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L'objectif principal de cette thèse est de fournir une méthodologie générale pour utiliser une méthode récemment développée d'assimilation de données appelée back-and-forth nudging. Le terme back-and-forth fait référence aux aller-retours dans le temps opéré successivement par cette méthode jusqu'à obtenir une estimation convenable de l'état. La méthode du back-and-forth nudging est une méthode à faible coût connue pour sa simplicité d'implémentation, étant donné qu'elle ne nécessite aucune linéarisation, aucune différentiation d'opérateur complexe et aucun processus d'optimisation, contrairement aux méthodes variationnelles. De plus, elle n'utilise pas non plus d'estimation d'erreur de covariance comme les méthodes séquentielles. Cette méthode est capable de fournir une estimation de l'état sur un interval fini de temps, ce qui est particulièrement intéressant pour les problèmes chaotiques à forte sensibilité par rapport à la perturbation de l'état initial ou de certains paramètres du modèle. Premièrement, on cherche à traiter la principale difficulté rencontrée lors de l'utilisation du back-and-forth nudging, qui est de maintenir la convergence de l'erreur continue lors des passages entre la dynamique directe et rétrograde. Pour répondre à ce problème, on montre l'existence d'une fonction de Lyapunov commune aux deux dynamiques. Ce résultat a été montré pour une large classe de problèmes incluant les dynamiques non-autonomes et non-linéaires pour estimer l'état initial mais également les paramètres du modèle. Le second axe est dédié à l'étude de l'attraction des propriétés physique, ce phénomène ayant été observé lors d'expériences passées avec la méthode du nudging standard. Ces altérations sont dues à la nature même de la méthode de nudging, qui consiste à modifier la structure du modèle physique en plus injectant directement un terme d'observation. Nous avons montré, grâce à une analyse de sensibilité, que l'injection des observations par la méthode du back-and-forth nudging est bien moins invasive pour la physique du modèle que par la méthode du nudging standard. Finalement, pour évaluer l'efficacité de la méthode du back-and-forth nudging dans un contexte réel, nous avons réalisé une assimilation de données opérationnelles issues du futur satellite SWOT pour fournir une estimation de l'état dans chaque couche de la région océanique du Gulf Stream. Après étude théorique de la convergence de l'erreur avec un modèle quasi-géostrophique barocline, la méthode a été testée numériquement avec données fortement bruitées, afin de garantir la robustesse de la méthode.

Chapter 1

Introduction 1.1 Ocean climate state of art

Figure 1.1: Energy accumulation within distinct components of the Earth's climate system (upper ocean from 0 to 700 meters, deeper ocean from 700 to 2000 meters, land, atmosphere and ice) from 1971 to 2010. Source [START_REF] Nuccitelli | Comment on "Ocean heat content and Earth's radiation imbalance. II. Relation to climate shifts[END_REF] Global climate change impact on ocean Post-industrial human activities impact on global climate change is a main concern in the scientific community. Through its permanent exchanges with the atmosphere and its role in the Earth's climate regulation, the ocean is a good indicator of climate modification. Even if global buoy and satellite measurements have been deployed in the early 1980s and have been constantly improved since in terms of accuracy and spatial coverage, there is a consistency in the observations of global modification of ocean parameters since the mid-19th century. The rise of atmospheric chemical molecules as carbon dioxide that are partially absorbed by the ocean at its surface, modify progressively ocean chemistry leading to acidification rise and ph reduction. The ocean acidification directly threats organisms with calcareous skeletons or shells as planktons and corals which indirectly impacts the extraordinary biodiversity of the ocean ecosystem and ocean food supply for fishing. Not to mention that oceans store about 90% of excess heat accumulated in the climate system and play a crucial role in heat regulation. Oceans getting warmer have consequences on melting ice in Greenland and Artantica and thermal expansion of water, both leading to sealevel rise.

Accelerated sea-level rise and the effects on coastal areas represent one of the most important impacts of global climate warming. A large part of population, touristic activities and industrial production are concentrated along the coasts of countries. Each coastal area will be impacted differently, islands and lowlands along the sea will be the most vulnerable areas to be impacted first, but we can expect an Source : NASA/SWOT gallery https://swot.jpl.nasa.gov/gallery.htm intensification of extreme weather events as strong rains, flooding, hurricanes and storms. Satellite gives valuable information on ocean state, but they cannot fully capture the ocean all over the globe and some regions are still difficult to observe, this is particularly true along the coast where the signal is perturbed by the land. This is why modeling and forecast of the ocean circulation at borders is a crucial research topic to warn the population about climate extreme events and guide the government intervention in favor of limiting sea-level rise consequences.

The future SWOT mission American and european spatial agencies have often successfully cooperated around satellite missions of ocean surface height monitoring like TOPEX-Poseidon or Jason [START_REF] Aalto | Iterative observer-based state and parameter estimation for linear systems[END_REF][START_REF] Abarbanel | Predicting the Future: Completing Models of Observed Complex Systems[END_REF][START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF] satellites. The measurement of ocean surface topography by satellite radar altimeters has made fundamental advances in our understanding of the large-scale ocean circulation and its role in climate change. The mission SWOT is a fruit of the collaboration of NASA and CNES institutes (with contributions of canadian and british spatial agencies). Planned to be launched in 2021, the future american-french altimetric satellite has a promising potential. The SWOT mission will improve considerably the previous altimeters by providing high-resolution two-dimensional sea surface height (SSH) maps of 10 km with a wide swath of 120km that almost completely cover the Earth's surface after a cycle of 21 days (see Figure 1.2). Contribution of SWOT data aims to address both oceanographic and hydrologic circulation models improvement, even if hydrological and inland water contexts will not be studied in this thesis.

The high precision ocean data of SWOT will give us a unique opportunity to study mesoscale (of order 100 km) and sub-mesoscale (of order 10 km). The lack of physical representation of the eddies at mesoscale and sub-mesoscale is very limiting for our understanding of turbulent transport, total energy dissipation and long-term ocean circulation prediction. Data assimilation techniques are used to identify from 1.2. Data assimilation state of art 5 these partial observations on the surface the complete map of ocean currents at all depths in order to realize realistic ocean forecasting, model improvement and study on long-term climate change.

Data assimilation state of art

Data assimilation methods Data assimilation theory is an ensemble of techniques closely related to control theory and inverse problem theory. Data assimilation is trying to take advantage of heterogeneous source of information: empirical information contained in collected partial observations and mathematical information from model equations, in order to identify the real state and/or parameters of the model. One of the earliest application of data assimilation was conducted in the fields of meteorology and oceanography by Richardson in 1922 [START_REF] Fry | Weather prediction by numerical process[END_REF], it was called by him forecast factory. At that time numerical tools were not yet available, only interpolations made by hand were used based on current and past observations with a lot of empirical considerations. This method had led inexorably to poor predictability especially in the context of chaotic behavior, discovered much later by Lorenz [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF].

Two main classes of data assimilation methods frequently used can be highlighted. Following the terminology of Bensoussan [START_REF] Bensoussan | Filtrage optimal des systèmes linéaires[END_REF], there are filtering methods (as EKF and EnKF Kalman filter-based methods) and there are smoothing methods (as 3DVar and 4DVar variational methods). Given observations collected in the time interval [t 0 , t f ], smoothing methods aim to provide the best state estimate in the entire interval [t 0 , t f ] and filtering methods aim to provide the best state estimate only at final time t f . Let us mention nevertheless that this classification may be, under certain circumstances, attenuated since equivalence between those methods can be derived for linear model [START_REF] Ménard | The application of Kalman smoother theory to the estimation of 4dvar error statistics[END_REF][START_REF] Li | Optimality of variational data assimilation and its relationship with the Kalman filter and smoother[END_REF] and emerging hybrid strategies coupling advantages of different methods are widely used nowadays, we can cite ensemblebased variational methods as ETKF-3DVar [START_REF] Wang | A Hybrid ETKF-3dvar Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment[END_REF] (hybrid 3DVar and EnKF), AEnKF (asynchroneous hybrid EnKF and 4DVar) [START_REF] Sakov | Asynchronous data assimilation with the EnKF[END_REF], 4D-LETKF [START_REF] Hunt | Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter[END_REF] (hydrid 4DVar and EnKF with covariance localization) or 4D-EnVar (hydrid 4DVar and EnKF) [START_REF] Lorenc | Comparison of Hybrid-4denvar and Hybrid-4dvar Data Assimilation Methods for Global NWP[END_REF].

Relevance of nudging method Highly complex sequential and variational algorithms used for operational missions have reached some limits. These limits are closely related to the memory needed for storage and assimilation in real-time of large-scale data captured by satellites constantely increasing. The SWOT data of 120km along the swath will provide precious information but at the same time will be particularly challenging to assimilate. Hence the need of using simplified data assimilation algorithm like nudging method that easily manipulate large-scale data without going through a lot of intermediate steps. Nudging method, also called Luenberger observer method in automatic and control theory fields, can be seen as a deterministic version of the Kalman-Bucy filter method. The idea is to adjust the estimated state toward available observations by adding to the dynamical model a data corrective term corresponding to observation misfit. The specificity of nudging method compared to filtering methods is the data correction gain which is a deterministic matrix (usually a scalar number). For sequential methods the data correction gain is based on error covariance inverse matrix, requiring the knowledge of state error (or the use ensemble techniques to handle this lack of knowledge) and having a non-negligible computational cost from large-scale matrix inversion. The advantages of nudging method are its simplicity of implementation, its low computational cost, the time regularity of the estimation and its robustness, and for these reasons nudging was very appreciated at the beginning of data assimilation applications for operational forecasting when time computational resources were very limited.

A variant of the nudging called back-and-forth nudging was proposed by Auroux and Blum [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF], it consists in recursive integration of forward and backward models in a finite time window, both forced with a nudging data correction term. Even if nudging is classified as a filtering method given the previous terminology, the back-and-forth nudging is more like a smoothing method for its ability to provide a smooth solution on the entire data assimilation time window. Compared to variational method, another class of smoothing methods, the back-and-forth nudging method is interesting because there is no linearization and no optimization process. Besides the time computational cost of backward nudging integration is the same as forward nudging integration. For reversible models in time the back-and-forth nudging is very easy to put into practice, does not require a huge computational power compared to standard nudging and very few iterations are needed to provide the same estimate than variational methods. For non-reversible models, it is important to mention that the role of nudging term is to push state towards observation but also to stabilize the backward integration. Successful applications of back-and-forth nudging to various numerical models, including non-reversible models as shallow-water model [START_REF] Auroux | The back and forth nudging algorithm applied to a shallow water model, comparison and hybridization with the 4d-VAR[END_REF] and multi-layer quasi-geostrophic model [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF], has been performed with simple scalar gain. Comparative studies between BFN and 4DVar methods performances have shown that BFN produces comparable state estimates but with very low computational cost [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF].

Improvements needed Yet, more sophisticated methods that are optimal in the linear case and combine statistical, prior and observation error information had been preferred for operational applications. Nudging-based methods are now used as a first step method, to initialize other data assimilation methods considered as more complex, or used by default when the computational cost of other methods is too high. The nudging method suffers from its lack of precision concerning the choice of the feedback gain. This gain was usually neglected in practice with zero off-diagonal elements that do not consider inter-variable data correction dependence, participating in the bad publicity of the nudging method. Nevertheless, some propositions of more sophisticated feedback gain have been studied, we can mention hybrid techniques as optimal nudging method where the nudging gain 1.3. Organisation of the document is calculated to minimize a cost function related to observation error [START_REF] Zou | An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation[END_REF], or as ensemble-based nudging method where the nudging gain is the covariance matrix coming from EnKF method [START_REF] Lei | A hybrid nudging-ensemble Kalman filter approach to data assimilation in WRF/DART[END_REF]. However, these hybridations conserve the regularity properties of nudging method but highly deteriorate the advantage of low computational cost by introducing optimization or ensemble spread process.

For autonomous linear systems verifying observability condition, we know how to design exponentially stable nudging observer based on gramian-like construction with a controlled rate of convergence [START_REF] Gauthier | Deterministic Observation Theory and Applications[END_REF]. To be more specific, observability condition, which is necessary for the well-posedness of the inverse problem, leads to the well-known invertibility of gramian observability matrices that are solutions of Lyapunov equations. Gramian matrices can be used to find out exponentially stable Lyapunov function to establish the observer convergence. This technique provides a complete deterministic feedback gain solution of a dynamical equation that can be easily solved numerically.

Design of nonlinear nudging observer using nonlinear gramian observability function [START_REF] Scherpen | Balancing for nonlinear systems[END_REF] has been on focus only recently and some topics as nonlinear parameter estimation or finite-time estimation still need to be fully investigated. The main objective of this thesis is to provide such deterministic gramian-based back-and-forth nudging observer construction addressing the class of non-autonomous nonlinear parametrized systems. A detailed description of the different objectives of this thesis is given in the following paragraph divided into chapters.

Organisation of the document

• Chapter 2. The first chapter sets up elements of linear non-autonomous observer design coming from classical automatic theory in order to prepare the next chapters that deal with specific problems raised by nonlinearities and back-and-forth techniques. In this chapter, we propose a clear synthesis of observability theory key concepts for observer design like time-dependent observability condition and its relation to invertibility of gramian observability function. It seemed also important to discuss issues raised by time-discrete problems. We know that the same formalism can be made in the time-discrete case, but because time-discrete Lyapunov's equations are nonlinear, it makes time-discrete observer design more difficult. However, by exhibiting a relation between continuous and discrete Lyapunov's equations solutions, we show a way to avoid this problem by working only at a continuous level.

• Chapter 3. In this chapter, we enter in the specific details of finite-time estimation with back-and-forth technique. We chose to describe back-andforth nudging model as a switching system, here it is a system composed of two sub-systems (forward and backward) with a periodic switching time function. The theory of switching systems (see the book of Liberzon [START_REF] Liberzon | Switching in Systems and Control. Systems & Control: Foundations & Applications[END_REF]) informs us that designing an asymptotically stable observer for each subsystem is not sufficient to obtain stability of the global switching system.

Chapter 1. Introduction

Find a common Lyapunov function to every sub-system is sufficient condition for global stability. A theorem based on commutativity assumption provides such Lyapunov function expression for autonomous linear switching systems but its extension to non-autonomous switching systems is not straightforward. Our goal will be to revisit this theorem for non-autonomous back-and-forth switching systems.

In a second part, a sensitivity analysis will be performed theoretically using tangent linear method and numerically on chaotic Lorenz system, to answer to a great concern raised by nudging methods: does the artificial introduction of nudging data correction term in the model modify some sub-scale structures of the physical models? If so, it may have huge consequences on the physical reliability of the state estimate provided by nudging method. Early works on nudging method made by Bao and Errico [START_REF] Bao | An Adjoint Examination of a Nudging Method for Data Assimilation[END_REF] have shown this kind of issues with a progressive loss of advection property even with a very small feedback coefficient. Indeed a solution may be close to data but data often contain errors and are not necessarily trustworthy, sensitivity analysis to feedback coefficient is a good way to measure how the physical state is perturbed by data correction term. We will compare sensitivities to standard nudging and back-and-forth nudging and try to understand the impact of backward integration in sensitivity reduction.

• Chapter 4. The linear observer analysis was a preliminary step for nonlinear observer analysis which is the heart of this work. The main idea of nonlinear Luenberger observer design is to avoid treating the nonlinear model directly requiring strong assumptions as global Lipchitz conditions, but instead to transform the nonlinear model into a linear model. Two main families of transformation techniques have been proposed yet. Zeitz [START_REF] Zeitz | The extended Luenberger observer for nonlinear systems[END_REF][START_REF] Circcarella | A Luenberger-like observer for nonlinear systems[END_REF] has proposed a mapping to transform a nonlinear model into a semi-linear model of canonical form, but it requires to perform successive Lie's derivatives which is not very practical. In parallel, a more practical transformation method based on Lyapunov's auxiliary theorem was introduced by Krener and Isodori [START_REF] Arthur | Linearization by output injection and nonlinear observers[END_REF] with restrictive conditions that have been later reduced [START_REF] Krener | Nonlinear Observer Design in the Siegel Domain[END_REF]. Very recently, this method has been extended to non-autonomous nonlinear nudging method [START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF]. We would like to extend this method to non-autonomous nonlinear backand-forth nudging method.

Another subject we wanted to investigate is simultaneous state and model parameter estimation. Parameter calibration is important for many reasons. While chaos to initial condition has received a lot of attention and was at the beginning of data assimilation theory development to improve initialization of forecasting process, the high sensitivity of systems to model parameter uncertainties has been neglected for a long time, even if chaos related to parameters perturbation has also been observed. Second, we think that data measurements are underestimated, much more information can be extracted from data than just state information. Joint state-parameter is a good way to use data to continuously improve the numerical models and calibrate them for each specific situation encountered. The recent work of Afri [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF] addresses semi-nonlinear models (i.e. linear state model but nonlinear state-parameter model) with nudging technique, we want to do the same for full nonlinear problems (i.e. nonlinear state and state-parameter models).

• Chapter 5. We now want to perform realistic data assimilation on ocean circulation identification given the most common ocean data available: sea surface height observation from satellites. By limiting ourself to the North-Atlantic ocean region where the multi-layered quasi-geostrophic model (MQG) represents quite well the ocean circulation at these latitudes, the main problem we have to face is to reconstruct the state at every layer when only the surface is accessible to satellite measures. Lasalle's invariance principle is a powerful tool to overcome this incomplete data model. The same principle can be used for state-parameter estimation when only state variable is observed. Satellite measures are partial in time and space, that two degrees of partiality will be treated separately. To avoid shocks, transition between observed and unobserved points is usually smoothed by mollifier or interpolation techniques. The bias introduced by such data distribution around observation point will be evaluated.

As for ODE problem, a method to transform nonlinear PDE problem into a linear transport equation with a nonlinear data term is proposed, so that design of observer is made at the linear transport level. As far as we know, it is the first time that such method is used to design generic nonlinear PDE observer, we can mention however a recent work made by Boulanger at al [START_REF] Boulanger | Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description[END_REF] on hyperbolic conservation laws.

• Chapter 6. We believe that the back-and-forth data assimilation technique has a lot to offer for operational missions. Compared to other methods, nudging is a robust fast computing method very much appropriate for large-scale problems with a huge number of degree of freedom as geophysical forecasting problems. Besides, it could be very interesting to combine high-resolution sub-mesoscale SWOT measurements with back-and-forth technique that offers the possibility to make as many iterations as necessary to improve the estimated state.

Thanks to a collaboration with Emmanuel Cosme, I have developed a Python code that collects the numerical data output of the swotsimulator code developed by Lucile Gauthier and Clement Ubelman at the JPL (NASA) and provides in return identification of stream function and potential vorticity in the ocean region considered, but also information on model constant parameters as wind stress amplitude and barotropic wave numbers. Numerical results are presented in the Gulf Stream oceanic region, a very dynamical oceanic region of the globe where a lot of turbulent sub-scales motions still need to be lack of investigation. With results on non-autonomous problems, we will be able to treat cases like time-dependent model parameters and time-sampled observations. Finding a good time-dependent Lyapunov function candidate is a prime objective to prove convergence of our state estimation. One of the properties of gramian observability matrix functions is, under observability and boundedness condition, that they are symmetric positive definite and solutions of differential Lyapunov equations, which make them a natural choice to formulate Lyapunov function. The choice of inverse gramian-based matrix as observer gain leads to global exponential stability with a convergence rate fixed by us. When it comes to the question of numerical implementation, we have to consider time-discretized problems. Unlike continuous Lyapunov equations, discrete variant of Lyapunov equation are nonlinear and adding a term to control the convergence rate into the gramian matrices leads to cross terms, making convergence proof more difficult. We will show that, via a certain θ-scheme discretization, the discretized gramian function solving continuous linear Lyapunov equation can be used to avoid these problems of nonlinearities.

An application to chaotic time-dependent model observer design is carried out and compared to synchronization of chaos, another data assimilation method [START_REF] Tang | Synchronization and chaos[END_REF]. Uncertainties of model parameters and observations are added to check the robustness of the state estimation given by such Luenberger observer.

Observability theory

In this chapter, a quick overlook upon notions of observability and gramian observability functions for non-autonomous linear problems is displayed.

Definition

For the state dynamic, we consider the following well-posed non-autonomous linear ordinary differential problem ż(t) = A(t)z(t) + B(t)u(t), z(t 0 ) = z 0 , y(t) = C(t)z(t), t ∈ T , (

where z(t) ∈ Z = R n is the unknown state current value to be estimated and initialised with z 0 ∈ Z at time t 0 , u(t) ∈ U = R r is the known control input and y(t) ∈ Y = R p is the known observation output, for all t ∈ T . The timedependent operators A : R + → M n (R), B : R + → M n,r (R) and C : R + → M p,n (R) are respectively state, control and observation matrix functions. The time domain T = (t 0 , t f ) is a subset of R + where t 0 and t f denotes respectively the initial and final times. Typically, for standard nudging method t f = +∞ and for back-andforth nudging method t f is a finite number. The unique solution of the model at time t ∈ T is expressed by Note that when t > s the state transition matrix φ(t, s) refers to foward-time dynamics and t < s to backward-time dynamics. The backward model associated to (2.1) is, by change of variable t = π(t) = t f + t 0 -t where t f is finite, defined in the domain T = (t 0 , t f ) and expressed as ż(t ) = -A(π(t ))z(t ) -B(π(t ))u(π(t )), y(t ) = C(π(t ))z(t ), t ∈ T , where t = π(t ) since π is equal to its inverse function. The matrix function φ b represents the state-transition matrix of the backward model. In the specific case where all the matrices A(t) commute together, φ b is expressed as

z(t) = φ(t,
φ b (t, s) = exp - t s A(π(σ))dσ , ∀t, s ∈ T ,
where -A(π(•)) is the backward state matrix function.

Observability describes the property of state identification (or state distinguishability) from the available information about state called data or observation. Given data on the time interval [t 0 , t f ] and known state dynamics, if the initial time state at time t 0 can be identified the property is called forward observability and if the final time state at time t f can be identified the property is called backward observability. In other words, for forward observability we need future time data and for backward observability we need past time data. For non-autonomous problems, forward and backward observability properties are not equivalent.

The notion of observability can be interpreted as an injectivity condition of observation operator C(•) with regards to state variable. For the time-dependent linear model (2.1), forward and backward observability conditions read as follows.

Definition 1. The system (2.1) is forwardly observable at time t 0 + ε ≤ t f if the map ϕ : R n → L 2 ([t 0 , t 0 + ε]) : z(t 0 ) → y(•) is injective; i.e. there exists a strictly positive constant α such that the following inequality is satisfied

t 0 +ε t 0 y(s) 2 ds ≥ α z(t 0 ) 2 . Definition 2. The system (2.1) is backwardly observable at time t f -ε ≥ t 0 if the map ϕ : R n → L 2 ([t f -ε, t f ]) : z(t f ) → y(•) is injective; i.e.

there exists a strictly
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positive constant α such that the following inequality is satisfied

t f t f -ε y(s) 2 ds ≥ α z(t f ) 2 .
In the future instead of writing that the system (2.1) is observable at time t ∈ T , we may equivalently write that the state-observation pair (A(•), C(•)) is observable at time t ∈ T .

As said before, forward and backward observabilities are not equivalent notions for time-dependent systems. A simple illustration of this is by chosing the observation time operator as

C(•) = 1 [α,β] (•)
where 1 is the Kronecker operator and where [α, β] ⊂ [t 0 , t f ], thus the system (2.1) is forwardly observable on [α, t f ] whearas it is backwardly observable on [t 0 , β]. But keep in mind that forward observability of a forward system at time t ∈ T is equivalent to backward observability of the backward system at time π(t) = t f + t 0 -t and conversely. That property will be proven in Chapter 2.

To check whether a linear autonomous system is observable or unobservable, simple tools that can be used. There tools are generally rank conditions, as the rank condition of Kalman-Ho-Narendra [START_REF] Kalman | Controllability of linear dynamical systems[END_REF] or the rank condition of Popov-Belevitch-Hautus [START_REF] Hautus | Controllability and observability condition of linear autonomous systems[END_REF]. These conditions are time-independent, a given system is either observable or unobservable independently of the time considered. A time-dependent variant of Kalman rank condition has been proposed in [START_REF] Silverman | Controllability and Observability in Time-Variable Linear Systems[END_REF] to deal with nonautonomous problems.

Observability rank condition for autonomous systems

Let us consider temporarily as a preliminary step the autonomous version of the dynamical problem (2.1) for which A ∈ M n (R), B ∈ M n,r (R) and C ∈ M p,n (R) are time-independent matrices.

Theorem 1 (Kalman rank condition). Let O(A, C) be the observability matrix of size np × n associated to the pair (A, C) defined as

O(A, C) =       C CA . . . CA n-1       . (2.3)
The system (2.1) is observable iff the rank of the observability matrix O(A, C) is equal to n.

Proof. Let z(t) be the unknown solution of the autonomous system (2.1). By successive time differentiation of the known observation y(t) = Cz(t), the i-th derivative of y(t) is given by

y (i) (t) = CA i z(t) + i-1 j=0 CA i-1-j Bu (j) (t), ∀i ∈ N * .

Chapter 2. On the Luenberger observer for non-autonomous problems

Rewritting the observation y(t) and its derivatives until the (n -1)-th degree of derivation into a system of size n gives

Y (t) = O(A, C)z(t) + T (A, B)U (t), (2.4) 
where Y : T → M n (R) is a vector containing the observation time-derivatives and U : T → M n,r (R) is a vector containing the control time-derivatives, such that

Y (t) =     y(t) . . . y (n-1) (t)     , U (t) =     u(t) . . . u (n-1) (t)     ,
and T is a lower triangular matrix of size np × nr defined as

T (A, B) =       0 0 CB 0 . . . . . . CA n-2 B . . . CB 0      
.

By Cayley-Hamilton theorem the system (2.4) admits a unique solution z(t) ∈ Z from the known vectors Y (t) and U (t) iff the observability matrix rank is equal to n.

Theorem 2 (Popov-Belevitch-Hautus test). Let P (A, C) be a matrix of size (n + p) × n defined as

P (A, C) = A -λI n C , ∀λ ∈ σ(A),
where σ(A) denotes the spectrum of A. The system (2.1) is observable iff the rank of P (A, C) is equal to n.

The reason why the test is only computed for eigenvalues of A is because if λ is not an eigenvalue of A then the rank of A -λI is equal to n and the PBH test is already successful. The eigenvalues for which the PBH test is successful are called observable eigenvalues otherwise they are called unobservable eigenvalues. The detectability of the system can be checked easily with this test, we only have to verify stability of the unobservable eigenmodes associated with A. Recall that a system is detectable if and only if the unobservable eigenvalues have a strictly negative real part. By multiplying P (A, C) with any vector v = 0, the PBH theorem can be rewritten as an eigenvector condition as suggested by the following corollary.

Corollary 1. The system (2.1) is observable, iff there exists no v = 0 such that Av = λv, Cv = 0.

Proof. Let us suppose that there exists an eigenvector v = 0 such that Av = λv and Cv = 0, meaning that

C CA . . . CA n-1 v = 0.
Then the observability matrix rank is strictly less than n. Kalman rank condition informs us that the system is not observable. Conversely, if the observability matrix rank is strictly less than n, there exists a change of variable v = T ṽ spliting observable and unobservable parts of the system (2.1) such that

à = T -1 AT = Ã11 0 Ã21 Ã22 , C = CT = C11 0
Let v = T (0, ṽ22 ) T = 0 such that ṽ22 is the eigenvector of the matrix Ã22 associated to the eigenvalue λ, then Av and Cv are equal to

Av =T Ã11 0 Ã21 Ã22 T -1 v = T Ã11 0 Ã21 Ã22 0 ṽ22 = T 0 λṽ 22 = λv Cv = CT -1 T 0 ṽ22 = C11 0 0 ṽ22 = 0.
From the above corollary of PBH's test, we have derived the following theorem.

Theorem 3. Let A ∈ M n (R) and C ∈ M p,n (R)
, where à and C are defined as 

à = +∞ k=0 α k A k , C = C +∞ k=0 β k A k ,
if (λ, v) is an eigenmode of A, then ( +∞ k=0 α k λ k , v
) is an eigenmode of Ã, meaning that observability conditions on (A, C) and ( Ã, C) are equivalent. By multiplication of C with the eigenvector v = 0 it turns out that

Cv = C +∞ k=0 β k A k v = +∞ k=0 β k λ k Cv,
indicating that Cv = 0 under some assumptions on {β k } k∈N . So, the observability of the pairs (A, C) and ( Ã, C) are equivalent.

As an example, this theorem shows us that for autonomous problems the observability of forward and backward systems are the same, since A and -A share the same eigenvectors.

Observability test on time-variant systems

Now, let us derive equivalent observability tests for non-autonomous systems (2.1). We have seen that Kalman rank condition is based on linear independence of n successive time derivatives of the known measurement. In accordance therewith, we will derive (n -1)-times the non-autonomous system measurements to infer a rank condition. Assume C ∈ C n-1 (T ), A ∈ C n-1 (T ) and B ∈ C n-2 (T ) such that the sequences {C i } i∈ 0,n-1 and {B i } i∈ 0,n-2 defined as

C 0 (t) = C(t), C i (t) = C i-1 (t)A(t) + d dt C i-1 (t), ∀i ∈ 1, n -1 ,
and

B 0 (t) = C 0 (t)B(t), B i (t) = d dt B i-1 (t), ∀i ∈ 1, n -2 .
are well-posed. Then the successive derivatives of the measurement y(t) = C(t)z(t) can be expressed as

y (i) (t) = C i (t)z(t) + i-1 j=0 B i-1-j (t)u (j) (t), i ∈ 1, n -1 .
Forward and backward observability can be deduced from the rank of a so-called observability matrix defined as

O(A, C; t) =     C 0 (t) . . . C n-1 (t)     (2.5)
as given in the following theorems demonstrated by Silverman and Meadows in [START_REF] Silverman | Controllability and Observability in Time-Variable Linear Systems[END_REF].

Theorem 4.

Assume A be a function of C n-2 (T ) and C be a function of C n-1 (T ), the system (2. Some examples are given here to emphasize the difference between time-fixed observability where O is defined as (2.3) and time-varying observability where O is defined as (2.5).

Example 1. Let us consider the state-observation pair, for all t ∈ T , given by

A(t) = 0 1 -1 0 , C(t) = cos(t) -sin(t) .
The time-dependent observability matrix associated to pair (A, C; t) is given by

O(A, C; t) = cos(t) -sin(t) 0 0 ,
which has a rank equal to 1, thus the system is not observable. However, for an arbitrary fixed time τ ∈ T , the constant observability matrix is

O(A(τ ), C(τ )) = cos(τ ) -sin(τ ) sin(τ ) cos(τ ) ,
which has a rank equal to 

A(t) =    -(t -t 0 ) 1 0 1 (t -t 0 ) 2 0 0 0 (t -t 0 ) 3    , C(t) = 1 1 2 .

Then the rank of the time-dependent observability matrix

O(A, C; t = t 0 ) =    1 1 2 1 1 0 0 1 0    ,
is equal to 3 at t = t 0 . On the contrary, for the fixed time τ = t 0 the rank of the observability matrix

O(A(τ ), C(τ )) =    1 1 2 1 1 0 1 1 0    ,
is equal to 2. So the pair (A, C; t) is not observable if t is fixed at t 0 but observable if t is a variable.

The next example emphasizes the difference between forward and backward observability for a given time-dependent pair.

Example 3. Let us consider a state-observation pair expressed as

A(t) = ln(t) |ln(t)| 0 0 , C(t) = 1 1 ,
where the time domain is 

T = (0, t f ] with t f ≥ 1.

Gramian observability functions

Another important result that informs us easily about observability of non-autonomous systems is related to nonsingularity of gramian observability integral functions. The observation related to the pair (A, C; t) is expressed by ȳ(t) = C(t)φ(t, s)z(s) where z is the observed state. By rewriting the observability property into quadratic form as

t t 0 ȳ(s) 2 ds = z(t 0 ) * M (t, t 0 )z(t 0 ), t ∈ T ,
we have that forward observability at time t is equivalent to positive definiteness of M (t, t 0 ), for all t ≥ t 0 . Now, given the quadratic form

t f t ȳ(s) 2 ds = z(t f ) * M b (t f , t)z(t f ), t ∈ T ,
we have that backward observability at time t is equivalent to positive definiteness of M b (t f , t), for all t ≤ t f . The matrix functions M and M b are respectively called forward and backward gramian functions defined and expressed as follows.

Definition 3 (Forward gramian observability function). The gramian observability function

M : T × T → M n (R) associated to the pair (A, C; t) is a function defined by M (t, t 0 ) = t t 0 φ(s, t 0 ) * C(s) * C(s)φ(s, t 0 )ds, ∀t ∈ T . (2.6)
and is the unique solution of the continuous Lyapunov differential equation 

∂M (t, t 0 ) ∂t 0 = -A(t 0 ) * M (t, t 0 ) -M (t 0 , t)A(t 0 ) -C(t 0 ) * C(t 0 ), M (t 0 , t 0 ) = 0. (2.
M b (t f , t) = t f t φ(s, t f ) * C(s) * C(s)φ(s, t f )ds, ∀t ∈ T . (2.8)
and is the unique solution of the continuous Lyapunov differential equation

∂M b (t f , t) ∂t f = -A(t f ) * M b (t f , t) -M b (t f , t)A(t f ) + C(t f ) * C(t f ), M (t f , t f ) = 0.
(2.9) 

(t) = A(t)ẑ(t) + B(t)u(t) -K(t)C(t) * (C(t)ẑ(t) -y(t)), ∀t ∈ T , ( 2.10) 
where C(t)ẑ(t) represents the estimated state projected on observation space at time t and K : T → M n (R) is the gain matrix function to be determined. Let the error between the true state and the estimated state be denoted z = ẑ -z. The error is governed by the linear non-autonomous homogeneous model

ż(t) = [A(t) -K(t)C(t) * C(t)] z(t), ∀t ≥ t 0 , (2.11) 
then asymptotic convergence is succeded when lim t→+∞ z(t) = 0, For autonomous systems, this convergence is true if the error state matrix A-KC * C is Hurwitz. A matrix is Hurwitz when its spectrum strictly belongs to the negative half-plane of the complex domain. Thanks to the pole placement theorem [START_REF] Wonham | On pole assignment in multi-input controllable linear systems[END_REF][START_REF] Heymann | Comments "On pole assignment in multiinput controllable linear systems[END_REF], under observability condition we have existence of a matrix gain that shifts the spectrum of the state matrix into stable region leading to observer state asymptotic stability.

Theorem 8 (Pole placement theorem). Assume the pair (A, C) is observable, then for any polynomial function p of degree n for the form

p(λ) = n i=0 a i λ(t) n-i ,
there exists a matrix K such that the characteristic polynomial of A -KC * C is equal to p(λ) for all λ ∈ C.

Even if asymptotic stable Luenberger observer is guaranteed, pole placement theorem does not explicitly provide an expression of K. Choosing K = αI n with α as large as possible to shift the spectrum of A does not always guarantee convergence, as illustrated by the following example we have built.

Chapter 2. On the Luenberger observer for non-autonomous problems Example 4. Let A and C be two block-matrices of the form

A = A 11 A 12 0 A 22 , C = I m 0 , such that A 11 ∈ M m (R), A 12 ∈ M m,m (R) and A 22 ∈ M m ,m (R) with m = n -m.
Let us prove first that the pair (A, C) is observable if the pair (A 22 , A 12 ) is also observable. Assume (A 22 , A 12 ) is observable, then from PBH criterium the rank of the following matrix

A 22 -λI n-m A 12 , λ ∈ C, is equal to m = n -m.
Thus, the rank of the following matrix

A -λI n C =    A 11 -λI m A 12 0 A 22 -λI n-m I m 0    , λ ∈ C,
is equal to n, proving that (A, C) is observable. The conditions of the pole placement theorem are satisfied. Now, let select the Luenberger gain matrix as a diagonal matrix such that K = αI n where the coefficient α ∈ R * + has to be determined so that A -KC * C is Hurwitz. However, if A 22 is unstable, the matrix

A -KC * C = A 11 -αI m A 12 0 A 22 , , K = αI n ,
is unstable no matter the magnitude of α. If instead we choose K as a block matrix, the error state matrix

A -KC * C = A 11 -K 11 A 12 -K 21 A 22 , K = K 11 0 K 21 0,
has the following characteristic polynomial function

p(λ) = det(A 11 -K 11 -λI m )det(A 22 + K 21 (A 11 -K 11 -λI m ) -1 A 12 -λI n-m ).
By pole placement theorems, considering that both pairs (A 11 , I) and (A 22 , A 12 ) are observable, the roots of p can be chosen and reach every value in C. Thus, there exists a matrix K 11 to place the first m-th eigenvalues of the error matrix and a matrix K 21 to place the remaining eigenvalues into stable region.

Lyapunov asymptotic stability

Asymptotic stability of non-autonomous observer error will be expressed upon Lyapunov stability arguments reminded here.

Definition 5 (Class kappa functions). A continuous function

α : R + → R + is said to belong to class K ∞ if
• α is strictly increasing,

• α(0) = 0,

• lim t→+∞ α(t) = +∞.

Theorem 9 (Lyapunov asymptotic stability). Let z = 0 be an equilibrium point of a non-autonomous system. Let V : [t 0 , +∞)×R n → R be a continuously differentiable function such that

• there exists two functions α 1 and α 2 of class K ∞ such that

α 1 (z(t)) ≤ V (t, z(t)) ≤ α 2 (z(t)), ∀t ∈ [t 0 , +∞), z(t) ∈ R n ,
• there exists a function

α 3 of class K ∞ such that d dt V (t, z(t)) ≤ -α 3 (z(t)), ∀t ∈ [t 0 , +∞), z(t) ∈ R n .
Then the equilibrium z = 0 is globally asymptotically stable.

In the specific case where α 3 (z(t)) can be replaced by λV (t, z(t)) with λ > 0, the Lyapunov function is exponentially decreasing towards 0 with a rate of -λ leading to the so-called exponential stability.

Theorem 10 (Lyapunov exponential stability). Let z = 0 be an equilibrium point of a non-autonomous system. Let V : [t 0 , +∞) × R n → R be a continuously differentiable function such that • there exists two functions α 1 and α 2 of class K ∞ such that

α 1 (z(t)) ≤ V (t, z(t)) ≤ α 2 (z(t)), ∀t ∈ [t 0 , +∞), z(t) ∈ R n , ( 2.12) 
• there exists a strictly positive constant λ such that

d dt V (t, z(t)) ≤ -λV (t, z(t)), ∀t ∈ [t 0 , +∞), z(t) ∈ R n . (2.13)
Then the equilibrium z = 0 is globally exponentially stable.

Observer design under complete observability

We propose an expression of Luenberger gain as

K : t ∈ T → W (t, t 0 ) -1 in (2.10),
where W is the gramian time-dependent observability matrix function associated to the state-observation pair (A + λ 2 I, C; t) that is invertible under observability assumption and formulated as

W (t, t 0 ) = 2 t t 0 -ε e -λ(t-s) φ(s, t) * C(s) * C(s)φ(s, t)ds, ∀t ≥ t 0 ≥ 0, (2.14)
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where λ and ε are two strictly positive constants. If ε = 0, the function W evaluated at t = t 0 will be the zero matrix which will not verify the invertibility assumption. The dynamics of W is obtained by time-differentiation of W using the Liebniz's rule, which gives

∂ ∂t W (t, t 0 ) = -λW (t, t 0 )-A(t) * W (t, t 0 )-W (t, t 0 )A(t)+2C(t) * C(t), W (t 0 , t 0 ) = 0.
(2.15)

Lemma 1. If the pair (A, C; t) is backwardly observable on T , then the matrix W (t, t 0 ) is symmetric positive definite for all t ∈ T .

Proof. Let z and ȳ be respectively the state and the observation associated to the pair (A, C; σ) for all σ ∈ (t 0 , t) with t ∈ T , where the final condition is z(t) = z(t).

The observability property can be expressed into quadratic form defined by W as follows

1 2 z(t) * W (t, t 0 )z(t) = t t 0 -ε e -λ(t-σ) ȳ(σ, z(t)) 2 dσ ≥ t t-ε e -λ(t-σ) ȳ(σ, z(t)) 2 dσ.
By change of variable u = t -σ, we obtain the inequality

1 2 z(t) * W (t, t 0 )z(t) ≥ ε 0 e -λu ȳ(t -u, z(t)) 2 du ≥ e -λε ε 0 ȳ(t -u, z(t)) 2 du.
Then coming back to the time variable s yields

1 2 z(t) * W (t, t 0 )z(t) ≥ e -λε t t-ε ȳ(σ, z(t)) 2 dσ ≥ e -λε t max(t 0 ,t-ε) ȳ(σ, z(t)) 2 dσ.
Since we assume that backward observability condition is satisfied on T , it is also satisfied on (t 0 , t) for all t ∈ T and we have existence of a constant γ > 0 such that for all s ∈ (t 0 , t) 

t s ȳ(σ, z(t)) 2 dσ ≥ γ z(t) 2 , since max(t 0 , t -ε) ∈ (t 0 , t), it yields to 1 2 z(t) * W (t, t 0 )z(t) ≥ e -λε γ z(t)
V (t, t 0 , z(t)) = z(t), W (t, t 0 )z(t) , ∀t ∈ T ,
is exponentially stable with a rate of λ towards the equilibrium ẑ -z = 0, where ẑ is the solution of the observer model (2.10) and z is the solution of the state model (2.1).

Proof. Let us first check that V verifies the condition (2.12) by finding the constants α 1 and α 2 . Let z and ȳ be respectively the state and observation variable associated to (A, C; s) on the time domain (t 0 , t) with t ∈ T where the final condition is z(t) = z(t). Thanks to Lemma 1, there exists an observability condition constant γ such that V (t, t 0 , z(t)) is bounded by 2e -λε γ z(t) 2 . Thus, the left hand side constant of the condition (2.12) is α 1 = 2γe -λε . On the other hand, we have that for all t ∈ T ,

V (t, t 0 , z(t)) = 2 t t 0 -ε e -λ(t-s) ȳ(s, z(t)) 2 ds ≤ 2 t t 0 -ε ȳ(s, z(t)) 2 ds.
Since A and C are bounded operators, we have the following trivial implication, known as approximated admissibility, that reads

z(t) = 0 ⇒ ȳ(s) = C(s)φ(s, t)z(t) = 0, ∀s ≤ t.
For finite dimensional problems, it can be rewritten as the following inequality

t t 0 -ε ȳ(s, z(t)) 2 ds ≤ β z(t) 2
where β is a strictly positive constant. So the right hand side constant in the condition (2.12) is α 2 = 2β.

The second step of the proof consists in the study of V . The expression of the time derivative of V along the state error trajectory is

V (t) = z(t) * (A(t) -W -1 (t)C(t) * C(t)) * W (t) + W (t)(A(t) -W -1 (t)C(t) * C(t)) + Ẇ (t) z(t), = z(t) * A(t) * W (t) + W (t)A(t) -2C(t) * C(t) + Ẇ (t) z(t).
Replacing the derivative of W by its expression in (2.15) eliminates some terms, the only remaining term is

V (t) = -λz(t) * W (t)z(t) = -λV (t), ∀t ∈ T , hence exponential stability result V (t) = e -λ(t-t 0 ) V (t 0 ), ∀t ∈ T .
Using the condition (2.12) with α 1 and α 2 we have determined, exponential stability of the original error state reads

z(t) 2 ≤ β γ e -λ(t-(t 0 -ε)) z(t 0 ) 2 , ∀t ∈ T .

Observer design under partial observability

To prove the convergence, we have imposed to the model to be observable on the whole time domain T , which is the strongest observability assumption that could be made. In practice, observability on a subdomain of T , called partial observability, is frequently encountered and a much more realistic condition to assume. If the time domain starts at t 0 and backward observability starts at a > t 0 , it is not a problem for asymptotic convergence since no matter when convergence starts we are able to ensure that ẑk → z k when k → +∞. Things get a little bit more complicated if we have backward observability only on the reduced time interval [a, b] subset of T .

To be more specific, observations collected after b are no longer enough to identify the final state. In that case asymptotic convergence is not possible, only finite time convergence is verified. However we are able to prove that convergence is guaranteed until any finite time t f such that a < t f < +∞ independently of b. This last case of partial observability is particularly of interest and will be examined in detail here.

We propose Proof. Let z and ȳ be the state and observation associated to the pair (A, C; s) for all s ∈ (a, t) and t ∈ T a . The quadratic form defined by the symmetric matrix operator W (t, -∞) yields

K(t) = W (t, a -t f -ε) -1 , or more simply K(t) = W (t, -∞) -1 ,
1 2 z(t) * W (t, -∞)z(t) = t -∞ e -λ(t-σ) ȳ(σ, z(t)) dσ, ≥ t t+b-t f e -λ(t-σ) ȳ(σ, z(t) 2 dσ, ≥ e λ(b-t f ) t t+b-t f ȳ(σ, z(t) 2 dσ, ≥ e λ(b-t f ) t max(a,t+b-t f ) ȳ(σ, z(t) 2 dσ.
By backward observability on the interval [a, b], there exists a constant γ > 0 such that for all s ∈ (a, b) 

t s ȳ(σ, z(t) 2 dσ ≥ γ z(t) 2 . Since t + b -t f < b for all t ∈ T a , then max(a, t + b -t f ) ∈ [a, b], and we finally obtain 1 2 z(t) * W (t, -∞)z(t) ≥ e λ(b-t f ) γ z(t)
V (t, z(t)) = z(t), W (t, -∞)z(t) , ∀t ∈ (a, t f ),
is exponentially stable on T a = (a, t f ) with a rate of λ towards the equilibrium z = ẑ -z = 0, where ẑ is the solution of the observer model (2.10) and z is the solution of the state model (2.1).

Proof. The difference between the complete-observability case convergence concerns the fact that W (t, -∞) has to be positive definite on T a . In Lemma 2, by assuming backward observability on [a, b], the following inequality has been proved

V (t, z(t)) ≥ 2e λ(b-t f ) γ z(t) 2 ,
where γ is the observability constant. So the left hand side of the condition (2.12) is verified with α 1 = 2γe λ(b-t f ) . The rest of the proof is basically the same as for complete observability assumption case.

We will see in the next chapter that back-and-forth strategy is a better option to handle this problem of partial observability in time, where asymptotic stability can be ensured by maintaining the solution in T a using back-and-forth nudging.

Gramian observability change of coordinates

An alternative way to show observer state convergence is by gramian matrix change of coordinates applied to the original state model (2.1). Let ξ(t) = W (t, t 0 )z(t) be the new state obtained after the state z(t) mapping. By differentiation, the new state is governed by ξ(t) = Ẇ (t, t 0 )z(t) + W (t, t 0 ) ż(t) where, given the dynamics of the original state (2.1) and the gramian matrix function (2.15), can be rewritten as Then, the derivative of V is given by

ξ(t) = -(A * (t) + λI n ) ξ(t) + 2C * (t)y(t) + W (t)B(t)u(t). ( 2 
V (t) = -ξ(t), Q(t) ξ(t) , ∀t ∈ T ,
which is negative definite, proving that V is an asymptotically stable Lyapunov function.

Theorem 14 (Convergence of z). Under Assumptions 1-2 and if λ verifies (2.19), then the equilibrium ẑ -z = 0 is asymptotically stable where ẑ = W (t, t 0 ) ξ(t) with ξ(t) solving (2.17).

Proof. We proved in Theorem 11 that, under backward observability condition, there exists two stricly positive constants α 1 and α 2 such that

α 1 z(t) 2 ≤ z(t), W (t)z(t) ≤ α 2 z(t) 2 .
(2.20)
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The norm of the new coordinates ξ = W (t)z is defined as ξ(t) 2 = z(t), W (t) 2 z(t) . Using the relation (2.20) twice, we obtain that ξ(t) 2 is bounded by

α 2 1 z(t) 2 ≤ ξ(t) 2 ≤ α 2 2 z(t) 2 .
meaning that the quadratic function V , with P a positive definite bounded matrix function, is bounded by

α 2 1 λ min (P ) z(t) 2 ≤ V (t, ξ(t)) ≤ α 2 2 λ max (P ) z(t) 2 ,
where λ min (P ) > 0 and λ max (P ) > 0 are respectively the maximum and minimun eigenvalues of P in the time domain T . Given the previous theorem result, we have that 

V (t) ≤ -λ min (Q) ξ(t) 2 ≤ -α 2 1 λ min (Q) z(t) 2 , where λ min (Q) > 0 is the minimun eigenvalue of Q, demonstrating that V (t)
(t) = W (t, t 0 ) -1 ξ(t) is governed by ż(t) = A(t)ẑ(t) + B(t)u(t) -2W -1 (t, t 0 )C * (t)(C(t)ẑ(t) -y(t)),
then ξ(t) = W (t, t 0 )ẑ(t) clearly solves (2.17). We realize that it is very similar to the observer we gave in the previous section.

Discrete-time observability theory

To treat discretized non-autonomous problems, the properties of observability, Lyapunov function stability and gramian functions have to be redefined. A quick review is provided here.

Definition

We consider a discrete non-autonomous linear problem of the form 

z k+1 = A k+1,k d z k + B k+1,k d u k+1 + Bk+1,k d u k , y k = C k z k , ( 2 
z k = φ k,0 z 0 + k-1 i=0 φ k,i+1 B i+1,i d u i+1 + Bi+1,i d u i , ∀k ∈ N * ,
where φ l,m with l ≥ m represents the state-transition matrix from step m to step l. 30 Chapter 2. On the Luenberger observer for non-autonomous problems Definition 6 (Forward state transition matrix). The state transition matrix associated to the discrete system (2.21) is defined as

φ l,m =        l-1 i=m A i+1,i d = A l,l-1 d . . . A m+1,m d , l > m I, l = m , l, m ∈ N.
If the state matrix is invertible it is possible to define the backward model by expressing z k (at current time) with respect to z k+1 (at future time). By reformulating the model (2.21) we obtain the backward model

z k-1 = A k-1,k d z k -B k-1,k d u k -Bk-1,k d u k-1 , y k = C k z k , ( 2.22) 
where

A k-1,k d = (A k,k-1 d ) -1 , B k-1,k d = (A k,k-1 d ) -1 B k,k-1 d and Bk-1,k d = (A k,k-1 d ) -1 Bk,k-1 d
represent the backward state and control matrices. The solution of the discrete backward system can be expressed by

z 0 = φ 0,k z k - k-1 i=0 φ 0,i+1 B i,i+1 d u i+1 + Bi,i+1 d u i ,
where φ l,m with l ≤ m represents the state-transition matrix from step m to l.

Definition 7 (Backward state transition matrix). The state transition matrix associated to the discrete backward system (2.22) is defined as

φ l,m =        l+1 i=m A i-1,i d = A l,l+1 d . . . A m-1,m d , l < m I, l = m , l, m ∈ N.
Forward and backward observability is equivalent if state-observation pair is invariant, otherwise both notions have to be distinguished depending on whether initial or final state is identified from collected observation. Definition 8. The system (2.21) is forwardly observable at j ∈ k, +∞ if there exists a strictly positive constant γ such that the following inequality is satisfied

j i=k y i 2 ≥ γ z k 2 .
Definition 9. The system (2.21) is backwardly observable at j ∈ 0, k if there exists a strictly positive constant γ such that the following inequality is satisfied

k i=j y i 2 ≥ γ z k 2 .

Discrete gramian observability matrices

The norm of observation state can be rewritten into quadratic form defined by forward gramian matrix as j i=k y i 2 = z * k M j,k z k , or backward gramian matrix as

k i=j y i 2 = z * k M b k,j z k .
Meaning that observability is strongly related to nonsingularity of gramian matrices and non-singularity criterion can be used to evaluate observability.

Definition 10 (Discrete forward gramian matrix). The gramian observability matrices associated to the pair (A d , C; k) for all k ∈ N are defined as

M j,k = j i=k φ * i,k C * i C i φ i,k , j ≥ k.
Furthermore, if A k+1,k d are stable, then M j,k is the unique solution of the Stein equation [START_REF] Datta | Numerical Methods for Linear Control Systems[END_REF]Chapter 7]

A k+1,k d * M j,k+1 A k+1,k d -M j,k = -C * k C k , j ≥ k.
Definition 11 (Discrete backward gramian matrix). The gramian observability matrices associated to the pair (A d , C; k) for all k ∈ N * are defined as

M b k,j = k i=j φ * i,k C * i C i φ i,k , j ≤ k.
Furthermore, if A k+1,k d are stable, then M b k,j is the unique solution of the Stein equation [START_REF] Datta | Numerical Methods for Linear Control Systems[END_REF]Chapter 7]

A k-1,k d * M b k-1,j A k-1,k d -M b k,j = C * k C k , j ≤ k.
The Stein equations are also known as discrete-Lyapunov equations in control literature.

Theorem 15. The system (2.21) is fowardly observable at j ∈ k, +∞ iff M j,k is symmetric positive definite.

Theorem 16. The system (2.21) is backwardly observable at j ∈ 0, k iff M b k,j is symmetric positive definite.
Since asymptotic stability is desired with k → +∞, we need additional state matrix stability property if we want gramian matrices to stay bounded. But matrix stability criterion in discrete context is different than in continuous context where matrices must be Hurwitz. Definition 12. The state matrices {S k+1,k } k∈N of a discrete state model are stable if all the eigenvalues of the state matrices are strictly contained in the unit circle of the complex plane.

Lyapunov asymptotic stability

Concerning global stability of discrete problems in the sense of Lyapunov, the time derivative of the Lyapunov function is replaced by the variation of the Lyapunov function between two time steps [START_REF] Bof | Lyapunov Theory for Discrete Time Systems[END_REF], as stated in the following theorems.

Theorem 17 (Discrete Lyapunov asymptotic stability). Let zk = 0 be an equilibrium of a n-dimensional time-discrete equation. Let V : R n → R be a continuous function such that

• there exists two functions α 1 and α 2 of class K ∞ such that

α 1 (z k ) ≤ V (z k ) ≤ α 2 (z k ), ∀k ∈ N, ∀z k ∈ R n ,
• there exists a functions α 3 of class K ∞ such that

∆V k = V (z k+1 ) -V (z k ) ≤ -α 3 (z k ), ∀k ∈ N, ∀z k ∈ R n .
Then the equilibrium zk = 0 is globally asymptotically stable.

In the special case in which α 3 (z k ) is replaced by λV (z k ) for some λ ∈ (0, 1) we obtain an exponential decay of V formulated as V (z k ) ≤ (1 -λ) k V (z 0 ) describing discrete exponential stability in the sense of Lyapunov functions [START_REF] Hu | Exponential stability of time-varying linear discrete systems[END_REF].

Theorem 18 (Discrete Lyapunov exponential stability). Let zk = 0 be an equilibrium of a n-dimensional time-discrete equation. Let V : R n → R be a continuous function such that

• there exists two functions α 1 and α 2 of class K ∞ such that

α 1 (z k ) ≤ V (z k ) ≤ α 2 (z k ), ∀k ∈ N, ∀z k ∈ R n ,
• there exists a strictly positive constant λ ∈ (0, 1) such that

∆V k = V (z k+1 ) -V (z k ) ≤ -λV (z k ), ∀k ∈ N, ∀z k ∈ R n .
Then the equilibrium zk = 0 is globally exponentially stable.

Design of gramian-based discrete-time Luenberger observer

Unlike continuous Lyapunov equations, Stein equations are nonlinear. Thus the method involving gramian matrix modification to design an exponentially stable observer is more difficult to apply in the time-discrete case. A simpler way to handle this problem is to point out a link between Lyapunov and Stein equations, allowing us to use and modify the gramian matrices at the continuous level.

Relation between Stein and Lyapunov equations

First, we investigate the relation between time-invariant Lyapunov equation and Stein equation.

Theorem 19. Let W, Q and A be matrices of M n (R). Let α = 0 such that 1 α is not in the spectrum of A, then the Lyapunov equation

A * W + W A = Q, is equivalent to the Stein equation A * d W A d -W = Q d , with A d = (I -αA) -1 (I + αA), Q d = α 2 (A d + I) * Q(A d + I).
Proof. We have the expression of A d with regards to A, conversely the expression of A with regards to A d is given by

A = 1 α (A d -I)(A d + I) -1 .
Replacing A in the Lyapunov equation yields

((A d + I) -1 ) * (A d -I) * W + W (A d -I)(A d + I) -1 = αQ.
And by multiplying on the left side by (A d + I) * and on the right side by (A d + I) we obtain

(A d -I) * W (A d + I) + (A d + I) * W (A d -I) = α(A d + I) * Q(A d + I),
which is exactly the Stein equation

A * d W A d -W = Q d .
Now we investigate the relation between time-varying Lyapunov equation that has been discretized first and Stein equation.

Theorem 20. Let W k , Q k , A k be matrices of M n (R) for all k ∈ N. Let α = 0 such that 1 α is not in the spectrum of A k for all k ∈ N, then the discretized Lyapunov equation W k+1 -W k = -αA * k+1 W k -αW k A k+1 + Q k+1 , is equivalent to the Stein inequation A k+1,k d * W k+1 A k+1,k d -W k ≤ Q k+1,k d , where A k+1,k d = (I -αA k+1 ) -1 , Q k+1,k d = (A k+1,k d ) * Q k+1 A k+1,k d .

Chapter 2. On the Luenberger observer for non-autonomous problems

Proof. The Lyapunov equation can be rewritten as 

W k+1 = (I -αA k+1 ) * W k (I -αA k+1 ) -α 2 A * k+1 W k A k+1 + Q k+1 . Since A k+1,k d = (I -αA k+1 ) -1 ,
A k+1,k d * W k+1 A k+1,k d = W k -α 2 A k+1,k d * A * k+1 W k A k+1 A k+1,k d + Q k+1,k d ≤ W k + Q k+1,k d ,
since W k is a symmetric positive definite matrix.

Discrete autonomous observer design

To explain the design of non-autonomous discrete observer, we will first describe our approach for simpler autonomous discrete models of the form

ż(t) = Az(t) + Bu(t), y(t) = Cz(t), t ∈ T ,
where A ∈ M n (R), B ∈ M n,r (R) and C ∈ M p,n (R) as time-independent. The gramian observability functions can be defined as before, i.e. as time-dependent functions solving the equations (2.7) and (2.9). It is simpler to choose timeindependent gramian functions. Let 

M ∞ = lim t→+∞ M (t, t 0 ) and M b ∞ = lim t→-∞ M b (t f ,
M ∞ = +∞ t 0 φ(s, t 0 ) * C * Cφ(s, t 0 )ds.
Furthermore, if A is Hurwitz, then M is the unique solution of the time-independent Lyapunov equation

A * M ∞ + M ∞ A = -C * C.
Definition 14 (Backward gramian observability matrix). The backward gramian observability matrix associated to the time-independent pair (A, C) is defined as

M b ∞ = t -∞ φ(s, t f ) * C * Cφ(s, t f )ds. Furthermore, if -A is Hurwitz, then M b is the unique solution of the time-independent Lyapunov equation A * M b ∞ + M b ∞ A = C * C.
Theorem 21. Let M ∞ and M b ∞ be respectively the forward and the backward gramian observability matrix associated to the time-independent pair (A, C). The pair

(A, C) is observable iff M ∞ or M b ∞ is positive definite.
The time-discretisation of the problem will be performed by θ-scheme with θ ∈ (0, 1) a fixed number mixing forward and backward Euler schemes with a uniform time step ∆t > 0. The discretised model by θ-scheme is transformed into (2.21) with A d , B d and Bd invariant matrices defined as

A d = (I -θ∆tA) -1 (I + (1 -θ)∆tA) , B d = (I -θ∆tA) -1 ∆tθB, Bd = 1 -θ θ B d ,
where θ and ∆t are chosen such that the matrix (I -θ∆tA) is non-singular. The state transition matrix is simply 

φ k,l = (A d ) k-l .
λ d = 1 + ∆t(1 -θ)λ 1 -∆tθλ , λ = 1 θ∆t λ d -1 λ d + 1-θ θ where λ = 1
∆tθ is the eigenvalue of A and λ d = -1-θ θ is the eigenvalue of A d . Thus, from Corollary 1, observability of (A, C) and (A d , C) are equivalent since A and A d share the same eigenvectors. Besides, A is Hurwtiz with (λ) < 0 is equivalent to

A d is stable with |λ d | < 1.
We propose the following Luenberger observer of the discrete time model

ẑk+1 = A d ẑk + B d u k+1 + Bd u k -W -1 2 C * (C(A d + I)ẑ k -(y k+1 + y k )) , (2.23)
where W is the continuous backward gramian observability matrix associated to the pair A + λ 2 I, C * C with λ > 0 defined as

W = t f -∞ e λ(s-t f ) φ(s, t f ) * C * CC * Cφ(s, t f )ds. Assume λ > 2 sup |σ(A)| then -A -λ 2 I
Hurtwitz matrix and W is the unique solution of the following time-independent Lyapunov equation

A * W + W A = -λW + CC * C * C.
(2.24)

Note that data correction C(A d + I)ẑ k -(y k+1 + y k ) can be rewritten in terms of state error C(A d + I) (ẑ k -z k ). Thus, the error state zk = ẑk -z k dynamics is described by the following time discrete homogeneous linear system

zk+1 = A d -W -1 2 C * C(A d + I) zk , ( 2.25) 
for which we want to prove the asymptotic stability. Then the function V : R n → R + defined as

V (z k ) = z * k W zk , ∀k ∈ N
is an exponentially stable Lyapunov function for the discrete system (2.25) towards the equilibrium zk = 0.

Proof. Since -A -λ 2 is Hurwitz, the symmetric positive definite matrix W is bounded and so are its eigenvalues, thus V is bounded as

σ min zk 2 ≤ V (z k ) ≤ σ max zk
2 where σ min , σ max are the minimum and the maximum eigenvalues of W . The variation of V at the step k ∈ N along the trajectory (2.25) is given by

∆V k = z * k A d -W -1 2 C * C Ãd * W A d -W -1 2 C * C Ãd -W zk , = z * k A * d W A d -W + Ã * d C * CC * C Ãd -Ã * d C * CW 1 2 A d -A * d W 1 2 C * C Ãd zk ,
where Ãd represents the matrix A d + I. As a gramian matrix of a continuous problem, the matrix W solves the Lyapunov equation (2.24) and following the Lemma 19 with α = ∆t 2 , W is also the unique solution of the Stein equation

A * d W A d -W = - ∆t 4 λ Ã * d W Ãd + ∆t 4 Ã * d C * CC * C Ãd .

By inserting this expression to replace

A * d W A d -W in ∆V k , we obtain ∆V k = z * k - ∆t 4 λ Ã * d W Ãd + ∆t 4 + 1 Ã * d C * CC * C Ãd -Ã * d C * CW 1 2 A d -A * d W 1 2 C * C Ãd zk .
Using successively Cauchy-Schwarz and Young inequalities on the third term gives

-z * k à * d C * CW 1 2 A d zk ≤ z * k à * d C * CC * C Ãd zk z * k A * d W A d zk ≤ 1 2 z * k à * d C * CC * C Ãd zk + 1 2 z * k A * d W A d zk .
By transposition the same result can be obtained for the fourth term of ∆V k , hence

∆V k ≤ z * k - ∆t 4 λ Ã * d W Ãd + ∆t 4 + 1 Ã * d C * CC * C Ãd + Ã * d C * CC * C Ãd + A * d W A d zk ≤ z * k - ∆t 4 λ Ã * d W Ãd + ∆t 4 + 1 Ã * d C * CC * C Ãd + Ã * d C * CC * C Ãd + Ã * d W Ãd zk ≤ z * k - λ∆t 4 + 1 Ã * d W Ãd + ∆t 4 + 2 Ã * d C * CC * C Ãd zk ≤ z * k - λ∆t 4 + 3 + ∆t 4 Ã * d W Ãd zk .
Finally we have the desired inequality for discrete Lyapunov exponential stability

V (z k+1 ) -V (z k ) ≤ - λ∆t 4 + 3 + ∆t 4 V (z k ),
where the constant -λ∆t 4 + 3 + ∆t 4 is strictly negative.

Discrete nonautonomous observer design

The discretisation of the non-autonomous model (2.1) with a θ-scheme corresponds to the discrete model (2.21) where the state matrix is defined by

A k+1,k d = (I -θ∆tA k+1 ) -1 (I + (1 -θ)∆tA k ) ,
assuming that 1 θ∆t is not in the spectrum of the state matrices A k , and the control matrices are defined by

B k+1,k d = ∆tθA k+1,k d B k+1 , Bk+1,k d = ∆t(1 -θ)A k+1,k d B k .
We propose the following Luenberger observer of the discrete non-autonomous linear model

ẑk+1 = A k+1,k d ẑk + B k+1,k d u k+1 -W -1 2 k+1 C * k+1 C k+1 A k+1,k d ẑk + B k+1,k d u k+1 + Bk+1,k d u k -y k+1 .
(

where observer gain W k is coming from foward Euler discretisation of the continuous backward gramian function associated to the pair (A(t + ∆t) + λ 2 I, C(t + ∆t) * C(t + ∆t); t) defined as

W (t) = t+∆t t 0 +∆t e -λ(t+∆t-s) φ(s, t + ∆t) * C(s) * C(s)C(s) * C(s)φ A + (s, t + ∆t)ds, with λ > 0. Furthermore, if W is differentiable then W is the unique solution of the differential Lyapunov equation Ẇ (t) = -A(t + ∆t) * W (t) -W (t)A(t + ∆t) -λW (t) + C(t + ∆t) * C(t + ∆t)C(t + ∆t) * C(t + ∆t).
Then, as said before by forward Euler discretization with a uniform time step ∆t, the discretized matrix solution {W k } k∈N solves the iterative equation

W k+1 -W k = -∆tA * k+1 W k -∆tW k A k+1 -∆tλW k +∆tC * k+1 C k+1 C * k+1 C k+1 . (2.27) Considering that the data correction C k+1 (A k+1,k d ẑk + B k+1,k d u k+1 + Bk+1,k d u k ) - y k+1 is equal to the state correction C k+1 A k+1,k d (ẑ k -z k ), then error state zk = ẑk -z k at the step k ∈ N is governed by the following time-discrete homogeneous equation zk+1 = A k+1,k d -W -1 2 k+1 C * k+1 C k+1 A k+1,k d zk , (2.28)
and the conditions of error stability are presented in the following theorem. 

λ > 1 + 1 ∆t + 1 2∆t inf t≥t 0 σ(A(t)) 2 , λ > 2 sup t≥t 0 |σ(A(t))|, (2.29) 
where A is bounded. Then, the function V : R n → R + defined as

V (z k ) = z * k W k zk , ∀k ∈ N,
is an exponentially stable discrete Lyapunov function for the system (2.28) towards the equilibrium zk = 0.

Proof. Since -A(t) -λ 2 I is a Hurwitz matrix for all times t ≥ t 0 , then W (t) is bounded and after discretisation W k are also bounded. Then, the function V is bounded by minimum and maximum eigenvalues of

W k as min k∈N (σ(W k )) zk 2 ≤ V (z k ) ≤ max k∈N (σ(W k )) zk 2 .
The variation of V at step k ∈ N is expressed by

∆V k = z * k A k+1,k d -W -1 2 k+1 C * k+1 C k+1 A k+1,k d * W k+1 A k+1,k d -W -1 2 k+1 C * k+1 C k+1 A k+1,k d zk -z * k W k zk .
The gramian matrices W k solve the Lyapunov equation (2.27). As pointed out by the Lemma 20 with α = ∆t, the gramian matrices also solve the Stein inequation

A k+1,k d * W k+1 A k+1,k d -W k ≤ -∆tλA k+1,k d * W k A k+1,k d +∆tA k+1,k d * C * k+1 C k+1 C * k+1 C k+1 .
Using this relation to replace

A k+1,k d * W k+1 A k+1,k d -W k in the variation of V gives ∆V k ≤ z * k (-λ∆tA k+1,k d * W k A k+1,k d + (∆t + 1)A k+1,k d * C * k+1 C k+1 C * k+1 C k+1 A k+1,k d -A k+1,k d * C * k+1 C k+1 W 1 2 k+1 A k+1,k d -A k+1,k d * W 1 2 k+1 C * k+1 C k+1 A k+1,k d )z k .
Using successively Cauchy-Schwarz and Young inequalities on the last two scalar products yields

∆V k ≤ -z * k (λ∆tA k+1,k d * W k A k+1,k d + (∆t + 2)A k+1,k d * C * k+1 C k+1 C * k+1 C k+1 A k+1,k d +A k+1,k d * W k+1 A k+1,k d )z k .
Using again the Stein inequation yields

∆V k ≤ -2λ∆tA k+1,k d * W k A k+1,k d + 2(∆t + 1)A k+1,k d * C * k+1 C k+1 C * k+1 C k+1 A k+1,k d + W k , ≤ 2 1 2 min σ(A k+1 ) 2 -λ∆t A k+1,k d * W k A k+1,k d + 2(∆t + 1)A k+1,k d * C * k+1 C k+1 C * k+1 C k+1 A k+1,k d , ≤ 2 1 2 min σ(A k+1 ) 2 -λ∆t + ∆t + 1 A k+1,k d * W k A k+1,k d .
Under the assumption on λ, we have that ∆V k is negative definite.

Numerical applications to chaotic dynamics

We propose in this section to construct an observer for the classical Lorenz system that is the one of most analyzed model to represent chaotic behavior in meteorology and oceanography.

Lorenz model

Originally this model was proposed by Lorenz [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF] to show why climate is so unpredictable despite being governed by deterministic model. With a very simple three-dimensional model, complex trajectories can be obtained with high sensitivity to initial conditions, aperiodic and irregular dynamics, which are now recognized as the signatures of chaotic systems. Since that discovery, chaotic behaviour has been considered as subject of study and no longer as a nuisance for climate dynamics and also in a diverse range of applications in biology, electrical engineering, nuclear physics, and socioeconomics. Various Lorenz models can be found in the literature, we consider here the classical Lorenz model given by

       ż1 = σ(z 2 -z 1 ) ż2 = (ρ -z 3 )z 1 -z 2 ż3 = z 1 z 2 -βz 3 (2.30)
where z 1 describes the fluid velocity, z 2 the horizontal temperature and z 3 the vertical temperature. The parameter σ represents the Prandtl number, ρ the Rayleigh number and β a geometry factor. Depending on the choice of the parameters, the model trajectory can present complex chaotic dynamics. For example, Lorenz in [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF] find out that for σ = 10, ρ = 28 and β = 8/3 chaotic dynamic is obtained, these values are the most common used for analysis. The nonlinearity in the model represents a coupling between the fluid motion and the temperature deviation and has a huge role in the chaotic behaviour. A linearized version via sign operator that is preserving the chaotic behaviour has been proposed by Li, Sprott and Thio [START_REF] Li | Linearization of the Lorenz system[END_REF]. Linear model can also been obtained by synchronisation of chaos [START_REF] Tang | Synchronization and chaos[END_REF][START_REF] Pecora | Synchronization in chaotic systems[END_REF]. Synchronisation of chaos is another type of data assimilation problems for which two systems have to be synchronised where one system (master system) receives information from the other system (slave system). If information is the first state variable of the Lorenz model y = z 1 , the master Lorenz system becomes linear time-dependent and its convergence has been proved in [START_REF] Morgül | Observer based synchronization of chaotic systems[END_REF][START_REF] Solak | A reduced-order observer for the synchronization of Lorenz systems[END_REF]. The state, control and observation matrix functions correspond to

A(t) =    -σ σ 0 0 -1 -y(t) 0 y(t) -β    , B(t) =    0 ρ 0    , C(t) =    1 0 0    T ,
where the rank of observability matrix O(A, C; t) is equal to 3 if y(t) = 0. The pair (A, C; t) is forwardly and backwardly observable for every t ∈ T . With observability 40 Chapter 2. On the Luenberger observer for non-autonomous problems and linearity conditions fulfilled, we can compare efficiency of synchronization of chaos with or without Luenberger state feedback. Different type of Luenberger gains will be compared : a simple scalar coefficient or a gramian matrix function as defined previously.

Algorithm

The computation of the gramian matrices W k and their inversion to obtain W -1 can be very time-consuming. As an alternative, let us derive the equation of W -1 explicitly that is

Ẇ (t) -1 = W (t) -1 A(t + ∆t) * + A(t + ∆t)W (t) -1 + λW (t) -1 -W (t) -1 C(t + ∆t) * C(t + ∆t)C(t + ∆t) * C(t + ∆t)W (t) -1 ,
coming from the differential Lyapunov equation of W (t). Then by forward Euler scheme discretisation the discrete inverse gramian matrices W -1

k solves W -1 k+1 -W -1 k = ∆t W -1 k A * k+1 + A k+1 W -1 k + λW -1 k -∆tW -1 k C * k+1 C k+1 C * k+1 C k+1 W -1 k , ( 2.31) 
without any matrix inversion involved in the process. The same thing could have been done to explicitly express W

-1 2
k , but computational cost of matrix inversion and power matrix is beyond comparison.

Inputs : A, B, C, {u k } N k=0 ,{y k } N k=0 Outputs : {ẑ k } N k=0
Assumptions : (A, C) is backwardly observable and λ verifies (2.29)

Initialization : ẑ0 , W -1 0 . Loop : for k ← 0 to N -1 do
Compute the discretized state matrix :

A k+1,k d = (I -∆tA k+1 ) -1 Compute the discretized control matrix : B k+1,k d = ∆tA k+1,k d B k+1
Update the observer gain matrix with (2.31) Calculate the square root of the observer gain matrix Update the observer state with (2.26) end Algorithm 1: Gramian-based Luenberger observer algorithm For initialisation of nudging gain, let us remind that since W (t 0 -ε) = 0 it can not be inverted, we have to run W (t 0 -ε) = 0 until W (t 0 ), and inverse W (t 0 ) = W 0 in order to initialise the process (2.31). But we want to avoid matrix inversion and even though invertibility property is not necessarily guaranteed by discretization of time-continuous equations. Another possiblity is to initialize W -1 0 by arbitrary invertible matrix, for instance the identity matrix.

Results

To avoid high frequency instabilities, we choose to scale the Lorenz model by making the linear transformation z 1 ← σz 1 , z 2 ← σz 2 , z 3 ← σz 3 and t ← t/σ [START_REF] Li | Linearization of the Lorenz system[END_REF]. After state and time transformation the model matrix functions are The RMS error compares synchronisation and Luenberger observer efficiency. The globally exponentially stable Lyapunov function V = z * W z would have been a better choice to show convergence of gramian-based Luenberger, but since synchronisation stability is based on another Lyapunov function V s = z * Dz where D = diag(γ, δ, δ) with γ, δ > 0 and 4δ > aγ taken in [START_REF] Morgül | Observer based synchronization of chaotic systems[END_REF][START_REF] Solak | A reduced-order observer for the synchronization of Lorenz systems[END_REF], the RMS error seems to be more neutral for comparison. As shown in Figure 2.3 and Figure 2.4, nudging clearly improves the synchronised state. Data feedback results are different if gain matrix is diagonal or not. Since the states variable ẑ2 and ẑ3 are independent of ẑ1 in the linearised model (2.32) and only ẑ1 is observed, diagonal gain data correction can only act on ẑ1 with no effect on non-observed variables. Figure 2.4 shows that non-diagonal gain matrices as gramian matrices act on observed variables as well as non-observed variables. Thus, gramian-based observer state estimation is better than synchronisation for all state variables. In the previous chapter, state observers have been used to estimate the state variables at the infinite time from input/output knowledge. As seen before, to obtain infinite time convergence several important conditions are required as infinite time backward observability and boundedness of the model matrix operators. For autonomous problems maintaining the gramian matrix bounded can be made by selecting a high-rate of convergence larger than the state matrix spectral radius, which involves fast convergence but also undesirable side effects as observation errors amplification and numerical instabilities. If one of these conditions is not verified, the asymptotic state estimation is no longer possible. The idea proposed by Auroux and Blum [START_REF] Auroux | The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations[END_REF][START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF] is to generate a finite time state estimation by continuously keeping the solution into a finite time domain using time integration in forward and backward directions iteratively. This method was first named back-and-forth problems nudging, because of the way to inject state observations to forward and backward models. Note that the name of iterative Luenberger observer can sometimes be found in the control literature [START_REF] Aalto | Iterative observer-based state and parameter estimation for linear systems[END_REF]. An interesting thing about this method is that the finite time domain can be made arbitrarily small, for instance to fit into any observability time domain so that observability conditions are guaranteed. Thus, by removing constraints on time-infinite observability and model matrices boundedness, the back-and-forth observer has many advantages compared to time increasing standard observer. The sucessive back-and-forths allows us to assimilate smoothly the observations without constraint of being optimal at each observation time which we know creates shocks. The back-and-forth nudging has been employed for several initial state estimation applications to quantum physics [START_REF] Donovan | Back and forth nudging for quantum state reconstruction[END_REF], transport equations [START_REF] Auroux | Diffusive Back and Forth Nudging algorithm for data assimilation[END_REF] or meteorological or oceanographical problems as chaotic Lorenz system [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF] or diffusive NEMO ocean model [START_REF] Ruggiero | Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model[END_REF].

A(t) =    -1 1 0 0 -a -y(t) 0 y(t) -b    , B(t) =    0 c 0    , C(t) =    a 0 0    T (2.
RMS K = 0 K = I K = W -1/2 , λ = 0. 1 K = W -1/2 , λ = 1 K = W -1/2 , λ = 10
K = 0 K = I K = W -1/2 , λ = 0. 1 K = W -1/2 , λ = 1 K = W -1/2 , λ =
K = 0 K = I K = W -1/2 , λ = 0. 1 K = W -1/2 , λ = 1 K = W -1/2 , λ =
K = 0 K = I K = W -1/2 , λ = 0. 1 K = W -1/2 , λ = 1 K = W -1/2 ,
In this chapter, we will analyze the iterative Luenberger observer stability using the theory of switching systems [START_REF] Liberzon | Switching in Systems and Control. Systems & Control: Foundations & Applications[END_REF]. Iterative Luenberger observer is a particular class of switched systems formed by two subsystems (forward and backward systems) that switch periodically one from another. Finding an asymptotic stable Lyapunov function for all individual subsystems is not sufficient for asymptotic stability of the global system. We will propose an expression of a global asymptotic Lyapunov function for non-autonomous switched problems. The final section of this chapter is devoted to the study of sensitivity to nudging gain parameter. The feedback term to observations added artificially to the physical model in the nudging method may alter some subscales physical properties [START_REF] Bao | An Adjoint Examination of a Nudging Method for Data Assimilation[END_REF]. We show, via sensitivity analysis using linearization method and adjoint method, that iterative nudging instead of standard forward nudging can highly reduce that sensitivity.

Formulation of iterative non-autonomous models

Back-and-forth technique, or iterative technique, consists in maintaining the solution in a finite time domain T = (t 0 , t f ) by continuously switching from forward time integration (from t 0 to t f ) to backward time integration (from t f to t 0 ). By coming back in time, this method is particularly interesting to provide a good initial state estimation of z 0 initializing a future prediction process. More generally, at each iteration the state prediction on T is improved, so that we can reach a more accurate state estimation.

Iterative state model

Given a standard model described by the following non-autonomous linear equation

ż(t) = A(t)z(t) + B(t)u(t), y(t) = C(t)z(t), z(t 0 ) = z 0 , t ∈ T ,
the backward model is simply the same as the forward model but integrated in the opposite direction, that is

ż(t) = A(t)z(t) + B(t)u(t), y(t) = C(t)z(t), z(t f ) = z f , t ∈ T 2 , ( 3.1) 
where T 2 = (t f , t 0 ) with t f > t 0 as the initial time of the backward model. Usually we rewrite the backward model on a time increasing domain, to do so we apply the time change of variable π : t → t f + t 0 -t where t = π(t) is the new time variable and t = π -1 (t ) = π(t ) is the old time variable. After the mapping the time domain become T and the backward model (3.1) is rewriten into

ż(t ) = -A(π(t ))z(t ) -B(π(t ))u(π(t )), y(t ) = C(π(t ))z(t ), z(t 0 ) = z f ,
for all t ∈ T . The back-and-forth model consists in combining forward and backward models by integrating them one after another in the time window, which can be formulated as

ż1 (t) = A 1 (t)z 1 (t) + B 1 (t)u 1 (t), y 1 (t) = C 1 (t)z 1 (t), z 1 (t 0 ) = z 2 (t f ), ż2 (t) = A 2 (t)z 2 (t) + B 2 (t)u 2 (t), y 2 (t) = C 2 (t)z 2 (t), z 2 (t 0 ) = z 1 (t f ), (3.2) 
where z 1 (t) ∈ Z = R n is the forward state and z 2 (t) ∈ Z = R n the backward state, for all t ∈ T . The state, control and observation operators of the forward system are defined as,

A 1 (t) = A(t), B 1 (t)u 1 (t) = B(t)u(t), C 1 (t) = C(t), ( 3.3) 
and the state, control and observation operators of the backward system are defined as

A 2 (t) = -A(π(t)), B 2 (t)u 2 (t) = -B(π(t))u(π(t)), C 2 (t) = C(π(t)). ( 3.4) 
By periodicitiy of the solution, due to back-and-forth, forward and backward solutions are related by z 2 (t) = z 1 (π(t)) for all t ∈ T . Thus y 2 (t) = y 1 (π(t)) for all t ∈ T involving that observability conditions between forward and backward systems are also related. For autonomous systems, observability (or unobservability) of forward and backward systems are equivalent since A and -A share the same family of eigenvectors. For non-autonomous systems, we know that two types of observability directions must be distinguished because of time dependence (forward and backward observability) following if the initial or the final state is identified from collected observations. Equivalences between observability of forward and backward non-autonomous systems are developped by us in the following theorem and illustrated in Figure 3.1.

Theorem 24. The forward system associated to the pair

(A 1 , C 1 )

is forwardly (repsectively backwardly) observable at t ∈ T if and only if the backward system associated to the pair

(A 2 , C 2 ) is backwardly (respectively forwardly) observable at π -1 (t) ∈ T .
Proof. First, let us write the relation between the two observability matrix functions

O 1 (t) = O(A 1 , C 1 ; t) and O 2 (t) = O(A 2 , C 2 ; t)
. By definition of observability in the case of non-autonomous systems, we have that

O σ (t) =     C (0) σ (t) . . . C (n-1) σ (t)     , σ (t)A σ (t) + Ċ(k-1) σ (t), (3.5) 
for all k ∈ 1, n -1 and σ ∈ {1, 2}. Let us prove using mathematical induction that the property

P k = {C (k) 2 (π -1 (t)) = (-1) k C (k)
1 (t)} is true for all k ∈ 1, n -1 and t ∈ T . Obviously P 0 is true by definition of C 1 and C 2 . Now, supposing P k-1 is true for a fixed k ∈ 1, n -1 , then by successively using sequence definition (3.5), induction assumption and definition of A 2 and A 1 (3.3)-(3.4), we have that

C (k) 2 (π -1 (t)) = C (k-1) 2 (π -1 (t))A 2 (π -1 (t)) + d dπ -1 (t) C (k-1) 2 (π -1 (t)) = (-1) k-1 C (k-1) 1 (t)A 2 (π -1 (t)) + (-1) k-1 d dπ -1 (t) C (k-1) 1 (t), = (-1) k C (k-1) 1 (t)A 1 (t) + (-1) k d dt C (k-1) 1 (t) = (-1) k C (k)
1 (t), proving the property P k is true, so by induction P k is true for all k ∈ 1, n -1 . Thus, we deduce that the rows of O 1 (t) and O 2 (π -1 (t)) are lineraly dependent, meaning that O 1 (t) and O 2 (π -1 (t)) have the same rank. By definition of forward observability, (A 1 , C 1 ; t) is forwardly observable at time t ∈ T if there exists a time s ∈ [t 0 , t] such that O 1 (s) has full rank : meaning that there exists a time

π -1 (s) ∈ [π -1 (t), t f ] such that O 2 (π -1 (s)) has full rank, hence (A 2 , C 2 ; π -1 (t)
) is backwardly observable. On the opposite side, (A 1 , C 1 ; t) is backwardly observable at time t ∈ T if there exists a time s ∈ [t, t f ] such that O 1 (s) has full rank : meaning that there exists a time π -1 (s) ∈ [t 0 , π -1 (t)] such that O 2 (π -1 (s)) has full rank proving that (A 2 , C 2 ; π -1 (t)) is forwardly observable.

Example 5. Let us take back the example from Chapter 1 of a time-dependent state-observation pair expressed as

A(t) = ln(t) | ln(t)| 0 0 , C(t) = 1 1 , t ∈ T , where T = (0, t f ) is a bounded time domain with 1 < t f < +∞. The observability matrices associated to (A 1 , C 1 ; t) and (A 2 , C 2 ; t) are respectively O(A 1 , C 1 ; t) = 1 1 ln(t) | ln(t)| , O(A 2 , C 2 ; t) = 1 1 -ln(π(t)) -| ln(π(t))| ,
which rank depends on the sign of the logarithm function. The rank of O(A 1 , C 1 ; t) is equal to 2 on (0, 1) and equal to 1 on [1, t f ) and on the contrary the rank of

O(A 2 , C 2 ; t) is equal to 2 on (t f -1, t f ) and equal to 1 on (0, t f -1].
Thus in accordance with Theorem 24, we deduce that the pair (A 1 , C 1 ; t) is always forwardly observable and the pair (A 2 , C 2 ; t) is always backwardly observable. We also have that the pair (A 1 , C 1 ; t) is backwardly observable for t ∈ (0, 1) and the pair (A 2 , C 2 ; t) is forwardly observable for t ∈ π -1 (0, 1) = (π -1 (1), t f ).

Note that the time mapping π is equal to its inverse π -1 . 
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Iterative Luenberger observer model

In order to draw the state towards the true state, we inject observation information by adding a nudging term to both forward and backward models (3.2) with two nudging gains to be determined. The iterative nudging observer at the iteration

k ∈ N reads żk 1 (t) = A 1 (t)ẑ k 1 (t) + B 1 (t)u 1 (t) + K 1 (t)C 1 (t) * (y 1 (t) -C 1 (t)ẑ k 1 ), ẑk 1 (t 0 ) = ẑk-1 2 (t f ), żk 2 (t) = A 2 (t)ẑ k 2 (t) + B 2 (t)u 2 (t) + K 2 (t)C 2 (t) * (y 2 (t) -C 2 (t)ẑ k 2 ), ẑk 2 (t 0 ) = ẑk 1 (t f ), (3.6 
) for all t ∈ T , where ẑk 1 ∈ Z is the forward observer state at the iteration k and ẑk 2 ∈ Z is the backward observer state at the iteration k, with ẑ0 1 (t 0 ) = z 0 ∈ Z as initialization of the model. The matrix functions K 1 , K 2 : T → M n (R) are respectively the forward and backward Luenberger gains to be determined in order to obtain asymptotic convergence of the back-and-forth nudging with regards to iterations i.e.

lim k→+∞ ẑk 1 (t) -z 1 (t) = 0, lim k→+∞ ẑk 2 (t) -z 2 (t) = 0, t ∈ T .

Switched systems formulation

The iterative Luenberger observer can be seen as a particular case of switching system, containing two types of motion: direct or reverse. Switched systems are of hybrid nature in the middle of continuous and discrete systems where different problems motions shift during time [START_REF] Liberzon | Switching in Systems and Control. Systems & Control: Foundations & Applications[END_REF]. A classical example is the motion of an automobile that can shift from stopping motion to reverse motion or accelerating motions following the position of the gear shift, thus different dynamics can be activated. In our case, the iterative nudging model is a family of two systems, where P = {1, 2} is the index set and σ : (t 0 , +∞) → P is the switching signal whose role is to specify the index of the activated dynamic at the current time.

One advantage of comparing back-and-forth observer with switched systems is that many works carried out on stability of switched systems can be employed and adapted to our problem. Let us rewrite the iterative model (3.2) as a switching system.

żσ (t) = A σ (t)z σ (t) + B σ (t)u σ (t), y(t) = C σ (t)z σ (t), t ∈ T ,
where σ = 1 refers to direct motion and σ = 2 refers to backward motion. Stability of the error switched systems between observer state (3.6) and the true state (3.2) at the iteration k ∈ N is given by

żk σ (t) = (A σ (t) -K σ (t)C σ (t) * C σ (t)) zk σ (t), t ∈ T , k ∈ N, (3.7) 
is studied in the next section. Note that we could also have put the systems one after another in time by applying the change of variables t → t + 2k(t f -t 0 ) for the k-th forward system and t → t+(2k+1)(t f -t 0 ) for the k-th backward system, so that the union of the forward and backward time domain for all k ∈ N is equal to [t 0 , +∞). It is particularly useful for example to properly compare iterative and standard Luenberger observers in the same time domain.

Stability of iterative non-autonomous models

The first idea is to apply the results established in the previous chapter on the stability of non-autonomous linear system, by selection of a particular gramianbased nudging gain, to forward and backward systems in order to obtain exponential stability for each system. However, we know that two asymptotically stable systems only give local stability and is not enough to have a global asymptotically stable switched system. We investigate two kinds of global asymptotically stable Lyapunov functions of switched system: first in discrete-time and second in continuous time.

Local continuous Lyapunov functions

As developed in Chapter 1, we can define two exponentially stable Lyapunov functions for the forward and backward systems separetly using gramian observability functions. For all σ ∈ {1, 2} let the time matrix function W σ : T → M n (R) be the gramian observability matrix associated to the state-observation pair where λ σ is a strictly positive constant that will play the role of convergence rate of the error state. Besides W σ is the unique solution of the following differential Lyapunov equation

(A σ + λσ 2 I n , C σ ) defined as W σ (t) = 2 t t 0 -ε e -λ(t-s) φ Aσ (s, t) * C σ (s) * C σ (s)φ Aσ (s, t)ds, t ∈ T , ( 3.8) 
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t : time Lyapunov function (V (z 1 )) T 2T 3T 4T z 1 z 1 z 1 z 1 t : time Lyapunov function (V (z σ )) T 2T 3T 4T z 1 z 2 z 1 z 2 z 1
dW σ (t) dt = -A σ (t) * W σ (t)-W σ (t)A σ (t)-λ σ W σ (t)+2C σ (t) * C σ (t), W σ (t 0 -ε) = 0, ( 3 
.9) that is useful to show the decay of Lyapunov function time derivative. From the previous chapter, based on backward observability assumption for all sub-systems we have a result on positive definitness of W σ and on exponential stability of each sub-system. 

Assumption 4. The matrix functions A(t), B(t) and C(t) are all bounded and piecewise continuous for all

α σ z(t) 2 ≤ V σ (z(t)) ≤ β σ z(t) 2 , t ∈ T , z(t) ∈ Z, (3.10) 
where α σ = 2γ σ e -λσε and β σ = 2δ σ with γ σ and δ σ respectively the backward observability constant and the admissibility constant.

Theorem 25. Under Assumptions 4-5 and if the nudging gain function is expressed as

K σ (t) = W -1 σ (t)
, t ∈ T , then, the iterative error trajectory (3.7) is locally exponentially stable with a rate of λ σ such that

zk σ (t) 2 ≤ β σ α σ e -λσ(t-t 0 ) zk σ (t 0 ) 2 , t ∈ T , k ∈ N.
However, it is not so easy to define an exponentially stable Lyapunov function for the whole back-and-forth process. If V 1 is not a Lyapunov function for the backward error and conversely V 2 is not a Lyapunov function for the forward error, the convergence is not guaranteed as represented by the jumps at intersections between forward and backward trajectories in Figure 3.3 (left). Example 6. From [START_REF] Liberzon | Switching in Systems and Control. Systems & Control: Foundations & Applications[END_REF]Chapter 2], we know that combining two systems individually globally asymptotically stable does not mean that the switched system is globally asymptotically stable. An example originally taken from [START_REF] Dayawansa | A Converse Lyapunov Theorem for a Class of Dynamical Systems which Undergo Switching[END_REF] shows that the following two Hurwitz matrices

A 1 = -1 -1 1 -1 , A 2 = -1 -10 0.1 -1
do not admit a common symmetric definite positive matrix W such that

A * 1 W + W A 1 = -Q 1 , A * 2 W + W A 2 = -Q 2
with Q 1 and Q 2 symmetric definite positive. Meaning that there is no common smooth asymptotically stable Lyapunov function of the quadratic form V (z) = z * W z for the switched system. Even if the two systems are asymptotically stable individually as shown by the non-asymptotically stable trajectory ploted in Figure 3.3.

Global discrete Lyapunov function

We seek a time discrete global exponentially stable Lyapunov function {V k } k∈N that must verify

α(z k 1 (t 0 )) ≤ V k ≤ β(z k 1 (t 0 )), V k+1 ≤ µV k , µ ∈ (0, 1), k ∈ N,
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t : time state (z σ ) T 2T 3T 4T z 1 z 2 z 1 z 2 t : time Lyapunov function (V σ (z σ )) T 2T 3T 4T V 1 (z 1 ) V 1 (z 2 ) V 2 (z 1 ) V 2 (z 2 ) V 1 (z 1 ) V 1 (z 2 ) V 2 (z 1 ) V 2 (z 2 ) σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2 σ = 1 σ = 2 t : time T 2T 3T 4T V 1 (z 1 ) V 1 (z 2 ) V 2 (z 1 ) V 2 (z 2 ) V 1 (z 1 ) V 1 (z 2 ) V 2 (z 1 ) V 2 (z 2 ) σ = 1 σ = 2 σ = 1 σ = 2 Lyapunov function (V σ (z σ ))
Figure 3.3: Scheme of back-and-forth continuous trajectory (σ = 1 refers to forward dynamic and σ = 2 refers to backward dynamic) and local Lyapunov function discontinuous trajectory. Only the solid lines take parts to the global error convergence result. Even if V 1 (z 1 ) and V 2 (z 2 ) are both asymptotically stable, it does not mean that V σ is a Lyapunov function for the whole back-and-forth process. The necessary condition is that also V 1 (z 2 ) and V 2 (z 1 ) need to be asymptoticaly stables, as shown in the last figure .   where α, β are functions of class K ∞ . The discrete times represent the starting time of each back-and-forth cycle, more specifically between backward and forward switch, also called dwell times. From existing results on dwell times (see [START_REF] Liberzon | Switching in Systems and Control. Systems & Control: Foundations & Applications[END_REF]Chapter 3]), a condition on the time ε is derived in the following theorem showing that 

V k = V 1 (z k 1 (t 0 )), k ∈ N, 56 
ε > t f -t 0 + 1 2λ ln γ 1 γ 2 δ 1 δ 2 when γ 1 γ 2 δ 1 δ 2 < 1 or the upper bound condition ε < t f -t 0 + 1 2λ ln γ 1 γ 2 δ 1 δ 2 when γ 1 γ 2 δ 1 δ 2 > 1, then the sequence {V k } k∈N is an exponential discrete Lyapunov function towards equilibrium z = 0.
Proof. Using the inequality (3.10) that is verified by V 1 and by using the boundary condition zk+1

1 (t 0 ) = zk 2 (t f ), then V k+1 is bounded by V k+1 = V 1 (z k+1 1 (t 0 )) ≤ β 1 zk+1 1 (t 0 ) 2 = β 1 zk 2 (t f ) 2 .
Using the inequality (3.10) that is verified by V 2 and the exponential convergence of V 2 along the backward error trajectory with a rate of λ, we have

V k+1 ≤ β 1 α 2 V 2 (z k 2 (t f )) ≤ β 1 α 2 e -λ(t f -t 0 ) V 2 (z k 2 (t 0 )) ≤ β 1 β 2 α 2 e -λ(t f -t 0 ) zk 2 (t 0 ) 2 ,
and with the boundary condition zk 2 (t 0 ) = zk 1 (t f ), we have

V k+1 ≤ β 1 β 2 α 2 e -λ(t f -t 0 ) zk 1 (t f ) 2 .
Finally, using again the inequality (3.10) for V 1 and the exponential convergence of V 1 along the forward error trajectory with a rate of λ, yields

V k+1 ≤ β 1 β 2 α 1 α 2 e -λ(t f -t 0 ) V 1 (z k 1 (t f )) ≤ β 1 β 2 α 1 α 2 e -2λ(t f -t 0 ) V 1 (z k 1 (t 0 )), where V 1 (z k 1 (t 0 )) = V k . Thus, V k is a discrete exponential Lyapunov function if β 1 β 2 α 2 α 1 e -2λ(t f -t 0 ) < 1.
Considering that β σ = 2γ σ and α σ = 2δ σ e -λε for σ ∈ {1, 2}, the condition of exponential stability is equivalent to

γ 1 γ 2 δ 2 δ 1 e 2λ(ε-T ) < 1,
that is verified under the condition applied on ε.
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Global continuous Lyapunov function

To build a time-continuous common Lyapunov function, we have a well-known result on autonomous switched systems based on stability and commutativity assumptions originally introduced by [START_REF] Narendra | A common Lyapunov function for stable LTI systems with commuting A-matrices[END_REF]. This result gives existence of a symmetric positive definite matrix P such that V (z σ ) = z * σ P zσ is a common Lyapunov function for all the subsystems σ ∈ P.

Theorem 27 ([61]). Let A 1 , A 2 ∈ M n (R) be two Hurwitz and commutative matrices. Given M ∈ M n (R) an arbitrary symmetric positive definite matrix, there exists a matrix P ∈ M n (R) defined as

P = +∞ 0 φ A 1 (s, 0) * Q 2 (t 2 )φ A 1 (s, 0)ds = +∞ 0 φ A 2 (s, 0) * Q 1 (t 1 )φ A 2 (s, 0)ds,
that is symmetric positive definite and solves the following Lyapunov equations

A * σ P + P A σ = -Q τ , σ, τ ∈ {1, 2}, τ = σ,
where

Q τ ∈ M n (R) is expressed as Q τ = +∞ 0 φ Aτ (s, 0) * M φ Aτ (s, 0)ds,
and

φ Aτ : T × T → M n (R) is the state transition function.
We provide a version of this result for non-autonomous systems where the time variable clearly appears in the expression of P , with a distinction between forward and backward direction. In the context of iterative Luenberger, where time domain is bounded, stability conditions on the state operators of Theorem 27 are not necessary anymore.

Theorem 28 (non-autonomous time forward case). Let A 1 , A 2 : T → R + be two commutative matrix time functions such that A 1 (t)A 2 (s) = A 2 (s)A 1 (t) for all t, s ∈ T . Given M ∈ M n (R) an arbitrary symmetric positive definite matrix, there exists a matrix function P : T × T → M n (R) defined as

P (t 1 , t 2 ) = t f +ε t 1 φ A 1 (s, t 1 ) * Q 2 (t 2 )φ A 1 (s, t 1 )ds = t f +ε t 2 φ A 2 (s, t 2 ) * Q 1 (t 1 )φ A 2 (s, t 2 )ds,
that is symmetric positive definite and solves the following differential Lyapunov equations

dP (t 1 , t 2 ) dt σ = -A σ (t σ ) * P (t 1 , t 2 ) -P (t 1 , t 2 )A σ (t σ ) -Q τ (t τ ), σ, τ ∈ {1, 2}, τ = σ,
where ε > 0 and

Q τ : T × T → M n (R) for τ ∈ {1, 2} is expressed as Q τ (t τ ) = t f +ε tτ φ Aτ (s, t τ ) * M φ Aτ (s, t τ )ds.
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Theorem 29 (non-autonomous time backward case). Let A 1 , A 2 : T → R + be two commutative matrix time functions such that A 1 (t)A 2 (s) = A 2 (s)A 1 (t) for all t, s ∈ T . Given M ∈ M n (R) an arbitrary symmetric positive definite matrix, there exists a matrix function P : T × T → M n (R) defined as

P (t 1 , t 2 ) = t 1 t 0 -ε φ A 1 (s, t 1 ) * Q 2 (t 2 )φ A 1 (s, t 1 )ds = t 1 t 0 -ε φ A 2 (s, t 2 ) * Q 1 (t 1 )φ A 2 (s, t 2 )ds,
that is symmetric positive definite and solves the following differential Lyapunov equations

dP (t 1 , t 2 ) dt σ = -A σ (t σ ) * P (t 1 , t 2 ) -P (t 1 , t 2 )A σ (t σ ) + Q τ (t τ ), σ, τ ∈ {1, 2}, τ = σ,
where ε > 0 and

Q τ : T × T → M n (R) for τ ∈ {1, 2} is expressed as Q τ (t τ ) = tτ t 0 -ε φ Aτ (s, t τ ) * M φ Aτ (s, t τ )ds.
Note that by fixing t 1 and t 2 to the values t 1 = t 2 = 0 for time forward case and t 1 = t 2 = +∞ for time backward case, the time-dependent matrix P (t 1 , t 2 ) on the time domain T = (ε, +∞) is equal to the time-independent matrix P from Theorem 27.

The main issue of this time-dependent version of P , is that there are as many time variables as there are subsystems, yet only one variable must represent the time variable of the global system. Given a subsystem σ, following the definition of P it is clear that t σ must represent the time variable and the other times t τ must be fixed for τ = σ. There must be only one time variable for the global state convergence, having several time variables even defined piecewise it not possible.

In the specific case of back-and-forth nudging we will provide a particular expression of a common Lyapunov function that is continuously deacreasing along each back-and-forth. The idea is to calibrate the backward nudging gain matrix so that V 1 is also a Lyapunov function decreasing along the backward error trajectory. Let us redefine the backward nudging model by injection of observations y 1 and y 2 formulated as

żk 2 (t) = A 2 (t)ẑ k 2 (t) + B 2 (t)u 2 (t) -K 2 (t)C 2 (t) * (y 2 (t) -C 2 (t)ẑ k 2 (t)) + λK 2 (t) π(t) t 0 -ε e -λ(π(t)-s) φ(s, π(t)) * C 1 (s) * y 1 (s) -C 1 (s)φ(s, π(t))ẑ k 2 (t) ds,
where all observations on [t 0 -ε, π(t)] are needed at time t ∈ T . Considering the expression of W 1 (3.8) and the relation ẑk

2 (t) = ẑk 1 (π(t))
, the backward nudging model can also be expressed as

żk 2 (t) = A 2 (t)ẑ k 2 (t) + B 2 (t)u 2 (t) + K 2 (t)C 2 (t) * C 2 (t)z k 2 (t) -λK 2 (t)W 1 (π(t))z k 2 (t).
Meaning that the backward nudging error model is given by

żk 2 (t) = (A 2 (t) + K 2 (t)C 2 (t) * C 2 (t) -λK 2 (t)W 1 (π(t))) zk 2 (t), (3.11) 
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by chosing a suitable K 2 we will show that V 1 is a Lyapunov function for the backward model around the equilibrium zk 2 = 0. By having only one Lyapunov function, here V 1 , the advantage is that Assumption 5 can be replaced by backward observability which is a weaker condition. Theorem 30. Under Assumption 4, if the state-observation pair (A 1 , C 1 ; t) is backwardly observable on T and if the nudging gains are expressed as

K 1 (t) = W -1 1 (t), K 2 (t) = W -1 1 (π(t)), t ∈ T , (3.12)
then the iterative error trajectory is globally exponentially stable with a rate of λ.

Proof. The proof is divided in two steps, first we will show that

V b 1 (z(t)) = z(t) * W 1 (π(t))z(t

) is a Lyapunov function for the backward state error zk

2 and second we will show the continuity of V b 1 and V 1 at switching times proving the global error decay.

• Under backward observability condition of (A 1 , C 1 ; t) on T , the matrix function W 1 and the real-valued function V b 1 are positive definite. By definition of K 2 in (3.12), the time derivative of V b 1 along the backward error trajectory (3.11) is given by

V b 1 (t) = zk 2 (t) * (A 2 (t) * W 1 (π(t)) + W 1 (π(t))A 2 (t) + 2C 2 (t) * C 2 (t) -2λW 1 (π(t))) zk 2 (t) + zk 2 (t) * Ẇ1 (π(t))z k 2 (t).
Since W 1 solves the differential Lyapunov equation (3.9) then Ẇ1 (π(t)) is expressed as

Ẇ1 (π(t)) = A 1 (π(t)) * W 1 (π(t))+W 1 (π(t))A 1 (π(t))+λW 1 (π(t))-2C 1 (π(t)) * C 1 (π(t)),
and given the relations (3.3) and (3.4), Ẇ1 (π(t)) is rewriten into

Ẇ1 (π(t)) = -A 2 (t) * W 1 (π(t)) -W 1 (π(t))A 2 (t) + λW 1 (π(t)) -2C 2 (t) * C 2 (t). Replacing the term Ẇ1 (π(t)) in the expression of V b 1 , finally gives V b 1 (t) = -λV b 1 (t),
proving the property of exponential convergence with a rate of λ.

• Since V 1 (z(t)) = z(t) * W 1 (t)z(t) and V b 1 (z(t)) = z(t) * W 1 (π(t)
)z(t) are respectively Lyapunov functions for forward and backward error models, and by considering the boundary conditions

zk 1 (t 0 ) = zk-1 2 (t f ), zk 2 (t 0 ) = zk 1 (t f ),
we have the following continuity of the Lyapunov functions

V 1 (z k 1 (t 0 )) = V b 1 (z k-1 2 (t f )), V b 1 (z k 2 (t 0 )) = V b 1 (z k 1 (t f )),
proving the global exponential convergence of the back-and-forth nudging.
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Similarly, we might have defined the forward observer as

żk 1 (t) = A 1 (t)ẑ k 1 (t) + B 1 (t)u 1 (t) -K 1 (t)C 1 (t) * (y 1 (t) -C 1 (t)ẑ k 1 (t)) + λK 1 (t) π(t) t 0 -ε e -λ(π(t)-s) φ A 2 (s, π(t)) * C 2 (s) * y 2 (s) -C 2 (s)φ A 2 (s, π(t))ẑ k 1 (t) ds,
where all observations in [t, t f + ε] are needed at time t ∈ T and where the forward nudging gain matrix is callibrated as

K 1 (t) = W -1 2 (π(t)),
so that V 2 is a common Lyapunov function decreasing along the forward error trajectory too.

Sensitivity analysis on nudging feedback

Data assimilation combines real state information measured by external instruments, with other types of information as physical behavior described by mathematical models. We know that these models cannot fully capture the real behavior and usually contain inaccurate representation of small scales physics, approximated parameters or numerical errors. While variational methods [START_REF] Dimet | Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects[END_REF] treat mathematical equations as strong constraints (the model is assumed to be perfect), the Luenberger observer method [START_REF] Luenberger | Observers for multivariable systems[END_REF] proposes instead a weak constraint on mathematical equations. By slightly modifying the model through the addition of a data correction term, the importance of the model (containing potential errors) is relaxed and the current state is forced to stay close to data. The question about state physical reliability of such artificial model modification is a legitimate concern, when most of the models studied in the geophysical framework are chaotic and hence highly sensitive to model parameters. Bloom et al. [START_REF] Bloom | Data Assimilation Using Incremental Analysis Updates[END_REF] have shown existence of filtering effects on the model dynamics, directly caused by the presence of current state in the relaxation term. As well, Bao and Errico [START_REF] Bao | An Adjoint Examination of a Nudging Method for Data Assimilation[END_REF] list some problems encountered in the past with the use of nudging strategy and have observed in their meteorological simulations a gradual loss of advection physical property in the estimated solution, even with a relaxation coefficient much smaller than the one usually employed in similar nudging experiments [START_REF] Kuo | Dynamic Initialization Using Observations from a Hypothetical Network of Profilers[END_REF][START_REF] Stauffer | Use of Four-Dimensional Data Assimilation in a Limited-Area Mesoscale Model. Part I: Experiments with Synoptic-Scale Data[END_REF]. By forcing the solution to get closer to exact solution without physical justification, a significant risk to progressively modify the physical structure of model equations seems to be introduced.

The impact of artificial feedback term on physical laws will be measured by the response of a so-called objective function (related to model state behavior) to a perturbation of the nudging gain parameter. In the context of deterministic problems, sensitivity analysis is usually addressed using variational methods [START_REF] Dimet | Sensitivity Analysis in Variational Data Assimilation[END_REF]. Several methods can be used to evaluate the sensitivity to parameters: discretization of the derivative by finite differences, tangent linear method or adjoint method (see review [START_REF] Ustinov | Sensitivity Analysis in Remote Sensing[END_REF]). Concerning adjoint state method, the computational cost is independent of the parameter space dimension which makes it very attractive. Besides, sensitivity analysis gives valuable information on model response to parameter perturbation but also on model parameter estimation when it is driven by gradient-based optimization algorithms (as quasi-newton algorithm).

The analysis given in this section will not be limited to a particular model and will be addressed to a very generic nonlinear and non-autonomous ordinary differential model. Standard and iterative type of nudging observer will be studied and compared in term of sensitivity to feedback law.

Review on sensitivity techniques

A quick review on sensitivity analysis techniques will be provided in a simple mathematical formalism (see [START_REF] Castaings | Sensitivity analysis and parameter estimation for distributed hydrological modeling: potential of variational methods[END_REF]). Let us consider a generic nonlinear, non-autonomous and parameter-dependent observer model

∂ ẑ ∂t = g(ẑ, k, t), ẑ(t 0 ) = z 0 , (3.13) 
where ẑ ∈ Z = R n is the observer state, k ∈ K = R the observer parameter to be perturbed and t ∈ T = (t 0 , t f ) the time variable. The operator g : Z × K × T → Z is a differentiable nonlinear and time-dependent function. Let z be the solution of (3.13) for a certain parameter k. The objective function that represents a specific aspect of the system behaviour is defined as

J(ẑ, k, t f ) = t f t 0 θ(ẑ, k, t)dt, (3.14)
where θ is a differentiable nonlinear real valued scalar function dependent on model state and parameter. Sensitivity to parameter will be measured by derivation of the objective function with regard to the parameter around a fixed point (k, z) given by the formula

δJ(z, k, δk, t f ) = ∂J ∂ k k δk, ( 3.15) 
where δk refers to the parameter perturbation. This derivative can be evaluated by finite difference approximation after discretization of the parameter space or by exact calculation through tangent or adjoint models.

Discretised parameter derivation

One of the simplest way to determine numerically derivatives is by finite differences. For very small δk, the finite difference approximation of (3.16), based on the concept of directional Gateaux derivatives, is given by

δJ(z, k, δk, t f ) = lim δk→0 J(k + δk) -J(k) δk δk J(k + δk) -J(k).
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For a practical point of view this method is very straightforward to implement. The problem lies with accuracy, this method is precise only for very small perturbations otherwise truncation errors are getting too high. For large-scale parameter perturbation other methods should be considered.

Tangent linear method Given the definition of the objective function (5.3), the exact formulation of δJ is

δJ(z, k, δk, t f ) = t f t 0 ∂θ ∂ ẑ k δz + ∂θ ∂ k k δk dt, ( 3.16) 
where δz = ∂z ∂k δk denotes the state sensitivity that needs to be determined. By differentiation of the model (3.13) and the initial condition with regards to parameter, the state sensitivity is solution of the following tangent linear model

∂δz ∂t = ∂g ∂ ẑ k δz + ∂g ∂ k k δk, δz(t 0 ) = 0, (3.17) 
where ∂g ∂ ẑ is the Jacobian matrix of the function g with respect to the state and state sensitivity δz is initialized to zero. Since the model (3.17) is linear and if the matrices ∂g ∂ ẑ (σ) are supposed to commute for all σ ∈ T , its explicit solution is precisely given by

δz(t) = t t 0 exp t s ∂g ∂ ẑ k dσ ∂g ∂ k k δkds, ( 3.18) 
which can be solved numerically by explicit or implicit time discrete schemes. Tangent linear method is an accurate approach working with nonlinear models by preserving crucial information on initial and boundary conditions. However, for different parameter perturbations δk, a specific state sensitivity δz must be solved every time, due to the fact that (3.17) is dependent on δk. Another method, called adjoint method, is much more appreciated to determine δJ since the model to solve is linear and independent of parameter sensitivity, so it is solved only once.

Adjoint method Adjoint method, based on Lagrangian function, gives an equivalent formulation of the objective function that is

L(ẑ, k, t f ) = J(ẑ, k, t) + t f t 0 p * ∂ ẑ ∂t -g(ẑ, k, t) dt,
where the new state introduced p ∈ Z is a Lagrangian multiplier called adjoint state which solves the following adjoint linear model

∂p ∂t = - ∂g ∂ ẑ * k p + ∂θ ∂ ẑ k , p(t f ) = 0, (3.19) 
Note that adjoint model is independent of state and parameter sensitivities (respectively δz and δk). The model is backward in time, so we propose to apply the time change of variable π(t) → t f + t 0 -t. And since the model is linear and if the matrices ∂g ∂ ẑ (σ) are supposed to commute for all σ ∈ T , we can derive the explicit expression of the adjoint state solution as

p(t) = - t f π -1 (t) exp s π -1 (t) ∂g ∂ ẑ * k dσ ∂θ ∂ ẑ k ds.
The adjoint equation and final condition (3.19) were defined in order to eliminate the state sensitivity in the Lagrangian function sensitivity expression, so that the remaining terms are

δL(z, k, δk, t f ) = - t f t 0 p * ∂g ∂ k k δkdt. (3.20)
Once given the solution of the adjoint method by backward integration we can evaluate model sensitivity to parameter for every parameter perturbation, which highly reduces the computational cost. The only remaining difficulty stands in derivation and transposition of complex operators.

Sensitivitiy analysis on standard Luenberger method

Let us consider a well-posed Cauchy problem described by the following nonlinear and non-autonomous true state model

∂z e ∂t = f (z e , t), z e (t 0 ) = z e 0 , (3.21) 
where z e (t) ∈ Z is the true state solution from which the only known quantity is the observation y(t) = h(z e (t), t) ∈ Y for all t ∈ T . The operators f : Z × T → Z and h : Z × T → Y are nonlinear and time-dependent. Adding a misfit term to observation gives the following standard nudging observer model

∂ ẑ ∂t = f (ẑ, t) + k ∂h ∂ ẑ * 0 (y(t) -h(ẑ, t)), ẑ(t 0 ) = z 0 , ( 3.22) 
where the initial condition z 0 = z e 0 ∈ Z can be arbitrarly chosen, can come from prior information or from a previous data assimilation process.

The parameter to be pertubed is the nudging coefficient k, a strictly positive constant controlling the strength of the state correction by data injection. The parameter perturbation will be carried out around the point (0, z) where the state ẑ = z solves the observer model (3.22) with k = 0. The state z behaves following with the original physical laws without any data injection. The objective function is expressed by As it might have been expected, the sensitivity to nudging is directly proportional to the nudging term δk(z e 0 -z 0 ), here at initial time, reinforcing the idea that sensitivity can be reduced via a small choice of δk. However, the time variation of the sensitivity is exponential with respect to Jacobian model function. For autonomous problems, the sign of the Jacobian spectrum, related to the model stability, will determine whether the sensitivity is exponentially increasing or decreasing. Reminding that the Luenberger observer is a stabilization method aiming at shifting the original model spectrum into a stable region in order to obtain convergence [START_REF] Lakshmivarahan | Nudging Methods: A Critical Overview[END_REF], two cases must be distinguished. First, if the model spectrum is completely contained in the stable region, the use of nudging method is unnecessary to obtain asymptotic convergence and it is not necessary to study sensitivity to nudging in that case. Second, if one eigenvalue is not in the stable region which is the most common case, the use of nudging method is necessary to obtain asymptotic convergence and in that case sensitivity is exponentially unstable according to the expression (3.26). It is worth to mention that the exponential increase is independent to the perturbation δk. Typically, practical use of nudging estimation method considered that choosing a nudging parameter small enough, so that nudging term does not exceed other model terms, is enough to prevent any negative impact of the nudging term, but the expression (3.26) demonstrates on the contrary that even small nudging coefficients can generate serious side effects, explaining why even for feedback coefficient half as large as commonly used the advection property of atmospheric motion is rapidly overwhelmed [START_REF] Bao | An Adjoint Examination of a Nudging Method for Data Assimilation[END_REF].

J(ẑ, k, t f ) = 1 2 t f t 0 ẑ 2 dt

Sensitivity analysis on iterative Luenberger method

Given a finite time domain T = (t 0 , t f ) and the output (observation) of the true state model (3.21) on this time domain, the observer state of the back-and-forth nudging approach at the i-th iteration is governed by

             ∂ ẑi 1 ∂t = +f 1 (ẑ i 1 , t) + k ∂h 1 ∂ ẑi 1 * 0 (y 1 (t) -h 1 (ẑ i 1 , t)), ẑi 1 (t 0 ) = ẑi-1 2 (t f ), ∂ ẑi 2 ∂t = -f 2 (ẑ i 2 , t) + k ∂h 2 ∂ ẑi 2 * 0 (y 2 (t) -h 2 (ẑ i 2 , t)), ẑi 2 (t 0 ) = ẑi 1 (t f ), (3.27) 
where z i 1 ∈ Z is the forward observer state, z i 2 ∈ Z is the backward observer state and π(t) = t 0 + t f -t is the time change of variable applied to the backward system. The operators f σ , h σ , y σ for σ ∈ {1, 2} verify that ϕ 1 (t) = ϕ(t) and ϕ 2 (t) = ϕ(π(t)). At the first iteration, the back-and-forth observer state starts with the same initial condition as the standard observer state, i.e. ẑ0

1 (t 0 ) = z 0 . Note that forward and backward model functions have an opposite sign which will prove to be an important point to deal with time exponential sensitivity issues.

The sensitivity to back-and-forth nudging state correction will be evaluated through the same objective function as standard nudging such that

J i σ (ẑ i σ , k, t f ) = 1 2 t f t 0 ẑi σ 2 dt, σ ∈ {1, 2}.
The response of this objective function to a perturbation of nudging parameter of δk around the specific case k = 0, ẑi 1 = z 1 and ẑi 2 = z 2 (without nudging term), is expressed by

δJ i σ (z σ , δk, t f ) = t f t 0 z * σ δz i σ dt = - t f t 0 p i σ * ∂h σ ∂z σ * 0 (y σ (t)-h σ (z σ , t))δkdt, σ ∈ {1, 2}, 66 
Chapter 3. On the iterative Luenberger observer for non-autonomous problems where the state sensitivity δz i σ solves the tangent linear model

         ∂δz i 1 ∂t = + ∂f 1 ∂z 1 * 0 δz i 1 + ∂h 1 ∂z 1 * 0 (y 1 (t) -h 1 (z 1 , t))δk, δz i 1 (t 0 ) = δz i-1 2 (t f ), ∂δz i 2 ∂t = - ∂f 2 ∂z 2 * 0 δz i 2 + ∂h 2 ∂z 2 * 0 (y 2 (t) -h 2 (z 2 , t))δk, δz i 2 (t 0 ) = δz i 1 (t f ), (3.28 
) with the initial condition δz 0 1 = 0 and where the adjoint state senstivity p i σ solves the adjoint linear model

         ∂p i 1 ∂t = - ∂f 1 ∂z 1 * 0 p i 1 + z 1 , p i 1 (t 0 ) = p i 2 (t f ),
∂p i 2 ∂t = + ∂f 2 ∂z 2 * 0 p i 2 + z 2 , p i 2 (t 0 ) = p i-1 1 (t f ),
with the initial condition p i 2 (t 0 ) = 0, meaning that for the back-and-forth time integration p i 2 need to be solved before p i 1 .

Theorem 32. Assume that ∂f (t,z) ∂z and ∂h (s,z) ∂z * ∂h(s,z) ∂z commute and ∂f (t,z) ∂z and ∂f (s,z) ∂z commute for all t, s ∈ T and for all z ∈ Z. Then, the model state sentivity solution (3.28) approximately verifies that

δz i 1 (t 0 ) = δz i+1 2 (t f ) 2i t f t 0 ∂h ∂z * 0 ∂h ∂z 0 dtδk(z e 0 -z 0 ).
Proof. Let us prove by mathematical induction that the property P i defined as

P i = δz i 1 (t 0 ) 2i t f t 0 ∂h 1 ∂z * 0 ∂h 1 ∂z 0 dtδk(z e 0 -z 0 ) ,
is true for all i ∈ N. At i = 0, the property P 0 is true considering the initial condition δz 0 1 (t 0 ) = 0. Let us assume that at a fixed iteration i ∈ N the property P i is true. Since the the sensitivity state model (3.28) is linear, its solutions are expressed by

δz i+1 1 (t) = exp t t 0 ∂f 1 ∂z 1 0 ds δz i+1 1 (t 0 ) + t t 0 exp t s ∂f 1 ∂z 1 0 dσ ∂h 1 ∂z 1 * 0 (y 1 (s) -h 1 (z 1 , s))δkds,
and

δz i+1 2 (t) = exp - t t 0 ∂f 2 ∂z 2 0 ds δz i+1 2 (t 0 ) + t t 0 exp - t s ∂f 2 ∂z 2 0 dσ ∂h 2 ∂z 2 * 0 (y 2 (s) -h 2 (z 2 , s))δkds.
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By time change of variable s → π(s) and σ → π(σ) and considering that f 2 (t) = f 1 (π(t)) and h 2 (t) = h 1 (π(t)), the backward state sensitivity can be rewritten as

δz i+1 2 (t) = exp π(t) t f ∂f 1 ∂z 1 0 ds δz i+1 2 (t 0 ) - π(t) t f exp π(t) s ∂f 1 ∂z 1 0 dσ ∂h 1 ∂z 1 * 0 (y 1 (s) -h 1 (z 1 , s))δkds.
Using the fact that initial and final conditions between forward and backward sensitivities are related by δz i+1

2 (t 0 ) = δz i+1 1 (t f ) and δz i+1 1 (t 0 ) = δz i 2 (t f ), we have that δz i+1 2 (t) = exp π(t) t 0 ∂f 1 ∂z 1 0 ds δz i+1 1 (t 0 ) + exp π(t) t f ∂f 1 ∂z 1 0 ds t t 0 exp t s ∂f 1 ∂z 1 0 dσ ∂h 1 ∂z 1 * 0 (y 1 (s) -h 1 (z 1 , s))δkds + t f π(t) exp π(t) s ∂f 1 ∂z 1 0 dσ ∂h 1 ∂z 1 * 0 (y 1 (s) -h 1 (z 1 , s))δkds. At time t = t f , since π(t f ) = t 0 , we have that δz i+1 2 (t) = δz i+1 1 (t 0 ) + 2 t f t 0 exp t 0 s ∂f 1 ∂z 1 0 dσ ∂h 1 ∂z 1 * 0 (y 1 (s) -h 1 (z 1 , s))δkds.
First order approximation of the operators f 1 and h 1 around the state z 1 yields

(y 1 (s) -h 1 (z 1 , s)) ∂h 1 ∂z 1 0 exp s t 0 ∂f 1 ∂z 1 0 dσ (z e 0 -z 0 ),
as a result by commutativity assumptions on h 1 and f 1 we obtain

δz i+1 2 (t) δz i+1 1 (t 0 ) + 2 t f t 0 ∂h 1 ∂z * 0 ∂h 1 ∂z 0 dsδk(z e 0 -z 0 ).
Since P i is supposed to be true, we have proven that P i+1 is also true.

The value of T = t f -t 0 can be seen as a key factor, controlling the time on which sensitivity is periodically linear. Instead of reducing the assimilation window length and potentially losing data information, there is a way to reduce T and still assimilate observations on [t 0 , t f ] with back-and-forth nudging. The idea is to divide the time domain [t 0 , t f ] into a partition of N elements. Data on each subset is then assimilated separately by back-and-forth nudging where the final state is used to initialize the solution on the next subset and so on. By this method, the length of the time integration in sensitivity expression (3.26) is reduced by

t f -t 0 N . In the first subset t 0 , t 0 + t f -t 0 N
, sensitivity is rewriten into

δz i 1 (t 0 ) 2i t 0 + t f -t 0 N t 0 ∂h ∂z * 0 ∂h ∂z 0 dtδk(z e 0 -z 0 ).
However, caution should be exercised with time partial observability, since a minimum time of data collection might be required, convergence on reduced time assimilation window of length

t f -t 0 N
can be problematic.
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Numerical sensitivity of Lorenz model

We will consider as an oceanographic toy model, the three-dimensional nonlinear Lorenz model [START_REF] Lorenz | Deterministic Nonperiodic Flow[END_REF] where the model function f is given by f : In practice, the sensitivity reduction of the iterative partition strategy seems to be too much limited.

We have seen that high sensitivity to direct relaxation data correction is a serious disadvantage for using standard nudging method. In comparison sensitivity to back-and-forth nudging is lower and steadier, the exponential blow up in time is limited by T and at each iteration the sensitivity is only linear. The reduction of model sensitivity to partitioned back-and-forth technique in comparison to simple back-and-forth technique is improved but too much slightly to be considered as a good alternative. In addition, it is well-known that same convergence property and low computational cost is shared with these two methods. The backward model is as easy to implement as the direct model, unlike its equivalent in variational methods: the adjoint model which determination is usually a painful task. Moreover, if the model is not reversible in time, in practice the nudging term also stabilizes the backward trajectory. The iterative strategy of the nudging method seems to be a good alternative for recent development of Luenberger-like methods to new applications. As state-parameter estimation [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF][START_REF] Aalto | Iterative observer-based state and parameter estimation for linear systems[END_REF] for which nudging sensitivity is crucial since physical parameter information is indirectly contained in the physical reliability of the state estimation. This chapter is divided in two parts. The first part is dedicated to the extension of the results of Kazantizis and Kravaris on nonlinear problems [START_REF] Kazantzis | Nonlinear observer design using Lyapunov's auxiliary theorem[END_REF] to design a nonlinear iterative Luenberger observer. Because most of the models studied are nonlinear, it is crucial to design an observer dealing with nonlinearities without using model linearization. Basically, the idea of Kazantizis and Kravaris is to provide a suitable nonlinear change of state that transforms the nonlinear initial problem into a linear problem for which observer design techniques are well known as presented in the first chapter. The specific assumptions that make this change of state at least injective are presented in [START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF]. We will extend this result in asymptotic time to a result in finite time, ideal for initial state estimation for instance. This leads to design a nonlinear back-and-forth nudging observer model. As for linear problems, since combining forward and backward convergent nudging observer models do not guarantee the convergence of the BFN, an additional continuity condition will be introduced in order to maintain the convergence property. The second part is dedicated to further results on joint state-parameter estimation. Previous work on parametrized linear system [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF] employs nudging methodology for state-parameters problems estimation and has shown the interest of nudging to deal with large-scale problems since parameters to be estimated increase state dimension. We aim to provide such estimation where both state and parameter are governed by nonlinear models. A sensitivity analysis on parameter uncertainties needs to be done first to evaluate the parameters with the most impact on output measurements and for which a special effort of calibration must be devoted.

State estimation based on Luenberger observer

Recent work on nonlinear Luenberger observer design

We remind here the state estimation strategy develloped by Krener and Isidori [START_REF] Arthur | Linearization by output injection and nonlinear observers[END_REF], Kazantzis and Kravaris [START_REF] Kazantzis | Nonlinear observer design using Lyapunov's auxiliary theorem[END_REF] and Krener and Xiao [START_REF] Krener | Nonlinear Observer Design in the Siegel Domain[END_REF]. Let us consider a parametrized non-autonomous and nonlinear problem formulated as

ż(t) = f (t, z(t), θ(t)), θ(t) = g(t, θ(t)), t ∈ T , ( 4.1) 
where z ∈ Z = R n is the state variable, θ ∈ O = R r is the parameter variable.

Let z(t 0 ) = z 0 ∈ Z be the initial condition and T = (t 0 , +∞) the unbounded time domain. Let the model operators f : T × Z × O → Z and g : T × O → O be some smooth nonlinear functions. We introduce the function z : T × T × Z × O → Z where z(s, t, x, θ) represents the state at time s solving (4.1) but initialized at time t ≤ s by x, thus for instance when it is initialized at time t 0 by z 0 we have that z(s, t 0 , z 0 , θ) = z(s). Let the output observation variable be defined as

y(t) = h(t, z(t), θ(t)), t ∈ T , ( 4.2) 
where h : T × Z × O → Y is a smooth nonlinear function.

Change of coordinates strategy

The main idea is to look for a diffeomorphism The objective is to find a function T * such that T * (T (z)) = z for all z ∈ Z, or at least to show that T is injective with respect to z, in order to identify the original state variable. Sufficient conditions for existence and injectivity of the transformation T are given in [5,[START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF] based in particular on backward observability assumptions.

T : T × Z × O → Z
Assumption 6. Assume that f : T × Z × O → Z, h : T × Z × O → Y are functions of class C 1 (Z) and g : T × O → O is a function of class C 1 (O).
Assumption 7. Assume that β : T × Y → Z be a function of class C 1 (Y) that is injective in Y in the sense that there exists a strictly positive constant α such that

β(t, ŷ) -β(t, y) Z ≥ α ŷ -y Y , t ∈ T , (ŷ, y) ∈ Y × Y.
Assumption 8. Assume the nonlinear system (4.1)-(4.2) is backwardly observable at times s ∈ [t 0 , t] for all t ∈ T with ε > 0, meaning that there exists a strictly positive constant γ such that

t s h(σ, z(σ, t, ẑ, θ)) -h(σ, z(σ, t, z, θ)) Y dσ ≥ γ ẑ -z Z , θ ∈ O, (ẑ, z) ∈ Z × Z.
Theorem 33 (From [START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF]). Under Assumptions 6-8, the differentiable function defined by

T (t, z, θ) = t t 0 -ε e -λ(t-s) β(h(s, z(s, t, z, θ)))ds, t ∈ T , z ∈ Z, θ ∈ O, (4.8) 
with ε > 0 is a solution of the PDE (4.7) and is injective with regards to z such that the following inequality condition is satisfied

T (t, ẑ, θ) -T (t, z, θ) Z ≥ αγe -λε ẑ -z Z .
Proof. Using Liebniz's rule, the derivative of the expression (4.8) with regards to time gives

dT dt = -λT + β(t, h(t, z(t, t, z, θ))).
Since z(t, t, z, θ) = z, then along the trajectory (z, θ) governed by (4.1) this expression of T exactly verify the PDE (4.7). Let us prove now the injectivity inequality. By using Assumption 7 on β, we have that

T (t, ẑ, θ) -T (t, z, θ) Z = t t 0 -ε e -λ(t-s) β(s, h(s, z(s, t, ẑ, θ))) -β(s, h(s, z(s, t, z, θ))) Z ds, ≥ α t t 0 -ε e -λ(t-s) h(s, z(s, t, ẑ, θ)) -h(s, z(s, t, z, θ)) Y ds.
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The rest of the proof is similar to previous proofs on positive definiteness of gramian matrices, since t ≥ t 0 , we have

T (t, ẑ, θ) -T (t, z, θ) Z ≥ α t t-ε e -λ(t-s) h(s, z(s, t, ẑ, θ)) -h(s, z(s, t, z, θ)) Y ds, ≥ αe -λε t t-ε h(s, z(s, t, ẑ, θ)) -h(s, z(s, t, z, θ)) Y ds, ≥ αe -λε t max(t 0 ,t-ε) h(s, z(s, t, ẑ, θ)) -h(s, z(s, t, z, θ)) Y ds.
Finally by Assumption 8 on backward observability, since max(t 0 , t -ε) ∈ [t 0 , t], we obtain the injectivity inequality

T (t, ẑ, θ) -T (t, z, θ) Z ≥ γαe -λε ẑ -z Z .
Luenberger observer expression for the original coordinates Assume now invertibility condition on the transformation mapping T with respect to the state z is verified, then the exponential convergence result (4.6) involves that

lim t→+∞ ẑ(t) -z(t) Z = 0.
We would like to write expliciltly the expression of the Luenberger observer corresponding to the original nonlinear model. Let ẑ be the original state observer such that by change of coordinates ξ = T (t, ẑ, θ) solves the observer (4.4). By making T appear in the equation (4.4) we obtain the expression

∂T ∂t + ∂T ∂ ẑ ż + ∂T ∂θ g(t, θ) = -λT (t, ẑ, θ) + β(t, h(t, z, θ)),
that is equivalent to

∂T ∂t + ∂T ∂ ẑ ż+ ∂T ∂θ g(t, θ) = -λT (t, ẑ, θ)+β(t, h(t, ẑ, θ))+(β(t, h(t, z, θ))-β(t, h(t, ẑ, θ))),
where ż must be determined. Given the equation (4.7) on T , it is clear that ż must be replaced by

ż = f (t, ẑ, θ) + ∂T ∂z -1 (β(t, y(t)) -β(t, h(t, ẑ, θ))),
which an observer model of the type nudging, where ∂T ∂z -1

denotes the nonlinear nudging gain function. It is possible to explicit the nudging gain model from the equation of T (4.7) by using the following inverse matrix function derivation formula 

∂ ∂x ∂T ∂z -1 = - ∂T ∂z -1 ∂ ∂x ∂T ∂z ∂T ∂z -1 , ( 4 
+ ∂ ∂z ∂T ∂z -1 ∂T ∂z f (t, z, θ) ∂T ∂z -1 + ∂ ∂θ ∂T ∂z -1 ∂T ∂z g(t, θ) ∂T ∂z -1 = ∂f ∂z ∂T ∂z -1 + λ ∂T ∂z -1 - ∂T ∂z -1 ∂β ∂z ∂T ∂z -1 , ( 4.10) 
where the derivatives of f and β operators must be determined. 

Extension to iterative nonlinear Luenberger observer design

= -f (π(t), z 2 (t), θ 2 (t)), θ2 = -g(π(t), θ 2 (t)), t ∈ T , ( 4.11) 
defined in the time domain T and associated to the output observation variable

y 2 (t) = h(π(t), z 2 (t), θ 2 (t)), t ∈ T ,
where basically the forward and backward variables are related by The error between the true and estimated state ξ2 = ξ2 -ξ 2 is clearly exponentially stable towards zero with a convergence rate of λ. The mapping T 2 must solves the following PDE

z 2 (t) = z 1 (π(t)), θ 2 (t) = θ 1 (π(t)), y 2 (t) = y 1 (π(t)), t ∈ T . Let T 1 : T × Z × O → Z
∂T 2 ∂t - ∂T 2 ∂z f (π(t), z, θ) - ∂T 2 ∂θ g(π(t), θ) = -λT 2 + β 2 (t, h(π(t), z, θ)), ( 4.14) 
which existence and injectivity of T 2 is based on forward observability assumption following the nonlinear observer design method, which involves that observability in the two direction of time (forward and backward direction) of the parametrized model (4.1) is required for back-and-forth nudging convergence.

Luenberger observer of back-and-forth nonlinear model

In the previous chapter, we have investigated back-and-forth error model convergence in the linear case. Given boundary conditions of state continuity at each back-and-forth step k ∈ N * expressed as

zk 1 (t 0 ) = zk-1 2 (t f ), zk 2 (t 0 ) = zk 1 (t f ), (4.15) 
we have seen that even if both forward and backward error systems are asymptotically stable, it does not mean that the back-and-forth error system is also asymptotically stable: a common asymptotically stable Lyapunov function must be found.

It is true that by application of the transformation T 1 and T 2 , the back-andforth error model of the new state at iteration k ∈ N * governed by the homogeneous system

   ξk 1 (t) = -λ ξk 1 (t), ξk 2 (t) = -λ ξk 2 (t), (4.16) 
admits a common exponentially stable Lyapunov function V ( ξ) = 1 2 ξ 2 2 for both forward and backward error model. A research of a common Lyapunov function is then unnecessary. However, there is no guarantee that boundary condition (4.15) establishing continuity between forward and backward motions is preserved by transformation T 1 and T 2 . It will be the case if

ξk 1 (t 0 ) = ξk-1 2 (t f ), ξk 2 (t 0 ) = ξk 1 (t f ), (4.17) 
is verified, then the following convergence result can be easily derived

ξk 1 (t 0 ) = e -2λk(t f -t 0 ) ξ0 1 (t 0 ) ,
proving the identification of the true initial state ξ 1 (t 0 ) when the number of backand-forths k goes to infinity. Based on a specific definition of β 2 , the following theorem proves that back-and-forth nudging solution continuity is preserved by transformation of T 1 and T 2 .

Theorem 34. If the function β 2 : T × Y → Z is defined as

β 2 (t, h(t, z, θ)) = 2λ π(t) t 0 -ε e -λ(π(t)-s) β(s, h(s, z(s, π(t), z, θ)))ds -β(π(t), h(π(t), z, θ)). (4.18)
Then, T 1 and T 2 respectively solutions of the PDE equations (4.7) and (4.14) are linked by the relation

T 1 (t, z, θ) = T 2 (π(t), z, θ), t ∈ T , z ∈ Z, θ ∈ O, (4.19) 
and the boundary condition (4.17) is verified.

Proof. The condition (4.19) with the definition of T 1 (4.8), means that T 2 can be rewritten as

T 2 (t, z, θ) = π(t) t 0 -ε e -λ(π(t)-s) β(s, z(s, π(t), z, θ))ds.
Thus the definition (4.18) of β 2 can be rewritten as 

β 2 (t, h(t, z, θ)) = 2λT 2 (t, z, θ) -β(π(t), h(π(t), z, θ)). ( 4 
(t 0 ) is equal to ξk 1 (t 0 ) = T 1 (t 0 , ẑk 1 (t 0 ), θ 1 (t 0 )) -T 1 (t 0 , ẑk 1 (t 0 ), θ 1 (t 0 )) = T 2 (t f , ẑk 1 (t 0 ), θ 1 (t 0 )) -T 2 (t f , ẑk 1 (t 0 ), θ 1 (t 0 )).
Given the initial condition (4.15) on the original state and parameter, we obtain that

ξk 1 (t 0 ) = T 2 (t f , ẑk-1 2 (t f ), θ 2 (t f )) -T 2 (t f , ẑk-1 2 (t f ), θ 2 (t f )) = ξk-1 2 (t f ).
Identically we obtain ξk 2 (t 0 ) = ξk 1 (t f ), proving that (4.17) is verified.

We now reconstruct the back-and-forth nudging dynamics for the original state, provided that sufficient invertibility conditions on T 1 and T 2 are satisfied. Let ẑk 

         żk 1 = f (t, ẑk 1 , θ 1 ) + ∂T 1 ∂z -1 (β(t, y) -β(t, h(t, ẑk 1 , θ 1 ))), ẑk 1 (t 0 ) = ẑk-1 2 (t f ), żk 2 = -f (π(t), ẑk 2 , θ 2 ) + ∂T 2 ∂z -1 (β 2 (t, y) -β 2 (t, h(π(t), ẑk 2 , θ 2 ))), ẑk 2 (t 0 ) = ẑk 1 (t f ), (4.21)
where the forward Luenberger gain operator solves the PDE

∂ ∂t ∂T 1 ∂z -1 + ∂ ∂z ∂T 1 ∂z -1 ∂T 1 ∂z f (t, z, θ) ∂T 1 ∂z -1 + ∂ ∂θ ∂T 1 ∂z -1 ∂T 1 ∂z g(t, θ) ∂T 1 ∂z -1 = ∂f ∂z ∂T 1 ∂z -1 + λ ∂T 1 ∂z -1 - ∂T 1 ∂z -1 ∂β ∂z ∂T 1 ∂z -1 , ( 4.22) 
and the backward Luenberger gain operator solves the PDE

∂ ∂t ∂T 2 ∂z -1 - ∂ ∂z ∂T 2 ∂z -1 ∂T 2 ∂z f (π(t), z, θ) ∂T 2 ∂z -1 - ∂ ∂θ ∂T 2 ∂z -1 ∂T 2 ∂z g(π(t), θ) ∂T 2 ∂z -1 = - ∂f ∂z ∂T 2 ∂z -1 + λ ∂T 2 ∂z -1 - ∂T 2 ∂z -1 ∂β 2 ∂z ∂T 2 ∂z -1 , (4.23) 
associated to the continuous boundary condition at each back-and-forth step k ∈ N of the form

∂T 1 ∂z -1 (t 0 , z k 1 (t 0 ), θ k 1 (t 0 )) = ∂T 2 ∂z -1 (t f , z k-1 2 (t f ), θ k-1 2 (t f )), ∂T 2 ∂z -1 (t 0 , z k 2 (t 0 ), θ k 2 (t 0 )) = ∂T 1 ∂z -1 (t f , z k 1 (t f ), θ k 1 (t f )).
Remark 2. Similarly to linear case, in the nonlinear case the notions of forward observability for forward system and backward observability for backward system are equivalent. To prove that, let assume that there exists strictly positive constants α, ε such that for all s 

∈ [t 0 -ε, t] t s h(π(σ), z(π(σ), π(t), ẑ, θ))-h(π(σ), z(π(σ), π(t), z, θ)) Y dσ ≥ γ ẑ-z Z , z, ẑ ∈ Z,

Joint state-parameter estimation for nonlinear problems

In this section, we want to simultaneously estimate state and model parameters variables using output information. Inaccurate representation of model parameters leads to the growth of model error and therefore affect the ability of our model to accurately predict the true state. Modelisation of a physical phenomenon has to deal with coupled models containing many parameters with physical meaning that are usually fixed with a lot of round off errors. Even small uncertainties can, by accumulation phenomenon, hardly affect long term forecasting process. In some experimental studies it has been observed that parameter perturbation can sometimes lead to chaotic behavior (e.g. [START_REF] Costantino | Chaotic dynamics in an insect population[END_REF]). Yet each experimental situation is unique and calibration of model parameters as well as initial state condition to the specific context is crucial.

A key question in mathematical model development is how to estimate these parameters a priori. State and model parameter variables strongly interact together, usually through complex nonlinear dynamics. However many of these parameters cannot be observed directly, as parameter model arising from simplification of physical process (e.g. numerical diffusion coefficients). Only indirect observation through state observation is available, hence the idea of simultaneously estimate parameter and state model variables.

Model parameter estimation has numerous advantages. First, continuous model calibration gives a better state estimation that is going to initialize the forecasting process. The updated model can be used in the forecasting process and more generally to improve our climate model parameters. Finally, for sequential techniques, the amount of parameter corrections gives essential information on parameter uncertainties that are very useful to determine the covariance parameter noise matrix.

Generally state-parameter estimation is based on augmented state assumption first introduced by Jazwinski in [START_REF] Jazwinski | Stochastic processes and filtering theory[END_REF]. The state space is augmented by adding the parameters to be estimated so that the parameters are treated as a state variable in the data assimilation process. The same data assimilation techniques developed for state estimation can be used to parameter estimation either. It supposes that parameter dynamic is known, this method is particularly suitable for constant parameters but less suitable for unpredictable parameters (e.g. additional model noise that is not governed by deterministic dynamics). The dynamics of the augmented state variable (z, θ) is given by the nonlinear and non-autonomous problem (4.1) and where parameter to be estimated can also be contained in the observed state problems variable (4.2).

Classical data assimilation methods as sequential and variational methods have been widely investigated in the past decades for joint state-parameter estimation (see ensemble-based model parameter estimation review [START_REF] Ruiz | Estimating Model Parameters with Ensemble-Based Data Assimilation: A Review[END_REF]). In comparison, very few research has been made with nudging data assimilation method, where a nudging term to available data is added to both state and parameter dynamics. We can cite the recent work of Afri [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF] addressing semi-nonlinear models (i.e. state model is linear but augmented state model is nonlinear) with nudging technique by a suitable change of coordinates. In this section we want to develop this method to fully address nonlinear problems as well (i.e. state and augmented state models are nonlinear).

Nudging method can be a very practical method for state-augmentation method. Other data assimilation methods require knowledge about parameter background covariance noise matrix, as soon as parameter is considered as a state, which is complex to determine. This problem is usually overcome with ensemble techniques, the covariance matrix is determined from the parameter ensemble. For nudging method it is even more simple, covariance matrix is unnecessary and replaced by deterministic gain matrix. Besides, the very low computational cost of nudging method can be very useful in this context of dimension space augmentation.

Evaluation of parameter uncertainties impact

There is a lot of unknown (or simply inaccurately defined) model parameters eligible for parameter estimation in climate models. However not all of them play a significant role for state dynamics and have to be determined precisely. For obvious computational cost reasons, it is important to determine which model parameters are the most dominant for state and observation dynamics. Concerning statistical methods, predominance of a variable into another variable is measured through the covariance error matrix, here the covariance error matrix between model parameter and observed state. A significant covariance error matrix means that it is a key parameter for ouput measurements, the parameter is said to be identifiable, a concept that can be compared to observability, when the parameter can be uniquely identified from a certain amount of collected state measurements. For deterministic methods, observability condition can be formulated by the following backward state-parameter observability assumption. Assumption 9. Assume that the nonlinear system (4.1) associated to the observations (4.2) is backwardly observable at times s ∈ [t 0 , t] for all t ∈ T = [t 0 , +∞) with regards to state and parameter. Meaning that there exists γ > 0 such that

t s h(σ, θ, z) -h(σ, θ, ẑ) Y dσ ≥ γ z(t) -ẑ(t) Z + θ(t) -θ(t) O ,
where the augmented states (z, θ) and (ẑ, θ), belonging to Z × O, are solutions of the system (4.1).

Because of the complex nonlinear inter-connection between state and parameter, this inequality is not very easy to verify. We are looking for a more practical tool to give an insight of parameter observability. Sensitivity analysis is a technical tool providing the response of a selected function to a certain perturbation. In our case, it could be interesting to evaluate the response of output measurements to parameter perturbation in order to select the most impacting parameter to be estimated in priority.

State sensitivity to parameter perturbation

Sensitivity analysis can be conducted through finite difference method under the assumption that parameter pertubation δθ is very small in order to maintain the finite differences approximation accurate. By finite differences, sensitivity to model parameter can be approximated as

δz = lim δθ→0 z(θ + δθ) -z(θ) δθ δθ z(θ + δθ) -z(θ).
Given the nonlinear model (4.1), the sensitivity state solves the following differential model Observation sensitivity to parameter perturbation Let us now evaluate the sensitivity of collected measurements over a certain time period. This will help us to understand more deeply observability property of parameter from measurements. The function to be evaluated is the same used to evaluate observability assumption, that is

∂δz ∂t = f (z(θ + δθ), θ + δθ, t) -f (z(θ), θ, t), δz(t 0 ) = 0,
J(t, θ, z) = t t 0 -ε h(s, θ, z) Y ds, t ∈ T ,
where ε is the lenght of the time window where observation are collected prior data assimilation process. The metric of the space Y = R p can be freely fixed depending problems on the context, we just suppose that it is a Lebesgue space of degree q where q is a finite number. As a reminder we have that

y Y = y L q (R p ) = p i=1 |y i | q 1 q , ∂ y Y ∂y =   y • |y| q-2 1 y q-1 L q (R p )   ,
where • refers to Hadamard product. By adding to the cost function J a term equal to zero related to state equation, we obtain a Lagrangian function L defined as

L(t, θ, z, p) = J(t, θ, z) + t t 0 -ε p * ∂z ∂t -f (s, z, θ) , t ∈ T ,
where p ∈ Z is a Lagrangian mutliplier, also referred to as adjoint state. By Fréchetdifferentiation of L with regards to parameter and by mutiplication with parameter perturbation δθ, sensitivity to parameter of the collected outputs is given by

δL = t t 0 -ε   h • |h| q-2 1 h q-1 L q (R p )   * ∂h ∂z δz + ∂h ∂θ δθ ds + t t 0 -ε p * ∂δz ∂t - ∂f ∂z δz - ∂f ∂θ δθ ds,
where vector δz is solution of the tangent linear model (4.24). Because for every direction δθ a corresponding δz has to be calculated, it is wiser to define the adjoint state p in order to eliminate δz from the expression of δL. Thus, let p be the solution of the following adjoint state model

∂p ∂t = ∂h ∂z *   h • |h| q-2 1 h q-1 L q (R p )   - ∂f ∂z * p, δp(t) = 0. (4.26)
By integration by part and by replacing expression of ∂p ∂t by the adjoint model (4.26), the sensitivity δL is finally expressed as

δL = t t 0 -ε     h • |h| q-2 1 h q-1 L q (R p )   * ∂h ∂θ -p * ∂f ∂θ   ds δθ,
where p is computed only once for every parameter perturbation δθ tested.

Particular case of unstable systems

The objective here is to show how an asymptotically convergent dynamical state estimation can be severely affected by small uncertainties of observer model parameters. Let us consider the following Luenberger observer associated to the state model (4.1) expressed as

∂ ẑ ∂t = f (ẑ, θ, t) + k ∂h ∂ ẑ * (y(t) -h(t, ẑ, θ)), ẑ(t 0 ) = z 0 , ( 4.27) 
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where the initial condition z 0 is different from z e 0 the true initial state and where y(t) = h(t, z, θ) is the observation of the true state. In the following assumption, we suppose that for a common parameter there exists a Luenberger observer of the form (4.27) such that the observer state asymptotically converges towards the true state.

Assumption 10. Assume that there exists a strictly positive number k ∈ R + * such that for every parameter θ ∈ O the solution of the Luenberger observer (4.27) is asymptotically stable such that

lim t→+∞ ẑ(θ) -z(θ) = 0, θ ∈ O.
As said before, model parameters sytematically contain round off errors from mathematical approximation or noise from real dynamics, so assuming that model parameter is exactly known without errors is quite unrealistic. A more realistic case will be to verify under which conditions the estimated state ẑ(θ + δt) with a perturbed parameter θ + δθ still converges towards the true state z(θ). To do so, a sensitivity to parameter perturbation will be carried out in the following section based on bifurcation and parameter perturbation theory [START_REF] Mishchenko | Asymptotic methods in singularly perturbed systems[END_REF]. Proof. By converse triangle inequality the error can be split into two parts

ẑ(θ + δθ) -z(θ) ≥ | ẑ(θ + δθ) -z(θ + δθ) -z(θ + δθ) -z(θ) |.
Let us make appear the solution of the tangent model (4.24) to replace the second error term

ẑ(θ + δθ) -z(θ) ≥ | ẑ(θ + δθ) -z(θ + δθ) - 1 δθ θ+δθ θ δz(θ, σ -θ, t)dσ | ≥ | ẑ(θ + δθ) -z(θ + δθ) - 1 δθ θ+δθ θ δz(θ, σ -θ, t) dσ|.
On one hand by Assumption 10, when time goes to infinity we have the asymptotic convergence result

lim t→∞ ẑ(θ + δθ) -z(θ + δθ) = 0, θ + δθ ∈ O.
On the other hand, using assumption on unstability of the matrix function φ, the solution of the tangent model (4.25) is also unstable thus when time goes to infinity we have that lim t→+∞ δz(θ, σ -δθ, t) = +∞, σ ∈ (θ, θ + δθ].

Chapter 4. On the Luenberger observer for non-autonomous nonlinear problems

As a result, the global error when time goes to infinity is unstable

lim t→+∞ ẑ(θ + δθ) -z(θ) = +∞.
Remark 4. One could notice that the criterium of instability is totally independent of δθ which is perturbation applied on parameter. Meaning that even a very small perturbation can lead to instability of the observer state estimation.

We have seen that sensitivity analysis is very helpful to identify mathematically which parameter is less important in terms of dynamical perturbation than the others, so we can focus on an efficient number of parameters to estimate properly [START_REF] Ali | A New Method for Parameter Sensitivity Analysis of Lorenz Equations[END_REF]. To do so, a formulation of a Luenberger-based parameter calibration procedure is proposed in the next section.

Design of standard Luenberger state-parameter observer

We use the same transformation T that transforms the augmented-state model into a linear state model from which an exponentially stable linear observer can be made easily. The existence and injectivity conditions of T have been given previously. In the context of state-parameter reconstruction, the injectivity condition is extended to parameter injectivity too, as stated in Assumption 9. As a result, it can be proven that T is injective with respect to state and parameter such that

T (t, θ, z) -T (t, θ, ẑ) Z ≥ αγe -λε z(t) -ẑ(t) Z + θ(t) -θ(t) O ,
where γ is the observability condition constant and α is the injectivity condition constant of β. Now we have all the keys to express the observer model that must solve our estimation of state and parameter.

Let (ẑ, θ) be the estimation of the augmented-state, that by transformation T is equal to ξ = T (t, ẑ, θ) solving (4.4). Since T solves the PDE (4.7), the dynamic of the augmented-state observer must verify the Luenberger observer expression 

   ż = f (t, θ, ẑ) + K(t, θ, ẑ)(β(y(t)) -β(t, h(t, θ, ẑ)), z(t 0 ) = z 0 , θ = g(t, θ) + L(t, θ, ẑ)(β(y(t)) -β(t, h(t, θ, ẑ)), θ(t 0 ) = θ 0 , ( 4 

Design of iterative Luenberger state-parameter observer

Finally, by assembling all the elements developed for state-parameter estimation and for finite time estimation with back-and-forth technique, we can give a joint state-parameter estimation method in a finite time domain T = [t 0 , t f ] for nonlinear and non-autonomous problems.

To sum up, under some assumptions (f, g, h and β are continuously differentiable functions, β is injective with regards to observations and the augmented-state system (4.1)-(4.2) is backwardly observable on T ), two injective transformations T 1 and T 2 are defined in order to obtain a back-and-forth observer with exponentially stable error (4.16). We obtain, at the iteration k ∈ N, a forward Luenberger observer expressed as

   żk 1 = f (t, ẑk 1 , θk 1 ) + K 1 (β(t, y) -β(t, h(t, ẑk 1 , θk 1 ))), ẑk 1 (t 0 ) = ẑk-1 2 (t f ), θk 1 = g(t, θk 1 ) + L 1 (β(t, y) -β(t, h(t, ẑk 1 , θk 1 ))), θk 1 (t 0 ) = θk-1 2 (t f ), (4.30) 
where the forward Luenberger gain operators K 1 and L 1 are defined by the equation

∂T 1 ∂z K 1 (t, z, θ) + ∂T 1 ∂θ L 1 (t, z, θ) = I n ,
with T 1 solution of the PDE (4.7). After the forward integration comes the backward integration associated to the backward Luenberger observer expressed as 

   żk 2 = -f (π(t), ẑk 2 , θk 2 ) + K 2 (β 2 (t, y) -β 2 (t, h(t, ẑk 2 , θk 2 ))), ẑk 2 (t 0 ) = ẑk 1 (t f ), θk 2 = -g(π(t), θk 2 ) + L 2 (β 2 (t, y) -β 2 (t, h(t, ẑk 2 , θk 2 ))), θk 2 (t 0 ) = θk 1 (t f ), ( 4 
K 1 (t, z, θ) = K 2 (π(t), z, θ), L 1 (t, z, θ) = L 2 (π(t), z, θ).
If in addition we consider the initial conditions of the forward system (4.30), then the gains K 1 and L 1 are initialized with the last values of K 2 and L 2 , i.e.

K 1 (t 0 , ẑk 1 (t 0 ), θk 1 (t 0 )) = K 2 (t f , ẑk-1 2 (t f ), θk-1 2 (t f )), L 1 (t 0 , ẑk 1 (t 0 ), θk 1 (t 0 )) = L 2 (t f , ẑk-1 2 (t f ), θk-1 2 (t f )),
Conversely if we consider the initial conditions of the backward system (4.31), then the gains K 2 and L 2 are initialized with the last values of K 1 and L 1 , i.e.

K 2 (t 0 , ẑk 2 (t 0 ), θk 2 (t 0 )) = K 1 (t f , ẑk 1 (t f ), θk 1 (t f )), L 1 (t 0 , ẑk 2 (t 0 ), θk 2 (t 0 )) = L 2 (t f , ẑk 1 (t f ), θk 1 (t f )).
The remaining question is how to initialize the very first value taken by K 1 and L 1 at the beginning of the back-and-forth algorithm ? Answers are given in the following section.

Numerical experiments

Numerical discretization scheme

For complex nonlinear dynamics, explicit discretization schemes are usually preferred rather than implicit schemes. Runge-Kutta scheme is chosen to discretize in time the augmented-state system (4.1). The open question is how to discretize the PDEs of matrix gains ? It is not necessary to create different grids for all the variables as usually done to discretize PDEs. The set of variables containing time, state and parameter variables are all in the same grid, obtained by uniform discretization of the time interval T = [t 0 , t f ] with a time step ∆t > 0. At the grid point i ∈ 0, . . . , N we have the triplet (t i , z i , θ i ) corresponding to discrete time, state and parameter. As an example, we consider the continuous ODE equation

dφ dt = f (t, φ), t ∈ T .
When it is discretized by the RK4 scheme, we obtain the time discrete equation

φ i+1 = φ i + h i k 1 + 2k 2 + 2k 3 + k 4 6 , ( 4.32) 
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where the increments k 1 , k 2 , k 3 , k 4 are defined by

k 1 = f (t i , φ i ), k 2 = f (t i + h i 2 , φ i + h i 2 k 1 ), k 3 = f (t i + h i 2 , φ i + h i 2 k 2 ), k 4 = f (t i + h i , φ i + h i k 3 ),
with h i = t i+1 -t i = ∆t the time step. Now, we consider the same equation but formulated as a PDE i.e.

∂φ ∂t + ∂φ ∂z g(t, φ) = f (t, φ), t ∈ T , z ∈ Z.
When it is fully discretized by the RK4 scheme, we obtain the time discrete equation

φ i+1 = φ i + s i k 1 + 2k 2 + 2k 3 + k 4 6 , ( 4.33) 
where the only difference with (4.32) is the time step s i now defined as

1 s i = 1 t i+1 -t i + 1 z i+1 -z i p 1 + 2p 2 + 2p 3 + p 4 6 ,
which contains the step in time and in space, where the increments k 1 , k 2 , k 3 , k 4 are defined as before and p 1 , p 2 , p 3 , p 4 are defined by

p 1 = g(t i , φ i ), p 2 = g(t i + h i 2 , φ i + h i 2 p 1 ), p 3 = g(t i + h i 2 , φ i + h i 2 p 2 ), p 4 = g(t i + h i , φ i + h i p 3 ).
Both augmented state (ODE) and Luenberger gain (PDE) are solved with a RK4 scheme. First augmented-state is solved and second Luenberger gain is solved, as illustrated by Figure 4.1. This is due to the presence in the discrete PDE equation (4.33) of the prior information on z i+1 and θ i+1 in the definition of the step s i . The background state can be arbitrarily chosen because its real value is supposed to be unknown and is precisely going to be estimated by the algorithm. For the background feedback term it is different. As said in the linear case, normally by definition of T the function T at time t 0 -ε is equal to the null matrix, involving that the Luenberger gain ∂T ∂z -1 has infinite values, which is not suitable. Integrating the discrete equation of T and its derivatives, initialized by the null matrix, from t 0 -ε to t 0 in order to get their values at time t 0 is a good idea. This technique will problems

z(t): state Backgroundz b 0 y(t) : available data z 1 z 2 z 3 z 4 K(t) : gain matrix K 1 K 2 K 3 K 4 Background K b 0 Figure 4.
1: Scheme of time discrete resolution of state z and its Luenberger gain matrix K. Arrows represent information needed to update z and K at the next time step. Collected data are used to update the state: if the data frequency is less than ∆t then data are time distributed in a local neighborhood. Cross connection between z and K is represented by dashed arrows, the red dashed arrows suggest that the updated state has to be calculated first to update the Luenberger gain. be used to determine T , ∂T ∂θ and also β 2 (t, y), presents in the expression of backward nudging observer, defined as

β 2 (t, y) = 2λT 2 (t, z) -β(π(t), y(π(t))),
where the true state value z is unavailable, this is why T 2 (t, z) must be solved implicitely using the initialization method explained before. Unfortunalety, with this method there is no guarantee that non-singularity property of ∂T ∂z is preserved by numerical discretization, yet we need to evaluate the matrix gain ∂T ∂z -1

. Instead, we will integrate the discrete gain equation, initialized by an arbitrary matrix (i.e. identity matrix), from t 0 -ε to t 0 , so that at time t 0 the Luenberger gain will be fitted to the state trajectory and will present some non-diagonal elements reflecting correlation between state variables. These elements are very important to spread the observations more efficiently from observed variables to non-observed variables.

Results with Lorenz'96 model

To evaluate the efficiency of nonlinear Luenberger observer for state and joint stateparameter estimation, a twin experiment is performed on a chaotic nonlinear problem. A classical example of chaotic toy model in data assimation is the Lorenz oscillators. The particular model used, introduced in 1996 by Lorenz [START_REF] Lorenz | Predictability: a problem partly solved[END_REF], is given by żj = -z j + z j-1 (z j+1 -z j-2 ) + θ, j = 1, . . . n, (4.34) associated to periodic boundary conditions

z 1 = z n , z 0 = z n-1 , z n+1 = z 2 .
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The model parameter θ represents the external forces, it has been found out that θ = 8 generates a chaotic behaviour [START_REF] Lorenz | Predictability: a problem partly solved[END_REF]. Different values of observation y are tested : (i) all the states are observed (i.e. {z j } n j=1 ), (ii) two-third of the states are observed periodically (here {z 3j+2 } ). In the case (i) and (ii), synchronization data assimilation method (replacing in the model the observed state variables by data available) transforms the observer model into a linear model. Thus, linear techniques of observer design can be used as presented in the previous chapter. However, in the case (iii), synchronization method is not enough to linearize the state model and nonlinear observer design is still useful. Note that observability conditions are fulfiled in the case (iii) when observations are sufficiently frequent in time [START_REF] Abarbanel | Predicting the Future: Completing Models of Observed Complex Systems[END_REF].

The target solution, initialized with a random vector uniformly distributed between [0, 1) shifted by 10, is simulated with a time step ∆t = 0.002 and a number of step N t = 6000 so that the time domain is [0, 12]s. The dimension of the state vector z is n = 60, the dimension of the parameter vector θ is r = 1 and the dimension of the observation vector is p = 60, p = 40 or p = 20 according to the specific case. The observation operator is linear with h(t, z, θ) = Hz ∈ R p and the operator β is simply defined with the transpose of H as β(t, y) = H * y ∈ R n . Before data assimilation process, during the first 500 steps corresponding to ε = 1s, the Luenberger gain discrete model is initialized with the identity matrix and integrated without data correction, in order to be tuned to the state dynamics and get non-diagonal elements. At the end, the matrix obtained will initialize the gain matrix of the data assimilation process.

The estimated solution, initialized with the null vector of size n, is simulated with the same time step and number of step than the target solution. We know that the error function V (t) = T (t, ẑ, θ) -T (t, z, θ) 2 2 between the estimated and the target state is exponentially convergent towards zero. To be more general, the error function used to evaluate the estimation efficiency is the mean absolute error defined by

M AE(t) = 1 n n j=1 |z j (t) -ẑj (t)|, t ∈ T .
The RMSE could also have been used.

Recovering state variables Several state trajectories are calculated: (i) the target state used as a reference from which observations are extracted, (ii) the estimated state without data correction or with proportional data correction only, (iii) the estimated state with data correction using gain matrix defined above. The comparison between estimated state error between all these cases is shown in Figure 4.2. We remark that when all variables are observed, a simple identity matrix to correct each state variable by its observation has the same efficiency than using a full matrix gain matrix. When observations are more sparse, the comparison between using only diagonal and a full gain matrix shows the crucial interest of , the estimated state using diagonal gain matrix (blue line) and the estimated state using complete gain matrix (green line), after a preliminary step of 1s without data correction to initialize the gain matrix (vertical line).

Recovering constant model parameter

We are now looking for state and parameter reconstruction from state observation only. Starting from θ = 1, the idea is to find out the specific parameter that induces chaotic behavior. With a gap of δθ = 7, the sensitivity to parameter is sufficiently high (see Figure 4.4) to try to estimate this parameter. With only state correction and θ = 1, the state error is stagnating around 1e -1 and cannot reach lower values even with full state observation and with high convergence rate λ. As shown in Figure 4.5, state cannot be correctly identified with a bad parametrization. With parameter correction, state error asymptotically converges towards zero and rapidly identify both state and parameter values.

Recovering time-varying model parameter Because realistic models are not as perfect as mathematical models, models contain in practice additional terms such as noise. We now want to identify these extra terms by integrating them in the parameter estimation process. Let θ(t) = 8 + η(t) be the new time-varying parameter to be identified where η(t) represents the noise. Several types of noise are tested, first a determinist noise η(t) = 10 sin(10t) and second a random noise generated by a normal distribution of mean equal to 0 and standard deviation equal to 15. The difference between these two noises is very important. We remind that in the state-parameter estimation algorithm, parameter dynamics is supposed to be known in order to write a nudging observer model. While deterministic noise can be modeled by a deterministic time function, random noise is by nature unpredictable. For sinusoidal true parameter with a known dynamic, the algorithm has no difficulty to correct the parameter and find the exact zero-center amplitude of the sinus function, as shown in Figure 4.6. For random true parameter, the model is unknown and this last case will be very important to test the robustness of the algorithm. With a parameter model supposed to be stationary, the results of parameter prediction randomly perturbed presented in Figure 4.7 show that parameter does not exactly fit to the noisy real value but still stays close, which is enough to see the results in term of state estimation improvement. problems The more parameter perturbation is high the more sensitivity is significant (δL is proportional to δθ). Parameter sensitivity seems to be more important when observations are sparse. Meaning that the impact of θ is more visible when state is poorly observed and therefore can be more easily reconstructed. Chapter 5
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Contents Introduction

For many climatological applications, it is necessary to have reliable maps on weather state. For instance in weather forecasting a special effort is usually made to fully reconstruct the initial state, essential to start a prediction process. In practice information provided by measurements detected by satellites and/or buoys are too limited to define a complete field-based only on collected data. Most of data assimilation methods are asymptotically convergent and are not compatible with initial state estimation. The back-and-forth nudging method was specifically designed to solve this initial state estimation problem, making it a valuable candidate for most 96 Chapter 5. Data assimilation applied to quasi-geostrophic ocean model nonlinear geophysical forecasting problems. This drives us to explore theoretical and practical results of convergence for state reconstruction with back-and-forth nudging method.

The main issue of BFN is convergence proof, widely studied for well-posed linear dynamical PDE [START_REF] Auroux | Diffusive Back and Forth Nudging algorithm for data assimilation[END_REF], nonlinear PDE's still require a careful theoretical examination. Up to our knowledge, few works have been done on BFN convergence proof for nonlinear geophysical problems. We can mention the work of Auroux and Nodet [START_REF] Auroux | The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations[END_REF] on Burgers equations, but also the work of Boulanger at al. [START_REF] Boulanger | Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description[END_REF] on standard nudging method for nonlinear hyperbolic conservation laws admitting a linear kinetic formulation which brings us back to the linear case. Yet many successful applications of the BFN assimilation technique have shown in practice the convergence of this method for nonlinear problems [START_REF] Auroux | A nudging-based data assimilation method: the Back and Forth Nudging (BFN) algorithm[END_REF][START_REF] Ruggiero | Data assimilation experiments using diffusive back-and-forth nudging for the NEMO ocean model[END_REF] and this motivated our study to develop theoretical tools for geophysical nonlinear problems assimilating incomplete data.

In this chapter, we limit ourselves to the application field of oceanography. The quasi-geostrophic multi-layered model (QG) introduced by Holland [START_REF] William | The Role of Mesoscale Eddies in the General Circulation of the Ocean-Numerical Experiments Using a Wind-Driven Quasi-Geostrophic Model[END_REF] is a wellknown model for ocean circulation based on the assumption that the Coriolis force is dominant compared to the inertial forces, satisfied by oceanic regions located in mid-latitude. We propose a proof of convergence based on Lyapunov theory. The aim is to construct a Lyapunov function leading to asymptotic convergence. This function must be common for forward or backward equations to ensure continuity and by the iterative aspect of BFN method conclude to the initial state convergence. Because observations are not available at every layer of the stratified ocean, we cannot construct a strict Lyapunov function for which its time derivative must be strictly negative definite with regards to every layer state. Lassalle's invariance principle will allow us to override this problem.

Considering our interest for practical measurements usually quantitatively limited, we will verify if the Lyapunov analysis is adjusting well to such issue. We will evaluate step by step the following observation characteristic ordered as (i) two-dimensional full surface data, (ii) time sampling data and (iii) partial data in space corresponding to the trajectory of the buoy and/or the satellite over the ocean region. The only case not addressed theoretically in this study is the additional noise present in realistic measurements, however this case is studied in the numerical experiments on SWOT satellite carried out in the next chapter to evaluate the robustness of the method to real data. The same Lyapunov function is used for every type of observation based on observability conditions.

The paper is organized as follows. In Section 5.1, we give a brief presentation of the quasi-geostrophic approximation leading to the well-known mid-latitude ocean circulation quasi-geostrophic model. A vertical discretization into layers is made (multi-layer quasi-geostrophic model) based on the valid assumption that the ocean is a stratified medium. In Section 5.2, the back-and-forth strategy applied to the quasi-geostrophic multi-layer model is carried out. A demonstration of the energy decay of the multi-layer system along the assimilation process is made for all types of observations described before. In Section 5.3, a more sophisticated method to handle other kinds of observable nonlinear partial differential equations is given
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when data assimilation with simple scalar feedback law fails to provide convergence.

The quasi-geostrophic ocean circulation model

The participation of Earth's rotation in the large-scale oceanic flow dynamics in time and space is very important. It is common in mathematical modeling to use approximation in order to simplify some complex physical dynamics, hence the idea to use Earth's rotation predominance characteristic to simplify the oceanic models. The so-called geostrophic equilibrium suppose the exact balance between Coriolis force (related to Earth's rotation) and horizontal pressure-gradient forces referring to a zero-order approximation with regards to Rossby number. The quasi-geostrophic assumption is a relaxation of the geostrophic equilibrium, for which Coriolis force (related to Earth's rotation) and horizontal pressure-gradient forces are almost in balance referring to a first-order approximation with regards to Rossby number. The geostrophic approximation is not enough to determine the entire flow dynamics, less restrictive higher-order approximation as quasi-geostrophic approximation captures more dynamical phenomena. It has been shown that the quasi-geostrophic approximation is fairly robust in practice, its approximation is a characteristic of many important geophysical phenomenon of interest, for instance it reproduces quite well the ocean circulations at mid-latitudes, such as the jet stream (e.g. Gulf Stream in the case of the North Atlantic Ocean) and ocean boundary currents. It has been observed that quasi-geostrophic model appears to continue to apply quite well outside its formal bounds [START_REF] Williams | Testing the limits of quasi-geostrophic theory: application to observed laboratory flows outside the quasi-geostrophic regime[END_REF]. But it fails at reproducing oceanic flows in the equatorial regions where the Coriolis force is extremely weak on the horizontal current.

In terms of fluids mechanics, modeling of ocean dynamics requires to follow the fundamental principles of mass conservation, momentum conservation and thermodynamical laws. For the sake of simplicity, the thermodynamic effects are neglected in the quasi-geostrophic model. However most of the dynamical properties of the geophysical systems are preserved.

Quasi-geostrophic approximation

Let L, D and U be respectively the length scale, the depth scale and the horizontal velocity scale of the geophysical motion on a spherical body rotating with a constant angular velocity (the Earth's rotation). The mean Coriolis force f 0 , that is of unit 1 T where T is the time scale, depends on the angular velocity of planetary rotation as well as the mean latitude. From these parameters, we can define the following adimensional numbers :

• δ = D
L is the aspect ratio,

• ε = U f 0 L is the Rossby number that characterizes the importance of the planetary rotation ( 1 f 0 ) and the inertial effects ( L U ).

Chapter 5. Data assimilation applied to quasi-geostrophic ocean model

The formulation of the quasi-geostrophic model is based on the following approximation :

• δ 1 : the basin depth is very small compared to its width meaning that the ocean is a very thin layer in a planetary scale,

• ε 1 : the inertial effects are very small compared to the planetary rotation,

• f = f 0 + β 0 y : the Coriolis parameter varies linearly in space where y is the current latitude, this linear approximation is called β-plane approximations.

The Taylor expansion of the Navier-Stokes equations of order 0 in ε and δ gives an equation that represents the geostrophic balance presented above. The Taylor expansion of the same Navier-Stokes equations of order 1 in ε and δ gives the so-called quasi-geostrophic approximation where the flux velocity is divergencefree. For incompressible and divergence-free flow, we can define a three-dimensional stream-function ϕ coming from the flux velocity.

Let the basin Ω be a smooth bounded open space of R 2 , the vertical domain with the following notations:

H = [0, -H] (
• u = (u, v) t = -∂ϕ ∂y , + ∂ϕ ∂x t
is the instantaneous horizontal velocity vector of the flow verifying the zero-divergence horizontal velocity flow assumption explicitly expressed as ∇ • u = 0,

• ∇• and ∆ are respectively the horizontal (two-dimensional) divergence and Laplacian operators defined as

∇ • (.) = ∂. ∂x + ∂. ∂y , ∆. = ∂ 2 . ∂x 2 + ∂ 2 . ∂y 2 ,
• D• Dt represents the particular derivative operator defined equivalently as

D. Dt = ∂. ∂t + u ∂. ∂x + v ∂. ∂y , = ∂. ∂t - ∂ϕ ∂y ∂. ∂x + ∂ϕ ∂x ∂.
∂y .

• J is the Jacobian operator, a bilinear and skew-symmetric operator defined by

J(f, g) = ∂f ∂x ∂g ∂y - ∂f ∂y ∂g ∂x , ( 5.3) 
thus D• Dt can also be expressed as

D. Dt = ∂. ∂t + J(ϕ, .),
• q(ϕ) is the potential vorticity corresponding to the sum of the dynamical vorticity, the thermal (or stretching) vorticity and the planetary vorticity expressed as

q(ϕ) = ∆ϕ dynamical + ∂ ∂z f N (z) 2 ∂ϕ ∂z thermal + f planetary ,
where N (z) represents the buoyancy frequency (also refered as the Brunt-Väisälä frequency),

• F is the forcing term driving the dynamics of the model. In an oceanographic context, the forcing term represents the external force due to the wind stress applied on the surface of the ocean,

• D represents the dissipation terms, for instance the lateral friction and the bottom friction dissipation at the boundaries of the basin. The dissipative terms make the backward model ill-posed which is very problematic for the use of back-and-forth data assimilation method. In ocean dynamics the dissipation terms are very small compared to the other terms of the model as wind stress, this is why we will neglect them in the back-and-forth process. Note that dissipation term problems arising with backward integration can be addressed with the DBFN method [START_REF] Auroux | Diffusive Back and Forth Nudging algorithm for data assimilation[END_REF].

Multi-layers vertical stratification

The ocean, like the atmosphere, is a stratified fluid where the vertical structure is divided into multiple layers of uniform densities increasing with depth. Stratification assumption allows us to transform a fourth-dimentional model (x, y, z, t) into a three-dimentional multilayer model (x, y, t) where the vertical continuous variable z is discretized into layers. This model simplification is very interesting in terms of cost reduction of the vertical structure resolution. We consider a nonuniform stratification of N layers of depth at rest h k associated to a constant fluid density ρ k as illustrated in 

φ i φ j dz = δ i,j , i, j ∈ 1, N ,
where δ i,j is the Kronecker symbol.

Independent vertical stream functions

Let us expand the stream function with regards to the vertical normal modes [START_REF] Flierl | Models of vertical structure and the calibration of two-layer models[END_REF][START_REF] Smith | The Scales and Equilibration of Midocean Eddies: Freely Evolving Flow[END_REF] as

ψ(x, y, z, t) = N k=1 ψ k (x, y, t)φ k (z). (5.5)
As a result, since all vertical modes solve the Sturm-Liouville equation (5.4), the second-order derivative stream function verifies the following spectral decomposition

∂ ∂z f N (z) 2 ∂ψ ∂z = - N k=1 λ k ψ k (x, y, t)φ k (z).
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Then the spectral decomposition of the potential vorcticity is expressed as

q(x, y, z, t) = N k=1 (∆ψ k (x, y, t) -λ k ψ k (x, y, t) + f (y)) φ k (z).
We also expand the forcing and the dissipation functions with regards to the vertical modes

F (x, y, z, t) = N k=1 F k (x, y, t)φ k (z), D(x, y, z, t) = N k=1 D k (x, y, t)φ k (z).
By substitution of ψ, q, F and D with their respective the spectral expansions into normal modes and by integration of z over [-H, 0], we obtain the following quasigeostrophic potential vorticity equation ( 5.1) at layer k given by

Dq k (ψ k ) Dt = F k + D k ,
associated to the potential vorticity at layer k

q k = ∆ψ k -λ k ψ k + f k .

Interdependent vertical stream functions

The problem with the multi-layer quasi-geostrophic model given previously is that the layers are independent of each other. For instance the driving force which is wind stress applied to the first layer will never affect the other layers that will stay at rest. For a physical point of view interaction between layers is very important for the ocean dynamics model validity.

We introduce the vector φ = P φ where φ = (φ 1 , . . . , φ N ) T is the vertical normal modes vector and P is an invertible and orthogonal transition matrix of M N (R).

In the new basis, the Strum-Liouville equation (5.4) is expressed as

d dz   f N (z) 2 d φ dz   = -M φ,
where M = P DP -1 and D = diag(λ 2 1 , . . . , λ 2 N ). Since P is orthogonal and the modes {φ i } N i=1 are assumed to be normal, the new modes { φi } N i=1 share the same property that is

0 -H φi φj dz = δ i,j , i, j ∈ 1, N .
By spectral expansion of the variables ψ, F and D in z following the basis { φi } N i=1 and by integration of z over [-H, 0], we obtain the following spectral version of the quasi-geostrophic potential vorticity equation (5.1) given by

Dq k (ψ k ) Dt = F k + D k , associated to q k = ∆ψ k -(M ψ) k + f k ,
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The presence of the term (M ψ) k = N i=1 (M ) k,i ψ i represents the existing interconnection between different ocean layers. We usually consider that M has a tridiagonal structure, each layer is directly influenced by its upper and downer layer. A definition of a tridiagonal matrix M with a physical meaning can be found [START_REF] Kazantsev | Local Lyapunov exponents of the quasi-geostrophic ocean dynamics[END_REF] expressed as

M =         -b 1 b 1 0 . . . . . . 0 a 2 -a 2 -b 2 b 2 0 . . . 0 . . . . . . . . . . . . . . . . . . 0 . . . 0 a n-1 -a n-1 -b n-1 b n-1 0 . . . . . . 0 a n -a n        
, with

a k = f 2 0 h k g k-1 2 , b k = f 2 0 h k g k+ 1 2
.

Equivalently (M ψ) k is given by (M ψ) k =        b 1 (ψ 2 -ψ 1 ), k = 1, b k (ψ k+1 -ψ k ) -a k (ψ k -ψ k-1 ) , k ∈ 2, N -1 , -a N (ψ N -ψ N -1 ), k = N, (5.6) 
where

• h k and ρ k are respectively the depth and the density of the layer k for a fluid at rest,

• g k+ 1 2
called reduced gravity is defined by

g k+ 1 2 = g 0 ρ k+1 -ρ k ρ 0 ,
where g 0 is the average constant of gravity and ρ 0 is the average fluid density in the basin Ω.

Boundary conditions

We need now to complete the quasi-geostrophic model with boundary conditions on the horizontal domain Ω. We assume that there is no incoming or outgoing fluxes at the boundary domain ∂Ω that is characteristic of a spatial domain Ω surrounded by land borders. This is equivalent to a Dirichlet boundary condition

ψ k (t, x, y) = C k (t), (x, y) ∈ ∂Ω, ( 5.7) 
associated to a mass conservation condition on the space domain [START_REF] Kazantsev | Local Lyapunov exponents of the quasi-geostrophic ocean dynamics[END_REF] expressed as Ω ϕ k (t, x, y) dx dy = 0, t ∈ T ,
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with ϕ k = (P * ψ) k the stream function spectral coefficient associated to the eigenbasis {φ i } N i=1 . Usually, a no-slip condition on the land borders is also considered

∆ψ k (t, x, y) = 0, (x, y) ∈ ∂Ω,
this is due to the presence of harmonic terms D in the quasi-geostrophic model. Since we neglect the influence of the term D, the last boundary condition is not considered.

Back-and-forth nudging with scalar feedback law

In this section, we will develop theoretical results to prove the convergence of the back-and-forth nudging for different types of data. We will begin with a very ideal case, where data are supposed to be smooth, perfect and complete at the surface. More realistic cases, such as incomplete observations in space or time, will be discussed further. Nonlinearities are usually an obstacle for convergence proof. Work on the linearized model is a way to get around that, but to conserve higher-order information the nonlinearities of the model will be left unchanged. Lyapunov stability analysis tools are very easy to manipulate and are particularly suitable for nonlinear equations. The selection and the analysis of a Lyapunov function, usually based on existing physical energy functions, is the core of the convergence proof.

Energy functions

The principal driving force of the ocean circulation in the quasi-geosotrophic model considered is the wind stress on the ocean surface. The energy created by the wind stress at the first layer is distributed to the deeper layers and dissipated by the bottom drag. The total energy is splitted into :

• Kinetic energy at the layer k is defined as

K k (t) = h k 2 Ω |∇ψ k | 2 dx, t ∈ T . ( 5.8) 
The variation of the kinetic energy over time is given by

dK k (t) dt = h k Ω ∂∇ψ k ∂t ∇ψ k dx, t ∈ T .
By integration by parts we obtain

dK k (t) dt = -h k Ω ∂∆ψ k ∂t ψ k dx + h k ∂Ω ∂∇ψ k ∂t • nψ k dx, t ∈ T .
Finally, by considering the Dirichlet boundary condition of the stream function on ∂Ω, the time variation of the kinetic energy is expressed as

dK k (t) dt = -h k Ω ∂∆ψ k ∂t ψ k dx + h k ∂Ω ∂∇ψ k ∂t • nC k (t)dx, t ∈ T . (5.9)
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• Potential energy between the layer k + 1 and the layer k is defined as

P k (t) = f 2 0 2g k+ 1 2 Ω (ψ k+1 -ψ k ) 2 dx, t ∈ T .
(5.10)

The variation of the total potential energy over time is given by

N -1 k=1 dP k dt = N -1 k=1 f 2 0 g k+ 1 2 Ω ∂(ψ k+1 -ψ k ) ∂t (ψ k+1 -ψ k )dx, = N k=2 f 2 0 g k-1 2 Ω ∂(ψ k -ψ k-1 ) ∂t ψ k dx - N -1 k=1 f 2 0 g k+ 1 2 Ω ∂(ψ k+1 -ψ k ) ∂t ψ k dx.
By assembling the terms around ψ k , we obtain

N -1 k=1 dP k dt = N -1 k=2 Ω ∂ ∂t   f 2 0 g k-1 2 (ψ k -ψ k-1 ) - f 2 0 g k+ 1 2 (ψ k+1 -ψ k )   ψ k dx + Ω ∂ ∂t   f 2 0 g N -1 2 ψ N -ψ N -1   ψ N dx - Ω ∂ ∂t   f 2 0 g 1+ 1 2 ψ 2 -ψ 1   ψ 1 dx.
Finally, given the expression of the matrix vector product (M ψ) k (5.6), we have that

N -1 k=1 dP k dt = - N k=1 h k Ω ∂(M ψ) k ∂t ψ k dx.
(5.11)

• Enstrophy at the layer k is defined as

E k (t) = h k 2 Ω (∆ψ k ) 2 dx.
(5.12)

The variation of the enstrophy over time is given by

dE k (t) dt = h k Ω ∂∆ψ k ∂t ∆ψ k dx.

Lyapunov stability

A time continuous and time discrete version of Lyapunov's theorem are given as follows.

Theorem 36 (Lyapunov theorem (continuous time)). Let ψ = 0 ∈ X be an equilibrium of a PDE system. Let V : T ×X → R be a continuously differentiable function such that

• V is positive definite :

α 1 (ψ(t)) ≤ V (t, ψ(t)) ≤ α 2 (ψ(t)), t ∈ T ,
where α 1 , α 2 are functions of class K ∞ (X ),
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• V is negative definite :

d dt V (t, ψ(t)) < 0, t ∈ T ,
then the equilibrium ψ = 0 is globally asymptotically stable.

Theorem 37 (Lyapunov theorem (discrete time)). Let ψ = 0 ∈ X be an equilibrium of a PDE system. Let V : T × X → R be a continuously differentiable function such that

• V is positive definite : α 1 (ψ(t)) ≤ V (t, ψ(t)) ≤ α 2 (ψ(t)), t ∈ T ,
where α 1 , α 2 are functions of class K ∞ (X ),

• V is negative definite with a period ε > 0 :

∆V (t, ψ(t)) = V (x(t)) -V (t -ε, ψ(t -ε)) < 0, t ∈ T ,
then the equilibrium ψ = 0 is globally asymptotically stable.

Lasalle's invariance principle is a powerful tool used when the Lyapunov theorem fails at showing that a system is asymptotically convergent. It is used when only a part of state variables are asymptotically convergent. The Lasalle's invariance principle is particularly interesting to solve the problems arising from the impossibility to have access to deeper ocean layers measurements by radar altimetry technology and to construct a strict Lyapunov equation demonstrating convergence at every layer. However the invariance criterium of the classical Lasalle's invariance principle is no longer true for infinite-dimension non-autonomous systems. Thanks to Barbalat's Lemma, an alternative version of Lasalle's invariance principle using uniform continuity criterium can be written.

Lemma 4 (Barbalat's Lemma). Let

V : T ×X → R be a continuously differentiable function such that lim t→+∞ V (t) = α with α < +∞. If V is uniformly continuous then lim t→+∞ V (t) = 0.
Theorem 38 (Lasalle's invariance principle). Let ψ = 0 ∈ X be an equilibrium of a PDE system. Let V : T × X → R be a continuously differentiable function such that

• V is positive definite : α 1 (ψ(t)) ≤ V (t, ψ(t)) ≤ α 2 (ψ(t)), t ∈ T , where α 1 , α 2 are functions of class K ∞ (X ),
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• V is semi-negative definite : d dt V (t, ψ(t)) ≤ 0, t ∈ T ,
• V is uniformly continuous, then the equilibrium ψ = 0 is globally asymptotically stable.

Back-and-forth nudging observer formulation

The standard nudging formulation with scalar feedback law of the quasi-geostrophic forward and backward models will be provided in the following paragraph. The formulation of the observations is general and will be replaced in due time by the different cases of observations studied.

Observability condition

Satellite with altimeter radar instruments measure the sea surface height (SSH).

Basically, SSH value is deduced from the lapse time between sending the signal impulse and receiving the reflected signal of sea surface. From geostrophic equilibrium, a proportional relation between SSH and the stream function [START_REF] Ubelmann | Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping[END_REF] is given by

SSH(x, y, t) = f 0 g ψ 1 (t, x, y).
Data on SSH are available only at times and spaces of satellite trajectory over the considered ocean area. Let t i ∈ T for all i = 1, N t be the times when the satellite is in the region and ω i ⊂ Ω be the path of the satellite on the ocean surface at time t i . The observations captured by the satellite at layer k are formulated as

y k (t, x, y) = δ k,1 f 0 g Nt i=1 δ(t -t i )1 ω i (x, y)ψ k (t i , x, y), (5.13) 
where δ(t) is the Dirac function and 1 ω (x, y) is defined as

1 ω (x, y) = 1, (x, y) ∈ ω, 0, otherwise. (5.14) 
Several forms of observation expression will be considered (time-sampled and partial space observations will be studied separately) in order to show step by step the convergence with satellite observations. As we already know, exact observability condition plays a crucial role in state reconstruction method. In the observability assumption considered, we will suppose that there exists a minimal time period ε after which all observations collected in the subdomain ω are enough to identify the true stream function. It is not clear under which conditions on ω the observability is fulfilled for nonlinear problems, as quasigeostrophic equations. Even though we will suppose the existence of a time period 5.2. Back-and-forth nudging with scalar feedback law 107 ε > 0 under which observability condition is true. Two observability conditions can be considered. First, a strong condition to construct a strict Lyapunov function, that supposes that observations are enough to reconstruct stream function at each layer. Second, a weaker condition suposes instead that observations are enough to reconstruct stream function at first layer only. From weak observability condition only a weak Lyapunov function can be derived, the convergence proof based on Lasalle's invariance principle is a bit more tricky since additional criteria must be stastified. The ideal case will be to prove the sufficient role of the first layer knowledge to reconstruct the other layers as well.

Assumption 11 (Strong observability condition). Assume the quasi-geostrophic multi-layer model associated to the observation (5.13) is backwardly observable on [t -ε, t] for all t ∈ T with respect to all layers, meaning that there exists a strictly positive constant γ such that

N k=1 t t-ε y k (s, x, y) 2 Y ds ≥ γ N k=1 ψ k (t, x, y) 2 X , (x, y) ∈ Ω.
Assumption 12 (Weak observability condition). Assume the quasi-geostrophic multi-layer model associated to the observation (5.13) is backwardly observable on [t -ε, t] for all t ∈ T with respect to first layer only, meaning that there exists a strictly positive constant γ such that

N k=1 t t-ε y k (s, x, y) 2 Y ds ≥ γ ψ 1 (t, x, y) 2 X , (x, y) ∈ Ω.

Forward nudging

Let introduce now the formulation of the forward nudging observer associated to the quasi-geostrophic model. We incorporate a data correction term to the time differential equation of potential vorticity, that is

∂ ∂t qk + J( ψk , qk ) = F k + λ(y k ( ψ) -y k (ψ)), (5.15) 
where the coefficient λ balances the impact of the data-correction in the model depending on the confidence in the data and the importance of respecting model dynamics. The term y k ( ψ) is the projection of the state estimation on the satellite observation domain at layer k. The estimated stream function is denoted ψk and the estimated potential vorticity is defined as

qk = ∆ ψk + (M ψ) k + f k . (5.16)
By subtraction with the true quasi-geostrophic model (with λ = 0), the error stream function and potential vorticity respectively ψk = ψk -ψ k and qk = qk -q k solve the complete quasi-geostrophic error model

     ∂ ∂t qk + J( ψk , qk ) -J(ψ k , q k ) = λy k ( ψ), qk = ∆ ψk + (M ψ) k , (5.17) 
where the observation operator is linear with regards to the stream function. By subtraction of the same value C k (t) supposed to be known, the boundary condition of the error model is a homogeneous Dirichlet condition ψk = 0, (x, y) ∈ ∂Ω.

We also consider a mass conservation condition expressed as

Ω φk (t, x, y)dxdy, t ∈ T ,
where φk = (P ψ) k is the error stream function expressed in the orthonormal basis {φ k } N k=1 .

Backward nudging

Since quasi-geostrophic model without dissipation terms is reversible, a well-posed quasi-geostrophic backward model can be formulated. By incorporating a data correction term of the opposite sign (compared to the forward model) and by change of variable in time π : t → t f + t 0 -t, we obtain the following quasi-geostrophic backward observer model, for all t ∈ T = [t 0 , t f ],

∂ ∂t qb k -J( ψb k , qb k ) = -F k + λ b (h k ( ψb ) -y k (ψ b )), (5.18) 
where the backward nudging coefficient λ b > 0 balances the influence of data correction and is not necessarily equal to the forward nudging coefficient λ. By subtraction with the true backward quasi-geostrophic model (with λ b = 0), the error stream function and potential vorticity respectively ψb

k = ψb k -ψ b k and qb k = qb k -q b k solve the complete quasi-geostrophic error model      ∂ ∂t qb k -J( ψb k , qb k ) + J(ψ b k , q b k ) = λ b y k ( ψb ), qb k = ∆ ψb k + (M ψb ) k , (5.19) 
associated to the same homogeneous Dirichlet boundary condition and mass conservation condition as in the forward direction of time, which is expressed as

ψb k = 0, on ∂Ω × T , Ω φb k (t)dx, on T ,
where φb k = (P ψb ) k is the backward error stream function expressed in the orthonormal basis {φ k } N k=1 .

Convergence analysis with complete surface observations

We first consider the ideal case when the SSH is completely observed in time and space, the observations are expressed as

y k (t, x, y) = δ k,1 f 0 g ψ k (t, x, y).
(5.20)
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Given this input, we need to find a common Lyapunov function for both forward and backward error dynamics (5.17)- (5.19) that verifies at least the Lasalle's invariance principle. The Lyapunov candidate found will serve as a basis for the other kinds of observations studied later.

Integral properties of J We already know that Jacobian operator defined as (5.3) is a bilinear and skew-adjoint operator. Further properties related to spatial integration that is going to be very useful in the convergence demonstration are presented here.

Property 3. The Jacobian operator defined as (5.3) satisfies the following properties

• if ψ in H 1 0 (Ω) and ϕ in H 1 (Ω), then Ω J(ψ, ϕ)dx = 0. • if ψ in H 1 0 (Ω) and ϕ in H 1 (Ω), then Ω J(ψ, ϕ)ψdx = 0. • if ψ, ϕ in H 1 (Ω), ξ ∈ L ∞ (Ω), and if there exists two functions f, g ∈ C 1 (Ω) such that ψ ∂ϕ ∂y = ∂f ∂y , ψ ∂ϕ ∂x = ∂g ∂x , then Ω J(ψ, ϕ)ξ ≤ 0.
Proof. The first integral is easy to demonstrate. By definition of J (5.3), we have

Ω J(ψ, ϕ)dx = Ω ∂ψ ∂x ∂ϕ ∂y - ∂ψ ∂y ∂ϕ ∂x dx = Ω ∂ ∂x ψ ∂ϕ ∂y -ψ ∂ 2 ϕ ∂xy - ∂ ∂y ψ ∂ϕ ∂x + ψ ∂ 2 ϕ ∂xy dx = Ω ∂ ∂x ψ ∂ϕ ∂y - ∂ ∂y ψ ∂ϕ ∂x dx.
By using the Green's theorem, we finally have

Ω J(ψ, ϕ)dx = ∂Ω ψ ∂ϕ ∂y • n y + ∂ϕ ∂x • n x dγ,
which vanishes since ψ is equal to zero on the boundary of Ω. For the second integral, by definition of J (5.3) we have

Ω J(ψ, ϕ)ψdx = Ω ∂ψ ∂x ∂ϕ ∂y ψ - ∂ψ ∂y ∂ϕ ∂x ψ dx = Ω ∂ ∂x ψ ∂ϕ ∂y ψ -ψ ∂ ∂x ∂ϕ ∂y ψ - ∂ ∂y ψ ∂ϕ ∂x ψ + ψ ∂ ∂y ∂ϕ ∂x ψ dx.
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Using the Green's theorem on the first and third terms yields

Ω J(ψ, ϕ)ψdx = ∂Ω ψ 2 ∂ϕ ∂y • n y + ∂ϕ ∂x • n x dγ + Ω ψ - ∂ ∂x ∂ϕ ∂y ψ + ∂ ∂y ∂ϕ ∂x ψ dx.
Since ψ is equal to zero on the boundary ∂Ω, it remains only the integrals on Ω thus 

Ω J(ψ, ϕ)ψdx = Ω ψ - ∂ ∂x
= - Ω J(ψ, ϕ)ψdx,
which proves the property. For the last integral, since ξ ∈ L ∞ (Ω), the integral is bounded by

Ω J(ψ, ϕ)ξdx ≤ ξ L∞(Ω) Ω |J(ψ, ϕ)| dx. ( 5.21) 
Let us introduce two subdomains of Ω, denoted Ω + and Ω -, forming a partition i.e. Ω + ∪ Ω -= Ω and Ω + ∩ Ω -= ∅. We define Ω + and Ω -as

Ω + = {x ∈ Ω, J(ψ(x), ϕ(x)) ≥ 0}, Ω -= {x ∈ Ω, J(ψ(x), ϕ(x)) < 0}
the subdomains where the function J(ψ, ϕ) is respectively postive and strictly negative. Then the absolute value in (5.21) is replaced by

Ω J(ψ, ϕ)ξdx ≤ ξ L∞(Ω) Ω + J(ψ, ϕ)dx - Ω - J(ψ, ϕ)dx .
Similarly as previously by using the Green's theorem on Ω + and Ω -we have

Ω J(ψ, ϕ)ξdx ≤ ξ L∞(Ω) ∂Ω + ψ ∂ϕ ∂y • n y - ∂ϕ ∂x • n x dγ - ∂Ω - ψ ∂ϕ ∂y • n y - ∂ϕ ∂x • n x dγ,
the argument that ψ is equal to zero on ∂Ω is not enough to make these integral vanish since ∂Ω + ∪ ∂Ω -⊃ ∂Ω contains also the interface on which J(ψ, ϕ) changes sign. To conclude, we use the assumption on the functions ψ ∂ϕ ∂y and ψ ∂ϕ ∂x that must admit primitives (repectively f and g) and the fact that ∂Ω + and ∂Ω -are unions of closed curves, which leads to the following equalities

∂Ω + df dy • n y dγ = ∂Ω + dg dx • n x dγ = ∂Ω - df dy • n y dγ = ∂Ω - dg dx • n x dγ = 0,
proving the inequality.
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Main theorem We present the main theorem that provides the asymptotic convergence of the back-and-forth nudging quasi-geostrophic observer.

Assumption 13. Assume the stream function belongs to X = L 2 (T ; Theorem 39. Let V be a continuously differentiable function defined as the sum of all ocean layers kinetic energy and potential energy, that is

H 3 0 (Ω) ∩ L ∞ (Ω)).
V (t) = N k=1 K k (t) + N -1 k=1 P k (t), t ∈ T .
(5.22)

Under Assumption 11-13-14, the equilibrium ψk = 0 is globally asymptotically stable for the forward error system (5.17).

Proof. We want to prove that the function V verifies the Lyapunov's theorem conditions.

• First, we verify that V is a positive definite function with regards to the stream function. The total kinetic energy (5.8) is equal to

N k=1 K k (t) = N k=1 h k 2 | ψk | 2 H 1 0 (Ω) , (5.23) 
where ψk is an element of H 1 0 (Ω) and | • | is the norm of H 1 0 (Ω) equivalent to the norm of H 1 (Ω). The total potential energy (5.10), by using successively Cauchy-Schwarz and Young inequalities, verifies the following inequality

N -1 k=1 P k (t) = N -1 k=1 r k ψk+1 2 L 2 (Ω) + ψk 2 L 2 (Ω) -2 ψk+1 , ψk L 2 (Ω) , C.S. ≤ N -1 k=1 r k ψk+1 2 L 2 (Ω) + ψk 2 L 2 (Ω) + 2 ψk+1 L 2 (Ω) ψk L 2 (Ω) , Y. ≤ 2 N -1 k=1 r k ψk+1 2 L 2 (Ω) + ψk 2 L 2 (Ω) ,
where

r k = f 2 0 2g k+ 1 2
is a strictly positive number. Now by splitting the two terms in two sums, the total potential energy is bounded by

N -1 k=1 P k (t) ≤ 2 N k=2 r k-1 ψk 2 L 2 (Ω) +2 N -1 k=1 r k ψk 2 L 2 (Ω) ≤ 2 N k=1 (r k +r k-1 ) ψk 2 L 2 (Ω) .
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Hence, by Poincaré inequality there exists a strictly positive constant C such that

N -1 k=1 P k (t) ≤ 2C N k=1 (r k + r k-1 )| ψk | 2 H 1 0 (Ω) .
(

Finally by definition of V (5.3) and by using the two results obtained on the kinetic energy (5.23) and the potential energy (5.24), the function V is bounded by the norm of the stream function such as

N k=1 h k 2 | ψk | 2 H 1 0 (Ω) ≤ V (t) ≤ N k=1 h k 2 + 2r k + 2r k-1 | ψk | 2 H 1 0 (Ω) ,
proving that V is a positive definite function.

• Second, using the time variation expression of the kinetic energy (5.9) and potential energy (5.11), the time derivative of V is expressed as

dV dt = - N k=1 h k Ω ∂∆ ψk ∂t ψ k dx - N k=1 h k Ω ∂(M ψ) k ∂t ψ k dx,
where the constant C k has been replaced by zero given the homogeneous Dirichlet boundary condition of ψk on ∂Ω. Now, we can easily identify the potential vorticity error qk (5.17) in the expression of V , thus V is rewritten into

dV dt = - N k=1 h k Ω ∂ qk ∂t ψ k dx.
Given the potential vorticity error time equation (5.17) and the observation expression (5.20), V is equal to

V (t) = n k=1 h k Ω J( ψk , qk ) -J(ψ k , q k ) ψk dx -h 1 λ f 0 g Ω ψ2 1 dx.
The bilinearity property of the Jacobian operator J(•, •) yields

J( ψk , qk ) -J(ψ k , q k ) = J( ψk , qk ) + J(ψ k , qk ), (5.25) 
thus,

V (t) = n k=1 h k Ω J( ψk , qk ) ψk dx + Ω J(ψ k , qk ) ψk dx -h 1 λ f 0 g Ω ψ2 1 dx.
From the second item of Property 3 since ψk ∈ H 0 1 (Ω) the first integral term is equal to

Ω J( ψk , qk ) ψk dx = 0.
From Assumption 14 on Ω a bounded domain, there exists two primitive functions f and g such that

ψk ∂ qk ∂y = ∂f ∂y , ψk ∂ qk ∂x = ∂g ∂x .
Thus, using that ψ k ∈ L ∞ (Ω) and the third point of Property 3, the second integral term verifies

Ω J(ψ k , qk ) ψk dx ≤ 0.
Thus, V satisfies the inequality

V (t) ≤ -h 1 Ω λ f 0 g ψ2 1 dx, ( 5.26) 
where

Ω λ f 0 g ψ2 1 dx = λ g f 0 N k=1 y k 2 Y .
Finally, by integrating V in time over the interval [t -ε, t] and by using Assumption 11, the following inequality stands

V (t) -V (t -ε) ≤ -h 1 γλ g f 0 N k=1 ψ k 2 L 2 (Ω) ,
which is negative definite. Proving that V is asymptotically stable.

Remark 5. See Appendix 5.4, for the convergence demonstration in the case of a weaker observability condition. An alternative of Lasalle's invariance principle for inifinite dimention is used.

Remark 6. The convergence proof of the backward nudging model (5.19) was intentionally forgotten to avoid repetitions with forward dynamics. Following the same steps it can be proven that V (5.3) also satisfies the Lasalle's invariance principle for the backward error model, involving that equilibrium ψb k = 0 is globally asymptotically stable for the backward error system (5.19). Since forward and backward error trajectories are asymptotically stable with the same Lyapunov function, the global back-and-forth process is also asymptotically stable. For simplicity, in the future every convergence result expressed on forward error model will implicitly be supposed to be verified on backward error model.

Remark 7. Let us consider a one layer quasi-geostrophic ocean model, describing a pure barotropic flow, formulated as

∂ ∂t q(ψ) + J(ψ, q(ψ)) = F, ( 5.27) 
where the potential vorticity q is proportional to the first eigenmode of the Sturm-Liouville equation, leading to

q = ∆ψ - 1 L 2 R ψ + f, (5.28) 
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where L R denotes the first Rossby radius of deformation [START_REF] Smith | The Scales and Equilibration of Midocean Eddies: Freely Evolving Flow[END_REF][START_REF] Ubelmann | Dynamic Interpolation of Sea Surface Height and Potential Applications for Future High-Resolution Altimetry Mapping[END_REF]. For a one-layer model, V is negative definite and Lyapunov's theorem is enough to prove asymptotic convergence. In this case, V is expressed as

V (t) = 1 2 1 L 2 R Ω ψ2 dx + Ω |∇ ψ| 2 dx .
Another Lyapunov function candidate can also be found in the one-layer case, expressed as

W (t) = 1 2 1 L 4 R Ω ψ2 dx + 2 L 2 R Ω |∇ ψ| 2 dx + Ω (∆ ψ) 2 dx ,
where in addition to kinetic and potential energies, a term associated to enstrophy (5.12) is added. Note that W is equivalent to

W (t) = 1 2 Ω q2 dx, ( 5.29) 
representing the error potential vorticity norm.

Convergence analysis under time-sampled observations

We want now to study the case where observations are not available at every time but only at times t i where i = 0, . . . , N t . Two options might be considered, the first option is to suppose that the data is integrated in the feedback only at observation times. In this case discontinuities might appear around the observation times. Yet information provided by data is still useful for times in a local neighborhood of t i . This leads us to the second option, consisting of spreading the observations over a small period of time with a certain weight function called mollifier [START_REF] Boulanger | Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description[END_REF]. A mollifier, also known as Friedrichs mollifier, is a non-negative, smooth and compactly supported in σ ⊂ [0, T ] function of integral one over time. Let ϕ σ be a mollifier compactly supported in σ, then observations at the layer k are expressed by

H k (ψ) = δ k,1 f 0 g Nt i=1 ϕ σ (t -t i )ψ k (t i ). (5.30) 
In the critical case when σ tends to zero then ϕ σ is a Dirac function, bringing us back to the first option. In practice, mollifiers are trapezoidal functions [START_REF] Lei | A hybrid nudging-ensemble Kalman filter approach to data assimilation in WRF/DART[END_REF], gaussian functions or even triangle functions.

Assumption 15. Assume the stream function is a time bounded function belonging to L ∞ (T , X ).

Theorem 40. Let V be a continuously differentiable function defined as the sum over the ocean layers of the kinetic energy and the potential energy, that is

V (t) = N k=1 K k (t) + N -1 k=1 P k (t), t ∈ T . (5.31)
Under Assumption 13-14-11-15, the time derivative of V along the forward and backward error trajectory governed respectively by (5.17) and (5.19), satisfies the following inequality

V (t) ≤ h 1 λf 0 2g Nt i=1 ϕ σ (t -t i ) - Ω ψ1 (t) 2 dx + σ sup s∈R + Ω |∂ t ψ1 (s)| 2 dx .
Proof. As proven above V is positive definite and its time derivative verifies now

V (t) ≤ -h 1 λ f 0 g Ω Nt i=1 ϕ σ (t -t i ) ψ1 (t i ) ψ1 (t)dx,
which is not even semi-negative definite. Replacing ψ1 (t i ) by ψ1 (t i ) -ψ1 (t) + ψ1 (t) in the expression of V , and using the Fubini theorem to switch sum and integral operators, yields

V (t) ≤ -h 1 λ f 0 g Nt i=1 ϕ σ (t -t i ) Ω ψ1 (t) 2 dx + Ω t i t ∂ t ψ1 (s)ds ψ1 (t)dx .
Applying again Fubini theorem gives us

V (t) ≤ -h 1 λ f 0 g Nt i=1 ϕ σ (t -t i ) Ω ψ1 (t) 2 dx + t i t Ω ∂ t ψ1 (s) ψ1 (t)dxds .
After applying consecutively Cauchy-Schwarz and Young inequalities, we obtain

V (t) ≤ h 1 λ f 0 g Nt i=1 ϕ σ (t -t i ) - Ω ψ1 (t) 2 dx + 1 2 t i t Ω |∂ t ψ1 (s)| 2 ds + 1 2 Ω ψ1 (t) 2 dx .
Under Assumption 15, V is bounded by

V (t) ≤ h 1 λf 0 2g Nt i=1 ϕ σ (t -t i ) - Ω ψ1 (t) 2 dx + |t -t i | sup s∈R + Ω |∂ t ψ1 (s)| 2 dx .
Finally because ϕ σ has a compact support σ, we finally obtain

V (t) ≤ h 1 λf 0 2g Nt i=1 ϕ σ (t -t i ) - Ω ψ1 (t) 2 dx + σ sup s∈R + Ω |∂ t ψ1 (s)| 2 dx .
Remark 8. It appears that using feedback to data at different times than observation times generates a bias proportional to σ. If σ = 0, the time derivative of V is semi-negative definite and by Lasalle's invariance principle the error trajectory is asymptotically stable.
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Convergence analysis under space incomplete observations

For many large scale applications the detection of ocean surface is limited to the satellite positions over the region Ω denoted by the sub-regions ω(t) ⊂ Ω at time t ∈ T , it could be a line or a band (as for SWOT satellite). The partial measurements in space we consider are formulated as

h k (t, x, y) = δ k,1 1 ω(t) (x, y) f 0 g ψ k (t,
x, y), (5.32) where the operator 1 ω is defined as (5.14).

Theorem 41. Let V be a continuously differentiable function defined as the sum over the ocean layers of the kinetic energy and the potential energy, that is

V (t) = N k=1 K k (t) + N -1 k=1 P k (t), t ∈ T . (5.33)
Under Assumption 11-13-14, the equilibrium ψk = 0 is globally asymptotically stable for the forward error system (5.17) and the equilibrium ψb k = 0 is globally asymptotically stable for the backward error system (5.19).

Proof. The function V is positive definite and its time derivative verifies

V (t) ≤ -h 1 λ f 0 g ω(t) ψ1 (t) 2 dx.
By time integration over [t -ε, t] for all t ∈ T , we have

V (t) -V (t -ε) ≤ -h 1 λ f 0 g t t-ε ω(t)
ψ1 (s) 2 dxds.

Under Assumption 11, we know that the system is backwardly observable at time t -ε where t is the final time. Considering that the metric associated to the observation space Y is • L 2 (ω(t)) , then there exists a constant γ > 0 such that

V (t) -V (t -ε) ≤ -h 1 γλ g f 0 N k=0 ψk (t) 2 L 2 (Ω) ,
which is negative definite.

Back-and-forth nudging with nonlinear feedback law

In the context of nonlinear partial differential equations, designing an observer with a simple scalar coefficient as a feedback coefficient is a naive method that does not always guarantee convergence. An example of data assimilation with a scalar coefficient applied to the complex Saint-Venant equations [START_REF] Boulanger | Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description[END_REF] shows the inefficiency of such naive method to decrease the energy. In this article a bridge between Saint-Venant equations and a first-order linear kinetic equation is highlighted so that data
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assimilation can be carried out in the kinetic level where a simple scalar method can be used. We propose a similar approach that works for a wide range of nonlinear partial differential equations. Based on the transformation method developed in the previous chapter for nonlinear ordinary differential equations, the idea is to find out an injective transformation that maps the original nonlinear PDE model into a linear PDE easy to control. Once a naive observer is constructed at the linear level, by inversion of the transformation, an observer with a nonlinear law dependent on the transformation automatically arises at the nonlinear level.

We consider the following well-posed nonlinear partial differential equation

∂ψ ∂t = f (t, x, y, ψ), t ∈ T , (x, y) ∈ Ω, (5.34) 
where ψ ∈ X is the state and f : where ψ is the state estimation that, as demonstrated in [START_REF] Boulanger | Data Assimilation for hyperbolic conservation laws. A Luenberger observer approach based on a kinetic description[END_REF], is not necessarily convergent. Proof. Similar proof of this injectivity condition can be found in Chapter 3.

T × Ω × X → R

Transformation into linear equation

Data assimilation at linear level

In the linear level, the observer model associated to the linear model (5.36) where ξ is the estimation of ξ. The estimation error is governed, by subtraction of (5.39) with (5.36), by the homogeneous model

∂ ξ ∂t + a(x, y) ∂ ξ ∂x + b(x, y) ∂ ξ ∂y = -λ ξ, (5.40) 
where ξ = ξ -ξ is the error of estimation. By change of variables x = x + ta(x, y) and ỹ = y + tb(x, y), the error of estimation is also a solution of the ODE equation d dt ξ(t, x, ỹ) = -λ ξ(t, x, ỹ), thus ξ(t, x(t), ỹ(t)) = e -λ(t-t 0 ) ξ(t 0 , x(t 0 ), ỹ(t 0 )), which converges towards zero when t goes to infinity.
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Data assimilation at nonlinear level

We are looking for the time differential equation of the original state estimation ψ where ξ = T (t, x, y, ψ). We know that ξ is solution of the observer model (5.41) that can be rewritten in terms of ψ as

∂T ∂t + a ∂T ∂x + b ∂T ∂y + ∂T ∂ψ ∂ ψ ∂t + a ∂ ψ ∂x + b ∂ ψ ∂y = -λT + h(t, x, y, ψ),
where T solves (5.37). By assuming inversion of the transformation T with regards to ψ, the observer associated to the original model (5.34) is expressed as 

∂ ψ ∂t = f (t,

Appendix

Under weak-observability conditions (Assumption 12), we are able to prove the following stability theorem with Lasalle's invariance theorem. To use Lasalle's invariance principle for infinite dimensional dynamics, we need to show the existence, uniqueness and precompactness of the trajectories [START_REF] Coron | Control and Nonlinearity[END_REF]. The existence and uniqueness of the solution of the multi-layered quasi-geostrophic dynamics used in this thesis has been demonstrated in L 2 (T ; H 3 (Ω)) (see [START_REF] Luong | Techniques de contrôle optimal pour un modèle quasigéostrophique de circulation océanique. Application à l'assimilation variationnelle des données altimétriques satellitaires[END_REF]). To prove precompactness of trajectories, we will follow the same arguments in [START_REF] Nadège | Inertial-Sensor Bias Estimation from Brightness/Depth Images and Based on $SO(3)$-Invariant Integro/Partial Differential Equations on the Unit Sphere[END_REF][START_REF] Chauvin | Reconstruction of the Fourier expansion of inputs of linear time-varying systems[END_REF] where to goal is to show that the error stream function is uniformly continuous and then use Barbalat's Lemma. Note that the Lyapunov function candidate is different than previously, higher order terms are added. This is due to the uniform continuity property that is required at least in H 2 (Ω).

Theorem 43. Let V be a continuously differentiable function defined as

V (t) = N k=1 E k (t) + N -1 k=1 K k (t) + N -2 k=1 P k (t), t ∈ T , (5.42)
where E k is the enstrophy (5.12), K k is defined as

K k (t) = ν 2 k+1 ∇( ψk+1 -ψk ) 2 L 2 (Ω) , ν k+1 = f 2 0 g k+ 1 2
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P k (t) = 1 2 ν k+2 ( ψk+2 -ψk+1 ) -ν k+1 ( ψk+1 -ψk ) 2 L 2 (Ω) , ν k+1 = f 2 0 g k+ 1 2
.

Under Assumption 12-13-14 and if ∂ ψk ∂n = 0 on the boundary ∂Ω, the equilibrium ψk = 0 is globally asymptotically stable for the forward error system (5.17).

Proof. Similarly to the proof of Theorem 43, the first two steps of the demonstration gives the state stability.

• V (t) is positive definite, due to Poincaré's inequality since ψk and ∂ n ψk vanish on the boundary, V (t) is equivalent to the H 2 norm :

N k=1 α 1 ψk 2 H 2 (Ω) ≤ V (t) ≤ N k=1 α 2 ψk 2 H 2 (Ω) ,
where α 1 and α 2 are strictly positive constants. One could notice that K k (t) and P k (t) can be rewritten as

N -1 k=1 K (t) = N k=1 2h k ∇ ψk , ∇(M ψ) k L 2 (Ω) , N -2 k=1 P k (t) = N k=1 h k (M ψ) k 2 Ł 2 (Ω) .
Meaning that V (t) can be simplified into

V (t) = N k=1 h k 2 qk 2 L 2 (Ω) . • V (t) = N k=1 h k ∂ t qk , qk L 2 (Ω) is semi-negative definite with V ≤ λ N k=1 h k δ k,1 ψk , qk L 2 (Ω) = λ N k=1 h k δ k,1 ψk , ∆ ψk -(M ψ) k L 2 (Ω) , = -λ N k=1 h k δ k,1 ∇ ψk 2 L 2 (Ω) -λ N -1 k=1 ν k+1 2 δ k,1 ψk+1 -ψk 2 L 2 (Ω) , ≤ -λh 1 ∇ ψ1 2 L 2 (Ω)
.

• Let us show that ψ is uniformly continuous. By multiplication of the quasigeostrophic equation at the layer k by ∂ ∂t ψk , we obtain

- ∂ ∂t ∆ ψk -(M ψ) k ∂ ψk ∂t = J( ψk , qk ) ∂ ψk ∂t -λδ k,1 ψk ∂ ψk ∂t .
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Let us study separelty every term of this equation. By integration in Ω and by summing over all the layers of the first term, we have

- N k=1 Ω ∂ ∂t ∆ ψk -(M ψ) k ∂ ψk ∂t dx = N k=1 ∂∇ ψk ∂t 2 L 2 (Ω) + N -1 k=1 ν k+1 2h k ∂ ∂t ( ψk+1 -ψk ) 2 L 2 (Ω)
.

For the second term, using Hölder's inequality we obtain

N k=1 Ω J( ψk , qk ) ∂ ψk ∂t dx = - N k=1 Ω J( ψk , ∂ ψk ∂t )q k dx, ≤ N k=1 Ω J( ψk , ∂ ψk ∂t )q k dx, Hölder ≤ N k=1 ∇ ψk L 4 (Ω) ∂∇ ψk ∂t L 4 (Ω) qk L 2 (Ω) .
Thanks to Gagliardo-Nirenberg interpolation inequality, we have

∇ ψk L 4 (Ω) ≤ C ψk 1 2 H 2 (Ω) ψk 1 2 L ∞ (Ω)
.

In addition, because H 2 (Ω) is continuously embedded into L ∞ (Ω), we have

∇ ψk L 4 (Ω) ≤ C ψk H 2 (Ω) , u ∈ H 2 (Ω).
Again thanks to Gagliardo-Nirenberg interpolation inequality, we have

∂∇ ψk ∂t L 4 (Ω) ≤ C ∂∇ ψk ∂t 1 2 L ∞ (Ω) ∂∇ ψk ∂t 1 2 L 2 (Ω)
Now, using Hölder's inequalilty yields

∂∇ ψk ∂t L ∞ (Ω) ≤ ∂∇ ψk ∂t L 1 (Ω) ≤ µ(Ω) 1 2 ∂∇ ψk ∂t L 2 (Ω) .
Besides, it can be proven easily that

qk L 2 (Ω) ≤ ψk H 2 (Ω) .
To sum up, the the second term verifies

N k=1 Ω J( ψk , qk ) ∂ ψk ∂t dx ≤ C 2 µ(Ω) 1 2 N k=1 ψk H 2 (Ω) ∂∇ ψk ∂t L 2 (Ω) , Young ≤ C 2 µ(Ω) 1 2 N k=1   1 2ε ψk 2 H 2 (Ω) + ε 2 ∂∇ ψk ∂t 2 L 2 (Ω)   .
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For the last term, using successively Cauchy-Schwartz, Young and Poincaré inequalities yields

N k=1 Ω λδ k,1 ψk ∂ ψk ∂t dx C.-S. ≤ λ ψ1 L 2 (Ω) ∂ ψ1 ∂t L 2 (Ω) , Young ≤ λ   1 2γ ψ1 2 L 2 (Ω) + γ 2 ∂ ψ1 ∂t 2 L 2 (Ω)   , Poincaré ≤ λ   1 2γ ψ1 2 L 2 (Ω) + γD 2 ∂∇ ψ1 ∂t 2 L 2 (Ω)   , ≤ λ   1 2γ ψ1 2 H 2 (Ω) + γD 2 ∂∇ ψ1 ∂t 2 L 2 (Ω)   .
Finally, by choosing γ > 0 and ε > 0 suffisciently small such that

θ = 1 -C 2 µ(Ω) 1 2 ε 2 -λ Dγ 2 > 0,
the time derivative of the stream function is bounded by

θ ∂ ψk ∂t 2 H 1 (Ω) Poincaré ≤ θ ∂∇ ψk ∂t 2 L 2 (Ω) ≤ C 2 µ(Ω) 1 2 1 2ε + λ 1 2γ ψk 2 H 2 (Ω)
.

(5.43) Because V is non-increasing and non-negative, then the state error ψ(t) is bounded in the H 2 space by

N k=1 α 1 ψk (t) 2 H 2 (Ω) ≤ V ( ψ(t)) ≤ V ( ψ(0)) ≤ N k=1 α 2 ψk (0) 2 H 2 (Ω) .
Thus, by the inequality (5.43), the time derivative of the state ∂ t ψ(t) is bounded in the H 1 space. Meaning that the state trajectory ψ(t) is uniformly continuous in the H 1 space and by Barbalat's Lemma we can deduce that lim t→+∞ ψk (t) H 1 (Ω) = 0, which proves the asymptotic stability of the stream function error.

Introduction

The following section presents numerical experiments of assimilation of oceanic altimetric data pictured by SWOT satellite. Since the satellite is not launched yet, SWOT data are coming from the swotsimulator, a simulator developed in the NASA institute by Lucile Gaultier, Clement Ubelmann and Lee-Lueng Fu). Given the theoretical performance of BFN algorithm exhibited in the previous chapter, we investigate the numerical performance of BFN algorithm to recover the complete field of barotropic stream function in the Gulf-Stream region using these data. Twin experiments are performed to compare assimilated solutions starting from a firstguess and referential solutions starting from a realistic initial stream function to be determined.

In Section 6.1, we will study full the time and space discretized model and justify the choice of the schemes in order to preserve some properties, as time-reversibility, kinetic energy and enstrophy conservation, necessary to have asymptotic convergence of assimilated state. In Section 6.2, we explain in detail the code and numerical framework of the simulation. Parameters related to the back-and-forth nudging algorithm (as time-window, mollifier, feedback coefficient) are going to be tested numerically to determine their impact on the algorithm performance and thus to select the best values for data assimilation. In Section 6.3, the data assimilation results are presented, where the robustness to sparsity of data and additional noise is tested. A subsection on joint state-parameter estimation where barotropic coefficient is calibrated simultaneously to the state is also explored.

Numerical discretization

We consider a one-layer quasi-geostrophic model where the dynamics is supposed to be uniform with depth and where only horizontal structure is considered. As a reminder, the barotrophic quasi-geostrophic model is expressed as

∂q(ψ) ∂t + J(ψ, q) = F + D,
where ψ is the stream-function and q(ψ) the barotropic potential vorticity is defined as

q(ψ) = ∆ψ - 1 L 2 R ψ + f, with 1 L 2 R
the barotropic wave number also called first Rossby radius of deformation, in our simulations L R = 25 km which is the typical value taken for ocean at midlatitudes [START_REF] Chelton | Geographical Variability of the First Baroclinic Rossby Radius of Deformation[END_REF]. We recall that F denotes the forcing term driving the dynamic (as wind stress on the surface), D denotes the dissipation term at the boundaries of the basin and f denotes the Coriolis parameter. We have seen that, when F and D are fixed to zero, the sum of integral kinetic energy, potential energy and enstrophy expressed as Ω q 2 is conserved over time.

Time discretization scheme

For the time discretization scheme, we prefer to use an explicit scheme for computational cost reduction reasons. We choose a leap-frog scheme that is a secondorder explicit scheme evaluating the same number of functions as the first order forward-Euler scheme and is very interesting for its time-reversibility property that preserves the solution after back-and-forth integration. Considering the number of back-and-forth iterations and the size of the time-window that might be considered to have convergence, leap-frog is well-suited for the use of back-and-forth nudging data assimilation method.
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Time discretization by leap-frog scheme Given a strictly positive time step ∆t, the semi-discrete barotropic quasi-geostrophic model discretized by leap-frog scheme is given by

q n+1 = q n-1 + 2∆t -J(ψ n , q n ) + F n + D n-1 ,
where Jacobian and external force functions are computed at the mid-point n and dissipation terms are computed at the past-point n -1. The potential vorticity is expressed as

q n = ∆ψ n - 1 L 2 R ψ n + f,
associated to a mass conservation property and a Dirichlet boundary condition ψ n = C where C is supposed to be known. To compute the stream function from the potential vorticity, we must solve the following second order elliptic partial differential equation problem

∆ψ n - 1 L 2 R ψ n + f -q n = 0. (6.1)
The solution of this equation can be expressed using a Fourier analysis as explained in detail later. It can also be noticed that the stream function is the steady state solution of a time-dependent partial differential equation, which discretization by a forward-Euler scheme is given by

ψ n+1 = ψ n + ∆t(∆ψ n - 1 L 2 R ψ n + f -q n ),
and can be solved using a spatial discretization scheme as finite difference method for instance. q 0 q 2 q 4 J(ψ 1 , q 1 ) J(ψ 3 , q 3 ) q 6 J(ψ 5 , q 5 ) potential vorticity jacobian function

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6
Figure 6.1: Leap-frog scheme Time reversibility A scheme is said to be time-reversible when after integrating forwardly in time and then backwardly in time, we come back precisely to the initial solution whithout any approximation. This property is very important for not perturbing the recursive back-and-forth integration of the model by adding round-off errors coming from the scheme, as studied in Figure 6.2 for different timeschemes. We can also argue that in many cases time-reversible schemes guarantee the conservation of energy, angular momentum or other quantities. The reason why the leap-frog is time-reversible is because of its symmetry. As a counter-example, let us consider the simple forward-Euler scheme. In the forward direction from t n to t n+1 the potential vorticity given by forward-Euler scheme is

q n+1 = q n + ∆t (-J(ψ n , q n ) + F n ) ,
and in the backward direction from t n+1 to t n the solution is given by qn = q n+1 -∆t -J(ψ n+1 , q n+1 ) + F n+1 .

It is clear that the potential vorticity will not be exactly the same after a back-andforth step, by adding the two equations we have that qn = q n . This is due to the asymmetry of the time derivative approximation and to the fact that the right-hand side of the model is not evaluated at the same point. Now, let us compare with the leap-frog scheme. In the forward direction from t n-1 to t n+1 , we have

q n+1 = q n-1 + 2∆t(-J(ψ n , q n ) + F n ),
and in the backward direction from t n+1 to t n-1 , we have qn-1 = q n+1 -2∆t(-J(ψ n , q n ) + F n ).

The starting value is exactly the same after a back-and-forth integration using the leap-frog scheme, by adding the two equations we have the equality qn-1 = q n-1 .

In the leap-frog scheme the time derivative approximation is symmetric and the model function is evaluated at the same middle point. One problem that can affect time reversibility of leap-frog scheme is that the dissipation terms evaluated at the past point, but these terms are neglected in our study precisely for this reason. Leap-frog is a valuable method that is time-reversible, of second-order and only requires one function evaluation per time step (unlike Runge-Kutta methods). But, the weakness of leap-frog scheme is its tendency to increase the amplitude of the computational mode with time, which generates instabilities known as time splitting [START_REF] Dale | Numerical Methods for Wave Equations in Geophysical Fluid Dynamics[END_REF]. To prevent these instabilities one way is to restart the scheme periodically after a certain number of time steps with an explicit scheme like forward-Euler or Runge-Kutta 2, the last scheme is commonly used because it preserves the second-order accurary of leap-frog scheme. Restarting methods are not ideal because it creates shocks at restarting times, smoother methods are usually preferred. Robert [START_REF] Robert | The Integration of a Low Order Spectral Form of the Primitive Meteorological Equations[END_REF] and Asselin [START_REF] Asselin | Frequency Filter for Time Integrations[END_REF] have proposed a scheme, known as Robert-Asselin time filter, to control the leap-frog instabilities by adding an approximate second-order derivative filter in the leap-frog scheme. The Robert-Asselin time filter scheme reads q n+1 = qn-1 + 2∆t(-J(ψ n , q n ) + F n ), qn = q n + µ(q n+1 -2q n + qn-1 ), (

where µ = 0 refers to standard leap-frog scheme. The choice of the µ values is discussed in [START_REF] Schlesinger | The Effects of the Asselin Time Filter on Numerical Solutions to the Linearized Shallow-Water Wave Equations[END_REF] for shallow-water equations, in our case we will choose µ = 0.2. The time-reversibility of the all schemes mentionned before is compared for barotropic quasi-geostrophic model in Figure 6.2, where we can see that forward-Euler gives the worst results and Leap-frog especially with Robert-Asselin time filter strategy gives the best results.

Conservation of data assimilation convergence

By nudging data assimilation method with a simply scalar feedback law and by leap-frog time discretization, we expressed the estimated potential vorticity model as

qn+1 = qn-1 + 2∆t -J( ψn , qn ) + F n + D n-1 + 2∆tλ ψn-1 -ψ n-1 ,
where data correction is evaluated at the past point n-1 with λ is a strictly positive number. The error potential vorticity qn = qn -q n is then solution of qn+1 = qn-1 + 2∆t(-J( ψn , qn ) + J(ψ n , q n )) + 2∆tλ ψn-1 .

The sum of kinetic energy, potential energy and enstrophy, expressed as

W n = 2 L 2 R Ω |∇ ψn |dx + 1 L 4 R Ω ( ψn ) 2 dx + Ω (∆ ψn ) 2 dx = Ω (q n ) 2 dx, ( 6.3) 
is actually an asymptotically stable Lyapunov function for the time-continuous model. We want to verify if this energy is still decreasing in time along the semidiscrete error trajectory. The time discrete variation of the energy along the semidiscrete model is expressed by

W n+1 -W n-1 = Ω qn-1 + 2∆t(-J( ψn , qn ) + J(ψ n , q n )) + 2∆tλ ψn-1 2 dx- Ω (q n-1 ) 2 dx,
the convergence is conserved by time-discretization if this variation is negative definite with regards to the stream function. Under boundedness and regularity conditions on stream function and potential vorticity, we have the following inequality

W n+1 -W n-1 ≤ Ω qn-1 + 2∆tλ ψn-1 2 dx - Ω (q n-1 ) 2 dx.
By decomposition we have

W n+1 -W n-1 ≤ 4∆tλ Ω qn-1 ψn-1 dx + 2∆t 2 λ 2 Ω ( ψn-1 ) 2 dx.
Replacing qn-1 by its expression in terms of stream function, that is

qn-1 = ∆ ψn-1 - 1 L 2 R ψn-1 ,
by integration by parts and by using homegenous Dirichlet boundary condition on ψn-1 , we obtain

W n+1 -W n-1 ≤ -4∆tλ Ω ∇ ψn-1 2 dx-4∆tλ 1 L 2 R Ω ( ψn-1 ) 2 dx+2∆t 2 λ 2 Ω ( ψn-1 ) 2 dx,
that can be rewritten as

W n+1 -W n-1 ≤ -4∆tλ Ω ∇ ψn-1 2 dx -2∆tλ 2 L 2 R -∆tλ Ω ( ψn-1 ) 2 dx.
Thus, the semi-discrete energy strictly decays towards zero at every time step if ∆t verifies the following condition

∆t ≤ 2 λL 2 R , ( 6.4) 
or equivalently if λ verifies

λ ≤ 2 ∆tL 2 R .

Spatial discretization scheme

We choose for spatial discretization scheme the finite difference method, thus the two-dimensional spatial domain Ω is a rectangle that will be discretized into a uniform grid.
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Discretization of the Jacobian A naive way to discretize the Jacobian operator will be to use centered finite difference scheme. It has been observed by Phillips [START_REF] Bolin | The Atmosphere and the Sea in Motion: Scientific Contributions to the Rossby Memorial[END_REF] that this choice of discretization scheme leads to instabilities, not coming from poor choice of boundary condition or coarse space grid but it is an inherent feature of the scheme called aliasing. As an alternative, Arakawa [START_REF] Arakawa | Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I[END_REF] has proposed a stable discrete Jacobian that conserves kinetic energy, enstrophy and average wave number. The main idea is to use three equivalent formulations of the continuous Jacobian function given by

J 1 (ψ, q) = ∂ψ ∂x ∂q ∂y - ∂ψ ∂y ∂q ∂x , J 2 (ψ, q) = ∂ ∂x ψ ∂q ∂y - ∂ ∂y ψ ∂q ∂x , J 3 (ψ, q) = ∂ ∂y q ∂ψ ∂x - ∂ ∂x q ∂q ∂y .
We introduce the following two-dimensional centered finite difference formulation

∆ i (u) j = u i+1,j -u i-1,j , ∆ j (u) i = u i,j+1 -u i,j-1 .
The centered finite difference discretization of the different forms of Jacobian expressions around x i = i∆x and y j = j∆y are given by ∆J

1 (ψ, q) = 1 ∆x∆y ∆ i (ψ) j ∆ j (q) i -∆ j (ψ) i ∆ i (q) j , ∆J 2 (ψ, q) = 1 ∆x∆y ∆ i ψ∆ j (q) i j -∆ j ψ∆ i (q) j i , ∆J 3 (ψ, q) = 1 ∆x∆y ∆ j q∆ i (ψ) j i -∆ i q∆ j (ψ) i j .
Arakawa has shown that ∆J 1 preserves the symmetry, ∆J 2 preserves the enstrophy and ∆J 3 preserves the kinetic energy. By combining ∆J 1 , ∆J 2 and ∆J 3 as

∆J = 1 3 (∆J 1 + ∆J 2 + ∆J 3 ) (6.5)
we obtain the discretization of the Jacobian proposed by Arakawa that preserves all the cited properties.

Solving the stream function

We want to be able to compute stream function from potential vorticity by solving the elliptic partial differential equation (6.1). Let us introduce the notation for second-order centered finite difference formulation

∆ 2 n (u) m = u n+1,m -2u n,m + u n-1,m , ∆ 2 m (u) n = u n,m+1 -2u n,m + u n,m-1 .
Thus, the discretization of the elliptic equation (6.1) by centered finite difference method is formulated as

∆ 2 n (ψ) m ∆x 2 + ∆ 2 m (ψ) n ∆y 2 - 1 L 2 R ψ n,m = -f n,m + q n,m , (6.6) 
where the potential vorticity q n,m is calculated from the fully discretized quasigeostrophic equation. By Fourier analysis, the generic element u n,m of the space grid can be expanded into a discrete Fourier series of the form

u n,m = N -1 k=0 M -1 l=0 
ûk,l e ik 2πn N e il 2πm M , associated to the orthogonality relation

1 N N -1 n=0 e ik 2πn N e -il 2πn N = δ k,l ,
where δ k,l represents the Kronecker symbol. From Parseval's identity, the coefficients ûk,l can be isolated and expressed as

ûk,l = 1 N 1 M N -1 n=0 M -1 m=0 u n,m e -ik 2ψn N e -il 2ψm M . (6.7)
Let expand the equation (6.6) into discrete Fourier series, where ψk,l , qk,l and fk,l are respectively the discrete Fourier series coefficients of the stream function ψ n,m , the potential vorticity q n,m and the Coriolis force f n,m . Using Parseval's identity (6.7), by mutiplying the equation (6.6) by 1 N M , by summing n from 0 to N -1 and by summing m from 0 to M -1, we obtain the following relation between the coefficients ψk,l

e ik 2π N -2 + e -ik 2π N ∆x 2 + ψk,l e il 2π M -2 + e -il 2π M ∆y 2 - 1 L 2 R ψk,l = -fk,l -qk,l .
Thus, the stream function coefficients are expressed by ψk,l = -fk,lqk,l

2 ∆x 2 cosh ik 2π N -1 + 2 ∆y 2 cosh il 2π M -1 -1 L 2 R , ( 6.8) 
which allows us to reconstruct the value of the stream function at every point of the grid.

Complete algorithm

To sum up, the time and space discretization of the estimated quasi-geostrophic flow by back-and-forth nudging is computed following the algorithm below. Note that for time backward motion, data are reversed in time and the sign at the right-hand side of the model is changed.

Numerical Set-up 6.2.1 Simulation framework

The spatial domain Ω is a rectangle domain of size 3099 × 2052 km covering the dynamical oceanic region of Gulf Stream in North Atlantic that is divided into a
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1: Input: ψ 0 , λ 2: Initialisation:

• q 0 computed from the CFD equation (6.6)

• q 1 computed from q 0 by RK2 method 3: Collecting data: y n for n = 1, ..., N t 4: Back-and-forth integration: for k = 1, ..., N bf 5: Forward integration: for n = 1, ..., N t

• Compute data correction ψ n-1 -y n-1

• From q n , compute ψ n from the spectral equation (6.8)

• Compute the Jacobian J(ψ n , q n ) by the Arakawa method (6.5)

• Compute the forcing term F n

• Compute the second-order derivative filter term qn-1 (6.2)

• Update the potential vorticity

q n+1 = qn-1 + 2∆t (-J(ψ n , q n ) + F n ) + 2∆tλ(ψ n-1 -y n-1 )
end for q 0 ← q n , q 1 ← q n-1 6: Backward integration: for n = 1, ..., N t

• Compute data correction ψ n-1 -y N -n+1

• From q n , compute ψ n from the spectral equation (6.8)

• Compute the Jacobian J(ψ n , q n ) by the Arakawa method (6.5)

• Compute the forcing term F n

• Compute the second-order derivative filter term qn-1 (6.2)

• Update the potential vorticity

q n+1 = q n-1 -2∆t (-J(ψ n , q n ) + F n ) + 2∆tλ(ψ n-1 -y N -n+1 )
end for q 0 ← q n , q 1 ← q n-1 end for Algorithm 2: Numerical estimated quasi-geostrophic flow by back-and-forth nudging data assimilation uniform grid of 18 km resolution composed by 170 × 113 nodes. The bounded timedomain T = [t 0 , t f ] run through by forward and backward integrations in time has a length of 21 days. This length is related to the cycle of the SWOT satellite, indeed after 21 days the satellite returns to its initial position on the globe. The time step is set as ∆t = 600s which satisfies the convergence condition (6.4) for each value of λ tested. A forward model integration of 21 days takes N t = 3024 steps.

The referential solution to be fully estimated by data assimilation is depicted in Figure 6.3 (a) and is coming from a simulation of the numerical model NEMO (Nucleus for European Modelling of the Ocean), which is a primitive equations model emulating more complex and realistic dynamical solutions than quasi-geostrophic dynamics. To initialize data assimilation process, the background state (see Figure 6.3 (b)) is coming from the quasi-geostrophic model integrated 10,000 time steps before the referential initial state, which we consider to be a sufficiently large number to have a background state distinct from the initial state to be estimated. As in [START_REF] Kazantsev | Local Lyapunov exponents of the quasi-geostrophic ocean dynamics[END_REF], the wind force is approximated by a steady zonal wind expressed as

F (x, y) = -τ sin 2πy L ,
where y represents the latitude and L = 3099 km is the characteristic length of the basin. We fix τ = 0, thus no external force is applied in our simulations. Nevertheless, the nudging term present in the state estimated model will play the role of driving force.

To evaluate the performance of the data assimilation algorithm or the impact of some parameter perturbation, we use the discrete Lyapunov function W n (6.3) representing the total energy of the model. The influence of data frequency, data distribution in time, data correction coefficient magnitude and time window in the convergence process will be evaluated using W n .

SWOT data

At the time this thesis is written, the SWOT satellite has not been launched yet and only numerical ocean data can be used. In our experiments, data have been performed by the simulator swotsimulator released in 2015 for the scientific community working on SWOT satellite and developed in Python language by Lucile Gaultier and Clement Ubelmann. The swotsimulator is an open-source code, supplied with a complete documentation file, that can be downloaded at http://swot.jpl.nasa.gov/science/resources/.

At the layer k, the measurements captured by SWOT interpreted in terms of stream function are expressed by

y k (ψ(t, x)) = δ k,1 f 0 g Nt i=1 ϕ σ (t -t i )1 ω i (x)ψ k (t i , x) + ε(t, x).
The function ϕ σ , to be defined later, is a mollifier with a compact support of size σ that spreads data locally around observation times. The term ε represents the additional noise coming from instrumental errors (Karin noise, roll errors, phase errors, baseline dilation errors and timing errors) and also from geophysical errors (wet troposphere errors and sea state bias). All these errors are implemented in the software and explained in more details in the swotsimulator documentation. The term ω represents the SWOT swath of almost 120 km with a resolution of 2 × 2 km 2 (which is very sharp compared to the model grid) along which the sea measurements are extracted with some errors. The satellite is travelling over the Earth's surface with a repeat cycle of 21 days. Figure 6.4 exhibits the observation accumulated after 5, 10 or 21 days, we can see that after 21 days almost every place in the domain Ω has been observed at least once.

Python code structure

A data assimilation code in Python has been implemented by us as an extension of the existing code of swot data simulation. Without entering into the specific details of the code, the global structure of the code with principal relationships is given in Figure 6.5 in order to understand the main interaction between the different classes. Each class is composed of attributes and methods that are available for every object of the current class and the children classes. It may happen for a method to be overwritten in the children classes, for example the method time_interpolation() is different following the type of mollifier considered. As expected, for all scenarios considered in the numerical experiments presented in Figure 6.6 we have almost the same convergence rate and the same solution estimated at the end of the process. However, when the observations times are too sparse, shocks arise at each observation time in the error trajectory increasing the risk to generate numerical instabilities. As seen before, one solution to reduce these discontinuities is to introduce mollifier with a compact support of size σ that spreads data.

Mollifier selection

For our experiments two mollifiers that distribute data around observations times are considered. First the hat function defined as

ϕ σ (s) =        2 σ 1 -2 |s| σ if |s| < σ 2 0 if |s| ≥ σ 2 (6.9)
that verifies the conditions to have a compact support of size σ and to be equal to one by time integration. We also consider a smoother mollifier, the so-called bump function defined as

ψ σ (s) =          exp -1 σ 2 2 -|s| 2 if |s| < σ 2 0 if |s| ≥ σ 2 (6.10)
which is infinitely differentiable, has a compact support of size σ and finally has an integral equal to one after the following normalization

ϕ σ (s) = ψ σ (s) σ 2 -σ 2 ψ σ (t)dt ,
where the integral term is calculated numerically.

According to the theoretical results, in Figure 6.7 (a) the Lyapunov function is increasing proportionally to σ. The solution can be to take σ as small as possible, but, as a side effect, small σ generates discontinuities leading to instabilities. To measure the discontinuities we use the time discrete derivative formula

DW = 1 N t -1 Nt-1 i=1 |W i -W i+1 | .
We remind that large σ plays another role, which is to nudge more time steps and to spread over time data that are still valid and useful locally around observation times. In Figure 6.7 we have confirmation that small σ values, as for σ = 1h, reduce the error but create important discontinuities, and it seems that σ = 3h balances ideally these two effects. 

Nudging coefficient

Another factor of convergence is the choice of nudging gain value λ. We choose forward and backward nudging coefficients, respectively λ and λ b , to have the same value. Theoretically, every strictly positive value of λ guarantees convergence without any further constraints (except (6.4) that is satisfied by selecting a suitable ∆t), and the more the coefficient is high the more the convergence is fast. Numerically two problems occur, first data collected should not always be trusted (presence of noise and errors) and enforcing convergence towards data may risk moving us away from the model dynamics and providing non-physical state estimates. Second, the effects described before, about numerical shocks that appear at times between observed and non-observed, are amplified with high feedback gain and can lead to numerical instabilities. Thus, these problems show how harmful large feedback gain can be for state estimation.

A sensitivity study on the nudging coefficient is then necessary to guide us toward an appropriate nudging coefficient. The values λ > 1e -8 in the complete data case and λ > 1e -13 in the SWOT-like data case, are not plotted in next figures because numerical solution goes to infinity due to high nudging gain issues. Even if the solution remains stable, large nudging coefficient is not always optimal. When data are noisy, as is typically the case for operational applications, large nudging gain emphasizes observations with its noise and errors. This is why particular attention must be paid to not perfect data. In Figure 6.8, for perfect data it is simple, the more λ is large, the more the Lyapunov error function W is decreasing. For noisy data, we can see that λ = 1e -13 increases drastically W , thus choose a weaker nudging gain is more suitable. Such analysis helping us to find the best nudging coefficient empirically is not a costly process. It requires only one backand-forth integration for a range of nudging coefficients, run in parallel if necessary. In the future experiments, we have fixed λ = 1e -10 for complete data and λ = 1e -16 for SWOT-like data noisy or not. 

Time-window

The choice of the time window size is strongly related to the observability property, depending on the amount of information collected the state might be identified completely or not. In Table 6 

State estimation

To validate the theoretical analysis of convergence developed before, three different scenarios will be experimented: (i) full, perfect and time-sampled (one data per day) altimetric observations considered as a benchmark from which we measure the performance and the success of other sets of data, (ii) SWOT-like SSH data without noise and (iii) SWOT-like SSH data with realistic noise measurement. We are interested to evaluate how a lack of observations and instrumental noise affect the success of the BFN data assimilation method. In other words, we want to know if the BFN method is a reliable data assimilation method for real oceanographic altimetric measurements to be implemented in the future SWOT satellite. The trajectory of time-discrete Lyapunov function (6.3), evaluating the error between the true state and the assimilated state in the entire space domain, will be first examined. Typically we see in Figure 6.9 that Lyapunov function is decreasing rapidly during the first BFN iterations, until stabilization around a solution. For full and perfect data, only two iterations are necessary to reach this plateau and for SWOT-like data around ten iterations are necessary. These few iterations number combined with the algorithm simplicity yield small CPU time number. For timesampled complete data in space, the Lyapunov function is significantly decreasing by 96.71% on average over time after 10 iterations of back-and-forth nudging. In comparison, we measure that the Lyapunov function is decreasing by 91.20% for SWOT-like perfect data and 90.96% for realistic noisy data, which suggest that convergence is satisfactory considering the sparcity of data and that noise does not have a great impact (see Table 6.2 for more details). As seen in Figure 6 is an accumulation phenomenon for the last iterations and after reaching a certain plateau value increasing the number of iterations does not improve the final result.

For instance after 20 iterations the average error decay using SWOT-like data is of 90.71% when after 10 iterations it is of 90.96%, meaning that the final result is even slightly worse by making more iterations.

The BFN method can give a state estimate for the entire time window of 21 days, but as shown in Figure 6.9 we observe that error convergence is not the same for each time of the time window. Even if the error is decreasing gradually at each iteration, the backward error is sometimes increasing, which impacts to a lesser extent the initial time estimation. Because of round-off errors introduced by successive time-inversions, the final time estimation is, for every set of data studied, better than the initial one. Full and perfect data case gives, as expected by theoretical analysis, almost zero error at the final time (error decay of 99.99%), which is not the case at the initial time (error decay of 97.39%). This problem cannot be solved by reducing the time step ∆t and as explained before is due to the very nature of the time discretization scheme. Despite that, time-inversion strategy used in back-and-forth nudging is still interesting for state estimation at finite time t f used to initialize a forecasting process coming after.

To visualize and compare spatial repartition of real and assimilated SSH maps, Figure 6.10 shows SSH obtained at the end of the data assimilation process for each set of data considered at two different times : at the initial time t = 0 day and at the final time t = 21 days. To visualize even better the spatial repartition of the error, the difference between assimilated and target map is displayed in Figure 6.11.

The problem of initial state estimation is common to each data case, even with a state completely and perfectly available there is no perfect state reconstruction regardless to time. The final state estimation is more interesting to comment, even if estimation with SWOT-like data is globally satisfactory in comparison to estimation with complete data, we can see in Figure 6.11 that some eddies in the most turbulent region are still out of reach and, as mentionned before, unfortunately there is no way to improve the resolution obtained after 10 iterations by increasing the number of iterations. However, we can see in the different figures that difference in the result with perfect or noisy data is practically indistinguishable in time or space, thus nudging is particularly robust to data uncertainties. 

Sensitivity to model parameter perturbation

The accuracy of model parameters is a very important concern in geophysical science where most of the models are chaotic, sensitive to initial conditions and also to model parameters. Climate modeling has made significant progress the past few years, but in reality geophysical models will never completely represent the complex climate behavior. There is a large variety of scales involved in the atmospheric and oceanographic process spanning: hardly observable turbulence to thermal convection cells and planetary Earth's rotation. Not to mention interaction between other media as atmosphere-ocean interaction which is far from being negligible. Direct access to such a large variety of models parameters by instrumental measurement is obviously out of reach. Satellite measurement, the most widely used instruments nowadays, has access partially to very few parameters on the surface as height,

Theoretical sensitivity analysis

Complex geophysical models present a large number of model parameters that can be calibrated, for obvious cost computational reasons not all of them are going to be estimated. We have chosen two simple criteria that must be fulfilled for a model parameter to be calibrated : (i) the parameter must be almost impossible to be observed in practice (typically parameter coming from mathematical approximation) and (ii) the observation must be very sensitive to the parameter perturbation. The question of sensitivity to model parameter uncertainties is crucial for geophysical forecasting accuracy, for highly sensitive parameter during the forecast stage the model errors will be propagated and corrupt the forecasted value. Not to mention the issues raised by model errors at the data assimilation stage.

The model parameter to be perturbed and studied is the barotropic deformation wavenumber constant

K = 1 L 2 R = f 2 c 2 (6.11)
where c is the phase speed and f = 2Ω sin(ν) is the Coriolis parameter at latitude ν for earth rotation rate Ω (Chelton at al. [START_REF] Chelton | Geographical Variability of the First Baroclinic Rossby Radius of Deformation[END_REF]). where δψ(t = 0) = 0 is the initial condition and the boundary conditions are the same as the quasi-geostrophic model. Assuming J is Gateaux differentiable, note that ∂J(ψ, q) ∂ψ δψ = J(δψ, q), ∂J(ψ, q) ∂q δq = J(ψ, δq).

Replacing the potential vorticities, q and δq, by their relation with the stream function yields ∂J(ψ, q) ∂ψ δψ + ∂J(ψ, q) ∂q δq = J(δψ, (∆ • -K)ψ) + J(ψ, (∆ • -K)δψ -δKψ).

Since we know the relation J(a, b) + J(b, a) = 0, it is easy to deduce that ∂J(ψ, q) ∂ψ δψ + ∂J(ψ, q) ∂q δq = J(δψ, ∆ψ) + J(ψ, ∆δψ). (6.14)

Finally, with (6.13) and (6. Thus with (6.13), the behaviour of stream function mean for all time t ≥ 0 is given by 

Numerical sensitivity analysis

Impacts on stream function trajectory over time to model parameter perturbation of K are reported in Figure 6.12. A range of 5 parameter deviations are tested, that is δK = (0.0, 0.2, 0.4, 0.6, 0.8) × 10 -9 , so that K + δK replaces the true parameter K 1.22 × 10 -9 in the quasi-geostrophic model. Equivalently, the inner parameter c is perturbed as well with 5 parameter deviations of δc = (0.0, 0.5, 1.0, 1.5, 2) around the true parameter c = 2.5. We can observe the impact of bad parameter calibration for the state and, by extension, for the nudging term during data assimilation. Because of this state divergence, as long as there is no data injection, the error trajectory cannot stay steady with bad parametrization. In the next section, starting from a initial parameter error of δc = 1.5 and δK = 6 × 10 -10 , we aim to identify the true parameter by considering the parameter as a state that can be nudged in order to reduce this divergence phenomenon during forecasting.

Model parameter estimation

Theoretical convergence

Since parameters K and c are hardly observable in practice and stream function is very sensitive to their perturbation as evaluated before, they seem to be good candidates for parameter estimation. In this section we will see how to correct dynamically a wrong model parameter K = K + δK by nudging data assimilation method, so that δK converges towards zero asymptotically. We consider the augmented barotropic quasi-geostrophic model expressed as

             ∂q ∂t
+ J(ψ, q) = 0, q = (∆ -K)ψ, ∂K ∂t = 0, (6.16) where the dynamical equation of the parameter is added. Both state and parameter equations will be corrected by nudging data injection.

Complete observations We will study the ideal case where observation operator is simply the identity operator, i.e. when y(t, x, y) = f 0 g ψ(t, x, y) for all t ∈ T and (x, y) ∈ Ω. We propose the following state-parameter Luenberger observer expression defined as

             ∂ q ∂t + J( ψ, q) = λ( ψ -ψ), q = (∆ -K) ψ -K ψ, ∂ K ∂t = - 1 α ψ, ∂ ∂t ( ψ -ψ) ,
(6.17)
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where the nudging gains α and λ are strictly positive real numbers and •, • is the L2 scalar product on Ω. Now the error for the augmented state can be expressed as

             ∂ q ∂t
+ J( ψ, q) -J(ψ, q) = λ ψ, q = (∆ -K) ψ -K ψ, Proof. Let us show that V is a large Lyapunov function in the sense of Lasalle's invariance principle.

∂ K ∂t = - 1 α ψ, ∂ ∂t ψ . ( 6 
• First, we show that V is a positive definite function with regards to state and parameter errors. The function V can be rewritten as

2V (t, ψ, K) = ∇ ψ 2 L 2 (Ω) + 2 K ψ, ψ + K ψ 2 L 2 (Ω) + α K2 , ≥ 1 C ψ 2 L 2 (Ω) + K ψ + K K ψ 2 L 2 (Ω) + α - 1 K ψ 2 L 2 (Ω) K2 , ≥ 1 C ψ 2 L 2 (Ω) + α - 1 K ψ 2 L 2 (Ω) K2 ,
where C > 0 is the Poincaré's inequality constant, proving that V is positive definite considering the condition on α (6.20).

• Now, we will study the time evolution of V (6.23) given by

V (t) = ∂ t ∇ ψ, ∇ ψ + ∂ t ( K ψ + K ψ), ψ + K ∂ t ψ, ψ + α∂ t K K, = ∂ t (-∆ ψ + K ψ + K ψ), ψ + K ∂ t ψ, ψ + α∂ t K K,
where we can easily recognise the expression of q = ∆ ψ-K ψ-K ψ. Replacing the time derivatives ∂ t q and ∂ t K by their expressions in (6.18), we obtain V (t) = J( ψ, q) -J(ψ, q), ψ L 2 (Ω) -λ ψ 2 L 2 (Ω) + K ∂ t ψ, ψ -α

1 α ψ, ∂ t ψ K.
We can see that the last two terms cancel each other, and we have seen before with the properties of J that V (t) ≤ -λ ψ 2 L 2 (Ω) .

• Finally V is a semi-negative definite function, which allows us to conclude to the augmented state convergence with application of Lasalle's invariance principle since ψ = 0, K = 0 ⇒ q = 0, meaning that the largest invariance set of E = {( ψ, K), V = 0} is the space containing only the trivial solution ( ψ, K) = (0, 0).

Partial observations

We extend in this paragraph the previous result to partial observations, where y(t, x, y) is proportional to the stream function only at certain time and space. The preservation of error convergence property is guaranteed under the following observability condition.

Assumption 17. Assume the system (6.16) associated to the observations y to be backwardly observable on [t -ε, t] for all t ∈ T with regards to the stream function and its time derivative, meaning that there exists a strictly positive constant γ such that In this context, the state and parameter estimation at time t ∈ T given partial observation is provided by

               ∂ q ∂t
+ J( ψ, q) = λ(ŷ -y), q = (∆ -K) ψ -K ψ,

∂ K ∂t = - 1 αγ t t-ε
( ẏ(s) -ẏ(s)) L 2 (Ω) ds ψ(t) L 2 (Ω) , (6.21) the error model to analyze is then given by

               ∂ q ∂t
+ J( ψ, q) -J(ψ, q) = λỹ, q = (∆ -K) ψ -K ψ, Proof. Under condition (6.24) the function V is positive definite as already proven.

∂ K ∂t = - 1 
The time derivative V is given by V (t) = -∂ t q, ψ + K ∂ t ψ, ψ + α∂ t K K.

Replacing ∂ t q and ∂ t K by their expressions in (6.22) and using properties on the Jacobian operator, yields

V (t) ≤ -λ ỹ(t) 2 L 2 (Ω) + K ∂ t ψ, ψ - 1 β t t-ε ẏ(s) L 2 (Ω) ds ψ(t) L 2 (Ω) K.
Using successively Cauchy-Schwarz inequality and the second observability condition, gives

V (t) ≤ -λ ỹ(t) 2 L 2 (Ω) + K ∂ t ψ L 2 (Ω) ψ L 2 (Ω) - 1 β t t-ε ẏ(s) L 2 (Ω) ds ψ(t) L 2 (Ω) K, ≤ -λ ỹ(t) 2 L 2 (Ω) + K ∂ t ψ L 2 (Ω) ψ L 2 (Ω) -ψ(t) L 2 (Ω) ψ(t) L 2 (Ω) K, = -λ ỹ(t) 2 L 2 (Ω) .
Finally, by time integration between t -ε and t and by using the first observability condition, we obtain

V (t) -V (t -ε) ≤ -λ t t-ε ỹ(s) 2 L 2 (Ω) ds ≤ λγ ψ(t) 2 L 2 (Ω) ,
showing that V is a time-discrete large Lyapunov function in the sense of Lasalle's invariance principle.

Numerical convergence

In our experiments, three different scenarios are compared : (i) referential simulation with true initial state and true parameter (c = 2.5), (ii) classical state data assimilation simulation with a wrong initial state to be corrected and an uncorrected wrong parameter (c = 1.0) and (iii) state-parameter data assimilation simulation with wrong initial state and parameter (c = 1.0) where both are going to be corrected. The only observation available assimilated by back-and-forth nudging are noisy SWOT-like data and, as before, ten iterations are made in the time-window [0, 21] days. We can see in Figure 6.13 how state estimation only with wrong model parameter affects the forecasting process (in green). During forecasting there is no data injection to maintain the state close to the true state and automatically the state divergence studied previously become predominant by model error accumulation. To some extent wrong parameter affects also the data assimilation process, we can see that with wrong parameter both initial and final time state do not exactly 150 Chapter 6. Numerical experiments on SWOT data converge while with true parameter only initial time state contains errors due to well-known time-reversibility issues. By simultaneous state-parameter estimation, the parameter converges rapidly after 3 back-and-forth of the algorithm and the quality of forecasting using the estimated parameter obtained is widely improved as shown in Figure 6.14 Chapter 7

Conclusion

Through this thesis, we aimed to show the interest of data assimilation methods based on nudging as a valuable alternative to other more classical data assimilation methods (variational or sequential). As demonstrated, nudging and its variants are able to handle complex problems containing non-linearities, time-dependent parameters, sparse data and to provide state and parameter identification with the same efficiency than classical methods with lower computational costs and easy implementation. While a lot of effort was made by the scientific community to develop filtering methods in a wide range of variant methods (LEKF, EnKF, SEEK,...), we wanted to study and make some improvements on the back-and-forth variant of the nudging method especially in the formulation of its matrix gain and in the analysis of its convergence properties. We hope that our results are innovative especially concerning the following points :

Sensitivity reduction by BFN (Chapter 3) By using variational sensitivity analysis tools, we have shown that the alteration of physical properties of the model is more important with the use of standard nudging compared to back-and-forth nudging. More specifically, the expression of model sensitivity to standard nudging coefficient is exponential in time while the expression of model sensitivity to backand-forth nudging coefficient is globally linear in time: we have discovered that exponential terms of forward and backward integration cancel each other at the end of each cycle. This sensitivity reduction has been observed in our numerical experiments on Lorenz model. In response to the physical alterations observed in the paper [START_REF] Bao | An Adjoint Examination of a Nudging Method for Data Assimilation[END_REF], we can suggest using back-and-forth nudging when small-scales physical properties are affected by standard nudging state estimation.

Design of nonlinear BFN (Chapter 4)

It was crucial to propose a proper iterative Luenberger observer dealing with nonlinear and non-autonomous problems with some guaranteed convergence properties. Our method is based on the standard Luenberger observer design for nonlinear problems by change of state introduced by Kazantzis et al in [START_REF] Kazantzis | Nonlinear observer design using Lyapunov's auxiliary theorem[END_REF] with assumptions highly weakened by Bernard et al in [START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF]. In our theorem, back-and-forth nudging strategy does not introduce additional assumptions compared to standard nudging strategy, observability in one direction of time is sufficient. We have an expression of matrix gain function that ensures global exponential convergence of the transformed state (with a rate of convergence that can be fixed as we want), that is simple to solve numerically but requires the knowledge of model state and observation derivatives.

ing method is very low, it is possible to go further by considering strategies of cost reduction like model reduction method. Model reduction theory around Luenberger observer has been presented by Bonnans et al in [START_REF] Bonnans | Commande et optimisation de systèmes dynamiques[END_REF], for sequential methods the SEEK filter introduced by Pham in [START_REF] Dinh | A Singular Evolutive Interpolated Kalman filter for data assimilation in Oceanography[END_REF] is commonly used for model reduction. Besides, we hope that the Python code with its different toolboxes we have developed will be improved by new configurations to continue validating the back-and-forth nudging method efficiency and robustness to more and more complex QG models or other oceanographic or meteorological circulation models. For operational missions, the tools that we have implemented to estimate scalar model parameters as barotropic wave number need to be extended to a wide range of parameters to improve the quality of state estimate. However, in practice estimating the complete map of model parameter dependent on space and time is a very difficult task that should be explored.

Résumé: L'objectif principal de cette thèse est de fournir une méthodologie générale pour utiliser une méthode récemment développée d'assimilation de données appelée back-and-forth nudging. Le terme back-and-forth fait référence aux aller-retours dans le temps opéré successivement par cette méthode jusqu'à obtenir une estimation convenable de l'état. La méthode du back-and-forth nudging est une méthode à faible coût connue pour sa simplicité d'implémentation, étant donné qu'elle ne nécessite aucune linéarisation, aucune différentiation d'opérateur complexe et aucun processus d'optimisation, contrairement aux méthodes variationnelles. De plus, elle n'utilise pas non plus d'estimation d'erreur de covariance comme les méthodes séquentielles. Cette méthode est capable de fournir une estimation de l'état sur un interval fini de temps, ce qui est particulièrement intéressant pour les problèmes chaotiques à forte sensibilité par rapport à la perturbation de l'état initial ou de certains paramètres du modèle. Premièrement, on cherche à traiter la principale difficulté rencontrée lors de l'utilisation du back-and-forth nudging, qui est de maintenir la convergence de l'erreur continue lors des passages entre la dynamique directe et rétrograde. Pour répondre à ce problème, on montre l'existence d'une fonction de Lyapunov commune aux deux dynamiques. Ce résultat a été montré pour une large classe de problèmes incluant les dynamiques non-autonomes et non-linéaires pour estimer l'état initial mais également les paramètres du modèle.

Le second axe est dédié à l'étude de l'attraction des propriétés physique, ce phénomène ayant été observé lors d'expériences passées avec la méthode du nudging standard. Ces altérations sont dues à la nature même de la méthode de nudging, qui consiste à modifier la structure du modèle physique en plus injectant directement un terme d'observation. Nous avons montré, grâce à une analyse de sensibilité, que l'injection des observations par la méthode du back-and-forth nudging est bien moins invasive pour la physique du modèle que par la méthode du nudging standard. Finalement, pour évaluer l'efficacité de la méthode du back-and-forth nudging dans un contexte réel, nous avons réalisé une assimilation de données opérationnelles issues du futur satellite SWOT pour fournir une estimation de l'état dans chaque couche de la région océanique du Gulf Stream. Après étude théorique de la convergence de l'erreur avec un modèle quasi-géostrophique barocline, la méthode a été testée numériquement avec données fortement bruitées, afin de garantir la robustesse de la méthode.

Mots clés: assimilation de données, nudging, back-and-forth nudging, observateur de Luenberger, modèle quasi-géostrophique, SWOT, altimétrie, principe d'invariance de Lasalle, dynamique non-linéaire Data assimilation for external geophysics: the back-and-forth nudging method

Abstract:

The main objective of this thesis is to provide a general methodology to use a recently developed data assimilation method called back-and-forth nudging. The name «back-and-forth» referred to the successive back-and-forths in time performed by this method until obtaining a suitable estimation of the state.

The back-and-forth nudging method is a low-computational method known for its simplicity of implementation, as it does not require any differentiation of complex operators and any optimization process contrary to variational methods. In addition, it does not require estimation of covariance errors as for sequential methods. This method is able to provide a state estimation over a finite-time domain, which is particularly interesting for chaotic problems highly sensitive to perturbation of initial condition or constant parameters. First, we aim to address the main difficulty of back-and-forth nudging method which is to maintain the continuity of error convergence at the switching times between forward and backward dynamics. To overcome this problem, we have shown the existence of a common Lyapunov function for both dynamics. This convergence result has been found out for a large class of non-autonomous and non-linear dynamics to estimate initial condition as well as model parameter.

The second axis is dedicated to the study of physical properties alteration, this phenomenon had been noticed in past experiments using standard nudging method. These alterations are due to the very nature of the method, modifying the physical structure by injecting directly in the model an innovation term. We have demonstrated that data injection using back-and-forth nudging far less invasive for the physical dynamics than using standard nudging. Finally, in order to validate the efficiency of the method in a realistic context, we have investigated the assimilation of operational data from the future SWOT satellite mission in order to provide ocean dynamics estimation at every layer of Gulf-Stream's oceanic region. After a theoretical study of error convergence with the multi-layered quasi-geostrophic model, the method has been tested numerically with imperfect data by injecting additional noise, in order to guarantee the robustness of the method.

Keywords: data assimilation, nudging, back-and-forth nudging, Luenberger observer, quasi-geostrophic model, SWOT, altrimetry, Lasalle's invariance principle, nonlinear dynamics
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 12 Figure 1.2: SWOT nominal data coverage collected during 3 days and during a complete cycle of 21 days. Source : NASA/SWOT gallery https://swot.jpl.nasa.gov/gallery.htm
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 21 Figure 2.1: Observability condition at time t ∈ [t 0 , t f ] in the forward direction (figure above) and in the backward direction (figure below).
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 74 Definition Backward gramian observability function). The gramian observability function M b : T ×T → M n (R) associated to the pair (A, C) is a function defined by

∈

  M n (R) is the discrete state matrix, C k ∈ M p,n (R) the discrete observation matrix, B k+1,k d and Bk+1,k d ∈ M n,r (R) the discrete control matrices, for all k ∈ N. The discrete solution can be expressed as

  by multiplying by the transpose of A k+1,k d on the left side and by A k+1,k d on the right side we get

Definition 13 (

 13 t) represent respectively forward and backward gramian matrix with dM∞ dt Forward gramian observability matrix). The forward gramian observability matrix associated to the time-independent pair (A, C) is defined as

Figure 2 . 2 :

 22 Figure 2.2: Chaotic state trajectory of the transformed Lorenz nonlinear model from t = 0 to t = 200s.

Figure 2 . 3 :

 23 Figure 2.3: RMS error from t = 0s to t = 20s between the true state and the synchronised state estimation with or without additional feedback term of matrix gain K. Pure synchronisation corresponds to K = 0, adapted synchronisation with diagonal data feedback gain corresponds to K = I while gramian feedback gain corresponds to K = W -1 2 dependent to λ values, where various values of λ are tested.

Figure 2 . 4 :

 24 Figure2.4: State trajectories with time invariant parameters of the true state and the estimated state from observations. Data feedback with diagonal matrix gain (K = I) only acts on the first variable ẑ1 and linearised observer model makes ẑ2 and ẑ3 independent of ẑ1 , that is why the estimated variables ẑ2 and ẑ3 with diagonal matrix gain are identical to pure synchronisation.
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 25 Figure 2.5: State trajectories with time-dependent parameters where β = 0.28 has been replaced by β(t) = 0.28 sin(10t) in the true model, representing some realistic parameter perturbation.
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 31 Figure 3.1: Relation between the rank of the observability matrix associated to (A, C; t) (upper figure) with forward observability (F.O.) and backward observability (B.O.) of forward system (middle figure) and backward system (bottom figure) on a finite time interval T = (t 0 , t f ).

Figure 3 . 2 :

 32 Figure 3.2: Scheme of asymptotic stablility of standard nudging strategy on [t 0 , +∞) (on the top) and back-and-forth nudging strategy on [t 0 , t f ] (on the botom).

  σ = 10, β = 8/3 and ρ = 28 involving a chaotic behaviour. The nudging model is time integrated on [0, 2 × 10 -1 ] and the iterative nudging makes 10 back-andforth on [0, 10 -2 ], because of chaos and high sensitive response to standard nudging the integration time is very small for graphics legibility. The time step is fixed as ∆t = 10 -4 with z 0 = (1.1, 1.9, 1.5) T and z e 0 = (0, 0.8, 0.4) T as initial conditions. The model is perturbed by a nudging gain of δk = 0.5 × 10 -3 . The results are reported in Figure3.4.
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 34 Figure 3.4: At the left, sensitivity comparison over time between standard nudging (red) and iterative nudging (blue) coefficient. Each back-and-forth completed is represented with a vertical dashed line. The standard nudging sensitivity exponentially diverges compared to iterative nudging which is globally linear (though fluctuating). At the right is represented the final time sensitivity for standard nudging, iterative nudging and iterative nudging with a partition (N = 10). In practice, the sensitivity reduction of the iterative partition strategy seems to be too much limited.

Theorem 35 .

 35 Assume 10 and that f is of class C 1 (Z × O). Let the state transition transformation associated to ∂f ∂z θ be the matrix function φ : Z × O × T → M n (R) defined as φ(z, θ, t) = exp t t 0 ∂f ∂z θ ds. If φ(θ, z, t) is unstable, then for any parameter perturbation δθ ∈ O, the error between observer state (4.27) with a perturbed parameter and perfect state is unstable such that lim t→+∞ ẑ(θ + δθ) -z(θ) = +∞, δθ ∈ O.

[n/ 3 ]

 3 j=0 and {z 3j+3 } [n/3] j=0 ) and (iii) one-third of the states are observed periodically (here {z 3j+3 } [n/3] j=0
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 42 Figure 4.2: MAE time evolution of 12s evaluated for the background state (red line), the estimated state using diagonal gain matrix (blue line) and the estimated state using complete gain matrix (green line), after a preliminary step of 1s without data correction to initialize the gain matrix (vertical line).

Figure 4 . 3 :

 43 Figure 4.3: Evolution of first three state trajectories during 12s of the true state (black line), the background state (red line) and the Luenberger estimated state using full gain matrix (green line) when one-third of state variables are observed.

  Cost function sensitivity δL

Figure 4 . 4 :

 44 Figure 4.4: Sensitivity to different parameter perturbations δθ ∈ {0.1, 1, 10} evaluating the response of the first state variable z 1 and cost-function L.The more parameter perturbation is high the more sensitivity is significant (δL is proportional to δθ). Parameter sensitivity seems to be more important when observations are sparse. Meaning that the impact of θ is more visible when state is poorly observed and therefore can be more easily reconstructed.
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 45 Figure 4.5: Evolution of first state variable (not observed), third state variable (observed) and parameter trajectories during 12s. The true trajectory (black line), the background trajectory (red line) and the Luenberger estimated trajectory, using full gain matrix (green line) when one-third of state variables are observed, are displayed. The parameter to be estimated is constant.
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 46 Figure 4.6: Evolution of first state variable (not observed), third state variable (observed) and parameter trajectories during 12s. The true trajectory (black line), the background trajectory (red line) and the Luenberger estimated trajectory, using full gain matrix (green line) when one-third of state variables are observed, are displayed. The parameter to be estimated is perturbed with a sinusoidal noise.

Figure 4 . 7 :

 47 Figure 4.7: Evolution of first state variable (not observed), third state variable (observed) and parameter trajectories during 12s. The true trajectory (black line), the background trajectory (red line) and the Luenberger estimated trajectory, using full gain matrix (green line) when one-third of state variables are observed, are displayed. The parameter to be estimated is perturbed with a white noise.

  where 0 is the surface and -H the bottom of the bassin) and the time domain T = [t 0 , t f ] be two bounded intervals. The stream function ϕ : Ω×H×T → R is the solution of the quasi-geostrophic potential vorticity equation modeling ocean dynamics, given by Dq(ϕ)Dt = F + D,(5.1)associated to homogeneous Neumann boundary conditions in the vertical domain ∂ϕ ∂z = 0, z = 0, -H, (5.2)
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 51551 Figure 5.1: Three-dimensional oceanic basin, at rest with the vertical structure of the basin divided into N nonuniform layers of constant fluid density.

Assumption 14 .

 14 Assume ψk ∂ qk ∂y is continuous with regards to y and ψk ∂ qk ∂x is continuous with regards to x, where ψk and qk are respectively the stream function and the potential vorticity solving (5.17)-(5.19).

  with FE LF -Restarting with RK2 LF -Smoothing with µ=0.2
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 62 Figure 6.2: Comparison of time-reversibility property of different time discretization methods : forward Euler (FE), second-order Runge-Kutta (RK2), restarting Leapfrog every 20 steps with FE or RK2 and Robert-Asselin time filter with µ = 0.2. Starting from the same initial state, 10 back-and-forth integrations are made over a time-window of 21 days involving degradations of initial state at each iteration.
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 a63 Figure 6.3: Comparison of reference and background initialization of the sea surface height SSH and the potential vorticity q in the Gulf Stream region.
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 64 Figure 6.4: Accumulation of SWOT satellite SSH measurements coverage with realistic total error budget after 5 days, 10 days or 21 days.

Figure 6 . 5 :

 65 Figure 6.5: Global structure of the code in Python classes. Every color block represents a family, with a mother class containing the method init();. There are five different families : (i) the family for nudging data assimilation method (in blue), (ii) the family for quasi-geostrophic oceanic model (in purple), (iii) the family for global parameters to be calibrated (in orange), (iv) the family for sea-surface height observations (in green) and (v) the family to manage NetCDF files (in yellow). The solid arrows represent inheritance relationship and the dashed arrows represent the creation of an object of a family into a different family.
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 66 Figure 6.6: Lyapunov function during the back-and-forth nudging assimation of time-sampling observation (complete in space) with different frequencies.

Figure 6 . 7 :

 67 Figure 6.7: Comparison of W and DW values after one forward and backward nudging integration of 21 days for a range of σ values of the bump-function.

Figure 6 . 8 :

 68 Figure 6.8: Lyapunov function after one forward and backward nudging model integration of 21 days for a range of nudging coefficient. Data is perfect and complete in time and space (at the left). Data available only along the SWOT path with or without noise (at the right).
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 69 Figure 6.9: Lyapunov function W trajectory during time with 10 back-and-forth successive iterations while assimilating different type of data. We have 10 forward integrations from 0 to 21 days (blue lines) and then 10 backward integrations from 21 days to 0 (red lines).
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 610 Figure 6.10: Sea Surface Height exact or assimilated by BFN in the spatial region Ω at different times : t=0 (first column) and t=21 days (second column).

6 . 3 .

 63 [START_REF] Bernard | Luenberger observers for non autonomous nonlinear systems[END_REF], we notice that the mean evolution of the potential vorticity sensitivity is governed byd dt Ω δq(x, t)dx = -Ω J(∆δψ, ψ)dx -Ω J(ψ, ∆δψ)dx = 0,Data assimilation numerical results 145 obtained by twice integration by parts with homogeneous Dirichlet boundary conditions of both ψ and δψ on ∂Ω. Meaning that mean of δq is constant over time and this constant is equal to the mean of initial time value, then for all t ≥ 0 Ω δq(x, t)dx = Ω δq(x, 0)dx = -δK Ω ψ(x, t = 0)dx. (6.15)

Ω

  δψ(x, t)dx= -δK K Ω ψ(x, t)dx -Ω ψ(x, 0)dx ,which is proportional to δK. Note that if we want to evaluate sensitivity to the inner parameter c, we just have to replace δK by δK = ∂K(c) ∂c δc = -2f 2 c 3 δc.

( a )Figure 6 . 12 :

 a612 Figure 6.12: Stream function (left) and potential vorticity (right) error trajectories during 21 days to parameter perturbations. Two parameters are perturbed, the global parameter K (first row) and the flow celerity c (second row).

  ) L 2 (Ω) ds ≥ γ ψ(t) L 2 (Ω) ,and there exists a strictly positive constant β such thatt t-ε ẏ(s) L 2 (Ω) ds = β ψ(t) L 2 (Ω) .
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 613 Figure 6.13: Forecast SSH at 3 × 21 days after data assimilation process with different scenarios of propagation velocity during the full process (data assimilation and forecast) : (i) perfect case of exact parameter c = 2.5, (ii) wrong speed parameter c = 1.0, (iii) initially wrong speed parameter c = 1.0 during data assimilation.
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 614 Figure 6.14: Forecast SSH at 3 × 21 days after data assimilation process with different scenarios of propagation velocity during the full process (data assimilation of 21 days and forecast of 3 × 21 days) : (i) perfect case of exact parameter c = 2.5, (ii) wrong speed parameter c = 1.0, (iii) initially wrong speed parameter c = 1.0 corrected with data assimilation.

  M n (R) is the state transition matrix function. In the specific case where all the matrices A(t) commute together, the state transition matrix is explicitely expressed as

	t		
	φ(t, s) = exp	A(σ)dσ , t, s ∈ T ,	(2.2)
	s		
	which depends only on the state matrix function.	
	Property 1. The state transition matrix function (2.2) verifies the following prop-
	erties		
	• transitivity property :		

t 0 )z 0 + t t 0 φ(t, s)B(s)u(s)ds,

2.1. Observability theory 13

where φ : T × T → φ(t, s) = φ(t, r)φ(r, s), t, s, r ∈ T ,

• reflexivity property :

φ(t, t) = I n , t ∈ T ,

• symmetry property :

φ(t, s) = φ(s, t) -1 ,

t, s ∈ T . Property 2. The state transition matrix function (2.2) is a time-differentiable function of T × T and satisifies the partial differential equations, for all t, s ∈ T , ∂ ∂t φ(t, s) = A(t)φ(t, s), ∂ ∂s φ(t, s) = -A(s)φ(t, s).

14 Chapter 2. On the Luenberger observer for non-autonomous problems

  

			: unobserved state
			: observed state
			: collected observation
			: identified state
		z 1	
		z 2	
	z i	z 3	
			t : time
	t 0	t	t f
	initial state identification	
		z 1	
		z 2	
	z i	z 3	
			t : time
	t 0	t	t f
		final state identification	
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		Computing the time-dependent
	observability matrix for all t ∈ T gives		
	O(A, C; t) =	1 ln(t) |ln(t)| 1	,

that has a rank equal to 1 on [1, t f ] and equal to 2 on (0, 1). Following the definitions of forward and backward observability (theorems 4 and 5), if measurements are collected in T , we have forward observability on T and backward observability only on (0, 1). Note that if measurements are collected in [1, t f ], we have unobservability in both time directions.

Design of gramian-based Luenberger observer 21 2.2 Design of gramian-based Luenberger observer 2.2.1 Problem statement

  Estimating the state by using the Luenberger method also consists in finding a good candidate of gain matrix function K : T → M n (R) that balance information from physical model and error of estimated state to observation. Balancing the constraint of data correction is a delicate task, it has to be strong enough to force the estimation to convergence towards state and weak enough to avoid numerical instabilities, not to mention the issues of choosing the suitable spatial distribution into variables of data correction. A lot of progress have been made in this topic, but a unified method to compute Luenberger gains that guarantee convergence is very much needed.

Theorem 6. Let M be the gramian observability function associated to the pair (A, C; t). The pair (A, C; t) is forwardly observable for t ∈ T iff M (t, t 0 ) is positive definite for t ∈ T . Theorem 7. Let M b be the backward gramian observability function associated to the pair (A, C; t). The pair (A, C; t) is backwardly observable for t ∈ T iff M b (t f , t) is positive definite for t ∈ T . 2.2. The Luenberger observer applied to the non-autonomous model (2.1) reads ż

  is an asymptotically state Lyapunov function for the original error state z.

	Remark 1. Under observability criterion, it is possible to invert W (t, t 0 ) and to
	express a Luenberger observer with initial coordinates. If the original state observer
	ẑ

  To know if the discrete model pair (A d , C) is observable, the classical Kalman rank condition upon the observability matrix O(A d , C) can be used. If the rank is equal to n it means that all observations from y k = Cz k to y k+n-1 = CA n-1 d z k are linearly independent, thus z k can be uniquely identified for all k ∈ N. For autonomous problems, observability of the continuous model and observability of the discrete model are equivalent. The spectrum of continuous and discrete state matrices A and A d are related by

36 Chapter 2. On the Luenberger observer for non-autonomous problems Theorem 22. Let

  

	autonomous linear state model be discretised with a Crank-
	Nicholson scheme (i.e. θ = 1 2 ) where 2 ∆t is not in the spectrum of A. Assume
	the pair (A, C) is observable with λ > 0 verifying the two conditions
	λ > 1 +	12 ∆t	, λ > 2 sup |σ(A)|.

38 Chapter 2. On the Luenberger observer for non-autonomous problems Theorem 23. Let

  

	state model (2.1) be discretised by backward Euler scheme (i.e.
	θ = 1) where 1 ∆t is not in the spectrum of A. Assume the pair (A d , C; k) is back-
	wardly observable with λ > 0 verifying the two conditions
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Figure 2.6: State trajectories with time invariant parameters with noisy observations y(t) = z 1 (t) + 0.1 sin(10t
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t ∈ T . Assumption 5. The iterative model is backwardly observable (3.2), i.e. the following two conditions are satisfied : 1. the state-observation pair (A 1 , C 1 ; t) is backwardly observable T , 2. the state-observation pair (A 2 , C 2 ; π(t)) is backwardly observable on T , or equivalently (A 1 , C 1 ; t) is forwardly observable on T . Lemma 3. Under Assumptions 4-5, the function V σ (z(t)) = z(t) * W σ (t)z(t) is positive definite and verifies

Chapter 3. On the iterative Luenberger observer for non-autonomous problems is

  the time-discrete global Lyapunov function we seek.

	Theorem 26. Under Assumption 4-5 and if ε verifies the lower bound condition
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	t f ∂z 0 ∂f δz + and p solves the adjoint model (3.19) that is ∂δz ∂t = ∂h ∂z * 0 (y(t) -h(z, t))δk, δz(t 0 ) = 0, ∂p ∂t = -∂f ∂z * 0 p + z, p(t f ) = 0. Theorem 31. Assume that ∂f (t,z) ∂z and ∂h(s,z) ∂z * ∂h(s,z) ∂z commute and ∂f (t,z) (3.24) ∂z and ∂f (s,z) ∂z commute for all t, s ∈ T and for all z ∈ Z. Then the model state sensi-tivity solution (3.24) approximately verifies that δz(t) t t 0 ∂h ∂z * 0 ∂h ∂z 0 ds exp t t 0 ∂f ∂z 0 dσ δk(z e 0 -z 0 ). Proof. Under commutativity assumption on ∂f ∂z , the explicit expression of δz is given by (3.18) as δz(t) = t t 0 exp t s ∂f ∂z 0 dσ ∂h ∂z * s) ∂h ∂z 0 exp s t 0 ∂f ∂z 0 dσ (z e 0 -z 0 ). By commutativity assumptions and by replacing the observation misfit by the ex-pression obtained, the sensitivity state expression (3.25) gives the desired result z where δz solves the tangent model (3.17) that is δz(t) t t 0 ∂h ∂z * 0 ∂h ∂z 0 ds exp t t 0 ∂f ∂z 0 dσ δk(z e 0 -z 0 ). (3.26)
	t 0

, describing the state energy from t 0 to t f . Given the sensitivity expressions (3.16)-(3.20) model state response to nudging parameter perturbation δk is given by δJ(z, δk, t f ) = * δzdt = -t f t 0 p * ∂h ∂z * 0 (y(t) -h(z, t)) δkdt, (3.23) 0 (y(s) -h(z, s))δkds. (3.25) By first order approximation of the operators h and f around the state z such that h(z e , s) -h(z, s) ∂h(z, s) ∂z (z e -z), f (z e , s) -f (z, s) ∂f (z, s) ∂z (z e -z), and with z e and z solve the equation (3.21) with a different initial condition, the observation misfit can be replaced by y(s) -h(z,
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State estimation based on Luenberger observer 73 Change of coordinates existence and injectivity

  Given the model of the new state (4.3) and the model of the old state (4.1), we find out that the mapping T is solution of the following PDE

	∂T ∂t	+	∂T ∂z	f (t, z, θ) +	∂T ∂θ	g(t, θ) = -λT (t, z, θ) + β(t, h(t, z, θ)), t ∈ T .	(4.7)
							(4.4)
	As a result, the error ξ = ξ -ξ solves an autonomous, linear and homonegeous
	model defined by		ξ(t) = -λ ξ(t),	(4.5)
	which is obviously globally exponentially convergent towards zero with	

which maps the state into the a new state ξ = T (t, z, θ) that solves the following autonomous and linear problem ξ(t) = -λξ(t) + β(t, h(t, z(t), θ(t))), (4.3) where λ is a strictly positive real number and β : T ×Y → Z a positive smooth function defined later. If such diffeomorphism exists, by adding a data correction term β(t, h(t, z(t), θ(t))) -β(t, h(t, ẑ(t), θ(t))) to the model (4.3), we obtain a Luenberger observer given by ξ(t) = -λ ξ(t) + β(t, h(t, z(t), θ(t))).

ξ(t) -ξ(t) Z = e -λ(t-t 0 ) ξ(t 0 ) -ξ(t 0 ) Z , ∀t ∈ T , (

4.6)

for • Z the L 2 -norm associated to the state space Z.

4.1.

State estimation based on Luenberger observer 75 where

  x is a generic variable that can denote t, z or θ. First, by considering T : T × Z × O → Z Fréchet-differentiable, by derivation of (4.7) with regards to z we obtain

	∂ ∂t	∂T ∂z	+	∂ ∂z	∂T ∂z	f (t, z, θ)+	∂ ∂θ	∂T ∂z	g(t, θ) = -	∂T ∂z		∂f ∂z	-λ	∂T ∂z	+	∂β ∂z	.
	Then using the formula (4.9) it can be deduced that ∂T ∂z	-1	solves the following
	PDE			∂	∂T	-1									
					∂t	∂z										

.9)

4.1.
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  applied before in the forward dynamical case, we obtain a nonlinear backand-forth nudging observer for the original state observer, expressed at iteration k ∈ N as

1 and ẑk 2 be the original state observer to reconstruct, which are transformed into ξk 1 = T 1 (t, ẑk 1 , θ 1 ) and ξk 2 = T 2 (t, ẑk 2 , θ 2 ) when T 1 and T 2 are respectively applied. Using the

Joint state-parameter estimation for nonlinear problems 79 Remark 3.

  Because T 1 and T 2 are related as(4.19), the assumptions necessary for injectivity of T 1 are the same for injectivity of T 2 .

	Thus only observability
	condition in one direction of time (backward direction) of the parametrized model
	(4.1) is required. If forward and backward nudging models had been defined separetly,
	observability in both directions would have been required.

which denotes backward observability property at time t ∈ T . By definition of π, the statement t ∈ [t 0 , t f ] can be replaced by π(t) ∈ [t 0 , t f ], and by change of variable τ → π(σ) we have that for all π(s)

∈ [t, t f ], π(s) t h(π(σ), z(τ, t, ẑ, θ)) -h(π(σ), z(τ, t, z, θ)) Y dτ ≥ γ ẑ -z Z , z, ẑ ∈ Z,

which denotes forward observability property at time t ∈ T .

4.2.

  solves the PDE(4.14) and where β 2 is related to T 2 and β by the formula(4.20). From the relation between T 1 and T 2 , a similar relation can be found between K 1 , K 2 and L 1 , L 2 that is

					.31)
	where the backward Luenberger gain operators K 2 and L 2 are defined by the equa-
	tion	∂T 2 ∂z	K 2 (t, z, θ) +	∂T 2 ∂θ	L

2 (t, z, θ) = I n , problems

where T 2 (t, z, θ) = T 1 (π(t), z, θ)

90 Chapter 4. On the Luenberger observer for non-autonomous nonlinear problems data

  correction repartition between observed and unobserved variables. We can see that when one-third of state variables are observed diagonal gain matrix is not sufficient to obtain a good state identification, but with non-diagonal elements observed variables (z 3 ) and non-observed variables (z 1 , z 2 ) are equally identified (see Figure(4.3)).
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  is the state function containing nonlinearities and partial derivatives with regards to x and y.

		The state observations
	are formulated as	
	y(t, x, y) = h(t, x, y, ψ), t ∈ T , (x, y) ∈ Ω,	(5.35)
	where h : T × Ω × X → Y is a nonlinear function that completely or partially
	captures the state. A naive data assimilation is the following Luenberger observer
	with data injection with a scalar coefficient
	∂ ∂t ψ	= f (t, x, y, ψ) + λ(y(t, x, y) -h(t, x, y, ψ)),

. Data assimilation applied to quasi-geostrophic ocean model

  By making the change of variables x = x + ta(x, y) and ỹ = y + tb(x, y), the PDE (5.37) is equivalent to the ordinary equation (x, y)) represents the state solution of (5.34) at time s that is initialized at time t by ψ 0 , for instance ψ(t, t, x, y; ψ 0 (x, y)) = ψ 0 (x, y). At time t 0 -ε, the transformation T is equal to zero.

	118 Chapter 5d dt T (t, x, ỹ, ψ(t, x, ỹ)) = -λT (t, x, ỹ, ψ(t, x, ỹ)) + h(t, x, ỹ, ψ(t, x, ỹ)).
	Thus, the explicit expression T is given by
	T (t, x, ỹ, ψ(t, x, ỹ)) =	t	e -λ(t-s) h(s, x, ỹ, ψ(s, t, x, ỹ; ψ(t, x, ỹ)))ds,	(5.38)
											t 0 -ε	
	where ψ(s, t, x, y; ψ 0 Assumption 16. Assume there exists a strictly positive constant ε such that the
	nonlinear models of state and observation (5.34)-(5.35) are backwardly observable
	on [t -ε, t] for all t ∈ T , meaning that there exists a strictly positive constant γ
	such that											
	t t-ε h( ψ(s, t, x, y; ψ(t, x, y)))-h( ψ(s, t, x, y; ψ(t, x, y))) Y ds ≥ γ ψ(t, x, y)-ψ(t, x, y) Theorem 42. Under Assumption 16, the solution T of the PDE (5.37) expressed
	as (5.38) is injective with regards to ψ satisfying the following inequality condition
	T (t, x, y, ψ(t, x, y)) -T (t, x, y, ψ(t, x, y))
	As for ODE's problems, let us introduce the state transformation ξ(t, x, y) =
	T (t, x, y, ψ) such that ξ is supposed to solve the following first order partial dif-
	ferential equation						
							∂ξ ∂t	+ a(x, y)	∂ξ ∂x	+ b(x, y)	∂ξ ∂y	= -λξ + h(t, x, y, ψ),	(5.36)
	Rewriting (5.36) in terms of T , we obtain the following PDE
		∂T ∂t	+ a	∂T ∂x	+ b	∂T ∂y	+	∂T ∂ψ	∂ψ ∂t	+ a	∂ψ ∂x	+ b	∂ψ ∂y	= -λT + h(t, x, y, ψ),
	where ∂ψ ∂t replaced by its expression in (5.34) yields
	∂T ∂t	+ a	∂T ∂x	+ b	∂T ∂y	+	∂T ∂ψ	f (t, x, y, ψ) + a	∂ψ ∂x	+ b	∂ψ ∂y	= -λT + h(t, x, y, ψ). (5.37)

X , for all (x, y) ∈ Ω and ψ, ψ ∈ X . Y ≥ γe -λε ψ(t, x, y) -ψ(t, x, y) X .

6.3 Data assimilation numerical results 6.3.1 Calibration of data assimilation parameters 6.3.1.1 Sensitivity to data frequency

  We want to measure the influence of data frequency in the data assimilation results using complete observation in space but sampling observation in time. Nothing indicates in our theoretical results that data frequency has an impact on asymptotic convergence. No matter the amount of data gathered inside the time window we are supposed to have asymptotic convergence toward exact solution. Different frequencies will be tested numerically: one SSH snapshot per 10 time steps, one SSH snapshot per 50 time steps and one SSH snapshot per 150 time steps. The last case corresponding to approximately one observation per day for 21 days.

Table 6 .

 6 .1 different time-window sizes are tested (5 days, 10 days and 21 days as represented inFigure 6.4). A time-window of 5 days seems to be Time window size Number of iterations Error decay at t 0 Error decay at t f 1: Error decay with SWOT-like data assimilation with different values of time-window size and number of back-and-forth iterations. For all the scenarios tested the time travelled in total is equal to 210 days, allowing us to compare the convergence results. a very poor choice when a time-window of 21 days seems to be the best choice and will be taken by us in our next simulations. One exception of this is for initial state estimation where a time window of 10 days gives a slightly better result (78.71% of error decay) than a time window of 21 days (77.29% of error decay), this might be explained by time-inversion round-off errors increased by longer backward time integration. Finally, picking a time window size higher than 21 days is not very interesting, the time-inversion round-off errors will take a greater part and after 21 days since a new cycle begins data are collected exactly at the same tracks observed before.

	21	10	77.29%	95.35 %
	10	21	78.71%	90.85 %
	5	42	51.36%	59.74 %

Table 6 .

 6 .9, thereData typeError decay at t 0 Error decay at t f Error decay in average 2: Pourcentage of error decay at initial time (t 0 = 0 day), at final time (t f = 21 days) and in average over time on [t 0 , t f ] after 10 iterations of BFN following different type of data.

	Complete data	97.39%	99.99%	99.41%
	Time-sampled complete data	88.58%	99.63 %	96.71%
	SWOT-like perfect data	77.77%	95.52 %	91.20%
	SWOT-like noisy data	77.29%	95.34 %	90.96%

  The new parameter K + δK will generate a new state q + δq and ψ + δψ where the deviations provide direct information on the state sensitivity. By Fréchet-differentiation of the model with respect to K in the direction of δK, state sensitivity verifies

		δq =	∂q ∂K	δK, δψ =	∂ψ ∂K	δK	(6.12)
	  	∂δq ∂t	+	∂J(ψ, q) ∂ψ	δψ +	∂J(ψ, q) ∂q	δq = 0	(6.13)
	  δq = ∆δψ -Kδψ -δKψ,

  .18) Theorem 44. Assume that the stream functions belong to H 1 0 (Ω), then the augmented state error governed by (6.18) is asymptotically convergent towards zero, associated to a positive definite Lyapunov function defined as

	V (t) =	1 2 Ω	|∇ ψ| 2 + 2 K ψ • ψ + K| ψ| 2 dx +	α 2	K2 ,	(6.19)
	where the real number α ∈ R + * verifies	
			α ≥	1 K	sup s≥0	ψ(s, x) 2 L 2 (Ω) .	(6.20)
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One of the main principles in climate modeling is that each situation is unique. This uniqueness is not just a matter of initial conditions but extended to boundary conditions and model parameters. Local weather conditions admit large variation and cannot be settled by general climate model formulation, however sophisticated. The challenge to increase model parameters accuracy is just as important as the historical purpose of data assimilation to increase initial conditions accuracy. Even with perfect data, inaccurate model parameters lead to model error growth and may fatally affect the data assimilation process. While data assimilation stays focused on reducing background error, model parameter errors considered as negligible (i) affect the background error directly and (ii) lead to a progressive drift of the forecast solution away from observations. This is why we want to address model parameters updating to have a total model error reduction.

Chapter 7. Conclusion

State-parameter simultaneous estimation (Chapter 4) Given the previous work on state-parameter estimation for linear state model by Luenberger observer of Afri et al in [START_REF] Afri | State and parameter estimation: a nonlinear Luenberger observer approach[END_REF], we have proposed in this thesis an extension for nonlinear state model with iterative BFN based on [START_REF] Kazantzis | Nonlinear observer design using Lyapunov's auxiliary theorem[END_REF]. Because the transformation of the augmented-state solves the same equation as in the case of state estimation only, global exponential convergence property is conserved. This parameter identification method can be applied to every model parameter whose dynamic is known and which is observable by the system.

Comparison with Naive BFN (Chapter 4) In the numerical experiments, the back-and-forth nudging observer designed by us was always compared with a naive back-and-forth nudging observer, where the matrix gain is diagonal and fixed by a scalar number. Despite the robustness of nudging method, the numerical tests on chaotic Lorenz models (1963Lorenz models ( or 1996) ) show that in the case of observable system with sparse data the naive approach reaches its limits and our version of back-andforth nudging observer gives a better data repartition, especially for non-detectable variables.

Operational oceanographic experiments (Chapter 5)

We wanted to provide a complete analysis (theoretical and numerical) on the assimilation of partial satellite measurements by the BFN with a model of baroclinic QG type. Thanks to the thesis of Luong [START_REF] Luong | Techniques de contrôle optimal pour un modèle quasigéostrophique de circulation océanique. Application à l'assimilation variationnelle des données altimétriques satellitaires[END_REF] on QG model analysis, we have shown the existence of a common Lyapunov function demonstrating BFN convergence using Lasalle's invariance principle, given time-sampled and partial SSH data. For the time-discrete case, we have shown the same convergence results using a time-reversible scheme (leapfrog), in practice because leap-frog is instable a fitlered leap-frog version must be used introducing some inevitable accumulating round-off errors during each backward integration but that are partially attenuated while using nudging relaxation term to data. The numerical experiments on SWOT data are very promising, the state-parameter estimation is not very perturbed by the noise of data and in comparison to complete observation the assimilation of available SWOT data gives similar results. The iterative principle always allows us to improve the estimation by increasing the number of iteration of back-and-forth, even if some plateau values have been found stopping us from improving the resolution any further. Finally, we have shown the ability of BFN to improve its own mode parameters given available SSH data, for instance by improving barotropic wave number given SWOT data. There is a huge benefit of joint state-parameter for forecasting, the initial state estimated by BFN is obviously better with a perfect model and the parameters of the model dynamic used for the forecasting can be calibrated to every unique situation.

Perspectives and further developpement Yet we are aware that there is a lot to do for using back-and-forth nudging in operational missions instead of classical data assimilation methods. Even if the computational cost of back-and-forth nudg-