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Résume: Le bon fonctionnement de 
l’ensemble d’un système industriel est 
parfois fortement dépendant de la fiabilité de 
certains éléments qui le composent. Une 
défaillance de l’un de ces éléments peut 
conduire à une défaillance totale du système 
avec des conséquences qui peuvent être 
catastrophiques en particulier dans le 
secteur de l’industrie nucléaire ou dans le 
secteur de l’industrie aéronautique. Pour 
réduire ce risque de panne catastrophique, 
une stratégie consiste à dupliquer les 
éléments sensibles dans le dispositif. Ainsi, 
si l’un de ces éléments tombe en panne, un 
autre pourra prendre le relais et le bon 
fonctionnement du système pourra être 
maintenu. Cependant, on observe 
couramment des situations qui conduisent à 
des défaillances simultanées d’éléments du 
système : on parle de défaillance de cause 
commune. 

Analyser, modéliser, prédire ce type 
d’événement revêt donc une importance 
capitale et sont l’objet des travaux 
présentés dans cette thèse. Il existe de 
nombreux modèles pour les défaillances 
de cause commune. Des méthodes 
d’inférence pour étudier les paramètres de 
ces modèles ont été proposées.   
Dans cette thèse, nous considérons la 
situation où l’inférence est menée sur la 
base de données manquantes. L’actualité 
récente a mis en évidence l’importance de 
la fiabilité des systèmes redondants et 
nous espérons que nos travaux 
contribueront à une meilleure 
compréhension et prédiction des risques 
de catastrophes majeures. 

Title :  System Reliability: Inference for Common Cause Failure Models in Contexts of 
Missing Information 
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Abstract:  The effective operation of an 
entire industrial system is sometimes 
strongly dependent on the reliability of its 
components. A failure of one of these 
components can lead to the failure of the 
system with consequences that can be 
catastrophic, especially in the nuclear 
industry or in the aeronautics industry.  To 
reduce this risk of catastrophic failures, a 
redundancy policy, consisting in duplicating 
the sensitive components in the system, is 
often applied. When one of these 
components fails, another will take over and 
the normal operation of the system can be 
maintained. 

However, some situations that lead to 
simultaneous failures of components in the 
system could be observed. They are called 
common cause failure (CCF). Analyzing, 
modeling, and predicting this type of failure 
event are therefore an important issue and 
are the subject of the work presented in 
this thesis. 
Recent events have highlighted the 
importance of reliability redundant systems 
and we hope that our work will contribute to 
a better understanding and prediction of 
the risks of major CCF events.  
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System Reliability: Inference for Common Cause Fail-
ure Models in Contexts of Missing Data

Abstract

The effective operation of an entire industrial system is sometimes strongly
dependent on the reliability of its components. A failure of one of these com-
ponents can lead to the failure of the system with consequences that can be
catastrophic, especially in the nuclear industry or in the aeronautics industry.
To reduce this risk of catastrophic failures, a redundancy policy, consisting in
duplicating the sensitive components in the system, is often applied. When
one of these components fails, another will take over and the normal opera-
tion of the system can be maintained. However, some situations that lead to
simultaneous failures of components in the system could be observed. They
are called common cause failure (CCF). Analyzing, modeling, and predict-
ing this type of failure event are therefore an important issue and are the
subject of the work presented in this thesis.

We investigate several methods to deal with the statistical analysis of
CCF events. Different algorithms to estimate the parameters of the models
and to make predictive inference based on various type of missing data are
proposed.

We treat confounded data using a BFR (Binomial Failure Rate) model.
An EM algorithm is developed to obtain the maximum likelihood estimates
(MLE) for the parameters of the model. We introduce the modified-Beta dis-
tribution to develop a Bayesian approach.

The α-factors model is considered to analyze uncertainties in CCF. We
suggest a new formalism to describe uncertainty and consider Dirichlet dis-
tributions (nested, grouped) to make a Bayesian analysis.

Recording of CCF cause data leads to incomplete contingency table. For a
Bayesian analysis of this type of tables, we propose an algorithm relying on
inverse Bayes formula (IBF) and Metropolis-Hasting algorithm. We compare
our results with those obtained with the α- decomposition method, a recent
method proposed in the literature.

Prediction of catastrophic event is addressed and mapping strategies are
described to suggest upper bounds of prediction intervals with pivotal method
and Bayesian techniques.

Recent events have highlighted the importance of reliability redundant
systems and we hope that our work will contribute to a better understanding
and prediction of the risks of major CCF events.

Keywords: System reliability, common cause failure, missing data, contin-
gency table, Poisson process, maximum of likelihood, Bayes estimator, EM
algorithm, Metropolis-Hasting algorithm, inverse Bayes formula
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Fiabilité des Systèmes : Inference pour des modèles
de défaillance de cause commune dans des contextes
de données manquantes

Résumé

Le bon fonctionnement de l’ensemble d’un système industriel est parfois forte-
ment dépendant de la fiabilité de certains éléments qui le composent. Une dé-
faillance de l’un de ces éléments peut conduire à une défaillance totale du sys-
tème avec des conséquences qui peuvent être catastrophiques en particulier
dans le secteur de l’industrie nucléaire ou dans le secteur de l’industrie aéro-
nautique. Pour réduire ce risque de panne catastrophique, une stratégie con-
siste à dupliquer les éléments sensibles dans le dispositif. Ainsi, si l’un de ces
éléments tombe en panne, un autre pourra prendre le relais et le bon fonction-
nement du système pourra être maintenu. Cependant, on observe couram-
ment des situations qui conduisent à des défaillances simultanées d’éléments
du système : on parle de défaillance de cause commune. Analyser, mod-
éliser, prédire ce type d’événement revêt donc une importance capitale et sont
l’objet des travaux présentés dans cette thèse. Il existe de nombreux mod-
èles pour les défaillances de cause commune. Des méthodes d’inférence pour
étudier les paramètres de ces modèles ont été proposées. Dans cette thèse,
nous considérons la situation où l’inférence est menée sur la base de données
manquantes. Nous étudions en particulier le modèle BFR (Binomial Failure
Rate) et la méthode des α–facteurs. En particulier, une approche bayésienne
est développée en s’appuyant sur des techniques algorithmiques (algorithme
de Metropolis, théorème Inverse de Bayes (IBF). Dans le domaine du nu-
cléaire, les données de défaillances sont peu abondantes et des techniques
particulières d’extrapolations de données doivent être mis en oeuvre pour
augmenter l’information. Nous proposons dans le cadre de ces stratégies, des
techniques de prédiction des défaillances de cause commune. L’actualité ré-
cente a mis en évidence l’importance de la fiabilité des systèmes redondants
et nous espérons que nos travaux contribueront à une meilleure compréhen-
sion et prédiction des risques de catastrophes majeures.

Keywords: Fiabilité des systèmes, défaillance de cause commune, données
manquantes, tableau de contingence, processus de Poisson, maximum de
vraisemblance, estimateur de Bayes, algorithme EM, algorithme de Metropolis–
Hasting, Inverse Bayes formula.
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Résumé

Introduction

Les défaillances de cause commune (CCF) sont des phénomènes que l’on ob-
serve lors du suivi longitudinal d’un système à plusieurs composants. Il s’agit
de défaillances qui se produisent sur plusieurs composants du système de
manière simultanée et qui ont été provoquées par une même cause. On les
qualifie donc de cause commune.

L’évaluation de la propension d’un système à être sujet à ce type de dé-
faillance est très importante lorsque le système est une ensemble d’éléments
redondants supposés assurer le maintien d’un certain niveau de sécurité pour
un dispositif industriel. C’est pour cette raison que l’étude des DDC s’est ini-
tialement développer dans l’industrie nucléaire et l’industrie aéronautique.
Dans ces domaines, une DCC où tous les composants tombent en panne con-
duit à une catastrophe.

Les travaux présentés dans ce mémoire de thèse, portent sur l’analyse
statistique de ces phénomèmes de défaillances de cause commune dans dif-
férentes situations d’observation engendrant une perte d’information.

On peut considérer que l’objectif fondamental de l’étude des DCC est cal-
culer la probabilité d’occurence d’une DCC d’un ordre donné. Autrement dit,
il s’agit de caractériser la distribution du nombre de DCC d’un ordre donné.

De nombreux modèles ont été proposés. Nous nous intéresserons au mod-
èle BFR (Binomial Failure Rate) [2] et au modèle des α–facteurs [35]. Le
modèle BFR repose sur une modélisation par des processus stochastiques et
on mène l’inférence sur les intensités de ces procesus. Le modèle des α–
facteurs se propose de caractériser les DCC par des probabilités α déduites
de la probabilité élémentaire de défaillance de chaque composant et sous cer-
taines hypothèses.

Les modèles que nous allons étudier, dépendent de la nature de l’observation.
Idéalement, on peut disposer des dates exactes des défaillances successives se
produisant sur le système. Ces dates peuvent être accompagnées d’information
sur la nature de la défaillance : type de DCC, cause (erreur humaine, événe-
ment climatique, problème technique, par exemple).

En pratique, on dispose rarement de ce schéma d’observation dit complet
et le praticien est souvent confronté à toutes sortes de situations d’observation

11
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dites dégradée : données groupées, données manquantes, informations in-
complètes sur les causes et le type de DCC, etc. Une autre situation partic-
ulière qui retiendra notre attention, est celle où l’observation consiste en un
tableau de contingence dont seules les marges sont connues. Pour un nombre
total de défaillance donné, seules les effectifs des différents causes possibles
et les effectifs des différents types de DCC sont enregistrés [71]. On a en
quelque sorte un tableau de contingence partiellement observé.

Nous résumons dans les sections suivantes les travaux présentés dans
chacun des chapitres de ce mémoire.

Inférence sur le modèle BFR pour des données confondues

Dans le premier chapitre, nous considérons la situation où les données sont
confondues et nous proposons une solution d’inférence par maximum de vraisem-
blance et par une approche bayésienne pour les paramètre du modèle BFR.
Dans le cas du modèle BFR, le comptage des défaillances de cause commune
est modélisé par un processus de Poisson. On note

{
Ni(t), t Ê 0

}
, le processus

de comptage des DCC d’ordre i, i = 1, . . . ,m, pour un système à m composants
et λi son intensité. Cependant, une panne impliquant un seul composant
n’est pas nécessairement une DCC. Ce peut être une défaillance intrinsèque
du composant, défaillance qui n’a pas de “cause”. En pratique, il n’est pas
possible de distinguer une défaillance intrinsèques d’une DCC d’ordre 1. De
façon équivalente, une panne impliquant tous les composants n’est pas tou-
jours une DDC d’ordre m. Ce peut être une défaillance létale (propre au
système) et on ne peut distinguer une défaillance létale d’une DCC d’ordre
m. On a des données confondues. On dira que N1 est confondu, tout comme
l’est Nm.

Cette situation fait apparaître la dualité “données complètes / données in-
complètes”. Les données complètes qui sont non observées, sont représentées
par le vecteur (NI , N1, . . . , Nm, NL) où NI désigne le nombre de défaillances
intrinsèques et NL, le nombre de défaillances létales.
Les données incomplètes, qui sont effectivement observées, sont le vecteurs
(N∗

1 , N2, . . . , Nm−1, N∗
m) où N∗

1 = NI+N1 et N∗
m = Nm+NL. Nous appliquons un

algorithme EM pour obtenir les estimateurs du maximum de vraisemblance
des paramètres caractérisant chaque type de défaillance. La recherche d’une
loi conjuguée pour une approche bayésienne de l’estimation, nous conduit à
définir la loi bêta–modifiée. Nous proposons alors des stratégies d’élicitation
des hyperparamètres. Ce travail a été publié dans une revue internationale
[44].

Inférence sur le modèle α-facteurs pour des données incertaines

Le second chapitre s’intéresse à la situation où il y a incertitude sur les don-
nées. Nous considérons quelques schémas d’incertitude pour lesquels nous

12
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développons une méthode bayésienne qui s’appuie sur des lois de Dircihlet
particulière.

Pour un sytème à m composants, une observation incertaine est classique-
ment représentées par un vecteur I = (p0, p1, . . . , pm) dont la composante pi
est la probabilité que la DCC observée soit d’ordre i. On a

∑m
i=0 pi = 1. p0

s’interprète comme étant la probabilité qu’il n’y ait pas eu défaillance de
cause commune. S’il n’y a pas d’incertitude, ce vecteur devient un vecteur
binéaire c’est-à-dire un vecteur dont la seule composante non nulle est égale
à 1. A toute observation incertaine est associée une observation certaine de
sorte qu’à l’observation d’un échantillon de données incertaines peut être as-
socié un ensemble d’échantillons de données certaines possibles. La somme
des vecteurs binéaires associées à un échantillon de données certaines corre-
spond à un vecteur N = (N0, N1, . . . , Nm) qui représente maintenant des don-
nées complètes possibles. On note I , l’ensemble de tous les vecteurs N pos-
sibles associés à l’observation I, un échantillon de vecteur I. L’incertitude
ayant été quantifiée par les probabilités pi, on peut calculer la probabilité
des vecteurs (N0, N1, . . . , Nm) possibles. Cette distribution s’interprète donc
comme la loi du complet sachant l’incomplet.

Ces données peuvent être analysées en considérant une modèle α-facteurs.
Pour un système de taille m, les paramètres du modèle α– facteurs sont les
probabilités αi qu’une défaillance lorsqu’elle survient, implique i composants
parmi les m. On suppose que la probabilité qu’un i-uplet tombe en panne, est
la même quelque soit les i composants impliqués et on notera Q i cette prob-
abilité. Ces Q i sont appelés les paramètres de base du modèle α–facteurs.

Les paramètres αi peuvent être exprimés en fonction des paramètres de
base et la loi du vecteur (N1, . . . , Nm) exprimée en fonction des paramètres αi
prend alors la forme d’une loi multinomiale. Les estimateurs du maximum
de vraisemblance pour les αi s’obtiennent sans difficultés. Il en est de même
pour des estimateurs de Bayes en considérant une loi de Dirichlet comme loi
a priori.

Nous proposons une approche alternative au problème de l’incertitude.
L’incertitude sur les données sera caractérisée par l’observation de variables
de la forme Ni1,i2,...,ik signifiant que la DCC observée peut être d’ordre i1
ou i2 . . . ou ik. L’approche que nous proposons dépend de la forme des don-
nées disponibles. Elle consiste en un algorithme EM partiel ou elle s’appuie
sur la formule de Bayes inverse (IBF). Pour illustrer notre approche, nous
considérons 4 situations de données avec incertitudes. L’approche bayési-
enne utilise la loi nested–Dirichlet ou encore la loi de Dirichlet dite groupée
(grouped–Dirichlet) particulièrement adaptées à la formalisation que nous
suggérons de l’incertitude. Les propriétés de ces lois permettent d’obtenir les
estimateurs de Bayes du modèles α–facteurs . Nous en étudions le comporte-
ment en fonction de différents types d’a priori à partir de données simulées.
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Tableaux de contingence et causes de défaillance

Ce chapitre est consacré à l’analyse de données de DCC sous forme de tableau
de contingence contenant des informations concernant la cause associée à la
défaillance. Comme nous l’avons mentionné précédemment la cause de la dé-
faillance peut être de différente nature. Ce peut être une erreur humaine, un
événement climatique, un dysfonctionnement logiciel par exemple. Lorsque
cette information est renseignée. Les données peuvent mises sous forme d’un
tableau de contingence croisant ordre de la DCC et cause. Les éléments du
tableau sont des nombres Ni j représentant le nombre de DCC impliquant i
composants ayant été provoquées par la cause j. Si tous ces nombres sont
enregistrés, l’inférence peut être menée en utilisant des méthodes classiques
et bien connues. Cependant, il est courant que ne soit observé que les marges
du tableau. Zheng et al. [71] propose une extension du modèle α–facteurs
qu’il appelle modèle α–décomposition, pour traiter cette situation. Nous con-
sidérons une approche s’appuyant sur une modélisation par les processus
de Poisson et développons un algorithme IBF conduisant à une estimation
bayésienne des intensités de ces processus. Nous comparons les résutats
obtenues sur les paramètres du modèle α–décomposition par analogie.

Méthodes de prédiction des défaillances catastrophiques

Dans le dernier chapitre, nous envisageons le problème de la prédiction des
défaillances catastrophiques en utilisant des stratégies de mapping. Les
méthodologies suggérées s’appuient sur la méthode pivotale et sur une ap-
proche bayesienne.

On appelle défaillances catastrophiques les défaillances qui impliquent
tous les composants du système. Elles correspondent donc aux DDC d’ordre
m pour un système à m composants ou bien aux défaillances létales. Ce type
de défaillance est rare. Pour compenser ce manque d’information, la statégie
consiste à considérer les événements provenant de système de différentes
tailles. Pour que l’analyse soit cohérente, les données sont transformées en
leur équivalent pour un système d’une même taille fixée. Cette opération
appelée “mapping”. Il s’agit d’un projection des données. Lorsqu’on projette
les données vers des données correspond à un système de plus petite taille,
on parle d’une opération de mapping-down. La projection vers un système
de plus grande taille est appelée mapping-up. Nous nous sommes intéressé
au problème de la prédiction dans ce contexte de données projetées. Dans
un second temps, nous avons développé une méthodologie de prédicition pour
differentes situations d’incertitudes : incertitudes sur les ordres des DCC ob-
servées, incertitudes sur longueur de la fenêtre d’observations et incertitudes
sur ces deux informations.

Nous avons appliqué la méthode pivotale et une méthode bayésienne et
effectué une comparaison des résultats obtenus en fonction des lois a priori

14

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CONTENTS

considérées.

Conclusion et perspectives

Nous présentons dans cette thèse, un ensemble de méthodes pour l’analyse
statistique des défaillances de cause commune dans des situations où l’observa-
tion est incomplète. Les travaux montrent que l’approche bayésienne est
particulièrement adaptée à cette problématique industrielle. De nombreuses
pistes de travail se dégagent des différents stratégies que nous avons pro-
posées. Nous envisageons, par exemple, de développer un cadre rigoureux
s’appuyant sur la théorie de l’information pour optimiser l’opération de map-
ping. Nous envisageons également d’étudier plus finement la loi bêta mod-
ifiée introduite pour l’analyse bayésienne du modèle BFR. Nous préparons
actuellement un article à partir des résultats du chapitre 4, concernant l’inférence
pour des tableaux de contingence incomplets.

Nous espérons que nos travaux contribueront à une meilleure connais-
sances et compréhension du phénomène de défaillance de cause commune et
permettront d’améliorer la sécurité d’installation sensible et la prévision des
risques de catastrophe.
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Chapter 1

Introduction

Probability Risk Assessment

Some real catastrophic events such as the Air France Flight 447 accident
(2009) and the Fukushima Daiichi nuclear disaster (2011) have posed higher
and stricter requirements in protecting system safety against extraneous
shocks which can defeat multiple levels of redundancy.

Probability Risk Assessment (PRA) refers to the comprehensive, struc-
tured, and disciplined approaches to identify and evaluate risks associated
with complex engineering and technological systems. The aim of PRA is to
quantify rare event probabilities of failures like the two events mentioned
above. All possible events or influences that could reasonably affect the sys-
tem is investigated. PRA has been applied in many contexts. It is one of
the main tools of the U.S. Nuclear Regulatory Commission which controls the
safety in the nuclear power industry. Several advantages and disadvantages
of using PRA to evaluate risks from beyond-design-basis external events have
been discussed by Council et al. [8].

In general, PRA seeks answers to the following basic questions [6]:

• What kinds of events or scenarios can occur?

• What are the likelihoods and associated uncertainties of the events or
scenarios?

• What consequences could result from these events or scenarios?

The PRA is often characterized by event tree models, fault tree models,
and other important analysis tools like common cause failure analysis. The
common-cause failure analysis is a set of methods for evaluating the effect
of inter-system and intra-system dependencies which tend to cause simulta-
neous failures and thus significant increase in overall risk. In the following,
we discuss in more detail about the common cause failure concept, which is a
major concern of the works presented in this study.
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What is a Common Cause Failure?

To answer the question of "what is a common cause failure", let us start by
considering a reliability problem in nuclear industry, which is discussed by
Kvam [27]. Components in redundancy systems are used to enhance addi-
tional reliability as an individual component is considered incompetent for
the operation. At a nuclear power plant, emergency diesel generators (EDGs)
are employed to prepare for contingency in case of a temporary loss of power.
In the case of power failure, two or more EDGs should be ready to start up and
provide emergency power until the electric problems are fixed, even though
only one available EDG is adequate to resupply power. When components in
these redundant systems fail, they do not necessarily fail independently of
each other. Both external shocks, like thunderstorms, earthquakes or floods,
and internal sources, like poor maintenance procedures or design flaws, can
induce the simultaneous failure of several components. In this case the fail-
ure has a common cause; it is said to be a common cause failure.

Common Cause Failures (CCFs) are multiple failures of a number of com-
ponents due to a common event. These types of failures are able to dis-
able multiple layers of redundancy and cause unexpected coincidental con-
sequences for the safety critical systems. They may contribute between 20%
and 80% to the unavailability of safety systems of nuclear power reactors, as
mentioned in some PRA studies [69]. It has been shown that the occurrence
of CCF tends to increase system failure probabilities. If CCF modeling is not
included within the PRA or without careful insight of CCF, the system re-
liability model can result in a gross overestimation of system safety, which
makes reliability analysis less effective in the system design, for example.
Therefore, treatment of CCFs has been a key topic in reliability assessment
of systems. It is also the major concern in a large number of reports of U.S
Nuclear Regulatory Commission ([36], [45], [46], [47]).

In analyzing the effect of CCF on a system reliability, it is important to
understand the concept of CCF. However, the definition of CCF is not unique
and there are still some inconsistencies over its definition. Let us outline a
number of different definitions of CCF found in the literature.

The first formal definition of CCF appeared in nuclear industry, under the
term Common Mode Failures (CMF). In 1975, Rasmussen [53] define CCF as
multiple failures which are not independent. People in different industry
sectors may have different opinions of what a CCF event is ([54]).
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By comparing nine different definitions which used 12 attributes to de-
scribe CCF, Smith and Watson [57] select the following attributes:

(1) the components affected are unable to perform as required;

(2) multiple failures exist within (but not limited to) redun-
dant configurations;

(3) the failures are “first in line” type or failures and not the
result of cascading failures;

(4) the failures occur within a defined critical time period;

(5) The failures are due to a single underlying defect or a
physical phenomenon; and

(6) The effect of failures must lead to some major disabling
of the system’s ability to perform as required.

The definitions of CCF is described differently in some references related
to specific sectors:

• In nuclear industry, the CCF is defined as dependent failures in which
two or more components fault states exist at the same time, or in a short
time interval, and are a direct result of a shared cause ([47]).

• In oil and gas industry, CCFs are the components/items within the
same component group that fail due to the same root cause within a
specified time ([14])

• In electronic safety-related systems, a CCF is the failure that is the
result of one or more events, causing concurrent failures of two or more
separate channels in a multiple channel system, leading to system fail-
ure ([16]).

A technical note on the definition of common-cause failures was provided
by Paula [52]. The author acknowledged that CCF is defined by the analyst
and both general and narrow definitions may be true. Moreover, the author
explained further: CCF events are dependent failures resulting from causes
that are not explicitly modeled.

A more detail definition of CCF was provided by [45], that is:

A CCF event consists of component failures that meet four criteria:

(1) two or more individual components fail or are degraded,
including failures during demand, in-service testing, or de-
ficiencies that would have resulted in a failure if a demand
signal had been received;
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(2) components fail within a selected period of time such that
success of the PRA mission would be uncertain;

(3) component failures result from a single shared cause and
coupling mechanism; and

(4) a component failure occurs within the established compo-
nent boundary.

Despite some main points in common from these above definitions, O’Connor
[51] shows that there are still uses and misuses of the term in current liter-
ature, adding to the confusion. He proposed a general definition of CCF as
follows.

A CCF event consists of component failures that meet five criteria:

(1) two or more individual components fail or are degraded,
including failures during demand, in-service testing, or de-
ficiencies that would have resulted in a failure if a demand
signal had been received;

(2) components fail within a selected period of time such that
multiple components are unable to perform their intended
function or success of the PRA mission would be uncertain;

(3) component failures result from a single shared cause and
coupling mechanism;

(4) a component failure occurs within the established compo-
nent boundary; and

(5) the dependency between components has not already been
explicitly modeled.

Since we are going to drive the statistical analysis of CCF, we will con-
sider a CCF as a random variable and model it with counting processes. This
approach will allow us to handle different situations of missing information
that are current in CCF study.

Causes of CCF

In general, CCF results from the availability of two factors, involving failure
cause and coupling factor.

The failure cause of an event is a condition in which a change in the
state of a component can be attributed. The definition of cause can be ap-
plied to different levels such as proximity cause or root cause. A proximity
cause is associated with a component failure that is readily identifiable con-
dition leading to the failure. A root cause is an initiating cause of a causal
chain resulting in eventual failure of a component. Compared to root causes,
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Failure Cause

Fail

Fail

Component 1

Component 2

Coupling Factor

Figure 1.1: Failure cause and coupling factor of CCF [51]

proximity causes are more identifiable but do not necessarily reflect the com-
plete understanding of the failure mechanism. Failure cause is related to
design (design error, manufacturing error, installation error), operations or
human (accidental action, incorrect procedure, failure to follow procedure,
inadequate maintenance), external environment (fire or smoke, humidity or
moisture, high or low temperature, acts of nature like wind, flood, lightning,
snow and ice), internal to component (normal wear, internal environment,
early failure) and miscellaneous [47].

The coupling factor is the propagation mechanism that allows failure
of multiple components. Without coupling factor, a single root cause can-
not cause multiple component failures. Coupling factors usually include the
similarity in design, location, environment, mission and operational, mainte-
nance, and test procedures. Coupling factor is related to environment, hard-
ware design, hardware quality and operations maintenance [47].

Figure 1.1 illustrate the relation between root cause and coupling factor.
More detail and discussion about causes of CCF can be found in [51].

CCF data

Many situations of CCF data could be observed in practice. They can be class-
fied into two major categories, complete data and missing data. However, the
definition of each category is not always the same: it depends on the context
of study.

The complete data means that the needed information for analyzing the
CCF data in a specific context is available. For example, in several situations,
complete data means that the number of failed components in each CCF is
known exactly. In other situations, it means that not only the number of
failed components but also the cause of each CCF event need to be reported
precisely.

In contrast, the incomplete data refers to data where some required infor-
mation is not available, i.e., incomplete or missing. It could be the case when
the observed failure of several components is not a CCF; when one does not
know accurately the number of failed component in each CCF event; or when
the cause of CCF event is not defined. Data with uncertainties and mapped
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data, that we are going to define latter, are some examples of incomplete data.
There are two characteristics of the database used in common-cause fail-

ure events analysis. They are (a) the data consist mainly of narrative de-
scriptions of observed failure events and (b) the number of events in the data
is small. Both of them usually lead to uncertainties in the analysis of CCF
events as the first characteristic requires some interpretation of the narra-
tives and the second one forces us to pool data from other systems in creating
a database for the system being analyzed. In these situations, it is difficult to
determine exactly the number of components failed in CCF events. The data
are called data with uncertainties.

The CCF data are often sparse. Collecting generic CCF data from others
systems is widely used as an efficient strategy to deal with the problem of
lacking information. But since the collected data come from systems of differ-
ent size, they need to be transformed in order to be considered as coming from
systems of the same size. Many procedures can be found in the literature to
do that [21]. The obtained data are called mapped data.

CCF parametric models

Parametric models have been the primary approach for modeling and quan-
tifying the CCF events. There are different CCF models corresponding to
various definitions and assumptions of CCF events. In the literature, the
parameteric CCF models are classified into five groups, including direct es-
timate model, ratio models, shock models, inference model and others. The
advantages and the limitations of each kind of models have been discussed
broadly by O’Connor [51]. In this dissertation, the Binomial Failure Rate
(BFR) model and the α-factor model are applied. We also introduce a model
based on Poisson distribution to deal with CCF data that contain not only
occurence frequencies but also the triggering causes.

Statistical tools for CCF inference

A number of statistical methods are applied in this study. In dealing with a
problem of missing data, we suggest using an EM algorithm (Appendix A) to
obtain the MLE of parameters. Since the CCF data are usually sparse, the
Bayesian scheme is widely applied. We address the problem of prior hyper-
parameters elicitation.

To deal with the duality complete data versus incomplete data, we develop
trategies relying on the Inverse Bayes Formula (IBF - Appendix B) and the
Metropolis-Hastings algorithm (Appendix D).

Contributions and the structure of the thesis

Since treating CCF event plays an important role in PRA, the objective of
this thesis is to develop statistical methods to analyze CCF data based on
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different kind of data.
In chapter 2, we present the CCF inference for the BFR model in the

case of incomplete data. Our work leads us to introduce a new distribution
to create a conjugate prior for Bayesian analysis of the BFR model. We pro-
vide an efficient strategy to elicit prior hyper parameters based on expert’s
experience. This work has been published in an international journal [44].

In chapter 3, we propose a method to deal with data with uncertainties
and to reduce the subjectivity in the traditional impact vector method based
on the α-factor model. A new representation of data with uncertainties has
been suggested. Considering some particular schemes, we provide several
approaches to treat this new form of data with uncertainties.

In chapter 4, we present a novel method to handle the causality-based
CCF data. We combine an IBF algorithm with a Metropolis-Hastings algo-
rithm to drive the inference in the context of contingency table where only
the margins are observed. In some certain conditions, we obtain an explicit
formula for the posterior distribution of parameters interested.

Finally, a framework for predicting the number of catastrophic events is
given in chapter 5. Still in the context of uncertainties, we have found that
the approximate distributions can work efficiently to avoid the numerical in-
tegration.
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Chapter 2

Inference on BFR model from
confounded data

This chapter considers the statistical analysis of the Binomial
Failure Rate (BFR) model in details. Computational aspects of
maximum likelihood and Bayesian methods are investigated. An
EM algorithm to obtain maximum likelihood estimates is sug-
gested to deal with missing data inherent for common-cause fail-
ures. A Bayesian approach is developed and the modified-Beta
distribution is introduced to characterize the posterior distribu-
tion of one of the parameters of the model. All the suggested
methods are applied and compared on both simulated and real
data.

2.1 Introduction

The BFR model was firstly proposed by Vesely [68] to describe the underly-
ing failure processes generated by CCF events. This model can be considered
as a specialization of the multivariate exponential model introduced by Mar-
shall & Olkin [31]. The main idea is to model component failures in terms
of individual item failures and outside shocks that affect the survival status
of all the components in a system. Individual components failures are de-
scribed using independent and identically distributed exponential lifetimes
with common failure rate λ. Other parameters in the first version of BFR
model are µ, the rate of CCF, and p, the probability that each component
fails because of outside common cause shocks. When an outside shock occurs,
it is assumed that each component has the same probability to fail, indepen-
dently from each others. The number of components failing due to a shock
follows a binomial distribution, leading to the name of Binomial Failure Rate
(BFR) model.

According to a discussion in [26], some specific situations are not covered
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by the first BFR model. In order to handle this practical problem, Atwood [2]
suggested adding an independent lethal shock modeled by a Poisson distri-
bution with a rate ω. A lethal shock provokes simultaneous failures of all the
components of the system. The model became a four-parameter BFR model
and has been readily accepted in the nuclear industry [26].

An important assumption in the BFR model is that the probability to
fail for a component due to external shock is constant from shock–to–shock.
This is sometimes controversial as shocks are typically produced with vary-
ing strength. As a consequence, p can conceivably change from one shock to
others. This suggests a mixture model investigated in Kvam [22, 23] where
a Beta distribution is associated with the parameter of the binomial. As an-
other way to deal with this issue, Hauptmanns [15] considers a Multi-Class
BFR model.

In practice, the number of failures observed is small and in the same time
prior information on the system is available (from related databases or ex-
perts). This naturally leads to the application a Bayesian approach. Kvam
and Martz [24] develop a simple Bayesian model for estimating component re-
liability and the corresponding probability of common cause failures in small
operating systems. Atwood and Kelly [5] propose to use WinBUGS, a popular
Markov Chain Monte Carlo (MCMC) program, for Bayesian estimation in the
context of common cause failures. Table 2.1 presents a short overview of the
studies related to the BFR model found in the literature.

Another important point in the BFR model is that it does not require any
analysis about observed data but counting the number of failed components.
In this chapter, we consider a practical situation described as follows:

1. when one component fails, it is not possible to know whether the failure
is independent or due to a shock,

2. when all the components fail, it is not possible to know whether the
failure corresponds to a CCF or whether it is due to a lethal shock.

We explore some methodologies to deal with this situation using both fre-
quentist and Bayesian approaches. The main results in this chapter have
been presented at the 4th Conference on the Interface between Statistics and
Engineering (ICISE 2016 [42]), the 10th International Conference on Mathe-
matical Methods in Reliability (MMR 2017 [43]), and published in Reliability
Engineering and System Safety [44].

2.2 The data and the model

The model

Consider a system of m identical components. When a failure occurs, the
system is supposed to be repaired immediately and the failed components
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Reference The model description Estimation method
Vesely [68] BFR model with three parameters:

λ,µ and p
MLE

Atwood [2] Adding the lethal shocks with the
rate ω

Discussion several
perspectives

Kvam [26] BFR model with four parameters:
λ,µ,ω and p

MLE, method of
moment.

Kvam [27] A variant of BFR with only two pa-
rameters: p and q, where q the prob-
ability of lethal shocks

MLE

Kvam and
Martz [24]

A variant of BFR with only two pa-
rameters: p and q, where q the prob-
ability of lethal shocks

Bayesian method

Hauptmanns
[15]

Multil-class BFR MLE

Kvam [22] Nonparametric BFR mixture model MLE
Kvam [23] Parametric BFR mixture model, p is

allowed to change with shocks
MLE

Atwood and
Kelly [5]

Three different versions of BFR
model

Bayesian method
with WinBUGS

Table 2.1: The studies related to BFR model in the literature

are replaced with no delay. As mentioned before, failures occurring on a sys-
tem can be of different natures. They can be due to a shock or they can be
independent. In general, failures of the system can be classified into three
following categories:

• independent failures,

• common cause failures,

• lethal failures.

Independent failures

Each component of the system can fail independently at random times with
the same constant failure rate, λ. Such failures will be termed independent
failures to avoid the confusion with failures occurring from outside shocks.
Assuming that each component is replaced immediately whenever it fails,
the independent failure counting process of a component is a homogeneous
Poisson process with intensity λ. We denote this process by {NI (t), t Ê 0}.
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Common cause failures

Sometimes the system may be exposed to extraneous and unexpected events.
For example, a human error or an extreme environment such as abnormal
temperature or vibration can provoke simultaneous failure of many compo-
nents. We call these synchronized failures common cause failures.

Assume that the rate of occurrence of shocks that cause failures is con-
stant equal to µ and when a shock occurs, each component may fail, indepen-
dently of each others, with probability p. Denote Y the number of failed com-
ponents due to a shock. Since the shocks with no failures are not observed,
we suppose that Y only takes its values in

{
1, . . . ,m

}
. The event {Y = i} cor-

responds to the occurence of a CCF of order i, that means a CCF implying i
components. Y is a random variable that follows a truncated binomial distri-
bution with parameters (m, p):

P(Y = i)=
(m

i
)
pi(1− p)m−i

1− (1− p)m , i = 1, . . . ,m. (2.2.1)

This is the conditional distribution of the CCF order given that the order is
greater than or equal to 1.

Lethal failures

To end with, we consider another type of shock that causes simultaneously
failures of all components. The failure induced by a lethal shock should be
distinguished from CCF order m. Let ω be the lethal-shock rate which is as-
sumed to be constant. The process of this type of shock will be a homogeneous
Poisson process with intensity ω, denoted by {NL(t), t Ê 0}.

From this classification of failures, we propose a general definition for
BFR model as random processes.

Definition 1. – A BFR model for a m-component system includes m+2 inde-
pendent homogeneous Poisson processes

•
{
NI (t), t Ê 0

}
, the process of independent failures with intensity λ,

•
{
Ni(t), t Ê 0

}
, the process of CCF of order i with intensity µ Ui(p), where

Ui(p) is the probability (2.2.1), i = 1, . . . ,m,

•
{
NL(t), t Ê 0

}
, the process of lethal shocks with intensity ω.

The purpose is to estimate:

λ, the rate of occurrence of independent failures,
µ, the rate of occurrence of the nonlethal shocks that produce at least

one failure,
p , the probability that a component fails due to the occurrence non-

lethal shock,
ω, the rate of occurrence of nonlethal shocks.
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The estimation strategy will depend on the nature of observed data.

Data

Suppose a time window [0,T] where T is fixed, if the numbers NI (T), N1(T), . . . , Nm(T)
and NL(T) are observed, the data are said to be complete. In the sequel,
we omit T to lighten the notation. We denote N = (NI , N1, . . . , Nm, NL) and
n= (nI ,n1, . . . ,nm,nL) as a realization of N.

In practice, given that it is not possible to directly observe the shoks
arrival, it is not possible to distinguish the lethal shocks from CCF of or-
der m and the CCF of order 1 from independent failures. These observed
data are of the form N∗ = (N∗

1 , N2, . . . , , Nm−1, N∗
m), where N∗

1 = NI + N1 and
N∗

m = Nm +NL. The data are said to be incomplete. Let n∗ = (n∗
1, . . . ,n∗

m) de-
note a realization of N∗. An example of data of this form is given in [23]. It is
a set of real failure data from a 4-component safety system of a nuclear power
plant (NPP), where we observe N∗

1 = 11, N2 = 10, N3 = 7 and N∗
4 = 6.

In the following, we investigate different methods to make estimation.
Firstly, we consider the maximum lilkelihood method with complete data and
with incomplete data. Then we develop a Bayesian approach in the case of
incomplete data introducing conjugate priors.

2.3 Inference

2.3.1 Maximum likelihood method

Complete data

With the observed data n= (nI ,n1, . . . ,nm,nL), the likelihood function is:

L(θ) = P
(
NI (T)= nI

) m∏
i=1

P
(
Ni(T)= ni

)
P

(
NL(T)= nL

)
∝ λnI e−λT

{
m∏

i=1

[
µUi(p)

]ni e−µUi(p)T

}
ωnL e−ωT , (2.3.1)

where Ui(p) = (m
i )pi(1−p)m−i

1−qm , i = 1, . . . ,m and θ stands for (λ,µ,ω, p). The log-
likelihood is

logL(θ) = nI logλ+ sC logµ+
m∑

i=1
ni logUi(p)+nL logω

−
(
λ+µ+ω

)
T.

where sC =∑m
i=1 ni. It is easy to solve the likelihood equations for λ,µ and ω,

which lead to the estimates as:

λ̂= nI

T
, µ̂= sC

T
,ω̂= nL

T
.
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The solution for p is not straightforward. Indeed, the term involving p in the
likelihood function can be expressed as:

m∑
i=1

ni logUi(p) =
m∑

i=1
ni log

[
(1− q)i qm−i/(1− qm)

]
= sD log(1− q)+ (msC − sD) log q− sC log(1− qm)

where sD =∑m
i=1 ini and q = 1− p.

The corresponding likelihood equation is

− sD

1− q
+ m sC − sD

q
+ m sC qm−1

1− qm = 0.

This equation is equivalent to (1− q) m sC − (1− qm) sD = 0.
Since 0< q < 1, we obtain

sD (qm−1 + qm−2 + . . .+ q+1)−m sC = 0.

The last equation has an unique solution in [0,1] that is obtained using a
numerical method.

From the calculation for the mean of a Poisson distribution, we have:

E(λ̂) = E(NI (T))
T

= λT
T

=λ

E(ω̂) = E(NL(T))
T

= ωT
T

=ω

E(µ̂) = E(sC(T))
T

=
∑m

i=1µ Ui(p) T
T

=µ
m∑

i=1

Ci
m pi(1− p)m−i

1− (1− p)m =µ

That means the estimators of µ,λ and ω are unbiased.
Table 2.2 presents the results from a simulation study which are the av-

erage of the estimates obtained from 1000 simulations. The result allows us
to conjecture that the estimator of p is asymptotically unbiased.

Parameters λ µ ω p
Input 0.12500 0.25000 0.08333 0.5000
Estimates 0.12558 0.25182 0.08342 0.49727

Table 2.2: Average of estimates for complete data based on 1000 simulations

Incomplete data

When the data are incomplete, we have N∗
1 = NI + N1 and N∗

m = Nm + NL.
They are the summation of two Poisson random variables.
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By the additive property of the Poisson distribution, N∗
1 follows a Poisson

with parameter λT +µU1(p)T and N∗
m has a Poisson distribution with pa-

rameter ωT +µUm(p)T.
Thus, the likelihood function is:

L(θ) = P(N∗
1 (T)= n∗

1)
m−1∏
i=2

P(Ni(T)= ni) P(N∗
m(T)= n∗

m)

∝ [
λ+µU1(p)

]n∗
1 e−

[
λ+µU1(p)

]
T

m−1∏
i=2

([
µUi(p)

]ni e−µUi(p)T
)

[
ω+µUm(p)

]n∗
m e−

[
ω+µUm(p)

]
T . (2.3.2)

Therefore, the log-likelihood is:

logL(θ) = n∗
1 log[λ+µU1(p)

]+m−1∑
i=2

ni logµ+
m−1∑
i=2

ni logUi(p)

+ n∗
m log[ω+µUm(p)

]− (
λ+µ+ω

)
T.

The likelihood equations are:

∂

∂λ
logL(θ)= n∗

1

λ+µU1(p)
−T = 0

∂

∂µ
logL(θ)= n∗

1U1(p)
λ+µU1(p)

+
∑m−1

i=2 ni

µ
+ n∗

mUm(p)
ω+µUm(p)

−T = 0

∂

∂ω
logL(θ)= n∗

m

ω+µUm(p)
−T = 0

∂

∂p
logL(θ)= n∗

1µU ′
1(p)

λ+µU1(p)
+

m−1∑
i=2

ni U ′
i(p)

Ui(p)
+ n∗

mµU ′
m(p)

ω+µUm(p)
= 0

The likelihood equations have no explicit solutions.
Since we have a situation of missing data, we suggest using an EM algo-

rithm to solve the equations. The distribution of the observed data belongs
to the exponential family. Therefore, applying EM consists in replacing in
the likelihood of the complete data, the missing data with their conditional
expectations given the observed data.

In our case, the conditional distributions are obtained from a well-know
property of the Poisson distribution, leading to the following binomial distri-
butions:

NI (T) | N∗
1 (T)= n∗

1 ∼ B
(
n∗

1,λ/
[
λ+µU1(p)

])
,

N1(T) | N∗
1 (T)= n∗

1 ∼ B
(
n∗

1,µU1(p)/
[
λ+µU1(p)

])
,

NL(T) | N∗
m(T)= n∗

m ∼ B
(
n∗

m,ω/
[
ω+µUm(p)

])
,

Nm(T) | N∗
m(T)= n∗

m ∼ B
(
n∗

m,µUm(p)/
[
ω+µUm(p)

])
.

Therefore, the EM algorithm is performed as follows.
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- Initialisation: θ(0) = (
λ(0),µ(0),ω(0), p(0))

- At step (r+1), θ(r) = (
λ(r),µ(r),ω(r), p(r)) being available, compute:

• λ(r+1) = 1
T

E[Nind(T) | N∗
1 (T)= n∗

1 ;θ(r)]

that is to say λ(r+1) = n∗
1λ

(r)[
λ(r) +µ(r)U1(p(r))

]
T

• ω(r+1) = 1
T

E[NL(T) | N∗
m(T)= n∗

m;θ(r)]

that is to say ω(r+1) = n∗
mω

(r)[
ω(r) +µ(r)Um(p(r))

]
T

• µ(r+1) = 1
T

{
E[N1(T) | N∗

1 (T)= n∗
1 ;θ(r)]+

m−1∑
i=2

ni +E[Nm(T) | N∗
m(T)= n∗

m;θ(r)]
}

that is to say

µ(r+1) = 1
T

{ n∗
1µ

(r)U1(p(r))[
λ(r) +µ(r)U1(p(r))

]
T

+
m−1∑
i=1

ni +
n∗

mµ
(r)Um(p(r))[

ω(r) +µ(r)Um(p(r))
]
T

}
= 1

T
(
n∗

1 +
m−1∑
i=2

ni +n∗
m −λ(r+1) −ω(r+1))

• p(r+1) = 1−q(r+1) where q(r+1) is the unique solution of the equation

ms(r)
C (1− q)− s(r)

D (1− qm)= 0,

s(r)
C = n∗

1U1(p(r))µ(r)

λ(r) +U1(p(r))µ(r) +
m−1∑
i=2

ni +
n∗

mUm(p(r))µ(r)

ω(r) +Um(p(r))µ(r)

and

s(r)
D = n∗

1U1(p(r))µ(r)

λ(r) +U1(p(r))µ(r) +
m−1∑
i=2

ini +m
n∗

mUm(p(r))µ(r)

ω(r) +Um(p(r))µ(r) .

- Stop when ‖θ(r+1) −θ(r)‖ is sufficiently small.

A simulation study

We investigate the performance of the proposed EM algorithm through simu-
lations. Considering a 5-component system and an observation time window
T = 120 (10 years), the parameters are set to cover two situations.

• Situation I: λ= 0.0833, µ= 0.1, ω= 0.0556 and p = 0.4.

This combination corresponds to an expected numbers equal to one in-
dividual failure in a time interval of 12 months, one common-cause
shock per 10 months and one lethal shock per 18 months. The prob-
ability that a component fails when a common-cause shock occurs is
0.4.
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• Situation II: λ= 0.025, µ= 0.0333, ω= 0.0167 and p = 0.25.

In this situation, λ, µ and ω can be interpreted respectively as an av-
erage number of one individul failure every 40 months, one common-
cause failure every 30 months and one lethal shock every 60 months,
respectively. When a common-cause shock occurs, a component has a
probability 0.25 to fail. In this case, we will obtained sparse observa-
tions.

The tables 2.4 and 2.5 provide the estimation results and the correspond-
ing mean square error (MSE). Computations are performed with 1000 sim-
ulations using the EM algorithm with initial values λ(0) = .01, µ(0) = .015,
ω(0) = .01, p(0) = .1. The initial values do not influence the convergence, which
is usually obtained after less than 30 iterations. The estimates of the pa-
rameters in the first set of input are relatively close to the theoretical values.
The results are a little less effective in the second set of input as might be
anticipated because of the small expected number of failures. That outcome
explains the poor results obtained.

Application on real data

We consider the CCF events involving emergency diesel generators at US nu-
clear power–plants presented mentioned previously. These data are extracted
from an unpublished database from the US Nuclear Regulatory Commission.
The length T of the time window observation is unknown. In the case of 4–
component systems, we observe N∗

1 = 11, N2 = 10, N3 = 7 and N∗
4 = 6. Let us

denote cλ, cµ and cω the MLE of λT, µT and ωT. Applying the EM algorithm
we obtained cλ = 4.6483, cµ = 25.1883, and cω = 4.1633. Then the MLEs are
λ̂ = cλ/T, µ̂ = cµ/T and ω̂ = cω/T. For example, for T = 15 (years), we have:
λ̂= 0.3098 year−1, µ̂= 1.6792 year−1, ω̂= 0.2775 year−1 and p̂ = 0.5121. The
mean time between CCFs can be obtained as T/cλ, T/cµ and T/cω.

2.3.2 Bayesian approach

In the context of CCF analysis, the information is sparse. Therefore consider-
ing a Bayesian approach could be a solution to make inference on the model.
The distribution of the incomplete data N∗ can be rewritten in the form:

P(N∗ =n∗ | θ)∝( n∗
1∑

k=0
Ck

n∗
1
(µU1(p))kλn∗

1−k)m−1∏
i=2

[
µUi(p)

]ni

×( n∗
m∑

`=0
C`

n∗
m

(µUm(p))`ωn∗
m−`)e−(λ+µ+ω)T
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∝
n∗

1∑
k=0

n∗
m∑

`=0
mkCk

n∗
1
C`

n∗
m
λn∗

1−ke−λTµk+`+nC e−µT

× ωn∗
m−`e−ωt pk+nD+m`qk(m−1)+mnC−nD

(1− qm)k+nC+` (2.3.3)

where nD =
m−1∑
i=2

iNi, nC =
m−1∑
i=2

Ni and q = 1− p.

Assuming that the parameters are independent, we consider a gamma
prior for the parameters λ, µ, ω with respective parameters (αλ,βλ), (µµ,βµ)
and (αω,βω) and a Beta distribution for p with parameters (αp,βp).

Applying the Bayes formula, the posterior distribution for λ, µ and ω, is
obtained as a mixture of Gamma distributions:

λ |N∗ =n∗ ∼
n∗

1∑
k=0

η(k)
λ

G (n∗
1 +αλ−k,T +βλ), (2.3.4)

µ |N∗ =n∗ ∼
n∗

1∑
k=0

n∗
m∑

`=0
η

(k,`)
µ G (nC +k+`+αµ,T +βµ), (2.3.5)

ω |N∗ =n∗ ∼
n∗

m∑
`=0

η(`)
ω G (n∗

m +αω−`,T +βω), (2.3.6)

where η(k)
λ

,η(`)
ω and η(k,`)

µ are the weights calculated by integrating adequately
the joint distribution P(N∗ =n∗ | θ)π(θ) and computing P(N∗ =n∗).

To characterize the posterior distribution of p, we introduce the modified–
Beta distribution.

Definition 1. – A continuous random variable X with support ]0,1] follows
a modified–Beta distribution with parameters (α,β,γ,δ) if and only if, its
probability density function is

f (x)= 1
K(α,β,γ,δ)

xα−1(1− x)β−1

(1− (1− x)δ)γ

where x ∈]0,1], δ ∈N, α,β,γ> 0, with γ<α and

K(α,β,γ,δ)=
∫ 1

0

xα−1(1− x)β−1

(1− (1− x)δ)γ
dx.

We denote X ∼ B̃(α,β,γ,δ).

Relying on this distribution, we can claim now that the posterior distri-
bution of p is mixture of modified–Beta of the following form:

p |N∗ =n∗ ∼
n∗

1∑
k=0

n∗
m∑

`=0
η

(k,`)
p B̃(α(k,`),β(k,`),γ(k,`),m) (2.3.7)
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where α(k,`) = k+nD +m`+αp, β(k,`) = k(m−1)+mnC −nD +βp, γ(k,`) = k+
nC +` and η

(k,`)
p is the weight calculated by integrating adequately the joint

distribution P(N∗ =n∗ | θ)π(θ) and computing P(N∗ =n∗).
More details on the modified-Beta distribution are given in Appendix (C).

The expectation of the modified–Beta distribution is expressed as:

E(X )= K(α+1,β,γ,δ)
K(α,β,γ,δ)

. (2.3.8)

The expression (2.3.8) will be used in the sequel to obtain the Bayes esti-
mator of the parameter p.

Bayes estimators

Considering a quadratic loss function, the Bayes estimators of the parame-
ters are the expected-values of the posterior distributions.

λ̃=
n∗

1∑
k=0

η(k)
λ

αλ+n∗
1 −k

T +βλ
, (2.3.9)

µ̃=
n∗

1∑
k=0

n∗
m∑

`=0
η

(k,`)
µ

nC +k+`+αµ
T +βµ

, (2.3.10)

ω̃=
n∗

m∑
`=0

η(`)
ω

αω+n∗
m −`

T +βω
, (2.3.11)

p̃ =
n∗

1∑
k=0

n∗
m∑

`=0
η

(k,`)
p

K(α(k,`) +1,β(k,`),γ(k,`),m)
K(α(k,`),β(k,`),γ(k,`),m)

. (2.3.12)

Note that one can also consider the mode of the posterior distributions as
a possible estimate.

A (1−α) credibility interval for each parameter can be numerically com-
puted relying on the Newton-Raphson (NR) method. Let Fθ|N∗=n∗ denote the
posterior cumulative distribution function of the parameters. The bound of
the interval [a,b], a (1−α)- credibility region, are obtained solving the two
following equations {

Fθ|N∗=n∗(a)= 1−α/2
Fθ|N∗=n∗(b)=α/2

. (2.3.13)

These equations can be solved using a NR algorithm. For example for the
lower bound we use the following routine.

• Choose an initial value a(0). It could be the posterior mean.

• AT setp (n+1), a(n) being available, compute

a(n+1) = a(n) − Fθ|N∗=n∗(a(n))
π(a(n) |N∗ =n∗)
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• Stop when |a(n+1) −a(n)| É ε, where ε is close to 0.

A similar routine can be applied for the upper bound. The table 2.8 dis-
plays 95% credibility region for λ,µ,ω and p from the data extracted from a
USNRC report [23].

A simulation study

Bayesian inference needs to specify values for priors hyperparameters. One
can consider many strategies to obtain these values. For example, these val-
ues can be deduced from guesses at the expected-times between failures of a
given type or at the number of such failures in a given time-window. Con-
sidering a confidence level in these guesses through the standard-deviation,
values for the hyperparameters are solutions of a simple system of two equa-
tions. These equations are obtained matching guesses and confidence with
mean and variance of gamma and beta distributions. Suppose that the prior
distribution for the rate is a gamma distribution with parameters (α, β). and
that an expert guess at this rate is a value η with a confidence ρ (that is
η±ρη).
We solve {

α/β= η
α/β2 = ρ2η2 to obtain

{
α= 1/ρ2

β= 1/ρ2η
.

For p, considering a beta distribution as a prior, the same reasoning leads to

the following solutions: α=
[1−η
ρ2

pη
−1

]
η and β=

[1−η
ρ2

pη
−1

]
(1−η) where ρp is

the degree of confidence for the guess at p.
Let us denote ρλ, ρµ, ρω the degrees of confidence respectively for λ, µ, ω.

It should be considered that the naive estimate of p would be nD /mnC where
nD =∑m−1

i=2 ini, nC =∑m−1
i=2 ni, the average proportion of failed components in

multiple failure ocurrences due to non-lethal shocks. This naive estimator
can be used as an initial guess for solving the numerical equation.

The table 2.7 shows some results from this strategy for both situations of
data. It gives the different values of the hyperparameters considering differ-
ent natures of guesses (close or not to the input values) and confidence level
in these guesses (low or high). The hyperparameters of type A correspond to
noninformative priors [1]. The hyperparameters of type B and C correspond
to values associated to guesses close to the input values with respectively
high and low levels of confidence. In the case D, the guesses at λ and p are
far from the input with respectively high and low confidence, the prior for ω is
noninformative and the guess at µ is close with high degree of confidence. To
end with, the type E corresponds to far guesses at λ and ω with respectively
high and low confidence and noninformative priors for µ and p.

The Bayesian estimation results are displayed in table 2.4 for situation I
and in table 2.5 for situation II. The method gives satisfactory overall results
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Table 2.3: Possible values for the hyperparameters
Sit. Type ρλ αλ βλ ρµ αµ βµ ρω αω βω ρp αp βp

A * 0.5 0 * 0.5 0 * 0.5 0 * 0.5 0.5
B 0.7 2.04 22.67 0.7 2.04 18.55 0.7 2.04 40.81 0.7 0.87 1.38

I C 0.2 25 277.7 0.2 25 227.27 0.2 25 500 0.2 14.99 23.94
D 0.2 25 416.66 0.2 25 227.27 * 0.5 0 0.7 1.28 3.84
E 0.7 2.04 40.81 * 0.5 0 0.2 25 833 * 0.5 0.5

A * 0.5 0 * 0.5 0 * 0.5 0 * 0.5 0.5
B 0.7 2.04 88.73 0.7 2.04 68.02 0.7 2.04 127.55 0.7 1.34 4.49

II C 0.2 25 1086 0.2 25 833 0.2 25 1562 0.2 19.02 63.67
D 0.2 25 555.55 0.2 25 833 * 0.5 0 0.7 1.58 8.97
E 0.7 2.04 51 * 0.5 0 0.2 25 2777 * 0.5 0.5

with small MSE. The noninformative case, the type B and C provide esti-
mates that are relatively close to the MLE with smaller MSE. If the guesses
are fairly accurate, the bayes estimates are closer to the input than the MLE.
We can observe that the degree of confidence do not have a significant effect.

Table 2.4: Means of MLE and Bayesian estimates for types of prior, with
mean square error (MSE) computed on 1000 simulations for situation I

λ µ ω p
Input 0.083 0.1 0.0556 0.4
MLE 0.07321 (1.7e-3) 0.11015 (1.9e-3) 0.05513 (4.5e-4) 0.39070 (1.5e-2)

A 0.07167 (1.1e-3) 0.12285 (1.9e-3) 0.05695 (4.9e-4) 0.38897 (1.2e-2)

B 0.07798 (5.6e-4) 0.10897 (7.8e-4) 0.05341 (2.8e-4) 0.39583 (8.6e-3)

C 0.08756 (6.1e-5) 0.10729 (1.9e-3) 0.05089 (3.9e-5) 0.39141 (1.5e-3)

D 0.06157 (4.8e-4) 0.11238 (2.5e-4) 0.05851 (4.8e-4) 0.35154 (9.3e-3)

E 0.06124 (9e-4) 0.12630 (1.9e-3) 0.03283 (5.2e-4) 0.38371 (1.4e-2)

Application on real data

Once again we consider the data from a US NRC report concerning CCF
events involving emergency diesel generators at US nuclear plants. Let us
consider the 4-component systems data. The total number of failures ob-
served is 34 over the time period T. Recall that T is not given in the report.
We assume T = 15 years. To obtain values for the hyperparameters we sup-
pose that experts are able to guess at the expected numbers of events in a
given period that is to say guesses at Nind(T), Ni(T), i = 1, . . . ,m and NL(T).
We consider three scenarii and the noninformative case. The table 2.6 gives
examples of experts guesses. In the first row the total number of events is
under evaluated. The guess is that the system is more reliable. In the sec-
ond row, experts guesses are close to what has been observed. The third row
considers that we have observed less failures than we should.

From the guesses at the number of events, we compute the MLE of λ, µ,
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Table 2.5: Means of MLE and Bayesian estimates for types of priors, with
mean square error (MSE) computed on 1000 simulations for situation II

λ µ ω p
Input 0.025 0.033 0.0167 0.25
MLE 0.01791 (4e-4) 0.04982 (5e-3) 0.01568 (9.5e-4) 0.27413 (3.6e-2)

A 0.02831 (2.1e-4) 0.03892 (3.7e-4) 0.01967 (1.3e-4) 0.33441 (2.2e-2)

B 0.02331 (4.3e-5) 0.03321 (9.8e-5) 0.01655 (3.3e-5) 0.24144 (5.6e-3)

C 0.02314 (4.5e-6) 0.03050 (1.1e-5) 0.01610 (1.0e-6) 0.23261 (5.0e-3)

D 0.04235 (3.0e-4) 0.02984 (1.4e-5) 0.02113 (1.6e-4) 0.20814 (6.4e-3)

E 0.03204 (1.3e-4) 0.03548 (2.9e-4) 0.00919 (5.5e-5) 0.37332 (3.7e-2)

Table 2.6: Examples of experts guesses in the case of real data (T=15 years).

Situation Nind(T) N1(T) N2(T) N3(T) N4(T) NL(T) Total
1 3 5 6 4 1 1 20
2 5 8 10 7 3 2 35
3 4 15 13 10 5 3 50

ω and p. Then we proceed as decribed in section 2.3.2 to propose values for
the hyperparameters.

The results of this strategy are given in table 2.7. The situation 4 corre-
sponds to noninformative priors.

Table 2.7: Choices of values for the hyperparameters for data from US NRC
report.

Situation ρλ αλ βλ ρµ αµ βµ ρω αω βω ρp αp βp
1 0.4 6.25 375 0.2 25 281 0.4 6.25 1125 0.3 5.33 5.84
2 0.2 25 900 0.4 6.25 40.17 0.4 6.25 562.5 0.4 2.52 2.38
3 0.4 6.25 281.25 0.2 25 104.65 0.4 6.25 375 0.2 12.14 12.41
4 * 0.5 0 * 0.5 0 * 0.5 0 * 0.5 0.5

Applying formulas (2.3.9), (2.3.10), (2.3.11) and (2.3.12), we compute the
Bayesian estimates. The table 2.8 displays the results.

One can see that the different estimate for p are close and are not really
sensitive to the nature of the prior. For λ and µ, the noninformative case gives
estimates close to the situation 2 corresponding to guesses close to what have
been observed and the results are close to the MLE. The schemes 1 and 3
(respectively under and over guess at observation) lead to similar estimate for
λ. It is not the case for ω. For all parameters, the noninformative case results
and the MLE are close. The figure 2.1 displays the posterior distribution of
the four parameters for the data extracted from US NRC Report with prior
of situation 1 (table 2.8).
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Table 2.8: Bayes estimates for data extracted from US NRC report

λ µ ω p
MLE 0.01936 0.10495 0.01734 0.51212

1 0.02035 0.11091 0.00652 0.54651
(0.011;0.087) (0.086;0.14) (0.003;0.011) (0.436;0.654)

2 0.02811 0.14575 0.01218 0.54839
(0.021;0.093) (0.1;0.193) (0.005;0.02) (0.431;0.661)

3 0.02095 0.18354 0.01725 0.50738
(0.011;0.107) (0.141;0.229) (0.008;0.028) (0.41;0.6)

4 0.02729 0.14789 0.02203 0.52323
(0.0015;0.266) (0.096;0.206) (0.0008;0.05) (0.379;0.677)

2.4 Concluding remarks

Obtaining accurate estimation of the occurrence rates of common cause fail-
ure is an important issue in the assessment of system reliability. The sparse-
ness of observation which are usually also confounded, increases the diffi-
culty. In this chapter, we have suggested different methods to make inference
on the parameters of the BFR model in this context of incomplete data. An
EM algorithm is described to obtain the MLE. A methodology to elicit hyper-
parameters for the prior relying on expert opinion, is outlined for a Bayesian
approach. This methodology will be very helpful for practioners. We have
compared the results applying the methods on both simulated data and real
data. The Bayesian approach leads us to introduce a new distribution: the
modifed-Beta distribution.
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Figure 2.1: Posterior distributions of λ, µ, ω and p
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Chapter 3

Inference for the α-factor
model from uncertain data

In this chapter, we provide a novel method to treat data with un-
certainties based on the α-factor model. The data with uncertain-
ties refer to the cases where the order of each CCF event can not
be defined exactly. We suggest a particular representation of the
failure event. Both MLE and Bayesian estimation methods are
considered. For the former, depending on different scenarios of
data, the MLE can be obtained direcly or via an EM algorithm.
For the latter, the posterior distribution of the α-factor parame-
ters are obtained by using the inverse Bayesian formula and a
family of the Dirichlet distribution.

3.1 Introduction

The α-factor model is one of the most widely used model in the nuclear PRA.
It is considered to be more realistic due to the ability of modeling real scenar-
ios to a greater extent as well as analyzing various CCF events of different
intensity. The model is a main concern for CCF analyzing in a number of
reports from the U.S Nuclear Regulatory Commission ([45], [47],[48]).

The α-factor model is introduced by Mosleh et al. [36]. Zubair and Amjad
[72] apply this model to calculate and update an unavailability due to CCF.
Troffaes et al. [65] propose a Bayesian approach to the α-factor model by us-
ing a set of conjugate priors instead of a single prior. Extended versions of the
α-factor model are also introduced such as the α-decomposition model [71],
the partial α-factor model [49]. Duy et al. [29] suggest a practical method-
ology simulation-based for estimating the parameters of α-factor model for
the case of incomplete or absent data. Varun et al. [12] present a pragmatic
approach to estimate α-factors for CCF analysis based on mapping up tech-
nique. A consistent mapping of common cause failure rates and α-factors are
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given by Vaurio [67]. Atwood [4] provides a detailed analysis of the conse-
quences of mapping data in Bayesian common-cause inference using α-factor
model.

An advantage of the α-factor model is the ability to handle data with
uncertainties. The concept of data with uncertainties has been introduced in
Chapter 1. In order to illustrate this concept, we reproduce the table provided
by Mosleh [35]. In this example, Table 3.1, component states are represented
by squares. All components were classified as either available or unavail-
able according to a particular success criterion. An unavailable component is
either failed (�) or functionally unavailable (�) to cover cases in which the
nonfunctioning was due to the lack of required input. From the information
about the failure event described in table 3.1, it seems that the third compo-
nent was unavailable, but with no certainty. Thus, it is difficult for analysts
to determine if it is a 2-failed component or a 3-failed component event. We
call such data the data with uncertainties or uncertain data.

Plant (Date) Event Description Cause -Effect Diagram

Maine Yankee
(August 1977)

Two diesel generators
failed to run due to a
plugged radiator. The
third unit was also
plugged

I

(1)

(2)

(3)

Cooling
System

Diesel
Generator

Table 3.1: A real example of data with uncertainties [35]

A classical method to deal with data with uncertainties is to establish hy-
potheses about the order of each CCF event with corresponding probabilities,
leading to the introduction of the impact vector concept. For uncertain data,
estimating the parameters of α-factor model using impact vectors is applied
in most of CCF references, see, for example, Siu and Mosleh [56] and Siu [55].
However, the impact vector method is based purely on the hypotheses about
CCF events from the subjective experience of practitioners or experts.

The goal of this chapter is to introduce a novel method to avoid this subjec-
tivity. We propose mixing all possible orders in each CCF event and introduce
new representations for these events. In Section 2, we present the definition
of the α-factor model and its parameters. Inference on α-factor model for
complete data are briefly given in Section 3. In Section 4, we firstly explain
the impact vector method and then describe the mixing method to provide an
alternative way to handle data with uncertainties.
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3.2 The α-factor model

In the α-factor model for a m-component system, the CCFs are characterized
by the parameters αk, k = 1, . . . ,m where αk is the probability of the failure
event that involves exactly k components, given that at least one component
fails. Usually, these parameters are expressed with what is called the basic
parameters. To understand more about notations in α-factor model, let us
review briefly the basic parameters through a simple example which relies
on Mosleh et al. [36].

Consider a system of three idendical components, A,B and C, with two-
out-of-three success logic, i.e., the system is operational if and only if at least
two components out of the system’s 3 component are operational. Figure 3.1
shows a classical fault tree representation of the system reliability. The min-

Figure 3.1: The component-level fault tree system

imal cutsets of this system failure, which are all the minimal sets of compo-
nents those their failures provoke the failure of the system, are {A,B}, {A,C},
and {B,C}.

The fault tree is expanded to contain the common-cause basic events,
which are the failure events that involved a given component. For instance,
the common basic events for component A are displayed in Figure 3.2. They
are {AI }; {CAB}; {CAC}; {CABC}, where AI represents the independent cause
failures of component A, CAB represents the CCFs implying components A
and B, CAC represents the CCFs implying components A and C, and CABC
represents the CCFs implying all components A,B and C. The common-cause
basic events for components B and C are obtained in a similar way.

According to the discussion in Mosleh et al. [36], it is reasonable to de-
fine the events, for example, CAB and CAC to be mutually exclusive. Using
the rare event approximation, the probability of the system failure can be
calculated approximately as

P(S) ' P(AI )P(BI )+P(AI )P(CI )+P(BI )P(CI )+P(CAB)+
+ P(CAC)+P(CBC)+P(CABC).
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Figure 3.2: The expanded basic events fault tree for component A

Since the components of the system are supposed to be identical, the symme-
try assumption discussed by Atwood in [4] is commonly used. In particular,
it is assumed that

P(AI )= P(BI )= P(CI )=Q1

P(CAB)= P(CAC)= P(CBC)=Q2

P(CABC)=Q3

The parameters Q1,Q2,Q3 are called the basic parameters for this 3-component
sytem. The system failure probability can be expressed with these parame-
ters as

P(S)= 3Q2
1 +3Q2 +Q3.

This definition can be extended to a system of any size. Let us consider a
system with m identical components.

Let Qk denote the probability that a particular set of k components will
fail and no other components fails, k = 1, . . . ,m. Then, Q1, . . . ,Qk are the basic
parameters. As mentioned before, the value of Qk depends on k but not on
the particular k components considered. The probability that exactly k out of
m components fail is then

Pk =
(
m
k

)
Qk, k = 1, . . . ,m,

and the probability that a CCF event occurs is

Ptot =
m∑

k=1

(
m
k

)
Qk.

As discussion in [71], the different testing schemes applied to the system
lead to the different mathematical forms of the α factor model. The param-
eters of the α-factor model under the non-staggered testing scheme, i.e. all
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components of the system are tested in the same period, are defined as

αk =
Pk

Ptot
=

(m
k
)
Qk∑m

`=1
(m
`

)
Q`

, k = 1, . . . ,m. (3.2.1)

The parameters of the α-factor model under the staggered testing scheme are
presented in the next chapter.

From this definition, it is easy to see that
m∑

i=1
αi = 1. Similar to Qk, αk also

depends on k but not on the particular k components that are considered. For
the simplicity in writing, let ααα stands for (α1, ...,αm).

3.3 Inference on complete data

Before considering the data with uncertainties, we present brieftly the tra-
ditional techniques to deal with complete data. Here, complete data means
that we can be sure about the exact number of components failed in each CCF
event. In this situation we do not isolate the independent cause failure and
the lethal failure as in Chapter 2.

For a m-component system, the complete data are represented by a vec-
tor N = (N1, . . . , Nm), where Ni is the number of CCF events of order i, i =
1, . . . ,m.

3.3.1 Maximum likelihood method

We have defined previously αi as the probability for a CCF to be of order i.
Thus, for complete data, the likelihood function is:

L(ααα |N)∝
m∏

i=1
α

Ni
i ,

where ααα= (α1, . . . ,αm),αi Ê 0,
m∑

i=1
αi = 1.

The MLE of parameters are obtained directly based on the Lagrange mul-
tipliers method, that is:

α̂i = Ni∑m
i=1 Ni

, i = 1, . . . ,m. (3.3.1)

3.3.2 Bayesian approach

The likelihood (3.3.1) has the form of a multinomial distribution. Therefore,
the Dirichlet distribution with parametersβββ= (β1, . . . ,βm) is chosen as a prior
distribution for ααα= (α1, . . . ,αm),

π(ααα)= Γ(β1 + . . .+βm)
Γ(β1) . . .Γ(βm)

m∏
i=1

α
βi−1
i ,
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where βi > 0 and ααα ∈∆m in which ∆m is the close simplex,

∆m = {(α1, ...,αm) :α1 Ê 0, ...,αm Ê 0,
m∑

i=1
αi = 1}.

It is a conjugate prior since the posterior distribution is also a Dirichlet distri-
bution with parameters βββ+N= (N1 +β1, . . . , Nm +βm). The Bayes estimators
for the parameters αi under the quadratic loss are

α̃i = Ni +βi∑m
i=1(Ni +βi)

, i = 1, . . . ,m. (3.3.2)

Remark that thess estimators are convex combinations of the MLE and the
expectation of αi with respect to the prior distribution:

α̃i = qiα̂i + (1− qi) E(αi),

where qi =
∑m

i=1 Ni∑m
i=1(Ni +βi)

and E(αi)= βi∑m
i=1βi

.

If the total number of observed CCFs is large, then q is close to 1 and
the Bayes estimator is close to the MLE. Otherwise, when the number of
observed CCFs is small, the prior information would have more influence on
the Bayes estimator.

Troffaes et al. [65] suggest a specific form of hyperparameters that has
the advantage of facilitating the interpretation of the parameters.

They consider a prior distribution of the form

π(ααα | s,t)∝
m∏

i=1
α

sti−1
i ,

where s > 0 and t ∈∆m.
The posterior density for ααα corresponding to this prior distribution is:

π(ααα |N=n, s,t)∝
m∏

i=1
α

Ni+sti−1
i .

From the properties of Dirichlet distribution, the marginal distribution of αi
is

αi |N=n, s,t ∼ Beta

(
Ni + sti,

∑
i 6= j

(N j + st j)

)
, i = 1, . . . ,m.

Therefore, under the quadratic loss function, the Bayesian estimate of each
αi is

α̃i = Ni + sti∑m
i=1 Ni + s

= (
1− q(s)

)
α̂i + q(s) ti, i = 1. . . ,m,

where q(s) = s∑m
i=1 Ni + s

. The balance between observation and prior infor-

mation is now governed by one parameter: s.
We can make again the following interpretation of the Bayes estimators

above:
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• α̃i is a weighted average of ti and α̂i with weights q(s) and 1− q(s),
respectively. q(s) represents the portion of prior contribution to the
posterior. The smaller the value of

∑m
i=1 Ni compared to s, the larger

the contribution of the prior to the posterior.

• If
∑m

i=1 Ni is close to 0, i.e there is very few failure observations, then
α̃i = ti. That is to say, the value of ti represents the prior expected
number of CCF of order i.

• If
∑m

i=1 Ni goes to infinity, then α̃i is close to the MLE.

3.4 Inference on data with uncertainties

In many situations, the order of CCFs are reported with uncertainties. That
is to say we do not know exactly how many components are really involved
in the CCF events. A traditional method to treat data with uncertainties
is to give a guess on the number of failed components and a corresponding
associated probability, leading to what is called an impact vector. We are
going to explain the impact vector method in the following before presenting
a new method to deal with this kind of data.

3.4.1 Impact vector method

3.4.1.1 The definition of impact vector

With the narrative description of the failure events provided in Table 3.1, it is
not clear whether or not the third diesel generator has actually failed. Thus,
in this situation, there are two possibilities for the number of components
involved in the CCF: 2 or 3.

Suppose a m-component system. To represent a CCF of order k, it is
classical to consider a binary vector I with m+ 1 components. If the CCF
is of order k, the component k+1 of the binary vector is 1 while the other
components are zero. The vector I is denoted Ik. For the m-component system
of the Table 3.1, a CCF of order 2 is represented as I2 = (0,0,1,0), and a CCF
of order 3 is represented as I3 = (0,0,0,1).

Because of uncertainties, a CCF is now a random variable which outcomes
are binary vectors I0, I1 . . . , Im. With each binary vector Ik is associated a
probability pk, such that

∑m
k=0 pk = 1.

In practice, these probabilities are attributed by engineers relying on the
expert’s opinion. For example, Mosleh et al. [36] associate a probability to
each of the possibility in the example in Table 3.1 as in Table 3.2. Only two
diesels generators failed (corresponding to the binary vector I2) is more likely
than all the three generators to fail (corresponding to the binary vector I3).

We now give the definition of an impact vector.
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Number of components involved Binary vector Probability
2 I2 = (0,0,1,0) 0.9
3 I3 = (0,0,0,1) 0.1

Table 3.2: Example of establishing an impact vector

Definition 2. Let us consider a m-component system. An impact vector
for an uncertain CCF event is a m+1 dimensional vector of probability I =
(p0, . . . , pm) where pi is the probability that i components are involved in the
CCF, pi Ê 0,∀i and

∑m
i=0 pi = 1 .

Remark that the impact vector can be obtained combining the probabili-
ties and the binary vectors as an average vectors.

For example, with Table 3.2 we have:

I = 0.9I2 +0.1I3

= (0,0,0.9,0.1).

This impact vector describes the uncertainty on the order of the observed
CCF.

Table 3.2 presents an example of impact vectors for a set of real data,
which is provided by Siu and Mosleh [56].

3.4.1.2 Inference for CCF with impact vector

A number of methods to use impact vectors in CCF analysis based on α-factor
model are suggested by Siu and Mosleh [56]. One of these methods can be
described as follows.

Suppose that n CCF events are observed. We have a sample I= {I1, . . . , In}
of uncertain data which can be written as n× (m+1) matrix.

To this sample of uncertain data corresponds a set of data with no un-
certainties. By combining all the possible binary vectors for each uncertain
event, we obtain a matrix with zero or one element such that the sum of the
column terms gives the vectors N = {N0, . . . , Nm} which represents the com-
plete data. We can define the probability of each occurence of these vectors
using the impact vectors.

Consider a simple example (table 3.3) given by Siu & Mosleh [56] in
which a total of 9 CCF events with uncertainties has been reported from a
3-component system. The table 3.4 resumes the situation.

The complete data deduced from the sample I = {I1, . . . , I5} lies in a space
which has less than 23×32 = 72 elements. For example, one of these elements
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Event
num-
ber

Plant
(Date)

Status Event description p0 p1 p2 p3

1
Ginna
(12/73)

Critical
Two motor-driven AFW
pumps were inoperable due to
air in common suction line

0.1 0 0 0.9

2
Zion 2
(2/74)

Power esca-
lation test

Two motor-driven AFW
pumps were inoperable due to
air in common suction line

0.1 0 0 0.9

3
Turkey
Point 3
(5/74)

98% power
AFW pumps A and B failed to
start due to tight packing

0.9 0 0.05 0.05

4
Zion 2
(9/81)

Shutdown
AFW pumps 2B and 2C failed
due to a faulty control switch
modification

0 0 1 0

4I
Zion 2
(9/81)

Shutdown
AFW pumps 2A failed due to a
pressure switch drift

0 1 0 0

5
Zion 2
(11/79)

Power
AFW pumps 2B and 2C failed
due to miscalibrated pressure
gauges

0.3 0 0.35 0.35

6
Zion 2
(12/79)

Poweer
AFW pumps 2B and 2C failed
due to start circuitry design
problems

0 0 1 0

7
Turkey
Point 3
(6/73)

Prior to ini-
tial power
testing

All 3 AFW failed to start due
to missing fuses in pump au-
tostart circuit

0 0 0 1

8
Arkansas
2(4/80)

0% power

Two emergency feedwater
pumps lost suction due to
steam flushing; system design
problem

0.1 0 0 0.9

Table 3.3: An example of impact assessment of AFW pump failure to start [56].
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Event Narative description Impact vector Frequency
1-2-8 no or 3 components fail 0.1 0 0 0.9 3
3 no or 2 or 3 components fail 0.9 0 0.05 0.05 1
4-6 2 components fail 0 0 1 0 2
4I 1 components fails 0 1 0 0 1
5 no or 2 or 3 components fail 0.3 0 0.35 0.35 1
7 3 components fail 0 0 0 1 1

Table 3.4: Summary of data with uncertainties described in Table 3.3

N0 N1 N2 N3 Probability
5 1 2 1 0.00027
4 1 3 1 0.00033
4 1 2 2 0.00762
3 1 4 1 0.0000175
3 1 3 2 0.008945
3 1 2 3 0.0745375
2 1 4 2 0.0004725
2 1 3 3 0.081135
2 1 2 4 0.2774925
1 1 4 3 0.0042525
1 1 3 4 0.249075
1 1 2 5 0.2448225
0 1 4 4 0.0127575
0 1 3 5 0.025515
0 1 2 6 0.0127575

Table 3.5: The possible complete data for the data with uncertainties in Table 3.4
with their corresponding probabilities.

is: 

0 0 0 1
0 0 0 1
1 0 0 0
0 0 1 0
0 0 1 0
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1


,

for which N0 = 2, N1 = 1, N2 = 3 and N3 = 3. After computations, a total of 15
vectors of complete data are possible. Table 3.5 shows these vectors and the
corresponding probabilities.

For the statistical analysis, we only consider {N1, ..., Nm}.
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Suppose that w vectors of complete data are possible:
{
N1, . . . ,Nw

}
with

N` = (N`,1, . . . , N`,m), `= 1, . . . ,w.
The log-likelihood with uncertain data can be expressed as:

logL(ααα | I)=
w∑
`=1

logL(ααα |N`) P(N` | I).

The likelihood equations are then:

∂

∂αi
logL(ααα | I)=

w∑
`=1

∂

∂αi
logL(ααα |N`) P(N` | I)= 0, i = 1, . . . ,m−1.

Because L(ααα |N`) belongs to the exponential family and has a canonical form:
L(ηηη |N`) with ηi = log

[
αi/

(
1−∑m−1

j=1 α j
)]

, i = 1, . . . ,m−1, it can be shown that

∂

∂ηi
logL(ηηη |N`)= N`,i −E

(
N`,i |ηηη

)
, i = 1, . . . ,m−1.

Thus

∂

∂ηi
logL(ηηη | I)= 0⇐⇒

w∑
`=1

N`,iP(N` | I)−E
(
N`,i |ηηη

)= 0, i = 1, . . . ,m−1.

But E
(
N`,i | η

)
can be expressed as: αi

∑m
i=1 N`,i.

Therefore
w∑
`=1

N`,iP(N` | I)=αi

m∑
i=1

N`,i

And α̂u,i, the MLE for αi, is:

α̂u,i =
w∑
`=1

N`,i∑m
j=1 N`, j

P(N` | I), i = 1, . . . ,m. (3.4.1)

α̂u,i is simply the weighted sum of the MLE for each possible complete data.
For Bayesian inference, the posterior distribution of ααα is

π(ααα | I)=
w∑
`=1

π(ααα |N`)P(N` | I). (3.4.2)

Under a quadratic loss function, the Bayesian estimators are:

α̃i =
w∑
`=1

α̃`,i P(N` | I) (3.4.3)

where α̃`,i, i = 1. . . ,m are the Bayesian estimators obtained with the complete
data N`.

A disadvantage of these approaches is that it requires the computation
of the possible set of complete data which can lead to a combinatory explo-
sion. To avoid this drawback, Siu and Mosleh [56] propose a data-averaging
approximation approach for developing the posterior of ααα.
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α1 α2 α3 α4
MLE of the Situation 1 0.1666 0.1111 0.2666 0.4555
MLE of the Situation 2 0.3000 0.0555 0.3222 0.3222

Bayesian of the Situation 1 0.1818 0.1363 0.2636 0.4181
Bayesian of the Situation 2 0.2909 0.0909 0.3090 0.3090

Table 3.6: MLE and Bayesian estimate of ααα corresponding to two situations of data
and D (0.5,0.5,0.5,0.5) prior.

This method is widely used in CCF analysis, for example, Le & Vasseur
[29] and O’Connor & Mosleh [49]. Suppose that n CCF events are observed
and let I j = (p0, j, . . . , pm, j) be the impact vector corresponding to the jth event,
j = 1, . . . ,n.

Then the expected number of CCF events of order i can be expressed as

E(Ni)=
n∑

j=1
pi, j, i = 1, . . . ,m.

The vector E(N) = (E(N1), . . . ,E(Nm)) is then used in the formula (3.3.1) for
MLE and the formula (3.3.2) for Bayes estimators. Corresponding to the data
in the table 3.4, say Situation 1, we have E(N) = (1.5,1.0,2.4,4.1) and the
estimates of α-factor parameters using this data appear in Table 3.6.

It should be considered that in the above analysis, we consider only the
case when each I j is precisely known, thus ignoring any uncertainties in
these subjectively assessed probabilities. It could be true for the case if these
probabilities are evaluated by a single expert. Nevertheless, in practice they
could be elicited from a panel of experts, or even in the case of single expert,
he or she may still be unsure about these values. This, obviously, affects the
estimate of ααα.

In order to see more clearly this effect, let us consider another situation
of data where the impact vectors for the events 3 to 7 in Table 3.4 are still the
same, but not for the events 1-2, 4I and 8. Suppose that, the impact vector
corresponding to the events 1−2−8 is (0.5,0,0,0.5) (instead of (0.1,0,0,0.9)
as in Table 3.4) and the one corresponding to the event 4I is (0,0.5,0.5,0)
(instead of (0,1,0,0)). With this new data, say Situaton 2, we obtain E(N) =
(2.7,0.5,2.9,2.9). Table 3.6 shows the estimate of ααα for these two situations of
data with the MLE and Bayesian estimate using a Dirichlet prior distribution
with parameters (0.5,0.5,0.5,0.5). It can be seen that the hypothesis set up
in each CCF event has a signifficant influence on the estimate of ααα.

3.4.2 Confounded data method

The method presented in Section 3.4.1 relies on subjective hypotheses through
impact vectors for estimating of ααα. However, in some situations, it is difficult
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for experts to establish a weight for each hypothesis to formulate the value of
the impact vectors.

In this section, we provide a new alternative to handle data with uncer-
tainties. The idea is to introduce new random variables to describe the events
corresponding to uncertain observations.

The data with uncertainties are now expressed as a set Nu of number
Ni1...ik where i` is a possible order of the CCF, ` = 1, . . . ,k, i` ∈ {

0, . . . ,m
}
.

With this new notation, engineers only need to treat data with uncertain-
ties by assessing the number of components that could be involved in each
CCF event based on its observed symptom, without establishing any related
probabilities.

We are going to make inference on ααα based on this new proposed formal-
ism of data with uncertainties.

For purpose of illustration, we consider a system of 4 components (which
is more popular in CCF analysis). However, the reasoning will be the same
regardless of the size.

The data analyzed includes two parts: the certain data, which are (N1, N2,
N3, N4), and the data with uncertainties. The latter is classified into two
groups. The first one contains data of the form {Ni1 i2}, two possible CCF
orders, and the second one contains data of the form {Ni1 i2 i3}, three possible
CCF orders).

The following specific schemes of data with uncertainties are considered:

• Scheme 1: Nu = {N1, N2, N3, N4, N12, N123}.

• Scheme 2: Nu includes {N1, N2, N3, N4, N12, N123} and other terms com-
bining diffirent orders of CCF.

• Scheme 3: Nu = {N1, N2, N3, N4, N12, N34}.

• Scheme 4: Nu includes {N1, N2, N3, N4, N12, N34} and other terms com-
bining diffirent orders of CCF.

The first two schemes correspond to picking up one uncertain element in the
first group and the other in the second group. The last two schemes corre-
spond to picking up two uncertain elements only in the first group.

These choices allow to illustrate the methods and it covers many situa-
tions of data with uncertainties. Various other schemes can be treated in the
same way.

The introdution of terms of the form Ni1...ik means that the information is
not complete. We are in a situation of incomplete data. A natural way to deal
with this kind of data is to consider an EM algorithm. But the application of
this algorithm requires the availability of the distribution of complete data
given the incomplete data. In our case of uncertain data, the expression of
this distribution will be difficult to manipulate. Therefore, we propose several
methods to deal directly with uncertainties.
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We are now going to present the methods with data from schemes 1-4.
For each scheme, we consider the maximum likelihood estimation, then the
Bayesian approach and we make comparison for the simulation study.

3.4.2.1 Inference for scheme 1

In this scheme, the data with uncertainties, denoted by Nu, are of the form
Nu = (N1, N2, N3, N4, N12, N123). The corresponding likelihood function is:

L(ααα|Nu) ∝
4∏

i=1
α

Ni
i (α1 +α2)N12(α1 +α2 +α3)N123 . (3.4.4)

Maximum likelihood method

The log-likelihood function is equal to

logL(ααα|Nu)=
4∑

i=1
Ni logαi +N12 log(α1 +α2)+N123 log(α1 +α2 +α3).

Computing the partial derivatives of logL(ααα|Nu) with respect to αi, the like-
lihood equations are



N1

α1
− N4

α4
+ N12

α1 +α2
+ N123

α1 +α2 +α3
= 0,

N2

α2
− N4

α4
+ N12

α1 +α2
+ N123

α1 +α2 +α3
= 0,

N3

α3
− N4

α4
+ N123

α1 +α2 +α3
= 0.

(3.4.5)

The first two equations lead to α2 = N2

N1
α1. Similarly, the first equation and

the third one give rise to

N3

α3
= N1

α1
+ N12

α1 +α2
.

Using these two results we obtain


α1 = N1(N1 +N2 +N12)

N3(N1 +N2)
α3,

α2 = N2(N1 +N2 +N12)
N3(N1 +N2)

α3.

(3.4.6)
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Substituting equation (3.4.6) into the third equation of (3.4.5) and because∑4
i=1αi = 1, we obtain the MLE:

α̂4 = N4∑4
i=1 Ni +N12 +N123

,

α̂3 =
N3(

∑3
i=1 Ni +N12 +N123)

((
∑3

i=1 Ni +N12)(
∑4

i=1 Ni +N12 +N123)
,

α̂2 =
N2(N1 +N2 +N12)(

∑3
i=1 Ni +N12 +N123)

(N1 +N2)(
∑3

i=1 Ni +N12)(
∑4

i=1 Ni +N12 +N123)
,

α̂1 =
N1(N1 +N2 +N12)(

∑3
i=1 Ni +N12 +N123)

(N1 +N2)(
∑3

i=1 Ni +N12)(
∑4

i=1 Ni +N12 +N123)
.

(3.4.7)

Bayesian approach

Considering that the distribution of the observation P(Nu | ααα) as the form
(3.4.4), we use a nested Dirichlet distribution as a prior distribution. It will
be a natural conjugate prior. Let us recall the definition and some properties
of the nested Dirichlet distribution (NDD).

Nested Dirichlet distribution

The nested Dirichlet distribution (NDD) was firstly introduced by Tian et al.
[61] and then investigated more deeply by Ng et al. [40] and Tian et al. [64].

Definition 3. Let ∆n = {
x = (x1, .., xn) : xi Ê 0, i = 1, ...,n,

∑n
i=1 xi = 1}, a ran-

dom vector x ∈∆n, is said to follow a NDD with parameters (a,b) if its density
is of the form

f (x|a,b)= c−1
(∏n

i=1xai−1
i

)∏n−1
j=1

(
j∑

k=1
xk

)b j

, (3.4.8)

where a = (a1, ...,an) is a positive parameter vector, b = (b1, ...,bn−1) is a non-
negative parameter vector, c is the normalizing constant defined by:

c =
n−1∏
j=1

B(d j,a j+1),

with B(x, y) stands for the value of the Beta function at (x, y) and d j =∑ j
k=1(ak+

bk).

It is written shortly by x∼ NDn,n−1(a,b) on ∆n.
When b = 0 = (0, . . . ,0), the NDn,n−1(a,0) is the Dirichlet distribution

D (a).
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The NDD can be stochastically represented by a sequence of mutually
independent Beta distribution by using the following result [40].

Proposition 1. A random vector x follows a nested Dirichlet distribution if
and only if xi

d= (1− yi−1)
∏n−1

j=i yj, i = 1, ..,n−1,

xn
d= 1− yn−1,

(3.4.9)

where y0 = 0, yj ∼ Beta(d j,a j+1), i = 1, ..,n− 1 with d j = ∑ j
k=1(ak + bk) and

y1, .., yn−1 are mutually independent.

Proposition 1 suggests a simple procedure for generating independently
and identically distributed samples from the NDD.

The mixed moment of a random vector that follows a NDD is given in
proposition 2.

Proposition 2. Let x∼ NDn,n−1(a,b) on ∆n, then the mixed moment of x is

E
( n∏

i=1
xr i

i

)
=

n∏
i=1

[B(di−1,ai + r i)
B(di−1,ai)

.
n−1∏
j=i

B(d j + r i,a j+1)
B(d j,a j+1)

]
, (3.4.10)

where d j, j = 1, ..,n are defined as in Proposition 1.

Moreover, a closed-form expression for the mode of an NDD is given by the
follwing proposition.

Proposition 3. Let x∼ NDn,n−1(a,b) on ∆n, then the mode of x is

mn = an−1

dn−1 +an −n
,

mi = (ai −1)(1−mi+1 −mi+2 −·· ·−mn

di−1 +ai − i
, i = 2, . . . ,n−1,

m1 = 1−m2 −·· ·−mn.

(3.4.11)

ä

We are going to use the NDD to conduct a Bayesian estimation for the
scheme 1.

Letααα∼ ND4,3(a,b) with hyperparameters (a,b)= (
(a1,a2,a3,a4), (b1,b2,b3)

)
.

That is

π(ααα)∝
4∏

i=1
α

ai−1
i α

b1
1 (α1 +α2)b2(α1 +α2 +α3)b3 . (3.4.12)
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The Bayesian formula leads to

π(ααα |Nu) ∝ P(Nu |ααα) π(ααα)

∝
4∏

i=1
α

ai+Ni−1
i α

b1
1 (α1 +α2)b2+N12(α1 +α2 +α3)b3+N123

Thus, the posterior distribution of ααα is also a NDD with parameters (a∗,b∗),
where a∗ = (a∗

1,a∗
2,a∗

3,a∗
4)= (N1+a1, N2+a2, N3+a3, N4+a4)T and b∗ = (b∗

1 ,b∗
2 ,b∗

3)
= (b1,b2 +N12,b3 +N123).

Under a quadratic loss function, the Bayes estimators ofααα are the expected-
values of the posterior distributions, which are defined from the proposition
2: 

α̃1 = d1d2d3

(d1 +a∗
2)(d2 +a∗

3)(d3 +a∗
4)

,

α̃2 =
a∗

2d2d3

(d1 +a∗
2)(d2 +a∗

3)(d3 +a∗
4)

,

α̃3 =
a∗

3d3

(d2 +a∗
3)(d3 +a∗

4)
,

α̃4 =
a∗

4
d3 +a∗

4
,

(3.4.13)

where di =∑i
j=1(a∗

j +b∗
j ).

Determining hyperparameters for prior distributions is an important prob-
lem in Bayesian inference. When no information about the parameters is
available, a noninformative prior can be considered. Here, we apply a NDD
with parameters a = (0.5,0.5,0.5,0.5) and b = (0,0,0), which is a Dirichlet
distribution D (0.5,0.5,0.5,0.5). Example of computations is shown in the se-
quel.

However, there are also some situations where the analysts can have ex-
periences that allow to determine the prior. For example, they can be able to
sugguest values for each αi, say (ᾱ1, .., ᾱ4).

Assuming a NDD for ααα with the parameters a = (a1, ..,a4),b = (b1, ..,b3)
such that a = st = (st1, .., st4), i.e. ai = sti, i = 1, ..,4, where s > 0, ti ≥ 0 and∑4

i=1 ti = 1. It can be considered that the suggested value ᾱi is equal to E(αi),
the expectation of αi, for i = 1. . . ,4, leading to the system of equations:

st1 +b1 = ᾱ1

ᾱ2
st2,

ᾱ1 + ᾱ2

ᾱ2
st2 +b2 = ᾱ1 + ᾱ2

ᾱ3
st3,

ᾱ1 + ᾱ2 + ᾱ3

ᾱ3
st3 +b3 = ᾱ1 + ᾱ2 + ᾱ3

ᾱ4
st4.

(3.4.14)
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Obviously, the system of equations (3.4.14) does not have a unique so-
lution. Given the value of (b1,b2,b3), we can find out the relation among
st1, st2, st3 and st4. For example, with (b1,b2,b3) = (0,0,0) (corresponding to
Dirichlet prior), we obtain

ᾱ1

t1
= ᾱ2

t2
= ᾱ3

t3
= ᾱ4

t4
. (3.4.15)

By combining this result with the constraint
∑4

i=1 ti = ∑4
i=1αi = 1, we have

ti = ᾱi. Using constrained non-informative prior distribution proposed in [3]
and applied in [19] which maximizes uncertainty, Troffaes et al. [65] sug-

gested choosing s = 1
2(1− ᾱ1)

.

Illustrative example

We illustrative the proposed methods by supposing a fictitious dataset with
uncertainties: Nu = (5,3,1,0,3,2). The MLE ofααα based on (3.4.7) is α̂αα= (0.573,
0.344,0.083,0.0). Since there is no assumption about the failure events that
all the components of the system failed simultaneously, the MLE of α̂4 is
equal to 0.

For the Bayesian inference, we use different prior distributions. Relying
on the technique suggested by Nguyen & Gouno [44] and Gutiérrez-Pulido
et al. [11], the following strategy is applied for eliciting the prior. Firstly, we
suppose that a vector Ng = (9,5,1,0.5) has been proposed by the analysts for
the number of CCF events in a given time. Then, the MLE of ααα is calcu-
lated from (3.3.1) as α̂αα = (0.58,0.32,0.07,0.03). These values are assigned to
(t1, .., t4). Then, we pick up some values of s. Table 3.7 shows the obtained re-
sults of estimation. In general, using the D (0.5,0.5,0.5,0.5) prior distribution
gives the estimates close to those the MLE. Moreover, the results also confirm
a conclusion in [65] that the smaller value of s makes the model learn faster
from the data for the zero count.

α1 α2 α3 α4
MLE 0.573 0.344 0.083 0.00

Prior

D (0.5,0.5,0.5,0.5) 0.527 0.338 0.103 0.032
s = 1.19 0.574 0.341 0.082 0.0023

s = 2 0.575 0.339 0.083 0.003
s = 10 0.578 0.332 0.077 0.013

Table 3.7: MLE and Bayesian estimate of ααα for scheme 1 with different types of
priors.
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3.4.2.2 Inference for scheme 2

In scheme 2, we consider a situation where the data with uncertainties con-
tains N12, N123 and one or more other terms such as N23, N14, N234, etc. For
the sake of simplicity, we consider only one more term N23, for instance. That
means, the observed data with uncertainties are now

Nu = (N1, N2, N3, N4, N12, N23, N123).

Then, the likelihood function is

L(ααα|Nu) =
4∏

i=1
α

Ni
i (α1 +α2)N12(α1 +α2 +α3)N123(α2 +α3)N23 . (3.4.16)

The likelihood function (3.4.16) is equivalent to the likelihood in (3.4.4) times
the new term (α2 +α3)N23 . A direct calculation shows that the corresponding
log-likelihood equations have no close-form solutions.

The value N23 can be seen as the sum of a number of CCF event of order
2 and a number of CCF event of order 3. These two numbers are unknown.
If these numbers were known, the likelihood (3.4.16) would have the form of
(3.4.4), and inference can be conducted by following the procedure described
in the previous section.

Let us introduce a variable Z which represents the number of CCF of
order 2 amongst N23 CCF events, Z goes from 0 to N23. As a result, N23 −Z
will be the number of CCF of order 3. The term (α2 +α3)N23 can be split in
two parts and the likelihood (3.4.16) can be rewritten as:

L(ααα|Nu, Z) = α
N1
1 α

N2+Z
2 α

N3+N23−Z
3 α

N4
4 (α1 +α2)N12(α1 +α2 +α3)N123 . (3.4.17)

And we have

L(ααα |Nu)=
n23∑
z=0

L(ααα |Nu, Z = z)P(Z = z | N23 = n23). (3.4.18)
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Maximum likelihood method

Since the likelihood in (3.4.17) is similar to the one in (3.4.4), the MLE can
be obtained as:

α̂4 = N4∑4
i=1 Ni +N12 +N23 +N123

,

α̂3 =
(N3 +N23 −Z)(

∑3
i=1 Ni +N12 +N23 +N123)

((
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)
,

α̂2 =
(N2 +Z)(N1 +N2 +N12 +Z)(

∑3
i=1 Ni +N12 +N23 +N123)

(N1 +N2 +Z)(
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)
,

α̂1 =
N1(N1 +N2 +N12 +Z)(

∑3
i=1 Ni +N12 +N23 +N123)

(N1 +N2 +Z)(
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)
.

(3.4.19)

The expression (3.4.18) suggests the use of an EM algorithm where Z is con-
sidered as the missing data and applying EM will be replacing Z in the sys-
tem (3.4.19) by the conditional expectation of Z. Since

Z |ααα,Nu ∼ B

(
N23,

α2

α2 +α3

)
, (3.4.20)

we have
E

(
Z |ααα,Nu

) = N23
α2

α2 +α3
,

and the EM algorithm is performed as follows:
- Initialisation: ααα(0) = (α(0)

1 ,α(0)
2 ,α(0)

3 ,α(0)
4 )

- At step (r+1),α̂αα(r) = (α̂(r)
1 , α̂(r)

2 , α̂(r)
3 , α̂(r)

4 ) being available, compute

z̄(r) = N23α
(r)
2 /(α(r)

2 +α(r)
3 )

and

α̂(r+1)
4 = N4∑4

i=1 Ni +N12 +N23 +N123

α̂(r+1)
3 = (N3 +N23 − Z̄(r))(

∑3
i=1 Ni +N12 +N23 +N123)

((
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)

α̂(r+1)
2 = (N2 + Z̄(r))(N1 +N2 +N12 + Z̄(r))(

∑3
i=1 Ni +N12 +N23 +N123)

(N1 +N2 + Z̄(r))(
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)

α̂(r+1)
1 = N1(N1 +N2 +N12 + Z̄(r))(

∑3
i=1 Ni +N12 +N23 +N123)

(N1 +N2 + Z̄(r))(
∑3

i=1 Ni +N12 +N23)(
∑4

i=1 Ni +N12 +N23 +N123)

- Stop when ‖α̂αα(r+1) −α̂αα(r)‖ is sufficiently small.

An illustration for the method is given latter.
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Bayesian approach

Considering that P(Nu, Z | ααα), the distribution of the observation, has the
form (3.4.17), a natural conjugate prior for ααα is a NDD. We assume a NDD
prior distribution for ααα with parameters (a,b)= ((a1,a2,a3,a4), (b1,b2,b3)) as
in (3.4.12). Then, according to the Bayesian theorem, the distribution of ααα
given the data with uncertainties Nu and the latent variable Z is

π(ααα |Nu, Z) ∝ P(Nu, Z |ααα)π(ααα)

∝ α
N1+a1−1
1 α

N2+Z+a2−1
2 α

N3+N23+a3−Z−1
3 α

N4+a4−1
4 ×

×αb1
1 (α1 +α2)N12+b2(α1 +α2 +α3)N123+b3

Thus, ααα | (Nu, Z) ∼ ND4,3(a∗,b∗) where a∗ = (a∗
1, . . . ,a∗

4) = (N1 +a1, N2 +a2 +
z, N3 +N23 +a3 − z, N4 +a4) and b∗ = (b∗

1 ,b∗
2 ,b∗

3)= (b1, N12 +b2, N123 +b3).
Using the law of total probability, the posterior distribution of ααα given Nu

can be expressed as

π(ααα |Nu) =
N23∑
z=0

π(ααα |Nu, z)P(Z = z |Nu) (3.4.21)

Therefore, in order to obtain π(ααα|Nu, the conditional distribution π(Z|Nu is
needed. We apply the inverse Bayesian formula (IBF), which is presented in
detail in Appendix B, to get this distribution. The method is performed as
follows.

Firstly, the conditional distribution of Z given Nu and ααα is known as a
binomial distribution as in (3.4.20). According to the sampling IBF, for each
z ∈ {0, . . . , N23} and with any ααα(0) we have

Pr(Z = z |Nu) ∝ Pr(Z = z |Nu,ααα(0))
π(ααα(0)|Nu, Z = z)

∝
Cz

N23

∏3
j=1 B(d j,a∗

j+1)
∏4

i=1α
1−Ni−ai
i

(α1 +α2)b∗
2 (α1 +α2 +α3)b∗

3 (α2 +α3)N23

∝ F(ααα(0))Cz
N23

B(d1,a∗
2)B(d2,a∗

3)

∝ qz(ααα(0)) (3.4.22)

where B(x, y) stands for the value of Beta function at (x, y); F(ααα(0)) does not
depend on z and

F(ααα(0))= B(d3,a∗
4)

∏4
i=1α

1−ai−Ni
i

(α1 +α2)b∗
2 (α1 +α2 +α3)b∗

3 (α2 +α3)N23
.

Then, the conditional distribution of Z given Nu can be achieved as

pz = Pr(Z = z |Nu)= qz(ααα(0))∑N23
k=0 qk(ααα(0))

, z = 0, . . . , N23, (3.4.23)
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where qz(ααα(0)) is defined in (3.4.22).
The probabilities pz, z = 0, . . . , N23 are independent from the choice ofααα(0).
Therefore, the conditional distribution of ααα given Nu has the form

ααα |Nu ∼
N23∑
i=0

piND4,3(a(i)∗,b∗), (3.4.24)

where a(i)∗ = (N1+a1, N2+a2+ i, N3+N23+a3− i, N4+a4) and b∗ = (b1, N12+
b2, N123 + b3), and pi = P(Z = i | N23 = N23), i = 0, . . . , N23. That is to say, the
posterior distribution ofααα given the data with uncertainties Nu = (N1, N2, N3,
N4, N12, N23, N123) is a mixture of NDD with weights pi.

Illustrative example

To illustrate the proposed methods for dealing with the data belonging to
scheme 2 we consider a hypothetical set of data: Nu = (5,3,1,0,3,4,2). Apply-
ing the EM algorithm we obtain the MLE ofααα, which is α̂αα= (0.395, 0.497,0.106,
0.000). The choice of initial value ααα(0) has an insignificant effect on the
converge of the algorithm, which is usually less than 30 iterations. For
Bayesian inference, we also follow the strategy presented in Section 3.4.2.1
to get the hyperparameters of the prior distribution of ααα. In particular, we
suppose that the number of CCF events according to the experience of ana-
lysts in a given time is Ng = (10,6,3,1). The MLE of ααα according to (3.3.1)
is α̂αα= (0.50,0.30,0.15,0.05). Then we assign t = (0.50,0.30,0.15,0.05) and in-
vestigate some values of s. By calculating the weights in (3.4.23), we obtain
an explicit prior distribution of ααα as in (3.4.24). Table 3.8 presents the MLE
and the mean of the posterior distribution of ααα based on different values of s.

α1 α2 α3 α4
MLE 0.395 0.498 0.107 0.00

Prior

D (0.5,0.5,0.5,0.5) 0.383 0.456 0.134 0.024
s = 1 0.405 0.479 0.113 0.003
s = 2 0.413 0.463 0.118 0.004
s = 10 0.445 0.401 0.135 0.017

Table 3.8: MLE and Bayesian estimate of ααα for scheme 2 with different priors.

A simulation study

In this section, we evaluate the performance of the proposed methods through
simulations. Considering a system of m = 4 components with the input pa-
rameters ααα= (0.56,0.31,0.11, 0.02), we simulate a total of 30 CCF events. We
firstly draw (N∗

1 , . . . , N∗
m) from a multinomial distribution with parameters

(30;0.56,0.31,0.11,0.02), where N∗
i represents the number of CCF events of
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order i. The value N∗
1 is then distributed to N1, N12 and N123. To be more pre-

cise, we simulate a multinomial distribution with parameters (N∗
1 , p1, p2, p3)

to obtain N1,u1,u2 where N1 + u1 + u2 = N∗
1 ; u1 is the portion of N∗

1 which
contributes to N12; u2 is the portion of N∗

1 which contributes to N123; and
(p1, p2, p3) is predetermined probabilities. Similarly, the value N∗

2 is subdi-
vided into N2, N12, N23 and N123; and the value N∗

3 is subdivided into N3, N23
and N123.

The obtained confounded data, which have the form (N1, N2, N3, N4, N12,
N23, N123), are then used to estimate the α-factor parameters.

The process is implemented repeatedly as follows.

(1) Simulate (N∗
1 , . . . , N∗

4 )∼M (30;0.56,0.31,0.11,0.02).

(2) Simulate:

(N1,u1,u2) ∼ M (N∗
1 ; p1, p2, p3),

(N2,v1,v2,v3) ∼ M (N∗
2 ; q1, q2, q3, q4)

(N3,w1,w2) ∼ M (N∗
3 ; r1, r2, r3).

(3) Set N12 = u1 +v1, N23 = v2 +w1, N123 = u2 +v3 +w2.

(4) Estimate α̂αα= (α̂1, α̂2, α̂3, α̂4) using the EM algorithm or the Bay-
esian approach described in Section 3.4.2.2.

(5) Repeat Steps 1 - 4 and then calculate the mean of estimates
and the mean square error from the estimated α̂αα in each step.

In this procedure, the probabilites (p1, p2, p3), (r1, r2, r3) and (q1, q2, q3, q4)
represent the mechanism to degrade the data, which correspond to the un-
certainties. Tables 3.9 - 3.10 show the results of simulation from M = 10000
iterations, where the Table 3.9 corresponds to a low level of data degrada-
tion and Table 3.10 corresponds to a high level of data degradation. Several
possibilities of prior are considered. The obtained results show that the accu-
racy of MLE depends on the level of degradation of data: the closer are these
probabilities to the inputs, the more accurate is the MLE.

The accuracy of Bayesian estimates depend on both the prior distribution
and the level of data degradation, but the effect of prior distribution over-
whelms the effect of the level of data degradation. From this point of view,
Bayesian approach is more robust to the level of data degradation which rep-
resents the uncertainty data compared to the frequentist approach. We also
calculate the average squared difference between MLE and Bayesain esti-
mates (denoted by ∆D) from each level of data degradation by the formula

∆D = 1
M

(
(MLE(i) −Bayesian(i)

)2
, (3.4.25)
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where MLE(i) and Bayesian(i) are the MLE and Bayesian estimates for the
ith simulation. In general, the lower level of data degradation gives smaller
∆D , confirming again the fact that lower level of data degradation leads to
better estimation. For example, using the noninformative prior of Dirichlet
distribution, the value of ∆D for the (p1, p2, p3), (r1, r2, r3) and (q1, q2, q3, q4)
in Tables 3.9 is ∆D = 0.00042, which is smaller to ∆D = 0.00088 corresponding
to the probabilities in Table 3.10. In addition, for Bayesian approach, Type
C (corresponding to a small value of s and better guess of ααα) and Type B
(corresponding to a large value of s and worse guess of ααα) of prior in general
lead to better estimates. That is to say, in the case the guess at ααα is reliable,
the small value of s should be used. Otherwise, the larger values of s should
be used.

α1 α2 α3 α4
Input 0.56 0.31 0.11 0.02
MLE 0.5224 (0.0102) 0.3802 (0.0140) 0.0770 (0.0030) 0.0201 (0.0004)

D (0.5,0.5,0.5,0.5) 0.5091 (0.0106) 0.3769 (0.0126) 0.0852 (0.0023) 0.0286 (0.0004)

Guess t 0.55 0.3 0.12 0.03
s = 2 0.5224 (0.0098) 0.3786 (0.0133) 0.0787 (0.0028) 0.0202 (0.0004)

s = 30 0.5455 (0.0019) 0.3250 (0.0017) 0.1032 (0.0005) 0.0259 (0.0002)

Guess t 0.7 0.15 0.09 0.06
s = 2 0.5343 (0.0074) 0.3558 (0.0094) 0.0787 (0.0026) 0.0310 (0.0004)

s = 30 0.6290 (0.0116) 0.2600 (0.0118) 0.0867 (0.0010) 0.0241 (0.0007)

Table 3.9: MLE and Bayesian estimate of ααα for scheme 2 when (p1, p2, p3) =
(r1, r2, r3) = (0.5,0.3,0.2), (q1, q2, q3, q4) = (0.5,0.38,0.09,0.03). The values in paren-
theses are the MSE.

α1 α2 α3 α4
Input 0.56 0.31 0.11 0.02
MLE 0.4664 (0.0207) 0.4359 (0.02931) 0.0777 (0.0040) 0.0199 (0.00037)

D (0.5,0.5,0.5,0.5) 0.4585 (0.0349) 0.4199 (0.0319) 0.0924 (0.0057) 0.0290 (0.0012)

Guess t 0.55 0.3 0.12 0.03
s=2 0.4889 (0.0251) 0.4018 (0.0303) 0.0878 (0.0059) 0.0214 (0.0008)

s=30 0.5369 (0.0020) 0.3287 (0.0015) 0.1082 (0.0004) 0.0261 (0.0001)

Guess t 0.7 0.15 0.09 0.06
s=2 0.5253 (0.0218) 0.3637 (0.0264) 0.0871 (0.0067) 0.0237 (0.0008)

s=30 0.6586 (0.0113) 0.2018 (0.0129) 0.0953 (0.0007) 0.0441 (0.0007)

Table 3.10: MLE and Bayesian estimate of ααα for scheme 2 when (p1, p2, p3) =
(r1, r2, r3)= (1/3,1/3,1/3), (q1, q2, q3, q4)= (1/4,1/4,1/4,1/4). The values in parentheses
are the MSE.
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3.4.2.3 Inference for scheme 3

In this scheme, the data with uncertainties are represented by Nu = (N1, N2, N3,
N4, N12, N34) and the likelihood function is

L(ααα|Nu) =
4∏

i=1
α

Ni
i (α1 +α2)N12(α3 +α4)N34 . (3.4.26)

This likelihood has the form of a grouped Dirichlet distribution. We are going
to use this argument to make inference. Let us recall the definition of the
grouped Dirichlet distribution.

Grouped Dirichlet distribution

The grouped Dirichlet distribution is also firstly defined in [61] and then fur-
ther studied in [39]. A random vector x ∈∆n is said to be a grouped Dirichlet
distribution (GDD) with two partitions, denoted by x∼GDn,2,s(a,b) on ∆n, if
its density is of the form [61]

f (x|a,b)= c−1
(∏n

i=1xai−1
i

)(∑s
i=1xi

)b1 (∑n
i=s+1xi

)b2 , (3.4.27)

where a = (a1, ...,an)T and b = (b1,b2)T are two non-negative parameter vec-
tors, s is a known positive integer, 0< s < n and c is the normalizing constant.
The constant c is defined as

c = B(a1, . . . ,as) B(as+1, . . . ,an) B(
s∑

i=1
ai +b1,

n∑
i=s+1

ai +b2),

where

B(a1, . . . ,as)=
s∏

i=1

Γ(ai)
Γ(

∑s
i=1)(ai)

.

Particularly, a GDn,2,s(a,0) is a Dirichlet distribution with parameter a. Let
us partition vectors xn×1 and an×1 into (x(1)T , x(2)T ) and (a(1)T , a(2)T ), each
with s and n− s elements, respectively. The following proposition [39] pro-
vides a procedure for generating i.i.d. samples from a GDD.

Proposition 4. A random vector x follows a grouped Dirichlet distribution if
and only if

x=
(

x(1)T

x(2)T

)
=

(
R.y(1)T

(1−R).y(2)T

)
,

where y(1) ∼ Ds(a(1)) on ∆s, y(2) ∼ Dn−s(a(2)) on ∆n−s, R ∼ Beta(
∑s

i=1 a(1)
i +

b1,
∑n−s

j=1 a(2)
j +b2) and y(1), y(2) and R are mutually indepedent.

Proposition 5. Let x ∼ GDn,2,s(a,b) on ∆n. for any r1, . . . , rn ≥ 0, the mixed
moments of x are given by

E
( n∏

i=1
xr i

i

)
= B(a(1) +r(1))

B(a(1))
B(a(2) +r(2))

B(a(2))

B(
∑s

i=1(ai + r i)+b1,
∑n

i=s+1(ai + r i)+b2

B(a(1))

where r= (r(1)T ,r(2)T ).
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Proposition 6. Let x∼GDn,2,s(a,b) on ∆n, then the mode of x is

mi = ai −1∑n
i=1(ai)+b1 +b2 −n

((
1+ b1∑s

i=1 ai − s
)
.1(1ÉiÉs)

+(
1+ b2∑n

i=s+1 ai −n+ s
)
.1(s+1ÉiÉn

)
, i = 1, ..,n

where 1(.) denotes the indicator function.

The proof for propositions 1- 5 has been given in Ng et al. [39]. We present
here a proof for the proposition 6.

Proof. Let L denote the log-likelihood function corresponding to the GDD in
(3.4.27). We have

L =
n−1∑
i=1

(ai −1)log
(
xi

)+ (an −1)log
(
xn

)
+b1 log

( s∑
i=1

xi

)
+b2 log

(
1−

s∑
i=1

xi

)
.

The partial derivatives of L with respect to xi set to zero leads to

ai −1
xi

− an −1
xn

+ b1∑s
i=1 xi

− b2

1−∑s
i=1 xi

= 0, 1É i É s,

ai −1
xi

− an −1∑n
i=s+1 xi

= 0, s+1É i É n.

(3.4.28)

The first equation of (3.4.28) yields xi = ai −1
a1 −1

x1 ∀ 1 < i É s while the second

one yields xi = ai −1
an −1

xn ∀ s+1É i < n. Since
∑n

i=1 xi = 1, we have

x1

( s∑
i=1

ai −1
a1 −1

)
+ xn

( n∑
i=s+1

ai −1
an −1

)
= 1,

and then

xn =
(an −1)

(
1− x1

(∑s
i=1

ai−1
a1−1

))
∑n

i=s+1(ai −1)
.

Substituting these values of xi,1 É i É s and xn into the first equation of
(3.4.28) for the case i = 1 we obtain

a1 −1
x1

−
∑n

i=s+1(ai −1)

1− x1
(∑s

i=1
ai−1
a1−1

) + b1

x1
(∑s

i=1
ai−1
a1−1

) − b2

1− x1
(∑s

i=1
ai−1
a1−1

) = 0.
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Simple computation from this equation leads to

x1 = a1 −1∑n
i=1(ai)+b1 +b2 −n

.
∑s

i=1 ai +b1 − s∑s
i=1 ai − s

.

The formula for xi is obtained from the relation between xi, i = 2, ..,n with x1
as expressed above.

Maximum likelihood method

The MLE of ααα from the likelihod function in (3.4.26) can be found by applying
directly the proposition 6, which leads to


α̂i = Ni∑4

i=1 Ni +N12 +N34

(
1+ N12

N1 +N2

)
, i = 1,2,

α̂i = Ni∑4
i=1 Ni +N12 +N34

(
1+ N34

N3 +N4

)
, i = 3,4.

(3.4.29)

Bayesian approach

Because the distribution of the observation P(Nu | ααα) has the form (3.4.26),
we use a GDD with hyperparameters (a,b)= ((a1,a2,a3,a4), (b1,b2)) as a con-
jugate prior distribution for ααα. That is

π(ααα)∝
4∏

i=1
α

ai−1
i (α1 +α2)b1(α3 +α4)b2 . (3.4.30)

According to the Bayesian theorem, we have

π(ααα |Nu) ∝ P(Nu |ααα)π(ααα)

∝
4∏

i=1
α

ai+Ni−1
i (α1 +α2)b1+N12(α3 +α4)b2+N34

That means, the posterior distribution of ααα is also a GDD with parameters
(a∗,b∗), where a∗ = (N1+a1, N2+a2, N3+a3, N4+a4) and b∗ = (b1+N12,b2+
N34).

Considering a quadratic loss function, the Bayes estimators of ααα are the
posterior means, which are defined from the proposition 5:
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

α̃1 =
(a1 +N1)(

∑2
i=1(ai +Ni)+b1 +N12)

(
∑4

i=1(ai +Ni)+b1 +b2 +N12 +N34)(
∑2

i=1(ai +Ni))
,

α̃2 =
(a2 +N2)(

∑2
i=1(ai +Ni)+b1 +N12)

(
∑4

i=1(ai +Ni)+b1 +b2 +N12 +N34)(
∑2

i=1(ai +Ni))
,

α̃3 =
(a3 +N3)(

∑4
i=3(ai +Ni)+b2 +N34)

(
∑4

i=1(ai +Ni)+b1 +b2 +N12 +N34)(
∑4

i=3(ai +Ni))
,

α̃4 =
(a4 +N4)(

∑4
i=3(ai +Ni)+b2 +N34)

(
∑4

i=1(ai +Ni)+b1 +b2 +N12 +N34)(
∑4

i=3(ai +Ni))
.

Similar to the expression in (3.4.2.1), we write a = st = (st1, .., st4) in the
conjugate GDD prior, i.e. ai = sti, i = 1, ..,4, where s > 0, ti ≥ 0 and

∑4
i=1 ti = 1.

If a guess at the expectation value of αi can be achieved by the analysts, we
assign these values to the mean of the GDD prior, leading to:



ᾱ1

t1
= ᾱ2

t2
;
ᾱ3

t3
= ᾱ4

t4
,

st1(1+ b1

st1 + st2
)= ᾱ1

4∑
i=1

(sti +bi),

st3(1+ b3

st3 + st4
)= ᾱ3

4∑
i=1

(sti +bi).

(3.4.31)

There are many solutions for the equations (3.4.31). The simplest way is to
choose a Dirichlet distribution for the prior, i.e, b= (0,0,0).

Substituting b= (0,0,0) into (3.4.31) we obtain:

ᾱ1

t1
= ᾱ2

t2
= ᾱ3

t3
= ᾱ4

t4
, (3.4.32)

Since
∑4

i=1αi =∑4
i=1 ti = 1, (3.4.32) leads to ti = ᾱi. The variation of the prior

is now represented by the choice of s.

Illustrative example

Let us consider another hypothetical situation of the data with uncertainties,
Nu = (5,3,1,0,4,2). Applying the formulas in (3.4.29) we obtain the MLE of ααα
as α̂αα= (0.5,0.3,0.2,0.0). For the Bayesian scheme, similar to the strategy used
in section 3.4.2.1, a set of Ng = (9,5,1,0.5) has been assumed for the number
of CCF events in a given time by the analysts. According to (3.3.1), the MLE
of ααα corresponding to this set of complete data is α̂αα = (0.58,0.32,0.07,0.03).
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These values are assigned to (t1, t2, t3, t4). The posterior means are presented
in Table 3.7 for different values of s. We also consider the case of the prior
Dirichlet distribution (Type A) with parameters (0.5,0.5,0.5,0.5).

α1 α2 α3 α4
MLE 0.5 0.3 0.2 0.0

Prior

D (0.5,0.5,0.5,0.5) 0.4673 0.2973 0.1764 0.0588
s = 1 0.505 0.301 0.189 0.005
s = 2 0.5102 0.3015 0.1788 0.0094
s = 10 0.5336 0.3063 0.1360 0.0240

Table 3.11: MLE and Bayesian estimate of ααα for scheme 3 with different priors.

An alternative approach: binomial expansion

The binomial expansion can be applied to the expression (3.4.26). Indeed, the
distribution of the observation in (3.4.26) can be rewritten as:

P(Nu |ααα)=
N12∑
k=0

N34∑
`=0

Ck
N12

C`
N34

α
N1+k
1 α

N2+N12−k
2 α

N3+`
3 α

N4+N34−`
4

Suppose that ααα ∼ D (a1,a2,a3,a4), the Bayes’ theorem leads to

π(ααα |Nu)∝
N12∑
k=0

N34∑
`=0

Ck
N12

C`
N34

α
a∗

1(k,`)−1
1 α

a∗
2(k,`)−1

2 α
a∗

3(k,`)−1
3 α

a∗
4(k,`)−1

4

Thus, the posterior distribution of ααα is a mixture of Dirichlet distribution:

ααα |Nu ∼
N12∑
k=0

N34∑
`=0

w(k,`)D (a∗(k,`)),

where

w(k,`)=
Ck

N12
C`

N34
B(a∗(k,`))∑N12

k=0
∑N34
`=0 Ck

N12
C`

N34
B(a∗(k,`))

and D (a∗(k,`)) is a Dirichlet distribution with parameters a∗(k,`), in which

a∗(k,`) = (a∗
1(k,`),a∗

2(k,`),a∗
3(k,`),a∗

4(k,`))

a∗
1(k,`) = a1 +N1 +k,

a∗
2(k,`) = a2 +N2 +N12 −k,

a∗
3(k,`) = a3 +N3 +`,

a∗
4(k,`) = a4 +N4 +N34 −`.
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Under a quadratic loss, the Bayesian estimators are:

α̃i =
N12∑
k=0

N34∑
`=0

w(k,`)
a∗

i (k,`)∑4
i=1 a∗

i (k,`)
, i = 1, . . . ,4.

Consider the previous example of confounded data with Nu = (5,3,1,0,4,2).
Table 3.12 shows the estimate ofααα using both the GDD in the previous section
and the binomial expansion method with the same prior,ααα∼D (1.16,0.64,0.14,
0.06) (corresponding to s = 2 from previous example).

The running time for each algorithm is recorded in the right most column.
It can be seen that both two methods give the same estimates but the running
time using the binomial expansion is twelve time higher than one using the
GDD.

Method α1 α2 α3 α4 Time(seconds)
GDD 0.5102 0.3015 0.1788 0.0094 0.0176

Binomial expansion 0.5102 0.3015 0.1788 0.0094 0.2122

Table 3.12: Compare the estimate of ααα and the runing time using the GDD and the
binomial expansion method.

3.4.2.4 Inference for scheme 4

As in section 3.4.2.2, we suppose that one more term, that is N23, is added
to the data with uncertainties for scheme 4. Therefore, the data with uncer-
tainties are now represented by:

Nu = (N1, N2, N3, N4, N12, N34, N23).

The likelihood function is

L(ααα|Nu) =
4∏

i=1
α

Ni
i (α1 +α2)N12(α3 +α4)N34(α2 +α3)N23 . (3.4.33)

In this case, the binomial expansion could be applied. However, it will be
time-consuming since the likelihood function contains more terms. Moreover,
we have checked that the solutions of the corresponding log-likelihood equa-
tions based on (3.4.33) have no close-form expressions.

Maximum likelihood approach

As for scheme 2, we introduce a latent variable Z for the term N23 and use a
partial EM algorithm.

With the latent variable Z, the likelihood function is

L(ααα|Nu, Z) = α
N1
1 α

N2+Z
2 α

N3+N23−Z
3 α

N4
4 (α1 +α2)N12(α3 +α4)N34 , (3.4.34)
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and the MLE are:

α̂1 = N1∑4
i=1 Ni +N12 +N34 +N23

(
1+ N12

N1 +N2

)
,

α̂2 = N2 +Z∑4
i=1 Ni +N12 +N34 +N23

(
1+ N12

N1 +N2

)
,

α̂3 = N3 +N23 −Z∑4
i=1 Ni +N12 +N34 +N23

(
1+ N34

N3 +N4

)
,

α̂4 = N4∑4
i=1 Ni +N12 +N34 +N23

(
1+ N34

N3 +N4

)
.

(3.4.35)

Repalcing Z with the conditional expectation

E
(
Z |ααα,Nu

) = N23
α2

α2 +α3
,

the partial EM algorithm (i.e. the EM algorithm is only applied to the latent
variable Z) is performed as follows:

- Initialisation: ααα(0) = (α(0)
1 ,α(0)

2 ,α(0)
3 ,α(0)

4 )

- At step (r+1),ααα(r) = (α(r)
1 ,α(r)

2 ,α(r)
3 ,α(r)

4 ) being available, compute

Z̄(r) = N23α
(r)
2 /(α(r)

2 +α(r)
3 )

and 

α(r+1)
1 = N1∑4

i=1 Ni +N12 +N34 +N23

(
1+ N12

N1 +N2

)
,

α(r+1)
2 = N2 + Z̄(r)∑4

i=1 Ni +N12 +N34 +N23

(
1+ N12

N1 +N2

)
,

α(r+1)
3 = N3 +N23 − Z̄(r)∑4

i=1 Ni +N12 +N34 +N23

(
1+ N34

N3 +N4

)
,

α(r+1)
4 = N4∑4

i=1 Ni +N12 +N34 +N23

(
1+ N34

N3 +N4

)
.

- Iterate Step 2 until convergence.

In this procedure, the values of α1 and α4 do not change over the itera-
tions. In the following, we present a Bayesian method for this scheme before
providing a simulation study and an illustrative example for both methods.
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Bayesian approach

Due to the distribution of the observation P(Nu, Z |ααα) as in (3.4.34), the GDD
will be a conjugate prior. We suppose that the prior distribution ofααα is a GDD
with parameters (a,b) where a = (a1,a2,a3,a4), b = (b1,b2) as described in
(3.4.30).

The Bayes’ theorem leads to

π(ααα |Nu, Z) ∝ π(Nu, Z |ααα)π(ααα)

∝ α
N1+a1−1
1 α

N2+Z+a2−1
2 α

N3+N23+a3−Z−1
3 α

N4+a4−1
4 ×

×(α1 +α2)N12+b1(α3 +α4)N34+b2

That is to say, given the data with uncertainties Nu and the latent variable
Z, the conditional distribution of ααα is a GDD with parameters (a∗,b∗):

ααα | (Nu, Z) ∼ GD4,2,2(a∗,b∗) (3.4.36)

where a∗ = (a∗
1, . . . ,a∗

4) = (N1 +a1, N2 +a2 +Z, N3 +N23 +a3 −Z, N4 +a4) and
b∗ = (b∗

1 ,b∗
2)= (b1 +N12,+b2 +N34).

As for scheme 2, we write

π(ααα |Nu) =
N23∑
z=0

π(ααα |Nu, z)P(Z = z|Nu) (3.4.37)

where P(Z = z|Nu) is a binomial distribution with parameters (N23,α2/(α2 +
α3)) and we use the IBF sampling technique as follows.

For each z ∈ {0, . . . , N23}, we have

P(Z = z|Nu) ∝ π(Z = z|Nu,ααα(0))
π(ααα(0)|Nu, Z = z)

=
Ck

N23
B(a∗

1,a∗
2)B(a∗

3,a∗
4)B(

∑2
i=1 a∗

i +b∗
1 ,

∑4
i=3 a∗

i +b∗
2)

(α1 +α2)b∗
1 (α3 +α4)b∗

2 (α2 +α3)N23
×

×
4∏

i=1
α

1−Ni−ai
i

∝ F(ααα(0))Ck
N23

B(a∗
1,a∗

2)B(a∗
3,a∗

4)B(
2∑

i=1
a∗

i +b∗
1 ,

4∑
i=3

a∗
i +b∗

2)

∝ qz(ααα(0))

where ααα(0) is an arbitrary value of ααα; F(ααα(0)) is independent from Z and

F(ααα(0))=
∏4

i=1α
1−Ni−ai
i

(α1 +α2)b∗
1 (α3 +α4)b∗

2 (α2 +α3)N23
.

Thus, the conditional distribution of Z given Nu can be defined as

pz = P(Z = z|Nu)= qz(ααα(0))∑N23
k=0 qk(ααα(0))

, z = 0, . . . , N23. (3.4.38)
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. Remark that the conditional distribution of Z | Nu in does not depend on
ααα(0).

After finding this distribution, combining with (3.4.36), we obtain an ex-
plicit formula for the posterior distribution of ααα given Nu as

ααα|Nu ∼
N23∑
i=0

piGD4,2,2

(
a(i)∗,b∗

)
, (3.4.39)

where a(i)∗ = (N1 + a1, N2 + a2 + i, N3 + N23 + a3 − i, N4 + a4) and b∗ = (b1 +
N12,b2 +N34). This is a mixture of the GDD.

Illustrative example

Consider another fictitious set of the data with uncertainties, that Nu = (5,3,
1,0,3,2,4). The EM algorithm leads to the MLE ofααα as α̂αα= (0.395,0.497,0.106,
0.00). The algorithm converged after less than 25 iterations regardless of the
choice of initial value ααα(0). For Bayesian inference, we firstly elicit some val-
ues of hyperparameters following the strategy presented in section 3.4.2.1.
We suppose that analysts agree a guess at the number of CCF events of Ng =
(10,6,3,1). The MLE of ααα according to (3.3.1) is α̂αα = (0.50,0.30,0.15,0.05).
Then we assign t = (0.50,0.30,0.15,0.05) and investigate some values of s.
We also consider the noninformative prior of Dirichlet distribution which is a
GDD with paramters a = (0.5,0.5,0.5,0.5) and b = (0,0). Table 3.13 displays
the MLE and the mean of the posterior distribution of ααα | Nu with several
choices of prior.

α1 α2 α3 α4
MLE 0.3578 0.3873 0.2548 0.0000

Prior

D (0.5,0.5,0.5,0.5) 0.3478 0.3743 0.2370 0.0407
s = 1 0.368 0.380 0.247 0.005
s = 2 0.3754 0.3762 0.2393 0.0089
s = 10 0.4151 0.3538 0.2046 0.0263

Table 3.13: MLE and Bayesian estimate of ααα for scheme 4 with different priors.

A simulation study

Similar to the section 3.4.2.2, the performance of proposed methods for scheme
4 of data with uncertainties is evaluated through simulations. We also sup-
pose a system of m = 4 identical components with a set of N = 30 CCF events
observed. The input parameters are ααα= (0.56,0.31,0.11,0.02).

The following steps are performed in the simulation procedure:

(1) Generate (N∗
1 , . . . , N∗

4 )∼M (30;0.56,0.31,0.11,0.02)
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(2) Generate:

(N1,u1) ∼ M (N∗
1 ; p1, p2)

N2,v1,v2) ∼ M (N∗
2 ; q1, q2, q3)

(N3,w1,w2) ∼ M (N∗
3 ; r1, r2, r3)

(N4, t1) ∼ M (N∗
4 ; s1, s2)

(3) Set N12 = u1 +v1, N23 = v2 +w1, N34 = w2 + t1.

(4) Estimate α̂̂α̂α= (α̂1, α̂2, α̂3, α̂4, ) using the EM algorithm or the Bay-
esian inference in this section.

(5) Repeat Steps 1 - 4 and then calculate the mean and the mean
square error from the estimate of α̂̂α̂α in each step.

The probabilities (p1, p2), (s1, s2), (q1, q2, q3) and (r1, r2, r3) represent the
mechanism to degrade the data that leads to the uncertainties. Tables 3.14
show the average of MLE and Bayesian estimate of ααα from M = 10000 itera-
tions for a low level of data degradation while Table 3.15 shows the same re-
sults for a higher level of data degratation. The obtained results confirm the
same conclusion as in previous section: the MLE is sensitive to the choice of
the level of data degradation while the the Baysian estimates is more robust
in the sense that the prior can reduce the dependence of this data degrada-
tion on the estimates. In addition, with the low level of data degradation, the
average squared difference between MLE and Bayesian estimates defined in
3.4.25 is smaller. For example, using the same GDD prior with parameters
a = (0.5,0.5,0.5,0.5, b = (0,0), we have ∆D = 0.00053 for the level of data
degradation in Table 3.15 which is larger than ∆D = 0.00034 for the level of
data degradation in Table 3.14.

α1 α2 α3 α4
Input 0.56 0.31 0.11 0.02
MLE 0.5578 (0.0068) 0.3221 (0.0071) 0.1017 (0.0026) 0.0182 (0.0005)

D (0.5,0.5,0.5,0.5) 0.5445 (0.0063) 0.3201 (0.0064) 0.1060 (0.0022) 0.0293 (0.0005)

Guess t 0.55 0.3 0.12 0.03
s = 2 0.5565 (0.0061) 0.3209 (0.0063) 0.1033 (0.0022) 0.0191 (0.0004)

s = 30 0.5561 (0.0020) 0.3115 (0.0018) 0.1093 (0.0007) 0.0229 (0.0001)

Guess t 0.7 0.15 0.09 0.06
s = 2 0.5660 (0.0061) 0.3128 (0.0062) 0.1005 (0.0023) 0.0206 (0.0004)

s = 30 0.6256 (0.0063) 0.2402 (0.0067) 0.0978 (0.0009) 0.0362 (0.0004)

Table 3.14: MLE and Bayesian estimate of ααα when (p1, p2) = (s1, s2) =
(0.7,0.3), (q1, q2, q3) = (r1, r2, r3) = (0.5,0.3,0.2). The values in parentheses
are the MSE.
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α1 α2 α3 α4
Input 0.56 0.31 0.11 0.02
MLE 0.4976 (0.0124) 0.3785 (0.0145) 0.1074 (0.0031) 0.0163 (0.0006)

D (0.5,0.5,0.5,0.5) 0.4890 (0.0130) 0.3699 (0.0125) 0.1116 (0.0026) 0.0292 (0.0005)

Guess t 0.55 0.3 0.12 0.03
s = 2 0.5025 (0.0107) 0.3703 (0.0121) 0.1094 (0.0027) 0.0176 (0.0005)

s = 30 0.5289 (0.0030) 0.3339 (0.0024) 0.1147 (0.0008) 0.0224 (0.0001)

Guess t 0.7 0.15 0.09 0.06
s = 2 0.5148 (0.0094) 0.3578 (0.01098) 0.1075 (0.0029) 0.0197 (0.0004)

s = 30 0.6072 (0.0044) 0.2527 (0.0053) 0.1034 (0.0009) 0.0365 (0.0004)

Table 3.15: MLE and Bayesian estimate of ααα when (p1, p2) = (s1, s2) =
(0.5,0.5), (q1, q2, q3) = (r1, r2, r3) = (1/3,1/3,1/3). The values in parentheses
are the MSE.

3.5 Concluding remarks

In this chapter, we have proposed a new method to handle the data with
uncertainties. We have used a confounded representation of the data with
uncertainties. Several techniques to treat this kind of data have been pro-
vided.

One can see that the strategy will strongly depends on the nature of the
available data. It could be the partial EM algorithm, it could be the IBF
sampling technique with the Nested Dirichlet distribution or it could be the
IBF sampling technique with the Grouped Dirichlet distribution.

Clearly, it is not possible to give a general method but by combining the
proposed techniques, many situations of data with uncertainties could be cov-
ered. In addition, several perspectives can be released from the framework
presented in this chapter. For example, we can investigate the properties of
the MLE of the α-factor model. Investigating noninformative prior distribu-
tions for the NDD and the GDD could be also a challenging problem.

75

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 3. INFERENCE FOR THE α-FACTOR MODEL FROM UNCERTAIN DATA

76

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



Chapter 4

Causal inference from
incomplete contingency table

In this chapter, we present a model to deal with the CCF data
that contain not only occurence frequencies but also the trigger-
ing causes. These data form a contingency table. We consider a
situation of incomplete data where only the margins of the contin-
gency table are observed. We apply an IBF sampling technique to
obtain the posterior distribution of the intensity of the HPP rep-
resenting the frequency of each cell of the table. A relationship
between the parameters of our model and the parameters of the
α-decomposition model [71] is pointed out to make comparison.

4.1 Introduction

The previous models are based purely on the order of CCF events, i.e., the
number of failed components, but not on the causes of each event.

In practice, potential causes of CCF can be recorded. Examples for sys-
tems in U.S. commercial NPPs such as emergency diesel generators (EDG),
motor-operated valves, pumps, and circuit breakers are given in [48].

One of these examples considers 41 EDG CCF events. 15 events are clas-
sified in the cause group: Design/ Construction/ Installation/ Manufacture,
9 events are classified in the cause group: Internal to Component, 9 events are
classified in the cause group: Operational/Human Error, 5 events are classi-
fied in the cause group: External Environment and 3 events are classified in
the cause group: Other causes.

In [47], the authors provide a way to achieve further understanding of
the occurence of CCF events by presenting the process of data collection and
grouping the ranking of proximate failure causes (A proximate cause refers
to a characterization of the condition that is considered as having led to the
failure). Using Bayesian networks, Kelly et al. [18] propose the preliminary
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framework of a causality-based inference, providing cause-specific quantita-
tive insights into likely causes of failures. O’Connor and Mosleh [50] develope
a general cause based methodology for analysis of common cause and depen-
dent failures in system risk and reliability assessments. Zheng et al. [71]
suggest the α-decomposition model to estimate CCF parameters correspond-
ing to the α-factor model to deal with order of CCF frequencies and causes
frequencies. The data are on the form of an incomplete contingency table.

Our purpose in this chapter is to make inference on contingency table
crossing orders of CCF and causes of CCF where only the margins are ob-
served.

Assuming that each cell of the contingency table follows a Poisson distri-
bution with a constant rate. We use an IBF sampling technique to obtain
the posterior distribution of the parameters of the model. A new stochastic
version of the IBF sampling technique based on the Metropolis-Hastings (M-
H) algorithm is suggested to avoid a cumbersome calculation when the space
of complete data is large. We compare our results with the results obtained
with the α-decomposition model [71].

The chapter is organized as follows. In section 2, we describe the incom-
plete data and propose a new model to analyze the CCF data in a contingency
table form. For purpose of comparison, we briefly recall the α-decomposition
factor model suggested in [71]. Section 3 gives a Bayesian inference based
methodology for the proposed model. In section 4, we present a stochastic
version of the IBF sampling technique to overcome the difficulty when the
space of complete data is large which might lead to heavy computations. A
simulation study and an application of the proposed method are displayed in
section 4 and section 5, respectively.

4.2 The data and the model

The data

Suppose that from a m-component system, the potential causes of failures
can be classified into k main groups, C1,C2, ..,Ck. Then the contingency table
crossing orders of CCF and causes has a size: m× k. Table 4.1 displays a
general and complete representation of a contingency table, where Ni, j rep-
resents the number of CCF events of order i from the cause j.

In this table, the sum of the terms in column j, corresponding to the total
number of components failed by cause C j, is equal to:

m∑
i=1

Ni j = N• j, j = 1, ....,k.

The sum of the terms in row i, corresponding to the total number of CCF
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Cause 1 Cause 2 . . . Cause k Total
Order 1 N11 N12 . . . N1k N1•
Order 2 N21 N2,2 . . . N2k N2•

...
...

...
...

...
...

Order m Nm1 Nm2 . . . Nmk Nm•
Total N•1 N•2 . . . N•k

Table 4.1: A complete contingency table

events of order i from any causes, is equal to:

k∑
j=1

Ni j = Ni•, i = 1, ....,m.

The sum of all the terms in the table which is the total number of observa-
tions, is equal to:

m∑
i=1

k∑
j=1

Ni j =
m∑

j=1
N• j =

k∑
i=1

Ni•

The matrix
{
Ni j

}
, i = 1, . . . ,m, j = 1, . . . ,k that we denote N, represents

the complete data. By incomplete data in a contingency table, we mean
that the exact value in each cell of the table is not observed. Suppose that we
only know the sum of each column and each row of the table, i.e. the margins,
that is to say, we observe N• = {

Ni•, N• j
}

i=1,...,m; j=1,...,k. N• represents the
incomplete data.

Inference methods for contingency tables with missing data are suggested
by Little & Rubin [30]. In the context of CCF, this problem is addressed by
Zheng et al. [71]. The authors simulate CCF events and causes for 16 systems
with 3 components (Table 4.2). For each system, only the total number of CCF
events of a given order and the total number of specific cause are recorded.
We do not know exactly the number of failures of a specific order due to a
specific cause. Remark that the data for each system can be organized as a
contingency table where only the margins are known. For example, the data
from the first system in Table 4.2 can be expressed as in Table 4.3.

In the following, we present two models to deal with this kind of data. The
first model is the α-decomposition model and the second one is introduced
based on the Poisson distribution.

The α-decomposition model

Consider a system of m identical components. Recall that the parameters
of the α-factor model have been defined in Chapter 3, which are (α1, . . . ,αm),
where αi refers to the probability that exact i components are invoved in a
CCF event given that at least one component failed. The parameters are
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Common causes’s occurence CCF event
Cause 1 Cause 2 Cause 3 Total Order 1 Order 2 Order 3

System 1 32 28 67 127 113 11 3
System 2 17 78 11 106 98 7 1
System 3 18 19 50 87 73 9 5
System 4 29 6 31 66 53 5 8
System 5 7 33 10 50 45 4 1
System 6 15 9 17 41 33 3 5
System 7 12 15 7 34 32 2 0
System 8 2 22 7 31 29 2 0
System 9 7 4 11 22 20 2 0
System 10 10 8 3 21 20 2 0
System 11 3 6 10 19 16 2 1
System 12 7 3 6 16 14 1 1
System 13 3 5 7 15 13 1 1
System 14 5 3 7 15 12 1 2
System 15 4 5 2 11 9 1 1
System 16 1 6 2 9 7 1 1

Table 4.2: A hypothetical database of CCF events provided in [71]

Cause 1 Cause 2 Cause 3 Total
Order 1 x x x 113
Order 2 x x x 11
Order 3 x x x 3

Total 32 28 67 127

Table 4.3: An expression of observed incomplete data from the first system in Table
4.2

then decomposed into the parameters of the α-decomposition model as pro-
posed in [71]. In order to understand the parameters of the model and figure
out the link between the parameters of this model and the parameters in
the proposed model (presented in the next section), we briefly explain the
α-decomposition model in the following.

Let A1, ..., Am denote m components of the system. Suppose that potential
causes that may affect the system can be divided into k main causes, say
C1,C2, ....,Ck. The conditional probabilitity of the failure event that involves
a specific component of the system, say A1 (or any other component of the
system), given the occurence of a specific cause, say C j, is

P(A1 | C j)= P(A1,I | C j)+
m∑

i=2
P(A1 A i | C j)+ ...+

m∑
2Éi<s

P(A1 A i As | C j)

+P(A1...Am | C j) (4.2.1)

where A1,I refers to the failures involved only A1, A1 A i refers to the CCFs
involved 2 components including A1 (a given failed component) and so on.
It should be considered that under this definition the considered effects are
supposed to be mutually exclusive.

80

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 4. CAUSAL INFERENCE FROM INCOMPLETE CONTINGENCY TABLE

Let us define α factor related to a specific cause. We denote

α
C j
1 = P(A1,I | C j)

P(A1 | C j)
,

α
C j
2 =

m∑
i=2

P(A1 A i | C j)
P(A1 | C j)

, (4.2.2)

α
C j
3 =

m∑
2Éi<s

P
P(A1 A i As | C j)

P(A1 | C j)
,

...

α
C j
m = P(A1 A2...Am | C j)

P(A1 | C j)
.

From (4.2.1) we have
m∑

i=1
α

C j
i = 1.

According to the law of total probability, the probability of a failure event
where only A1 fails is

P(A1,I )=
k∑

i=1
P(A1,I | Ci)P(Ci). (4.2.3)

The first equation in (4.2.2) leads to P(A1,I | Ci)=αCi
1 P(A1 | Ci).

Substituting this equation into (4.2.3), we get:

P(A1,I )=
k∑

i=1
α

Ci
1 P(A1 | Ci)P(Ci)). (4.2.4)

Dividing both sides of (4.2.4) by P(A1), the probability of a CCF event that
involves A1 is obtained as

P(A1,I )
P(A1)

=
k∑

i=1
α

Ci
1

P(A1 | Ci)P(Ci)
P(A1)

(4.2.5)

In [71], the authors considered the staggered testing scheme, i.e., only one
component is tested in a test episode. The rest of components will be tested
only when a failure fromm the first test is detected. Under this scheme, the
parameter α1 of the α-factor model is defined as:

α1 =
P(A1,I )
P(A1)

.

Then (4.2.5) can be rewritten by

α1 =
k∑

i=1
α

Ci
1 r i, (4.2.6)
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where
r i = P(A1 | Ci)P(Ci)

P(A1)
= P(Ci | A1),

r i is the occurence rate of Cause i that generated the failure of A1.
In the same way, under the assumption that the causes and the corre-

sponding probabilities are the same for each identical component all the pa-
rameters αi of the α-factor model can be decomposed into αC j

i by the formula:

αi =
k∑

j=1
α

C j
i r j, i = 1, ...,m. (4.2.7)

The parameters
{
α

C j
i

}
i=1,...,m; j=1,...,k are now the new parameters of interest.

They are the parameters of the α-decomposition model.
The inference on α

C j
i in [71] is drawn by using a hierachical Bayesian

modeling via OpenBUGS.

The Poisson distribution based model

We propose modelling the data in a contingency table form by using the Pois-
son distribution. In particular, we suppose that the cell counts are indepen-
dent homogeneous Poisson processes. That is to say, we assume that Ni j(T),
the number of CCF events of order i due to Cause j over the time window
[0,T], follows a Poisson distribution with parameter λi jT.

In the case of complete data, the distribution of N is obtained as a product
of Poisson distributions:

P(N=n |λλλ)=∏
i, j

(λi jT)ni j

ni j!
e−λi jT , (4.2.8)

where n= {
ni j

}
i=1,...,m; j=1,...,k is a representation of N.

The distribution of the incomplete data can then be expressed as:

P(N• =n• |λλλ)= ∑
u∈Dn•

P(N=u |λλλ). (4.2.9)

where n• denotes a representation of N• and Dn• denotes the set of all m×k
matrices u = {

ui j
}

i=1,...,m; j=1,...,k such that
∑m

i=1 ui j = n• j and
∑k

j=1 ui j = ni•,
i.e. the space of complete data that satisfy the condition of the observed mar-
gins.

When Ni j is observed, the estimate for the λi j based on (4.2.8) is easy
to obtain. However, in the case of incomplete data, i.e, only margins are
observable, the inference on these parameters is not straigtforward.

Our goal is to provide a method to estimate the matrix m× k with terms
λi j, denoted by λλλ, based on the incomplete data of the contingency table.

We present in the next section a Bayesian method for making inference
on λλλ.
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4.3 Bayesian inference

4.3.1 Using the IBF sampling

In order to obtain the posterior distribution of λλλ given the margins of the
contingency table N•, we firstly rewrite π(λλλ | N•) in the following form based
on the law of total probability:

π(λλλ |N•)=
∑

n∈Dn•

π(λλλ |N•,N=n)π(N=n |N•) (4.3.1)

Each element in summation (4.3.1) is a product of two terms: π(λλλ |N•,N=n)
and π(N = n | N•); where the first term is the conditional distribution of λλλ
given the complete data N (but missing) and the observed data N•, the second
term is the conditional distribution of complete data N given the incomplete
data N• (observable). Each of them is calculated as follows.

Since the distribution of complete data in (4.2.8) is the product of Poisson
distributions, we consider a Gamma distribution G (αi j,βi j) as a conjugate
prior for each λi j and suppose that the priors of parameters are independent.
Thus, apriori independent the prior of λλλ is a product of Gamma distributions:

π(λλλ)=∏
i, j

β
αi j
i j

Γ(αi j)
λ
αi j−1
i j e−βi jλi j . (4.3.2)

The posterior distribution of λλλ given N = n ∈ Dn• and N• is now obtained
according to the Bayes’ theorem:

π(λλλ |N•,N=n) ∝ P (N=n,N• |λλλ)π(λλλ)

∝ ∏
i, j
λ

ni j+αi j−1
i j e−λi j(T+βi j). (4.3.3)

That means, the first term π(λλλ |N•,N=n) in the summation (4.3.1) is defined
as a product of Gamma distributions with parameters (ni j +αi j,T +βi j).

In order to calculate the second term, we apply the sampling-wise IBF
(Appendix B), that is

P(N=n |N•)∝ P(N=n |N•,λλλ∗)
π(λλλ∗ |N=n,N•)

, (4.3.4)

where λλλ∗ is an arbitrary value in the support of λλλ.
The denominator in (4.3.4) is defined as in (4.3.3), which is also a product

of Gamma distributions with the same parameters, where λλλ is repalced by
λλλ∗.

The numerator in( 4.3.4) is defined as

P(N=n |N•;λλλ∗) = P(N=n |λλλ∗)∑
u∈Dn• P(N=u |λλλ∗)π(λλλ∗)

∝ P(N=n |λλλ∗)

∝ ∏
i, j

(λ∗
i jT)ni j

ni j!
e−λ

∗
i jT (4.3.5)
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With the numerator defined in (4.3.5) and the denominator defined in (4.3.3),
(4.3.4) becomes:

P(N=n |N•)∝
∏
i, j

Γ(αi j +ni j)
ni j!(T +βi j)ni j+αi j

λ
∗1−αi j
i j eλ

∗
i jβi j . (4.3.6)

Setting Dn• =
{
n1, . . . ,nK

}
, for each n` ∈Dn• , we denote the term on the right

of (4.3.6) by q`. Then, the conditional probability of the event N = n` given
the observed data N• is

P(N=n` |N•) = q`(λλλ∗)
K∑
`=1

q`(λλλ∗)

= p` (4.3.7)

and this conditional probability is independent from λλλ∗.
After finding both distributions in each term of the summation in (4.3.1),

we can rewrite the posterior distribution of λλλ given the observed incomplete
data N• in (4.3.1) as

π(λλλ |N•)=
K∑
`=1

p`π(λλλ |N=n`). (4.3.8)

Moreover, (4.3.8) can be applied for each λi j, i.e, the posterior distribution of
λi j given N• can be expressed by

π(λi j |N•)=
K∑
`=1

p`π(λi j |N=n`), (4.3.9)

which is mixture of Gamma distributions. That is to say, we obtain an explicit
formula for the posterior of each λi j.

In the case when the space Dn• is large, the explicit formulas for the λ′
i js

could be cumbersome, the IBF sampling approach could be conducted as an
alternative way to get the posterior of λλλ. The main idea of the approach is to
simulate a set of samples

{
λλλ(i)} from π(λλλ |N•,N(i)) where N(i) ∼π(N |N•).

In particular, this sampling IBF method is performed by the following
steps:

• Determine the space Dn• =
{
n1, . . . ,nK

}
of the complete data that satisfy

the condition of observed incomplete data N• = n•, and calculate the
corresponding probability p1, .., pK as in (4.3.7).

• Generate i.i.d. samples n(1), ..,n(M) of N from the space with corre-
sponding probabilities {p1, .., pK }.

• Simulate λλλ(i) ∼ π(λλλ|N•,N = n(i)) for i = 1, ..., M, then
{
λλλ(1), ..,λλλ(M)} are

considered as a i.i.d. samples from the posterior distribution π(λλλ |N•).

The inference for the parameters of interest λλλ is now made directly from
these samples.
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Illustrative example

Let us consider a simple illustrative example with a hypothetical set of CCF
data from a 2-component system over the time window T = 10 (unit of time).
Suppse that the potential causes are divided into three main gropus, say
Cause 1, Cause 2 and Cause 3. The data is presentd in Table 4.4. From this

Cause 1 Cause 2 Cause 3 Total
Order 1 x x x 4
Order 2 x x x 6

Total 3 5 2 10

Table 4.4: An illustrative example of incomplete data

set of data, the margins, or observed data is n• = {(3,5,2), (4,6)}. The value in
each cell of the table is unknown. The space Dn• can be described as:

Dn• =
{ [

0 2 2
3 3 0

]
,
[
0 3 1
3 2 1

]
,
[
0 4 0
3 1 2

]
,
[
1 1 2
2 4 0

]
,
[
1 2 1
2 3 1

]
,[

1 3 0
2 2 2

]
,
[
2 0 2
1 5 0

]
,
[
2 1 1
1 4 1

]
,
[
2 2 0
1 3 2

]
,
[
3 0 1
0 5 1

]
,[

3 1 0
0 4 2

] }
.

The probabilies p` = P(N = n` | N• = n•), n` ∈ Dn• are calculated accord-
ing to equation (4.3.7) and displayed in Table 4.5. For purpose of illustration,

` p` ` p`
1 0.10608204 7 0.13366337
2 0.07072136 8 0.04950495
3 0.12376238 9 0.06364922
4 0.07425743 10 0.14851485
5 0.04243281 11 0.12376238
6 0.06364922

Table 4.5: The conditional distribution P(N |N• =n•)

we consider a noninformative distribution for each λi j, i.e., λi j ∼G (0.5,0).
For example, the posterior distribution of λ11 is

π(λ11|N• =n•) =
3∑

N11=0
pn11 G (λ11,0.5+N11,10),

where the weight pN11 ’s are given in Table 4.6. The Table 4.7 presents the
posterior distribution, the mean and the standard deviation for each λi j. For
illustration, we also simulate samples of λλλ |N• =n• according to the sampling
IBF method as follows.
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N11 0 1 2 3
pN11 0.30 0.18 0.25 0.27

Table 4.6: The conditional distribution π(N11 |N• =n•)

(i) Draw M = 30000 independent samples n(i), i = 1, .., M of missing data N
from the space Dn• using the discrete distribution given in Table 4.5.

(ii) Generateλλλ(i) from the posterior distribution π(λλλ|N•,N=n(i)) as in (4.3.3).

Under a quadratic loss, the Bayes estimators are the mean of the posterior
distribution that we approximate using the samples of λλλ generated by the
sampling IBF method. The obtained results are presented in the rightmost
column of Table 4.7.

Posterior λi j |N• =n• Posterior Mean Sampling mean

λ11 0.3G0 +0.18G1 +0.25G2 +0.27G3 0.199 (0.194) 0.199 (1.195)
λ12 0.28G0 +0.25G1 +0.21G2 +0.14G3 +0.12G4 0.207 (0.209) 0.207 (0.209)
λ13 0.38G0 +0.31G1 +0.31G2 0.143 (0.139) 0.142 (0.138)
λ21 0.27G0 +0.25G1 +0.18G2 +0.3G3 0.201 (0.195) 0.200 (0.194)
λ22 0.12G1 +0.14G2 +0.12G3 +0.25G4 +0.28G5 0.366 (0.338) 0.391 (0.351)
λ23 0.31G0 +0.31G1 +0.38G2 0.157 (0.147) 0.156 (0.145)

Table 4.7: Explicit posterior distributions, posterior mean of λi j, Gi = G (0.5+ i,10).
The values in brackets are the corresponding variance.

The above procedures allows us to get exactly the posterior distribution
or to simulate the samples from the posterior distribution π(λλλ|N• =n•). They
require the space Dn• to be tractable. However, in practive it is not usually
the case. The size of the space Dn• can be very large. This fact leads to
computational limits because of the need to explore the whole space of Dn• .
To overcome this challenge, we suggest to use a stochastic version of IBF
sampling method.

4.3.2 Using a stochastic version of the IBF sampling

To simulate from the distribution {pk}k=1,...,K when K is large, we use a
Metropolis-Hastings (M-H) algorithm. This strategy has an advantage of not
needing to compute the denominators in (4.3.7). The algorithm is described
as follows. Initially, we pick up an arbitrary element in Dn• , and denote this
element by n(1).
Let Q be a specified transition matrix from one element of the space to an-
other. After p cycles of the following scheme, n(p) is available, do the follow-
ing.

86

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 4. CAUSAL INFERENCE FROM INCOMPLETE CONTINGENCY TABLE

• Generate a candidate n(∗) ∼Q(. |n(p)).

• Compute

ρ = min

1,
pn(∗)

pn(p)
=

∏m
i=1

∏k
j=1

Γ(αi j+n(∗)
i j )

n(∗)
i j !(T+βi j)

n(∗)
i j +αi j

∏m
i=1

∏k
j=1

Γ(αi j+n(p)
i j )

n(p)
i j !(T+βi j)

n(p)
i j +αi j

 .

• Set n(p+1) =n(∗) with probability ρ; else, set n(p+1) =n(p).

The matrix Q is called the generating-candidate matrix. Many choices are
possible for Q. In our case, the following scheme is applied to generate the
candidate.

- Choose randomly a 2×2 submatrix of n(p) with probability 1/(C2
k.C2

m),
say

A =
(

a11 a12
a21 a22

)
.

- Draw a number x from a uniform distribution in (max{0,a•1 −a2•}, . . . ,
min{a1•,a•1}), where a1• = a11 +a12 and a•1 = a11 +a21.

- Replace the corresponding matrix A in n(p) by matrix B where

B =
(

x a1•− x
a•1 − x a2•−a•1 + x

)
and a2• = a2,1 +a2,2.

After generating M i.i.d. samples n(1), ..,n(M) according to the method de-
scribed above, we generate λλλ(`) ∼π(λλλ |N•,n(`)) from the posterior distribution
as in (4.3.3). Thus {λλλ(`)}`=1,...,M are i.i.d. samples from the posterior π(λλλ |N•).

Figure 4.1 compares the samples generated from conditional discrete dis-
tribution P(N | N• = n•) corresponding to both the exact probabilities p` in
Table 4.5 and the probabilities obtained with the M-H algorithm from the
data n• = {(3,5,2), (4,6)}.

Sampling from π(λλλ | N• = n•) with the M-H algorithm and computing the
empirical mean, we obtain the following estimates for λλλ:

λ̂λλ=
[
0.1978159 0.2069460 0.1431974
0.2018113 0.3933634 0.1561672

]
.

which are close to the estimates obtained with the exact distribution p`, `=
1. . . ,K .
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Figure 4.1: Comparison of the theoretical distribution P(N|N• =n•) and the equilib-
rium distribution of the M-H samples for the simple case

4.4 A simulation study

We evaluate the performance of the proposed method through simulations.
The simulating procedure is performed according to the following steps:

1. Assign an input value for λλλ= (λi j) and a time window T.

2. Simulate the value in each cell of contingency table which follows a
Poisson distribution with parameter λi jT and calculate the correspond-
ing margins of the contingency table generated.

3. Use the stochastic version of IBF sampling method to estimate λλλ based
on the two magins calculated above, denote this estimate by λ̂λλ

(1)
.

4. Repeat steps 2-3 W times to obtain the estimates λ̂λλ
(1)

, . . . ,λ̂λλ
(W)

.

5. Consider mean of these values, λ̂λλ= 1
W

W∑
i=1

λ̂λλ
(i)

, as the estimates of λλλ and

calculate the corresponding mean square error.

For purpose of illustration, we consider a 3×3 contigency table. This size
of table is also consistent with the data provided in [71]. In our experiment,
the matrix input λλλ is defined by assigning a time window T = 120 and the
average number of CCF events in each cell of contingency table (λi jT) as
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n11 n12 n13 n21 n22 n23 n31 n32 n33 Total
Input 6 5 1 4 3 1 4 1 2 27

Guess
Situation 1 7 4 1 3 4 2 4 3 1 29
Situation 2 4 3 1 3 2 1 2 1 1 17
Situation 3 9 7 3 6 4 2 5 3 1 40

Table 4.8: The average number of CCF events in each cell of contingency table

in the first row in Table 4.8. Bayesian inference needs to specify values for
prior hyperparameters. We are dealing here with subjective probability and
it is well-known that their elicitation leads to difficulties. Using the strategy
suggested in [44], we firstly suppose three situations of guess for the aver-
age numbers of CCF events in the time window T as in Table 4.8. The first
situation corresponds to a guess at the total number of failures close to the
input number. The second and the third one correspond to situations where
the guess at the total number underestimate (resp. overestimate) the input
number. Then, the prior hyperparameters for each λi j is defined by solving a
simple system of two equations matching guesses and uncertainty with mean
and variance of the Gamma distribution:

αi j/βi j = ηi j

αi j/β2
i j = ρ2

i jη
2
i j

, (4.4.1)

where ηi j represents the guess at λi j and ρ i j is the corresponding uncer-
tainty of the guess. The hyperparameters for each situation of the guess and
the corresponding uncertainty are given in Table 4.9. We present two level
of uncertainty: low and high. We choose ρ i j from an uniform distribution
in [0.05,0.3] for the low level and [0.7,0.95] for the high level of uncertainty.
Type A and B correspond to the guess in the first situation with low and high
level of uncertainty; type C and D correspond to the guess in the second situ-
ation with low and high level of uncertainty; type E and F correspond to the
guess in the third situation with low and high level uncertainty, respectively.
The corresponding estimates are presented in Table 4.10. In general, when
the guess is close to the input, the small value of ρ leads to better estimates.
Otherwise, when the guess is far from input, the large value of ρ give bet-
ter results. Moreover, the noninformative prior give acceptable results with
small RMSE.

4.5 Application

In this section, we apply the proposed algorithm to the data in Table 4.2. This
database contains the occurence of causes and CCF events from 16 systems
of the same size. Because of the additive property of the Poisson distribution
(sums of independent Poisson-distributed random variables are also Poisson
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Situation 1 Situation 2 Situation 3
ρ Low High Low High Low High

Type of prior A B C D E F
(α11,β11) 34.59 593.07 1.30 22.41) 23.09 692.70 1.99 59.98 15.18 202.52 1.36 18.16
(α12,β12) 51.12 2045.17 1.46 58.47 33.27 1331.10 1.43 57.50 32.18 643.70 1.83 36.65
(α13,β13) 17.54 526.46 1.66 49.89 24.96 1497.81 1.77 106.33 21.74 521.89 1.58 37.99
(α21,β21) 12.15 364.56 1.18 35.32 33.79 1351.95 1.35 54.33 11.06 189.62 1.17 20.18
(α22,β22) 47.81 1434.53 1.12 33.62 34.70 2082.51 1.24 74.56 12.12 363.80 1.22 36.89
(α23,β23) 15.16 606.50 1.52 60.89 18.18 2182.50 1.14 136.99 20.16 806.68 1.53 61.43
(α31,β31) 89.46 10736.35 1.88 226.11 60.09 7211.36 1.34 160.85 10.64 425.81 1.15 46.23
(α32,β32) 12.45 747.06 1.41 84.72 32.23 3868.41 1.13 136.52 13.71 823.03 1.30 78.10
(α33,β33) 18.97 2276.96 1.75 210.21 21.65 2598.92 1.20 144.76 14.12 1694.50 1.32 158.26

Table 4.9: Hyperparameters of prior based on the guess in Table 4.8.

random variable), we aggregate the failure data from these 16 systems to
obtain a contingency table with observed margins displayed in Table 4.2.

It is clear that the size of the space Dn• in this case is so large that it
is difficult to explore all the elements of the space. The stochastic version is
then suggested. Firstly, we choose an element of the space, namely, we find
a contigency table with specific values in each cell so that they satisfy the
margin conditions. For example, a possible contingency table could be

n(1) =
150 212 225

18 15 20
4 23 3

 .

Next, we use the M-H algorithm described in previous section to simulate
M = 100.000 samples n(1), . . . ,n(M). The samples λλλ(i) is then generated from
π(λλλ |N=n(i)), i = 1, . . . , M. The summary of posterior distribution of each λλλ is
displayed in Table 4.12. Considering mean of each parameters, it can be seen
that

λ11 <λ13 <λ12,

λ22 <λ21 <λ23, (4.5.1)

λ32 <λ33 <λ31.

Thus, the order among λi j ’s is the same the order among αC j
i ’s in α-decomposition

model. Similar to the discussion in [71], Cause 2 is of least CCF risk, Cause
3 is best at provoking partial CCF and Cause 1 is best at provoking complete
CCF. However, the impact of Cause 2 and Cause 3 are similar as the dif-
ference between them are not significant. Based on this result, the most
hazardous causes could be recognized, which has a practical engineernig
meanings. Figure 4.2 shows the posterior densites of each λi j based on M =
100.000 i.i.d. samples generated by using the sampling IBF method.
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Figure 4.2: The posterior ditribution of each λi j with noninformative prior distribu-
tion and data in Table 4.2.
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Input Type A Type B Type C Type D Type E Type F Type G

λ11
0.05 0.05887 0.06104 0.03604 0.04546 0.06528 0.05336 0.0612

(8.93e-5) (4.74e-4) (2.02e-4) (1.80e-4) (2.78e-4) (3.31e-4) (6.91e-4)

λ12
0.0416 0.03236 0.03038 0.02603 0.03424 0.04973 0.03807 0.0353

(9.86e-5) (2.56e-4) (2.45e-4) (1.94e-4) (9.34e-5) (2.07e-4) (2.89e-4)

λ13
0.0083 0.00834 0.00858 0.00836 0.00912 0.02301 0.01802 0.0160

(3.44e-8) (2.45e-6) (1.03e-8) (5.40e-6) (2.18e-4) (1.35e-4) (1.01e-4)

λ21
0.0333 0.02495 0.02525 0.02577 0.03113 0.04761 0.03835 0.03622

(7.06e-5) (1.31e-4) (5.84e-5) (1.08e-4) (20.8e-4) (1.50e-4) (2.62e-4)

λ22
0.025 0.03282 0.02728 0.01699 0.020275 0.03209 0.02394 0.02781

(6.20e-5) (1.01e-4) (6.43e-5) (5.98e-5) (3.43e-5) (5.39e-5) (1.14e-4)

λ23
0.0083 0.01653 0.01607 0.00834 0.00903 0.01592 0.01330 0.01482

(6.87e-5) (8.85e-5) (3.09e-8) (6.45e-6) (5.82e-5) (3.67e-5) (7.31e-5)

λ31
0.0333 0.03291 0.03085 0.01768 0.02418 0.04010 0.03421 0.03155

(6.76e-6) (1.04e-4) (2.45e-4) (1.30e-6) (5.24e-5) (1.21e-4) (2.00e-4)

λ32
0.0083 0.02399 0.02172 0.00866 0.01104 0.02418 0.02134 0.02432

(2.47e-4) (2.08e-4) (2.32e-8) (1.47e-5) (2.52e-4) (1.93e-4) (3.25e-4)

λ33
0.0167 0.00833 0.00832 0.00854 0.01058 0.00822 0.00775 0.01481

(6.94e-5) (7.11e-5) (6.61e-5) (5.01e-5) (7.14e-5) (8.15e-5) (3.52e-5)

Table 4.10: Means of Bayesian estimates for various types of prior, with MSE com-
puted for 100,000 simulations. Type G corresponds to noninformative prior distribu-
tion.

Cause 1 Cause 2 Cause 3 Total
CCF of order 1 x x x 587
CCF of order 2 x x x 53
CCF of order 3 x x x 30

Total 172 250 248 670

Table 4.11: Data extracted from the database in Table 4.2

Comments

The αC j
i represents the conditional probability that exactly i components of

the system fail because of the Cause C j given that a CCF event occurs be-
cause of C j. Assuming Poisson distributions for the contingency table cells,
λi jT represents the mean of the number of CCF events of order i due to
cause C j, and λ• jT, where λ• j =∑3

i=1λi j, represents the mean of the number
of CCF events from Cause C j over the time window T.

Therefore, the α-decomposition parameters can be approximated by:

α
C j
i ≈ λi jT

λ• jT
= λi j

λ• j
, i = 1, . . . ,m, j = 1, . . . ,k, (4.5.2)

With the estimates of λi j ’s in Table (4.12), the parameters αC j
i in α-factor

model can be approximated by (4.5.2). Table 4.13 compares the estimates

92

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 4. CAUSAL INFERENCE FROM INCOMPLETE CONTINGENCY TABLE

Posterior λi j Mean SD 0.025-quantile Median 0.975-quantile
CCF order 1

λ11 1.2028 0.1849 0.8321 1.2108 1.5398
λ12 1.8598 0.1973 1.4639 1.8652 2.2268
λ13 1.8413 0.1977 1.4444 1.8517 2.2076

CCF order 2
λ21 0.1545 0.1394 0.00029 0.1177 0.4545
λ22 0.1492 0.1373 0.00027 0.1097 0.4498
λ23 0.1594 0.1379 0.00028 0.1093 0.4518

CCF order 2
λ31 0.0886 0.0815 0.00016 0.0642 0.2705
λ32 0.0866 0.0808 0.00015 0.0645 0.2682
λ33 0.0873 0.0811 0.00016 0.0628 0.2692

Table 4.12: Summary of posterior distributions of each λi j, (i, j = 1,2,3).

of αC j
i obtained from the method suggested by Zheng et al. [71] and the

aproximation in (4.5.2). In general, the estimates using two methods are
close. The order among α

C j
i ’s when j is fixed (similar to (4.5.1)) is still held.

That means, αC j
i can be well approximated through λi j.

Method α
C1
1 α

C2
1 α

C3
1 α

C1
2 α

C2
2 α

C3
2 α

C1
3 α

C2
3 α

C3
3

Zheng et al. [71] 0.813 0.910 0.820 0.0988 0.0729 0.0112 0.0879 0.0174 0.0679
Proposed method 0.8318 0.8874 0.8818 0.1068 0.0711 0.0763 0.0612 0.0413 0.0418

Table 4.13: Compare the estimates of αC j
i using the α-decomposition method and

our proposed method.

4.6 Concluding remarks

We have presented in this chapter a new method for making causility-based
inference on incomplete CCF data. When considering the causes of CCF
event, the data is recorded in the form of a contingency table. We have consid-
ered a situation when only margins of the contingency table are observed. A
Poisson distribution based model has been suggested. The parameters of the
model are estimated based on Baysian method using the sampling IBF tech-
nique. We have also found that the parameters in α-factor model proposed in
[71] can be well approximated through the parameters of our proposed model.
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Chapter 5

Prediction methods for
catastrophic events

Making predictive inference on the number of CCF events in a
given future time is a major concern in PRA. In this chapter, we
provide several methods for dealing with this problem. In par-
ticular, we focus on predicting the number of catastrophic events,
that is to say CCF events where all the components of the sys-
tem fail at the same time. The failure count is supposed to be a
homogeneous Poisson process. We suggest different approaches
depending on the nature of the available of data.

5.1 Introduction

In the previous chapters, we have presented several models to analyze the
CCF events and to estimate the parameters of CCF models. In this chapter,
we will investigate another problem in PRA, which is to answer the question
of how to predict the number of CCF events in a given future time. In par-
ticular, we present a framework to make predictive inference on the upper
prediction bound (UPB) of the number of catastrophic events that a system
could be suffered in the future. The term "catastrophic event" refers to the
CCF event where all the components of the system fail simultaneously. By
this definition, we do not distinguish the lethal failures from the CCF events
of order m for a m-component system (as in Chapter 2): we simply count the
number of events where all the components of the system fail simultaneously.

Let Nm(T) denote the number of catastrophice events of the system over
the observation time [0,T]. We suppose that Nm(T) follows a Poisson dis-
tribution with an unknown constant rate Λ. Our goal is to make prediction
on the UPB of the future number of catastrophic events over the future time
window [T,T +Tnew], say Nm(Tnew), given the value of Nm(T).

Finding the 100%(1−γ) UPB of Nm(Tnew), 0< γ< 1, is equivalent to find
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the smallest integer bγ such that

Pr
(
Nm(Tnew)Ê bγ+1 | Nm(T)

)< γ. (5.1.1)

As discussed in Chapter 1, there are several types of CCF data. In this
Chapter, we consider three types of data: complete data, mapped data, and
data with uncertainties.

For complete data, we apply two available methods for making prediction
on Poisson count: the pivotal method and the Bayesian method. In the liter-
ature, the pivotal method is suggested in [37] and applied to predict the UPB
of the number of Poisson counts in ([20],[28], [34]). The Bayesian method for
predicting the number of catastrophic events for a nuclear plant in US is pre-
sented in [25]. We will see that the Bayesian method is a generalization of
the pivotal method.

The mapped data are applied for predicting the number of catastrophic
failures in [28]. However, in this study, the authors used only the mapping
down technique. We present both mapping up and mapping down rules and
then use these rules for making predictive inference.

For data with uncertainties, to our best knowledge, the problem of pre-
diction has not been considered in the literature yet. We provide several
strategies to deal with this problem.

The chapter is organized as follows. Section 2 outlines the existing meth-
ods of predictive inference for a Poisson failure data and then applying for
finding UPB of the number of catastrophic events in the case of complete
data. The mapped data are treated in Section 3 using both mapping down
and mapping up. In Section 4, we propose the procedure for making infer-
ence on UPB of catastrophic events based on data with uncertainties.

5.2 Prediction with complete data: classical meth-
ods

Similar to Chapter 3, by complete data, we mean that the order of each
CCF event is known exactly. That is to say, a set of complete data for a
m-component system is of the form N = (N1, . . . , Nm) with the same meaning
of Ni as discussed previously. Under the assumption that the catastrophic
event is independent from other CCF events, only Nm is used in our predic-
tive inference.

In the following, we present two classical methods to predict the value
Nm(Tnew).

5.2.1 Pivotal method

With the assumtions discussed in the introduction, {Nm(t), t Ê 0} is a HPP
with an unknown constant intensity Λ. A classical method for making pre-
diction on (Nm(Tnew) is the pivotal method. In this method, a conditional
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distribution of Nm(Tnew) which does not dependent on the parameter Λ is
used.

According to a well-known property of the Poisson distribution, the condi-
tional distribution of Nm(T) given Nm(T)+Nm(Tnew), say Nm(T)+Nm(Tnew)=
ntot, is a binomial distribution with parameters (ntot,T/(T +Tnew).

Thus Nm(T) | Nm(T)+ Nm(Tnew) = ntot forms a pivotal quantity; its dis-
tribution does not depend on Λ.

This distribution is used to determine the UPB of Nm(Tnew) as defined
in (5.1.1). Let n denote the value of Nm over the time window [0,T], i.e,
Nm(T) = n. The 100%(1−γ) UPB of Nm(Tnew) is smallest integer bγ, such
that

Pr
(
Nm(Tnew)Ê bγ+1 | Nm(T)+Nm(Tnew)= bγ+n

)< γ, (5.2.1)

where

Nm(Tnew) | Nm(T)+Nm(Tnew)= bγ+n ∼ B(bγ+n,
Tnew

T +Tnew
). (5.2.2)

The relation between this pivotal method and the Bayesian method is
presented in the next section.

5.2.2 Bayesian method

In this section, we will make predictive inference based on the posterior dis-
tribution of the parameter Λ. Since Nm(T) is the Poisson distribution with
parameter ΛT, the distribution of the observation is:

P(Nm(T)= n |Λ)= (ΛT)n

n!
e−ΛT . (5.2.3)

Assuming a Gamma prior distrubution with parameters (α0,β0) for Λ, the
posterior distribution π(Λ | Nm(T)= n) is a Gamma distribution with param-
eters (α0 +n,β0 +T),

Λ | Nm(T)= n ∼ G (n+α0,T +β0).

The posterior predictive distribution of Nm(Tnew) is defined as:

P (Nm(Tnew)= z | Nm(T)= n)

=
∫

P(Nm(Tnew)= z | Nm(T)= n,Λ) π(Λ | Nm(T)= n) dΛ.

=
∫ +∞

0

(ΛTnew)ze−ΛTnew

z!
(β0 +T)n+α0

Γ(n+α0)
Λn+α0−1e−(β0+T)Λ dΛ

= Γ(z+n+α0)
Γ(n+α0)z!

(
β0 +T

β0 +T +Tnew

)n+α0
(

Tnew

β0 +T +Tnew

)z
. (5.2.4)
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The last expression in (5.2.4) indicates that the posterior predictive dis-
tribution is a negative binomial (NB) distribution with parameters

(
α0 +n,

β0 +T
β0 +T +Tnew

)
. Based on this posterior predictive distribution, the expected-

value and the variance of the number of catastrophic events are:

E(Nm(Tnew) | Nm(T)= n)= (α0 +n) Tnew

β0 +T
,

V ar(Nm(Tnew) | Nm(T)= n)= (α0 +n)(β0 +T +Tnew) Tnew

(β0 +T)2 .

Therefore, the 100%(1−γ) UPB of Nm(Tnew) is the smallest integer bγ
satisfying (5.1.1) in which

Nm(Tnew) | Nm(T)= n ∼ NB
(
n+α0,

β0 +T
β0 +T +Tnew

)
. (5.2.5)

Remark: We can show that the pivotal method can be obtained from the
Bayesian method by selecting the hyperparameters appropriately. Indeed,
the following propositions show the relation between the binomial distribu-
tion, the negative binomial distribution and the beta distribution [17]:

Proposition 7. Let X ∼B(n, p), then P(X Ê x)= P(W É p) where W ∼ Beta(x,n−
x+1).

Proposition 8. Let X ∼ NB(n, p), then P(X Ê x) = P(Y É 1− p) where W ∼
Beta(x,n).

According to proposition 7, the smallest integer bγ satisfying (5.1.1) with
respect to the distribution in (5.2.2) is equivatlen to the smallest integer bγ
satisfying

Pr
(
W1 É Tnew

T +Tnew

)
< γ, (5.2.6)

where W1 ∼ Beta
(
bγ+1,n

)
.

According to proposition 8, the smallest integer bγ satisfying (5.1.1) with
respect to the posterior predictive distribution in (5.2.5) is equivatlen to the
smallest integer bγ satisfying

Pr
(
W2 É Tnew

β0 +T +Tnew

)
< γ, (5.2.7)

where W2 ∼ Beta
(
bγ+1,n+α0

)
.

By comparing the equations (5.2.6) and (5.2.7), and the corresponding
distributions W1 and W2, we deduce that the Bayesian method is a general-
ization of the pivotal method. The pivotal method can be obtained from the
Bayesian method by choosing α0 = 0,β0 = 0.

In the next section, we provide an application of these two methods.

98

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 5. METHODS OF PREDICTION FOR MULTIPLE-FAILURE EVENTS

5.2.3 Illustrative example

In this Section, we apply the methods presented in previous sections to draw
an UPB for the number of catastrophic events based on a set of CCF data
involving EDGs at US nuclear power-plants [22]. The data were observed
from a system of five components. They consist of 2 failure events involving
one component, 2 failure events involving two components, 1 event involv-
ing three components, 2 failures involving four out of five components, and
1 catastrophic event. That is, these data can be summarized by a vector
N = (2,2,1,2,1). There was no information about the observation time, we
suppose a window T = 1 (year).

The 95% UPB of the number of catastrophic event over the future time
Tnew ∈ {0.5,1,2,3,4,5} is found by finding the smallest integer b0.05 satisfying
(5.1.1) with respect to the distribution defined in (5.1.1), where Nm(T)= n = 1
and T = 1. Table 5.9 presents these values of UPB considering several choices
of prior: a G (0,0) prior (corresponding to pivotal method), a G (0.5,0) prior
(noninformative) and a G (4.67,4.48) prior (which is suggested by Engelhardt
in [10]). We also calculate the average number of catastrophic events based
on its predictive distribution. The obtained results show that in a short time
period of prediction, the UPB makes no numerical difference. However, these
value make a larger difference as the future observation time increases. The
pivotal method tends to highest bound.

Tnew(years)

Pivotal method G (0.5,0) prior G (4.67,4.78) prior
G (0,0) prior

UPB Mean UPB Mean UPB Mean
0.5 2 0.5 3 0.75 2 0.49
1 4 1.0 5 1.5 3 0.98
2 7 2.0 9 3.0 5 1.96
3 10 3.0 13 4.5 7 2.94
4 13 4.0 17 6.0 9 3.92
5 16 5.0 21 7.5 11 4.90

Table 5.1: The 95% UPB and the posterior meand of the number of catastrophic
events involving EDG at US NPP.

5.3 Prediction with mapped data

The CCFs are rare events. In practice, for a given size of a system, few num-
ber of CCFs are observed. Therefore the accuracy of the inference will be
poor. In order to overcome this problem, a strategy is to use failure informa-
tion coming from systems of different size. This strategy has been introduced
by Mosleh et al. [36], it is called mapping. The principle is to project the
available data from different size systems to a given target size system. If
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the projection is from a bigger size system compared to the target size sys-
tem, the procedure is called mapping up. Conversely, if the projection is from
a smaller size system compared to the target size system, the procedure is
called mapping down. Then the inference can be driven on systems consid-
ered as being of the same size. Many rules has been proposed for mapping
CCF data. They are expressed through different approaches: probability, rate
or count. Some of them are presented in the sequel considering the count ap-
proach.

5.3.1 Mapping down rules

Suppose that we would like to make inference on a system of size k and that
the available data are from a system of a bigger size m, m > k. The rules for
mapping down are firstly introduced in [36] for systems with specific sizes.
In particular, the authors gave the rules for mapping down data from the
systems of the size m = 2,3,4 to the system of the size k = 1,2,3. These rules
are reproduced in Table 5.2. The idea is to distribute Ni|m, the number of
CCF events of order i from the system of size m, to N j|k, the number of CCF
events of order j from the system of target size k, where j É i. The portion of
Ni|m contributing to N j|k is defined based on the possibility that a CCF event
of order i from the system of size m could bring to the CCF event of order j
from the system of size k.

m/k 3 2 1

4

N1|3 = 3
4 N1|4 + 1

2 N2|4
N2|3 = 1

2 N2|4 + 3
4 N3|4

N3|3 = 1
4 N3|4 +N4|4

N1|2 = 1
2 N1|4 + 2

3 N2|4 + 1
2 N3|4

N2|2 = 1
6 N1|4 + 1

2 N2|4 +N3|4

N1|1 = 1
4 N1|4 + 1

2 N2|4
+ 3

4 N3|4 +N4|4

3
N1|2 = 2

3 N1|3 + 2
3 N2|3

N2|2 = 1
3 N2|3 +N3|3

N1|1 = 1
3 N1|3 + 2

3 N2|3
+ N3|3

2 N1|1 = 1
2 N1|2 +N2|2

Table 5.2: Mapping down rules for systems of the sizes up to 4

In [67], Vaurio propose to map down the data from a system of size m+1 to
the system of size m by a general formula resting on rate, which is equivalent
to

Ni|m = m+1− i
m+1

Ni|m+1 + i+1
m+1

Ni+1|m+1, i = 1, . . . ,m. (5.3.1)

By repeating (5.3.1), we can obtain the mapping down rules for the data from
any system to the systems with smaller size. Applying this rule to m = 2,3,4
and k = 1,2,3 we get the same formulas as presented in Table 5.2.

Based on hypergeometric sampling, Kvam [21] provide a general expres-
sion for mapping down rules as

N j|k =
m∑

i=1
C j,iNi|m, j = 1, ...,k, (5.3.2)
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where

C j,i =
C j

i Ck− j
m−i

Ck
m

I( jÉiÉm−k+ j). (5.3.3)

Assigning m = 2,3,4 and k = 1,2,3 again, we achieve the same formulas as in
Table 5.2. That means these three approaches are consistent.

The mapping down transformation can be expressed on the form of ma-
trix notations. For example, the mapping down rule from the system of 4
components to the system of 3 components can be rewritten as

N1|3
N2|3
N3|3

=
3

4
1
2 0 0

0 1
2

3
4 0

0 0 1
4 1




N1|4
N2|4
N3|4
N4|4

 .

The general formula will be N•|k = Qk×mN•|m, where N•|k = (N1|k, . . . , Nk|k)′,
N•|m = (N1|m, . . . , Nm|m)′, and Qk×m is a transformation matrix. Each element
qi j in Qk×m is calculated by qi j = C j,i where C j,i is defined in (5.3.3). That
is to say, the existing mapping down rules are based on hypergeometric sam-
pling with the transformation matrix Qk×m defined based on (5.3.3).

Going from one size to another means losing information. One can imag-
ine finding the best matrix in order to maintain the level of information in the
mapping of operation. In that case, the transformation matrix Qk×m could be
defined in a different way. This problem has not been studied yet in the liter-
ature.

5.3.2 Mapping up rules

Unlike the mapping down rule, mapping up is much more challenging be-
cause it is obviously an extrapolation; it requires additional assumptions or
even parameters to transfer the data from systems of smaller size to the sys-
tems of larger size. In this context, we suppose that the existing data from
a system of size k are mapped up to a system of size m which is the target
system size where m > k. There are a number of applicable methods to make
upward data transformation presented in the literature such as the BFR-
indirect (BFR-INDIR) method (Mosleh et al. [36]), the BFR- mapped (BFR-
MAP) method (Kvam [21]) and the method of using mapping up ratio (Vaurio
[67]). These methods are described in the following.

BFR-INDIR

In the BFR-INDIR method (Mosleh et al. [36]), no specific mapping rule is
given for an arbitrary choice of k and m, but plausible transformation are
identified only for cases which k = 1,2,3 and m = 2,3,4. Table 5.3 reproduces
these rules for systems of the size from 2 to 4.

101

System Reliability : Inference for Common Cause Failure Model in Contexts of Missing Information Huu Du Nguyen 2019



CHAPTER 5. METHODS OF PREDICTION FOR MULTIPLE-FAILURE EVENTS

Ideally, the BFR-INDIR mapping up rules are based on the BFR equa-
tions in each system. The parameters of the model are supposed to be inde-
pendent of the system size. By expressing the relation between the frequency
of CCF events that occur within each system and the parameters of the BFR
model, we can derive the mapping rules from system to system. However, in
many situations, it is difficult to write down the Ni|m as a function of N j|k
based on the intermediate relationship with BFR parameters. As a conse-
quence, the BFR-INDIR method is only applied for a few systems with small
size. Other limitations of the method has been also discussed by Kvam [21].

BFR-MAP

To avoid the excessive dependence on BFR model, Kvam [21] introduces the
new BFR-MAP method. The idea is to calculate the conditional probability
of the event that j components fail in the system of size m, given that i com-
ponents in the system of size k failed, j Ê i. In particular, this probability is
equal to C j−i

m−k p̂ j−i(1− p̂)(m−k)−( j−i), i É j É m− k− i, where p̂ is an estimate
of the probability that each component fails due to a shock (it is independent
from the system size). In this method, the author also considers a practical
situation that the shock that causes no failure in the system of size k could
potentially cause from zero to m− k failed components in the system of size
m. Then, the following steps of the BFR-MAP method are suggested.

• Estimate p, a parameter of BFR model.

• Estimate N(k)
0 , the number of events that a non-lethal shock causes no

failure in the original system, by the formula

N̂0|k =
k∑

i=1

i
k

(1− p̂)k

p̂
Ni|k. (5.3.4)

The reason for the formula of N(k)
0 in (5.3.4) is to make sure that E(N̂0|k| p̂)=

µT(1− p̂)k, which is the mean of Possion distribution with parameter
µT(1− p̂)k, where T is the observation time.

• Map data from the system of size k up to the system of size m by the
formula

N j|m = N̂0|kC j
m−k p̂ j(1− p̂)(m−k)− j1( jÉm−k) (5.3.5)

+
min{ j,k}∑

i=max{1,k+ j−m}
Ni|kC j−i

m−k p̂ j−i(1− p̂)(m−k)−( j−i).

The first term in (5.3.5) is the contribution of N0|k while the others is
the contribution of Ni|k to N j|m based on the conditional probability
mentioned above.

Some representations of 5.3.5 for the system of the size from 2 to 4 are
presented in Table 5.3.
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Modification of BFR-INDIR

In the BFR-INDIR method, the following relation holds: Nm+1|m+1 = pnm|m
for all the system size m Ê 1. That means the parameter p is independent
from the system size. This could be not always true in practice. Vaurio [67]
makes this assumption more realistic by introducing a new parameter as

Nm+1|m+1 = ηm/m+1Nm|m ∀m Ê 1. (5.3.6)

where the mapping up ratio ηm/m+1 represents the relation between Nm+1|m+1
and Nm|m. This new parameter is allowed to vary from system to system. By
substituting successively the relation in (5.3.6) into (5.3.1) for i = m,m−1,m−
2, . . . , we obtain all data for the next higher system. Table 5.3 shows the map-
ping up formulas based on the mapping up ratio for systems of the size form
2 to 4.

Method 3→ 4 2→ 4

BFR-INDIR

N1|4 = 4
3 (1− p)N1|3

N2|4 = pN1|3 + (1− p)N2|3
N3|4 = pN2|3 + (1− p)N3|3
N4|4 = pN3|3

N1|4 = 2(1− p)2N1|2
N2|4 = 5

2 p(1− p)N1|2 + (1− p)2N2|2
N3|4 = p2N1|2 +2p(1− p)N2|2
N4|4 = p2N2|2

Modified BFR-IDIR

N1|4 = 4
3 N1|3 − 4

3 N2|3 +4(1−η3/4)N3|3
N2|4 = 2N2|3 −6(1−η3/4)N3|3
N3|4 = 4(1−η3/4)N3|3
N4|4 = η3/4N3|3

N1|4 = 2n(2)
1 −4(2−3η2/3 +η2/3η3/4)N2|2

N2|4 = 6(1−2η2/3 +η2/3η3/4)N2|2
N3|4 = 4(1−η3/4)η2/3N2|2
N4|4 = η2/3η3/4N2|2

BFR-MAP

N1|4 = (1− p)3(1
3 N1|3 + 2

3 N2|3 +N3|3)

+ (1− p)N2|3
N2|4 = pN1|3 + (1− p)N2|3
N3|4 = pN2|3 + (1− p)N3|3
N4|4 = pN3|3

N1|4 = 2(1− p)3(1
2 N1|2 +N2|2)+ (1− p)2N1|2

N2|4 = p(1− p)2(1
2 N1|2 +N2|2)+2p(1− p)N1|2

+ (1− p)2N2|2
N3|4 = p2N1|2 +2p(1− p)N2|2
N4|4 = p2N2|2

Table 5.3: Mapping up rules for systems of the sizes up to 4

The modified BFR-INDIR method has a disavantage that we have to eval-
uate subjectively the mapping ratio from system to system, which does not
depend on the observed data. The implementation of BFR-INDIR is compli-
cated when the size of systems involved is large. Moreover, in this method,
the effect of the non-lethal shocks that cause no failure in the original system
is not considered. Therefore, the BFR-MAP method is applied in our study.

Similar to the previous section„ we can express the formulas presented
in Table 5.3 in the matrix form. For example, the mapping up rule for the
systems of the size from 3 to 4 in the BFR-MAP method can be rewritten by

N1|4
N2|4
N3|4
N4|4

=


1
3 (1− p)3 2

3 (1− p)3 +1− p (1− p)3

p 1− p 0
0 p 1− p
0 0 p


N1|3

N2|3
N3|3

 .
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Or, in a general case, N•|m = Qm×kN•|k, where N•|k = (N1|k, . . . , Nk|k)′, N•|m =
(N1|m, . . . , Nm|m)′, and Qm×k is a transformation matrix. Finding a matrix
that preserves the information when projecting data from a system to others
in this case means either using another way to find an optimal value of p
or using a new form for Qm×k. This could be an interesting problem for the
futher research.

5.3.3 Illustrative example

In this Section, we illustrate the use of mapped data to make predictive in-
ference on the number of catastrophic events based on a data set involving
simultaneous failures of EDGs introduced in [25]. The second column in Ta-
ble 5.4 shows this data set, in which the system size ranges from 2 to 5. In
[25], the authors use these data to predict the number of catastrophic events
for a 2-component system. As a result, only mapping down rules are applied.
We now suppose that the data are used for predicting the number of catas-
trophic events for a 4-component system. By this consideration, the data from
the systems of size 2 and 3 need to be mapped up while the data from the sys-
tem of size 5 need to be mapped down. Moreover, in [25], instead of treating
directly the data obtained after mapping as the complete data, the authors
suggested to manipulate the time on test and fix the number of failures to
what was observed in the data.

In the following, we will treat the data obtained after mapping directly
as complete data. The method suggested in [25] is also described and applied
to compare the obtained results from two methods. For the data set in Table

System size Data Data mapped to a 4-component system
2 (17,4) (1.94,9.18,14.7,7.66)
3 (9,5,6) (3.58,7.08,5.48,4.68)
4 (11,10,7,6) (11,10,7,6)
5 (2,2,1,2,1) (1.4,2,1.8,2.4)

Table 5.4: Common cause failure data for EDGs at US NPP

5.4, the data from the systems of the size 2 and 3 are mapped up using the
formulas in Table 5.3, where the probability pi from i-component system is
estimated using an EM algorithm as discussed in Chapter 2: p̂2 = 0.74 and
p̂3 = 0.52.

The data from the system of size 4 do not need to be translated. The data
from the system of size 5 are mapped down using the following formulas,
which come from (5.3.2) with k = 4 and m = 5:

N1|4 = 4
5

N1|5 + 2
5

N2|5, N3|4 = 2
5

N3|5 + 4
5

N3|5,

N2|4 = 3
5

N2|5 + 3
5

N3|5, N4|4 = 1
5

N4|5 +N5|5.
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Type of observed
failure Frequency Time on

test
Contribution

Transformed
time on test

2 out of 2 14 T2 0.742 1.82T2
3 out of 3 6 T3 0.52 1.92T3
4 out of 4 6 T4 1 T4
4 out of 5 2 T5 1/5 5T5
5 out of 5 1 T5 1 T5

Table 5.5: Transformed time on test for EDG failure data into the 4-component sys-
tem

The results of mapped data are presented in the third column in Table 5.4.
There is no information about the observation time of each system in the data
set in Table 5.4: but we know that these failure data concern CCF events
from 1980 to 1995 [25]. Therefore, we suppose that the time window for each
system is T j = 15 (years), j = 2, . . . ,5 , where T j represents the observation
time for the system of size j.

There are two ways to deal with the mapped data in Table 5.4. The first
way is to use directly the mapped data as complete data. By this method, in
a period of 60 years we count the CCF data of N= (17.92,28.26,28.98,20.74),
which is the sum of mapped data in the third column.

The second way is to use the transformed time method suggested by
Kvam and Miller [25]. Detail of this method is as follows.

The time on test has been transformed so that the number of failures is
fixed as observed from the original data. This is done based on an intuitive
appealling property of Poisson distribution. That is, the data generated by
a Poisson process with constant rate θ over the time observation T1 can be
regarded as the data counted by a process with rate T1θ/T2 over the time T2.
As a result, mapping pN j|m CCFs to the period T is equivalent to mapping
N j|m failures to the period T/p, where p is a mapped weight, N j|m is the
number of CCFs need to be mapped.

In our case, for 2-component system, 14 failures of CCF of order 2 is
mapped to N4|4 = p̂2

2N2|2 = 7.66 CCFs of order 4 in the 4-component system
over the time T2. This is equivalent to transform this 14 failures to 14 fail-
ures in the 4-component system over the time T2/p̂2

2 = 1.82T2. It is similar
for other systems.

Table 5.5 shows the transformed time on test for EDD failure data into
the 4-component system. In Table 5.5, we only show the failures that con-
tribute to the CCFs of order 4 in 4-component system, i.e, catastrophic events,
because for the events that do not contribution to CCFs of order 4 in 4-
component system, the time on test will be zero.

From Table 5.5, we count 29 failure events in the total time

T = 1.82T2 +1.92T3 +T4 +6T5 = 161 (years).
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ä

The UPBs of the number of catastrophic events based on the pivotal
method and the Bayesian method using both the direct mapped data and the
transformed time data are displayed in Table 5.6. It can be seen that when
the future time short compared the total time considered, the obtained UPBs
are close for different choices of hyperparameters. Moreovere, the UPBs us-
ing the transformed time data are slightly smaller compared to those using
directly data from mapping procedure.

Tnew (years)
G (1,0) prior G (0.5,0) prior G (4.67,4.78) prior

Direct Transformed time Direct Transformed time Direct Transformed time

UPB Mean UPB Mean UPB Mean UPB Mean UPB Mean UPB Mean

1 2 0.36 1 0.19 2 0.35 1 0.18 2 0.39 1 0.20
2 2 0.72 2 0.37 2 0.70 2 0.36 2 0.78 2 0.40
5 4 1.81 3 0.93 4 1.77 3 0.91 5 1.96 3 1.01
10 7 3.62 4 1.86 7 3.54 4 1.83 8 3.92 5 2.03
15 10 5.4 6 2.79 10 5.31 6 2.74 11 5.88 6 3.04

Table 5.6: 95% The UPB and posterior mean of the number of catastrophic events
for a 4-component system based on data set in Table 5.4.

5.4 Prediction with uncertain data

In this Section, the data with uncertainties are treated to predict the number
of catastrophic events using the Bayesian method. We consider three scenar-
ios of data with uncertainties

1. uncertainty on observed count,

2. uncertainty on exposure time, and

3. uncertainty on both observed data and exposure time.

The data with uncertainties will be denoted by Nu.

5.4.1 Uncertainty on observed data

As discussed in Chapter 1 and Chapter 3, the uncertainty on observed count
means that we do not know exactly the number of failed components in each
CCF event. As a consequence, the exact number of catastrophic events over
the observation time T is also unknown.

We will apply the impact vector method to predict the UPB of Nm(Tnew).
Suppose that the available information is a set of impact vectors. We assume
k impact vectors I j = (p0, j, . . . , pm, j), j = 1, . . . ,k, where pm, j is the probability
that the CCF event in the jth-observation is a catastrophic events.
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In fact, the exact number of catastrophic events is not observed. We only
know that it is a number between 0 and k. The number of catastrophic events,
say Nm,u(T), is the sum of k independent Bernoulli random variables Nm, j
with parameter pm, j. Therefore, the distribution of this numbers has support{
0,1, . . . ,k

}
. Let us denote ζν = P

(∑k
j=1 Nm, j = ν

)
.

The event
{
Nm, j = 0

}
means that no catastrophic event occurs. The prob-

ability of this event is P(Nm, j = 0)= 1− pm, j. Thus,

ζ0 = P
( k∑

j=1
Nm, j = 0

)= m∏
j=1

(1− pm, j)

.
In the same way,

{∑k
j=1 Nm, j = 1

}
means that amongst the k CCF events,

one event i is a catastrophic event, probability pm,i and the other CCF events
are not catastrophic, probability

∏
j 6=i pm, j. Then ζ1 =∑k

i=1 pm,i
∏

j 6=i(1−pm, j).
Repeating the same reasoning leads to the complete expression of the

distribution of Nm,u(T)=∑k
j=1 Nm, j as:

ζ0 =
k∏

i=1
(1− pm,i),

ζ1 =
k∑

i=1
pm,i

k∏
j=1, j 6=i

(1− pm, j),

ζ2 =
k∑

i=1

k∑
j=i+1

pm,i pm, j

k∏
s=1,s 6=i, j

(1− pm,s), (5.4.1)

...

ζk =
k∏

i=1
pm,i.

If a specific number ν of catastrophic events is recorded, the posterior
distribution of Λ is a Gamma distribution with parameters (ν+α0,T +β0),
denoted by πν(Λ), where (α0,β0) are the hyperparameters of the prior for Λ.

Then, the posterior distribution of Λ in a general case can be expressed
as:

π(Λ | Nm,u(T)) =
k∑

ν=0
(Λ | Nm,u(T)= ν)P(Nm,u(T)= ν)

=
k∑

ν=0
ζνπν(Λ). (5.4.2)

This is a mixture of gamma distribution with weights ζν, ν= 0, . . . ,k.
The posterior predictive distribution of Nm(Tnew) given Nm,u(T) is now
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defined as:

P(Nm(Tnew)= z | Nm,u(T))=
∫

P(Nm(Tnew)= z | Nm,u(T),Λ)π(Λ | Nm,u(T)) dΛ

=
k∑

ν=0
ζν

∫
P(Nm(Tnew)= z | Nm,u(T),Λ)πν(Λ) dΛ

=
k∑

ν=0
ζνP(NBν(Tnew)= z), (5.4.3)

where

NBν(Tnew)∼NB (α0 +ν,
β0 +T

β0 +T +Tnew
).

That means the posterior predictive distribution of Nm(Tnew) is a mixture
of negative binomial distributions. A 100%(1−γ) UPB of Nm(Tnew) is the
smallest integer bγ satisfying (5.1.1) with respect to the posterior predictive
distribution of Nm(Tnew) defined in (5.4.3).

Example

To illustrate the method, we consider a set of data that includes k = 5 multiple-
failure events from a system of 4 EDGs provided in [66]. The observation
time is assumed to be one unit of time, say T = 1 (year). The data set is dis-
played in Table 5.7. From the impact vectors in Table 5.7 and according to

Events (i) p1,i p2,i p3,i p4,i
1 0.0 0.9 0.1 0.0
2 0.0 0.45 0.5 0.05
3 0.0 0.25 0.5 0.25
4 0.0 0.5 0.5 0.0
5 0.0 0.25 0.5 0.25

Table 5.7: The failure data from a system of 4 diesel generators

(5.4.1) we can calculate the distribution of Nm,u(T) as in Table 5.8. Then, the
posterior predictive distribution in (5.4.3) is computed. The 95% UPB of the
number of catastrophic events for different values of future time is calculated
as the smallest value b0.05 satisfying (5.1.1) with respect to this distribution.
Similar to previous the section, we consider three situations of the prior dis-
tribution. The obtained results are shown in Table 5.7. In general, when
Tnew is small compared to T, the three prediction limits are very close. How-
ever, when the new time period is large compared to the observation time,
the choice of the prior hyperparameters has an important influence.
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Nm,u(T) 0 1 2 3
ζ 0.534375 0.384375 0.078125 0.003125

Table 5.8: The distribution of Nm(T) based on the data in Table 5.4.1.

Tnew(years) G (1,0) prior G (0.5,0) prior G (4.67,4.78) prior
0.5 3 2 2
1 5 4 3
2 10 8 5
3 14 11 7
4 18 15 9
5 23 18 10

Table 5.9: 95% UPB of the number of catastrophic events based on data in
Table 5.7.

5.4.2 Uncertainty on the exposure time

The uncertainties on data are sometimes related to the observation time. In
these situations, one can be certain about the observed count but not on the
collecting time.

Let Tu denote the unknown time window and suppose that the uncer-
tainty on Tu is characterized by a subjective probability distribution h(t).

Denote Nm(Tu) the number of catastrophic events in this time window.
The distribution of this observation is

P
(
Nm(Tu)= n |Λ)= ∫ +∞

0

(Λt)n

n!
e−Λt h(t) dt (5.4.4)

With a G (α0,β0) prior distribution for Λ, the Bayes’ theorem leads to

π
(
Λ | Nm(Tu)= n

) ∝ π
(
Nm(Tu)= n |Λ)

π(Λ)

∝
(∫ +∞

0

(Λt)n

n!
e−Λt h(t) dt

)
β
α0
0

Γ(α0)
Λα0−1e−β0Λ

∝
∫ +∞

0

tnβ
α0
0

n!Γ(α0)
Λn+α0−1e−Λ(β0+t) h(t) dt (5.4.5)

Then the posterior distribution of Λ is now an average distribution with re-
spect to h(t):

Λ | Nm(Tu)= n ∼
∫ +∞

0
G (n+α0, t+β0) h(t) dt. (5.4.6)
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Using this posterior, the posterior predictive distribution of Nm(Tnew) is

Pr (Nm(Tnew)= z | Nm(Tu)= n)

=
∫

Pr (Nm(Tnew)= z | Nm(Tu)= n,Λ)π(Λ | Nm(Tu)= n) dΛ

=
∫

(ΛTnew)z

z!
e−ΛTnew

(∫ +∞

0

(β0 + t)n+α0

Γ(n+α0)
Λn+α0−1e−(β0+t)Λ

)
dΛ

=
∫ +∞

0

(
(β0 + t)n+α0 T z

new

z! Γ(n+α0)

∫
Λz+n+α0−1e−Λ(Tnew+t+β0) dΛ

)
h(t) dt

(5.4.7)

The integration with respect to Λ in the last equation in (5.4.7) is calculated
similarly in (5.2.4), relying on the negative binomial distribution with param-

eters
(
n+α0,

β0 + t
β0 + t+Tnew

)
. That means

Nm(Tnew) | Nm(Tu)= n ∼
∫ +∞

0
NB

(
n+α0,

t+β0

Tnew + t+β0

)
h(t) dt. (5.4.8)

The 100%(1−γ) UPB of Nm(Tnew) is the smallest integer bγ satisfying
(5.1.1) with respect to the distribution in (5.4.8) found by using numerical
intergration.

There is a way to avoid the numerical intergration in (5.4.8) by using an
approximation for the posterior distribution of Λ. That is, we replace the dis-
tribution in (5.4.6) by another distribution with the same mean and variance.
Let Eπ1(Λ) and Vπ1(Λ) denote the posterior mean and the posterior variance
of Λ with respect to π1, where π1 stands for the posterior distribution in
(5.4.6), respectively. Matz and Picard [32] advocate to approximate the pos-
terior distribution Λ | Nm(Tu)= n by a Gamma distribution with parameters
(α1,β1) where

α1 =
E2
π1

(Λ)

Vπ1(Λ)
and β1 =

Eπ1(Λ)
Vπ1(Λ)

. (5.4.9)

This choice of (α1,β1) is to make sure that the approximate distribution G (α1,β1)
has the same mean Eπ1 and variance Vπ1 .

The Appendix E shows that these value can be approximated by:
Eπ1(Λ)≈ n+α0

Eh(T)+β0

(
1+ Vh(t)

(Eh(T)+β0)2

)
,

Vπ1(Λ)≈ n+α0 + (n+α0)2

(Eh(t)+β0)2

(
1+ 3Vh(t)

(Eh(t)+β0)2

)
− E2

π1
(Λ),

(5.4.10)

where Eh(t) and Vh(t) denote the mean and the variance of Tu with respect
to the distribution h(t), respectively.
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Replacing the posterior distribution in (5.4.6) by its approximate distri-
bution above, the posterior predictive distribution of Nm(Tnew) is defined as
in the case of complete data, which leads to

Nm(Tnew) | NmT(u)= n ∼ NB
(
α1,

β1

β1 +Tnew

)
. (5.4.11)

In the below example, we compare the UPB of Nm(Tnew) using both the
direct numerical integration method and the approximation method.

Example

We consider again the data set applied in section 5.2.3 with no hypothesis
made on the observation time. That is, one catastrophic event has been re-
ported but we do not know the observation time. According to the discussion
in [32], we characterize the uncertainty on Tu by a lognormal distribution
h(t).

With a little information that the failure data of emergency diesel gen-
erators is collected from US nuclear power-plants over the past 20 years, we
assume a finite support lognormal distribution for h(t) with median 10 and er-
ror factor 1.5. With this distribution of Tu, we can calculate the approximate
Gamma distribution for the posterior distribution of Λ with the parameters
denfined in (5.4.9) and (5.4.10).

For example, when a Gamma distribution with parameters (0.5,0) is cho-
sen as a prior distribution, we obtain α1 = 1.32 and β1 = 8.54. Figure 5.1
displays the density function of the posterior distribution Λ | Nm(Tu) = n
and the corresponding approximate Gamma distribution. The 95% UPBs of
Nm(Tnew) using both the exact posterior and the approximate posterior are
given in Table 5.10. We also consider three situations of the piror distribu-
tion. It can be seen that the UPBs using both kinds of posterior distribution
are almost the same.

Tnew (years)
G (1,0) prior G (0.5,0) prior G (4.67,4.78) prior

Exact prior Approximation Exact prior Approximation Exact prior Approximation

1 1 1 1 1 2 2
2 2 2 2 2 3 3
5 4 4 3 3 5 5
10 6 6 5 5 9 9
15 9 9 7 7 14 13

Table 5.10: 95% UPB of the number of catastrophic events for a 4-component system
based on data set section 5.2.3 .

5.4.3 Uncertainty on both observed data and exposure time

In this section, we consider the highest level of uncertainties of data: uncer-
tainties on both observed count and exposure time. We suppose that from
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Figure 5.1: The posterior distribution of Λ

k CCF events, the observed count of catastrophic events is represented by
the probabilities pm, j, j = 1, . . . ,k while the time window Tu is not reported.
Similar to the section 5.4, the number of observations of the catastrophic
event, Nm,u, can take the value in

{
0,1, . . . ,k

}
with corresponding probabili-

ties ζν = P(Nm,u = ν) defined in (5.4.1). The uncertainties on the time window
is also characterized by a distribution h(t).

In this case, the distribution of the observation can be written as:

P(Nm,u(Tu) |Λ)=
k∑

ν=0
ζν

∫ +∞

0

(Λt)ν

ν!
e−Λt h(t) dt (5.4.12)

Suppose that Λ ∼ G (α0,β0). Applying the Bayes’ theorem, we obtain

π(Λ | Nm,u(Tu)) ∝ P(Nm,u(Tu) |Λ)π(Λ)

∝
(

k∑
ν=0

ζν

∫ +∞

0

(Λt)ν

ν!
e−Λt h(t) dt

)
β
α0
0

Γ(α0)
Λα0−1e−β0Λ

∝
k∑

ν=0
ζν

∫ +∞

0

tνβα0
0

ν!Γ(α0)
Λν+α0−1e−Λ(β0+t) h(t) dt (5.4.13)

Therefore, the posterior distribution of Λ is

Λ | Nm,u(Tu) ∼
k∑

ν=0
ζν

∫ +∞

0
G (ν+α0, t+β0) h(t) dt. (5.4.14)
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The posterior predictive distribution of Nm(Tnew) is

Pr (Nm(Tnew)= z | Nm(Tu))

=
∫

Pr
(
Nm(Tnew)= z | Nm,u(Tu),Λ

)
π(Λ | Nm,u(Tu)) dΛ

=
k∑

ν=0
ζν

∫
(ΛTnew)z

z!
e−ΛTnew

(∫ +∞

0

(β0 + t)ν+α0

Γ(n+α0)
Λν+α0−1e−(β0+t)Λ

)
dΛ

=
k∑

ν=0
ζν

∫ +∞

0

(
(β0 + t)ν+α0 T z

new

z! Γ(ν+α0)

∫
Λz+ν+α0−1e−Λ(Tnew+t+β0) dΛ

)
h(t) dt

(5.4.15)

The last equation in (5.4.15) shows that

Nm(Tnew) | Nm,u(Tu) ∼
k∑

ν=0
ζν

∫ +∞

0
NB

(
ν+α0,

t+β0

Tnew + t+β0

)
h(t) dt.

(5.4.16)
Numerical integration must be used to find the UPB for the distribution in
(5.4.16). This may be avoided by approximating the posterior distribution
(5.4.14) with a Gamma distribution with the same mean and variance. That
is to say, we advocate using the G (α1,β1) to approximate the posteiror distri-
bution of Λ. The parameters (α1,β1) are also calculated applying the formula
(5.4.9), but the values Eπ1 and Vπ1 should be replaced by the mean Eπ2 and
the variance Vπ2 of Λ with respect to π2, where π2 stands for the posterior
distribution in (5.4.14)). The Appendix E shows that the values Eπ2 and Vπ2

can be approximated by:


Eπ2(Λ)≈ Eζ+γ0

Eh(t)+β0

(
1+ Vh(t)

(Eh(T)+β0)2

)
,

Vπ2(Λ)≈ Eζ+α0 +∑k
ν=0 ζν(ν+α0)2

(Eh(t)+β0)2

(
1+ 3Vh(t)

(Eh(t)+β0)2

)
− E2

π2
(Λ),

(5.4.17)

where Eζ =
k∑

ν=0
νζν. The proof for this approximation is given in the appendix

E.
The posterior predictive distribution of Nm(Tnew) with respect to the ap-

proximated posterior distribution G (α1,β1) is also a negative binomial with

parameters
(
α1,

β1

β1 +Tnew

)
. The procedure to find UPB of Nm(Tnew) is per-

formed similarly to the previos sections.
An example to show the performance of using the approximate distribu-

tion for the posteriror distribution of Λ is given in the next section.
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Figure 5.2: The posterior distribution of Λ

Example

Consider again the failure data of diesel generators presented in Table 5.7.
In section 5.4.1, it is supposed that the time observation is one year. In fact,
the true time window is not reported. We are in the situation that both the
observed count of the catastrophic event and the observation time are uncer-
tain. Similar to previous sections, we suppose a lognormal distribution with
median 10 and error factor 1.5 for Tu.

Based on these data and using a prior distribution G (0.5,0), we can com-
pute the approximate distribution of the posterior distribution ofΛ in (5.4.14),
which is a Gamma distribution with paramters (0.72,3.3).

Figure 5.2 displays the exact posterior distribution of Λ in (5.4.14) and
its approximate distribution. The 95% UPBs of Nm(Tnew) for three choices
of prior distribution are presented in Table 5.11 using both exact posterior
of Λ and its approximation. We can see that the approximate distribution
provides an efficient alternative for the posterior distribution of Λ in making
predictive inference.

Tnew (years)
G (1,0) prior G (0.5,0) prior G (4.67,4.78) prior

Exact prior Approximation Exact prior Approximation Exact posterior Approximation

1 1 1 1 1 2 2
2 2 2 1 1 3 3
5 3 3 3 2 5 5
10 6 6 4 4 9 9
15 8 8 6 6 13 12

Table 5.11: 95% UPB of the number of catastrophic events for a 4-component system
based on data set in Table 5.4.
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5.5 Concluding remarks

We have considered in this chapter the problem of making predictive infer-
ence on the number of catastrophic failures based on several situation of ob-
served data. We have shown that the pivotal method appears as a particular
case of the Bayesian method. The flexibility of the Bayesian scheme allows
us to handle data with uncertainties. The approximate distribution with the
same mean and variance for the posterior is proposed to avoid the numerical
integration. In the context of maaping , the problem of finding a transforma-
tion matrix to best maintain the information could be interesting for futher
research.
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Chapter 6

General conclusion and
perspectives

Throughout this dissertation, we have presented several statistical models
to deal with the problem of analysing CCF events. Different algorithms to
estimate the parameters of the models or to make predictive inference based
on various kind of observed data have been proposed.

In Chapter 2, the full version of Binomial Failure Rate (BFR) model has
been investigated in details. We have considered a practical situation of data
where the independent failures can not be distinguished from the CCF of or-
der 1 as well as the lethal shocks from the CCF involving all the components
of the system. The observed data are then treated as missing data.

An EM algorithm is proposed to obtain the maximum likelihood estimates
of the parameters of the BFR model. In the Bayesian scheme, we have intro-
duced a new distribution, called the modified-Beta distribution to obtain a
conjugate prior distribution for one of the parameters of the model. A sim-
ple strategy for eliciting the hyperparameters of prior distributions is also
investigated.

In Chapter 3, we have studied the α-factor model for data with uncertain-
ties. In the literature, the impact vector method is the most widely used to
handle the data with uncertainties. Using this method, the uncertainties is
represented by an impact vector, which is established based on the assess-
ment of the analysts about the probability of all the possible orders of each
CCF event.

This leads to another uncertainties: the subjectivity of the assessment.
We have provided an example to show the sensitivity of the impact vector
method to the probabilities established on the number of failed components
in each CCF event. In order to avoid this subjective property of the impact
vector method, we have proposed a novel method by introducing a new rep-
resentation of data with uncertainties. By this representation, the analysts
group all possible orders in a CCF event without assuming any probabilities.
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A number of scenarios of this new form of data with uncertainties has been
investigated. We have presented several methods to estimate the α parame-
ters depending on the nature of available data. The proposed methods work
efficiently on simulated data.

In Chapter 4, we have considered the causality-based inference problem
for CCF data, that is to say, the situation where the CCF database includes
not only the order but also the cause of each CCF event. This kind of data
is given in the form of a contingency table. The value in each cell of the
contingency table, corresponding to the number of CCF events of a specific
order triggered off by a specific cause, is modeled with a homogenous Poisson
process (HPP). In many practical situations, the exact value in each cell of
the table is unobservable. Instead, only the margins of the contingency table
are observed. In order to deal with this situation of missing information, we
have suggested a Bayesian approach. The inverse Bayes formula is applied to
obtain the conditional distribution of missing data given the observed data.
Based on this conditional distribution, in some situations when the space of
missing data is not too large, we have obtained an explicit formula for the
posterior distribution of the rates in the HPPs.

In the case where the space of missing data given observed data is large,
we have provided a stochastic version of IBF to obtain samples from the pos-
terior distributions of the parameters. The link between parameters in the α-
decomposition model suggested in [71] and parameters in our proposed model
is pointed out. We have shown that the α-decomposition can be well approxi-
mated by using the estimated parameters in our proposed model.

In Chapter 5, we have studied the problem of making predictive inference
for the number of catastrophic events that could occur in a system. We have
shown that the Bayesian method is a generalization of the classical pivotal
method. That is, by choosing a specific prior in Bayesian methodology, we
obtain the pivotal method. In addition, a number of situations about the un-
certainties on data has been investigated in the prediction. We have found
that the approximative distribution could be applied to avoid numerical inte-
gration with very good performance.

Perspectives

In the present time, we are preparing a paper on the incomplete contingency
table problem handled with the IBF/Metropolis-Hastings algorithm. Many
other directions of research are revealed by the work presented in this dis-
sertation.

We are planning to investigate the mapping technique in a more theoret-
ical way using information theory.

We would like to study in more details the modified-Beta distribution.
For example, finding an approximate distribution could be fruitful to avoid
the numerical integration involved in its use.
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In the Bayesian inference based on the inverse Bayes formula and the
families of Dirichlet distribution like the nested Dirichlet or the grouped
Dirichlet, most of the current studies are using a uniform Dirichlet prior. It
would be interesting to investigate different choices for the parameters val-
ues of those Dirichlet. Finding an noninformative prior distribution for the
mixed representation method is also a promissing project.

In this dissertation, we have covered many situations of missing informa-
tion for the sensitive problem of common cause failure connected with real
life. We hope that our work will be useful for practitioners and will contribute
to the safety of the environment.
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The EM algorithm

The EM (Expectation-Maximization) algorithm is perhaps the most widely
used approach for finding maximum likelihood estimates (MLEs) in the con-
text of missing data. Since the seminal paper of Dempster, Laird and Rubin
[9], many papers and books has been published related to this algorithm. The
book of McLachlan & Krishnan [33] gives a complete overview on the topic.
In the following, we briefly present the algorithm.

Suppose that Yobs is the observed data and that we have some missing
data Z. Yobs are then the incomplete data while (Yobs, Z) represents the com-
plete data.

Let f (yobs | θ) be the distribution of Yobs and suppose that g(z | Yobs;θ),
the distribution of X given Yobs, is available.

Our goal is to find the maximum likelihood estimate of θ, that is to say
the value of θ that maximize logL(θ |Yobs), called the incomplete likelihood.

To this problem, considered as difficult even impossible in some cases, the
idea of EM is to substitute the problem: maximizing the expectation of the
complete likelihood given the incomplete data, that is to say the quantity∫

logL(θ |Yobs, z)g(z |Yobs;θ) dz.

This is performed iteratively, considering the following two steps:

• E-step: Compute the Q function defined by

Q(θ,θ(t)) =
∫

logL(θ |Yobs, z)g(z |Yobs;θ(t)) dz,

= E
[
logL(θ |Yobs, Z) |Yobs,θ(t)

]
where θ(t) is the current estimate of the MLE θ̂.

• M-step: Maximize Q with respect to θ to obtain

θ(t+1) = argmax
θ

Q(θ,θ(t))
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The two-step process is repeated until convergence occurs, i.e. until ‖θ(t+1) −
θ(t)‖ É δ, where δ is a sufficiently small quantity predetermined.

Wu [70] provides conditions for the convergence of the algorithm.
A very convenient feature of the EM algorithm is that when the distribu-

tion belongs to the exponential family, applying EM is simply replacing in the
complete data likelihood, the missing data by their conditional expectation in
the likelihood of the complete data.
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The Inverse Bayesian
formula

The inverse Bayes formulae (IBF) was introduced by Ng [38]. It has been
widely used in a large number of studies, especially in problems of missing
data, see for example [58, 62, 63]. The natural connection between the IBF
and the data augmentation algorithm introduced by Tanner and Wong [60]
is shown in [62]. The summary of this method and its numerous applica-
tions can be found in [41, 59]. For purpose of application, we describe in the
following this formula.

Let Yobs and Z denote the observed data and the missing data, respec-
tively. The set (Yobs, Z) represents the complete data. Let θ stands for the
parameter of interest. Because of the missing data Z, the posterior distri-
bution of θ given the observed data, π(θ|Yobs), is not straightforward to ob-
tain. We assume that both the distribution of θ given the complete data,
i.e. π(θ|Yobs, Z), and the conditional distribution of the missing data, i.e.
π(Z|Yobs,θ), are known.

The goal now is to find π(θ | Yobs) based on these two distributions. In
this context, Yobs can be seen as a given constant throughout, acting like an
indexing parameter in the family of joint distributions for (θ, Z). Therefore,
without loss of generality on the conceptual level we may drop the given Yobs
in all density functions. That is to say, in this abstraction we are going in
the opposite direction of Bayes’ theorem - finding π(θ) (the prior) from π(θ | Z)
(the posterior) with π(Z | θ) (the likelihood).

This naturally leads to the name of Inverse Bayesian formula. Figure B.1
provides a graphical representation of this idea, which is an extension of the
graph presented in [41].

The following equation is a solution to answer the question of how to find
π(θ |Yobs) from π(θ|Yobs, Z) and π(Z|Yobs,θ).

π(θ|Yobs)=
∫
π(θ|Yobs, z)π(z|Yobs)dz. (B.0.1)
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Drop Yobs
Problem of interest

π(Z|θ, Yobs) is known

π(θ|Z, Yobs)
is known

π(θ|Z)
want to find

π(θ) π(θ|Z)

Prior Posterior

Given the likelihood π(Z|θ)

Transferred problem

Bayes’ formula

Inverse Bayes’ formula

Figure B.1: A framework for the idea of the introduction of IBF.

In order to use (B.0.1), the conditional distribution π(z|Yobs) is required. Tian
and Tan [62] provide three versions for π(z|Yobs) described as follows.

Let S(θ|Yobs,Z) and S(Z|Yobs,θ) denote the conditional supports of θ given
Yobs and Z given Yobs, respectively.

According to the Bayes’ theorem, we have

π(θ |Yobs)=
π(θ |Yobs, Z)
π(Z |Yobs,θ)

π(Z |Yobs), θ ∈S(θ|Yobs), Z ∈S(Z|Yobs). (B.0.2)

Intergrating both sides of the identity (B.0.2) with respect to θ on its support
S(θ|Yobs,Z), we obtain the follwing formula:

π(Z |Yobs)=
{∫

S(θ|Yobs ,Z)

π(θ |Yobs, Z)
π(Z |Yobs,θ)

dθ

}−1 ∫
S(θ|Yobs ,Z)

π(θ |Yobs) dθ. (B.0.3)

For any value z0 satisfying S(θ|Yobs,z0) =S(θ|Yobs), we have∫
S(θ|Yobs ,z0)

π(θ|Yobs)= 1.

As a result, the identity (B.0.3) reduces to

π(z0 |Yobs)=
{∫

S(θ|Yobs )

π(θ |Yobs, z0)
π(z0 |Yobs,θ)

dθ

}−1

, (B.0.4)

which is called the point-wise IBF.
Similarly, for any θ0 satisfying S(Z|Yobs,θ0) =S(Z|Yobs), by the symmetry we

obtain the point-wise IBF for θ as,

π(θ0 |Yobs)=
{∫

S(Z|Yobs )

π(Z |Yobs,θ0)
π(θ0 |Yobs, Z)

dZ

}−1

. (B.0.5)
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Substituting (B.0.5) into (B.0.2), we obtain the function-wise IBF for π(Z |
Yobs) as

π(Z |Yobs)=
{∫

S(Z|Yobs )

π(Z |Yobs,θ0)
π(θ0 |Yobs, Z)

dZ

}−1
π(Z |Yobs,θ0)
π(θ0 |Yobs, Z)

. (B.0.6)

By dropping the constant, (B.0.6) can be rewritten in the form

π(Z |Yobs)∝
π(Z |Yobs,θ0)
π(θ0 |Yobs, Z)

, (B.0.7)

which is called the sampling IBF.
After finding π(Z | Yobs), we can achieve π(θ | Yobs) by calculating the in-

tegral in (B.0.1). When the direct calculation is not straightforward, the sam-
pling method can be applied. That is, we obtain π(|Yobs) through simulating
M samples θ(1),θ(2), ..,θ(M) where θ(i) ∼ π(θ|Yobs). In particular, we firstly
simulate M samples z(1), z(2), .., z(M) from π(Z|Yobs) in (B.0.7), and then gen-
erate θ(i) from π(θ|Yobs, z(i)), i = 1, .., M which is supposed to be known.

Consider now the case when Z is a discrete random variable. Suppose
that Z can take the value on the finite domain {z1, ..., z`}. Thus, the integral
in (B.0.1) becomes a finite summation where π(Z|Yobs) is a probability mass
function calculated from (B.0.7). Then, (B.0.1) can be rewritten as

π(θ|Yobs)=
∑̀
i=1

π(θ|Yobs, zi)π(Z = zi|Yobs). (B.0.8)

It should be consider that in general, the values in the set {zi}1,...,` do not
depend on θ, i.e, the condition S(Z|Yobs) =S(Z|Yobs,θ) is satisfied.

The probability π(Z = zi|Yobs) in (B.0.7) can be calculated as follows. Firstly,
choose a value θ0 in the support of θ |YYobs and compute

qi(θ0)= Pr(Z = zi |Yobs,θ0)
π(θ0 |Yobs, zi)

, i = 1, . . . ,`. (B.0.9)

The value qi(θ0) obviously depends on θ0. Apply in the sampling IBF, we
obtain

π(Z = zi|Yobs)=
qi(θ0)∑`

i=1 qi(θ0)
, i = 1, . . . ,`. (B.0.10)

which is independet of θ0.
The posterior distribution π(θ|Yobs) now is calculated as in (B.0.8) with

the weights defined in (B.0.10).
In the case the support of Z is large, the expression of posterior distribu-

tion π(θ|Yobs) is cumbersome. The following procedure is suggested to simu-
late samples from π(θ|Yobs):

• Generate M samples Z(1), . . . , Z(M) where Z(i) ∼ π(Z|Yobs) defined in
(B.0.10).

• Generate M samples θ(1), . . . ,θ(M) with θ(i) ∼ π(θ|Yobs, Z(i)).
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The modified – Beta
distribution

Definition 2. – A continuous random variable X with support ]0,1] follows
a modified–Beta distribution with parameters (α,β,γ,δ) if and only if, its
probability density function is

f (x)= 1
K(α,β,γ,δ)

xα−1(1− x)β−1

(1− (1− x)δ)γ

where x ∈]0,1], δ ∈N, α,β,γ> 0, with γ<α and

K(α,β,γ,δ)=
∫ 1

0

xα−1(1− x)β−1

(1− (1− x)δ)γ
dx.

We denote X ∼ B̃(α,β,γ,δ).

The figure C.1 represents the modified–Beta distribution for different val-
ues of the parameters. From the definition, when δ= 0 or γ= 0, the modified-
Beta distribution is the classical beta distribution.

When δ is large, the distribution can be approximated by the beta distri-
bution.

The condition α > γ is needed for the constant K to be finite. Indeed, for
x ∈]0,1], 1− xm Ê 1− x and (1− xm)δ Ê (1− x)δ, therefore:

(1− x)α−1xβ−1

(1− xm)β
É (1− x)α−γ−1xβ−1.

Integrating both parts, we have:

K(α,β,γ,δ)É B(β,α−γ),

and if α> γ then K(α,β,γ,δ) is finite.
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Figure C.1: Modified–beta distribution. 1. α = 3, β = 18, γ = 0.5, δ = 4; 2.
α = 5, β = 5, γ = 2, δ = 3; 3. α = 6, β = 3, γ = 3, δ = 5; 4. α = 15, β = 4, γ = 5,
δ= 6; 5. α= 4, β= 7, γ= 2, δ= 2.

The nth moment of a r.v. following a modified-Beta distribution with pa-
rameters (α,β,γ,δ) is:

E(X n)= K(α+n,β,γ,δ)
K(α,β,γ,δ)

(C.0.1)

Proposition 9. The normalization constant of modeified truncated distribu-
tion K can be expressed by the combination of Beta function as

K(α,β,γ,δ)= B(α,β)+
∞∑

k=0

γ(γ+1)...(γ+k)
(k+1)!

B(α,β+ (k+1)δ).

Proof. The Maclaurin expansion of the function 1
(1−x)γ with 0< x < 1 is:

1
(1− x)γ

= 1+
∞∑

k=0

γ(γ+1)...(γ+k)
(k+1)!

xk+1.

Since x ∈ [0,1], 1− x and then (1− x)δ also belongs to [0,1]. Substituting x by
(1− x)δ, the expansion becomes:

1
(1− (1− x)δ)γ

= 1+
∞∑

k=0

γ(γ+1)...(γ+k)
(k+1)!

(1− x)(k+1)δ.
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The proposition is achieved by this expansion:

K =
∫ 1

0

xα−1(1− x)β−1

(1− (1− x)δ)γ
dx

=
∫ 1

0
xα−1(1− x)β−1(

1+
∞∑

k=0

γ(γ+1)...(γ+k)
(k+1)!

(1− x)(k+1)δ)dx

=
∫ 1

0
xα−1(1− x)β−1dx+

∞∑
k=0

γ(γ+1)...(γ+k)
(k+1)!

∫ 1

0
xα(1− x)β+(k+1)δ−1dx

= B(α,β)+
∞∑

k=0

γ(γ+1)...(γ+k)
(k+1)!

B(α,β+ (k+1)δ).

Proposition 10. The modified–Beta distribution has at most one mode. Par-
ticularly, with α> γ+1,β> 1, the distribution is unimodal.

Proof. Let us show that ∂
∂x log f (x) is zero at at most one point and the sign

change can only be from positive to negative. Indeed, the logarit of f (x) is:

log f (x)= (α−1)logx+ (β−1)log(1− x)−γlog(1− (1− x)δ)− logK ,

and then
∂

∂x
log f (x)= α−1

x
− β−1

1− x
− δγ(1− x)δ−1

1− (1− x)δ
.

To make the calculation succinct, y is used to refer (1− x) only in this proof.
Since ∂

∂x log f (x) has the same sign as (1− x) ∂
∂x log f (x), it is sufficient to show

that

y
∂

∂x
log f (x)= y(

α−1
x

− β−1
1− x

− δγyδ−1

1− yδ
)

= α−1
x

− δγ

1− yδ
−α−β+δγ+2

= α−γ−1
x

+γ(
1
x
− δ

1− yδ
)−α−β+δγ+2.

is strictly decreasing in x for 0< x < 1. By assumption α−1> γ, the first term
of y ∂

∂x log f (x) is decreasing in x. Therefore it is only need to prove that the
function in brackets is strictly decreasing in x for 0< x < 1. The derivative of
the function g(x)= 1

x − δ
1−yδ is:

g′(x)= δ2x2 yδ−1 − (1− yδ)2

x2(1− yδ)2 .
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Denote the numerrator by Aδ(x), we calculate:

A1(x)= x2 − x2 = 0,

Aδ+1(x)− Aδ(x)= (δ+1)2x2 yδ− (1− yδ+1)2 − [δ2x2 yδ−1 − (1− yδ)2]

= xyδ−1[
x((δ+1)2 y−δ2)− y(2− yδ− yδ+1)

]
= xyδ−1Bδ(x).

where Bδ(x)= x((δ+1)2 y−δ2)− y(2− yδ− yδ+1) which is satisfied:

B1(x)= x(2y−1)− y(2− y− y2)

= y3 − y2 + y−1< 0 ∀y ∈ [0,1],

Bδ+1(x)−Bδ(x)= x
[
(2δ+3)x−2δ−1− yδ+1 − yδ+2]

= xCδ(x).

in which Cδ(x)= [
(2δ+3)y−2δ−1− yδ+1 − yδ+2]

satisfies:

C1(x)= 5y−3− y2 − y3

= x(y2 +2y−3)< 0 ∀y ∈ [0,1],

Cδ+1(x)−Cδ(x)= 2y−2+ yδ+1 − yδ+3

= x(yδ+1 − yδ+2 −2)< 0 ∀y ∈ [0,1].

Evidently, Cδ(x) < 0 for δÊ 1,0 < x < 1, then Bδ(x) < 0 for δÊ 1,0 < x < 1, and
finally Aδ(x) < 0 for δ Ê 1,0 < x < 1. That means g(x) and then y ∂

∂x log f (x)
is also strictly decreasing. Hence it follows that f ′(x) is zero at at most one
point and this function only changed sign from positive to negative.
To locate x0, consider the limit of y ∂

∂x log f (x) as x tends to 0 and 1.
First, the limit

lim
x→1

y
∂

∂x
log f (x)= lim

x→1
(
α−1

x
− δγ

1− yδ
−α−β+δγ+2)=−β+1

is negative as β> 1, then x0 < 1.
Since (1− x)δ = 1−δx+ o(x), we obtain:

y
∂

∂x
log f (x)= α−1

x
− δγ

1− yδ
−α−β+δγ+2

x→0= α−1
x

− δγ

δx+ o(x)
−α−β+δγ+2

x→0= α−γ−1
x

−α−β+δγ+2.

By assumption α> γ+1 and x ∈ (0,1), the last term results in that y ∂
∂x log f (x)

is positive as x → 0. So x0 > 0.
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Metropolis-Hastings
algorithm

The Metropolis-Hastings (M-H) algorithm belongs to the family of the Markov
Chain Monte Carlo (MCMC) methods. The purpose of those methods is to
obtain a realizations sequence of a random variable having a probability dis-
tribution π for which the direct sampling is difficult, even impossible. This
strategy is to build a Markov chain with a stationary distribution which is the
distribution of interest π. In the sequel, we shortly describe the algorithm [7].

As for acceptance-rejection method, the M-H algorithm needs a density
that can generate candidates. The candidate generating density denoted
q(x, y) is chosen as the transition kernel of a Markov chain.

Therefore q(x, y) describes the movement from a state x to a state y and
q(x, y) is such that

∫
q(x, y)dx = 1.

If q(x, y) satisfies the reversibility condition:

π(x)q(x, y)=π(y)q(y, x)

the Metropolis algorithm is described as follows:
Given that the chain is in the state x(t) = x,

• Generate y∗ ∼ q(x, y),

• If π(y∗)>π(x), choose x(t+1) = y∗; else choose x(t+1) = x.

The choice depends on the ratio
π(y∗)
π(x)

.

If
π(y∗)
π(x)

> 1, x(t+1) = y∗, else x(t+1) = x.

Then the probability of move also called the probability of acceptance, can
be described as:

α(x, y)= min
{

1,
π(y)
π(x)

}
.
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The transition probability pM(x, y) in the Metropolis algorithm are then
expressed as:

pM(x, y)= q(x, y) α(x, y).

In the case where q(x, y) is an arbitrary transition probability that means
a transition probability which does not necessarily satisfy the reversibility
condition, Hasting [13] suggests to take:

α(x, y)=


min

{
π(y)q(y, x)
π(x)q(x, y)

, 1
}

if π(x)q(x, y)> 1,

1 if π(x)q(x, y)= 0.

The M-H algorithm is then:
Given x(t),

1. generate y∗ ∼ q(x(t), y),

2. choose

x(t+) =


y∗ with probability ρ(x(t), y∗)

x(t) with probability 1−ρ(x(t), y∗)

where ρ(x, y)=min
{
π(y)q(y, x)
π(x)q(x, y)

, 1
}
.

To summarize, the M-H algorithm in the algorithmic form is:
Starting from an arbitrary value x(0):

• repeat for j = 1, . . . , M

• generate y from q(x( j), .) and u from U [0,1],

– if u Éα(x( j), y), set x( j+1) = y,

– else, set x( j+1) = x( j)

• return the values x(1), . . . , x(M).
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Appendix E

Mean and variance of the
posterior distribution of Λ

E.1 Uncertainties on both overved count and ob-
servation time

Recall that the posterior distribution of Λ (5.4.14)in the case of uncertainties
on both observed count and observation time, which is denoted by π2, is

Λ | Nm,u(Tu) ∼
k∑

ν=0
ζν

∫ +∞

0
G (ν+α0, t+β0) h(t) dt.

The posterior mean is

Eπ2(Λ) =
∫
Λ

(
k∑

ν=0
ζν

∫ +∞

0
G (ν+α0, t+β0) h(t) dt

)
dΛ

=
∫ +∞

0

(
k∑

ν=0
ζν

∫
ΛG (ν+α0, t+β0) dΛ

)
h(t) dt

=
∫ +∞

0

(
k∑

ν=0
ζν
ν+α0

t+β0

)
h(t) d(t)

= Eh

(
Eζ+α0

t+β0

)
. (E.1.1)

Upon expanding the function
Eζ+α0

t+β0
of t in a second-order Taylor series

about the meand Eh(t) of t we obtain

1
t+β0

= 1
Eh(t)+β0

− (t−Eh(t))
1

(Eh(t)+β0)2 + 1
2

(t−Eh(t))2 2
(Eh(t)+β0)3 .
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Therefore, the posterior mean of Λ is

Eπ2(Λ) = (Eζ+α0) Eh

(
1

t+β0

)
= Eζ+α0

Eh(t)+β0

(
1+ Vh(t)

(Eh(t)+β0)2

)
. (E.1.2)

The posterior variance of Λ is

Vπ2(Λ) = Eπ2(Λ2)−E2
π2

(Λ)

=
∫
Λ2

(
k∑

ν=0
ζν

∫ +∞

0
G (ν+α0, t+β0) h(t) dt

)
dΛ−E2

π2
(Λ)

=
∫ +∞

0

(
k∑

ν=0
ζν

∫
Λ2G (ν+α0, t+β0) dΛ

)
h(t) dt−E2

π2
(Λ)

=
∫ +∞

0

(
k∑

ν=0
ζν

(
ν+α0

(t+β0)2 +
(ν+α0

t+β0

)2
))

h(t) d(t)−E2
π2

(Λ)

= Eh

(
k∑

ν=0
ζν

(
ν+α0

(t+β0)2 +
(ν+α0

t+β0

)2
))

−E2
π2

(Λ)

= Eh

(
Eζ+α0 +∑k

ν=0 ζν(ν+α0)2

(t+β0)2

)
−E2

π2
(Λ). (E.1.3)

Using a second-order Taylor series expansion of the function
1

(t+β0)2 about

the mean Eh(t) of t, we have

1
(t+β0)2 = 1

(Eh(t)+β0)2 − (t−Eh(t))
2

(Eh(t)+β0)3 + 1
2

(t−Eh(t))2 6
(Eh(t)+β0)4 .

Substituting this expansion into (E.1.3) we obtain

Vπ2(Λ) = (Eζ+α0 +
k∑

ν=0
ζν(ν+α0)2) Eh(

1
(t+β0)2 ) − E2

π2
(Λ)

= Eζ+α0 +∑k
ν=0 ζν(ν+α0)2

(Eh(t)+β0)2

(
1+ 3Vh(t)

(Eh(t)+β0)2

)
− E2

π2
(Λ).

(E.1.4)

E.2 Uncertainties on observation time

Consider that π1 is a special case of π2 when the observed count is certain, i.e.,
ζn = Pr(Nm,u(Tu) = n) = 1,n É k and ζi = 0, i 6= n, where Nm(Tu) = n. Thus,
in the case of uncertainties only on the observation time, we have Eζ = n and
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∑k
ν=0 ζν(ν+α0)2 = (n+α0)2. Therefore, (E.1.4) and (E.2.1) becomes

Eπ1(Λ) = n+α0

Eh(t)+β0

(
1+ Vh(t)

(Eh(t)+β0)2

)
,

Vπ1(Λ) = n+α0 + (n+α0)2

(Eh(t)+β0)2

(
1+ 3Vh(t)

(Eh(t)+β0)2

)
− E2

π1
(Λ).

ä
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