bertrand Meyer, in his multirequirements method, accepts the challenge and pro-
poses to express individual requirements on three layers: declarative subset of an
object-oriented programming language, natural language and a graphical notation. This
approach has motivated and inspired the work on the present thesis. While multire-
quirements focus on traceability and understandability, the Seamless Object-Oriented
Requirements approach presented in the dissertation takes care of verifiability, reusabil-
ity and understandability.

The dissertation explores the Martin Glinz’ hypothesis that software requirements
should be objects to support seamlessness. The exploration confirms the hypothesis
and results in a collection of tool-supported methods for specifying, validating, verify-
ing and reusing object-oriented requirements. The most significant reusable technical
contribution of the dissertation is a ready-to-use Eiffel library of template classes that
capture recurring software requirement patterns. Concrete seamless object-oriented re-
quirements inherit from these templates and become clients of the specified software.
Object-oriented software construction becomes the method for requirements specifi-
cation, validation and reuse; Design by Contract becomes the method for verifying
correctness of implementations against the requirements.

The dissertation reflects on several experiments and shows that the new approach
promotes requirements’ verifiability, reusability and understandability while keeping
expressiveness at an acceptable level. The experiments rely on several examples, some
of which are used as benchmarks in the requirements literature. Each experiment il-
lustrates a problem through an example, proposes a general solution, and shows how
the solution fixes the problem. While the experimentation relies on Eiffel and its ad-
vanced tool support, such as automated proving and testing, each idea underpinning
the approach scales conceptually to any statically typed object-oriented programming
language with genericity and elementary support for contracts.

vii

viii

Contents

Acknowledgement iii

Introduction 1

I The Problem 7

1 State of the Art 9
1.1 Inclusion criteria . 9
1.2 Exclusion criteria . 9
1.3 Design by Contract . 10
1.4 Multirequirements . 11
1.5 Parameterized unit tests . 13
1.6 Theory-based testing . 14
1.7 Abstract testing . 14
1.8 Reflections . 15

2 Important Qualities of Requirements 17
2.1 Expressiveness . 17
2.2 Verifiability . 18
2.3 Reusability . 19
2.4 Understandability . 20

II The Unified Solution 23

3 Essentials 25
3.1 The choice of notation and technology 26
3.2 Specification drivers . 26
3.3 Artifacts . 27
3.4 Activities . 28

3.4.1 Developing a SOORT . 28
3.4.2 Specifying a SOOR . 28
3.4.3 Having a formal picnic . 29
3.4.4 Verifying through testing . 29

ix

x CONTENTS

3.4.5 Verifying through program proving 30

4 Technical Contribution 31
4.1 SOORTs for control software . 32
4.2 SOORTs for software components 33

5 Internals of Seamless Object-Oriented Requirement Templates 37
5.1 Requirement templates for control software 37
5.2 ADT templates for software components 40

6 Navigating the Solution 43

7 Unifying Requirements and Code: an Example 45
7.1 Introduction . 45
7.2 The drawbacks of too much separation of concerns 46
7.3 A seamless approach . 47

7.3.1 Unifying processes . 47
7.3.2 The hypothesis . 47
7.3.3 How to test the hypothesis 48

7.4 Theoretical and technical background 48
7.4.1 Design By Contract . 48
7.4.2 Model-based contracts . 49
7.4.3 AutoProof . 49

7.5 Unifying the two worlds: an example 49
7.5.1 Example overview . 49
7.5.2 The designation set . 50
7.5.3 Shared phenomena . 52
7.5.4 Specifying the system . 52
7.5.5 Specifying the “unspecifiable” 55

7.6 Summary . 55

8 Making Contracts Complete 57
8.1 Introduction . 57
8.2 Motivating example . 58
8.3 Axioms as specification drivers . 61
8.4 Specification drivers in practice . 64

8.4.1 ADT axioms . 64
8.4.2 Equivalence . 64
8.4.3 Well-definedness . 67
8.4.4 Complete contracts . 67

8.5 Related work . 69
8.6 Proving contracts completeness . 71
8.7 Summary . 73

CONTENTS xi

9 Making Contracts Consistent 75
9.1 Introduction . 75
9.2 Why detect? . 76

9.2.1 Example . 76
9.2.2 The basic idea . 77

9.3 Class Invariants . 77
9.4 Postconditions . 78

9.4.1 Commands . 80
9.4.2 Functions . 81

9.5 Preconditions . 82
9.6 Non-exported routines . 84
9.7 Related Work . 86
9.8 Summary . 86

9.8.1 Limitations of the approach 86
9.8.2 Future work . 87

10 Seamless Requirements 89
10.1 Introduction . 89

10.1.1 Customers vs. developers 89
10.1.2 Agile vs. formal development 90
10.1.3 Construction vs. verification 91

10.2 Motivating example . 91
10.2.1 Existing code . 92
10.2.2 Natural-language requirements 93
10.2.3 Research questions . 93

10.3 Seamless requirements . 94
10.3.1 RQ1: understandability to developers 95
10.3.2 RQ2: introducing formality into agile development 96
10.3.3 RQ3: utility for development activities 96

10.4 Seamless requirements in practice 98
10.4.1 Requirements documentation 98
10.4.2 Specification validation . 98
10.4.3 Increment 0: the basic functionality 99
10.4.4 Added functionality . 101

10.5 Related work . 104
10.5.1 Dafny . 104
10.5.2 Test-driven development . 104
10.5.3 State-based notations . 105
10.5.4 Goal-oriented requirements engineering 105
10.5.5 Literate programming . 106
10.5.6 Multirequirements . 107

10.6 Summary . 108
10.6.1 Limitations of the example 108
10.6.2 Limitations of the approach 109
10.6.3 Future work . 109

xii CONTENTS

11 Specifying and Verifying Control Software 111
11.1 Overview and main results . 111
11.2 The importance of verifying requirements 113
11.3 The Landing Gear System . 114
11.4 Requirements methodology . 116

11.4.1 Specifying requirements . 116
11.4.2 Verifying requirements . 117

11.5 Structuring a control software specification 119
11.5.1 Representing control software 120
11.5.2 Translating temporal properties 120
11.5.3 Translating timing properties 121
11.5.4 Translating ASM specifications 122

11.6 The Landing Gear System in AutoReq 123
11.6.1 Normal mode of execution 124
11.6.2 Timing properties . 124
11.6.3 Baseline requirements . 126
11.6.4 Complementary requirements 128
11.6.5 An error in the ground model 129

11.7 Related work . 131
11.7.1 Similar studies . 131
11.7.2 Existing formalisms . 132
11.7.3 Timing properties . 133

11.8 Summary . 134

12 Making Seamlessness Reusable 137
12.1 Introduction . 137
12.2 The problem explained . 138

12.2.1 Reusability . 138
12.2.2 Understandability . 138
12.2.3 Verifiability . 139

12.3 Running example . 140
12.4 Reuse methodology . 141

12.4.1 Development for reuse . 141
12.4.2 Development with reuse . 141

12.5 Technical artifacts . 141
12.5.1 Library of templates . 142
12.5.2 Library of multirequirement patterns 142

12.6 Applying a template . 142
12.7 Formal picnic . 144
12.8 Verification . 144
12.9 Summary . 146

CONTENTS xiii

III Discussion 149

13 Qualitative Evaluation 151
13.1 Expressiveness . 151
13.2 Verifiability . 152
13.3 Reusability . 152
13.4 Understandability . 153
13.5 Falsification experiment . 153

14 Quantitative Evaluation 157
14.1 Expressiveness . 157
14.2 Verifiability . 158
14.3 Reusability . 159
14.4 Understandability . 160

15 Thesis Summary 161
15.1 Conclusions . 161
15.2 Limitations . 163
15.3 Future work . 163

IV Appendices 167

A Control Software SOORTs 169
A.1 Absence After . 169
A.2 Absence Before . 170
A.3 Absence Between . 170
A.4 Absence Global . 171
A.5 Absence Until . 172
A.6 Bounded Existence Between . 173
A.7 Condition . 174
A.8 Existence After . 175
A.9 Existence Before . 175
A.10 Existence Between . 176
A.11 Existence Global . 177
A.12 Existence Until . 178
A.13 Precedence After . 178
A.14 Precedence Chain Global . 179
A.15 Precedence Global . 180
A.16 Requirement . 181
A.17 Response After . 182
A.18 Response Before . 183
A.19 Response Chain Global . 184
A.20 Response Global . 185
A.21 Universality After . 186
A.22 Universality Before . 186

xiv CONTENTS

A.23 Universality Between . 187
A.24 Universality Global . 188
A.25 Universality Until . 189

B Software Components SOORTs 191
B.1 Array . 191
B.2 Bag . 194
B.3 Binary Tree . 197
B.4 Binary Tree with Inord . 201
B.5 Book Directory . 202
B.6 Bounded Queue . 204
B.7 Bounded Stack . 210
B.8 Commutative Ring . 214
B.9 Edge . 216
B.10 Environment . 217
B.11 Equality . 220
B.12 File . 221
B.13 Graph . 226
B.14 Library . 233
B.15 List . 238
B.16 Mapping . 240
B.17 Polynomial . 242
B.18 Queue . 249
B.19 Queue with Append . 254
B.20 Set . 255
B.21 Set with IsEmptySet . 258
B.22 Stack . 261
B.23 Stack with Replace . 266
B.24 String . 267
B.25 Symbol Table . 272

Bibliography 277

List of Figures

1.1 A self-referential multirequirement 12
1.2 EiffelStudio displaying hints . 16

5.1 The SOORT encoding the “global response” SRP 38
5.2 The SOORT encoding the binary tree with “in order” ADT 41

7.1 The zoo turnstile context in Eiffel 50
7.2 The zoo turnstile designation set . 50
7.3 The zoo turnstile designation set in Eiffel 51
7.4 The “OPT1” zoo turnstile optative property 53
7.5 The “IND2” zoo turnstile indicative property 53
7.6 The “OPT7” zoo turnstile optative property 54
7.7 The “OPT2” zoo turnstile optative property 54

8.1 Stack ADT specification . 59
8.2 Applying DbC to the stack ADT . 60
8.3 A correct but invalid stack implementation 62
8.4 A single-command stack axiom in Eiffel 63
8.5 A two-command stack axiom in Eiffel 63
8.6 The stack ADT specification in Eiffel 65
8.7 Instantiating two empty stacks . 65
8.8 The stack equivalence definition in Eiffel 66
8.9 Specification drivers expressing well-definedness of the stack operations 68
8.10 Abstract model of stacks as sequences 70
8.11 Specification driver for verifying with AutoProof 72

9.1 Example: an ordered triple of integers 77
9.2 An inconsistent invariant . 78
9.3 An invariant’s inconsistency theorem 78
9.4 Catching an invariant’s inconsistency 79
9.5 Failure to find inconstency in an invariant 79
9.6 A command with an inconsistent postcondition 80
9.7 A command’s postcondition’s inconsistency theorem 81
9.8 A function with an inconsistent postcondition 82

xv

xvi LIST OF FIGURES

9.9 A function’s postcondition’s inconsistency theorem 82
9.10 A command with an inconsistent precondition 83
9.11 A command’s precondition’s inconsistency theorem 83
9.12 A class with no exported features . 85
9.13 Non-exported features’ contracts’ inconsistency theorems 85

10.1 The existing clock class . 92
10.2 Natural-language clock requirements 93
10.3 A requirement in the seamless form 95
10.4 The clock seamless requirements document 97
10.5 Eiffel Verification Environment with the AutoProof pane 98
10.6 Blank clock implementation . 99
10.7 A correct postcondition of CLOCK::tick 100
10.8 A correct clock implementation . 101
10.9 The extended clock seamless requirements document 102
10.10A goal-oriented requirement . 105
10.11A goal-oriented requirement in the seamless form 105
10.12Another goal-oriented requirement in the seamless form 106
10.13A correct train and track segment specification 106

11.1 Landing set . 115
11.2 A correctly working LGS state machine 130
11.3 The erroneous LGS state machine 131

12.1 Requirement classes in EiffelStudio 143
12.2 A formal picnic output . 145
12.3 A requirement verification exception 145

List of Tables

4.1 Distribution of requirements among known SRPs 32
4.2 Mapping the ADTs to the literature sources 34
4.3 The sources’ citations and the studied ADTs 35

11.1 The map of AutoReq translation patterns 120

xvii

xviii LIST OF TABLES

Introduction

Seamless development

It affects project organization, and the
very nature of the software
profession; in line with modern trends
in other industries, it tends to remove
barriers between narrow specialties –
analysts who only deal in ethereal
concepts, designers who only worry
about structure, implementers who
only write code – and to favor the
emergence of a single category of
generalists: developers in a broad
sense of the term, people who are able
to accompany part of a project from
beginning to end.

Bertrand Meyer

Definition 0.0.1 Seamlessness is the use of a continuous process throughout the soft-
ware lifecycle [Mey97].

Bertrand Meyer, in his “Object-Oriented Software Construction” (OOSC) book
[Mey97], presented the idea of developers in a broad sense of the term – as people who
are able to accompany part of a project from beginning to end. This idea, originating
from the first edition of the OOSC book back in 1988, was prophetic: companies more
and more value individual contributors who alone can take a software feature from the
analysis through construction to maintenance. Software processes and tools should
support such contributors, collectively called developers. As opposed to the skills of
the people performing specific tasks, such as analysts, architects, programmers and
testers, developers’ skills crosscut these tasks. Software processes’ continuity stands
on the developers’ shoulders, and the present dissertation has the objective of simpli-
fying their lives at the conceptual level, as DevOps [Ebe+16] does at the level of tools
automating mundane tasks, such as building and testing. People naturally want to solve
creative tasks, everything else should be automated. DevOps tools not only automate

1

2 LIST OF TABLES

tasks within individual software development lifecycle (SDLC) phases, but also trigger
execution of a next phase when observing certain events in the previous phase.

While tools may help, several conceptual gaps remain, one of which is the nota-
tional gap. Individual SDLC phases have been historically relying on their own no-
tations, which was sensible when people were given specific tasks and mastering one
notation would be enough to handle one task. With individual contributors taking re-
sponsibility for entire features, the following problems emerge:

• The developers must learn and practice several notations.

• Dedicated traceability tools must be in place.

• The developers must have enough discipline to record traceability links.

The seamless approach [WN94], [Mey97] attempts to remove the notational gap by
applying the implementation programming language throughout the SDLC. Success of
this effort would have the following implications:

• Knowing the implementation programming language would be enough to prac-
tice the entire SDLC.

• The native code traceability features of integrated development environments
(IDEs) would also serve for tracing requirements.

• The developers would not need to record traceability links between different
kinds of artifacts – requirements, code, tests, etc.

The idea to use programming languages as requirements notations is gaining sup-
port. Many groups of stakeholders prefer descriptions of operational activity paths over
declarative requirements specifications [SFO03]. A demand exists for educating devel-
opers capable of both abstracting in a problem space and automating the transition to
a solution space [WHR14]. The decision to express requirements in programming lan-
guages may also be the only way to bring the developers closer to the requirements
they implement: industry practitioners are generally not keen to switching their tools
[Dal+18].

The real situation does not meet these needs, however. The state-of-the-practice
[PQF17] and the literature [IPP18] studies show no evidence that existing requirements
approaches consider connecting the problem and the solution spaces. The studied ap-
proaches focus on reusing natural language, use cases, domain models and several
other artifacts disjoint from the solution space.

The thesis
The object-oriented paradigm builds on the idea of supporting developers at the level of
language and environment [Mey97]. This aspiration does not meet the reality, however.
Developers specify requirements in natural language or modeling notations, implement
them in programming languages, verify correctness of the solutions using tests and
sometimes “reuse” the requirements through copying and pasting. Modern IDEs pay a

LIST OF TABLES 3

lot of attention to implementation and testing, sometimes to modeling. Requirements
are left out to specialized tools working with their own notations and semantics. The
Seamless Object-Oriented Requirements approach attempts to make requirements full
citizens of the IDEs.

Martin Glinz, in his “Should Requirements Be Objects?” position paper [Gli],
discusses arguments in favor and against treating requirements as objects. The “in
favor” section concludes with the following remark:

“Furthermore, if we employ state-of-the-art object-oriented design and
implementation techniques, an object-oriented requirements specification
would allow a seamless application of object-oriented software engineer-
ing methods through the complete development cycle, from inception to
deployment. We would get a smooth transition from requirements into ar-
chitecture and design and could apply round-trip engineering methods and
tools. So why longer hesitate? Just let requirements become objects.”

The “against” section then downplays that inspirational argument. It opens with several
examples of requirements that are “clearly not objects”:

“The promises of abstraction and comprehensibility sound good, but –
treating requirements as objects is like making a problem fit a solution,
instead of doing it vice-versa. What is a requirement? A requirement may
be a goal, for example “The new CRM system shall reduce the number
of customer complaints by at least 50%.” Is this an object? What does it
encapsulate? Has it a state or behavior? Not really. So let’s try another
kind of requirement. A requirement may be a function, for example “The
system shall compute the maximum speed that the train can run with on
the current track segment.” Is a function an object? Definitely not. So let’s
again try another kind of requirement. A requirement can be a constraint,
for example “In normal operating mode, the lift shall never move when the
doors are not closed completely.” But again, a constraint is no object.”

The analysis of these examples, leading to the negative conclusion, looks superficial.
Yes, all these requirements are objects – textual objects at a minimum. Natural lan-
guage text constitutes one dimension of requirements. The developers will eventually
write executable tests to verify correctness of candidate solutions against these require-
ments. These tests will form another dimension of the same requirements. Other di-
mensions, such as graphical, or audio representations may exist. Requirements fre-
quently follow, as empirical evidence suggests, several patterns (SRPs – software re-
quirement patterns) along some of these dimensions [DAC99], [KC02], [KC05]; these
SRPs should be reusable. Here comes the main thesis of my dissertation:

Requirements, with their recurring structure and multidimensional nature,
constitute natural input for the object-oriented analysis.

The answer to the Martin Glinz’ “Should Requirements Be Objects?” question is a
clear “yes”. Here are the sub-theses that refine the main one:

1. Requirements are objects instantiated from requirement classes.

4 LIST OF TABLES

2. Construction of requirement classes follows the object-oriented
principles [Mey97].

3. The requirements’ dimensions are implemented through the requirement classes’
features.

The requirement classes map to recurring requirement patterns, some of which reccur
especially often [DAC99], [KC05]. Such patterns should be reusable, and object ori-
entation provides the reusability mechanisms that have already found their place in the
developers’ daily practices. The requirements’ dimensions – textual, graphical, verifi-
able etc. – constitute their meaning [Mey13]. Different software engineering activities
favor different dimensions; it is natural, therefore, for a single requirement to exist in
different notations serving different purposes. It seems natural to represent require-
ments as classes with the features supporting the multidimensional analysis. Bertrand
Meyer stated the initial principles behind object-oriented requirements in the “Thesis
B” section of his “Multirequirements” article [Mey13]. The present dissertation devel-
ops these principles to cover more practical problems and situations. Part I discusses
these problems and situations in detail.

Summary of contribution
The thesis presents Seamless Object-Oriented Requirements – a practial requirements
methodology optimized for the purposes of seamless development. It reuses the ex-
isting features of the modern IDEs for specifying, validating, verifying, reusing and
tracing requirements. The IDEs become the single working environment for develop-
ers who take full responsibility for complete software features. The methodology relies
on the following key notions:

• Seamless object-oriented requirement (SOOR).

• Seamless object-oriented requirement template (SOORT).

Section 3.3 precisely defines and interconnects these notions, and Section 3.4 presents
activities in which these notions serve as the main artifacts. The rest of the dissertation
uses the “SOOR” abbreviation to refer either to the approach, or to an individual re-
quirement specified according to the approach; the actual meaning will be clear from
the context.

The dissertation presents a unified seamless approach that features a wide range of
technical capabilities for specifying, validating, implementing and verifying require-
ments. The following list summarizes these capabilities:

1. Handling realistic systems with hard to formalize requirements [NMR15].

2. Specifying arbitrary abstract data types (ADTs) [NM16]

3. Statically checking contracts’ well-definedness, correctness and completeness
[NM16].

4. Static proof-oriented detection of inconsistent contracts [Nau18].

LIST OF TABLES 5

5. Incrementally-iterative proof-oriented software process reusing the underlying
IDE for handling requirements [NM17].

6. Specifying and verifying control software temporal properties and timing con-
straints [Nau+19].

7. Capturing software requirement patterns (SRPs) as object-oriented templates for
faster specification, validation and verification of new requirements [Nau19a]. A
ready-to-use library of templates capturing known SRPs [Nau19b] supports this
capability.

How to read the dissertation
Part I describes the problem in more detail. Part II presents the solution. Chapters 3
- 5 present the key ideas. Chapters 7 - 12 provide the technical details behind these
ideas and conduct several experiments to showcase these ideas in practice. Chapter 6
provides the connection between key ideas and the details behind them. Part III reflects
on the results, drawing conclusions and paving the road towards future work.

I recommend the following ways of reading the present manuscript:

1. Read it completely, skipping chapters 7 - 12, to overview the most important
ideas and develop intuition behind them. This way of reading will require staying
focused: the material is dense and contains only the essentials of the thesis.

2. Sequentially read chapters 7 - 12. This will increase the amount of reading but
lower its density: the chapters incrementally develop the essential ideas, building
each on top of the previous ones in a bottom-up fashion.

3. Read the dissertation completely. Chapter 6 connects chapters 7 - 12 with the
essentials overview. This way of reading will give the full picture and require
the biggest amount of time.

6 LIST OF TABLES

Part I

The Problem

7

Chapter 1

State of the Art

The present chapter discusses existing approaches leading to seamlessness (Defini-
tion 0.0.1) in some sense. These approaches may not explicitly focus on requirements
or seamlessness, rather focusing on some other aspects, such as testing; seamlessness
may come as a side effect. Section 1.1 characterizes approaches that are clearly relevant
to the discussion, while Section 1.2 characterizes clearly irrelevant approaches.

1.1 Inclusion criteria

We only discuss approaches that lead to seamlessness at the software development life
cycle (SDLC) level, in all directions: if a change happens in one SDLC phase, its con-
sequences are observable in the other phases. Such approaches lead to the possibility
of using the same set of notations and tools throughout the entire SDLC. Two notations
are clearly unavoidable: the implementation programming language and the natural
language.

1.2 Exclusion criteria

Some approaches, such as seamless model-based requirements engineering [Teu17],
develop seamlessness within the analysis phase alone, with little concern for bridg-
ing the gap between requirements and other SDLC phases. The present dissertation
has a clear objective: simplifying lives of individual generalists – software developers.
Multiplying the notations disjoint from the implementation programming language and
focusing on individual SDLC phases do not contribute to this objective.

Model-verify-generate approach assume modeling the system formally, verifying
correctness of the model and then generating source code from the model. The well-
known Event-B [Abr10] and LTSA [MK06] methods fall into this approach.

The present dissertation excludes the model-verify-generate approach from the dis-
cussion for the following reasons:

9

10 CHAPTER 1. STATE OF THE ART

• Entering the solution space too early. The model-verify-generate approaches
require a model of the future system already at the requirements specification
stage. Requirements are not self-contained in these approaches: they become as-
sertions (invariants, guards, trigger conditions, etc.) in the context of the chosen
model. While design decisions must ensure satisfaction of the requirements, with
the model-based approaches formulation of requirements themselves depends on
pre-taken design decisions.

• Seamlessness in one direction. All changes start with changing the model, from
which the source code is then re-generated. There is no way to modify the gen-
erated code and see if the modification violates the model. This is a critical
problem: in practice it is always necessary to optimize the source code to meet
non-functional requirements, such as performance and security, and the model-
verify-generate approach does not provide mechanisms for expressing such re-
quirements. While some of these approaches perform the model-to-code trans-
lation automatically, the need to modify the code will raise the demand for an
additional effort of keeping the model consistent with the source code.

• Difficulty to master. The model-verify-generate approaches rely on mathemati-
cal
formalisms that require specialized education. Forcing an existing, sometimes
jelled, development team to learn these formalisms may ruin the project. These
may not be a problem for companies developing mission-critical software, but
we cater to generalists.

• Capturing the requirements as assertions in the modeling formalism. This may
be realistic if both the customer and the contractor understand the modeling no-
tation well enough to agree on the resulting document. Early requirements take
the natural language form, and the model-verify-generate approach leaves the
problem of connecting these early requirements with models open.

The model-verify-generate approach generally targets mission- and life-critical sys-
tems. This focus allows its practitioners to rely on additional strong assumptions about
the process’ high maturity level, the input requirements’ high quality, the developers’
awareness of formal methods and the project’s generous schedule and budget. These
assumptions rarely hold for the mass market software development.

1.3 Design by Contract
The first attempt to achieve full seamlessness and bring requirements to the developers’
fingertips belongs to Design by Contract (DbC) [Mey92]. The method equips classes
and their features with two-state assertions visible to their clients. DbC benefits seam-
lessness at the following levels:

Specification: contracts, when written during the analysis phase, prescribe the desired
software behavior.

1.4. MULTIREQUIREMENTS 11

Construction: developers may rely on the IDE’s intelligent facilities displaying the
components’ contracts; this greatly simplifies choosing the most appropriate
components.

Verification: DbC enables both static and dynamic verification. Running an applica-
tion equipped with contracts makes the runtime environment check these con-
tracts; a contract violation forces the developer to debug both the contract and
the code implementing it. Program proving, on the other hand, makes it possible
to statically verify the absence of runtime violations before the first run of the
program [Tsc+15].

Documentation: together with natural language comments, contracts may serve as
comprehensive documentation for ready-to-use components.

With all its benefits, DbC in its pure form lacks specifications’ incrementality. An
individual requirement may crosscut more than two states and several concepts from
the problem space. In this case, the contract assertions reflecting the requirement will
be spread across several classes and features, which may inhibit the process’ continu-
ity. Individual requirements often take the form of standalone prescriptive statements
[Lam09], and establishing traceability links between a single statement and several
contract assertions will require specialized tools. Requirements that promote the pro-
cess’ continuity, or seamlessness-oriented requirements, should be standalone entities
to eliminate the issue.

1.4 Multirequirements
The multirequirements method [Mey13] makes specifications incremental. The fol-
lowing principles define the method:

1. Develop individual requirements incrementally on several layers, including the
following three: formal, graphical, natural language.

2. Use these layers both in a complementary way (when one of them is more ap-
propriate to the description of a system property) and redundantly (for example
to combine the precision of formal descriptions with the convincing power of
graphical descriptions).

3. Model systems through object-oriented techniques: classes as the basic unit of
decomposition, inheritance to capture abstraction variants, contracts to capture
semantics.

4. Use an object-oriented language (e.g. Eiffel) to write the formal layer according
to the principles of 3).

5. Use the contract sublanguage of the programming language as the notation for
the formal layer.

6. As the goal is to describe models, not implementations, ignore the imperative
parts of the programming language (such as assignment).

12 CHAPTER 1. STATE OF THE ART

Figure 1.1: Multirequirement describing relationships between requirements and
projects (taken from the original work [Mey13]). The three representation layers
present the same meaning in different notations: natural language, Eiffel and BON. The
natural language representation contains traceability links framed with the ‘/’ symbol.

7. Use an appropriate graphical notation (BON [WN94]) for the graphical layer.

8. Weave the layers to produce requirements descriptions, including a comprehen-
sive requirements document if requested, but also any other appropriate views.

9. Enforce and assess traceability between the layers and all products of the re-
quirements process, and between requirements and other product artifacts, both
down and up.

10. Rely on appropriate tools to support the process, including incremental develop-
ment.

These principles expressly pursue seamlessness at the level of requirements to
object-oriented software [Mey97] designed around the DbC principles.

Multirequirements interweave natural language prose with pieces of contracted
code and BON [WN94] diagrams (Figure 1.1). The prose encloses names of important
concepts in slash symbols to enable traceability across the three layers.

1.5. PARAMETERIZED UNIT TESTS 13

1.5 Parameterized unit tests
Parameterized unit tests (PUTs) may lead to seamlessness in the world of programming
languages without native support for contracts. Their invention was motivated by the
poor reuse of closed unit tests: several unit tests may check software correctness against
the same abstract data type (ADT) axiom on different test inputs. In this case, these
unit tests would duplicate the axiom’s structure. Tillmann and Schulte [TS05] proposed
to replace closed unit tests with parameterized methods, where the parameters would
serve as universally quantified variables of the respective ADT axioms. For example,
instead of writing closed unit test (in C#):

[TestMethod]

void TestAdd() {

ArrayList a = new ArrayList(0);

object o = new object();

a.Add(o);

Assert.IsTrue(a[0] == o);

}

they proposed to define a parameterized test axiom:

[TestAxiom]

void TestAdd(ArrayList a, object o) {

Assume.IsTrue(a!=null);

int i = a.Count;

a.Add(o);

Assert.IsTrue(a[i] == o);

}

and then rewrite the original unit test as:

[TestMethod]

void TestAddWithOverflow() {

TestAdd(new ArrayList(0), new object());

}

Adding another test checking the same axiom becomes straightforward:

[TestMethod]

void TestAddWithNoOverflow() {

TestAdd(new ArrayList(1), new object());

}

PUTs promote separation of concerns by splitting ADT axioms and test inputs,
where the inputs may be automatically generated from the axioms [TH08]. The ap-
proach promotes seamlessness, though the original purpose was to increase the level of
reuse: requirements, in the form of ADT axioms, become expressed in the implemen-
tation programming language.

PUTs’ contributions are (taken from the original work [TS05]):

14 CHAPTER 1. STATE OF THE ART

• They allow unit tests to play a greater role as specifications of program behavior.
In fact, PUTs are axiomatic specifications.

• They enable automatic case analysis, which avoids writing implementation-
specific unit tests.

• Their generated test cases often result in complete path coverage of the imple-
mentation, which amounts to a formal proof of the PUTs’ assertions.

PUTs found their place in open source projects [Lam+15] and in a software process that
replaces test-driven development (TDD) [Fra+03] with parameterized TDD (PTDD)
[DTS10].

1.6 Theory-based testing
Theory-based testing [SBE08] leads to seamlessness in the same way as the PUT-based
testing does. Theories are partial specifications of program behavior [SBE08]. Their
syntax shares a lot with the PUTs’ syntax: both represent unit tests parameterized over
universally quantified paramenters:

@Theory defnOfSquareRoot(double n) {

// Assumptions

assumeTrue(n >= 0);

double result = sqrRoot(n) * sqrRoot(n);

// Assertions

assertEquals(n, result, /* precision: */ 0.01);

assertTrue(result >= 0);

}

JUnit, a unit testing framework for Java programs, contains an implementation of
theories in version 4.4 and later.

Theory-based testing and PUT-based testing differ in how they handle the respec-
tive artifacts – theories and PUTs. Where Tillman and Schulte generate provably min-
imal test suites based on complete specifications, Saff et al. [SBE08] accept heuristics
that generate data points designed to exercise as many code paths as possible in a short
time. Theory-based testing relaxes the requirement for the specifications to be com-
plete. From the seamlessness viewpoint, the two approaches are equal. Both encode
ADT axioms in the implementation programming language and have interchangeable
formats. Choosing one of them amounts to comparing the respective tools for generat-
ing test inputs.

1.7 Abstract testing
Abstract testing [Mer+15] expressly attempts to bridge the gap between requirements
and test cases, while PUT- and theory-based testing were targeting reuse of unit tests

1.8. REFLECTIONS 15

and high coverage of code with tests. Syntactically, abstract tests rely on the same idea
that PUTs and theories build upon: specifying behaviors through contracted routines,
possibly parameterized. The approach treats these routines, however, not as abstrac-
tions of closed unit tests, but as formalizations of requirements. In this regard, Merz
et al. [Mer+15] detach the approach from testing and discuss it in the broader context
of verifiable requirements. Abstract testing focuses on control software, for which it
is necessary to non-deterministically initialize environment variables. The approach
achieves this initialization through auxiliary routine
nondeterministically_initialize_environment. Implementing this routine becomes a task
of the test engineer.

The following example presents the common structure of abstract tests:

abstract_test() {
nondeterministically_initialize_environment();
assume(precondition(x1));
.. .
assume(precondition(xn));
y = f(x1,.. .,xn);
assert(postcondition(x1,.. .,xn,y));

}

The first instruction non-deterministically initializes the environment; the assume state-
ments make assumptions about the environment; the assert statement requires the post-
condition to hold under the stated assumptions. Abstract testing contributes to seam-
lessness by explicitly proposing PUT-like constructs as a requirements notation.

1.8 Reflections
The authors of the PUT-like approaches (PUTs, theory-based testing and abstract test-
ing) sometimes perceive DbC as a competing approach [Lam+15], which prevents the
two views from benefitting each other.

Contracts are irreplaceable in how they document software components. Figure 1.2
depicts EiffelStudio during the programming process. More concretely, it depicts a
situation in which the programmer has just entered a dot symbol after a variable and
is looking for a feature to call. EiffelStudio offers the list of features callable on the
variable. Going through the list causes the selected feature’s documentation to appear
in the rightmost pop-up window. It contains the natural language description of the
feature along with its semantics in the form pre- and postconditions. The ability to see
the callable features’ meanings may significantly speed-up the programming process.

PUTs, on the other hand, offer incrementality: two PUTs may specify different
components but reside in the same class, which will simplify searching and modify-
ing them. DbC, on the contrary, assumes that the specified components contain their
own specifications in the form of contracts. This approach, also known as “Single-
Product Principle” [Mey97], ensures the great documenting capability of contracts. As
a side effect, it results in specifications spread across the specified components, which
complicates their management.

The present dissertation shows that contracts and the PUT-like specification ap-
proaches are, in fact, fundamentally connected and may benefit each other when prac-

16 CHAPTER 1. STATE OF THE ART

Figure 1.2: EiffelStudio displaying hints, including contracts and natural language
comments.

ticed together, thanks to program proving. To illustrate the concepts, the dissertation
uses AutoProof [Tsc+15] – the prover of Eiffel programs.

Chapter 2

Important Qualities of
Requirements

The present chapter describes important qualities of a practical requirements approach
and briefly evaluates the state-of-the-art approaches against the stated qualities; we
evaluate the SOOR approach in Chapter 13 and Chapter 14.

We map the stated qualities to the recommendations of the ISO/IEC/IEEE 29148
“Requirements engineering” standard [ISO11], sections “5.2.5 Characteristics of indi-
vidual requirements” and “5.2.6 Characteristics of a set of requirements”. The docu-
ment recommends, among other characteristics, to keep requirements singular – a re-
quirement statement should include only one requirement with no use of conjunctions.
The standard does not explain, however, why this characteristic is important. Neither
does it define the very notion of conjunction, widely known as a Boolean operator, in
the context of requirements. If defined, conjunction would most probably apply to a
pair of requirements expressed in the same notation. The dissertation focuses exactly
on what this hypothetical notation should look like, and defining operations on top of
it seems to be a concern for the future work. Given these arguments, we decided to
exclude the singularity characteristic from the discussion.

Most of the standardized characteristics support what we discuss as understandabil-
ity (Section 2.4). Expressiveness (Section 2.1) characterizes requirements approaches
rather than requirements themselves, which is why the standard does not discuss it.
We find this quality important, however, because we are exploring applicability of pro-
gramming languages as requirements notations; while natural languages have enor-
mous expressive power, programming languages’ expressiveness needs to be explored.

2.1 Expressiveness
Definition 2.1.1 Expressiveness is the suitability of an approach for capturing re-
quirements of different forms.

Software takes the following forms:

17

18 CHAPTER 2. IMPORTANT QUALITIES OF REQUIREMENTS

• Control software works in an infinite loop and continuously reacts to events in
the environment.

• Software components process input data in finite time and produce some output
data.

Software components serve as building blocks for control software and other soft-
ware components. They take the form of command-line utilities, program modules and
any other form that meets the definition of a software component. Requirements to soft-
ware components take the form of abstract data type (ADT) specifications [GHM76].
Arrays, stacks, strings are a few examples of software components; they come inside
standard libraries of programming languages.

Specification of control software, on the other hand, relies on temporal properties
[DAC99] and timing constraints [KC05] – requirements that the theory of ADTs does
not cover.

A practical approach thus should be suitable for expressing at least:

• ADT axioms,

• Temporal properties,

• Timing constraints.

The state-of-the-art approaches fail to meet this expressiveness standard. Multirequire-
ments fundamentally rely on contracts, and contracts cannot capture multicommand
ADT axioms; they also cannot capture temporal properties nor timing constraints.
PUTs, theories and abstract tests can capture multicommand requirements, but not tem-
poral properties and timing constraints.

The SOOR approach combines the expressive power of contracts and PUT-like
specifications for capturing all the three kinds of requirements.

2.2 Verifiability
Definition 2.2.1 A requirement is verifiable if it has the means to prove that the system
satisfies the specified requirement. [ISO11]

The standard [ISO11] does not specify how these “means to prove” should tech-
nically look like. In this section we come up with several desired properties that such
means should have.

• Verifiability should be modular. The state-of-the-art approaches have problems
with verifiability. In multirequirements, the requirements in the form of contracts
become an integral part of the solution, which makes it conceptually impossible
to fully separate the problem from the solution. Contracts represent a powerful
verification mechanism suitable both for testing [Mey+09] and program prov-
ing [Tsc+15]. Their nature, however, assumes instrumentation of the verified
code, which may not be possible for already implemented components. Even if
a component is available for modification, the instrumentation may alter it. A

2.3. REUSABILITY 19

modular specification and verification mechanism should be in place that would
not require modifying the verified components.

• Verifiability should be twofold – both static and dynamic. The PUT-like ap-
proaches are free of the modularity problem: they do not require instrumenting
the verified solution. They are perceived, however, as purely testing approaches,
which is not the case for Design by Contract – it is equipped with tools for both
static [Tsc+15] and dynamic [Mey+09] verification. Seamlessness-oriented re-
quirements should have this duality and at the same time support verification
modularity.

• Verifiability should be reusable, in the sense of reusing requirements’ verifi-
able semantics. Requirements for finite-state verification mostly follow several
software requirement patterns (SRPs) [DAC99], [KC05], yet the secondary stud-
ies of requirements reuse approaches do not evaluate the approaches’ suitability
for producing not just reusable but also verifiable requirements. This concern
applies to both state-of-the-practice [PQF17] and state-of-the-literature [IPP18]
secondary studies.

2.3 Reusability
Definition 2.3.1 Reusability is the suitability of recurring requirements’ structures to
be reused across projects for simplifying specification, comprehension and verification
of the new requirements.

The ISO/IEC/IEEE 29148 “Requirements engineering” standard [ISO11] mentions
requirements reusability only in the context of product lines and sends the reader to
the corresponding standard, ISO/IEC 26551 “Tools and methods of requirements en-
gineering and management for product lines”. We think, however, that requirements
reuse should not be limited to product lines. Empirial studies [DAC99], [KC05] un-
covered recurring patterns in requirements not intended for development of product
lines. In our opinion, requirements reuse is at least as important as software reuse. It
might help not only save resources in the analysis phase, but also obtain requirements
specifications of better quality both in content and syntax. It might also decrease the
risk of writing low quality requirements and lead to the reuse of design, code, and test
artifacts.

Reusability has become a success story in the reuse of code [Zai+15] and tests
[TS05], but not requirements. Despite the existence of many requirements reuse ap-
proaches [IPP18] the actual level of requirements reuse is low [PQF17]. Textual copy
and subsequent modification of requirements from previous projects are still the most
commonly used requirements reuse techniques [PQF17], which has already been long
recognized as deficient in the world of software reuse.

Control software requirements follow several SRPs. Dwyer et al. analyzed 555
specifications for finite-state verification from different domains and successfully
matched 511 of them to 23 known SRPs [DAC99]. The SRPs were encoded in mod-
eling notations with no guidance on how to reuse them across projects for verifying

20 CHAPTER 2. IMPORTANT QUALITIES OF REQUIREMENTS

software solutions and put to an online catalogue. In 2005, Konrad and Cheng [KC05]
emphasized the importance of real-time requirements and created a catalogue of real-
time verification-oriented SRPs, inspired by the catalogue of Dwyer et al. The new
SRPs have the same qualitative semantics as the original ones but add the real-time
quantitative semantics in terms of three commonly used real-time temporal logics. How
to make these SRPs seamlessly reusable across projects?

The most critical factors inhibiting the industrial adoption of requirements reuse
through SRP catalogues are [PQF17]:

• The lack of a well-defined reuse method,

• The lack of quality and incompleteness of requirements to reuse,

• The lack of convenient tools and access facilities with suitable requirements clas-
sification.

Scientific literature studying requirements reuse approaches pays little attention to
these factors when measuring the studied approaches [IPP18]. The degree of reuse
is the most frequently measured variable, but it is measured under the assumption that
the evaluated approach is fully practiced. This assumption does not meet the reality:
most of the practitioners who declare to practice requirements reuse approaches, apply
them very selectively [PQF17]. Secondary studies, which study other studies, equally
ignore the factors that matter to practitioners [IPP18].

Neither multirequirements, nor the PUT-like specification mechanisms consider
the reusability concern extensively. PUTs achieve some reuse at the level of tests:
they capture ADT axioms often repeated in closed test methods, and testing reduces
to replacing the PUTs’ parameters with actual values. PUTs do not abstract away
the typing information, so they are not reusable across differently typed components.
Contracts, on which multirequirements rely, offer reusability across test methods by
design [Mey+09]: preconditions check relevance of the test input, and postconditions
check correctness of the tested software. From the typing perspective, contracts offer
reusability within the same inheritance tree: descendants inherit contracts from their
ancestors. The semantics of such inheritance depends on whether it is a precondition, a
postcondition, or a class invariant. DbC does not provide, however, explicit mechanism
to reuse recurring contracts across components not connected through the inheritance
relation.

2.4 Understandability
Definition 2.4.1 Understandable requirements have the same meaning to all stake-
holders and can immediately serve as input to their activities.

Seamlessness would allow individual stakeholders to quickly see how a change
on someone else’s side affects their work. Requirements should serve as the main
communication vehicle in responding to change. This places high demands on their
understandability. Early requirements typically come in the natural language form,
suffering from many understandability problems raised by Bertrand Meyer back in

2.4. UNDERSTANDABILITY 21

1985 [Mey85]. These problems happened to map very well to the standardized recom-
mended characteristics of requirements and their compositions [ISO11]:

• Noise – the presence in the text of an element that does not carry information
relevant to any feature of the problem [Mey85]. Variants: redundancy; remorse.
Removing noise results in necessary [ISO11] requirements.

• Silence – the existence of a feature of the problem that is not covered by any
element of the text [Mey85]. Removing silence results in complete [ISO11]
specifications.

• Overspecification – the presence in the text of an element that corresponds not
to a feature of the problem but to features of a possible solution [Mey85]. Re-
moving overspecification results in bounded [ISO11] specifications consisting of
implementation free [ISO11] requirements.

• Contradiction – the presence in the text of two or more elements that define a
feature of the system in an incompatible way [Mey85]. Removing contradiction
results in consistent [ISO11] specifications.

• Ambiguity – the presence in the text of an element that makes it possible to inter-
pret a feature of the problem in at least two different ways [Mey85]. Removing
ambiguity results in unambiguous [ISO11] specifications.

• Forward reference – the presence in the text of an element that uses features of
the problem not defined until later in the text [Mey85]. Forward referencing is
a special case of non-traceable requirements. Removing forward referencing re-
sults in upwards traceable requirements. Adding downwards traceability results
in fully traceable [ISO11] requirements.

• Wishful thinking – the presence in the text of an element that defines a feature of
the problem in such a way that a candidate solution cannot realistically be vali-
dated with respect to this feature [Mey85]. Removing wishful thinking results in
affordable [ISO11] specifications consisting of feasible [ISO11] requirements.

The characteristics recommended by the standard promote requirements’ understand-
ability. The state-of-the-art approaches lack evaluation against these characteristics.

The PUT-like mechanisms are:

• Implementation free: they have the form of external test methods that call ex-
ported implementations’ features.

• Unambiguous: they have unique meaning as programming language constructs.

• Downwards traceable: the calls to the specified features become the traceability
vehicle.

The PUT-like approaches lack explicitly defined mechanisms that would guarantee the
remaining characteristics.

Multirequirements are specified at several representation layers; one of the layers
consists of piecemeal contracts. This makes multirequirements:

22 CHAPTER 2. IMPORTANT QUALITIES OF REQUIREMENTS

• Unambiguous: contracts have a precise mathematical semantics.

• Downwards traceable: the multirequirements’ piecemeal contracts are part of the
implementation.

• Upwards traceable: multirequirements collocate contracts’ pieces with represen-
tations of the same requirements at the other layers.

Multirequirements promote completeness, consistency, unambiguity and feasibility:
the several representations of the same requirement may force the reader to think deeper
about its meaning. They inhibit implementation freedom, however: as piecemeal con-
tracts, they will become part of the future implementation.

Meyer proposed the process of passing requirements through a formal notation to
produce their more understandable natural language versions – “The Formal Picnic
Approach” [Mey18]. The state-of-the-art approaches do not include a similar-purpose
mechanism.

Our task is to reuse the existing mechanisms of PUTs, multirequirements and for-
mal picnics to promote the desired understandability characteristics and remove the
mechanisms that inhibit them.

Part II

The Unified Solution

23

Chapter 3

Essentials

The solution to the problem of finding a seamlessness-oriented requirements approach
for object-oriented software construction is the object-oriented software construction
itself [Mey97]. Requirements should be classes, in the object-oriented sense. Re-
curring requirement patterns should become abstract template classes with deferred
features that, when implemented, will turn into concrete requirements. Technically,
project-specific requirements inherit from these template classes and become clients of
the specified software components. Methodologically, object-oriented software con-
struction [Mey97] becomes the requirements specification method, and DbC [Mey92]
becomes the requirements verification method. The dissertation presents a ready-to-use
library of Eiffel classes that capture already identified SRPs for control software and
software components. The library provides a starting point for practicing the approach
that we called Seamless Object-Oriented Requirements (SOOR).

The SOOR process takes natural language requirements on input and produces
on output object-oriented requirements that are reusable and verifiable. Every object-
oriented requirement also contains a function that automatically generates paraphrased
natural language version of the input natural language requirement. The main purpose
of having the paraphrased natural language version is to validate the original input
requirement: the developer looking at the two versions will unconsciously start com-
paring them and possibly correcting the original requirement. This process is currently
known as “The Formal Picnic Approach” [Mey18] and was justified more than 30 years
ago [Mey85]. Object-oriented requirements also contain preprogrammed contracted
routines for verifying correctness of candidate solutions. They encode in the verifiable
form either ADT axioms, if the task is to implement a software component, or temporal
properties and timing constraints, if the task is to implement a control software.

The present chapter details the key artifacts of the process and the core activities
consuming and producing these artifacts.

25

26 CHAPTER 3. ESSENTIALS

3.1 The choice of notation and technology

The main task of the thesis was to explore applicability of object-oriented program-
ming languages at the analysis phase. We chose Eiffel as the representative language
to illustrate our concepts. It has human-friendly syntax, natively supports contracts
and builds around object-oriented concepts. An advanced technology stack accompa-
nies Eiffel. Contracts-based program proving and testing with AutoProof [Tsc+15] and
AutoTest [Mey+09], traceability to and from external sources with the Eiffel Informa-
tion System (EIS) allowed us work at the cutting edge of the programming technology.
AutoProof has been playing a key role in our studies. It is a program prover based
on Hoare logic [Hoa69] extended with semantic collaboration [Pol+14] – reasoning
framework that covers phenomena specific to object-oriented programming, such as
aliasing, callbacks and information hiding. Polikarpova et al. demonstrated practical
applicability of AutoProof by using it to fully verify EiffelBase2 – a specified library of
containers [PTF18]. We have been using EiffelBase2 extensively as a valuable source
of data for testing our ideas.

3.2 Specification drivers

Design by Contract [Mey92] was originally designed under the assumption that the
contracts would be checked at run time. Practitioners were perceiving code solely as an
executable artifact. AutoProof makes it possible to use program elements as statically
verifiable statements that may never be executed. This possibility has been the main
thinking vehicle driving the development of the thesis.

Specification drivers operationalize this possibility and a key hypothesis of the the-
sis: Hoare logic is the best notation for capturing software requirements formally. The
dissertation describes several innovative concepts, among which the notion of spec-
ification driver is the most fundamental. Understanding this concept is essential for
understanding the rest of the work: the other concepts build on top of specification
drivers. Syntactically, a specification driver is an object-oriented Hoare triple, or a self-
contained contracted routine. The following specification driver formally captures one
of the axioms of stack:

push_then_pop (s_1, s_2: STACK [G]; x: G)
-- pop (push (s, x)) = s

-- Popping a stack after pushing an element on it results in the original stack,

-- assuming that these operations modify only the stack itself.

require

s_1 ~ s_2

modify

s_1

do

s_1.push (x)
s_1.pop

ensure

s_1 ~ s_2

end

3.3. ARTIFACTS 27

The natural language comment captures the axiom’s mathematical representation and
informal description. The push_then_pop routine depends only on its formal parameter
and is self-contained in that sense. The routine may be submitted for static verification
to AutoProof, or run as a parameterized unit test for dynamic verification. The modify

clause captures the frame condition, critical for static verification. The require and
ensure clauses capture the routine’s pre- and postcondition, respectively.

Definition 3.2.1 A specification driver is a self-contained contracted routine that cap-
tures some behavioral property of its formal parameters through the contract.

Chapter 8 gives more intuition behind specification drivers and how to apply them
in the presence of a program prover. The subsequent chapters develop this idea further
and find for it more complex applications – way more complex than specification and
verification of stack. The specification drivers’ syntax inherits a lot from the PUT-
like approaches, which focus on the testing-based verification of ADTs and oppose
themselves to contracts. Specification drivers:

• Capture temporal properties and timing constraints in addition to ADT axioms.

• Capture contracts’ well-definedness and inconsistency axioms for checking with
AutoProof.

• Serve as PUTs in testing-based verification.

• Capture requirement’s formal semantics in a form reusable across projects.

The remaining chapters expand, detail and illustrate these benefits of specification
drivers. The dissertation concludes with the generalized object-oriented treatment of
requirements with specification drivers serving as the verification mechanism. They
became the main thinking vehicle taking us to the general notions of seamless object-
oriented requirement (SOOR) and SOOR template (SOORT).

3.3 Artifacts
Definition 3.3.1 Natural-language requirements (NLR) are requirements relying on
the natural language and serving as the initial input to the software process. Execution
of the software process derives other artifacts from the initial input.

NLRs may take the form of completely informal statements, user stories, use cases,
etc. Their specific structure has no importance in the context of the present work.

Definition 3.3.2 Seamless Object-Oriented Requirement Templates (SOORT) are
generic and deferred classes capturing SRPs. The formal generic parameters and de-
ferred features represent blank sections of the templates to fill in.

SOORTs represent the key mechanism for achieving reusability of object-oriented re-
quirements.

Definition 3.3.3 Seamless Object-Oriented Requirements (SOOR) are non-generic
concrete classes capturing NLRs and inheriting from a SOORT.

28 CHAPTER 3. ESSENTIALS

3.4 Activities

Several major activities characterize the SOOR approach. Chapter 5 provides technical
details to help developing new SOORTs. Chapter 4 presents a ready-to-use library of
SOORTs capturing already known SRPs. Chapter 6 introduces chapters detailing the
remaining activities. These chapters not only detail the respective processes, but also
give illustrative examples to develop better intuition behind the approach.

3.4.1 Developing a SOORT

Developing a SOORT requires the same skills as developing any other object-oriented
class. It assumes identification of a pattern, hardcoding its immutable part and param-
eterizing its variable part through abstraction and genericity.

1. Identify the pattern’s formal semantics.

2. Declare the SOORT class and name it to reflect the identified semantics.

3. Encode the identified semantics through specification drivers and put them inside
the SOORT class.

4. Make the specification drivers work with generic, not actual types; make the
generic types part of the enclosing SOORT’s declaration.

5. Implement the function (we call it out in the rest of the discussion remaining text)
producing the template’s string representation; use avaialable reflection facilities
to extract the generic types’ names.

3.4.2 Specifying a SOOR

Converting an NLR to a SOOR assumes identifying patterns to which the NLR belongs,
inheriting from the SOORTs capturing these patterns and implementing the SOORTs’
variable parts. The resulting class must be fully defined.

1. Identify the NLR’s formal semantics.

2. Find the SOORT encoding the identified semantics.

3. Create a concrete class inheriting from the found SOORT.

4. Replace the SOORT’s formal generic parameters with actual generic parameters.

5. Implement the SOORT’s deferred features.

6. Make sure that the newly implemented SOOR successfully compiles.

3.4. ACTIVITIES 29

3.4.3 Having a formal picnic
Having a formal picnic for an NLR includes instantiating the SOOR corresponding
to the NLR, getting the instance’s natural language representation produced by the
out function (Section 3.4.1), and comparing the result with the NLR. This comparison
should trigger rethinking and refinement of the input NLR.

1. Construct an object from the SOOR class resulting from the “Specifying a SOOR”
process.

2. Generate the object’s string representation by calling the standard out function.
The SOORT, from which the SOOR inherits, redefines the function according to
the SOORT’s semantics.

3. Compare the generated string with the input NLR.

4. If the generated string reflects the intended requirement’s meaning more accu-
rately than the input NLR, fix the NLR; go to step 3.

5. If the generated string does not reflect the intended requirement’s meaning, in-
herit the SOOR from a different SOORT that would capture the NLR’s meaning
more accurately; go to step 1.

3.4.4 Verifying through testing
Testing correctness of a candidate implementation against a SOOR consists of running
the specification drivers inside the SOOR, passing instances of the candidate imple-
mentation as formal arguments. The specification drivers serve as PUTs in this case.

1. Instantiate an object from the SOOR.

2. Call the object’s specification drivers one by one, providing all the necessary
actual arguments.

3. If a call fails with a precondition violation, fix the caller; go to step 2.

4. If a call fails with a loop variant violation, fix the implementation; go to step 2.

5. If a call fails with a postcondition violation, fix the implementation; go to step 2.

6. If a call fails with a loop invariant violation, identify the root cause of the failure.

7. Depending on the identified root cause, fix either the caller or the implementa-
tion; go to step 2.

8. If all the calls succeed, consider the tested implementation correct with respect
to the SOOR.

The AutoTest technology [Mey+09] automates steps 1 through 3. The practitioner will
only need to trace the AutoTest failures to their route causes and fix them.

30 CHAPTER 3. ESSENTIALS

3.4.5 Verifying through program proving
Proving correctness of a candidate implementation against a SOOR consists of running
AutoProof on the SOOR. In this case, AutoProof will check correctness of the SOOR’s
specification drivers against the candidate solution’s contracts. This may require writ-
ing additional annotations on the specification drivers that capture the SOOR’s formal
semantics.

1. Run AutoProof on the SOOR.

2. If AutoProof rejects the input, fix the implementation contract; go to step 1.

3. If AutoProof accepts the input, consider the implementation contract correct.

4. Implement the derived contract and check the implementation’s correctness with
AutoProof.

Chapter 4

Technical Contribution

The chapter presents two Eiffel libraries of SOORTs publicly available in [Nau19b]
and as appendices of this dissertation:

• For specifying control software requirements (Appendix A). SOORTs of this
kind capture recurring behaviors. They contain only one specification driver for
verifying concrete SOORs.

• For specifying requirements to software components (Appendix B). SOORTs of
this kind capture recurring concepts from the problem space. They contain sev-
eral specification drivers capturing the ADT axioms describing the target con-
cepts.

For a better intuition behind this separation, here are examples of typical requirements
that might be handled using the two kinds of SOORTs:

• “Turning on air conditioning always results in the specified room temperature
within one hour”.

• “A store inventory behaves as a stack”.

In the first case, the system has only one goal: achieving the necessary temperature
in the room. The system achieves this goal by adjusting two parameters: the output
air temperature and intensity of blowing out the air. Using a SOORT in this case
assumes inheriting from it and connecting the system’s main feature to the SOORT.
The SOORT encodes the “Global Response” SRP, capturing its semantics through a
single specification driver (Appendix A.20). Verification will consist in this case of
calling or proving the specification driver.

A store inventory has the following key features: adding a new item and removing
the topmost item. Applying the SOOR approach to the second requirement assumes
inheriting from and implementing the “Stack ADT” SOORT (Appendix B.22), con-
necting the inventory’s and the stack’s features. The SOORT contains several specifi-
cation drivers capturing the ADT axioms of stack. Verification will consist in this case
of calling or proving all these specification drivers.

31

32 CHAPTER 4. TECHNICAL CONTRIBUTION

Scope
Pattern Global Before After Between Until Total
Absence 41 5 12 18 9 85

Universality 110 1 5 2 1 119
Existence 12 1 4 8 1 26

Bounded Existence 0 0 0 1 0 1
Response 241 1 3 0 0 245

Precedence 25 0 1 0 0 26
Response Chain 8 0 0 0 0 8

Precedence Chain 1 0 0 0 0 1
UNKNOWN 44

Total 438 8 25 29 11 555

Table 4.1: Distribution of the requirements analyzed by Dwyer et al. [DAC99] among
known SRPs. Out of the 40 SRPs, 23 proved to be useful for covering some require-
ments. “Global Response” and “Global Universality” were the most frequently used
SRPs, covering 351 out of the 555 requirements.

The two libraries offer a starting point for practicing the SOOR approach. The
present chapter discusses their internals.

4.1 SOORTs for control software

Formal specifications of control software follow several known SRPs [DAC99], [KC05].
We have developed an object-oriented library of Eiffel classes capturing the SRPs’ ver-
ification semantics and natural language representations. The classes are generic and
abstract enough to remain reusable across systems.

In 1999, Dwyer et al. [DAC99] published an article summarizing their study of 555
verification-oriented requirements taken from different software domains (Table 4.1).
The authors report that 511 out of the 555 requirements map into 23 known SRPs. The
SRPs are available online in 5 notations: LTL, CTL, GIL, Inca, QRE.

The online library of SOORTs [Nau19b] captures in Eiffel the SRPs identified by
Dwyer et al. The templates are configurable and thus can be used both in the purely
qualitative form and with the real-time semantics added. The SOORTs include the
real-time semantics anyway to limit the verification time through loop variants. The
templates have the maximum integer [Var] as the default time boundary value. Be-
cause both the SOORTs and SOORs are classes, where SOORs implement the SOORTs
through the inheritance relation, specifying real-time semantics in SOORs becomes an
optional activity. The specifier may stay with the default time boundary provided by
the template or redefine it through the standard object-oriented redefinition techniques.
The object-oriented nature of SOORTs thus eliminates the need to maintain different
catalogues for qualitative and real-time semantics: choosing one of the two becomes a
matter of keeping or redefining the default time boundaries in the descendant SOORs.

4.2. SOORTS FOR SOFTWARE COMPONENTS 33

4.2 SOORTs for software components
We found no studies like the one conducted by Dwyer et al. that would identify SRPs in
ADT specifications of software components. After searching the available literature for
such specifications, we concluded that few idiomatic ADTs and their variations often
illustrate specification and verification approaches. Studying industrial applications of
ADTs might be an interesting and challenging task as a possible continuation of the
present analysis.

Table 4.2 maps the studied literature to the identified ADTs. Some ADTs are es-
pecially popular, and some sources study especially many ADTs. The most discussed
ADTs are Stack and Queue plus their variations (5 occurrences each), Symbol table
(2 occurrences) and Set plus its variation. The contributions by John V Guttag and
his colleagues [GHM76], [Gut76], [GHM78], [GH78] comprise most of the ADTs’
studies. Axel van Lamsweerde in his book [Lam09] discusses two examples of ADTs,
Book directory and Library, that are not basic data structures but information systems.
Do these studies and ADTs matter at all? Having empirical data from the industry
would objectively reflect the actual situation, but we have no such data yet; we present
a literature-based analysis instead. Besides looking at the number of ADTs discussed
in individual papers, we took into account the popularity of these works in terms of
citations on Google Scholar.

Table 4.3 maps the studied literature sources to the number of analyzed ADTs and
to the number of citations on Google Scholar (as of February, 2019). 2 out of the
8 sources have more than 1000 citations; 5 sources have more than 500 citations, 4
sources out of the 5 analyze 2 or more ADTs. Given the high citation level, we conclude
that the analyzed ADTs have practical value and are worth encoding them as reusable
templates. The SOORTs encoding the ADTs reside in the “software components”
directory of our GitHub repository [Nau19b] and in Appendix B of this dissertation.

34 CHAPTER 4. TECHNICAL CONTRIBUTION

[G
H

M
78]

[G
H

78]
[G

H
M

76]
[L

am
09]

[K
W

91]
[T

ho87]
[G

ut76]
[L

Z
74]

A
rray

x
x

B
ag

x
B

inary
tree

x
B

inary
tree

w
ith

inorder
x

B
ook

directory
x

B
ounded

queue
x

B
ounded

stack
x

E
nvironm

ent
x

File
x

G
raph

x
L

ibrary
x

M
apping

x
Polynom

ial
x

Q
ueue

x
x

x
x

Q
ueue

w
ith

append
x

Set
x

Setw
ith

em
ptiness

check
x

Stack
x

x
x

Stack
w

ith
replace

x
x

String
x

Sym
bol table

x
x

Table
4.2:M

apping
the

A
D

T
sto

the
literature

sourcesanalyzing
them

.A
n

‘x’sym
bolm

eansthatthe
source

from
the

topm
ostrow

analyzes
the

A
D

T
from

the
leftm

ostcolum
n.

4.2. SOORTS FOR SOFTWARE COMPONENTS 35

Source
[G

H
M

78]
[G

H
78]

[G
H

M
76]

[L
am

09]
[K

W
91]

[T
ho87]

[G
ut76]

[L
Z

74]
N

um
berofA

D
T

s
5

3
11

2
1

1
5

1
G

oogle
Scholarcitation

index
552

719
175

1175
42

5
657

1067

Table
4.3:M

apping
the

literature
sources

to
the

num
berofthe

studied
A

D
T

s
and

the
num

berofcitations
on

G
oogle

Scholar.

36 CHAPTER 4. TECHNICAL CONTRIBUTION

Chapter 5

Internals of Seamless
Object-Oriented Requirement
Templates

Construction of SOORTs follows the same algorithm (Section 3.4.1), which is why
detailing one of them should suffice for understanding the overall idea. The SOORTs’
structure follows the philosophy of capturing as much complexity as possible, to sim-
plify specification of concrete SOORs. Specifying a SOOR from a SOORT consists of
the following steps:

1. Inheriting from the SOORT.

2. Replacing the SOORT’s formal generic parameters with the specified types.

3. Connecting the SOORT’s deferred features with the specified types’ concrete
features.

From the extensibility viewpoint, the approaches to specifying SOORTs for control
software and for software components differ as follows:

• A SOORT for control software represents an SRP capturing a finalized behavior.

• A SOORT for software components is an extensible collection of related behav-
iors.

The following sections illustrate this difference on specific examples.

5.1 Requirement templates for control software
Figure 5.1 depicts the Eiffel SOORT corresponding to the most frequently recurring
SRP identified by Dwyer et al. – the “Global Response” SRP (Appendix A.20). Out

37

38 CHAPTER 5. INTERNALS OF SOORTS

1 note

2 description: "S responds to P globally"
3 EIS: "name=Multirequirement", "src= http://tinyurl.com/y44wbnbs"
4 EIS: "name=Location on GitHub", "src= http://tinyurl.com/y2crlkjc"
5
6 deferred class

7 RESPONSE_GLOBAL [G, expanded S→CONDITION [G], expanded P→CONDITION [G]]
8
9 inherit

10
11 REQUIREMENT [G]
12
13 feature

14
15 frozen verify (system: G)
16 require

17 p_holds: ({P}).default.holds (system)
18 do

19 from

20 timer := time_boundary

21 until

22 ({S}).default.holds (system)
23 loop

24 iterate (system)
25 variant

26 timer

27 end

28 end

29
30 feature

31
32 requirement_specific_output: STRING
33 do

34 Result := ({S}).name + " responds to " + ({P}).name + " globally"
35 end

36
37 end

Figure 5.1: The SOORT encoding the “Global Response” SRP from the catalogue
of Dwyer et al (Appendix A.20). Specification driver verify encodes the formal se-
mantics of the SRP. String function requirement_specific_output produces the natural
language representation of the SRP parameterized with the formal generic parameters’
names. Integer function time_boundary, inherited from REQUIREMENT, specifies the default
time boundary for finite verification.

5.1. REQUIREMENT TEMPLATES FOR CONTROL SOFTWARE 39

of the 555 requirements analyzed by Dwyer et al., 241 were instances of this SRP
[DAC99]. It takes the following form in LTL:

�(P⇒ 3S) (5.1)

where P is called “stimulus” and S is called “response”; “�” and “3” encode for
the “always” and “eventually” temporal logic [Pnu77] operators. Line 2 in Figure 5.1
captures the string representation of the SRP, where S and P vary between requirements.
Line 3 provides a named hyperlink to a OneNote page detailing the SRP in the initial
5 notations provided by Dwyer et al. [DAC99]. Line 4 provides a named hyperlink to
the location of the class on GitHub. The EIS (Eiffel Information System) mechanism
of EiffelStudio makes it possible to construct, maintain and follow named hyperlinks.
Lines 6-7 declare the class capturing the SRP. The declaration depends on three formal
generic parameters – G, S and P:

• G stands for the specified type.

• S formalizes the “S” in the string representation.

• P formalizes the “P” in the string representation.

The S and P parameters are constrained: they must be conditions over the specified
type G. Requiring these types to be expanded allows them to have default objects; the
benefits of this possibility are coming shortly.

Lines 13-28 implement the verify routine that captures the SRP’s formal semantics
as a specification driver. The routine accepts a formal argument of the specified type
and expresses the SRP’s semantics in terms of this variable. Lines 16-17 require the
stimulus to hold through the precondition, where:

• p_holds is a tag for easier debugging.

• ({P}).default returns the default object of type P.

• holds is a deferred Boolean function declared in class CONDITION, from which P

inherits.

• The ({P}).default.holds (system) assertion requires the stimulus to hold for system,
the formal parameter of verify.

Lines 19-20 initialize the timer variable declared in the parent REQUIREMENT class. Lines
21-22 capture the response S through the loop exit condition. Lines 23-24 modify the
system’s state, where:

• The iterate command is implemented in the REQUIREMENT class.

• iterate calls deferred command main of that class and decreases the timer.

• main is deferred for being implemented in concrete SOORs inheriting from the
SOORT.

40 CHAPTER 5. INTERNALS OF SOORTS

Lines 25-26 guarantee termination of the loop through the timer used as the loop vari-
ant. The verify routine, when called appropriately on a SOOR implementing the tem-
plate, becomes a test method; this maps to the “Verifying through testing” activity
(Section 3.4.4). When submitted to AutoProof, it becomes a Hoare logic theorem
capturing the requirement’s correctness axiom; this maps to the “Verifying through
program proving" activity (Section 3.4.5).

String function requirement_specific_ouput on lines 32-35 returns the SRP-dependent
natural language representation. The REQUIREMENT class implements, among other fea-
tures, string function out which, in its turn, takes the value of requirement_specific_ouput

and embeds it into the SRP-independent natural language representation. The SRP-
independent part includes the name of the requirement derived from the SOOR’s class
name, the name of the specified type and the real-time constraint.

The time_boundary function returns the default time boundary for finite state verifi-
cation. This value comes from the REQUIREMENT ancestor class and is set to
{INTEGER}.max_value, the maximum integer avaiable on the current system. Concrete
SOORs may override this default. The verification process will simulate up to that
number of executions of iterate to observe the required response. If the response is not
observed after the last iteration, the verification process will fail.

5.2 ADT templates for software components
Figure 5.2 depicts the SOORT capturing the Binary Tree ADT specification with the
in_ord function (Appendix B.4). The class consists of the following important parts:

• Line 2 in Figure 5.2 provides a general description of the template.

• Lines 3-4 provide a hyperlink to the source of the specification in the literature.

• Line 5 provides a named hyperlink to the location of the class on GitHub.

• Lines 7-8 declare type B intended to behave as a binary tree containing elements
of I; Q stands for the queue type returned by the in_ord function. To show that Q,
indeed, behaves as a queue of Is, the template’s implementers must supply type
QS conforming to the QUEUE_WITH_APPEND_ADT template applied to Q and I.

• Lines 13-15 reflect the fact that the current SOORT inherits the regular binary
tree behavior.

• Lines 17-22 declare the new function, in_ord (“in order”).

• Lines 24-50 state the ADT axioms due to the new function.

• Lines 52-61 state the well-definedness axiom for the contract of in_ord.

Unlike the SOORTs for control software (Section 5.1), ADT SOORTs have several
specification drivers for verification. In the example on Figure 5.2, the new SOORT
adds two axioms, a_11 and a_12, to the axioms inherited from the parent SOORT. Be-
cause the new ADT declares another function, in_ord, these new axioms are required

5.2. ADT TEMPLATES FOR SOFTWARE COMPONENTS 41

1 note

2 description: "Reusable abstract data type specification of binary tree with ‘‘inord’’ operation."
3 description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
4 EIS: "src= http://tinyurl.com/yxmnv23w"
5 EIS: "name=Location on GitHub", "src= https://tinyurl.com/y3peoll5"
6
7 deferred class

8 BINARY_TREE_WITH_INORD_ADT [B, I, Q, QS→QUEUE_WITH_APPEND_ADT [Q, I]]
9 -- Binary trees ‘‘B’’ contain elements of ‘‘I’’.

10 -- They rely on queues ‘‘Q’’ with elements of ‘‘I’’ conforming to the

11 -- ‘‘QUEUE_WITH_APPEND_ADT’’ specification.

12
13 inherit

14
15 BINARY_TREE_ADT [B, I]
16
17 feature

18 -- Deferred definitions.

19
20 in_ord (b_tree: B): Q
21 deferred

22 end

23
24 feature

25 -- Abstract data type axioms.

26
27 frozen a_11

28 local

29 b_tree: B
30 do

31 b_tree := empty_tree

32 check

33 in_ord (b_tree) ~ ({QS}).default.newq
34 end

35 end

36
37 frozen a_12 (b_tree_left: B; item: I; b_tree_right: B; q_left, q_right: Q)
38 require

39 in_ord (b_tree_left) ~ q_left

40 in_ord (b_tree_right) ~ q_right

41 local

42 b_tree: B
43 do

44 b_tree := make (b_tree_left, item, b_tree_right)
45 ({QS}).default.addq (q_left, item)
46 ({QS}).default.appendq (q_left, q_right)
47 check

48 in_ord (b_tree) ~ q_left

49 end

50 end

51
52 feature

53 -- Well-definedness axioms.

54
55 frozen in_ord_well_defined (b_tree_1, b_tree_2: B)
56 require

57 b_tree_1 ~ b_tree_2

58 do

59 ensure

60 in_ord (b_tree_1) ~ in_ord (b_tree_2)
61 end

62
63 end

Figure 5.2: The SOORT for the ADT specification of binary tree with function “in
order” Appendix B.4). It inherits specification drivers of the BINARY_TREE_ADT SOORT
encoding the ADT specification of binary tree without that function.

42 CHAPTER 5. INTERNALS OF SOORTS

for completeness of the resulting ADT specification. The in_ord_well_defined auxiliary
axioms requires the contract of in_ord to be well-defined. Well-definedness axioms ap-
ply only to verification with AutoProof: they make sure that the respective features’
contracts are strong enough to maintain the equivalence classes.

To specify a SOOR stating that objects of a custom type T behave as binary trees
with elements of E, convertible to queues F with elements of E:

1. Inherit from the BINARY_TREE_WITH_INORD_ADT class with T for B, E for I, F for Q.

2. For QS, provide a SOOR that specifies F as queue with elements of E.

3. Implement the SOORT’s deferred definitions in terms of the features of types T,
E and F.

To verify correctness of T against the binary tree axioms:

1. Run the specification drivers with names a_∗ on relevant test input (that is, satis-
fying the specification driver’s precondition) if you practice testing.

2. If you practice program proving, submit the resulting SOOR to AutoProof.

ADT SOORTs differ conceptually from control software SOORTs with their ex-
tensibility. If a variation of an ADT emerges, then making the new SOORT a sub-
class of the original ADT’s SOORT will automatically include its specification drivers.
SOORTs for control software have finer granularity: they represent finalized behavioral
patterns.

Chapter 6

Navigating the Solution

To maximize understanding of the SOOR approach, the dissertation presents the idea
incrementally. The multirequirements approach serves as the starting point. Every
important idea that underpins the SOOR approach builds on top of the previous one.
At the same time, each idea is practically applicable alone, regardless of the ideas
building on top of it.

Chapter 7 demonstrates practical applicability of seamlessness in the sense of mul-
tirequirements [NMR15] by applying it to a well-known example from the require-
ments literature [JZ95]. The resulting specification relies on the Mathematical Model
Library (MML) [PTF18] – a library of immutable classes used in model-based con-
tracts [SWM04].

Multirequirements rely on contracts to achieve seamlessness, but contracts suffer
from the incompleteness problem [SWM04]. Chapter 8 proposes an AutoProof-based
reasoning framework relying on the notion of specification driver to achieve contracts’
correctness and well-definedness [NM16], which maps to steps 1-6 of the “Verifying
through program proving” activity (Section 3.4.5). Chapter 9 additionally describes an
AutoProof-driven technique for catching inconsistent contracts through specification
drivers [Nau18], which maps to steps 7-9 of the “Verifying through program proving”
activity (Section 3.4.5).

Chapter 10 improves multirequirements by replacing contracts with specification
drivers that do not suffer from the problems of contracts. The two specification ap-
proaches remain fundamentally connected through AutoProof, however. The chapter
describes an example of an incremental AutoProof-driven software process relying on
seamless requirements [NM17]. Contracts remain vital part of the process, but they
move from the problem space to the solution space. Seamless requirements serve as
a driving force for specifying good contracts with the help of AutoProof. The chapter
presents a complete software process detailing the “Verifying through program prov-
ing” activity (Section 3.4.5).

As empirical results demonstrate, frequently recurring verification-oriented SRPs
often take the form of temporal properties [DAC99] and timing constraint [KC05] in
the control software domain. How good are seamless requirements for specifying such
requirements? Chapter 11 presents AutoReq – an AutoProof-driven approach that ex-

43

44 CHAPTER 6. NAVIGATING THE SOLUTION

tends the notion of seamless requirements for specifying and verifying temporal prop-
erties and timing constraints of control software [Nau+19]. AutoReq identifies and
emphasizes the fundamental connection between requirements expressiveness, verifia-
bility and reusability. In AutoReq, the three aspects reinforce each other. The chapter
provides detailed principles behind the “Specify a SOOR” (Section 3.4.2) and “Verify
through program proving” (Section 3.4.5) activities in the context of temporal proper-
ties and timing constraints.

The recurring SRPs [DAC99], [KC05] raise a question: how to make these SRPs
reusable across projects while keeping the expressiveness and verifiability introduced
by specification drivers, seamless requirements and AutoReq? Chapter 12 not only
makes seamless requirements reuse-oriented, but also adds a round trip requirements
engineering mechanism relying on formal picnics into the very notion of requirement
[Nau19a]. The chapter presents a ready-to-use library of Eiffel SOORTs encoding
the known verification-oriented SRPs [DAC99], [KC05]. The classes contain reusable
features for performing formal picnics and verifying candidate implementations. The
chapter maps to the “Specify a SOOR” (Section 3.4.2), “Have a formal picnic” (Sec-
tion 3.4.3) and “Verify through testing” (Section 3.4.4) activities. SOOR-based de-
velopment through testing conceptually builds on top of paramenterized test-driven
development (PTDD) [DTS10], adding the possibility to test temporal properties and
timing constraints – types of requirements not covered by the PUT-based approaches.

Appendix A and Appendix B provide the full collection of the SOORTs for control
software and software components, respectively.

Chapter 7

Unifying Requirements and
Code: an Example

Requirements and code, in conventional software engineering wisdom, belong to en-
tirely different worlds. Is it possible to unify these two worlds? A unified framework
could help make software easier to change and reuse. To explore the feasibility of such
an approach, the case study reported here takes a classic example from the requirements
engineering literature and describes it using a programming language framework to
express both domain and machine properties. The chapter describes the solution, dis-
cusses its benefits and limitations, and assesses its scalability.

7.1 Introduction
According to the standard view in software engineering, the tasks of requirements,
design and implementation require distinct techniques and produce different artifacts.

What if instead of focusing on the differences we recognized the fundamental unity
of the software construction process through all its stages? The principle of “seamless-
ness” (see e.g. [Mey97]) follows from this assumption that the commonalities are more
fundamental than the differences, and that it pays to use the same set of concepts, no-
tations and tools throughout the development, from the most general and user-oriented
initial steps down to the most technical tasks.

A consequence of the seamlessness principle is that requirements are just another
software artifact, susceptible to many of the same techniques as code and design. As-
suming a modern programming language with powerful abstraction facilities, the re-
quirements can be written in the same notation as the program.

The notion of multirequirements [Mey13] adds to this principle the idea of using
several interleaved descriptions: natural language, graphical, and formal (Eiffel text)
serving as the reference.

How realistic is the seamless multirequirements approach, what are its limits, and
what benefits does it bring? To help answer this question, the present chapter takes the
example used in a classic paper of the requirements literature, Jackson’s and Zave’s

45

46 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

zoo software controller, and describes it entirely in a seamless style, including the key
formal constraints of the example.

The goal of the chapter is not advocacy but experimentation. The advocacy is
present in the earlier references cited above. We practice a seamless approach to soft-
ware construction and consider it fruitful, but the present discussion does not attempt to
establish its superiority; rather it starts from the seamlessness hypothesis – the hypoth-
esis that a single notation, Eiffel, is applicable to requirements analysis just as much
as to programming – and applies this hypothesis fully and consistently to a significant
example. While we draw some conclusions, the important part is the result of the ex-
periment as presented here, enabling readers to form their own conclusions as to the
benefits and limits of the approach.

Section 7.2 briefly explains why it is interesting to put into question the traditional
separation between software development tasks. Section 7.3 proposes an approach to
unify software development tasks by combining the approaches described in [Mey13]
and [JZ95]. Section 7.4 introduces some theoretical and technical background. Sec-
tion 7.5 presents the approach applied to an example. Finally, Section 7.6 concludes
and mentions future work.

Summary of contributions
Experimentation mentioned at the end of Section 7.1 resulted in the following key
outcomes.

• An evidence suggesting that it is possible to use Multirequirements approach
[Mey13] for describing cyber-physical systems like zoo turnstile controller. At
the same time, different types of exemplar statements go far beyond just the
relational statements used in [Mey13].

• An evidence suggesting that a real programming language notation may be even
more expressive than most of the popular formal notations. Section 7.5.5 con-
tains all the details.

• An example showing how object orientation helps to effectively manage com-
plexity in specifications. The approach used in [JZ95], where the specification is
basically a linear list of statements, does not scale to the case of large systems,
when the number of requirements is too big. Object orientation provides a way to
relate the conceptual objects so that the resulting specification will be scattered
across the classes in an intuitive way.

7.2 The drawbacks of too much separation of concerns
Historically, there was a reason for emphasizing the distinction between development
tasks. The goal was to highlight the specific needs of requirements and design, moving
away from the “code first, think later” way of building software. But as the precepts of
software engineering have gained wide acceptance and programming languages have
moved from low-level machine-coding notations to descriptive formalisms with high

7.3. A SEAMLESS APPROACH 47

expressive power, the reverse approach is worth exploring: instead of emphasizing the
differences, show the fundamental unity of the software process.

The traditional approach is subject to five criticisms.

i Insufficient information. Requirements analysts do not know what details are im-
portant for developers. They are good at expressing customer needs in a form the
customer is ready to sign, but they typically do not know what is implementable
and what is not. [Mey85] discusses some typical flaws of natural language re-
quirements specifications.

ii Lack of communication. When developers see ambiguous or contradictory ele-
ments in the requirements, they will not always go back and ask, but will often
interpret the requirement according to their own understanding, which may or
may not coincide with user wishes.

iii Impedance mismatches [Mey97]. The use of different formalisms at different
stages requires translations and creates risks of mistakes.

iv Impediment to change. With different formalisms, it is difficult [Mey97] to en-
sure that a change at one level is reflected at other levels.

v Impediment to reuse. The presence of requirements as a document specific to
each project may mask the commonality between projects and make the team
miss potential reuse of existing developments.

7.3 A seamless approach

7.3.1 Unifying processes
Consideration of the problems listed above leads to trying a completely different ap-
proach, which recognizes that beyond the obvious differences between tasks of soft-
ware development they share fundamental needs, concepts, principles, techniques, and
can be addressed through a common notation. Modern programming languages are not
just coding tools to talk to a machine, but powerful tools for expressing abstract con-
cepts and modeling complex systems. The Eiffel notation used in the experiment uses
object-oriented principles of classes, genericity, polymorphism and inheritance, which
have proved adept at describing sophisticated systems (independently of their technical
programming aspects) in a modular, flexible, reusable and evolutionary way. Thanks to
the presence of Design by Contract mechanisms, it can describe not only the structure
of systems but their abstract semantics.

7.3.2 The hypothesis
The hypothesis explored in the experiment, in light of the above analysis, is that it is
possible to design a software development process that:

i Uses for requirements the same notation and tools as for design and implemen-
tation.

48 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

ii Links the resulting documents (requirements, design, code) together, ensuring a
major goal of software engineering: traceability.

iii Makes it possible to prove, formally, the correctness of the implementation against
the specification.

iv Supports extendibility by ensuring that small changes in the requirements will
cause a proportionally small change in the design and the implementation.

7.3.3 How to test the hypothesis

The experiment relies on the following scenario for testing the preceding hypothesis at
least in part:

i Propose a candidate process.

ii Select examples and apply the process.

iii Analyze the outcome.

[Mey13] sketches such a process, based on using object orientation for representing the
relationships between the conceptual objects in the requirements document. The basic
idea was to have an object-oriented code along with the natural language description
of a requirement. It is also possible to represent each code fragment graphically as a
BON diagram [WN94].

[Mey13], however, uses as example the very notion of requirements process. In
other words, it is self-referential. This confers (we hope) a certain elegance to the
example, but makes it look artificial. For our experiment we take a more standard
example, coming from a classic requirements paper by Jackson and Zave [JZ95].

More precisely, the requirements from the example are represented using the model-
based [PTF18] contracts-equipped [Mey09] object-oriented [Mey97] notation (Eiffel).

7.4 Theoretical and technical background

7.4.1 Design By Contract

Work [Mey09] gives a comprehensive description of Design By Contract. Design By
Contract integrates Hoare-style assertions [Hoa69] within object-oriented programs
[Mey97] constraining the data that run time objects hold. This approach equips each
class feature (member) with a predicate expression, that specify its behavior, in the
form of pre- and postcondition. The postcondition has to hold whenever the precondi-
tion held and the feature finished its computation before the program execution process
invokes the next feature. Design By Contract equips the class itself with an invariant
predicate expression which holds in all states of the corresponding objects.

7.5. UNIFYING THE TWO WORLDS: AN EXAMPLE 49

7.4.2 Model-based contracts
If classical contracts are for constraining the data that run time objects actually hold,
model-based contracts are “meta” contracts for constraining the objects as mathemat-
ical entities (sets, sequences, bags, relations etc.), and an execution process does not
instantiate the corresponding mathematical representations at run time as parts of the
objects. Model-Based Contracts are useful when it is not possible to capture all the
nuances by means of classical contracts. Works [SWM04] and [PTF18] give some
examples of such situations and a comprehensive description of the concept.

7.4.3 AutoProof
The AutoProof [Tsc+15] tool is capable of formally proving the correctness of contract-
equipped object-oriented programs, both classical and model-based. AutoProof proves
for every routine that the conjunction of the precondition and the class invariant before
invocation ensures the conjunction of the postcondition and the class invariant after
invocation. The class is verified if and only if all the class features are verified.

7.5 Unifying the two worlds: an example
Avoiding the problems analyzed in Section 7.2 means unifying the worlds of require-
ments and code in a unified framework. This section illustrates the approach. It takes
the example from the work [JZ95] and shows how to express requirements of various
types in the style of work [Mey13] – namely, using Eiffel as a formal specification
language for expressing each requirement. Originally the authors used this example to
demonstrate the process of deriving specifications from requirements, and the unified
approach captures all the nuances of this process.

7.5.1 Example overview
The authors of [JZ95] start with giving the overall context: “...Our small example con-
cerns the control of a turnstile at the entry to a zoo. The turnstile consists of a rotating
barrier and a coin slot, and is fitted with an electrical interface...” This small para-
graph mostly describes the relationships between the conceptual objects. Figure 7.1
contains specification of the context in the style of work [Mey13].

Translating the specification from Figure 7.1 back to natural language using the
object-oriented semantics results in almost the same initial description: “A ZOO has
a TURNSTILE turnstile; a TURNSTILE has a COINSLOT coinslot and a BARRIER barrier so that
coinslot has Current TURNSTILE as turnstile and barrier has Current TURNSTILE as turnstile...”
COINSLOT and BARRIER hold references to the TURNSTILE instances in order to capture the
“electrical interface” phenomena: the word “interface” means something over which
the parties are able to communicate with each other; communicating means sending
messages to each other, and to send message to someone in the object-oriented world
is to take a reference to the object and perform a qualified call on it. So at the very
least the parties should hold references to each other to be able to communicate in two
directions.

50 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

class ZOO

feature

turnstile: TURNSTILE
end

class TURNSTILE

feature

coinslot: COINSLOT
barrier: BARRIER

invariant

coinslot.turnstile = Current

barrier.turnstile = Current

end

class COINSLOT

feature

turnstile: TURNSTILE
invariant

turnstile.coinslot = Current

end

class BARRIER

feature

turnstile: TURNSTILE
invariant

turnstile.barrier = Current

end

Figure 7.1: Expressing the context formally.

• Push(e): In event e a visitor pushes the barrier to its intermediate position

• Enter(e): In event e a visitor pushes the barrier fully home and so gains entry to
the zoo

• Coin(e): In event e a valid coin is inserted into the coin slot

• Lock(e): In event e the turnstile receives a locking signal

• Unlock(e): In event e the turnstile receives an unlocking signal

Figure 7.2: The Zoo Turnstile example designation set.

7.5.2 The designation set
After stating the problem context the authors of [JZ95] describe the designation set.
Each designation basically corresponds to a separate type of events observed in the
problem area. The authors give the designations as a set of predicates as in Figure 7.2.
Figure 7.3 is an Eiffel implementation of each designation set described in Figure 7.2.
The implementation uses Eiffel features names as labels for the events types. The nat-
ural language descriptions from Figure 7.2 provide heuristics on which feature should
be added to which class (Figure 7.2. Each event type has an associated history – a
sequence of moments in time when the events of this particular type occurred. For ex-
ample, enters: MML_SEQUENCE[INTEGER_64] (in Figure 7.3) is a sequence of moments in time
expressed in milliseconds when events of type enter took place. MML_SEQUENCE is a class
from the MML (Mathematical Modeling Library) and denotes mathematical sequence. MML
contains special classes for expressing model-based contracts. Although it is possible
to instantiate some objects from these classes (like a sequence containing one element),
the instances will not be modifiable. The model annotation is the Eiffel mechanism to
represent model-based contracts (introduced in Section 7.4.2). For instance, expression

7.5. UNIFYING THE TWO WORLDS: AN EXAMPLE 51

note

model: enters
deferred class ZOO

feature

enter

deferred

ensure

enters.but_last ~ old enters

enters.last > old enters.last
end

enters: MML_SEQUENCE[INTEGER_64]
end

note

model: locks, unlocks
deferred class TURNSTILE

feature

lock

deferred

ensure

locks.but_last ~ old locks

locks.last > old locks.last
end

unlock

deferred

ensure

unlocks.but_last ~ old unlocks

unlocks.last > old unlocks.last
end

locks: MML_SEQUENCE[INTEGER_64]
unlocks: MML_SEQUENCE[INTEGER_64]

end

note

model: coins
deferred class COINSLOT

feature

coin

deferred

ensure

coins.but_last ~ old coins

coins.last > old coins.last
end

coins: MML_SEQUENCE[INTEGER_64]
end

note

model: pushes
deferred class BARRIER

feature

push

deferred

ensure

pushes.but_last ~ old pushes

pushes.last > old pushes.last
end

pushes: MML_SEQUENCE[INTEGER_64]
end

Figure 7.3: Specifying the designation set formally.

52 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

model: enters in Figure 7.3 says that enters is a model query. The enters query models
the sequence of timestamps corresponding to moments when people enter the zoo.

The deferred keyword states that the specification gives only formal definitions of
the events (in terms of pre- and postconditions [Hoa69]) and does not give the corre-
sponding operational reactions of the machine on the events. The ensure clause is the
postcondition of the feature. It describes how the system changes after reacting on
an event of the corresponding type. These specifications are intuitively plausible: an
event occurrence should result in extending the corresponding history with the moment
in time when the event took place, and the time of the new event should be strictly big-
ger than the time of the previous event, as shown, for instance, by the postcondition in
feature unlock of Figure 7.3. The keyword old is used to indicate expressions that must
be evaluated in the pre-state of the routine, and “~” makes a comparison by value.

7.5.3 Shared phenomena
The authors of [JZ95] introduce the notion of shared phenomena – that is, the phenom-
ena visible to both the world (the environment) and the machine (the notions of the
world and the machine were introduced by Jackson in [Jac95]). In the multirequire-
ments approach this notion is covered by using the “has a” relationships between the
ZOO and the TURNSTILE classes, accompanied with the model-based contracts. Namely,
since a ZOO has a turnstile as its feature, it can see any phenomena hosted by the turn-
stile: locks, unlocks, coins, pushes; since a TURNSTILE does not hold any references to a ZOO,
it can not observe nor control the enter events modeled by ZOO.

7.5.4 Specifying the system
Work [JZ95] introduces a set of criteria by means of which it is possible to identify
whether the machine is specified or not. One of the criteria states that all requirements
should be expressed in terms of shared phenomena only. Requirements refinement
is the process of converting the requirements stated in terms of both shared and non-
shared phenomena to the form in which they are expressed in terms of shared phe-
nomena only. Refinement process consists of identifying some laws, which hold in
the environment regardless of the machine behaviour, and constraining the machine
behaviour. The resulting constraints imposed on the machine together with the laws of
the environment should logically imply the requirements stated in the beginning.

The authors of [JZ95] state that the laws of the environment are always expressed
in the indicative mood, while the restrictions imposed on the machine behavior are
expressed in the optative mood.

All properties of the problem derived in [JZ95] – be they optative or indicative
descriptions – can be conceptually divided into the two main categories.

Properties which hold at any moment in time:

an example of such property is the OPT1 requirement (expressed in Figure 7.4) saying
that entries should never exceed payments (the authors of [JZ95] use OPT∗ for labeling
properties expressed in an optative mood). Within the multirequirements approach this

7.5. UNIFYING THE TWO WORLDS: AN EXAMPLE 53

deferred class ZOO

feature

turnstile: TURNSTILE
enters: MML_SEQUENCE[INTEGER_64]

invariant

enters.count≤ turnstile.coinslot.coins.count
end

Figure 7.4: Entries should never exceed payments.

deferred class BARRIER

feature

push

require

not turnstile.unlocks.is_empty
(not turnstile.locks.is_empty) implies

(turnstile.unlocks.last > turnstile.locks.last)
deferred

end

end

Figure 7.5: It is impossible to use locked turnstile.

requirement can be expressed in the following way. The “something always holds”
semantics fits perfectly into the semantics of Eiffel invariant: “something holds in all
states of the object”, as expressed in Figure 7.4.

Properties which hold depending on the type of the next event to occur:

the indicative property IND2 saying that it is impossible to push the barrier if the turn-
stile is locked will serve as an example (the authors of [JZ95] use IND∗ for labeling
properties expressed in the indicative mood). Figure 7.5 depicts the corresponding
specification. The initial description is divided into the two different requirements:

1. The turnstile should have received at least one unlock signal.

2. If the turnstile has ever received lock signals, the most recent lock signal should
be older than the most recent unlock signal.

If the two requirements hold together, the turnstile will be in the unlocked state.

Real time properties:

the authors of [JZ95] derive several timing constraints on the events processing. For ex-
ample, the OPT7 requirement says that the amount of time between the moment when
the number of the barrier pushes becomes equal to the number of coins inserted and
the moment when the machine locks the turnstile should be less than 760 milliseconds.
This is basically a constraint for the reaction on the push event: if the next push event

54 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

deferred class BARRIER

feature

turnstile: TURNSTILE
push

deferred

ensure

((old turnstile.unlocks.last > old turnstile.locks.last) and
(pushes.count = turnstile.coinslot.coins.count)) implies

(turnstile.locks.last > pushes.last and

(turnstile.locks.last − pushes.last) <760)
end

pushes: MML_SEQUENCE[INTEGER_64]
end

Figure 7.6: The machine locks the turnstile timely.

deferred class ZOO

feature

turnstile: TURNSTILE_ABSTRACT
enter

deferred

end

enters: MML_SEQUENCE[INTEGER_64]
invariant

turnstile.coinslot.coins.count > enters.count implies (agent enter).precondition
end

Figure 7.7: The turnstile let people who pay enter.

uses the last coin, the machine should ensure that the turnstile is locked in a timely
fashion, so that a human being will not have time to enter without paying. The 760
quantity reflects the fact that it takes at least 760 milliseconds for a human being to
rotate the barrier completely and enter the Zoo.

Taking this reasoning into consideration, the multirequirements specification ap-
proach handles the timing constraint by putting it into the push feature postcondition
(as depicted in Figure 7.6). The antecedent of the implication assumes the situation
when before the push event the turnstile was locked (old turnstile.unlocks.last >
old turnstile.locks.last expression in Figure 7.6), and after the event occurrence the
number of barrier pushes became equal to the number of coins inserted (pushes.count =
turnstile.coinslot.coins.count expression in Figure 7.6). The consequent reflects the re-
quirement that, having in place the situation that the antecedent describes, there should
be a lock event which is more late than the last push event (turnstile.locks.last >
pushes.last expression in Figure 7.6), and the distance between them should be less than
760 milliseconds ((turnstile.locks.last − pushes.last)<760 expression in Figure 7.6).

7.6. SUMMARY 55

7.5.5 Specifying the “unspecifiable”
One of the requirements mentioned in [JZ95] was OPT2 saying that the visitors who
pay are not prevented from entering the Zoo. The authors give only informal statement
of this requirement: ∀ v,m, n • ((Enter#(v,m) ∧ Coin#(v, n) ∧ (m < n))⇒
“The machine will not prevent another Enter event′′.

The antecedent of this implication should be read like “the number of entries is less
than the number of coins inserted”. The authors of [JZ95] do not formalize the con-
sequent and leave it in the natural language form. The multirequirements specification
approach handles this requirement using standard Eiffel mechanism called agents (see
Figure 7.7).

The agent clause treats a feature (the enter feature in this particular case) as a sep-
arate object so that the feature precondition becomes one of the boolean-type features
of the resulting object.

7.6 Summary
Software construction involves different activities. Typically these activities are per-
formed separately. For instance, requirements and code, as developed nowadays, seem
to belong to different worlds. The presented experiment shows the feasibility of unify-
ing requirements and code in a single framework.

In this experiment, we take the classic Zoo Turnstile example [JZ95] and implement
it using Eiffel programming language. Eiffel is used not just to express the domain
properties but also the properties of the machine [Jac95], enabling users to combine
requirements and code in a single framework. The complete implementation of the
example can be reached in the GitHub project [Naua].

The multirequirements approach is suitable not only for formalizing the statements
that [JZ95] formalizes, but also for formalizing those which are not possible to formal-
ize with classical instruments like predicate or temporal logic (like OPT2 requirement,
see Figure 7.7).

The multirequirements approach is not only expressively powerful – it enables
smooth transition to design and implementation. GitHub project [Naua] contains a
continuation of the experiment in the form of a complete implementation of the Zoo
Turnstile example.

In order to understand the benefits of the multirequirements approach better it
seems feasible to evaluate it against the hypothesis stated in Section 7.3.2:

i Unity of software development tasks: indeed, all the code fragments correspond-
ing to different specification items merged together will bring a complete design
solution available at [Naua] (the classes ending with _ABSTRACT).

ii Traceability between the specification and the implementation: the classes end-
ing with _CONCRETE available at [Naua] contain the implementation and relate to
the specification classes by means of inheritance.

iii Provability of the classes: the AutoProof system [Tsc+15] is capable of formally
proving both classical and model-based contracts in Eiffel. However, it is not

56 CHAPTER 7. UNIFYING REQUIREMENTS AND CODE: AN EXAMPLE

yet capable of proving “higher-level” agents-based contracts like the one used in
Figure 7.7 for expressing requirement OPT2 from the work [JZ95]. Adding this
functionality to AutoProof is one of the next work items.

iv Extendibility of the solution: since Eiffel artifacts used in the formalizations of
the requirements items correspond to their natural language counterparts, it is
visible right away how a change in one representation will affect the second.

Speaking about scalability of the approach, a formal representation of a require-
ments item specified with Eiffel is as big as the scope of the item and its natural lan-
guage description are, so the overall complexity of the final document should not de-
pend on the size of the project. Anyway, this is something to test by applying the
approach to a bigger project.

The future actions plan include:

i to prove formally that the features’ specifications are consistent – that they pre-
serve the invariants of their home classes, and the invariants by themselves are
consistent. For example, it should not be possible for P(x) and ¬P(x) to hold at
the same time.

ii to design machinery for translating model-based contract-oriented requirements
to their natural language counterpart so that the result will be recognizable by a
human being.

iii to apply the approach to a bigger project.

iv to extend AutoProof technology [Tsc+15] so that it will be able to handle agents
in specifications (like in Figure 7.7).

It seems feasible to utilize AutoProof technology [Tsc+15] for achieving goal (Item i).
AutoProof is already capable of proving that a feature implementation preserves its
specification (except specifications with agents), and it seems logical to empower it
with the capabilities for working solely on the specifications level. Work [Nor09] con-
tains a formal proof that it is possible to achieve goal (Item iv).

As a result of implementing the plan a powerful framework for expressing all pos-
sible views on the software under construction should emerge. The threshold of suc-
cess includes the possibility to generate the specification classes (their names end with
_ABSTRACT) available at [Naua] automatically, using requirements documents produced
according to the multirequirements process as input.

Chapter 8

Making Contracts Complete

Existing techniques of Design by Contract do not allow software developers to spec-
ify complete contracts in many cases. Incomplete contracts leave room for malicious
implementations. This chapter complements Design by Contract with a powerful tech-
nique that removes the problem without adding syntactical mechanisms. The proposed
technique makes it possible not only to derive complete contracts, but also to rigorously
check and improve completeness of existing contracts without instrumenting them.

8.1 Introduction
The main contribution of this chapter is a new approach to seamless software devel-
opment, bridging the heretofore wide gap between two fundamental and widely used
techniques: Abstract Data Types (ADTs) and Object-Oriented Programming (OOP).
These techniques seem made for each other, but trying to combine them in practice
reveals a glaring impedance mismatch. We explain the problem, provide a remedy, and
subject it to formal verification.

ADTs [GH78] are a clear, widely known way to specify systems precisely.
OOP [Mey97] is the realization of ADT ideas at the design and programming level,
with Design by Contract (semantic properties embedded in the program) providing the
connection. At least, that is the accepted view. However, the correspondence is far
less simple than this view would suggest. While it would seem natural to use ADTs
for specification and OOP for design and implementation, in practice this combination
hits an impedance mismatch:

• At the ADT level, some axioms involve two or more commands. For example,
an axiom for stacks (the standard example of ADTs, which remains the best for
explanatory purposes) will state that if you push an element onto a stack and then
pop the stack, you end up with the original stack.

• In a class, the standard unit of OOP, the contracts can only talk about one com-
mand, such as push or pop, but not both. Specifically, the postcondition of a
command such as push can describe the command’s effect on queries such as top

57

58 CHAPTER 8. MAKING CONTRACTS COMPLETE

(after you have pushed an element, that element is the new top), but there is no
way to refer to the effect on pop as expressed by the ADT axiom.

The present chapter introduces a practical solution to this mismatch. The essence
of the solution is that classes reflecting ADTs, such as a class STACK, cannot by them-
selves capture such multi-command (or “second-degree”) ADT axioms, but this does
not mean that the OOP approach fails us. The idea will be to introduce auxiliary classes
whose role is to “talk about” the features of the basic classes such as STACK (the ones
corresponding to ADTs). Such a class has features that combine those of basic classes,
e.g. a command push_then_pop that works on an arbitrary stack, pushing an element on
a stack and then popping the stack. Then the postcondition of push_then_pop can specify
that the resulting stack is the same as the original.

We call such features specification drivers by analogy with “test drivers”, which
are similarly added to the basic units of a system for the sole purpose of testing them.
Like test drivers, specification drivers serve purely verification purposes, rather than
providing system functionality. The difference is of course that test drivers appear in
dynamic verification (testing), whereas specification drivers are for static verification
(for example, as in this chapter, correctness proofs). But the basic idea is the same.

Specification drivers are not just a specification technique; we also submit them to
formal, mechanical verification. As part of the AutoProof formal verification
tool [Tsc+15], we have mechanically proved the correctness of the presented examples.

Section 8.2 explains the problem through a working example. Section 8.4 describes
the essentials of the solution. Section 8.5 compares this approach with other possible
ones. Section 8.6 presents our experience with mechanical verification. Section 8.7
draws conclusions and outlines future research prospects.

8.2 Motivating example
Figure 8.1 contains the standard ADT specification of stacks. The standard names of
the functions are changed in favor of the mechanical verification experiment in Sec-
tion 8.6: the existing implementation, to which the experiment is applied, uses exactly
these names.

Figure 8.2 contains the result of applying the traditional process of DbC [Mey97]
to the specification in Figure 8.1:

• The name of the class is derived from the name of the ADT it implements.

• The signatures of the implementation features are derivatives of the ADT func-
tions’ descriptions.

• Preconditions of the ADT functions go to require clauses of the implementation
features.

• Postconditions of the implementation features capture ADT axioms A1, A3 and
A4.

• The create clause lists the implementation feature new to highlight its special mis-
sion of instantiating new stacks.

8.2. MOTIVATING EXAMPLE 59

TYPES

• STACK[G]

FUNCTIONS

• extend : STACK[G]× G→ STACK[G]

• remove : STACK[G] 7→ STACK[G]

• item : STACK[G] 7→ G

• is empty : STACK[G]→ BOOLEAN

• new : STACK[G]

AXIOMS
For any x : G, s : STACK[G]

(A1) item(extend(s, x)) = x

(A2) remove(extend(s, x)) = s

(A3) is empty(new)

(A4) not is empty(extend(s, x))

PRECONDITIONS

(P1) remove(s : STACK[G]) require not is empty(s)

(P2) item(s : STACK[G]) require not is empty(s)

Figure 8.1: ADT specification of stacks.

60 CHAPTER 8. MAKING CONTRACTS COMPLETE

class STACK_IMPLEMENTATION [G] -- Type STACK[G]

create new -- Marking new as a creation feature

feature

extend (x: G) -- Extending with a new element

do

ensure

a1: item = x

a4: not is_empty

end

remove -- Removing the topmost element

require

p1: not is_empty

do

end

item: G -- The topmost element

require

p2: not is_empty

do

end

is_empty: BOOLEAN -- Is the stack empty?

new -- Instantiating a stack

do

ensure

a3: is_empty
end

end

Figure 8.2: Applying the traditional process of DbC to the stacks ADT specification.

8.3. AXIOMS AS SPECIFICATION DRIVERS 61

Axiom A2 introduces the problem. The axiom constrains two functions simultane-
ously, extend and remove: the former one should do nothing but extend the stack with
the given element, and the latter should do nothing but remove the topmost element
of the stack. As a consequence, it is not possible to capture the axiom in a single im-
plementation feature postcondition. Postconditions operate on two objects: the target
object before calling the feature and the target object after invoking the feature. If the
feature has formal parameters, they also parameterize the postcondition. Axiom A2
involves three stacks: the original one s, s1 resulting from applying function extend to
s, and finally s2 resulting from applying remove to s1. Formally:

∀ s, s1, s2 : STACK[G]; x : G •
(s1 = extend(s, x) ∧ s2 = remove(s1)⇒ s2 = s

Or, writing the quantified expression in terms of postconditions:

(Postextend(s, s1, x) ∧ Postremove(s1, s2))⇒ s2 = s (8.1)

On one hand, it is not possible to capture A2 in a single postcondition. On the other
hand, postconditions of extend and remove should exist and be strong enough to satisfy
Equation (8.1).

Failures to capture such important properties as A2 in postconditions leave room for
invalid implementations. The inability to capture axiom A2 allows for implementing
stacks which store only the last added element and thus are useless as data containers.
Still, such an implementation satisfies all the other axioms as its postconditions capture
them.

Figure 8.3 depicts such an invalid implementation. For the sake of simplicity, it
ignores preconditions, but this does not render the reasoning invalid: an empty pre-
condition defaults to TRUE, the weakest conceivable precondition. According to the rule
of consequence for preconditions [Hoa69], correctness against a weaker precondition
implies correctness against a stronger one. Submitting the class STACK_IMPLEMENTATION to
AutoProof confirms the point: the tool successfully proves “correctness” of the imple-
mentation.

For purist developers the problem of underspecified postconditions may become a
reason for not using them at all. Intuitively, it seems better to keep all the properties
written in a single place, and the described problem prevents doing this: although it
is possible to capture some ADT axioms in postconditions, some of them will have
to exist in separate documents and thus carry the risk of misuse and all the associated
traceability costs.

8.3 Axioms as specification drivers
The example in Figure 8.2 translates axiom A1 to the postcondition of the implemen-
tation feature extend. Is it in fact the only way to do the translation of the axiom? A
closer look at the original axiom and its translation in Figure 8.2 reveals two facts:

• The axiom uses the function extend in a sense of applying it, while its translation
in Figure 8.2 specifies the implementation feature without invoking it.

62 CHAPTER 8. MAKING CONTRACTS COMPLETE

class STACK_IMPLEMENTATION [G]
create new

feature

extend (x: G) -- Extending with a new element

do

item := x

is_empty := False

ensure

a1: item = x

a4: not is_empty

end

remove -- Removing the topmost element

do

is_empty := True

end

item: G -- The topmost element

is_empty: BOOLEAN -- Is the stack empty?

new -- Instantiating a stack

do

is_empty := True

ensure

a3: is_empty
end

end

Figure 8.3: Underspecified postconditions may lead to invalid implementations.

8.3. AXIOMS AS SPECIFICATION DRIVERS 63

extend_updates_item (s: STACK_IMPLEMENTATION [G]; x: G)
do

s.extend(x)
ensure

s.item = x

end

Figure 8.4: Axiom A1 as a specified feature.

remove_then_extend (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require

s1.is_equal(s2)
do

s1.extend (x)
s1.remove

ensure

s1.is_equal(s2)
end

Figure 8.5: Axiom A2 as a specified feature.

• The axiom uses an explicit stack instance s, while the translation implicitly op-
erates on the current object described by class STACK_IMPLEMENTATION[G].

Is it possible to devise a translation of axiom A1 that would be closer to the origin?
Existing techniques of DbC completely ignore a large family of program con-

structs: features with pre- and postconditions whose only purpose is to serve as proof
obligations. Such features do not implement any ADT functions and are not to be
invoked. Instead, they are intended solely for static verification.

Figure 8.4 gives an example. The feature extend_updates_item is an alternative trans-
lation of axiom A1. It possesses the following properties:

• It operates on explicit objects s and x.

• It uses an explicit invocation of implementation feature extend.

The example in Figure 8.4 takes the whole feature extend_updates_item as the trans-
lation of the axiom, as opposed to the one in Figure 8.2, where the axiom is captured
with the assertion item = x in the postcondition of implementation feature extend.

Using this approach, it is possible to capture axiom A2 in the form of the feature
remove_then_extend in Figure 8.5. Again, the whole feature is the translation of the ax-
iom. The feature is_equal defines an equivalence relation over run time objects repre-
senting stacks. It is declared by default in all Eiffel classes and compares its operands
by value. The notion of equality deserves a separate analysis; Section 8.4.2 gives the
details.

Henceforth, we will use the term specification drivers for specified features serv-
ing as translations of certain ADT axioms. A specification driver can be proven cor-
rect only if the implementation features it invokes have strong enough postconditions.

64 CHAPTER 8. MAKING CONTRACTS COMPLETE

Consequently, specification drivers, as their name suggests, drive specifying stronger
postconditions.

8.4 Specification drivers in practice
The present section derives the complete set of specification drivers for the stacks ADT
(Figure 8.1). This set includes not only specification drivers that represent the original
axioms of stacks because some specification drivers stem from a fundamental differ-
ence between ADT specifications and object-oriented programs: in the former it is not
possible to have more than one occurrence of one and the same abstract stack, while
in the latter it is possible to instantiate two run time objects denoting one and the same
abstract stack. Section 8.4.2 and Section 8.4.3 discuss the issue in detail and derive
additional specification drivers caused by it.

8.4.1 ADT axioms
Specification drivers do not bring any functional value to the system: they exist only
to be eventually discharged as proof obligations. Consequently, they should not pol-
lute implementation classes like STACK_IMPLEMENTATION in Figure 8.2. Concerning where
to store them, the simplest option is to create a separate class within the source code
project. The
ADT_AXIOMS_SPECIFICATION_DRIVERS class in Figure 8.6 contains specification drivers cap-
turing the ADT axioms of stacks. This class is generic: since it talks about instances of
a generic concept, STACK_IMPLEMENTATION [G] in this case, it needs to assume existence of
type G to keep the genericity. The {NONE} clause suggests that the features listed within
the corresponding feature block do not supply any useful functionality. The deferred

keyword in front of the class declaration suggests that it is not possible to instantiate
any objects of this class, which makes sense as the class serves as a document contain-
ing specification drivers rather than a blueprint for creating run time objects.

8.4.2 Equivalence
It is possible to see that the specification drivers in Figure 8.6 use two different oper-
ators for objects comparison: = and is_equal, while the original ADT specification in
Figure 8.1 invokes only =. This section discusses the difference between comparing
instances of ADTs and comparing objects instantiated from object-oriented classes and
introduces a set of specification drivers capturing the difference.

ADT specifications operate on sets of instances in the mathematical sense of the
word “set”: an abstract data type cannot contain two instances of one and the same
abstract object. For example, the range of the function new consists of the only stack
instance, which is the empty stack, as axiom A4 suggests. When an object-oriented
program is running, it is perfectly fine for it to have two run time objects in its memory
denoting one and the same instance of the ADT. For example, it is possible to declare
two variables of type STACK_IMPLEMENTATION [INTEGER] and make them both refer to two
different stack objects in the memory, as in Figure 8.7. Consequently, run time objects

8.4. SPECIFICATION DRIVERS IN PRACTICE 65

deferred class ADT_AXIOMS_SPECIFICATION_DRIVERS [G]
feature {NONE}
axiom_a1 (s: STACK_IMPLEMENTATION [G]; x: G)
do

s.extend (x)
ensure

s.item = x

end

axiom_a2 (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require

s1.is_equal (s2)
do

s1.extend (x)
s1.remove

ensure

s1.is_equal (s2)
end

axiom_a3 (s: STACK_IMPLEMENTATION [G]; x: G)
do

s.extend (x)
ensure

not s.is_empty
end

axiom_a4: STACK_IMPLEMENTATION [G]
do

create Result.new
ensure

Result.is_empty
end

end

Figure 8.6: Specification drivers capturing the axioms of stacks.

s1, s2: STACK_IMPLEMENTATION [INTEGER]
create s1.new
create s2.new

Figure 8.7: Creating two instances of the empty stack.

66 CHAPTER 8. MAKING CONTRACTS COMPLETE

deferred class EQUIVALENCE_SPECIFICATION_DRIVERS [G]
feature {NONE}
reflexivity (s: STACK_IMPLEMENTATION [G])
do

ensure

s.is_equal (s)
end

symmetry (s1, s2: STACK_IMPLEMENTATION [G])
require

s1.is_equal (s2)
do

ensure

s2.is_equal (s1)
end

transitivity (s1, s2, s3: STACK_IMPLEMENTATION [G])
require

s1.is_equal (s2)
s2.is_equal (s3)

do

ensure

s1.is_equal (s3)
end

end

Figure 8.8: Capturing the definition of equivalence.

form not a set of abstract objects, but a multiset, or bag [Bli89]. That is why there
are two different comparison operators: the = operator checks whether the operands
refer to identical run time objects, and is_equal checks whether the objects referenced
by the operands represent the same instance of the ADT implemented by the class.
As a consequence, if specification drivers representing ADT axioms use the feature
is_equal, the corresponding implementation class should redefine the feature and its
postcondition should be strong enough to satisfy the definition of equivalence relations.
A relation over stacks is an equivalence relation if and only if it possesses the following
properties:

• Reflexivity: every stack is equal to itself.

• Symmetry: if stack s1 is equal to stack s2, then s2 is equal to s1 as well.

• Transitivity: if stack s1 is equal to stack s2, and s2 is equal to s3, then s1 is equal
to s3.

As Figure 8.8 illustrates, the three properties may be captured by a separate class cre-
ated specifically for this goal. If all the features of class EQUIVALENCE_SPECIFICATION_DRIVERS

are correct, then the postcondition of is_equal indeed defines an equivalence relation
over run time objects instantiated from STACK_IMPLEMENTATION [G].

It is worth noting that because equivalence definition is static, specification drivers
for equivalence may be generated automatically for every class.

8.4. SPECIFICATION DRIVERS IN PRACTICE 67

8.4.3 Well-definedness

The ADT specification in Figure 8.1 lists certain functions over stacks. It is neces-
sary to ensure that they maintain equivalence relations over stacks. Invoking a given
implementation feature for two run time objects, which represent a single ADT ob-
ject, should be indistinguishable from applying the ADT function implemented by this
feature to that ADT object. Since a function application produces only one element
from its range set, the two run time objects should also be considered equal after the
invocation. This property is called well-definedness under an equivalence relation. The
class WELL_DEFINEDNESS_SPECIFICATION_DRIVERS in Figure 8.9 contains specification drivers
that encode well-definedness for every stack implementation feature. The specification
drivers item_is_well_defined and remove_is_well_defined contain assertions not s1.is_empty
and not s2.is_empty. These specification drivers invoke implementation features item

and remove, which have preconditions that need to be satisfied. The purpose of the
mentioned assertions is exactly this. The s1 6= s2 assertion in the precondition of the
specification driver remove_is_well_defined is there for a very specific reason. If s1 and
s2 are identical, the precondition for the s2.remove call may not hold: even if the stack
object referenced by s1 and s2 is not empty in the beginning, it may not be the case any-
more after the s1.remove call. This additional assertion does not remove any generality:
indeed, identity always implies equality, and proving the latter is exactly the purpose
of this specification driver, according to its postcondition.

Specification driver new_is_well_defined deserves special attention too. In fact, it
encodes something stronger than just the well-definedness of the implementation fea-
ture new. It says that two empty stacks are always equal. This makes perfect sense
and at the same time implies the necessary well-definedness property: from the ADT
specification in Figure 8.1 and its first approximation in Figure 8.2, it is known that in-
stantiating a stack with function new results in the empty abstract stack. Consequently,
the new_is_well_defined specification driver covers this case, since it applies to every pair
of run time objects denoting the empty abstract stack.

Similarly to equivalence, the notion of well-definedness is long-established; as
such, it may be possible to generate the corresponding specification drivers automati-
cally.

8.4.4 Complete contracts

Although some works ([PTF18], [SWM04]) talk about contract (in)completeness, they
do not define this notion precisely. In light of the fundamental difference between ADT
specifications and object-oriented programs, which causes the notion of equivalence
over run time objects to appear (Section 8.4.2), the definition cannot be implicitly equal
to the definition of sufficiently complete ADT specifications [GH78] and needs to be
written down explicitly.

As the other details of the original definition in [Mey97] do not bring any value to
the discussion, we use a simplified definition of a contract.

Definition 8.4.1 A contract is a set composed of all pairs of the form
(Precondition(f),Postcondtion(f)) for every implementation feature f .

68 CHAPTER 8. MAKING CONTRACTS COMPLETE

deferred class WELL_DEFINEDNESS_SPECIFICATION_DRIVERS [G]
feature {NONE}
new_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require

s1.is_empty
s2.is_empty

do

ensure

s1.is_equal (s2)
end

is_empty_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require

s1.is_equal (s2)
do

ensure

s1.is_empty = s2.is_empty
end

item_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require

not s1.is_empty
not s2.is_empty
s1.is_equal (s2)

do

ensure

s1.item = s2.item
end

extend_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G]; x: G)
require

s1.is_equal (s2)
do

s1.extend (x)
s2.extend (x)

ensure

s1.is_equal (s2)
end

remove_is_well_defined (s1, s2: STACK_IMPLEMENTATION [G])
require

not s1.is_empty
not s2.is_empty
s1.is_equal (s2)
s1 6= s2

do

s1.remove
s2.remove

ensure

s1.is_equal (s2)
end

end

Figure 8.9: Specification drivers for well-definedness.

8.5. RELATED WORK 69

This definition ignores the possible presence of class invariants as it is always pos-
sible to get rid of them by appending to pre- and postconditions of the implementation
features.

Definition 8.4.2 A contract is correct if and only if:

• Its postconditions are strong enough to ensure correctness of the specification
drivers derived from the input ADT axioms (Section 8.4.1)

• In the event that specification drivers for the input ADT axioms use equivalence,
its postconditions are strong enough to ensure correctness of the specification
drivers for equivalence (Section 8.4.2).

Definition 8.4.3 A contract is well-defined if and only if its postconditions are strong
enough to ensure correctness of the specification drivers for well-definedness (Sec-
tion 8.4.3).

Definition 8.4.4 A contract is complete if and only if it is correct and well-defined.

8.5 Related work
Work [PTF18] uses features with pre- and postconditions for checking completeness
of model-based contracts (discussed later in this section). The definition of a complete
model-based contract is not related to the definition of completeness in Section 8.4.4.
According to [PTF18], completeness is what we call well-definedness, expressed in
terms of abstract mathematical concepts.

Although the specification driver approach allows capturing ADT axioms in their
original form, it does specify how to actually build complete contracts having a set
of specification drivers. As Section 8.2 suggests, in many cases it is not possible to
specify strong enough postconditions in terms of the ADT specification itself. This
is where the need for representation appears: the implementation class has to stick to
some already implemented data structure in order to enable stronger postconditions ex-
pressed it terms of this data structure. The problem of choosing an ideal representation
has been aptly handled in multiple publications, therefore we do not propose our own
methodology, but instead reference these publications.

Work [Mey03] shows that it makes sense to use mathematical abstractions for rep-
resentations: for example, it seems reasonable to think about stacks as mathematical
sequences. That work also shows how to prove correctness against contracts strength-
ened with precise mathematical abstractions. Work [SWM04] introduces the Math-
ematical Model Library (MML) – Eiffel library containing core abstractions: sets,
sequences, bags, tuples etc. A later work [PTF18] introduces EiffelBase2, a usable
library of essential data structures, including stacks, represented as mathematical ab-
stractions from MML. EiffelBase2 is fully verified with the AutoProof verifier. The
underlying verification methodology [Pol+14] assumes writing quite a number of as-
sertions related to program execution semantics, so giving complete examples here
would introduce confusion rather than clarity. Instead, Figure 8.10 presents the idea

70 CHAPTER 8. MAKING CONTRACTS COMPLETE

class STACK_SEQUENCE_IMPLEMENTATION [G]
inherit ANY redefine is_equal end

create new -- Marking new as a creation feature

feature

sequence: MML_SEQUENCE [G] -- Stack representation

extend (x: G) -- Extending with a new element

do

ensure

a1: item = x

a4: not is_empty

definition: sequence = old sequence.extended (x)
end

remove -- Removing the topmost element

require

not is_empty

do

ensure

definition: sequence = old sequence.but_last
end

item: G -- Retrieving the topmost element

require

not is_empty

do

ensure

definition: Result = sequence.last
end

is_empty: BOOLEAN -- Is the stack empty?

do

ensure

definition: Result = sequence.is_empty
end

new -- Instantiating a stack

do

ensure

a3: is_empty
definition: sequence.is_empty

end

is_equal (other: STACK_SEQUENCE_IMPLEMENTATION [G]): BOOLEAN -- Redefining equality

do

ensure then

definition: Result = (sequence.count = other.sequence.count and then

(across 1 |.. | sequence.count as i all sequence[i.item] = other.sequence[i.item] end))
end

end

Figure 8.10: Abstract model of stacks as sequences.

8.6. PROVING CONTRACTS COMPLETENESS 71

in a nutshell. The STACK_SEQUENCE_IMPLEMENTATION class is the abstract model of stacks
from the EiffelBase2 standpoint. EiffelBase2 equips classes implementing stacks with
the sequence attribute and strengthens postconditions of the implementation features in
terms of it. Class MML_SEQUENCE cannot be instantiated into any run time objects and
exists only for verification purposes: it maps to the data structure representing math-
ematical sequences in the underlying proving engine. The sequence attribute is further
connected to meaningful data structures by means of abstraction and refinement tech-
niques [Hoa72]. Work [PTF18] gives more implementation details.

In Figure 8.10, the implementation features are formally defined with assertions
over the sequence attribute (marked with the “definition” tag) added to the features’
postconditions. The comparison feature is_equal is redefined so that two stacks are
considered equal if and only if the sequences representing them are equal. Two se-
quences are considered equal if and only if their sizes are equal and they contain same
objects. The feature extended models a sequence where an object is appended to the
target sequence on to which the feature is invoked; feature but_last models the target
sequence, but without the last element; feature last models the element added to the
target sequence last; feature is_empty models the indication whether the target sequence
is empty or not; finally, feature count models the size of the target sequence.

Mathematical concepts from MML are abstract, but they still form particular repre-
sentations in EiffelBase2, though mathematically precise. The concept of model-based
contracts helps to specify complete contracts, but does not say how to rigorously check
contracts with representations for completeness. Furthermore, it fails to define what
complete contracts are. The notion of specification drivers bridges this gap. All the
specification drivers derived in the present chapter are expressed in terms of the origi-
nal ADT specification (Section 8.4.1) plus the abstract equivalence (Section 8.4.2 and
Section 8.4.3), whose presence is inevitable due to the nature of computing which al-
lows programs to keep in their memory several instances of one and the same abstract
object. They do not require making any assumptions about possible representations
and enable defining complete contracts precisely.

8.6 Proving contracts completeness
It is possible to give a manual proof of completeness of the contract depicted in Fig-
ure 8.10. Fortunately, this work may be done automatically. This advantage makes it
possible to apply the specification drivers approach to legacy implementations. Indeed,
if there is a source code project with a number of classes in it, then it is possible to de-
vise an additional class, write all the applicable specification drivers into it and submit
the resulting class to the prover. Instead of showing how to derive complete contracts
having a set of specification drivers from scratch, we show how to apply the approach
to existing contracts.

The EiffelBase2 library seems to be a natural choice for the experiment. The library
contains a complete implementation of stacks specified as mathematical sequences.
The corresponding implementation class is V_LINKED_STACK. In order to perform the ex-
periment, it is necessary to take the stacks specification drivers from Section 8.4 and
modify them so that the name of the implementation class would be V_LINKED_STACK in-

72 CHAPTER 8. MAKING CONTRACTS COMPLETE

extend_is_well_defined (s1, s2: V_LINKED_STACK [G]; x: G)
require

s1.is_wrapped
s2.is_wrapped
s1.observers.is_empty
s2.observers.is_empty
modify([s1, s2])
s1.is_equal (s2)

do

s1.extend (x)
s2.extend (x)

ensure

s1.is_equal (s2)
end

Figure 8.11: Specification driver for verifying by AutoProof.

stead of STACKS_IMPLEMENTATION. The specification driver axiom_a4 comes with a pitfall:
the V_LINKED_STACK class does not introduce its own creation feature, but redefines the
default creation feature defined for all classes. Hence, the create Result.new instruction
is not applicable here; one should use create Result instead. After these modifications,
the specification drivers should successfully compile and be ready for verification.

The initial verification attempt using AutoProof will result in numerous precondi-
tion violations. As Section 8.5 suggests, the verification methodology [Pol+14] be-
hind AutoProof assumes writing additional non-stack related assertions. For example,
the extend_is_well_defined specification driver can be verified by AutoProof only in the
form depicted in Figure 8.11. The five assertions in the beginning of the require pre-
condition clause seem to be worth explaining them briefly. The s1.is_wrapped assertion
says that reference s1 is assumed to be non-void and not participating in any call; the
s1.observers.is_empty assertion says that the set of objects interested in the state of s1

should be empty – it is a part of the precondition of feature extend of class V_LINKED_STACK;
finally, the modify([s1, s2]) assertion is a frame specification: it says that the enclosing
feature, extend_is_well_defined in this case, is going to modify objects referenced by s1

and s2 (square brackets [] denote set constants in Eiffel). The precondition needs the
modify assertion because the extend_is_well_defined feature uses feature invocations with
side effects, extend in this case, on references s1 and s2. Although the verification fail-
ures caused by the absence of these assertions do not bear any relation to stacks, they
uncover certain weaknesses in the verification methodology: namely, the defaults do
not seem sufficiently reasonable. For example, a violation of the s1.is_wrapped assertion
would detect a callback situation, and callbacks are not so common as to assume them
by default. The observers.is_empty requirement makes extending stack objects applica-
ble only in situations when no other objects depend on their states. The modify frame
specification may be generated automatically based on the presence of invocations with
side effects in the implementation body.

After complementing the specification drivers with all necessary assertions related
to verification methodology and rerunning AutoProof, it uncovers some stack-related
issues. This is visible from the fact that this time the verification errors come from

8.7. SUMMARY 73

the postconditions. Namely, AutoProof fails to prove correctness of all the verification
drivers from classes EQUIVALENCE_SPECIFICATION_DRIVERS and
WELL_DEFINEDNESS_SPECIFICATION_DRIVERS as well as verification driver axiom_a2 from the
ADT_AXIOMS_SPECIFICATION_DRIVERS class. As all of these specification drivers involve im-
plementation feature is_equal, the first guess is that V_LINKED_STACK does not redefine it.
This guess appears to be right: the class defines its own custom feature for comparing
run time objects, but does not redefine the standard comparison feature in terms of the
new one. Giving this flaw’s fix here would not bring much value to the discussion,
so it seems better to move on. After redefining feature is_equal, AutoProof succeeds
in proving classes ADT_AXIOMS_SPECIFICATION_DRIVERS and EQUIVALENCE_SPECIFICATION_DRIVERS

completely, but still fails to prove specification driver new_is_well_defined from the
WELL_DEFINEDNESS_SPECIFICATION_DRIVERS class. As this specification driver uses the is_empty

implementation feature, it falls under suspicion. Apparently, its postcondition does not
have a clause corresponding to the definition clause in its abstract model in Figure 8.10.
After fixing this flaw, everything verifies successfully, including the V_LINKED_STACK im-
plementation class.

8.7 Summary
The chapter makes the following main contributions:

• Presents the notion of specification driver for encoding ADT axioms, which are
not possible to encode using traditional DbC techniques.

• Illustrates the process of axiomatizing abstract equivalence using the new ap-
proach.

• Introduces an exhaustive definition of contract completeness.

• Demonstrates how to apply completeness checks to legacy implementations.

The new approach allows adding, changing or removing ADT axioms at any given
moment of the development process without necessarily modifying the implementa-
tion classes. Although specification drivers occupy separate classes completely disjoint
from implementation classes, they are simultaneously expressed in terms of objects in-
stantiated from the implementation classes. The result is a seamless integration of soft-
ware axiomatization and implementation driven by automatic verification of functional
correctness. Attempts to check specification drivers can uncover weak postconditions
of implementation features. Once strengthened, these postconditions potentially yield
firmer executable instructions.

In light of the presence of different kinds of specification drivers described in Sec-
tion 8.4 it seems feasible to propose the following changes to the Eiffel Verification
Environment tool set:

• Develop a template for fast creation of classes intended to keep specification
drivers.

74 CHAPTER 8. MAKING CONTRACTS COMPLETE

• Automate generation of specification drivers for equivalence and well-
definedness.

• Revise verification methodology underlying AutoProof: specification drivers are
a new syntactical specification construct, which may remove some verification
challenges.

Work [Mey13] introduces the notion of multirequirements, and Chapter 7 illustrates
how to apply this notion in practice. The underlying idea is that a separate item in a
software requirements document should be expressed using several interwoven nota-
tions, e.g. natural language, graphical form and formal notation. For the formal nota-
tion, it was suggested to use a rather expressive programming language. The present
chapter talks about expressing ADT axioms in a programming language with pre- and
postconditions. Since ADT specifications are one of the languages for expressing soft-
ware requirements, it makes sense to revisit the original multirequirements approach to
see how the idea of specification drivers could improve it.

Chapter 9

Making Contracts Consistent

Existing techniques of Design by Contract do not prevent developers from specifying
inconsistent contracts. Any attempt to write a program to meet an inconsistent contract
will fail, leading to wasted resources. In the present chapter we describe a technique
for catching inconsistent contracts in the development time. Applying the technique
may save projects’ resources and lower the likelihood of failure.

9.1 Introduction
In the world of program correctness, it takes two to tango: a specification and imple-
mentation. A program is correct if the implementation satisfies the specification. If
they do not match, the program is incorrect. In general, work on program verification
takes the specification for granted and blames any fault on the implementation. But it is
possible to write a specification that no implementation can satisfy. Given the routine
contract

require

a > 0
ensure

b > old a

b <0

one cannot implement the routine, since it would have to yield a value of b that is
both negative and greater than the positive initial value of a. Little work has addressed
the issue of “wrong” specifications, perhaps because the general notion of “wrong”
is difficult to define and assess: wrong with respect to what? Most likely to another,
higher-level specification, but this is just an escalation of the problem. As the example
suggests, however, a specific case of “wrong” does not raise this problem: a specifica-
tion can be inconsistent, hence impossible to implement. Then we want to know right
away; and even if we have written an implementation and the verification process –
inevitably – cannot prove it correct, it should direct us to looking for the bug where it
lies: in the specification. This chapter presents a technique to find out automatically
that a specification is inconsistent.

75

76 CHAPTER 9. MAKING CONTRACTS CONSISTENT

Empirical studies of contracted programs reveal that the problem is not limited to
artificial examples such as this one, but in fact arises widely in practice. Ciupa et al
[Ciu+11] (also [Ciu+08], [Mey+07]), in their studies of bugs in contracted programs,
found that an astounding 62.42% of contract violations during random testing of their
program sample resulted from incorrect specifications (rather than incorrect implemen-
tations), although they do not state which ones are inconsistencies.

The technique presented here, enjoying automatic tool support thanks to the Au-
toProof verification environment [Tsc+15], is powerful enough to catch the following
inconsistencies in classes with a contract:

• Inconsistency of the invariant, which results in impossibility to have instances of
the class (Section 9.3).

• Inconsistency of a routine’s postcondition, which invalidates the client’s state
after calling a routine (Section 9.4).

• Inconsistency of a routine’s precondition, which makes calling the routine of the
class impossible (Section 9.5).

The approach also handles some nuances related to non-exported routines, which may
be called only in the non-qualified way (Section 9.6).

9.2 Why detect?
If a contract is inconsistent, this will eventually become apparent in any case. For
example, if a class has an inconsistent invariant, it will not be possible to develop a
correct creation procedure: all creation procedures must establish the class invariant
on their completion [Mey92]. If a routine’s precondition is inconsistent, no client of
the class will be able to call the routine. If the precondition is satisfiable, but the
postcondition is not, the outcome will be like the one for an inconsistent invariant: no
one will be able to implement the routine correctly.

The biggest problem with this trial and error approach is the waste of resources: it
may take multiple man-hours before the developer understands that the specification
is not implementable at all. We describe an alternative approach, capable of catching
inconsistencies before they turn into problems.

9.2.1 Example
To illustrate our approach, we use a class that describes an ordered triple of integers
(Figure 9.1), in which the order is represented by the class invariant. From the descrip-
tion of the approach it will be visible that it scales to classes of unlimited complexity,
which is why it does not seem bad to pick an artificial and simplified example. There
are no inconsistencies in the INTEGER_TRIPLE class’ contract, which consists only of the
invariant yet. Throughout the chapter we extend the example, intentionally introduce
various inconsistencies to it and show how to detect them.

All the experiments are reproducible in the Eiffel verification environment [Tsc+11].

9.3. CLASS INVARIANTS 77

class INTEGER_TRIPLE

feature

a, b, c: INTEGER
invariant

a > b

b > c

end

Figure 9.1: Example: an ordered triple of integers.

9.2.2 The basic idea
If there is an inherent inconsistency in either the signature, the precondition, or the
execution part, it should be possible to prove the following specification driver (Chap-
ter 8):
routine (ARGS)
require

pre(ARGS)
do

execution(ARGS)
ensure

False

end

This equation basically encodes a proof by contradiction of a potential inconsistency:
prove false, assuming the possibility to use routine, pre and execution together. If the
assumption is a logical contradiction, the prover will accept the proof.

We successively examine how to apply this general form to express and prove in-
consistency of invariants (Section 9.3), postconditions (Section 9.4) and preconditions
(Section 9.5). The examples are written in Eiffel and checked with AutoProof.

9.3 Class Invariants
A class invariant is a property that applies to all instances of the class, transcending its
routines [Mey92]. From this definition, an immediate conclusion follows: if the class
invariant is inconsistent, then no objects can have it as their property. This conclusion
leads us to the following definition.

Definition 9.3.1 Class TARGET_CLASS has an inconsistent invariant, if, and only if, the
following specification driver is provable:

class_invariant (n: TARGET_CLASS)
do

ensure

False

end

The class_invariant routine represents a proof by contradiction, in which the proof
assumption is that there can be an object of TARGET_CLASS. If its invariant is inconsistent,

78 CHAPTER 9. MAKING CONTRACTS CONSISTENT

class INTEGER_TRIPLE

feature

a, b, c: INTEGER
invariant -- The assertions below cannot hold together.

a > b

b > c

c > a

end

Figure 9.2: Example of an inconsistent invariant.

note explicit: wrapping
deferred class INTEGER_TRIPLE_CONTRADICTIONS

feature

class_invariant (n: INTEGER_TRIPLE)
do

ensure

False

end

end

Figure 9.3: Proof of the INTEGER_TRIPLE invariant inconsistency.

then existence of such an object is not possible in principle, and assuming the opposite
should lead to a contradiction. If AutoProof accepts the class_invariant specification
driver, then TARGET_CLASS has an inconsistent invariant.

Assume an artificial inconsistency in the invariant of the INTEGER_TRIPLE class (Fig-
ure 9.2). Following from the transitivity of the > relation on integers, the last assertion
is inconsistent with the first two. According to the Definition 9.3.1, it is necessary to
encode the corresponding specification driver and submit it to AutoProof; but a speci-
fication driver must exist in some class, which is a minimal compilable program con-
struct in Eiffel. Assume there is such a class, INTEGER_TRIPLE_CONTRADICTIONS (Figure 9.3).
If the class compiles, the next step is to submit the proof to AutoProof1. AutoProof
accepts the proof (Figure 9.4), from which we conclude the existence of an inconsis-
tency in the invariant of the INTEGER_TRIPLE class. Removal of the problematic assertion
from the invariant makes AutoProof reject the class_invariant proof (Figure 9.5). For
the remaining examples, you can download AutoProof and check them locally.

9.4 Postconditions
According to the principles of Design by Contract [Mey92], a routine will never com-
plete its execution, if it fails to assert its postcondition; consequently, to express the
contradiction, the corresponding specification driver needs to assume the termination

1The note explicit: wrapping expression in the first line of the class is a verification annotation for
AutoProof [Pol+14]; its meaning is not related to the ideas under the discussion.

9.4. POSTCONDITIONS 79

Figure 9.4: Proving an inconsistency of the invariant.

Figure 9.5: Failure to find an inconsistency in the invariant.

80 CHAPTER 9. MAKING CONTRACTS CONSISTENT

class INTEGER_TRIPLE

feature

a, b, c: INTEGER
move_c

do

ensure -- The assertions below cannot hold together with the invariant

a = old a

b = old b

c = 2 ∗ a − old c

end

invariant

a > b

b > c

end

Figure 9.6: A command with an inconsistent postcondition.

and assert False in its postcondition. Two definitions follow for commands (Sec-
tion 9.4.1) and functions (Section 9.4.2); the definitions differ according to the ways in
which clients use commands and functions.

9.4.1 Commands
Commands are state-changing routines, which is why clients can use command calls
only in routines’ bodies, not in contracts. To prove the inconsistency of a command’s
postcondition, it is necessary to assume that it is possible to call the command and
continue execution of the program.

Definition 9.4.1 An exported command c with a precondition pre and a list of formal
arguments ARGS from class TARGET_CLASS has an inconsistent postcondition, if, and only
if, the following specification driver is provable:

c_post (t: TARGET_CLASS; ARGS)
require

t.pre (ARGS)
do

t.c (ARGS)
ensure

False

end

This is a proof by contradiction in which the assumption is the possibility to call
the c command so that the execution reaches checking the postcondition of c_post. If
the postcondition of c is inconsistent alone or is not consistent with the invariant of
TARGET_CLASS, the execution will stop right after the call, and the outer postcondition will
never be checked.

Assume the task is to implement command move_c that should somehow change the
value of the c attribute in the INTEGER_TRIPLE class:

9.4. POSTCONDITIONS 81

note explicit: wrapping
deferred class INTEGER_TRIPLE_CONTRADICTIONS

feature

move_c_post (n: INTEGER_TRIPLE)
require

modify (n)
do

n.move_c
ensure

False

end

end

Figure 9.7: Specification driver for detection of the move_c command’s inconsistent
postcondition.

The last line in the postcondition of the move_c command makes the value of c bigger
than that of a, which is not consistent with the invariant.

The move_c_post specification driver (Figure 9.7) reflects a proof by contradiction of
the inconsistency2.

AutoProof accepts the move_c_post specification driver, from which one can see the
presence of an inconsistency in the postcondition of move_c; removal of its last line will
make AutoProof rejecting the proof.

9.4.2 Functions
Functions are state-preserving value-returning routines, which may be used in other
routines’ pre- and postconditions. To prove by contradiction inconsistency of a func-
tion’s postcondition, it is necessary to assume that the function can produce some value.

Definition 9.4.2 An exported function f with a return type T, precondition pre, and a
list of formal arguments ARGS from class TARGET_CLASS has an inconsistent postcondition,
if, and only if, the following specification driver is provable:

f_post (t: TARGET_CLASS; ARGS; res: T)
require

t.f (ARGS) = res

do

ensure

False

end

If the postcondition of f is inconsistent alone, or is not consistent with the class
invariant, it will never return any result. The require block in the Definition 9.4.2 states
the opposite: there is some value res of type T, such that it equals the value of the
function; this statement is the assumption of the proof by contradiction.

2The modify(n) expression inside the require block is a frame specification for AutoProof [Pol+14].

82 CHAPTER 9. MAKING CONTRACTS CONSISTENT

class INTEGER_TRIPLE

feature

a, b, c: INTEGER
diff_ab: INTEGER
do

ensure -- The assertions below cannot hold together with the invariant

Result = b − a

Result > 0
end

invariant

a > b

b > c

end

Figure 9.8: A function with an inconsistent postcondition.

note explicit: wrapping
deferred class INTEGER_TRIPLE_CONTRADICTIONS

feature

diff_ab_post (n: INTEGER_TRIPLE; diff: INTEGER)
require

n.diff_ab = diff

do

ensure

False

end

end

Figure 9.9: Specification driver for detection of a function with an inconsistent post-
condition.

Assume the task is to implement a function diff_ab that returns the difference b − a

between a and b. From the invariant of INTEGER_TRIPLE, one can see that this difference
should always be negative, but the developer may confuse operators > and <, in which
case the postcondition of diff_ab becomes inconsistent (Figure 9.8).

Specification driver diff_ab_post (Figure 9.9) reflects the proof by contradiction cor-
responding to the given example. AutoProof accepts diff_ab_post, thus disclosing the
presence of an inconsistency.

9.5 Preconditions
Precondition of a routine constitutes requirements that every client has to meet to call
the routine. If a precondition is inconsistent, no client will be able to meet it.

Definition 9.5.1 An exported routine callable with precondition pre and list of formal
arguments ARGS from class TARGET_CLASS has an inconsistent precondition, if, and only if,
the following specification driver is provable:

9.5. PRECONDITIONS 83

class INTEGER_TRIPLE

feature

a, b, c: INTEGER
move_c

require

diff_ab > 0 -- Cannot hold together with the invariant

do

ensure

a = old a

b = old b

end

diff_ab: INTEGER
do

ensure

Result = b − a

end

invariant

a > b

b > c

end

Figure 9.10: The move_c command with an inconsistent precondition.

note explicit: wrapping
deferred class INTEGER_TRIPLE_CONTRADICTIONS

feature

move_c_pre (n: INTEGER_TRIPLE)
require

n.diff_ab > 0
do

ensure

False

end

end

Figure 9.11: Specification driver for catching the inconsistent precondition.

callable_pre (t: TARGET_CLASS; ARGS)
require

t.pre (ARGS)
do

ensure

False

end

Assume the move_c command requires the result of the diff_ab function to be greater
than 0, which is not consistent with the class invariant, according to the postcondition
of diff_ab (Figure 9.10).

The move_c_pre specification driver reflects the Definition 9.5.1 as applied to the
precondition of the move_c command. It has the same precondition as does the move_c

command, where every non-qualified call is replaced with its qualified counterpart; the
target for the call comes from the move_c_pre’s list of formal arguments.

Note that the move_c_post (Figure 9.7) specification driver needs to be updated: the
move_c command now has a precondition that has to be guaranteed by all its callers.

AutoProof discloses the presence of a contradiction by accepting the move_c_pre

specification driver.

84 CHAPTER 9. MAKING CONTRACTS CONSISTENT

9.6 Non-exported routines
A non-exported routine is a routine that cannot be invoked using a qualified call [Mey09].
Consequently, the definitions, which were presented so far, are not applicable to non-
exported routines: those definitions rely on the ability to do qualified calls. The present
section gives definitions applicable to non-exported routines.

Definition 9.6.1 The non-exported command c with precondition pre and list of formal
arguments ARGS has an inconsistent postcondition, if, and only if, the following specifi-
cation driver is provable:

c_post (ARGS)
require

pre (ARGS)
do

c (ARGS)
ensure

False

end

Definition 9.6.2 The non-exported function f with return type T, precondition pre, and
list of formal arguments ARGS, has an inconsistent postcondition, if, and only if, the
following specification driver is correct:

f_post (ARGS; res: T)
require

f (ARGS) = res

do

ensure

False

end

Definition 9.6.3 The non-exported routine r with precondition pre and list of formal
arguments ARGS has an inconsistent precondition, if, and only if, the following specifi-
cation driver is correct:

r_pre (ARGS)
require

pre (ARGS)
do ensure False end

In Definition 9.6.1, Definition 9.6.2, and Definition 9.6.3 the routine calls do not
have targets, which means the calls can occur only in the class where the routines are
defined or in one of its descendants. [Mey09].

Assume the INTEGER_TRIPLE class with all its routines non-exported (Figure 9.12),
which is denoted by the {NONE} specifier next to the feature keyword. For such an ex-
ample, the specification drivers class may be a descendant of the INTEGER_TRIPLE class so
that it will be able to call its routines in the unqualified way (Figure 9.13).

9.6. NON-EXPORTED ROUTINES 85

class INTEGER_TRIPLE

feature {NONE}
a, b, c: INTEGER
move_c

require

diff_ab > 0
do

end

diff_ab: INTEGER
do

end

end

Figure 9.12: The INTEGER_TRIPLE class with all the features non-exported.

note explicit: wrapping
deferred class INTEGER_TRIPLE_CONTRADICTIONS

inherit INTEGER_TRIPLE

feature {NONE}
move_c_post

require

diff_ab > 0
do

move_c

ensure

False

end

diff_ab_post (res: INTEGER)
require

diff_ab = res

do

ensure

False

end

move_c_pre

require

diff_ab > 0
do

ensure

False

end

end

Figure 9.13: Specification drivers for detection of contradictions in the non-exported
routines.

86 CHAPTER 9. MAKING CONTRACTS CONSISTENT

9.7 Related Work

The problem of inconsistent specifications receives noteworthy attention in
Z ([ASM80]). Without an explicit syntactical separation of Z assertions into pre- and
postconditions and in the absence of an imperative layer, it is not clear how to apply the
techniques from the present chapter. Detection of inconsistencies in Z may occasion-
ally lead to development of complicated theories and tools [MDB02]. We are not aware
of any work specifically targeting detection of inconsistencies in Design by Contract.

The problem of inconsistent contracts may also be viewed through the prism of
liveness properties in concurrency [MK06]:

• An inconsistent class invariant makes the class “non-alive”: it is not even possi-
ble to instantiate an object from the class.

• An inconsistent routine precondition makes the routine never callable.

• An inconsistent routine postcondition leads to its clients’ always crashing after
calling the routine.

9.8 Summary

A strength of the approach is the possibility to employ it for real-time detection of in-
consistencies. Once generated, the specification driver for the invariant (Section 9.3)
never changes; consequently, it is enough to recheck it whenever the invariant changes
and display a warning in the event of successful checking. The same applies to de-
tection of inconsistent pre-/postconditions, with the only difference that it will be nec-
essary to update the preconditions of the corresponding specification drivers in the
event of modifying the routine’s precondition. In any case, such an update amounts
to copying the precondition with possibly adding targets in front of the class’ queries
(Section 9.5).

Another strength of the approach is its applicability. Eve is not the only environ-
ment in which it is possible to write and statically check contracts: there is a similar
environment for .net developers [Bar10], in which the techniques presented here are ap-
plicable. There are several programming languages that natively support contracts, for
which the presented approach is applicable conceptually, but still needs development
of a verifier capable of checking specification drivers.

9.8.1 Limitations of the approach

Results interpretation

In the presented approach, a positive response from the prover means something bad,
which is detection of an inconsistency. This may be misleading: the developer may
think, instead, that everything is correct. This requires fixing, possibly by development
of a separate working mode in AutoProof.

9.8. SUMMARY 87

Precision

The approach shows the presence of a contradiction but does not show its location.
This is not a problem when developing from scratch: background verification may
catch the contradiction as soon as it is introduced. However, if the task is to check
an existing codebase, the only way to locate origins of contradictions seem to be in
commenting/uncommenting specific lines of the contracts.

Frozen classes

The approach for non-exported routines relies on the ability to inherit from the supplier
class. It is not possible to inherit from a class, if it is declared with the frozen specifier
[Mey09]. Nevertheless, it is always possible to apply the technique to exported routines
of the supplier class.

9.8.2 Future work
The present chapter describes the approach conceptually, yet no tools exist that could
generate and check the necessary proofs automatically. Two main possibilities exist in
this area:

• Build a contradiction detection functionality into AutoProof, without letting de-
velopers see the proofs.

• Develop a preprocessing engine on the level of Eiffel code that would generate
classes with proofs for checking them with AutoProof in its current state.

Apart from automating the approach, it seems reasonable to investigate whether the
proof by contradiction technique may be of any help with other problems of program
verification.

88 CHAPTER 9. MAKING CONTRACTS CONSISTENT

Chapter 10

Seamless Requirements

Popular notations for functional requirements specifications often ignore developers’
needs, target specific development models, or require translation of requirements into
tests for verification; the results can give out-of-sync or downright incompatible arti-
facts. Seamless Requirements, a new approach to specifying functional requirements,
contributes to developers’ understanding of requirements and to software quality re-
gardless of the process, while the process itself becomes lighter due to the absence
of tests in the presence of formal verification. A development case illustrates these
benefits, and a discussion compares seamless requirements to other approaches.

10.1 Introduction
Seamless Requirements is a technique to close the various gaps that have long plagued
the practice of software requirements:

• The gap between customers and developers (Section 10.1.1).

• The gap between agile and formal development (Section 10.1.2).

• The gap between construction and verification (Section 10.1.3).

To reach this goal, seamless requirements build on ideas coming from diverse
sources, including literate programming [Knu84], multirequirements [Mey13], and
formal verification [Tsc+15]. A seamless requirement combines two elements: a con-
tracted self-contained routine, which doubles as a proof obligation, and an associated
natural language comment.

The approach assumes object-oriented non-concurrent setting and does not handle
non-functional requirements.

10.1.1 Customers vs. developers
By adding programming languages with contracts to the family of requirements spec-
ification notations, seamless requirements improve developers’ understanding of re-

89

90 CHAPTER 10. SEAMLESS REQUIREMENTS

quirements that typically exist in some declarative form that has nothing to do with
programming.

The modern taxonomy of requirements specification languages ([Lam09, Chap-
ter 4 “Requirements Specification and Documentation”]) provides a number of formal
and semi-formal notations, and programming languages are not a part of this taxon-
omy. This implicitly isolates people (customers) who state requirements from people
(developers) who implement them. As soon as the customers elicit and document re-
quirements, demonstrate some “good” properties of the requirements within the chosen
notation, the developers will have to map the notation into the semantics of the target
programming language. Is there any way to check the translation at the same level of
rigor used to derive those “good” properties of the requirements? Some approaches
advocate modeling software at different angles using different notations to ensure its
proper understanding by developers, but such an approach raises the problem of poten-
tial inconsistency between the views.

Seamless requirements express software functionality using the language best un-
derstood by developers: the programming language. The idea is not new [Mey13],
but its implementation is (Section 10.5.6 gives more details). A seamless requirement
is a compilable contracted self-contained routine – specification driver (Section 8.3)
– equipped with a structured natural language comment. The comment delivers the
meaning of the requirement to the customers, and the program construct – to the devel-
opers. Specification drivers are expressive enough to fully capture algebraic specifica-
tions (Section 8.4), and exercising their expressiveness is a driving force of the present
research.

The idea of combining formal and natural language descriptions is present in goal-
oriented requirements engineering [Lam01], but the approach does not consider a pro-
gramming language as a formal notation.

10.1.2 Agile vs. formal development
By nature both self-contained and formal, seamless requirements boost reliability of
software produced using agile processes.

Compatibility of agile development and formal methods has long been a concern
for software engineers ([TFR14], [Bla+09]), including those developing mission and
life-critical software ([DNR04], [SA07]). The studies have something in common:
their main concern is integration of agile practices into development of software that
has to be reliable and is currently developed using some conservative process. In the
same time there is a lack of research that studies applicability of formal methods to
agile development of not so critical mass-market software for increasing its reliability.
This problem is among the concerns of the seamless requirements approach.

In agile development a functional requirement typically takes a form of a scenario
describing user interaction with the to-be software. The scenario is then translated into
a set of unit tests for ensuring functional correctness of the software with respect to
the scenario. Scenarios and unit tests naturally fit the agile philosophy of frequently
delivering software in small increments: they both are self-contained information units
suitable for grouping into arbitrary sized sets. It is the very nature of tests that limits
the level of formality in agile development: they exercise only a subset of the possible

10.2. MOTIVATING EXAMPLE 91

execution paths. Although there are scientific approaches for making a test suit cover
the software well enough, agile methods do not consider tests as a very important
artifact and do not advocate improving tests coverage too much.

Seamless requirements replace unit tests with specification drivers, testing with
formal verification, and move structured natural language scenarios to comments on
specification drivers. Specification drivers can capture scenarios in their abstract form
(as opposed to unit tests), which is why it makes sense to conjoin them. The resulting
requirement form keeps the fine granularity of tests and scenarios, while being mathe-
matically formal.

10.1.3 Construction vs. verification
Seamless requirements enable straightforward verification of existing software with
respect to requirements without introduction of intermediate artifacts such as tests.

The modern software mass market rests on testing as the primary mechanism for
checking functional correctness. Although tests are fundamentally imprecise (Sec-
tion 10.1.2), there are scientific approaches to testing that enable production of test
suits having reasonable code coverage with respect to some predefined criteria [Jor08].
Such an approach may be suitable for greenfield software construction, but not always
for verification of existing software that already works somehow. The problem is real:
software quality cannot be higher than that of its least quality component. This means
that, in order to reuse a third-party component, the development team has to make sure
that its quality conforms to the quality standards defined in the project through gener-
ating and running sufficient number of tests on the component. It is not surprising that
such an effort is often considered as waste: why test something that is already on the
market and works instead of putting more effort into construction?

Seamless requirements fix the issue by replacing testing with formal verification
of specification drivers, which are formal and abstract representations of software us-
age scenarios. The only assumption upon which the approach rests is existence of
a contract in the component, which is dictated by modularity of the verification ap-
proach[Tsc+15].

10.2 Motivating example
An example illustrates the idea of seamless requirements. The task is to implement a
clock class that features seconds, minutes, hours, and days of week. The clock state
should be updated through a special command, tick, that advances the seconds counter.
There is also an existing class CLOCK that does not feature the current day of week. The
class is implemented and specified in Eiffel [Mey88]. The implementation is closed:
only a specification in the form of a contract is available. Figure 10.1 contains the
visible part of the class. The frozen specifier prohibits inheriting from the CLOCK class
and thus makes it usable only for instantiating and using its instances. It is also known
that the hidden implementation of the tick command is provably correct with respect to
its postcondition in Figure 10.1, and the correctness was established with the AutoProof
verifier [Tsc+15] for Eiffel programs with contracts.

92 CHAPTER 10. SEAMLESS REQUIREMENTS

frozen class CLOCK

feature

second, minute, hour: INTEGER

tick

do

-- Hidden implementation

ensure

old second≤ 58 implies ((second − old second = 1) and minute = old minute)
old second > 58 implies

(second = 0 and (old minute≤ 58 implies minute − 1 = old minute) and
(old minute > 58 implies

(minute = 0 and (old hour≤ 22 implies hour − old hour = 1)
and (old hour > 22 implies hour = 0))))

end

end

Figure 10.1: The existing clock class.

10.2.1 Existing code

This section takes a closer look at the visible parts of the CLOCK class in Figure 10.1. The
space between the do and ensure keywords of the tick feature would typically contain
executable instructions, which are hidden in this case. Logical assertions between the
ensure and the closest end keyword constitute the postcondition of the feature. The
postcondition logically connects the clock pre-state, which precedes any invocation of
tick, with the post-state, which results from the invocation. The old keyword before
some identifiers denotes values of the respective queries in pre-states. Accordingly,
identifiers that go without the old keyword denote values of the respective queries in
post-states.

Since it is not possible to modify the CLOCK class, it seems reasonable in this context
to implement the required extended class through the composition relation: in the new
class declare a reference to an object of type CLOCK and reuse its functionality. In order
to do so it is necessary to make sure that objects of the existing class, indeed, behave
like a real clock. The extended clock development plan thus consists of the following
major steps:

1. Identifying requirements to an extended clock.

2. Identifying requirements that are applicable to a non-extended clock.

3. Verifying the existing CLOCK class with respect to the requirements for a non-
extended clock.

4. Reusing the existing class in the event of its successful verification.

5. Developing a completely new class otherwise.

10.2. MOTIVATING EXAMPLE 93

A clock tick:

(REQ1) Increments current second if it is smaller than 59.

(REQ2) Resets current second to 0 if it equals 59.

(REQ3) Increments current minute if the time is HH:MM:59 for MM smaller than 59.

(REQ4) Resets current minute to 0 if it equals 59 and current second equals 59.

(REQ5) Keeps current minute if current second is smaller than 59.

(REQ6) Increments current hour if the time is HH:59:59 for HH smaller than 23.

(REQ7) Resets current hour to 0 if the time is 23:59:59.

(REQ8) Keeps current hour if current second is smaller than 59.

(REQ9) Increments current day at 23:59:59 if it is not Sunday.

(REQ10) Resets current day to Monday after a clock tick at 23:59:59 on Sunday.

(REQ11) Keeps current day if current second is smaller than 59.

Figure 10.2: Natural-language requirements to clock.

10.2.2 Natural-language requirements

Implementation of the first two steps of the plan starts with enumeration of the require-
ments in their natural language form in Figure 10.2. Requirements (REQ1)-(REQ8) do
not talk about the current day of week and thus are applicable to the existing imple-
mentation. Requirements (REQ9)-(REQ11) talk about the days counter and thus are
applicable only to the extended implementation. For simplicity, days are represented
with numbers from 0 to 6, where 0 corresponds to Monday, and 6 – to Sunday.

In many cases natural language requirements are less clear and precise than the
ones in Figure 10.2. This particular issue is irrelevant to the present discussion, which
is why the example relies on the assumption that the natural language requirements in
the clock example are of high enough quality.

Step 3 of the plan from Section 10.2.1 is to check whether the CLOCK class meets
requirements (REQ1)-(REQ8). This step, along with steps 4 and 5, is far less trivial
than steps 1 and 2 and raises a number of questions.

10.2.3 Research questions

RQ1

How to express precise semantics of the natural language scenarios (REQ1)-(REQ8)
using programming language constructs?

Natural-language statements in Figure 10.2 are comfortable for reading by human

94 CHAPTER 10. SEAMLESS REQUIREMENTS

beings. This may be not enough, however, for those who will potentially implement
the requirements. Natural language is a source of misinterpretations and ambiguities,
which is why it is not enough to have requirements in this form [Mey85]. What do
statements (REQ1)-(REQ8) mean exactly in terms of the programming language ab-
stractions? It would benefit the software developers to be able to precisely express the
requirements in the programming language that will later be used for their implemen-
tation.

The question does not assume replacement of natural language requirements with
their programmatic counterparts: the goal is to have a representation which would
encompass both views with the possibility of extracting only one of them.

RQ2

How to make each requirement both self-contained and formal?
Requirements (REQ1)-(REQ11) are already self-contained and thus are suitable for

agile development of arbitrary sized increments. How to enrich them with formality
without sacrificing their granularity?

RQ3

How to understand whether the partially available implementation in Figure 10.1
meets requirements (REQ1)-(REQ8)?

It is possible to take requirements (REQ1)-(REQ11) and mentally convert them to a
correct implementation, but the task assumes reuse of the existing class CLOCK in case of
its correctness. How can one prove automatically that it meets requirements (REQ1)-
(REQ8)? The only available part of the CLOCK class is its contract – the postcondition
of command tick. It is also known that the hidden implementation of tick provably
meets its postcondition. The question then reduces to the following one: how can one
understand if the postcondition of tick meets requirements (REQ1)-(REQ8)?

10.3 Seamless requirements
Figure 10.3 contains the (REQ1) requirement in the form of a seamless requirement
– a contracted routine with a natural language comment1. The comment contains the
natural language representation of (REQ1) in Figure 10.2. The routine part, together
with the signature and the contract parts, constitutes a proof obligation:
“for any object clock of type CLOCK and any value current_second of type INTEGER, such
that clock.second <59 and clock.second = current_second, an execution of clock.tick results
in clock.second = current_second + 1”. The modify (clock) clause in the precondition limits
side effects of the tick routine: the routine is allowed to modify only the target ob-
ject clock plus any object owned by clock [Pol+14]. It is possible to submit such a
proof obligation to an automatic prover. AutoProof verifier fulfills this role for Eiffel
programming language used in this example.

1Comments start with a double hyphen -- in Eiffel

10.3. SEAMLESS REQUIREMENTS 95

req_1 (clock: CLOCK; current_second: INTEGER)
-- A clock tick increments current

-- second if it is smaller than 59.

require

modify (clock)
clock.second <59
clock.second = current_second

do

clock.tick
ensure

clock.second = current_second + 1
end

Figure 10.3: Requirement (REQ1) in the seamless form.

The idea to use auxiliary routines with pre- and postconditions for complete spec-
ification of programs was proposed in Chapter 8. The routines are assumed to be ex-
pressed only in terms of their formal arguments. That work introduces a new term
“specification drivers” to denote such routines and shows that they are expressive
enough to fully capture functional semantics of classes. Since specification drivers
are, syntactically speaking, routines, it is possible to comment on them with natural
language statements – the ability to comment on routines is natural for any modern
programming language. A seamless requirement consists of two important parts:

• Specification driver that captures the formal semantics for the requirement.

• Natural-language comment on the specification driver that informally captures
the semantics.

A specification driver is a contracted routine expressed only in terms of its formal
arguments and is understandable to AutoProof as a proof obligation.

The structure of a seamless requirement, together with the properties of specifica-
tion drivers, answers the questions from Section 10.2.3 and ensures the core properties
of seamless requirements, as the following sections illustrate.

10.3.1 RQ1: understandability to developers

Seamless requirements are contracted routines, which are programming language con-
structs understandable to programmers. Natural-language comments on these rou-
tines capture the informal representation of requirements that is understandable to cus-
tomers. This duality makes a seamless requirement understandable to the two principal
groups of stakeholders and semantically connects natural language requirements to the
CLOCK class, thus answering the RQ1 question from Section 10.2.3.

The idea of interweaving natural language prose with programming language con-
structs was first proposed by Knuth in [Knu84]. One of the underlying theses of the
seamless requirements approach is that it makes sense to use the standard commenting
mechanism of the underlying programming language for this purpose.

96 CHAPTER 10. SEAMLESS REQUIREMENTS

10.3.2 RQ2: introducing formality into agile development

As their specification driver components are mathematically precise, seamless require-
ments do not accumulate ambiguity. Specification drivers are expressed completely in
terms of their formal arguments, which is why they are also self-contained. The com-
bination of the two properties benefits agile development with formality and does not
interfere with its incrementality.

10.3.3 RQ3: utility for development activities

A seamless requirement is a natural language statement and, at the same time, is a
proof obligation. Consequently, to prove correctness of an implementation with respect
to a natural language requirement is to extend this requirement to the seamless form
and then try to prove its proof obligation part. The approach also contributes to the
following development activities.

Requirements documentation

A requirements document becomes an auxiliary class in the same namespace with the
implementation classes. Since seamless requirements are self-contained routines, there
is no place for a naming conflict in the event of putting together multiple seamless
requirements within a single class. Section 10.4.1 illustrates this concept on the clock
example.

Specification validation

Seamless requirements, being proof-obligations understandable to AutoProof, intro-
duce the notion of proving a requirement. Verification by AutoProof is modular: for
example, for proving the req_1 requirement in Figure 10.3 AutoProof will use only the
postcondition of the tick command. The modularity means that it is possible to verify
a program with a hidden implementation with respect to a seamless requirement, when
only a contract of the program is available. Section 10.4.2 illustrates the validation
process for the existing CLOCK class.

Specification inference

It is possible to use seamless requirements for proof-driven development of programs
from scratch. The automatic prover drives the process in this case. To infer a specifi-
cation from a set of seamless requirements is to equip the implementation classes with
contracts strong enough to prove the requirements. Once the requirements pass verifi-
cation by AutoProof, the development process switches to the implementation phase.
To infer an implementation from a specification is to implement all the implementation
classes correctly with respect to their contracts [Mey97]. The correctness is proved
with the same verifier.

10.3. SEAMLESS REQUIREMENTS 97

note explicit: wrapping -- For AutoProof.

deferred class CLOCK_REQUIREMENTS

feature

-- A clock tick:

req_1 (clock: CLOCK; current_second: INTEGER)
-- increments current second if it is

-- smaller than 59.

require

modify (clock)
clock.second <59
clock.second = current_second

do

clock.tick
ensure

clock.second = current_second + 1
end

req_2 (clock: CLOCK)
-- resets current second to 0 if it

-- equals 59.

require

modify (clock)
clock.second = 59

do

clock.tick
ensure

clock.second = 0
end

req_3 (clock: CLOCK; current_minute: INTEGER)
-- increments current minute if the time

-- is HH:MM:59 for MM smaller than 59

require

modify (clock)
clock.second = 59
clock.minute <59
clock.minute = current_minute

do

clock.tick
ensure

clock.minute = current_minute + 1
end

req_4 (clock: CLOCK)
-- resets current minute to 0 if it equals

-- 59 and the current second equals 59.

require

modify (clock)
clock.second = 59
clock.minute = 59

do

clock.tick
ensure

clock.minute = 0
end

req_5 (clock: CLOCK; current_minute: INTEGER)
-- keeps current minute if current

-- second is smaller than 59.

require

modify (clock)
clock.second <59
clock.minute = current_minute

do

clock.tick
ensure

clock.minute = current_minute

end

req_6 (clock: CLOCK; current_hour: INTEGER)
-- increments current hour if the time

-- is HH:59:59 for HH smaller than 23.

require

modify (clock)
clock.second = 59
clock.minute = 59
clock.hour <23
clock.hour = current_hour

do

clock.tick
ensure

clock.hour = current_hour + 1
end

req_7 (clock: CLOCK)
-- resets current hour to 0 if the time

-- is 23:59:59

require

modify (clock)
clock.second = 59
clock.minute = 59
clock.hour = 23

do

clock.tick
ensure

clock.hour = 0
end

req_8 (clock: CLOCK; current_hour: INTEGER)
-- keeps current hour if current second

-- is smaller than 59.

require

modify (clock)
clock.second <59
clock.hour = current_hour

do

clock.tick
ensure

clock.hour = current_hour

end

end

Figure 10.4: The seamless requirements document corresponding to (REQ1)-(REQ8).

98 CHAPTER 10. SEAMLESS REQUIREMENTS

Figure 10.5: Eiffel Verification Environment with the AutoProof pane.

10.4 Seamless requirements in practice
Section 10.4.1 and Section 10.4.2 implement step 3 of the development plan from Sec-
tion 10.2.1 by verification of the existing class in Figure 10.1 with respect to require-
ments (REQ1)-(REQ8). Section 10.4.3 and Section 10.4.4 use the verification results
as input. The resulting artifacts are publicly available on GitHub [Naub].

10.4.1 Requirements documentation
The first step is to document requirements (REQ1)-(REQ8) in the seamless form. Fig-
ure 10.4 contains the respective requirements class2. The deferred keyword means that
the class is not implemented: it is not possible to instantiate any objects from it.

Since a seamless requirements document is a class, such techniques as inheritance
are applicable to it. For example, if a new set of requirements arrives, it is not necessary
to add them to the CLOCK_REQUIREMENTS class. It is possible to create a subclass where only
new requirements are enumerated, and the old ones will be inherited automatically.
Section 10.4.4 illustrates this approach on the clock example.

The CLOCK_REQUIREMENTS class is provable by AutoProof: to prove it is to prove each
of the seamless requirements it contains. Section 10.4.2 describes the meaning of this
process.

10.4.2 Specification validation
To prove correctness of the CLOCK class with respect to requirements (REQ1)-(REQ8) is
to execute AutoProof on the CLOCK_REQUIREMENTS class. Verification by AutoProof is mod-
ular: verification of a requirements class does not need access to the implementation
classes’ internals, only to their contracts. AutoProof assumes that these implementa-
tions meet their respective contracts.

2The “note explicit: wrapping” expression at the top of the class is a verification annotation [Pol+14] not
related to the example.

10.4. SEAMLESS REQUIREMENTS IN PRACTICE 99

class CLOCK

feature

second, minute, hour: INTEGER

tick

do

-- To implement

ensure

-- To specify

end

end

Figure 10.6: Blank clock implementation.

Figure 10.5 contains a screenshot of Eiffel verification environment (Eve) [Tsc+11]
with an AutoProof pane on the right side. The AutoProof pane contains the results of
verifying the CLOCK_REQUIREMENTS class. Apparently, the postcondition of the tick feature
in Figure 10.1 is insufficiently strong to meet the (REQ8) requirement. Although the
hidden implementation of the CLOCK class is known to meet its contract, it is possible for
the implementation not to meet the requirements. Double-clicking the red line in the
AutoProof pane retargets Eve to the req_8 routine, which represents the seamless form
of (REQ8).

Since the specification of CLOCK failed validation with respect to requirements, step
5 of the development plan from Section 10.2.1 becomes active. This step consists of
developing a completely new CLOCK class. Section 10.4.3 describes development of the
regular clock functionality (REQ1)-(REQ8), and Section 10.4.4 incrementally extends
it with the days counter functionality (REQ9)-(REQ11). The starting point is a blank
class CLOCK in Figure 10.6, which does not have any contract or executable instructions.
It only declares the clock features so that the requirements class in Figure 10.4 could
compile.

10.4.3 Increment 0: the basic functionality

This section describes development of the basic clock functionality increment. The
development occurs as follows: once all requirements for the increment are collected,
software specification is inferred from them; then, an implementation is inferred to
meet the specification. The present section illustrates how application of seamless
requirements may facilitate the transitions between the adjacent phases with the help
of AutoProof. Section 10.4.3 describes inference of a correct CLOCK specification based
on the seamless requirements from the CLOCK_REQUIREMENTS class. Section 10.4.3 infers
an implementation of the CLOCK class that meets the inferred specification.

Specification inference

Figure 10.7 depicts a postcondition of the tick feature, which meets the
CLOCK_REQUIREMENTS class, so that the latter passes verification by AutoProof. How can

100 CHAPTER 10. SEAMLESS REQUIREMENTS

tick

do

-- To implement

ensure

old second <59 implies second = old second + 1
old second = 59 implies second = 0
old second = 59 and old minute <59 implies minute = old minute + 1
old second = 59 and old minute = 59 implies minute = 0
old second <59 implies minute = old minute

old second = 59 and old minute = 59 and old hour <23 implies hour = old hour + 1
old second = 59 and old minute = 59 and old hour = 23 implies hour = 0
old second <59 implies hour = old hour

end

Figure 10.7: Postcondition of tick that meets req_1-req_8.

one infer postconditions from seamless requirements? This problem does not seem to
be solvable in the general case; however, the seamless requirements from the
CLOCK_REQUIREMENTS class possess some common properties:

• Each of them involves only one feature call.

• Each of them involves only one object of type CLOCK.

• The tick feature does not have formal parameters.

These observations enable application of the following inference logic. The resulting
assertion takes the form of a logical implication. If a seamless requirement involves
some object o: TYPE, then for every expression of the form o.q, where q is a query of class
TYPE, the following rules apply:

• If o.q occurs in the precondition of the requirement, it translates to old q in the
antecedent of the implication.

• If o.q occurs in the postcondition of the requirement, it translates to q in the con-
sequent of the implication.

A requirement may also use an auxiliary formal argument a: SUPPLEMENTARY_TYPE, such as
current_hour: INTEGER in req_6. Assume that the following conditions hold together:

• The precondition of the requirement contains an expression of the form o.p = a.

• The postcondition of the requirement contains an expression of the form o.q = f(a).

In this case these conditions translate to q = f(old p) in the consequent of the resulting
implication.

Each assertion from the postcondition in Figure 10.7 is the result of an application
of these inference rules to the respective seamless requirement.

10.4. SEAMLESS REQUIREMENTS IN PRACTICE 101

tick

do

if second <59 then second := second + 1
else second := 0
if minute <59 then minute := minute + 1
else minute := 0
if hour <23 then hour := hour + 1
else hour := 0
end

end

end

ensure

-- Postcondition assertions

end

Figure 10.8: Implementation of tick that meets req_1-req_8.

Implementation inference

Once there is a contract that meets the requirements class, and the latter passes ver-
ification by AutoProof, it makes sense to proceed to inference of an implementation
that meets the inferred contract. Figure 10.8 contains an implementation of the tick

feature, which is correct with respect to the postcondition in Figure 10.7. As in the
case of specification inference from requirements, the correctness may be established
by an application of AutoProof, but this time it should be executed on the CLOCK class,
which implements the required functionality. The details of the inference process are
omitted because they are studied very well [Mey09] and are irrelevant to the central
idea of behind seamless requirements.

10.4.4 Added functionality

The regular clock functionality was implemented in Section 10.4.3 as one increment.
The present section extends the basic functionality in smaller increments consisting of
one requirement each.

There are three requirements in Section 10.2 that describe the desirable behavior
of the clock with a day counter: (REQ9), (REQ10), and (REQ11). Figure 10.9 shows
them as a part of a requirements class EXTENDED_CLOCK_REQUIREMENTS. This class is inher-
ited from the original CLOCK_REQUIREMENTS class, together with all the existing seamless
requirements, to which it adds its own. In the present section, each of the newly added
requirements corresponds to a separate increment.

Compilation of the new requirements class fails: seamless requirements req_9-
req_11 use feature day, which is not a part of the CLOCK class yet. To fix the compilation
error is to add the respective attribute to the existing list of clock attributes:

second, minute, hour, day: INTEGER

Now that the new requirements class compiles, it is possible to proceed to the first
increment.

102 CHAPTER 10. SEAMLESS REQUIREMENTS

note explicit:wrapping
deferred class EXTENDED_CLOCK_REQUIREMENTS

-- The present class contains requirements

-- for a clock equipped with a days counter.

inherit CLOCK_REQUIREMENTS

feature

-- A clock tick:

req_9 (clock: CLOCK; current_day: INTEGER)
-- increments current day at 23:59:59,

-- if it is not Sunday.

require

modify (clock)
clock.second = 59
clock.minute = 59
clock.hour = 23
clock.day <6
clock.day = current_day

do

clock.tick
ensure

clock.day = current_day + 1
end

req_10 (clock: CLOCK)
-- resets current day to Monday after

-- a clock tick at 23:59:59 on Sunday.

require

modify (clock)
clock.second = 59
clock.minute = 59
clock.hour = 23
clock.day = 6

do

clock.tick
ensure

clock.day = 0
end

req_11 (clock: CLOCK; current_day: INTEGER)
-- keeps current day if current

-- second is smaller than 59.

require

modify (clock)
clock.second <59
clock.day = current_day

do

clock.tick
ensure

clock.day = current_day

end

end

Figure 10.9: The seamless requirements document for extended clock.

10.4. SEAMLESS REQUIREMENTS IN PRACTICE 103

Increment 1

Implementation of the first increment starts with submitting the
EXTENDED_CLOCK_REQUIREMENTS class to formal verification by AutoProof. The new seamless
requirements req_9, req_10 and req_11 fail the verification attempt: the postcondition of
the tick command does not say anything about the day attribute, which has just been
added to the implementation class. We choose to implement the req_9 requirement in
the first increment.

According to the inference rules from Section 10.4.3, it should suffice to strengthen
the postcondition of tick with the following assertion:

old second = 59 and old minute = 59 and old hour = 23 and old day <6 implies day = old day + 1

Now that req_9 passes verification, it is necessary to verify the CLOCK class. The verifica-
tion attempt fails because the implementation of tick has not been updated yet to meet
the new assertion in the postcondition.

The following if block meets the new assertion, which may be confirmed with
AutoProof:

tick

do

-- Other lines of code

else hour := 0
if day <6 then day := day + 1
end

end

end

The new code goes after the existing hour := 0 line: the current day updates only when
the current hour resets to 0, meaning at midnight. The first increment is done: Auto-
Proof successfully verifies both the req_9 seamless requirement and the implementation
class CLOCK.

Increment 2

Seamless requirements req_10 and req_11 still fail verification of the
EXTENDED_CLOCK_REQUIREMENTS class. The second increment consists of implementing the
req_10 requirement. This requirement describes the conditions, under which a clock
tick resets the current day to Monday.

Applying the rules from Section 10.4.3 to req_10 results in the following postcondi-
tion assertion:

old second = 59 and old minute = 59 and old hour = 23 and old day = 6 implies day = 0

Correctness of the inferred assertion follows from the fact that req_10 now passes veri-
fication by AutoProof.

Attempts to verify the CLOCK class fail, which means that the current implementation
of the tick feature does not meet the new postcondition assertion. The antecedent of the
assertion is different from the preceding one only in the day-related part. This naturally
leads to extending the if block, introduced in Section 10.4.4, with an else block:

104 CHAPTER 10. SEAMLESS REQUIREMENTS

tick

do

-- Other lines of code

else hour := 0
if day <6 then day := day + 1
else day := 0
end

end

end

An application of AutoProof to the CLOCK class confirms correctness of the modified
implementation.

Increment 3

The last increment consists of implementing the seamless requirement req_11. The
requirement states that nothing happens to the current day in the event of a tick if the
current second is smaller than 59.

Here is the new assertion that results from applying the postcondition inference
rules to req_11: old second <59 implies day = old day. This time not only the seamless re-
quirement passes verification by AutoProof: the existing implementation of the tick

feature does not need any changes, which follows from the fact that the CLOCK class
passes verification. Since the req_11 is a safety requirement (“nothing bad happens”),
this result should not come as a surprise: no malicious code was introduced during
implementation of the preceding requirements.

Implementation of the new seamless requirements is done: both the requirements
class EXTENDED_CLOCK_REQUIREMENTS and the respective implementation class CLOCK pass ver-
ification by AutoProof.

10.5 Related work

10.5.1 Dafny
Dafny [Lei10] is a direct example of a setting other than Eiffel/AutoProof in which the
seamless requirements method is applicable. The verification approach which Auto-
Proof currently uses is more complicated than that of Dafny (partially because Dafny
does not support inheritance and information hiding, but not only), which is why it may
make more sense to use the latter for getting familiar with seamless requirements.

10.5.2 Test-driven development
Although testing is fundamentally different from program proving, software develop-
ment through seamless requirements have much in common with test-driven develop-
ment (TDD) [Fra+03] in terms of the software process. It may be convenient to per-
ceive the new software process as test-driven development where specification drivers
replace tests, natural language comments on the specification drivers capture user sto-
ries, and program proving replaces testing. One may talk about verification-driven
development to emphasize these analogies with TDD.

10.5. RELATED WORK 105

Goal Maintain[TrackSegmentSpeedLimit]
InformalDef A train should stay below the maximum speed the track segment can

handle
FormalDef ∀ tr : Train, s : TrackSegment • On(tr, s)⇒ tr.Speed ≤ s.SpeedLimit

Figure 10.10: An example of a goal-oriented requirement from [Lam01].

maintain_track_segment_speed_limit (tr: TRAIN; s: TRACK_SEGMENT)
-- A train should stay below the maximum speed the track segment can handle

require

tr.on (s)
do

ensure

tr.speed≤ s.speed_limit
end

Figure 10.11: The goal-oriented requirement Maintain[TrackSegmentSpeedLimit]
(Figure 10.10) in the form of a seamless requirement.

10.5.3 State-based notations

State-based specifications characterize the admissible system states at some arbitrary
snapshot [Lam09]. Languages such as Z, VDM, B, Alloy, OCL rely on the state-based
paradigm. The absence of the imperative layer is what makes state-based notations
inapplicable for specification of abstract requirements. State-based notations are purely
declarative notations in which one cannot say “if some property holds for a set of
objects and I modify some of them through some commands, then another property
will hold for these objects”.

10.5.4 Goal-oriented requirements engineering

Goal-oriented requirements [Lam01] are suitable for addressing the gap between agile
and formal development (Section 10.1): goals are self-contained and have place for
both formal and informal semantics of requirements. Goals are self-contained because
they can be modified locally. With diagrammatic notations, for example, one has to
project a self-contained requirement statement onto different portions of a diagram,
thus threatening locality of future modifications. Self-contained representations main-
tain locality during the requirements formalization process. The goal in Figure 10.10,
for example, formalizes an informal requirement as a first-order logic formula, which
is as self-contained as the informal version.

Goals, on the other hand, do not bridge the semantical gap between formal require-
ments notations and programs because the approach does not treat a programming
language as a formal notation. Goals also fail to bridge the gap between construction
and verification: the need to translate them into tests is still there.

Seamless requirements approach, while bringing the same benefits as goals do, of-
fers strong pairwise connection between requirements, specifications and code.

106 CHAPTER 10. SEAMLESS REQUIREMENTS

maintain_track_segment_speed_limit_without_contract (tr: TRAIN; s: TRACK_SEGMENT)
-- A train should stay below the maximum speed the track segment can handle

do

if tr.on (s) then
check tr.speed≤ s.speed_limit end

end

end

Figure 10.12: The goal-oriented requirement Maintain[TrackSegmentSpeedLimit]
(Figure 10.11) in the form of a seamless requirement without a contract.

class TRAIN

feature

speed: INTEGER

on (s: TRACK_SEGMENT): BOOLEAN
do

ensure

Result implies speed≤ s.speed_limit
end

end

class TRACK_SEGMENT

feature

speed_limit: INTEGER
end

Figure 10.13: Specification of classes TRAIN and TRACK_SEGMENT that meets the
maintain_track_segment_speed_limit requirement (Figure 10.11).

The maintain_track_segment_speed_limit seamless requirement (Figure 10.11) captures
the semantics of the corresponding goal (Figure 10.10) in terms of Eiffel program-
ming constructs understandable to Eiffel programmers, though it may be rewritten
without contracts at all through if and check (known as assert in other languages) state-
ments (Figure 10.12). The last option may be useful in languages without contracts.
Successful verification of the maintain_track_segment_speed_limit requirement assumes
strong enough specification of classes TRAIN and TRACK_SEGMENT (Figure 10.13). Success-
ful verification of the specified classes assumes, in its turn, implementing the TRAIN::on
routine correctly.

10.5.5 Literate programming
Knuth was the first one to apply interwoven notations in programming [Knu84]. Meyer
criticized the approach as inapplicable to object-oriented programming and proposed
the multirequirements [Mey13] method (Section 10.5.6):

When I first read about literate programming I was seduced by the ele-
gance of the approach, but found it inapplicable to modern, object-oriented
programming which (as discussed in several publications including [Mey97])
is fundamentally bottom-up as implied by the focus on reuse; literate pro-
gramming seemed inextricably tied to the top-down, function-driven pro-
gramming style of the nineteen-seventies. In that traditional view, a pro-
gram implements a single “main” function; as a consequence the “literate”

10.5. RELATED WORK 107

text is the sequential telling, cradle to grave, of a single story.

10.5.6 Multirequirements

A multirequirement is a combination of a natural language statement and a small piece
of the resulting program; the program piece should rephrase what the natural language
part says. The multirequirements method [Mey13] adapts Knuth’s idea of interwoven
notations to object-oriented programming, while focusing on traceability. The method
suggests using three notation layers: natural language layer, formal layer, and graphical
layer. For the formal layer, it suggests usage of pieces of the presumable final program.
When the requirements specification phase is over, specialized tools then take those
pieces and merge them into the program skeleton. The tools are also responsible for
taking care of both up- and down-traceability. The approach conceptually removes the
fundamental flaw of literate programming, which is the need to write a complete story
from the beginning to the end.

Michael Jackson in his work [Jac14] criticizes piecemeal construction of cyber-
physical systems. Apart from the details of that particular work, the multirequirements
method possesses several flaws that are of concern for us:

• The presumed additional tools responsible for keeping the requirements docu-
ment and the resulting program in sync do not seem trivial to implement. The
method assumes that any person responsible for requirements specification ad-
mits the concern for traceability and connects natural language descriptions with
the corresponding program pieces through special anchors. As a consequence,
the tools should also be able to detect mistakenly placed anchors as well as to
warn of their potential absence.

• The method is applicable only to “forward” development. There is no way to
prove that an existing program meets a multirequirement. The programmatic
part of a multirequirement is, conceptually, a small piece of the program itself.
In order to submit a multirequirement to formal verification, it is necessary first
to integrate that piece into the main program. This process changes the original
program, which is why the very notion of verifying a program with respect to a
multirequirement does not exist.

• The multirequirements method assumes a strong bias of the requirements spec-
ification notation toward features of a specific programming language (Eiffel in
that particular work). A seamless requirement is a command with a pre- and a
postcondition expressed in terms of its formal arguments. Such commands are a
kind of construct available in any modern programming language with contracts,
such as Dafny, Spec# or D.

Applicability of the multirequirements method was studied on a realistic example
in Chapter 7.

108 CHAPTER 10. SEAMLESS REQUIREMENTS

10.6 Summary
As the development case illustrates, seamless requirements empower software engi-
neering with the following properties:

• Unity of software construction and verification: seamless requirements stimulate
construction and, at the same time, are suitable for checking correctness of the
deliverables.

• Unity of functional requirements and code: the requirements document becomes
one of the classes in the source code repository, readable by both customers and
developers.

• Independence from a particular development model choice: there is no need to
adjust the requirements notation in the event of switching the development model
on the go.

• Traceability for free: existing features of the underlying IDE are suitable for
traceability management in the following form:

– to trace a seamless requirement to specification (downward traceability
[Lam09]) is to retarget the IDE to the definitions of the implementation
classes and features that occur in the requirement; this functionality is
present in some form in any modern IDE.

– tracing a class or a feature to requirements that constrain it (upward trace-
ability [Lam09]) reduces to an application of the “Show Callers” feature,
which is also present in all modern IDE’s (up to a name); every call from
the requirements class is done by some seamless requirement.

10.6.1 Limitations of the example
Several potential complications were ignored in favour of simplicity of the narrative:

• There is only one command in the clock example: tick. Despite this, the ap-
proach scales to multi-command examples. Specification drivers, which serve as
the formal layer of seamless requirements, are capable of handling cases with an
arbitrary number of commands (Chapter 8).

• The tick command does not accept any formal arguments. In fact, the approach
scales to the case with formal arguments: if a seamless requirement describes
desirable behavior of a command with a formal argument, the corresponding
routine may assume the presence of the argument through extending the list of
its own formal arguments (Equation (8.1)).

The postcondition inference logic from Section 10.4.3 only work in the context of
these two simplifications. In general, inference of a sufficiently strong postcondition
does not seem to be a solvable problem.

10.6. SUMMARY 109

10.6.2 Limitations of the approach
As the primary concern of the approach is functional correctness, all questions re-
lated to the suitability of seamless requirements for non-functional requirements lie
expressly outside of the chapter’s scope.

Another assumption that underlies this approach is the use of a programming lan-
guage with contracts plus the existence of a prover for this language. This assumption
is adequate: Eiffel plus AutoProof is not the only representative of this technology
combination. The “Code Contracts for .NET” project [Bar10] offers similar benefits in
the .NET world.

Seamless requirements approach is applicable to non-concurrent programs. Al-
though the approach may have potential in concurrent setting too, the question is not
studied yet.

10.6.3 Future work
Translation between the notations

The seamless requirements approach poses an immediate question: how to check the
consistency between the natural language and the programming language components?
Currently there is no way to do that. Work [Mey85] describes a requirements refine-
ment process that relies on round trip engineering: given a natural language require-
ment translate it into a formal form and then back and see how close the result is to
the original statement. This process needs support in the form of two tools that would
perform the necessary translations. Development of these tools is the immediate goal
of the present research.

Consistency of seamless requirements

Another research question is: how to understand if seamless requirements are consis-
tent with each other? With an inconsistent set of requirements it will never be possible
to develop a provably correct solution. With trial-and-error considerable amount of
resources may be spent before the inconsistency becomes apparent. How could one
detect inconsistencies in requirements before initiating implementation of a solution?

110 CHAPTER 10. SEAMLESS REQUIREMENTS

Chapter 11

Specifying and Verifying
Control Software

The considerable effort of writing requirements is only worthwhile if the result meets
two conditions: the requirements reflect stakeholders’ needs, and the implementation
satisfies them. In usual approaches, the use of different notations for requirements
(often natural language) and implementations (a programming language) makes both
conditions elusive. AutoReq, presented in this chapter, takes a different approach to
both the writing of requirements and their verification. Applying the approach to a
well-documented example, a landing gear system, allowed for a mechanical proof of
correctness and uncovered an error in a published discussion of the problem.

11.1 Overview and main results
A key determinant of software quality is the quality of requirements. Inconsistent or
incomplete understanding of the requirements can lead to catastrophic results. We
present a tool-supported method, AutoReq, for producing verified requirements, with
applications to control software. It illustrates it on a standard case study, an airplane
Landing Gear System (LGS). The goal is to obtain requirements of high quality:

• Easy to write.

• Clear and explainable to domain experts.

• Amenable to change.

• Supporting traceability through close connections to later development steps.

• Amenable to mechanical verification and validation.

As the last point indicates, AutoReq includes techniques for not only expressing
requirements but also verifying their correctness. The LGS case study illustrated the

111

112 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

effectiveness of such verification by uncovering a significant error in a previous de-
scription of this often-studied example (Section 11.6.5).

AutoReq takes natural language requirements and environment assumptions as an
input and converts them into a format having the above properties. The new format
relies on a programming language with contracts. This viewpoint brings one of the
biggest advantages of AutoReq – it makes the requirements verifiable both against the
underlying assumptions and future candidate implementations, while maintaining their
readability through natural language comments on the code. We take the natural lan-
guage statements from the LGS case study and translate them to seamless statements,
readable and verifiable. The ASM treatment of the case study [AGR17] provides the
candidate implementation – an executable ASM specification [GH94] of the system.
This by no means implies applicability of AutoReq to ASMs only. The approach ap-
plies to any candidate implementation that follows the small step semantics of ASMs.
More precisely, the implementation should run in an infinite loop polling the system
environment’s state and sending appropriate control signals. To the best of our knowl-
edge, most control software implementations follow this approach.

The method of expressing requirements does not introduce any new formalism but
instead relies on a standard programming language, Eiffel, using mechanisms of De-
sign by Contract (DbC) [Mey92] to state semantic constraints. While DbC relies on
Hoare logic [Hoa69], which at first sight does not cover temporal and timing properties
essential to the specification of control software, we show that it is, in fact, possible to
express such properties in the DbC framework.

The verification part relies on an existing tool, associated with the programming
language: AutoProof [Tsc+15], a program proving framework, which can verify the
temporal and timing properties expressed in the DbC framework. Applying it to LGS
automatically and unexpectedly uncovered the error. Hoped-for advantages include:

• Expressiveness: requirements benefit both from the expressive power of declar-
ative assertions and from that of imperative instructions.

• Ease of learning: anyone familiar with programming languages has nothing new
to learn.

• Continuity with the rest of the development cycle: design and implementation
may rely on the same formalism, avoiding the impedance mismatches that arise
from the use of different formalisms, and facilitating change.

• Precision: formal specifications (contracts) cover the precise semantics of the
system and its environment.

• Existing tools, as available in modern IDEs, that support the requirements pro-
cess: a compiler for a typed language performs many checks that are as useful
for requirements as for code.

The AutoReq approach, while not claiming to have fully reached these ambitious
goals, makes the following contributions:

• The outline of a general method for requirements engineering with application
to control software.

11.2. THE IMPORTANCE OF VERIFYING REQUIREMENTS 113

• The use of a programming language as an effective mechanism for requirements
specification.

• A precisely defined concept of verifying requirements for control software (com-
plementing the usual concept of verifying programs). This idea originates from
seamless requirements (Chapter 10).

• A translation scheme from temporal and timing properties to Hoare logic proper-
ties (first-order predicates on states) as traditionally used in Design by Contract.

• A way to combine environment and machine aspects (the two components of
requirements in the well-known Jackson-Zave approach).

• A direct mapping of these requirements concepts into well-known verification
concepts, assume and assert.

• The demonstration that it is possible to use an existing program prover to verify
requirements.

Section 11.2 discusses consequences of poor requirements. Section 11.3 presents
LGS. Section 11.4 describes the methodology: how to specify and verify requirements.
Section 11.5 shows how to translate common requirements patterns (originally ex-
pressed through temporal logic, timing constraints or Abstract State Machines) into
a form suitable for AutoReq. Section 11.6 sketches the method’s application to the
case study, including an analysis of the uncovered error. Section 11.7 discusses related
work, and Section 11.8 discusses limitations and future work.

11.2 The importance of verifying requirements
Control software in aerospace, transportation, and other mission-critical areas raise
tough reliability demands. Ensuring reliability begins with the quality of requirements:
the best implementation is useless if the requirements are inconsistent or do not reflect
needs. Requirements for software deserve as much scrutiny as other artifacts such as
code, designs, and tests.

The literature contains many examples of software disasters arising from require-
ments problems of two kinds:

• In the requirements themselves: inconsistencies, incompleteness, inadequate re-
flection of stakeholders’ needs.

• In their relationship to other tasks: design, implementation etc. may wrongly
understand, implement or update them.

Examples of the first kind include [Lak10]:

• The year 2000, National Cancer Institute, Panama City: patients undergoing
radiation therapy get wrong doses because of a software miscalculation.

114 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

• In 1996, Ariane 5 maiden flight fails from flight computer’s code crash, out of an
uncaught arithmetic exception, in code that was reused from Ariane 4 but relied
on assumptions that no longer hold in the new technology.

• In 1990, a bug in software for AT&T’s #4ESS long-distance switches crashes
computers upon receipt of a specific message sent out by neighbors when recov-
ering from a crash.

Analysis of these examples suggests that the problem lies in part from the use
of different methods and of different notations for requirements and other tasks such
as implementation. This observation is a basis for the seamless approach ([Mey97],
[WN94], [Mey13], following ideas in [Rum+91]), which AutoReq applies by using a
single notation throughout.

Examples of the second kind include [Lam09]:

• London underground system: several cases [Neu95] of passenger deaths from
doors opening or closing unexpectedly, without an alarm notification being sent
to the train driver.

• An aerospace project [HF01] where 49% of requirements errors were due to
incorrect facts about the problem world.

• An inadequate assumption about the environment of the flight guidance system,
which may have contributed to the crash of a Boeing 757 in Cali [Mod+97].
Location information for the pilot to extend the flap arrived late, causing the
guidance software to send the plane into a mountain.

These examples and others in the literature illustrate the importance of verifying
requirements. We will see that it is possible to apply to requirements both the concept
of verification, as commonly applied to code, and modern proof-oriented verification
tools devised initially for code.

11.3 The Landing Gear System
To illustrate AutoReq, we will use, rather than examples of our own making, the LGS
[BW14], probably the most widely discussed case study in the control software litera-
ture, e.g. [SA17], [AGR17], [DT14], [Lad+17], [ML17], [BDZF14], [Ban17].

The Landing Gear System physically consists of the landing set, a gear box that
stores the gear in the retracted position, and a door attached to the box (Figure 11.1). A
digital controller independently actuates the door and the gear. The controller initiates
either gear extension or gear retraction depending on the current position of a handle
in the cockpit. The task is to program the controller so that it sends the correct signals
to the door’s and the gear’s actuators.

The discussion will restrict itself to the system’s normal mode (there is also a failure
mode). The defining properties are the following:

R11bis: When the landing gear handle has been pushed down and stays down, then
eventually the gear will be seen extended and the doors will be seen closed. We

11.3. THE LANDING GEAR SYSTEM 115

Figure 11.1: Landing set (from Boniol et al. [BW14]).

interpret this requirement in LTL as �(�handle down ⇒ 3(gear extended ∧
door closed)) where � stands for the always temporal operator, and 3 stands
for the eventually temporal operator.

R12bis: When the landing gear handle has been pulled up and stays up, then eventually
the gears will be seen retracted and the doors will be seen closed. We interpret
this requirement in LTL as �(�handle up⇒ 3(gear up ∧ door closed)).

R21: When the landing gear handle remains in the down position, then retraction se-
quence is not observed. We interpret this requirement in LTL as
�(handle down ⇒ d¬ gear retracting) where d stands for the next temporal
operator.

R22: When the landing gear handle remains in the up position, then outgoing sequence
is not observed. We interpret this requirement as
�(handle up⇒ d¬ gear extending).

We will work not from the original description of the LGS but from one of the most
interesting treatments of case study [AGR17], which uses the abstract state machine
(ASM) approach and applies a process of successive refinements:

1. Start with a ground model covering a subset of the requirements.

2. Model-check it.

3. Repeatedly extend (refine) it with more properties of the system, proving the
correctness of each refinement.

116 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

The AutoReq specification discussed in the next sections starts from the ASM
ground model. Some of its features are a consequence of this choice:

• It only accounts for properties specified in the first of the successive models in
[AGR17].

• As already noted, it only covers normal mode.

• Like the ASM model, it assumes that the only environment-controlled machine-
visible phenomenon is the pilot’s handle [JZ95]. In the failure mode, there might
be others.

• It takes over from the ASM model such instructions as gears := RETRACTED
which posit that the control software has a way to send the gear to the retracted
position in one step. This assumption is acceptable at the modeling level but not
necessarily true in the actual LGS system.

• The ASM-to-Eiffel translation scheme (Section 11.5.4) ensures preservation of
the one-step semantics of ASM.

11.4 Requirements methodology
AutoReq builds on the ideas of seamless development [Mey97], [WN94], multirequire-
ments [Mey13] and seamless requirements (Chapter 10). The new focus is on require-
ments verification and reuse of previous requirements through a routine call mecha-
nism. We examine in turn how to specify and reuse requirements and environment
assumptions (Section 11.4.1), and what it means to verify them (Section 11.4.2).

11.4.1 Specifying requirements
Specifications in AutoReq, often in practice translated from a document in structured
natural language, take the form of contracted Eiffel routines with natural language
comments. These routines are further consumed by:

• The verification tool. Since the routines coming out of the translation process are
equipped with contracts, they may be formally verified by a Hoare logic based
prover.

• Possible implementers of the system. The combination of a programming lan-
guage and natural language helps developers, who will use the same program-
ming language for implementation, understand the requirements. The contracts
state the semantics.

Previous work ([Mey13], Chapter 10) explains the reasons for choosing this mixed
notation: unity of software construction and verification, unity of functional require-
ments and code, use of complementary notations geared towards different stakeholders.

Additional properties are specific to control software:

• Specification of temporal assumptions and requirements.

11.4. REQUIREMENTS METHODOLOGY 117

• Specification of timing assumptions and requirements.

• Reuse of assumptions and requirements in stating new ones.

The basic notation is Eiffel. All the examples have been processed by the Eiffel-
Studio IDE [Eif], compiled, and processed by the AutoProof verification environment.
The interest of compilation is not in the generated code, since at this stage the Eiffel
texts represent requirements only, but in the many correctness controls, such as type
checking, of a modern compiler.

The requirements can and do take advantage of object-oriented mechanisms such
as classes, inheritance and genericity.

There is sometimes an instinctive resistance to using a programming language for
requirements, out of the fear of losing the fundamental difference between the goals
of the two steps: programming languages normally serve for implementation, while
requirements should be descriptive. The AutoReq approach, however, uses the pro-
gramming language not for implementation but for specification, restricting itself to
requirements patterns discussed next. The imperative nature of these patterns does
not detract from this goal; empirical evidence indeed suggests [Fah+09b], [Pic+11],
[Fah+09a] that operational reasoning works well not just for programmers but for other
requirements stakeholders. An added benefit is the availability of program verification
tools, which AutoReq channels towards the goal of verifying requirements.

For this verification goal, there seems to be a mismatch between the standard prop-
erties that program verification tools address and the needs of control software. Pro-
gram verification generally relies on Hoare logic properties as embodied in Eiffel’s
Design by Contract: properties of the program state (or, for postconditions, two states).
The specification of control software generally relies on temporal and timing require-
ments, involving properties of an arbitrary number of (future) states of the system. A
contribution of this work is to resolve the mismatch, using the programming language
to emulate temporal and timing properties, through schemes described in Section 11.5.

11.4.2 Verifying requirements
Verification of AutoReq requirements relies on AutoProof [Tsc+15], the prover of con-
tracted Eiffel programs. AutoProof is a Hoare logic [Hoa69] based verifier that follows
semantic collaboration [Pol+14] – a specification and verification methodology adapt-
ing Hoare logic to specific needs of object-oriented programming. The verification
unit of AutoProof is feature with contracts. AutoReq assumptions and requirements
take the form of such features, with natural language comments for better readability,
to enable their direct verification with AutoProof.

Contracts for verification with AutoProof may be modular – visible to the feature’s
callers, and non-modular – visible only in the feature’s implementation. Modular con-
tracts take the following forms:

• Precondition imposes obligations on the feature’s callers and benefits the callees’
implementation.

• Postcondition guarantees benefits to the callers and imposes obligations on the
callees’ implementation.

118 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

Non-modular contracts take the following forms, going back at least as far as ESC-
Java [CK04]:

• assume X end allows the verification to take advantage, at the given program point,
of property X, adding X to the set of properties that the prover may use (assump-
tion).

• assert X end requires the verification to establish X before going beyond the pro-
gram point, adding X to the set of properties that the prover must prove (proof
obligation).

Both precondition and assume contracts add information to verifying the postcon-
dition and assert contracts, but preconditions impose verification obligations on their
own: they have to hold whenever the respective features are called. AutoReq require-
ments take the form of features with non-modular contracts because of their funda-
mental connection with the core requirements engineering terminology, as discussed
further. From the purely technological perspective, AutoReq depends on the ability of
AutoProof to inline callees’ non-modular contracts into the callers’ code.

AutoReq specifications include formal properties which can be submitted to proof
tools for verification. Jackson & Zave’s seminal work ([JZ95], also van Lamsweerde
[Lam09]), introduced a fundamental division of these properties:

• Environment (or domain) assumptions characterize the context in which the sys-
tem must operate. The development team has no influence on them.

• Machine (or system) properties characterize what the system must do. It is the
job of the development team to work on them.

Although each of these two distinctions is well-known and widely used in the corre-
sponding sub-community of software engineering, respectively requirements and for-
mal verification, the existing literature does not, to our knowledge, connect them. The
AutoReq approach, covering both requirements and verification concepts, unifies them
into a single distinction:

• assume E end specifies an environment assumption E.

• assert E end specifies a machine property E.

Verifying requirements in AutoReq means proving that all assert hold, being permitted
to take assume for granted.

Notational convention: the above notations are for presentation. The actual texts
verified through the process reported in the next sections use the following standard
Eiffel equivalents:

• For assert X end, the notation in the actual Eiffel texts is check X end (check is a
standard part of Eiffel’s Design by Contract mechanism).

• For assume X end, the Eiffel notation is check assume: X end. The assume tag is a stan-
dard part of the notation for programs to be verified by AutoProof. old e, in a
routine body, denotes the value of an expression e on routine entry.

11.5. STRUCTURING A CONTROL SOFTWARE SPECIFICATION 119

The only difference with verifying programs comes from the elements that appear
between these assertions: in program verification, they may include any instructions;
in requirements verification, we only permit patterns discussed below (Section 11.5.1).
In addition, specifications include timing properties, using the translation into classic
assertions described in Section 11.5.2 and Section 11.5.3.

Formal methods and notations are essential for one of the goals of AutoReq (pre-
cision/completeness, see Section 11.1), but non-technical stakeholders sometimes find
them cryptic at first sight, hampering other goals such as readability and ease of use.
The multirequirements approach [Mey13], which AutoReq extends, addresses the prob-
lem by using complementary views, kept consistent, in various notations: formal (such
as Eiffel or a specification language), graphical (such as UML) and textual (such as En-
glish). In line with this general idea, AutoReq specifications rely on systematic com-
menting conventions (somewhat in the style of Knuth’s literate programming [Knu84]).
A typical example from the specification in the next section is

-- Assume the system

run_in_normal_mode

The second line is formal; the comment in the first line puts it in context. Such
seemingly informal comments follow precise rules. For non-expert users, and for the
sake of discussion, it is enough to treat them as natural language explanations.

11.5 Structuring a control software specification

The mechanisms of the preceding section enable us to write the requirements for con-
trol software and verify them. Such specifications will follow standard patterns:

• Overall structure of control software implementations (Section 11.5.1).

• Translation rules for temporal properties (Section 11.5.2).

• Translation rules for timing properties (Section 11.5.3).

• Translation rules for ASM properties (Section 11.5.4).

These schemes and translation patterns are fundamental to the methodology be-
cause they govern the use of the programming language. While the methodology relies
on a programming language for expressing requirements, it does not use its full power,
since some of its mechanisms are only relevant for programs. Programming language
texts expressing requirements stick to the language subset relevant to this goal.

The translation schemes of Section 11.5.2, Section 11.5.3 and Section 11.5.4 guar-
antee that their output will conform to these patterns. A goal for future work (Sec-
tion 11.8) is to formalize the input languages, timed temporal logic and ASM, and turn
the translation patterns into formal rules and automatic translation tools.

Pending such formalization, we did not for now address the soundness of the trans-
lation.

120 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

Temporal Properties Timing Properties
Environment Assumptions P1 P3

System Obligations P2 P4

Table 11.1: The map of AutoReq translation patterns.

11.5.1 Representing control software
Control software is typically (unlike most sequential programs) repeating and non-
terminating. AutoReq uses programs of the form
from until False loop main end

to represent control software. The task of the requirements is then to specify main.
The translation uses four patterns that look like Eiffel features with non-modular

(assume and assert) contracts. These patterns are not part of AutoProof, but they serve
as blueprints for features that AutoProof can verify. P1 and P2 (Section 11.5.2) are
time-independent (although temporal in the sense of temporal logic). P3 and P4 (Sec-
tion 11.5.3) take timing into account. These cases suffice for the examples addressed
with AutoReq so far. Translation schemes are possible for more general LTL/CTL/TPTL
schemes if the need arises in the future.

The patterns use the Jackson-Zave distinction (Section 11.4.2) between describing
an environment assumption and prescribing an expected system (machine) property.
Specifically: P1 and P3 correspond to environment assumptions (respectively time-
independent and timed); P2 and P4 correspond to system obligations (with the same
distinction). The Eiffel translations accordingly use assume for P1 and P3 and assert

for P2 and P4. When asked to verify an AutoReq requirement, AutoProof tries to
infer the assert statements by simulating an execution of the requirement’s body to a
state satisfying the assume statements. Table 11.1 maps the patterns according to the
taxonomy of system properties used in the present chapter.

11.5.2 Translating temporal properties
In the control software world, the starting point for requirements is often a description
expressed in a temporal logic, usually LTL [Pnu77], CTL [BPM83], or a timed variant
such as propositional temporal logic (TPTL [AH94]). Even if not using a specific
formalism, they often state temporal properties such as all future system states must
satisfy a given condition or some future state must satisfy a given condition. The LGS
properties given in Section 11.3 are an example.

• P1 (environment assumption)
Consider the system running in mode cs under assumption c. The LTL formula-
tion is �(c ∧ cs).

• P2 (system obligation)
The system running in mode cs should immediately meet property p. The LTL
formulation is �(cs ⇒ dp). This property constrains the system to maintain
response p whenever stimulus cs holds.

11.5. STRUCTURING A CONTROL SOFTWARE SPECIFICATION 121

The translation scheme for P1 is:

-- Assume the system

run_under_condition_c

do

assume

c

end

main_under_conditions_cs

end

where main_under_conditions_cs is of the form P1 or P3. The run_under_conditions routine
should be used instead of the original main in all requirements that talk about the system
operating in mode c. This pattern may be useful for encoding �c in properties of the
form �(�c⇒ 3d).

The translation scheme for P2 is:

-- Require the system to

immediately_meet_property_p

do

main_under_conditions_cs

assert

p

end

end

where main_under_conditions_cs is of the form P1 or P3.

11.5.3 Translating timing properties
Although not all approaches to requirements take time into account, timing require-
ments, such as the response time must not exceed 1 second, are essential to the proper
specification and implementation of control software. AutoReq recognizes the follow-
ing timing-related patterns:

• P3 (environment assumption)
Assume the system running in mode cs spends t time units to meet property p.
The TPTL formulation is �x.((cs ∧ ¬ p) ⇒ dy.(p ⇒ y = x + t)). x. and y.
record the current time of corresponding states [AH94].

• P4 (system obligation)
The system running in mode cs should spend no more than t time units to meet
property p. In TPTL: �x.(�cs⇒ 3y.(p ∧ y ≤ x + t)).

The translation scheme for P3 is:

-- Assume it takes t time units to take the system

from_not_p_to_p:
do

main_under_conditions_cs

if (not old p and p) then
duration := duration + t

end

end

122 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

The technique for timing system obligations of the P4 form differs from the others
by using loops as the core mechanism:

-- Require that

meeting_p_under_persistent_conditions_cs

-- never takes more than t time units:

do

from

main_under_conditions_cs

until

p or (duration − old duration) > t

loop

main_under_conditions_cs

end

assert

p and (duration − old duration)≤ t

end

end

where main_under_conditions_cs is of the form P1 or P3. The (duration − old duration)> t

exit timeout condition ensures termination of the loop, and assertion
(duration − old duration)≤ t checks that the timeout condition has not been reached.

The technique for handling the timing-related patterns relies on an integer, non-
decreasing auxiliary variable duration. It has the same role as x and y in the TPTL
formulations. The duration variable is part of the AutoReq approach – not a prede-
fined variable nor part of AutoProof. It does not play a role in the actual execution of
the system but caters to static reasoning about the system’s timing properties. The
from_not_p_to_p routine updates the value of duration instead of using assume, which
would lead to a contradiction: the prover would detect that the variable was not, in
fact, updated, and would infer False from assuming the opposite.

11.5.4 Translating ASM specifications

Abstract State Machines [GH94], are a commonly used specification formalism for
control software, and the treatment of the LGS case study in [AGR17] served as a
starting point for our own treatment of the example. We do not formally prove sound-
ness of the ASM-to-Eiffel translation. The decision to work with the ASM treatment
was motivated by the general ASM specifications’ executability: fundamentally, they
are verifiable abstractions of infinitely running control software. Such software may
be implemented in a general-purpose programming language, and the present chapter
demonstrates that such a language may serve as a verifiable abstraction of itself, in the
presence of a program prover.

Below comes the ASM-to-Eiffel translation scheme. The translation scheme omits
the nondeterministic version of the ASM formalism. The original work [GH94] presents
“Nondeterministic Sequential Algebras” as an extension to the basic model. As Sec-
tion 11.1 explains, the ASM formalism serves as an implementation language example
in the present discussion of AutoReq, with no intent of covering every aspect of ASMs.
Nondeterministic updates seem to be inappropriate for implementing mission- and life-
critical software, such as the LGS controller, and control software in general. Every

11.6. THE LANDING GEAR SYSTEM IN AUTOREQ 123

possible environment’s state should be predictably handled in such systems. The ASM
treatment of the LGS, for example, does not use nondeterminism.

A basic ASM specification is a collection of rules taking one of three forms [Gur00]:
assignment, do-in-parallel and conditional. An ASM assignment reads:

f (t1, .., tj) := t0 (11.1)

The semantics is: update the current content of location λ = (f , (a1, .., aj)), where
ai:{1..j} are values referenced by ti:{1..j}, with the value referenced by t0.

The Eiffel representation for an ASM location is an attribute (field) of the class; the
representation for a location update is an attribute assignment.

The ASM do-in-parallel operator applies several assignments in one step. Eiffel
offers no native support for do-in-parallel, but it can emulate one sequentially without
changing the behavior. The following example gives intuition behind the translation
idea:

a, b := max(a− b, b),min(a− b, b) (11.2)

The instruction in Equation (11.2), when run infinitely, reaches the fixpoint in which a
contains the greatest common divisor of a and b. The Eiffel translation of this instruc-
tion is:

local

a_intermediate, b_intermediate: INTEGER
do

a_intermediate := max (a−b, b)
b_intermediate := min (a−b, b)
a := a_intermediate

b := b_intermediate

end

The generalization should be clear at this point: instead of updating the target locations,
introduce and update intermediate local variables, and then assign them to the target
locations.

The translation of an ASM conditional (if t then R else Q) is an Eiffel conditional
instruction.

The ASM-to-Eiffel translation scheme scales out to the multiple classes case. The
translation overhead in this case consists of implementing assigner procedures for the
supplier classes’ attributes. The assigner procedures will make it possible for the clients
to update the suppliers’ attributes while keeping them consistent. The LGS example
is simple enough to avoid the multiple classes case, which is why this translation rule
does not apply to the analyzed example.

11.6 The Landing Gear System in AutoReq

Equipped with the AutoReq mechanisms as described, we can now see the core ele-
ments of the AutoReq specification of the LGS example. The entire example is avail-
able in a public GitHub repository [Nau17].

124 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

11.6.1 Normal mode of execution

Execution runs in normal mode if all the parameter values are in the expected ranges
and meet the system invariant. Application of the run_under_condition_c pattern results
in the following Eiffel model of normal mode:

-- Assume the system

run_in_normal_mode

do

-- the handle status range:

assume

handle_status = up_position or

handle_status = down_position

end

-- the door status range:

assume

door_status = closed_position or

door_status = opening_state or

door_status = open_position or

door_status = closing_state

end

-- the gear status range:

assume

gear_status = extended_position or

gear_status = extending_state or

gear_status = retracted_position or

gear_status = retracting_state

end

-- the gear may extend or retract only with the door open:

assume

(gear_status = extending_state or gear_status = retracting_state)
implies door_status = open_position

end

-- closed door assumes retracted or extended gear

assume

door_status = closed_position implies

(gear_status = extended_position or gear_status = retracted_position)
end

main

end

The first three assume express that attribute values fall into specific ranges. The last two
express the LGS invariant. Ranges, the invariant and the definition of normal mode
come from the original. run_in_normal_mode is a multiple application of the
run_under_condition_c pattern (Section 11.5.2). It wraps around main to make additional
assumptions before calling it.

11.6.2 Timing properties

The ASM treatment of the LGS case study ignores timing properties stated in the orig-
inal description. For a practical system, timing is essential; an otherwise impeccable
LGS that takes two hours to perform extend landing gear would not be attractive. We
rely on AutoReq’s timing mechanisms of the AutoReq methodology (Section 11.5.3)
and the from_not_p_to_p pattern (Section 11.5.3). Timing values, e.g. 8 units for door

11.6. THE LANDING GEAR SYSTEM IN AUTOREQ 125

closing, are for illustration only. Each of the translations that follow are produced by
applying the same pattern, which is why only the first translation is accompanied by a
detailed explanation.

• It takes 8 time units for the door to close. Replacing p with
door_status = closed_position, and t with 8 in the from_not_p_to_p pattern yields:

-- Assume it takes 8 time units to take the door

from_open_to_closed -- position:

do

run_in_normal_mode

if (old door_status 6= closed_position and

door_status = closed_position) then
duration := duration + 8

end end

• It takes 12 time units for the door to open:

--Assume it takes 12 time units to take the door

from_closed_to_open -- position:

do

from_open_to_closed

if (old door_status 6= open_position and

door_status = open_position) then
duration := duration + 12

end

end

• It takes 10 time units for the gear to retract: Replacing p with
gear_status = retracted_position, and t with 10 in the from_not_p_to_p pattern leads
to:

--Assume it takes 10 time units to take the gear

from_extended_to_retracted -- position:

do

from_closed_to_open

if (old gear_status 6= retracted_position and

gear_status = retracted_position) then
duration := duration + 10

end end

• It takes 5 time units for the gear to extend:

-- Assume it takes 5 time units to take the gear

from_retracted_to_extended -- position:

do

from_extended_to_retracted

if (old gear_status 6= extended_position and

gear_status = extended_position) then
duration := duration + 5

end end

from_retracted_to_extended will include all the previously stated assume instructions
together with main.

126 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

11.6.3 Baseline requirements
Section 11.3 introduced a set of core LGS requirements, R11bis to R22, which we now
express in AutoReq. R11bis and R21 talk about the system running with the handle
pushed down. Application of the run_under_condition_c pattern (Section 11.5.2) with
handle_status = down_position for c results in the following routine to model the required
mode of operation:
-- Assume the system

run_with_handle_down

do

assume handle_status = down_position end

from_retracted_to_extended

end

run_with_handle_down is an application of the run_under_condition_c pattern (Section 11.5.2).
It calls from_retracted_to_extended to include all assumptions so far.

Now that the execution mode with the handle pushed down is formally defined, it is
possible to express the requirements in terms of it. Property R21 requires the controller
to prevent retraction immediately whenever the handle is pushed down. Application of
the immediately_meet_property_p pattern (Section 11.5.2) with
gear_status 6= retracting_state for p yields, for R21:
-- Require the system to

never_retract_with_handle_down

do

run_with_handle_down

assert gear_status 6= retracting_state end

end

-- known as R_{21}

R11bis requires the system eventually to extend the gear and close the door if the
handle stays down. The absence of timing makes it unsuitable for the specification of
control software: we need to specify an upper bound on the time the system may spend
on gear extension. That bound is the sum of the maximal times for door closing, door
opening and gear extension. Under earlier assumptions, this value is 25. Applying
meeting_p_under_persistent_conditions_cs (Section 11.6.2) with
gear_status = extended_position and door_status = closed_position for p,
run_with_handle_down for main_under_conditions_cs and 25 for t turns R11bis into:
-- Require that

extension_duration

-- never takes more than 25 time units:

do

from

run_with_handle_down

until

(gear_status = extended_position and door_status = closed_position) or
(duration − old duration) > 25

loop

run_with_handle_down

end

assert gear_status = extended_position end

assert door_status = closed_position end

assert (duration − old duration)≤ 25 end

11.6. THE LANDING GEAR SYSTEM IN AUTOREQ 127

end

-- known as R_{11}bis

Requirements R12bis and R22 talk about the system running with the handle pulled
up. Application of run_under_condition_c (Section 11.5.2) with handle_status = up_position

for c yields:

-- Assume the system

run_with_handle_up

do

assume

handle_status = up_position

end

from_retracted_to_extended

end

The rest of the requirements can rely on the specification of the execution mode
with handle up, as we have now obtained.

R22 requires the system to prevent immediate extension whenever the handle is
pulled up. Application of immediately_meet_property_p (Section 11.5.2) with
gear_status 6= extending_state for p yields, for R22:

-- Require the system to

never_extend_with_handle_up

do

run_with_handle_up

assert

gear_status 6= extending_state

end

end

-- known as R_{22}

R12bis requires the system eventually to retract the gear and close the door if the
handle stays up. Like R11bis, it does not include timing. The upper bound for R12bis
is the sum of the maximal times for door closing, door opening and gear extension,
30 from earlier assumptions. Applying meeting_p_under_persistent_conditions_cs (Sec-
tion 11.6.2) with gear_status = retracted_position and door_status = closed_position for p,
with run_with_handle_up for main_under_conditions_cs and 30 for t yields:

-- Require that

retraction_duration

-- never takes more than 30 time units:

do

from

run_with_handle_up

until

(gear_status = retracted_position and door_status = closed_position) or
(duration − old duration) > 30

loop

run_with_handle_up

end

assert

gear_status = retracted_position and

door_status = closed_position and

128 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

(duration − old duration)≤ 30
end

end

-- known as R_{12}bis

11.6.4 Complementary requirements

R11bis and R12bis talk about reaching a desired state under some conditions, but not
about preserving it. For example, even if the gear becomes extended and the door
closed with the handle down, this situation must not change without the handle pulled
up. The following application of immediately_meet_property_p (Section 11.5.2) with
gear_status = extended_position and door_status = closed_position for p captures this prop-
erty:

-- Require the system to

keep_gear_extended_door_closed_with_handle_down

do

run_with_handle_down_gear_extended_door_closed

assert

gear_status = extended_position and

door_status = closed_position

end

end

under the assumption that the doors are already closed, the gear is extended, and the
handle is down. Application of run_under_condition_c (Section 11.5.2) with
gear_status = extended_position and door_status = closed_position for c yields, for this as-
sumption:

-- Assume the system

run_with_handle_down_gear_extended_door_closed

do

assume

gear_status = extended_position and

door_status = closed_position

end

run_with_handle_down

end

The state with the gear retracted, the door closed and the handle pulled up should
be stable without pushing the handle down. The following application of
immediately_meet_property_p (Section 11.5.2) with
gear_status = retracted_position and door_status = closed_position for p yields:

-- Require the system to

keep_gear_retracted_door_closed_with_handle_up

do

run_with_handle_up_gear_retracted_door_closed

assert

gear_status = retracted_position and

door_status = closed_position

end

end

11.6. THE LANDING GEAR SYSTEM IN AUTOREQ 129

under the assumption that the doors are already closed, the gear is retracted, and the
handle is up. Application of run_under_condition_c pattern (Section 11.5.2) with
gear_status = retracted_position and door_status = closed_position for c yields, for this as-
sumption:

-- Assume the system

run_with_handle_up_gear_retracted_door_closed

do

assume

gear_status = retracted_position and

door_status = closed_position

end

run_with_handle_up

end

11.6.5 An error in the ground model
Contracts do not just yield expressive power: they also make automatic verification
possible in the AutoReq approach thanks to AutoProof. One of the principal potential
benefits would be to uncover errors in the requirements.

Our work on the LGS example shows that this benefit is not just a theoretical pos-
sibility. Applying the AutoReq method and tools to the published ASM specification
of the LGS system [AGR17] uncovered an error. The verification process applied the
following sequence of steps.

1. Start from the ASM specification. The language in which the ASM specification
is expressed contains syntactic sugar in addition to the standard ASM operators.
The first step consisted of analyzing these additional constructs to understand
how they should translate to Eiffel.

2. Translate it into Eiffel. This step consisted of manual translation of the specifica-
tion and the requirements to Eiffel. One can find the original ASM specification
in an online archive [ML14], inside the LandingGearSystemGround.asm file.
File ground model.e in the GitHub repository [Nau17] contains the result of the
translation.

3. Verify it with AutoProof. Note that AutoProof, by default, performs modular
contract-based verification. AutoReq specification techniques rely on assume and
assert rather than traditional contracts. These specification techniques require
tuning AutoProof command-line options. The GitHub repository [Nau17] with
the Eiffel translation includes a readme file that says in detail how to launch
AutoProof.

4. Identify the error. When AutoProof reports a verification failure, it does not point
at its root cause. The last step was devoted to identifying that cause.

The error uncovered by this procedure is subtle and revealing: The specification
does not meet the R11bis requirement, which states that pushing the handle down
should lead to the gear extended and the door closed. Normally, when the crew pushes

130 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

Figure 11.2: A correctly working LGS state machine. Pushing the handle down cancels
the gear retraction process and initiates gear extension. The bottom-right box contains
the trace leading to state 15.

the LGS handle down, the controller should initiate the gear extension process. Re-
gardless of the initial system’s state, this process should end up correctly – so that in
the end the gear is extended and the LGS latch is closed.

There exists, however, a state from which the erroneous ASM specification will not
bring the system to the correct configuration. This state corresponds to a situation in
which the gear has just been retracted, the door is closing, and the crew decides to can-
cel retraction by pushing the handle down. A correctly working system would cancel
the retraction sequence and initiate gear extension. State 15 on Figure 11.2 illustrates
this situation: the start opening outgoing action cancels the door closing process initi-
ated by action start closing back in state 7. The state machine proceeds with the gear
extension procedure. The erroneous ASM specification models a system that waits for
the crew to pull the handle up again to let the system complete the gear retraction pro-
cess. State 15 on Figure 11.3 features only one outgoing transition: pulling the handle
up again. Instead of canceling the door closing process (Figure 11.2), the system starts
waiting for the crew to pull the handle up. Imagine a situation in which the crew tries
to retract the gear during take-off, and some physical obstacle prevents the latch from
closing completely. In this case a possible solution might be to extend the gear back,
and then try to retract it again. A real controller implemented around the erroneous
specification would make extension with the latch partially closed impossible.

The published Eiffel translation of the specification does not have the error. To
catch it with the AutoReq method one needs first to introduce the error back by com-
menting out two lines in the open_door routine of the Eiffel translation:
when closing_state then

door_status := opening_state

and then submit routine extension_duration to the AutoProof tool; the verification will
fail. The “README” file in the accompanying GitHub repository [Nau17] provides
detailed instructions on submitting AutoReq requirements to AutoProof. Internally,

11.7. RELATED WORK 131

Figure 11.3: The erroneous LGS state machine. Pushing the handle down fails to
cancel the gear retraction process. It puts the system to waiting for the crew to pull the
handle up again. The bottom-right box contains the trace leading to state 15.

AutoProof transforms the Eiffel routine to Boogie code and submits it to the Boogie
executable [Bar+05]. The Boogie executable converts its input to first-order logic for-
mulae and submits them to the Z3 SMT solver [MB08].

AutoProof detects the error in the following major steps:

1. Inline the unqualified calls inside of the extension_duration routine to the level of
attribute updates and assume statements.

2. Unroll the loop inside of extension_duration. How much to unroll is a configurable
setting; the default configuration suffices for the LGS example.

3. Check the assert statements based on the outcome from the Inline step.

The intent of applying AutoReq to this example was not to look for errors but to
try out the approach, illustrate it on a widely used problem, and compare it with other
treatments of that problem. No error had been reported and we did not expect to find
one. To ascertain its presence, we contacted one of the authors of the original article
describing the ASM implementation. He confirmed the presence of the error in the
paper. (He also noted that the private repository used by his colleagues and him had a
correct specification.)

11.7 Related work

11.7.1 Similar studies
The ASM treatment of the LGS example comes from a collection including other treat-
ments [BW14], such as Event-B [SA17], [Lad+17], [ML17], Fiacre [BDZF14] and
Hybrid Event-B [Ban17]. The original collection [BW14] discusses pros and cons of

132 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

these approaches, and we do not repeat that discussion. AutoReq complements these
approaches with the following:

• Language reuse: AutoReq captures temporal and timing properties in a general
purpose programming language. This will inevitably save resources for software
teams that want to apply formal methods.

• Technology reuse: AutoReq relies on AutoProof, a Hoare logic based program
prover. The original use case of AutoProof was specifying and verifying pro-
grams according to the principles of Design by Contract. With AutoReq, soft-
ware teams can use the tool throughout the whole software lifecycle, starting
from the requirements phase.

• Specification reuse: AutoReq makes it possible to avoid copying-and-pasting
already stated assertions through the standard routine call mechanism, familiar
to any post-Assembly programmer.

• Implementation reuse: AutoReq does not require translating programs to models
and back for further formal verification. If a change in the program breaks an
AutoReq requirement, the prover will immediately notice this.

These advantages need stronger support in the form of successful industrial appli-
cations of AutoReq. Such applications may also uncover additional problems to solve.
The application of AutoReq to the LGS example inherits the questionable assumptions
(Section 11.3) from the original work by Arcaini et al. Applying AutoReq to an exam-
ple with weaker assumptions would provide more evidence of its benefits.

The applicability studies will follow the LGS-based experiment that focuses on
illustrating the approach alone. Combining the first description of AutoReq with its
applicability studies would bear the risk of making the chapter difficult to read.

11.7.2 Existing formalisms
Reasoning about programs, imperative and concurrent, has been the focus of computer
science researchers for decades [Jon03], and it traces back as early as Turing’s work
[Jon17]. Different techniques have been developed over time, and it soon became clear
that, while post facto verification can be successful for small programs, an effective
verification strategy should support and be part of the software development itself and
be fully embedded in the process.

The AutoReq method follows this idea and relies on DbC verification; however,
one should understand that DbC is not well suited for control software as it is. The
possibility of unexpected changes in the values of environment-controlled variables
introduces the gap between DbC and control software. Traditional DbC relies on
invariant-based reasoning, on the principle of invariant stability [Pol+14]: it should
be impossible for an operation to make an object inconsistent without modifying the
object. This principle does not work with control software because of the unpre-
dictable environment-controlled variables. In other words, any attempt to constrain
an environment-controlled variable through a contract will inevitably lead to the con-
tract’s failure.

11.7. RELATED WORK 133

Control software communicates asynchronously with the environment. This in-
troduces another gap with DbC, which is designed from the beginning to deal with
synchronous software. For non-life-critical systems [JZ95] one may sacrifice the asyn-
chrony under additional assumptions (Section 7.5.2), but the Landing Gear System
does not fall into this category.

An interesting technique for including environment properties is the notion of mon-
itor introduced by Zave [Zav82]. A monitor is an executable requirement that runs in
a dedicated process and observes the system from outside logging possible anomalies.
A monitor continuously polls the state of nondeterministic variables and checks if the
system evolves accordingly. This is, however, a run-time mechanism; with AutoReq,
we seek requirements techniques that lend themselves to static verification.

The general aspiration towards sound static verification resulted in numerous mod-
eling approaches that rely on a declarative logic. Alloy [Jac06] is one of these declar-
ative modeling languages, based on first-order logic, that are used to express complex
behavior of software systems. Alloy is a successor of Z [ASM80] with its own formal
syntax and semantics, that adds automatic verification and tool support to Z specifi-
cations. A model created in Alloy can indeed be automatically checked for correct-
ness by using a dedicated tool: the Alloy Analyzer, a SAT-based constraint solver that
provides fully automatic simulation and checking. Alloy is one of the tools used for
requirements verification. There are several examples of successful applications of
the modeling languages in different fields: from pedagogical to enterprise modeling to
transportation. A list documenting some of these applications can be found in [Jac17].

The declarative view simplifies static reasoning, but the system will eventually have
to physically operate. C. A. R. Hoare introduced an imperative logic to statically reason
about software way back in 1969. This invention has been treated as a verification
mechanism. We are interested in requirements specification notations. The notion
of seamless requirements (Chapter 10) uses generalized Hoare triples, specification
drivers (Chapter 8), as a requirements notation.

The AutoReq method steps forward by applying the idea of seamless requirements
to the nondeterministic setting. It empowers the operational view of Pamela Zave on
requirements with AutoProof – a Hoare logic based prover of Eiffel programs with con-
tracts that relies on the Boogie technology [Bar+05]. In AutoReq a requirement is a
routine enriched with assume statements capturing environment assumptions and assert

statements that capture the obligations for AutoProof corresponding to the assump-
tions. The resulting method respects environment-controlled phenomena as monitors
do but does not assume the requirements to physically run. The AutoReq method will
benefit the development process even when there is no static prover like AutoProof: an
operational requirement will become a subject to testing as a parameterized unit test
(PUT) [TS05]. The testing will consist in this case of running the requirement in the
simulated environment described in its assume statements.

11.7.3 Timing properties
Representation of real-time requirements, expressed in general or specific form, is a
challenging task that has been attacked through several formalisms both in sequential
and concurrent settings, and in a broad set of application domains. The difficulty (or

134 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

impossibility) to fully represent general real-time requirements other than in natural
language or making use of excessively complicated formalisms (unsuitable for software
developers), has been recognized.

In [MB10] the domain of real-time reconfiguration of systems is discussed, empha-
sizing the necessity of adequate formalisms. The problem of modeling real time in the
context of services orchestration in Business Process, and in presence of abnormal be-
havior has been examined in [Maz05] and [FBM14] by means, respectively, of process
algebra and temporal logic. Modeling protocols also requires real-time aspects to be
represented [BH00]. Event-B has also been used as a vector for real-time extension
[Ili+12] to handle control software requirements.

In all these studies, the necessity emerged of focusing on specific typology of re-
quirements using ad-hoc formalisms and techniques and making use of abstractions.
The notion of real-time is often abstracted as number of steps, a metric commonly
used.

The AutoReq method works with the explicit notion of time distance between
events by stating operational assumptions on the environment; it also supports the ab-
straction of time as number of steps through finite loops with integer counters.

11.8 Summary
The AutoReq approach presented above is a comprehensive method for requirements
analysis based on ideas from modern object-oriented software engineering and the ap-
plication of a seamless software process that relies on the notation of a programming
language as a modeling tool throughout the software process. AutoReq also clarifies
the notion of verifying requirements and shows how to use a program prover to perform
the verification. In addition, it connects fundamental concepts, heretofore considered
independent, from two different areas of research: verification (assume/assert) and re-
quirements (environment/machine).

AutoReq has the following limitations, also suggesting areas of improvement:

• While the idea of seamless requirements has been widely applied, its AutoReq
development as described here needs more validation on diverse examples in an
industrial setting, with actual stakeholders involved.

• The patterns given are not necessarily complete; here too experience with more
examples is necessary to determine if there is a need for other patterns.

• The idea of using a programming language for requirements runs counter to
accepted ideas; while there are strong arguments supporting it, and ample dis-
cussions in some of the OO literature, some people may still hesitate to adopt
it.

• More work is required to determine how applicable AutoReq would be to a soft-
ware process relying on technologies other than Eiffel and AutoProof. In line
with this goal, we applied AutoReq [Gal18] to the London Ambulance System
case [Alr+13], [Let01] and continue working on other examples.

11.8. SUMMARY 135

• As discussed in Section 11.5, parts of the process may benefit from more au-
tomation. Such further tool support is currently under development.

With these reservations, we believe that AutoReq and the associated case study
demonstrate the benefits and contributions listed in the introduction and point to a
promising approach to producing and verifying effective requirements for control soft-
ware.

Acknowledgment
We are indebted to the authors of the ASM version of the LGS case study [AGR17] for
their careful work on this problem. We are particularly grateful to Professor Angelo
Gargantini for his openness, patience and insights in discussing the ASM work with
us.

136 CHAPTER 11. SPECIFYING AND VERIFYING CONTROL SOFTWARE

Chapter 12

Making Seamlessness Reusable

Insufficient requirements reusability, understandability and verifiability jeopardize soft-
ware projects. Empirical studies show little success in improving these qualities sep-
arately. Applying object-oriented thinking to requirements leads to their unified treat-
ment. An online library of reusable requirement templates implements recurring re-
quirement structures, offering a starting point for practicing the unified approach.

12.1 Introduction

The industry is not actively applying requirements reuse [PQF17], which is regrettable:
it might help, if practiced, not only to save resources in the requirements specification
phase, but also to obtain documents of better quality both in content and syntax. It
might also decrease the risk of writing low quality requirements and lead to the reuse
of design, code, and tests.

Bertrand Meyer in 1985 described seven understandability problems common to
natural language specifications [Mey85] and proposed the process of passing them
through a formal notation to produce their more understandable versions. He has later
given a name to the approach – “The Formal Picnic Approach”1. Formal picnics should
be practiced more actively and should be reusable across projects.

The general problem of reuse finds itself in requirements’ verifiability too. Re-
quirements’ verifiable semantics follows several recurring patterns in most of the cases
[DAC99]. If a pattern exists, it should be reused, and to be reused it should be en-
coded as a template. The template should also be connected to the main instruments of
software verification – tests and contracts.

Applying object-oriented thinking to the problems of requirements reusability, un-
derstandability and verifiability draws a new roadmap towards addressing them simul-
taneously. A reusable library of requirement templates, taking the familiar form of
object-oriented classes, provides a starting point for practicing the approach. Each tem-
plate encodes a formal semantics pattern [DAC99] as a generic class reusable across

1https://tinyurl.com/ycn526rm

137

https://tinyurl.com/ycn526rm

138 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

projects and components, for verifying candidate solutions through either testing or
program proving.

12.2 The problem explained

Chapter 2 introduces some problems with reusability, understandability and verifiabil-
ity of requirements. The present section refines these problems further. The preceding
chapters of the dissertation target individual qualities of requirements. The discussion
that follows the section explains how to address these concerns within a single require-
ments process at once.

12.2.1 Reusability

Reusability has become a success story in the reuse of code [Zai+15] and tests [TS05],
but not requirements. On that side too, many patterns recur again and again, causing
undue repetition of effort and mistakes. The practice of industrial projects, however,
involves little reuse of requirements. Textual copy and subsequent modification of
requirements from previous projects are still the most commonly used requirements
reuse techniques [PQF17], which has already been long recognized as deficient in the
world of code reuse.

The most critical factors inhibiting the industrial adoption of requirements reuse
through software requirement patterns (SRP) catalogues are [PQF17]:

• The lack of a well-defined reuse method.

• The lack of quality and incompleteness of requirements to reuse.

• The lack of convenient tools and access facilities with suitable requirements clas-
sification.

Scientific literature studying requirements reuse approaches pays little attention to
these factors when measuring the studied approaches [IPP18]. The degree of reuse is
the most frequently measured variable, but it is measured under the assumption that the
evaluated approach is fully practiced. This assumption does not meet the reality: most
of the practitioners who declare to practice requirements reuse approaches, apply them
very selectively [PQF17]. Secondary studies, which study other studies, equally ignore
the factors that matter to practitioners [IPP18].

12.2.2 Understandability

Bertrand Meyer, in his work “On Formalism in Specifications”[Mey85], described “the
seven sins of the specifier” – a classification of the frequently recurring flaws in require-
ments specifications. Analyzing a specification of a well-known text-processing prob-
lem illustrated that even a small and carefully written natural language requirements
document may suffer from the following problems:

12.2. THE PROBLEM EXPLAINED 139

• Noise – the presence in the text of an element that does not carry information
relevant to any feature of the problem. Variants: redundancy; remorse.

• Silence – the existence of a feature of the problem that is not covered by any
element of the text.

• Overspecification – the presence in the text of an element that corresponds not
to a feature of the problem but to features of a possible solution.

• Contradiction – the presence in the text of two or more elements that define a
feature of the system in an incompatible way.

• Ambiguity – the presence in the text of an element that makes it possible to
interpret a feature of the problem in at least two different ways.

• Forward reference – the presence in the text of an element that uses features of
the problem not defined until later in the text.

• Wishful thinking – the presence in the text of an element that defines a feature
of the problem in such a way that a candidate solution cannot realistically be
validated with respect to this feature.

Identified in the times when software processes were following the Waterfall model,
which takes good care of every software development lifecycle phase, these problems
remain. Nowadays processes pursue continuity, and requirements analysts have little
time to process new requirements before passing them to the developers. The pro-
cesses are iterative and collecting requirements for another iteration often starts before
the current iteration finishes. The pace of work lowers availability of expert developers
for evaluating the new requirements’ verifiability. The pervasiveness of Internet tech-
nologies like Google Search brings problems too. Many sources of unclear origins now
offer tons of potentially unchecked information, which is sometimes overly trusted.

Denying the progress makes no sense, however. Requirements engineering tools
should help the practitioners to improve the quality of information they consume and
rely on. The improved information should be reusable across projects.

12.2.3 Verifiability
The reusability concern applies to requirements’ verifiability as well. Dwyer et al. ana-
lyzed 555 specifications for finite-state verification from different domains and suc-
cessfully matched 511 of them against 23 known patterns [DAC99]. The patterns
were encoded in modeling notations without a guidance on how to reuse them across
projects for verifying candidate solutions. The gap still exists, and the state-of-the-
practice [PQF17] and literature reviews [IPP18] of requirements reuse approaches, as
well as the studies they cite, do not evaluate requirements’ verifiability in the studied
approaches.

Requirements reuse approaches should properly address the verifiability aspect:
reusing non-verifiable requirements makes little sense. The approaches should make it
clear how to capture and reuse recurring verifiable semantics’ structures.

140 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

12.3 Running example
Wikipedia represents a notable example of an intensely used and trusted Internet re-
source. The rest of the discussion relies on a Wikipedia page describing a 24-hour
clock2 as a requirements document example. The “24-hour clock” document is prone
to the seven requirements understandability problems [Mey85]. It only has few state-
ments relevant to clock behavior:

1. The 24-hour clock is a way of telling the time in which the day runs from mid-
night to midnight and is divided into 24 hours, numbered from 0 to 24.

2. A time in the 24-hour clock is written in the form hours:minutes (for example,
01:23), or hours:minutes:seconds (01:23:45).

3. Numbers under 10 usually have a zero in front (called a leading zero); e.g. 09:07.

4. Under the 24-hour clock system, the day begins at midnight, 00:00, and the last
minute of the day begins at 23:59 and ends at 24:00, which is identical to 00:00
of the following day.

5. 12:00 can only be mid-day.

6. Midnight is called 24:00 and is used to mean the end of the day and 00:00 is used
to mean the beginning of the day.

The rest of the text is noise. The “or” connective in Statement 2 results in wishful
thinking: is it acceptable to decide between the two options for every clock object,
or should the decision be taken once and uniformly applied to all objects? None of
the requirements after Statement 2 talk about seconds, from which it follows that the
author silently made the choice in favor of the “hours:minutes” format. This “sin” falls
into the silence category. The “usually” qualification introduces the wishful thinking
problem to Statement 3: how are the developers expected to check candidate solutions
against this requirement? Statements 4 and 6 result in a contradiction each other:
statement 4 says that midnight is 00:00, while statement 6 defines 24:00 as midnight
and 00:00 as the beginning of the day. The contradiction may arise as a result of
forward referencing: 24:00 and 00:00 are only defined in 6, while first used in 1 and
4. The last part of Statement 4 is a remorse: the author implicitly admits that the first
part of the statement was not enough and adds the “which is. . . ” part. Statement 5
introduces an ambiguity, since the document never defines the “mid-day”. Moreover,
terms like “mid-day”, “midnight”, “afternoon” should be defined through specific clock
states; it is not clear then what the author means by saying that a specific state can only
be mid-day/midnight/afternoon: it can be whatever, depending on the terminology.

The illustration of the object-oriented requirements approach handles a fragment of
Statement 1: “the day runs from midnight to midnight”, referred to as “Statement 1.1”.
Understanding this requirement’s treatment will suffice to understand the approach. A
GitHub repository 3 hosts the complete treatment of the “24-hour clock” example.

2https://tinyurl.com/ybocy485
3https://tinyurl.com/y6w7nlcs

https://tinyurl.com/ybocy485
https://tinyurl.com/y6w7nlcs

12.4. REUSE METHODOLOGY 141

12.4 Reuse methodology
Requirements reuse methodologies are bidimensional [IPP18]. The first dimension,
known as development for reuse, describes the procedure of identifying and capturing
new requirement patterns. The second dimension, known as development with reuse,
describes the process of searching and reusing the captured patterns for specifying new
requirements with lower efforts as compared to specifying them without the patterns.

12.4.1 Development for reuse
Given a collection of requirements:

1. Perform the standard commonality and variability analysis on the collection.

2. Capture the identified commonality in an object-oriented class.

3. Capture the semantical commonality through a specification driver (Chapter 8)
to support verification.

4. Capture the structural commonality through a string function to support formal
picnics.

5. Parameterize the identified variability points through abstraction and genericity.

12.4.2 Development with reuse
Given an informal requirement:

1. Analyze the requirement’s meaning and structure.

2. Find the most appropriate requirement template class through the IDE’s search
facilities.

3. Inherit from the found template in a new class representing the requirement.

4. Refine the abstractions into domain definitions.

5. Replace the genericity with the specified types and domain definitions.

6. Perform a formal picnic to see if the new string representation of the requirement
has a different meaning from the original one.

7. Verify candidate solutions through running [TS05] or proving (Section 8.4) the
contracted routine.

12.5 Technical artifacts
Two major technical contributions support the method.

142 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

12.5.1 Library of templates
A ready-to-use online Eiffel library4 of template classes captures known requirement
patterns [DAC99]. The library represents a result of applying the development for
reuse process to the patterns and provides basis for development with reuse. The li-
brary is written in Eiffel for readability, but the method scales to other object-oriented
languages with support for genericity.

12.5.2 Library of multirequirement patterns
An online OneNote notebook 5 rearranges the original collection of patterns 6 in the
form of multirequirements [Mey13] to support their understanding. Dwyer et al. have
initially developed the patterns in 5 notations: LTL, CTL, GIL, Inca, QRE. Their online
collection consists of 5 large pages corresponding to these notations. The alternative
collection consists of 23 pages making it possible to study individual patterns in all the
5 notations simultaneously. The representations are clickable and lead to their sources
in the original repository developed by Dwyer et al. Each page includes a link leading
to the corresponding template in the online Eiffel library.

12.6 Applying a template
The following illustration handles the “Statement 1.1” requirement by applying a reusable
template class from the Eiffel library. The requirement fits into the “Global Response”
pattern [DAC99]. The pattern reads: “S responds to P globally”, for events S and P.
It is the most frequently used pattern: out of the 555 analyzed requirements [DAC99],
241 represented this pattern. For “Statement 1.1”, both S and P map to the midnight
event: “midnight responds to midnight globally”. This new statement paraphrases the
original one, “the day runs from midnight to midnight”.

Class STATEMENT_1_1 (Figure 12.1(a)) captures the requirement. The class inherits
from:

• A generic application of class RESPONSE_GLOBAL to classes CLOCK and MIDNIGHT, where
RESPONSE_GLOBAL is a generic template encoding the “Global Response” pattern
(Appendix A.20). The RESPONSE_GLOBAL [CLOCK, MIDNIGHT, MIDNIGHT] application reads:
“for type CLOCK, MIDNIGHT response to MIDNIGHT globally”.

• Class CLOCK_REQUIREMENT recording domain information common to all clock re-
quirements: the fact that the tick routine advances a clock’s state, and the start

routine initializes a new clock.

The CLOCK class is a candidate solution implementing the “clock” concept, and the
MIDNIGHT class captures the definition of midnight through effecting the deferred holds

Boolean function inherited from generic class CONDITION applied to the CLOCK class. The

4https://tinyurl.com/ybd4b5un
5https://1drv.ms/u/s!AsXOYPvbmuEyh4IsDdYj-i6V5yX0OA
6http://patterns.projects.cs.ksu.edu

https://tinyurl.com/ybd4b5un
https://1drv.ms/u/s!AsXOYPvbmuEyh4IsDdYj-i6V5yX0OA
http://patterns.projects.cs.ksu.edu

12.6. APPLYING A TEMPLATE 143

(a) EiffelStudio with the STATEMENT_1_1 class representing the “Statement 1.1” requirement.

(b) Google document with the contents of the “24-hour clock” Wikipedia page.

Figure 12.1: Requirement classes in EiffelStudio (Figure 12.1(a)), and the contents of
the “24-hour clock” Wikipedia page copied to a Google document (Figure 12.1(b)).
The “Source” link in the STATEMENT_1_1 class leads to the corresponding commented
fragment in the Google document. The comment contains the GitHub location of the
fragment’s object-oriented version, equal to the location in the “GitHub” EIS link in
STATEMENT_1_1.

144 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

generic application emphasizes the fact that the notion of midnight applies to the notion
of clock.

The classes have something in common: the “note” section at the bottom with Web
links of two kinds. Links named “Source”, when followed, highlight the fragments
in the original requirements documents from which the enclosing requirement classes
were derived. Links named “GitHub”, when followed, lead to the enclosing classes’
locations on GitHub. The “Source” link in STATEMENT_1_1, for example, highlights, when
followed, the “the day runs from midnight to midnight” phrase in the Google docu-
ment7, and brings the comment on this phrase to the reader’s attention (Figure 12.1(b)).
The comment contains the GitHub link leading back to the STATEMENT_1_1 class on
GitHub; this link is identical to the “GitHub” link in the STATEMENT_1_1 class’ “note”
section.

12.7 Formal picnic
The RESPONSE_GLOBAL class (Figure 12.2) implements its string representation through
redefining the standard out function present in all Eiffel classes. Any instruction that
expects a string argument, such as print, automatically invokes this function to get the
argument’s string representation if the argument has a non-string type.

Routine run of class TESTER (Section 12.7) is a configurable entry point of the console
application illustrating formal picnics and verification of object-oriented requirements.

Line 11 of TESTER outputs the structured string representation of the STATEMENT_1_1

object-oriented requirement. The .default expression returns the default object of the
STATEMENT_1_1 class, and the print instruction puts the object’s string representation
to the “Output” window below the “TESTER” window. The requirement’s name,
STATEMENT_1_1, goes before the colon and its string representation goes after.

The requirements analyst now has two comparable string representations of the re-
quirement: the original and the generated one. Comparing them facilitates analysis and
may result in asking clarifying questions to the customer and in additional communi-
cation.

12.8 Verification
The template classes (Appendix A), including RESPONSE_GLOBAL (Appendix A.20), contain
instruments of their own verification in the form of a contracted routine called verify.
The run routine of the TESTER class may call verify to test a candidate solution.

Line 15 of the TESTER class (Figure 12.3) tests class CLOCK as a candidate solution
of the STATEMENT_1_1 requirement. Line 13 instantiates a CLOCK variable, while lines 14
and 15 use the variable as test input. The following discussion explains the nature
of line 14. The line is commented to illustrate the problem that the line fixes when
uncommented.

The verify routine has a precondition. For the STATEMENT_1_1 class, the precondi-
tion becomes the holds Boolean function from the MIDNIGHT class. This function re-

7https://tinyurl.com/y96rj2v3

https://tinyurl.com/y96rj2v3

12.8. VERIFICATION 145

Figure 12.2: The executable code (the upper window) outputs the automaticaly gener-
ated string representation of the requirement to the console (the lower window).

Figure 12.3: An exception caused by violating the requirement’s verification precondi-
tion.

146 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

turns True only for the 24:00 time, and the newly instantiated clock variable is set to
time 00:00. Line 14 fixes this mismatch, and its removal crashes the execution. The
“Call Stack” window provides information related to the failure: a precondition tagged
p_holds is violated in STATEMENT_1_1, inherited from the RESPONSE_GLOBAL template class
(Appendix A.20). The testing code should set the clock variable’s state to time 24:00
before testing STATEMENT_1_1; line 14 does exactly this. STATEMENT_0 is a requirement
class saying that the midnight state should be in principle achievable by CLOCK. The
EXISTENCE_GLOBAL pattern [DAC99] captures this semantics. Line 14 tests CLOCK against
STATEMENT_0 by trying to reach the midnight state on the input variable. Uncommenting
the line will remove the precondition violation.

The process of deriving STATEMENT_0 is an example of how the verification process
may help identify a new requirement and learn a new template.

Program proving and Design by Contract may be used instead of testing. The
automatic prover (AutoProof [Tsc+15] in the context of Eiffel) should be applied to
the requirements classes, STATEMENT_0 and STATEMENT_1_1. The prover will statically check
the contracted verify routine according to the principles of Hoare logic [Hoa69]. The
prover will only accept the routine if the CLOCK class has a strong enough and correct
contract (Section 8.4.4). The illustration relies on testing because AutoProof, in its
current state, requires a lot of additional annotations to check classes like STATEMENT_1_1,
and explaining these annotations goes beyond the object-oriented requirements idea’s
essentials.

12.9 Summary
The approach helps to fix the identified problems undermining the lack of requirements
reuse:

• The lack of a well-defined reuse method: the reuse method is object-oriented
software construction, which is a well-defined method.

• The lack of quality and incompleteness of requirements to reuse: the templates li-
brary implements the existing collection of specification patterns proven to cover
most of the cases, which makes the library complete and quality in that sense.

• The lack of convenient tools and access facilities with suitable requirements clas-
sification: the tools and access facilities are object-oriented IDEs and GitHub,
with all their powerful features. The classification is that of the Dwyer et al.’s
collection, proven to be practically relevant.

The approach helps to fix the requirements understandability problems:

• Noise: only those requirements remain that fall into an existing verifiable re-
quirement template.

• Silence: an attempt to verify existing object-oriented requirements may uncover
missing requirements, as it was the case with STATEMENT_0.

12.9. SUMMARY 147

• Overspecification: only those requirements remain that fall into an existing veri-
fiable requirement template. Implementation details cannot map to a requirement
template.

• Contradiction: one notion may be defined in only one way, otherwise the IDE
will raise a compilation error. The contradiction caused by two inconsistent
definitions of midnight was resolved by defining this notion in the form of the
MIDNIGHT class.

• Ambiguity: little can be done to remove the possibility for different interpreta-
tions – the requirements interpretation process is performed by a cognitive agent
anyway. If an interpretation is identified as erroneous, however, switching to an-
other template will automatically update both the generated string representation
and the underlying verifiable semantics. In other words, the templates may help
to reduce the effort spent on fixing the consequences of the misinterpretation.

• Forward reference: the approach removes this problem. There is no notion of re-
quirements’ order in the object-oriented approach, and meaningful statements
are connected by the standard “client-supplier” relationship, extensively sup-
ported by the object-oriented IDEs.

• Wishful thinking: only those requirements remain that fall into an existing verifi-
able requirement template. The compiler will not accept a template’s application
in which the verifiable semantics is not fully defined.

The approach helps to fix the requirements verifiability problem. The library of Eif-
fel classes fixes the lack of reusable templates covering the identified verifiable speci-
fication patterns. The approach makes it possible to capture and reuse newly identified
patterns using the existing object-oriented techniques complemented with contracts.

Besides the benefits, the approach has some limitations:

• Requirements analysts’ familiarity with the principles of object-oriented analysis
and design.

• Software developers’ familiarity with the principles of Hoare logic based reason-
ing.

Intelligent tools should be embedded into existing text editors for:

• Detecting known patterns in what requirements analysts specify manually.

• Proposing reusable templates corresponding to the identified patterns.

• Identifying new patterns in requirements that do not map to existing patterns.

Natural language processing (NLP) would be an appropriate instrument for implement-
ing these tools [Dal+18].

148 CHAPTER 12. MAKING SEAMLESSNESS REUSABLE

Part III

Discussion

149

Chapter 13

Qualitative Evaluation

The present chapter discusses qualitative arguments supporting the claim that the SOOR
approach improves requirements’ expressiveness, verifiability, reusability and under-
standability.

13.1 Expressiveness

SOORs can capture requirements of the following kinds:

• ADT axioms: specification drivers, which capture SOORs’ formal semantics,
inherit their syntax from the PUT-like tests: they are routines equipped with
pre- and postconditions, and prover specific annotations [Pol+14]. The routines’
implementations may contain as many command calls as necessary, which makes
them suitable for capturing multicommand requirements.

• Temporal properties: specification drivers containing contracted loops in their
implementations capture temporal properties. Loops’ contracts consist of loop
variants and invariants – constructs not present in most programming languages.
According to Wikipedia, only Eiffel and Wiley programming languages have
native support for loop invariants, and only Eiffel – for loop variants. PUT-like
approaches emerged in the world of more widespread programming languages
like Java and C# lacking support for loop contracts. This may explain the lack
of support for temporal properties in these approaches.

• Timing constraints: specification drivers capturing temporal properties may cap-
ture timing constraints through the loop variants. A loop variant is a decreasing
non-negative integer function. The loop variants’ semantics maps to the notion
of time, which monotonically goes in one direction. The rate at which a loop
variant decreases corresponds to how the time flows in the problem space. The
implementation of the loop variant may reflect the timing properties of the prob-
lem space.

151

152 CHAPTER 13. QUALITATIVE EVALUATION

13.2 Verifiability
The approach can verify what it can express: multicommand ADT axioms, temporal
properties and timing constraints. Besides these, it helps remove the following require-
ments verifiability problems:

• The modularity problem: verification with SOORs does not assume instrument-
ing the verified code. Specification drivers, forming the verification core of
SOORs, are clients of the verified components.

• The lack of suitability for both testing and program proving: specification drivers,
unlike PUTs, are fully compatible with modular program proving after some
tailoring consisting of adding some annotations [Pol+14] for AutoProof. The
prover accepts a specification driver if the implementation contract is correct.
AutoProof makes it possible for the two specification approaches to benefit each
other; specification drivers, at the same time, remain applicable to the PUT-based
testing. Well-definedness properties are specification drivers that call the same
feature on two equal sets of inputs and assert preservation of the equivalence
in their postconditions. AutoProof will only accept such specification drivers
if the called feature’s postcondition is well-defined. Contracts’ inconsistency
properties are specification drivers that assert False in their postconditions. The
precondition and the implementation body depend on what is checked for an in-
consistency – a feature’s precondition, postcondition, or a class invariant. In any
case, being able to prove False signals an inconsistency in the verified contract.

• Lack of reusable templates covering the identified verification-oriented SRPs:
the online library of SOORTs captures exactly these SRPs.

13.3 Reusability
The approach helps fix the identified problems undermining requirements reuse:

• Copy and paste in requirements reuse: the SOOR approach builds on top of the
object-oriented principles, which boosted software reuse and made the copy-and-
paste approach a Stone Age practice. Applying object orientation to software
requirements gives some hope for removing the copy-and-paste approach from
requirements reuse.

• The lack of a well-defined reuse method: the reuse method is object-oriented
software construction, which is a well-defined method.

• The lack of quality and incompleteness of requirements to reuse: the library
of Eiffel SOORTs implements the existing SRP catalogues shown [DAC99],
[KC05] to cover a significant portion of control software requirements, which
makes the library complete and quality in that sense.

• The lack of convenient tools and access facilities with suitable requirements clas-
sification: the SOOR approach reuses the powerful tools and access facilities of

13.4. UNDERSTANDABILITY 153

the object-oriented IDEs and GitHub. The requirements classification in the Eif-
fel library of SOORTs inherits the classification of the catalogue developed by
Dwyer et al., proven to be practically relevant.

The two libraries of SOORTs implemented during the thesis work, have different
contexts and levels of reuse:

• The control software SOORTs encode finalized behavior patterns; they are in-
tended for being reused across projects, not for developing SOORTs. This maps
well to the original SRP catalogues [DAC99], [KC05], in which the SRPs do not
depend on each other.

• The software component SOORTs encode ADT specifications and may reuse
each other, just like regular classes do in object-oriented programming.

13.4 Understandability
The formal picnic approach improves requirements’ understandability [Mey85],
[Mey18] by paraphrasing them by passing through an intermediate formal representa-
tion. SOORs provide a concrete tool support for this process in the form of functions
that implement the paraphrasing parameterized with variable parts of requirement pat-
terns.

Section 2.4 discusses how PUTs and multirequirements promote and inhibit the im-
portant characteristics of understandable requirements. Thought of as a combination
of PUTs and multirequirements, SOORs inherit their best characteristics: implemen-
tation freedom, unambiguity, traceability, feasibility. Specification drivers, forming
the semantical core of SOORs, additionally provide a formal framework for achieving
completeness and detecting inconsistencies in the presence of a DbC-based program
prover. We currently do not know how SOORs may affect the amount of noise in
specifications.

13.5 Falsification experiment
The best way to test applicability of an approach is to apply it to unusual cases that
were not considered from the beginning. One of the reviewers guessed that the ap-
proach applies only to atomic components, non-decomposable into finer-grained sub-
components:

Reading the rest of the thesis and analyzing the examples, however, I have
understood that, at least in its current form, the proposed approach does not
aim at dealing with high level requirements expressed referring to a com-
plex software made of many different components and subsystems acting
as controllers. In fact, the approach appears to assume that there is a di-
rect mapping between a SOOR and a single component (e.g., the bounded
stack) which is either a control system, handling a finite and limited set
of inputs, or a single data type (this is also mentioned at page 18 where it

154 CHAPTER 13. QUALITATIVE EVALUATION

is said that requirements to software components take the form of abstract
data type, but no justification for this assumption is provided).

Indeed, individual SOORTs from the presented library apply only to one atomic com-
ponent each. This does not necessarily imply, however, that the general approach does
not scale to the multiple components case. Applying the approach to the following
cases would help to test its applicability:

1. Software component composed of collaborating sub-components.

2. Software controller composed of collaborating sub-controllers.

3. Composition of software components collaborating with software controllers.

The section presents applying the SOOR approach to a software component composed
of collaborating sub-components. The remaining two cases require more carefully
designed experiments. Designing and conducting such experiments would be a perfect
continuation of the present work.

Design patterns were the obvious choice for the case of a software component com-
posed of collaborating sub-components. In this section we present a SOORT encoding
the observer pattern as interpreted in an article by Polikarpova et al [Pol+14]. The
listing below captures the corresponding SOORT.

1 note

2 description: "Reusable abstract data type specification of the observer pattern."
3 description: "Found in ‘‘Flexible Invariants Through Semantic Collaboration’’ by Polikarpova et al."
4 EIS: "src= https://cseweb.ucsd.edu/~npolikarpova/publications/fm14.pdf"
5 EIS: "name=Location on GitHub", "src= https://tinyurl.com/y2x2xeat"
6
7 deferred class SUBJECT_OBSERVER [S, O, V]
8 -- Types ‘‘S’’ and ‘‘O’’ form an observer pattern with shared state of type ‘‘V’’.

9
10 feature -- Deferred definitions.

11
12 value (s: S): V
13 deferred

14 end

15
16 subscribers (s: S): LIST [O]
17 deferred

18 end

19
20 update (s: S; v: V)
21 deferred

22 end

23
24 register (s: S; o: O)
25 deferred

26 end

27
28 subject (o: O): S
29 deferred

30 end

31
32 cache (o: O): V

13.5. FALSIFICATION EXPERIMENT 155

33 deferred

34 end

35
36 make (o: O; s: S)
37 deferred

38 end

39
40 notify (o: O)
41 deferred

42 end

43
44 feature -- Abstract data type axioms.

45
46 update_axiom (s: S; v: V; o: O)
47 require

48 subscribers (s).has (o)
49 subject (o) = s

50 do

51 update (s, v)
52 ensure

53 subscribers (s).has (o)
54 subject (o) = s

55 value (s) = v

56 cache (o) = v

57 end

58
59 register_axiom (s: S; o: O)
60 require

61 not subscribers (s).has (o)
62 subject (o) = s

63 do

64 register (s, o)
65 ensure

66 subscribers (s).has (o)
67 subject (o) = s

68 end

69
70 make_axiom (o: O; s: S)
71 require

72 not subscribers (s).has (o)
73 do

74 make (o, s)
75 ensure

76 subject (o) = s

77 subscribers (s).has (o)
78 cache (o) = value (s)
79 end

80
81 notify_axiom (o: O; s: S)
82 require

83 subscribers (s).has (o)
84 subject (o) = s

85 do

86 notify (o)
87 ensure

88 subscribers (s).has (o)
89 subject (o) = s

156 CHAPTER 13. QUALITATIVE EVALUATION

90 cache (o) = value (s)
91 end

92 end

Generic types S and O abstract the subject and observer concrete types. The V generic
type abstracts the type of the state that the subject stores and broadcasts across its ob-
servers. Lines 12-42 declare the essential deferred features of the observer pattern. The
specifier will need to implement these features in terms of the concrete types provided
for S, O and V. Lines 46-91 capture the axioms of the observer pattern in the form of
specification drivers.

The observer pattern consists of two equally important components – the subject
and the list of observers. This plurality does not add, however, to the complexity of the
method.

Chapter 14

Quantitative Evaluation

The present chapter discusses quantitative arguments showing that SOORs promote
expressiveness, verifiability and reusability. We currently have no quantitative evidence
for understandability; the benefits of SOORs for understandability may follow as self-
evident, however, from the discussion in Chapter 13 and Chapter 2.

14.1 Expressiveness
The evidence of the SOORTs’ expressiveness comes from the possibility to capture:

• The 23 temporal SRPs for control software [DAC99] (Section 4.1).

• The real-time semantics [KC05], as an optional feature inside the SOORTs for
temporal properties.

• The 21 ADTs recurring in the requirements literature, some of which are essen-
tial components (Section 4.2).

Some of the control software SRPs have tricky formal semantics. For example, the
“Bounded Existence Between Q and R” SRP, where the bound is at most 2 designated
states, looks as follows in LTL:

�((Q ∧3R)⇒ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U
(R ∨ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U(R ∨ (¬ PUR)))))

(14.1)

We were able to encode this formula as a specification driver inside the
BOUNDED_EXISTENCE_BETWEEN SOORT (Appendix A.6). Moreover, representing require-
ments’ formal semantics as specification drivers allows us to generalize from the 2-
states to the k-states case. Three out of the five notations used by Dwyer et al. –
LTL, CTL and GIL – lack expressiveness for performing such generalization. Using
the programming language as a requirements notation makes it possible to perform the
generalization through enclosing the bounded existence semantics into an additional
loop that runs exactly k times.

157

158 CHAPTER 14. QUANTITATIVE EVALUATION

14.2 Verifiability
Modularity of the SOOR-based verification from its definitions, which is why it does
not require evaluation.

Applicability of SOORs to both program proving and testing immediately follows
from the definition as well. Specification drivers syntactically are PUTs equipped with
the prover-specific annotations; the compiler ignores these annotations, which is why
specification drivers may be used as PUTs without modification.

What may deserve an empirical evaluation is how useful specification drivers are
for analyzing contracts’ well-definedness and consistency. The EiffelBase2 library
[PTF18] seems to be a perfect data set for such evaluation. We analyzed well-
definedness of feature copy_ in the EiffelBase2 classes. The feature copies the given ob-
ject into the current one. Out of the 17 versions of the feature, 6 were underspecified.
They come from the following classes:

• V_ARRAY2

• V_LINKED_QUEUE

• V_LINKED_STACK

• V_ARRAYED_LIST_ITERATOR

• V_ARRAY_ITERATOR

• V_HASH_SET_ITERATOR

Deeper analysis revealed that the most common problem was not taking into consid-
eration the possibility of aliasing between the copied and the current objects. For the
V_HASH_SET_ITERATOR class, however, AutoProof did not accept the well-definedness ax-
iom even with the aliasing prohibited in the precondition. AutoProof did not terminate
when checking the well-definedness axiom for the following 2 classes:

• V_DOUBLY_LINKED_LIST_ITERATOR

• V_LINKED_LIST_ITERATOR

The non-termination may be interpreted as if the features were underdefined. Sum-
marizing the results of the analysis, out of the 17 versions AutoProof accepted the
well-definedness axiom only for 9. Underdefined contracts may have security implica-
tions. Consider appending the following code to the implementation of feature copy_ in
class V_ARRAY2:

else

array.wipe_out
row_count := 0
column_count := 0

end

14.3. REUSABILITY 159

The else clause describes the aliasing situation, which is ignored in the contract of the
feature. The added code wipes out the current array’s data. AutoProof accepts the
modified implementation, which is not what we expect: a feature responsible for copy-
ing from another array should not erase the current one. The published presentation of
EiffelBase2 claims well-definedness of the flawed classes [PTF18].

The EiffelBase2 library contains software components. As for control software,
expressing their properties as specification drivers was also fruitful. Chapter 11 de-
tails uncovering an error in a published abstract state machine (ASM) implementation
[AGR17] of the Landing Gear System (LGS) [BW14] – a commonly used example for
evaluating applicability of formal specification and verification techniques.

14.3 Reusability
We might evaluate the extent to which the SOOR approach improves reusability by
following the common approach – measuring the amount of duplication removed from
requirements [IPP18]. Such evaluation would make little sense, however: the SOOR
approach just applies the object-oriented principles to the construction of requirements.
This makes the evaluation straightforward: the amount of duplication may be removed
completely – this is exactly what happens to software built around the same principles.
We prefer then to evaluate the extent to which the reuse approach simplifies specifica-
tion of individual requirements.

Recall the “Bounded Existence Between Q and R” SRP (Equation (14.1)):

�((Q ∧3R)⇒ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U
(R ∨ ((¬ P ∧ ¬ R)U(R ∨ ((P ∧ ¬ R)U(R ∨ (¬ PUR)))))

(14.2)

Repeatedly instantiating this SRP as it is and then translating it into unit tests may be-
come challenging. In the SOOR approach, the complexity of specifying a SOOR does
not depend on the SOORT’s internal complexity. For example, a SOOR expressing
requirement “equinox happens not more than two times during a year” for a calendar
system would roughly look as follows:

class

EQUINOX_FREQUENCY

inherit

BOUNDED_EXISTENCE_BETWEEN [CALENDAR, EQUINOX, YEAR_BEGINNING, YEAR_END]
CALENDAR _REQUIREMENT

end

where: class CALENDAR represents the specified type; EQUINOX captures the equinox condi-
tion; YEAR_BEGINNING and YEAR_END capture the beginning and the end of the year, respec-
tively; CALENDAR_REQUIREMENT captures phenomena common to calendar requirements.
Consider now requirement “the beginning of the year is always followed by the end
of the year”. This requirement represents the “Global Response” SRP, in LTL:

�(P⇒ 3S)

160 CHAPTER 14. QUANTITATIVE EVALUATION

The complexity of this SRP is incomparably smaller than the complexity of the previ-
ous one. The SOOR capturing the new requirement would look as follows:

class

YEAR_END_RESPONDS_TO_YEAR_BEGINNING

inherit

RESPONSE_GLOBAL [CALENDAR, YEAR_END, YEAR_BEGINNING]
CALENDAR _REQUIREMENT

end

This SOOR is simpler only in one way: it provides 3 actual generic parameters to
its SOORT, while the previous one provides 4. We may say that the SOOR’s com-
plexity depends linearly on the number of formal generic parameters in the SOORT
from which the SOOR inherits. For the existing control software SRP’s, however, this
number never exceeds 4.

As for specifying SOORs for software components from the ADT SOORTs: the
number of ADT axioms depends quadratically on the number of operations in the
specified ADT [Lam09]. Specifying a SOOR from an ADT SOORT requires only
to connect the deferred features of the SOORT with the concrete features of the spec-
ified type. This does not remove the need to verify all the ADT axioms present in
the SOORT in the form of specification drivers. Technologies like AutoProof and Au-
toTest solve the verification problem, however. The approach replaces the specification
complexity from quadratic to linear.

14.4 Understandability
We currently have no empirical evidence that the SOOR approach improves require-
ments understandability: it requires feedback from people applying the SOOR ap-
proach. We consider industrial evaluation of this aspect as important part of the future
work.

Chapter 15

Thesis Summary

The present chapter wraps-up the discussion by drawing conclusions, admitting some
limitations and showing future research directions.

15.1 Conclusions
The dissertation presents Seamless Object-Oriented Requirements (SOOR) – a require-
ments approach that treats software requirements as regular input to the object-oriented
analysis and design. The approach makes requirements full citizens of integrated de-
velopment environments (IDEs) and removes the notational gap between requirements
and their implementations. The object-oriented treatment makes requirements:

• Expressive, through the expressive power of Design by Contract (Chapter 7,
Chapter 10).

• Verifiable, through specification drivers contained inside the requirement classes
and contracts inside the implementation classes (Chapter 8, Chapter 9, Chap-
ter 11).

• Reusable, through the standard object-oriented techniques – genericity and ab-
straction (Chapter 11, Chapter 12).

• Understandable, through the automatic paraphrasing mechanism embedded into
requirement classes (Chapter 12).

Both qualitative (Chapter 13) and quantitative (Chapter 14) arguments show the im-
provements in expressiveness, verifiability and reusability, while understandability is
currently lacking a supporting quantitative data. We expect to have such data soon,
however, from applying the SOOR approach in an industrial setting.

The SOOR approach comes with a ready-to-use library of Seamless Object-Oriented
Requirement Templates (SOORTs) – deferred generic requirement classes capturing
known software requirement patterns (SRPs). Studying several SOORTs’ internals
will give intuition behind constructing new SOORTs. The thinking discipline behind

161

162 CHAPTER 15. THESIS SUMMARY

SOORTs’ construction and reuse is identical to the object-oriented thinking, which
decreases the learning curve for seasoned developers. In the SOOR approach, require-
ments become the junction point of the software process:

• The automatic paraphrasing implemented as part of the SOORTs supports re-
quirements validation and understandability. A developer looking at a require-
ment and its paraphrased form may consider rewriting it.

• The SOORTs also contain a reusable requirements verification mechanism. This
mechanism may either drive specification of strong enough and correct con-
tracts (Chapter 8) or serve as input to a Parameterized Test-Driven Development
(PTDD)-style [DTS10] construction process.

• The SOOR’s verification mechanism makes it possible to instantly see if the
existing solution correctly implements an added or updated requirement (Chap-
ter 10).

• Symmetrically, the same verification mechanism makes it possible to instantly
see if an updated solution correctly implements the existing requirements (Chap-
ter 10).

• Analysis of a set of SOORs may reveal commonality among them, leading to
creation of a new SOORT capturing the identified commonality. The original
SOORs will become descendants of the new SOORT and will only include the
variable part; as a consequence, they will look simpler.

• Seamless requirements may literally be programmed and reused for program-
ming other requirements, as Chapter 11 shows.

• They may serve as building blocks for contracted implementations (Chapter 7)
in the context of Design by Contract.

All these technical traits of Seamless Object-Oriented Requirements will bring the
following sensible business effects:

• Better reusability of requirements.

• Higher responsiveness of the software process to changing requirements.

• Decreased learning curve for software developers.

• Higher confidentiality in requirements validity.

• Higher confidentiality in software correctness.

• Smaller number of software tools to buy and maintain.

• Possibility to formally prove software correct, even in the context of Agile de-
velopment.

• Faster detection of defects in requirements.

15.2. LIMITATIONS 163

“Different tasks will of course remain. To take extreme examples, you
are not doing the same thing when defining general properties of a system
that has yet to be built and performing the last rounds of debugging. But
the idea of seamlessness is to downplay differences where the traditional
approach exaggerated them; to recognize, behind the technical variations,
the fundamental unity of the software process. Throughout development
the same issues arise, the same intellectual challenges must be addressed,
the same structuring mechanisms are needed, the same forms of reasoning
apply and, as shown in this book, the same notation can be used.” [Mey97]

This citation from the OOSC book remains valid. The SOOR approach adapts the inital
object-oriented software process to the everchanging nature of modern requirements.
The approach treats requirements as early input to the object-oriented analysis process,
resulting in the requirements enjoying the traditional benefits of object orientation and
leading to higher levels of seamlessness.

15.2 Limitations
The SOOR approach has limitations. It applies at the conceptual level to any general-
purpose programming language with “assume”/”assert” statements, as Chapter 11
demonstrates. Having a native support for contracts, however, would greatly simplify
its application. Having a program prover like AutoProof would maximize outcome
from practicing the approach, though it remains powerful even with testing-based ver-
ification. Successfully applying contracts and program proving will require some ad-
ditional training; luckily, there are plenty of resources on these topics, from online
tutorials [Lei13] to fundamental literature [Mey97].

The necessity to learn contracts and proof-based verification is better, in our opin-
ion, than the existing necessity to learn separate requirements notations disjoint from
the solution space. We justify this opinion as follows: the skills required for applying
the SOOR approach may pay not only at the requirements but also at the construc-
tion. Developers that master contracts and program proving for requirements may start
applying these techniques in their programming activities, which will result in better
documented and verified programs.

We could not come up with any practical limitations for applying the SOOR ap-
proach. This should not surprise – the objective was exactly to remove the existing
limitations. Industrial studies of the approach should be conducted, however, to reveal
possible concerns from the practitioners. We leave this important task as the future
work.

15.3 Future work
The following work is necessary to show stronger evidence of the SOOR’s approach
benefits:

• Applying and measuring the approach in an industrial setting.

164 CHAPTER 15. THESIS SUMMARY

• Proving formally that the presented library of seamless requirement templates
correctly resembles the encoded SRPs’ semantics.

The dissertation creates opens up the following research directions:

• Automatic generation of seamless requirement templates for a given program-
ming language from a given pattern expressed in a mathematical formalism. The
dissertation present an Eiffel library of seamless requirement templates that. The
library encodes requirement patterns from an existing catalogue. The input pat-
terns are encoded in several mathematical formalisms. Because the concepts
behind the templates’ construction apply not only to Eiffel, it makes sense to de-
velop tools that would automatically generate similar templates for other widely
used programming languages. Such tools might accept the mathematical for-
malisms on input and produce the corresponding seamless requirement templates
on output.

• Extending the existing IDEs for better support of seamless requirements and
their templates. Specification of seamless requirements currently relies on the
typical programming-style activities, such as inheritance and generic derivation.
While software engineers with programming background may find this process
comfortable, former requirements engineers may need a “friendlier” environ-
ment that would give them more familiar user experience. Because the ultimate
long-term goal of our research is to unify requirements engineering and software
construction, catering to practitioners from the both camps is important.

• Detecting known patterns in natural language requirements with their subsequent
translation to seamless requirement templates. A huge body of software require-
ments exists expressed in numerous notations: natural language, UML diagrams,
goal diagrams, temporal logics, Z notations and so forth. Manually converting
them to the seamless form will take ages and will be considered as waste in the
software engineering world dominated by agile methodologies. Also, we think
that early requirements will still be captured in natural language anyway. Early
requirements elicitation sessions’ success relies mainly on the quality of human
communication. Nothing beats quickly drafted natural language notes in their
ability to capture the conversation’s context and the participants’ mood and per-
ception.

• Identifying new patterns in recurring requirements that do not map to existing
patterns. Natural language requirements’ meaning may recur and still not map
to any existing pattern. Tools should exist that would identify new patterns and
propose ways to capture them in the form of seamless requirement templates.

• Enriching the Eiffel’s contract layer with annotations corresponding to the
SOORTs. Ait-Ameur and Méry [AM16] propose integrating domain knowledge
and design models through annotations. The annotations enrich the models with
semantic information from the target domain. The verification process then au-
tomatically takes these annotations into account. In the world of programming
languages, this idea maps to the single product principle [Mey09] violated when

15.3. FUTURE WORK 165

one states requirements separately from the source code, which is the case with
SOORs. With a programming language, design models will map to contracts,
and domain knowledge will map to SOORTs. The task will be to develop the
annotations corresponding to SOORTs at the level of contracts and thus obey the
single product principle. The next task will be to update the existing verification
mechanisms, AutoTest and AutoProof, to take the new annotations into account.

• Investigate the possibility of developing general rules for translating temporal
properties to a programming language. The SOORTs presented in the disserta-
tion are translations of entire requirement patterns, but it is not clear yet how
to generalize the translation to the level of distinct temporal operators. Having
such a translation scheme would make it possible to translate arbitrary temporal
properties to SOORs and SOORTs.

166 CHAPTER 15. THESIS SUMMARY

Part IV

Appendices

167

Appendix A

Control Software SOORTs

A.1 Absence After

note

description: "P is false after Q"
EIS: "name=Multirequirement", "src= http://tinyurl.com/yxcwu8vw"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y5h2pw8o"

deferred class

ABSENCE_AFTER [S, expanded P→CONDITION [S], expanded Q→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
do

from

timer := time_boundary

invariant

p_does_not_hold: not ({P}).default.holds (system)
until

timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is false after " + ({Q}).name

169

170 APPENDIX A. CONTROL SOFTWARE SOORTS

end

end

A.2 Absence Before

note

description: "P is false before R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y28f8xxg"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yykmrtwe"

deferred class

ABSENCE_BEFORE [S, expanded P→CONDITION [S], expanded R→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

invariant

p_does_not_hold_or_else_r_holds: not ({P}).default.holds (system) or else ({R}).default.
holds (system)

until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is false before " + ({R}).name
end

end

A.3 Absence Between

note

description: "P is false between Q and R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y4nkt92q"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y4ltn92p"

deferred class

ABSENCE_BETWEEN [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

A.4. ABSENCE GLOBAL 171

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

timer := time_boundary

invariant

p_does_not_hold_or_else_r_holds: not ({P}).default.holds (system) or else ({R}).default.
holds (system)

until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is false between " + ({Q}).name + " and " + ({R}).name
end

end

A.4 Absence Global

note

description: "P is false globally"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y5a6bb8u"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yx9cd6va"

deferred class

ABSENCE_GLOBAL [S, expanded P→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

init (system)

172 APPENDIX A. CONTROL SOFTWARE SOORTS

invariant

p_does_not_hold: not ({P}).default.holds (system)
until

timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is false globally"
end

end

A.5 Absence Until

note

description: "P is false after Q until R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y3onr2bn"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y69x5dlr"

deferred class

ABSENCE_UNTIL [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

timer := time_boundary

invariant

p_does_not_hold_or_else_r_holds: not ({P}).default.holds (system) or else ({R}).default.
holds (system)

until

({R}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

A.6. BOUNDED EXISTENCE BETWEEN 173

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is false after " + ({Q}).name + " until " + ({R}).name
end

end

A.6 Bounded Existence Between

note

description: "Transitions to P occur at most 2 times between Q and R."
EIS: "name=Multirequirement", "src= http://tinyurl.com/y4nr2h8x"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yypy2pgb"

deferred class

BOUNDED_EXISTENCE_BETWEEN [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded
R→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
do

from

timer := time_boundary

until

({R}).default.holds (system) or else not ({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({R}).default.holds (system) or else ({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({R}).default.holds (system) or else not ({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

174 APPENDIX A. CONTROL SOFTWARE SOORTS

until

({R}).default.holds (system) or else ({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({R}).default.holds (system) or else not ({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

invariant

({R}).default.holds (system) or else not ({P}).default.holds (system)
until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

ensure

r_holds: ({R}).default.holds (system)
end

feature

requirement_specific_output: STRING
do

Result := "transitions to " + ({P}).name + " occur at most 2 times between " + ({Q}).name + " and "
+ ({R}).name

end

end

A.7 Condition

note

description: "Condition over S."
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yya4fncg"

deferred class

CONDITION [S]

feature

holds (system: S): BOOLEAN
deferred

end

end

A.8. EXISTENCE AFTER 175

A.8 Existence After

note

description: "P becomes true after Q"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y644k9hl"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y2psqqzk"

deferred class

EXISTENCE_AFTER [S, expanded P→CONDITION [S], expanded Q→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

init (system)
until

({Q}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " becomes true after " + ({Q}).name
end

end

A.9 Existence Before

note

description: "P becomes true before R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y584yaqr"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yyufzv2g"

deferred class

EXISTENCE_BEFORE [S, expanded P→CONDITION [S], expanded R→CONDITION [S]]

176 APPENDIX A. CONTROL SOFTWARE SOORTS

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

invariant

r_does_not_hold: not ({R}).default.holds (system)
until

({P}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " becomes true before " + ({R}).name
end

end

A.10 Existence Between

note

description: "P becomes true between Q and R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y2prdopt"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y5vq9hg9"

deferred class

EXISTENCE_BETWEEN [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

timer := time_boundary

invariant

A.11. EXISTENCE GLOBAL 177

r_does_not_hold: not ({R}).default.holds (system)
until

({P}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " becomes true between " + ({Q}).name + " and " + ({R}).name
end

end

A.11 Existence Global

note

description: "P becomes true globally"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y5rrbsrk"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yxgvkktt"

deferred class

EXISTENCE_GLOBAL [S, expanded P→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

init (system)
until

({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " becomes true globally"
end

end

178 APPENDIX A. CONTROL SOFTWARE SOORTS

A.12 Existence Until

note

description: "P becomes true after Q until R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y55xy2aq"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yy5we3xq"

deferred class

EXISTENCE_UNTIL [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

timer := time_boundary

invariant

r_does_not_hold: not ({R}).default.holds (system)
until

({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " becomes true after " + ({Q}).name + " until " + ({R}).name
end

end

A.13 Precedence After

note

description: "S precedes P after Q"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y54958zw"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y4bqc3eb"

deferred class

PRECEDENCE_AFTER [G, expanded S→CONDITION [G], expanded P→CONDITION [G], expanded Q→
CONDITION [G]]

inherit

A.14. PRECEDENCE CHAIN GLOBAL 179

REQUIREMENT [G]

feature

frozen verify (system: G)
require

q_holds: ({Q}).default.holds (system)
do

from

timer := time_boundary

invariant

p_does_not_hold_or_else_s: not ({P}).default.holds (system) or else ({S}).default.holds (
system)

until

({S}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + " precedes " + ({P}).name + " after " + ({Q}).name
end

end

A.14 Precedence Chain Global

note

description: "S, T precedes P globally."
EIS: "name=Multirequirement", "src= http://tinyurl.com/y22s7fed"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yxgqazkn"

deferred class

PRECEDENCE_CHAIN_GLOBAL [G, expanded S→CONDITION [G], expanded T→CONDITION [G], expanded P

→CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
do

from

timer := time_boundary

init (system)
invariant

not ({P}).default.holds (system)

180 APPENDIX A. CONTROL SOFTWARE SOORTS

until

({S}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

iterate (system)
invariant

not ({P}).default.holds (system) or else ({T}).default.holds (system)
until

({T}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + ", " + ({T}).name + " precedes " + ({P}).name + " globally"
end

end

A.15 Precedence Global

note

description: "S precedes P globally"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y5rmuwef"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y3d6xscj"

deferred class

PRECEDENCE_GLOBAL [G, expanded S→CONDITION [G], expanded P→CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
do

from

A.16. REQUIREMENT 181

timer := time_boundary

init (system)
invariant

p_does_not_hold_or_else_s_holds: not ({P}).default.holds (system) or else ({S}).default.
holds (system)

until

({S}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + " precedes " + ({P}).name + " globally"
end

end

A.16 Requirement

note

description: "Verifiable requirement over S."
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y5rqwzs9"

deferred class

REQUIREMENT [S]

inherit

ANY

undefine

out

end

feature

init (system: S)
deferred

end

main (system: S)
deferred

end

iterate (system: S)
do

main (system)
timer := timer − time_growth

end

out: STRING

182 APPENDIX A. CONTROL SOFTWARE SOORTS

do

Result := Current.generating_type.name + ": in "
Result := Result + ({S}).name + ", "
Result := Result + requirement_specific_output + ". "
Result := Result + "The effect should be observed within " + time_boundary.out + " "
Result := Result + time_unit

if time_boundary > 1 then

Result := Result + "s"
end

Result := Result + ".%N"
end

requirement_specific_output: STRING
deferred

end

feature

timer: INTEGER

time_boundary: INTEGER
do

Result := {INTEGER}.max_value
end

time_growth: INTEGER
do

Result := 1
end

time_unit: STRING
do

Result := "time unit"
end

end

A.17 Response After

note

description: "S responds to P after Q"
EIS: "name=Multirequirement", "src= http://tinyurl.com/yyso3qn8"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yyl4ebge"

deferred class

RESPONSE_AFTER [G, expanded S→CONDITION [G], expanded P→CONDITION [G], expanded Q→
CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
require

A.18. RESPONSE BEFORE 183

q_holds: ({Q}).default.holds (system)
do

from

timer := time_boundary

until

({P}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

check

assume: ({P}).default.holds (system)
end

from

until

({S}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + " responds to " + ({P}).name + " after " + ({Q}).name + "."
end

end

A.18 Response Before

note

description: "S responds to P before R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y2b69k9o"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y56g5ok5"

deferred class

RESPONSE_BEFORE [G, expanded S→CONDITION [G], expanded P→CONDITION [G], expanded R→
CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
require

p_holds: ({P}).default.holds (system)
do

from

timer := time_boundary

184 APPENDIX A. CONTROL SOFTWARE SOORTS

invariant

r_does_not_hold: not ({R}).default.holds (system)
until

({S}).default.holds (system)
loop

iterate (system)
variant

timer

end

from

until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({S}).name + " responds to " + ({P}).name + " before " + ({R}).name
end

end

A.19 Response Chain Global

note

description: "P responds to S, T globally."
EIS: "name=Multirequirement", "src= http://tinyurl.com/y32tgtcm"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yyr8xw2b"

deferred class

RESPONSE_CHAIN_GLOBAL [G, expanded P→CONDITION [G], expanded S→CONDITION [G], expanded T

→CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
require

({S}).default.holds (system)
do

from

timer := time_boundary

iterate (system)
until

({T}).default.holds (system)
loop

iterate (system)

A.20. RESPONSE GLOBAL 185

variant

timer

end

from

until

({P}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " responds to " + ({S}).name + ", " + ({T}).name + " globally"
end

end

A.20 Response Global

note

description: "S responds to P globally"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y44wbnbs"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y2crlkjc"

deferred class

RESPONSE_GLOBAL [G, expanded S→CONDITION [G], expanded P→CONDITION [G]]

inherit

REQUIREMENT [G]

feature

frozen verify (system: G)
require

p_holds: ({P}).default.holds (system)
do

from

timer := time_boundary

until

({S}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING

186 APPENDIX A. CONTROL SOFTWARE SOORTS

do

Result := ({S}).name + " responds to " + ({P}).name + " globally"
end

end

A.21 Universality After

note

description: "P is true after Q"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y3e7vrvx"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y35pz34n"

deferred class

UNIVERSALITY_AFTER [S, expanded P→CONDITION [S], expanded Q→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
do

from

timer := time_boundary

invariant

p_holds: ({P}).default.holds (system)
until

timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is true after " + ({Q}).name
end

end

A.22 Universality Before

note

description: "P is true before R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/yxmn65yo"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y42m9uth"

A.23. UNIVERSALITY BETWEEN 187

deferred class

UNIVERSALITY_BEFORE [S, expanded P→CONDITION [S], expanded R→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

invariant

({P}).default.holds (system) or else ({R}).default.holds (system)
until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is true before " + ({R}).name
end

end

A.23 Universality Between

note

description: "P is true between Q and R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/yxmkw6s5"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/yypj6uhf"

deferred class

UNIVERSALITY_BETWEEN [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

188 APPENDIX A. CONTROL SOFTWARE SOORTS

timer := time_boundary

invariant

p_holds_or_else_r: ({P}).default.holds (system) or else ({R}).default.holds (system)
until

({R}).default.holds (system)
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is true between " + ({Q}).name + " and " + ({R}).name
end

end

A.24 Universality Global

note

description: "P is true globally"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y3hrpltn"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y46rbz87"

deferred class

UNIVERSALITY_GLOBAL [S, expanded P→CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
do

from

timer := time_boundary

init (system)
invariant

p_holds: ({P}).default.holds (system)
until

timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING

A.25. UNIVERSALITY UNTIL 189

do

Result := ({P}).name + " is true globally"
end

end

A.25 Universality Until

note

description: "P is true after Q until R"
EIS: "name=Multirequirement", "src= http://tinyurl.com/y3mgklvw"
EIS: "name=Location on GitHub", "src= http://tinyurl.com/y65zzxke"

deferred class

UNIVERSALITY_UNTIL [S, expanded P→CONDITION [S], expanded Q→CONDITION [S], expanded R→
CONDITION [S]]

inherit

REQUIREMENT [S]

feature

frozen verify (system: S)
require

q_holds: ({Q}).default.holds (system)
r_does_not_hold: not ({R}).default.holds (system)

do

from

timer := time_boundary

invariant

p_holds_or_else_r_holds: ({P}).default.holds (system) or else ({R}).default.holds (
system)

until

({R}).default.holds (system) or else timer = 0
loop

iterate (system)
variant

timer

end

end

feature

requirement_specific_output: STRING
do

Result := ({P}).name + " is true after " + ({Q}).name + " until " + ({R}).name
end

end

190 APPENDIX A. CONTROL SOFTWARE SOORTS

Appendix B

Software Components SOORTs

B.1 Array

note

description: "Reusable abstract data type specification of array."
description: "Found in ‘‘Abstract Data Types and Software Validation ’’ by Guttag, Horowitz and

Musser:"
EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf"
description: "Found in ‘‘Abstract Data Types and the Development of Data Structures’’ by Guttag:"
EIS: "src= http://tinyurl.com/y45o32hq"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y69xc6fy"

deferred class

ARRAY_ADT [A, E]
-- Arrays ‘‘A’’ contain elements of ‘‘E’’.

inherit

EQUALITY_ADT [A]

feature

-- Deferred definitions.

make (new_first, new_last: INTEGER): A
deferred

end

put (array: A; index: INTEGER; element: E)
deferred

end

first (array: A): INTEGER
deferred

end

last (array: A): INTEGER
deferred

end

191

192 APPENDIX B. SOFTWARE COMPONENTS SOORTS

eval (array: A; index: INTEGER): E
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (new_first, new_last: INTEGER)
local

new_array: A
do

new_array := make (new_first, new_last)
check

first (new_array) ~ new_first

end

end

frozen a_2 (array: A; index: INTEGER; element: E; old_first: INTEGER)
require

first (array) ~ old_first

do

put (array, index, element)
ensure

first (array) ~ old_first

end

frozen a_3 (new_first, new_last: INTEGER)
local

new_array: A
do

new_array := make (new_first, new_last)
check

last (new_array) ~ new_last

end

end

frozen a_4 (array: A; index: INTEGER; element: E; old_last: INTEGER)
require

last (array) ~ old_last

do

put (array, index, element)
ensure

last (array) ~ old_last

end

frozen a_5 (new_first, new_last: INTEGER; index: INTEGER; element: E)
local

array: A
do

array := make (new_first, new_last)
check

eval (array, index) /~ element

end

end

frozen a_6 (array: A; index_put, index_eval: INTEGER; element_1, element_2: E)

B.1. ARRAY 193

require

index_eval <first (array)
do

put (array, index_put, element_1)
ensure

eval (array, index_eval) /~ element_2

end

frozen a_7 (array: A; index_put, index_eval: INTEGER; element_1, element_2: E)
require

index_eval > last (array)
do

put (array, index_put, element_1)
ensure

eval (array, index_eval) /~ element_2

end

frozen a_8 (array: A; index: INTEGER; element: E)
require

index ≥ first (array)
index≤ last (array)

do

put (array, index, element)
ensure

eval (array, index) ~ element

end

frozen a_9 (array: A; index_put: INTEGER; element: E; index_eval: INTEGER; old_element: E)
require

index_eval ≥ first (array)
index_eval≤ last (array)
index_put /~ index_eval

eval (array, index_eval) ~ old_element

do

put (array, index_put, element)
ensure

eval (array, index_eval) ~ old_element

end

feature

frozen make_well_defined (new_first, new_last: INTEGER)
local

array_1, array_2: A
do

array_1 := make (new_first, new_last)
array_2 := make (new_first, new_last)
check

array_1 6= array_2

end

check

array_1 ~ array_2

end

end

frozen put_well_defined (array_1, array_2: A; index: INTEGER; element: E)
require

194 APPENDIX B. SOFTWARE COMPONENTS SOORTS

array_1 ~ array_2

do

put (array_1, index, element)
put (array_2, index, element)

ensure

array_1 ~ array_2

end

frozen first_well_defined (array_1, array_2: A)
require

array_1 ~ array_2

do

ensure

first (array_1) ~ first (array_2)
end

frozen last_well_defined (array_1, array_2: A)
require

array_1 ~ array_2

do

ensure

last (array_1) ~ last (array_2)
end

frozen eval_well_defined (array_1, array_2: A; index: INTEGER)
require

array_1 ~ array_2

do

ensure

eval (array_1, index) ~ eval (array_2, index)
end

end

B.2 Bag

note

description: "Reusable abstract data type specification of bag."
description: "Found in ‘‘The Algebraic Specification of Abstract Data Types’’ by Guttag and Horning:

"
EIS: "src= https://link.springer.com/article/10.1007/BF00260922"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yyensvjt"

deferred class

BAG_ADT [B, E]
-- Bags ‘‘B’’ contain elements of ‘‘E’’.

inherit

EQUALITY_ADT [B]

feature

-- Deferred definitions.

empty_bag: B
deferred

B.2. BAG 195

end

insert (bag: B; element: E)
deferred

end

delete (bag: B; element: E)
deferred

end

member_of (bag: B; element: E): BOOLEAN
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (element: E)
local

bag: B
do

bag := empty_bag

check

not member_of (bag, element)
end

end

frozen a_2_1 (bag: B; element: E)
do

insert (bag, element)
ensure

member_of (bag, element)
end

frozen a_2_2 (bag: B; element_1, element_2: E; old_member_of: BOOLEAN)
require

element_1 /~ element_2

member_of (bag, element_2) ~ old_member_of

do

insert (bag, element_1)
ensure

member_of (bag, element_2) ~ old_member_of

end

frozen a_3 (element: E)
local

bag_1, bag_2: B
do

bag_1 := empty_bag

bag_2 := empty_bag

delete (bag_1, element)
check

bag_1 ~ bag_2

end

end

frozen a_4_1 (bag_1, bag_2: B; element: E)

196 APPENDIX B. SOFTWARE COMPONENTS SOORTS

do

check

assume: bag_1 ~ bag_2

end

insert (bag_1, element)
delete (bag_1, element)
check

assert: bag_1 ~ bag_2

end

end

frozen a_4_2 (bag_1, bag_2: B; element_1, element_2: E)
require

bag_1 ~ bag_2

element_1 /~ element_2

do

insert (bag_1, element_1)
delete (bag_1, element_2)
delete (bag_2, element_2)
insert (bag_2, element_1)

ensure

bag_1 ~ bag_2

end

feature

-- Well-definedness axioms.

frozen empty_bag_well_defined

local

bag_1, bag_2: B
do

bag_1 := empty_bag

bag_2 := empty_bag

check

assert: bag_1 6= bag_2

end

check

assert: bag_1 ~ bag_2

end

end

frozen insert_well_defined (bag_1, bag_2: B; element: E)
require

bag_1 ~ bag_2

do

insert (bag_1, element)
insert (bag_2, element)

ensure

bag_1 ~ bag_2

end

frozen delete_well_defined (bag_1, bag_2: B; element: E)
require

bag_1 ~ bag_2

do

delete (bag_1, element)
delete (bag_2, element)

B.3. BINARY TREE 197

ensure

bag_1 ~ bag_2

end

frozen member_of_well_defined (bag_1, bag_2: B; element: E)
require

bag_1 ~ bag_2

do

ensure

member_of (bag_1, element) ~ member_of (bag_2, element)
end

end

B.3 Binary Tree

note

description: "Reusable abstract data type specification of binary tree."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y2rhrktn"

deferred class

BINARY_TREE_ADT [B, I]
-- Binary trees ‘‘B’’ contain elements of ‘‘I’’.

inherit

EQUALITY_ADT [B]

feature

-- Deferred definitions.

empty_tree: B
deferred

end

make (b_tree_left: B; item: I; b_tree_right: B): B
deferred

end

is_empty_tree (b_tree: B): BOOLEAN
deferred

end

left (b_tree: B): B
deferred

end

data (b_tree: B): I
deferred

end

right (b_tree: B): B
deferred

end

198 APPENDIX B. SOFTWARE COMPONENTS SOORTS

is_in (b_tree: B; item: I): BOOLEAN
deferred

end

feature

-- Abstract data type axioms.

frozen a_1

local

b_tree: B
do

b_tree := empty_tree

check

is_empty_tree (b_tree)
end

end

frozen a_2 (b_tree_left: B; item: I; b_tree_right: B)
local

b_tree: B
do

b_tree := make (b_tree_left, item, b_tree_right)
check

not is_empty_tree (b_tree)
end

end

frozen a_3

local

b_tree_1, b_tree_2: B
do

b_tree_1 := empty_tree

b_tree_2 := empty_tree

check

left (b_tree_1) ~ b_tree_2

end

end

frozen a_4 (b_tree_left: B; item: I; b_tree_right: B)
local

b_tree: B
do

b_tree := make (b_tree_left, item, b_tree_right)
check

left (b_tree) ~ b_tree_left

end

end

frozen a_5 (item: I)
local

b_tree: B
do

b_tree := empty_tree

check

data (b_tree) /~ item

end

B.3. BINARY TREE 199

end

frozen a_6 (b_tree_left: B; item: I; b_tree_right: B)
local

b_tree: B
do

b_tree := make (b_tree_left, item, b_tree_right)
check

data (b_tree) ~ item

end

end

frozen a_7

local

b_tree_1, b_tree_2: B
do

b_tree_1 := empty_tree

b_tree_2 := empty_tree

check

right (b_tree_1) ~ b_tree_2

end

end

frozen a_8 (b_tree_left: B; item: I; b_tree_right: B)
local

b_tree: B
do

b_tree := make (b_tree_left, item, b_tree_right)
check

right (b_tree) ~ b_tree_right

end

end

frozen a_9 (item: I)
local

b_tree: B
do

b_tree := empty_tree

check

not is_in (b_tree, item)
end

end

frozen a_10 (b_tree_left: B; item_1, item_2: I; b_tree_right: B)
local

b_tree: B
do

b_tree := make (b_tree_left, item_1, b_tree_right)
check

is_in (b_tree, item_2) = (item_1 ~ item_2 or is_in (b_tree_left, item_2) or is_in (
b_tree_right, item_2))

end

end

feature

-- Well-definedness axioms.

200 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen empty_tree_well_defined

local

b_tree_1, b_tree_2: B
do

b_tree_1 := empty_tree

b_tree_2 := empty_tree

check

b_tree_1 6= b_tree_2

end

check

b_tree_1 ~ b_tree_2

end

end

frozen make_well_defined (b_tree_left: B; item: I; b_tree_right: B)
local

b_tree_1, b_tree_2: B
do

b_tree_1 := make (b_tree_left, item, b_tree_right)
b_tree_2 := make (b_tree_left, item, b_tree_right)
check

b_tree_1 6= b_tree_2

end

check

b_tree_1 ~ b_tree_2

end

end

frozen is_empty_tree_well_defined (b_tree_1, b_tree_2: B)
require

b_tree_1 ~ b_tree_2

do

ensure

is_empty_tree (b_tree_1) ~ is_empty_tree (b_tree_2)
end

frozen left_well_defined (b_tree_1, b_tree_2: B)
require

b_tree_1 ~ b_tree_2

do

ensure

left (b_tree_1) ~ left (b_tree_2)
end

frozen data_well_defined (b_tree_1, b_tree_2: B)
require

b_tree_1 ~ b_tree_2

do

ensure

data (b_tree_1) ~ data (b_tree_2)
end

frozen right_well_defined (b_tree_1, b_tree_2: B)
require

b_tree_1 ~ b_tree_2

do

ensure

B.4. BINARY TREE WITH INORD 201

right (b_tree_1) ~ right (b_tree_2)
end

frozen is_in_well_defined (b_tree_1, b_tree_2: B; item: I)
require

b_tree_1 ~ b_tree_2

do

ensure

is_in (b_tree_1, item) ~ is_in (b_tree_2, item)
end

end

B.4 Binary Tree with Inord

note

description: "Reusable abstract data type specification of binary tree with ‘‘inord’’ operation."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y3peoll5"

deferred class

BINARY_TREE_WITH_INORD_ADT [B, I, Q, QS→QUEUE_WITH_APPEND_ADT [Q, I]]
-- Binary trees ‘‘B’’ contain elements of ‘‘I’’.

-- They rely on queues ‘‘Q’’ with elements of ‘‘I’’ conforming to the

-- ‘‘QUEUE_WITH_APPEND_ADT’’ specification.

inherit

BINARY_TREE_ADT [B, I]

feature

-- Deferred definitions.

in_ord (b_tree: B): Q
deferred

end

feature

-- Abstract data type axioms.

frozen a_11

local

b_tree: B
do

b_tree := empty_tree

check

in_ord (b_tree) ~ ({QS}).default.newq
end

end

frozen a_12 (b_tree_left: B; item: I; b_tree_right: B; q_left, q_right: Q)
require

in_ord (b_tree_left) ~ q_left

in_ord (b_tree_right) ~ q_right

local

202 APPENDIX B. SOFTWARE COMPONENTS SOORTS

b_tree: B
do

b_tree := make (b_tree_left, item, b_tree_right)
({QS}).default.addq (q_left, item)
({QS}).default.appendq (q_left, q_right)
check

in_ord (b_tree) ~ q_left

end

end

feature

-- Well-definedness axioms.

frozen in_ord_well_defined (b_tree_1, b_tree_2: B)
require

b_tree_1 ~ b_tree_2

do

ensure

in_ord (b_tree_1) ~ in_ord (b_tree_2)
end

end

B.5 Book Directory

note

description: "Reusable abstract data type specification of searchable book directory."
description: "Found in ‘‘Requirements engineering: From system goals to UML models to software.’’

by van Lamsweerde:"
EIS: "src= http://tinyurl.com/yxd3zxd2"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y6ft5d3a"

deferred class

BOOK_DIRECTORY_ADT [D, B, BC, T, L, LS→LIST_ADT [L, B]]
-- Book directories ‘‘D’’ contain books ‘‘B’’ with topics ‘‘T’’ and book copies ‘‘BC’’.

-- Searching by topics returns lists ‘‘L’’ of books ‘‘B’’ conforming to the

-- ‘‘LIST_ADT’’ specification.

inherit

EQUALITY_ADT [D]

feature

-- Deferred definitions.

empty_dir: D
deferred

end

add_entry (d: D; b: B; bc: BC; t: T)
deferred

end

biblio_search (d: D; t: T): L
deferred

end

B.5. BOOK DIRECTORY 203

feature

-- Abstract data type axioms.

frozen a_1 (tp: T)
local

dir: D
do

dir := empty_dir

check

biblio_search (dir, tp) ~ ({LS}).default.nil
end

end

frozen a_2 (dir: D; b: B; bc: BC; tp: T; bs: L)
require

biblio_search (dir, tp) ~ bs

do

({LS}).default.cons (bs, b)
add_entry (dir, b, bc, tp)

ensure

biblio_search (dir, tp) ~ bs

end

frozen a_3 (dir: D; b: B; bc: BC; tp_1, tp_2: T; bs: L)
require

biblio_search (dir, tp_1) ~ bs

do

add_entry (dir, b, bc, tp_2)
ensure

biblio_search (dir, tp_1) ~ bs

end

feature

-- Well-definedness axioms

frozen empty_dir_well_defined

local

d_1, d_2: D
do

d_1 := empty_dir

d_2 := empty_dir

check

d_1 6= d_2

end

check

d_1 ~ d_2

end

end

frozen add_entry_well_defined (dir_1, dir_2: D; b: B; bc: BC; tp: T)
require

dir_1 ~ dir_2

do

add_entry (dir_1, b, bc, tp)
add_entry (dir_2, b, bc, tp)

ensure

204 APPENDIX B. SOFTWARE COMPONENTS SOORTS

dir_1 ~ dir_2

end

frozen biblio_search_well_defined (dir_1, dir_2: D; tp: T)
require

dir_1 ~ dir_2

do

ensure

biblio_search (dir_1, tp) ~ biblio_search (dir_2, tp)
end

end

B.6 Bounded Queue

note

description: "Reusable abstract data type specification of bounded queue."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yybezkrm"

deferred class

BOUNDED_QUEUE_ADT [B, I]
-- Bounded queues ‘‘B’’ contain elements of ‘‘I’’.

inherit

EQUALITY_ADT [B]

feature

-- Deferred definitions.

newq (capacity: INTEGER): B
deferred

end

addq (bounded_queue: B; item: I)
deferred

end

deleteq (bounded_queue: B)
deferred

end

frontq (bounded_queue: B): I
deferred

end

isnewq (bounded_queue: B): BOOLEAN
deferred

end

appendq (bounded_queue, other: B)
deferred

end

B.6. BOUNDED QUEUE 205

size (bounded_queue: B): INTEGER
deferred

end

limit (bounded_queue: B): INTEGER
deferred

end

enq (bounded_queue: B; item: I)
deferred

end

deq (bounded_queue: B): I
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (capacity: INTEGER)
local

bounded_queue: B
do

bounded_queue := newq (capacity)
check

isnewq (bounded_queue)
end

end

frozen a_2 (bounded_queue: B; item: I)
-- ISNEWQ(ADDQ(q,i)) = false

do

addq (bounded_queue, item)
ensure

not isnewq (bounded_queue)
end

frozen a_3 (capacity: INTEGER)
local

bounded_queue_1, bounded_queue_2: B
do

bounded_queue_1 := newq (capacity)
bounded_queue_2 := newq (capacity)
deleteq (bounded_queue_1)
check

bounded_queue_1 ~ bounded_queue_2

end

end

frozen a_4 (bounded_queue: B; item: I; capacity: INTEGER)
require

isnewq (bounded_queue)
local

new_queue: B
do

new_queue := newq (capacity)
addq (bounded_queue, item)

206 APPENDIX B. SOFTWARE COMPONENTS SOORTS

deleteq (bounded_queue)
check

bounded_queue ~ new_queue

end

end

frozen a_5 (bounded_queue_1, bounded_queue_2: B; item: I)
require

bounded_queue_1 ~ bounded_queue_2

do

addq (bounded_queue_1, item)
deleteq (bounded_queue_1)
deleteq (bounded_queue_2)
addq (bounded_queue_2, item)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen a_6 (capacity: INTEGER; item: I)
local

bounded_queue: B
do

bounded_queue := newq (capacity)
check

frontq (bounded_queue) /~ item

end

end

frozen a_7 (bounded_queue: B; item: I)
require

isnewq (bounded_queue)
do

addq (bounded_queue, item)
ensure

frontq (bounded_queue) ~ item

end

frozen a_8 (bounded_queue: B; item: I; old_frontq: I)
require

not isnewq (bounded_queue)
frontq (bounded_queue) ~ old_frontq

do

addq (bounded_queue, item)
ensure

frontq (bounded_queue) ~ old_frontq

end

frozen a_9 (bounded_queue_1, bounded_queue_2: B; capacity: INTEGER)
require

bounded_queue_1 ~ bounded_queue_2

local

new_queue: B
do

new_queue := newq (capacity)
appendq (bounded_queue_1, new_queue)

ensure

bounded_queue_1 ~ bounded_queue_2

B.6. BOUNDED QUEUE 207

end

frozen a_10 (bounded_queue_1, bounded_queue_2, other_1, other_2: B; item: I)
require

bounded_queue_1 ~ bounded_queue_2

other_1 ~ other_2

do

addq (other_1, item)
appendq (bounded_queue_1, other_1)
appendq (bounded_queue_2, other_2)
addq (bounded_queue_2, item)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen a_11 (capacity: INTEGER)
local

new_queue: B
do

new_queue := newq (capacity)
check

limit (new_queue) ~ capacity

end

end

frozen a_12 (bounded_queue: B; item: I; old_limit: INTEGER)
require

limit (bounded_queue) ~ old_limit

do

addq (bounded_queue, item)
ensure

limit (bounded_queue) ~ old_limit

end

frozen a_13 (bounded_queue_1, bounded_queue_2: B; item: I)
require

size (bounded_queue_1) <limit (bounded_queue_1)
bounded_queue_1 ~ bounded_queue_2

do

enq (bounded_queue_1, item)
addq (bounded_queue_2, item)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen a_14 (bounded_queue_1, bounded_queue_2: B; item: I)
require

size (bounded_queue_1) = limit (bounded_queue_1)
do

enq (bounded_queue_1, item)
ensure

bounded_queue_1 /~ bounded_queue_2

end

frozen a_15 (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

208 APPENDIX B. SOFTWARE COMPONENTS SOORTS

local

item: I
do

item := deq (bounded_queue_1)
deleteq (bounded_queue_2)
check

item ~ frontq (bounded_queue_2)
end

end

frozen a_16 (capacity: INTEGER)
local

bounded_queue: B
do

bounded_queue := newq (capacity)
check

size (bounded_queue) ~ 0
end

end

frozen a_17 (bounded_queue: B; item: I; old_size: INTEGER)
require

size (bounded_queue) ~ old_size

do

addq (bounded_queue, item)
ensure

size (bounded_queue) ~ 1 + old_size

end

feature

-- Well-definedness axioms.

frozen newq_well_defined (capacity: INTEGER)
local

bounded_queue_1, bounded_queue_2: B
do

bounded_queue_1 := newq (capacity)
bounded_queue_2 := newq (capacity)
check

bounded_queue_1 ~ bounded_queue_2

end

end

frozen addq_well_defined (bounded_queue_1, bounded_queue_2: B; item: I)
require

bounded_queue_1 ~ bounded_queue_2

do

addq (bounded_queue_1, item)
addq (bounded_queue_2, item)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen deleteq_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

bounded_queue_1 6= bounded_queue_2

B.6. BOUNDED QUEUE 209

not isnewq (bounded_queue_1)
not isnewq (bounded_queue_2)

do

deleteq (bounded_queue_1)
deleteq (bounded_queue_2)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen frontq_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

do

ensure

frontq (bounded_queue_1) ~ frontq (bounded_queue_2)
end

frozen isnewq_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

do

ensure

isnewq (bounded_queue_1) ~ isnewq (bounded_queue_2)
end

frozen appendq_well_defined (bounded_queue_1, bounded_queue_2, other: B)
require

bounded_queue_1 ~ bounded_queue_2

do

appendq (bounded_queue_1, other)
appendq (bounded_queue_2, other)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen size_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

do

ensure

size (bounded_queue_1) ~ size (bounded_queue_2)
end

frozen limit_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

do

ensure

limit (bounded_queue_1) ~ limit (bounded_queue_2)
end

frozen enq_well_defined (bounded_queue_1, bounded_queue_2: B; item: I)
require

bounded_queue_1 ~ bounded_queue_2

size (bounded_queue_1) <limit (bounded_queue_1)
size (bounded_queue_2) <limit (bounded_queue_2)

do

210 APPENDIX B. SOFTWARE COMPONENTS SOORTS

enq (bounded_queue_1, item)
enq (bounded_queue_2, item)

ensure

bounded_queue_1 ~ bounded_queue_2

end

frozen deq_well_defined (bounded_queue_1, bounded_queue_2: B)
require

bounded_queue_1 ~ bounded_queue_2

local

item_1, item_2: I
do

item_1 := deq (bounded_queue_1)
item_2 := deq (bounded_queue_2)
check

item_1 ~ item_2

end

ensure

bounded_queue_1 ~ bounded_queue_2

end

end

B.7 Bounded Stack

note

description: "Reusable abstract data type specification of bounded stack."
description: "Found in ‘‘Abstract Data Types and Software Validation ’’ by Guttag, Horowitz and

Musser:"
EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y4wswh3t"

deferred class

BOUNDED_STACK_ADT [B, E]
-- Bounded stacks ‘‘B’’ contain elements of ‘‘E’’.

inherit

EQUALITY_ADT [B]

feature

-- Deferred definitions.

new_stack (lim: INTEGER): B
deferred

end

push (stack: B; element: E)
deferred

end

pop (stack: B)
deferred

end

top (stack: B): E

B.7. BOUNDED STACK 211

deferred

end

size (stack: B): INTEGER
deferred

end

limit (stack: B): INTEGER
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (lim: INTEGER)
local

stack_1, stack_2: B
do

stack_1 := new_stack (lim)
stack_2 := new_stack (lim)
pop (stack_1)
check

stack_1 ~ stack_2

end

end

frozen a_2 (stack_1, stack_2: B; element: E)
require

stack_1 ~ stack_2

size (stack_1) <limit (stack_1)
do

push (stack_1, element)
pop (stack_1)

ensure

stack_1 ~ stack_2

end

frozen a_3 (stack_1, stack_2: B; element: E)
require

stack_1 ~ stack_2

size (stack_1) ~ limit (stack_1)
do

push (stack_1, element)
ensure

stack_1 ~ stack_2

end

frozen a_4 (lim: INTEGER; element: E)
local

stack: B
do

stack := new_stack (lim)
check

top (stack) /~ element

end

end

212 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen a_5 (stack: B; element: E)
require

size (stack) <limit (stack)
do

push (stack, element)
ensure

top (stack) ~ element

end

frozen a_6 (stack: B; element_1, element_2: E)
require

top (stack) ~ element_2

size (stack) ~ limit (stack)
do

push (stack, element_1)
ensure

top (stack) ~ element_2

end

frozen a_7 (lim: INTEGER)
local

stack: B
do

stack := new_stack (lim)
check

limit (stack) ~ lim

end

end

frozen a_8 (stack: B; element: E; old_limit: INTEGER)
require

limit (stack) ~ old_limit

size (stack) ~ limit (stack)
do

push (stack, element)
ensure

limit (stack) ~ old_limit

end

frozen a_9 (lim: INTEGER)
local

stack: B
do

stack := new_stack (lim)
check

size (stack) ~ 0
end

end

frozen a_10 (stack: B; element: E; old_size: INTEGER)
require

size (stack) ~ old_size

size (stack) <limit (stack)
do

push (stack, element)
ensure

size (stack) ~ old_size + 1

B.7. BOUNDED STACK 213

end

frozen a_11 (stack: B; element: E; old_size: INTEGER)
require

size (stack) ~ old_size

size (stack) ~ limit (stack)
do

push (stack, element)
ensure

size (stack) ~ old_size

end

feature

-- Well-definedness axioms.

frozen new_stack_well_defined (lim: INTEGER)
local

stack_1, stack_2: B
do

stack_1 := new_stack (lim)
stack_2 := new_stack (lim)
check

stack_1 6= stack_2

end

check

stack_1 ~ stack_2

end

end

frozen push_well_defined (stack_1, stack_2: B; element: E)
require

stack_1 ~ stack_2

do

push (stack_1, element)
push (stack_2, element)

ensure

stack_1 ~ stack_2

end

frozen pop_well_defined (stack_1, stack_2: B)
require

stack_1 ~ stack_2

stack_1 6= stack_2

do

pop (stack_1)
pop (stack_2)

ensure

stack_1 ~ stack_2

end

frozen top_well_defined (stack_1, stack_2: B)
require

stack_1 ~ stack_2

do

ensure

top (stack_1) ~ top (stack_2)
end

214 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen size_well_defined (stack_1, stack_2: B)
require

stack_1 ~ stack_2

do

ensure

size (stack_1) ~ size (stack_2)
end

frozen limit_well_defined (stack_1, stack_2: B)
require

stack_1 ~ stack_2

do

ensure

limit (stack_1) ~ limit (stack_2)
end

end

B.8 Commutative Ring

note

description: "Reusable abstract data type specification of commutative ring."
description: "Found in Wikipedia:"
EIS: "src= https://en.wikipedia.org/wiki/Commutative_ring#Definition"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yytyfmqj"

deferred class

COMMUTATIVE_RING_ADT [R]
-- ‘‘R’’ is a mathematical commutative ring.

inherit

EQUALITY_ADT [R]

feature

-- Deferred definitions.

one: R
deferred

end

zero: R
deferred

end

sum (summand_1, summand_2: R): R
deferred

end

product (multiplier_1, multiplier_2: R): R
deferred

end

additive_inverse (a: R): R
deferred

B.8. COMMUTATIVE RING 215

end

feature

-- Abstract data type axioms.

frozen a_1 (a, b, c: R)
do

ensure

sum (sum (a, b), c) ~ sum (a, sum (b, c))
end

frozen a_2 (a, b: R)
do

ensure

sum (a, b) ~ sum (b, a)
end

frozen a_3 (a: R)
do

ensure

sum (a, zero) ~ a

end

frozen a_4 (a: R)
do

ensure

sum (a, additive_inverse (a)) ~ zero

end

frozen a_5 (a, b, c: R)
do

ensure

product (product (a, b), c) ~ product (a, product (b, c))
end

frozen a_6 (a: R)
do

ensure

product (a, one) ~ a

product (one, a) ~ a

end

frozen a_7 (a, b, c: R)
do

ensure

product (a, sum (b, c)) ~ sum (product (a, b), product (a, c))
end

frozen a_8 (a, b, c: R)
do

ensure

product (sum (b, c), a) ~ sum (product (b, a), product (c, a))
end

frozen a_9 (a, b: R)
do

ensure

216 APPENDIX B. SOFTWARE COMPONENTS SOORTS

product (a, b) ~ product (b, a)
end

feature

-- Well-definedness axioms.

frozen one_well_defined

local

r_1, r_2: R
do

r_1 := one

r_2 := one

check

r_1 ~ r_2

end

end

frozen zero_well_defined

local

r_1, r_2: R
do

r_1 := zero

r_2 := zero

check

r_1 ~ r_2

end

end

frozen sum_well_defined (summand_1, summand_2, other: R)
require

summand_1 ~ summand_2

do

ensure

sum (summand_1, other) ~ sum (summand_2, other)
end

frozen product_well_defined (multiplier_1, multiplier_2, other: R)
require

multiplier_1 ~ multiplier_2

do

ensure

product (multiplier_1, other) ~ product (multiplier_2, other)
end

frozen additive_inverse_well_defined (r_1, r_2: R)
require

r_1 ~ r_2

do

ensure

additive_inverse (r_1) ~ additive_inverse (r_2)
end

end

B.9 Edge

B.10. ENVIRONMENT 217

note

description: "Reusable abstract data type specification of graph edge."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y4g93wpo"

deferred class

EDGE_ADT [E, N]
-- Edges ‘‘E’’ connect nodes ‘‘N’’.

inherit

EQUALITY_ADT [E]

feature

-- Deferred definitions.

rel (node_1, node_2: N): E
deferred

end

feature

-- Well-definedness axioms.

frozen rel_well_defined (node_1, node_2: N)
local

edge_1, edge_2: E
do

edge_1 := rel (node_1, node_2)
edge_2 := rel (node_1, node_2)
check

edge_1 ~ edge_2

end

end

end

B.10 Environment

note

description: "Reusable abstract data type specification of environment."
description: "Found in ‘‘An abstract data type for name analysis’’ by Kastens and Waite:"
EIS: "src= http://tinyurl.com/y2ghqjq7"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yyb6uwxy"

deferred class

ENVIRONMENT_ADT [E, I, D]
-- Environments ‘‘E’’ contain keys ‘‘D’’ inentified by elements of ‘‘I’’.

inherit

EQUALITY_ADT [E]

feature

-- Deferred definitions.

218 APPENDIX B. SOFTWARE COMPONENTS SOORTS

new_env: E
deferred

end

new_scope (env: E)
deferred

end

add (env: E; id: I; key: D)
deferred

end

key_in_scope (env: E; id: I): D
deferred

end

key_in_env (env: E; id: I): D
deferred

end

add_idn (env: E; id: I; key: D): BOOLEAN
deferred

end

define_idn (env: E; id: I): D
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (id: I; key: D)
local

env: E
do

env := new_env

check

key_in_scope (env, id) /~ key

end

end

frozen a_2 (env: E; id: I; key: D)
do

new_scope (env)
ensure

key_in_scope (env, id) /~ key

end

frozen a_3_1 (env: E; id: I; key: D)
do

add (env, id, key)
ensure

key_in_scope (env, id) ~ key

end

frozen a_3_2 (env: E; id_1, id_2: I; key, old_key_in_scope: D)
require

B.10. ENVIRONMENT 219

id_1 /~ id_2

key_in_scope (env, id_2) ~ old_key_in_scope

do

add (env, id_1, key)
ensure

key_in_scope (env, id_2) ~ old_key_in_scope

end

frozen a_4 (id: I; key: D)
local

env: E
do

env := new_env

check

key_in_env (env, id) /~ key

end

end

frozen a_5 (env: E; id: I; old_key_in_env: D)
require

key_in_env (env, id) ~ old_key_in_env

do

new_scope (env)
ensure

key_in_env (env, id) ~ old_key_in_env

end

frozen a_6_1 (env: E; id: I; key: D)
do

add (env, id, key)
ensure

key_in_env (env, id) ~ key

end

frozen a_6_2 (env: E; id_1, id_2: I; key, old_key_in_env: D)
require

id_1 /~ id_2

key_in_env (env, id_2) ~ old_key_in_env

do

add (env, id_1, key)
ensure

key_in_env (env, id_2) ~ old_key_in_env

end

feature

-- Well-definedness axioms.

frozen new_env_well_defined

local

env_1, env_2: E
do

env_1 := new_env

env_2 := new_env

check

env_1 6= env_2

end

check

220 APPENDIX B. SOFTWARE COMPONENTS SOORTS

env_1 ~ env_2

end

end

frozen new_scope_well_defined (env_1, env_2: E)
require

env_1 ~ env_2

do

new_scope (env_1)
new_scope (env_2)

ensure

env_1 ~ env_2

end

frozen add_well_defined (env_1, env_2: E; id: I; key: D)
require

env_1 ~ env_2

do

add (env_1, id, key)
add (env_2, id, key)

ensure

env_1 ~ env_2

end

frozen key_in_scope_well_defined (env_1, env_2: E; id: I)
require

env_1 ~ env_2

do

ensure

key_in_scope (env_1, id) ~ key_in_scope (env_2, id)
end

frozen key_in_env_well_defined (env_1, env_2: E; id: I)
require

env_1 ~ env_2

do

ensure

key_in_env (env_1, id) ~ key_in_env (env_2, id)
end

end

B.11 Equality

note

description: "Reusable abstract data type specification of a type with equality."
description: "Found in Wikipedia:"
EIS: "src= http://tinyurl.com/pfafsvd"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yxb98wrq"

deferred class

EQUALITY_ADT [G]
-- Elements of ‘‘G’’ form an equivalence relation.

feature

-- Abstract data type axioms.

B.12. FILE 221

frozen equality_reflexivity (v: G)
do

ensure

v ~ v

end

frozen equality_commutativity (v_1, v_2: G)
require

v_1 ~ v_2

do

ensure

v_2 ~ v_1

end

frozen equality_transitivity (v_1, v_2, v_3: G)
require

v_1 ~ v_2

v_2 ~ v_3

do

ensure

v_1 ~ v_3

end

end

B.12 File

note

description: "Reusable abstract data type specification of file."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y5phfw2h"

deferred class

FILE_ADT [F, R]
-- Files ‘‘F’’ contain records ‘‘R’’.

inherit

EQUALITY_ADT [F]

feature

-- Deferred definitions.

empty_file: F
deferred

end

write (file: F; record: R)
deferred

end

skip (file: F; gap: INTEGER)
deferred

end

222 APPENDIX B. SOFTWARE COMPONENTS SOORTS

reset (file: F)
deferred

end

is_eof (file: F): BOOLEAN
deferred

end

read (file: F): R
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (gap: INTEGER)
local

file_1, file_2: F
do

file_1 := empty_file

file_2 := empty_file

skip (file_1, gap)
check

file_1 ~ file_2

end

end

frozen a_2 (file_1, file_2: F; gap_1, gap_2: INTEGER)
require

file_1 ~ file_2

do

skip (file_1, gap_1)
skip (file_1, gap_2)
skip (file_2, gap_1 + gap_2)

ensure

file_1 ~ file_2

end

frozen a_3

local

file_1, file_2: F
do

file_1 := empty_file

file_2 := empty_file

reset (file_1)
check

file_1 ~ file_2

end

end

frozen a_4 (file_1, file_2: F; record: R)
require

file_1 ~ file_2

do

write (file_1, record)
reset (file_1)

B.12. FILE 223

write (file_2, record)
skip (file_2, 0)

ensure

file_1 ~ file_2

end

frozen a_5 (file_1, file_2: F; record: R; gap: INTEGER)
require

file_1 ~ file_2

do

write (file_1, record)
skip (file_1, gap)
reset (file_1)
write (file_2, record)
skip (file_2, 0)

ensure

file_1 ~ file_2

end

frozen a_6

local

file: F
do

file := empty_file

check

is_eof (file)
end

end

frozen a_7 (file: F; record: R)
do

write (file, record)
ensure

is_eof (file)
end

frozen a_8 (file: F; record: R)
do

write (file, record)
skip (file, 0)

ensure

not is_eof (file)
end

frozen a_9 (file_1, file_2: F; record: R; gap: INTEGER)
require

gap /~ 0
file_1 ~ file_2

do

write (file_1, record)
skip (file_1, gap)
skip (file_2, gap − 1)

ensure

file_1 ~ file_2

end

frozen a_10 (file_1, file_2: F; record: R; gap: INTEGER)

224 APPENDIX B. SOFTWARE COMPONENTS SOORTS

require

file_1 ~ file_2

do

write (file_1, record)
skip (file_1, gap)
skip (file_2, gap)
check

assume: is_eof (file_2)
end

ensure

read (file_1) ~ record

end

frozen a_11 (file_1, file_2: F; record: R; gap: INTEGER)
require

file_1 ~ file_2

do

write (file_1, record)
skip (file_1, gap)
skip (file_2, gap)
check

assume: not is_eof (file_2)
end

ensure

read (file_1) ~ read (file_2)
end

frozen a_12 (file_1, file_2, file_3: F; record_1, record_2: R; gap: INTEGER)
require

file_1 ~ file_2

file_2 ~ file_3

do

write (file_1, record_1)
skip (file_1, gap)
write (file_1, record_2)
skip (file_2, gap)
check

assume: is_eof (file_2)
end

write (file_3, record_2)
ensure

file_1 ~ file_3

end

frozen a_13 (file_1, file_2: F; record_1, record_2: R; gap: INTEGER)
require

file_1 ~ file_2

do

write (file_1, record_1)
skip (file_1, gap)
write (file_1, record_2)
skip (file_2, gap)
check

assume: not is_eof (file_2)
end

write (file_2, record_2)
ensure

B.12. FILE 225

file_1 ~ file_2

end

feature

-- Well-definedness axioms.

frozen empty_file_well_defined

local

file_1, file_2: F
do

file_1 := empty_file

file_2 := empty_file

check

file_1 6= file_2

end

check

file_1 ~ file_2

end

end

frozen write_well_defined (file_1, file_2: F; record: R)
require

file_1 ~ file_2

do

write (file_1, record)
write (file_2, record)

ensure

file_1 ~ file_2

end

frozen skip_well_defined (file_1, file_2: F; gap: INTEGER)
require

file_1 ~ file_2

do

skip (file_1, gap)
skip (file_2, gap)

ensure

file_1 ~ file_2

end

frozen reset_well_defined (file_1, file_2: F)
require

file_1 ~ file_2

do

reset (file_1)
reset (file_2)

ensure

file_1 ~ file_2

end

frozen is_eof_well_defined (file_1, file_2: F): BOOLEAN
require

file_1 ~ file_2

do

ensure

is_eof (file_1) ~ is_eof (file_2)
end

226 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen read_well_defined (file_1, file_2: F)
require

file_1 ~ file_2

do

ensure

read (file_1) ~ read (file_2)
end

end

B.13 Graph

note

description: "Reusable abstract data type specification of graph."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y5y6l6ax"

deferred class

GRAPH_ADT [G, N, E, SN, SE, ES→EDGE_ADT [E, N], SNS→SET_WITH_ISEMPTYSET_ADT [SN, N], SES→
SET_WITH_ISEMPTYSET_ADT [SE, E]]

-- Graphs ‘‘G’’ contain edges ‘‘E’’ connecting nodes ‘‘N’’

-- conforming to the ‘‘EDGE_ADT’’ specification.

-- They depend on sets ‘‘SE’’ of edges ‘‘E’’ conforming to the

-- ‘‘SET_WITH_ISEMPTYSET_ADT’’ specification.

-- They depend on sets ‘‘SN’’ of nodes ‘‘N’’ conforming to the

-- ‘‘SET_WITH_ISEMPTYSET_ADT’’ specification.

inherit

EQUALITY_ADT [G]

feature

-- Deferred definitions.

empty_graph: G
deferred

end

add_node (graph: G; node: N)
deferred

end

add_edge (graph: G; edge: E)
deferred

end

nodes (graph: G): SN
deferred

end

edges (graph: G): SE
deferred

end

B.13. GRAPH 227

adjac (graph: G; node: N): SN
deferred

end

nod_out (graph: G; node: N)
deferred

end

edge_out (graph: G; edge: E)
deferred

end

feature

-- Abstract data type axioms.

frozen a_1

local

graph: G
nodes_set: SN

do

graph := empty_graph

nodes_set := ({SNS}).default.empty_set
check

nodes (graph) ~ nodes_set

end

end

frozen a_2 (graph: G; node: N; nodes_set: SN)
require

nodes (graph) ~ nodes_set

do

add_node (graph, node)
({SNS}).default.insert (nodes_set, node)

ensure

nodes (graph) ~ nodes_set

end

frozen a_3 (graph: G; node_1, node_2: N; edge: E; nodes_set: SN)
require

({ES}).default.rel (node_1, node_2) ~ edge

nodes (graph) ~ nodes_set

do

add_edge (graph, edge)
({SNS}).default.insert (nodes_set, node_1)
({SNS}).default.insert (nodes_set, node_2)

ensure

nodes (graph) ~ nodes_set

end

frozen a_4

local

graph: G
edges_set: SE

do

graph := empty_graph

edges_set := ({SES}).default.empty_set
check

228 APPENDIX B. SOFTWARE COMPONENTS SOORTS

edges (graph) ~ edges_set

end

end

frozen a_5 (graph: G; node: N; old_edges: SE)
require

edges (graph) ~ old_edges

do

add_node (graph, node)
ensure

edges (graph) ~ old_edges

end

frozen a_6 (graph: G; node_1, node_2: N; edge: E; old_edges: SE)
require

({ES}).default.rel (node_1, node_2) ~ edge

edges (graph) ~ old_edges

do

add_edge (graph, edge)
({SES}).default.insert (old_edges, edge)

ensure

edges (graph) ~ old_edges

end

frozen a_7 (node: N)
local

graph: G
nodes_set: SN

do

graph := empty_graph

nodes_set := ({SNS}).default.empty_set
check

adjac (graph, node) ~ nodes_set

end

end

frozen a_8 (graph: G; node_1, node_2: N; old_adjac: SN)
require

adjac (graph, node_2) ~ old_adjac

do

add_node (graph, node_1)
ensure

adjac (graph, node_2) ~ old_adjac

end

frozen a_9 (graph: G; node_1, node_2: N; edge: E; old_adjac: SN)
require

({ES}).default.rel (node_1, node_2) ~ edge

adjac (graph, node_1) ~ old_adjac

do

add_edge (graph, edge)
({SNS}).default.insert (old_adjac, node_2)

ensure

adjac (graph, node_1) ~ old_adjac

end

frozen a_10 (graph: G; node_1, node_2: N; edge: E; old_adjac: SN)

B.13. GRAPH 229

require

({ES}).default.rel (node_1, node_2) ~ edge

adjac (graph, node_2) ~ old_adjac

do

add_edge (graph, edge)
({SNS}).default.insert (old_adjac, node_2)

ensure

adjac (graph, node_2) ~ old_adjac

end

frozen a_11 (graph: G; node_1, node_2: N; edge: E; old_adjac: SN)
require

({ES}).default.rel (node_1, node_2) ~ edge

adjac (graph, node_2) ~ old_adjac

do

add_edge (graph, edge)
({SNS}).default.insert (old_adjac, node_1)

ensure

adjac (graph, node_2) ~ old_adjac

end

frozen a_12 (graph: G; node_1, node_2, node_3: N; edge: E; old_adjac: SN)
require

node_3 /~ node_1

node_3 /~ node_2;
({ES}).default.rel (node_1, node_2) ~ edge

adjac (graph, node_3) ~ old_adjac

do

add_edge (graph, edge)
({SNS}).default.insert (old_adjac, node_1)

ensure

adjac (graph, node_3) ~ old_adjac

end

frozen a_13 (node: N)
local

graph_1, graph_2: G
do

graph_1 := empty_graph

graph_2 := empty_graph

nod_out (graph_1, node)
check

graph_1 ~ graph_2

end

end

frozen a_14 (graph_1, graph_2: G; node: N)
require

graph_1 ~ graph_2

do

add_node (graph_1, node)
nod_out (graph_1, node)
nod_out (graph_2, node)

ensure

graph_1 ~ graph_2

end

230 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen a_15 (graph_1, graph_2: G; node_1, node_2: N)
require

node_1 /~ node_2

graph_1 ~ graph_2

do

add_node (graph_1, node_1)
nod_out (graph_1, node_2)
nod_out (graph_2, node_2)
add_node (graph_2, node_1)

ensure

graph_1 ~ graph_2

end

frozen a_16 (graph_1, graph_2: G; node_1, node_2: N; edge: E)
require

({ES}).default.rel (node_1, node_2) ~ edge

graph_1 ~ graph_2

do

add_edge (graph_1, edge)
nod_out (graph_1, node_1)
nod_out (graph_2, node_1)

ensure

graph_1 ~ graph_2

end

frozen a_17 (graph_1, graph_2: G; node_1, node_2: N; edge: E)
require

({ES}).default.rel (node_1, node_2) ~ edge

graph_1 ~ graph_2

do

add_edge (graph_1, edge)
nod_out (graph_1, node_2)
nod_out (graph_2, node_2)

ensure

graph_1 ~ graph_2

end

frozen a_18 (graph_1, graph_2: G; node_1, node_2, node_3: N; edge: E)
require

node_3 /~ node_1

node_3 /~ node_2;
({ES}).default.rel (node_1, node_2) ~ edge

graph_1 ~ graph_2

do

add_edge (graph_1, edge)
nod_out (graph_1, node_3)
nod_out (graph_2, node_3)
add_edge (graph_2, edge)

ensure

graph_1 ~ graph_2

end

frozen a_19 (edge: E)
local

graph_1, graph_2: G
do

graph_1 := empty_graph

B.13. GRAPH 231

graph_2 := empty_graph

edge_out (graph_1, edge)
check

graph_1 ~ graph_2

end

end

frozen a_20 (graph_1, graph_2: G; node: N; edge: E)
require

graph_1 ~ graph_2

do

add_node (graph_1, node)
edge_out (graph_1, edge)
edge_out (graph_2, edge)
add_node (graph_2, node)

ensure

graph_1 ~ graph_2

end

frozen a_21 (graph_1, graph_2: G; edge: E)
require

graph_1 ~ graph_2

do

add_edge (graph_1, edge)
edge_out (graph_1, edge)

ensure

graph_1 ~ graph_2

end

frozen a_22 (graph_1, graph_2: G; edge_1, edge_2: E)
require

edge_1 /~ edge_2

graph_1 ~ graph_2

do

add_edge (graph_1, edge_1)
edge_out (graph_1, edge_2)
edge_out (graph_2, edge_2)
add_edge (graph_2, edge_1)

ensure

graph_1 ~ graph_2

end

feature

-- Well-definedness axioms.

frozen empty_graph_well_defined

local

graph_1, graph_2: G
do

graph_1 := empty_graph

graph_2 := empty_graph

check

graph_1 6= graph_2

end

check

graph_1 ~ graph_2

end

232 APPENDIX B. SOFTWARE COMPONENTS SOORTS

end

frozen add_node_well_defined (graph_1, graph_2: G; node: N)
require

graph_1 ~ graph_2

do

add_node (graph_1, node)
add_node (graph_2, node)

ensure

graph_1 ~ graph_2

end

frozen add_edge_well_defined (graph_1, graph_2: G; edge: E)
require

graph_1 ~ graph_2

do

add_edge (graph_1, edge)
add_edge (graph_2, edge)

ensure

graph_1 ~ graph_2

end

frozen nodes_well_defined (graph_1, graph_2: G)
require

graph_1 ~ graph_2

do

ensure

nodes (graph_1) ~ nodes (graph_2)
end

frozen edges_well_defined (graph_1, graph_2: G)
require

graph_1 ~ graph_2

do

ensure

edges (graph_1) ~ edges (graph_2)
end

frozen adjac_well_defined (graph_1, graph_2: G; node: N)
require

graph_1 ~ graph_2

do

ensure

adjac (graph_1, node) ~ adjac (graph_2, node)
end

frozen nod_out_well_defined (graph_1, graph_2: G; node: N)
require

graph_1 ~ graph_2

do

nod_out (graph_1, node)
nod_out (graph_2, node)

ensure

graph_1 ~ graph_2

end

frozen edge_out_well_defined (graph_1, graph_2: G; edge: E)

B.14. LIBRARY 233

require

graph_1 ~ graph_2

do

edge_out (graph_1, edge)
edge_out (graph_2, edge)

ensure

graph_1 ~ graph_2

end

end

B.14 Library

note

description: "Reusable abstract data type specification of library."
description: "Found in ‘‘Requirements engineering: From system goals to UML models to software.’’

by van Lamsweerde:"
EIS: "src= http://tinyurl.com/yxd3zxd2"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y4jnocr4"

deferred class

LIBRARY_ADT [L, B]
-- Libraries ‘‘L’’ contain books ‘‘B’’.

inherit

EQUALITY_ADT [L]

feature

-- Deferred definitions.

empty_lib: L
deferred

end

add_copy (l: L; b: B)
deferred

end

remove_copy (l: L; b: B)
deferred

end

check_out (l: L; b: B)
deferred

end

return (l: L; b: B)
deferred

end

copy_exists (l: L; b: B): BOOLEAN
deferred

end

copy_borrowed (l: L; b: B): BOOLEAN

234 APPENDIX B. SOFTWARE COMPONENTS SOORTS

deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (lib: L; bc: B)
local

new_lib: L
do

new_lib := empty_lib

check

not copy_exists (new_lib, bc)
end

end

frozen a_2 (lib: L; bc: B)
do

add_copy (lib, bc)
ensure

copy_exists (lib, bc)
end

frozen a_3 (lib: L; bc_1, bc_2: B; bc_2_exists: BOOLEAN)
require

bc_1 /~ bc_2

copy_exists (lib, bc_2) ~ bc_2_exists

do

add_copy (lib, bc_1)
ensure

copy_exists (lib, bc_2) ~ bc_2_exists

end

frozen a_4 (lib: L; bc_1, bc_2: B; bc_2_exists: BOOLEAN)
require

copy_exists (lib, bc_2) ~ bc_2_exists

not copy_borrowed (lib, bc_1)
do

check_out (lib, bc_1)
ensure

copy_exists (lib, bc_2) ~ bc_2_exists

end

frozen a_5 (lib: L; bc: B)
local

new_lib: L
do

new_lib := empty_lib

check

not copy_borrowed (lib, bc)
end

end

frozen a_6 (lib: L; bc_1, bc_2: B; bc_2_borrowed: BOOLEAN)
require

copy_borrowed (lib, bc_2) ~ bc_2_borrowed

do

B.14. LIBRARY 235

add_copy (lib, bc_1)
ensure

copy_borrowed (lib, bc_2) ~ bc_2_borrowed

end

frozen a_7 (lib: L; bc: B)
require

not copy_borrowed (lib, bc)
do

check_out (lib, bc)
ensure

copy_borrowed (lib, bc)
end

frozen a_8 (lib: L; bc_1, bc_2: B; bc_2_borrowed: BOOLEAN)
require

bc_1 /~ bc_2

copy_borrowed (lib, bc_2) ~ bc_2_borrowed

not copy_borrowed (lib, bc_1)
do

check_out (lib, bc_1)
ensure

copy_borrowed (lib, bc_2) ~ bc_2_borrowed

end

frozen a_9 (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

do

add_copy (lib_1, bc)
remove_copy (lib_1, bc)

ensure

lib_1 ~ lib_2

end

frozen a_10 (lib_1, lib_2: L; bc_1, bc_2: B)
require

lib_1 6= lib_2

lib_1 ~ lib_2

bc_1 /~ bc_2

copy_exists (lib_1, bc_2)
copy_exists (lib_2, bc_2)

do

add_copy (lib_1, bc_1)
remove_copy (lib_1, bc_2)
remove_copy (lib_2, bc_2)
add_copy (lib_2, bc_1)

ensure

lib_1 ~ lib_2

end

frozen a_11 (lib_1, lib_2: L; bc: B)
require

lib_1 6= lib_2

lib_1 ~ lib_2

not copy_borrowed (lib_1, bc)
copy_exists (lib_1, bc)

236 APPENDIX B. SOFTWARE COMPONENTS SOORTS

copy_exists (lib_2, bc)
do

check_out (lib_1, bc)
remove_copy (lib_1, bc)
remove_copy (lib_2, bc)

ensure

lib_1 ~ lib_2

end

frozen a_12 (lib_1, lib_2: L; bc_1, bc_2: B)
require

lib_1 6= lib_2

lib_1 ~ lib_2

bc_1 /~ bc_2

not copy_borrowed (lib_1, bc_1)
copy_exists (lib_1, bc_2)
copy_exists (lib_2, bc_2)
not copy_borrowed (lib_2, bc_1)

do

check_out (lib_1, bc_1)
remove_copy (lib_1, bc_2)
remove_copy (lib_2, bc_2)
check_out (lib_2, bc_1)

ensure

lib_1 ~ lib_2

end

frozen a_13 (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

not copy_borrowed (lib_1, bc)
do

check_out (lib_1, bc)
return (lib_1, bc)

ensure

lib_1 ~ lib_2

end

frozen a_14 (lib_1, lib_2: L; bc_1, bc_2: B)
require

lib_1 6= lib_2

lib_1 ~ lib_2

bc_1 /~ bc_2

not copy_borrowed (lib_1, bc_1)
copy_borrowed (lib_1, bc_2)
copy_borrowed (lib_2, bc_2)
not copy_borrowed (lib_2, bc_1)

do

check_out (lib_1, bc_1)
return (lib_1, bc_2)
return (lib_2, bc_2)
check_out (lib_2, bc_1)

ensure

lib_1 ~ lib_2

end

frozen a_15 (lib_1, lib_2: L; bc_1, bc_2: B)

B.14. LIBRARY 237

require

lib_1 6= lib_2

lib_1 ~ lib_2

bc_1 /~ bc_2

copy_borrowed (lib_1, bc_2)
copy_borrowed (lib_2, bc_2)

do

add_copy (lib_1, bc_1)
return (lib_1, bc_2)
return (lib_2, bc_2)
add_copy (lib_2, bc_1)

ensure

lib_1 ~ lib_2

end

feature

-- Well-definedness axioms.

frozen empty_lib_well_defined

local

lib_1, lib_2: L
do

lib_1 := empty_lib

lib_2 := empty_lib

check

lib_1 6= lib_2

end

check

lib_1 ~ lib_2

end

end

frozen add_copy_well_defined (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

do

add_copy (lib_1, bc)
add_copy (lib_2, bc)

ensure

lib_1 ~ lib_2

end

frozen remove_copy_well_defined (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

lib_1 6= lib_2

copy_exists (lib_1, bc)
copy_exists (lib_2, bc)

do

remove_copy (lib_1, bc)
remove_copy (lib_2, bc)

ensure

lib_1 ~ lib_2

end

frozen check_out_well_defined (lib_1, lib_2: L; bc: B)
require

238 APPENDIX B. SOFTWARE COMPONENTS SOORTS

lib_1 ~ lib_2

lib_1 6= lib_2

not copy_borrowed (lib_1, bc)
not copy_borrowed (lib_2, bc)

do

check_out (lib_1, bc)
check_out (lib_2, bc)

ensure

lib_1 ~ lib_2

end

frozen return_well_defined (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

lib_1 6= lib_2

copy_borrowed (lib_1, bc)
copy_borrowed (lib_2, bc)

do

return (lib_1, bc)
return (lib_2, bc)

ensure

lib_1 ~ lib_2

end

frozen copy_exists_well_defined (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

do

ensure

copy_exists (lib_1, bc) ~ copy_exists (lib_2, bc)
end

frozen copy_borrowed_well_defined (lib_1, lib_2: L; bc: B)
require

lib_1 ~ lib_2

do

ensure

copy_borrowed (lib_1, bc) ~ copy_borrowed (lib_2, bc)
end

end

B.15 List

note

description: "Reusable abstract data type specification of list."
description: "Found in Wikipedia:"
EIS: "src= http://tinyurl.com/yxu9yze9"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yym548bu"

deferred class

LIST_ADT [L, E]
-- Lists ‘‘L’’ contain elements of ‘‘E’’.

inherit

B.15. LIST 239

EQUALITY_ADT [L]

feature

-- Deferred definitions.

nil: L
deferred

end

cons (l: L; e: E)
deferred

end

first (l: L): E
deferred

end

rest (l: L): L
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (l: L; e: E)
do

cons (l, e)
ensure

first (l) ~ e

end

frozen a_2 (l: L; e: E; old_l: L)
require

l ~ old_l

do

cons (l, e)
ensure

rest (l) ~ old_l

end

feature

-- Well-definedness axioms.

frozen nil_well_defined

local

list_1, list_2: L
do

list_1 := nil

list_2 := nil

check

assert: list_1 6= list_2

end

check

assert: list_1 ~ list_2

end

end

240 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen cons_well_defined (list_1, list_2: L; element: E)
require

list_1 ~ list_2

do

cons (list_1, element)
cons (list_2, element)

ensure

list_1 ~ list_2

end

frozen first_well_defined (list_1, list_2: L)
require

list_1 ~ list_2

do

ensure

first (list_1) ~ first (list_2)
end

frozen rest_well_defined (list_1, list_2: L)
require

list_1 ~ list_2

do

ensure

rest (list_1) ~ rest (list_2)
end

end

B.16 Mapping

note

description: "Reusable abstract data type specification of mapping."
description: "Found in ‘‘Abstract Data Types and Software Validation’’ by Guttag, Horowitz and

Musser:"
EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/yxnkehv8"

deferred class

MAPPING_ADT [M, D, R]
-- Mappings ‘‘M’’ map domains ‘‘D’’ to ranges ‘‘R’’.

inherit

EQUALITY_ADT [M]

feature

-- Deferred definitions.

new_map: M
deferred

end

def_map (map: M; dval: D; rval: R)
deferred

end

B.16. MAPPING 241

ev_map (map: M; dval: D): R
deferred

end

is_defined (map: M; dval: D): BOOLEAN
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (dval: D; rval: R)
local

map: M
do

map := new_map

check

ev_map (map, dval) /~ rval

end

end

frozen a_2 (map: M; dval: D; rval: R)
do

def_map (map, dval, rval)
ensure

ev_map (map, dval) ~ rval

end

frozen a_3 (map: M; dval_1, dval_2: D; rval, old_ev_map: R)
require

ev_map (map, dval_2) ~ old_ev_map

dval_1 /~ dval_2

do

def_map (map, dval_1, rval)
ensure

ev_map (map, dval_2) ~ old_ev_map

end

frozen a_4 (dval: D)
local

map: M
do

map := new_map

check

not is_defined (map, dval)
end

end

frozen a_5 (map: M; dval: D; rval: R)
do

def_map (map, dval, rval)
ensure

is_defined (map, dval)
end

frozen a_6 (map: M; dval_1, dval_2: D; rval: R; old_is_defined: BOOLEAN)
require

242 APPENDIX B. SOFTWARE COMPONENTS SOORTS

is_defined (map, dval_2) ~ old_is_defined

dval_1 /~ dval_2

do

def_map (map, dval_1, rval)
ensure

is_defined (map, dval_2) ~ old_is_defined

end

feature

-- Well-definedness axioms.

frozen new_map_well_defined

local

map_1, map_2: M
do

map_1 := new_map

map_2 := new_map

check

map_1 6= map_2

end

check

map_1 ~ map_2

end

end

frozen def_map_well_defined (map_1, map_2: M; dval: D; rval: R)
require

map_1 ~ map_2

do

def_map (map_1, dval, rval)
def_map (map_2, dval, rval)

ensure

map_1 ~ map_2

end

frozen ev_map_well_defined (map_1, map_2: M; dval: D)
require

map_1 ~ map_2

do

ensure

ev_map (map_1, dval) ~ ev_map (map_2, dval)
end

frozen is_defined_well_defined (map_1, map_2: M; dval: D)
require

map_1 ~ map_2

do

ensure

is_defined (map_1, dval) ~ is_defined (map_2, dval)
end

end

B.17 Polynomial

note

B.17. POLYNOMIAL 243

description: "Reusable abstract data type specification of polynomial."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y5u8hubc"

deferred class

POLYNOMIAL_ADT [P, C, CS→COMMUTATIVE_RING_ADT [C]]
-- Polynomials ‘‘P’’ have coefficients from the commutative ring ‘‘C’’.

inherit

COMMUTATIVE_RING_ADT [P]
rename

sum as add,
product as mult

end

feature

-- Deferred definitions.

add_term (polynomial: P; coefficient: C; exponent: INTEGER)
deferred

end

rem_term (polynomial: P; exponent: INTEGER)
deferred

end

mult_term (polynomial: P; coefficient: C; exponent: INTEGER)
deferred

end

reductum (polynomial: P)
deferred

end

is_zero (polynomial: P): BOOLEAN
deferred

end

coef (polynomial: P; exponent: INTEGER): C
deferred

end

degree (polynomial: P): INTEGER
deferred

end

ldcf (polynomial: P): C
deferred

end

feature

-- Abstract data type axioms.

frozen a_11 (exponent: INTEGER)
local

244 APPENDIX B. SOFTWARE COMPONENTS SOORTS

polynomial_1, polynomial_2: P
do

polynomial_1 := zero

polynomial_2 := zero

rem_term (polynomial_1, exponent)
check

polynomial_1 ~ polynomial_2

end

end

frozen a_12 (polynomial_1, polynomial_2: P; coefficient: C; exponent: INTEGER)
require

polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient, exponent)
rem_term (polynomial_1, exponent)
rem_term (polynomial_2, exponent)

ensure

polynomial_1 ~ polynomial_2

end

frozen a_13 (polynomial_1, polynomial_2: P; coefficient: C; exponent_1, exponent_2: INTEGER)
require

exponent_1 /~ exponent_2

polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient, exponent_1)
rem_term (polynomial_1, exponent_2)
rem_term (polynomial_2, exponent_2)
add_term (polynomial_2, coefficient, exponent_1)

ensure

polynomial_1 ~ polynomial_2

end

frozen a_14 (coefficient: C; exponent: INTEGER)
local

polynomial_1, polynomial_2: P
do

polynomial_1 := zero

polynomial_2 := zero

mult_term (polynomial_1, coefficient, exponent)
check

polynomial_1 ~ polynomial_2

end

end

frozen a_15 (polynomial_1, polynomial_2: P; coefficient_1, coefficient_2: C; exponent_1,
exponent_2: INTEGER)

require

polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient_1, exponent_1)
mult_term (polynomial_1, coefficient_2, exponent_2)
mult_term (polynomial_2, coefficient_2, exponent_2)
add_term (polynomial_2, ({CS}).default.product (coefficient_1, coefficient_2), exponent_1

+ exponent_2)
ensure

B.17. POLYNOMIAL 245

polynomial_1 ~ polynomial_2

end

frozen a_16 (polynomial: P)
local

zero_p: P
do

zero_p := zero

check

add (polynomial, zero_p) ~ polynomial

end

end

frozen a_17 (p, q, s: P; d: C; f: INTEGER)
require

add (p, q) ~ s

do

add_term (q, d, f)
add_term (s, d, f)

ensure

add (p, q) ~ s

end

frozen a_18 (polynomial: P)
-- MULT(p,ZERO) = ZERO

local

zero_p: P
do

zero_p := zero

check

mult (polynomial, zero_p) ~ zero_p

end

end

frozen a_19 (p_1, p_2, p_3, q_1, q_2: P; d: C; f: INTEGER)
require

p_1 ~ p_2

q_1 ~ q_2

do

add_term (q_1, d, f)
mult_term (p_2, d, f)

ensure

mult (p_1, q_1) ~ add (mult (p_1, q_2), p_2)
end

frozen a_20 (polynomial_1, polynomial_2: P)
require

polynomial_1 ~ polynomial_2

do

reductum (polynomial_1)
rem_term (polynomial_2, degree (polynomial_2))

ensure

polynomial_1 ~ polynomial_2

end

frozen a_21

local

246 APPENDIX B. SOFTWARE COMPONENTS SOORTS

polynomial: P
do

polynomial := zero

check

is_zero (polynomial)
end

end

frozen a_22 (polynomial_1, polynomial_2: P; coefficient: C; exponent: INTEGER)
require

coef (polynomial_1, exponent) ~ ({CS}).default.additive_inverse (coefficient)
polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient, exponent)
rem_term (polynomial_2, exponent)

ensure

is_zero (polynomial_1) ~ is_zero (polynomial_2)
end

frozen a_23 (polynomial: P; coefficient: C; exponent: INTEGER)
require

coef (polynomial, exponent) /~ ({CS}).default.additive_inverse (coefficient)
do

add_term (polynomial, coefficient, exponent)
ensure

not is_zero (polynomial)
end

frozen a_24 (exponent: INTEGER)
local

polynomial: P
do

polynomial := zero

check

coef (polynomial, exponent) ~ ({CS}).default.zero
end

end

frozen a_25 (polynomial: P; coefficient: C; exponent: INTEGER; old_coefficient: C)
require

coef (polynomial, exponent) ~ old_coefficient

do

add_term (polynomial, coefficient, exponent)
ensure

coef (polynomial, exponent) ~ ({CS}).default.sum (coefficient, old_coefficient)
end

frozen a_26 (polynomial: P; coefficient: C; exponent_1, exponent_2: INTEGER; old_coefficient: C
)

require

coef (polynomial, exponent_2) ~ old_coefficient

do

add_term (polynomial, coefficient, exponent_1)
ensure

coef (polynomial, exponent_2) ~ old_coefficient

end

B.17. POLYNOMIAL 247

frozen a_27

local

polynomial: P
do

polynomial := zero

check

degree (polynomial) ~ 0
end

end

frozen a_28 (polynomial: P; coefficient: C; exponent: INTEGER)
require

exponent > degree (polynomial)
do

add_term (polynomial, coefficient, exponent)
ensure

degree (polynomial) ~ exponent

end

frozen a_29 (polynomial: P; coefficient: C; exponent: INTEGER; old_degree: INTEGER)
require

exponent <degree (polynomial)
degree (polynomial) ~ old_degree

do

add_term (polynomial, coefficient, exponent)
ensure

degree (polynomial) ~ old_degree

end

frozen a_30 (polynomial_1, polynomial_2: P; coefficient: C; exponent: INTEGER; old_degree:
INTEGER)

require

exponent = degree (polynomial_1)
coef (polynomial_1, exponent) ~ ({CS}).default.additive_inverse (coefficient)
polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient, exponent)
reductum (polynomial_2)

ensure

degree (polynomial_1) ~ degree (polynomial_2)
end

frozen a_31 (polynomial: P; coefficient: C; exponent: INTEGER; old_degree: INTEGER)
require

exponent = degree (polynomial)
coef (polynomial, exponent) /~ ({CS}).default.additive_inverse (coefficient)
degree (polynomial) ~ old_degree

do

add_term (polynomial, coefficient, exponent)
ensure

degree (polynomial) ~ old_degree

end

frozen a_32 (polynomial: P)
do

ensure

ldcf (polynomial) ~ coef (polynomial, degree (polynomial))

248 APPENDIX B. SOFTWARE COMPONENTS SOORTS

end

feature

-- Well-definedness axioms.

frozen add_term_well_defined (polynomial_1, polynomial_2: P; coefficient: C; exponent:
INTEGER)

require

polynomial_1 ~ polynomial_2

do

add_term (polynomial_1, coefficient, exponent)
add_term (polynomial_2, coefficient, exponent)

ensure

polynomial_1 ~ polynomial_2

end

frozen rem_term_well_defined (polynomial_1, polynomial_2: P; exponent: INTEGER)
require

polynomial_1 ~ polynomial_2

do

rem_term (polynomial_1, exponent)
rem_term (polynomial_2, exponent)

ensure

polynomial_1 ~ polynomial_2

end

frozen mult_term_well_defined (polynomial_1, polynomial_2: P; coefficient: C; exponent:
INTEGER)

require

polynomial_1 ~ polynomial_2

do

mult_term (polynomial_1, coefficient, exponent)
mult_term (polynomial_2, coefficient, exponent)

ensure

polynomial_1 ~ polynomial_2

end

frozen reductum_well_defined (polynomial_1, polynomial_2: P)
require

polynomial_1 ~ polynomial_2

do

reductum (polynomial_1)
reductum (polynomial_2)

ensure

polynomial_1 ~ polynomial_2

end

frozen is_zero_well_defined (polynomial_1, polynomial_2: P)
require

polynomial_1 ~ polynomial_2

do

ensure

is_zero (polynomial_1) ~ is_zero (polynomial_2)
end

frozen coef_well_defined (polynomial_1, polynomial_2: P; exponent: INTEGER)
require

B.18. QUEUE 249

polynomial_1 ~ polynomial_2

do

ensure

coef (polynomial_1, exponent) ~ coef (polynomial_2, exponent)
end

frozen degree_well_defined (polynomial_1, polynomial_2: P)
require

polynomial_1 ~ polynomial_2

do

ensure

degree (polynomial_1) ~ degree (polynomial_2)
end

frozen ldcf_well_defined (polynomial_1, polynomial_2: P)
require

polynomial_1 ~ polynomial_2

do

ensure

ldcf (polynomial_1) ~ ldcf (polynomial_2)
end

end

B.18 Queue

note

description: "Reusable abstract data type specification of queue."
description: "Found in ‘‘The Algebraic Specification of Abstract Data Types’’ by Guttag and Horning:

"
EIS: "src= https://link.springer.com/article/10.1007/BF00260922"
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
description: "Found in ‘‘Implementing Algebraically Specified Abstract Data Types in an imperative

Programming Language ’’ by Thomas:"
EIS: "src= http://www.dcs.gla.ac.uk/~muffy/papers/Tapsoft_87.pdf"
description: "Found in ‘‘Abstract Data Types and the Development of Data Structures’’ by Guttag:"
EIS: "src= http://tinyurl.com/y45o32hq"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y4qv86kz"

deferred class

QUEUE_ADT [Q, T]
-- Queues ‘‘Q’’ contain elements of ‘‘T’’.

inherit

EQUALITY_ADT [Q]

feature

-- Deferred definitions.

newq: Q
deferred

end

addq (q: Q; t: T)

250 APPENDIX B. SOFTWARE COMPONENTS SOORTS

deferred

end

deleteq (q: Q)
deferred

end

frontq (q: Q): T
deferred

end

isnewq (q: Q): BOOLEAN
deferred

end

size (q: Q): INTEGER
deferred

end

feature

-- Abstract data type axioms.

frozen a_3_empty (q_1, q_2: Q)
require

q_1 ~ q_2

local

empty_: BOOLEAN
do

empty_ := isnewq (q_1)
ensure

q_1 ~ q_2

end

frozen a_3_size (q_1, q_2: Q)
require

q_1 ~ q_2

local

size_: INTEGER
do

size_ := size (q_1)
ensure

q_1 ~ q_2

end

frozen a_3_front (q_1, q_2: Q)
require

q_1 ~ q_2

local

front_: T
do

front_ := frontq (q_1)
ensure

q_1 ~ q_2

end

frozen a_4_if (q: Q)
require

B.18. QUEUE 251

size (q) ~ 0
do

ensure

isnewq (q)
end

frozen a_4_only_if (q: Q)
require

isnewq (q)
do

ensure

size (q) ~ 0
end

frozen a_5 (q: Q; n: INTEGER; t: T)
require

size (q) ~ n

local

i: INTEGER
do

addq (q, t)
from

i := 0
until

i ~ n

loop

deleteq (q)
i := i + 1

end

ensure

frontq (q) ~ t

end

frozen a_6 (q: Q; t: T; old_size: INTEGER)
require

size (q) ~ old_size

do

addq (q, t)
ensure

size (q) ~ old_size + 1
end

frozen a_7 (q: Q; t: T; old_size: INTEGER)
require

size (q) ~ old_size

not isnewq (q)
do

deleteq (q)
ensure

size (q) ~ old_size − 1
end

frozen a_9 (q: Q; t: T)
do

addq (q, t)
ensure

not isnewq (q)

252 APPENDIX B. SOFTWARE COMPONENTS SOORTS

end

frozen a_10

local

q: Q
do

q := newq

check

isnewq (q)
end

end

frozen a_11

local

q: Q
do

q := newq

check

size (q) ~ 0
end

end

frozen a_12

local

q_1, q_2: Q
do

q_1 := newq

q_2 := newq

deleteq (q_1)
check

q_1 ~ q_2

end

end

frozen a_13 (t: T)
local

q_1, q_2: Q
do

q_1 := newq

q_2 := newq

addq (q_1, t)
deleteq (q_1)
check

q_1 ~ q_2

end

end

frozen a_14 (q_1, q_2: Q; t_1, t_2: T)
require

q_1 ~ q_2

q_1 6= q_2

do

addq (q_1, t_1)
addq (q_1, t_2)
deleteq (q_1)
addq (q_2, t_1)
deleteq (q_2)

B.18. QUEUE 253

addq (q_2, t_2)
ensure

q_1 ~ q_2

end

frozen a_15 (t: T)
local

q: Q
do

q := newq

addq (q, t)
check

frontq (q) ~ t

end

end

frozen a_16 (q_1, q_2: Q; t_1, t_2: T)
require

q_1 ~ q_2

q_1 6= q_2

do

addq (q_1, t_1)
addq (q_1, t_2)
addq (q_2, t_1)

ensure

frontq (q_1) ~ frontq (q_2)
end

frozen a_17 (t: T)
local

q: Q
do

q := newq

check

frontq (q) /~ t

end

end

feature

-- Well-definedness axioms.

frozen new_well_defined

local

q_1, q_2: Q
do

q_1 := newq

q_2 := newq

check

q_1 ~ q_2

end

end

frozen add_well_defined (q_1, q_2: Q; t: T)
require

q_1 ~ q_2

do

addq (q_1, t)

254 APPENDIX B. SOFTWARE COMPONENTS SOORTS

addq (q_2, t)
ensure

q_1 ~ q_2

end

frozen dequeue_well_defined (q_1, q_2: Q)
require

q_1 ~ q_2

q_1 6= q_2

not isnewq (q_1)
not isnewq (q_2)

do

deleteq (q_1)
deleteq (q_2)

ensure

q_1 ~ q_2

end

frozen front_well_defined (q_1, q_2: Q)
require

q_1 ~ q_2

do

ensure

frontq (q_1) ~ frontq (q_2)
end

frozen empty_well_defined (q_1, q_2: Q)
require

q_1 ~ q_2

do

ensure

isnewq (q_1) ~ isnewq (q_2)
end

frozen size_well_defined (q_1, q_2: Q)
require

q_1 ~ q_2

do

ensure

size (q_1) ~ size (q_2)
end

end

B.19 Queue with Append

note

description: "Reusable abstract data type specification of queue with the ‘‘append’’ operation."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y44w738n"

deferred class

QUEUE_WITH_APPEND_ADT [Q, T]
-- Queues ‘‘Q’’ with appending other queues contain elements of ‘‘T’’.

B.20. SET 255

inherit

QUEUE_ADT [Q, T]

feature

-- Deferred definitions.

appendq (queue, other: Q)
deferred

end

feature

-- Abstract data type axioms.

frozen a_18 (queue_1, queue_2: Q)
require

queue_1 ~ queue_2

local

other: Q
do

other := newq

appendq (queue_1, other)
ensure

queue_1 ~ queue_2

end

frozen a_19 (queue_1, queue_2, other_1, other_2: Q; element: T)
require

queue_1 ~ queue_2

other_1 ~ other_2

do

addq (other_1, element)
appendq (queue_1, other_1)
appendq (queue_2, other_2)
addq (queue_2, element)

ensure

queue_1 ~ queue_2

end

feature

-- Well-definedness axioms.

frozen appendq_well_defined (queue_1, queue_2, other: Q)
require

queue_1 ~ queue_2

do

appendq (queue_1, other)
appendq (queue_2, other)

ensure

queue_1 ~ queue_2

end

end

B.20 Set

note

256 APPENDIX B. SOFTWARE COMPONENTS SOORTS

description: "Reusable abstract data type specification of set."
description: "Found in ‘‘The Algebraic Specification of Abstract Data Types’’ by Guttag and Horning:

"
EIS: "src= https://link.springer.com/article/10.1007/BF00260922"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y2thcfbr"

deferred class

SET_ADT [S, E]
-- Sets ‘‘S’’ contain elements of ‘‘E’’.

inherit

EQUALITY_ADT [S]

feature

-- Deferred definitions.

empty_set: S
deferred

end

insert (set: S; element: E)
deferred

end

delete (set: S; element: E)
deferred

end

member_of (set: S; element: E): BOOLEAN
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (element: E)
local

set: S
do

set := empty_set

check

not member_of (set, element)
end

end

frozen a_2_1 (set: S; element: E)
do

insert (set, element)
ensure

member_of (set, element)
end

frozen a_2_2 (set: S; element_1, element_2: E; old_member_of: BOOLEAN)
require

element_1 /~ element_2

member_of (set, element_2) ~ old_member_of

B.20. SET 257

do

insert (set, element_1)
ensure

member_of (set, element_2) ~ old_member_of

end

frozen a_3 (element: E)
local

set_1, set_2: S
do

set_1 := empty_set

set_2 := empty_set

delete (set_1, element)
check

set_1 ~ set_2

end

end

frozen a_4_1 (set_1, set_2: S; element: E)
require

set_1 ~ set_2

do

insert (set_1, element)
delete (set_1, element)
delete (set_2, element)

ensure

set_1 ~ set_2

end

frozen a_4_2 (set_1, set_2: S; element_1, element_2: E)
require

set_1 ~ set_2

element_1 /~ element_2

do

insert (set_1, element_1)
delete (set_1, element_2)
delete (set_2, element_2)
insert (set_2, element_1)

ensure

set_1 ~ set_2

end

feature

-- Well-definedness axioms.

frozen empty_set_well_defined

local

set_1, set_2: S
do

set_1 := empty_set

set_2 := empty_set

check

assert: set_1 6= set_2

end

check

assert: set_1 ~ set_2

end

258 APPENDIX B. SOFTWARE COMPONENTS SOORTS

end

frozen insert_well_defined (set_1, set_2: S; element: E)
require

set_1 ~ set_2

do

insert (set_1, element)
insert (set_2, element)

ensure

set_1 ~ set_2

end

frozen delete_well_defined (set_1, set_2: S; element: E)
require

set_1 ~ set_2

do

delete (set_1, element)
delete (set_2, element)

ensure

set_1 ~ set_2

end

frozen member_of_well_defined (set_1, set_2: S; element: E)
require

set_1 ~ set_2

do

ensure

member_of (set_1, element) ~ member_of (set_2, element)
end

end

B.21 Set with IsEmptySet

note

description: "Reusable abstract data type specification of set with ‘‘is_empty_set’’ operation."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y5lh2hro"

deferred class

SET_WITH_ISEMPTYSET_ADT [S, I]
-- Sets ‘‘S’’ contain elements of ‘‘I’’.

inherit

EQUALITY_ADT [S]

feature

-- Deferred definitions.

empty_set: S
deferred

end

is_empty_set (set: S): BOOLEAN

B.21. SET WITH ISEMPTYSET 259

deferred

end

insert (set: S; item: I)
deferred

end

del_set (set: S; item: I)
deferred

end

has (set: S; item: I): BOOLEAN
deferred

end

feature

-- Abstract data type axioms.

frozen a_1

local

set: S
do

set := empty_set

check

is_empty_set (set)
end

end

frozen a_2 (set: S; item: I)
do

insert (set, item)
ensure

not is_empty_set (set)
end

frozen a_3 (item: I)
local

set: S
do

set := empty_set

check

not has (set, item)
end

end

frozen a_4 (set: S; item: I)
do

insert (set, item)
ensure

has (set, item)
end

frozen a_5 (set: S; item_1, item_2: I; old_has: BOOLEAN)
require

item_1 /~ item_2

has (set, item_2) ~ old_has

do

260 APPENDIX B. SOFTWARE COMPONENTS SOORTS

insert (set, item_1)
ensure

has (set, item_2) ~ old_has

end

frozen a_6 (set: S; item: I)
local

e_set: S
do

e_set := empty_set

del_set (e_set, item)
check

e_set /~ set

end

end

frozen a_7 (set_1, set_2: S; item: I)
require

set_1 ~ set_2

do

insert (set_1, item)
del_set (set_1, item)
del_set (set_2, item)

ensure

set_1 ~ set_2

end

frozen a_8 (set_1, set_2: S; item_1, item_2: I)
require

item_1 /~ item_2

set_1 ~ set_2

do

insert (set_1, item_1)
del_set (set_1, item_2)
del_set (set_2, item_2)
insert (set_2, item_1)

ensure

set_1 ~ set_2

end

feature

-- Well-definedness axioms.

frozen empty_set_well_defined

local

set_1, set_2: S
do

set_1 := empty_set

set_2 := empty_set

check

set_1 6= set_2

end

check

set_1 ~ set_2

end

end

B.22. STACK 261

frozen is_empty_set_well_defined (set_1, set_2: S)
require

set_1 ~ set_2

do

ensure

is_empty_set (set_1) ~ is_empty_set (set_2)
end

frozen insert_well_defined (set_1, set_2: S; item: I)
require

set_1 ~ set_2

do

insert (set_1, item)
insert (set_2, item)

ensure

set_1 ~ set_2

end

frozen del_set_well_defined (set_1, set_2: S; item: I)
require

set_1 ~ set_2

do

del_set (set_1, item)
del_set (set_2, item)

ensure

set_1 ~ set_2

end

frozen has_well_defined (set_1, set_2: S; item: I)
require

set_1 ~ set_2

do

ensure

has (set_1, item) ~ has (set_2, item)
end

end

B.22 Stack

note

description: "Reusable abstract data type specification of stack."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
description: "Found in ‘‘Abstract Data Types and the Development of Data Structures’’ by Guttag:"
EIS: "src= http://tinyurl.com/y45o32hq"
description: "Found in ‘‘Programming with Abstract Data Types’’ by Liskov and Zilles:"
EIS: "src= http://tinyurl.com/y5dc5k9h"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y62gkzyz"

deferred class

STACK_ADT [S, T]
-- Stacks ‘‘S’’ contain elements of ‘‘T’’.

inherit

262 APPENDIX B. SOFTWARE COMPONENTS SOORTS

EQUALITY_ADT [S]

feature

-- Deferred definitions.

new: S
deferred

end

push (s: S; t: T)
deferred

end

pop (s: S)
deferred

end

top (s: S): T
deferred

end

is_new (s: S): BOOLEAN
deferred

end

size (s: S): INTEGER
deferred

end

feature

-- Abstract data type axioms.

frozen a_1 (t: T; other: S)
local

s: S
do

s := new

pop (s)
check

s /~ other

end

end

frozen a_2 (t: T)
local

s: S
do

s := new

check

top (s) /~ t

end

end

frozen a_3_empty (s_1, s_2: S)
require

s_1 ~ s_2

local

B.22. STACK 263

empty_: BOOLEAN
do

empty_ := is_new (s_1)
ensure

s_1 ~ s_2

end

frozen a_3_size (s_1, s_2: S)
require

s_1 ~ s_2

local

size_: INTEGER
do

size_ := size (s_1)
ensure

s_1 ~ s_2

end

frozen a_3_top (s_1, s_2: S)
require

s_1 ~ s_2

local

top_: T
do

top_ := top (s_1)
ensure

s_1 ~ s_2

end

frozen a_4_if (s: S)
require

size (s) ~ 0
do

ensure

is_new (s)
end

frozen a_4_only_if (s: S)
require

is_new (s)
do

ensure

size (s) ~ 0
end

frozen a_5 (s_1, s_2: S; t: T)
require

s_1 ~ s_2

do

push (s_1, t)
pop (s_1)

ensure

s_1 ~ s_2

end

frozen a_6 (s: S; t: T)
do

264 APPENDIX B. SOFTWARE COMPONENTS SOORTS

push (s, t)
ensure

top (s) ~ t

end

frozen a_7 (s: S; t: T; old_size: INTEGER)
require

size (s) ~ old_size

do

push (s, t)
ensure

size (s) ~ old_size + 1
end

frozen a_8 (s: S; t: T; old_size: INTEGER)
require

size (s) ~ old_size

not is_new (s)
do

pop (s)
ensure

size (s) ~ old_size − 1
end

frozen a_9 (s: S; t: T)
do

push (s, t)
ensure

not is_new (s)
end

frozen a_10

local

s: S
do

s := new

check

is_new (s)
end

end

frozen a_11

local

s: S
do

s := new

check

size (s) ~ 0
end

end

feature

-- Well-definedness axioms.

frozen new_well_defined

local

s_1, s_2: S

B.22. STACK 265

do

s_1 := new

s_2 := new

check

s_1 ~ s_2

end

end

frozen push_well_defined (s_1, s_2: S; t: T)
require

s_1 ~ s_2

do

push (s_1, t)
push (s_2, t)

ensure

s_1 ~ s_2

end

frozen pop_well_defined (s_1, s_2: S)
require

s_1 ~ s_2

s_1 6= s_2

not is_new (s_1)
not is_new (s_2)

do

pop (s_1)
pop (s_2)

ensure

s_1 ~ s_2

end

frozen top_well_defined (s_1, s_2: S)
require

s_1 ~ s_2

do

ensure

top (s_1) ~ top (s_2)
end

frozen empty_well_defined (s_1, s_2: S)
require

s_1 ~ s_2

do

ensure

is_new (s_1) ~ is_new (s_2)
end

frozen size_well_defined (s_1, s_2: S)
require

s_1 ~ s_2

do

ensure

size (s_1) ~ size (s_2)
end

end

266 APPENDIX B. SOFTWARE COMPONENTS SOORTS

B.23 Stack with Replace

note

description: "Reusable abstract data type specification of stack with ‘‘replace’’ operation."
description: "Found in ‘‘Abstract Data Types and Software Validation ’’ by Guttag, Horowitz and

Musser:"
EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf"
description: "Found in ‘‘Abstract Data Types and the Development of Data Structures’’ by Guttag:"
EIS: "src= http://tinyurl.com/y45o32hq"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y4ql2lgn"

deferred class

STACK_WITH_REPLACE_ADT [S, E]
-- Stacks ‘‘S’’ with replacing contain elements of ‘‘E’’.

inherit

STACK_ADT [S, E]

feature

-- Deferred definitions.

replace (stk: S; elm: E)
deferred

end

feature

-- Abstract data type axioms.

frozen a_12

local

stk_1, stk_2: S
do

stk_1 := new

stk_2 := new

pop (stk_1)
check

stk_1 ~ stk_2

end

end

frozen a_13 (elm: E)
local

stk: S
do

stk := new

check

top (stk) /~ elm

end

end

frozen a_14 (stk_1, stk_2: S; elm: E)
require

stk_1 ~ stk_2

do

replace (stk_1, elm)
pop (stk_2)

B.24. STRING 267

push (stk_2, elm)
ensure

stk_1 ~ stk_2

end

feature

-- Well-definedness axioms.

frozen replace_well_defined (stk_1, stk_2: S; elm: E)
require

stk_1 ~ stk_2

do

replace (stk_1, elm)
replace (stk_2, elm)

ensure

stk_1 ~ stk_2

end

end

B.24 String

note

description: "Reusable abstract data type specification of stting."
description: "Found in ‘‘The design of data type specifications’’ by Guttag, Horowitz and Musser:"
EIS: "src= http://tinyurl.com/yxmnv23w"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y3ezsvro"

deferred class

STRING_ADT [S, C]
-- Strings ‘‘S’’ contain characters ‘‘C’’.

inherit

EQUALITY_ADT [S]

feature

-- Deferred definitions.

null: S
deferred

end

is_null (string: S): BOOLEAN
deferred

end

len (string: S): INTEGER
deferred

end

add_char (string: S; character: C)
deferred

end

concat (string_1, string_2: S)

268 APPENDIX B. SOFTWARE COMPONENTS SOORTS

deferred

end

substr (string: S; start, finish: INTEGER): S
deferred

end

index (string_1, string_2: S): INTEGER
deferred

end

feature

-- Abstract data type axioms.

frozen a_1

local

string: S
do

string := null

check

is_null (string)
end

end

frozen a_2 (string: S; character: C)
do

add_char (string, character)
check

not is_null (string)
end

end

frozen a_3

local

string: S
do

string := null

check

len (string) ~ 0
end

end

frozen a_4 (string: S; character: C; old_len: INTEGER)
require

len (string) ~ old_len

do

add_char (string, character)
ensure

len (string) ~ old_len + 1
end

frozen a_5 (string_1, string_2: S)
require

string_1 ~ string_2

local

string: S
do

B.24. STRING 269

string := null

concat (string_1, string)
ensure

string_1 ~ string_2

end

frozen a_6 (string_1, string_2, string_3, string_4: S; character: C)
require

string_1 ~ string_4

string_2 ~ string_3

do

add_char (string_1, character)
concat (string_2, string_1)
concat (string_3, string_4)
add_char (string_3, character)

ensure

string_2 ~ string_3

end

frozen a_7 (start, finish: INTEGER)
local

string_1, string_2: S
do

string_1 := null

string_2 := null

check

substr (string_2, start, finish) ~ string_1

end

end

frozen a_8 (string: S; start, finish: INTEGER; character: C)
require

finish ~ 0
local

null_string: S
do

null_string := null

add_char (string, character)
check

substr (string, start, finish) ~ null_string

end

end

frozen a_9 (string_1, string_2: S; start, finish: INTEGER; character: C)
require

finish /~ 0
finish ~ len (string_1) − start + 2
string_2 ~ substr (string_1, start, finish − 1)

do

add_char (string_1, character)
add_char (string_2, character)

ensure

string_2 ~ substr (string_1, start, finish)
end

frozen a_10 (string_1, string_2: S; start, finish: INTEGER; character: C)
require

270 APPENDIX B. SOFTWARE COMPONENTS SOORTS

finish /~ 0
finish /~ len (string_1) − start + 2
string_1 ~ string_2

do

add_char (string_1, character)
ensure

substr (string_1, start, finish) ~ substr (string_2, start, finish)
end

frozen a_11 (string: S)
local

null_string: S
do

null_string := null

check

index (string, null_string) ~ len (string) + 1
end

end

frozen a_12 (string: S; character: C)
local

null_string: S
do

null_string := null

add_char (string, character)
check

index (null_string, string) ~ 0
end

end

frozen a_13 (string_1, string_2, string_3: S; character_1, character_2: C)
require

string_1 ~ string_3

do

add_char (string_1, character_1)
add_char (string_2, character_2)
check

assume: index (string_3, string_2) /~ 0
end

ensure

index (string_1, string_2) ~ index (string_3, string_2)
end

frozen a_14 (string_1, string_2, string_3, string_4: S; character_1, character_2: C)
require

string_1 ~ string_3

string_2 ~ string_4

character_1 ~ character_2

index (string_1, string_2) ~ len (string_1) − len (string_2) + 1
do

add_char (string_1, character_1)
add_char (string_2, character_2)
check

assume: index (string_3, string_2) ~ 0
end

ensure

index (string_1, string_2) ~ index (string_3, string_4)

B.24. STRING 271

end

frozen a_15 (string_1, string_2, string_3: S; character_1, character_2: C)
require

string_1 ~ string_3

character_1 /~ character_2

do

add_char (string_1, character_1)
add_char (string_2, character_2)
check

assume: index (string_3, string_2) ~ 0
end

ensure

index (string_1, string_2) ~ 0
end

frozen a_16 (string_1, string_2, string_3: S; character_1, character_2: C)
require

string_1 ~ string_3

index (string_1, string_2) /~ len (string_1) − len (string_2) + 1
do

add_char (string_1, character_1)
add_char (string_2, character_2)
check

assume: index (string_3, string_2) ~ 0
end

ensure

index (string_1, string_2) ~ 0
end

feature

-- Well-definedness axioms.

frozen null_well_defined

local

string_1, string_2: S
do

string_1 := null

string_2 := null

check

string_1 6= string_2

end

check

string_1 ~ string_2

end

end

frozen is_null_well_defined (string_1, string_2: S)
require

string_1 ~ string_2

do

ensure

is_null (string_1) ~ is_null (string_2)
end

frozen len_well_defined (string_1, string_2: S)
require

272 APPENDIX B. SOFTWARE COMPONENTS SOORTS

string_1 ~ string_2

do

ensure

len (string_1) ~ len (string_2)
end

frozen add_char_well_defined (string_1, string_2: S; character: C)
require

string_1 ~ string_2

do

add_char (string_1, character)
add_char (string_2, character)

ensure

string_1 ~ string_2

end

frozen concat_well_defined (string_1, string_2, string: S)
require

string_1 ~ string_2

do

concat (string_1, string)
concat (string_2, string)

ensure

string_1 ~ string_2

end

frozen substr_well_defined (string_1, string_2: S; start, finish: INTEGER)
require

string_1 ~ string_2

do

ensure

substr (string_1, start, finish) ~ substr (string_2, start, finish)
end

frozen index_well_defined (string_1, string_2, string: S)
require

string_1 ~ string_2

do

ensure

index (string_1, string) ~ index (string_2, string)
end

end

B.25 Symbol Table

note

description: "Reusable abstract data type specification of symbol table."
description: "Found in ‘‘Abstract Data Types and Software Validation’’ by Guttag, Horowitz and

Musser:"
EIS: "src= https://pdfs.semanticscholar.org/372d/4f331d0a6cd5fb4ee0c04d4a0753b8eb659f.pdf"
description: "Found in ‘‘Abstract Data Types and the Development of Data Structures’’ by Guttag:"
EIS: "src= http://tinyurl.com/y45o32hq"
EIS: "name=Location on GitHub", "src= https://tinyurl.com/y3sja4uj"

deferred class

B.25. SYMBOL TABLE 273

SYMBOL_TABLE_ADT [S, I, A]
-- Symbol tables ‘‘S’’ contain elements of ‘‘A’’

-- indexed by elements of ‘‘I’’.

inherit

EQUALITY_ADT [S]

feature

-- Deferred definitions.

init: S
deferred

end

enter_block (s_t: S)
deferred

end

leave_block (s_t: S)
deferred

end

is_in_block (s_t: S; id: I): BOOLEAN
deferred

end

add (s_t: S; id: I; attr: A)
deferred

end

retrieve (s_t: S; id: I): A
deferred

end

feature

-- Abstract data type axioms.

frozen a_2 (s_t_1, s_t_2: S)
require

s_t_1 ~ s_t_2

do

enter_block (s_t_1)
leave_block (s_t_1)

ensure

s_t_1 ~ s_t_2

end

frozen a_3 (s_t_1, s_t_2: S; id: I; attr: A)
require

s_t_1 ~ s_t_2

s_t_1 6= s_t_2

do

add (s_t_1, id, attr)
leave_block (s_t_1)
leave_block (s_t_2)

ensure

274 APPENDIX B. SOFTWARE COMPONENTS SOORTS

s_t_1 ~ s_t_2

end

frozen a_4 (id: I)
local

s_t: S
do

s_t := init

check

not is_in_block (s_t, id)
end

end

frozen a_5 (symtab: S; id: I)
do

enter_block (symtab)
ensure

not is_in_block (symtab, id)
end

frozen a_6_1 (symtab: S; id: I; attrs: A)
do

add (symtab, id, attrs)
ensure

is_in_block (symtab, id)
end

frozen a_6_2 (symtab: S; id_1, id_2: I; attrs: A; old_is_in_block: BOOLEAN)
require

id_1 /~ id_2

is_in_block (symtab, id_1) ~ old_is_in_block

do

add (symtab, id_1, attrs)
ensure

is_in_block (symtab, id_2) ~ old_is_in_block

end

frozen a_8 (symtab: S; id: I; attrs: A)
require

retrieve (symtab, id) ~ attrs

do

enter_block (symtab)
ensure

retrieve (symtab, id) ~ attrs

end

frozen a_9_1 (symtab: S; id: I; attrs: A)
do

add (symtab, id, attrs)
ensure

retrieve (symtab, id) ~ attrs

end

frozen a_9_2 (symtab: S; id_1, id_2: I; attrs, old_retrieve: A)
require

id_1 /~ id_2

retrieve (symtab, id_2) ~ old_retrieve

B.25. SYMBOL TABLE 275

do

add (symtab, id_1, attrs)
ensure

retrieve (symtab, id_2) ~ old_retrieve

end

feature

-- Well-definedness axioms.

frozen init_well_defined

local

symtab_1, symtab_2: S
do

symtab_1 := init

symtab_2 := init

check

symtab_1 ~ symtab_2

end

end

frozen enter_block_well_defined (symtab_1, symtab_2: S)
require

symtab_1 ~ symtab_2

do

enter_block (symtab_1)
enter_block (symtab_2)

ensure

symtab_1 ~ symtab_2

end

frozen leave_block_well_defined (symtab_1, symtab_2: S)
require

symtab_1 ~ symtab_2

do

leave_block (symtab_1)
leave_block (symtab_2)

ensure

symtab_1 ~ symtab_2

end

frozen is_in_block_well_defined (symtab_1, symtab_2: S; id: I)
require

symtab_1 ~ symtab_2

do

ensure

is_in_block (symtab_1, id) ~ is_in_block (symtab_2, id)
end

frozen add_well_defined (symtab_1, symtab_2: S; id: I; attr: A)
require

symtab_1 ~ symtab_2

do

add (symtab_1, id, attr)
add (symtab_2, id, attr)

ensure

symtab_1 ~ symtab_2

end

276 APPENDIX B. SOFTWARE COMPONENTS SOORTS

frozen retrieve_well_defined (symtab_1, symtab_2: S; id: I)
require

symtab_1 ~ symtab_2

do

ensure

retrieve (symtab_1, id) ~ retrieve (symtab_2, id)
end

end

Bibliography

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engi-
neering. Cambridge University Press, 2010. ISBN: 978-0-521-89556-9.

[AGR17] Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. “Rigorous de-
velopment process of a safety-critical system: from ASM models to Java
code”. In: STTT 19.2 (2017), pp. 247–269.

[AH94] Rajeev Alur and Thomas A. Henzinger. “A Really Temporal Logic”. In:
J. ACM 41.1 (1994), pp. 181–204.

[Alr+13] Dalal Alrajeh et al. “Elaborating Requirements Using Model Checking
and Inductive Learning”. In: IEEE Trans. Software Eng. 39.3 (2013), pp. 361–
383.

[AM16] Yamine Aït Ameur and Dominique Méry. “Making explicit domain knowl-
edge in formal system development”. In: Sci. Comput. Program. 121 (2016),
pp. 100–127.

[ASM80] Jean-Raymond Abrial, Stephen A. Schuman, and Bertrand Meyer. “Spec-
ification Language”. In: On the Construction of Programs. 1980, pp. 343–
410.

[Ban17] Richard Banach. “The landing gear system in multi-machine Hybrid Event-
B”. In: STTT 19.2 (2017), pp. 205–228.

[Bar+05] Michael Barnett et al. “Boogie: A Modular Reusable Verifier for Object-
Oriented Programs”. In: Formal Methods for Components and Objects,
4th International Symposium, FMCO 2005, Amsterdam, The Netherlands,
November 1-4, 2005, Revised Lectures. Ed. by Frank S. de Boer et al.
Vol. 4111. Lecture Notes in Computer Science. Springer, 2005, pp. 364–
387. ISBN: 3-540-36749-7.

[Bar10] Mike Barnett. “Code Contracts for .NET: Runtime Verification and So
Much More”. In: Runtime Verification - First International Conference,
RV 2010, St. Julians, Malta, November 1-4, 2010. Proceedings. Ed. by
Howard Barringer et al. Vol. 6418. Lecture Notes in Computer Science.
Springer, 2010, pp. 16–17. ISBN: 978-3-642-16611-2.

277

278 BIBLIOGRAPHY

[BDZF14] Bernard Berthomieu, Silvano Dal Zilio, and Łukasz Fronc. “Model-checking
Real-Time Properties of an Aircraft Landing Gear System Using Fiacre”.
In: ed. by Yamine Aït Ameur and Klaus-Dieter Schewe. Vol. 8477. Lec-
ture Notes in Computer Science. Springer, 2014, pp. 110–125. ISBN: 978-
3-662-43651-6.

[BH00] Martin Berger and Kohei Honda. “The Two-Phase Commitment Protocol
in an Extended pi-Calculus”. In: Electr. Notes Theor. Comput. Sci. 39.1
(2000), pp. 21–46.

[Bla+09] Sue Black et al. “Formal Versus Agile: Survival of the Fittest”. In: IEEE
Computer 42.9 (2009), pp. 37–45.

[Bli89] Wayne D. Blizard. “Multiset Theory”. In: Notre Dame Journal of Formal
Logic 30.1 (1989), pp. 36–66.

[BPM83] Mordechai Ben-Ari, Amir Pnueli, and Zohar Manna. “The Temporal Logic
of Branching Time”. In: Acta Inf. 20 (1983), pp. 207–226.

[BW14] Frédéric Boniol and Virginie Wiels. “The Landing Gear System Case
Study”. In: ed. by Yamine Aït Ameur and Klaus-Dieter Schewe. Vol. 8477.
Lecture Notes in Computer Science. Springer, 2014, pp. 1–18. ISBN: 978-
3-662-43651-6.

[Ciu+08] Ilinca Ciupa et al. “Finding Faults: Manual Testing vs. Random+ Testing
vs. User Reports”. In: 19th International Symposium on Software Reli-
ability Engineering (ISSRE 2008), 11-14 November 2008, Seattle/Red-
mond, WA, USA. IEEE Computer Society, 2008, pp. 157–166. ISBN: 978-
0-7695-3405-3.

[Ciu+11] Ilinca Ciupa et al. “On the number and nature of faults found by random
testing”. In: Softw. Test., Verif. Reliab. 21.1 (2011), pp. 3–28.

[CK04] David R. Cok and Joseph Kiniry. “ESC/Java2: Uniting ESC/Java and
JML”. In: Construction and Analysis of Safe, Secure, and Interoperable
Smart Devices, International Workshop, CASSIS 2004, Marseille, France,
March 10-14, 2004, Revised Selected Papers. Ed. by Gilles Barthe et al.
Vol. 3362. Lecture Notes in Computer Science. Springer, 2004, pp. 108–
128. ISBN: 3-540-24287-2.

[DAC99] Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. “Patterns
in Property Specifications for Finite-State Verification”. In: Proceedings
of the 1999 International Conference on Software Engineering, ICSE’ 99,
Los Angeles, CA, USA, May 16-22, 1999. Ed. by Barry W. Boehm, David
Garlan, and Jeff Kramer. ACM, 1999, pp. 411–420. ISBN: 1-58113-074-0.

[Dal+18] Fabiano Dalpiaz et al. “Natural Language Processing for Requirements
Engineering: The Best Is Yet to Come”. In: IEEE Software 35.5 (2018),
pp. 115–119.

[DNR04] Jerry Drobka, David Noftz, and Rekha Raghu. “Piloting XP on Four Mission-
Critical Projects”. In: IEEE Software 21.6 (2004), pp. 70–75.

BIBLIOGRAPHY 279

[DT14] Philippe Dhaussy and Ciprian Teodorov. “Context-Aware Verification of
a Landing Gear System”. In: ed. by Yamine Aït Ameur and Klaus-Dieter
Schewe. Vol. 8477. Lecture Notes in Computer Science. Springer, 2014,
pp. 52–65. ISBN: 978-3-662-43651-6.

[DTS10] Jonathan Paul De Halleux, Nikolai Tillmann, and Wolfram Schulte. Pa-
rameterized test driven development. 2010.

[Ebe+16] Christof Ebert et al. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94–
100.

[Eif] Eiffel Community. https://www.eiffel.org/.

[Fah+09a] Dirk Fahland et al. “Declarative versus Imperative Process Modeling Lan-
guages: The Issue of Maintainability”. In: Business Process Management
Workshops, BPM 2009 International Workshops, Ulm, Germany, Septem-
ber 7, 2009. Revised Papers. Ed. by Stefanie Rinderle-Ma, Shazia Wasim
Sadiq, and Frank Leymann. Vol. 43. Lecture Notes in Business Informa-
tion Processing. Springer, 2009, pp. 477–488. ISBN: 978-3-642-12185-2.

[Fah+09b] Dirk Fahland et al. “Declarative versus Imperative Process Modeling Lan-
guages: The Issue of Understandability”. In: Enterprise, Business-Process
and Information Systems Modeling, 10th International Workshop, BP-
MDS 2009, and 14th International Conference, EMMSAD 2009, held at
CAiSE 2009, Amsterdam, The Netherlands, June 8-9, 2009. Proceedings.
Ed. by Terry A. Halpin et al. Vol. 29. Lecture Notes in Business Informa-
tion Processing. Springer, 2009, pp. 353–366. ISBN: 978-3-642-01861-9.

[FBM14] Luca Ferrucci, Marcello M Bersani, and Manuel Mazzara. “An LTL se-
mantics of business workflows with recovery”. In: 2014 9th International
Conference on Software Paradigm Trends (ICSOFT-PT). IEEE. 2014, pp. 29–
40.

[Fra+03] Steven Fraser et al. “Test Driven Development (TDD)”. In: Extreme Pro-
gramming and Agile Processes in Software Engineering, 4th International
Conference, XP 2003, Genova, Italy, May 25-29, 2003 Proceedings. Ed.
by Michele Marchesi and Giancarlo Succi. Vol. 2675. Lecture Notes in
Computer Science. Springer, 2003, pp. 459–462. ISBN: 3-540-40215-2.

[Gal18] Florian Galinier. Specification of the London Ambulance System in Au-
toReq. https://gitlab.com/fgalinier/LAS. 2018.

[GH78] John V. Guttag and James J. Horning. “The Algebraic Specification of
Abstract Data Types”. In: Acta Inf. 10 (1978), pp. 27–52.

[GH94] Yuri Gurevich and James K. Huggins. “Evolving Algebras and Partial
Evaluation”. In: Technology and Foundations - Information Processing
’94, Volume 1, Proceedings of the IFIP 13th World Computer Congress,
Hamburg, Germany, 28 August - 2 September, 1994. Ed. by Björn Pehrson
and Imre Simon. Vol. A-51. IFIP Transactions. North-Holland, 1994, pp. 587–
592. ISBN: 0-444-81989-4.

280 BIBLIOGRAPHY

[GHM76] John V Guttag, Ellis Horowitz, and David R Musser. “The Design of Data
Type Specifications”. In: Proceedings of the 2nd International Confer-
ence on Software Engineering, San Francisco, California, USA, October
13-15, 1976. Ed. by Raymond T Yeh and C V Ramamoorthy. {IEEE}
Computer Society, 1976, pp. 414–420.

[GHM78] John V Guttag, Ellis Horowitz, and David R Musser. “Abstract Data Types
and Software Validation”. In: Commun. {ACM} 21.12 (1978), pp. 1048–
1064.

[Gli] Martin Glinz. “Should Requirements Be Objects?” In: Tutorial Position
Paper, 14th Annual International Symposium on Systems Engineering.

[Gur00] Yuri Gurevich. “Sequential abstract-state machines capture sequential al-
gorithms”. In: ACM Trans. Comput. Log. 1.1 (2000), pp. 77–111.

[Gut76] John V. Guttag. “Abstract Data Types and the Development of Data Struc-
tures”. In: Proceedings of the SIGPLAN ’76 Conference on Data: Abstrac-
tion, Definition and Structure, Salt Lake City, Utah, USA, March 22-24,
1976. ACM, 1976, p. 72.

[HF01] Ivy F Hooks and Kristin A Farry. Customer-centered products: creating
successful products through smart requirements management. Amacom
Books, 2001.

[Hoa69] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming”. In:
Commun. ACM 12.10 (1969), pp. 576–580.

[Hoa72] C. A. R. Hoare. “Proof of Correctness of Data Representations”. In: Acta
Inf. 1 (1972), pp. 271–281.

[Ili+12] Alexei Iliasov et al. “Augmenting Event-B modelling with real-time ver-
ification”. In: Proceedings of the First International Workshop on For-
mal Methods in Software Engineering - Rigorous and Agile Approaches,
FormSERA 2012, Zurich, Switzerland, June 2, 2012. Ed. by Stefania Gnesi
et al. IEEE, 2012, pp. 51–57. ISBN: 978-1-4673-1906-5.

[IPP18] Mohsin Irshad, Kai Petersen, and Simon M. Poulding. “A systematic liter-
ature review of software requirements reuse approaches”. In: Information
& Software Technology 93 (2018), pp. 223–245.

[ISO11] ISO/IEC/IEEE. “ISO/IEC/IEEE International Standard - Systems and soft-
ware engineering – Life cycle processes –Requirements engineering”. In:
ISO/IEC/IEEE 29148:2011(E) (2011).

[Jac06] Daniel Jackson. Software Abstractions - Logic, Language, and Analysis.
MIT Press, 2006. ISBN: 978-0-262-10114-1.

[Jac14] Michael Jackson. “Topsy-turvy requirements”. In: Requir. Eng. 19.1 (2014),
pp. 107–111.

[Jac17] Daniel Jackson. Alloy Applications. 2017. URL: http://alloy.mit.edu/
alloy/citations/case-studies.html.

http://alloy.mit.edu/alloy/citations/case-studies.html
http://alloy.mit.edu/alloy/citations/case-studies.html

BIBLIOGRAPHY 281

[Jac95] Michael Jackson. “The World and the Machine”. In: 17th International
Conference on Software Engineering, Seattle, Washington, USA, April 23-
30, 1995, Proceedings. Ed. by Dewayne E. Perry, Ross Jeffery, and David
Notkin. ACM, 1995, pp. 283–292. ISBN: 0-89791-708-1.

[Jon03] Cliff B. Jones. “The Early Search for Tractable Ways of Reasoning about
Programs”. In: IEEE Annals of the History of Computing 25.2 (2003),
pp. 26–49.

[Jon17] Cliff B. Jones. “Turing’s 1949 Paper in Context”. In: Unveiling Dynamics
and Complexity - 13th Conference on Computability in Europe, CiE 2017,
Turku, Finland, June 12-16, 2017, Proceedings. Ed. by Jarkko Kari, Florin
Manea, and Ion Petre. Vol. 10307. Lecture Notes in Computer Science.
Springer, 2017, pp. 32–41. ISBN: 978-3-319-58740-0.

[Jor08] Paul C. Jorgensen. Software testing - a craftsman’s approach (3. ed.) Tay-
lor & Francis, 2008. ISBN: 978-0-8493-7475-3.

[JZ95] Michael Jackson and Pamela Zave. “Deriving Specifications from Re-
quirements: An Example”. In: 17th International Conference on Software
Engineering, Seattle, Washington, USA, April 23-30, 1995, Proceedings.
Ed. by Dewayne E. Perry, Ross Jeffery, and David Notkin. ACM, 1995,
pp. 15–24. ISBN: 0-89791-708-1.

[KC02] Sascha Konrad and Betty H. C. Cheng. “Requirements Patterns for Em-
bedded Systems”. In: 10th Anniversary IEEE Joint International Con-
ference on Requirements Engineering (RE 2002), 9-13 September 2002,
Essen, Germany. IEEE Computer Society, 2002, pp. 127–136. ISBN: 0-
7695-1465-0.

[KC05] Sascha Konrad and Betty H. C. Cheng. “Real-time specification patterns”.
In: 27th International Conference on Software Engineering (ICSE 2005),
15-21 May 2005, St. Louis, Missouri, USA. Ed. by Gruia-Catalin Roman,
William G. Griswold, and Bashar Nuseibeh. ACM, 2005, pp. 372–381.

[Knu84] Donald E. Knuth. “Literate Programming”. In: Comput. J. 27.2 (1984),
pp. 97–111.

[KW91] Uwe Kastens and William M Waite. “An Abstract Data Type for Name
Analysis”. In: Acta Inf. 28.6 (1991), pp. 539–558.

[Lad+17] Lukas Ladenberger et al. “Validation of the ABZ landing gear system
using ProB”. In: STTT 19.2 (2017), pp. 187–203.

[Lak10] Matt Lake. “Epic failures: 11 infamous software bugs”. In: Computer-
World, Sept (2010).

[Lam01] Axel van Lamsweerde. “Goal-Oriented Requirements Engineering: A Guided
Tour”. In: 5th IEEE International Symposium on Requirements Engineer-
ing (RE 2001), 27-31 August 2001, Toronto, Canada. IEEE Computer
Society, 2001, p. 249. ISBN: 0-7695-1125-2.

[Lam09] Axel van Lamsweerde. Requirements Engineering - From System Goals to
UML Models to Software Specifications. Wiley, 2009. ISBN: 978-0-470-
01270-3.

282 BIBLIOGRAPHY

[Lam+15] Wing Lam et al. Parameterized Unit Testing in the Open Source Wild.
Tech. rep. 2015.

[Lei10] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Func-
tional Correctness”. In: Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16, Dakar, Sene-
gal, April 25-May 1, 2010, Revised Selected Papers. Ed. by Edmund M.
Clarke and Andrei Voronkov. Vol. 6355. Lecture Notes in Computer Sci-
ence. Springer, 2010, pp. 348–370. ISBN: 978-3-642-17510-7.

[Lei13] K Rustan M Leino. Verification Corner. 2013. URL: https : / / www .

youtube.com/channel/UCP2eLEql4tROYmIYm5mA27A.

[Let01] Emmanuel Letier. “Reasoning about agents in goal-oriented requirements
engineering”. PhD thesis. PhD thesis, Université catholique de Louvain,
2001.

[LZ74] Barbara Liskov and Stephen N Zilles. “Programming with Abstract Data
Types”. In: {SIGPLAN} Notices 9.4 (1974), pp. 50–59.

[Maz05] Manuel Mazzara. “Timing Issues in Web Services Composition”. In: For-
mal Techniques for Computer Systems and Business Processes, Euro-
pean Performance Engineering Workshop, EPEW 2005 and International
Workshop on Web Services and Formal Methods, WS-FM 2005, Versailles,
France, September 1-3, 2005, Proceedings. Ed. by Mario Bravetti, Leïla
Kloul, and Gianluigi Zavattaro. Vol. 3670. Lecture Notes in Computer
Science. Springer, 2005, pp. 287–302. ISBN: 3-540-28701-9.

[MB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. “Z3: An Efficient
SMT Solver”. In: Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings.
Ed. by C. R. Ramakrishnan and Jakob Rehof. Vol. 4963. Lecture Notes in
Computer Science. Springer, 2008, pp. 337–340. ISBN: 978-3-540-78799-
0.

[MB10] M. Mazzara and A. Bhattacharyya. “On Modelling and Analysis of Dy-
namic Reconfiguration of Dependable Real-Time Systems”. In: 2010 Third
International Conference on Dependability. 2010, pp. 173–181.

[MDB02] Ralph Miarka, John Derrick, and Eerke A. Boiten. “Handling Inconsisten-
cies in Z Using Quasi-Classical Logic”. In: ZB 2002: Formal Specifica-
tion and Development in Z and B, 2nd International Conference of B and
Z Users, Grenoble, France, January 23-25, 2002, Proceedings. Ed. by Di-
dier Bert et al. Vol. 2272. Lecture Notes in Computer Science. Springer,
2002, pp. 204–225. ISBN: 3-540-43166-7.

[Mer+15] Florian Merz et al. “Bridging the gap between test cases and requirements
by abstract testing”. In: ISSE 11.4 (2015), pp. 233–242.

https://www.youtube.com/channel/UCP2eLEql4tROYmIYm5mA27A
https://www.youtube.com/channel/UCP2eLEql4tROYmIYm5mA27A

BIBLIOGRAPHY 283

[Mey03] Bertrand Meyer. “A Framework for Proving Contract-Equipped Classes”.
In: Abstract State Machines, Advances in Theory and Practice, 10th In-
ternational Workshop, ASM 2003, Taormina, Italy, March 3-7, 2003, Pro-
ceedings. Ed. by Egon Börger, Angelo Gargantini, and Elvinia Riccobene.
Vol. 2589. Lecture Notes in Computer Science. Springer, 2003, pp. 108–
125. ISBN: 3-540-00624-9.

[Mey+07] Bertrand Meyer et al. “Systematic evaluation of test failure results”. In:
Workshop on Reliability Analysis of System Failure Data (RAF2007). Tech-
nische Universität. 2007.

[Mey09] Bertrand Meyer. Touch of Class: Learning to Program Well with Objects
and Contracts. Springer, 2009. ISBN: 978-3-540-92144-8.

[Mey+09] Bertrand Meyer et al. “Programs That Test Themselves”. In: IEEE Com-
puter 42.9 (2009), pp. 46–55.

[Mey13] Bertrand Meyer. “Multirequirements”. In: Modelling and Quality in Re-
quirements Engineering: Essays dedicated to Martin Glinz on the occa-
sion of his 60th birthday. Verl.-Haus Monsenstein u. Vannerdat, 2013.

[Mey18] Bertrand Meyer. The Formal Picnic approach to requirements. https:
//cacm.acm.org/blogs/blog-cacm/232677-the-formal-picnic-

approach-to-requirements/fulltext. 2018.

[Mey85] Bertrand Meyer. “On Formalism in Specifications”. In: IEEE Software 2.1
(1985), pp. 6–26.

[Mey88] Bertrand Meyer. “Eiffel: A language and environment for software engi-
neering”. In: Journal of Systems and Software 8.3 (1988), pp. 199–246.

[Mey92] Bertrand Meyer. “Applying "Design by Contract"”. In: IEEE Computer
25.10 (1992), pp. 40–51.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction, 2nd Edition. Prentice-
Hall, 1997.

[MK06] Jeff Magee and Jeff Kramer. Concurrency - state models and Java pro-
grams (2. ed.) Wiley, 2006. ISBN: 978-0-470-09355-9.

[ML14] Formal Methods and Software Engineering Laboratory. Landing Gear
System ASM specification. http://fmse.di.unimi.it/sw/landingGearSystem.zip.
2014.

[ML17] Amel Mammar and Régine Laleau. “Modeling a landing gear system in
Event-B”. In: STTT 19.2 (2017), pp. 167–186.

[Mod+97] Francesmary Modugno et al. “Integrated Safety Analysis of Requirements
Specifications”. In: Requir. Eng. 2.2 (1997), pp. 65–78.

[Naua] Alexandr Naumchev. Jackson-Zave Zoo Turnstile Implementation. https:
//github.com/anaumche/Zoo-Turnstile-Multirequirements.

[Naub] Alexandr Naumchev. Seamless Requirements example. https://github.
com/anaumchev/seamless_requirements.

https://cacm.acm.org/blogs/blog-cacm/232677-the-formal-picnic-approach-to-requirements/fulltext
https://cacm.acm.org/blogs/blog-cacm/232677-the-formal-picnic-approach-to-requirements/fulltext
https://cacm.acm.org/blogs/blog-cacm/232677-the-formal-picnic-approach-to-requirements/fulltext
https://github.com/anaumche/Zoo-Turnstile-Multirequirements
https://github.com/anaumche/Zoo-Turnstile-Multirequirements
https://github.com/anaumchev/seamless_requirements
https://github.com/anaumchev/seamless_requirements

284 BIBLIOGRAPHY

[Nau17] Alexandr Naumchev. Landing Gear System ground model specification
and requirements in Eiffel. https : / / github . com / anaumchev / lgs _
ground_model. 2017.

[Nau18] Alexandr Naumchev. “Detection of Inconsistent Contracts Through Mod-
ular Verification”. In: Proceedings of 6th International Conference in Soft-
ware Engineering for Defence Applications, SEDA 2018, Rome, Italy,
June 7-8, 2018. Ed. by Paolo Ciancarini et al. Vol. 925. Advances in Intel-
ligent Systems and Computing. Springer, 2018, pp. 206–220. ISBN: 978-
3-030-14686-3.

[Nau+19] Alexandr Naumchev et al. “AutoReq: Expressing and verifying require-
ments for control systems”. In: Journal of Computer Languages 51 (2019),
pp. 131 –142. ISSN: 2590-1184.

[Nau19a] Alexandr Naumchev. “Object-oriented requirements: reusable, understand-
able, verifiable”. In: TOOLS50+1. 2019.

[Nau19b] Alexandr Naumchev. Seamless Object-Oriented Requirement Templates.
https://github.com/anaumchev/requirements_templates. 2019.

[Neu95] Peter G. Neumann. Computer-related risks. Addison-Wesley, 1995. ISBN:
978-0-201-55805-0.

[NM16] Alexandr Naumchev and Bertrand Meyer. “Complete Contracts through
Specification Drivers”. In: 10th International Symposium on Theoretical
Aspects of Software Engineering, TASE 2016, Shanghai, China, July 17-
19, 2016. IEEE Computer Society, 2016, pp. 160–167. ISBN: 978-1-5090-
1764-5.

[NM17] Alexandr Naumchev and Bertrand Meyer. “Seamless requirements”. In:
Computer Languages, Systems & Structures 49 (2017), pp. 119–132.

[NMR15] Alexandr Naumchev, Bertrand Meyer, and Víctor Rivera. “Unifying Re-
quirements and Code: An Example”. In: Perspectives of System Infor-
matics - 10th International Andrei Ershov Informatics Conference, PSI
2015, in Memory of Helmut Veith, Kazan and Innopolis, Russia, August
24-27, 2015, Revised Selected Papers. Ed. by Manuel Mazzara and An-
drei Voronkov. Vol. 9609. Lecture Notes in Computer Science. Springer,
2015, pp. 233–244. ISBN: 978-3-319-41578-9.

[Nor09] Darío Martín Nordio. “Proofs and proof transformations for object-oriented
programs”. PhD thesis. Citeseer, 2009.

[Pic+11] Paul Pichler et al. “Imperative versus Declarative Process Modeling Lan-
guages: An Empirical Investigation”. In: Business Process Management
Workshops - BPM 2011 International Workshops, Clermont-Ferrand, France,
August 29, 2011, Revised Selected Papers, Part I. Ed. by Florian Daniel,
Kamel Barkaoui, and Schahram Dustdar. Vol. 99. Lecture Notes in Busi-
ness Information Processing. Springer, 2011, pp. 383–394. ISBN: 978-3-
642-28107-5.

https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/lgs_ground_model
https://github.com/anaumchev/requirements_templates

BIBLIOGRAPHY 285

[Pnu77] Amir Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977. IEEE Computer Society, 1977,
pp. 46–57.

[Pol+14] Nadia Polikarpova et al. “Flexible Invariants through Semantic Collabo-
ration”. In: FM 2014: Formal Methods - 19th International Symposium,
Singapore, May 12-16, 2014. Proceedings. Ed. by Cliff B. Jones, Pekka
Pihlajasaari, and Jun Sun. Vol. 8442. Lecture Notes in Computer Science.
Springer, 2014, pp. 514–530. ISBN: 978-3-319-06409-3.

[PQF17] Cristina Palomares, Carme Quer, and Xavier Franch. “Requirements reuse
and requirement patterns: a state of the practice survey”. In: Empirical
Software Engineering 22.6 (2017), pp. 2719–2762.

[PTF18] Nadia Polikarpova, Julian Tschannen, and Carlo A. Furia. “A fully ver-
ified container library”. In: Formal Asp. Comput. 30.5 (2018), pp. 495–
523.

[Rum+91] James E. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-
Hall, 1991. ISBN: 0-13-630054-5.

[SA07] Ahmed Samy Sidky and James D. Arthur. “Determining the Applicabil-
ity of Agile Practices to Mission and Life-Critical Systems”. In: 31st An-
nual IEEE / NASA Software Engineering Workshop (SEW-31 2007), 6-8
March 2007, Loyola College, Columbia, MD, USA. IEEE Computer So-
ciety, 2007, pp. 3–12. ISBN: 0-7695-2862-7.

[SA17] Wen Su and Jean-Raymond Abrial. “Aircraft landing gear system: ap-
proaches with Event-B to the modeling of an industrial system”. In: STTT
19.2 (2017), pp. 141–166.

[SBE08] David Saff, Marat Boshernitsan, and Michael D Ernst. “Theories in prac-
tice: Easy-to-write specifications that catch bugs”. In: (2008).

[SFO03] Guttorm Sindre, Donald G. Firesmith, and Andreas L. Opdahl. “A Reuse-
Based Approach to Determining Security Requirements”. In: The 9th In-
ternational Workshop on Requirements Engineering: Foundation for Soft-
ware Quality, REFSQ 2003. Vol. 8. 2003, pp. 127–136. ISBN: 3-922602-
87-8.

[SWM04] Bernd Schoeller, Tobias Widmer, and Bertrand Meyer. “Making Specifi-
cations Complete Through Models”. In: Architecting Systems with Trust-
worthy Components, International Seminar, Dagstuhl Castle, Germany,
December 12-17, 2004. Revised Selected Papers. Ed. by Ralf H. Reussner,
Judith A. Stafford, and Clemens A. Szyperski. Vol. 3938. Lecture Notes
in Computer Science. Springer, 2004, pp. 48–70. ISBN: 3-540-35800-5.

[Teu17] Sabine Teufl. “Seamless Model-based Requirements Engineering: Mod-
els, Guidelines, Tools”. PhD thesis. Technical University Munich, Ger-
many, 2017.

[TFR14] Dan Turk, Robert B. France, and Bernhard Rumpe. “Limitations of Agile
Software Processes”. In: CoRR abs/1409.6600 (2014).

286 BIBLIOGRAPHY

[TH08] Nikolai Tillmann and Jonathan de Halleux. “Pex-White Box Test Gener-
ation for .NET”. In: Tests and Proofs, Second International Conference,
TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings. Ed. by Bernhard
Beckert and Reiner Hähnle. Vol. 4966. Lecture Notes in Computer Sci-
ence. Springer, 2008, pp. 134–153. ISBN: 978-3-540-79123-2.

[Tho87] Muffy Thomas. “Implementing Algebraically Specified Abstract Data Types
in an Imperative Programming Language”. In: TAPSOFT’87: Proceed-
ings of the International Joint Conference on Theory and Practice of
Software Development, Pisa, Italy, March 23-27, 1987, Volume 2: Ad-
vanced Seminar on Foundations of Innovative Software Development {II}
and Colloquium on Functional an. Ed. by Hartmut Ehrig et al. Vol. 250.
Lecture Notes in Computer Science. Springer, 1987, pp. 197–211. ISBN:
3-540-17611-X.

[TS05] Nikolai Tillmann and Wolfram Schulte. “Parameterized unit tests”. In:
Proceedings of the 10th European Software Engineering Conference held
jointly with 13th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2005, Lisbon, Portugal, September 5-9,
2005. 2005, pp. 253–262.

[Tsc+11] Julian Tschannen et al. “Usable Verification of Object-Oriented Programs
by Combining Static and Dynamic Techniques”. In: Software Engineer-
ing and Formal Methods - 9th International Conference, SEFM 2011,
Montevideo, Uruguay, November 14-18, 2011. Proceedings. Ed. by Gilles
Barthe, Alberto Pardo, and Gerardo Schneider. Vol. 7041. Lecture Notes
in Computer Science. Springer, 2011, pp. 382–398. ISBN: 978-3-642-
24689-0.

[Tsc+15] Julian Tschannen et al. “AutoProof: Auto-Active Functional Verification
of Object-Oriented Programs”. In: Tools and Algorithms for the Construc-
tion and Analysis of Systems - 21st International Conference, TACAS
2015, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Pro-
ceedings. Ed. by Christel Baier and Cesare Tinelli. Vol. 9035. Lecture
Notes in Computer Science. Springer, 2015, pp. 566–580. ISBN: 978-3-
662-46680-3.

[Var] Why loop variants are integers. URL: https://archive.eiffel.com/
doc/faq/variant.html.

[WHR14] Jon Whittle, John Edward Hutchinson, and Mark Rouncefield. “The State
of Practice in Model-Driven Engineering”. In: IEEE Software 31.3 (2014),
pp. 79–85.

[WN94] Kim Walden and Jean-Marc Nerson. Seamless Object-Oriented Software
Architecture - Analysis and Design of Reliable Systems. Prentice-Hall,
1994.

[Yam62] Hisao Yamada. “Real-Time Computation and Recursive Functions Not
Real-Time Computable”. In: IRE Trans. Electronic Computers 11.6 (1962),
pp. 753–760.

https://archive.eiffel.com/doc/faq/variant.html
https://archive.eiffel.com/doc/faq/variant.html

BIBLIOGRAPHY 287

[Zai+15] Asimina Zaimi et al. “An Empirical Study on the Reuse of Third-Party
Libraries in Open-Source Software Development”. In: Proceedings of the
7th Balkan Conference on Informatics Conference, BCI ’15, Craiova, Ro-
mania, September 2-4, 2015. Ed. by Costin Badica et al. ACM, 2015, 4:1–
4:8. ISBN: 978-1-4503-3335-1.

[Zav82] Pamela Zave. “An Operational Approach to Requirements Specification
for Embedded Systems”. In: IEEE Trans. Software Eng. 8.3 (1982), pp. 250–
269.

