
HAL Id: tel-02873678
https://theses.hal.science/tel-02873678

Submitted on 18 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Content privacy and access control in image-sharing
platforms

Kun He

To cite this version:
Kun He. Content privacy and access control in image-sharing platforms. Social and Information
Networks [cs.SI]. CentraleSupélec, 2017. English. �NNT : 2017CSUP0007�. �tel-02873678�

https://theses.hal.science/tel-02873678
https://hal.archives-ouvertes.fr


ANNÉE 2017	

 

 

	
N°	d’ordre	:	2017-09-TH	

 
 

THÈSE / CENTRALESUPÉLEC 
sous le sceau de l’Université Bretagne Loire 

pour le grade de 

DOCTEUR DE CENTRALESUPÉLEC 

Mention : Informatique 

Ecole doctorale 601 « Mathématiques	et Sciences et Technologies 
de l'Information et de la Communication (MATHSTIC)»  

présentée par 

Kun HE 

Préparée à l’UMR 6164 - IETR (Equipe SCEE) 
 Institut d’Electronique et de Télécommunications de Rennes 

             

 

 

Content Privacy and 

Access Control on 

Image-Sharing 

Platforms

 
 
Thèse soutenue à IRT b<>com 
le 25 Septembre 2017 

devant le jury composé de : 

Patrick BAS 
Responsable de l’équipe SIGMA, École Centrale de 
Lille / rapporteur 
William PUECH 
Responsable de l’équipe ICAR, LIRMM, Université 
Montpellier / rapporteur 
Azza OULED-ZAID 
Full professor, Université de Tunis EL Manar Institut 
Supérieur d’Informatique, Département ASR / 
examinateur 
Christophe BIDAN 
Responsable de l’équipe CIDRE, CentraleSupélec 
Campus de Rennes / directeur de thèse 
Gaëtan LE GUELVOUIT 
Responsable du Laboratoire DTI, IRT b<>com / co-
directeur de thèse 
	



2



3

Remerciements
En premier lieu, je tiens à remercier mon directeur de thèse, Christophe Bidan, pour ton soutien,
ta patience et ton aide au quotidien. Grâce à tes multiples conseils, que ce soit professionnels
ou personnels, j’ai pu finaliser cette thèse avec succès. Merci également à mon co-directeur de
thèse, Gaëtan Le Guelvouit, de m’avoir proposé après mon stage, une thèse sur ce sujet vraiment
intéressant. C’est par ton soutien au quotidien que j’ai pu jour après jour me familiariser avec mon
sujet de recherche.

Je tiens ensuite à remercier l’ensemble des membres du jury d’avoir accepté de participer à ce
jury. Un merci tout particulier à Patrick Bas et William Puech d’avoir accepté d’être les rapporteurs
de cette thèse.

Je tiens à remercier l’ensemble des membres de l’équipe DTI d’IRT b<>com, pour ces 3 années
passées à travailler avec vous, qui resteront un excellent souvenir pour moi. Je remercie tout
particulièrement Valérie qui fut comme une grande sœur pour moi, Gustav, made by IKEA, pour
l’animation de l’équipe et tes talents de pâtissier pour “princess cake”, Alexandre, le plus jeune
des ingénieurs toujours souriant avec ta bonne humeur, et finalement, Emilie, la meilleure chef de
projet.

Merci à tous les bcomiens et bcomiennes, vous êtes une grande famille harmonieuse, vous êtes
tous très amicaux et chaleureux, tout particulièrement Stéphane, Loïc, Etienne et ma stagiaire
Cyrielle, qui a beaucoup contribué pour la partie développement d’application dans ma thèse.

Merci aussi à tous mes amis, surtout ma copine Chi qui m’a accompagné tout au long de mon
séjour à Rennes, durant lequel on a pu rire, pleurer, faire shopping, voyager ensemble. Merci à
mon copain Benjamin d’avoir pris soin de moi et de m’avoir accompagné durant les jours difficiles.
Ton optimisme et ta force m’ont donné le courage et ensoleillent ma vie au quotidien. Merci pour
ton aide pour le français et la partie cryptographie de ma thèse. Il est difficile de trouver les bons
mots pour te remercier, et d’exprimer ce que mon cœur ressent.

Je tiens à présent à remercier ma famille pour votre aide et votre soutien. Merci à mes parents
pour tout ce que vous avez fait pour moi. Sans vous je ne serai pas la femme que je suis aujourd’hui.
Merci pour votre soutien de l’autre bout du monde, qui m’a permis d’avoir la persévérance néces-
saire pour finir mes études et vivre en France loin de vous. Je vous aime.



4



Résumé

0.1 Contexte et motivation

De nos jours, les réseaux sociaux facilitent de plus en plus les relations sociales malgré la dis-
tance séparant les utilisateurs. Ainsi, les personnes se sont habituées à partager leurs vies, leurs
humeurs, leurs opinions avec leurs amis ou leurs familles sur les réseaux sociaux, en échangeant des
photos, des vidéos, leurs statuts, des liens hypertextes, etc. A travers cette aisance dans le partage
d’informations personnelles, un problème de sécurité, plus particulièrement de confidentialité, est
mise en lumière. En effet, sans protection, tout le monde peut accéder aux publications des utilisa-
teurs et ainsi apprendre des informations sur la vie privée des utilisateurs. Ainsi, la confidentialité
des données de l’utilisateur peut être violée, par exemple, les photos des utilisateurs peuvent être
ainsi détournées ou être propagées malicieusement. Bien sûr, les fournisseurs de réseaux sociaux
essaient d’aider de plus en plus les utilisateurs à maitriser leurs contenus afin de protéger leurs vies
privées. La plupart des réseaux sociaux permettent aux utilisateurs de regrouper leurs contacts
par catégorie en fonction du type de relations qu’ils ont avec, tels que “Amis”, “Famille”, “Con-
naissances” etc. Ainsi, en spécifiant quel catégorie de contacts peut accéder à tel ou tel contenu,
les utilisateurs peuvent penser contrôler la diffusion de leurs information personnelles, et par con-
séquent que leurs vies privées est garantie. Cependant, de notre point de vue, la confidentialité des
données personnelles des utilisateurs n’est pas garantie, car les fournisseurs des réseaux sociaux ont
accès librement à l’ensemble des données publiées. Par conséquent, notre objectif est de fournir
une méthode garantissant le respect de la vie privée de l’ensemble des utilisateurs vis-à-vis à la fois
des autres utilisateurs mais aussi du fournisseur de réseaux sociaux.

Une des solutions consiste à créer un nouveau réseau social permettant le partage de contenus
(images, vidéos etc.) tout en garantissant la vie privée de l’utilisateur. Au sein d’un tel réseau,
l’ensemble des contenus utilisateurs seraient chiffrés et seules les personnes autorisées pourront
obtenir la clé nécessaire pour déchiffrer et obtenir les contenus. Créer un autre réseau social,
indépendante de l’existant, est la solution la moins contraignante au niveau de la compatibilité.
De tels réseaux sociaux ont déjà été proposés, e.g. SuperNova [SD12], Diaspora [BHG+12], PeerSoN
[BSVD09], Safebook [CMS09], mais aucun d’entre eux n’est vraiment utilisé aujourd’hui. La raison
principale est certainement que les utilisateurs préfèrent encore utiliser les réseaux sociaux qu’ils ont
l’habitude d’utiliser (e.g. Facebook, Twitter, Google+ etc.) au lieu de ces nouveaux réseaux sociaux
qui ne sont utilisés que par quelques utilisateurs seulement. Par conséquent, nous avons décidé de
ne pas créer un nouveau réseau social, mais plutôt de proposer une solution qui permettrait de
protéger la vie privée des utilisateurs sur les réseaux sociaux couramment utilisés (e.g. Facebook,
Twitter, Google+ etc.).

Afin de protéger la vie privée des utilisateurs, nous affirmons que le contenu publié ne doit
pas être lisible. Par conséquent, notre objectif est de proposer une solution permettant à chaque
utilisateur de chiffrer le contenu avant de les publier, et de lui permettre de partager la clé de
déchiffrement uniquement avec les personnes qu’ils autorisent à accéder au contenu. Ainsi, si
l’algorithme de chiffrement utilisé garanti la confidentialité des données chiffrées, les personnes
n’ayant pas la clé de déchiffrement (y compris les fournisseurs de la plateforme de partage d’images)
ne peuvent pas connaître les contenus publiés.

Dans le cadre de notre solution de chiffrement pour protéger la vie privée des utilisateurs, nous
devons nous assurer que la version chiffrée des contenus puissent être publiés sur le réseau social.
Une étude publiée sur eMarketer en mars 2014 [soc] a montré la proportion des différents types de

5



6

contenu affichés sur Facebook dans le monde entier : les photos représentent 75 % des contenus
publiés, les liens hypertextes 10 %, les statuts personnels 6%, les vidéos 4%, et finalement les autres
types de contenus représentent moins de 1%. Parmi les principaux types de contenus publiés par la
plateforme Facebook, les liens hypertextes et les statuts personnelles sont sous forme de texte. La
plupart des algorithmes de chiffrement existants peuvent être directement utilisés pour chiffrer ce
type de contenu, et ainsi obtenir un résultat chiffré sous format texte. Pour cela il suffit de coder le
texte en base64. Malheureusement, aujourd’hui, le contenu publié par les utilisateurs est souvent
de type multimédia (images, vidéos). Pour les images et les vidéos, leurs formats étant différent
(e.g. JPEG ou MP4), s’ils sont chiffrés de manière classique, la confidentialité de l’image peut être
assurée, mais le résultat obtenu est un fichier binaire, et non une image ou une vidéo. La publication
d’un fichier binaire n’est pas autorisé par les réseaux sociaux. De toute évidence, l’utilisation des
algorithmes de chiffrement traditionnels n’est pas adaptée à notre contexte d’utilisation. Ainsi,
nous devons fournir de nouvelles technologies de chiffrement. Étant donné que la proportion de
photos échangés est sensiblement (18 fois) plus grande que celle des vidéos par fois, il est donc
primordial de se focaliser sur la protection des photos publiées plutôt que des vidéos publiées.

Lorsque nous publions une image sur n’importe quel réseau social, de nombreux formats sont
acceptés, tels que JPEG, PNG, GIF, etc. Le format JPEG est le format le plus utilisé pour stocker
et compresser des images. Les dispositifs de capture d’images, tels que les caméras numériques,
utilisent le format JPEG pour stocker les images. Les images disponibles sur le Web sont égale-
ment compressées sous le format JPEG. Parce que le format JPEG est un format de compression
à perte, nos recherches ont montré que après avoir publié une image en format JPEG sur une
plateforme, celle-ci est normalement compressée par la plateforme, ce qui provoque la modification
des coefficients d’image, de sorte que l’image obtenue après déchiffrement a une qualité inférieure
de l’image original. Quand à lui, le format PNG est un format de compression sans perte, et ne
pose donc pas de problèmes de qualités lors du chiffrement et déchiffrement de l’image. Dans cette
thèse, nous concentrerons nos efforts sur les images JPEG et les problématiques relatives de perte
de qualité.

0.2 Objectifs de recherches

L’objectif de cette thèse est de proposer une infrastructure indépendante de gestion de contenu afin
de contrôler l’accès aux images d’utilisateurs publiées sur les réseaux sociaux existants (considérés
comme plateformes de partage d’images) tout en assurant leur confidentialité. Pour atteindre cet
objectif, l’idée principale est de permettre aux utilisateurs de chiffrer leurs images et de publier
les images chiffrées sur n’importe quelle plateforme de partage d’images existante (e.g. Facebook,
Flickr, Twitter, Google+, etc.). Les clés de chiffrement ainsi que les règles de contrôle d’accès
des images chiffrées sont stockées dans une infrastructure indépendante. Lorsque quelqu’un accède
à une image chiffrée publiée et souhaite accéder à l’image en clair, il doit demander la clé de
déchiffrement à notre infrastructure indépendante. Ainsi, la clé de déchiffrement est renvoyée
uniquement si les règles de contrôle d’accès l’autorisent. Notez que l’application des règles de
contrôle d’accès peut également être utilisée afin de respecter et mettre en œvre le droit à l’oubli.

Après avoir réalisé un état de l’art du domaine, nous nous sommes rendus compte que trois chal-
lenges majeures sont à prendre en compte afin de proposer un algorithme de chiffrement d’images
JPEG :

• Le premier challenge consiste à définir un algorithme de chiffrement qui conserve le format
d’images. Beaucoup de formats d’image (e.g. JPEG, PNG, GIF etc.) sont acceptés par
les plateformes de partage d’images existantes. Cependant, selon notre expérimentation
(mentionnée dans §4.1), dans la plupart des plateformes, les images mises en ligne sont
systématiquement compressées au format JPEG, peu importe leurs formats d’origine. Dans
ce contexte, l’algorithme de chiffrement proposé doit préserver le format JPEG 1.

• Le deuxième challenge se focalise sur la sécurité de l’algorithme de chiffrement. Ce algorithme
doit garantir que n’importe quel adversaire ne puisse pas obtenir le moindre bit d’information

1Notez que le format JPEG est le format le plus utilisé pour le stockage et la compression d’images.



0.3. CONTRIBUTIONS 7

(notamment sur la luminosité de l’image initial) sur une image à partir de la version chiffrée
de celle-ci. Par conséquent, la propriété de sécurité d’indistingabilité IND-CPA sera requise
pour la solution choisie.

• Le troisième challenge repose sur la compatibilité de l’algorithme de chiffrement avec la
majorité des plateformes de partage d’images existantes (e.g. Facebook, Flickr, Twitter,
Google+, etc.). En effet, quelques plateformes effectuent un post-traitement des images (e.g.
re-compression des images) selon notre expérimentation. Donc, l’algorithme de déchiffrement
doit permettre de retrouver les images en clair malgré les différents pré-traitements qui ont
été appliqués sur les images chiffrées.

0.3 Contributions

Dans un premier temps, nous avons défini un algorithme de chiffrement qui conserve le format JPEG
et qui respecte la propriété de sécurité IND-CPA. En particulier, nous avons proposé trois schémas
de chiffrement d’image JPEG qui utilisent le même algorithme de chiffrement, ce dernier étant
intégré à différentes étapes du processus de compression JPEG. Nous avons prouvé la sécurité de ces
trois schémas de chiffrement. Nous avons ensuite comparé les images obtenus après déchiffrement
avec chacun des algorithmes. Cela nous a permis de sélectionner le meilleur algorithme en fonction
de la qualité des images obtenues.

Sur le algorithme obtenu, nous nous sommes ensuite focalisés sur la conversation des formats
d’images après chiffrement, et la faisabilité de la publication des images chiffrées. En effet, toutes les
images chiffrées doivent être acceptées comme des images JPEG par n’importe quelle plateforme de
partage d’images. Nous avons ainsi utilisé notre algorithme de chiffrement pour chiffrer les images
JPEG que nous avons ensuite mis en ligne sur huit plateformes de partage d’images largement
utilisées (Facebook, Flickr, Pinterest, Google+, Twitter, Instagram et deux plateformes de partage
d’images chinoises: Weibo et Wechat). Ainsi, nous avons pu vérifier la faisabilité de la publication
des images chiffrées sur différentes plateformes de partage d’images.

Dans un troisième temps, nous avons vérifié la qualité des images obtenus après déchiffrement
sur un bon nombre de plateformes de partage d’images. Pour cela, sur chacune des plateformes
testées, nous avons téléchargé et déchiffré les images, et avons comparé la qualités des images
déchiffrées avec les images originales. Nous avons observé que pour les plateformes Flickr, Pin-
terest, Google+ et Twitter, l’algorithme de chiffrement maintenait une qualité élevée des images
aprés déchiffrement. Malheureusement, concernant les plateformes Facebook, Instagram, Weibo
et Wechat, nous avons remarqué que les images obtenues après déchiffrement avaient une qualité
extrêmement médiocre comparée aux originales. En analysant les résultats, nous avons découvert
que ces plateformes de partage d’images effectuent un post-traitement pour toutes les images mises
en ligne. Par conséquent, nous avons modifié l’algorithme de chiffrement afin d’obtenir un nouveau
algorithme de chiffrement compatible avec Facebook, Weibo et Wechat, qui conserve une bonne
qualité des images aprés déchiffrement.

Notre quatrième contribution est une infrastructure indépendante de gestion de contenu qui
autorise les utilisateurs à utiliser notre algorithme de chiffrement pour publier leurs images sur
Facebook tout en spécifiant les régles de controle d’accés pour ses images. Nous avons ainsi
développé une application nommée PixGuardian qui permet aux utilisateurs de chiffrer et pub-
lier des images. Il permet également de générer, de distribuer et de gérer les clés de chiffrement
et déchiffrement pour les utilisateurs, et permet aux utilisateurs de définir les conditions d’accès
des images publiées. Ensuite, avec notre plugin du navigateur Chrome, les utilisateurs autorisés
peuvent déchiffrer les images. Enfin, nous avons évalué l’acceptabilité de PixGuardian en étudiant
son utilisation par 33 utilisateurs pendant six semaines.

0.4 Travaux à venir

Dans notre troisième contribution, on a proposé l’algorithm amélioré, mais nous devons régler cer-
tains paramètres de l’algorithme pour chacune plateformes de partage d’images, car ces paramètres



8

dépendent des caractéristiques spécifiques de chacune d’entre elles. C’est par conséquent, un incon-
vénient de notre algorithme de chiffrement, vus que certains paramètres de l’algorithme doit être
instancié plus ou moins différemment selon la plateforme considérée. Pour autant, ces réglages
permettent de nous assurer du maintien de la bonne qualité des images après déchiffrement.
Par conséquent, nous voulons continuer à améliorer l’algorithme pour le rendre plus générique.
Par exemple, nous pouvons préparer des paramètres pour un petit ratio de quantification. Ces
paramètres pourront être appliqué à de plus grand ratio de quantification, mais une perte de la
qualité des images déchiffrées pourra être observé. De cette façon, nous pouvons utiliser notre al-
gorithme de chiffrement sur plus de plateformes de partage d’images sans modifier les paramètres
de l’algorithme.

Nous rappelons que notre algorithme a pour but de protéger la vie privée des utilisateurs vis
à vis de leurs contacts, i.e. les utilisateurs qui sont connectés à leurs profils. En utilisant notre
application, les utilisateurs peuvent définir les conditions d’accès à leurs images, et les personnes
autorisées à accéder aux images, peuvent utiliser, en particulier notre plugin pour accéder aux
images originelles en clair publiées sur Facebook via le navigateur Chromo. Cependant, nous ne
pouvons pas faire confiance aux contacts complètement. En effet, ils peuvent via des captures
d’écran des images en clair, partager ces images à des personnes non autorisées. Nous n’avons
actuellement aucun moyen d’empêcher cela, ni même de savoir si quelqu’un à réaliser un tel partage.
Pour remédier à cela, nous pourrions intégrer un tatouage numérique dans les images, ce qui nous
aiderait à tracer les utilisateurs qui auraient retransmis les images et pouvoir agir en conséquent.

Au départ, notre objectif était de protéger le contenu publié sur les réseaux sociaux. Suivant
l’étude effectué par eMarketer [soc], nous avons pris connaissance du pourcentage des différents
types de contenu publiés sur les pages Facebook dans le monde entier. Nous proposons d’utiliser
un procédé de chiffrement pour protéger la vie privée de l’utilisateur et nous devons veiller à ce
que les résultats chiffrés puissent être publiés sur le réseau social en assurant que les résultats
gardent un format correct. Parmi ces principaux types de contenu publiés, les images sont plus
largement publiées sur les réseaux sociaux que les vidéos, nous nous sommes concentrés dans cette
thèse, sur comment protéger les images publiées en priorité. Dans un futur proche, un algorithme
de chiffrement pouvant protéger la vie privée de l’utilisateur lors de la publication de la vidéo sur
les réseaux sociaux ou autres plateformes de partage de vidéos, sera proposé. De nos jours, de
nombreuses technologies de tatouages numériques sont proposées afin de garantir que les droits
d’auteurs des utilisateurs qui publient des contenus ne sont pas violés. Mais même si les droits
d’auteurs des utilisateurs sont respectés, le respect de leurs vies privées n’est pas nécessairement
garanti car les contenus publiés peuvent toujours être visibles. L’algorithme de chiffrement qui
sera utilisé pour protéger les contenus vidéo, devra pouvoir gérer différents formats (e.g. MPEG,
HEVC), résolutions etc., et plus particulièrement la compression à perte. Nous testerons également
d’insérer le chiffrement à différentes étapes du processus de compression (soit dans un domaine
temporel, soit dans un domaine fréquentiel). La solution qui garantira la meilleure conservation
de qualité des vidéos traitées, sera choisie. Si nécessaire, nous ajouterons également le mécanisme
de correction lors du déchiffrement après avoir téléchargé la vidéo chiffrée.

Après avoir recueilli les commentaires des utilisateurs qui ont testé notre solution PixGuardian,
différentes observations nous sont parvenues. Nous avons notamment remarqué que les utilisateurs
préfèrent partager des images à partir de leur smartphones directement plutôt que de transférer
les images sur leurs ordinateurs avant de les publier sur les plateformes. Nous pensons que cette
préférence est non négligeable, car les gens aiment prendre des photos en utilisant leur smartphones,
et il est en effet plus commode de les publier directement via ce support. La plupart des plateformes
de partage d’images ont déjà une version sur smartphone, et meme certaines plateformes telles que
Instagram et Snapchat ne sont disponibles que sur smartphones encore. Par conséquent, notre
solution de chiffrement d’images permettant d’assurer leurs confidentialités après publication, doit
etre compatible avec une utilisation sur smartphone. Pour cela, il nous faudra considérer la taille
de l’écran des différents modèles de smartphone, faire des tests pour savoir comment compresser
et rogner une image publiée, afin de proposer un algorithme de chiffrement et une application
similaire à PixGuardian, approprié pour smartphone.



0.4. TRAVAUX À VENIR 9



10



Contents

0.1 Contexte et motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
0.2 Objectifs de recherches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
0.4 Travaux à venir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1 Introduction 15
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Organisation of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 State of the art 19
2.1 Modern cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Hash functions and Pseudo-random number generators . . . . . . . . . . . . 20
2.1.1.1 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.1.2 Pseudo-random number generator (PRNG) . . . . . . . . . . . . . 21

2.1.2 Encryption techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.1 Symmetric encryption . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2.2 Asymmetric encryption . . . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2.3 Symmetric vs. asymmetric . . . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Security of cryptographic algorithms . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3.1 Information-theoretic security . . . . . . . . . . . . . . . . . . . . 25
2.1.3.2 Computational security . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3.3 Semantic security . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3.4 IND-CPA for a symmetric cryptosystem . . . . . . . . . . . . . . . 26

2.2 Image representation and compression . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.1 Representation of images . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Two-dimensional discrete cosine transform (2D-DCT) . . . . . . . . . . . . 28
2.2.3 The JPEG format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.1 Image encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3.2 Image decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Traditional encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Encryption preserving image format . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2.1 Scrambling algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2.2 Modifications applied to traditional encryption . . . . . . . . . . . 35
2.3.2.3 Selective Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2.4 Combining Scrambling and Encryption . . . . . . . . . . . . . . . 38

2.3.3 Protecting privacy of online published images . . . . . . . . . . . . . . . . . 38
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

11



12 CONTENTS

3 The basic encryption algorithm 43
3.1 The algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.3 Security of the Encryption Algorithm . . . . . . . . . . . . . . . . . . . . . 44

3.2 Integration of encryption in JPEG compression process . . . . . . . . . . . . . . . 45
3.2.1 Encryption Before DCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Encryption After DCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Encryption After Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Security of encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Experimentations on the image-sharing platforms 57
4.1 Analysis of image-sharing platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.1 Image Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Quantization Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Downsampling Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Experimental results of basic encryption algorithm on image-sharing platforms . . 59
4.2.1 Positive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Negative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Analysis of negative results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Analysis of the downloaded images . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Upload Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 The improved encryption algorithm for published images 67
5.1 Improved encryption algorithm for published images . . . . . . . . . . . . . . . . . 67

5.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Correcting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 Inverse correcting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.4 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.5 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.6 Security of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The parameters selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Weibo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Wechat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Experimental results of improved encryption algorithm . . . . . . . . . . . . . . . . 77
5.3.1 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Weibo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Wechat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 The complexity of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2.1 Gray image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2.2 Color image (with downsampling ratio 4:2:0) . . . . . . . . . . . . 84
5.4.2.3 Color image (with other downsampling ratios) . . . . . . . . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Application: PixGuardian 87
6.1 The scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 The inscription and generation of keys . . . . . . . . . . . . . . . . . . . . . 88
6.1.1.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.1.2 Generation of the public / private keys . . . . . . . . . . . . . . . 88
6.1.1.3 User’s certification . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.1.4 Sharing the certificate and generation of symmetric keys . . . . . 88



CONTENTS 13

6.1.1.5 Obtain the certificates . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.2 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Upload the image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3.1 The case of access to images for restricted people . . . . . . . . . . 91
6.1.3.2 The case of access to images for everyone . . . . . . . . . . . . . . 92

6.1.4 Download the image {I}Kses with decryption . . . . . . . . . . . . . . . . . 93
6.1.4.1 The case of access to images for restricted people . . . . . . . . . . 93
6.1.4.2 The case of access to images for everyone . . . . . . . . . . . . . . 94

6.2 The application to publish images . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Registration and login . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Sharing the images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 The secure in the server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Studies of using PixGuardian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1.1 Statistics of uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1.2 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1.3 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1.4 Recruitment of participants . . . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Results and analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2.2 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2.3 Acceptability of service . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2.4 User Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 Conclusion and remarks on future research 109
7.1 Conclusion of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 The future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Bibliographie 116



14 CONTENTS



Chapter 1

Introduction

Contents
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Research objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4 Organisation of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.5 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1 Background and motivation
The social networks facilite social relationships despite the distance separating users. Thus, people
have become accustomed to share their lives, moods, opinions with their friends or their family
on social networks, thanks to the photos, videos, status, links, etc. But, this sharing raises some
security issues, especially with respect to users’ privacy. Indeed, without protection, everybody
can access the users’ publications and thus potentially learns information related to the users’
privacy. Of course, the social network providers allow users to control the access to their contents
by grouping their friends according to the relations they have with, such as “Friends”, “Family”,
“Acquaintances”, etc. By allowing users to specify the friends that can access to each content, this
access control gives them the impression that their privacy is guaranteed. However, from our point
of view, the privacy of the users is not guaranteed with respect to the social network providers
since they can clearly know any published contents. Therefore, we aim to provide a method to
protect user’s privacy completely, such that only the user himself and the authorised friends can
access to the published contents.

One solution could be to generate a social network that guarantees user’s privacy. In such a
network, all the users’ contents would be encrypted, and only the authorised people would be able
to get the key to decrypt the contents. A number of such social networks has already been proposed
SuperNova [SD12], Diaspora [BHG+12], PeerSoN [BSVD09], Safebook [CMS09], but none of them
is really used today. The main reason is surely that users prefer to still using the social networks
they are accustomed to use (i.e., Facebook, Twitter, Google+ ...) instead of these new privacy-
aware social networks used by only a few users. Given that, we have decided to not create a new
social network, but to propose a solution that allows to protect the users’s privacy on the common
widely used social networks (i.e., Facebook, Twitter, Google+ ...).

In order to protect the user’s privacy, we assert that the uploaded contents should not be
readable by the social network provider. Therefore, our intent is to allow each user to encrypt the
contents before publishing them, and to allow only authorized friends to access to the decryption
key. In this way, if the encryption algorithm is secure, people who do not have the key (including
the social network provider) can not know the published contents.

However, to be compatible with existing social networks, our solution has to ensure that the
encrypted contents are accepted for publication, i.e., they have the right format. For contents
in text format, this can easily be ensured: we only have to encode the encrypted text in Base64.

15



16 CHAPTER 1. INTRODUCTION

Unfortunately, today, the users’ contents are often multimedia contents. Thus, a research published
on eMarketer in March 2014 [soc] showed the percentage that types of content posted on Facebook
pages worldwide: images account for 75% of content posted, then links account for 10%, status for
6%, and videos for 4%. Of course, the images and videos have specific formats (i.e., JPEG and
MP4), and if we encrypt them using a traditional cipher, the encrypted result is no longer an image
or a video but a binary file. And when we try to publish a binary file, current social networks do
not accept such a publication. A solution for that problem is to use an encryption algorithm that
preserves the image/video format after encryption. Note that, according to the eMarketer study,
the proportion of the images is 18 times as much as the proportion of the videos. Therefore, its
seems to us more priority to propose such a solution for images than videos.

When we publish an image on any social networks, there are many formats can be accepted,
such as JPEG, PNG, GIF, etc. JPEG is the most widely used standards for storing and compressing
image among them. Digital cameras and other image capture devices use JPEG standard to store
image. Images on the World Wide Web are compressed by using JPEG standard as well. According
to our research (mentioned in §4.1), because JPEG is a lossy compression format, after publishing
the JPEG image on the social networks, the image is normally compressed by the platforms, that
causes the changes of the coefficients of image, so that the encrypted image cannot be decrypted
correctly. Compare with PNG, the format which is a lossless compression format, and does not
cause problems that the published images cannot be decrypted correctly, there are more research
significance for the format JPEG.

1.2 Research objective

The objective of this thesis is to propose an independent content management infrastructure to
control access to and ensure privacy of the users’ images published on the existing social networks
(viewed as image-sharing platforms). To achieve this objective, the main idea is to allow users to
encrypt their images, and publish the encrypted images on any existing image-sharing platforms
(i.e., Facebook, Flickr, Twitter, Google+, ...). The encryption keys as well as the access control
rules of encrypted images are stored in our independent infrastructure. When someone accesses
some published encrypted image, he/she has to request the encryption key to our independent
infrastructure, the encryption key being sent back only if the access control rules authorise it.
Notice that the enforcement of the access control rules can also be used to implement the right to
be forgotten.

The definition of such a solution raises three challenges:

• The first challenge is the definition of an encryption algorithm that preserves the image
format. Many image formats are accepted by existing image-sharing platforms, such as
JPEG, PNG, GIF, etc. However, according to our experimentation (mentioned in §4.1), in
most of platforms, the uploaded images are systematically compressed in JPEG format, no
matter what are their original formats. In this context, the proposed encryption algorithm
has to preserve the JPEG format 1.

• The second challenge is that the encryption algorithm must be secure. Especially, we require
that the adversary should not get any information of the plaintext image from the encrypted
image. In particular, he/she cannot distinguish the encryption of a brighter image from a
darker image. Therefore, IND- CPA secure is our judgment criteria for the security of image
encryption algorithm.

• The third challenge is that the encryption algorithm has to be compatible with the majority
of existing image-sharing platforms (i.e., Facebook, Flickr, Twitter, Google+, ...). However,
according to our experimentation (mentioned in §4.1), some of the existing sharing platforms
performs a post-processing of the published images. Thus, the proposed encryption algorithm
has to allow to decrypt the encrypted image even if it has been post-processed.

1Notice that JPEG is the most widely used standards for storing and compressing images.



1.3. CONTRIBUTIONS 17

1.3 Contributions

Our first contribution is the definition of an encryption algorithm that preserves the JPEG format
and that is IND-CPA secure. More specifically, we have proposed three JPEG image encryption
schemes that use the same encryption algorithm but are integrated into different steps of JPEG
compression process. We have proved the security of these encryption schemes and the comparison
of the decrypted images allowed us to select the best scheme with respect to the quality of the
resulted images.

Our second contribution is that all of the encrypted images are accepted as JPEG images by
any image-sharing platform. We have used our encryption algorithm to encrypt JPEG images and
we have uploaded the encrypted images on eight widely used image-sharing platforms (Facebook,
Flickr, Pinterest, Google+, Twitter, Instagram and two Chinese image-sharing platforms: Weibo
and Wechat). Thus, we have checked that all of the encrypted images have been accepted by these
image-sharing platforms as having a correct image format.

Our third contribution is that our encryption scheme is compatible with the most of images-
sharing platforms. We have downloaded and decrypted the images, and we have compared the
decrypted images with the original ones. We have thus observed that for Flickr, Pinterest, Google+
and Twitter, the recovered images had a high quality. On the opposite, for Facebook, Instagram,
Weibo and Wechat, we have noticed that the recovered images had an extremely poor quality.
By analysing the results, we have discovered that these image-sharing platforms performs a post-
processing for any uploaded images. Given that knowledge, we have been able to improve the
encryption algorithm so as to obtain a new encryption scheme that is compatible with Facebook,
Weibo and Wechat.

Our fourth contribution is an independent content management infrastructure that allows users
to use our encryption algorithm to publish their images on Facebook while specifying the access
control rules for these images. We have developed an application named PixGuardian to help the
users to encrypt, to publish and to decrypt images. PixGuardian also allows to generate, distribute
and manage the encryption keys for the users. It also permits users to define the access conditions
for their images. Finally, we have evaluated the acceptability of PixGuardian by studying its use
by 33 users during six weeks.

1.4 Organisation of this thesis

This thesis is divided into 7 chapters. Chapter 2 firstly introduces the fundamentals of two tech-
nical domains needed for our goal namely modern cryptography and image representation and
compression. In the modern cryptography, we introduce the pseudo-random number generators
which are the basis of our encryption algorithm, then we introduce the symmetric encryption which
are the type of our encryption algorithm, and then the asymmetric encryption and the relation
between these two types which are used in the key management in our solution. We also present the
security of cryptographic algorithm especially the notion of IND-CPA that we hope our algorithm
can provide. In the image representation and compression, we briefly introduce RGB, YCbCr color
model, and the two-dimensional discrete cosine transform (2D-DCT), which are all used in JPEG
compression. Because in this thesis, we focus to study JPEG images, we make a detailed introduc-
tion of the complete JPEG compression and decompression processes in this chapter. Finally, we
enumerate related works about image encryption to position our contributions.

Chapter 3 proposes the basic encryption algorithm, and we prove that this algorithm is IND-
CPA secure. Then we implement this encryption algorithm into three different steps of JPEG
compression process. The first one encrypts the image before DCT in spatial domain. The second
one encrypts image after DCT in frequency domain. The third one encrypts image after quantiza-
tion. All of them can preserve the JPEG image format after encryption, but comparison of these
three schemes shows that only the last one which encrypts image after quantization can preserve
high image quality after decryption.

Chapter 4 applies the best scheme which is proposed in the previous chapter on several widely
used image-sharing platforms. First of all, we analyse the characteristics of several widely used
image-sharing platforms. Then we apply the scheme after quantization on different platforms and



18 CHAPTER 1. INTRODUCTION

analyse the experimental results. The results show that the proposed basic encryption algorithm
can be used to protect the privacy on Flickr, Pinterest, Google+ and Twitter. However, it cannot
be used for other existing image-sharing platforms that perform a post-processing to the published
images (i.e., Facebook, Weibo and Wechat).

Chapter 5 improves the basic encryption algorithm which is proposed in chapter 3 to reduce
the losses of quality resulting from the post-processing performed by some of the image-sharing
platforms. We detail the improved algorithm, and how to select the parameters for different
platforms in this encryption algorithm. Then we show the experimental results on Facebook, Weibo
and Wechat. In the end, we evaluate the performances of the improved encryption algorithm which
is developed in C++.

Chapter 6 first presents the general scenario about sharing an image with specific person includ-
ing how to generate and distribute the keys, build and share the certificate, upload and download
the image with the different access conditions. Then we explain how our application PixGuardian
manages the keys and controls the access conditions for users. We also show how to use this ap-
plication to encrypt and share the images on Facebook by using a plugin in browser Chrome to
decrypt the images. Finally, we give evaluation results about the use of PixGuardian by real users.

Chapter 7 summaries our works in this thesis and gives some remarks on future research.

1.5 List of Publications
• Image Ciphering to Ensure Privacy on Open Image-Sharing Platforms: ICIP 2015

with Cyrielle Feron (IRT B<>Com), Gaëtan Le Guelvouit (IRT B<>Com), Christophe
Bidan (CentraleSupélec Rennes)

• Robust and Secure Image Encryption Schemes during JPEG Compression Pro-
cess: EI 2016 with Christophe Bidan (CentraleSupélec Rennes), Gaëtan Le Guelvouit (IRT
B<>Com), Cyrielle Feron (IRT B<>Com)

• Privacy Protection for JPEG Content on Image-Sharing Platforms: IH&MMSec
2016 and APVP 2016 with Christophe Bidan (CentraleSupélec Rennes), Gaëtan Le Guelvouit
(IRT B<>Com)

• Experimentation of Privacy Protection for JPEG Contents on Image-Sharing
Platforms: SIN 2016 with Christophe Bidan (CentraleSupélec Rennes), Gaëtan Le Guelvouit
(IRT B<>Com)



Chapter 2

State of the art

Contents
2.1 Modern cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.1 Hash functions and Pseudo-random number generators . . . . . . . . . . 20
2.1.1.1 Hash functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.1.2 Pseudo-random number generator (PRNG) . . . . . . . . . . . 21

2.1.2 Encryption techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1.2.1 Symmetric encryption . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2.2 Asymmetric encryption . . . . . . . . . . . . . . . . . . . . . . 23
2.1.2.3 Symmetric vs. asymmetric . . . . . . . . . . . . . . . . . . . . 24

2.1.3 Security of cryptographic algorithms . . . . . . . . . . . . . . . . . . . . 25
2.1.3.1 Information-theoretic security . . . . . . . . . . . . . . . . . . 25
2.1.3.2 Computational security . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3.3 Semantic security . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1.3.4 IND-CPA for a symmetric cryptosystem . . . . . . . . . . . . . 26

2.2 Image representation and compression . . . . . . . . . . . . . . . . . 26
2.2.1 Representation of images . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Two-dimensional discrete cosine transform (2D-DCT) . . . . . . . . . . 28
2.2.3 The JPEG format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.1 Image encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3.2 Image decoding . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Traditional encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3.2 Encryption preserving image format . . . . . . . . . . . . . . . . . . . . 35

2.3.2.1 Scrambling algorithms . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.2.2 Modifications applied to traditional encryption . . . . . . . . . 35
2.3.2.3 Selective Encryption . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3.2.4 Combining Scrambling and Encryption . . . . . . . . . . . . . 38

2.3.3 Protecting privacy of online published images . . . . . . . . . . . . . . . 38
2.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

The main objective of this thesis is to protect privacy of user’s images published on existing
image-sharing platforms. When users publish their images on the existing image-sharing platforms,
they can choose who has the right to view their images. However, this access control is not sufficient,
since the providers of the image-sharing platforms can clearly know the content of the published
images. Therefore, in order to protect user’s privacy, we need to guarantee the confidentiality of
user’s contents. One of the most efficient and popular way to ensure the confidentiality of contents
is to encrypt them. So we aim to propose an approach to encrypt user’s images securely and
efficiently.

19



20 CHAPTER 2. STATE OF THE ART

In order to facilitate the following discussions about our contribution, we introduce in this
section the fundamentals of two technical domains needed for our goal namely modern cryptography
and image representation and compression, and describe the state of the art of image encryption.

In section 2.1, we introduce the basic theory of modern cryptography. In section 2.2, we
introduce the basic knowledge of JPEG compression. In section 2.3, we enumerate related works
on image encryption.

2.1 Modern cryptography

The main objectives of security is to ensure the three following properties: confidentiality, integrity
and availability.

• Confidentiality means that only authorised persons can access to the data which are intended
for them.

• Integrity means that only authorised users can modify the data.

• Availability means that the data are always available for the authorised users.

As one of the most commonly used security techniques, cryptography allows to guarantee the confi-
dentiality and the integrity of the data. Especially, encryption allows to protect the confidentiality
of the user’s data, and is thus a natural approach to protect the user’s privacy.

In the following subsections, we present the basics of modern cryptography, and more specif-
ically, the cryptographic methods that allow to ensure the confidentiality. We first present the
notion of hash functions and pseudo-random number generators. Then, we introduce the two tech-
niques of encryption, namely the symmetric and asymmetric encryption. Finally, we discuss the
problem of security of cryptographic algorithms.

2.1.1 Hash functions and Pseudo-random number generators
In this subsection, we briefly present two fundamental notions of modern cryptography: the hash
functions and the pseudo-random number generators.

2.1.1.1 Hash functions

A hash function takes an arbitrary finite length string (which could be theoretically as long as we
want) as input and outputs a fixed length value. If H is a hash function, and m an input, H(m)
is called the hash value of m.

A hash function is necessarily many-to-one, that means the size of the output value space
is smaller than the size of the input value space. A cryptographic hash function is a one-way
function, i.e., it is hard to recover the original value m just having the hash value h = H(m). More
specifically, the security of cryptographic hash functions is defined by the four following properties:

One-wayness (OW): given the hash value h, it is infeasible to find any input value m such that
H(m) = h.

Target collision resistance (TCR): given input value m, it is infeasible to find another input
value m′ ̸= m such that H(m) = H(m′).

Collision resistance (CR): it is infeasible to find two input values m and m′, such that m ̸= m′

and H(m) = H(m′).

Non malleability: given a hash value h = H(m), it is infeasible to produce h′ = H(m′) where
m and m′ are related (e.g. m′ = m+ 1).

Notice that if the hash function H is CR, it is TCR, but not reverse. Similarly, if the hash
function H is OW, it is not TCR, and TCR does not apply OW neither. Standard examples of
hash functions are the hash functions of the SHA family notably SHA-2 [EH06] and SHA-3 [GBA].



2.1. MODERN CRYPTOGRAPHY 21

2.1.1.2 Pseudo-random number generator (PRNG)

In the modern cryptography, we often look forward a random value that can be used as a secret or
an initial value. Ideally, such a random value should be indistinguishable to a real truly random.
Unfortunately, such value is really hard to generate and require some unpredictable physical means
like atmospheric noise. Thus, in a computational world, we generate values which are nearly
random: these values are called pseudo-random and they are generated by pseudo-random number
generators denoted by PRNG.

A PRNG is used to generate a sequence of values with the approximate properties of sequence
of random numbers. This sequence is generally determined by a relatively small set of initial values,
denoted as seed (which can be also a random value, or a counter).

The PRNG design can be based on cryptographic primitives such as cryptographic hash func-
tions or some mathematical problems such as chaos-based system. Here we give a brief introduction
how these methods can be used to construct a PRNG function.

A cryptographic hash function H (see § 2.1.1.1) can be converted into a PRNG by combining for
instance a seed with a counter c and hashing them [ILL89]: H(seed, c), H(seed, c+1), H(seed, c+2),
and so on. The value of the seed has to be random and remain secret. Relying on the properties of
cryptographic hash functions, such PRNG generates a uniformly random result from a high-entropy
but non-uniform source, and never outputs identical sequences with different inputs.

Chaotic system, known as the deterministic system with irregular behaviour, is one of the
significant fields for study in the area of non-linear dynamic systems. The word chaos means
disorder, clutter and confusion, which is described as regularity in irregularity. The chaotic system
describes a dynamic system, which has a predictable behaviour in a short period of time [ASY97,
Str01]. Short-term predictions may be precise, yet long-term predictions are absolutely impossible.
In addition, they can be controllable using a small control signal and it is also notable that accessing
a chaotic system history is impossible. Recently, with the fast development of chaos theory and
practices, due to its noise-like wide power spectrum and high sensitivity to the initial condition,
numbers of chaos-based algorithms have been proposed to generate pseudo-random numbers.

2.1.2 Encryption techniques
The encryption of some data allows to ensure the confidentiality of these data. The basic idea
is to use a secret (also called the key) to encrypt the data before sending or publishing it, and
any user knowing the appropriate key is able to decrypt the ciphertext and obtain the plaintext.
Conversely, the adversary that does not know the decryption key is not able to retrieve the data
from the ciphertext.

An encryption algorithm consists in three functions: the key generation function KeyGen, the
encryption function Enc, and the decryption function Dec.

Key generation: (ke, kd) = KeyGen(1λ) is the function that given a security parameter λ
generates the encryption key ke and the corresponding decryption key kd.

Encryption: C = Encke(M) is the function that allows to encrypt the plaintext M using the
encryption key ke. The result is the ciphertext C.

Decryption: M = Deckd(C) is the function that allows to decrypt the ciphertext C using the
decryption key kd. The result is the plaintext M if and only if M has been encrypted using
the corresponding encryption key ke.

The procedure is illustrated in Fig. 2.1. The encryption algorithm is such that it is hard to
recover the plaintext M only from the ciphertext C. Moreover, it is also hard to recover the
decryption key kd even knowing about the plaintext M and its corresponding ciphertext C. In
subsection 2.1.3, we further discuss the notion of security of cryptographic algorithms.

It exists two kind of encryption techniques: the symmetric encryption in which the same key is
used to encrypt and decrypt (ke = kd), or the asymmetric encryption where a public key is used to
encrypt messages and a private key (corresponding to the public key used for encryption) allows to
decrypt the ciphertexts. We note that this private key is not necessary known by the entity that
encrypts the message.



22 CHAPTER 2. STATE OF THE ART

DecryptionEncryption

kd

M

Receiver

Public channel

Sender

M

ke

C

Figure 2.1: Encryption and decryption functions of a cryptosystem

2.1.2.1 Symmetric encryption

Symmetric encryption uses the same key to encrypt and to decrypt (as shown in Fig. 2.2), i.e.
ke = kd. The algorithm can be described as follow:

Key generation: K = KeyGen(1λ) is the function that, given the security parameter λ, gener-
ates one secret key K which has to be used for encryption and decryption.

Encryption: C = EncK(M) that uses the encryption algorithm Enc with the secret key K to
encrypt the plaintext M . The result is the ciphertext C.

Decryption: M = DecK(C) that uses the decryption algorithm Dec with the secret key K to
decrypt the ciphertext C, and get the plaintext M .

The main advantage of the symmetric encryption is that the encryption and decryption algo-
rithms are very fast, mainly because they use simple binary operations to realise encryption and
decryption. Due to that, symmetric encryption is suitable for encrypting large amounts of data.
However, since the same key is used to encrypt and decrypt, the sender (i.e., the entity that en-
crypts the data) and the receiver (i.e., the entity that decrypts the data) have to share the secret
key, and thus this secret key must be exchanged via a separate secure channel. That is one of the
main drawbacks of symmetric encryption 1.

Notice that the security of such symmetric encryption is dependent on the key length, and so
that the security parameter λ is generally the number of bits of the secret key K.

DecryptionEncryption

K

M

K
Receiver

Public channel

Sender

M

K
Secret channel

C

Figure 2.2: Symmetric encryption and key exchange

There are two kinds of symmetric encryption algorithms: stream cipher or block cipher algo-
rithms.

Stream cipher is a kind of symmetric-key encryption algorithm operating on plaintext using a
pseudo random keystream (i.e., a random sequence generated by a pseudo-random number
generator (PRNG) based on the secret key and an additional random seed). Each plaintext
digit is encrypted one by one at a time with the corresponding digit of the keystream, to give
a digit of the ciphertext. Since a digit is typically a bit, the encryption algorithm is often
the exclusive-OR (i.e. XOR). Well known examples of stream cipher are RC4 [Sch96] and A5
[3GP16].

1Another drawback is that symmetric encryption cannot guarantee the digital signature.



2.1. MODERN CRYPTOGRAPHY 23

Block cipher is a kind of symmetric algorithm in which the plaintext is divided into fixed-length
groups of bits – called blocks – and each block is encrypted using the secret key. Each block
can be encrypted independently of each others (Electronic CodeBook mode) or the encryption
of a given block can depend on the encryption of previous blocks (Cipher Block Chaining
mode). Notice that block cipher can also be used in a stream cipher mode (Cipher FeedBack
and Counter modes) [Dwo]. Well-known block cipher algorithms are DES (Data Encryption
Standard) [Den82], AES (Advanced Encryption standard) [DR99], etc.

2.1.2.2 Asymmetric encryption

In order to solve the problem of secure key exchange, asymmetric cryptography has been proposed
by Whitfield Diffie and Martin E. Hellman in 1976 [DH76]. In such cryptosystem, the keys used to
encrypt and decrypt are different, as shown in Fig. 2.3. The algorithm can be described as follow:

Key generation: (kpub, kprv) = KeyGen(1λ) is the function that given the security parameter
λ generates a public key kpub (that can be publicly published) and a private key kprv (that
must be kept secret).

Encryption: C = Enckpub(M) that uses the encryption algorithm Enc with the public key kpub
to encrypt the plaintext M . The result is the ciphertext C.

Decryption: M = Deckprv(C) that uses the decryption algorithm Dec with the private key kprv
to decrypt the ciphertext C, and get the plaintext M .

Since the public key kpub can be published, the additional secret channel is no longer needed
to exchange the secret key.

In such cryptosystem, the encryption should ensure that it is hard to recover M from C without
kprv but knowing kpub, and no one can derive the private key kprv from the public key kpub. In order
to guarantee these properties, asymmetric cryptosystems are based on some complex mathematic
problems such as factorization or discrete logarithm, because until now, no one knows any algorithm
which can solve these problems in polynomial time. But on the other hand, these complex problems
have a significant impact on the computational cost of the encryption and decryption processes.
This drawback implies that normally we do not use asymmetric cryptosystem to encrypt large
data, but keep it to encrypt small data such as symmetric keys.

The most well-known asymmetric encryption algorithm is the RSA cryptosystem [RSA78]. We
note that it is considered as the first asymmetric cryptosystem and is still in use nowadays (only
the length of keys is risen with the times).

DecryptionEncryption
M

Receiver

Public channel

Sender

M C

kprvkpub

Figure 2.3: Procedures of asymmetric cryptosystem

Notice that asymmetric cryptosystems can also be used for digital signature. Indeed, instead
of using the public key of the receiver, if the sender uses his/her private key to sign the plaintext,
he/she is the only one to be able to perform this operation, but everyone can verify the signature
(i.e., the ciphertext obtained by the encryption with the private key). More specifically, using
asymmetric cryptosystem for digital signature can be described as follow:

Key generation: (kpub, kprv) = KeyGen(1λ) is the function that given the security parameter
λ generates a public key kpub (that can be publicly published) and a private key kprv (that
must be kept secret).



24 CHAPTER 2. STATE OF THE ART

Signing: σ = Signkprv(M) that uses the algorithm Sign with the private key kprv to sign the
plaintext M . The result is the signature σ.

Verifying: V erifykpub(σ) that uses the algorithm V erify with the public key kpub to verify the
signature σ.

VerifySign

kpub

ReceiverSender

M Signkprv(M) 

kprv

True/False

Figure 2.4: Integrity providing by a digital signature.

Notice that, as for encryption, digital signature based on asymmetric cryptosystem can only be
used on small data. The solution is then to rely on hash function to compute a cryptographic hash
value, and to sign this hash value instead of the plaintext data. The figure 2.4 illustrates how the
integrity could be guaranteed by digital signature.

2.1.2.3 Symmetric vs. asymmetric

In the previous section, we have briefly introduced symmetric and asymmetric encryptions, and
given their advantages and disadvantages. Thus, symmetric encryption is faster but requires se-
cure key exchange, whereas asymmetric encryption no longer needs secure key exchange but is
slower. The following table 2.1 summarizes the comparison between symmetric and asymmetric
encryptions.

Confidentiality Advantages Disadvantages

Symmetric
cryptosystem

Encryption by
using the secret

key
Fast Need a secure

key exchange

Asymmetric
cryptosystem

Encryption by
using the public

key

Do not need a
secure key
exchange

Slow

Table 2.1: Properties of symmetric and asymmetric encryptions.

The classical approach in modern cryptography is thus to combine these different types of
encryption: symmetric encryption is used to encrypt large data whereas asymmetric encryption is
used to encrypt the secret key needed by the symmetric encryption. For instance, let us consider the
example of a user that wants to protect the sending of an image Img to one of his/her friends. Since
images are large data, he/she has to encrypt Img using symmetric encryption with a randomly
chosen secret key K. Then, he/she is able to send the encrypted image EncK(Img) to his/her
friend, as well as the secret key K encrypted with the public key kpub of his/her friend. When
receiving the data, the friend is able to use his/her private key kprv to decrypt and retrieve the
secret key K, and then use this secret key K to decrypt the EncK(Img) to obtain the plaintext
image Img. This process is shown in Fig. 2.5.

Notice that this process works only if the sender can trust that the used public key is the one
of his/her friend. A Public Key Infrastructure (PKI) allows specifically to resolve this problem.
The basic idea is to raise on Certificate Authorities (CAs) to certify the link between the identity
of an entity and a public key. The link is mainly established through a registration process and
issuance of certificates. PKI permits to avoid the identity usurpation and to protect against the
use of wrong public keys notably generated by a Man-In-The-Middle adversary (MitM).



2.1. MODERN CRYPTOGRAPHY 25

SymDecSymEnc

AsyDecAsyEncK K

ImgImg

Enc     (K)

(Img)

ReceiverPublic channelSender

kpub kprv

EncK

kpub

Figure 2.5: Combination of symmetric and asymmetric cryptosystem

2.1.3 Security of cryptographic algorithms
Today, one of the main challenge in cryptography is to prove the security of the cryptographic
algorithms. The security of the cryptographic algorithms may be evaluated according to the
information theory, the computational complexity theory, or from a probabilistic point of view.
We briefly present each of these approaches.

2.1.3.1 Information-theoretic security

A cryptosystem is information-theoretically secure if its security can be proven according to the
information theory, as defined by Claude Shannon [Sha49]. That means that even if the adversary
has unlimited computing power and time, he/she is not able to deduce any information of the plain-
text from the ciphertext. Thus, this notion of security is very strong, and designing a crytosystem
that is information-theoretically secure is very difficult. The common example of cryptosystem
that is information-theoretically secure is the One-Time-Pad.

2.1.3.2 Computational security

According to the computational complexity theory, some problems are known to be hard, that is, we
do not know any polynomial-time algorithm that allows to resolve these problems. A cryptosystem
is computationally secure if breaking it in polynomial-time is equivalent to solve a problem that is
known as hard in the computational complexity theory [Sta74]. In other words, any adversary with
polynomial-time computational resources is not able to retrieve the plaintext from the ciphertext.

Asymmetric cryptosystems are often based on complex mathematic problems, such as factorisa-
tion or discrete logarithm, that are proved or assumed to be hard in the computational complexity
theory. Thus, the security of these cryptosystems is often computational. The typical examples
are the RSA or the Diffie-Hellmann cryptosystems.

2.1.3.3 Semantic security

In 1982, Goldwasser and Micali have introduced the notion of probabilistic encryption [GM82].
Basically, the probabilistic encryption consists in ensuring that, even if a plaintext m is encrypted
and sent twice, then an adversary is not able to deduce that the two corresponding ciphertexts
correspond to the same plaintext. Probabilistic encryption can be achieved by randomizing the
encryption, using for instance, a random seed in a stream cipher, or a random initial vector in a
block cipher.

The notion of semantic security is a generalisation of the notion of probabilistic encryption. The
word “semantic” came from the definition that the encryption reveals no information no matter what
kind of semantics are embedded in the plaintext. Given two plaintexts m0, m1 of the same length,
and their corresponding ciphertexts c0, c1, a cryptosystem is semantically secure, if an adversary
cannot determine which ciphertext corresponds to which plaintext with probability greater than
1
2 . That means, ciphertext of some unknown message does not reveal any additional information.



26 CHAPTER 2. STATE OF THE ART

The semantic security is generally expressed in terms of indistinguishability (noted as IND).
More specifically, if the plaintexts m0 and m1 are chosen by the adversary, we say that a cryptosys-
tem is IND-CPA (Indistinguability under Chosen Plaintext Attack). Moreover, if the adversary
is able to decrypt some chosen ciphertexts before sending the two plaintexts m0 and m1, we say
that the cryptosystem is IND-CCA (Chosen Cyphertext Attack), and if he/she can also decrypt
some chosen ciphertexts after receiving c0 and c1, we say that the cryptosystem is IND-CCA2
(adaptative Chosen Ciphertext Attack).

2.1.3.4 IND-CPA for a symmetric cryptosystem

In this thesis, we aim to propose an image encryption algorithm to protect user’s published images,
and this algorithm should guarantee the security of user’s images. Since the images are large data,
our encryption algorithm is symmetric. And because we want to make sure that, even if we encrypt
a black image and a white image, it is hard to know which encrypted image corresponds to which
original image, we require that our encryption algorithm is IND-CPA. In that purpose, we give
here more details on how to prove that a symmetric cryptosystem is IND-CPA.

IND-CPA [MO14] for a symmetric cryptosystem is represented by a specific game between an
adversary and a challenger. Let C be the challenger and A be the adversary. Here is the game:

1. C generates a secret key K and does not reveal it.

2. A may perform any number of encryptions and other operations (but not decryption) on the
result and the challenger forwards the related answers.

3. A chooses and sends two different plaintexts m0 and m1 to C.

4. C chooses one bit b ∈ {0, 1} randomly, and sends the challenge c = EK(mb) to A with c the
encryption of the message mb with the secret key K.

5. A gives his guess for the value of b to C.

The adversary is modelled by a probabilistic polynomial time Turing machine. That means the
adversary must complete the game and output a guess within a polynomial number of time steps.
The symmetric cryptosystem is indistinguishable under chosen plaintext attack if the adversary
wins the game with a negligible advantage. It means that he wins the game with a probability
equals to 1

2 + ϵ(λ), where ϵ(λ) is a negligible function in the security parameter λ (i.e. the size of
the key in bits).

A cryptosystem is IND-CPA$ secure if it has pseudorandom ciphertexts in the presence of
chosen plaintext attack. The game representation of this security definition is the same as the
game for IND-CPA except for steps 3 and 4, which become:

3. A sends one plaintext m to C.

4. C chooses one bit b ∈ {0, 1} randomly. If C chooses 0, C sends c = EK(m) to A. Else, C sends
a random number of n bits. n being the size of EK(m).

In other words, a cryptosystem is IND-CPA$ secure if the adversary cannot distinguish between
a ciphertext and a sequence of random numbers with a probability superior to 1

2 + ϵ(λ). An IND-
CPA$ secure cryptosystem is clearly IND-CPA secure. If an adversary cannot distinguish between
the challenge c and a sequence of random numbers with a probability superior to 1

2 + ϵ(λ), then he
cannot guess the right value of b with a better probability.

2.2 Image representation and compression
We aim to encrypt an image and to ensure that the results of encryption and decryption are
still in image format. Considering images on most of image-sharing platforms are compressed by
using JPEG standard [PM93], and the downloaded images are always in JPEG format, we focus
on processing JPEG images. In this section, we briefly introduce the basic knowledge of image
representation and JPEG compression processes.



2.2. IMAGE REPRESENTATION AND COMPRESSION 27

In order to represent an image, the most common format is bitmap, which can be displayed
by different color models and color coding methods. So in the first subsection, we introduce how
to display the images by using different kind of bitmaps. In the second subsection, we present
two-dimensional discrete cosine transform which is the transform used in JPEG standard. Then
in the third subsection, we detail the JPEG compression and decompression processes.

2.2.1 Representation of images

A bitmap, as known as raster graphic, is a dot matrix data structure. Each element of this matrix
represents a pixel of an image and the color information of each pixel is displayed by different color
coding methods, for example, RGB combinations or grayscale values. RGB color model which is
the most commonly used one consists of three additive primary colors: red, green and blue. They
are added together in a fixed manner to reproduce various colors (see Fig. 2.7). Nowadays, RGB
color model mostly uses 8 bits per channel2 to indicate red, green and blue intensity; thus each
pixel is represented by 24 bits (8 bits/pixel/channel × 3 channels = 24 bits/pixel). In the case of
24-bit color, each pixel can be denoted by #xxyyzz, where xx, yy and zz are three byte hexadecimal
numbers and indicate the three colors respectively. The range of each color value is 00-FF, which
correspond to the decimal range 0-255. So in one channel, there are 28 = 256 possible colors,
and one image has 16,777,216 (2563) discrete combinations of RGB values (shown in Fig. 2.6). A
grayscale bitmap is 8-bit image, which has 28 = 256 possible gray values, and a binary bitmap (1
bit/pixel) only has two possible values (black and white).

Figure 2.6: A bitmap represented by 24-bit RGB pixels

Figure 2.7: Mixture of RGB models

Another color model is YCbCr. It is a way of encoding RGB information. The Y component
represents the brightness of a pixel, Cb and Cr components represent the chrominance (Cb is blue
component and Cr is red component). This coding system is very useful, because the human eyes
are more sensitivity to the changes of brightness rather than differences of color. YCbCr and RGB
both can be converted to each other as follow:

2It also can use more, for high dynamic range (HDR) image or video, e.g. 12 bits per channel.



28 CHAPTER 2. STATE OF THE ART

⎡

⎣
Y
Cb
Cr

⎤

⎦ =

⎡

⎣
0.299 0.587 0.114
−0.169 −0.331 0.5
0.5 −0.419 −0.081

⎤

⎦

⎡

⎣
R
G
B

⎤

⎦+

⎡

⎣
0
128
128

⎤

⎦ (2.1)

⎡

⎣
R
G
B

⎤

⎦ =

⎡

⎣
1 −0.00093 1.401687
1 −0.3437 −0.71417
1 1.77216 0.00099

⎤

⎦

⎡

⎣
Y

Cb− 128
Cr − 128

⎤

⎦ (2.2)

Computer images are always displayed as bitmaps, but this format is not efficient for storage.
For example, it takes (1024 × 768) × 24 bits/pixel = 2.25 MB to store an image of 1024 × 768
pixels. A commonly used compression method for bitmap is to use an indexed color table. Several
representative colors in the bitmap image (usually less than 256 colors) generate the table, and
the original colors are represented by using the index of this color table. In this way, the original
image can be lossy compressed; it is only suitable for compressing web graphics or other graphics
with less color, not suitable for colorful graphics like photographies.

For that purpose, we need some other efficient raster graphic formats or compressed variations
to store an image with fewer memories, such JPEG or PNG. For instance, if we store the image of
1024× 768 pixels into the JPEG format with highest quality (without compression), it only takes
about 800 KB, and with lowest quality, it only takes about 20 KB. JPEG is the most popular
format, its compression processes are based on the two-dimensional discrete cosine transform (2D-
DCT), which is introduced in the next subsection.

2.2.2 Two-dimensional discrete cosine transform (2D-DCT)
Because of the complexity of an image, when we process an image directly in the spatial domain,
it involves some expensive computations. Therefore, we often use various image transformation
methods, such as Fourier transform, Walsh transform, wavelet transform, etc. to convert the spatial
domain processing into another domain. In this way, not only the amount of calculation can be
reduced, but also more effective treatments can be applied (e.g. Fourier transform can carry out
the digital filtering in frequency domain).

The compression processes of JPEG are based on the two-dimensional discrete cosine trans-
form (2D-DCT). Suppose that we have an image signal f(x, y), the two-dimensional DCT can be
represented as:

F (u, v) = α(u)α(v)
N−1∑

x=0

N−1∑

y=0

f(x, y) cos[
(2x+ 1)uπ

2N
] cos[

(2y + 1)vπ

2N
], (2.3)

where

α(u),α(v) =

⎧
⎪⎪⎨

⎪⎪⎩

√
1

N
, u, v = 0

√
2

N
, u, v = 1, 2, · · · , N − 1.

(2.4)

The inverse transform 2D-IDCT is:

f(x, y) = α(u)α(v)
N−1∑

u=0

N−1∑

v=0

F (u, v) cos[
(2x+ 1)uπ

2N
] cos[

(2y + 1)vπ

2N
], (2.5)

where α(u) and α(v) are defined as above and x, y = 0, 1, 2, · · · , N − 1.
From Fig. 2.8, we clearly see the energy compaction property of DCT. It means that after

computing the DCT, most of information of signal is concentrated in the low-frequency part which
is in the top-left corner. This property is very useful when we compress an image. Because we only
want to hold the most important information which contains more energy, and reduce the others
as much as possible.



2.2. IMAGE REPRESENTATION AND COMPRESSION 29

(a) Original image (b) Energy distribution (c) Frequency distribution

Figure 2.8: Energy and frequency distributions of the image after 2D-DCT transform

2.2.3 The JPEG format

JPEG3 is a standard for image coding which was created by the Joint Photographic Experts Group.
It is one of the widely used standards for storing and compressing image. Digital cameras and other
image capture devices use JPEG standard to store and transmit images. It allows to lossy compress
any digital photography. Images on the Internet are compressed by using JPEG standard as well.
But because this compression algorithm is lossy, the image quality may suffer a visible damage.
There is a tradeoff between storage size and image quality. Next, we respectively talk about each
step of JPEG compression processes.

2.2.3.1 Image encoding

JPEG standard specifies some different encoding methods to create a JPEG file. Here we choose
the most common method of JPEG encoding which applies to the RGB color model (described in
Sec. 2.2.1) with 24 bits per pixel. In this method, there are six steps to encode an image, such as
DCT, quantization, entropy encoding, etc. Fig. 2.9 illustrates the complete JPEG compression and
decompression processes of a color image. For a grayscale image, the color space transformation
and the downsampling are not needed. We give a brief description of all of them as follows.

Color space 
transformation Downsampling Block 

splitting DCT Entropy 
codingQuantization

Color space 
transformation Upsampling Reassemble 

from block
Reverse 

DCT
Entropy 
codingDequantization

RGB image Encoded 
JPEG image

Compression

Decompression

Figure 2.9: JPEG encoding and decoding processes

Color space transformation. First, the color image is converted from RGB to YCbCr. As
stated in Sec. 2.2.1, the human visual system can see more fine details in the brightness of an
image. Using this knowledge, the encoder can be designed more efficiently to compress the
image by using YCbCr. According to Eq. 2.1 and Eq. 2.2, if the pixel value of RGB is (255,
255, 255), after converting into YCbCr, the value becomes to (255, 128, 128). If the value

3http://en.wikipedia.org/wiki/JPEG

http://en.wikipedia.org/wiki/JPEG


30 CHAPTER 2. STATE OF THE ART

is (0, 0, 0) in RGB space, it becomes to (0, 128, 128) after converting into YCbCr. If the
value of RGB is (128, 128, 128), the converted YCbCr value is (128, 128, 128). The scheme
of conversion is showed in Fig. 2.10.

Figure 2.10: Example of RGB converting into YCbCr

Downsampling. According to the previous step, the chrominance components can be reduced
to realize the compression. This process is called downsampling or chroma subsampling.
The Y components never change and as a standard, we note that 4 pixels of Y components
are always sampled 4 times, so the ratio is always 4:x:x. The same ratio of sampling is
used for both Cb and Cr components. The illustration from Fig. 2.11 clearly shows how
they are implemented. The ratios of downsampling could be 4:4:4 (no downsampling), 4:2:2
(chrominance components become half of the original in the horizontal direction), 4:2:0 (most
commonly used, chrominance components become half of the original both in the horizontal
direction and vertical directions), or 4:1:1 (chrominance components become quarter of the
original in the horizontal direction), etc.

Figure 2.11: Chrominance subsampling patterns [Ker05]

Block splitting. Given the three channels Y, Cb, Cr, the image is split into non-overlapping
blocks, and each block has 8× 8 components. If the number of components are not multiple
of 8× 8, we must fill the last incomplete blocks with some form of dummy data. Usually, the
most common filling method is repeating the edge pixels.



2.2. IMAGE REPRESENTATION AND COMPRESSION 31

Discrete cosine transform. In this step, each 8 × 8 block in each channel is converted to fre-
quency domain by using two-dimensional discrete cosine transform (introduced in Sec. 2.2.2).
For a 24 bits per pixel image, in each channel, the values of components fall in the range [0,
255]. But in order to reduce the dynamic range requirements in the following DCT process-
ing, the range is shifted to [-128, +127]. Then, according to Eq. 2.3, we compute the DCT
of each 8× 8 block.
Take an 8 × 8 block (2.6) as example. The first step is the range shift. All the components
are minus 128, and we obtain the matrix (2.7). Then we compute the DCT, and this 8 × 8
block becomes matrix (2.8). The absolute value of coefficient in top-left corner is larger than
the others, that is the DC (direct component) coefficient. The remaining 63 coefficients are
AC (alternating component) coefficients. Due to the energy compaction property of DCT,
most of the information of the original image is preserved in the low frequency coefficients
which contains the DC coefficient and some AC coefficients in the upper left corner.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

52 55 61 66 70 61 64 73
63 59 55 90 109 85 69 72
62 59 68 113 144 104 66 73
63 58 71 122 154 106 70 69
67 61 68 104 126 88 68 70
79 65 60 70 77 68 58 75
85 71 64 59 55 61 65 83
87 79 69 68 65 76 78 94

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.6)

Minus 128
↓

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−76 −73 −67 −62 −58 −67 −64 −55
−65 −69 −73 −38 −19 −43 −59 −56
−66 −69 −60 −15 16 −24 −62 −55
−65 −70 −57 −6 26 −22 −58 −59
−61 −67 −60 −24 −2 −40 −60 −58
−49 −63 −68 −58 −51 −60 −70 −53
−43 −57 −64 −69 −73 −67 −63 −45
−41 −49 −59 −60 −63 −52 −50 −34

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.7)

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−415.3750 −30.1857 −61.1971 27.2393 56.1250 −20.0952 −2.3876 0.4618
4.4655 −21.8574 −60.7580 10.2536 13.1451 −7.0874 −8.5354 4.8769

−46.8345 7.3706 77.1294 −24.5620 −28.9117 9.9335 5.4168 −5.6490
−48.5350 12.0684 34.0998 −14.7594 −10.2406 6.2960 1.8312 1.9459
12.1250 −6.5534 −13.1961 −3.9514 −1.8750 1.7453 −2.7872 3.1353
−7.7347 2.9055 2.3798 −5.9393 −2.3778 0.9414 4.3037 1.8487
−1.0307 0.1831 0.4168 −2.4156 −0.8778 −3.0193 4.1206 −0.6619
−0.1654 0.1416 −1.0715 −4.1929 −1.1703 −0.0978 0.5013 1.6755

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8)

Quantization. This step is the main part of compression. In each 8×8 DCT block, the coefficient
in top-left corner is the DC (direct component) coefficient, and the remaining 63 coefficients
are AC (alternating component) coefficients. The coefficients in upper left corner are the
low frequencies, where the most important visual characteristics of the image are placed. In
contrast, the highest frequencies are in the lower right corner and correspond to the details
of the image. The quantization step allows to reduce the information. Each DCT coefficient
in each 8 × 8 block is divided by the corresponding element of quantization table, and then
rounding to the nearest integer. This rounding operation directly causes the lossy compression
in the encoding process.
In Fig. 2.12, we provide the standard default quantization tables for luminance and chromi-
nance channels that used by the IJG (Independent JPEG Group) code library:



32 CHAPTER 2. STATE OF THE ART

(a) Luminance table (b) Chrominance table

Figure 2.12: Standard default quantization tables

The factor of quality can be 1 (terrible) to 100 (very good). Different quantization table of
different compression ratio can be calculated as:

q(i, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌊
t(i, j)× ( 5000f ) + 50

100

⌋
, 0 < f < 50

⌊
t(i, j)× (200− 2f) + 50

100

⌋
, 50 ≤ f ≤ 100

(2.9)

where t(i, j) (i, j ∈ [0, 7]) is the element of standard default quantization tables in Fig. 2.12,
f ∈]0, 100] is the factor of quality, q(i, j) (i, j ∈ [0, 7]) is the element of new quantization table.
The element of quantization table controls the compression ratio, a larger value provides a
greater compression.
According to Eq. 2.9, if the factor is 80, the luminance quantization table is shown as:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 4 4 6 10 16 20 24
5 5 6 8 10 23 24 22
6 5 6 10 16 23 28 22
6 7 9 12 20 35 32 25
7 9 15 22 27 44 41 31
10 14 22 26 32 42 45 37
20 26 31 35 41 48 48 40
29 37 38 39 45 40 41 40

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.10)

Then suppose that the previous DCT block (2.8) is quantized by this table, the quantized
DCT coefficient block results in:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−69 −8 −15 5 6 −1 0 0
1 −4 −10 1 1 0 0 0
−8 1 13 −2 −2 0 0 0
−8 2 4 −1 −1 0 0 0
2 −1 −1 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.11)

Entropy coding. Different from the previous step, the entropy coding provides lossless compres-
sion. First of all, in each block, the quantized DCT coefficients are arranged in a zigzag order
(shown in Fig. 2.13). In the matrix, the low frequencies are in upper left corner, and the high
frequencies are in the lower right corner, after zigzag arrangement, the similar frequencies
are grouped together. Then the run-length encoding (RLE) algorithm is applied to them,
inserting length coding zeros, and then encoded by Huffman coding with general-purpose
Huffman tables which are provided by JPEG standard. At the end of encoding, a bitstream
is written into a JPEG image file.



2.2. IMAGE REPRESENTATION AND COMPRESSION 33

Figure 2.13: Zigzag ordering of JPEG image components

2.2.3.2 Image decoding

The decoding process is used to display the image, and consists of doing all the above in reverse.
After decoding the bitstream in the JPEG image file by using the Huffman decoding and the
run-length decoding, the quantized DCT coefficient matrix can be obtained. Since this step is
lossless compression, the quantized DCT matrix is totally same as the matrix (Eq. 2.11). Then
multiplying by the quantization table above results in a DCT coefficient matrix (Eq. 2.13). Because
of the rounding operation, some information has been lost and cannot be recovered, so this matrix
only closely resembles to the original one.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−414 −32 −60 30 60 −16 0 0
5 −20 −60 8 10 0 0 0

−48 5 78 −20 −32 0 0 0
−48 14 36 −12 −20 0 0 0
14 −9 −15 0 0 0 0 0
−10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.12)

Then according to Eq. 2.5, we compute the two-dimensional inverse DCT of each 8× 8 block.
Because all the pixel values should be integers, so the outputs of IDCT need to be rounded (will
lost some information) as matrix (Eq. 2.13). Then shifting the range back to [0, 255] by adding
128 to each component and get the 8× 8 block (2.14).

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−76 −71 −70 −66 −58 −60 −63 −57
−64 −71 −65 −39 −24 −44 −60 −54
−61 −77 −61 −8 13 −26 −60 −55
−63 −78 −57 1 24 −20 −60 −57
−57 −68 −58 −21 −6 −36 −62 −56
−49 −60 −67 −59 −51 −62 −67 −55
−44 −55 −70 −73 −68 −68 −62 −46
−41 −50 −63 −62 −54 −55 −49 −32

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.13)

Add 128
↓



34 CHAPTER 2. STATE OF THE ART

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

52 57 58 62 70 68 65 71
64 57 63 89 104 84 68 74
67 51 67 120 141 102 68 73
65 50 71 129 152 108 68 71
71 60 70 107 122 92 66 72
79 68 61 69 77 66 61 73
84 73 58 55 60 60 66 82
87 78 65 66 74 73 79 96

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.14)

So far, the components are approximately reconstructed. For color images, the last steps are
upsampling and convert YCbCr color space back into RGB, and then the decoded image is obtained.

We can compare the original matrix (Eq. 2.6) and the decoded matrix (Eq. 2.14) by taking the
difference, and calculate the error values as following:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −2 3 4 0 −7 −1 2
−1 2 −8 1 5 1 1 −2
−5 8 1 −7 3 2 −2 0
−2 8 0 −7 2 −2 2 −2
−4 1 −2 −3 4 −4 2 −2
0 −3 −1 1 0 2 −3 2
1 −2 6 4 −5 1 −1 1
0 1 4 2 −9 3 −1 −2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.15)

The average absolute error is about 1
64

∑7
x=0

∑7
x=0 |e(x, y)| = 2.66 per pixels.

2.3 Related Works

With the development of digital imaging applications and image-sharing platforms, people are
increasingly concerned about the security and privacy of their personal information. To realise
our objectives of protecting the privacy of the user-generated content published on the existing
image-sharing platforms, our intent is to allow each user to encrypt the images before publishing
them, and to give the decryption key only to the friends that are authorized to access the images.
In this way, if the image encryption algorithm is secure, people who do not have the key (including
the providers of image-sharing platforms) cannot know the contents of published images. So far
many image encryption algorithms have been proposed, but not all of them can be used to protect
user’s privacy on image-sharing platforms.

2.3.1 Traditional encryption

As we described in Sec. 2.1, various traditional encryption algorithms have been proposed and
widely used, such as AES, DES, RSA, etc. Most of which are used on text or binary data and
provide very good encryption performances. It is also possible to use them for multimedia data
encryption scheme. If we have an image, we directly encrypt it by using traditional cryptography
algorithms: the confidentiality of images is thus guaranteed. For example, Dang et al. [DC00]
choose DES to encrypt compressed image data. And an image encryption system based on Hill
cipher is proposed in [Dey12].

However, the result of the encryption is a binary file rather than an image, and when we try
to publish this binary file on image-sharing platforms, none of the platforms view it as a correct
format (the acceptable formats being JPEG, PNG, GIF, or TIFF, etc.). Thus, we can not simply
used traditional encryption to protect the user’s privacy on image sharing platforms: we need an
encryption scheme such that the result of the encryption is accepted as an image by the images
sharing platforms, i.e., an encryption scheme that preserves the format of the images.



2.3. RELATED WORKS 35

2.3.2 Encryption preserving image format
In the following sections, we introduce some existing solutions that allow to scramble or to encrypt
the image while preserving the image format.

2.3.2.1 Scrambling algorithms

Scrambling is a technique which is efficient and easy to implement. So, many approaches to protect
image are based on it. The objective of image scrambling is to produce a non-intelligible image,
which prevents humans or even computer vision system from understanding the true content.
Image scrambling can be done in the spatial domain or in the frequency domain.

- In the spatial domain
Taking into account the execution time, some researchers prefer to permute the pixel directly
in the spatial domain, and the simplest image scrambling is random permutation without
any regular pattern. Wright et al. [WFL15] proposed two techniques based on scrambling
techniques. In the first proposed scheme, they only permute the locations of the pixels within
the blocks. In the second one, they permute the sub-blocks within the blocks and then shuffle
pixels in sub-blocks.
Usman et al. [UJN+07] proposed a row and column random permutation in order to break
the correlation of the edges of the image. The columns and the rows of the image are divided
into several parts. The number of column or row in each part is random. Then the parts
are randomly scrambled many times to produce a modified image. And after that, a pixel
arrangement is suggested to reorder the position of the pixels according to a certain rule
before the final image is obtained. Premaratne et al. [PP12] proposed a similar approach.
The scrambling in spatial domain only change the position of the pixels, not their values.
Consequently, the original and the scrambled images have the same statistical properties
(such as gray value distribution, mean of gray values, entropy, etc.): thus, it make easy to
differentiate two scrambled images according to the statistical properties of the corresponding
original images. Thus, the scrambling in the spatial domain is not IND-CPA secure.

- In the frequency domain
On the opposite to the scrambling in spatial domain, the scrambling in frequency domain can
change the statistical characteristics of images, and thus is more robust against statistical
attacks.
In [KE14], the authors proposed a tool which allows to scramble a selective region of JPEG
image. The scrambling consists in flipping the signs of quantized DCT coefficients based on
a random bitstream. However, since only the signs of coefficients are scrambled, it is easy to
differentiate two scrambled images: thus the solution is not IND-CPA secure.

Thus, the scrambling can be done in the spatial domain or in the frequency domain but in
both case, even if the image is unrecognized after scrambling, the solution is not IND-CPA secure
since only the position of the pixels or the DCT coefficients changes, but not their value. The
scrambling solutions are generally easily broken [QN98], except when they are combined with
encryption algorithms (see §2.3.2.4).

2.3.2.2 Modifications applied to traditional encryption

As we mentioned in section 2.3.1, traditional encryption algorithms can be used to encrypt images.
However, since the result of the encryption is a binary file and not an image, it can not be uploaded
on image-sharing platforms. One solution consists in using traditional encryption algorithms to
encrypt the pixel values in order to preserve the image format after encryption. For instance, Zhang
et al. [YPWSp+09] proposed to combine a chaotic map with DES to encrypt the image at the pixel
level. The chaotic map is used to generate a pseudo-random bitstream which is used to generate the
subkeys of the DES. Similarly, Zeghid et al. [ZMK+07] proposed to modify the AES algorithm to
encrypt the pixels of images, but instead of using a chaotic map, they use another pseudo-random



36 CHAPTER 2. STATE OF THE ART

number generator. In [KSHR10], the authors proposed to modify the AES algorithm to encrypt
the pixels of images, by adjusting the ShiftRow transformation operation of the traditional AES
algorithm.

Notice that the two first solutions are based on the replacement of the original subkeys by
random bitstreams. Thus, the original encryption algorithms are not really modified, and we
can reasonably assert that the security of the modified encryption algorithms is maintained. In
particular, used as probabilistic algorithms, they are IND-CPA secure. On the contrary, the last
solution is based on the modification of a fundamental operation of the AES algorithm. As a
consequence, because the modified encryption algorithm is different from the AES algorithm, we
can not assert that this algorithm is secure because of the security of the AES algorithm.

In any case, given that image-sharing platforms generally prefer JPEG format, the use of
traditional encryption algorithms to encrypt the pixel values of the images is not adapted to our
context. Indeed, the encrypted image will have to be compressed before download, and since
the compression is a lossy process, when decompressing, the decompressed image will be slightly
different from the original encrypted image, and thus, it won’t be correctly decrypted.

A better approach should be to encrypt the DCT coefficients of the images. Thus, Yang, Lu
and Han [SZS04] proposed an asymmetric encryption scheme based on matrix transformation. The
private key and public key are two matrices with size P ×K and K×P created by Gaussian white
noise. Given the original image into DCT / frequency domain, the private key is used to encrypt
(multiply) the frontal K×P coefficients of every divided P×P block respectively. In the decryption
process, the frontal K × P coefficients are recovered by using the public key. The security of the
encryption is thus based on the results of matrix theory. Moreover, since the encryption process
occurs into the frequency domain, the encrypted images are directly in JPEG format, and could
be uploaded to image-sharing platforms. However, to our knowledge, this solution has not been
tested on existing image-sharing platforms.

2.3.2.3 Selective Encryption

In the field of image encryption, a classical approach is the selective encryption (SE). The main idea
of this approach is to encrypt only the significant parts of the image, which is pratically sufficient
to protect most visually important information of the image or video [PU02]. The objective is to
reduce the computation time or power during the image processing, while preventing unauthorised
users to access the full image. The selective encryption can be done in the spatial domain or in
the frequency domain [VDB02].

- In the spatial domain
In case of selective encryption in spatial domain, a popular technique is the use of bitplanes.
A 8-bit grayscale image can be decomposed into 8 bitplanes (Figure 2.14), from the least
significant bitplane to the most significant bitplane. One or some of bitplanes can be chosen
to be encrypted, and these encrypted bitplanes with other original bitplanes compose the
encrypted image.
Droogenbroeck and Benedett [VDB02] proposed to encrypt the least significant bitplanes
using the XOR function (with a random bitstream). Conversely, in [PSU02], given that the
most significant bits contain more information (see Table 2.2 for the percentage of informa-
tion provided by each bit [ZZWY11]), the authors proposed to encrypt the most significant
bitplanes using AES encryption. However, in both case, the encryption only adds noise to the
image, because only some of the bitplanes are encrypted. In particular, Droogenbroeck and
Benedett [VDB02] have shown that even if 7 over the 8 bitplanes are encrypted the image is
still recognisable, and so it is easy to differentiate two encrypted images (i.e., the encryption
scheme is not IND-CPA secure).

- In the frequency domain
According to the section 2.2.3, we know that after DCT transform, in each 8× 8 blocks, the
coefficients in the upper left corner are the low frequencies, where the most important visual
characteristics of the image are placed. In contrast, the highest frequencies are in the lower
right corner and correspond to the details of the image. Since the human eye is most sensitive



2.3. RELATED WORKS 37

Figure 2.14: Decomposing an image into 8 bitplanes

Bit position in the pixel Percentage of the pixel information (%)
1 (LSB) 0.3922

2 0.7843
3 1.5686
4 3.137
5 6.275
6 12.55
7 25.10

8 (MSB) 50.20

Table 2.2: The percentage of pixel information provided by different bits.

to lower frequencies than to higher frequencies [FMBD08], some researchers have proposed a
selective encryption of DCT coefficients. For instance, in 1997, Kunkelmann et al. [KR] have
proposed to encrypt partial DCT coefficients to protect the JPEG-based video.

Considering that the DC coefficients are highly predictable, Droogenbroeck and Benedett [VDB02]
proposed to encrypt only the AC coefficients. From their experimental results, we can see
that the resulting image is still recognisable. More generally, in [PR+05], the authors com-
pared the experimental results of encrypting DCT coefficients in low frequencies and in high
frequencies. If only the DC coefficients are encrypted, the image seems to be encrypted.
However, it is very easy to access some visual information by simply replacing the ciphered
DC coefficients with a constant value. If we encrypt the DC coefficients and some of the AC
coefficients, the result is better, but the rest unencrypted AC coefficients makes it easy to
differentiate two encrypted images (i.e., the encryption scheme is not IND-CPA secure).

In [KJK10], the authors proposed to not only encrypt DC and first few AC coefficients but
also further divided the DC coefficient into bitplanes. In this way, these bitplanes can be
encrypted gradually in order to get more levels for perceptual encryption. However, as stated
before, the rest unencrypted AC coefficients makes it easy to differentiate two encrypted
images (i.e., the encryption scheme is not IND-CPA secure).

Thus, the selective encryption can be done in the spatial domain or in the frequency domain
but in both case, the solution is not IND-CPA secure since the parts of the images that are not
encrypted make it easy to differentiate two encrypted images.



38 CHAPTER 2. STATE OF THE ART

2.3.2.4 Combining Scrambling and Encryption

As stated before, the scrambling is not IND-CPA secure because the pixel or the DCT coefficient
values are not changed. In order to improve the scrambling, a solution consists in using encryption
algorithms to encrypt the pixel or the DCT coefficient values.

- In the spatial domain

Guan, Huang and Guan [GHG05] proposed to use a chaotic system to realise both scrambling
and encryption. More specifically, they use a Chaotic system to permute the pixels of image,
as well as to provide bitstream to be XORed with the pixel values. In [GC08], the authors
proposed a very similar solution. Wang et al. [WWLC11] proposed to shuffle blocks of pixels
as well as to change the pixel values based on chaotic maps. First, the image is partitioned
into 8× 8 pixels blocks with adjustment. Then in each block, the 64 pixel values are changed
by the iteration result of chaotic maps, and the new position of the block is calculated at
the same time. The main drawback of these three solutions is that their security is based
on chaotic system, whereas the security of such systems is still today an open issue. In
particular, these systems can not be proved to be IND-CPA secure.

In [BYJ08], the authors proposed to scramble the image based on a random permutation, and
then to encrypt the pixels using the Blowfish algorithm, which is one of famous symmetric-
key block cipher. The proposed solution allows to decrease the correlation between elements
of the original image since the block sizes are randomised. Moreover, the solution could
eventually be proved to be IND-CPA secure 4, even if the authors do not prove it. As such,
this solution is a secure approach to protect privacy of user’s images. However, given that
image-sharing platforms generally prefer JPEG format, this solution is not adapted to our
context. Indeed, the encryption occurs on the pixel values, and the encrypted images will be
compressed before download. Since the compression is a lossy process, the decryption of the
downloaded images will not be possible.

- In the frequency domain

In [LDL12], the authors proposed to permute each 8× 8 DCT block based on a chaotic map,
and to encrypt the DC coefficient of each block. More specifically, the DC coefficients are
extracted and rearranged into a matrix, on which is performed a dot product operation with
a random matrix to obtain the encrypted DC coefficients. Since only DC coefficients are
encrypted, the solution is a kind of selective encryption (see section §2.3.2.3), and thus, is
not IND-CPA secure, even if it mixes scrambling and encryption.

In [AGA12], the authors proposed to permute all the DCT coefficients first, and then to XOR
the scrambled DCT coefficients with a random image. Thus, the solution could eventually
be proved to be IND-CPA secure 5, even if the authors do not prove it. As such, this
solution could be used to protect privacy of user’s images published on existing image-sharing
platforms. However, to our knowledge, the solution has not been tested on image-sharing
platforms.

2.3.3 Protecting privacy of online published images
In previous section, we have presented the encryption algorithms that allow to encrypt images while
preserving the image format but without really consider the publication of the resulting encrypted
images. In this section, we introduce some works that specifically consider the protection of user’s
privacy when they publish their images.

Yuan et al. [YKE15] proposed a solution that consists in using a trustworthy server to store
the protected image, and to simply publish on Facebook the protected image along with a URL
pointing to that trustworthy server. Thus, the protected image is always stored in the trustworthy
server. When the authorised users click the published image, according to the URL, they can
obtain the original image from the server directly. Therefore, this approach does not need to treat

4Probabilistic encryption using the Blowfish algorithm is IND-CPA secure.
5The XOR operation with a random bitstream is by definition IND-CPA$ secure.



2.3. RELATED WORKS 39

the processing on different image-sharing platforms, but only needs a dedicated server for images,
and thus needs important storage and network resources, which is not satisfactory from our point
of view.

In P3 [RGO13], the authors propose to divide the images into two parts: a public part and a
secret part. The secret part contains the most important information, i.e. the most significant bits
of significant coefficients. This part is encrypted and shared directly between sender and authorised
recipients using a trustworthy server. The rest of information is left in the public part and can
be published on any existing image-sharing platforms. The recipient can decrypt the secret part
and download the public part, then combine these two parts. In this way, most important image
contents can be reconstructed lossless by decrypting the secret part. Besides the fact that this
solution requires, as the previous one, a dedicated server for storing the private part of the images,
we can notice that the public parts of two distinct images allow easily to differentiate the original
images: thus, this solution is not IND-CPA secure.

Another recent work is X-pire [BGLL14], that uses steganography. In this scheme, Backes et
al. proposed to encrypt an image first and embed the encrypted data into a container image. The
container image is in JPEG format and has the image size expected by the platforms. Then de-
pending on the standard quantization table of each platform, they find the maximum quantization
value. Then they are able to deduce the number of bits that can be embedded into each pixels.
For example, if the maximum value is 36, its binary representation is 00100100, and we can deduce
that a division by 36 will not change the two most significant bits: thus we can use these two
bits to embed the encrypted image. Thus, the resulting image can be uploaded on image-sharing
platform, and the encrypted image embedded into the uploaded image can be retrieve from the
downloaded image, and its decryption allows to retrieve the plaintext image. However, the main
drawback is of that approach is that only a few bits of information can be embedded into each
pixel. For instance, if we consider that an average of 2 bits can be embedded into each pixel, there
is only 25% bits can be used to embed.

Cryptagram [TSBS13] is a solution similar to the use of steganography, but instead of embedding
the encrypted image into another image, an image is built from the result of the encryption. More
specifically, the plaintext image is firstly encrypted with AES and an encrypted base-64 sequence
is obtained. Each value in this sequence can be represented by two 3-bits binary values. Then,
the interval of gray scale 0-255 is divided into eight sub-intervals, and each 3-bits represents the
medium value of the corresponding sub-interval. So each base-64 value in the encrypted sequence
can be mapped to two color values as two pixels of the container image. Assuming that JPEG
lossy compression will preserve these sub-intervals, the resulting image can be published on image-
sharing platform. Otherwise, the authors proposed to use Reed-Solomon codes to improve the
result and to recover the plaintext image efficiently. As for the use of steganography, the main
drawback of this approach is that each pixel of the resulting image can only encode a few bits of
information. For instance, if we want to publish a B&W image as the container image on Facebook
or Google+, the maximum upload dimension is 2048 x 2048 pixels, so for this scheme that attains
an efficiency of 3-bits per pixels, only 1.5MB data can be embedded at most.

2.3.4 Summary

In the table 2.3, we summary the related works we mentioned above. We classify them according to
their method to encrypt images, and for each method, we specify if it preserves the image format,
if it is IND-CPA Secure, and if it fits with image-sharing platforms. In this table, we can see
that only three solutions both are IND-CPA secure and can be used on image-sharing platforms
[YKE15, TSBS13, BGLL14] . However, [YKE15] is based on a trustworthy server, which is not
satisfactory from our point of view, and [TSBS13, BGLL14] result in significantly limiting the size



40 CHAPTER 2. STATE OF THE ART

of the images when encrypted.

Method References Performance

Format
preserving

IND-CPA
Secure

Image-
sharing

Platform
Traditional
encryption
algorithm

[DC00], [Dey12] ×
√

×

Scrambling in the
spatial domain

[WFL15], [UJN+07],
[PP12]

√
×

√

Scrambling in the
frequency domain [KE14]

√
×

√

Modify the
traditional
encryption
algorithm

[YPWSp+09],
[ZMK+07],

[KSHR10], [SZS04]

√ √
×

Selective encryption
in spatial domain [VDB02], [PSU02]

√
×

√

Selective encryption
in frequency domain

[KR], [VDB02],
[PR+05], [KJK10]

√
×

√

Scrambling and
encryption in spacial

domain

[GHG05], [GC08],
[WWLC11], [BYJ08]

√ √
×

Scrambling and
encryption in

frequential domain
[LDL12]

√
×

√

[AGA12]
√

∗
√

Based on
trustworthy server [RGO13]

√
×

√

[YKE15]
√ √ √

Steganography [TSBS13], [BGLL14]
√ √ √

Table 2.3: The comparison of related works.

∗ Possibly but should be proved.

2.4 Conclusion

In this chapter, we have introduced the basic theory of modern cryptography. From the theoretic
conceptions to the practical applications, we have a general understanding of modern cryptography.

We have also introduced the basic knowledge of digital image processing. We have presented
how to represent an image by using different color models. Moreover, we have introduced the
Discrete Cosine Transform which is a very important step in the coding process of JPEG standard.
Considering JPEG is the widely used standards for storing and compressing images, and that most
of image-sharing platforms are compressed by using JPEG standard, we have detailed the JPEG
compression processes.

Because the main objective of this thesis is to help the users to protect their privacy on the
existing image-sharing platforms by allowing them to encrypt their images, we have then presented
some related works about image encryption. The major existing solutions are either not IND-
CPA secure, or not compatible with publishing on image-sharing platforms. The only solutions
that are both IND-CPA secure and compatible with image-sharing platform either are based on a
trustworthy server or have a significant impact on the size of the images when encrypted.



2.4. CONCLUSION 41

In this thesis, we propose a IND-CPA secure encryption algorithm that preserves the JPEG format
so as to be able to publish the encrypted images on existing image-sharing platforms. Our encryp-
tion algorithm is a symmetric stream cipher : based on a PRNG, we generate a pseudo-random
numbers sequence from a seed and the secret key, this sequence being used to encrypt the DC and
AC coefficients in frequency domain. Besides preserving the JPEG format, we have to face another
challenge. Indeed, as [TSBS13, BGLL14] have found, some of the existing image-sharing platforms
perform post-uploading processing even if the uploaded images are in an appropriate format. And
this post-uploading processing partially modifies the DCT coefficient values of the uploaded images,
thus making impossible to correctly decrypt the downloaded image if the encryption algorithm does
not have appropriate mechanisms.

Using the proposed encryption algorithm, we define an architecture that allows users to share
their symmetric keys, and thus to specify access rights. The proposed architecture is based on a
trustworthy server that plays the role of Certification Authority and that is in charge of storing the
encrypted keys. Each user generates his/her own public and private keys and asks the trustworthy
server to certify its public key. When he/she publishes a encrypted image, he/she encrypts the
used secret key with the public keys of his/her friends to whom he/she want to grant access right.



42 CHAPTER 2. STATE OF THE ART



Chapter 3

The basic encryption algorithm

Contents
3.1 The algorithm description . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.2 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.1.3 Security of the Encryption Algorithm . . . . . . . . . . . . . . . . . . . 44

3.2 Integration of encryption in JPEG compression process . . . . . . . 45
3.2.1 Encryption Before DCT . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Encryption After DCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2.3 Encryption After Quantization . . . . . . . . . . . . . . . . . . . . . . . 52
3.2.4 Security of encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

In order to protect user’s privacy on the existing sharing platforms, we aim to encrypt the
image before publishing it. However, according to the existing methods we introduced in 2.3,
the encrypted result has to be viewed as a correct digital format by the image-sharing platforms.
Therefore, in this chapter, we propose an encryption algorithm and implement it at three different
steps of the JPEG compression process. All of them can preserve the JPEG image format after
encryption and we prove that this algorithm is IND-CPA secure.

3.1 The algorithm description
The main idea is to take all the coefficients that have to be encrypted to construct a sequence.
Then encrypt it using a pseudo-random sequence of the same length which is generated by the
function prf, and put the encrypted stream back.

Our encryption algorithm is symmetric. We use a pseudo-random function prf which takes a
value n as input and returns a pseudo-random value in the range [0, n[. This function is associated
with an initialization function prfinit that takes values key and seed as inputs, and allows to
initialize the function prf.

There are three functions in our encryption algorithm:

Key generation: key = KeyGen(λ) takes λ as input and returns a random value key of λ bits.

Encryption: C = Enc(I, key, seed) uses key and a random value seed to initialize the pseudo-
random function and generates a pseudo-random sequence. Then encrypts an image I using
this sequence. The result is encrypted image C.

Decryption: I ′ = Dec(C, key, seed) decrypts the encrypted image C using the pseudo-random
sequence which is initialized by key and the random value seed.

In the following subsections, we detail the encryption and decryption functions .

43



44 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

3.1.1 Encryption
The plaintext image I is in JPEG format. First of all, the function prfinit(key, seed) initializes the
pseudo-random function prf using random values key and seed.

1. Suppose that xc denotes the coefficient we want to encrypt and that the range of xc is
[−xcmin,+xcmax]. We note nxc = xcmin + xcmax + 1.

2. Each coefficient xc is encrypted as follow:

exc = (((xc+ xcmin) + prf(nxc)) mod nxc)− xcmin (3.1)

From the result, we make sure that each encrypted coefficient exc falls in the range [−xcmin,+xcmax].

Finally, by performing the above operations and the rest of JPEG compression processes, the
encrypted image C in JPEG format is obtained.

3.1.2 Decryption
First of all, we use the function prfinit(key, seed) with the two random values key and seed to
initialize the pseudo-random function prf.

1. Each encrypted coefficient exc falls in the range [−xcmin,+xcmax]. We note nxc = xcmin +
xcmax + 1.

2. exc is decrypted as follow:

dxc = (((exc + xcmin) + (nxc − prf(nxc))) mod nxc)− xcmin (3.2)

Finally, by performing the above operations and the rest of JPEG compression processes, the
decrypted image I ′ is obtained.

We can prove that, the decrypted image I ′ is equal to original image I, in other words, for all
xc, we have dxc = xc. The proof is as follow:

Proof.

dxc =(((exc + xcmin) + (nxc − prf(nxc))) mod nxc)− xcmin

=((((((xc+ xcmin) + prf(nxc)) mod nxc)− xcmin + xcmin)

+ (nxc − prf(nxc))) mod nxc)− xcmin

=((xc+ xcmin + prf(nxc) + nxc − prf(nxc)) mod nxc)

− xcmin

=((xc+ xcmin + nxc) mod nxc)− xcmin

=((xc+ xcmin) mod nxc)− xcmin

(3.3)

Because xc ∈ [−xcmin, xcmax] and nxc = xcmin + xcmax + 1,
therefore, xc + xcmin ∈ [0, nxc[. Then we have (xc + xcmin) mod nxc = xc + xcmin. Thus we can
prove that dxc = xc+ xcmin − xcmin = xc.

3.1.3 Security of the Encryption Algorithm
In our encryption algorithm, we use prfinit and prf functions to constitute a Pseudo Random
Number Generator (PRNG). The prfinit function initializes the PRNG and prf permits to have
pseudo random numbers from a long sequence of pseudo random bits thanks to prfinit.

Suppose that our PRNG is secure, which means that we cannot distinguish between the gener-
ated sequence of pseudo random bits and a sequence of real random bits of the same size.

In our encryption algorithm, we initialise the PRNG with prfinit(key, seed) where key and seed
are real random numbers. Then, for each coefficient xc of the image, we encrypt it as Eq. (3.1),
exc is the encrypted lcoefficient.



3.2. INTEGRATION OF ENCRYPTION IN JPEG COMPRESSION PROCESS 45

Theorem. If prf is secure then when our encryption algorithm encrypts one 8× 8 block of image,
it is IND-CPA secure.

Proof. If prf is a secure PRNG, we cannot distinguish between prf(nxc) and a real random number
according to the definition of a secure PRNG. Therefore, we can replace prf(nxc) by a real random
number r in Eq. (3.1), and the encryption equation becomes exc = (((xc+xcmin)+ r) mod nxc)−
xcmin where r is a real random number. This change affects the algorithm in a negligible manner.

Operations based on a real random number give a random number as result. We have exc = r′

where r′ is a random number. This change does not affect the algorithm.
We proved that, if prf is secure, encrypting a coefficient is equivalent to return a random

number. That is the definition of IND-CPA$ secure. In the general case, the image is processed
block by block (the typical block size is 8× 8). So our algorithm to encrypt the coefficients in each
8 × 8 block is IND-CPA$ secure. Because the attacker cannot distinguish the coefficients in one
block are encrypted or are random numbers, therefore the attacker cannot distinguish the block is
encrypted or this is a random block.

Besides, if an encryption algorithm is IND-CPA$ secure, then it is IND-CPA secure. Therefore,
our encryption algorithm is IND-CPA secure to encrypt a 8× 8 block of one image.

In the next section, we detail how to integrate this algorithm into three different steps of the
JPEG compression process, in order to ensure that the encrypted results are JPEG image, which
can be accepted by any image-sharing platforms.

3.2 Integration of encryption in JPEG compression process

As we presented above, we encrypt JPEG image and get a JPEG image as result. According to
us, the coefficients we want to encrypt can be in any steps of JPEG compression process. Based
on the concept of JPEG encoding in Sec 2.2.3, we implement our encryption algorithm at three
different steps of the JPEG compression process. The first one encrypts image before DCT in
spatial domain. The second one encrypts image after DCT in frequency domain. The third one
encrypts image after quantization. We detail them in this section, and experimental results are
presented to compare the three schemes. We use LibJPEG [G+98] to encode and decode JPEG
image, and all experiments were implemented in C/C++. As examples, we first take the grayscale
and the colour image “Lena” of 512× 512 pixels to do a detailed experiment, and then we take 10
grayscale images and 10 colour images of different sizes to do more tests.

We use the algorithm proposed in Sec. 3.1 to encrypt Y, Cb,Cr components respectively and the
method to encrypt each of them is the same as to encrypt a grayscale image. Therefore, in the next
subsections, we concisely present how to encrypt a grayscale image. In all experiments, we choose
two quantization tables to compress image with compression ratio Q=71 and Q=100 (as shown in
Fig. 3.1). We compare their runtime, Peak Signal to Noise Ratio (PSNR) and Universal Image
Quality Index (UIQI) [WB02], which are techniques to measure the image quality. PSNR is defined
via the Mean Squared Error (MSE), and it is worth mentioning that in all of our experiments, for
colour images the MSE is calculated by the sum of all squared value differences divided by image
size and then by three. For the UIQI calculation of colour image, we first convert the colour image
to grayscale image, and then use the defined formula to calculate its UIQI value. All the results of
“Lena” are summarized in Tab. 3.1 and Tab. 3.2, the average results of other images are explained
in Tab. 3.3.

Notice that the plaintext images are already in JPEG format, so we have to first decompress
the image to retrieve the bitmap.

3.2.1 Encryption Before DCT
In this scheme, we encrypt the pixels of image in spatial domain. We first decompress the image
just after the reverse DCT and apply the encryption. The range of coefficients we want to encrypt
is [−128, 127]. Because in spatial domain, there is no energy compaction property, if we only
encrypt a part of pixels in each block, the unencrypted parts are always visible (shown in Fig. 3.2).
Therefore, in order to ensure the security, we need to encrypt all the coefficients of the image using



46 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

Q
Runtime (ms) PSNR (dB) UIQI

Encryption Decryption

Compre-
ssion

without
encryp-

tion

After de-
cryption

Compre-
ssion

without
encryp-

tion

After de-
cryption

Encryption before DCT 71 89 64 47.7 33 0.9833 0.7054
100 71 61 Inf 55 1 0.9912

Encryption after DCT 71 35 32 47.7 34.7 0.9833 0.8715
100 31 31 Inf 35.1 1 0.9313

Encryption after quantization 71 19 10 47.7 35 0.9833 0.9217
100 29 13 Inf 35.1 1 0.9313

Table 3.1: Summary of the results for grayscale image “Lena”.

Q
Runtime (ms) PSNR (dB) UIQI

Encryption Decryption

Compre-
ssion

without
encryp-

tion

After de-
cryption

Compre-
ssion

without
encryp-

tion

After de-
cryption

Encryption before DCT 71 186 171 38.4 29.6 0.9154 0.6834
100 198 151 Inf 49.9 1 0.991

Encryption after DCT 71 73 65 38.4 33.3 0.9154 0.8279
100 82 64 Inf 35 1 0.8951

Encryption after quantization 71 44 21 38.4 34.4 0.9154 0.8752
100 25 22 Inf 35 1 0.8951

Table 3.2: Summary of the results for color image “Lena”.

Q
Grayscale image Color image

Average
PSNR
(dB)

Average
UIQI

Average
PSNR
(dB)

Average
UIQI

Compression without encryption 71 45.1 0.9561 42.3 0.9245
100 Inf 1 Inf 1

Encryption before DCT 71 16.4 0.4283 18.8 0.4641
100 29.3 0.9026 35.4 0.9307

Encryption after DCT 71 28.2 0.72 30.1 0.7059
100 30.9 0.8966 33.2 0.8937

Encryption after quantization 71 30.8 0.8598 33 0.8469
100 30.9 0.8966 33.2 0.8937

Table 3.3: Summary of the results for 20 other images.



3.2. INTEGRATION OF ENCRYPTION IN JPEG COMPRESSION PROCESS 47

(a) Q = 71. (b) Q = 100.

Figure 3.1: Quantization tables of grayscale image or luminance component of color image.

our encryption algorithm in spatial domain. Then we finish the compression process and obtain
the encrypted image in JPEG format.

(a) Original image (b) Unencrypted first 50 lines

(c) Unencrypted middle 50 lines (d) Unencrypted last 50 lines

Figure 3.2: Encrypt only parts of image before DCT.

During decryption, we decompress encrypted image just after the reverse DCT, and decrypt all
coefficients. Then we finish the compression process and obtain the decrypted image.

Fig. 3.3 shows an example of the resulting encrypted and decrypted images with Q = 71. A
part of the decrypted image is zoomed, and we notice that there are a lot of little specks distributed
in the images. According to our experiments of other 20 images, we find that there are a large
number of specks in some images.

As shown in Tab. 3.1 and Tab. 3.2, if Q=100, the decryption algorithm can reconstruct the
plaintext grayscale image with PSNR of 55 dB and with UIQI of 0.9912, and reconstruct the
plaintext color image with PSNR of 49.9 dB and with UIQI of 0.991. They are very high values
which mean the decrypted images are almost the same as the plaintext images. For Q = 71, the
value of PSNR is 33 dB for grayscale image and 29.6 dB for color image, which means there are
perceived distortions, but the quality is acceptable. The value of UIQI is 0.7054 for grayscale image
and 0.6834 for color image, which means based on the human visual system (HVS), the decrypted



48 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

image is similar to the original one, but has some distortions. If the original image is compressed
with compression ratio Q = 71, the PSNR value is 47.7 dB for grayscale image and 38.4 dB for
color image, the UIQI value is 0.9833 for grayscale image and 0.9154 for color image. Comparing
them with the values of PSNR and UIQI after decryption, there is a gap but not too large. The
runtime of this scheme is around 60∼90 ms for grayscale image and 150∼200 ms for color image
on an Intel i7 laptop, which is already a very efficient encryption.

We do more analyses for 10 grayscale images and 10 color images using this scheme, the average
values of PSNR and UIQI are given in Tab. 3.3. If Q = 100, the average PSNR value of 10 grayscale
images is 29.3 dB, which is not a high value, but the average UIQI value is 0.9026, meaning that
the visual quality of these images is high. For 10 color images the average PSNR value is 35.4 dB
and the average UIQI value is 0.9307, which means the visual quality is high. If Q = 71, for 10
grayscale images the average PSNR value is 16.4 dB, which is extremely poor, and the average
UIQI value is 0.4283 which is only acceptable. For 10 color images the PSNR value is 18.8 dB
and the UIQI value is 0.4641, which also means the quality is just acceptable. If the original
image is only compressed with compression ratio Q = 71, the average PSNR value is 45.1 dB for
10 grayscale images and is 42.3 dB for 10 color images; the average UIQI value is 0.9561 for 10
grayscale images and is 0.9245 for 10 color images. Comparing them with the value of PSNR and
UIQI after decryption, the gap is large.

(a) Original image (b) Encrypted image

(c) Decrypted image

Figure 3.3: Experimental results of encryption before DCT.

Therefore, we conclude that encryption before DCT cannot reconstruct the plaintext image with
a high quality. And what’s more, because in each block, we have to encrypt all the 64 coefficients
to ensure the security, so this scheme is not efficient enough.

3.2.2 Encryption After DCT

Then we consider to integrate the encryption into the frequency domain. The first choice is
the encryption after DCT. In this scheme, we first decompress the image just before the reverse
DCT. The image is split into 8 × 8 blocks. If Xi,j denotes a DCT coefficient of one 8 × 8 block
(i, j ∈ [0, 7]), the two-dimensional 8 × 8 DCT transform can be expressed as X = F × x × FT ,



3.2. INTEGRATION OF ENCRYPTION IN JPEG COMPRESSION PROCESS 49

where xu,v ∈ [−128, 127] (u, v ∈ [0, 7]) is the coefficient before DCT, and F is a matrix:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
√
2

1
2
√
2

1
2
√
2

· · · 1
2
√
2

1
2cos

π
16

1
2cos

3π
16

1
2cos

5π
16 · · · 1

2cos
15π
16

1
2cos

2π
16

1
2cos

6π
16

1
2cos

10π
16 · · · 1

2cos
30π
16

...
...

...
. . .

...

1
2cos

7π
16

1
2cos

21π
16

1
2cos

35π
16 · · · 1

2cos
105π
16

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

F0

F1

F2

...

F7

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Fi is the vector composition of each row of F . Then Xi,j = Fi × x × FT
j = x · Gi,j , where Gi,j

denotes FT
i × Fj , and it is a constant matrix 1. Because the range of xu,v is [−128, 127], so if we

want to obtain the maximum value of Xi,j , we define the element of x in corresponding position
as 127 when the element of Gi,j is positive, and as −128 when the element of Gi,j is negative. On
the contrary, to get the minimum value, we define the corresponding element of x as −128 when
the element of Gi,j is positive, and as 127 when the element of Gi,j is negative. In this way, we
calculate the range of all 8× 8 coefficients (shown in Fig. 3.4). In the following, the range of DCT
coefficients we want to encrypt Xi,j is [Xmini,j , Xmaxi,j ].

(a) The minimum values

(b) The maximum values

Figure 3.4: The range of DCT coefficients in one block.

The encryption is implemented block by block and each block is represented as a matrix.
Remember that the human eye is more sensitive to lower frequencies than to higher frequen-
cies [FMBD08]. Therefore, we try to only encrypt the lower frequency coefficients to reduce the
calculation. But we need to do some test to decide how many coefficients to encrypt.

When we do the test, we encrypt selective coefficients and set the remaining coefficients to
0, in order to ensure that the attackers can only obtain encrypted coefficients. After encryption,
the encrypted DCT block is quantized and entropy encoded, and the compression quality impact
the results of encryption and decryption because of the roundoff error of quantization. During
decryption, we decompress encrypted image just before the reverse DCT, and only decrypt the DC
coefficient and the chosen AC coefficients according to the “zigzag” order block by block. Here, we
choose Q = 71 and Q = 100 to do the test. We list some typical encryptions in Tab. 3.4 about
their runtime, PSNR and UIQI values through comparing the original image and the decrypted
image.

First, we only encrypt DC coefficient (results are shown in Fig. 3.5(a), 3.5(b)). The encrypted
result is obscure, but the recovered image has a very poor quality (PSNR value is only 23.7 dB).
And what’s more, considering that DC coefficient contains the most relevant information and is

1“ ·” means dot product: it is the sum of the products of the corresponding elements of the two matrices.



50 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

Q=71 Q=100
Encrypted
coefficients Runtime (ms) PSNR

(dB) UIQI Runtime (ms) PSNR
(dB) UIQI

Enc Dec Enc Dec
DC 6.9 5.4 23.71 0.3224 7.2 5.4 23.71 0.3272

DC+2AC 7.5 6.0 27.44 0.6022 7.9 6.3 27.46 0.6215
DC+5AC 8.4 6.8 30.03 0.7281 8.3 7.3 30.12 0.7698
DC+9AC 9.7 8.0 32.19 0.7837 9.6 8.9 32.48 0.8670
DC+14AC 10.6 9.6 34.12 0.7867 11.0 10.5 35.12 0.9313
DC+20AC 12.3 12.0 34.52 0.7304 12.6 12.2 37.86 0.9681
DC+27AC 12.9 14.0 32.17 0.6159 14.0 14.5 40.94 0.9848
DC+44AC 16.7 19.0 26.05 0.4176 18.3 20.0 52.48 0.9970
DC+63AC 21.4 24.5 21.36 0.2841 23.6 25.2 Inf 1

Table 3.4: Summary of the results of encrypting different coefficients after DCT.

(a) Encrypt DC (b) Decrypt DC (c) Encrypt DC+9AC (d) Decrypt DC+9AC

(e) Encrypt DC+14AC (f) Decrypt DC+14AC (g) Encrypt DC+20AC (h) Decrypt DC+20AC

(i) Encrypt DC+63AC (j) Decrypt DC+63AC

Figure 3.5: Typical results of encrypting and decrypting different coefficients after DCT (Q = 71).



3.2. INTEGRATION OF ENCRYPTION IN JPEG COMPRESSION PROCESS 51

highly predictable, only encrypting DC coefficient is not secure. Therefore, we increase the number
of encrypted AC coefficients. When we encrypt DC and the first 2 AC coefficients, the encrypted
image is still invisible. However, we lose too many details in the recovered image. Then we encrypt
more AC coefficients, until all 63 AC coefficients are encrypted. Some typical results are shown in
Fig. 3.5. We can find that when we encrypt DC coefficient and 9 AC coefficients, the recovered
image is already similar to the original image with enough details. Then if Q = 100, the more AC
coefficients are encrypted, the better quality the recovered image has. But on the other hand, the
more time it takes. If Q = 71, after encrypting 20 AC coefficients, the quality begins to reduce.
Therefore, encrypting 9, 14 or 20 AC coefficients are the three best options.

While Q = 71, the PSNR value of encrypting 14 AC coefficients is better than encrypting 9 AC
coefficients, but the UIQI value is almost the same. Although encrypting 14 AC coefficients takes
1 ms longer, considering encrypting more AC coefficients, we can keep more details of image, we
prefer encrypting 14 AC coefficients. The PSNR value of encrypting 20 AC coefficients is better
than encrypting 14 AC coefficients, but the UIQI value is worse. And encrypting 20 AC coefficients
takes 2 ms longer. Therefore, considering the quality of recovered image and the efficiency of
algorithm, we prefer encrypting 14 AC coefficients.

After the test, we decide only encrypt the DC coefficient and the first 14 AC coefficients
according to “zigzag” order and set the remaining coefficients to 0 as described in matrix (3.4).
In this way, we reduce the calculation and ensure the security. Then the encrypted DCT block is
quantized with Q = 71 or Q = 100 and entropy encoded. The decryption is inverse operation.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

edc eac1 eac5 eac6 eac14 0 0 0
eac2 eac4 eac7 eac13 0 0 0 0
eac3 eac8 eac12 0 0 0 0 0
eac9 eac11 0 0 0 0 0 0
eac10 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

Fig. 3.6 shows the resulting encrypted and decrypted images with Q = 71. A part of decrypted
image is zoomed, and we find that there is few specks in the image. For other 20 images, we have
the same conclusion.

(a) Original image (b) Encrypted image

(c) Decrypted image

Figure 3.6: Experimental results of encryption after DCT.



52 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

As shown in Tab. 3.1 and Tab. 3.2, if compression ratio is Q = 71, the decryption algorithm
can reconstruct the plaintext grayscale image with PSNR of 34.7 dB and with UIQI of 0.8715, and
reconstruct the plaintext color image with PSNR of 33.3 dB and with UIQI of 0.8279. They are
higher than the PSNR and UIQI values of first scheme with Q = 71, which means the decrypted
image is more similar to the plaintext image. If Q = 100, the value of PSNR is 35.1 dB for grayscale
image and 35 dB for color image, the value of UIQI is 0.9313 for grayscale image and 0.8951 for
color image. They are high values which mean the decrypted image is very similar to the plaintext
image. The gap between the values of PSNR and UIQI after compression without encryption
and the values after decryption is smaller than the first scheme. The runtimes of encryption and
decryption are around 30 ms for grayscale image and 60∼80 ms for color image, it takes less time
than the encryption before DCT. So this scheme is more efficient than the first one.

We do more analyses for 10 grayscale images and 10 color images using this scheme, the average
values of PSNR and UIQI are given in Tab. 3.3. If Q = 100, for 10 grayscale images the average
PSNR value is 30.9 dB and the average UIQI value is 0.8966; for 10 color images the average PSNR
value is 33.2 dB and the average UIQI value is is 0.8937. It means that the decrypted image is
similar to the original one, but has some distortions. If Q = 71, for 10 grayscale images the average
PSNR value is 28.2 dB and the average UIQI value is 0.72; for 10 color images the average PSNR
value is 30.1 dB and the average UIQI value is 0.7059. They are higher than the PSNR and UIQI
values of first scheme. The gap between the values of PSNR and UIQI after compression without
encryption and the values after decryption is smaller than the first scheme.

Therefore, we can conclude that this scheme can reconstruct the plaintext image with a higher
quality than the first one. We only encrypt 15 coefficients in this scheme, so it is more efficient
than encryption before DCT. But it still cannot reconstruct a highest quality image.

3.2.3 Encryption After Quantization
Another choice to integrate the encryption into the frequency domain is after quantization. In
this scheme, we first decompress the image just before the dequantization and re-quantize it. The
image is split into 8× 8 blocks and the DCT coefficients of one 8× 8 are quantized as following:

Qi,j = round(
Xi,j

q(i, j)
) (3.5)

Where Xi,j are the unquantized DCT coefficients of one 8× 8 block (i, j ∈ [0, 7]), Qi,j are the
quantized DCT coefficients of one 8× 8 block (i, j ∈ [0, 7]). The range of quantized coefficients is

[
round

(
Xmini,j

q(i, j)

)
, round

(
Xmaxi,j

q(i, j)

)]
.

Where q(i, j) are the elements of the quantization table (i, j ∈ [0, 7]). The encryption is im-
plemented block by block and each block is represented as a matrix. As for the encryption after
DCT, considering the energy compaction property, we need to do some test to decide how many
coefficients we have to encrypt .

When we do the test, we encrypt selective coefficients and set the remaining coefficients to 0,
in order to ensure that the attackers can only obtain encrypted coefficients. After encryption, the
encrypted quantized DCT block is entropy encoded. The compression quality of re-quantization
during the encryption impact the results. During decryption, we decompress encrypted image just
before the dequantization, and only decrypt the DC coefficient and the first 14 AC coefficients
according to the “zigzag” order block by block. Notice that, when the compression quality is
Q = 100, this scheme is the same as the encryption after DCT. So, we only list some typical
encryptions of Q = 71 in Tab. 3.5 about their runtime, PSNR and UIQI values through comparing
the original image and the decrypted images.

According to the test results, we still find that only encrypting DC coefficient cannot provide
the recovered image with a high quality. Therefore we increase the number of encrypted AC
coefficients, from 1 to 63. Some typical results are shown in Fig. 3.7. We find that the more AC
coefficients are encrypted, the better quality the recovered image has. But on the other hand, the
more time it takes. After encrypting 9 AC coefficients, the recovered image is already similar to



3.2. INTEGRATION OF ENCRYPTION IN JPEG COMPRESSION PROCESS 53

Encrypted Runtime (ms) PSNR
(dB) UIQI

coefficients Enc Dec
DC 7.5 2.1 23.71 0.3267

DC+2AC 8.2 2.9 27.46 0.6197
DC+5AC 8.3 3.2 30.10 0.7666
DC+9AC 9.5 4.2 32.44 0.8606
DC+14AC 11.0 6.2 35.00 0.9217
DC+20AC 12.3 6.1 37.56 0.9562
DC+27AC 14.0 7.9 40.26 0.9721
DC+44AC 17.7 9.4 46.67 0.9827
DC+63AC 22.3 12.6 47.71 0.9833

Table 3.5: Summary of the results of encrypting different coefficients after quantization (Q=71).

(a) Encrypt DC (b) Decrypt DC (c) Encrypt DC+9AC (d) Decrypt DC+9AC

(e) Encrypt DC+14AC (f) Decrypt DC+14AC (g) Encrypt DC+20AC (h) Decrypt DC+20AC

(i) Encrypt DC+63AC (j) Decrypt DC+63AC

Figure 3.7: Typical results of encrypting and decrypting different coefficients after quantization
(Q = 71).



54 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

the original image with enough details. But considering the trade-off among the efficiency and
the quality of recovered image, we prefer encrypting DC and the first 14 AC coefficients. Because
although encrypting 14 coefficients takes 2 ms longer, the PSNR and UIQI values of encrypting
14 AC coefficients are 35.00 dB and 0.9217 which are better than encrypting 9 AC coefficients.
For encrypting 20 coefficients, the PSNR and UIQI values are 37.56 dB and 0.9562, which are
only a little higher than encrypting 14 coefficients. In fact, the recovered images of encrypting 14
coefficients have an enough good quality for us, and the encryption is more efficient.

After the test, we decide only encrypt the DC coefficient and the first 14 AC coefficients
according to “zigzag” order and set the remaining coefficients to 0 as described in matrix (3.4).Then
the encrypted quantized DCT block is entropy encoded. The decryption is inverse operation.

Fig. 3.8 shows the resulting encrypted and decrypted images with Q = 71. A part of decrypted
image is zoomed, and we find that there is no visible noise distributed in the images. For other 20
images, we have the same conclusion.

As shown in Tab. 3.1 and Tab. 3.2, if compression ratio is Q = 71, the decryption algorithm
can reconstruct the plaintext grayscale image with PSNR of 35dB and with UIQI of 0.9217, and
reconstruct the plaintext color image with PSNR of 34.4 dB and with UIQI of 0.8752, which are
higher than the first and the second ones. That means the decrypted image is the most similar to
the plaintext image. If Q=100, the results are the same as in second scheme. The gap between the
values of PSNR and UIQI after compression without encryption and the values after decryption is
the smallest one. For Q = 71, the runtime of encryption and decryption are 19 ms and 10 ms for
grayscale image and 44 ms and 21 ms for color image, it takes a little less time than the encryption
after DCT. For Q = 100, even though it has the same encrypted result as the second method, the
runtime of encryption and decryption are less than the second one, which are 29 ms and 13 ms for
grayscale image and 25 ms and 22 ms for color image. So this scheme is the most efficient one.

We do more analyses for 10 grayscale images and 10 color images using this scheme, the average
values of PSNR and UIQI are given in Tab. 3.3. If Q = 100, the average PSNR and UIQI values
are the same as in the second scheme. If Q = 71, for 10 grayscale images the average PSNR value
is 30.8 dB and the average UIQI value is 0.8598; for 10 color images the average PSNR value is
33 dB and the average UIQI value is 0.8469. They are higher than the PSNR and UIQI values of
first and second schemes, which means the decrypted image is the most similar to the plaintext
image. The gap between the values of PSNR and UIQI after compression without encryption and
the values after decryption is the smallest. So we can conclude that this scheme is the best one to
reconstruct the plaintext image.

In this scheme, we can conclude that although the same number of coefficients are encrypted
as the second scheme, it takes fewer time. Therefore, compared with the encryption before DCT
and encryption after DCT, this scheme is the best one to reconstruct the plaintext image and the
most efficient one.

3.2.4 Security of encryption scheme
We use the third scheme to encrypt a black image and a white image, the encrypted results are
shown in Fig. 3.9. From the result we can conclude that the attacker cannot distinguish these two
images are the encrypted images or juste random images. Therefore in this case, our encryption
algorithm is IND-CPA$ secure. If we encrypt two images with the same size and the same chroma
(the grayscale image or the colour image), the attacker cannot distinguish the original images from
two encrypted images. And in this case, our encryption algorithm is IND-CPA secure. But in any
case, we assume that the attacker does not use the metadata to distinguish the images.

3.3 Conclusion

In this chapter, we first propose an encryption algorithm and prove that it is IND-CPA secure.
Then in order to preserve the image format (JPEG format), we integrate this algorithm into three
different steps of JPEG compression process: before DCT, after DCT and after quantization.
In this way, the encrypted results are JPEG images and can be accepted by any image-sharing
platforms.



3.3. CONCLUSION 55

(a) Original image (b) Encrypted image

(c) Decrypted image

Figure 3.8: Experimental results of encryption after quantization.

(a) The encrypted black image (b) The encrypted white image

Figure 3.9: Security of our encryption scheme.



56 CHAPTER 3. THE BASIC ENCRYPTION ALGORITHM

We introduce how to apply the algorithm in three different steps of JPEG compression process
and test the impact of the number of encrypted coefficients on encrypted results. Especially in
frequency domain, there is energy compaction property. We encrypt the most appropriate number
of coefficient chosen by the test. Compared the results of the three schemes, we consider that
the encryption after quantization is the best one to reconstruct the plaintext image and the most
efficient one.

In the next chapter, we apply the encryption scheme after quantization on some image-sharing
platforms to verify whether it can be used to protect the image published on different image-sharing
platforms.



Chapter 4

Experimentations on the
image-sharing platforms

Contents
4.1 Analysis of image-sharing platforms . . . . . . . . . . . . . . . . . . . 57

4.1.1 Image Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.1.2 Quantization Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.1.3 Downsampling Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Experimental results of basic encryption algorithm on image-sharing
platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.1 Positive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2.2 Negative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Analysis of negative results . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.1 Analysis of the downloaded images . . . . . . . . . . . . . . . . . . . . . 62
4.3.2 Upload Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

In this chapter, we apply the best scheme which is proposed in the previous chapter on several
widely used image-sharing platforms. However, in order to provide sufficient information for our
experiments, first of all, we analyze and get to know about the characteristics of several widely
used image-sharing platforms. Then we apply the scheme after quantization on different platforms
and analyze the experimental results. According to the results, we have found that the some
of the existing image-sharing platforms performs post-processing to the published images, and
our proposed basic encryption algorithm can be used to protect the privacy on Flickr, Pinterest,
Google+ and Twitter.

4.1 Analysis of image-sharing platforms

We aim to use the encryption algorithm to encrypt images and publish the results on some image-
sharing platforms to verify whether they can be accepted by different platforms, and then download
and decrypt them to analyze the results. But before uploading the encrypted images to the
image-sharing platforms, we should firstly know about the characteristics of these platforms. For
instance, we need to know what is the maximum image size they can accept, and what is the image
compression quality they limit, etc. In this section, we analyze some image-sharing platforms and
summarize their characteristics, which provide sufficient information for our following experiments.

We choose the six most widely used image-sharing platforms, i.e. Facebook 1, Flickr 2, Pin-

1https://www.facebook.com
2https://www.flickr.com

57



58 CHAPTER 4. EXPERIMENTATIONS ON THE IMAGE-SHARING PLATFORMS

terest 3, Google+ 4, Twitter 5, Instagram 6 and two Chinese image-sharing platforms: Weibo 7

and Wechat 8. In order to analyze these platforms, we prepare a set of images with different sizes,
different compression qualities and different downsampling ratios. One account is created in each
platform to upload the prepared images, another account is created to download the images.

All the tests and analyses of platforms – except for Instagram and Wechat – were done on OS X
10.10 with Safari browser. We upload prepared images to these platforms and use another account
to download them. Comparing original images and downloaded images, we analyze whether the
platforms change the size, the quantization table or the downsampling ratio and what are the
values after change.

For Instagram and Wechat, we can only use their applications for smartphone to publish images.
The test environment for smartphone is iOS 9.1. The version of Instagram is 7.12.0. The version of
Wechat is 6.3.7. We first send the prepared images via a lossless way, i.e. e-mail or “Dropbox”, to a
smartphone. In this way, images are not processed before being published. Then we upload images
to Instagram and Wechat using their native smartphone applications. For Instagram, we login with
another account on a laptop to download the images and then compare them with the original ones
on the laptop as well. For Wechat, we use another account on smartphone to download the images
and send them back to laptop via a lossless way. Then we compare them with the original images
on the laptop to analyze which parameters are changed.

Most of image-sharing platforms we test resize the published images with a limitation image
size, requantize the published images with a standard quantization table, and for color images,
use a standard downsampling ratio. In the following subsections, we detail their limitations and
summarize the values in Tab. 4.1.

Platform Image size Compression
quality

Downsampling
ratio

Facebook 2048 71 4:2:0
Flickr - - -

Pinterest - - -
Google+ 2048 * 4:2:0
Twitter 600(Width) 75 4:2:0

Instagram * * 4:2:0
Weibo 1024 95 -
Wechat 1280 * 4:2:0

Table 4.1: Performances of platforms.
- No change of the original image information
* There is change but no fixed value or the value is special

4.1.1 Image Size

Facebook and Google+ resize the images with a fixed size, and the widest side of image does not
exceed 2048 pixels. Weibo limits the widest side to 1024 and Wechat to 1280. Twitter only limits
the width of image to 600. Flickr and Pinterest do not limit the image size. Instagram limits the
image size but there is no fixed size. However, we find that if we upload an image of 640 × 640
pixels, the image size is not changed after downloading.

3https://www.pinterest.com
4https://plus.google.com
5https://twitter.com
6https://www.instagram.com
7http://www.weibo.com
8http://www.wechat.com



4.2. EXPERIMENTAL RESULTS OF BASIC ENCRYPTION ALGORITHM ON IMAGE-SHARING PLATFORMS59

4.1.2 Quantization Table
It is worth mentioning that, the compression quality value we describe here represents the quanti-
zation tables calculated by the standard default tables that used by the IJG (Independent JPEG
Group) code library. Facebook requantizes the published images using the quantization tables of
Q = 71. Flickr and Pinterest do not limit compression quality. Google+ does not limit the com-
pression quality if the image size is smaller than 2048; if the size is larger than 2048, it recompresses
the image but there is no fixed quantization table. Twitter and Weibo limit the compression quality
only if the quality is larger than the fixed one. Instagram recompresses the images but for each
limit size there is a fixed quantization table. For instance, the quantization tables for the image of
640 × 640 pixels are shown in Fig. 4.1. Wechat has fixed quantization tables, which are shown in
Fig. 4.2, but they are not scaled by the standard default tables.

(a) Luminance table (b) Chrominance table

Figure 4.1: Fixed quantization tables of Instagram for image of 640× 640 pixels.

(a) Luminance table (b) Chrominance table

Figure 4.2: Fixed quantization tables of Wechat.

We try to limit the size of an image to the fixed one of each image-sharing platform, and upload
this image with Q = 71 to these image-sharing platforms, except for Instagram and Wechat. For
Instagram, we quantize an image using its quantization tables for image of 640 × 640 pixels. For
Wechat, we limit the size of image and quantize it using its own fixed quantization tables. In any
case, we find that the quantization tables are not changed after downloading the image.

4.1.3 Downsampling Ratio
Flickr, Pinterest and Weibo do not limit the downsampling ratio of color images, the others change
the downsampling ratio to 4 : 2 : 0 for color images. If we upload a color image with downsampling
ratio 4 : 2 : 0 to these image-sharing platforms, we find that the ratio is not changed after
downloading.

4.2 Experimental results of basic encryption algorithm on
image-sharing platforms

According to the analyses above, we have implemented the encryption algorithm after quantization
and upload the encrypted images to the six most widely used image-sharing platforms and two
Chinese image-sharing platforms. Then we have downloaded and decrypted them. In this section,
we detail the experimental processes and present the experimental results. We have used LibJPEG



60 CHAPTER 4. EXPERIMENTATIONS ON THE IMAGE-SHARING PLATFORMS

to encode and decode JPEG image, and all experiments were implemented in C/C++. As examples,
we first take the grayscale and the color image “Lena” of 512×512 pixels to do a detailed experiment,
since this size is accepted by all platforms. Then we take five grayscale images and five color images
of different sizes from 400× 600 pixels to 2736× 3648 pixels to do more tests.

The encryption is implemented on the laptop before uploading. Before encryption, we resize
prepared images to the limitation image size of each platform and change the downsampling ratio
for color images to 4 : 2 : 0. Then we requantize the images using quantization tables of Q = 71
(shown in Fig. 4.3) for all platforms except for Wechat and Instagram. For Wechat, we requantize
the images using its own quantization tables (Fig. 4.2). For Instagram, remember that for each
image size there is a standard quantization table. Thus we first resize prepared images to 640×640
pixels and choose the quantization tables for image of 640 × 640 pixels to requantize the images
(Fig. 4.1). We have verified that, in this way, these parameters of prepared images are not changed
before and after publishing on each image-sharing platform.

(a) Luminance table (b) Chrominance table

Figure 4.3: Quantization tables of Q = 71.

All the prepared images are encrypted by using the algorithm described in section 3.2.3. Next,
we upload and download the encrypted images, as described in Sec. 4.1. Then the decryption is
implemented on the laptop and we obtain the decrypted images. For comparing original images
and decrypted images, we calculate their PSNR and UIQI.

According to the experiments, all of the encrypted images are completely unreadable, and when
we upload the encrypted images, all of them are accepted by the image-sharing platforms as correct
image format. But when we download and decrypt the images, we find that there are two types of
results: positive results and negative results. As positive results, the recovered images have pretty
high quality. As negative results, the quality of recovered images is extremely poor. In the next
subsections, we present these two types of results.

4.2.1 Positive Results
If we publish the encrypted images on Flickr, Pinterest Google+ and Twitter, the recovered images
have high quality. We summarize the results of “Lena” in Tab. 4.2, and the average results of
other images in Tab. 4.3. We also present in these tables the PSNR and UIQI values of decryption
without publishing the encrypted images. Then Fig. 4.4 shows the decrypted results of “Lena”
after downloading from different image-sharing platforms. We find that the decryption algorithm
can reconstruct the downloaded images with a high quality and there is no visible noise in images.
Comparing with the decrypted images without publishing, they are very similar. For the other ten
images, we have the same conclusion.

As shown in Tab. 4.2 and Tab. 4.3, on these four image-sharing platforms, the PSNR values
are around 31∼35 dB, and the UIQI values are around 0.7∼0.9, which means the recovered images
are similar to the original ones, although there are few losses. If we directly decrypt the encrypted
images without publishing them, the PSNR values are around 31∼35 dB, and the UIQI values are
around 0.7∼0.9. Comparing them with the values of PSNR and UIQI after publishing, the gap is
very narrow and almost to vanishing point.

4.2.2 Negative Results
If we publish the encrypted images on Facebook, Instagram, Weibo and Wechat, the recovered
images have very poor quality. We summarize the results of “Lena” in Tab. 4.4, and Fig. 4.5 shows



4.2. EXPERIMENTAL RESULTS OF BASIC ENCRYPTION ALGORITHM ON IMAGE-SHARING PLATFORMS61

Platform Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Flickr 34.92 0.922 34.42 0.875
Pinterest 34.92 0.922 34.42 0.875
Google+ 34.92 0.922 32.47 0.870
Twitter 34.92 0.922 34.26 0.877

Decryption
without

publishing
34.92 0.922 34.42 0.875

Table 4.2: Summary of the positive results of “Lena”.

Platform Grayscale image Color image
Average
PSNR
(dB)

Average
UIQI

Average
PSNR
(dB)

Average
UIQI

Flickr 31.34 0.795 33.66 0.780
Pinterest 31.34 0.795 33.66 0.780
Google+ 30.90 0.853 32.69 0.851
Twitter 30.43 0.871 31.05 0.870

Decryption
without

publishing
31.34 0.795 33.66 0.780

Table 4.3: Summary of the positive results of 10 other images.

(a) Flickr: grayscale
image.

(b) Flickr: color im-
age.

(c) Pinterest:
grayscale image.

(d) Pinterest: color
image.

(e) Google+:
grayscale image.

(f) Google+: color
image.

(g) Twitter:
grayscale image.

(h) Twitter: color
image.

Figure 4.4: Positive experimental results of decrypted images after publishing on different plat-
forms.

the decrypted results of “Lena” after downloading from the image-sharing platforms. We find that
the decryption algorithm cannot reconstruct the downloaded images. For the other ten images, we
have the same conclusion that the recovered images are still obscure and we only can recognize the
outline.

As shown in Tab. 4.4, on these four image-sharing platforms, the values of PSNR and UIQI are
smaller than 10 dB and 0.1, which means the quality of recovered images is extremely poor.



62 CHAPTER 4. EXPERIMENTATIONS ON THE IMAGE-SHARING PLATFORMS

Platform Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Facebook 8.39 0.028 7.05 0.018
Instagram 8.31 0.022 7.17 0.014

Weibo 8.37 0.028 7.00 0.019
Wechat 8.35 0.026 7.20 0.016

Table 4.4: Summary of the negative results of “Lena”.

(a) Facebook:
grayscale image.

(b) Facebook: color
image.

(c) Instagram:
grayscale image.

(d) Instagram: color
image.

(e) Weibo: grayscale
image.

(f) Weibo: color im-
age.

(g) Wechat:
grayscale image.

(h) Wechat: color
image.

Figure 4.5: Negative experimental results of decrypted images after publishing on different plat-
forms.

4.3 Analysis of negative results

In this section, in order to understand why the images cannot be reconstructed after being published
on some image-sharing platforms, we analyze the experimental results in section 4.2 and simulate
the processes after uploading.

4.3.1 Analysis of the downloaded images
According to the experimental results in section 4.2, we find that the images cannot be recon-
structed with a high quality after being published on Facebook, Instagram, Weibo and Wechat.
However, verifying image size, quantization table and downsampling ratio of image, they are not
changed before uploading and after downloading. So we want to know what changes happen to
the image before uploading and after downloading.

First we take Facebook for example, and analyze the first 8× 8 block of grayscale “Lena”.
For a JPEG compression of Q = 71, the original first block before dequantization is:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.1)



4.3. ANALYSIS OF NEGATIVE RESULTS 63

After encryption, the block becomes:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

71 75 18 43 5 0 0 0
21 −27 84 1 0 0 0 0
−30 105 −78 0 0 0 0 0
60 −71 0 0 0 0 0 0
−40 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.2)

Then we upload grayscale “Lena” to Facebook and download it. The first 8× 8 block becomes:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

46 32 21 19 1 −2 −1 0
−4 −15 24 3 −6 0 0 −1
8 42 −36 −6 1 −1 0 1
24 −16 −8 6 1 0 1 −1
−12 −5 4 2 1 0 −1 0
−2 2 0 1 −1 0 0 −1
1 0 1 −1 1 0 −1 0
−1 0 −1 1 0 −1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.3)

Compared with the block (4.2), the coefficients are totally changed. After decryption, the block
becomes: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −42 4 −24 −4 0 0 0
−24 12 −60 2 0 0 0 0
37 −63 42 0 0 0 0 0
−36 55 0 0 0 0 0 0
28 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.4)

It is different from the original block (4.1), thus the image cannot be reconstructed correctly. We
do the same test on Instagram, Weibo and Wechat, and we have the same results: the blocks before
uploading and after downloading are different. Therefore, image-sharing platforms like Facebook
process the images during publishing in a way we do not take into account.

Then we take Flick for example. After downloading the encrypted grayscale “Lena”, the first
8× 8 block is: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

71 75 18 43 5 0 0 0
21 −27 84 1 0 0 0 0
−30 105 −78 0 0 0 0 0
60 −71 0 0 0 0 0 0
−40 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.5)

Compared with the block (4.2), the coefficients have no changes. After decryption, the block
becomes: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

28 1 1 0 0 0 0 0
1 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.6)



64 CHAPTER 4. EXPERIMENTATIONS ON THE IMAGE-SHARING PLATFORMS

It is the same as the original block (4.1), thus the reconstructed image has a high quality.
We can conclude that if we set appropriate parameters for images to be uploaded, image-sharing
platforms like Flickr do not process the image during publishing.

4.3.2 Upload Simulation
According to the examples above, we find that for the image-sharing platforms like Facebook, the
coefficients of image are different before uploading and after downloading, but the image-sharing
platforms like Flickr do not have this problem. Therefore, we try to simulate the process that
image-sharing platforms like Facebook possibly do during publishing. We still take the first 8× 8
block of grayscale “Lena” for example.

We suppose when we upload an image to image-sharing platforms like Facebook, even if all the
parameters of image are the fixed ones which are mentioned in section 4.1, these image-sharing
platforms carry out the complete processes of JPEG compression and decompression. Therefore,
while the encrypted image is uploaded, the dequantization and reverse DCT are firstly applied,
and the first block of “Lena” becomes:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

253 139 44 51 99 95 34 −22
423 260 92 34 52 58 30 1
454 246 13 −90 −70 −13 29 50
266 66 −145 −205 −119 18 134 201
114 −24 −134 −95 60 225 342 401
127 67 61 164 296 357 340 307
160 152 198 286 295 145 −96 −273
132 144 199 242 133 −192 −608 −894

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.7)

Remember that, after reverse DCT, the range of coefficients is [−128, 127]. But we find that in
block (4.7), there are many values exceed this interval, they should be set to −128 or 127. Then
this block becomes: ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

127 127 44 51 99 95 34 −22
127 127 92 34 52 58 30 1
127 127 13 −90 −70 −13 29 50
127 66 −128 −128 −119 18 127 127
114 −24 −128 −95 60 127 127 127
127 67 61 127 127 127 127 127
127 127 127 127 127 127 −96 −128
127 127 127 127 127 −128 −128 −128

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.8)

Now we apply DCT and quantization with Q = 71, the block becomes:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

46 32 21 19 1 −2 −1 0
−4 −15 24 3 −6 0 0 −1
8 43 −36 −6 1 −1 0 1
24 −16 −8 6 1 0 1 −1
−12 −5 4 2 1 0 −1 0
−2 2 1 1 −1 0 0 −1
1 0 1 −1 1 0 −1 0
−1 0 −1 1 0 −1 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4.9)

We can clearly see that this block is almost the same as (4.3) which is the first 8 × 8 block of
the downloaded image from Facebook, except for certain values. That is because of the roundoff
error when the DCT, reverse DCT and quantization are applied.

Due to the losses after reverse DCT, the block after downloading is different from the original
block and the recovered image has a poor quality. Besides the resetting of coefficients after reverse
DCT and the roundoff error of quantization, when color image is converted from YCbCr into
RGB color space, results of conversion need to be rounded to the nearest integer value, so there is
roundoff error as well. The range of RGB pixels is [0, 255], so just like the resetting after reverse
DCT, any values exceed this interval should be set to 0 or 255. In this way, while the color space
is converted back, we cannot obtain the original values.



4.4. CONCLUSION 65

4.4 Conclusion
In this chapter, we first analyze eight most widely used image-sharing platforms, in order to
provide their characteristics for our experiments. Next, we prepare some images according to
the characteristics of the image-sharing platforms, and implement the scheme after quantization
to encrypt the prepared images. We upload the encrypted images to the eight image-sharing
platforms which are analyzed before, and then download and decrypt the images. According to
the experiments, there are two types of results: positive results and negative results. On Flickr,
Pinterest, Google+ and Twitter, the decryption algorithm can reconstruct the downloaded images
with a high quality and also similar to the decrypted images without publishing. On Facebook,
Instagram, Weibo and Wechat, the quality of recovered images is extremely poor. The values of
PSNR and UIQI are smaller than 10dB and 0.1.

Through some analyses, we find that it is because image published on these image-sharing
platforms are recompressed by using JPEG standard, and during decoding, once the coefficients
exceed the setting ranges, they will be reset. Therefore, we cannot obtain the original values while
the image is encoded again.

In the next chapter, to overcome the restriction, we improve the encryption algorithm and
implement the improved algorithm on some of the image-sharing platforms.



66 CHAPTER 4. EXPERIMENTATIONS ON THE IMAGE-SHARING PLATFORMS



Chapter 5

The improved encryption algorithm
for published images

Contents
5.1 Improved encryption algorithm for published images . . . . . . . . . 67

5.1.1 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.2 Correcting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.3 Inverse correcting code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.4 Decryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.5 Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.6 Security of the algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 The parameters selection . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.1 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2.2 Weibo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Wechat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 Experimental results of improved encryption algorithm . . . . . . . 77
5.3.1 Facebook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.3.2 Weibo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.3 Wechat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.1 The complexity of algorithm . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4.2 Execution time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4.2.1 Gray image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.4.2.2 Color image (with downsampling ratio 4:2:0) . . . . . . . . . . 84
5.4.2.3 Color image (with other downsampling ratios) . . . . . . . . . 85

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

In this chapter, we improve the basic encryption algorithm to reduce or even avoid the losses
of quality during the recompression and to decrypt the image with a high quality after publishing
it on the image-sharing platforms. Then we details the experiments of this improved encryption
algorithm on Facebook, Weibo and Wechat. In the end, we evaluate the performances of the
improved encryption algorithm which is developed in C++.

5.1 Improved encryption algorithm for published images
After learning the limitation of the previous algorithm, we try to overcome the restriction. Thus,
we improve the scheme of encryption after quantization to reduce or even avoid the losses of image
information during JPEG recompression. We still use a pseudo-random function prf which takes
value n as input and returns a pseudo-random value in the range [0, n[. This function is associated

67



68CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

with an initialization function prfinit that takes values key and seed as inputs, and allows to initialize
the function prf. We add correcting code during encryption to tolerate the recompression, and after
downloading from platforms, we correct the recovered coefficients.

There are six functions in the scheme:

Key Generation: key = KeyGen(λ) takes λ as input and returns a random value key of λ bits.

Encryption: CoefC = Enc(I, key, seed) uses key and a random value seed to initialize the
pseudo-random function and generates a pseudo-random sequence. Then encrypts an image
I using this sequence. The result is encrypted coefficients CoefC.

Correcting code: C = Ccode(CoefC) takes encrypted coefficients CoefC as input and gen-
erates the correcting code to embed in each block, then returns the encrypted image C as
result.

Inverse correcting code: CoefC ′ = ICcode(C ′) takes downloaded encrypted image C ′ as input
and reconstructs the original encrypted coefficients CoefC ′.

Decryption: CoefI = Dec(CoefC ′, key, seed) decrypts the reconstructed coefficients CoefC ′

using the pseudo-random sequence which is initialized by key and the random value seed.

Correction: I ′ = Corr(CoefI) takes decrypted coefficient CoefI as input and after fine-tuning,
a high quality image I ′ can be obtained as the result.

In the following subsections, we detail these functions.

5.1.1 Encryption

We use the scheme of encryption after quantization. First of all, the function prfinit(key, seed)
initializes the pseudo-random function prf using random values key and seed.

According to the test of encrypting different coefficients after quantization in Sec. 3.2.3, we know
that after encrypting DC and 9 AC coefficients, the recovered image is similar to the original image
with enough details. Although the scheme choose to encrypt DC and the first 14 AC coefficients in
the end, considering in the improved algorithm, we want to add the correcting code in each 8× 8
block, so we prefer to encrypt fewer coefficients to provide sufficient space for the further correcting
code.

Therefore, in Y component or grayscale image we only encrypt the DC coefficient and the first
9 AC coefficients according to “zigzag” order and set the remaining coefficients to 0 as described
in matrix (5.1). We have already proved that in this way, the security, efficiency of algorithm and
the quality of recovered image are satisfactory. Remember that, for a color image, the sensitivity
of human eye to luminance (the Y component) intensity changes is greater than to chrominance
(the Cb and Cr) intensity changes. Therefore, in Cb or Cr component we only encrypt the DC
coefficient, but in order to keep some details, we retain the first 3 AC coefficients and move them
to place 3, 5, 4 (as shown in Fig 5.1(b)), and set the remaining coefficients to 0. If we set the DC
coefficient to any constant, the first 3 AC coefficients cannot reveal enough information to allow
the attackers to identify the original images, so retaining the first 3 AC coefficients is secure.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E00 E01 E02 E03 0 0 0 0
E10 E11 E12 0 0 0 0 0
E20 E21 0 0 0 0 0 0
E30 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.1)



5.1. IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES 69

5.1.2 Correcting code
We simulate the process that some image-sharing platforms possibly do during publishing an image,
while the encrypted image is uploaded, the dequantization and reverse DCT are firstly applied.
After reverse DCT, the range of coefficients should be in [−128, 127], and all the values exceed
this interval will be set to −128 or 127. So we should try to ensure that the range of uploaded
coefficients is as close as possible to [−128, 127] after reverse DCT. According to our analyses,
we already know that the used quantization tables of different platforms, and depending on the
elements of quantization tables, we know the range of encrypted coefficients, therefore, we can
calculate the range of coefficients after dequantization and reverse DCT.

If we directly upload the encrypted coefficient, after dequantization and reverse DCT, some
coefficients may be out of the range [−128, 127]. Therefore, we consider adding a correcting code,
in order to deal with the encrypted values, and control the ranges. The main idea is to minimise
the encrypted coefficient in the block.

One way to minimise the encrypted coefficient is to divide it by a constant d. The quotient
is rounded to the nearest integer, denoted by Rqi,j = round(Ei,j

d ). This rounded quotient is
multiplied by the constant divisor d and we calculate the difference between the multiplication
result and the original coefficient, denoted by Diffi,j = Ei,j −Rqi,j × d. We use Rqi,j and Diffi,j
to replace the original encrypted coefficients in each block. Once we choose a suitable divisor,
and reasonable allocation of storage location, the range of coefficients after reverse DCT can be
controlled.

For Y component or grayscale image, the encrypted coefficient Ei,j is processed block by block
as follow to generate the correcting code and the process is illustrated in Fig 5.1(a):

1. The encrypted coefficients in each 8× 8 block are divided by a divisor d1 and rounded to the
nearest integer Rqi,j .

2. The coefficients Rqi,j in each block are multiplied by d1, and then we calculate the difference
Diffi,j between the multiplication result and the original encrypted block. The range of
Diffi,j falls in [−d1

2 , d1
2 ), and according to this range, we can calculate the corresponding

maximum or minimum values of Rqi,j .

For Cb or Cr component, we note the divisor as d2. The encrypted DC coefficient E0,0 is
processed block by block as follow to generate the correcting code and the process is illustrated in
Fig 5.1(b):

1. The encrypted DC coefficients in each 8×8 block is divided by d2 and rounded to the nearest
integer Rq0,0. We store it in place 1 according to zigzag order in each block.

2. The DC coefficient in this new block is multiplied by d2, and then we calculate the difference
Diff0,0 between the multiplication result and the original encrypted block. We store it in
place 2 according to zigzag order in each block.
Finally, by performing the rest of encoding processes, the encrypted image C is obtained.

5.1.3 Inverse correcting code
After downloading, the downloaded encrypted image C ′ is in format JPEG, first we decode it just
before the dequantization and it is represented by several non-overlapped 8× 8 blocks. Each block
is processed to recover the original encrypted coefficients as follow:

For Y component or grayscale image,

1. Extract the coefficients Rq′i,j in the block, multiply by d1.

2. Extract the coefficients Diff ′
i,j , and sequentially add them to the corresponding Rq′i,j × d1.

The results are stored in place 1 to 10 according to zigzag order.

For Cb or Cr component,

1. Extract the first coefficient Rq′0,0 in the block, multiply by d2.



70CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

(a) Correcting code in Y component or grayscale image

(b) Correcting code in Cb or Cr component

Figure 5.1: The process of generating the correcting code



5.1. IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES 71

2. Extract the second coefficient Diff ′
0,0, and add it to Rq′0,0 × d2. The results are stored in

place 1 according to zigzag order.

These coefficients are approximate to the original encrypted ones, and we can take them as the
input of decryption algorithm.

5.1.4 Decryption
First of all, the function prfinit(key, seed) initializes the pseudo-random function prf using random
values key and seed.

We decrypt the result of previous step block by block. In Y component or grayscale image we
only decrypt the DC coefficient and the first 9 AC coefficients according to “zigzag” order. In Cb
or Cr component we only decrypt the DC coefficient and move back the first 3 AC coefficients from
place 3, 5, 4.

1. Suppose that the recovered encrypted coefficients E′
i,j falls in the range [Qmini,j , Qmaxi,j ]

as we explain above. We note ni,j = Qmaxi,j −Qmini,j + 1.

2. Each recovered encrypted coefficient E′
i,j is decrypted block by block as follow:

Di,j =(((Ei,j −Qmini,j) + (ni,j − prf(ni,j)))

mod ni,j) +Qmini,j
(5.2)

Finally, the decrypted block is entropy encoded and the decrypted coefficients CoefI before
fine-tuning are obtained.

5.1.5 Correction
Observing the decrypted image we obtain now, there are still some error pixels (Shown in Fig. 5.2).
In order to make the result accurate, we propose to correct these errors. However, the correction
is not a general one, it only applies to the errors which are generated by our decryption algorithm.

(a) An example of grayscale image (b) An example of color image

Figure 5.2: The decrypted image without correction

First, we find that some blocks of the decrypted image are wrong, they have opposite color
with the right one (Fig. 5.2(a)). However, the neighbours of the wrong block have the right
color. Therefore, we try to use the information of the right neighbours to correct the wrong block.
We found that the difference between the wrong block and its right neighbours is the sign of DC
coefficient. After some test, we found that once we invert the sign of the DC coefficient of the wrong
block, its color can be corrected. Therefore, in our algorithm, we get the DC coefficient in each
block, and compare the sign of one DC coefficient and the signs of its neighbour DC coefficients.
If its sign is inverse, we forcibly invert it.



72CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

For Cb or Cr component, we found that the color of some blocks have deviations (Fig. 5.2(b)),
therefore an additional correction has to be implemented. Observing the deviated block, the
deviation comes from the DC coefficient of the wrong block, and the difference DC value between
the wrong block and its neighbours is usually ±10. In order to detect which one is the wrong block,
we compare the DC coefficient of its upper and lower neighbour and left and right neighbour, if
the difference exceeds a threshold, we think that this block has deviation. After some tests, we
set the threshold to 5 which can better find the wrong block. But we also find that sometimes the
difference comes from the gap of color in the image, therefore, we need to ensure that both of its
upper and lower neighbours or left and right neighbours satisfy this threshold. With the order of
upper and lower or left and right, the results have some differences, therefore, for more accurate,
we compare them in different order. In the first round, we compare upper and lower first and then
left and right, in the second round, we compare left and right first and then upper and lower, then
we calculate the average of these two rounds (Shown in Fig. 5.3). In the following, we detail the
implementation process.

Compare with the upper 
and lower DC neighbours

Compare with the left 
and right DC neighbours

Compare with the left 
and right DC neighbours

Compare with the upper 
and lower DC neighbours

Round 1 Round 2

Average DC coefficients

Correct the wrong 
DC coefficients

Correct the wrong 
DC coefficients

Figure 5.3: The correction process of Cb or Cr component.

We get the DC coefficient from each block, and put these DC coefficients together to form a
new matrix. Take one of DC coefficients except the boundary ones, and define it as dc(i, j).

1. We compare dc(i, j) with its upper and lower DC coefficients dc(i−1, j) and dc(i+1, j). If the
two differences are all more than 5, i.e. dc(i, j)− dc(i− 1, j) > 5 && dc(i, j)− dc(i+1, j) > 5,
then dc(i, j) minus 10. If the two differences are all less than 5, i.e. dc(i, j) − dc(i − 1, j) <
5 && dc(i, j)− dc(i+ 1, j) < 5, then dc(i, j) plus 10.

2. dc′(i, j) denotes one of DC coefficients except the boundary ones in the result of step 1, we
compare it with its left and right DC coefficients dc′(i, j − 1) and dc′(i, j + 1). If the two
differences are all more than 5, i.e. dc′(i, j)− dc′(i, j − 1) > 5 && dc′(i, j)− dc′(i, j + 1) > 5,
then dc′(i, j) minus 10. If the two differences are all less than 5, i.e. dc′(i, j)− dc′(i, j − 1) <
5 && dc′(i, j)− dc′(i, j + 1) < 5, then dc′(i, j) plus 10.

3. The same operations are implemented once more for original dc(i, j). But this time, we first
compare it with its left and right DC coefficients, and then compare it with its upper and
lower DC coefficients.

4. Average the results of step 2 and step 3 as a new DC matrix. Then the 2-D median filter
using a window size of three is applied to this matrix. For the boundary coefficients, we
replace them using the average value of their neighbours.

Finally, by performing the rest of encoding processes, the decrypted image I ′ is obtained.



5.2. THE PARAMETERS SELECTION 73

5.1.6 Security of the algorithm
In chapter 3, we have already discussed about the security of the encryption scheme, that the
proposed scheme is IND-CPA$ secure, and considering the two images have same size and same
chroma, the proposed scheme can be IND-CPA secure.

In the improved algorithm, for the grayscale image, the scheme is still IND-CPA$ secure, and
so as to the Y component of color image. For the Cb and Cr components, at first, we consider
to encrypt DC and the first three AC coefficients, however, because of the roundoff error during
the recompression on the image-sharing platforms, the chroma components cannot be recovered
even with our correction mechanism (Shown in Fig. 5.4). Then we tried to only encrypt the
DC coefficient, the chroma components can be recovered correctly but we lose all the details.
Therefore, in order to ensure the quality of the decrypted image after publishing, we have to make
a compromise and give up the security of the algorithm. For the Cb and Cr components, the first
three AC coefficients are kept unencrypted, and we can recover the image without losing most of
details. But in this way, the attacker can obtain some unencrypted coefficients, which help him to
recognize the original image from the encrypted image. So the improved algorithm for color image
is no longer IND-CPA$ secure.

Figure 5.4: The correction process of Cb or Cr component.

5.2 The parameters selection

In the improved encryption algorithm, when we add the correcting code for each platforms, we
need to find two suitable divisors for Y and UV components respectively and reasonable allocation
of storage location. In the following subsections, we do some tests to determine these parameters.

5.2.1 Facebook
We have already known that platforms like Facebook carry out the complete processes of JPEG
compression and decompression when we upload an image. That means, while the encrypted image
is uploaded, the dequantization and reverse DCT are firstly applied. After reverse DCT, we need



74CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

to ensure that the range of coefficients falls in [−128, 127], or at least close to this range. Therefore,
we need to study the coefficients after reverse DCT when we choose the divisors.

We found that Facebook requantizes the published images using the quantization tables Q = 71
as shown in Fig. 4.3. It is worth mentioning that, the compression quality value we describe here
represents the quantization tables calculated by the standard default tables that used by the IJG
(Independent JPEG Group) code library.

The ranges of DCT coefficients in one block are shown in Fig. 3.4, then after being quantized
by Q = 71, the ranges of coefficients are shown in Fig. 5.5.

(a) The minimum values of luminance table (b) The maximum values of lumi-
nance table

(c) The minimum values of chrominance ta-
ble

(d) The maximum values of
chrominance table

Figure 5.5: The range of quantized DCT coefficients in one block (quantized by Q = 71).

For Y component or grayscale image, we test d1 from 9 to 21, and the range of Diffi,j falls in
[−d1

2 , d1
2 ). Suppose that each Diffi,j can reach its maximum or minimum value, and then we can

calculate the corresponding maximum or minimum values of Rqi,j . According to the element of
quantization table q(i, j), we place the extremum values of Rqi,j and Diffi,j in each block. The
principle is to store the larger value of Rqi,j and Diffi,j on the position where the smaller q(i, j)
is placed. For example, if d1 = 9, the range of Diffi,j is [−4, 4]. In place 1, the maximum value of
quantized DCT coefficients is 113. When Diff0,0 = 4, the maximum value that Rq0,0 can reach is
floor[(113− 4)/9] = 12. In this way, we can get the first 10 maximum values of Rqi,j :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 16 17 11 0 0 0 0
14 12 11 0 0 0 0 0
12 11 0 0 0 0 0 0
12 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.3)

According to the quantization table in Fig. 4.3(a), we store Rqi,j and Diffi,j :
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11 17 16 11 4 0 0 0
14 12 12 4 4 0 0 0
12 12 4 4 0 0 0 0
11 4 4 0 0 0 0 0
4 4 0 0 0 0 0 0
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.4)

Then we dequantize this block:



5.2. THE PARAMETERS SELECTION 75

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

99 102 96 99 56 0 0 0
98 84 96 44 60 0 0 0
96 96 36 56 0 0 0 0
88 40 52 0 0 0 0 0
40 52 0 0 0 0 0 0
56 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.5)

and do reverse DCT to see whether the values exceed the range [−128, 127]:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

252 182 193 179 179 193 182 252
188 136 146 135 135 146 136 188
187 135 142 134 134 142 135 187
182 132 141 126 126 141 132 182
182 132 141 126 126 141 132 182
187 135 142 134 134 142 135 187
188 135 146 135 135 146 136 188
252 182 193 179 179 193 182 252

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.6)

The maximum value is 252, and the minimum values can be calculated by using the same
process. For other chose divisor, we do the same test, and calculate the extremum ranges, which
are listed in Tab 5.2.

Divisor Range
9 [−252, 252]
10 [−252, 244]
11 [−238, 238]
12 [−248, 239]
13 [−235, 235]
14 [−246, 239]
15 [−237, 237]
16 [−241, 229]
17 [−232, 232]
18 [−240, 235]
19 [−230, 230]
20 [−239, 234]
21 [−234, 234]

Table 5.1: The extremum values of coefficients after reverse DCT for different divisors (Facebook).

We find that when d1 = 19, the ranges are closest to [−128, 127] after reverse DCT. Even tough
they exceed, considering not every coefficients can get the extremum values at the same time, the
probability of falling into the interval [−128, 127] is great.

Therefore, for Facebook we choose 19 as the divisor d1 for Y component or grayscale image.
The maximum number of Diffi,j is 9, and the maximum values of Rqi,j are:

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 7 7 4 0 0 0 0
6 5 5 0 0 0 0 0
5 5 0 0 0 0 0 0
5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.7)



76CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

The minimum values of Rqi,j are the opposite number of elements in matrix 5.7.
According to the quantization table in Fig. 4.3(a), we store Rqi,j and Diffi,j :

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 9 9 9 5 0 0 0
9 9 9 5 4 0 0 0
9 9 7 5 0 0 0 0
9 6 5 0 0 0 0 0
7 5 0 0 0 0 0 0
5 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.8)

In general, the way to store 10 Diffi,j and Rqi,j is shown in matrix 5.9
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Diff00 Diff01 Diff02 Diff03 Rq20 0 0 0
Diff10 Diff11 Diff12 Rq00 Rq03 0 0 0
Diff20 Diff21 Rq02 Rq11 0 0 0 0
Diff30 Rq10 Rq12 0 0 0 0 0
Rq01 Rq21 0 0 0 0 0 0
Rq30 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.9)

For Cb or Cr component, we test d2 from 9 to 21 using the same process, and we choose 15 as
the divisor d2.

5.2.2 Weibo
As Facebook, Weibo also carries out the complete processes of JPEG compression and decompres-
sion when we upload an image. So we use the same method to protect published image on Weibo
as on Facebook.

We found that Weibo requantizes the published images only if the quality is larger than Q = 95.
Therefore, if we requantize the images using quantization tables of Q = 71, the compression quality
will not be limited during publishing. That means, we can use the parameters which are applied
on Facebook to prepare the correcting code for Weibo.

5.2.3 Wechat
Wechat requantized the published images using the quantization tables shown in Fig. 4.2

After being quantized by these quantization tables, the ranges of quantized DCT coefficients in
one block are shown in Fig. 5.6.

For Wechat, we do the same test as we have done for Facebook. We calculate the extremum
ranges for each chose divisor from 9 to 23, and list in Tab 5.2.

We find that when d1 = 19, the ranges are closest to [−128, 127] after reverse DCT.
Therefore, for Wechat we choose 19 as the divisor d1 for Y component or grayscale image. The

maximum number of Diffi,j is 9, and the maximum values of Rqi,j are:
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5 4 5 2 0 0 0 0
4 4 4 0 0 0 0 0
5 4 0 0 0 0 0 0
2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.10)

The minimum values of Rqi,j are the opposite number of elements in matrix 5.10.
According to the quantization table in Fig. 4.2, we store Rqi,j and Diffi,j :



5.3. EXPERIMENTAL RESULTS OF IMPROVED ENCRYPTION ALGORITHM 77

(a) The minimum values of luminance table (b) The maximum values of lumi-
nance table

(c) The minimum values of chrominance ta-
ble

(d) The maximum values of
chrominance table

Figure 5.6: The range of quantized DCT coefficients in one block (quantized by quantization tables
of Wechat).

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

9 9 9 9 4 2 0 0
9 9 9 5 4 0 0 0
9 9 5 4 0 0 0 0
9 5 2 0 0 0 0 0
4 4 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.11)

In general, the way to store 10 Diffi,j and Rqi,j is shown in matrix 5.12

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Diff00 Diff01 Diff02 Diff03 Rq10 Rq03 0 0
Diff10 Diff11 Diff12 Rq02 Rq11 0 0 0
Diff20 Diff21 Rq20 Rq12 0 0 0 0
Diff30 Rq00 Rq30 0 0 0 0 0
Rq01 Rq21 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.12)

For Cb or Cr component, we test d2 from 7 to 23 using the same process, and we choose 11 as
the divisor d2.

5.3 Experimental results of improved encryption algorithm

In order to reduce the losses of recovered images in the previous chapter, we proposed an improved
encryption algorithm in this chapter. The parameters of the improved algorithm depend on the
characteristics of the different image-sharing platforms. We have done some test and determined
the parameters for Facebook, Weibo and Wechat. In this section, we use the improved encryption
algorithm to do the experiments on these three platforms. LibJPEG is used to encode and decode
JPEG image, and all experiments were implemented in C/C++. We first take the grayscale image
and color image “Lena” of 512×512 pixels as examples, and then we take ten grayscale images and
ten color images of different sizes from 480× 640 pixels to 2736× 3648 pixels to do more tests.



78CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

Divisor Range
9 [−307, 307]
10 [−319, 303]
11 [−301, 301]
12 [−324, 308]
13 [−311, 311]
14 [−323, 313]
15 [−304, 304]
16 [−314, 309]
17 [−300, 300]
18 [−303, 297]
19 [−297, 297]
20 [−309, 303]
21 [−301, 301]
22 [−311, 305]
23 [−311, 311]

Table 5.2: The extremum values of coefficients after reverse DCT for different divisors (Wechat).

5.3.1 Facebook

Before encryption, we resize prepared images to the limitation image size of Facebook (2048 pixels)
and change the downsampling ratio for color images to 4 : 2 : 0 if they do not satisfy the conditions.
Then we requantize the images using quantization tables of Q = 71. We encrypt the images using
our algorithm on the laptop, the results are shown in Fig 5.7(a) and Fig 5.7(b). Then we upload
the encrypted images to Facebook on OS X 10.10 with safari browser and use another account to
download them. After download these images, the decryption is implemented on the laptop, and
we get decrypted images as shown in Fig 5.9(a) and Fig 5.9(b).

We summarize the results of “Lena” in Tab. 5.3, and the average results of other 20 images in
Tab. 5.4. As shown in Tab. 5.3, the decryption algorithm can reconstruct the plaintext grayscale
“Lena” with PSNR of 32.41dB and with UIQI of 0.8602, and reconstruct the plaintext color “Lena”
with PSNR of 29.23dB and with UIQI of 0.7965. If we decrypt these two encrypted images directly
without publishing on Facebook, the results are shown in Fig 5.8(a) and Fig 5.8(b). The PSNR
values are 32.41dB and 29.42dB, and UIQI values are 0.8602 and 0.7965. Comparing them with the
PSNR and UIQI values after publishing the images on Facebook, the difference is very small. That
means, the recompression has only a little impact on the results, our algorithm can reconstruct
an image with a high quality even after publishing it on Facebook and our algorithm can be
compatible with JPEG recompression. For the other 20 images, as shown in Tab. 5.4, we have the
same conclusion.

(a) Encrypted grayscale image. (b) Encrypted color image.

Figure 5.7: Experiment results of encryption(d1 = 19, d2 = 15).



5.3. EXPERIMENTAL RESULTS OF IMPROVED ENCRYPTION ALGORITHM 79

(a) Decrypted grayscale image. (b) Decrypted color image.

Figure 5.8: Experiment results of decryption without publishing (d1 = 19, d2 = 15).

(a) Decrypted grayscale image
from Facebook.

(b) Decrypted color image
from Facebook.

Figure 5.9: Experiment results of decryption on Facebook.

5.3.2 Weibo

Before encryption, we resize prepared images to the limitation image size of Weibo (1024 pixels) if
they are not satisfy the conditions and we use the quantization tables of Q = 71 to requantize the
images. We encrypt the images using our algorithm on the laptop. Then we upload the encrypted
images to Weibo on OS X 10.10 with safari browser and use another account to download them.
After download these images, the decryption is implemented on the laptop, and we get decrypted
images as shown in Fig 5.10(a) and Fig 5.10(b).

From the decrypted images, we find that Weibo adds a logo in the lower right corner of the
published image. After we download and decrypt the image, it is impossible to recover this region
of the plaintext image. We summarize the results of “Lena” in Tab. 5.5, and the average results of
other 20 images in Tab. 5.6. As shown in Tab. 5.5, the decryption algorithm can reconstruct the
plaintext grayscale “Lena” with PSNR of 23.63dB and with UIQI of 0.8360, and reconstruct the
plaintext color “Lena” with PSNR of 23.90dB and with UIQI of 0.7739. If we decrypt these two
encrypted images directly without publishing on Weibo, the results are shown in Fig 5.8(a) and

Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Decryption after
publishing 32.41 0.8602 29.23 0.7965

Decryption
without

publishing
32.41 0.8602 29.42 0.7965

Table 5.3: Summary of the results for “Lena” (Facebook).



80CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

Grayscale image Color image
Average

PSNR (dB)
Average
UIQI

Average
PSNR (dB)

Average
UIQI

Decryption after
publishing 28.94 0.7994 30.16 0.7936

Decryption
without

publishing
28.94 0.7994 30.29 0.7945

Table 5.4: Summary of the average results for 20 other images (Facebook).

(a) Decrypted grayscale image
from Weibo.

(b) Decrypted color image
from Weibo.

Figure 5.10: Experimental results of decryption on Weibo.

Fig 5.8(b). The PSNR values are 32.41dB and 29.42dB, and UIQI values are 0.8602 and 0.7965.
Comparing encrypted images without publishing with the images after publishing on Weibo, the
difference is a little large, because of the unrecovered logo in the lower right corner. Therefore,
we try to calculate the similarity between the decrypted image in addition to the logo part and
the original one. The results are summarized in Tab. 5.7 and Tab. 5.8. The PSNR values are
around 28∼33 dB and the UIQI values are around 0.7∼0.9. Comparing decrypted images without
publishing with the images after publishing on Weibo, the difference is very small. That means,
the recompression has only a little impact on the results, our algorithm can reconstruct an image
with a high quality even after publishing it on Weibo and our algorithm can be compatible with
JPEG recompression except for the generated logo.

Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Decryption after
publishing 23.63 0.8360 23.90 0.7739

Decryption
without

publishing
32.41 0.8602 29.42 0.7965

Table 5.5: Summary of the results for “Lena” (Weibo with logo).

5.3.3 Wechat
For Wechat, we can only use their applications for smartphone to publish images. The test envi-
ronment for smartphone is iOS 9.3.1. The version of Wechat is 6.3.15. Before encryption, we resize
prepared images to the limitation image size of Wechat (1280 pixels) and change the downsampling
ratio for color images to 4:2:0 if they are not satisfy the conditions. And we requantize the images



5.3. EXPERIMENTAL RESULTS OF IMPROVED ENCRYPTION ALGORITHM 81

Grayscale image Color image
Average

PSNR (dB)
Average
UIQI

Average
PSNR (dB)

Average
UIQI

Decryption after
publishing 21.19 0.7844 21.76 0.7800

Decryption
without

publishing
28.87 0.8053 30.00 0.8049

Table 5.6: Summary of the average results for 20 other images (Weibo with logo).

Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Decryption after
publishing 32.46 0.8664 29.39 0.7935

Decryption
without

publishing
32.46 0.8664 29.62 0.7943

Table 5.7: Summary of the results for “Lena” (Weibo without logo).

Grayscale image Color image
Average

PSNR (dB)
Average
UIQI

Average
PSNR (dB)

Average
UIQI

Decryption after
publishing 28.99 0.8325 29.59 0.8352

Decryption
without

publishing
29.01 0.8328 30.22 0.8376

Table 5.8: Summary of the average results for 20 other images (Weibo without logo).



82CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

using its own quantization tables. We encrypt the images using our algorithm on the laptop, the
results are shown in Fig 5.11(a) and Fig 5.11(b). Then we send the encrypted images via a lossless
way, i.e. e-mail or “Dropbox”, to a smartphone. In this way, images are not processed before being
published. Next we upload images to Wechat using their native smartphone applications. When
we download the images, we use another account on smartphone and send the images back to
laptop via a lossless way. Then the decryption is implemented on the laptop, and we get decrypted
images as shown in Fig 5.13(a) and Fig 5.13(b).

(a) Encrypted grayscale image. (b) Encrypted color image.

Figure 5.11: Experiment results of encryption(d1 = 19, d2 = 11).

(a) Decrypted grayscale image. (b) Decrypted color image.

Figure 5.12: Experiment results of decryption without publishing (d1 = 19, d2 = 11).

(a) Decrypted grayscale image
from Wechat.

(b) Decrypted color image
from Wechat.

Figure 5.13: Experimental results of decryption on Wechat.

We summarize the results of “Lena” in Tab. 5.9, and the average results of other 20 images in
Tab. 5.10. As shown in Tab. 5.9, the decryption algorithm can reconstruct the plaintext grayscale
“Lena” with PSNR of 32.13dB and with UIQI of 0.8335, and reconstruct the plaintext color “Lena”
with PSNR of 29.23dB and with UIQI of 0.7773. If we decrypt these two encrypted images directly



5.4. PERFORMANCE EVALUATION 83

without publishing on Wechat, the results are shown in Fig 5.12(a) and Fig 5.12(b). The PSNR
values are 32.30dB and 29.34dB, and UIQI values are 0.8366 and 0.7810. Comparing them with the
PSNR and UIQI values after publishing the images on Wechat, the difference is very small. That
means, the recompression has only a little impact on the results, our algorithm can reconstruct an
image with a high quality even after publishing it on Wechat and our algorithm can be compatible
with JPEG recompression. For the other 20 images, as shown in Tab. 5.10, we have the same
conclusion.

Grayscale image Color image
PSNR (dB) UIQI PSNR (dB) UIQI

Decryption after
publishing 32.13 0.8335 29.23 0.7773

Decryption
without

publishing
32.30 0.8366 29.34 0.7810

Table 5.9: Summary of the results for “Lena” (Wechat).

Grayscale image Color image
Average

PSNR (dB)
Average
UIQI

Average
PSNR (dB)

Average
UIQI

Decryption after
publishing 28.87 0.7783 29.97 0.7851

Decryption
without

publishing
29.09 0.7823 30.67 0.7920

Table 5.10: Summary of the average results for 20 other images (Wechat).

5.4 Performance Evaluation
In this section, we evaluate the performances of the improved encryption algorithm through the
analyses of the complexity of the algorithm and its execution time.

Twenty grayscale images of different sizes from 256 × 256 pixels to 15408 × 8184 pixels were
prepared for the tests. For color images, since our algorithm is used to protect the images published
on Facebook, their downsampling ratio may not be the limitation ratio of Facebook, i.e. 4:2:0. In
this case, our algorithm will change the ratio during encryption, and the performances may be
affected. Therefore, we prepared 20 color images with downsampling ratio of 4:2:0 and 20 color
images with other downsampling ratios (e.g. 4:4:4, 4:2:2, 4:1:1, 4:1:0) of different sizes, from
256× 256 pixels to 15408× 8184 pixels.

We experimented with an Intel architecture: tests were performed on an Intel Core i7-3615QM
CPU with four cores running at 2.30 GHz. The size of memory is 4 GB. The operating system is
MAC OS X 10.10.5. Our tests were on a completely unloaded system (executing only the operating
system and the encryption and decryption programs).

5.4.1 The complexity of algorithm
The complexity of the algorithm is a function of the length of the string representing the input,
which quantitatively describes the running time of the algorithm [Sip06]. We estimate the com-
plexity of algorithm by counting the number of elementary operations performed by our code, and
we get to know that our algorithm only has a complexity of O(n2) to encrypt or decrypt an image,
where n is the image width or length. For most of the traditional cryptosystems (i.e. DES, Triple



84CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

DES, AES, RC4, Blowfish), if we use them to encrypt an image, we usually get an O(n2) complex-
ity as well, where n is the image width or length. Therefore, the complexity of our algorithm is
not high, and it is a relatively simple algorithm.

5.4.2 Execution time
We encrypt and decrypt all the prepared images using C++, and calculate their execution times. In
the following subsections, the illustrations show the relationship between image size and execution
time of encryption and decryption.

In each Figure, we analyze the relationship between the image size and the execution time. The
abscissa values are based on the image sizes in ascending order.

5.4.2.1 Gray image

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

Ex
ec
u2

on
	2
m
e	
(s
)	

Image	size	(pixels)	

Encryp2on	

Decryp2on	

Figure 5.14: The encryption and decryption execution times of gray images of different sizes.

The image size is resized during encryption in the program C++ if its longer side exceeds 2048.
But there is an limitation in the program C++, the resizing factor cannot exceed 0.5. So if the
longer side of image is greater than 4096, we cannot get the test results. Generally speaking, the
decryption takes less time than the encryption, from 5ms to 293 ms, and the encryption takes 9ms
to 628 ms.

As shown in Fig. 5.14, we find that when the image size is less than 2048, as image size increases,
the execution time grows accordingly, and they are linear relationship. But if the image size is
greater than 2048, the execution time depends on the image size after resizing.

5.4.2.2 Color image (with downsampling ratio 4:2:0)

As explained above, the limitation of program C++ is the same for processing the color image. If
the longer side of image is greater than 4096, we cannot get the test results. Generally speaking,
the decryption takes less time than the encryption, from 8ms to 548ms, and the encryption takes
14 ms to 1.1 s. It takes more time to encrypt and decrypt the color images than to encrypt and
decrypt the gray images.



5.4. PERFORMANCE EVALUATION 85

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	
Ex
ec
u2

on
	2
m
e	
(s
)	

Image	size	(pixels)	

Encryp2on	

Decryp2on	

Figure 5.15: The encryption and decryption execution times of color images with downsampling
ratio 4:2:0 of different sizes.

As shown in Fig. 5.15, we find that when the image size is less than 2048, as image size increases,
the execution time grows accordingly, and they are linear relationship. But if the image size is
greater than 2048, the execution time depends on the image size after resizing.

5.4.2.3 Color image (with other downsampling ratios)

Generally speaking, the decryption takes less time than the encryption, from 8 ms to 568 ms, and
the encryption takes 32 ms to 1.5s. Changing the downsampling ratio only takes a little more time
in hundreds of milliseconds maximally to encrypt and decrypt the color images.

As shown in Fig. 5.16, we find that when the image size is less than 2048, as image size increases,
the execution time grows accordingly, and they are linear relationship. But if the image size is
greater than 2048, the execution time depends on the image size after resizing.

We implement this encryption algorithm in our application to protect the images on Facebook.
Users can use our application to encrypt the images and the encrypted images can be decrypted
directly on the webpage. Therefore, the execution time to display the encrypted images and
recovered images is very important for user’s experience. Huawei 1 studied the perception of
people when they wait a text or a picture display in the process of web browsing. They use “zero
waiting time” to describe that user cannot detect the presence of waiting for page display if the
display time is less than a threshold. After some experiments, they determined that the average
value of this threshold is 270 ms.

According to the analyses above, for a grayscale image, the decryption takes maximally 293 ms,
which only exceeds the threshold 23 ms. The encryption takes maximally 628 ms, but if the image
size is smaller than 1824 × 1360 pixels, the encryption time is within the threshold. For a color
image, the decryption takes maximally 568 ms, but if the image size is smaller than 1824 × 1360
pixels, the decryption time is within the threshold. The encryption takes maximally 1.5 s, but
if the image size is smaller than 960 × 720 pixels, the encryption time is within the threshold.

1http://www.huawei.com/mediafiles/CBG/PDF/Files/hw_364998.pdf



86CHAPTER 5. THE IMPROVED ENCRYPTION ALGORITHM FOR PUBLISHED IMAGES

	

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

1.4	

1.6	

1.8	

2	

Ex
ec
u2

on
	2
m
e	
(s
)	

Image	size	(pixels)	

Encryp2on	

Decryp2on	

Figure 5.16: The encryption and decryption execution times of color images with other downsam-
pling ratio of different sizes.

Therefore, in addition to encrypt or decrypt biggest images, users can have a “zero waiting time”
experience using our algorithm.

5.5 Conclusion
In this chapter, the improved encryption algorithm is proposed to overcome the restriction of basic
encryption algorithm. A correcting code is added during encryption based on the characteristic of
different platforms. The improved algorithm can ensure that the range of uploaded coefficients is
close to [−128, 127] after reverse DCT. In this way, we can minimize the losses of image information
during JPEG recompression. After introducing the general algorithm, we determine the most
appropriate parameters for three image-sharing platforms (Facebook, Weibo, Wechat) according
to their characteristics.

Next, we take some images to do the experiments by using the improved algorithm on Facebook,
Weibo and Wechat. The results show that the improved algorithm can reconstruct the downloaded
images with a high quality and also similar to the decrypted images without publishing. We can
conclude that, although the improved algorithm should depend on the characteristics of each
platforms, which is not very general, it can overcome the restriction at least for Facebook, Weibo
and Wechat.

In the end, we evaluate the performances of the improved algorithm. Firstly we analyze the
complexity of encryption and decryption algorithms for gray and color images. Next we calculate
the execution time of program C++ for different sizes images and find the relationship between
the execution time and the image size. From the results, we know that our algorithm only has
a complexity of O(n2), which is not high by comparing with other traditional cryptosystems, so
this is a relatively simple algorithm. When we use the C++ program to realize our algorithm, it
only takes 1.5s maximally to encrypt a color image, the decryption even takes less time. It can be
accepted by user’s experience. When we decrypt the images of small size until the plaintext images
display on the webpage, the users can have a “zero waiting time” experience.



Chapter 6

Application: PixGuardian

Contents
6.1 The scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.1.1 The inscription and generation of keys . . . . . . . . . . . . . . . . . . . 88
6.1.1.1 General principle . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.1.2 Generation of the public / private keys . . . . . . . . . . . . . 88
6.1.1.3 User’s certification . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.1.4 Sharing the certificate and generation of symmetric keys . . . 88
6.1.1.5 Obtain the certificates . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.2 General architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.1.3 Upload the image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3.1 The case of access to images for restricted people . . . . . . . . 91
6.1.3.2 The case of access to images for everyone . . . . . . . . . . . . 92

6.1.4 Download the image {I}Kses with decryption . . . . . . . . . . . . . . . 93
6.1.4.1 The case of access to images for restricted people . . . . . . . . 93
6.1.4.2 The case of access to images for everyone . . . . . . . . . . . . 94

6.2 The application to publish images . . . . . . . . . . . . . . . . . . . . 94
6.2.1 Registration and login . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Sharing the images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.3 The secure in the server . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.2.4 Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3 Studies of using PixGuardian . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.1 Experiment description . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.3.1.1 Statistics of uses . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1.2 Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.1.3 Interviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.3.1.4 Recruitment of participants . . . . . . . . . . . . . . . . . . . . 105

6.3.2 Results and analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2.2 User Experience . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2.3 Acceptability of service . . . . . . . . . . . . . . . . . . . . . . 106
6.3.2.4 User Expectations . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 The scenario
We aim to protect user’s image on the image-sharing platforms. Depending on our encryption
algorithm, we build an application named PixGuardien to encrypt the images. It also offers users

87



88 CHAPTER 6. APPLICATION: PIXGUARDIAN

to define the access conditions of the image and to manage the secret keys. Then the users can
publish the encrypted image on Facebook (until now, the image encrypted by this application can
be only published on Facebook). For the people who are allowed to access the image, they can use
our plugin which is installed in the browser Chrome to decrypt and see the plaintext image.

6.1.1 The inscription and generation of keys

6.1.1.1 General principle

Our principle is to share an image JPEG securely between users through Internet. Each user
can use the installed application to have the access to the server which has the authority role of
certification. The server distributes the encrypted session keys to decrypt the encrypted image
from the Internet. One user (we call him Bob) can decrypt the image if all the access conditions of
the image which is defined by the sender (the person who publishes the encrypted image, we call
her Alice) are permitted.

To make it simple, in the following paragraphs, we use the same pair of public key / private
key to encrypt, sign and authenticate. However, normally each entity have two pairs of keys: one
for encrypting and signing, another one for authentication.

6.1.1.2 Generation of the public / private keys

Each participator must register to the server and generate the keys at the beginning. After installing
the application, an SSL link is established between the server and the application of user Alice by
using the public key KS of server. Alice is invited to choose a username and to provide an email
address. Alice’s application generates a pair of public key / private key randomly, and sends the
username, email address and Alice’s public key to the server.

The server then creates an account for Alice with her username, email address and certificate
CertA. This certificate contains Alice’s username, email address and her public key. The server
sends CertA to Alice’s application.

For the private key, either Alice stores it and uses her pair of private key / public key to
authenticate to the server, or a password is created to encrypt and store the private key locally.
In the second case, Alice must type in her username and password in order to decrypt the private
key and thus be able to authenticate.

6.1.1.3 User’s certification

Where, S is the serve, App is the application, A is the user Alice. CertA is the certificate of A
created by the server, CertA = (usernameA, a@mail.com,Ka). After the step 4, the application
generates a pair of public key (Ka) / private key for A. The server also stores A’s certificate. The
step 5 and 6, represented by the red arrows, which means the exchanges are performed by SSL
channel. This representation works in the following paragraphes as well.

6.1.1.4 Sharing the certificate and generation of symmetric keys

To share an image with specific people, Alice must obtain the certificate of these people. From
the interface, it is possible for Alice to search by using the username or email address to get the
certificate she needs.

To encrypt an image, Alice drops the image on the interface and selects who are allowed to see
the image. Then she defines the access conditions of the image, general and specific for the selected
people. The application generates a random symmetric session key to encrypt the image .

6.1.1.5 Obtain the certificates

After a mutual authentication between Alice’s application and the server, Alice types in the user-
name or email address of a friend (e.g. Bob) in the search bar on the interface and selects Bob’s
profile. The server searches the account of Bob in its database. If find, the server informs Bob



6.1. THE SCENARIO 89

S AApp

2

1

3

4

5

6

Username A

‘Username?’

UsernameA, a@mail.com,Ka

‘@ mail ?’

a@mail.com

Cert_A

Figure 6.1: The certification of A and generation/distribution of key

about Alice’s request. When Bob is connected, his application and the server authenticate mutu-
ally. Bob receives Alice’s request sent by the server, and Bob accepts to give or not to give his
certificate to Alice. If he accepts, the server sends to Alice CertB and sends to Bob CertA (Shown
in Fig. 6.2). Otherwise, nobody can receive the certificate, and Alice receives the negative response
from Bob sent by the server.

Where A is Alice, S is the server, B is Bob.
In step 2, Alice can find Bob according to his username or his email address,. In step 5, Bob

also can refuse the request and then the server informs Alice Bob’s refusal instead of sending the
certificates.

6.1.2 General architecture
The scheme (Fig. 6.3) represents a general architecture about sharing an image with a specified
person (here is Bob).

Where,

- kP : the private key of participator P

- KP : the public key of participator P

- {M}K : the encryption of the object M with the key K

- Kses: the symmetric session key to encrypt image

- CertP : the certificat of participator P

- ACP→U : the access conditions of an image defined by P for U

- Sign_U : the signature of {id, U, {Kses}KU , ACP→U} of P for U

The step 2 and step 6 are realised after the mutual authentification between the server and the
applications. After the step 2, if the verification is failed, the server returns an error message. The
same as the step 7, if Bob is not authorised to see the image, the server returns an error message.

The exchanges between the applications/plugins and the server are secure by using the channel
SSL.



90 CHAPTER 6. APPLICATION: PIXGUARDIAN

Figure 6.2: Certificates exchange

Internet

Bob
Ka, ka
Alice

Kb, kb

Plugin of BobApp of Alice

Server

If yes : {id, B, {Kses}_Kb, AC_b} 
is stored in the profile of A

{Sign_B}_Ka = {id, B, {Kses}_Kb, AC_b} ?

{I}_Kses

I, AC_b

{I}_Kses

OK

If AC_B OK: 
{Kses}_Kb{id, B, {Kses}_Kb,

 AC_b, Sign_B}

I

id, A

4

3

1

5

2

6

7

8

Figure 6.3: General architecture for sharing with a person



6.1. THE SCENARIO 91

Each participator P installs the application to carry out the encryptions / decryptions, generates
the identity of an image id and the session keys. The maximum size of the identity is 256 bits and
it is obtained by the application.

For each participator P , the server stores his certificate CertP , his e-mail address and his public
key KP . The server also stores all the quadruplets representing an image for each receiver. In each
quadruplet, we have: the image identity id, the person identity U , the session key encrypted by a
public key KU of U and the access conditions of the image ACP→U of P for U .

The application/plugin works like that:

• generate a session key Kses.

• get the identity id of image I.

• encrypt the image I with the session key using the encryption function C, i.e. C(I,Kses) =
{I}Kses .

• decrypt the encrypted images with the public key K using the decryption fonction InvC, i.e.
InvC(C(I,Kses),Kses) = I.

• exchange with the server by using a secure channel SSL.

The application allows to register (certification) to the server, drop the image to encrypt and
generate the encrypted image which can be used to published on the image-sharing platforms.
After dropping an image, the user needs to choose the access conditions of the image.

6.1.3 Upload the image
There are two cases when we upload the image. The first one is that the access to images is
restricted to few people, the second one is that everyone can access the image (during a defined
period or only with numbers of views). Indeed, the exchange and storage of data are slightly
different depending on the cases, in the following paragraphs, we detail the distinctions.

6.1.3.1 The case of access to images for restricted people

First of all, Alice and Bob have their own certificate and are registered to the server who knows
their usernames, their email addresses and their public keys. And they have their public keys
respectively. Alice can exchange her certificate with friends, such as Bob, and get their certificates.

Alice wants to share an image I with Bob. After being connected, she drops the image I on
the interface of application. Then the application generates a session key and calculates identity
of the image id. Then Alice defines the access conditions of this image.

An access condition can be authorised and/or refused to display the image:

• by some people.

• during a limited time.

• with a limited numbers of view.

• OR a combination of the three conditions above.

The application knows the public keys of authorised persons according to their certificate. It
encrypts the session key using the public key of each person respectively.

Example: If Alice allows Bob and Charlie to see her image, then the application creates
{Kses}KB and {Kses}KC .

Also, each authorised person is associated with the access conditions of the image. Using
the example above, the access conditions of the image for B and C are respectively created and
represented by ACA→B and ACA→C .

After opening a SSL channel to the server (and mutual authentication between the application
of Alice and the server), for each authorised person U , the application sends to the server the
quintuplet: (id, U, {Kses}KU , ACA→U , SignU ).



92 CHAPTER 6. APPLICATION: PIXGUARDIAN

Where SignU represents the signature of the other four elements with the private key of A.
That is : SignU = {id, U, {Kses}KU , ACA→U}KA .

After receiving all quintuplets, the server checks each of them by ensuring that {SignU}KA =
{id, U, {Kses}KU , ACA→U}. The server can do this verification because it owns the public key
of Alice KA in her certificate CertA. After the verification, the server stores the quintuplets
{id, U, {Kses}KU , ACA→U} in the profile of Alice and confirms the storage of quintuplets to Alice,
otherwise it returns an error message.

Then Alice gets her encrypted image {I}Kses and shares it on the Internet, such as, on the
social networks (Explained in Fig. 6.4).

S IntApp

2

1

3

4

5

6

A

…

Mutual authentification

I, AC = (AC_B, AC_C,…)

(id, B, {Kses}_Kb, AC_B, Sign_b),
(id, C, {Kses}_Kc, AC_C, Sign_c),

OK

{I}_Kses

{I}_Kses

Figure 6.4: Encryption of the image I

Where S is the server, App is the application, A is the entity of Alice and Int is the internet.
AC represents all the access conditions of the image. Each AC_icorresponds to the specific access
conditions for the individual i. Note that: Sign_i = {id, i, {Kses}Ki , ACA→i}kA .

After step 1, App generates the session key, calculates the id, encrypts the session key with the
public keys of the persons who are allowed to see the image and to create signatures.

Step 2 represents the mutual authentication via SSL channel. Finally, in step 4, the server can
also return an error if there is one during the signature verification. In this case, either the previous
step is repeated, or the protocol stops.

6.1.3.2 The case of access to images for everyone

This is the case that the user wants everyone to see his images but during a limited time and/or
with a limited numbers of view.

In this case, as everyone can see the image, the server can as well. The session key is stored in
the server without being encrypted. The application only sends the session key Kses, the access
conditions AC (the general conditions for the image) and SignS = {Kses, AC}KA (Explained in
Fig. 6.5). Where S is the server, App is the application, A is the entity of Alice and Int is the
internet. AC represents all the access conditions of the image. Note that: Sign_s = {Kses, AC}kA .

As before, in step 4, the server may return an error if the signature verification is not success.
In this case, either the application renews the previous sending, or the protocol stops.

Note that even if the access conditions of image are expired, the server always owns the session
key and can still decrypt the image.



6.1. THE SCENARIO 93

S IntApp

2

1

3

4

5

6

A

{I}_Kses

Mutual authentification

Kses, AC, Sign_s

OK

I, AC

{I}_Kses

Figure 6.5: Encryption of the image I, version 2

6.1.4 Download the image {I}Kses with decryption

6.1.4.1 The case of access to images for restricted people

In this case, Bob sees the shared image {I}Kses by Alice on the website. His plugin opens a SSL
channel to the server with a mutual authentification.

The plugin calculates the identity of the image id and sends it with the username of Alice to
the server. The server looks for this id under the username of Alice. If found, the server checks the
access conditions for Bob. If the access conditions allow Bob to decrypt the image, then the server
returns {Kses}KB to Bob. Otherwise, the server returns an error message. In the positive case,
the plugin decrypts {Kses}KB with the private key of Bob KB to obtain the session key. Finally,
{I}Kses is decrypted and Bob views the image I (Explained in Fig. 6.6).

Each authorised user who wants to see the image must do the same procedure to decrypt
{I}Kses until the general access conditions are expired (for example: time expired, the numbers of
view expired).

Figure 6.6: Decryption of the image I

Where: S is the server, P is the plugin, B is the entity of Bob.
After step 3, the server verifies the access conditions of the image for B. If Bob can see the image



94 CHAPTER 6. APPLICATION: PIXGUARDIAN

then step 4 is performed. Otherwise, the server returns an error message instead of {Kses}_Kb.
After Step 4, the plugin finds the session key and decrypts the image.

Here, Bob knows the image publisher when sending the username. After decryption, the session
keys are not be saved by the plugin.

6.1.4.2 The case of access to images for everyone

In this case, after having the identity of the image and the username of Alice, the server verifies
the access conditions. If it is still possible to see, the server returns to the plugin the unencrypted
session key, but via the secure SSL channel (Explained in Fig. 6.7).

Figure 6.7: Decryption of the image I, version 2

Where: S is the server, P is the plugin, B is the entity of Bob.
After step 3, the server verifies the access conditions of the image. If the image is still visible,

then step 4 is performed. Otherwise, the server returns an error message instead of Kses. After
step 4, the plugin decrypts the image.

6.2 The application to publish images

In this section, we show how to turn the scenario into the real application/plugin and use them
to share image on Facebook. In order to fully protect user’s privacy, we choose to realise the case
of access to images for restricted people, because considering in the case of access to images for
everyone, the server always owns the session key and can always decrypt the image, so the server
cannot be trusted by the users.

6.2.1 Registration and login
First of all, users need to register in the server (shown in Fig. 6.8) by using the application. The
authentication is established between the server and the users, and then the application helps users
generate their own pairs of keys. The public keys are sent to and stored in the server.

When the user who wants to share his images with restricted people, he needs to ask the server
for the public key of each authorised user. The server then asks these users for the authorisation
of providing the public key. (shown in Fig. 6.9).

The interaction of users’ login and registration in our application is shown in Fig. 6.10. The
registration information are stored in our database. The pairs of public key and private key are
stored in the cryptographic API.

6.2.2 Sharing the images
After succeeding registration and login, user who wants to share the images with restricted people
needs the public keys of authorised users to encrypt the key which is used to encrypt the image and



6.2. THE APPLICATION TO PUBLISH IMAGES 95

:Server:User

SendPubKey(login, PubKey): boolean

[DefaultParameters==TRUE]:Success()

GenerateKeys(): PubKey, PrivKey

[Authentication==TRUE]:Success()

Register(login, password): boolean

Authentication(string, string): boolean

Authentication(login, password): boolean

[Register==TRUE]:Success()

[SendPubKey==TRUE]:Success()

Figure 6.8: The general case of registration



96 CHAPTER 6. APPLICATION: PIXGUARDIAN

:ServerA lice: User_Share David: User_Get

GivePublicKey(login_D, PubKey_D): int

[DefaultParameters==TRUE]:Success()

[SendPubKey==TRUE]:Success()

SendPubKey(login_A , PubKey_A): boolean

GivePublicKey(login_A, PubKey_A)

[CanIGiveYourPublicKey==TRUE]:Ok()

Authentication(login_D, password_D): boolean

GenerateKeys(): PubKey_A, PrivKey_A

[Authentification==TRUE]:Success()

AskForPublicKey(login_A, login_D)

AskForPublicKey(login_A, login_V)

[Authentication==TRUE]:Success()

G ivePublicKey(login_A, PubKey_A)

Register(login, password): boolean

DefineDefaultParameters(login_A , [10, 15, login_D, login_V]): boolean

[Authentication==TRUE]:Success()

G ivePublicKey(login_V, PubKey_V): int

Authentication(login_V, password_V): boolean

CanIGiveYourPublicKey(login_A): boolean

Authentication(login_A, password_A): boolean

[Register==TRUE]:Success()

CanIGiveYourPublicKey(login_A): boolean

[CanIGiveYourPublicKey==TRUE]:Ok()

Valérie: User_Get

GivePublicKey(login_D, PubKey_D): int

[DefaultParameters==TRUE]:Success()

[SendPubKey==TRUE]:Success()

SendPubKey(login_A , PubKey_A): boolean

GivePublicKey(login_A, PubKey_A)

[CanIGiveYourPublicKey==TRUE]:Ok()

Authentication(login_D, password_D): boolean

GenerateKeys(): PubKey_A, PrivKey_A

[Authentification==TRUE]:Success()

AskForPublicKey(login_A, login_D)

AskForPublicKey(login_A, login_V)

[Authentication==TRUE]:Success()

G ivePublicKey(login_A, PubKey_A)

Register(login, password): boolean

DefineDefaultParameters(login_A , [10, 15, login_D, login_V]): boolean

[Authentication==TRUE]:Success()

G ivePublicKey(login_V, PubKey_V): int

Authentication(login_V, password_V): boolean

CanIGiveYourPublicKey(login_A): boolean

Authentication(login_A, password_A): boolean

[Register==TRUE]:Success()

CanIGiveYourPublicKey(login_A): boolean

[CanIGiveYourPublicKey==TRUE]:Ok()

:ServerA lice: User_Share David: User_Get

GivePublicKey(login_D, PubKey_D): int

[DefaultParameters==TRUE]:Success()

[SendPubKey==TRUE]:Success()

SendPubKey(login_A , PubKey_A): boolean

GivePublicKey(login_A, PubKey_A)

[CanIGiveYourPublicKey==TRUE]:Ok()

Authentication(login_D, password_D): boolean

GenerateKeys(): PubKey_A, PrivKey_A

[Authentification==TRUE]:Success()

AskForPublicKey(login_A, login_D)

AskForPublicKey(login_A, login_V)

[Authentication==TRUE]:Success()

G ivePublicKey(login_A, PubKey_A)

Register(login, password): boolean

DefineDefaultParameters(login_A , [10, 15, login_D, login_V]): boolean

[Authentication==TRUE]:Success()

G ivePublicKey(login_V, PubKey_V): int

Authentication(login_V, password_V): boolean

CanIGiveYourPublicKey(login_A): boolean

Authentication(login_A, password_A): boolean

[Register==TRUE]:Success()

CanIGiveYourPublicKey(login_A): boolean

[CanIGiveYourPublicKey==TRUE]:Ok()

Valérie: User_Get

GivePublicKey(login_D, PubKey_D): int

[DefaultParameters==TRUE]:Success()

[SendPubKey==TRUE]:Success()

SendPubKey(login_A , PubKey_A): boolean

GivePublicKey(login_A, PubKey_A)

[CanIGiveYourPublicKey==TRUE]:Ok()

Authentication(login_D, password_D): boolean

GenerateKeys(): PubKey_A, PrivKey_A

[Authentification==TRUE]:Success()

AskForPublicKey(login_A, login_D)

AskForPublicKey(login_A, login_V)

[Authentication==TRUE]:Success()

G ivePublicKey(login_A, PubKey_A)

Register(login, password): boolean

DefineDefaultParameters(login_A , [10, 15, login_D, login_V]): boolean

[Authentication==TRUE]:Success()

G ivePublicKey(login_V, PubKey_V): int

Authentication(login_V, password_V): boolean

CanIGiveYourPublicKey(login_A): boolean

Authentication(login_A, password_A): boolean

[Register==TRUE]:Success()

CanIGiveYourPublicKey(login_A): boolean

[CanIGiveYourPublicKey==TRUE]:Ok()

Figure 6.9: The registration of restricted users



6.2. THE APPLICATION TO PUBLISH IMAGES 97

:User_Share

:User:pictureC ipherGUI :SQLDataService:bcomCryptoAPI

alt 

[bRegistered == true]

alt 

[bRegistered == false]

login(email, password): bool

registerUser(email, password)

displayRegisterScreen(): int

getOwnerSymmetricKeys(QString&, std::map<QString,QString >&)

register(): int

displayLoginScreen(): int

retrieveSymmetricKeys()

isRegistered(): bRegistered

bcomGenerateRSAKeys(publicKey, privateKey)

«create»

login(): int

login(email, password): Owner_UUID

retrieveFriends()

getF riends(QString& , std::map<QString,Account* >&)

login(email, password): Owner_UUID

registerUser(email, password, publicKey)

:SQLDataService

alt 

[bRegistered == true]

alt 

[bRegistered == false]

Owner_UUID is generated upon user registration and 
provided upon login to ensure subsequent DB calls are 
made by the owner of a key (i.e. as the add ciphered key 
and change access rights are separated methods, we need 
to ensure change access rights is made by the symmetric 
key owner)

login(email, password): bool

registerUser(email, password)

displayRegisterScreen(): int

getOwnerSymmetricKeys(QString&, std::map<QString,QString >&)

register(): int

displayLoginScreen(): int

retrieveSymmetricKeys()

isRegistered(): bRegistered

bcomGenerateRSAKeys(publicKey, privateKey)

«create»

login(): int

login(email, password): Owner_UUID

retrieveFriends()

getF riends(QString& , std::map<QString,Account* >&)

login(email, password): Owner_UUID

registerUser(email, password, publicKey)

Figure 6.10: The registration in our server



98 CHAPTER 6. APPLICATION: PIXGUARDIAN

store the encrypted keys in the server. He also needs to define the access conditions of his images
and send them to the server. Then the user publishes his encrypted image on Facebook. On the
other side, for the user who wants to see this image, our plugin in the browser verifies his rights
with the server. After verifying the access conditions, the authorised user can get the encrypted
key, he uses his private key to decrypt it and then decrypts the image, The unauthorised user can
only get an error message. The access conditions can be modified at anytime by the user sharing
image (Shown in Fig. 6.11).

The interaction of users sharing image in our application is shown in Fig. 6.12. The image ID
and access conditions are stored in our database. All the keys are stored in the cryptographic API.

6.2.3 The secure in the server
In the process of sharing images, our server is trustworthy to the user. The key used to encrypt
the image is encrypted by public key of each authorised user before being stored in the server.
These keys are only decrypted by the corresponding private keys of authorised users. Therefore,
user sharing images can trust the server will not obtain the decipher key and know the images he
wants to share, even all the encrypted keys are stored in it.

The encrypted image is published on Facebook by user himself through his own computer. The
authorised user on the other side only uses the plugin in the browser to connect the server. After
getting the encrypted key from the server, the plugin helps user to decrypt the key and then to
decrypt the image without storing the key. The decrypted image is only displayed on this user’s
computer, the server cannot know any information about the plaintext image.

6.2.4 Demonstration
In this section, we introduce how to use this application and plugin to share images on Facebook
and we show some screenshots of the demonstration.

First of all, the users register themselves in our application (shown in Fig. 6.13(a)), they type
all the asked information, if any information does not meet the requirement, an error message then
is given back (shown in Fig. 6.13(b)).

Next, user types the username and password to login the application (shown in Fig. 6.14(a)),
but if any of them is wrong, an error message is given back (shown in Fig. 6.14(b))

When user logins successfully, he can see the main interface(Fig. 6.16(a)), where he can drop
his image, and he can check all the images he dropped (Fig. 6.16).

In the “parameters” interface (Fig. 6.16(a)), user can set the default information such as the
duration of image validation, the number of view and shared contacts. For each image, in addition
to use the default parameters, user can also select other authorised users and set other access
conditions (Fig. 6.16(b)). Then user obtains the encrypted image and publishes it on Facebook. In
the “contacts rights” interface (Fig. 6.16(c)), user can review the rights he assigns to each image.
It is worth mentioning that, the identity of image is stored in the “QR code” which is embedded
in the middle of the encrypted image. It is used to realise the connection between image and the
server.

After publishing the image on Facebook, users can use the plugin in browser Chrome to decrypt
the image (Fig. 6.17(a)). However, only the authorised users can successfully see the plaintext image
in the validity date (Fig. 6.17(b)), while the others will be told that they do not have the right to
see the image (Fig. 6.17(c)).

6.3 Studies of using PixGuardian

The PixGuardian is designed specifically to meet the need of authenticity control and data diffusion.
In order to know if it is adapted to certain level of requirements of the users, we established an
experiment to evaluate the user experiences of PixGuardian. The main object of this evaluation
is to understand users’ needs and to evaluate the conformity of conception solution to users’
requirements. The improvement ideas proposed during the evaluation will be used to realise a
more satisfying solution to meet users’ needs and will be designed in the next version.



6.3. STUDIES OF USING PIXGUARDIAN 99

:Facebook:Server David: User_GetA lice: User_Share

GetImageID(image): imageID

[SendKeyCiphered==TRUE]:Success()

[Authentication==TRUE]:Success()

[ChangeAccessRights==TRUE]:Success()

KeyC ipher(SymKey, PubKey_V): Key_V

Authentication(login_A, password_A): boolean

Decipher(SymKey, image)

GenerateKey(): SymKey

Cipher(image,SymKey): imageID

[Authentication==TRUE]:Success()

[HaveAccessRight==TRUE]:Send(Key_D)

Authentication(login_D, password_D): boolean

GetImageID(image): imageID

HaveAccessR ight(imageID, login_V): boolean

PostImage(image)

GetImage(): image

SendKeyCiphered([login_D, Key_D], [login_V, Key_V]): boolean

ChangeAccessR ights(login_A , imageID, [10, 15, login_D]): boolean

KeyC ipher(SymKey, PubKey_D): Key_D

Authentication(login_V, password_V): boolean

KeyDecipher(Key_D, PrivKey_D): SymKey

[Authentication==TRUE]:Success()

HaveAccessR ight(imageID, login_D): boolean

[HaveAccessRight==FALSE]:MessageError()

GetImage(): image

Valérie: User_Get

GetImageID(image): imageID

[SendKeyCiphered==TRUE]:Success()

[Authentication==TRUE]:Success()

[ChangeAccessRights==TRUE]:Success()

KeyC ipher(SymKey, PubKey_V): Key_V

Authentication(login_A, password_A): boolean

Decipher(SymKey, image)

GenerateKey(): SymKey

Cipher(image,SymKey): imageID

[Authentication==TRUE]:Success()

[HaveAccessRight==TRUE]:Send(Key_D)

Authentication(login_D, password_D): boolean

GetImageID(image): imageID

HaveAccessR ight(imageID, login_V): boolean

PostImage(image)

GetImage(): image

SendKeyCiphered([login_D, Key_D], [login_V, Key_V]): boolean

ChangeAccessR ights(login_A , imageID, [10, 15, login_D]): boolean

KeyC ipher(SymKey, PubKey_D): Key_D

Authentication(login_V, password_V): boolean

KeyDecipher(Key_D, PrivKey_D): SymKey

[Authentication==TRUE]:Success()

HaveAccessR ight(imageID, login_D): boolean

[HaveAccessRight==FALSE]:MessageError()

GetImage(): image

:Facebook:Server David: User_GetA lice: User_Share

GetImageID(image): imageID

[SendKeyCiphered==TRUE]:Success()

[Authentication==TRUE]:Success()

[ChangeAccessRights==TRUE]:Success()

KeyC ipher(SymKey, PubKey_V): Key_V

Authentication(login_A, password_A): boolean

Decipher(SymKey, image)

GenerateKey(): SymKey

Cipher(image,SymKey): imageID

[Authentication==TRUE]:Success()

[HaveAccessRight==TRUE]:Send(Key_D)

Authentication(login_D, password_D): boolean

GetImageID(image): imageID

HaveAccessR ight(imageID, login_V): boolean

PostImage(image)

GetImage(): image

SendKeyCiphered([login_D, Key_D], [login_V, Key_V]): boolean

ChangeAccessR ights(login_A , imageID, [10, 15, login_D]): boolean

KeyC ipher(SymKey, PubKey_D): Key_D

Authentication(login_V, password_V): boolean

KeyDecipher(Key_D, PrivKey_D): SymKey

[Authentication==TRUE]:Success()

HaveAccessR ight(imageID, login_D): boolean

[HaveAccessRight==FALSE]:MessageError()

GetImage(): image

Valérie: User_Get

GetImageID(image): imageID

[SendKeyCiphered==TRUE]:Success()

[Authentication==TRUE]:Success()

[ChangeAccessRights==TRUE]:Success()

KeyC ipher(SymKey, PubKey_V): Key_V

Authentication(login_A, password_A): boolean

Decipher(SymKey, image)

GenerateKey(): SymKey

Cipher(image,SymKey): imageID

[Authentication==TRUE]:Success()

[HaveAccessRight==TRUE]:Send(Key_D)

Authentication(login_D, password_D): boolean

GetImageID(image): imageID

HaveAccessR ight(imageID, login_V): boolean

PostImage(image)

GetImage(): image

SendKeyCiphered([login_D, Key_D], [login_V, Key_V]): boolean

ChangeAccessR ights(login_A , imageID, [10, 15, login_D]): boolean

KeyC ipher(SymKey, PubKey_D): Key_D

Authentication(login_V, password_V): boolean

KeyDecipher(Key_D, PrivKey_D): SymKey

[Authentication==TRUE]:Success()

HaveAccessR ight(imageID, login_D): boolean

[HaveAccessRight==FALSE]:MessageError()

GetImage(): image

Figure 6.11: The sharing images between restricted users



100 CHAPTER 6. APPLICATION: PIXGUARDIAN

:bcomDtiP ictureCipherAPI:bcomCryptoAPI

:User_Share

:SQLDataService:pictureC ipherGUI :User :Account :P ictureData:P ictureC ipherHandler

loop 

bcomPublicRSAEncrypt(symmetricKey, ownerPublicKey): ownerCipheredKey

cipher()

get_next_picture_id(): varchar (255)

publicEncrypt(std::string&)

bcomGenerateSymKey(): symmetricKey

PostImage(imgDestFilePath)

publicEncrypt(std::string&)

bcomDtiWriteImageID(imageID , imageFilePath)

bcomDtiC ipher(symmetricKey, srcFilePath, dstFilePath): long

cipher(std::string): PictureData

changeAccessRights(Owner_UUID, friendCipheredKeyID, date_end, nbViews)

cipherImage(): int

addC ipheredKey(Owner_UUID, owner_email, imageID, ownerCipheredKey)

bcomPublicRSAEncrypt(symmetricKey, friendPublicKey): friendCypheredKey

P ictureData()

publish(P ictureData&): long

add(std::string): PictureData

addCipheredKey(Owner_UUID, friendEmail, imageID, friendCipheredKey): friendCipheredKeyID

getNextP ictureID(): imageID

:SGDBServer

Owner_UUID is retrieved 
during user login phase 
such as friends 
informations (public key 
...)

:SQLDataService :Facebook

loop 

bcomPublicRSAEncrypt(symmetricKey, ownerPublicKey): ownerCipheredKey

cipher()

get_next_picture_id(): varchar (255)

publicEncrypt(std::string&)

bcomGenerateSymKey(): symmetricKey

PostImage(imgDestFilePath)

publicEncrypt(std::string&)

bcomDtiWriteImageID(imageID , imageFilePath)

bcomDtiC ipher(symmetricKey, srcFilePath, dstFilePath): long

cipher(std::string): PictureData

changeAccessRights(Owner_UUID, friendCipheredKeyID, date_end, nbViews)

cipherImage(): int

addC ipheredKey(Owner_UUID, owner_email, imageID, ownerCipheredKey)

bcomPublicRSAEncrypt(symmetricKey, friendPublicKey): friendCypheredKey

P ictureData()

publish(P ictureData&): long

add(std::string): PictureData

addCipheredKey(Owner_UUID, friendEmail, imageID, friendCipheredKey): friendCipheredKeyID

getNextP ictureID(): imageID

Figure 6.12: The sharing images in our server

(a) The registration interface (b) The error message of registration interface

Figure 6.13: The process of registration



6.3. STUDIES OF USING PIXGUARDIAN 101

(a) The login interface (b) The error message of login interface

Figure 6.14: The process of login

(a) The main interface (show images) (b) The main interface (show files)

Figure 6.15: The main interface of application



102 CHAPTER 6. APPLICATION: PIXGUARDIAN

(a) The interface to set default parameters (b) The interface to set parameters for each im-
age

(c) The interface to review the setting rights

Figure 6.16: Interfaces of PixGuardian

(a) The plugin option for the image (b) The authorised result

(c) The unauthorised result

Figure 6.17: The plugin decrypting image on Facebook



6.3. STUDIES OF USING PIXGUARDIAN 103

We recruited 33 users participate this experiment during six weeks to collect the quantitative
and qualitative data. The questionnaires submitted by users can help us to evaluate the accept-
ability and their experiences according to their positive and negative feedback.

6.3.1 Experiment description
In this evaluation experiment, users are placed in their natural environment, precisely which is
expected by the system studied: they are at home, with their materials and use the system when
they need.

This evaluation experiment is use to meet several objectives:

- study the experiences in a large, natural contexte. The context of use is a factor that
impacts user experience. We want to collect real user experience (UX) instead of the test in
a laboratory, which can reduce the limit of laboratory environment.

- Study UX and its temporal dynamics. With the questionnaire, we want to collect the
data about various phases of the experiment. Before the use, we evaluate the anticipated UX
(the users imagine), and after the use, we evaluate the UX momentary (their feelings during
using our application).

- Determine correlates and consequences of experience with the system. Through
interviews with users, we want to deepen the questionnaires and collect their expectations,
their mood, or their use background.

The inconvenience is that the distance between the users and the observers makes it more
difficult to record the observations and the validity of the analysis. These elements should be
payed special attention during the study.

6.3.1.1 Statistics of uses

Anonymous statistics on the use and behaviour of participants is recorded when using the service.
Among the traces of uses, we focus in particular on:

- The information of login account (frequency, success, fail).

- The used features (encryption, decryption, adding image, setting rights, etc.).

- All the manipulations of service that led to failures (connection, adding friends, decryption,
etc.).

These traces help us to obtain an global view on the functional qualities of service, and also on
its ergonomic qualities (usefulness, usability, efficiency). They decide what should we do during
the interview. And they are also allow us to obtain the results on different computer configurations
of participants.

6.3.1.2 Questionnaires

In this experiment, there are two parts of the questionnaires: the evaluation before use and the
evaluation after use.

Questionnaire pre-use
The first part of the questionnaires lets the users understand a description of the service which

allows them to imagine an use situation. Their answers reveal their practices, attitudes, values. It
is an anticipated UX to be evaluated, and it includes the following dimensions:

- The acceptability is evaluated by: the global judgement and the intends of use.

- The affective-moticational factors that are measured by: intrinsic motivation and social in-
fluence.

- The anticipated UX which is measured by:



104 CHAPTER 6. APPLICATION: PIXGUARDIAN

* The utility and usability as a measure of functional qualities for UX.

* The simulation, the global attractiveness, the aesthetics and the confidence as a scale
of nonfunctional qualities for UX.

* The absorption, Self image and the emotion are used as an indicator of the affective-
motivational reactions.

Questionnaire post-use
For the questionnaire post-use, the acceptability is evaluated by the global judgement and the

intention of use. It is also measured by the factors and affective-motivational reactions in the
following dimensions:

- Intrinsic motivation

- Social influence

- Self-image

- Their emotions

Effective UX is measured by:

- The utility and usability as a measure of functional qualities.

- The simulation, the global attractiveness, the aesthetics and the confidence as a scale of
nonfunctional qualities.

These two parts questionnaires are managed by email during15 days and there are 35 and 57
questions respectively. All the questions are in the form of affirmative sentences. Participants
will be asked to evaluate which degree they agree or disagree, by positioning spontaneously on an
11-point scale (from 0 to 10): 0 corresponds to "Strongly disagree" and 10 corresponds to "strongly
agree"

6.3.1.3 Interviews

The questionnaire data and traces of use do not allow us to have a deep understanding of the users’
activity, and of the context of these activities. Therefore, interviews are in progress in addition.
The dialogue with potential users allow us to deeply explore the attitudes, opinions, preferences,
beliefs, or mental representations of the interviewee.

In the interview, three main themes are addressed:

- The individual profile of user: we seek to know who they are, what are their technological
hobbies, their habits on Facebook in terms of image sharing.

- The customs and attitudes of the users with PixGuardian: we focus on their experience with
the service.

- Users’ expectations: we ask if the service meets their global needs and what aspects should
be improved in priority.

We also discuss the business model of the application: it determines if users are willing to pay
for this service and in which form.

These points are addressed in the form of conversation, and the participants are not neces-
sarily all geographically close. The interviews may also be conducted by videoconference (Skype,
Hangouts).



6.3. STUDIES OF USING PIXGUARDIAN 105

6.3.1.4 Recruitment of participants

The target participants for this service are the general public, especially for the people who are
interested in control their digital images on the Internet, and concerned with the right to be
forgotten about their contents.

The current version of the application is intended for use on Facebook. The recruitment of
participants in the experiment is taken into account as following:

- M/F 18 years old or more.

- Having a computer with Windows systems (XP, 7, 8, 10) or Mac OS.

- Having an active Facebook account (i.e. which is used at least once a week).

- Having shared, at least once, the images through Facebook.

The principal use case is sharing images with family/friends, the sampling technique called
“snowball” (Shown in Fig. 6.18). We select 10 participants whom we can easily access as the
internal ones. These people then be responsible for recruiting based on the same criteria. Then 10
people of their close entourage test the service. The internal participant has a close relationship
with 10 external participants and these 10 external participants can also have the links between
them.

1/10 internal participant

10 external participants

Figure 6.18: The interface to review the setting rights

6.3.2 Results and analyses

6.3.2.1 Participants

We recruited 33 participants, among them:

- 3 users do not meet the criteria (1 participant uses Linux, 1 user does not have a Facebook
account, 1 user does not have a personal computer). Therefore, they were excluded from the
base of testers.

- According to the statistics of uses, only 11 of them used the application at least once.

- 20 users responded the pre-use questionnaire, and 5 users responded to the post-use ques-
tionnaire.

These reduces the amount of data to analyse.



106 CHAPTER 6. APPLICATION: PIXGUARDIAN

6.3.2.2 User Experience

Overall, the use of PixGuardian generates a positive experience for four-fifths of the people inter-
viewed. The participants think the idea is interesting and the service is useful.

On the contrary, users do not plan to continue using it, since the service is considered too
limited and does not seem finished. However, the participants perceive the potential of the service,
and therefore they have some expectations of this service.

The experience global is average. They found that the service is useful for a professional use,
but it was complicated, took a long time to implement, that demotivates.

The functional qualities
! The results about the usability of the service are weak. For most participants, it is compli-

cated to use PixGuardia: it is relatively long and difficult to understand how to use. But with the
description of the service, users had thought it is a simple service to use. Some users they it did
not reach the goals we had set, with effectiveness, efficiency and satisfaction.

! There is also a decrease in the evaluation of the utility after use of the service. Users thought
that PixGuardian only meet their needs moderately, and the functionalities offered by the service
were not very important, so only not bad to use.

Non-instrumental qualities
" The answers about the factor stimulation are very positive. Users think that this service

is original and innovative. The proposed functionalities are innovative and are not common. The
service stimulates the curiosity of users, and allows them to learn new things.

! There is a decrease in the evaluation of the global attractiveness of the service. Using Pix-
Guardian seems moderately pleasant, comfortable, and friendly. After using, the service becomes
less attractive and less interesting for users and their friends.

! The results for the aesthetics of the application are heterogeneous. Users generally like the
visual appearance of the application, however it has not particularly pleasant look, nor aesthetically
attractive.

The affective-motivational reactions
! We notice that the effect of absorption is weak. Users are never truly absorbed by the

interaction of the service. They do not lose the sense of time, nor forget anything else when using
PixGuardian.

! The evaluation of the confidence of the service is average. For the question “I have the
confidence in the information provided by this application”, a majority of users tend to answer
“disagree”. Therefore, the information and functionalities provided by PixGuardian seem moder-
ately week.

! The results about the identification and self-image are weak. Users feel they did not
perceive positively or negatively for the others when they use the service. Using PixGuardian
seems a little valuable, and users think their contacts do not envy to user the service.

! Majority of users have positive emotion during the interaction. They indicated that they
are excited, happy and satisfied moderately. Only 3 users have negative emotions to use the
service, they indicated that they felt annoyed and frustrated when using the application.

6.3.2.3 Acceptability of service

" The results related to the intrinsic motivation remain neutral. Using the service generates
the amusement, satisfies the curiosity of users to discover new things, and gives pleasure when
interacting, but only in a moderately way.

! Comparing the responses related to social influence pre-use and post-use. The latter one
is negative. Users indicated that they would not encourage their relatives to use the service. And
they do not think that people will be grateful to convince them to use the service.

" After use, there is also a decrease in the global jugement of the service. For the question
‘How to evaluate PixGuardian globally”. User gave a note of 610 (notice that the pre-use note is
810).

" Contrarily, the intentions of use increase. Users indicated particularly that they want to
continue using the service in their daily lives.



6.3. STUDIES OF USING PIXGUARDIAN 107

6.3.2.4 User Expectations

The improvements and the evolutions
In terms of improvement, users are waiting for more simplicity in the implementation of the

service. They believe that for the first use, a video or a animated tutorial is need to accompany
the user to execute the necessary initial configurations.

They also want to make it easier to create an account and to manage the contacts. Two users
suggest connecting with the Facebook ID, which could then help to identify friends who use the
service. Considering the management of contacts, users think it should be expanded, such as the
personalisation of contacts, automatic detection of a new user via importing a list of mail addresses,
creation of groups.

In terms of evolution, they express the desire of a multi-support service. Indeed, the shared
images are mostly from their smartphone, and users do not want to transfer the images to their
computer before sharing them.

Users also desire an encryption tool for multi-format images (.png, .bmp, .tiff, .gif, etc.). The
JPEG format are well prepared for the personal photos, but the illustrations are always in PNG.

An extension on the other web browsers is also desired. Indeed, among the 5 interviewers, only
one of them use the Chrome browser.

Finally, users want a service that would allow them to know about: “Who saw the shared
image?”, “Who stored it?”, “Who re-shared it, and where?”.

Business model
The participants all said they would not use the existing service if it has to pay. For the use on

the social network, PixGuardian does not seem to bring a real additional value compared to the
existing features, such as setting the audience.

However, for the business use, a participant is willing to acquire it after some evolution of service.
He mentioned that the service should apply for different image formats, and more simplicity to
implement for the clients. He insisted that the clients do not need the encryption interface, but
just plugin decryption. So they want something easy to install. This participant imagined a license
can be acquired 10 to 15 euros per year.

6.3.3 Conclusion
After studies of using PixGuardian, the results indicate that the users have a strong interest in the
service, however, the current version does not meet all their needs. Nevertheless, users still foresee
the potential of the service and wait the development, which contributes to maintain their strong
intentions to use the service.

The improvements on pragmatic level of the main service interface would be needed (guiding,
preventing and handling errors, feedback, etc.). The evolutions of some new functions are also
expected. So in the next version of service, we need to consider these aspects to create a better
user experience and a more positive acceptability.



108 CHAPTER 6. APPLICATION: PIXGUARDIAN



Chapter 7

Conclusion and remarks on future
research

Contents
7.1 Conclusion of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 The future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1 Conclusion of the thesis

In recent years, with the rapid development of social networks, more and more users prefer to share
their photos, videos, status, etc. through these platforms than using e-mail or personal webpages.
It makes sharing become easier, and most of the social networks provider try to help users to
control the access to their contents to protect their privacy, most of the social networks allow
users to group their friends according to the relations they have with, such as “Friends”, “Family”,
“Acquaintances”, etc. Thus, specifying the friends that can access to each content, users may think
that their privacy is guaranteed. However, from our point of view, the privacy of the users is not
guaranteed with respect to the providers of the social networks since they can clearly know any
published contents. Therefore, in this thesis, we aim to provide a method to protect user’s privacy
completely, that only the user himself and the authorised friends can know the contents.

According to some existing solutions and some analysis, in this thesis, we limited our study to
JPEG images, and we assert that the published images should not be readable while uploading.
Therefore, the main idea is to allow users to encrypt their images, and publish the encrypted
images on any existing image-sharing platforms (i.e., Facebook, Flickr, Twitter, Google+, ...). The
encryption keys as well as the access control rules of encrypted images are stored in our independent
infrastructure. When someone accesses some published encrypted image, he/she has to request the
encryption key to our independent infrastructure, the encryption key being sent back only if the
access control rules authorise it. Notice that the enforcement of the access control rules can also
be used to implement the right to be forgotten.

After studying the related works, we found there are three challenges when researchers propose
the image encryption algorithm.

• The first challenge is the definition of an encryption algorithm that preserves the image
format. Many image formats are accepted by existing image-sharing platforms, such as
JPEG, PNG, GIF, etc. However, according to our experimentation (mentioned in §4.1), in
most of platforms, the uploaded images are systematically compressed in JPEG format, no
matter what are their original formats. In this context, the proposed encryption algorithm
has to preserve the JPEG format 1.

1Notice that JPEG is the most widely used standards for storing and compressing images.

109



110 CHAPTER 7. CONCLUSION AND REMARKS ON FUTURE RESEARCH

• The second challenge is that the encryption algorithm must be secure. Especially, we require
that the adversary should not get any information of the plaintext image from the encrypted
image. In particular, he/she cannot distinguish the encryption of a brighter image from a
darker image. Therefore, IND- CPA secure is our judgment criteria for the security of image
encryption algorithm.

• The third challenge is that the encryption algorithm has to be compatible with the majority
of existing image-sharing platforms (i.e., Facebook, Flickr, Twitter, Google+, ...). However,
according to our experimentation (mentioned in §4.1), some of the existing sharing platforms
performs a post-processing of the published images. Thus, the proposed encryption algorithm
has to allow to decrypt the encrypted image even if it has been post-processed.

In this thesis, we tried to overcome all these three challenges. Our first contribution is the
definition of an encryption algorithm that preserves the JPEG format and that is IND-CPA secure.
More specifically, we have proposed three JPEG image encryption schemes that use the same
encryption algorithm but are integrated into different steps of JPEG compression process. We
have proved the security of these encryption schemes and the comparison of the decrypted images
allowed us to select the best scheme with respect to the quality of the resulted images.

Our second contribution is that all of the encrypted images are accepted as JPEG images by
any image-sharing platform. We have used our encryption algorithm to encrypt JPEG images and
we have uploaded the encrypted images on eight widely used image-sharing platforms (Facebook,
Flickr, Pinterest, Google+, Twitter, Instagram and two Chinese image-sharing platforms: Weibo
and Wechat). Thus, we have checked that all of the encrypted images have been accepted by these
image-sharing platforms as having a correct image format.

Our third contribution is that our encryption scheme is compatible with the most of images-
sharing platforms. We have downloaded and decrypted the images, and we have compared the
decrypted images with the original ones. We have thus observed that for Flickr, Pinterest, Google+
and Twitter, the recovered images had a high quality. On the opposite, for Facebook, Instagram,
Weibo and Wechat, we have noticed that the recovered images had an extremely poor quality.
By analysing the results, we have discovered that these image-sharing platforms performs a post-
processing for any uploaded images. Given that knowledge, we have been able to improve the
encryption algorithm so as to obtain a new encryption scheme that is compatible with Facebook,
Weibo and Wechat.

Our fourth contribution is an independent content management infrastructure that allows users
to use our encryption algorithm to publish their images on Facebook while specifying the access
control rules for these images. We have developed an application named PixGuardian to help the
users to encrypt images. It also allows to generate, distribute and manage the encryption keys
for the users, and permits users to define the access conditions for their images. Then, with our
plugin in browser Chrome, the authorised users can decrypt images. Finally, we have evaluated
the acceptability of PixGuardian by studying its use by 33 users during six weeks.

7.2 The future work

Before proposing the algorithm, in order to choose the most appropriate parameters for different
image-sharing platforms, we did some tests on several widely used image-sharing platforms and
obtained their characteristics. But we found that some researches gave the different test results
about the characteristics of some image-sharing platforms [MPBS15, GPMB16]. Their tests showed
that in some special case, the characteristics maybe not the same as the ones we found, but in
normal case they are the same. It is probably because we used the different devices and did
the tests in different periods of time (the tests probably were carried out on different version of
platforms). We may need to improve our analyses results combining the other different research
results. However, in our algorithm, before we upload the encrypted image, we prepare the images
to change their characteristics to the fixed one, and these characteristics are proved will not be
changed after being uploaded. So even if the other researches have the different analyse results,
our algorithm will not be influenced and the experimental results will not be changed.



7.2. THE FUTURE WORK 111

In our improved algorithm, for some image-sharing platforms, we need to prepare different
parameters for each of them, since these parameters depend on the characteristics of each platforms,
and each platform has different characteristics. This is a drawback of our algorithm which is not
general for all the image-sharing platforms, although it can reconstruct the images with a high
quality for most of platforms. Therefore, we want to continue to improve the algorithm to make
it more general. For example, we can prepare parameters for a small quantization ratio, and for
all the bigger quantization ratio, the parameters can be used but maybe lose some quality. In this
way, we can use our application to provide more image-sharing platforms without changing the
parameters.

We notice that, our algorithm can protect user’s privacy among the authorised contacts. By
using our application, users can define the access conditions, and their friends can use our plugin
to access the plaintext images on Facebook in the browser Chromo directly. However, we cannot
trust the authorised contacts completely. If they screenshots the plaintext images, and retransmit
the images, we have no way to stop them and track them. For this problem, we may embed the
watermark into the images, which help us to trace the user who retransmits the images and remove
his/her authority immediately.

At the beginning, we aim to protect the content published on the social networks. According
to the research on eMarketer [soc], we know the percentage the different types of content posted
by Facebook pages worldwide. We propose to use encryption to protect user’s privacy, and should
make sure that the encrypted results can be published on the social network as a right format.
Among these main types of contents posted, the images are more widely published on the social
networks. Therefore, in this thesis, we propose how to protect the published images as a priority.
In the next step, we will propose the algorithm which can protect the user’s privacy when they
publish the video on the social networks or some video-sharing platforms. Nowadays, many digital
watermarking technologies are proposed to ensure that the copyright of the users who publish the
video is not infringed. But even if the copyright of the users is protected, the privacy cannot be
protected since the published contents can be always seen. The algorithm used to protect the
video, it should adapt different format of video, different movie resolution, etc., especially the
lossy compression and commonly used video format such as MPEG, HEVC. We will test to embed
the encryption in different steps of compression process either in spacial domain or in frequency
domain, then get the best one. If necessary, we will add the correcting mechanisme as well during
the decryption after downloading the encrypted video.

According to the feedback of the users when we evaluated the acceptability of PixGuardian, we
collect some improvement ideas. One of them is that the users prefer to share images from their
smartphone directly instead of transferring the images to their computer before sharing them.
We think this proposition is really valuable, because people like to take pictures by using their
smartphone, it is convenience to publish them directly. And most of image-sharing platforms
already have their application version on the smartphone, even more, some of them only have
the smartphone version to publish images (Instagram, Snapchat, ...). Therefore, find a solution
to encrypt images and publish them directly via the smartphone can be a good topic. But we
need to consider the screen size of different models of smartphone, do some tests to know how
they compress the published image and the degree of cropping, then we can propose a suitable
algorithm and even develop another application which can be used on smartphone for publishing
the encrypted images on different image-sharing platforms.



112 CHAPTER 7. CONCLUSION AND REMARKS ON FUTURE RESEARCH



Bibliography

[3GP16] 3GPP. Security related network functions. Technical Report 43.020, 3rd Generation
Partnership Project (3GPP), 2016.

[AGA12] Shoaib Ansari, Neelesh Gupta, and Sudhir Agrawal. An image encryption approach
using chaotic map in frequency domain. International Journal of Emerging Tech-
nology and Advanced Engineering, 2(8):287–91, 2012.

[ASY97] K.T. Alligood, T.D. Sauer, and J.A. Yorke. Chaos: An Introduction to Dynamical
Systems. Chaos: An Introduction to Dynamical Systems. New York, NY, 1997.

[BGLL14] Michael Backes, Sebastian Gerling, Stefan Lorenz, and Stephan Lukas. X-pire 2.0:
a user-controlled expiration date and copy protection mechanism. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, pages 1633–1640. ACM,
2014.

[BHG+12] Ames Bielenberg, Lara Helm, Anthony Gentilucci, Dan Stefanescu, and Honggang
Zhang. The growth of diaspora-a decentralized online social network in the wild. In
Computer Communications Workshops (INFOCOM WKSHPS), 2012 IEEE Confer-
ence on, pages 13–18. IEEE, 2012.

[BSVD09] Sonja Buchegger, Doris Schiöberg, Le-Hung Vu, and Anwitaman Datta. Peerson:
P2p social networking: early experiences and insights. In Proceedings of the Second
ACM EuroSys Workshop on Social Network Systems, pages 46–52. ACM, 2009.

[BYJ08] Mohammad Ali Bani Younes and Aman Jantan. Image encryption using block based
transformation algorithm. 2008.

[CMS09] Leucio Antonio Cutillo, Refik Molva, and Thorsten Strufe. Safebook: A privacy-
preserving online social network leveraging on real-life trust. IEEE Communications
Magazine, 47(12), 2009.

[DC00] Philip P Dang and Paul M Chau. Image encryption for secure internet multimedia
applications. Consumer Electronics, IEEE Transactions on, 46(3):395–403, 2000.

[Den82] Dorothy E Denning. Cryptography and data security. 1982.

[Dey12] Shuvashis Dey. Sd-aei: An advanced encryption technique for images. In Digital
Information Processing and Communications (ICDIPC), 2012 Second International
Conference on, pages 68–73. IEEE, 2012.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Trans. Information Theory, 22(6):644–654, 1976.

[DR99] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[Dwo] Morris Dworkin. Recommendation for block cipher modes of operation : Methods
and techniques. Nist specifications.

[EH06] D. Eastlake and T. Hansen. US Secure Hash Algorithms (SHA and HMAC-SHA).
RFC 4634, RFC Editor, July 2006.

113



114 BIBLIOGRAPHY

[FMBD08] Cyril Fonteneau, Jean Motsch, Marie Babel, and Olivier Déforges. A hierarchical
selective encryption technique in a scalable image codec. In International Conference
in Communications, pages 1–4, 2008.

[G+98] Independent JPEG Group et al. Libjpeg 6b. URL http://www. ijg. org March, 1998.

[GBA] M. Peeters G. Bertoni, J. Daemen and G. Van Assche. Keccak Specification. NIST
Specifications.

[GC08] Tiegang Gao and Zengqiang Chen. Image encryption based on a new total shuffling
algorithm. Chaos, Solitons & Fractals, 38(1):213–220, 2008.

[GHG05] Zhi-Hong Guan, Fangjun Huang, and Wenjie Guan. Chaos-based image encryption
algorithm. Physics Letters A, 346(1):153–157, 2005.

[GM82] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play mental
poker keeping secret all partial information. In ACM Symposium on Theory of
Computing, May 5-7, 1982, San Francisco, California, Usa, pages 365–377, 1982.

[GPMB16] Oliver Giudice, Antonino Paratore, Marco Moltisanti, and Sebastiano Bat-
tiato. A classification engine for image ballistics of social data. arXiv preprint
arXiv:1610.06347, 2016.

[ILL89] Russell Impagliazzo, Leonid A Levin, and Michael Luby. Pseudo-random generation
from one-way functions. In Proceedings of the twenty-first annual ACM symposium
on Theory of computing, pages 12–24. ACM, 1989.

[KE14] Pavel Korshunov and Touradj Ebrahimi. Scrambling-based tool for secure protection
of jpeg images. In IEEE International Conference on Image Processing (ICIP),
number EPFL-CONF-200907, 2014.

[Ker05] Douglas A Kerr. Chrominance subsampling in digital images. The Pumpkin,(1),
November, 2005.

[KJK10] Muhammad Imran Khan, Varun Jeoti, and Muhammad Asif Khan. Perceptual
encryption of jpeg compressed images using dct coefficients and splitting of dc coef-
ficients into bitplanes. In Intelligent and Advanced Systems (ICIAS), 2010 Interna-
tional Conference on, pages 1–6. IEEE, 2010.

[KR] Thomas Kunkelmann and Rolf Reinema. A scalable security architecture for multi-
media communication standards. In Proceedings of the International Conference on
Multimedia Computing and Systems, ICMCS 1997, Ottawa, Ontario, Canada, June
3-6, 1997, pages 660–662. IEEE Computer Society.

[KSHR10] Seyed Hossein Kamali, Reza Shakerian, Maysam Hedayati, and Mohsen Rahmani.
A new modified version of advanced encryption standard based algorithm for image
encryption. In Electronics and Information Engineering (ICEIE), 2010 International
Conference On, volume 1, pages V1–141. IEEE, 2010.

[LDL12] Yuling Luo, Minghui Du, and Dong Liu. Jpeg image encryption algorithm based
on spatiotemporal chaos. In Chaos-Fractals Theories and Applications (IWCFTA),
2012 Fifth International Workshop on, pages 191–195. IEEE, 2012.

[MO14] Antonio Marcedone and Claudio Orlandi. Obfuscation ⇒ (IND-CPA security !⇒
circular security). In Security and Cryptography for Networks - 9th International
Conference, SCN 2014, Amalfi, Italy, September 3-5, 2014. Proceedings, volume
8642 of Lecture Notes in Computer Science, pages 77–90. Springer, 2014.

[MPBS15] Marco Moltisanti, Antonino Paratore, Sebastiano Battiato, and Luigi Saravo. Image
manipulation on facebook for forensics evidence. In International Conference on
Image Analysis and Processing, pages 506–517. Springer, 2015.



BIBLIOGRAPHY 115

[PM93] William B Pennebaker and Joan L Mitchell. JPEG: Still image data compression
standard. Springer Science & Business Media, 1993.

[PP12] Prashan Premaratne and Malin Premaratne. Key-based scrambling for secure image
communication. In Emerging Intelligent Computing Technology and Applications,
pages 259–263. Springer, 2012.

[PR+05] William Puech, Jose Marconi Rodrigues, et al. Crypto-compression of medical im-
ages by selective encryption of dct. In EUSIPCO’05: European Signal Processing
Conference, 2005.

[PSU02] Martina Podesser, Hans-Peter Schmidt, and Andreas Uhl. Selective bitplane encryp-
tion for secure transmission of image data in mobile environments. In Proceedings of
the 5th IEEE Nordic Signal Processing Symposium (NORSIG?02), pages 4–6, 2002.

[PU02] Andreas Pommer and Andreas Uhl. Selective encryption of wavelet packet subband
structures for obscured transmission of visual data. In Proceedings of the 3rd IEEE
Benelux Signal Processing Symposium (SPS 2002), pages 25–28, 2002.

[QN98] Lintian Qiao and Klara Nahrstedt. Comparison of mpeg encryption algorithms.
Computers & Graphics, 22(4):437–448, 1998.

[RGO13] Moo-Ryong Ra, Ramesh Govindan, and Antonio Ortega. P3: Toward privacy-
preserving photo sharing. In NSDI, pages 515–528, 2013.

[RSA78] R.L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21:120–126, 1978.

[Sch96] Bruce Schneier. Applied cryptography - protocols, algorithms, and source code in C,
2nd Edition. Wiley, 1996.

[SD12] Rajesh Sharma and Anwitaman Datta. Supernova: Super-peers based architecture
for decentralized online social networks. In Communication Systems and Networks
(COMSNETS), 2012 Fourth International Conference on, pages 1–10. IEEE, 2012.

[Sha49] Claude E Shannon. Communication theory of secrecy systems*. Bell system technical
journal, 28(4):656–715, 1949.

[Sip06] Michael Sipser. Introduction to the Theory of Computation, volume 2. Thomson
Course Technology Boston, 2006.

[soc] http://www.socialmediaexaminer.com/photos-generate-engagement-research/.

[Sta74] Fred Alan Stahl. On computational security. On Computational Security, 1974.

[Str01] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics,
biology and chemistry. Perseus publishing, 2001.

[SZS04] Yang Shuangyuan, Lu Zhengding, and Han Shuihua. An asymmetric image encryp-
tion based on matrix transformation. In Communications and Information Technol-
ogy, 2004. ISCIT 2004. IEEE International Symposium on, volume 1, pages 66–69.
IEEE, 2004.

[TSBS13] Matt Tierney, Ian Spiro, Christoph Bregler, and Lakshminarayanan Subramanian.
Cryptagram: Photo privacy for online social media. In Proceedings of the first ACM
conference on Online social networks, pages 75–88. ACM, 2013.

[UJN+07] Koredianto Usman, Hiroshi Juzoji, I Nakajima, Soegijardjo Soegidjoko, Mohamad
Ramdhani, Toshihiro Hori, and S Igi. Medical image encryption based on pixel ar-
rangement and random permutation for transmission security. In e-Health Network-
ing, Application and Services, 2007 9th International Conference on, pages 244–247.
IEEE, 2007.



116 BIBLIOGRAPHY

[VDB02] Marc Van Droogenbroeck and Raphaël Benedett. Techniques for a selective en-
cryption of uncompressed and compressed images. ACIVS Advanced Concepts for
Intelligent Vision Systems, Proceedings, 2002.

[WB02] Zhou Wang and Alan C Bovik. A universal image quality index. Signal Processing
Letters, IEEE, 9(3):81–84, 2002.

[WFL15] Charles V Wright, Wu-chi Feng, and Feng Liu. Thumbnail preserving encryption
for jpeg. In Proceedings of the 3rd ACM Workshop on Information Hiding and
Multimedia Security, pages 141–146. ACM, 2015.

[WWLC11] Yong Wang, Kwok-Wo Wong, Xiaofeng Liao, and Guanrong Chen. A new chaos-
based fast image encryption algorithm. Applied soft computing, 11(1):514–522, 2011.

[YKE15] Lin Yuan, Pavel Korshunov, and Touradj Ebrahimi. Privacy-preserving photo shar-
ing based on a secure JPEG. In 2015 IEEE Conference on Computer Communi-
cations Workshops, INFOCOM Workshops, Hong Kong, China, April 26 - May 1,
2015, pages 185–190. IEEE, 2015.

[YPWSp+09] Zhang Yun-Peng, Liu Wei, Cao Shui-ping, Zhai Zheng-jun, Nie Xuan, and Dai Wei-
di. Digital image encryption algorithm based on chaos and improved des. In Systems,
Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on, pages
474–479. IEEE, 2009.

[ZMK+07] Medien Zeghid, Mohsen Machhout, Lazhar Khriji, Adel Baganne, Rached Tourki,
et al. A modified aes based algorithm for image encryption. International Journal
of Computer Science and Engineering, 1(1):70–75, 2007.

[ZZWY11] Zhi-liang Zhu, Wei Zhang, Kwok-wo Wong, and Hai Yu. A chaos-based symmet-
ric image encryption scheme using a bit-level permutation. Information Sciences,
181(6):1171–1186, 2011.



BIBLIOGRAPHY 117

Résumé

Au cours de ces dernières années, avec le développement rapide des plateformes de partage
d’images, de plus en plus d’utilisateurs choisissent de diffuser leurs photos sur ces services notam-
ment grâce à leur facilité d’utilisation. La plupart des plateformes permettent aux utilisateurs
d’autoriser l’accès aux images uniquement à un groupe restreint de personnes. Une telle capac-
ité donne un sentiment de confiance aux utilisateurs vis-à-vis de la confidentialité de ces images.
Malheureusement, cela reste uniquement un sentiment d’illusion, car une fois que les utilisateurs
ont mis en ligne leurs images, la confidentialité ne peut être garantie sachant que le fournisseur
de la plateforme, qui n’est pas nécessairement une entité de confiance, peut connaitre clairement
le contenu de n’importe quelle image publiée sur sa plateforme. Par contre, si les images ne sont
plus mises en ligne en claire mais chiffrées, i.e. qu’elles ont été rendu illisibles par un algorithme de
chiffrement adapté, alors la confidentialité est assurée. Ainsi, il sera fourni aux personnes autorisées
à visionner ces images un moyen pour déchiffrer, et ainsi accéder à leurs contenus en clair.

En étudiant les différentes méthodes existantes pour chiffrer des images publiées sur des plate-
formes de partage d’images, nous en avons conclu qu’à notre connaissance, il y a trois princi-
pales spécificités à prendre en compte lors du chiffrement d’une image, qui restreigne le choix de
l’algorithme de chiffrement. Tout d’abord, le chiffrement doit être effectué en respectant le for-
mat de l’image. En effet, une image chiffrée doit être aussi une image ( e.g. le format JPEG),
afin de pouvoir être mise en ligne sur la plateforme de partage. Deuxièmement, l’algorithme de
chiffrement doit garantir l’indistinguabilité (propriété, IND-CPA) des messages chiffrés. En effet,
l’adversaire ne doit obtenir de l’information sur le contenu de l’image à partir de la version chiffrée
de l’image. Dans un troisième temps, l’algorithme doit être compatible avec les traitements des im-
ages spécifiques à la plateforme de partage d’images. Les éventuelles détériorations de la qualité de
l’image liée à de tels traitements de l’image ne doivent pas pour autant empêcher le déchiffrement
de l’image.

L’objectif principal de cette thèse a été de proposer un nouveau schéma de chiffrement des
images JPEG permettant à la fois de garantir la conservation du format, la confidentialité du
contenu et de la qualité de l’image JPEG. Dans un premier temps, nous avons proposé un schéma
de chiffrement garantissant les deux premières problématiques. Ce schéma a ensuite été implémenté
sur différentes plateformes de partage d’images (Facebook, Flickr, Pinterest, Google+, Twitter,
Instagram, Weibo, Wechat). Malheureusement, nous avons montré que sur certaines plateformes,
(Facebook, Instagram, Weibo and Wechat) notre solution ne permettait de maintenir une qualité
d’images suffisantes après déchiffrement. Par conséquent, des codes correcteurs ont été ajoutés au
sein de l’algorithme de chiffrement et déchiffrement, afin de maintenir la bonne qualité des images
déchiffrées.

Mots-clés: Chiffrement d’images, Respect de la vie privée, Plateformes de partages d’images,
Réseaux sociaux.



118 BIBLIOGRAPHY

Abstract

In recent years, with the rapid development of image-sharing platforms, more and more users
prefer to share their photos through these platforms than using e-mail or personal webpages,
which makes image-sharing become easier. Most of the platforms allow the users to specify who
can access to the images, it may result a feeling of safety and privacy. However, once users upload
their images, privacy is not guaranteed, since at least the provider of the image-sharing platform
can clearly know the contents of any published images. Therefore, uploading an unreadable image
is a good solution to protect user’s privacy. According to some existing researches, encrypting
images before publishing them should be a top priority. In this way, only the authorised users who
can decrypt the encrypted image can access to the contents of the published images.

By studying the existing methods, we found that there are three challenges when proposing an
encryption algorithm for the images published on image-sharing platforms. Firstly the encrypted
result has to be viewed as a correct image format (often a JPEG image) by the image-sharing
platforms. Therefore, an encryption algorithm which preserves image format after encryption is
required. Secondly, the algorithm should be secure, i.e. the adversary cannot get any information
of plaintext image from the encrypted image. We aim to provide IND-CPA property for the
encryption algorithm. Thirdly, the algorithm has to be compatible with basic processing of the
digital data in each image-sharing platforms, that means the decryption algorithm can recover the
plaintext image with a high quality even the encrypted image is processed by the platforms.

In this thesis, our main goal is to propose an encryption algorithm to protect JPEG image
privacy on different image-sharing platforms and overcome the three challenges (image format
preserving, security guarantee, processing compatibility). We first propose an encryption algorithm
which can meet the requirements of the first two points. We then implement this algorithm
on several widely used image-sharing platforms (Facebook, Flickr, Pinterest, Google+, Twitter,
Instagram, Weibo, Wechat). However, the results show that it cannot recover the plaintext image
with a high quality after downloading the image from some of the image-sharing platforms we
tested (Facebook, Instagram, Weibo and Wechat). This encryption algorithm can be only used
to protect the privacy on the other four platforms. Therefore, we improve this algorithm to add
the correcting mechanism, in order to reduce the losses of image information during uploading the
encrypted image on each platforms and reconstruct the downloaded images with a high quality.

Keywords: Image encryption, Privacy protection, image-sharing platforms, social networks.


	Contexte et motivation
	Objectifs de recherches
	Contributions
	Travaux à venir
	Introduction
	Background and motivation
	Research objective
	Contributions
	Organisation of this thesis
	List of Publications

	State of the art
	Modern cryptography
	Hash functions and Pseudo-random number generators
	Hash functions
	Pseudo-random number generator (PRNG)

	Encryption techniques
	Symmetric encryption
	Asymmetric encryption
	Symmetric vs. asymmetric

	Security of cryptographic algorithms
	Information-theoretic security
	Computational security
	Semantic security
	IND-CPA for a symmetric cryptosystem


	Image representation and compression
	Representation of images
	Two-dimensional discrete cosine transform (2D-DCT)
	The JPEG format
	Image encoding
	Image decoding


	Related Works
	Traditional encryption
	Encryption preserving image format
	Scrambling algorithms
	Modifications applied to traditional encryption
	Selective Encryption
	Combining Scrambling and Encryption

	Protecting privacy of online published images
	Summary

	Conclusion

	The basic encryption algorithm
	The algorithm description
	Encryption
	Decryption
	Security of the Encryption Algorithm

	Integration of encryption in JPEG compression process
	Encryption Before DCT
	Encryption After DCT
	Encryption After Quantization
	Security of encryption scheme

	Conclusion

	Experimentations on the image-sharing platforms
	Analysis of image-sharing platforms
	Image Size
	Quantization Table
	Downsampling Ratio

	Experimental results of basic encryption algorithm on image-sharing platforms
	Positive Results
	Negative Results

	Analysis of negative results
	Analysis of the downloaded images
	Upload Simulation

	Conclusion

	The improved encryption algorithm for published images
	Improved encryption algorithm for published images
	Encryption
	Correcting code
	Inverse correcting code
	Decryption
	Correction
	Security of the algorithm

	The parameters selection
	Facebook
	Weibo
	Wechat

	Experimental results of improved encryption algorithm
	Facebook
	Weibo
	Wechat

	Performance Evaluation
	The complexity of algorithm
	Execution time
	Gray image
	Color image (with downsampling ratio 4:2:0)
	Color image (with other downsampling ratios)


	Conclusion

	Application: PixGuardian
	The scenario
	The inscription and generation of keys
	General principle
	Generation of the public / private keys
	User's certification
	Sharing the certificate and generation of symmetric keys
	Obtain the certificates

	General architecture
	Upload the image
	The case of access to images for restricted people
	The case of access to images for everyone

	Download the image {I}Kses with decryption
	The case of access to images for restricted people
	The case of access to images for everyone


	The application to publish images
	Registration and login
	Sharing the images
	The secure in the server
	Demonstration

	Studies of using PixGuardian
	Experiment description
	Statistics of uses
	Questionnaires
	Interviews
	Recruitment of participants

	Results and analyses
	Participants
	User Experience
	Acceptability of service
	User Expectations

	Conclusion


	Conclusion and remarks on future research
	Conclusion of the thesis
	The future work

	Bibliographie

