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Abstract

In aeronautical combustion chambers, the ability to simulate two-phase �ows
gains increasing importance nowadays since it is one of the elements needed for
the full understanding and prediction of the combustion process. This matter is
motivated by the objective of improving the engine performance and better pre-
dicting the pollutant emissions. On the industrial scale, the description of the
fuel spray found downstream of the injector is preferably done through Eulerian
methods. This is due to the intrinsic statistical convergence of these methods,
their natural coupling to the gas phase and their e�ciency in terms of High Per-
formance Computing compared to Lagrangian methods. In this thesis, the use
of Kinetic-Based Moment Method with an Anisotropic Gaussian (AG) closure
is investigated. By solving all velocity moments up to second order, this model
reproduces statistically the main features of small scale Particles Trajectories
Crossing (PTC). The resulting hyperbolic system of equations is mathemati-
cally well-posed and satis�es the realizability properties. This model is com-
pared to the �rst order model in the KBMM hierarchy, the monokinetic model
MK which is suitable for low inertia particles. The latter leads to a weakly
hyperbolic system that can generate δ-shocks. Several schemes are compared
for the resolution of the hyperbolic and weakly hyperbolic system of equations.
These methods are assessed based on their ability to handle the naturally en-
countered singularities due to the moment closures, especially without globally
degenerating to lower order or violating the realizability constraints. The AG
is evaluated for the Direct Numerical Simulation of 3D turbulent particle-laden
�ows by using ASPHODELE solver for the gas phase, and MUSES3D solver
for the Eulerian spray in which the new model is implemented. The results are
compared to the reference Lagrangian simulation as well as the MK results.
Through the qualitative and quantitative results, the AG is found to be a pre-
dictive method for the description of moderately inertial particles and is a good
candidate for complex simulations in realistic con�gurations where small scale
PTC occurs. Finally, within the framework of industrial turbulence simulations
a fully kinetic Large Eddy Simulation formalism is derived based on the AG
model. This strategy of directly applying the �lter on the kinetic level is helpful
to devise realizability conditions. Preliminary results for the AG-LES model
are evaluated in 2D, in order to investigate the sensitivity of the LES result on
the subgrid closures.

Keywords Spray, turbulence, moment method, kinetic based closures, re-
alizability, particle trajectory crossing, Large Eddy Simulation, realizability-
preserving high order numerical schemes





Résumé

De nos jours, la simulation des écoulements diphasiques a de plus en plus
d'importance dans les chambres de combustion aéronautiques en tant qu'un
des éléments requis pour analyser et maîtriser le processus complet de com-
bustion, a�n d'améliorer la performance du moteur et de mieux prédire les
émissions polluantes. Dans les applications industrielles, la modélisation du
combustible liquide trouvé en aval de l'injecteur sous forme de brouillard de
gouttes polydisperse, appelé spray, est de préférence faite à l'aide de méthodes
Eulériennes. Ce choix s'explique par les avantages qu'o�rent ces méthodes par
rapport aux méthodes Lagrangiennes, notamment la convergence statistique
intrinsèque, le couplage aisé avec la phase gazeuse ainsi que l'e�cacité pour
le calcul haute performance. Dans la présente thèse, on utilise une approche
Eulérienne basée sur une fermeture au niveau cinétique de type distribution
Gaussienne Anisotrope (AG). L'AG résout des moments de vitesse jusqu'au
deuxième ordre et permet de capter les croisements des trajectoires (PTC) à
petite échelle de manière statistique. Le système d'équations obtenu est hy-
perbolique, le problème est bien-posé et satisfait les conditions de réalisabilité.
L'AG est comparé au modèle monocinétique (MK) d'ordre 1 en vitesse. Il est
approprié pour la description des particules faiblement inertielles. Il mène à un
système faiblement hyperbolique qui peut générer des singularités. Plusieurs
schémas numériques, utilisés pour résoudre les systèmes hyperboliques et faible-
ment hyperboliques, sont évalués. Ces schémas sont classi�és selon leur capac-
ité à traiter les singularités naturellement présentes dans les modèles Eulériens,
sans perdre l'ordre global de la méthode ni rompre les conditions de réalis-
abilité. L'AG est testé sur un champ turbulent 3D chargé de particules dans
des simulations numériques directes. Le code ASPHODELE est utilisé pour la
phase gazeuse et l'AG est implémenté dans le code MUSES3D pour le spray.
Les résultats sont comparés aux de simulations Lagrangiennes de référence et
aux résultats du modèle MK. L'AG est validé pour des gouttes modérément in-
ertielles à travers des résultats qualitatifs et quantitatifs. Il s'avère prometteur
pour les applications complexes comprenant des PTC à petite échelle. Finale-
ment, l'AG est étendu à la simulation aux grandes échelles nécessaire dans les
cas réels turbulents dans le domaine industriel en se basant sur un �ltrage au
niveau cinétique. Cette stratégie aide à garantir les conditions de réalisabil-
ités. Des résultats préliminaires sont évalués en 2D pour tester la sensibilité
des résultats LES sur les paramètres des modèles de fermetures de sous mailles.

Mots clés Spray, turbulence, méthodes des moments, fermetures cinétique,
réalizabilité, croisement des trajectoires, simulation aux grandes échelles, sché-
mas numérique d'ordre élevé préservant la réalizabilité
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Nomenclature

The notations used in this thesis are given here in the following order: Roman
characters, Greek Characters, non-dimensional numbers, operarors and abbre-
viations.

Latin Characters:

~c Disperse phase velocity in
the phase space

c1 x-component of ~c
c2 y-component of ~c
c3 z-component of ~c
~ck kth droplet velocity
Ci,j,k Central (i+ j + k)th order

velocity moment
D Dissipation matrix
DY Slope for the linear recon-

truction of Y
~e A given unit vector
E Scalar total kinetic energy
E Total kinetic energy tensor
E1 Exchange term between

sections
E2 Exchange term with the

gas
Em Energy spectrum model
f Number density function
fL Non-dimensional function

governing the shape of the
energy containing range

flong Longitudinal velocity au-
tocorrelation function

fη Non-dimensional function
governing the shape of the
dissipation range

fΣ Autocorrelation function
of the trace of the internal
energy tensor

f(u) Flux function
F∗ Numerical �ux

F(W) Conservative �ux
F i+1/2 Flux at the interface xi+1/2−→
F Acceleration of the

droplets due to exter-
nal force

gpp Number density autocorre-
lation

G∆ LES �lter

Ĝ∆ Transfer function of the
LES �lter

G∆
pp Segregation

hl Spray enthalpy
Hf,p Two-phase �ow realiza-

tions
Ii ith control volume or ele-

ment
HT Rate of change of the

droplet temperature
−L At the left side of the in-

terface
L0 Representative length

scale of the �ow
L11 Longitudinal integral

length scale of the gas
motion

LLong Longitudinal integral
length scale of the spray
motion

Lp Integral length scale of the
number density autocorre-
lation function
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LΣ Integral length scale auto-
correlation of the trace of
the internal energy tensor

m(p) Mass concentration in sec-
tion p

M Mass matrix
lMm

i,j,k Moment of order l in size,
m in temperature and i +
j + k in velocity

Mi,j,k General (i+ j + k)th order
moment in velocity

n Number density of the dis-
perse phase

−n At time tn
N Joint Gaussian distribu-

tion
Nd Number of dimensions
Neul Number of Eulerian grid

elements in a given direc-
tion

Ns Number of particles
Ns Number of samples for

DSMC
P Scalar pressure
P Pressure tensor
P1 Pressure at the compressor

intake
P2 Pressure at the compressor

exit
Pm Fine grained PDF
−r Residual terms
r Separation distance
Q Secondary break-up opera-

tor
−R At the right side of the in-

terface
Rij Two-point velocity correla-

tion
RS Evaporation rate
RΣ Autocorrelation of the

trace of the internal
energy tensor

S Size of droplets
SF Drag source terms in mo-

ment equation
s Entropy
sij ijth element of the strain

rate tensor
S Space of realizable mo-

ments of boundary ∂S
Sk kth droplet size
SS Evaporation rate source

terms in moment equation
ST Heat exchange rate source

terms in moment equation
t Time
T Temperature
Ti ith triangle of the 2D mesh
Tk kth temperature
T rL Lagrangian integral

timescale of the residual
gas �eld velocity

T Sti�ness matrix
TKEr Subgrid total kinetic en-

ergy
−→u Mean velocity of the dis-

perse phase
U Set of primitive variables
Ũ Set of cell reconstructed

primitive variables
U Set of corrected cell value

of reconstructed primitive
variables

uh Discrete approximate solu-
tion of u

~ug Gas phase velocity
−→
Ug Gas velocity
−→
Ul Liquid fuel velocity
W Unknown set of moments
Wh Piecewise polynomial solu-

tion
wpk Weight for sample k in

DSMC
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xk kth droplet position
xq qth Gauss-Lobatto quadra-

ture points

~x Position
X characteristic length of the

interface

Greek Characters:

γ Gas heat capacity ratio
~γ Subgrid term accounting

for the inhomogeneity of
the �ow into the drag
force.

Γ Collision/coalescence
operator

δΘp Kinetic energy of the ran-
dom uncorrelated motion

∆ Filter width
∆t Time step
∆x Grid size
ε Turbulence dissipation

rate
εr Dissipation rate of the

residual gas velocity �eld
η Kolmogorov lengthscale
ηBr Thermodynamic e�ciency

of the Brayton cycle
κ Wavenumber
κDI Wavenumber separating

the dissipation range and
the inertial subrange

κEI Wavenumber separating
the inertial subrange and
the energy-containing
range

κp A�ne by part reconstruc-
tion

λ Subgrid term modeling the
correlations of the turbu-
lence

λ0 Mean free path of the
droplets

λf Longitudinal Taylor mi-
croscale

λg Transverse Taylor mi-
croscale

λmin Slowest characteristic wave
of the states on the left and
right side of the interface

λmax Fastest characteristic wave
of the states on the left and
right side of the interface

µ Subgrid term modeling the
fact that the particle agita-
tion energy tends towards
the one of the gas subgrid
scales because of the drag
force, and acts as a white-
noise

µl Liquid fuel dynamic viscos-
ity

ν Gas kinematic viscosity
νl Liquid fuel kinematic vis-

cosity
ξ Internal phase space
ξpk Coordinate of each sample

k for DSMC in the phase
space

lξmi,j,k Powers of the internal
phase space variables:
i, j, k for respectively the
x, y and z components of
the velocity, l for the size
and m for the temperature

Ω Vorticity tensor of spray
ρg Gas density
ρl Liquid fuel density
σ Isotropic velocity disper-

sion
Σ Covariance matrix of spray
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σij Element ij of the covari-
ance matrix

σl,g Liquid surface tension

Σ̃ Favre-�ltered internal en-
ergy tensor

Σf Internal energy tensor ob-
tained from the �ltered
NDF

Σr Subgrid energy contribu-
tion

τp Droplets relaxation time
τ rg Subgrid stress tensor

τG Characteristic time scale of
the gas

τK Kolmogorov time scale of
the gas

ϕ Basis functions

ϕ
(p)
S Constant repartition of

sizes in section p
ϕv Spray volume fraction
χIi Characteristic function of

Ii
ψ Weighting or test function
ωq Weight of the qth Gauss-

Lobatto quadrature points

Non-dimensional numbers:

Kn Knudsen number
Mae energy based disperse

phase Mach number
Map disperse phase Mach num-

ber
Oh Ohnesorge number
Re Reynolds number
ReL Reynolds number based on

the integral length scale
Reλ Reynolds number based on

the transverse Taylor mi-
croscale

St Stokes number

StE Stokes number relative
to Eulerian integral time
scale of the gas

StK Stokes number relative to
Kolmogorov time scale of
the gas

StL Stokes number relative to
Lagrangian integral time
scale of the gas

StrL Stokes number relative to
the Lagrangian integral
timescale of the residual
gas �eld velocity

We Weber number

Operators:

∂~x· Divergence with respect to ~x
ϕ̃ϕ Favre-averaging
ϕ Filtered quantity
Dt Material derivative
(y)+ max{0, y}
(y)− min{0, y}
−t Partial derivative with respect to time
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−x Partial derivative with respect to space
(ϕ)r Residual correlation between two variables a and b where (ab)r =

ab− a b
∨ Symmetrictensorouterproduct
Tr(Y ) Trace of a matrix Y
−T Transpose
〈., .〉 Standard scalar product
∆+Y Yi+1 − Yi
∆−Y Yi − Yi−1

〈.〉 Averaging operator over the whole domain

Abbreviations:

ACAREAdvisory Council for Aviation Research and innovation in Europe
ACBMMAlgebraic Closure Based Moment Methods
AG Anisotropic Gaussian closure based model
AMR Adaptive mesh re�nement
ATAG Air Transport Action Group
CDF Cumulative Distribution Function
CFL Courant-Friedrichs-Lewy condition
CPR Correction Procedure using Reconstruction
CQMOMConditional Quadrature Method Of Moment
CSVM Coupled Size Velocity Moments method
CV Control Volume
DG Discontinuous Galerkin scheme
DiTurBCDownstream In�ow Turbulent Boundary Condition
DNS Direct Numerical Simulation
DoF Degrees of Freedom
DPS Discrete Particle Simulation
DQMOMDirect Quadrature Method Of Moment
DSMC Direct Simulation Monte-Carlo method
ENO Essentially non-oscillatory schemes
EQMOMExtended Quadrature Method Of Moment
EMSM Eulerian Multi-Size Moment model
FC-
DFS

Fully controlled deterministic forcing scheme

FD Finite di�erence
FE Finite element
FIM-
UR

Fuel Injection Method by Upstream Reconstruction

FR Flux reconstruction
FV Finite volume
FVKS Finite Volume Kinetic Scheme
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GPBE Generalized Population Balance Equation
GRP Generalized Riemann problem
HIT Homogeneous Isotropic Turbulence
HLL Harten-Lax-van Leer Riemann solver
HPC High Performance Computing
Iso Isotropic Gaussian closure based model
KBMM Kinetic Based Moment Methods
Lag Lagrangian
LES Large Eddy Simulation
LHDI Lagrangian History Direct Interaction
LHS Left Hand Side
LPP Lean Premixed Prevaporized
LS Level Set
MAC Marker-And-Cell
MCE Mean Central (or internal) energy
MC Monotonized central-di�erence limiter, also called double minmod
MF Multi-Fluid method
MG Multi-Gaussian closure based model
MinmodMinimum-modulus limiter
MK MonoKinetic closure based model
MOMICMethod Of Moment with Interpolative Closure
MTE Mean Total energy
MUSES3Dthe three dimensional MUlti-�uid Solver for Eulerian Spray
MUSCLMonotone Upstream Scheme for Conservation Laws
NDF Number Density Function
ODE Ordinary Di�erential Equations
OSM One Size Moment multi-�uid method
PBE Population Balance Equation
PDE Partial Di�erential Equations
PDF Probability Density Function
PGD Pressureless Gas Dynamics system
PIC Particle-in-cell
PR-
DNS

Particle Resolved Direct Numerical Simulation

PTC Particle Trajectory Crossing
PVC Precessing Vortex Core
QMOM Quadrature Method Of Moment
RANS Reynolds Averaged Navier Stokes method
RHS Right Hand Side
RKDG Runge-Kutta discontinous Galerkin method
RMS Root Mean Square
RP Riemann problem
RUE Random Uncorrelated Energy
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RUM Random Uncorrelated Motion
SCE Subgrid correlated energy
SP Stochastic Parcel method
SSP Strong Stability Preserving
SUPG Streamline-Upwind Petrov-Galerkin
TKE Turbulent kinetic energy
TSM Two Size Moments multi-�uid method
TTGC Two-Steps Taylor-Galerkin scheme
TVD Total Variation Diminishing
TVB Total Variation Bounded
UCE Uncorrelated central energy of the un�ltered motion
VOF Volume-Of-Fluid
WBE Williams-Boltzmann equation
WENO Weighted essentially non-oscillatory schemes





Introduction

Environmental context and regulations

In the actual global context, air transportation tra�c is constantly increasing,
and its impact on global climate change and pollutant emissions is a major
concern for regulation entities. Even with the emergence of alternatives to
fossil fuel that are still ongoing research topics (bio-fuels, synthetic kerosene,
hydrogen), the liquid fuel combustion is currently the only viable solution for
aircraft engines and their e�ciency as well as their emissions have to be better
controlled. In fact, the Advisory Council for Aviation Research and innovation
in Europe (ACARE) (Darecki et al. 2011) have envisaged the goals of reducing
by respectively 75% and 90% the CO2 and NOx emissions per passenger kilo-
meter based on the ATAG target. These values are being calculated relative to
the emission level of aircraft in year 2000. One of the main milestones towards
this direction as stated by ACARE is the full understanding of the combustion
process and the prediction of emitted species and their concentrations for all
aeronautical engine types, fuel types and engine operating points.

Aeronautical combustion chambers

Figure 1: An example of a gas turbine: the CFM56-7b turbofan single-aisle commer-
cial jet engine. (Adapted from the website of SAFRAN)

In order to understand the parameters in�uencing the general performance of
aeronautical engines, a brief summary of the thermodynamics of this problem
is presented. The typical con�guration of an aircraft engine is made of three
essential elements, as illustrated in Figure 1:
• a compressor used to increase the pressure of the intake air,

http://www.acare4europe.com/knowledge-and-understanding-aircraft-emissions-1
http://www.safran-aircraft-engines.com/commercial-engines/single-aisle-commercial-jets/cfm56/cfm56-7b
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• a combustor used to burn the mixture of air and fuel and exhaust energetic
burnt gases,
• a turbine used to expand the burnt gases and transform their energy into
mechanical power.

In the ideal case, the compression and expansion are isentropic and the com-
bustion is isobaric: this is called the Brayton cycle that is shown in Figure 2.

The e�ciency of this cycle is ηBr = 1 − (P1/P2)
( γ−1
γ

). This means that for a
given mass �ow rate entering the engine, the output power can be increased by
increasing the compression ratio P2/P1 and thus the inlet temperature of the
turbine.
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Figure 2: Simpli�ed sketch of the thermodynamic cycle of a gas turbine in the case
of the idealized Brayton cycle (Source wikipedia)

Practically, this ideal aerodynamic e�ciency is never attained due to the di�er-
ent kind of losses in the system. The increase of the compression ratio is limited
by the technological constraints such as the thermo-mechanic resistance of the
turbine that limits inlet temperature of the turbine. Moreover, increasing the
temperature may lead to increased pollutant emission such as NOx emissions.
In order to limit the temperature increase while increasing the compression
ratio, engine manufacturers are interested in very lean combustors for which
the burnt gases temperature may be decreased. New burners are designed for
this purpose, such as LPP burners (Lean Premixed Prevaporized) which target
to provide a lean and homogeneous mixture before reaching the �ame zone in
order to limit the generation of NOx by thermal pathway. As a consequence,
extensive studies are required to understand the behavior of these new systems.

Experiments and Simulations

In combustion chambers, complex and intricate physics takes place as illus-
trated in Figure 3. To generate compact �ames, the �ow is generally swirled
(Syred 2006), leading to recirculation zones and hydrodynamics instabilities
such as the Precessing Vortex Core (PVC) that play an important role in the
�ame ignition and stabilization. Moreover, fuel is generally stored in liquid
phase, and injected directly in the combustion chamber to generate a spray
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composed of droplets that will eventually burn. Finally, thermo-acoustics in-
stabilities may also take place and be promoted because of the interaction of
the �ame with the chamber acoustics modes. As a consequence, the �ow cov-
ers a wide range of scales, from the system size of about 10cm to the smallest
droplets below 1µm, and the resulting physics to be investigated involve many
research �eld in a coupled context: aerodynamics, turbulence, two phase �ow,
atomization, combustion...

Figure 3: Complex physics and interactions in the combustion chamber

To understand the physics within the combustion chamber, one can conduct
either experiments or simulations, complemented by theoretical investigations.
In experiments, one might face technical di�culties and challenging experi-
mental environment and conditions such as high temperature and pressure and
complex interactions between the di�erent physical phenomena. In addition,
the similarity between the full realistic scale and the experimental subscale is
not �awless. Due to these possible discrepancies, some physical phenomena
may not occur in the same regime at the experimental scale as it is in the real-
ity. However, due to the advancements in the experimental diagnostics and the
post processing techniques, many achievements in this �eld can be found in the
literature (Presser et al. 1993; Sommerfeld and Qiu 1998; Sornek and Hirano
2000; Renaud 2015; Itani et al. 2015; Tachibana et al. 2015; O'Connor et al.
2016).
On the other hand, simulations present some advantages compared to experi-
ments. First, simulations are rich in information, which is directly accessible,
whereas experimental data can be limited by the post processing techniques.
Second, it could be simpler to carry parametric geometrical studies and opti-
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mizations in the combustion domain through simulations. This is an important
matter in the industrial �eld for the design of new components. As a conse-
quence the numerical simulations are considered to be of paramount importance
for the research and development of two phase combustion. However, numerical
simulations might be misleading since the results are governed by the models
and the numerical methods used. For this reason, great attention must be given
to the choice of the modeling approach and the underlying numerical methods
in order to guarantee reliable and predictive physical results.
In summary, experiments and numerical simulations both have their advantages
and limitations. These two approaches are complementary. Any improvement
of either approach will lead to a better comparison between the two and a bet-
ter understanding of the combustion chamber behavior. In this work, we are
focusing our attention on the development of simulation techniques.

Modeling frameworks

Because of the multi-scale character of the combustion chamber, solving for all
the scales of the �ow through Direct Numerical Simulation (DNS) is unreach-
able. To circumvent this issue, modeling approaches have been proposed:
• the Reynolds Averaged Navier Stokes (RANS) methods were designed,
see Pope (2000), in which only an ensemble-averaged mean �ow is solved.
This method is still widely used in industry because of its low cost, but
cannot predict unsteady phenomena such as instabilities.
• the Large Eddy Simulation (LES, Smagorinsky (1963); Sagaut (1998)):
this strategy consists in �ltering the equations to be solved in order to
limit the level of details that have to be reproduced. This leads to the
resolution of the large energetics structure while the small dissipative ones
are modeled. This method has gained a lot of interest for academic and
industrial studies because of the rise of the computational resources, as
it requires to solve more information than for RANS simulations.

Nowadays, considering the new regulations and the new design problems, which
require the understanding of highly unsteady behaviors, LES seems to be the
best choice. However, in the context of the combustion process in turbulent
regimes, modeling challenges are faced in LES.

Liquid fuel injection and atomization

Despite the fact that a lot of studies have been performed in purely gaseous
systems, in reality, liquid fuel is injected directly in the combustion chamber.
As a consequence the physics of injection is an important issue. Once injected
in the combustion chamber, the liquid faces primary atomization and is broken
into clusters, ligaments and droplets of large sizes. This atomization takes place
since the external stresses on the liquid sheet predominate the surface tension
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that provides stability. The two phases at this stage are known as separated
phase. The two phases interact with each other causing the division of the
ligaments into smaller droplets that form the disperse phase. The separated
phase as well as the disperse phase are illustrated in Figure 4.

Figure 4: Injected fuel topology: separated phase and disperse phase

The resolution of the separated and disperse phase though sharp interface cap-
turing methods lead to accurate description and it is used in various academic
con�gurations (Hirt et al. 1974; Popinet and Zaleski 1994; Aulisa et al. 2003;
Tanguy and Berlemont 2005; Menard et al. 2007; Fuster et al. 2009; Her-
rmann 2008; Desjardins et al. 2013; le Chenadec and Pitsch 2013; Arienti and
Sussman 2014) especially for the description of the separated phase. However,
this approach does not describe e�ciently the disperse phase. In addition, it is
very expensive and cannot be used for aircraft engines applications.
Another choice is to use reduced order models for the separated phase based
on di�use interface capturing approaches (Baer and Nunziato 1986; Drew and
Passman 1999; Le Martelot et al. 2014; Saeedipour and Priker 2016; Vu et al.
2016; Drui et al. 2016). This approach is e�cient for the separated phase but
it cannot describe the disperse phase. As a consequence, the disperse phase is
treated with another approach. In this case, the simulation of the full liquid
jet faces the challenge of the accurate description of the transition between the
separated phase regime to the spray regime. This on-going research can be
found in the work of Reveillon et al. (2013); Le Touze (2015); Zuzio et al.
(2016); Drui et al. (2016); Essadki et al. (2016).

However, up to now, there is no available approach able to simulate the two
phase �ow with the high Reynolds and Weber numbers faced in real applica-
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tions with an accurate transition between the separated regime and the spray
regime. A practical solution used to simulate realistic burners with liquid fuel
injection consists in using reduced models for the injection boundary conditions
(Martinez et al. 2010; Sanjosé et al. 2011) in order to start the simulation di-
rectly with the spray without having to simulate the separated phases and the
atomization. For this reason, the focus of this thesis is on the disperse phase
regime.

Turbulent spray combustion

Once the liquid fuel is atomized into droplets, the resulting spray will feed the
combustion process through its evaporation into gaseous fuel. In the case of
the aeronautical combustors, the combustion takes place mainly in the diluted
regime far from the atomization region, where the liquid volume fraction is
below 1%. Thus, studying the combustion of a spray of droplets is justi�ed.
In the literature, single-phase turbulent combustion has been widely studied
using simulation and experiments (Borghi 1988; Vervisch et al. 2004; Boudier
et al. 2007; Cant 2011; Vervisch and Poinsot 1998; Veynante and Vervisch
2002; Vervisch et al. 2004; Poinsot et al. 1993; Poinsot and Veynante 2005)
and has led to the development of many LES strategies, handling the chemistry
as well as its interaction with turbulence, see Fiorina et al. (2015) and refer-
ences therein. At the end, turbulent gaseous combustion has reached a level of
maturity that makes possible the simulations of complex con�gurations. LES
was used for example for spark ignition engines (Richard 2005), combustion
instabilities (Selle et al. 2006; Martin et al. 2006; Franzelli et al. 2012) and
ignition of annular multiple-injector combustor (Philip et al. 2015). Many
other references can be found in this �eld (Pitsch and Duchamp de Lageneste
2003; Pierce and Moin 2004; Pitsch 2006). For more information one can refer
to the review of Gicquel et al. (2012).
Compared to gaseous combustion, two-phase turbulent combustion is a recent
topic, which has received more interest in the last decade because of the use of
direct fuel injection in combustion chambers. Because of the presence of spray,
the overall physics may be modi�ed and a fundamental understanding of the
underlying phenomena is still required (Sirignano 2010; Jenny et al. 2012).
Even in laminar conditions, additional physics has to be taken into account in
order to re�ect the impact of the spray (Fujita et al. 2013; Watanabe et al.
2007; Martinez-Ruiz et al. 2013; Sanchez et al. 2014; Massot et al. 1998; Lau-
rent and Massot 2001). When it comes to interaction with vortices, Franzelli
et al. (2016) demonstrated that the presence of the spray may modify the in-
teraction regimes, leading to additional phenomena to be taken into account
in LES models. It also clearly appears that the spray-turbulence interaction
plays an important role in two-phase combustion, as it generates spatial in-
homogeneities that are not present in gaseous combustion, and shall strongly
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a�ect the combustion process, see Vié et al. (2014). Moreover, in spray com-
bustion, isolated combustion may occur depending on the droplet interspace,
and additional modeling is required to capture such regimes (Paulhiac 2015).
Despite the lack of complete modeling framework, reactive spray simulations of
complex con�gurations are performed, see Hannebique et al. (2013); Franzelli
et al. (2013); Cheneau et al. (2015); Jones et al. (2014); Guedot (2015) for
example, but generally lacks models for the interactions of the spray in the
turbulent combustion process.
At this point, it is clear that it is mandatory to have an accurate description
of the spray phase before going to spray combustion. Actually, one of the main
issue is about the spray-turbulence interaction, which is the objective of this
work. Because of the strong scale separation between the droplet size (up to
100 µm) and the �ame thickness (about 1 mm), the spray description may
not change in reactive conditions, thus justifying a separate study on the spray
itself.

Modelling Challenges

From the above discussion, �ve main challenging topics should be treated in a
sequential manner, in order to reach an accurate and robust simulation of the
spray in the combustion chamber:
(C1) The level of description: many approaches exist in the literature and one

should be careful while choosing one of these descriptions to be able to
reproduce the right physics at a minimal cost for the industrial applica-
tion.

(C2) The modeling assumptions: if closures are needed in this model, then the
suitable closure must be chosen in an attempt to recover the information
lost in the reduced modeling process.

(C3) The coupling with the gas phase: the selected model should be easily
coupled to the gas. In order to simulate the interaction between the
two phases, and thus the turbulence/droplets interactions, the coupling
terms should be properly closed.

(C4) The description of the unresolved scales: depending on how the turbu-
lent gas phase is simulated, particular attention need to be paid to have
the same level of model reduction for the disperse phase and to be precise
on the coupling of the two phases in this case. For RANS, the turbulent
velocity correlations between the two phases should be correctly modeled
and for LES the appropriate subgrid term must be applied. Since the
LES is chosen here, the second challenge is faced.

(C5) The numerical resolution: once the modeling process is �nalized, the re-
sulting systems of equations should be solved, in both DNS and LES, to
obtain accurate and robust results.

In the following, we navigate through theses challenges, identifying the choices
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made in this work in order to delineate the objectives and contributions of this
thesis.

Level of description (C1)

Figure 5: Hierarchy of scales from microscopic (left), mesoscopic (center) to macro-
scopic (right)

The level of description de�nes the details of the �ow �eld that will be solved
in both phases, see Figure 5. In fact, solving all the physics would require the
solution of the �ow inside the droplet, outside the droplet and at the inter-
face level. Such a simulation corresponds to the microscopic level and is called
droplet-resolved direct numerical simulation. In the context of solid particles,
the problem is simpli�ed by imposing boundary conditions at the presumed
solid surface of each particles (Xu and Subramaniam 2010; Tryggvason et al.
2010; Subramaniam 2013). Such level of description is very rich in information
for each particle but is therefore computationally very expensive and its us-
age is limited to the academic �eld (Tenneti and Subramaniam 2014; Brändle
De Motta et al. 2016; Rosso et al. 2016; Richter et al. 2016), for instance to
extract closure laws for the velocity �uctuations, drag and heat transfer (Ten-
neti et al. 2011; Tenneti and Subramaniam 2014).
In aeronautical burners, the microscopic level of description is indeed unreach-
able because of the number of droplets involved. However, a point-particle
assumption is generally made, for which the details of the �ow at the droplet
scale are embedded into mesoscopic closures such as Stokes drag law1. Such
a resolution relies on a scale separation and ends up to be a mesoscopic de-
scription of the disperse phase. The �rst method in this level is the Discrete
Particle Simulation (DPS), where the droplets are tracked (Riley and Paterson
1974). The accuracy of this method is directly dependant on the accuracy of
the mesoscopic closures, but ends up being highly intuitive and easy to im-

1The point-particle assumption is justi�ed since the microscopic interactions are dissipated
by the viscous e�ects and do not a�ect the mesoscopic behavior.
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plement, at least in sequential codes. For this reason, this method is highly
used in the literature whether for example for solid particle dispersion (Squires
and Eaton 1991b; Squires and Eaton 1991a; Elghobashi and Truesdell 1992) or
for droplet in the combustion applications (Mashayek et al. 1997; Miller and
Bellan 2000; Reveillon and Vervish 2005; Fréret et al. 2012). The challenges
of this method are its coupling with the Eulerian description of the gas and its
parallel implementation. In addition, it gives only one realization of the �ow
and is therefore not practical when one is interested in the knowledge of global
statistical variables, except in some academic con�gurations where ensemble
averaging can be replaced by another averaging, such as time averaging thanks
to ergodicity.

Still at the mesoscopic level, another approach consists in using a statistical
averaging method. This is the most suitable approach to describe the disperse
phase when a very high number of droplets constitutes the spray in the combus-
tion chamber. This statistical method uses the Williams-Boltzmann equation
(WBE) on the Number Density Function (NDF) of the disperse phase in order
to statistically describe the dynamics of the disperse phase. Solving this WBE
should be performed using Lagrangian methods such as the direct simulation
Monte-Carlo method (DSMC) (Bird 1994) that approximates the NDF by a
sample of discrete statistical particles representing a droplet, or the Stochastic
Parcel method (Crowe and Willoughby 1977; O'Rourke 1981) in which a group
of several droplets assumed to have identical properties are represented by a
numerical particle. However these methods face the same issue as the DPS
concerning the coupling with the gas phase, and may also be highly expensive
to reach statistical convergence.
The �nal level of description is the macroscopic level: instead of solving indi-
vidual particles (physical or statistical), one can look at integrated quantities,
called moments, such as the concentration of droplets or their overall momen-
tum. Such quantities can be obtained through the integration of the WBE
in the phase space, and lead to conservation equations on the moments. This
method called Eulerian Method of Moments presents a suitable choice and can
be easily coupled with the gas phase since they are both continuous descriptions.
It can be also e�ciently parallelized and it is naturally statistical converged.
For this reason, the present work focuses on the development of this method.

Modeling assumptions (C2)

Even if the moment methods present advantages over the Lagrangian methods,
they demand additional modeling e�ort because of the integration in the phase
space of the WBE, which implies a loss of information. To recover part of this
information, one has to use closure assumptions that will drive the accuracy of
the method. Two of the main issues concern the description of size dispersion
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(polydispersity) and velocity dispersion (polykineticity):
• Polydispersity: because the injection systems generate droplets of var-
ious sizes called polydisperse, this issue is of paramount importance in
aeronautical engines. Various solutions were developed in the literature,
which can be based on the discretization of the phase space into sections
(Laurent and Massot 2001; de Chaisemartin 2009), on quadrature ap-
proximations (QMOM, DQMOM, McGraw (1997); Fox et al. (2008)), or
on continuous approximation of the NDF through the use of high order
moments and entropy maximization (Massot et al. 2010; Kah 2010; Emre
2014; Vié et al. 2013; Essadki et al. 2016; Essadki et al. 2016). Despite
the great e�ciency of the latter type, in the present work, we focus on
multi-�uid methods (MF) which have a great �exibility when it comes to
coupling with polykinetic methods, such as in Vié et al. (2013) and can
even be extended to high order moments in the sections.
• Polykineticity: this issue is related to the inertia of the droplets. Droplets
with low inertia will have a velocity close to the one of the carrier phase,
and droplets in the same vicinity will have the same velocity. On the other
hand, droplet with moderate to high inertia will not follow the gas phase
and will generate a complex weak correlation with the carrier velocity.
The dynamics of the moderately inertial to inertial particles is governed
by the velocity dispersion (Vié et al. 2015) also called random uncorre-
lated motion (RUM) (Février et al. 2005) or granular temperature (Fox
2014). In the literature, Eulerian polykinetic models are divided into two
main categories according to the closure methodology: algebraic closure
based moment methods (ACBMM) for which the moment equations are
closed based on assumptions on the moments (Février et al. 2005; Masi
2010), and kinetic based moment methods (KBMM) for which the mo-
ment equations are closed by using assumptions on the underlying NDF
itself (Laurent et al. 2012). The former strategy has already been used
to performed simulations in complex aeronautical con�gurations (Jaegle
2009; Sanjosé et al. 2011; Vié et al. 2013), but su�ers from realizability2

issues (Sierra 2012) that prevents from the design of stable and accurate
schemes. On the other hand, KBMM can lead to hyperbolic systems of
equations that are a preferable basis for the design of numerical scheme,
which leads this work to be dedicated to this family of methods.

At the end, in the present work, we will investigate a modeling strategy that
is based on KBMM closures for the polykinetic character of the spray and
multi-�uid methods in order to capture polydispersity.

Coupling with the gas phase (C3)

The in�uence of the spray on the gas phase may be of great importance in
several applications, especially when the spray is dense and with high mass

2The realizability is the ability of associating a positive NDF with every set of moments.
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loading (Elghobashi 1991). It can modify the mass and momentum of the gas.
In the combustion chamber, the two-way coupling is necessary in order to take
into account the evaporation of the fuel droplets into fuel vapor before mixing
with the oxidizer, igniting and burning.
For the Eulerian spray descriptions, this two-way coupling (Doisneau et al.
2014; Emre 2014) can be taken into account more easily than for the Lagrangian
description because spray and carrier phase description share the same Eulerian
framework (Boivin et al. 1998; Capecelatro and Desjardins 2013a; Zamansky
et al. 2014).
In fact, for DNS simulation, the gas in�uence on the spray is taken into account
through the terms of acceleration, rate of change of the droplets size and rate of
change of droplet temperature in the kinetic equation. These terms depend on
both gas and liquid local properties. According to the degree of complexity of
the modeling of these terms, their evaluation might add a degree of complexity
to the method.
The in�uence of the spray on the gas is taken into account by source terms
in the gas phase equations modeling the exchange of mass, momentum and
energy.
In the combustion chamber, the mass, momentum and energy exchanges be-
tween the two phases are characterized by very rapid variations. This means
that numerical e�orts are needed in order to not be limited by these small char-
acteristic times. This can be done by using a special splitting technique that
can be found in Descombes et al. (2016); Duarte et al. (2013); Doisneau et al.
(2014) and the references therein.

Description of the unresolved scales (C4)

Since the spray is turbulent and contains a wide range of length scales, we
are interested in the LES for the Eulerian description of this spray. In the
literature, two classes of LES strategies have been proposed depending on the
�ltering strategy:
• the classical approach where the LES �lter is applied at the macroscopic
level by �ltering directly the moment equations (Shotorban and Balachan-
dar 2007; Moreau et al. 2010)
• the kinetic approach where the �lter is applied at the mesoscopic kinetic
level (Zaichik et al. 2009; Pandya and Mashayek 2002).

In this thesis, the kinetic approach is preferred since a direct link is kept between
the �ltered kinetic equation and the �nal moment system. This is helpful to
guarantee the realizability conditions on the moments, which is of primary im-
portance for developing accurate, robust and parameter-free numerical schemes.
Following this strategy, the resulting moment equations have to be closed, as
the highest order �uxes are unknown. To do so, we use a KBMM on the �ltered
WBE.
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Numerical resolution (C5)

The realizability of the moment set used to describe the disperse phase in not
enough to guarantee accurate results. Actually, the numerical scheme used to
solve the resulting equations should be realizability-preserving in the sense that
it should respect the constraints coming from the underlying kinetic represen-
tation in the sense that the updated moment set should always be associated
to a non-negative NDF.
In addition, a high order robust numerical method is needed in order to min-
imize the numerical di�usion, which may be of the same order of magnitude
of some underlying physics. In this way the numerical scheme will be able to
capture the �ne structures appearing in the solution and to reproduce the large
variations that might be encountered in the density �eld (going from vacuum
zones to high concentration regions) without inducing spurious oscillations.
To sum up, the numerical scheme should be:
• accurate to be able to reproduce the large variations of the density,
• preserve the realizability in order to maintain a physical sense to the so-
lution. For example, the solution should not include any negative density,
or negative pressure,
• applicable to unstructured mesh computations needed to simulate dis-
perse phase �ows in real con�gurations including complex geometries,
• as cost e�ective as possible, otherwise it would not be suitable for indus-
trial use,
• parameter free: no need for example for arti�cial viscosities to stabilize
the scheme and suppress spurious oscillations that can be generated near
high gradients.

Contributions

In this work, the contributions are of two types. The �rst one concerns the
development of a complete modeling approach.
• Modeling of turbulent sprays: in this work, the Anisotropic Gaussian
(AG) closure suggested in Vié et al. (2015) is investigated. Up to now,
the AG closure had been properly derived and validated in 1D and 2D
cases. In this work, this model is now extended to 3D turbulent cases
and validated using:
� the qualitative results of the number density, velocity and covariance
elements �elds;

� the statistical results evaluated after averaging over the whole phys-
ical domain;

� the results of the PDF of the di�erent quantities studied such as the
number density and the disperse phase Mach number

� the autocorrelation function for the velocity and the number density.
The conducted test case is 3D a forced homogeneous isotropic turbulence
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(HIT) which is a canonical academic case. When it comes to the Stokes
numbers studied, di�erent simulations can be found in the litterature
for these levels of particles inertia whether based on the point-particles
assumption used in this work or based on the fully resolved method by
taking into account the e�ect of the �nite size of the particles. Also various
experimental results were carried out in the litterature for these levels of
particles inertia. A non-exhaustive list of examples of the simulations and
experiments of di�erent particle-laden turbulent is illustrated in Figure 6
and the details of this list can be found in the work of Brändle De Motta
et al. (2016). The simulations conducted in this thesis are added and
depicted by the black squares.

This evaluation on the HIT is considered to be nearly extensive in com-
parison with the literature.
• Extension to polydisperse sprays: the AG model is extended to polydis-
perse sprays based on the Multi-Fluid method. By using a high order
MF, the obtained polydisperse-polykinetic model is of high order in size
and velocity, while keeping the cost a�ordable in comparison with other
quadrature based methods capable of treating the polykineticity more
accurately.
• Large Eddy Simulation formalism: The extension of the AG model to the
LES context is carried out leading to a new fully kinetic based closure
formalism for the LES of spray. By doing so, the link between the �l-
tered kinetic equation and the �ltered moment equation is kept leading
to a realizable model, unlike most of the two phase LES present in the
litterature.

When it comes to the second axis of this thesis, the numerical methods, two
main achievements are ful�lled.
• Development of a new scheme for unstructured grids: of the latest devel-
opments in the �eld of numerical methods, a realizability preserving Dis-
continuous Galerkin scheme is used for the resolution of two models of
the KBMM namely the MK and the isotropic Gaussian one. The DG re-
sults are eventually compared in 1D con�gurations to a third order �nite
element scheme (TTGC) and two second order �nite volumes schemes,
namely the realizable MUSCL/HLL and the �nite volume kinetic scheme.
It is also evaluated and compared on a 2D test case qualitatively and
quantitatively to the Lagrangian results and to the reference simulations
provided by a second order structured MUSCL/HLL. Through these com-
parisons, the DG method is shown to be competitive for the description
of the disperse phase �ow. This scheme stays robust even when facing the
severe singularities created by the models, especially the MK model that
generate dirac δ-shocks at each crossing event. It can accurately repro-
duce the high preferential concentration that characterizes the dynamics
of low inertia particles.
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It is accurate, robust and preserves the realizability and no additional
e�orts are needed for its application on unstructured grid.
• Second order scheme for 3D structured grids computations: the extension
of the MUSCL/HLL scheme for the resolution of the AG system to 3D
is done. It is accurate and realizable and easily parallelized especially on
structured grids. This scheme is implemented in the parallel academic
code MUSES3D.

These contributions were published in three papers and conferences proceedings
along with two articles in preparation:
• Comparison of realizable schemes for the Eulerian simulation of disperse
phase �ows (Sabat et al. 2014) (proceedings of the 7th International Sym-
posium of Finite Volumes for Complex Applications).
• On the development of high order realizable schemes for the Eulerian sim-
ulation of disperse phase �ows: a convex-state preserving Discontinuous
Galerkin method (Sabat et al. 2014) (selected for a special edition from
the 8th International Conference on Multiphase Flow).
• Fully Eulerian simulation of 3D turbulent particle laden �ow based on
the Anisotropic Gaussian Closure (Sabat et al. 2016) (proceedings of the
9th International Conference on Multiphase Flow).
• Statistical description of turbulent particle-laden �ows in the very dilute
regime using the Anisotropic Gaussian Moment Method (in preparation)
(Sabat et al. 2018).

In addition, the results of this work were presented in several international
conferences and seminars, where the presenter is underlined in the following:
• Sabat, M., Larat, A., Vié, A.,Massot, M.. Toward modeling and LES
of droplet-gas �ows with a Kinetic-Based Moment Method (KBMM) ap-
proach. Annual Meeting of the Centre de Recherche sur la Combustion
Turbulente, Chatenay-Malabry, France, Mars 2014.
• Sabat, M., Vié, A., Larat, A., Doisneau, F., Chalons, C., Massot, M.. On
DNS and LES of turbulent particle-laden �ows: Kinetic-Based Moment
Methods based on the Anisotropic Gaussian Closure. 2nd International
Conference on Numerical Methods in Multiphase Flows, Darmstadt, Ger-
many, July 2014.
• Sabat, M., Vié, A., Larat, A., Doisneau, F., Chalons, C., Massot, M..
Kinetic-Based Moment Methods for DNS and LES of particle-laden �ows:
Anisotropic Gaussian Closure. American Physical Society, 67th Annual
Meeting of the Division of Fluid Dynamics, San Francisco, USA, Novem-
ber 2014.
• Larat, A., Sabat, M., Vié, A., Chalons, C., Massot, M.. Development
of high order numerical methods for particle-laden �ows on unstructured
grids: A realizability-preserving Discontinuous Galerkin method for mod-
erate Stokes number �ows. American Physical Society, 67th Annual Meet-
ing of the Division of Fluid Dynamics, San Francisco, USA, November
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2014.
• Sabat, M., Vié, A., Larat, A., Massot, M.. Toward the realizable Large
Eddy Simulation of spray: the Anisotropic Gaussian Eulerian model. 15th

International Conference on Numerical Combustion, Avignon, France,
April 2015.
• Sabat, M., Vié, A., Larat, A., Massot, M.. Eulerian simulation of droplet-
laden �ows. Poster session at: Séminaire de mécanique des �uides numérique,
Institut Henri Poincaré, Paris, France, February 2015.
• Sabat, M., Vié, A., Larat, A., Massot, M.. Kinetic-Based Moment Meth-
ods for the Eulerian Large Eddy Simulation of fuel sprays: the Anisotropic
Gaussian model. 2nd Frontiers in Computational Physics Conference: En-
ergy Sciences, Zurikh, Switzerland, June 2015.
• Sabat, M., Vié, A., Larat, A., Massot, M.. A Kinetic-Based Moment
Method for DNS and LES of turbulent particle-laden �ows. Turbulence
and Interactions, Cargèse, France, November 2015.
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Organization of the manuscript

The manuscript is organized in four parts that are the DNS modeling of the
disperse phase, the numerical methods, the computational dynamics of the par-
ticle laden �ows and the �rst step toward LES modeling of the disperse phase.

In Part I, the DNS modeling of the disperse phase is presented and the part
is divided into three chapters.
• The general context of the study is �rst de�ned in Chapter 1 along with
the physics and speci�cities of the disperse phase needed to be modeled
and the underlying assumptions. Then, the various models for the spray
are presented with their advantages and disadvantages. The challenges, in
the selected Eulerian moment method, are afterwards nominated. Finally,
the classi�cation of the presented modeling approaches is added.
• The polykinetic moment methods are the subject of Chapter 2 where the
method of moment is presented in an attempt to describe velocity dis-
persion with two families of closure the ACBMM and the KBMM. The
second is detailed with di�erent closures in the hierarchy and a compar-
ison of these closures on a theoretical two crossing jet con�guration is
depicted.
• Chapter 3 discusses the existing methods that handles polydispersion in
size namely the size sampling method, the pivot method, the method of
moments with interpolative closure, the multi-�uid method, the quadrature-
based moment method and the Eulerian multi-size moment model. The
focus is brought one the multi-�uid method since it describes accurately
the evaporating sprays. The extension of this method to treat polykinetic-
ity based on the Anisotropic Gaussian closure for the velocity distribution
is introduced for one size moment and two size moments.

Part II discusses the numerical schemes used for the resolution of the resulting
hyperbolic (or weakly hyperbolic) system of equation.
• In chapter 4, an overview of numerical methods is presented including
Finite Di�erence, Finite Volumes, continuous and Discontinuous Finite
Elements. A brief non-exhaustive summary of the existing academic,
semi-industrial and industrial codes is exhibited. The meshing types and
classi�cation is brie�y recalled for the academic and industrial con�gura-
tions. Finally, in this chapter the systems of conservation laws to solve
is presented and characterized along with the objectives that govern the
selection of a given numerical scheme.
• The numerical schemes are presented in Chapter 5. These schemes are
the Two-step Taylor Galerkin scheme (TTGC) which is the most used
scheme in AVBP code, along with the three realizability-preserving nu-
merical schemes namely: �nite volume kinetic scheme, �nite volume
MUSCL/HLL scheme and a convex state preserving Runge-Kutta dis-
continuous Galerkin method (RKDG).
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• The evaluation of these numerical schemes is carried out in Chapter 6 on
1D and 2D test cases.

In Part III, the AG model is evaluated on 3D a turbulent test case.
• The test case is depicted in Chapter 7: a 3D Forced Homogeneous Isotropic
Turbulence, and initial investigations using the Lagrangian reference method
are presented.
• In Chapter 8, comparison with the monokinetic model and the Lagrangian
results are performed. This comparison is carried out for a range of Stokes
numbers going from particles of very small inertia to high inertia. The
qualitative results such as the number density �eld, the velocity mag-
nitude and the elements of the covariant matrix are put forward. Then,
quantitative mean statistical results are assessed, namely the segregation,
the mean total energy and the mean internal energy.
• The distribution of the number density, the velocity, the pressure and the
disperse phase Mach number are presented in Chapter 9 along with the
number density autocorrelation and the longitudinal velocity autocorrela-
tion. Based on the autocorrelations, a characteristic length of the clusters
and a longitudinal inertial length scale are calculated and assessed for the
di�erent Stokes numbers.

Part IV is dedicated to LES.
• The di�erent LES modeling strategies for the disperse phase are reviewed
in Chapter 10. These models are then classi�ed and presented along with
the proposed fully kinetic LES formalism (AG LES).
• The sensitivity of the AG LES model to subgrid closures parameters is
presented through preliminary results in Chapter 11.

Finally, the general conclusions and prospects of the overall work are an-
nounced.



Part I

DNS modeling of the disperse
phase





This part deals with the modeling of the disperse phase in the context
of DNS. The term DNS in this case does not refer to the level of de-
tails that one can reach with the disperse phase modeling but to the level
of description of the carrier phase coupled to this disperse phase. The
physics of the injected liquid fuel and more speci�cally of the disperse
phase is introduced in Chapter 1. In addition, the modeling strategies
are presented for the di�erent levels of description of the disperse phase
from the microscopic to the macroscopic ones. The focus is put on the
Eulerian method of moments along with the detailed treatement of two
challenges, namely modeling polykineticity and polydispersity. The dif-
ferent Eulerian strategies for the treatement of the dispersion in velocity
and size are then presented in chapters 2 and 3 respectively. First, in
a monodisperse context, the available polykinetic approaches found in
the litterature are brie�y introduced. These models belong to two fami-
lies: Algebraic Closure Based Moment Methods (ACBMM) and Kinetic
Based Moment Methods (KBMM). The focus in Chapter 2 is on the
Kinetic Based Moment Methods for being realizable and leading to well
posed systems of equations. From this family, the Anisotropic Gaus-
sian model is chosen as a compromise between its ability to statistically
capture the velocity dispersion and the cost of the method compared to
the higher order polykinetic methods. Second, the di�erent strategies
to account for polydispersion in a monokinetic context are presented in
Chapter 3, namely the sampling method, the pivot method, the method
of moments with interpolative closure, the multi-�uid (MF) method, the
quadrature-based moment method and the eulerian multi-size moment
model. Finally, the extension of the classical MF method and the high
order MF method to statistically treat the velocity dispersion is intro-
duced based on the AG model.
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Chapter 1

Two-phase �ow modeling

In this chapter the physics of the injected liquid fuel is presented along
with the various existing models for the disperse phase dynamics. These
strategies range from the microscopic to the macroscopic level of de-
scription. Since the microscopic resolution is very expensive and is not
suitable for realistic con�gurations, a mesoscopic point of view is rather
considered. This mesoscopic level is obtained through the Williams-
Boltzmann equation (WBE) that gives the evolution of the statistical
description of the spray number density function. This description is
based on a point-particle assumption. To solve the resulting WBE, two
families of approaches can be used the Lagrangian and the Eulerian de-
scription. These two descriptions are presented with a focus on the
Eulerian method since it is chosen in this work for its ease of cou-
pling with the carrier phase, its e�ciency in parallel computing and
its intrinsic statistical convergence. The main two di�culties for this
Eulerian method are also depicted, namely to account for polykineticity
and polydispersity.

1.1 Physics and scales of the injected liquid fuel

The two phase combustion depends on the distribution of the fuel vapor result-
ing from the liquid phase evaporation and therefore depends on the dynamics
of the liquid phase, see Figure 1.1. In fact, due to its interaction with the gas
phase present in the combustion chamber, the liquid core injected is then broken
up into clusters, ligaments and droplets of large size. This is called the primary
atomization. The two phases at this stage are known as separated phases. The
resulting discontinuous liquid phase interacts with the gas phase, causing the
division of the ligaments into smaller droplets that form the disperse phase or
spray. This is the secondary atomization.
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Figure 1.1: Primary atomization of the fuel injected in the combustion chamber (navy
blue), the secondary atomization (light blue), the fuel vapor (orange) and �ame front
(velvet red)

The atomization is essential since the �ammable fuel in its liquid state will not
burn, and ignition can only happen once the liquid core has been atomized into
droplets and evaporated. The topology and characteristic of the spray depends
on many parameters such as the type of the injector and its geometry, the bulk
liquid velocity, the turbulence level, the injection pressure and the properties
of the carrier phase.
There exists many types of injectors such as the rotary atomizers, the pressure
atomizers and the airblast atomizers (Lefebvre 1989).
• In the rotary atomizers the liquid jet is forced into a rotating device
that governs the size of the droplets. They can generate very �ne sprays
and they are relatively cheap. However, they lead to poor high-altitude
relighting conditions.
• The pressure swirl atomizers convert the pressure into kinetic energy and
thus lead to a conical spray with high relative velocity between the fuel
and the carrier phase.
• The airblast atomizers generate an accelerated air �ow parallel to the fuel
injection. This creates a shear that helps atomizing the liquid jet. It is
best suited when having a high-speed air�ow to generate a spray of low
relative speed.

In the aeronautical combustors, both airblast and pressure swirl atomizers can
be found but the mostly used is the pressure swirl atomizer.
As an example, for air assisted atomization, the in�uence of the dynamic forces
is depicted through the increase of the aerodynamic Weber number and decrease
of Ohnesorge number in Figure 1.2. The Weber number (Weber 1931) is the
ratio of the dynamic forces over the surface ones, de�ned as:

We =
ρgX(|

−→
Ul −

−→
Ug)|2

σl,g
, (1.1)

where X is a characteristic length of the interface, ρg is the gas density, (
−→
Ul −
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−→
Ug) is the drift velocity between the two phases and σl,g is the liquid surface
tension. Its gives a degree of the external stresses acting on the droplet or the
liquid column to the stability of the droplet ensured by the surface tension.
The Ohnesorge number (Ohnesorge 1936) is the ratio of the viscous forces to
surface tension and inertial forces:

Oh =
µl√
ρlσl,gX

, (1.2)

where ρl is the liquid fuel density and µl is the liquid fuel dynamic viscosity.
High Oh indicates that liquid is too viscous to atomize properly. And low Oh
means that multiple atomization can occur (McKinley and Renardy 2011).

Figure 1.2: In�uence of the drift velocity on the atomization

For the liquid fuel used in aeronautical burners, the Ohnesorge number is small:
Oh < 0.1 (Renaud 2015). The choice of such a liquid is very important in order
to have a compact atomization process, reduce the region of separated phases
and therefore to be able to ignite the spray at a relatively short distance from
the injector.
With the pressure swirl and airblast injectors, near the injector, We is high
leading to primary atomization. The resulting spray far from the injector is
characterized by a moderate We.
Based on these dimensionless numbers, we can assume that in the aeronautical
combustion chamber the disperse phase is predominant, it contains droplets of
various sizes that are quasi spherical. This assumption was validated through
experiments on several test rig of aeronautical-type spray burners. For exam-
ple, the experimental results on MERCATO showed that the separated phase
is con�ned to the immediate vicinity of the injector, namely at 6 mm from
the atomizer. After this distance, only spherical dispersed droplets of fuel of
di�erent sizes were observed (Garcia-Rosa 2008).
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1.1.1 Modeling levels and related numerical strategies

The injection and primary atomization can be either solved through the sim-
ulation of the separated phases or modeled through physics-based and/or geo-
metrical based assumptions.
The modeling and simulation of the separated phases that is shown in navy blue
in Figure 1.1 is based on the resolution of two separated set of equations for the
non-coexisting phases. These sets of the local instantaneous equations can be
directly solved in the context of DNS. The position of the interface and asso-
ciated discontinuous properties across the interface must be precisely solved to
impose satisfactory boundary conditions for both �uid domains. The resolution
of this interface can be done using Lagrangian methods, such as front tracking
(Hirt et al. 1974; Popinet and Zaleski 1994) and marker-and-cell (MAC) (Har-
low and Welch 1965), or Eulerian methods based on interface capturing and
reconstruction, such as level set (LS) (Osher and Fedkiw 2001; Herrmann 2005;
Tanguy and Berlemont 2005; Arienti and Sussman 2014), volume-of-�uid VOF
(Hirt and Nichols 1981; Aulisa et al. 2003; Fuster et al. 2009; Herrmann 2008)
and hybrid methods VOF/LS (Vu et al. 2016; Menard et al. 2007; Shinjo and
Umemura 2010; Shinjo and Umemura 2011).
These techniques have been improved through the years (Popinet and Zaleski
1994; Desjardins et al. 2013; le Chenadec and Pitsch 2013). In addition, re-
duced order models were used for the modeling of the di�use interface such as
averaging process (Drew and Passman 1999). This is done to decrease the cost
of these methods (Pai and Subramaniam 2012). In this case, the interface is
treated as a mixing zone since at the same macroscopic position, both of the
phases coexist and each occupies a fraction of the volume. Baer and Nunzi-
ato (1986) derived models based on �uid mechanics and thermodynamics of
reversible processes. Another strategy is based on the principle of least action
(Drui et al. 2016). However, these models cannot predict precisely the atom-
ization process. To avoid this limitation, a transport equation for interface area
density can be added (Vallet et al. 2001; Jay et al. 2006; Lebas et al. 2009),
but the problem of describing the size dispersion of the disperse phase remains
an open problem for these models (Essadki et al. 2016).
When choosing to simulate the liquid jet from the beginning of the injection,
a challenge is faced for the atomization process since one should accurately
describe both the separated phases and the spray. This transition between the
separated phases and the disperse phase is critical, especially when the desired
�nal state is the disperse phase which is the case in the combustion domain
(Emre 2014).
The modeling of this transition is a building block for future complete sim-
ulations. For more information one can refer to the work of Reveillon et al.
(2013); Le Touze (2015); Zuzio et al. (2016). This subject is also an on-going
work by Drui et al. (2016); Essadki et al. (2016).
Since the simulation of the full liquid jet faces many challenges, especially for
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the accurate transition between the separated phases regime and the spray
regime, not all the scales can be simulated in the combustion chamber. The
injection process itself is not simulated with the primary atomization and the
separated phases are not resolved. Based on the conclusion of section 1.1, one
can focus on the description of the disperse phase for predictive simulations in
the combustion chamber.

1.2 Levels of resolution of the disperse phase

1.2.1 Microscopic resolution

The most detailed modeling level is the full direct numerical simulation (DNS),
which provides a model for the dynamics of the interface between the disperse
phase and the continuous phase, as well as the exchanges between these two
phases.
Two big families of models deals with this detailed level of description.
The �rst one is the sharp interface tracking methods that are usually used for
separated phases and was presented in subsection 1.1.1. An example of the
VOF method for DNS of droplet-laden incompressible turbulence is shown in
�gure 1.3(a), illustrating the normalized curvature (colored) and the vorticity
magnitude contours (grey scale) (Baraldi and Ferrante 2012).

(a) DNS of droplet laden decaying
isotropic turbulence by Baraldi and Fer-
rante (2012)

(b) PR-DNS of a dense bidisperse gas-
solid suspension(done by Subramaniam
and Tenneti)

Figure 1.3: Fully resolved simulation examples

The second family is the particle resolved direct numerical simulation where the
exact Navier Stokes equations are solved by fully resolving the particles using
imposed boundary conditions at the surface of each particle (Xu and Subrama-
niam 2010; Tryggvason et al. 2010; Subramaniam 2013). This full resolution at
the microscopic level is very rich in information for each particle but is therefore

http://www.jics.utk.edu/technology/ferrante
http://www.jics.utk.edu/technology/ferrante
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computationally very expensive. In fact, the cost of this method is proportional
to the number of particles. For this reason, its usage is limited to the academic
�eld, but it is helpful to extract closure laws for the velocity �uctuations, the
drag and the heat transfer. For the time being, a limited number of particles
can be simulated with this method. For instance, particle resolved direct nu-
merical simulation (PR-DNS) has been used in the literature to extract closure
laws for drag, velocity �uctuations, and heat transfer for particle laden �ow
(Tenneti et al. 2011; Tenneti and Subramaniam 2014). Another result for a
dense bidisperse gas-solid suspension with a total solid volume fraction of 0.4
and mean slip Reynolds number of 50, performed by Subramaniam et al. is
shown in �gure 1.3(b), where the particles are colored by the magnitude of their
velocity. These approaches are still on going research topic (Brändle De Motta
et al. 2016; Rosso et al. 2016; Richter et al. 2016).
Even if these two families are capable of studying complex detailed phenomena,
their application are limited to speci�c cases where the resolution of the �ow
around the particles is mandatory for capturing the underlying physics. This
is the case for example for the sedimentation and group combustion. However
when the local resolution of the �ow around and inside the droplet or the parti-
cle does not a�ect the physics, a more general level of resolution can be adopted
based on coherent assumptions.

1.2.2 Scales separation

The disperse phase �ows have a multi-scale nature. Several scales can be dis-
tinguished as it was illustrated in Figure 5 of the introduction:
• Microscopic: this level considers the atoms and molecules. But usually
when talking about the microscopic level in the domain of disperse phase
model, one refers to the vision where the particles size de�nes the scale.
The microscopic description is essential when the smallest scales of the
�ow (Kolmogorov length scale) is smaller that the droplet size. In this
case, the �ow around and in the droplet should be resolved in order to
capture all the dynamics. The resolution at this level was presented in
the previous paragraph.
• Mesoscopic: this denotes intermediate scales where the variations of the
�ow are limited. In this case, the level of the resolution of the disperse
phase is reduced; fewer details are resolved in comparison with the micro-
scopic resolution. This level is accessible whenever the local microscopic
interaction of fuel droplets with the surrounding gas is a short-range in-
teraction that is quickly dissipated by viscosity. Practically, this is the
case where the droplets are smaller than the Kolmogorov length scale of
the undisturbed gas �ow. Thus, one can neglect these microscopic in-
teractions. More generally, if the microscopic interaction does not a�ect
the general �ow, the separation of scales is valid. Thus, the droplets are



Part I - DNS modeling of the disperse phase 29

described based on a point-particle assumption by neglecting the volume
that they occupy. The conservation laws of the gas phase can be written
everywhere in the domain.
• Macroscopic: de�ned by the control volume of the combustion cham-
ber and by the macroscopic variables that one need to retrieve. Once
the separation is set between the microscopic and mesoscopic scales, the
mesoscopic equation can then be solved at the mesoscopic level or at the
macroscopic level. The latter can be done by reduced models such as
the two-�uid models already discussed in subsection 1.1.1, or by moment
methods that are the subject of this thesis.

The separation between scales is in�uenced by all the underlying phenomena
that the multiphase �ow faces. For example, the interaction between the parti-
cles and the turbulent eddies generates a separation between the length scales
of the motion of particles in�uenced by the energetic eddies and those in�u-
enced by dissipation. Through the scale separation assumption, the droplet
modeled by a point-particle interacts locally with the gas through exchanges
terms that are assumed to be localized in physical and phase space. These
terms are modeled based on the scale separation by using the models of single
droplet. This approach is valid only if short range interactions occur between
the inclusions (Crowe et al. 1998). Thus, the scale separation assumption is
not valid if rare events condition the observable dynamics (Doisneau 2013).

1.2.3 Boundary conditions

In order to be able to simulate the disperse phase without having the details
of the description of the separated phase and of the transition region between
the separated regime and the disperse phase, boundary conditions should be
imposed at the beginning of the disperse regime. These boundary conditions
chosen for the simulation of the disperse phase play a key role and can a�ect
the type of the obtained disperse phase and, as a result, the dynamics of this
phase. They are obtained based on the inlet conditions of the injector tip.
This is sought as a modeling of the injection system and is devised based on
phenomenological models and appropriate volume balances. Out of the existing
models, we brie�y present hereafter two models:
• The Downstream In�ow Turbulent Boundary Condition (DiTurBC) (Mar-
tinez et al. 2010), which is used to deduce the velocities of gas and liquid,
the volume fraction and the droplet size pro�les on a plane perpendicular
to the spray axis, located downstream from the nozzle exit, at a distance
nearly equal to ten times the exit diameter of the nozzle. This is repre-
sented in Figure 1.4. This is based on a �rst estimate of the properties of
the �ow at the nozzle exit. This model was developed and validated in
the context of 3D simulations of diesel sprays.
• The Fuel Injection Method by Upstream Reconstruction (FIM-UR) (San-
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Figure 1.4: Schematic representation of the DiTurBC model. (Source: Martinez
et al. (2010))

Figure 1.5: Schematic representation of the FIM-UR methodology. (Source: Sanjosé
et al. (2011))

josé et al. 2011) is based on an autosimilarity assumption, as illustrated
in Figure 1.5 (Martinez et al. 2010). It was initially designed for injection
of one size droplets, and extended afterward to account for the disper-
sion in size by distributing the liquid volume fraction and droplet number
density over all diameters (Vié et al. 2013).

One of the disadvantages of these models is that they rely on experimental data
to adjust parameters such as the droplet diameters. As a consequence, even if
these models are for now helpful to run computations, a long-term solution is
still needed. This highlights to importance of the on-going work of modeling
the transition between the separated and disperse regimes.
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1.3 Physics of the disperse phase

The dynamics of the disperse phase depends on various phenomena and inter-
actions whether between the droplets themselves or between the droplets and
the carrier phase as it was illustrated in Figure 3 in the introduction. Since the
focus of this thesis is on the spray/turbulence interaction, the other phenomena
will not be taken into account.
Under this assumption, the forces that will de�ne the dynamics of the disperse
phase are the inter-droplets collisions and the drag whose intensities are mea-
sured through respectively two non-dimensional numbers: the Knudsen number
(Kn) and the Stokes number (St).

1.3.1 Knudsen number

The Knudsen number depicts an estimate of the relative strength of the droplet-
droplet collisions compared to the free transport or streaming operator (Struchtrup
2005). It is the ratio of the mean free path of the droplets λ0 to a representative
length scale of the �ow L0:

Kn =
λ0

L0
. (1.3)

For dense spray, the Knudsen number is small and the inter-droplet collisions
are signi�cant. In this case, the velocity relaxes toward an hydrodynamic equi-
librium (such as the Maxwell-Boltzmann distribution for the local thermody-
namical equilibrium in the kinetic theory of gas).
On the other hand, for dilute spray, the collision rate is negligible and does
not a�ect the �ow dynamics. Therefore, the Knudsen number is high and the
underlying physics is more complex.
A dilute spray is studied in this thesis, thus the case of in�nite Kn is chosen all
along this thesis. It is essential to note that this collisionless condition is not
by any means imposed by the modeling approach and it does not present any
limitation of the models presented in this work.
A review of the collisional regimes can be found for example in Crowe et al.
(1998); Sirignano (1999).

1.3.2 Stokes number

The Stokes number quanti�es the intensity of the droplets inertia. It is the ratio
of the droplets relaxation time τp to a characteristic time scale of the carrier
�ow τG:

St =
τp
τG
. (1.4)

This number is a good indicator for the e�ect of droplets inertia (Wells and
Stock 1983; Maxey and Riley 1983) in a way that di�erent regimes for the
droplets advection can be distinguished according to the various levels of St.
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1.3.2.1 Size polydispersion

The particles in the disperse phase can have di�erent sizes. This size dispersion
is called polydispersity in opposition with monodispersity, where only one size
is treated.
Since the mass, momentum and heat exchanges between the disperse and the
carrier phase depends on the size, it is important to correctly model the polydis-
persion in order to be able to capture the size-conditioned underlying physics.
In the literature, many references study the general behavior of the disperse
phase with a monodisperse model based on an average size. One of the most
used choices is the Sauter Mean Diameter. However, this assumption may
be very limiting when size-coupling is important and the particle response is
non-linear and when the polydispersity highly a�ect the macroscopic physical
behavior. This is for example the case for the cold �ow of MERCATO, the
aeronautical con�guration test rig of ONERA, within which Vié et al. (2013)
and Senoner et al. (2009) presented the in�uence of the polydispersion on the
evaporation time, the mean and RMS properties of the disperse phase and the
spatial dispersion induced by the size conditioned dynamics. One of the inter-
esting results in this work is the comparison of the vapor fuel mass fraction
using a monodisperse model and a polydisperse one as seen in Figure 1.6.

Figure 1.6: Comparison of the fuel vapor mass fraction on the MERCATO test rig:
monodisperse case (left) and polydisperse case (right) (Source: Vié et al. (2013))

In this work, the inclusion is called particle even if it refers physically to
a droplet since the presented methods can be applied to both particles and
droplets.

1.3.3 E�ect of the turbulence on the disperse phase

The interaction of particles with turbulent eddies leads to di�erent behaviors
according to the particles inertia. This can be seen as a dependence on the
Stokes number, as mentioned earlier in this section.
For small St, the droplets will have nearly the same velocity as the gas. The
neighbouring velocities will not have velocity dispersion since they interact with
the same carrier dynamics (Laurent and Massot 2001; Simonin et al. 2002).
In this case, the interaction between the particles and the turbulent eddies
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Figure 1.7: 2D view of the magnitude of the velocity �eld for the gas phase (left) and
for two cases of disperse phase with low inertial particles (center) and with inertial
particles (right). The disperse phase simulations are done with a Lagrangian method,
the black regions referring to the regions of vacuum. This con�guration is presented
in Part III.

generate small scale preferential concentration e�ects since the compressibility
e�ect brings the particles together to the high strain/low vorticity zones (Maxey
1987).
On the other hand, with increasing St the particles are less in�uenced by the
carrier phase motion. The neighbouring particles might have uncorrelated ve-
locities since they are in�uenced by the memory of their interactions with very
distant, independent carrier turbulence eddies (Doisneau 2013; Février et al.
2005). As a consequence, a particle will have its own motion driven by its
inertia. In this case, multi-scale clustering is generated by a sweep-stick mech-
anism where the inertial particles stick to zero-acceleration points (Coleman
and Vassilicos 2009; Obligado et al. 2014).
The di�erent levels of segregation depending on St (Zimmer et al. 2003) can
change the local mixture fraction and the evaporation rate (Reveillon and De-
moulin 2007). The di�erence between these two cases is illustrated in Figure
1.7 showing the magnitude of the velocity �eld for the gas phase and for two
cases of disperse phase the �rst with low inertial particles and the second with
inertial particles.

1.3.4 Coupling with the carrier phase

Elghobashi (1991; 1994) classi�ed the regimes of particle-laden turbulent �ows
according to the interaction between the particles and the turbulence. This
classi�cation is done as a function of the volume fraction ϕv and the Stokes
number St as illustrated in Figure 1.8.
• For ϕv < 10−6, the particles motion depends on the state of turbulence
without inducing a feedback on the turbulent carrier phase. Due to this
negligible e�ect of the particles on turbulence, the interaction between
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Figure 1.8: Diagram illustrating the regimes of interactions of the disperse phase
with the turbulence, adapted from Elghobashi (1991; 1994)

the particles and turbulence is a one-way coupling.
• For 10−6 < ϕv < 10−3, a second regime is obtained where the volumetric
particle loading is large enough to alter the turbulence structure. In this
case, one should account for the two-way coupling between the phases.
For small Stokes number, the particles increase the dissipation rate of
turbulence energy. On the other hand, for large St, vortex shedding
starts to take place resulting in enhanced production of turbulence energy
(Elghobashi 1991).
Below the ϕv = 10−3 limit, the particulate phase is considered to be
dilute.
• For ϕv > 10−3, the particulate phase is dense and particle/particle colli-
sions appear and should be accounted for in the modeling along with the
two-way coupling between the two phases. The resulting regime is the
four-way coupling regime.

This classi�cation was proposed earlier in the thesis of O'Rourke (1981), when
the three regimes corresponded respectively to very thin, thin and thick sprays.
In the combustion chamber the spray is in the dilute regime, since ϕv <
10−3. Only one-way coupling or two-way coupling with the carrier should be
taken into account. In this thesis, the study is restricted to one-way coupling.
Nonetheless, we keep in mind that the vision of using methods that can be
extended to two-way coupling.

1.4 Description of the disperse phase

Due to the complex and multi-scale nature of the disperse phase, many mod-
eling approaches can be found in the literature. Actually, this phase can be
described from di�erent points of view, leading to various models having each a
given level of details. These approaches range from the most detailed models at
the microscopic level to the most general continuum models at the macroscopic
level.
The microscopic models give detailed description of the interface between the
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Figure 1.9: Simpli�ed illustration of the modeling strategies for disperse phase �ows.

two phases. This level contains all the variables needed to completely describe
the two-phase �ow, when coupled with a DNS description of the carrier phase.
These type of models will not be used since they are very expensive and are
not based on the scale separation assumption, as mentioned in the subsection
1.2.2.
A less detailed strategy at the mesoscopic level is the Discrete Particle Simula-
tion (DPS), which is a deterministic Lagrangian approach, where the particles
are tracked.
At this mesoscopic level, a probabilistic description of the disperse phase in
the phase space is obtained through the kinetic approach. This intermediate
model is formulated in terms of the Population Balance Equation (PBE) or the
Generalized Population Balance Equation (GPBE), also called the Williams-
Boltzmann equation (WBE), that gives a statistical description of the Number
Density Function.
In comparison with the microscopic description, the number of variables used
in this case is reduced but the number of degrees of freedom in this high dimen-
sional phase space is still very high. Thus, directly solving the WBE is very
expensive. Instead, it can be solved using Lagrangian approaches: the direct
simulation Monte-Carlo method (DSMC) or the stochastic parcel. The former
consists in tracking several computational particles representing one physical
particle whereas the latter tracks a group of physical particles by a computa-
tional particle.
On the other hand, Eulerian approaches also exist in the literature to de-

velop macroscopic models based on the conservation laws of the moment of the
NDF1.
A simpli�ed illustration of the Lagrangian DPS and Eulerian approaches is
shown in Figure 1.9 for a given grid element of the carrier phase mesh. It de-

1Other macroscopic models can be obtained directly from the microscopic model through
ensemble or volume averaging. For more information about the two-�uid method one can
refer to the article of Drui et al. (2016) and the references therein.
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Figure 1.10: Modeling strategies for disperse phase �ows: from the microscopic scale
to the macroscopic scale.

picts the tracking nature of the Lagrangian method and the macroscopic nature
of the Eulerian method. However, this representation does not delineate the
statistical description obtained with the Eulerian approach.
These various modeling strategies are classi�ed according to the nature of the
underlying description whether deterministic or probabilistic and to the level of
this description (see Figure 1.10). Each one of these approaches is introduced
brie�y in the following sections.

1.5 Mesoscopic level

Instead of adopting a microscopic approach, and su�ering from its high cost
and its impracticality for real applications, one can use a mesoscopic description
for the disperse phase. This description is possible due to the scale separation
assumption presented in subsection 1.2.2. This is done by using mesoscopic clo-
sure for which the forces and the collisions are localized in physical and phase
space (Massot 2007; Fox 2007).

1.5.1 Discrete Particle Simulation

Actually, in some relatively dilute cases each physical droplet can be tracked as
a Lagrangian numerical particle in the carrier �ow. These individual droplets
evolve through a system of Ordinary Di�erential Equations (ODE) of the
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droplet parameters at its center of mass namely: the kth droplet size Sk, its
position xk, velocity ~ck and temperature Tk (Riley and Paterson 1974; Squires
and Eaton 1991b; Zhu et al. 2007).
These ODEs read:

dt~xk = ~ck, dt~ck =
−→
F k, dtSk = RSk, dtTk = HTk, (1.5)

where
−→
F k, RSk and HTk are respectively the local external forces per unit mass

on the droplet, the rate of change of its size and the heating rate. These source
terms are functions of the droplet variables and the local gas properties.
This approach is the Discrete Particle Simulation (DPS), where the particles
are treated in a point-wise manner, neglecting the e�ect of particle volume oc-
cupation. It was �rst introduced by Riley and Paterson (1974). This method
is also called point-particle DNS (Pai and Subramaniam 2012). The di�erent
phenomena such as collisions and coalescence are treated deterministically. For
more information on this subject, one can refer to the work of Fede and Simonin
(2006); Wunsch (2009); Fede and Simonin (2010); Thomine (2011).
The accuracy of this method is directly dependent on the accuracy of the meso-
scopic closures, but ends up being highly intuitive and easy to implement, at
least for sequential codes. For this reason, this method is highly used in the
literature, whether for example for solid particle dispersion (Squires and Eaton
1991b; Squires and Eaton 1991a; Elghobashi and Truesdell 1992) or for droplets
in the combustion application (Mashayek et al. 1997; Miller and Bellan 2000;
Reveillon and Vervish 2005; Fréret et al. 2008).
This Eulerian-Lagrangian approach with retro-coupling to the carrier is applied
for example by Capecelatro et al. to turbulent liquid-solid slurries in horizon-
tal pipes (2013b) and to cluster-induced turbulence (2014; 2015), where the
approach accounts for the momentum coupling with �nite-size inertial parti-
cles. Another example of an application for this two-way coupled Eulerian-
Lagrangian approach is the radiation induced turbulence carried by Zamansky
et al. (2014; 2016) for particle-laden �ows. The projection step for the coupling
is done by Capecelatro and Desjardins (2013a); Zamansky et al. (2014), using
Gaussian projection with a mesh-independent width. This decreases the error
induced by the classical projection strategies which does not ensure mesh con-
vergence.
It is important to note that when it comes to complex simulations involving a
large number of droplets and High Performance Computing (HPC), this type
of approach could have to deal with an intractable number of particles that are
not homogeneously distributed in the combustion chamber for example. This
leads to strong constraints in terms of computational time, either because of
the number of particles to be solved or because of the load balancing issues
inherent to the inhomogeneity of the disperse phase.
An example of the speedup of this Lagrangian method for a monodisperse sim-
ulation of nearly 560,000 particles in comparison with the speedup of a single
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Figure 1.11: Speedup for Eulerian-Lagrangian simulation for two-phase �ow based
on a stong scaling

phase carried out by Garcia (2009) is shown in Figure 1.11(a). This is done on a
tetrahedron-based grid containing 3,115,898 cells and 549,369 nodes. The drop
of the parallel performance observed for the Lagrangian simulation is mainly
due to the parallel load imbalance generated by the partitioning algorithm
which is a recursive inertial bisection (RIB) partitioning algorithm in this case.
Thus, the dynamic load balancing is helpful for an e�cient parallelization since
if the domain is decomposed in the same way for the entire computation, some
processors will have to compute a high number of particles while other does
not have an important load (Riber et al. 2009).
It is important to note that for this same con�guration the speedup was im-
proved when the simulation was carried out on a hexahedron based grid (with
3,207,960 cells and 3,255,085 nodes) instead of the tetrahedron-based one (Riber
et al. 2009; Garcia 2009).
Since the parallel implementation is one of the most challenging issue in the
Lagrangian simulation, it is still studied in the literature (Kaludercic 2004;
Darmana et al. 2006; Kafui et al. 2011; Dubey et al. 2011; Guedot 2015;
Sitaraman and Grout 2016) in order to improve the partitioning algorithm and
the load balancing strategies to be able to handle cases where the workload
on each processor is severely skewed due to an uneven distribution of particles
(Pankajakshan et al. 2011).
A recent example is shown in Figure 1.11(b) for a �uidized bed con�guration.
This test is performed by Sun and Xiao (2016) using 5.3 million particles on
1.3 million cells. In this case, the speedup is close to ideal for less than 100
processors but drops above this limit.
Knowing that the speedup is higher in this second example in comparison with
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the one shown in Figure 1.11(a), one should keep in mind that such a compar-
ison is not very conclusive since the studied con�gurations and the number of
particles per cell are di�erent.
Apart from the HPC issues, there is also the problem of statistical conver-
gence. Actually, when one wants to investigate the statistics of the disperse
phase, many realizations must be performed, leading to a great increase of the
overall computational cost.
In addition, the initial and boundary conditions necessary for such spray com-
putations can be given statistically so that the unclear deterministic knowledge
of these conditions adds some challenges to this method. This is the case for
example when the injection and primary atomization of the spray are not solved
and simpli�ed models are used instead to deduce the mean and �uctuating val-
ues or even the PDF for the interesting parameters as mentioned in subsection
1.2.3.

1.5.2 Williams-Boltzmann equation

To avoid the resolution of every N physical droplets in the computational do-
main, one should retain a statistical point of view, which is based on the evolu-
tion of a Number Density Function (NDF). This NDF is obtained by ensemble
averaging over a large number Nf,p of two-phase �ow realizations Hf,p (Février
et al. 2005):

f(t,~x, ξ) = lim
Nf,p→∞

 1

Nf,p

∑
Nf,p

N∑
m=1

Pm(t,~x, ξ,Hf,p)

, (1.6)

where t is the time, ~x the position and ξ the internal phase space. The "�ne
grained" PDF, as called by O'Brien (1980); Pope (1985) in the context of re-
acting turbulent �ows, is one realization of position and internal phase variables
in time of any given particle (Simonin et al. 2002)
Pm(t,~x, ξ,Hf,p) = δ(~x− ~xmp (t))δ(ξ − ξmp (t)).

As a consequence, the NDF is de�ned such that f(t,~x, ξ)d~xdξ is the probable
number of particles that are located in the volume [~x,~x + d~x], at time t and
whose internal phase space is in the interval [ξ, ξ + dξ] (Sainsaulieu 1995; Si-
monin 1996).
Thus, the obtained mesoscale model is an average of many realizations that
may include di�erent behaviors on the microscopic scale but have the same
mesoscale behavior. In this case, instead of solving N systems for the parti-
cles, each including a number of equations depending on the degree of freedom
(DoF) considered for a particle, a statistical point of view is retained where
the information on the DoF is included in the NDF. To do so, the droplets or
particles are then represented as point particles by considering that the volume



40 Chapter 1 - Two-phase flow modeling

occupied by these particles is negligible compared to the one occupied by the
carrier phase.

The dimension of the phase space is related to the number of internal coordi-
nates necessary to describe the physics of one particle. The sole choice of the
phase space is strongly related to the physics one wants to describe.
The NDF satis�es the WBE (Williams 1958; Williams 1985; de Chaisemartin
2009; Laurent and Massot 2001). If we consider, for example, that the particles
are spherical, the phase space ξ = (~c, S, T ) is then composed of the velocity,
size and temperature variables. In this case, the WBE reads:

∂tf + ∂~x · (~cf) + ∂ξ · (Rξf) = Γ +Q. (1.7)

The �rst two terms are the free transport of the disperse phase. The last term of
the left hand side is the evolution of the NDF in the phase space and the source
terms Γ, Q are the collision/coalescence and secondary break-up operators.
This mesoscopic formalism is also referred to as the kinetic approach, since it
was inspired by the kinetic theory of gases (Boltzmann 1872; Chapman 1918).
However, it is important to note the di�erence of the modeling level between
the microscopic nature of the kinetic theory of gases and the mesoscopic nature
of the, so-called, kinetic approach for the description of the disperse phase that
is based on the scale separation.
In this work the coalescence and fragmentation terms are not accounted for.
For more information on this subject one can refer to the thesis of Doisneau
(2013) and the references therein. Under this condition and when the Knudsen
number is in�nite, the WBE becomes:

∂tf + ∂~x · (~cf) + ∂~c · (
−→
Ff) + ∂S(RSf) + ∂T (HT f) = 0, (1.8)

where
−→
F is the acceleration of the droplets due to external force (drag force,

gravity), RS is the evaporation rate (rate of change of the droplet size due to
evaporation), HT is the rate of change of the droplet temperature due to heat
transfer.

It is important to note that even though simple droplet models are adopted
in this work, the kinetic approach and the modeling procedure used can be
extended to re�ned droplets laws if these closures do not include any history
terms. For example, the Basset forces can not be modeled through the kinetic
equation since they include history terms (Laurent and Massot 2001).

For tracers such as aerosols, the particles follow the carrier phase since their
inertia does not have an important e�ect on the underlying physics. In this
case there is no need to account for the velocity in the internal phase space. A
Population Balance Equation is obtained that is also called General Dynamic
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Equation (Friedlander 2000; Nguyen et al. 2016).

The main consequence of the high dimensional phase space is that solving
the WBE using for instance a �nite volume discretisation is hardly tractable,
especially for 3D computations. However, such a work is done for plasmas
simulation through the Vlasov solvers (Filbet and Sonnendrücker 2003).
Since the WBE is well de�ned and closed, its resolution techniques available
in the literature are presented hereafter. These methods are divided into two
families: the Lagrangian statistical approaches and the Eulerian methods.

1.5.3 Lagrangian Particle Tracking

In this subsection, the Lagrangian approach is depicted through two possible
methods having di�erent resolution level and accuracy compared to the deter-
ministic Lagrangian technique DPS.

1.5.3.1 Direct Simulation Monte-Carlo method

The most accurate method for solving the WBE is the Lagrangian-Monte-Carlo
method (Subramaniam 2001), especially in the �eld of DNS. It is also called
direct simulation Monte-Carlo method (DSMC) by Bird (1994) in the context
of rare�ed gas and developed further by Alexander and Garcia (1997). It ap-
proximates the NDF by a sample of discrete statistical particles representing a
droplet. For this reason a high number of numerical particles is needed. The
NDF is discretized into a sum of Dirac's δ-functions in the phase space:

f(t,~x, ξ) ≈
Ns∑
k=1

wpkδ(ξ − ξpk), (1.9)

where Ns is the number of samples, wpk is a weight and ξpk is the coordinate of
each sample in the phase space. The weight is added to the numerical particles
to adapt them to the needed re�nement (Doisneau 2013). Since the weight is
a real number, the numerical particle may represent a fraction of the physical
particle or droplet. Each sample is tracked by using a system of ODE:

d~xpk
dt

= ~cpk, (1.10)

d~cpk
dt

=
−→
F (ξpk), (1.11)

dSpk
dt

= RS(ξpk), (1.12)

dTpk
dt

= H(ξpk), (1.13)

where all the terms in the Right Hand Side (RHS) except the droplet velocity
shall depend on the carrier gas phase properties (such as gas density, velocity
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or temperature) localized at the particle position.
This method is not to be mixed up with the particle method applied for the
�uid phase also called the weighted particle method (Raviart 1985; Mas-Gallic
and Raviart 1987; Degond and Niclot 1989).
The DSMC gives the statistical result through the ensemble average of the dif-
ferent numerical particles. However, its accuracy is highly linked to the number
of particles, since a large number of numerical particles is needed to reduce the
noise and reach statistical convergence. In addition, a projection step is needed
in order to couple this Lagrangian approach with the Eulerian resolution for
the carrier phase. Another disadvantage of this method is the di�culty of load
balancing (Sitaraman and Grout 2016) and e�cient parallel implementation, as
already explained for the DPS. These disadvantages are common to the three
Lagrangian techniques presented in this section. In addition, the two-way cou-
pling with the carrier phase is a stumbling block for this method. A possibility
to overcome this challenge is through the particle-in-cell (PIC) method (Filbet
and Rodriges 2016; Dawson 1983) used for Vlasov-Poisson system in plasma
simulations.
It should be noticed that the above system does not take into account colli-
sions, coalescence or break-up e�ects. Actually, since these terms imply cre-
ation/destruction of droplets, they are not included in the ODE system and usu-
ally require an additional step in the resolution of the disperse phase. A three-
step split technique is developed in Hylkema (1999); Laurent et al. (2004). This
technique is compared to a Eulerian model for the simulation of the dynamics
and the coalescence of particles in solid propellant combustion by Doisneau
et al. (2013). Fede et al. (2015) introduced a two-step splitting taking into
account collisions and coalescence for particles transported by a turbulent �ow
in the framework of a joint �uid-particle PDF approach.
For now, even if DSMC is used for academic DNS con�gurations, it is still
considered to be expensive for real applications when statistical convergence is
required.
Compared to DPS, this method directly gives statistical results of several re-
alizations, whereas for the DPS several simulations should be carried out to
access this type of information. The open question here is which one of these
two methods should be used? The answer is governed by the full understanding
of these two methods and their peculiarities, which can be case-dependent. In
the cases where the ensemble average is not enough to describe the disperse
phase dynamic the DPS is preferred, as for example in the work of Zamansky
et al. (2014; 2016). In the case of our study, the statistical results are useful
and the DSMC is preferred.

1.5.3.2 Stochastic Parcel method

In realistic con�gurations where the number of physical particles is very large,
associating a single numerical particle for each physical droplet becomes very
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expensive. In this case, a statistical Lagrangian description can be applied by
representing several physical droplets by a numerical particle. This compu-
tational particle is also called "parcel", to refer to the grouping of the parti-
cles assumed to have identical properties. This method was �rst introduced
by Crowe and Willoughby (1977). It was called Stochastic Parcel method (SP)
by O'Rourke (1981) in the context of fuel sprays as an extension of the work of
Dukowicz (1980). It was also named the discrete parcel method (Crowe et al.
1998).
When changing the number of parcels, this method can lead to various dynam-
ics when the two-way coupling is responsible for the destabilization of a spray
jet such as in Emre (2014).
This approach gives a coarser description level in comparison with the DPS.
Indeed, if the e�ect of the disperse phase on the gas is neglected, the result
using SP converges to the one with DPS when the number of physical parti-
cles per parcel is decreased and thus the number of statistical parcels increased.
However the number of numerical particles is limited by the computational cost
since the cost is proportional to the number of the tracked parcels. Thus, the
cost can be controlled by choosing a limited number of parcels which make this
method attractive for industrial applications but one should keep in mind that
the result are not precise and can not be considered as a resolution method for
the WBE.

The two stochastic Lagrangian methods presented above are not to be confound
with the stochastic modeling that is used in some Lagrangian-Eulerian methods
to add some random process to the resolved equation (Subramaniam (2013);
Balthasar and Kraft (2003); Ahmadi (2009) and references therein). In the
literature we can �nd many improvement for such stochastic modeling for the
Lagrangian techniques for example in Goodson and Kraft (2002); Sander and
Kraft (2009). In addition, other types of stochastic models can be used for par-
ticle motion in turbulent �ow (Minier and Peirano 2001; Chibbaro and Minier
2011; Zamansky et al. 2011; Volkov 2007; Vinkovic et al. 2005; Vinkovic et al.
2006).

1.6 Macroscopic level: Eulerian Moment Methods

Another way of solving the WBE is the macroscopic Eulerian method for which,
instead of solving the WBE directly or tracking stochastically the droplets, one
solves for some moments of the NDF. The moments are integrated quantities
over the phase space, such as the droplet volume fraction or the overall mo-
mentum, and live in the physical space only. As a consequence, this approach
decreases the dimensionality of the space to be discretized.
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The moments which are only functions of time t and position ~x are given by:

lMm
i,j,k(t,~x) =

∫
lξmi,j,kf(t,~x, ξ)dξ, (1.14)

where lξmi,j,k = ci1c
j
2c
k
3S

lTm and c1, c2 and c3 are respectively the x, y and z
components of the velocity ~c. For example, the total number density of the
disperse phase is the zeroth order moment:

n(t,~x) = 0M0
0,0,0(t,~x) =

∫
f(t,~x, ξ)dξ. (1.15)

1.6.1 General system of moment equations

The general moment equation is obtained by multiplying the WBE by lξmi,j,k
and integrating the result over the phase space ξ:

∂t
lMm

i,j,k + ∂~x ·

 lMm
i+1,j,k

lMm
i,j+1,k

lMm
i,j,k+1

 = SF + SS + ST , (1.16)

where SF , SS and ST are source terms resulting from the integration over the
phase space of the drag, evaporation rate and heat exchange rate parts in the
WBE. These terms read:

SF =

∫
lξmi,j,k∂~c ·

(−→
Ff(t,~x, ξ)

)
dξ, (1.17)

SS =

∫
lξmi,j,k∂S (RSf(t,~x, ξ)) dξ, (1.18)

ST =

∫
lξmi,j,k∂T (HT f(t,~x, ξ)) dξ. (1.19)

The main advantages of this approach are:
• its intrinsic statistical convergence,
• its ease of coupling with the carrier phase since they are both modeled at
the same macroscopic Eulerian level, which results in continua equations
for both phases.
• the ease of parallel computing.

The main objectives that will govern the choice of the moment method in this
work are:
• a realizable moment set: this realizability condition means that every set
of moments is associated with a positive NDF. It is an essential condition
to make sure that the link between the kinetic and the macroscopic level
is maintained.
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• accessible closures for the source terms: the terms SF , SS and ST can
be in the simplest case function of the closed moment set. Otherwise,
the closure of these source terms would be based on the reconstructed
distribution obtained through the realizable moment set.
• mathematically well-posed system of equations resulting from the mo-
ment method. These equations are characterized by the hyperbolicity
and entropic structure. This is helpful to devising accurate and robust
numerical methods for the resolution of the obtained di�erential equations
that can deal with the singularities.

These methods will not be detailed here since they are the subjects of the next
two chapters.

1.7 Classi�cation of the disperse phase and of the
modeling approaches

1.7.1 Velocity and temperature dispersion

The Particle Trajectory Crossing (PTC) is captured through a velocity dis-
persion in the Eulerian models, this is called polykineticity. It refers to the
coexistence of several velocities in a given vicinity. In the case where all the
particles sharing the same location have the same velocity, a monokinetic spray
is obtained.
The degree of polykineticity depends on the particle size and inertia and thus
on the Stokes numbers St since low-inertial particles roughly follow the gas and
can be described by a monokinetic model (Jabin 2002; de Chaisemartin 2009).
On the other hand, the motion of inertial particles is conditioned by their his-
tory and di�erent degrees of polykinetic complexity can be found according to
the size of the particles.
These categories di�er by the rate at which the droplets correlate their velocities
with the gas one:
• for very small Stokes numbers St: the disperse phase velocity at a given
position and time is equal to the carrier velocity in question;
• for small Stokes numbers: the droplets velocities are highly correlated to
the carrier velocity;
• for moderate Stokes numbers: the droplets velocities are dispersed around
a mean velocity that can signi�cantly drift from the gas velocity;
• for large Stokes numbers: the dependence of the droplets dynamics on the
carrier phase motion is complex this is included the interaction between
the two as well as the droplets own motion driven by their inertia.

Thus, for the moderate to large Stokes numbers, the probability of having two
particles at the same location having di�erent velocity is high. This implies the
probable occurrence Particle Trajectory Crossing which is the subject of the
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Figure 1.12: Comparison of the mass density for simulation of two crossing jets
using a Lagrangian approach, a monokinetic approach (center) and a polykinetic one
(right) at the in�nite Knudsen limit for St = 5.29 (adapted from Fréret et al. (2008))

Figure 1.13: Comparison of the particle mesoscopic temperature for the Lagrangian
reference simulation (left) and the eulerian one (right). (Source: Dombard (2011))

following subsection.
The simulation of the crossing of non-colliding jets for a Stokes number St =
5.29, shown in Figure 1.12, highlights the important of polykinetic model since
the monokinetic one is incapable of capturing the crossing event.
In addition to the size and velocity dispersion, we can have also temperature
dispersion. This is the case where in the same vicinity di�erent particles have
di�erent temperatures. This depends on the thermal Stokes number StT sim-
ilar to the dynamic one St. The treatment of this dispersion is gaining more
and more importance nowadays. It will not be treated in this thesis, for the in-
terested readers this subject is studied in the work of Masi and Simonin (2014;
2012) and in the theses of Masi (2010); Dombard (2011); Sierra (2012) .
As an example, the comparison between the Lagrangian results and the Eule-
rian results using the Mesoscopic Eulerian Formalism that takes into account
the temperature dispersion, is depicted in Figure 1.13. The temperature is
plotted on a plane cut of a three-dimensional cold planar turbulent jet, loaded
with solid particles and surrounded by a hot decaying turbulent �ow. This
comparison shows the importance of modeling the temperature dispersion for
the non-isothermal con�gurations.
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1.7.2 Types of Particles Trajectories Crossing

For high Knudsen numbers and high Stokes numbers, spray clusters may cross
each other, so droplets might have di�erent velocities at the same position and
same time. This behavior is called particles trajectory crossing (PTC) and can
be of two di�erent natures (Doisneau 2013):
• the �rst one is the crossing of droplets having signi�cantly di�erent sizes
and is called hetero-PTC. This PTC can occur between droplets belonging
to the various Stokes categories as long as their inertia are not nearly the
same.
• the second type is the homo-PTC de�ned as the crossing of the trajec-
tories of equally sized droplets. This class of PTC start taking place for
a moderately inertial to inertial particles. For moderate Stokes numbers,
a small crossing scale, compared to the scale of the simulated geome-
try, characterizes the homo-PTC, whereas for high Stokes numbers the
crossing is of large size.

The hetero-PTC should be accounted for in the polydisperse description of the
spray. In fact, not all the modeling approach for polydispersion found in the
literature are able to render hetero-PTC, but some of the models presented in
chapter 3 consider size-conditioned velocities and temperatures and thus have
the ability to intrinsically describe hetero-PTC. The polydisperse models found
in the literature are based on the monokinetic assumption. These models are
presented in chapter 3.
For the description of homo-PTC the challenge is di�erent since the physics
is more complex and the out-of-equilibrium state adds a big challenge in �nd-
ing suitable closures for the velocity moment equations. In fact, when having
this kind of PTC, the velocity distribution function is locally multi-modal with
di�erent velocities resulting from the various characteristics. This multiple ve-
locity dynamics is referred to as polykineticity as mentioned in the previous
subsection and must be treated correctly in order to understand the spray dy-
namics.
In addition, homo-PTC must be taken into consideration in modeling both
monodisperse and polydisperse spray.
In chapter 2, the di�erent polykinetic modeling approaches are presented for a
monodisperse spray.
In addition, the extension of the chosen polykinetic model, subject of this the-
sis, to the polydisperse cases is also presented in chapter 3.
The treatment of velocity and size dispersion presented in chapters 2 and 3 is
illustrated in Figure 1.14.
It is important to note that the PTC in the temperature space can also be
classi�ed according to these two types and one will a similar challenge of de-
scribing both homo and hetero PTC. The �rst should be accounted for through
a temperature dispersion and the second has to be described in the polydisperse
model.
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Figure 1.14: Organization of the disperse phase modeling chapters according to the
treatment of size and velocity dispersion: Chapter 2 for the treatment of velocity dis-
persion (bleu), Chapter 3 for the treatment of size dispersion (green), the symbols
showing the focus of this thesis.

1.7.3 Modeling approaches classi�cation for turbulent dispersed
multiphase �ow

The above approaches were classi�ed by Balachandar and Eaton (2010) accord-
ing to their applicability in terms of timescales and volume fraction.
The appropriate choice of the full DNS is for high Stokes numbers where the
particle diameter is greater than 0.1 times the Kolmogorov length scale (Bal-
achandar and Eaton 2010). The Lagrangian approach was found to be the most
suitable for moderately inertial particles. The Eulerian approach was limited
to a small range of Stokes number going from 0.2 to 1. And the Equilibrium
Eulerian is limited to small particles St < 0.2. This classi�cation is illustrated
in Figure 1.15 and it is proposed for the dilute case.
The objective of this thesis is to extend the range of applicability of the Eulerian
approach to higher Stokes number. The challenge is that we want to meet this
objective while solving the minimum number of moment required, guaranteeing
the realizability of the moment set and obtaining a system of equation on the
moment, that is well-posed mathematically, and allows to handle the inherent
singularities. The obtained model should also be capable of treating polydis-
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persion and can be extended in future work to take into account temperature
dispersion.

Equilibrium Eulerian

Eulerian

Lagrangian
point particle

Fully
resolved
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Figure 1.15: Applicability of the di�erent approaches to disperse phase modeling as a
function of the fractional volume occupied by the disperse phase and the Stokes number.
(Adapted from Balachandar and Eaton (2010))

The proposed AG model, which is presented in chapter 2 along with its poly-
disperse extension in chapter 3, is a choice that meets all the mentioned re-
quirements and it is a compromise between the detailed level of treatment of
PTC and the cost of the model.





Chapter 2

Polykinetic moment methods

The available polykinetic approaches found in the literature are brie�y
presented in this chapter. The necessity of polykinetic modeling is high-
lighted for the description of PTC between particles of the same size also
called homo-PTC. In fact providing polykinetic model is of paramount
importance when dealing with moderately inertial to inertial particles.
These methods are classi�ed into two families according to the chosen
nature of the closures: the Algebraic-Closure-Based Moment Methods
and the Kinetic Based Moment Methods. Here, the focus is on the
KBMM for its well-posed mathematical structure and its inherent link
with the kinetic level that helps guaranteeing the realizability of the set of
moments. From this family, the Anisotropic Gaussian model is chosen
as a compromise between its ability to statistically capture the homo-
PTC and the cost of the method compared to the higher order polyki-
netic methods. The polykinetic methods are presented in this chapter in
a monodisperse context in order to decouple the homo-PTC from hetero-
PTC and to concentrate on the description of homo-PTC. This is done
to focus on evaluating and �nding an e�cient technique to statistically
treat the polykineticity. The choice does not impede the model from han-
dling the polydispersion and therefore the hetero-PTC; this extension is
presented in the next chapter.

2.1 General Velocity Moments Equations

In the literature, one can �nd di�erent models developed recently to treat
polykineticity. Di�erent levels of complexity, robustness and cost characterize
these models.

The resulting simpli�ed William Boltzmann equation for the case of in�nite
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Kn, reads:

∂tf + ∂~x · (−→c f) + ∂−→c ·
(−→ug −−→c

τp
f

)
= 0, (2.1)

where the Stokes law is chosen for the drag force for clarity, assuming that the
studied particle Reynolds number is less than 1.
Knowing that the collisional case can be treated with the proposed approach
(Vié et al. 2015; Levermore and Moroko� 1998), the in�nite Kn limit is con-
sidered in this context and it is the most complex case.
In fact, for the disperse phase in dilute regime, the collisions are negligible.
This is the case of in�nite Kn where a relaxation towards an equilibrium dis-
tribution as in the collisional regimes in gas dynamics is not valid. However, in
the disperse phase the drag acceleration makes the hydrodynamic equilibrium
valid for small Stokes numbers by adding a dissipation phenomenon.
For the sake of simplicity and since our focus is on the free transport and drag
terms, we will only consider these two terms in order to derive the general mo-
ment equations in velocity.

2.1.1 The Eulerian Approach and the Method of Moments

After multiplying equation (2.1) by ci1c
j
2c
k
3 and integrating the result over the

phase space, one gets a system of moment equations. In a three-dimensional
physical space, the general equation on the velocity moments is:

∂tMi,j,k + ∂~x ·

Mi+1,j,k

Mi,j+1,k

Mi,j,k+1

 =
1

τp

−→ug ·
 iMi−1,j,k

jMi,j−1,k

kMi,j,k−1

− (i+ j + k)Mi,j,k

 ,

(2.2)

where the general (i+ j + k)th order moment in velocity is:

Mi,j,k =

∫
ci1c

j
2c
k
3fdc1dc2dc3. (2.3)

For example, the 0th order moment, common to all the phase variables, is equal
to the number density n and the 1st order moment is the velocity momentum.
This system is not closed: actually for every set of moments of order N which
contains the moments of order (i + j + k) ≤ N , moments of order N + 1
are needed to describe the higher order �uxes in physical space: Mi,j,k where
i+ j + k = N + 1 .
It should be remarked that due to the linear drag law used in equation (2.1),
the drag force terms in the moment equation do not require additional closures.
For a more complex drag law, the drag force can be given for example with a
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convective correction such as the Schiller-Naumann correction. In this case,
the drag force is a function of the Stokes drag force and the particle Reynolds
number Rep. Here, the challenge is that the complex drag law can result in un-
closed moments. A solution is proposed in section 2.3. However, as mentioned
in chapter 1, this force should always be localized in physical and phase space
and should rely on the assumption of point-particles, otherwise the kinetic ap-
proach would cease to be valid.
A particular example of the system of velocity moments (Equation (2.2)) is
given up to the moments of �rst order (i+ j + k = 1):

∂tn+ ∂−→x · (n
−→u ) = 0,

∂t(n
−→u ) + ∂−→x · (n

−→u ⊗−→u + Σ) =
n(−→ug −−→u )

τp
,

(2.4)

the closure problem can be interpreted as closing the covariance matrix Σ in
the highest order �ux which is the moment of second order (n(−→u ⊗ −→u + Σ)).
This is somehow similar to closing the Reynolds stress for RANS simulation or
the subgrid scale tensor for LES: one needs to use the information in the �ow
and a reasonable set of assumptions to be able to prescribe the right closure.
The main criterion that will drive the choice of the closure in DNS is the Stokes
number relative to the Kolmogorov time scale.

StK =
τp
τK
. (2.5)

When the Stokes number of the droplets is below one, the occurrence of homo-
PTC is not frequent since the droplet are trapped into low vorticity regions. In
this case, the closure is as simple as considering a zero covariance matrix: all
the droplets in the same vicinity have the same velocity, which is characterized
by a Dirac's δ-distribution in the velocity phase space.
For higher Stokes numbers, the problem becomes more complex since the homo-
PTC becomes signi�cant. In this case, the accuracy of the model to reproduce
the right dynamics depends on its capacity to capture the homo-PTC.

The closure choice is a very important step in the Eulerian modeling since it
should recover as much of the information lost due the resolution of a �nite
number of moments, as possible.
From the di�erent Eulerian models developed for describing polykineticity, two
families of approaches are discussed hereafter with a highlight on the chosen
family and more speci�cally the selected model:
• Algebraic Closure Based Moment Methods (ACBMM): the unknown ve-
locity moments are closed at the macroscopic level by considering physical
and mathematical assumptions on the moments.
• Kinetic Based Moment Methods (KBMM): the closure is based on the
choice of reconstruction of an underlying kinetic distribution. A class
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of this family, which can be considered as a family of approaches on
its own, is the quadrature-based moment methods (QMOM), where the
NDF is represented by a �nite sum of weighted delta-functions centered
at discrete velocities. In this case, the resulting equations are written on
the quadrature nodes: the weights and velocity abscissas. The velocity
moments and the integrals are evaluated using these quadratures.

2.2 Algebraic-Closure-Based Moment Methods

A possible strategy to close the covariance matrix in the Algebraic-Closure-
Based Moments methods (ACBMM) is to impose assumptions on the behavior
of the covariance matrix, with respect to resolved variables, like the liquid phase
velocity gradients.

The team of Olivier Simonin at IMFT proposed many possible closures, as
found in the work of Kaufmann et al. (2008); Masi and Simonin (2012); Masi
et al. (2014), for example. Most of the proposed closures are based on a con-
stitutive closure for the covariance, also called the random uncorrelated-motion
particle kinetic stress tensor in Mesoscopic Eulerian Formalism (Février et al.
2005). These closures include the kinetic energy of the random uncorrelated-
motion (RUE) δΘp that is solved by an additional transport equation.
For the closure, the covariance is �rst decomposed into an isotropic part and
a deviatoric one. A simpler version of this closure takes into account only the
isotropic part of the covariance. The decomposition of the RUM reads:

σij = σij,iso + σ∗ij with the pressure term σij,iso = 2δΘp/Ndimδij , (2.6)

where δΘp is the kinetic energy of the random uncorrelated motion and the
deviatoric part is modeled by:

σ∗ij = νPTC

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
= −2νPTCS

∗
ij , (2.7)

having νPTC = τpδΘp/Ndim.
This model assumes a linear relationship between the deviatoric RUM and the
rate-of-strain tensor through an eddy-viscosity, which uses the particle relax-
ation time as a typical timescale. It is based on a local equilibrium assumption
on the stress tensor including a light anisotropy. It is called the VISCO model
since it is based on a viscosity-type closure. It has been derived by Simonin
et al. (2002) and used later on by Kaufmann et al. (2008) for inertial particles
suspended in decaying isotropic turbulence. Its failure in the presence of mean
shear was highlighted by Riber (2007).
In the recent work of Masi (2010); Masi et al. (2014); Masi and Simonin
(2014), a more complex closure was developed based on a self-similarity as-
sumption for the RUM stress tensor. The resulting model is called 2Φ-EASM.
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This non-linear algebraic closure gives an implicit model for the Random Uncor-
related Motion of the particles able to take into account the anisotropy caused
by PTC.

σ∗/2δΘp = G1S
∗ +G2 (S∗ −ΩS∗) +G3(S∗2 − 1

Ndim

{
S∗2
}

I),

whereGk are modeled using invariants of the particle rate of strain and vorticity,
and Ω is the particle vorticity tensor

Ωij = 1/2(∂xjup,i − ∂xiup,j). (2.8)

The 2Φ-EASM was compared to the VISCO model by Sierra (2012) and was
found to be more predictive, since it can render PTC at moderate Stokes num-
bers. This model has been validated in con�gurations with a mean shear by
Dombard (2011).
The ACBMM is included in the AVBP code and was used to simulate complex
con�gurations (Sanjosé et al. 2011; Riber 2007; Vié et al. 2013; Jaegle 2009).
In addition to these models, there is also the full second-order Eulerian model
(Le Lostec et al. 2008; Le Lostec et al. 2009) where the components of the
covariance matrix are solved. In this case the closure of the equations is based
on a gradient-di�usion assumption for the triple correlations found in the gov-
erning equations of the covariance matrix components.
By using this family of closures, the link between the macroscopic conservation
equations and the kinetic description at the mesoscopic level becomes com-
plex and indirect. Thus the realizability is complicated and not guaranteed.
However, in order to have physical results, conditions based on the Schwarz's
inequality and the positiveness of the RUE should be imposed (Vié et al. 2012;
Schumann 1977). In addition the resulting system of equations is not well-posed
mathematically. These points are not helpful to devise adapted realizability-
preserving numerical methods that guarantee that the results are physical and
do not include for example negative number density, mass fractions or energy.
Due to these limitations the second family of Eulerian approach is preferred in
this context.

2.3 Kinetic Based Moment Approach and hierarchy

In order to close the moment system (2.2), one needs to provide:
• the moment set of order N containing the N + 1 moments
{Mi,j,k} ∀ (i+ j + k) = 0...N and
• a closure relationship which allows to �nd the unknown �uxes (assump-
tions on the velocity distribution for example). In the KBMM, this is
done by keeping the link between the kinetic level and the macroscopic
level by reconstructing the NDF, which is supposed to have a given shape.
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Figure 2.1: NDF reconstruction and moment equation closure

The shape of the NDF has as many parameters as the number of moments one
needs to control. It should be chosen based on the physics one needs to describe
and it should lead to simple algorithms in order to reconstruct the NDF from
the moments set. This methodology is represented in �gure 2.1.
Several models belonging to the KBMM family can be found in the literature
based on di�erent closures (Laurent et al. 2012), such as the monokinetic MK
(Laurent and Massot 2001), the Gaussian divided into isotropic Gaussian (Iso)
(Massot 2007) and anisotropic Gaussian AG (Vié et al. 2015), the QMOM (Fox
2012; Yuan and Fox 2011; Kah et al. 2010; Chalons et al. 2012) that includes
for example conditional QMOM and extended QMOM and �nally the multi-
Gaussian MG (Chalons et al. 2010; Chalons et al. 2016). The moments used
for this hierarchy are presented in 2D for the sake of simplicity in �gure 2.2.

The choice of the closure is based on the physics one needs to describe and the
obtained characteristics of the model.
It is important to note that the reconstruction can be helpful to derive a quadra-
ture approximation for the moments resulting from the drag term whenever an
arbitrary drag law is used (Laurent et al. 2012).
In the following, we study two models based on the MK and the Gaussian clo-
sures. Theses two distributions are also the basis quadratures for respectively
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M0,0! M0,1! M0,2! M0,3! M0,4!

M1,0! M1,1! M1,2! M1,3! M0,4!

M2,0! M2,1!

M3,0! M3,1!

M4,0! M4,1!

Figure 2.2: 2D moment set controlled by MG (all), CQMOM with 4 nodes (solid
line), AG (dashed line) and MK (dotted line)

the QMOM and MG models and we refer to the literature (Fox 2012; Yuan
and Fox 2011; Chalons et al. 2016) for higher order methods.

2.3.1 Monokinetic model

As already mentioned within the framework of in�nite Kn, the dissipative phe-
nomenon is related to drag and drives the distribution towards a monokinetic
one. Besides, the class of monokinetic distribution is stable by Equation (2.1)
when St is below a critical value, making such an approach ideal for DNS of
low inertia particles (Laurent and Massot 2001).
In this case, high segregation e�ects occur which lead to sti� accumulation re-
gions along with vacuum generation in their vicinity.
These e�ects can be reproduced by the MK closure (Laurent and Massot 2001).
This assumption is known as the hydrodynamical equilibrium velocity (de Chaise-
martin 2009; Sainsaulieu 1995) by analogy with the local thermodynamic equi-
librium in the kinetic theory for the gas limit, yielding a hydrodynamic limit.
The NDF is sought as a generalized Maxwell-Boltzmann distribution at zero
temperature that means also zero velocity dispersion around the mean. It is
assumed to write f(t,−→x ,−→c ) = n(t,−→x )δ(−→c − −→u (t,−→x )), where −→u (t,−→x ) is the
mean velocity of the disperse phase. The system of moments closes at �rst
order in moments since the pressure is set to zero and we get therefore the
following system:


∂tn+ ∂−→x · (n

−→u ) = 0,

∂t(n
−→u ) + ∂−→x · (n

−→u ⊗−→u ) =
n(−→ug −−→u )

τp
.

(2.9)
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This model is for example used in the �eld of spray dynamics for combustion
applications (Cheneau et al. 2015; Franzelli et al. 2015; de Chaisemartin 2009;
Fréret et al. 2010) and in the �eld of solid propellant combustion (Dupays 1996;
Laurent et al. 2004; Doisneau et al. 2013; Sibra 2015).
The MK model correctly reproduces the formation of depletion zones and ac-
cumulation regions obtained for small Stokes numbers but it does not take into
consideration PTC. PTC that occurs for moderate to high inertial particles,
cannot be capture by the single Dirac δ-function used for the velocity distri-
bution in MK model. Instead, at each PTC location, unphysical δ-shocks is
generated by this model. Another constraint of this model is that it does not
preserve the kinetic energy of the disperse phase (Bouchut 1994; Brenier and
Grenier 1998).
From a mathematical point of view, the free transport part of systems (2.9)
is identical to the Pressureless Gas Dynamics system (PGD) (Bouchut 1994;
Marble 1970). This system is used in astronomy where it is referred to as
the sticky particles equations. The PGD system is weakly hyperbolic (in the
sense that the Jacobian matrix is triangulable but non-diagonalizable) and can
generate δ-shocks. Dedicated numerical methods have to face the challenging
combination of being accurate (potentially high order) and handle the presence
of singularities.

2.3.2 Gaussian model

The next closure in the KBMM family is the Gaussian closure (Vié et al. 2015).
This closure controls the set of moment up to the second order. It was in-
spired by the work of Levermore and Moroko� (1998) in the context of out-
of-equilibrium rare�ed gas dynamics and was called the 10-moments closure.
In the rare�ed gases context, the good mathematical properties of this model
at the kinetic and the moment levels was highlighted in Holway Jr. (1966);
Andries et al. (2000) and a numerical approximation was proposed by Brown
et al. (1995) and Berthon (2006b). In fact, in the kinetic theory for rare�ed
gases, it was obtained using the ES-BGK collision operator to correct the pre-
diction of Prandtl number which was equal to 1 in the classical BGK model of
(Holway Jr. 1966). The Anisotropic Gaussian distribution was chosen based on
the maximization of the Shannon entropy. The resulting system is hyperbolic
and admits entropies (Berthon 2006a).

2.3.2.1 Isotropic Gaussian model

The simplest form of the Gaussian models is obtained when isotropic pressure
is considered. In this case, the NDF is assumed to be an isotropic Gaussian
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distribution centered at ~u and with an isotropic dispersion σ:

f(t,~x,~c) =
n(t,~x)

√
σ(2π)Nd/2

exp

(
−1

2

(−→c −−→u )2

σ

)
. (2.10)

The resulting simpli�ed system reads:

∂tn+ ∂−→x · (n
−→u ) = 0,

∂t(n
−→u ) + ∂−→x · (n

−→u ⊗−→u + P) =
n(−→ug −−→u )

τp
,

∂t(nE) + ∂−→x · ((nE + P) · −→u ) =
n(−→ug · −→u − 2E)

τp
,

(2.11)

with,

E =
1

2

∣∣−→u ∣∣2 + σ, (2.12)

P = PI = nσI. (2.13)

The free transport part of system (2.11) is hyperbolic and identical to the Euler
system of equations.

2.3.2.2 Anisotropic Gaussian model

This model was introduced for the �rst time for the modeling of the disperse
phase in the work of Vié et al. (2015) in order to describe small-scale PTC for
moderately inertial particle through a velocity variance described by an inter-
nal agitation energy.
Under the assumption of anisotropic Gaussian closure (AG), the NDF is as-
sumed to write:

f(t,−→x ,−→c ) = n(t,−→x )N (−→c −−→u (t,−→x ),Σ(t,−→x )), (2.14)

where N is a joint Gaussian distribution of center −→u and covariance matrix
Σ = (σij) in the space of dimension Nd:

N (−→c −−→u ,Σ) =
|Σ|−1/2

(2π)Nd/2
exp

(
−1

2
(−→c −−→u )TΣ−1(−→c −−→u )

)
. (2.15)

The resulting system reads:

∂tn+ ∂−→x · (n
−→u ) = 0,

∂t(n
−→u ) + ∂−→x · (n

−→u ⊗−→u + P) =
n(−→ug −−→u )

τp
,

∂t(nE) + ∂−→x · ((nE + P) ∨ −→u ) =
n(−→ug ∨ −→u − 2E)

τp
,

(2.16)
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where ∨ denotes the symmetric tensor outer product1, the total energy tensor
E is given by the equation of state E = 1

2
−→u ⊗ −→u + P

2n and the anisotropic
pressure tensor is P = nΣ.
In the case of isotropic pressure, a scalar conservation of energy is obtained
by applying the trace operator on the last equation of system (2.16). In this
case, the scalar energy is the trace of the energy matrix E = Tr(E) and the
isotropic Gaussian model can be obtained from the anisotropic one by assuming
an isotropic pressure tensor.
For a 2D homogeneous con�guration, the AG system as stated in Berthon
(2006a); Vié et al. (2015), has six eigenvalues: u has two orders of multiplicity

and is associated to a linearly degenerated �eld. The eigenvalues u ±
√

3p11
n

are associated to genuinely nonlinear �elds and the eigenvalues u ±
√

p11
n are

associated to linearly degenerate �elds. Each of these last four eigenvalues have
one order of multiplicity.
When it comes to the entropic structure, the two entropy families in 2D are:

s11 = p11
n3 , s12 =

p11p22−p212
n4 . (2.17)

The AG model is the lowest order model capable to statistically reproduce
the PTC. This is done through the anisotropic pressure and thus through the
anisotropic tensorial energy. For this reason, it is already expected that with
the isotropic simpli�cation, the main advantage of the Gaussian closure will be
lost. For this reason the isotropic Gaussian model will only be studied for the
evaluation of the numerics in 1D and 2D. The evaluation of the KBMM in more
realistic 3D cases is performed only for the MK and AG models in part IV.
The free transport part of system (2.16) is similar to the Euler equations but
with a tensorial form for the energy equation. This system is hyperbolic.

It is important to note that the QMOM which is based on the sum of Dirac
δ-functions to account for the multi-modal velocity distribution at the crossing
event su�ers from the same drawbacks of the MK model. It leads to a weakly
hyperbolic system and it generates unphysical δ-shocks when more than two
trajectories cross (Chalons et al. 2012).
To avoid the drawbacks of the QMOM, the MG quadrature was proposed by
(Chalons et al. 2010). Instead of using a point distribution for the quadrature,
a continuous function is used; this function is the Gaussian function. The MG
can describe small and large scale PTC. The small-scale PTC is represented
by the dispersion of each Gaussian whereas the large-scale PTC is rendered
by the dispersion of the centers of the Gaussian distribution (Laurent et al.
2012; Chalons et al. 2016). This highlights the importance of the detailed

1The symmetric tensor outer product acts on a symmetric k-tensor and a symmetric l-
tensor by symmetrizing the (k+ l)-tensor that is their usual tensor outer product (Levermore
and Moroko� 1998).
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study of the Gaussian model as a closure on its own or as a step towards the
understanding of the MG model.

2.4 Comparison and objectives

2.4.1 Two crossing jet con�guration

A fundamental comparative case for the crossing of two jets in the context
of in�nite Knudsen number and in�nite Stokes number is presented hereafter.
This test problem developed by Doisneau (2013) is chosen here to illustrate
the behavior of the models: MK, Iso, AG and QMOM. It is based on two
symmetrical jets with respect to the x-axis, having the same velocity cross each
other at the origin.
For all the models in question, the velocity component in the x-direction is ac-
curately described since it is equal for the two jets before and after the crossing
(�gure 2.3). In this particular case, the challenging point is the right descrip-
tion of the velocity along the y-direction. The exact solution is captured by the
QMOM, since it is based on an underlying velocity distribution of two Dirac-δ
functions at the kinetic level. It is able to reproduce the bimodal behavior at
the crossing point. When it comes to the AG result, entropy is created at the
crossing location, which makes the process irreversible: after the crossing it is
impossible to know the repartition of droplets coming from each jet. This is
completely expected since the AG is not based on a multimodal assumption of
the velocity distribution. Instead, it has a unique maximum with a dispersion
that has di�erent values in the di�erent directions. Since the closure has a single
peak, the kinetic energy at the crossing is transferred to internal energy through
energy conservation. The advantage of this model is that it reproduces the right
spatial dispersion σy which is equal to the dispersion obtained by QMOM, since
the energy is redistributed in the direction of the crossing. Similarly, for the Iso
closure, the macroscopic kinetic energy is transferred uniformly to internal en-
ergy but this time, the energy is transferred in all the direction without taking
into account the speci�c direction of the PTC. Actually, the conservation of the
scalar energy impedes the directional transfer of information. When it comes
to the MK result, an arti�cial spatial averaging for the momentum takes place
at the crossing location and breaks the link between the mesoscopic level and
the macroscopic one. A Dirac δ-shock is created and the macroscopic kinetic
energy is lost. Again, it is expected that this equilibrium assumption is unable
to account for out-of-equilibrium conduct.
Keeping in mind that the AG is not designed for capturing such deterministic
PTC, this case underlines its ability to capture the right length scale of the
crossing. Then, in the real case where the drag adds dissipation to the PTC,
the AG should be able to statistically reproduce the underlying physics.
It is important to note that in this theoretical test case the numerical dissipa-
tion is not accounted for.
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(a) Trajectories with QMOM (b) Distribution function double Dirac

(c) Trajectories with AG (d) Distribution function Anisotropic
Gaussian

(e) Trajectories with MK (f) Distribution function Dirac

Figure 2.3: To the left two crossing jets trajectories, to the right distribution function
of the velocity in the y-direction
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Knowing that the large-scale PTC can be treated deterministically with QMOM
and both small and large scale PTC can be treated with MG, the AG model
is chosen here since it is the least expensive model in the KBMM capable of
treating statistically the PTC. It is a compromise between the details of the
PTC one can recover and the cost of the method. And as mentioned before, this
can be sought as an important step to understand the treatment of small-scale
PTC with the MG quadrature model in the hierarchy.

2.4.2 Summary of the properties of AG

The obtained system is well posed: it is hyperbolic with entropic structure. Its
solution is well-de�ned. In addition, for all the above KBMM models, the link
between the kinetic level and the macroscopic level can be kept by ensuring the
realizability of the chosen moment set. The AG model is intrinsically realizable
since it relies on a non-negative NDF for the closure. It does not have problems
at the border of the moment space, unlike the higher order moment methods
QMOM, MG or any other entropy based-closure that su�er from this limitation
(Chalons et al. 2016). This subject is discussed in a more general context in
the work of Hauck et al. (2008).

For the numerical resolution of this system, the realizable space in question
de�nes the constraints of the numerical scheme that should preserve this re-
alizability. In addition, the large variations that might be encountered in the
density �eld (going from vacuum zones to high concentration regions for small
St for example) require high order robust numerical methods.
In order to �nd a numerical method capable to meet all these constraints, dif-
ferent numerical schemes are presented in Part II along with a comparison on
1D and 2D test cases.





Chapter 3

Polydisperse modeling

In this chapter, the existing methods that handle polydispersion in
size are presented. These methods are the size sampling method, the
pivot method, the method of moments with interpolative closure, the
multi-�uid method, the quadrature-based moment method and the Eu-
lerian multi-size moment model. Among these methods, we focus on
the multi-�uid method, since it is well suited for evaporating sprays
and was proven to be e�cient in industrial codes and has been vali-
dated on academic and industrial con�gurations. The extension of this
method to higher order is also presented. This method was originally
based on the monokinetic closure and thus is unable to reproduce the
homo-PTC. However, it is extended to treat polykinetic cases based on
the Anisotropic Gaussian closure for the velocity distribution. This AG
multi-�uid method is presented based on the one size moment and a�ne
two-size moments multi-�uid model.

3.1 Eulerian polydisperse models

In this thesis, the assumption of spherical particles is made. Thus, only one
size variable is needed to parametrize the polydispersity. This variable can be
the radius, the surface or the volume depending on the physical phenomena
one wants to treat.
In the literature, several types of Eulerian models handling polydispersion can
be found:
• The size sampling method (Laurent and Massot 2001; BenDakhlia 2001),
also referred to as Multi-Class method at ONERA (Murrone and Villedieu
2011; Sibra 2015). In this method, the distribution is sampled into N
classes, as shown in Figure 3.1, each having its own mean size, veloc-
ity and temperature. For each sample, the shapes of the velocity, tem-
perature and size distribution are assumed to be Dirac-delta functions.
Therefore, the sampling can be directly applied to the semi-kinetic system
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Figure 3.1: Dirac discretization of the size phase space for sampling models.

based on monokinetic mono-temperature assumption. In fact, the NDF
is approximated by:

f(t,~x, S,~c, T ) ≈
N∑
i=1

ni(t,~x)δ(S−Si(t,~x))δ(~c−~ui(t,~x))δ(T −Ti(t,~x)).

(3.1)

Each sample acts, then, as an isolated �uid having its number density
ni, size Si, velocity ~ui and temperature Ti. This method is also called
Lagrangian-in-size approach since the quantities in question are function
of time and space only. A drawback of this approach is that it does not
take into account any interaction between the di�erent samples. In addi-
tion, a great care should be devoted to avoid the singularities that can be
faced due the delta distribution for all the internal phase space variables
(Laurent and Massot 2001). Thus, no crossing can be treated in size,
velocity nor temperature. Moreover, coalescence and break-up cannot be
easily modeled with this method.
For more information on this method, one can refer to the theses of Dois-
neau (2013); Sibra (2015) and the references therein.
• The presumed PDF method for the size consists in supposing a form for
the size distribution (Babinsky and Sojka 2002). This form is character-
ized by a set of parameters whose evolution is solved. The choice of the
presumed PDF shape should be based on a given physics and can be ex-
perimentally justi�ed or should result of some model simpli�cations. In
the work of Mossa (2005), this method was used and evaluated in the
context of reactive evaporation �ows. This method su�ers from limited
accuracy and stability and it faces sever singularities when treating the
evaporation, since it forces the shape of the NDF throughout the evapo-
ration process.
• The pivot methods assess the integral source terms based on the choice
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of discrete sizes called the pivots (Kostoglou and Karabelas 1994; Kumar
and Ramkrishna 1996b). This is done by casting these terms into moment
evolution equations at the pivots while conserving a given number of mo-
ments of the NDF. In an early version of these methods, the integral terms
were evaluated pointwise with a correction to ensure the conservation of
mass. These zero order methods, as named by Kostoglou and Karabelas
(1994), are unable to describe the details of the NDF. In the �xed pivot
techniques (Kumar and Ramkrishna 1996b), these terms are computed at
the pivot locations but they are not linked to the kinetic level. Kumar and
Ramkrishna (1996a) extended these methods to moving pivot techniques
to increase the accuracy while preserving some moments of the global size
distribution. A main drawback of this method is the assumption of an
identical temperature and velocity for all the sizes. These methods are
usually used in 0D or homogeneous contexts to solve the PBE (Gelbard
et al. 1980). They have some ad-hoc continuous aspects that di�erentiate
them from the sampling methods, and since they do not rely on a NDF
reconstruction they also di�er from the Multi-Fluid methods (Doisneau
2013).
• The method of moments with interpolative closure (MOMIC) was intro-
duced by Frenklach and Harris (1987) and was further developed to de-
scribe various aspects of the dynamics of particles (Frenklach 2002; Fren-
klach 2009). The closures of the fractional-order moments are obtained
by interpolation among whole order moments at each integration step
by separating the positive order and negative order fractional moments.
They are both evaluated by Lagrangian interpolation: the former using
the whole order moments while the latter using normalized moments.
Balthasar and Frenklach (2005) extended this method to particles of non-
spherical shapes. The main disadvantage of this method is the realizabil-
ity problem. Another di�culty is faced when a certain change of particles
size is at the verge of removing all particle material (Frenklach 2002). This
method was used for both laminar and turbulent sooting �ames, for some
examples one can check the work of Roy et al. (2014) and the references
therein.
This method was coupled by Mueller et al. (2009) to the Direct Quadra-
ture Method of Moments and the obtained method is called the Hybrid
Method of Moments (HMOM). This method captures the bimodal soot
NDF and the result was validated with experimental data.
• The Multi-Fluid method: this technique consists in discretizing the size
phase space intoNS intervals called "sections". It is based on the sectional
method by Tambour (1980); Greenberg et al. (1993) and was character-
ized with the kinetic point of view and underlying assumptions in Laurent
and Massot (2001). It is assessed on di�erent con�guration of increasing
complexity for example in de Chaisemartin (2009). The classical MF ap-
proach is based on the semi-kinetic system based a presumed Dirac-delta
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Figure 3.2: Discretization of the size phase space for the classical Multi-Fluid method.

distributions for the velocity and temperature conditioned by size. The
resulting semi-kinetic system is averaged based on a �nite volume ap-
proach which leads to conservation equations for mass, momentum and
energy of droplets in each section having a �xed mean size. The size dis-
tribution is assumed to be a piecewise constant function. This method
is expensive since a high number of sections (ten to twenty) is needed
and a system of conservation equation has to be resolved for each section
(Laurent 2006).
This classical MF method also known as the one-size moment method
OSM was extended to higher order using more complex forms for the
size distribution function. In this case, more size moments per section
are solved. For example the two-size moment method (TSM) consists
in solving two size moments per section. The reconstruction in size can
also be exponential (Dufour 2005; Doisneau 2013; Sibra 2015) or a�ne
(Laurent et al. 2016; Doisneau et al. 2013), as represented in Figure 3.2.
In this way, the number of sections needed to precisely describe the evap-
oration is decreased. This method is of great interest in this work since
it already accounts for hetero-PTC and can be relatively easily extended
to treat polykineticity and capture homo-PTC. This method was used to
treat polydispersion with the MEF in the work of Vié et al. (2013).
• The quadrature-based moment methods: in this case the system of mo-
ment equations is closed using quadrature formula to compute the un-
known high order moments as a function of low order ones. In Quadra-
ture Method of Moment QMOM (McGraw 1997; Mead and Papanicolaou
1984; Marchisio et al. 2003; Wright et al. 2001) which is based on
moment methods derived from Population Balance Equations (Ramkr-
ishna and Fredrickson 2000), the closed moment equations are resolved
thanks to the quadrature closure. This method, which is uni-variate and
deals with unique velocity, was extended to multivariate QMOMmethods.
This later has been developed to account for the size velocity correlations
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(Marchisio and Fox 2005). However these approaches might face realiz-
ability, stability, accuracy and cost issues.
Another method based on quadrature is the Direct Quadrature Method
of Moment (DQMOM). It writes directly the equations on the quadra-
ture weights and abscissae (Fox et al. 2008). DQMOM is more attractive
than QMOM from a computational cost point of view, since the recon-
struction is done less often. In the work of Belt and Simonin (2009), DQ-
MOM was combined to the joint �uid-particle PDF approach of Simonin
(1996) to account for the coalescence of droplets in turbulent two-phase
�ows through the transport equations of the velocity, agitation and �uid-
particle covariance.
The DQMOM method su�ers from predicting the evaporating �ux at
zero droplet size. This drawback was improved with using the Extended
Quadrature Method of Moment (EQMOM) (Yuan et al. 2012). The
bivariate extension of the EQMOM is recently developed by combining
the features of EQMOM and CQMOM, and it was applied to soot for-
mation in premixed �ames (Salenbauch et al. 2015) and coupled droplet
evaporation and heat-up (Pollack et al. 2016). A robust algorithm is
developed for the reconstruction step of EQMOM in the work of Nguyen
et al. (2016) where the method is also compared to TSM and to the
sampling method in the context of �ne particles.
• Eulerian Multi-Size Moment model (EMSM) was introduced by Massot
et al. (2010) and developed in the thesis of Kah (2010). This model is
based on the continuous description of the size distribution to treat the
disappearing droplets and to evaluate the shift in size due to evaporation.
This is done by combining a �ux/quadrature approach. The NDF recon-
struction is done based on the moments through Entropy Maximization
(Mead and Papanicolaou 1984). An example using the �rst four moments
of the NDF is shown in Figure 3.3.
Compared to MF methods, this approach is less time consuming when
looking at an equivalent accuracy (Kah et al. 2012). It was applied to
realistic internal-combustion-engine con�guration by Emre et al. (2014).
The main drawback of this method is that it accounts for a single ve-
locity for all the droplets. Thus, the hetero-PTC cannot be captured by
this method. To deal with this issue, a Coupled Size Velocity Moments
method was developed. CSVM takes into account the size velocity cor-
relations by transporting additional size-velocity moment in each space
dimension (Vié et al. 2013). The EMSM is extended in the work of
Essadki et al. (2016) to fractional moments in surface, linked with geo-
metrical variables of the interface between the two phases. The resulting
geometrical moment model is a �rst step towards the description of the
transition between the separated and the disperse phase.

In the following, the focus is on the Multi-Fluid Method. The OSM and TSM
are presented based on the MonoKinetic closure for the velocity. Then, their
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Figure 3.3: Discretization of the size phase space with the EMSM using its 4 �rst
moments (in dashed red)

extension to Anisotropic Gaussian closure is presented.

3.2 Multi-Fluid model

The �rst step of this method is the semi-kinetic formalism that was introduced
with the associated assumption in the work of Laurent and Massot (2001).
The key idea is to consider that the degrees of freedom of the NDF are all
conditioned by the size. As a consequence, the phase space is reduced to a 1D
sub-manifold where the size-conditioned variables are governed by conservation
laws.

3.2.1 Semi-kinetic system

The semi-kinetic system of conservation laws is derived by assuming that the
droplets at (t,~x) having the same size are characterized by a given average
velocity ~u(t,~x|S) and a temperature T (t,~x|S). The dispersion around these
mean values is assumed to be zero in all directions. Thus, the NDFs for the
velocity and the temperature are Dirac-delta functions in velocity and temper-
ature respectively. These NDFs are conditioned by the droplet size.

f(t,~x, S,~c, T ) = n(t,~x, S)δ(~c− ~u(t,~x|S))δ(T − Td(t,~x|S)). (3.2)

When it comes to the velocity, this is the monokinetic closure presented in the
previous chapter in subsection 2.3.1.
The size of the phase space is reduce to the moments of order zero and one in
the velocity variable at a given time, position and for a given droplet size.
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Under these assumptions, the semi-kinetic system is closed in velocity and tem-
perature and reads:

∂tn+ ∂~x · (n~u) = −∂S(nRS,d),

∂tn~u+ ∂~x · (n~u⊗ ~u) = −∂S(nRS,d~u) + n
−→
F d,

∂tnhl + ∂~x · (nhl~u) = −∂S(nRS,dhl) + nCp,lHT,d,

(3.3)

where RS,d = RS(~u, Td),
−→
F d =

−→
F (~u, Td) and HT,d = HT (~u, Td) are modeled

in Appendix A and hl is de�ned as hl = h(~u, Tl). In this case the Stokes law is
used to model the drag force per unit mass.

3.2.2 Classical Multi-Fluid method

To account for polydispersion, the size phase space is discretized into NS sec-
tions. In each section or interval [Sp, Sp+1[, the evolution of the moments is
derived based on the semi-kinetic system (3.3). Thus, NS systems of conser-
vation equations are obtained for NS "�uids". These �uids exchange mass,
momentum and heat.
In the classical MF method, only one moment in size is considered to obtain
the averaged equations in each section. This moment is the surface moment
of order 3

2 . In this case one gets in a given section a system of equations of
evolution of:
• mass

(
3
2M0

0,0,0

)
• momentum

(
3
2M0

i,j,k

)
where i+ j + k = 1

• heat
(

3
2M1

0,0,0.
)

This system is closed by assuming that the size distribution, which is a function
of the surface for a given section, is independent of time and position. This
means that the repartition of sizes in a given section [Sp, Sp+1] is decoupled from

the evolution of the mass concentration: n(t,~x, S) = m(p)(t,~x)ϕ
(p)
S . Based on

these assumptions, the mass concentration, the momentum and the heat in this
section reads:

m(p)(t,~x) =

∫ Sp+1

Sp

ρlS
3/2

6
√
π
n(t,~x, S)dS, (3.4)

m(p)(t,~x)~u(p)(t,~x) =

∫ Sp+1

Sp

ρlS
3/2

6
√
π
n(t,~x, S)~udS, (3.5)

m(p)(t,~x)h
(p)
d (t,~x) =

∫ Sp+1

Sp

ρlS
3/2

6
√
π
n(t,~x, S)hldS. (3.6)
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Then, the above assumption leads to:∫ Sp+1

Sp

ρlS
3/2

6
√
π
ϕ

(p)
S dS = 1. (3.7)

In the classical MF, ϕ(p)
S is a constant that may be chosen constant in radius,

volume or surface. Since the size variable chosen here is the surface, ϕ(p)
S is

then set to be a constant in surface given by:

ϕ
(p)
S =

15
√
π

ρl

(
S

5/2
p+1 − S

5/2
p

) . (3.8)

In addition, the average velocity and temperature in the pth section are sup-
posed to be independent of the droplets size.
Based on the above hypotheses, the system of conservation laws in the pth sec-
tion is obtained by integrating the semi-kinetic system over the size phase space
of the considered section:∫ Sp+1

Sp

ρlS
3/2

6
√
π
Eq.(3.3)dS, (3.9)

and this system reads:

∂tm
(p) + ∂~x · (m(p)~u(p)) = S1, (3.10)

∂tm
(p)~u(p) + ∂~x · (m(p)~u(p) ⊗ ~u(p)) =

−→
S 2 +m(p)−→F (p)

d , (3.11)

∂tm
(p)h

(p)
d + ∂~x · (m(p)h

(p)
d ~u

(p)) = S3 +m(p)Cp,lH
(p)
T,d, (3.12)

where the source terms read:

S1 = m(p)(E
(p)
1 + E

(p)
2 )−m(p+1)E

(p+1)
1 , (3.13)

−→
S 2 = m(p)~u(p)(E

(p)
1 + E

(p)
2 )−m(p+1)~u(p+1)E

(p+1)
1 , (3.14)

S3 = m(p)h
(p)
d (E

(p)
1 + E

(p)
2 )−m(p+1)h

(p+1)
d E

(p+1)
1 . (3.15)

The averaged drag and heat exchange source terms are given by:

−→
F

(p)
d (t,~x) =

1

m(p)

∫ Sp+1

Sp

ρlS
3/2

6
√
π

−→
F d(t,~x, S, ~u)n(t,~x, S)dS, (3.16)

H
(p)
T,d(t,~x) =

1

m(p)

∫ Sp+1

Sp

ρlS
3/2

6
√
π
HT,d(t,~x, S, ~u, Td)n(t,~x, S)dS. (3.17)

For simple models of the drag and heat transfer terms where their dependence
on the size can be supposed to be 1/S, these terms read:

−→
F

(p)
d (t,~x) =

−→
F d(t,~x, S

(p)
d , ~u(p)), (3.18)

H
(p)
T,d(t,~x) = HT,d(t,~x, S

(p)
d , ~u(p), T

(p)
d ), (3.19)
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where the characteristic droplet surface in the pth section based on the constant
surface recontruction is:

S
(p)
d =

3
(
S

5/2
p+1 − S

5/2
p

)
5
(
S

3/2
p+1 − S

3/2
p

) . (3.20)

For example, in section p, the drag per unit mass modeled by the Stokes law
has the following form:

−→
F

(p)
d (t,~x) =

−→
Ug(t,~x)− ~u(p)(t,~x)

τ
(p)
p

, (3.21)

where the characteristic time in section p is given by:

1

τ
(p)
p

=

∫ Sp+1

Sp

ρlS
3/2

6
√
π

ϕS
τp

dS =
1

CStS
(p)
d

, (3.22)

with CSt =
ρl

18πµg
.

The evaporation source term is divided into two exchange terms. The �rst one
is between successive sections (E(p)

1 and E(p+1)
1 ) and the second is the exchange

between the disperse phase and the underlying gas (E(p)
2 ), see Figure 3.4. This

separation is done through an integration by parts and leads to:

E
(p)
1 = ρl

S3/2

6
√
π
R

(p)
S ϕ

(p)
S , (3.23)

E
(p)
2 =

∫ Sp+1

Sp

ρl
dS(S3/2)

6
√
π

R
(p)
S ϕ

(p)
S dS. (3.24)

By replacing ϕ(p)
S by its value and integrating we get:

E
(p)
1 = 5

S
3/2
p

2
(
S

5/2
p+1 − S

5/2
p

)R(p)
S ,

E
(p)
2 =

5
(
S

3/2
p+1 − S

3/2
p

)
2
(
S

5/2
p+1 − S

5/2
p

)R(p)
S =

15R
(p)
S

10S
(p)
d

.

(3.25)

For more information on this method and its two-way coupling with the car-
rier, one can refer to the thesis of Laurent (2002). This model was evaluated
on di�erent con�gurations of increasing complexity, for example from Taylor
Green vortices to 3D frozen HIT in de Chaisemartin (2009). The ability of
this model to precisely discribe polydispersion and hetero-PTC was proven.
However, the MK MF model is expensive since a high number of sections must
be considered in order to have a precise description of the polydispersion and
thus of the evaporation. This is due to the fact that this model is of low order
in evaporation description (Laurent 2006). To overcome this limitation, high
order MF models can be used.
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Figure 3.4: Evaporation source term separated into two contributions between two
successive sections and between the disperse phase in each section and the gas phase

3.2.3 High order Multi-Fluid method

Instead of assuming a piecewise constant distribution in size and solving only
for one moment in size, higher order MF methods suppose complex forms for
n(t,~x, S) with additional parameters. In this case, for each parameter an ad-
ditional moment in size should be accounted for in order to close the system.
For example, in Dufour (2005), a piecewise exponential size distribution was
chosen:

n(t,~x, S) = a
(p)
1 (t,~x) exp(−a(p)

2 (t,~x)S) for S ∈ [Sp, Sp+1[. (3.26)

Since this distribution depends on two parameters a(p)
1 and a(p)

2 , two moments
in size should be accounted for, namely the moment of order 0 and 3/2 in
surface which are respectively the number density and the mass. This method
was validated for polydisperse and evaporating test cases in Dufour (2005);
Laurent (2006); Doisneau (2013); Sibra (2015) where the derivation of this
method can be found.
Instead of having an exponential form for the size distribution, a piecewise a�ne
reconstruction can be used, where once again the moment of order 0 and 3/2
in surface are transported or the moments of order 0 and 1. For more details,
one may refer to Laurent (2006); Doisneau (2013); Laurent et al. (2016). In
the cases where the studied moments are of order 0 and 3/2 in surface, the
resulting system of conservation laws in section p which is obtained from the
integration of the semi-kinetic system (3.3) gives the evolution of the number
density n(p), the mass m(p) and the momentum m(p)~u(p).
These two methods are both two size moments MF methods, examples of these
TSM and of the classical one size MF method are illustrated in Figure 3.5.
In general, according to the choice of the size variable, the order of the method
in size and therefore the form of the size distribution, the moments to be solved
are chosen. The link between the number density, radius, surface, mass and the
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Figure 3.5: Size distribution: reference NDF in black full line, OSM in read boxes,
exponential TSM in dashed green line, a�ne TSM in dotted bleu line: l3 sections (left),
6 sections (right). (Source: Doisneau (2013))

Table 3.1: The link between di�erent order moments and physical quantities such as
the number density, radius, surface and mass (adapted from Doisneau (2013)).

moments is shown in Table 3.1. Now that the Multi-�uid method is presented
for the monokinetic closure, the extension of this method to the Anisotropic
Gaussian velocity closure in presented in the next section in order to statistically
account for homo-PTC.

3.3 Multi-Fluid Anisotropic Gaussian model

The Multi-Fluid Anisotropic Gaussian model was �rst introduced in the thesis
of Doisneau (2013) using a TSM formalism to treat coalescence.
In this section, the classical MF method is derived based on an Anisotropic
Gaussian distribution for the velocity.
In the following, we consider the size-velocity moments of the NDF in the
section p given in equations (3.4), (3.5), (3.6) and (3.27).

m(p)E(p) =

∫ Sp

Sp−1

ρl
6
√
π
S3/2n(S)E(S)dS. (3.27)

Moreover, Σp is also de�ned by: E(p) = 1
2 (~up ⊗ ~up + Σp).
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3.3.1 Semi-kinetic system

First, the semi-kinetic system is derived by assuming that the droplets at (t,~x)
having the same size are characterized by a given average velocity ~u(t,~x|S)
and a temperature T (t,~x|S). The dispersion around the mean velocity is of
paramount important for this model since it is responsible of statistically cap-
turing the PTC and it has di�erent values for the di�erent directions. For the
temperature the dispersion around the mean value is set to be zero in all di-
rections. Thus, the distribution function for the temperature is a Dirac-delta
function, whereas the velocity distribution function is the Anisotropic Gaus-
sian function presented in the previous chapter. The NDF is then given as the
velocity and temperature distributions, conditioned by the droplet size:

f(t,~x, S,~c, T ) = n(t,~x, S)N (−→c −−→u (t,−→x ),Σ(t,−→x ))δ(T −Td(t,~x|S)). (3.28)

Under these assumption the semi-kinetic system is closed in velocity and tem-
perature and reads:

∂tn+ ∂~x · (n~u) = −∂S(nRS,d),

∂tn~u+ ∂~x · (n(~u⊗ ~u+ Σ)) =
n(
−→
Ug − ~u)

τp
− ∂S(nRS,d~u),

∂tnE + ∂x · (n(E + Σ) ∨ ~u) =
n(
−→
Ug ∨ ~u− 2E)

τp
− ∂S(nRS,dE),

∂tnhl + ∂~x · (nhl~u) = −∂S(nRS,dhl) + nCp,lHT,d.

(3.29)

3.3.2 OSM-AG model

Using the same classical Multi-Fluid method presented in section 3.2, the MF-
AG system is derived based on the integration of the semi-kinetic AG system
over the size of a given section p. This is done by accounting for the surface
moment of order 3/2:∫ Sp+1

Sp

ρlS
3/2

6
√
π
Eq.(3.29)dS. (3.30)

The form of the velocity distribution function is supposed to be an Anisotropic
Gaussian function N in the section p. The resulting MF-AG system of conser-
vation equations reads:

∂tm
(p) + ∂~x · (m(p)~u(p)) = S1, (3.31)

∂tm
(p)~u(p) + ∂~x · (m(p)(~u(p) ⊗ ~u(p) + Σ(p))) =

−→
S 2 +m(p)−→F (p)

d , (3.32)

∂tm
(p)E(p) + ∂x · (m(p)(E(p) + Σ(p)) ∨ ~u(p)) = SE + S(p)

g , (3.33)

∂tm
(p)h

(p)
ld + ∂~x · (m(p)h

(p)
ld ~u

(p)) = S3 +m(p)Cp,lH
(p)
T,d, (3.34)
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where the source terms S1 and
−→
S 2, S3 and

−→
F

(p)
d are given by equations (3.13)

and (3.21), and SE and S
(p)
g read:

SE = m(p)E(p)
(
E

(p)
1 + E

(p)
2

)
−m(p+1)E(p+1)E

(p+1)
1 , (3.35)

S(p)
g =

m(p)(
−→
Ug ∨ ~u(p) − 2E(p))

τ
(p)
p

. (3.36)

The resulting system for OSM-AG is capable to accurately describe the poly-
dispersion by using nearly 10 sections, and to capture the velocity dispersion.
Therefore, it captures hetero-PTC and reproduces statistically the homo-PTC.

3.3.3 TSM-AG

Instead of using the classical MF method to derive a polydisperse AG model,
one can use high order MF such as the TSM that gives accurate results with
less sections than with OSM.
In this case, in addition to the size-velocity moments de�ned in the begining
of this section, an additional moment is de�ned, it is the moment of order 0 in
all variable, 0M0

0,0,0. This is the number density, which, for a given section p,
reads:

n(p) =

∫ Sp

Sp−1
n(S)dS. (3.37)

To close the equations on the moments, the NDF is reconstructed from the con-
trolled moments. This means that n(S), ~u(S) and Σ(S) from Equation (3.28)
are presumed in each section p: ~u(S) and Σ(S) are assumed to be constant,
equal to ~u and Σ, and an a�ne by part reconstruction κp(S) is used for n(S),
which was shown to be accurate and stable (Laurent et al. 2016). As in the
case of OSM, the repartition of sizes in a given section [Sp, Sp+1] is decoupled
from the evolution of the mass concentration n(p) = m(p)(t,~x)κp(S).

Three types of reconstruction are used for κp(S), depending on the value of
m(p)/n(p). They are represented in Figure 3.6 (see Laurent et al. (2016) for
more details).
With this presumed NDF, the equations are written:

∂tn
(p) + ∂~x · (n(p)~u(p)) = S0, (3.38)

∂tm
(p) + ∂~x · (m(p)~u(p)) = S1, (3.39)

∂tm
(p)~u(p) + ∂~x · (m(p)(~u(p) ⊗ ~u(p) + Σ(p))) =

−→
S 2 +m(p)−→F (p)

d , (3.40)

∂tm
(p)E(p) + ∂x · (m(p)(E(p) + Σ(p)) ∨ ~u(p)) = SE + S(p)

g , (3.41)

∂tm
(p)h

(p)
ld + ∂~x · (m(p)h

(p)
ld ~u

(p)) = S3 +m(p)Cp,lH
(p)
T,d, (3.42)
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Figure 3.6: The three types of a�ne reconstructions.

where the source terms S1 and
−→
S 2, S3,

−→
F

(p)
d , SE and S

(p)
g are given by equations

(3.13), (3.21) and (3.35) , where E(p)
1 and E(p)

2 are expressed through the general
formula to take into account the a�ne reconstruction in size κp(S) instead of

assuming constant ϕ(p)
S as for OSM:

E
(p)
1 = ρl

(Sp)
3/2

6
√
π
R

(p)
S κp(Sp), (3.43)

E
(p)
2 =

∫ Sp+1

Sp

ρl
S1/2

4
√
π
R

(p)
S κp(S)dS. (3.44)

In addition the source terms S0 reads:

S0 = R
(p)
S κp(Sp)−Rp+1

S κp(Sp+1), (3.45)

with τ (p)
p = ρl

18πµg
Smeanp and

Smeanp =

∫ Sp+1

Sp
S3/2κp(S)dS∫ Sp+1

Sp
S1/2κp(S)dS

. (3.46)

This high order moment method in size and velocity is able to reproduce the
two types of PTC and to describe polydispersion in an e�cient and accurate
way. This model however does not account for the temperature dispersion
and further developement should be done in the future to obtain a high order
moment method is size, velocity and temperature. Even without this extension,
the TSM-AG is a promising model to describe the spray combustion especially
since it represents a compromise between the cost and the level of details. Thus,
the direct perspective of this work is to validate this model in academic and
industrial combustion applications.
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In this part, the numerical strategy used to solve the systems of equa-
tions obtained in Part I is presented. Chapter 4 starts with a non ex-
haustive overview of the classical families of discretization, followed by
the meshing techniques and the system of equations to be solved. In
addition, a summary of few academic, semi-industrial and industrial
codes is used to depict the use of the numerical schemes in computa-
tional �uid dynamics for the transport solvers. Finally, the objectives
and challenges for the choice of the numerical scheme are speci�ed.
Based on these objectives, several numerical schemes are chosen and
presented in chapter 5, namely the third order �nite element Two-Steps
Taylor-Galerkin (TTGC) scheme, the second order �nite volume kinetic
scheme (FVKS), a realizability-preserving second order �nite volume
MUSCL/HLL scheme and a realizability-preserving second order Dis-
continuous Galerkin method (DG). These schemes are compared on 1D
and 2D test cases in Chapter 6.
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Chapter 4

Numerical schemes: overview and
objectives

This chapter is an introduction to some numerical methods for the res-
olution of the partial di�erential equations (PDE) resulting from the
modeling procedure. First, a non-exhaustive overview of some classical
discretizations is presented, namely the �nite di�erence (FD), the �nite
volume (FV), the �nite element (FE), and the discontinuous Galerkin
methods (DG). This brief review is found in section 4.1, where the gen-
eral advantages and disadvantages of each family is discussed. The
meshing techniques are exhibited is section 4.2. The system of PDE to
be resolved is then presented along with the splitting strategy leading to
the separate resolution of the hyperbolic system of equations and source
terms.
Then, few academic, semi-industrial and industrial codes are presented
to illustrate the use of the numerical schemes covered in section 4.1 in
computational �uid dynamics for the transport part.
Finally, the characteristics and properties of the numerical scheme that
are required for the resolution of the resulting hyperbolic PDE are pre-
sented.

4.1 Introduction to numerical methods

In the literature, one can �nd various numerical schemes for the resolution
of systems of partial di�erential equations. Most of these schemes belong to
one of the three families: the �nite di�erence (FD), the �nite volume (FV)
and the �nite element (FE) methods. These families di�er by their spatial
discretization. Thus, the spatial derivative operators are represented di�erently
according to the chosen family.
In the following, the discrete versions of a PDE are compared to show the
di�erences between these strategies.
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For clarity, this is done for a 1D conservation law (Equation (4.1)) of the variable
u. It writes:

ut + (f(u))x = 0, (4.1)

where f : R→ R is the �ux function for x ∈ R.

4.1.1 Finite di�erence methods

This family is considered to be the simplest approach. It is based on the strong
or di�erential form of the governing equation (Equation (4.1)). A grid xi for
i = 1, ..., N is laid down in space, as represented in Figure 4.1. The local grid
size is ∆xi.
The main idea is to evaluate the solution of the PDE as a pointwise approxi-
mation at the grid points. By doing so, the issue is the evaluations of the space
derivatives, which is done using a Taylor expansion. This leads to the semi-
discretized equation (4.2) when considering for example the forward discretiza-
tion. uh and fh are the numerical approximations of respectively the solution
and the �ux. Under certain conditions, the numerical solution uh(xi, t) may
converge toward an approximation of the solution of the PDE.

Figure 4.1: Finite di�erence discretization in 1D

duh(xi, t)

dt
+
fh(xi+1, t)− fh(xi, t)

∆xi
= 0. (4.2)

For example, for the linear advection equation where f(u) = au and a is con-
stant, using a �rst order forward Euler time integration, Equation (4.2) be-
comes:

uh(xi, t+ 1)− uh(xi, t)

∆t
+ a

uh(xi+1, t)− uh(xi, t)

∆xi
= 0, (4.3)

that is only stable if a < 0 under the Courant-Friedrichs-Lewy condition (CFL)
|a|∆t
∆x ≤ 1. Here comes the importance of the upwind di�erencing, where the
di�erence direction is adapted according to the direction of propagation of the
information: forward di�erence is chosen for a < 0 and backward di�erence
selected for positive values of a.
One of the oldest and most fundamental theoretical reference for the �nite dif-
ference technique is by Courant et al. (1928). Then, after the second world war,
this technique gained popularity and progress especially for its use in large scale
practical applications with the aid of increasingly e�cient computers (Thomée
2001). The �nite di�erence method was then used for the resolution of hyper-
bolic equations, starting with the work of Lax and Wendro� (1964); Courant
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et al. (1952). For these equations, the information is expected to propagate
as waves moving along characteristics (LeVeque 2002). Thus, upwind di�erenc-
ing, which is a one-sided approximation where the side depends on the direction
of propagation of the information for each characteristic (LeVeque 2002; Toro
2009), gained popularity for convection-dominated problems (Courant et al.
1952; Godunov 1959; Fromm 1968; van Leer 1986; van Leer 2006).
Another interest is that high order �nite di�erence can be easily obtained since
the accuracy of the method is determined by the order of approximation of the
discrete derivatives. This unfortunately leads to very large stencils making the
method complex and unattractive for unstructured grids (Visbal and Gaitonde
2002; Liu et al. 2006) and parallel computing.
An alternative approach to deriving high order �nite di�erences is to use com-
pact �nite di�erences (Lele 1992; Yee 1997), where a Padé approximation is
used to approximate the derivatives.
The advantages of the �nite di�erence methods lay in their simplicity and the
�exibility to choose a given expansion in time. This makes them easy in pro-
graming and e�cient in terms of computational cost. Owing to these strong
points, this approach was traditionally used for computationally costly prob-
lems, such as laminar-turbulent transition (Kloker 1997).
However, the bottleneck of this method is due to its discretization based on
topologically square network of lines, making the approach itself impractical
for handling complex geometries in multiple dimensions (Peiro and Sherwin
2005). In addition, this classical approach can break down near discontinuities
where the di�erential equation does not hold in the classical sense (LeVeque
2002).

4.1.2 Finite volume method

The use of the integral form of the PDEs has great advantages, since it is not
limited to a special mesh structure. For example, we can see the integral form
of Equation (4.1) in Equation (4.4):

∂

∂t

(∫
V
u(x, t)dV

)
+

∫
V

(f(u))x dV = 0. (4.4)

This is the starting point of the �nite volume and �nite element techniques.
In the �nite volume methods, the domain is tessellated into non-overlapping
control volumes (CV) organized in a structured or unstructured way to cover
the whole geometry. The 1D FV discretization is shown in Figure 4.2 where
the ith grid cell or CV is Ii = [xi−1/2, xi+1/2].
Once the meshing is done, an integral conservation law is then written on each
CV, Ii where f∗ is the numerical �ux:∫
Ii

∂u

∂t
dV+

∫
Ii

(f(u))x dV =

(
∂

∂t

∫
Ii

udx

)
+(f∗(u(xi+1/2))− f∗(u(xi−1/2))) = 0.
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Figure 4.2: Finite volume discretization in 1D

(4.5)

At this point, it can be seen that Equation (4.5) requires the knowledge of the
�uxes at each cell interface. These �uxes depend on the state on each side
of the interface. In fact, if a �rst order approximation (piecewise constant) is
considered, a Riemann problem (RP) is obtained at each interface. Godunov
(1959) proposed to solve the two Riemann problems found at the interfaces:
RP(ui−1, ui) and RP(ui, ui+1) as seen in Figure 4.3. The updated value of the
cell averaged solution in the ith CV is then obtained by taking the integral
average in Ii of the combined solutions of these two local RP.
The solution of the RP is not always mathematically straightforward and is
most of the time computationally expensive. Consequently, a number of alter-
native numerical �uxes called approximate Riemann solver have been proposed
in the literature. Among the various numerical �uxes available in the litera-
ture, we here name Roe �ux (Roe 1981), Osher �ux (Osher and Solomon 1982),
Lax-Friedrichs �ux, HLL �ux (Harten et al. 1983) and HLLC �ux (Toro et al.
1994). For more details, the reader may refer for example to one of the follow-
ing references: Toro (2009); LeVeque (2002).
To extend this approach to higher order schemes, a generalized Riemann prob-

Figure 4.3: Finite volume discretization in 1D

lem (GRP) is obtained instead of RP that does not have a self-similar analytical
solution as the case of RP.
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A second challenge is faced through the theorem of Godunov stating that all
linear schemes that preserve solution monotonicity are at most �rst order ac-
curate (Godunov 1959). Thus, high order schemes should add nonlinearity to
simultaneously be able to monotonously resolve the discontinuities and keep
the global precision (Barth and Ohlberger 2004).
In the 1970s, two high order FV methods were proposed and they were both
based on the idea of adding nonlinearity to avoid spurious oscillations in the
vicinity of strongly varying gradients (van Leer 2006). These schemes are the
Flux-Corrected Transport method (FCT) by Boris and Book (1973), where
the higher order extension is included in the �ux and the Monotone Upstream
Scheme for Conservation Laws (MUSCL) by van Leer (1974), where the higher
order extension is based on a reconstruction step. The state of the art of these
two schemes along with the limiting technique is brie�y presented in the next
paragraphs.

4.1.2.1 Flux-Corrected Transport

The FCT is based on a predictor-corrector methodology. First, the solution is
estimated through a �rst order nonoscillatory scheme, and then it is corrected
by removing the dissipative errors to get a solution of high order accuracy using
corrective �uxes. This method was then used and evolved by many researcher
and it still �nds its way in today's research world (Zalesak 1979; Boris et al.
1993; Zalesak 1997; Cheng-cai and Jun 2010; Patnaik and Boris 2010; Kuzmin
et al. 2012).

4.1.2.2 Monotone Upstream Scheme for Conservation Laws

The MUSCL by van Leer (1974; 1979) uses linear interpolation and preserves
the monotonicity by a slope limiting procedure. This scheme combines the Go-
dunov's method where the �uxes are derived from the solution of the RP at the
interfaces with a high order reconstruction leading to upwind-based scheme (van
Leer 2006). It is important to note that Kolgan (1972) devised a high order
extension of the Godunov's method that was very similar to MUSCL (van Leer
2006; Toro 2009).
An advanced version of MUSCL was later developed by Colella and Woodward
(1984). It is the piecewise-parabolic method (PPM) where the basic interpola-
tion functions are parabolae and additional dissipation is introduced. Colella
(1984) presented also a comparison between the PPM scheme, the classical
MUSCL and other schemes such as FCT scheme and Godunov's scheme for the
simulation of two-dimensional �uid �ow with strong shocks.
Lately, Berthon (2005; 2006b; 2014) analyzed the stability of the MUSCL
scheme for the Euler equations, its robustness on unstructured meshes and
introduced a new version of the MUSCL scheme based on Dual Mesh Gradient
Reconstruction.
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Ever since its publication, the MUSCL method has been the subject of many
studies and advances, its usage was extended for example to 2D shallow water
equations (Hou et al. 2015) and two-phase �ows (Vié et al. 2013; Vié et al.
2015). Another improvement is the Multislope MUSCL method for unstruc-
tured meshes (Bu�ard and Clain 2010; Le Touze et al. 2015; Dupif 2017).
If this scheme is applied without the limiting procedure, it will generate spu-
rious oscillations and wiggles especially near discontinuities. For many cases,
these oscillations are also generated even for smooth solution due to the disper-
sive nature of the schemes. For this reason, the use of limiters is of paramount
importance and it should:
• keep the high order accuracy where possible but degenerate to lower order
near discontinuities,
• eliminate or minimize phase error.

Actually, a slope limiter is used in many high order FV and FD methods. It is
a very widely used way to preserve the monotonicity and thus it is presented
in appendix C.
These limiters su�er from the risk of degenerating to lower order of accuracy in
smooth regions. In fact, Osher (1984) proved that the total variation diminish-
ing (TVD) discretizations reduce to at most �rst order accuracy at non-sonic
critical points. Thus, the need for devising schemes with weaker constraints
emerged and this was one of the main reasons for the development of the Es-
sentially Non-Oscillatory schemes that is the subject of the next paragraph.

4.1.2.3 Essentially Non-Oscillatory schemes

In the late 1980s, a new non-linear technique was introduced for the develop-
ment of oscillation-free higher order FV methods based on the non-oscillatory
interpolation theory.
The Essentially Non-Oscillatory schemes by Harten et al. (1986) is based on a
piecewise polynomial interpolation where a nonlinear procedure of selection of
the discrete stencil whose data will give the smoothest interpolant is applied.
The resulting ENO scheme is total variation bounded (TVB) (Harten et al.
1987). Following this work, Shu and Osher (1988; 1989) worked on the e�cient
implementation of these schemes. Then, an advanced version of this scheme
was developed: the Weighted Essentially Non-Oscillatory schemes (Liu et al.
1994; Jiang and Shu 1996). WENO has higher accuracy in smooth solution
regions than the classical ENO scheme. Also, the di�erentiability in WENO is
improved leading to higher robustness for steady state calculations (Barth and
Ohlberger 2004).
In the literature, we can �nd many research directions for the advancement of
WENO schemes, whether by improving the accuracy or the e�ciency by tuning
the linear and nonlinear weights or the smoothness indicators (Shu 2016). For
example, an improved version of WENO from the accuracy point of view can
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be found in the work of Castro and Toro (2008) called WENO-Z scheme. Other
examples are the ADER WENO (Dumbser et al. 2014; Balsara and Kim 2016)
and the adaptive mesh WENO (Hu et al. 2015). The main disadvantages of
these methods is their high computational cost and the fact that they are TVB
which may cause problems of negative densities near vacuum regions.

4.1.3 Finite element methods

Similar to the FV, the �nite element methods do not use the di�erential form
of the PDEs but they use its integral form instead. In fact, the FE method
does not use exactly the integral form shown in Equation (4.4) but an alter-
native integral form called the weak or variational form, which is the �rst step
in a weighted residual formulation leading to the �nite element discretization
(Donea and Huerta 2003).
Before presenting the historical review of the FE method itself, we will go fur-
ther back in time to the late 1890s, when Lord Rayleigh (1894) used for the
�rst time the variational formulation. Few years later, Ritz (1909) presented an
approach where the approximate solution based on the variational formulation
is a �nite linear combination of polynomials.
One of the earlier developments were made by Hrenniko� (1941) who named
the approach the framework method. At the same time, Courant (1943) pro-
posed a discrete solution based on continuous piecewise linear functions over
triangulations adapted to the studied geometry. This article is considered to
be the starting point of the FE method, knowing that this method is indebted
to the work of Galerkin (1915) especially for the orthogonality condition and
for the used of test and trial functions that belong to the same class. For a
historical survey on the �nite element methods, one may refer for example to
the articles of Clough (1990); Donea and Quartapelle (1992); Thomée (2001).
Here only a brief summary of the history of the FE methods is presented.
The FE method was �rst introduced as a computational method in the domain
of solid mechanics in civil and aeronautical engineering to solve for structural
analysis and complex elasticity problems (Argyris 1955; Turner et al. 1956).
And it is due to this engineering work that the word �nite element came to
life during a presentation entitled "the �nite element method in plane stress
analysis" by Clough (1960).
Another independent article for the launching of FE method is by Feng (1965)
who named the method "FD method based on variation principle". Actually,
Feng (1965) and Friedrichs (1962) both worked on the construction and anal-
ysis of the Rayleigh-Ritz procedure.
More advancements were carried out by Hinton and Irons (1968); Baker (1975);
Ciarlet (1978). Also in this period, mathematical analysis of the FE method
were conducted by (Birkho� et al. 1968; Strang and Fix 1973).
The success of the FE method in structural mechanics was not directly trans-
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lated to the �uid dynamics �eld. This is due to the generation of spurious
node-to-node oscillations by the standard Galerkin FE method. Thus, stabi-
lization techniques were developed and were considered a major breakthrough
back then in FE methods for �uid dynamics such as the Streamline-Upwind
Petrov-Galerkin (SUPG) and the Galerkin/Least-squares methods (Donea and
Huerta 2003). Brooks and Hughes (1982) proposed an arti�cial di�usion oper-
ator that acts only in the �ow direction and not transversely, which was the
basic idea of SUPG (Bonhaus 1998).
Then, the Taylor-Galerkin method was devised for time-dependent advection
dominated PDE, were the time discretization is taken as the �rst step of the
discretization process and is prearranged to match the high spatial accuracy
achieved by linear elements (Donea and Huerta 2003). This family of meth-
ods was published in several papers by Donea and collaborators (Donea 1984;
Donea et al. 1987; Donea and Quartapelle 1992; Quartapelle and Selmin 1993)
and more recently by Colin and Rudgyard (2000).

This weak integral form is obtained by multiplying the di�erential form by the
weighting or test function ψ, integrating it over the whole domain V and �nally
applying the Green-Gauss divergence theorem to the �ux term:∫
V

(ut +∇ · f(u))ψdV =

∫
V
utψdV−

∫
V

(∇ψ · f(u)) dV+

∫
A
ψ (f(u) · n) dA = 0,

(4.6)

where A is the boundary of the domain V and n is the unit normal vector
pointing outward.
After the variational formulation, the discretization strategy follows. The �rst
step is to discretize the domain V into N elements, Ii = [xi, xi+1] as seen in
Figure 4.4. Based on this spatial discretization the discretized version of the

Figure 4.4: Finite element discretization in 1D

weak form of the PDE is obtained as the sum over the whole domain of the
weak formation on the elements:∑

i

[∫
Ii

utψdV −
∫
Ii

(∇ψ · f(u)) dV +

∫
δIi

ψ (f(u) · n) dA

]
= 0. (4.7)
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The local approximate solution is then de�ned through trial functions also
called admissible solutions. This leads to the discrete approximate solution uh
obtained as a linear combination of these basis functions ϕi(x) :

uh(x, t) =
N+1∑
i=1

ui(t)ϕi(x). (4.8)

An example of basis functions as piecewise continuous polynomials is shown
in Figure 4.5. The choices of the test and trial function spaces are two very

Figure 4.5: A piecewise linear approximation (adapted from Peiro and Sherwin
(2005))

important ingredients of the FE discretization strategy and govern the type of
the obtained FE scheme. For example, in Galerkin FE methods, the weighting
functions and the basis functions belong to the same space.

The advantages of the FE method is its geometric �exibility due to the use of
the variational approach, the compact stencil of the high order schemes since
this can be achieved by increasing the degree of the trial function and the
straightforward error analysis.
The main disadvantage is the coupling of the degrees of freedom at the nodes.
This is faced in the continuous FE method and leads to coupled system of
equations to be solved every time step.

All the FE methods mentioned so far are continuous methods where the ele-
ments are conforming meaning that continuity is required for the test and trial
functions at the nodes. Another class is the discontinuous Galerkin method for
which a brief history is presented in the following subsection and a new scheme
belonging to this family is presented in details in the next chapter.
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4.1.4 Discontinuous Galerkin methods

The Discontinuous Galerkin methods gain more and more popularity each day
since this approach couples the advantages of the �nite volume and �nite ele-
ments method.
Knowing that this method is usually classi�ed as a FE method, here it is pre-
sented as an independent family since it has hybrid �nite element and �nite
volume methodologies. A brief history of the development of the DG method
is presented hereafter. For a more comprehensive survey one may refer to the
work of Shu (2013; 2016), Landmann (2012) or Larat (2016), as well as the
books of Kanshat (2007) and Hestaven and Warburton (2008) for example.
The �rst discontinuous Galerkin method for steady state linear scalar conserva-
tion laws was introduced by Reed and Hill (1973) to solve the neutron transport
equations. A year later, LeSaint and Raviart carried the �rst error estimated
for the DG method of Reed and Hill and studied its rates of convergence. This
work evolved further in (1986) by Johnson and Pitkaranta.
From year (1989) to (1998b), Cockburn and Shu published a series of �ve papers
considered to be a keystone in the DG history. In this work, linear and non-
linear time dependent hyperbolic systems were solved by the DG method. The
time discretization was done with Strong Stability Preserving (SSP) Runge-
Kutta methods (Gottlieb and Shu 1998; Gottlieb et al. 2001; Gottlieb et al.
2009; Shu 2001).
Another reference for DG schemes for hyperbolic problems is by Johnson (1993).
Jiang and Shu (1994) proved the cell entropy inequality for DG for nonlinear
conservation laws. Then, DG methods were designed for convection-di�usion
problems by Bassi and Rebay in (1997) , Cockburn and Shu in (1998a) and
Baumann and Oden in (1999b).
Atkins and Shu (1998) analyzed the stability limitations and introduced quadrature-
free implementation of DG for hyperbolic equations. In this same year, the
local grid re�nement method for DG was introduced (van der Vegt and van der
Ven 1998). This hp-re�ned DG methodology was used later on by several re-
searchers and engineers (Eskilsson and Sherwin 2004; Hartmann 2006). In this
domain various superconvergence results can be found in the literature, one of
the �rst article is by (Cheng and Shu 2008).
In (2004), Cockburn et al. formulated a locally divergence-free discontinuous
Galerkin methods for the resolution of Maxwell equations.
For elliptic equations, the interior penalty discontinuous FE methods were de-
veloped by Arnold et al. (2001) in a DG framework. Further advances for DG
for solving elliptic equations can be found in Ortner and Süli (2007); Rivière
(2008).
Dumbser and collaborators also worked on DG (Dumbser and Munz 2005;
Dumbser et al. 2008). Two of their main contributions are the use of WENO
limiter to achieve non-oscillatory properties (Zhu et al. 2008; Zhu et al. 2011;
Dumbser et al. 2014) and the space-time adaptive ADER-DG (Zanotti et al.
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2015).
If limiter introduced in the FV method is applied to the DG method the or-
der of accuracy might be degenerated, for this reason another methodology
was developed by Zhang and Shu (2010). This methodology is formulated
for maximum-principle-satisfying and positivity-preserving high order schemes
(Zhang 2011) for DG and FV. Its application on DG was then carried out
(Zhang and Shu 2011) as well as its application to 3D on unstructured mesh
(Zhang et al. 2012; Chen et al. 2016).
These techniques were extended to the DG scheme for the Pressureless Gas Dy-
namics system (resulting from the MK model presented in the previous part)
by Larat et al. (2012), for Krause's consensus models by Yang et al. (2013),
for entropy-based moment closures for linear kinetic equations by Alldredge and
Schneider (2015) and for the chemotaxis model by Zhang et al. (2016).
One of the most recent advances is for curved boundary treatment with DG by
Zhang (2016).
In addition, di�erent numerical schemes from the DG family were recently used
for many other domains such as the shallow water model (Kesserwani and Liang
2012), the Lagrangian hydrodynamics (Vilar et al. 2011), the front tracking
ghost �uid method (Lu et al. 2016),the level set method (Fechter and Munz
2015; Hitz et al. 2016; Ta et al. 2016), the relativistic astrophysics (Teukolsky
2016) and the coupled Navier-Stokes/Cahn-Hilliard equations (Pigeonneau and
Saramito 2016).
In DG, �rst the computational domain is divided into N = 1

h sub-intervals Ii,
see Figure 4.6.

Ii =]xi− 1
2
, xi+ 1

2
[, (4.9)

where,

xi− 1
2

=
(i− 1)

N
, xi =

(i− 1/2)

N
, xi+ 1

2
=

i

N
, i = 1, ..., N. (4.10)

The spatial discretization is based on the weak formulation and uses trial func-
tion spaces for approximating the solution similar to the FE methods. However,
unlike the classical FE methods, DG allows discontinuity across the element in-
terfaces as illustrated in Figure 4.6 . The treatment of these discontinuities is

I I I

xx /2/2

Figure 4.6: Discontinuous space discretization for DG

done with the FV technique of solving general RP at the interfaces. Also the
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nonlinear limiting technique already introduced for the FV methods may be
used in DG to avoid spurious oscillations near discontinuities.

4.2 Meshing

Meshes can be classi�ed based on the type of the elements used, the connectiv-
ity between the elements and the control volumes on which the equations are
discretized.
Various elements exist: the most used ones are the triangles or rectangles in
2D and hexahedra and tetrahedra in 3D.
In addition there exist various ways to de�ne the Control Volume for a cell in
the domain, for example in Figure 4.7 one can see the 2D triangular mesh for
cell centered CV and vertex centered CV (Barth and Ohlberger 2004).
The connectivity based classi�cation is considered as a classi�cation of the

Figure 4.7: 2D triangular tesselation with control volume variants, source Barth and
Ohlberger (2004)

grids. Three types can be distinguished:
• structured meshes where the connectivity between the elements is simple
and regular. It allows a storage arrangement for the relationships between
the neighboring cells. This type is limited by the used of quadrilateral
elements in 2D and hexahedra in 3D.
• unstructured meshes where irregular connectivity is found in the grid.
The advantage of this method is that a greater �exibility for the choice
of the elements type. However, it is not very e�cient when it comes to
the storage, since one needs to store all the information needed about the
connectivity between the cells.
• hybrid meshes that contains both meshes types.

Even if the structured mesh that have been traditionally used to discretize the
computational domain are very useful for devising e�cient high order numer-
ical schemes, they are inherently di�cult and time consuming when dealing
with complex geometries. On the other hand, unstructured meshes can be
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Figure 4.8: Axial view of a mono-injector 3D unstructured mesh with tetrahedra,
source Philip (2016)

highly automated and time e�cient. In addition, for the complex geometries
the unstructured technique o�ers a great �exibility compared to the structured
one where the domain should be divided into di�erent blocks to obtain a conve-
nient structured mesh in each of these subdomains. An example of unstructured
meshes is illustrated in Figure 4.8. Finally, the unstructured meshes are more
easily used for the adaptive techniques and in case where topological alteration
of the mesh is needed. On the other hand, unstructured mesh may demand a
larger memory that the structured one.
Finally, in complex application where the geometries are complex and large

what is usually done to optimize the cost of a simulation is to used a coarse mesh
in the regions of low interest while re�ning locally the mesh in a optimal man-
ner near the regions of interest. This is known as the adaptive mesh re�nement
(AMR) and was a revolution in the computational domain since it provides ac-
curate solutions at lower costs. It was introduced by Berger and Oliger (1984)
on structured grids. In general, the adaptation method can be done by redis-
tributing the grid (r-re�nement) or by enriching the grid (h-re�nement). The
h-re�nement method is particularly attractive to industrial applications due to
its �exibility, especially when used with unstructured grids. The AMR can be
done through a block-based method where the block structures are uniformly
re�ned or a cell-based method that allows high rate of compression (Essadki
et al. 2016; Drui et al. 2016).
The complete strategy of AMR can be divided into three steps:
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Figure 4.9: AMR on structured grid for a 3D dam-break con�guration, source Drui
et al. (2016)

• compute the solution at time tn

• estimate the local error
• adapt the mesh according to the error estimate

An example of AMR for a dam break is shown in Figure 4.9 on structured grid
(Drui et al. 2016).

These techniques will not be used in this work but the proposed method should
have the �exibility of application with AMR.

4.3 System of equations

4.3.1 Operator splitting methods

In order to numerically solve the resulting system of the MK and Gaussian
model presented in part I. For simplicity, the source terms are splitted from the
free transport terms by the operator splitting technique proposed by Strang
(1968). This technique is of second order in time, if the time step is smaller
than all the physical scales and the solution is regular (Descombes and Massot
2004; Descombes et al. 2016).
The ODE source term resulting from the splitting is afterward solved exactly,
thanks to its simple form. Nevertheless, one should note that in a very high
order context, it is also possible to solve the entire system including source
terms. For example, in the discontinuous Galerkin framework, one can refer to
the work of Zhang and Shu (2011).
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4.3.2 Speci�c hyperbolic PDE for the disperse phase conser-
vation laws

The general form of the system of conservation laws in one dimension is:

∂tW + ∂xF(W) = 0, x ∈ [0, 1]; t ∈ [0, Ts], (4.11)

where W(x, t) is the unknown set of moments and F(W) the conservative �ux.
This system of conservation laws is hyperbolic whenever the Jacobian J(W) =
∂WF is diagonalizable with real eigenvalues.
For the PGD and Euler systems we have respectively:

WPGD = (n, nu), FPGD = (nu, nu2); (4.12)

WEuler = (n, nu, nE), FEuler = (nu, nu2 + P, (nE + P)u). (4.13)

In this part the number density is noted n.
The Euler system is hyperbolic whereas the PGD system is weakly hyperbolic
and more challenging for the numerical scheme.
We consider an initial boundary value problem (IBVP) with initial condition
W0 and periodic boundary conditions:

W(x, 0) = W0(x), ∀ x ∈ [0, 1], (4.14)

W(0, t) = W(1, t), ∀ t ∈ [0, Ts]. (4.15)

Boundary conditions are not a matter in this part. Unless spec�ed otherwise,
periodic boundary conditions will be considered.

4.4 Academic, semi-industrial and industrial codes

The numerical schemes mentioned in section 4.1, among others, can be found
as one of the main elements of the transport solvers. Whether these codes are
academic, semi-industrial or industrial, their main goal is to numerically solve
some PDEs in order to simulate and understand the dynamics in questions.
Some of these solvers representing a sample of the available codes based on
FD, FV, continuous and discontinuous FE discretization are classi�ed and il-
lustrated in Figure 4.10. More details of this list can be found in appendix B.
One can notice from this sample that three of the mostly used high order FV
schemes are MUSCL and ENO (or WENO). Whereas the most used FE scheme
are TTGC and DG. Actually, DG is being recently used more than before since
it is one of the most studied high-order schemes with compact stencils. Other
scheme can be found in the literature with compact stencils, namely the Spec-
tral Di�erence (Liu et al. 2006), and Spectral Volume (Wang 2002) methods.
In the last decade, the Flux Reconstruction (FR) approach and more generally
the Correction Procedure using Reconstruction (CPR) were proposed. These
methods started gaining popularity nowadays. The FR scheme was imple-
mented for example in the PyFR code (Witherden et al. 2014) for solving the

http://www.pyfr.org
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advection-di�usion problems and it is under development in the Vincent Lab at
the Imperial College London. Another example is the High Fidelity Large Eddy
Simulation code (HiFiLES) (López-Morales et al. 2014) for the simulation of
compressible NS and Euler equations, which is under active development in the
Aerospace Computing Laboratory at Stanford University.
The CPR is based on the di�erential formulation and provides a unifying frame-
work for the compact stencils high-order schemes. The CPR methods will not
be addressed in this work. For the interested readers a review on these schemes
can be found in the work of Huynh et al. (2014).
In the literature, there is no numerical solver that can at the same time deal
with zero densities in vacuum regions, solve the singularities in the case of the
weakly hyperbolic system, and solve the di�erent model in the KBMM hierar-
chy while preserving the realizability.

https://hifiles.stanford.edu
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4.5 Objectives and challenges

In general, with the rapid growth of computers, in terms of FLOPS and avail-
able memory, and with the increasing study and understanding of numerical
schemes, the computational methods are expected to give more accurate solu-
tions for more complex realistic con�gurations and at lower computational cost.

In the domain of combustion, the unstructured meshes are widely used to cope
with the complex geometries. With all the advantages that unstructured meshes
can provide, it is important to keep in mind that structured grids are still used
for many academic and some industrial applications.

In addition to these objectives, we have more objectives that are speci�c for the
simulation of spray. In fact, the realizability conditions presented in Chapter
2 should be preserved by the numerical schemes. Even if the moment method
itself is realizable (for every set of moment a non negative NDF can be as-
sociated), the numerical scheme can update the moment set in a wrong way
that leads to irrealizability. Thus, the numerical scheme should be realizability-
preserving. It should respect the physical constraints coming from the under-
lying kinetic representation.
In addition, a high order robust numerical method is needed to minimize the
numerical di�usion, which may be of the same order of magnitude as some un-
derlying physical phenomena. In this way, the numerical scheme will be able to
capture the �ne structures appearing in the solution and to reproduce the large
variations that might be encountered in the density �eld (going from vacuum
zones to high concentration regions) without inducing spurious oscillations.
To sum up, the numerical scheme should be:
• accurate to be able to reproduce the large variations of the density,
• preserve the realizability in order to maintain a physical sense to
the solution. For example, the solution should not include any negative
density, nor negative pressure,
• applicable to unstructured mesh computations needed to simulate dis-
perse phase �ows in real con�gurations including complex geometries,
• as cost e�ective as possible, otherwise it would not be suitable for in-
dustrial use,
• parameter free: no need for example for arti�cial viscosities to stabilize
the scheme and suppress spurious oscillations that can result near high
gradients.

To achieve these goals of accuracy, robustness and realizability preserving on
unstructured, the Discontinuous Galerkin method (DG) is a promising numer-
ical approach. In this work DG is used for the simulation of disperse phase
based of the MK and Iso model. It is compared to di�erent schemes from the
FV and FE family on 1D and 2D con�gurations (Sabat et al. 2014; Sabat et al.
2014).



Chapter 5

Numerical Schemes for Euler/Euler
simulations

In the Eulerian/Eulerian framework, the most used three schemes
are the third order �nite element Two-steps Taylor-Galerkin (TTGC)
scheme (Colin and Rudgyard 2000), the second order �nite volume ki-
netic scheme (FVKS) (Bouchut et al. 2003) and the �nite volume
MUSCL scheme (van Leer 1979). In the case of our study, realizability-
preserving schemes are required. The FVKS meets this requirement
but it can only be used for closure based on the mono-kinetic quadra-
ture. Since the models to be solved numerically are the monokinetic
(MK) (Laurent and Massot 2001) and the Gaussian model (Massot
2007; Vié et al. 2015), other schemes that are able to solve these sys-
tems should be proposed. A proposed structured �nite volume scheme
was derived by (Vié et al. 2015). This MUSCL/HLL scheme is of
second order and it preserves the realizability. However the classical
version of this scheme cannot be naturally applied to the unstructured
meshes for the complex application spray combustion.
To achieve the goals of accuracy, robustness and realizability, the
Discontinuous Galerkin method (DG) is a promising numerical ap-
proach (Larat et al. 2012; Zhang et al. 2012; Zhang and Shu 2010;
Zhang 2011). Based on the recent work of Zhang et al. (2012), the
DG method used is associated to a convex projection strategy, which
imposes the realizability constraints without a�ecting the accuracy. The
main contribution of this work is to apply one of the latest developments
in the �eld of numerical methods (DG) to physical models, taking into
account the free transport and drag terms of the disperse phase �ow,
which are the building blocks for the Eulerian modeling based on mo-
ment methods. In this chapter these four schemes: TTGC, FVKS,
MUSCL/HLL and DG are presented in 1D.
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5.1 Two-steps Taylor-Galerkin

From the di�erent numerical schemes used in industrial or semi-industrial codes,
the Two-steps Taylor-Galerkin scheme (TTGC) is chosen here. In fact this
scheme is the most used one in AVBP, and the one that is recommended for
the simulation of disperse phase �ow computations. The numerical strategy in-
volves two ingredients: the convection scheme itself, and the arti�cial viscosity.
The former solves the equation while the latter stabilizes the solution.

5.1.1 Centered Cell-Vertex Numerical Schemes: TTGC

To present this scheme, we restrict the analysis to scalar problems, since this
scheme will only be used on the linear advection test cases in the next chapter.
In fact, this scheme is used here as a reference of a third order scheme.
The TTGC version extended tom-component vector variable W given by Equa-
tion (4.11) can be found in (Colin and Rudgyard 2000) for the Euler equations
for LES.
The following general 1D conservation law is then considered:

ut + (f(u))x = 0. (5.1)

In this section, we present the scalar version of this scheme for simplicity and
since in Chapter 6 the TTGC scheme is only used for 1D test cases on the
linear advection equation.
Partial derivatives in space and time are denoted by (.)x and (.)t respectively.
Then, by deriving Equation (5.1) with respect to time, one gets:

utt = − ((f(u))x)t = −
(
f ′(u).ut

)
x

=
(
f ′(u). (f(u))x

)
x
. (5.2)

This formula will be useful later.

5.1.2 Taylor expansion in time

First, a time discretization is performed based on the family of two-step Taylor-
Galerkin time schemes that reads:

ũn = un + α∆tunt + β∆t2untt + (∆t3), (5.3a)

un+1 = un + ∆t (θ1u
n
t + θ2ũ

n
t ) + ∆t2 (ε1u

n
tt + ε2ũ

n
tt) + (∆t3). (5.3b)

This family depends on six parameters. It was developed as an extension of
the Euler Taylor Galerkin (ETG) (Donea 1984; Donea et al. 1987) and two-
step Taylor-Galerkin (TTG) schemes (Quartapelle and Selmin 1993) that were
found to be very dissipative at intermediate to high frequencies (Colin and
Rudgyard 2000). Then, by using Equations (5.1) and (5.2), one obtains:

ũn = un − α∆t (f(un))x + β∆t2
(
f ′(un). (f(un))x

)
x

+ (∆t3), (5.4a)

un+1 = un −∆t (θ1 (f(un))x − θ2ũ
n
t ) (5.4b)

+∆t2
(
ε1

(
f ′(un). (f(un))x

)
x

+ ε2ũ
n
tt

)
+ (∆t3).

Now a space discretization is needed.
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5.1.3 Approximation in space: Galerkin method

The domain is cut into N intervals (regular or not) and the numerical solution is
sought as a piecewise continuous polynomial. Then, the set of possible solutions
is spanned at the nodes of the mesh by Lagrange basis functions (ϕi)i=1,...,N :

un(x) =
∑
i

uni ϕi(x) and ũn(x) =
∑
i

ũni ϕi(x). (5.5)

The numerical solution is now searched such that the residuals obtained by
its injection in Equations (5.4a) and (5.4b) are orthogonal to every piecewise
linear and continuous function on the considered cell. Then, for all piecewise
polynomial continuous function ψ, one should have:

〈(5.4a), ψ〉 = 0 and 〈(5.4b), ψ〉 = 0, (5.6)

where 〈., .〉 denotes the standard scalar product on L2([0; 1]).

Since ϕi span the considered functional space, relations (5.6) still stand true if
they are veri�ed for every ϕi.
Now, the �ux functions f(un) and f(ũn) are also considered to be spanned
by the ϕis and take at each degree of freedom i the values f(uni ) and f(ũni )
respectively. Furthermore, the �ux jacobian f ′(u) is supposed to be constant.
These are standard hypothesis in the �eld of Finite Elements.

If Un, Ũn, Un+1, f(Un), f(Ũn), f ′(Un) and f ′(Ũn) now represent the coordi-
nates of un, ũn, un+1, f(un), f(ũn), f ′(un) and f ′(ũn) in the basis of Lagrange
functions (ϕi)i=1,...,N , the following double linear problem is obtained:

MŨn = MUn − α∆tTf(Un)− β∆t2D
(
f ′(Un).f(Un)

)
, (5.7a)

MUn+1 = MUn −∆tT
(
θ1f(Un) + θ2f(Ũn)

)
−∆t2D

(
ε1f
′(Un).f(Un) + ε2f

′(Ũn).f(Ũn)
)
, (5.7b)

where matricesM (mass), T (sti�ness) and D (dissipation) are given by:

M = (〈ϕi, ϕj〉)i,j =
∆x

6



4 1 0

1 4
. . .

. . . . . . . . .
. . . 4 1

0 1 4


, (5.8)

T = (〈ϕi, (ϕj)x〉)i,j =

 0 1/2 (0)

−1/2
. . . 1/2

(0) −1/2 0

 , (5.9)
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D = (〈(ϕi)x, (ϕj)x〉)i,j =
1

∆x


2 −1 0

−1 2
. . .

. . . 2 −1
0 −1 2

 . (5.10)

Within the general family of the Two-step Taylor-Galerkin scheme, a particular
choice is made for the TTGC scheme that depends on only one parameter
γ = ε1. This choice is made to keep the scheme the least expensive and less
dissipative than the ETG and TTG schemes. For the other �ve parameters,
Colin and Rudgyard (2000) suggested: θ1 = ε1 = 0, β = 1

6 and α = 0.5 − γ.
And Equations (5.3) simplify to:

ũn = un +

(
1

2
− γ
)

∆tunt +
1

6
∆t2untt + (∆t3), (5.11a)

un+1 = un + ∆tunt + ∆t2γuntt + (∆t3). (5.11b)
The TTGC scheme is then a family of schemes parametrized by γ.
One of the main constraints of TTGC is its dispersive character, since it can
lead to spurious oscillation that can highly a�ect the results. Thus, this imposes
the use of empirical arti�cial viscosity. This latter needs to be tuned manually,
decreasing as a result the order of convergence without eventually ensuring the
generic robustness.

5.1.4 Arti�cial viscosity

The arti�cial viscosity in AVBP has been introduced in the �rst place for the
gaseous phase, and was later adapted to the liquid phase (Kaufmann 2004;
Riber 2007; Martinez 2010). The goal of the arti�cial viscosity is to stabilize
the convection scheme in non-linear region, where the scheme is subject to
oscillations and/or overshoots/undershoots. The di�culty with this kind of
approach is to �nd the right parameters that ensure the stabilization of the
computation with the minimal impact on the accuracy.
The arti�cial viscosity is applied in two ways:
• A second order operator that acts like a viscosity and di�uses the strong
gradients.
• A fourth order operator that acts like a bi-Laplacian and removes the
high frequencies from the solution. It is also called hyper di�usion. This
type of arti�cial viscosity is usually only applied where the �rst type is
not.

A sensor controls the application of the arti�cial viscosity. The design of such
a sensor is highly important as it will govern the accuracy of the solution as
well as the robustness of the scheme. For instance, if the arti�cial viscosity is
applied everywhere at any time, the solution will be stable but not accurate.
On the contrary no arti�cial viscosity can lead to unstable solution, even if
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the theoretical order is maintained. For the disperse phase �ow, the design of
the sensor is highly important and can drastically modify the solution. In this
case stabilizing the solution could be highly time-consuming in order to reach
a trade-o� between stability and accuracy. The analysis of the sensor design is
detailed in the work of Vié (2010) and will not be treated here.

This scheme is extensively used in the literature for various academic and in-
dustrial simulations. One of the recent simulation carried out using the TTGC
scheme in AVBP is the LES of the ignition sequence of an full annular multiple-
injector burner by Philip et al. (2015), shown in Figure 5.1. This simulation
was conducted for the gaseous combustion without accounting for the spray
combustion. Other two phase simulations carried out using this scheme can
be found in the literature for example in the work of Sanjosé et al. (2011);
Boileau (2007); Riber et al. (2009); Vié (2010). This scheme faces di�culties
in the resolution of the MK and Gaussian models near vacuum regions and it
cannot deal with the singularities faced in the PGD equations.

Figure 5.1: Simulation of MICCA, the annular multiple-injector combustor using the
AVBP code (Philip et al. 2015).

5.2 Finite Volume Kinetic Scheme

The �nite volume kinetic scheme (FVKS) (Bouchut et al. 2003; de Chaise-
martin 2009) was developed in order to capture the singularities faced during
the resolution of the PGD system. This is done in a robust way while preserv-
ing the realizability of the moments. It is based on the equivalence between
the macroscopic and the mesoscopic descriptions for the PGD system, as illus-
trated in Figure 5.2. Instead of using the macroscopic equation to derive an
approximate solution of the updated moments, the moments are linked to the
underlying NDF whose update in time can be analytically solved through the
kinetic equation, which is linear.
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Wn
i

f(tn, x, c)
exact evolution

∆t
f(tn+1, x, c)

Wn+1
i

Figure 5.2: Time advancement of the kinetic based transport scheme

5.2.1 General kinetic schemes in 1−D

The transport kinetic equation is simpli�ed as follows in 1-D by taking account
of the convection term only:

∂tf + ∂x (cf) = 0. (5.12)

Under the MK assumption f(t, x, c) = n(t, x)δ(c − u(t, x)), this equation has
the exact solution f(t, x, c) = f(tn, x − c(t − tn), c) (Bouchut et al. 2003;
de Chaisemartin 2009; Massot 2007).
By integrating Equation (5.12) over (t, x, c) ∈ (tn, tn+1)×(xi−1/2, xi+1/2)×R×R
over a mesh of constant size ∆x , the discretized system is obtained in its
conservative form:

Wn+1
i = Wn

i −
∆t

∆x
(F i+1/2 − F i−1/2), (5.13)

where the average Wn
i = (nni , n

n
i u

n
i ) is de�ned by Equation (5.14) and the �uxes

F i+1/2 are decomposed in F i+1/2 = F+
i+1/2 + F−i+1/2 as shown in Equation

(5.15).

Wn
i =

1

∆x

∫ xi+1/2

xi−1/2

W(tn, x)dx, (5.14)

F±i+1/2 =
1

∆t

∫ tn+1

tn

∫
±c≥0

(
1
c

)
c f(t, xi+1/2, c) dcdt. (5.15)

Finally, the exact solution of the kinetic scheme is used to evaluate the �uxes
update. Here, a reconstruction in space is needed. For a constant reconstruc-
tion, one obtains the �rst order kinetic scheme, stable under the CFL condition
|ui|∆t ≤ ∆x:

F+
i+1/2 =

(
ni(ui)+

niui(ui)+

)
, F−i+1/2 =

(
ni+1(ui+1)−

ni+1ui+1(ui+1)−

)
, (5.16)

with the convention (y)+ = max{0, y}, (y)− = min{0, y}.



Part II - Numerical methods 107

5.2.2 Second order kinetic scheme

For the second order scheme, piecewise linear reconstructions are considered
for n and u:

for xi−1/2 < x < xi+1/2

{
n(x) = nni + Dni(x− xi),
u(x) = ui + Dui(x− xi),

(5.17)

where xi = (xi+1/2+xi−1/2)/2 is the center of the ith cell and where, to simplify
the notation, the tn dependence of each function is implicit.
In order to have the conservation property in each cells, the velocity reconstruc-
tion is not based on the velocity average value uni but on the corresponding
corrected average. This step is essential to guarantee that the cell average of
the momentum q(x) = n(x)u(x) at time tn is indeed qni = nni u

n
i as shown in

Equation (5.18). Based on this condition the corrected velocity average ui is
obtained (Equation (5.19)).

nni u
n
i =

1

∆x

∫ xi+1/2

xi−1/2

n(x)u(x) dx, (5.18)

ui = uni −
DniDui

nni

∆x2

12
. (5.19)

Now that the conservativity of the reconstruction is guaranteed, the slopes
should be computed in order to �nish the reconstruction step. The slopes should
be limited to ensure that the reconstructed velocities respect the maximum
principle and the reconstructed number density at the interface is always non-
negative.
The slope limiter used in the �rst two methods is either a minmod or a MC
limiter (LeVeque 2002; de Chaisemartin 2009). These limiters are obtained
from Equation (5.20) by respectively taking α = 1 or α = 2 with ∆+n =
nni+1 − nni , ∆−n = nni − nni−1, χ = ∆x(1 + ∆xDni/6n

n
i )

Dni =
(sgn(∆+n) + sgn(∆−n))

2
min

(
|∆+n+ ∆−n|

2∆x
,
α|∆−n|

∆x
,
α|∆+n|

∆x

)
,(5.20)

Dui =
(sgn(∆+u) + sgn(∆−u))

2
min

(
|∆+u+ ∆−u|

2χ
,
α|∆+u|
2∆x− χ

,
α|∆−u|

χ
,

1

∆t

)
.

5.2.3 Flux evaluation

Finally, the �uxes can then be evaluated from nLi−1/2, n
R
i−1/2, u

L
i−1/2, u

R
i−1/2,

the corresponding values of n(tn, x) and u(tn, x) at the left and the right of
interface xi−1/2 between the cells i− 1 and i:

nLi−1/2 = nni−1 + dx
2 Dni−1 , nRi−1/2 = nni − dx

2 Dni ,

uLi−1/2 = ui−1 + dx
2 Dui−1 , uRi−1/2 = ui − dx

2 Dui ,
(5.21)
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so that the decomposed �uxes are (de Chaisemartin 2009):

F+
i−1/2 = UL

i−1/2α
L
i−1/2 −

∆t
2 (αLi−1/2)2 Γ+

i−1/2,

F−i−1/2 = UR
i−1/2α

R
i−1/2 −

∆t
2 (αRi−1/2)2 Γ−i−1/2,

(5.22)

with the following de�nitions:

UL
i−1/2 = nLi−1/2

(
1

αLi−1/2

)
, UR

i−1/2 = nRi−1/2

(
1

αRi−1/2

)
, (5.23)

αLi−1/2 =
(uLi−1/2)+

1 + ∆tDui−1

, αRi−1/2 =
(uRi−1/2)−

1 + ∆tDui

, (5.24)

with:

Γ+
i−1/2 =


Dni−1

−nLi−1/2Dui−1 + αLi−1/2Dni−1 + ∆t
3 Dni−1Dui−1α

L
i−1/2

 , (5.25)

Γ−i−1/2 =


Dni

−nRi−1/2Dui + αRi−1/2Dni + ∆t
3 DniDuiα

R
i−1/2

 . (5.26)

The resulting second order scheme in space and time is capable of treating
the delta-shocks and vacuum. It also ensures that the number density is non-
negative and the velocity respects a maximum principle.

5.2.4 Extension to multi-dimensions

Several types for the extension of the FVKS to multi-dimensions are possi-
ble (de Chaisemartin 2009). For the academic tests in the present work,
the most suitable technique to the higher dimensions extension is the direc-
tional splitting technique (Alternating Direction Technique (LeVeque 2002)) on
quadrilateral meshes. This technique is e�cient and easily implemented on
structured grids.
The 1-D procedure presented in section 5.2.1 is repeated for each direction with
the addition each time of an equation corresponding to the velocity component
in the other directions. For example, in 2-D, one will consider the following
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piecewise linear reconstruction for the second order scheme for the x-direction
(for simplicity the j subscript for the y-direction is dropped):

for xi−1/2 < x < xi+1/2


n(x) = nni + Dni(x− xi),
u(x) = ui + Dui(x− xi),
v(x) = vi + Dvi(x− xi),

(5.27)

with vi = vni −
DniDvi
nni

∆x2

12 and the slope limiter for v in the x-direction:

Dvi =
1

2
(sgn(vni+1 − vni ) + sgn(vni − vni−1))

min

( |vni+1 − vni |
∆x(1−∆xDni/6n

n
i )
,

|vni − vni−1|
∆x(1 + ∆xDni/6n

n
i )
,

1

∆t

)
. (5.28)

Each of the decomposed �uxes given by Equation (5.22) has in this case an
additional term for v. The values at the left and right of the interface xi−1/2

are:

UL
i−1/2 = nLi−1/2

 1
αLi−1/2

vLi−1/2

 , UR
i−1/2 = nRi−1/2

 1
αRi−1/2

vRi−1/2

 , (5.29)

where, vLi−1/2 = vi−1 + dx
2 Dvi−1 , vRi−1/2 = vi − dx

2 Dvi and

Γ+
i−1/2 =



Dni−1

−nLi−1/2Dui−1 + αLi−1/2Dni−1 + ∆t
3 Dni−1Dui−1α

L
i−1/2

nLi−1/2Dvi−1 + vLi−1/2Dni−1 − 2∆t
3 Dni−1Dvi−1α

L
i−1/2

 , (5.30)

Γ−i−1/2 =



Dni

−nRi−1/2Dui + αRi−1/2Dni + ∆t
3 DniDuiα

R
i−1/2

nRi−1/2Dvi + vRi−1/2Dni − 2∆t
3 DniDviα

R
i−1/2

 . (5.31)

For the second order scheme, piecewise linear reconstructions are considered
for the density and velocity.

This scheme was previously used to solve 3D HIT and other combustion ap-
plications in the thesis of de Chaisemartin (2009). For example, Fréret et al.
(2012) carried a comparison between the Lagrangian and multi-�uid MK sim-
ulation on a spray jet con�guration. The liquid mass of this spray jet is shown
in Figure 5.3.
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Figure 5.3: Qualitative comparison of the liquid mass obtained with the MF model
(top) and the Lagrangian one (bottom) based on the stoichiometric iso-contour 0.0625
of the liquid phase. (Source (Fréret et al. 2012))

5.3 Finite Volume MUSCL/HLL Scheme

In this section, a realizable second order MUSCL/HLL (Vié et al. 2015) is
presented. This scheme was developed because the FVKS cannot be applied to
models that are not based on a Dirac δ-function for the NDF (Chalons et al.
2012; Kah et al. 2010).
It is obtained using the MUSCL strategy (van Leer 1979) with a linear con-
servative reconstruction of the primitive variables (U =

(
n,−→u

)
for the PGD

system and U =
(
n,−→u , σ

)T
for the Euler system) within each cell, in order

to calculate the interface values. Similar to the FVKS, the conservation prop-
erty should be respected and this is done through the corrected cell average
quantites. Then, the �uxes are evaluated with the reconstructed values at the
interface. Multi-dimensional problems are solved by a dimensional splitting
strategy. The time integration is done by means of a 2nd order Runge-Kutta
method.
In the following, the reconstruction, the slope limitation and the �ux evaluation
strategies are shown for the 2-D scheme in the x-direction. For more details,
one may refer to the work of Vié et al. (2013); Vié et al. (2015).

5.3.1 Conservative Reconstruction

Similar to the kinetic scheme, the linear reconstruction proposed in Vié et al.
(2015) is based on primitive variables. The main objective of this reconstruction
strategy is to ensure the realizability of the moment set. The cell reconstructed
variables Ũ are obtained by the limited linear reconstruction based on the cor-
rected cell value U for each reconstructed variable:
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Ũ i(x) = U i +DU (x− xi), (5.32)

where for the PGD and Euler systems, we have respectively:

U i,PGD = (ni, ui, vi)
T , DU ,PGD = (Dni , Dui , Dvi)

T , (5.33)

U i,Euler = (ni, ui, vi, σi)
T , DU ,Euler = (Dni , Dui , Dvi , Dσi)

T , (5.34)

The corrected cell values are one of the main di�erences between the scheme
used in this work and the classical reconstruction strategies of MUSCL schemes
(Berthon 2005). These corrected cell values are imposed by the conservation of
the cell value for each moment in order to ensure that the �uxes will not a�ect
the realizability (Vié et al. 2013):

Wkl =
1

∆x

∫ xi+1/2

xi−1/2

W̃kl,i(x)dx, (5.35)

where k+ l ≤ 1 for the PGD system and k+ l ≤ 2 for the Euler system. Finally
the corrected cell values are:

ni = ni, ui = ui −
DniDui

ni

∆x2

12
, vi = vi −

DniDvi

ni

∆x2

12
,(5.36)

σi = σi −
∆x2

12

(
D2
ui +D2

vi

2

)(
1 +

∆x2

12

D2
ni

n2
i

)
− ∆x2

12

DniDσi

ni
. (5.37)

The last step of this reconstruction is the slope evaluation and limitation.

5.3.2 Slope Limitation

Since the slopes can generate unrealizable corrected cell values, the slope eval-
uation is complex but mandatory to ensure the positivity of the density, the
variance (in case of Euler system) and to force a maximum principle of the
variables to guarantee robustness. A minmod or MC limiter with a positivity
constraint is �rst applied to the density. This limiter is the same as the one
used for the FVKS. For the PGD system, also the same limiter used in the
slope limiting procedure in the FVKS is applied to the velocities (see Equation
(5.20)).
On the other hand, for the Euler system, a limiter with a constraint to ensure
the positivity of the energy is applied to the velocities:

Dui ,Euler =
1

2
(sign(ui+1 − ui) + sign(ui − ui−1))

min

 |ui+1 − ui|

∆x
(

1− Dni
ni

∆x
6

) , |ui − ui−1|

∆x
(

1 +
Dni
ni

∆x
6

) , Dmax,σi
ui ,

1

∆t

 , (5.38)

where:

Dmax,σi
ui =

√√√√ σi

∆x2

12

(
1 + ∆x2

12

D2
ni

n2
i

) . (5.39)
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Finally, for the Euler system a similar slope limitation is applied to the variance:

Dσi =
1

2
(sign(σi+1 − σi) + sign(σi − σi−1))

min

 |σi+1 − σi|

∆x
(

1− Dni
ni

∆x
6

) , |σi − σi−1|

∆x
(

1 +
Dni
ni

∆x
6

)
 . (5.40)

The extension of this method to the AG model is developed and evaluated in
the work of Vié et al. (2015).

5.3.3 Flux evaluation

After the reconstruction, an approximate Riemann solver is used for the �ux
evaluation, for which the right and left states at the interface result from the
reconstruction procedure.
In fact, a realizability-preserving numerical �ux is needed to guarantee that the
update will not move the moment set out of the space of realizability S.
Now, we de�ne what we mean by realizability-preserving numerical �ux. A
realizability-preserving numerical �ux Fnum(WL,WR) for a �rst order �nite
volume scheme is de�ned such that for any three neighboring realizable states
Wn

i−1,W
n
i ,W

n
i+1 ∈ S at time step n, the explicit �rst order Euler update

Wn+1
i in cell Ii also belongs to S under the classical CFL condition for �rst

order �nite volume schemes and is thus realizable.
In the case of the PGD system or the Euler system, there exist already such
realizability-preserving �uxes. Among them one can cite the family of HLL
solvers or even the Godunov solvers.
For the scheme in question, a HLL approximate Riemann solver is chosen (Harten
et al. 1983). Thus, given the initial states of each side of the interfaceWL and
WR as illustrated in Figure 5.4 with �uxes F(WL) and F(WR) respectively,
the intermediate state is found by integrating Equation (4.11):

W∗ =
λminWL − λmaxWR

λmin − λmax
− F(WL)−F(WR)

λmin − λmax
, (5.41)

where R and L stand respectively for the right and left side of the interface.
λmin and λmax are respectively the slowest and fastest characteristic waves of
the states on the left and right side of the interface.
Then, the �uxes at the interface are:

FHLL(WL,WR) =
1

2
(F(WL) + F(WR))− 1

2
|λmin| (W∗ −WL)

− 1

2
|λmax| (WR −W∗) . (5.42)
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Figure 5.4: Schematic view of Riemann fan adopted for the HLL solver

Finally, using a strong stability preserving (SSP), 2-step Runge-Kutta method
for the integration in time (Gottlieb et al. 2001), one gets:

W̃i = Wn
i −

∆t

∆x

(
Fn
i+1/2 −Fn

i−1/2

)
,

˜̃Wi = W̃i −
∆t

∆x

(
F̃n+1/2
i+1/2 − F̃n+1/2

i−1/2

)
,

Wn+1
i =

Wi + ˜̃Wi

2
. (5.43)

In fact, the 2-step Runge-Kutta method can be performed in another way that
is not SSP and is usually used more frequently since it does not require to store
Wi and is thus less memory consuming. However, here in order to preserve
the realizability of the moments, the time update should also be realizability
preserving, thus SSP.
The resulting scheme is at second order in time and space and it preserves the
realizability of the moments. It is an accurate, stable and realizable scheme
on structured meshes. However, as all MUSCL formulation, it degenerates to
�rst order near discontinuities and the choice of the slope limiting procedure
crucially a�ects the amount of numerical dissipation.
This scheme was used for 1D and 2D con�gurations in Vié et al. (2012); Vié
et al. (2015) such as the 2D con�guration that mimics the injection of particles
in a turbulent �ow illustrated in Figure 5.5.
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Figure 5.5: Snapshot of the number density: Lagrangian reference (left), Anisotropic
Gaussian model solved by MUSCL/HLL(right) ; adapted from (Vié et al. 2012)

5.4 Convex state preserving discontinuous Galerkin
scheme

The method presented here is based on the classical DG formulation of Cock-
burn and Shu (1998b) and evolved to satisfy the realizability constraints by
the application of the maximum principle and a positivity preservation tech-
nique (Zhang and Shu 2010; Zhang et al. 2012). The extension of this frame-
work to the case of weakly hyperbolic equations (PGD system) was initiated
by Larat et al. (2012). A similar work can be found in the article of Yang et al.
(2013).
In this �rst subsection, the general framework of the realizability constraints
preservation is introduced in one dimension of space. Extension to two-dimensional
computations is then explained in the second subsection. Furthermore, this ex-
tension to 2-D problems can be generalized to any higher number of spatial
dimensions.

5.4.1 Scheme in one dimension of space

For the sake of clarity, a structured mesh is used, but a similar work can be
done for an unstructured discretization in a more general context. Then, for
a method of order k + 1 ∈ N∗, ϕji (x) are k + 1 basis functions, polynomials of
order k in Ii, for j = 1, ..., k+ 1. The L2 scalar products of the ϕji s over Ii give
the mass matrixM:

(M)jl =

∫
Ii

ϕji (x)ϕli(x)dx,

which becomes diagonal under the choice of a suitable orthogonal basis. This
mass matrix involves only the local degrees of freedom compared to TTGC
where the mass matrix is a general matrix over the whole domain.
Next, according to classical DG formulation, the numerical solution Wh is the
unique solution within the functional space spanned by the ϕji s of the variational
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formulation of Equation (4.11) on this functional space.

Wh(x, t) =
N∑
i

χIi(x)
k+1∑
j

Wj
i (t)ϕ

j
i (x), (5.44)

where χIi is the characteristic function of Ii equals to 1 in Ii and 0 elsewhere.
Wh is a piecewise polynomial solution such that:∫
Ii

(∂tWh + ∂xF(Wh))ϕji (x)dx = 0, ∀i = 1, . . . , N,∀j = 1, . . . , k+1. (5.45)

By combining the two last equations and integrating by part, we get the fol-
lowing DG semi-discretization in space:

|Ii|(Mjl)dtW
l
i +
(
F∗
i+ 1

2

ϕji (xi+ 1
2
)−F∗

i− 1
2

ϕji (xi− 1
2
)
)

=∫
Ii

F(Wh(x, t))∂xϕ
j
idx; ∀i = 1, ..., N ; ∀j = 1, ..., k, (5.46)

where F∗
i+ 1

2

is a chosen numerical �ux at cell interface xi+ 1
2
.

Once this is done, one obtains a set of ordinary di�erential equations (ODE)
for the degrees of freedom (DoF) Wj

i (t) which need to be solved in time. This
should be done using the family of Strong Stability Preserving (SSP) (Gottlieb
et al. 2009) time integrators, which respect the realizability constraint. The
following explains the realizability preservation within the context of a �rst
order forward Euler time integration, having in mind the obvious generalization
to any SSP method.
Let us now explain the preservation of the convex constraint of realizability by
the DG scheme. By summing Equation (5.46) over all the DoFs j of a given
cell Ii, one obtains the equation of evolution of the cell mean value:

W
n+1
i = W

n
i −

∆t

|Ii|

(
F∗
i+ 1

2

−F∗
i− 1

2

)
. (5.47)

Now, because Wh is a kth order polynomial in Ii, the following Gauss-Lobatto
quadrature is exact, when m is such that k ≤ 2m− 3:

Wi =
1

|Ii|

∫
Ii

Wh(x, tn)dx =

m∑
q=1

ωqWh(xq, t
n). (5.48)

In 1D, the m Gauss-Lobatto quadrature points xq, q = 1, ...,m have strictly
positive weights ωq.
Next, the balance of the numerical �uxes F∗

i+ 1
2

= F∗(Wn
i+1,W

n
i ) and F∗

i− 1
2

=

F∗(Wn
i ,W

n
i−1) entering the cell Ii is split into a sum of balances of numerical

�uxes at two neighboring quadrature points:

F∗
i+ 1

2

−F∗
i− 1

2

=
m∑
q=0

(F∗(Wi,q+1,Wi,q)−F∗(Wi,q,Wi,q−1)) . (5.49)
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I

II

Figure 5.6: Quadrature points on the cell Ii, m = 4.

The set ofm quadrature points has been implicitly extended to q = 0, ...,m+ 1
where x0 and xm+1 are respectively the coordinates of the right and left quadra-
ture points on the left and right neighboring cells, see Figure 5.6.
Finally, by combining the three above equations, one obtains the update equa-
tion:

W
n+1
i =

m∑
q=0

ωq

(
Wh(xq, t

n)− ∆t

ωq|Ii|
(F∗(Wi,q+1,Wi,q)−F∗(Wi,q,Wi,q−1))

)
,

(5.50)

which is a convex combination of abstract �rst order updates, because ωq >
0, ∀q and

∑
q
ωq = 1.

The numerical �ux selected is the Lax-Friedrichs �ux:

FLF (WL,WR) =
1

2
(F(WL) + F(WR))− 1

2
|λ| (WR −WL) , (5.51)

which can be viewed as a particular HLL approximate Riemann solver where|λ| =
max(|λmin|, |λmax|) in Equation (5.42).
Then, the higher order update in Equation (5.50) is also realizability-preserving
when:
• the numerical �ux F∗ is realizability preserving,
• the quadrature states Wn

q = Wn
h(xq) are realizable,

• the following constrained CFL condition is provided:

∆t.αi
|Ii|

≤ min
q
ωq, (5.52)

where αi is greater than the spectral radius (the absolute value of eigen-
values) of the Jacobian of the �ux at all the quadrature points xq, q =
0, . . . ,m+1. Since the smallest weights of the Gauss-Lobatto quadrature
are on the borders of the interval then minq ωq = ω1 = ωQ.

For the second order in 1D, this last CFL constraint is 1
2 , which is exactly

the same CFL constraint as for second order �nite volume schemes. It is also
important to notice that the Gauss-Lobatto quadrature does not have to be
necessarily used in the evaluation of the overall updates in Equation (5.46).
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One can use any accurate enough quadrature to estimate the right hand side
integral. However, realizability at the Gauss-Lobatto quadrature points will
certainly ensure realizability of the mean value at next time step.
A delicate point still needs to be addressed to �nish our proof. The initial
condition is supposed to be physical and thus realizable everywhere, in par-
ticular at the quadrature points. By using a realizability-preserving numerical
�ux and keeping the restricted CFL condition (Equation (5.52)), we obtain
realizable mean values in each cell Ii for the �rst time step. But nothing en-
sures the solution to be now realizable at every quadrature point. Fortunately,
because the space of realizable moments S is convex, for each non-realizable
quadrature state Wq

i = Wh(xq) there exist a unique θq ∈ [0, 1] such that

W̃q
i = θqW

q
i + (1 − θq)Wi lies on the boundary of S, see Figure 5.7. The

Figure 5.7: A space projection in cell Ii, associating for any quadrature state Wn+1
q

lying outside the space of constraints, a state W̃n+1
q at the boundary ∂S of this space

numerical solution is then rede�ned as:

W̃h(x, tn+1) = θi(Wh(x, tn+1)−W
n+1
i ) + W

n+1
i , θi = min

q=1,..,m
θq. (5.53)

This space projection has the following properties:
• the cell mean value is obviously conserved,
• it is shown in Zhang (2011) that the accuracy of the scheme is preserved
for regular solutions.

W̃h is �nally a (k+ 1)th order approximation of Wh which respects the convex
constraints at all quadrature points, which can be used for the next time step
and the scheme can go on.

5.4.2 Extension to 2−D

The 2-D domain is tessellated into triangles. Let Ti be a triangle of the mesh and
j a DoF of Ti with its associated kth order basis function ϕjTi . The conservative
�ux is F(W) = (f(W),g(W)) where for the PGD and Euler system we have
respectively:

WPGD = n

 1
u
v

 , FPGD = n

 u

u2

uv

 ,

 v
uv

v2

 ; (5.54)
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WEuler = n


1
u
v
E

 , FEuler =




nu

nu2 + P
nuv
(nE + P)u

 ,


nv
nuv

nv2 + P
(nE + P)v


 .

(5.55)

The numerical �ux F∗(Wext,Wint,
−→n ) is supposed to be realizability preserv-

ing. Wext and Wint denote states on both sides of the considered edge of
normal −→n . Then the di�erential system reads:

|Ti|(Mjl)dtW
l
Ti+

∫
∂T

F∗ (Wext(s),Wint(s), ~n(s)) ϕjTi(s)ds =

∫
Ti

F(W(x, t))·
−−−→
∇ϕjTidx.

(5.56)

After summing over all the degrees of freedom j of Ti and discretizing in time,
we get the equation of the evolution of the mean value in Ti:

W
n+1
Ti = W

n
Ti −

∫
∂T

F∗ (Wext(s),Wint(s), ~n(s)) ds, (5.57)

where the right contour integral is estimated using the appropriate Gauss
quadrature. The main di�culty in the extension of the 1-D scheme to two

Figure 5.8: The quadrature points on the triangle for k=2 resulting from the super-
position of the three projections (inspired by Zhang el al. 2012)

dimensions is to �nd a quadrature rule which is exact for polynomials of or-
der k, has strictly positive quadrature weights and includes in its quadrature
points the Gauss quadrature points used to integrate the numerical �uxes on
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∂T . If such a quadrature exists, in a similar way to the 1D case the mean
value update (see Equation (5.57)) can be recast into a convex combination
of states at interior quadrature points and formal �rst order updates at edges
Gauss quadrature points (Zhang et al. 2012). Under a certain CFL condition,

W
n+1
Ti is then realizable if Wh is realizable at all the quadrature points, which

can be ensured in the same way as in the one dimensional case. A quadrature
with such properties exists naturally on quadrangles through a tensor product
of the considered Gauss quadrature for the edges in one direction and an ac-
curate enough (2m− 3 ≥ k) Gauss-Lobatto quadrature in the other direction.
A projection mapping the top edge of the quadrangle onto one vertex of the
triangle and the other edges onto the three edges of the triangle will then give a
set of quadrature points at desired accuracy, with strictly positive quadrature
weights and which coincide with the Gauss quadrature points on two of the
three edges. By this mean, three projections are de�ned and by superimposing
the three resulting sets we obtain the sought quadrature. Figure 5.8 illustrates
the construction of such a set of quadrature points in a very high order frame-
work. The represented set of quadrature points works for polynomials of order
2 and 3: it allows for third and fourth order numerical methods in space and
eventually involves 18 quadrature points. However, in the second order case,
ie. linear representation of the solution, only 6 quadrature points are required:
2 per edges. Finally, it can be shown that for this special quadrature-point
construction, the realizability constraint is

αTi∆t |∂Ti|
|Ti|

≤ 2

3
ωG−L1 , (5.58)

where αTi is still an overestimation of the eigenvalues of the Jacobian of the
�ux at all the considered quadrature points for a given triangle Ti, |∂Ti| is the
perimeter of Ti and ωG−L1 is the smallest weight (always on the edges of the
interval) of the considered Gauss-Lobatto quadrature. At second order, we will
use 2 points with weights 1

2 , which means a global CFL constraint equal to 1
3 .

This scheme was already evaluated on 1D and 2D test cases for solving the MK
model by Larat et al. (2012). An example on a 2D HIT on unstructured mesh
is shown in Figure 5.9.

Figure 5.9: 2D frozen HIT coupled with the MK model solved by DG on unstructured
mesh





Chapter 6

Evaluation and Comparisons

A comparison between the di�erent schemes presented in the previous
chapter, is conducted here. Even though numerical computations have
already been led in 2D and 3D with the MK model using the FVKS, the
present contribution focuses on 1D results for a full understanding of
the trade-o� between robustness and accuracy and of the impact of the
limitation procedures on the numerical dissipation. For the simplest 1D
case studies, the linear advection, the TTGC scheme is compared with
the other schemes as well, showing the constraints of such a scheme
when no arti�cial viscosity is added as stated in subsection 5.1.4. In a
second part, 2D results of a frozen HIT are presented for the evalua-
tion of the realizable MUSCL/HLL �nite volume scheme, and the con-
vex state preserving RKDG scheme. Comparison with the Lagrangian
simulations, considered as the reference, is led both qualitatively and
quantitatively. Advantages and drawbacks of each of these schemes are
�nally discussed.

6.1 1D comparison

Four 1D test cases of increasing complexity are presented in this section. For
all these tests, periodic boundary conditions are considered. The results are
obtained for a CFL=0.5 and a mesh of 100 cells (except for convergence study
where the mesh varies in the range between 20 and 500 grid points).
First, we want to assess the numerical method implemented with the most
simpli�ed version of the PGD system where the velocity is everywhere equal
to unity. In this case, the linear advection equation is obtained. For this
con�guration the TTGC result is presented along with the FV results and the
RKDG results.
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6.1.1 Linear advection of a Gaussian pro�le

We consider a Gaussian-like initial condition given by Equation (6.1) with a
velocity u(x) = 1. After a complete period the exact solution is translated back
to its initial position.

n(x, 0) =

{
[cos (π(2x− 1))]4 if 0.25 < x < 0.75
0 otherwise

(6.1)

In Figure 6.1, the solutions of the di�erent schemes are represented after 10 cy-
cles. The solutions of the schemes with the minmod limiter are clearly smeared
out.
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Figure 6.1: Number density results of the linear advection equation having a
Gaussian-like initial solution, at t=10 using RKDG, FVKS, MUSCL/HLL and TTGC.
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Table 6.1: Errors of the di�erent schemes for the linear advection of the Gaussian
at t=1

Errors TTGC RKDG FVKS MC MUSCL
MC

FVKS Min-
mod

MUSCL
Minmod

1-norm 9.837× 10−5 7.705× 10−4 1.702× 10−3 8.317× 10−3 8.387× 10−3 1.541× 10−2

2-norm 1.523× 10−4 1.277× 10−3 4.464× 10−3 1.451× 10−2 1.729× 10−2 2.976× 10−2

∞-norm 3.677× 10−4 2.957× 10−3 2.532× 10−2 4.087× 10−2 7.368× 10−2 1.137× 10−1

Table 6.2: Exact order of the di�erent schemes at t=1

Orders TTGC RKDG FVKS
MC

MUSCL
MC

FVKS
Minmod

MUSCL
Minmod

1-norm 3.1757 2.0198 2.2511 1.5936 1.5939 1.5024
2-norm 3.1440 2.0381 1.9257 1.5375 1.4337 1.3458
∞-norm 3.1317 2.0659 1.4949 1.1978 1.1254 1.0819

We can also observe the leading phase error for the RKDG and MUSCL/HLL
solutions, which is a sign of numerical dispersion. The solution of the third or-
der TTGC is the least dissipated; no dispersion is noticed in this case. For the
FVKS MC solution we notice a minor �attening of the bump due to slope limi-
tation. According to these results, the list of the schemes arranged in increasing
order of numerical di�usion is: TTGC, RKDG, FVKS MC, MUSCL/HLL MC,
FVKS Minmod and MUSCL/HLL Minmod.
We next perform a convergence study at t = 1. The numerical errors of the dif-
ferent schemes are found in Table 6.1 using a mesh of 100 points. Based on this
table, we can quantitatively compare the dissipation of the di�erent schemes
and obtain the same conclusion as before concerning the order of numerical
di�usion.
The convergence curves in the 2-norm are plotted in Figure 6.2 for the dif-
ferent schemes. In addition, Table 6.2 provides the orders of convergence for
each norm of error. Second order is obtained for RKDG and FVKS with MC
limiter, which is not the case for MUSCL/HLL particularly for coarse meshes.
When it comes to TTGC we recover third order accuracy for this smooth ini-
tial condition. When using the minmod limiter instead of MC, the slopes are
respectively reduced by 13% and 26% for MUSCL/HLL and FVKS. Also an
interesting feature is that RKDG and TTGC maintains respectively the exact
second and third order of convergence in the 1-norm and in the∞-norm, which
is not the case for the two other FV schemes.
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Figure 6.2: Convergence study in the 2-norm of the linear advection equation having a
Gaussian-like initial solution, at t=1, using FVKS, MUSCL/HLL, TTGC and RKDG.

6.1.2 Linear advection of a rectangular hat

The initial condition for the second test case is a rectangular hat:

n(x, 0) =

{
1 if 0.25 < x < 0.75
0 otherwise

(6.2)

The solution at t=10 is shown in Figure 6.3. TTGC creates spurious oscillations
near the sharp discontinuities and leads to unphysical results, which is expected
since this is the only scheme that is not limited. All the other scheme are robust.
Using the Minmod limiter the discontinuities are smeared out, whereas the MC
limiter provides a sharper reconstruction. The RKDG result matches the exact
solution a little better than the FVKS MC one. As already mentioned in the
chapter 6, the TTGC generates oscillations and leads to unphysical solutions
containing negative number density for example. Thus, in order to stabilize the
scheme, arti�cial viscosity is essential. Since the scheme is not parameter free,
it does not meet our objectives and it will no more be used in the following
numerical comparisons.
The remaining 1D test cases solve for the PGD system with two di�erent initial
conditions.
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Figure 6.3: Linear advection equation with a rectangular hat initial condition at t=10
(CFL=0.5, 100 cells)

6.1.3 PGD system with initial data generating vacuum states,
shocks and rarefaction waves.

The third test is similar to numerical test I in Bouchut et al. (2003). This
later can be considered as a reference test to evaluate the performance of the
numerical schemes for the resolution of the PGD system (Boileau et al. 2010;
Yang et al. 2013; Sabat et al. 2014; Boileau et al. 2015) since it creates
accumulation zones and vacuum states. The initial condition for the density
and the velocity is given by Equation (6.3).


n(x, 0) = 0.5 0 ≤ x ≤ 2,

u(x, 0) =


−0.4 x < 0.5 or x > 1.8,

0.4 0.5 < x < 1,
1.4− x 1 < x < 1.8.

(6.3)

This initial velocity is depicted in Figure 6.4.
The exact solution for t < 1 is given for the density and the velocity respec-
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Figure 6.4: Initial velocity for the third test case

tively by the following equations:

n(x, t) =


0.5 x < 0.5− 0.4t or 0.5 + 0.4t < x < 1 + 0.4t or x > 1.8− 0.4t,

0 0.5− 0.4t < x < 0.5 + 0.4t,
0.5

1− t
1 + 0.4t < x < 1.8− 0.4t

(6.4)

u(x, t) =


−0.4 x < 0.5− 0.4t or x > 1.8− 0.4t,

unde�ned 0.5− 0.4t < x < 0.5 + 0.4t,
0.4 0.5 + 0.4t < x < 1 + 0.4t,

1.4− x
1− t

1 + 0.4t < x < 1.8− 0.4t

(6.5)

The density is plotted in Figure 6.5 for the three schemes at t = 0.5. The
RKDG solution is obtained by guaranteeing the positivity of the density and
by applying a maximum principle on the absolute value of the velocity. These
two conditions de�ne the convex state for this method. We can notice that all
the schemes create small overshoots near the discontinuities (after x = 1.2 and
before x = 1.6), these being already observed in Bouchut et al. (2003). These
overshoots have the highest amplitude for the MUSCL/HLL (4.5% above 1.0),
are a little bit smaller for RKDG and reduce to only 1% for the FVKS results.
It is important to note that these overshoots are replaced by a spike at x = 0.4
when a scheme of �rst order is used, since such a scheme is inconsistent at sonic
points (Bouchut 1994).
In addition, RKDG creates overshoots before x = 0.3 and after x = 0.7 since no
limiter is used at these points and the scheme does not ensure local monotonic-
ity. When FVKS gives the most satisfactory solution compared to the exact,
RKDG also shows the sharpest resolution of the discontinuities. Finally, the
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velocity component is not shown, since it is nearly the same for all the schemes.

Figure 6.5: Third test case: density results for the di�erent schemes at t=0.5
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Figure 6.6: Third test case: velocity results for the di�erent schemes at t=0.5

6.1.4 PGD system with initial data generating singularities

The last test is a more complex problem. It is a replicate, under the MKmodel,
of two packets of particles approaching each other with opposite velocities. For
0 ≤ x ≤ 1, the initial condition is given in Equation (6.6) and plotted in
Figure 6.7 n(x, 0) = [sin (2πx)]4

u(x, 0) =

{
−1 if x > 0.5
1 otherwise

(6.6)
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At t=0.5, the density exact solution is a Dirac measure at x=0.5 containing
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Figure 6.7: Initial conditions for the last 1D test case

all the initial mass. Therefore, we should have all the matter concentrated in
one cell at x=0.5. RKDG result is obtained using an additional modi�ed min-
mod limiter (Cockburn and Shu 1989) and the convex constraint is de�ned as
positive density and absolute velocity limited to 1.0.
For this test case, we consider a mesh of 101 cells in order to have a cell center
at 0.5 to check if the schemes capture the right position of the Dirac. The
numerical results are shown in Figures 6.8 and 6.9. All the schemes are able
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Figure 6.8: Last test case: number density results for the di�erent schemes at t=0.5

to physically capture the singularity. The major part of the matter is con-
centrated in three cells for RKDG ([0.4802, 0.5198]: the mid-cell and its two
neighboring cells), in two cells for MUSCL/HLL ([0.4901, 0.5198]: the mid-cell
and its right neighbor) but it is concentrated in only one cell for the FVKS
result ([0.4901, 0.5099]). The FVKS gives the highest density at x=0.5 (37.87).
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Figure 6.9: Last test case: velocity results for the di�erent schemes at t=0.5

At this point the density using MUSCL/HLL and RKDG is reduced respec-
tively by 21% and 27%. For a density less than 10−12 we consider void and
set the velocity to zero. From the velocity results, it is seen that vacuum is
not generated using FVKS. We have void outside the interval [0.2525, 0.7475]
for MUSCL/HLL and [0.3515, 0.6485] for RKDG. The RKDG has the largest
interval of vacuum but the FVKS gives the sharpest pro�le near the velocity
discontinuity. According to the performance of RKDG in the previous prob-
lems, a better result is expected. For this reason, same test case is repeated with
a CFL number small enough to run RKDG without adding a slope limiter. In
this case the results of the FVKS and MUSCL/HLL were not greatly a�ected,
whereas the RKDG gives a sharper pro�le for the velocity discontinuity and
therefore a localization of the density in two cells. The �nal RKDG result is
however not totally satisfactory because mass accretion in the mid-cell is not
as good as FVKS.

For the presented test cases, the RKDG and the FVKS are competitive with
each other and overpass the MUSCL/HLL. The FVKS provides slightly better
results than RKDG and we believe this is due to the exact update in time for
the former.
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6.2 2D comparison

6.2.1 Test Cases: Homogeneous Isotropic Turbulence

In order to further assess the DG method, a two-dimensional test case is in-
vestigated. It represents a one-way interaction between a 2D periodic frozen
homogeneous isotropic turbulent velocity �eld (HIT) of size 3x3 and a spray
which is homogeneously distributed in density and at rest at t = 0.
The HIT has been generated with the ASPHODELE code of CORIA, which
resolves the three-dimensional Navier-Stokes equations for the gas phase under
the low-Mach number assumption (Guichard et al. 2004). The Kolmogorov
time scale of the turbulence is 0.36.
This fundamental test case is chosen not only to conduct a general comparison
between the results of di�erent schemes, but also to be able to examine the seg-
regation and to assess the di�usivity and robustness of the numerical methods.1

The study is conducted for the two models based on the monokinetic and the
isotropic Gaussian closure, for two di�erent Stokes numbers with respect to
the Kolmogorov time scale of the turbulence, namely 0.8 and 4.2. For the
sake of comparison and in order to have a physical reference, a Lagrangian
Discrete Particle Simulation is conducted for each of these Stokes numbers.
Ten million particles are used, ensuring a satisfactory statistical convergence.
The Lagrangian results for the number density are computed after a time large
enough with respect to the relaxation time of the particles τp in order to catch
the real dynamic of the �ow including any possible high concentration regions
and vacuum zones (see Figure 6.10). At small Stokes number (St = 0.8), strong
segregation e�ects occur: particles are gathered in low vorticity zones, and no
or negligible PTC is encountered, so that the two considered models should pro-
vide suitable results. On the other hand, at a higher Stokes number St = 4.2,
particles with greater inertia do not accumulate in the low vorticity zones. They
start oscillating around equilibrium trajectories and generate PTC. In this con-
text, the MK model will fail to predict this type of dynamics. Therefore we
only investigate the Isotropic Gaussian model for this Stokes number.

1It is important to note that this 2D HIT �eld does not give an idea about turbulence in
real con�gurations. The physical results are instead presented on 3D HIT in Part III
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(a) Lagrangian results for St = 0.8 at t=4 (b) Lagrangian results for St = 4.2 at t=12

Figure 6.10: Snapshots of the particle number density solved by the Lagrangian ap-
proach

In order to compare the density of particles obtained by the two methods at
a given time, we consider a 1282 quadrangular mesh for the FV and the same
mesh for DG where quadrangles have been cut into triangles (so if we refer to a
1282-cell mesh for the DG results it means that we have triangular mesh based
on the 1282 quadrangular mesh). For the FV scheme we have four degrees of
freedom per cell. Since this quadrangle is divided into two triangles in the case
of DG having 3 DoFs each, for the same mesh DG has 1.5 times more DoFs.
A snapshot of the number density is taken after a time long enough (t ≥ 4τint),
this time is chosen to be t=4 and t=12 respectively for St = 0.8 and St = 4.2.
Finally, the segregation of particles G∆

pp is investigated, which corresponds to
the spatial correlation of the number density �eld at a given cell size length
(Simonin et al. 2006):

G∆
pp =

〈n2〉
〈n〉2

(6.7)

where 〈.〉 is the averaging operator over the whole domain. And, for the sake of
comparison, the segregation is always calculated on a 642 quadrangular mesh,
the result of the �ner meshes being projected on this reference mesh. This
projection is essential since the segregation depends on the length at which it
is measured. In fact, it increases with the decrease of length. Thus, in order to
compare the segregation of the results computed on di�erent mesh, they should



132 Chapter 6 - Evaluation and Comparisons

be projected on the coarsest mesh chosen here to be 642 cells. In this case, the
segregation is measured based on a length scale of 0.0469.
The evolution of the segregation with time is analyzed. It quanti�es the degree
of accumulation of droplets in the high concentration regions, as well as the
degree of depletion in the vacuum zones. Three di�erent meshes are considered
namely 642, 1282 and 2562 for both models and both numerical schemes. These
results are compared with one another, but also with two references, namely the
statistically converged Lagrangian simulation and a highly re�ned �nite volume
solution on a 10242-cell mesh. The Lagrangian result is the physical reference
as it contains all the physics. The FV segregation on the 10242-cell mesh is the
numerical reference, because it should encounter a signi�cantly lower numeri-
cal di�usion, thus being closer to the solution of the considered model at mesh
convergence.

6.2.2 First Test Case: Monokinetic-HIT

In Figure 6.11, the results of the MK model is shown for St = 0.8. The
structure in these �gures matches qualitatively the Lagrangian result given in
Figure 6.10. This is expected since for the low inertia particles, we do not have
considerable PTC. However, due to numerical di�usion, the solution is smeared
out. This di�usivity a�ects particularly the solution of the FV scheme as seen
in Figure 6.11(a). The fact that the DG method provides �ner structures and
more droplet clusters than the FV for the same mesh is pointed out here and
is quanti�ed through the segregation study, see Figure 6.12 and its analysis in
the next paragraph. This case illustrates the low numerical di�usivity of the
second order DG method compared to the FV one 2.
In Figure 6.12, we show the evolution with time of the segregation, for di�erent
meshes and for a particle Stokes number equal to 0.8. For a given mesh, the
segregation of the DG results is higher than the one of the FV solutions and
it is also closer to the Lagrangian segregation. The segregation rate of the
DG solution for a given mesh (N2) is quantitatively comparable to the one
of the FV solution for a mesh which is at least twice as re�ned as the mesh
used for the DG solution (2N)2. In terms of DoFs, the segregation obtain with
DG having a total of 6(N2) DoFs is comparable to the result obtain with FV
having 16(N2) DoFs, which is more than twice the DoFs used for the result with
DG. Now, if we compare the segregation of the DG solution for a re�ned mesh
(2562) with the one of the highly re�ned FV solution (10242), we note that the
curve of the segregation of the DG solution is slightly beneath the re�ned FV
segregation curve. Also, the segregations for the two numerical schemes tend to
be asymptotic with the Lagrangian pro�le when re�ning the mesh. This proves

2It is important to note that a study on totally unstructured mesh with DG in 2-D was
already done but will not be presented here; for more information one may refer to the CTR
Annual Research Brief of Larat et al. (2012).
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(a) 2nd order FV solution (b) 2nd order DG solution

Figure 6.11: Particle number density at t=4 for the problem with MK closure for
St = 0.8 and a 1282-cell mesh

two points:
• the MK model has the ability to reproduce the high segregation e�ects,
• the DG method is found to be less di�usive than the FV one.

In this section, we compare the DG results to the MUSCL/HLL results only
without taking into account the results of the FVKS since both DG andMUSCL/HLL
are suitable for solving both the PGD and Euler systems unlike the FVKS that
is limited to the PGD resolution. However, we can note that from a qualitative
point of view, the results of the MUSCL/HLL and FVKS were found to be very
similar, but the FVKS is less expensive.

From a computational cost point of view, for a given mesh the FV method is
cheaper than the DG method but it will give results of lower quality. The addi-
tional cost for DG method is caused mainly by the integration by quadrature,
the realizability preservation and a higher number of DoFs per cell. However,
one should keep in mind that these ingredients make the DG scheme more
precise than the FV. For a given mesh, the ratio of time per DoF is nearly 10
times higher for the DG scheme. In order to assess the cost to quality ratio, one
needs to compare the cost of the two methods for the same result accuracy. The
DG solutions with 642 and 1282-cell meshes are comparable to the FV results
with 1282 and 2562-cell meshes respectively. In this case the DG results is two
times more expensive than the FV results. On the other hand, if one considers
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Figure 6.12: Evolution of the segregation with time for the Lagrangian and MK model
using FV and DG method with di�erent meshes for a Stokes number of 0.8

Table 6.3: CPU computation time in seconds and Degrees Of Freedom for di�erent
meshes for DG and FV results with MK closure for a Stokes number of 0.8

Mesh 642 1282 2562 10242

Time DG (s) 43.05 384.04 3130.05 �
Time FV (s) 2.84 24.45 180.02 13583.41
DoF DG 24576 98304 393216 �
DoF FV 16384 65536 262144 4194304
Time/DoF DG (s) 1.75× 10−3 3.91× 10−3 7.96× 10−3 �
Time/DoF FV (s) 1.7× 10−4 3.7× 10−4 6.9× 10−4 3.24× 10−3

the numerical solution given by the DG approach for 2562-cell mesh which is
qualitatively (see Figure 6.13) and quantitatively comparable to the FV result
for the 10242-cell mesh, DG is found to be more than four times faster in this
case.
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(a) FV solution on the 10242-cell mesh (b) DG solution on the 2562-cell mesh

Figure 6.13: Particle number density at t=4 for the problem with MK closure for a
Stokes number of 0.8 with a 10242-cell mesh for the FV results and a 2562-cell mesh
for the DG results

In fact, the segregation study with DG (re�ned mesh, 2562) took around 52
minutes while nearly 4 hours of computation were spent for an equivalent result
with FV (highly re�ned mesh 10242 cells) knowing that the degrees of freedom
(DoF) in this case are greater for FV see Table 6.3.

6.2.3 Second Test Case: Isotropic Gaussian- HIT

In Figures 6.14 and 6.15, the results of the isotropic Gaussian model are shown
respectively for St = 0.8 and St = 4.2.
At St = 0.8, the model reproduces the general Lagrangian structure but the
result is more spread out than the one given by the Lagrangian method or by
the MK model using DG. Some of the �ne highly concentrated clusters are
widened, and the sti� regions in the FV result are clearly more di�used than
those of the DG solution. This is due to the numerical di�usion which is higher
for the MUSCL/HLL than the DG scheme.
At St = 4.2, the isotropic Gaussian closure model captures the global structures
of the Lagrangian reference solution. However, on the contrary to the results
at lower Stokes number, it shows some �ner ligaments than the Lagrangian
solution.
In fact, by comparing the numerical results to the Lagrangian one (see Figures
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6.10(b) and 6.15), the e�ect of the model on the results is observed. The model
in question is limited by the isotropic assumption, so the preferential accumu-
lations are overestimated using this model compared to the Lagrangian result.

(a) 2nd order FV solution (b) 2nd order DG solution

Figure 6.14: Particle number density at t=4 for the HIT problem with isotropic
Gaussian closure for a Stokes number equal to 0.8 and a 1282-cell mesh

In addition, by comparing the numerical results for a given model, the e�ect of
numerical di�usion3 will be pointed out. Qualitative observations of the snap-
shot of �gures 6.14 and 6.15, show once more a lower numerical di�usion by
the DG approach compared to the FV technique.

3The numerical di�usion spreads out the structures, and lowers the segregation.
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(a) 2nd order FV solution (b) 2nd order DG solution

Figure 6.15: Particle number density at t=12 for the HIT problem with isotropic
Gaussian closure for a Stokes number equal to 4.2 and a 1282-cell mesh

The latter conclusion needing to be quantitatively assessed, the evolution of
the segregation with time for di�erent meshes, for two Stokes numbers St = 0.8
and St = 4.2 is shown respectively in Figures 6.16 and 6.17.
For low inertia particles, St = 0.8, the segregation pro�les for the two schemes
tend to converge to the Lagrangian one when the mesh is re�ned but for the
same mesh the MK model provides a steeper pro�le than the isotropic Gaussian
model. For a given mesh, the segregation of the DG results is higher than the
segregation of the FV solutions.
In the case of moderate Stokes number, the segregation pro�le for this model
is diverging from that of the Lagrangian; the model is no more capturing the
correct physics of the �ow. The di�erence between temporal evolution of seg-
regation of the Lagrangian method and the numerical methods is due to the
inappropriateness of the model as detailed by Vié et al. (2015). From a numer-
ical point of view, the segregation of the DG solution on the re�ned mesh (2562)
is nearly equivalent to the one of FV with a 10242-cell mesh. And in general
the segregation of the DG solution is higher than the segregation of the FV
result for the same mesh. Here DG also has a level of convergence signi�cantly
higher than FV. From a modeling point of view, this model is found to be
unsuitable for describing the physics of moderately inertial particles because of
the unphysical high segregation. In fact, the PTC are intrinsically anisotropic,
so that the isotropic model is too restrictive and therefore overestimates the
segregation since it underestimates the mean central energy (Vié et al. 2015).
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Figure 6.16: Evolution of the segregation with time for the Lagrangian and isotropic
Gaussian closure model using FV and DG method with di�erent meshes for a Stokes
number of 0.8
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6.2.4 Towards Predictive Simulations: Anisotropic Gaussian-
HIT

The Gaussian closure is the �rst class of pressure-like models for capturing
PTC. However, the isotropic assumption is too restrictive to reproduce cross-
ings induced by the turbulence shear zones, which are intrinsically anisotropic
(Vié et al. 2015). To highlight the potential of such a modeling approach,
we compare the results at St=4.2 for the isotropic and Anisotropic Gaussian
closure with the FV scheme. The MUSCL/HLL scheme used for the AG model
is developed by Vié et al. (2015).
On the one hand, the isotropic Gaussian closure results shown in Figure 6.15(a)
di�er signi�cantly from the Lagrangian results (Figure 6.18(b)). Even if it ac-
tually captures some of the global structure of the solution, it clearly overesti-
mates the preferential accumulation e�ects. On the other hand, the anisotropic
Gaussian closure results (Figure 6.18(a)) using the same mesh (i.e. 1282) qual-
itatively match the Lagrangian results with a slight underestimation of the
preferential accumulation e�ects. In addition, for the segregation study we

(a) Anisotropic Gaussian model using the 2nd
order FV scheme for a 1282-cell mesh, St=4.2 at
t=12

(b) Lagrangian results for St=4.2 at t=12

Figure 6.18: Particle number density at t=12 for the HIT problem with the
Anisotropic Gaussian model using 2nd order FV scheme and the Lagrangian solution
for a Stokes number equal to 4.2

take three meshes, namely the 642, 1282 and 2562-cell meshes. The comparison
of the segregations, in Figure 6.19, shows that the AG closure does not cre-
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ate unphysical accumulations, as the segregation is still below the Lagrangian
segregation, where the isotropic Gaussian closure leads to highly overestimated
segregation for a moderate re�nement. Finally, the segregation trend of the
AG result tends to approach the Lagrangian one so that whenever the mesh is
re�ned the pro�le will stay below the Lagrangian pro�le, whereas the Isotropic
segregation curves diverges already for relatively coarse meshes. It is thus clear
that more realistic simulations must rely on this new closure since it can ac-
count for the anisotropy of PTC. Thus, a detailed evaluation of this model in
3D is essential; this is the subject of part III.
From a numerical point of view, to complete this study, the DG scheme should
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Figure 6.19: Evolution of the segregation with time for the Lagrangian, isotropic
Gaussian closure, and Anisotropic Gaussian closure model using FV for a Stokes num-
ber of 4.2

be adapted to the AG model. A �rst result is presented here to prove once again
the potential of the DG method in comparison with the MUSCL/HLL. The
comparison of the segregation between the MUSCL/HLL results and the RKDG
results for the anisotropic Gaussian model is depicted in Figure 6.20. This is
done for a Stokes number St = 4.2 until a time t = 6. For a given mesh the seg-
regation using DG is higher than the segregation using MUSCL/HLL. The DG
result on a 1282 mesh gives the same level of segregation as the MUSCL/HLL
result with a 2562 mesh. Thus, DG is less dissipative and more accurate than
the MUSCL/HLL.
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6.3 Conclusion

The 1D comparison of the di�erent numerical schemes presented in this work is
an essential step toward the ultimate goal of �nding an accurate, realizable, cost
e�ective and parameter-free numerical scheme on unstructured grids that can
be applied to the KBMM hierarchy. The RKDG and the MUSCL/HLL were
applied to higher order models such as the isotropic Gaussian and Anisotropic
Gaussian closures KBMM while the application of the FVKS is limited to the
Dirac distributions for the velocity. Therefore, even though it is remarkable
that the FVKS usage is attractive for this model, we are interested in a nu-
merical scheme applicable to all the KBMMs and the new class of RKDG is a
promising choice. To ensure the monotonicity of the RKDG results the best
method should be found to make sure that the local maximum principle is re-
spected without degenerating to lower accuracy.

Further investigation of the PGD problem generating the δ-shock should be
carried out to better understand the RKDG result deterioration.
When it comes to 2D comparison of the numerical methods, the proposed re-
alizable DG scheme is proven to be robust and accurate. This scheme respects
the realizability conditions and can be used on unstructured meshes, which are
crucial for real complex geometries. It is less di�usive in comparison with the
various second order FV scheme, and for the studied cases more competitive.
For the sake of comparison, an algorithmic complexity analysis should be car-
ried out for the two schemes.
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From a modeling point of view, the MK closure is suitable for low Stokes num-
ber. Besides, for moderate Stokes number the Isotropic Gaussian closure model
is not reproducing the physics of the problem accurately. Therefore, other Eu-
lerian modeling methods of higher order in moments and higher level in the
hierarchy of models have to be used. A �rst model is the Anisotropic Gaus-
sian closure model and is shown to reproduce the physics of particle trajectory
crossing for a relatively large range of Stokes numbers. More realistic 3D results
using this model are thoroughly presented and discussed in the following part.

Therefore, further work should be done to extend the proposed realizable DG
scheme to higher order models starting with the AG model. In addition, qual-
ity/cost comparisons between the DG and the MUSCL/HLL results still need
to be carried out for this model.

One of the perspectives is also to extend this work to higher order DG schemes
and to three-dimensional space. The extension to three-dimensional space of
the comparison DG-FV is essential since the DG scheme is is often criticized
for its high cost due to the high number of degrees of freedom belonging each
element. This reputation made DG less attractive for industrial codes in the
last decades, however with the increase of computational resources and the
achievement done with DG, the latter is used more frequently. This highlights
the importance of a cost/quality comparison (similar to the one presented in
this work) between the 3-D results of the DG and the MUSCL/HLL schemes.
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In this part, the AG model is evaluated on a 3D Forced Homogeneous
Isotropic Turbulence. First, the test case is presented in Chapter 7 along
with the forcing scheme, the energy spectrum model and the properties
of the resulting turbulent �eld. In addition, the statistical convergence of
the Lagrangian simulations is evaluated and the Lagrangian qualitative
results are presented for three St. Then the AG results are compared
to the Lagrangian ones and Eulerian results based on the MK closure.
This comparison is carried out for a range of St going from particles
of very small inertia (St ∼ 0.1) to high inertia (St ∼ 15). Depending
on their nature, hese results are divided into two chapters. Chapter 8
includes:
• qualitative results for the number density �eld, the velocity �eld
and the elements of the covariance matrix. A comparison between
the di�erent models (MK, AG and Lagrangian) is presented for
four Stokes numbers, namely St = 0.5, 1, 3 and 8 where the
Eulerian results are simulated on a 1283 mesh. For St = 0.5 and
St = 3 the mesh re�nement e�ect on the Eulerian results is also
qualitatively evaluated on 643, 1283, 2563 and 5123 grids.
• qualitative scatter plots for the one-point correlation of the ve-
locity of the disperse phase to check how much the Eulerian ve-
locity is similar to the Lagrangian one, and most importantly to
check whether the disperse phase velocity is correlated to the car-
rier phase velocity or not. This is done for two Stokes numbers,
St = 0.5 and 8.
• quantitative mean statistical results including the segregation, the
mean total energy and the mean internal energy. The evolution
of these quantities with time is compared for the di�erent models
and for di�erent Stokes numbers. In addition, these statistical
quantities at a given time are plotted as a function of the Stokes
number for the di�erent models and meshes.

In Chapter 9, we present:
• quantitative results for the distribution functions of the number
density, the velocity magnitude, the trace of the pressure tensor
and �nally the disperse phase Mach number.
• autocorrelation functions for the number density, velocity and in-
ternal energy. Based on these two-points correlations two length
scale are computed. These scales are respectively: the character-
istic size of the clusters and the longitudinal integral length scales
of the disperse phase motion. The change of these length scales
as a function of the particles inertia is then presented.

Through all these qualitative and quantitative analysis, the Anisotopic
Gaussian model is proven to be a good candidate for the simulation of
moderately inertial to inertial particles in complex applications, when
the MK model ceases to capture the underlying physics of the problem.
Finally, the range of scales for which the AG model is suitable is iden-
ti�ed.



Chapter 7

3D HIT test case

The subject of this chapter is to de�ne the simulated con�guration
through the three dimensional gas �eld used as the source of the dy-
namics of the disperse phase. First, the energy model spectrum chosen
for the Homogeneous Isotropic Turbulence (HIT) is presented. Then,
the forcing scheme used to force the HIT is speci�ed. The resulting
Forced HIT used for the carrier phase is then described through its
characteristics and properties. The understanding of this phase is of
paramount importance, since it will govern the dynamics of the dis-
perse phase through a one-way coupling. This classical academic test
case is essential for the validation of the disperse phase models, since
it represents one of the canonical samples of the physics faced in indus-
trial applications.
The Lagrangian reference is also presented in this chapter along with
the statistical convergence of the results and some examples of the qual-
itative results for di�erent Stokes numbers. Finally, the perspective test
cases that can be chosen for further evaluation and validation of the AG
model are proposed.

7.1 Homogeneous Isotropic Turbulence

The three dimensional test case ran in this part is based on a 3D Forced Homo-
geneous Isotropic Turbulence (FHIT) for the carrier phase resolved in a cubic
domain, with periodic boundary conditions.
This carrier phase is computed with a dimensionless DNS solver for low Mach
number �ow. This academic tool is the ASPHODELE code which was de-
veloped at CORIA (Reveillon and Demoulin 2007; Péra 2005; Meftah 2008;
Bouali 2011; Thomine 2011).

The forcing scheme is based on an initial solution for a HIT that is obtained
based on a model for the energy spectrum. In the following the selected model
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is introduced before presenting the spectral forcing scheme.

7.1.1 Model spectrum

The energy spectrum function introduced in Pope (2000) is used as the model
spectrum:

Em(κ) = C〈ε〉2/3κ−5/3fL(κL)fη(κη), (7.1)

with:

fL(κL) =

(
κL

[(κL)2 + cL]1/2

)5/3+p0

, (7.2)

fη(κη) = exp
(
−β[((κη)4 + c4

η)
1/4 − cη]

)
, (7.3)

where η =
(
ν3

〈ε〉

)1/4
is the Kolmogorov length scale given as a function of the

carrier phase viscosity ν and the mean dissipation rate of turbulent kinetic

energy 〈ε〉. In addition, the length scale L = 〈TKE〉3/2
〈ε〉 characterises the large

eddies, where 〈TKE〉 is the mean turbulent kinetic energy.
fL is a non-dimensional function that governs the shape of the energy containing
range. For large κL this function tends to 1. The shape of the dissipation range
is determined by the non-dimensional function fη. For small κη this function
tends to 1.
Unless told otherwise the parameters of this model are set to: C = 1.5, β = 5.2
and p0 = 4.
An example of the energy spectrum function normalized by the Kolmogorov
scales Em(κ)

ηu2η
is shown in Figure 7.1. For small wavenumbers, the power law

E(κ) ∼ κ4 is veri�ed as seen in Figure 7.1 through the slope of the dashed-
doted line; this is the von Kármán spectrum de�ned by Equation (7.2). This
region of small wavenumbers is the energy containing range. In the inertial
subrange, the Kolmogorov spectrum with a −5/3 slope is obtained since both
fL(κL) and fη(κη) tend to unity. For large wavenumbers, the exponential decay
region is also evident.
Knowing the energy spectrum function E(κ), the turbulent kinetic energy and
the dissipation rate can be calculated using the following equations:

〈TKE〉 =

∫
κ
E(κ)dκ, (7.4)

〈ε〉 =

∫
κ
D(κ)dκ = 2ν

∫
κ
E(κ)κ2dκ. (7.5)
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Figure 7.1: An example of the energy model spectrum function
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Figure 7.2: An example of the dissipation spectrum

Also the integral length scale can be determined based on the energy spectrum
function. We distinguish here the two expressions for two dimensional HIT
(Guichard et al. 2004) and three dimensional HIT (Pope 2000; Guichard et al.
2004):

L11 =
2

〈TKE〉

∫
κ

E(κ)

κ
dκ (in 2-D), L11 =

3π

4〈TKE〉

∫
κ

E(κ)

κ
dκ (in 3-D).

(7.6)

The dissipation spectrum Dm(κ) = 2νκ2Em(κ) normalized by the Kolmogorov
scales (D(κ)/u3

η) is shown in Figure 7.2.
From this �gure, one can notice that above a certain limit of κη the dissipa-
tion spectrum is very small (for the given example for κη > 2 the dissipation
spectrum is negligible). This limit is important since it is a criterion for the
resolution of the smallest scales and therefore de�nes the maximum ratio of grid
spacing ∆x to the Kolmogorov lengthscale η for Direct Numerical Simulation.
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7.2 Forcing scheme

To get a statistically stationary spectral turbulence, a fully controlled determin-
istic forcing scheme (FC-DFS) was developed in Guichard et al. (2004) as an
extension of the work of Overholt and Pope (1998). FC-DFS controls the tur-
bulent kinetic energy and monitors the energy for low wave-number (no energy
increase) by adding a "negative" energy to the simulated spectrum whenever
needed.
The turbulence is forced by adding to the spectral velocity equations, a linear
source term:

∂t
−→
Uf
g = Af +

fκ
τf

+
−→
Uf
g , (7.7)

whereAf is the contribution of the classical Navier-Stokes equation, fκ(κf ,∆κf )
is the forcing function and τf is a characteristic relaxation delay of the forcing.
The main idea behind this scheme is to force the simulated spectrum to a model
spectrum for the large scales (κ < κf ). This can be seen through the equation
of time evolution of the energy spectrum with the attraction parameter:

dEs
dt

= Cκ + Fκ
αf (t)Em(κ)− Es(κ, t)

τf
, (7.8)

where Cκ is the energy contribution without the forcing source terms, and Fκ
is a �lter function that sets the forcing amplitude for every wavenumber κ:

Fκ =

1− exp

(
− (κ−κf )2

∆κ2f

)
1− exp

(
− (−κf )2

∆κ2f

) H(κf − κ), (7.9)

with H(κf − κ) being the Heaviside function.
For stability reasons, the relaxation time of the simulated spectrum to the
modeled one should be smaller that the Kolmogorov time scale: τf = Cfτk =

Cf
√

ν
〈ε〉 with Cf being a constant smaller than one. Guichard et al. (2004);

Reveillon and Demoulin (2007) determined the forcing function by the following
equation:

fκ =
Fκ

2Es(κ, t)
(αf (t)Em(κ)− Es(κ, t)), (7.10)

where αf (t) is a coe�cient that controls the mean turbulent kinetic energy:

αf (t) =
〈TKE〉m − 〈〈TKE〉〉+ τf 〈ε〉+

∫
κ FκEs(κ, t)dκ∫

κ FκEm(κ, t)dκ
, (7.11)
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Figure 7.3: Energy Cascase various eddy scales and ranges

with 〈TKE〉m =
∫
κEm(κ)dκ the turbulent kinetic energy of the model spec-

trum. This forcing procedure will lead to a statistically stationary grid turbu-
lence in the physical domain by stabilizing the major properties of the turbu-
lence: the energy, the dissipation rate and the integral length scale.
Practically, if the goal is to get a simulated turbulent having an integral length
scale nearly equal to the integral scale of the model spectrum, the cut-o�
wavenumber should be selected accordingly (Guichard et al. 2004). This means
that κf should be set to κEI = 2π

lEI
separating the inertial subrange and the

energy-containing range (see Figure 7.3 (Pope 2000)). In this case, the uni-
versal equilibrium range composed of the dissipation range and the inertial
subrange evolves freely while the energy-containing range is forced to relax
towards the energy containing range of the model spectrum.

7.3 Small Reynolds number HIT test case

The DNSs presented in this thesis are done for a low Reynolds number tur-
bulence, knowing that the evaluation itself and the application of Anisotropic
Gaussian model is not limited to low turbulence �ow. All the values of the vari-
ables presented in this work are dimensionless, and the normalizing Reynolds
number and viscosity are respectively 103 and 10−3.

7.3.1 Velocity �eld and general properties

This turbulence is obtained for a cube of size 53 using a 1283 mesh.
The evolution of the turbulent properties is shown in Figure 7.4. The di�erent
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characteristics in question are the mean turbulent kinetic energy (〈TKE〉), the
mean dissipation rate (〈ε〉), the Kolmogorov time and length scales (time τK
and length η). One can notice that after a time t > 15 the turbulence is statis-
tically stationary. For this reason the di�erent simulation of the disperse phase
are all carried out until reaching a �nal time t = 40, which is approximately
ten times the time scale of the large eddies. At t = 40, the magnitude of the
velocity �eld is plotted in Figure 7.5 and the kinetic energy spectrum (E) along
with the dissipation spectrum (D) are presented in Figure 7.6.
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Figure 7.5: Velocity magnitude of a forced HIT at �nal time t = 40 on a 1283 mesh
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7.3.2 Characterisitic time scale of the �uid

In order to estimate the inertia of the particles with respect to the carrying
�uid, the Stokes number should be calculated. The smallest turbulent scale
capable of generating the PTC is the Kolmogorov length scale. For this reason
the Kolmogorov time scale is chosen here as the characteristic time of the �uid.
This choice is very common in DNS. Since this time scale is not constant in
time for our FHIT, the characteristic time of the gas is taken to be the average
of the Kolmogorov time scale for t > 10 for simplicity. It is found to be equal
to 1.2545 (see Figure 7.7).
The Kolmogorov time scale is calculated based on the kinematic viscosity ν

and the mean dissipation rate 〈ε〉 as follows:

τK =

√
ν

〈ε〉
, (7.12)

where the mean dissipation rate of the turbulent kinetic energy is given as a
function of the kinematic viscosity and the strain rate tensor sij :

〈ε〉 = 2ν〈sijsij〉, where sij =
1

2

(
∂ugi
∂xj

+
∂ugj
∂xi

)
. (7.13)

Based on these de�nitions, the characteristic time scale chosen to calculate the
Stokes number can be criticized as being a mean property of the �uid. In fact,
within the domain, local times smaller than τk can be encountered, leading to
higher "local" Stokes numbers. To illustrate this possibility, the distribution
of the ratio of the local dissipation rate to two times the kinematic viscosity is
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Figure 7.7: Evolution of Kolmogorov time scale of the forced HIT with time (black)
and chosen characteristic time scale for the gas (red)

plotted in Figure 7.8.
In addition to this Stokes number based on the Kolmogorov scale StK , another
Stokes number relative to the integral scales StE is also used when plotting the
di�erent quantitative results as a function of the Stokes numbers at �nal time.
This is done in order to compare the behavior of the evolution of the AG results
as a function of the particles inertia to the Lagrangian ones. The milestones
chosen for this comparison are the particles having a relaxation time equal to
the Kolmogorov time scale on one hand StK = 1, and the particles of relaxation
time equal to the integral time scale StE = 1 on the other hand.
In the following, without speci�c notations, the Stokes number denotes the one
based on the Kolmogorov scale. Otherwise, it is clearly mentioned that the
Stokes number based on the integral scale is used.
For the integral scales, the computation was based on the two-point velocity
correlation Rij which reads (Pope 2000):

Rij(r) = 〈ui(~x)uj(~x+ r~e)〉,where ~e is a given unit vector. (7.14)

In general, the longitudinal integral length scale is given as the area under the
curve of the longitudinal velocity autocorrelation function flong(r) (Pope 2000)
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(equation (7.15))

L11 =

∫
flong(r)dr, (7.15)

where flong(r) =
Rii

3U2
rms

.

Based on these formulae, we get at t = 40 the longitudinal integral length scale
L11 = 0.65217, the Eulerian integral time scale τE = 9.7864 and the Reynolds
number ReL = 43.46.
In order to be able to compare the results presented in this part to other results
in the litterature with di�erent forcing methods, it is essential to calculate the
Lagrangian integral time scale, τL ,based on the temporal velocity correlation
function. Based on the velocity �eld in question the Lagrangian integral times
scale is τL = 4.7905.
Thus, in addition to the reference to the particles of relaxation time equal to the
Kolmogorov time scale on one hand StK = 1, and to the particles of relaxation
time equal to the Eulerian integral time scale StE = 1, one can also add a
reference to the particles of relaxation time equal to the Lagrangian integral
time scale StL = 1 whenever needed.
The turbulence properties of the FHIT is summarized in Table 7.1. Finally,
this DNS is carried out with κmaxη = 2.8428 that provides su�ciently small
grid spacing for the resolution of the smallest dissipative motions (Pope 2000).
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Table 7.1: Turbulence properties of the HIT

〈TKE〉 τK η τL τE L11 ReL
0.00667 1.2545 0.03535 4.7905 9.7864 0.65217 43.46

7.4 Codes

The ASPHODELE solver couples a Eulerian description of the gas phase with a
Lagrangian description of the spray. It is based on high order �nite di�erences
schemes.
Since the gas phase and the Lagrangian approach for the disperse phase are not
the subject of this theses, the details of this code as well as the equations solved
and the numerical scheme used for the gas carrier and Lagrangian approach are
not presented here. For more information, on this subject one may refer to the
work of Reveillon and Demoulin (2007); Péra (2005); Meftah (2008); Bouali
(2011); Thomine (2011).
The disperse phase simulations were done using the MUlti-�uid Solver for Eu-
lerian Spray, MUSES3D. This latter was developed at EM2C during the thesis
of de Chaisemartin (2009) as a solver for multi-�uid spray computations with a
parallel optimization based on the domain decomposition for High Performance
Computing. This code is written in Fortran90/95 language and it uses �nite
volume methods to solves the Multi-Fluid equations. This implemented MF
model was based on the MK assumption. For more details about MUSES3D,
one may refer to the thesis of de Chaisemartin (2009).
These two codes are coupled, as shown in Figure 7.9, to allow the comparison
between the Lagrangian and Eulerian simulations of the disperse phase. The

Figure 7.9: Sketch of the coupling between ASPHODELE and MUSES3D codes.
(Source Fréret et al. (2010))

structure of these codes was recently optimized by J.C. Brändle de Motta and
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O. Thomine.
During this thesis, the AG model has been implemented in this optimized ver-
sion of MUSES3D in order to evaluate the AG model on the 3D con�guration
in question.

7.5 Lagrangian results

For the Lagrangian simulations, the particles are initially distributed uniformly
in the 1283 mesh. These particles are initially at rest.

7.5.1 Projection

In order to compared the Eulerian results to the Lagrangian reference, the
projection of the Lagrangian results on the Eulerian grid N3

eul is necessary. By
doing so, the Lagrangian variables of Np particles are transformed into Eulerian
moments on the N3

eul grid elements. Whenever a Lagrangian particle p having
a velocity ~cp(cp,x, cp,y, cp,z) is found in the grid element (x, y, z), the moment
of order i+ j+ k is augmented by the corresponding moment of the particle as
shown in equation (7.16).

Mi,j,k(x, y, z) =
N3
eul

Np

Np∑
p=1

cip,xc
j
p,yc

k
p,zH(x− xp, y − yp, z − zp), (7.16)

where H(x−xp, y−yp, z−zp) is a cubic top hat function centered at (xp, yp, zp)
and of characteristic width the Eulerian grid size ∆~x.
This projection is performed on the 1283 Eulerian mesh to have the �elds at
the same level of re�nement as the gas �eld which is simulated on a 1283 mesh.
This projection is also essential to qualitatively compare the Lagrangian results
to the Eulerian results simulated on this same mesh.

7.5.2 Statistical convergence of the Lagrangian results

The Lagrangian results can be set as a reference as long as enough particles
are used to achieve statistical convergence. In order to evaluate this statistical
convergence, Lagrangian simulations were carried out for an increasing number
of particles. The statistical results are presented and analyzed hereafter for
three di�erent total number of particles, nearly equal to twenty million, one
hundred million and two hundred million particles. The comparison is based on
two statistical quantities namely the segregation and the mean internal energy.
The segregation, G∆

pp, represents the spatial correlation of the number density
�eld at a given length scale (Simonin et al. 2006):

G∆
pp =

〈n2〉
〈n〉2

, (7.17)
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where 〈.〉 is the averaging operator over the whole domain. It is a measure
of the degree of preferential accumulation and depletion. This quantity is of
paramount importance in the domain of combustion since it could strongly
a�ect the evolution of the mean vapor mixture fraction (Reveillon and Demoulin
2007).
The mean internal energy or mean central energy (MCE) is given by:

MCE =
〈n(σii)

2〉
Nd〈n〉

. (7.18)

It is essential to study the evolution of the mean internal energy since it is
through the velocity variance or the internal agitation energy that the AG
model is capable of reproducing statistically the PTC. Since at each crossing
an amount of the total kinetic energy is transformed into internal energy, the
MCE is an evaluation of the occurrence of PTC.
These statistics are measured at the scale of the original mesh for the gas which
means that a projection of the Lagrangian results on the 1283 grid is done be-
fore computing these values.
For the small Stokes number St = 0.5, the segregation does not change dras-
tically when using 20 or 100 million particles, only a small shift is noticed as
illustrated in Figure 7.10. When it comes to the mean internal energy, it is
already supposed to be in�nitesimal since the probability to have PTC is less
than 1% based on the distribution of the ratio of the local dissipation rate to
two times the kinematic viscosity of the carrier phase shown in Figure 7.8. The
Lagrangian results with 20 million particles lead to a lower level of MCE com-
pared to the other two simulations. From these measures, one can conclude
that the statistical convergence for St = 0.5 is obtained for 100 million parti-
cles. However, it can be argued, based on the minimal e�ect of the increase of
the total number of particles, that one could only use 20 million particles and
still obtain results that are accurate enough at lower computational cost. Thus,
it is important to check whether the same behavior is obtained for moderately
inertial and inertial particles too.
Figure 7.11 shows the statistical convergence for St = 3. In this case, the

simulation with the smallest number of particles in not statistically converges
and the results cannot be used as a reference. However, when using 100 mil-
lion particles, the evolution of the segregation in time is very similar to the
case of 200 million particles. The same trend is observed with the MCE. As a
consequence, one need to simulate 100 million particles in order to reach the
convergence of the statistics.
The same conclusion can be drawn for a more inertial case, namely for St = 8,
as depicted in Figure 7.12. For this reason, all the Lagrangian results that are
presented in this part are carried out with a total number of particles nearly
equals to 100 million, in order to be able to consider the Lagrangian result as
a physical reference for the comparison with the Eulerian models.
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Figure 7.10: Statistical convergence of the Lagrangian results for St = 0.5 on the
1283 mesh
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Figure 7.11: Statistical convergence of the Lagrangian results for St = 3 on the 1283

mesh

7.5.3 Qualitative results

The qualitative evaluation presented in this section is done for three di�erent
Stokes numbers: St = 0.5, 3 and 8.

For small Stokes numbers, the particles are gathered in low vorticity zones. In
this case the occurrence of PTC is not signi�cant and both Eulerian models are
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Figure 7.12: Statistical convergence of the Lagrangian results for St = 8 on the 1283

mesh

expected to capture the structure of the number density �eld.
For St = 3, the vacuum zones become smaller and the particles are clustered
into wider structures. This behavior should be captured by the AG models,
whereas the MK is expected to overestimate the preferential concentrations at
the PTC locations.
When it comes to the inertial case where St = 8, the structures found in the
number density �eld are larger than in the other two cases but have lower
number density. For this particle size, the dimension of the vacuum zones is
tremendously decreased in comparison with the case of St = 1 (see �gure 7.13).
The velocity �elds of the disperse phase for the three Stokes number in question
are shown in Figure 7.14. The disperse phase velocity in the �rst case is very
similar to the gas one, except in the vacuum regions where the velocity of the
disperse phase is zero.
For the moderately inertial and inertial cases, the kinetic energy received from
the gas is transformed in the disperse phase into internal energy created during
the PTC. Thus, the velocity of the disperse phase for St = 3 and St = 8 is
lower than that of the gas. Actually, this phenomena of energy transformation
increases with the increase of the Stokes number and implies the decrease of
the disperse phase velocity.
This energy conversion is also seen in Figure 7.15, where the velocity dispersion
is very signi�cant for St = 8 in comparison with the St = 0.5 case. In the latter
cases, no signi�cant PTC takes place. The generated internal energy is very
low and only found in very thin regions as seen in Figure 7.15 for St = 0.5.
This behavior is expected since the probability to have PTC is less than 1%
based on the analysis presented in subsection 7.3.2. Nonetheless, in the range
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(a) St = 0.5 (b) St = 3 (c) St = 8

Figure 7.13: Lagrangian number density �eld at t = 40 projected on a 1283 mesh

(a) St = 0.5 (b) St = 3 (c) St = 8

Figure 7.14: Lagrangian velocity �eld at t = 40 projected on a 1283 mesh

of low Stokes number (St < 1), the probability of occurrence of these local PTC
increases with St but does not highly a�ect the structure of the number density
�eld.
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(a) St = 0.5 (b) St = 3 (c) St = 8

Figure 7.15: Lagrangian Velocity dispersion �eld σ11 at t = 40 projected on a 1283

mesh

7.5.4 Evaluation of the third order moment

Now that the test case is well de�ned along with the reference solution, only
one step is still essential before heading to the comparison between the AG
results, MK results and the Lagrangian reference results. This last step checks
to what extent the assumption of writing the third order moment as the third
order moment of a Gaussian distribution as shown in equation (7.19) is valid.
To do so, the third order moment computed from equation (7.19) is compared
to the original one obtained directly from the Lagrangian result projected on
the 1283 Eulerian grid, as explained in subsection 7.5.1. This is done for the
highest Stokes number in the studied range St =15.

Mi,j,k = ((nE + P) ∨ −→u ), where i+ j + k = 3. (7.19)

The distribution function of the Frobenius norm of the third order moment is
also compared for the two ways of computation. As one can notice from Figure
7.16 the two results are nearly the same. The only two di�erences are the
maximum value of the norm of the third order moment, which is higher when
calculating this moment using equation (7.19), and the quantity close to the
zero norm, which is also higher when the third order moment is calculated based
on the Gaussian distribution. Since the di�erences between the two methods
for computing the third order moment are small, one can conclude that the
assumption of writing the third order moment by equation (7.19) is valid.

It is important to note that the current a posteriori tests should be extented
to take into account the kurtosis, the skewness as well as the derivatives of the
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Figure 7.16: Distribution function of the norm of third order moment and the one
calculated based on the Gaussian distribution

thrid order centered correlation to check whether the assumption of writing the
third order moment based on Gaussian distribution is acceptable in the case of
inhomogeneous �ows such as turbulent channel �ows (Vance et al. 2006).





Chapter 8

Qualitative visual results and quan-
titative mean statistics

In this chapter, the �rst part of the evaluation of the Anisotropic Gaus-
sian model on a 3D Forced Homogeneous Isotropic Turbulence is pre-
sented. The AG results are compared to the Lagrangian ones and Eu-
lerian results based on the Mono-Kinetic closure. This comparison is
carried out for a range of Stokes numbers going from particles of very
small inertia (St ∼ 0.1) to high inertia (St ∼ 15). In this chapter
three levels of evaluation are presented. First, qualitative visual results
such as the number density �eld, the velocity magnitude and the ele-
ments of the covariant matrix are presented for four Stokes numbers:
St = 0.5, 1, 3 and 8. Second, the one-point correlation of the velocity is
presented through scatter plots. These results show whether the disperse
phase motion is highly correlated to the carrier phase velocity or not.
Third, the quantitative mean statistical results are assessed, namely the
segregation, the mean total energy and the mean central energy. The
evolution of these results as a function of time for di�erent Stokes num-
bers is presented, to check whether the AG model captures the change of
the temporal evolution of the statistics with particles inertia. Finally,
the statistical results at �nal time are plotted as a function of the Stokes
number, for the di�erent models and grids. These comparisons repre-
sent an important step showing the advantages of the AG model versus
the MK one and a �rst step in de�ning the domain of validity of the
AG model.

8.1 Qualitative results

The qualitative evaluation presented in this section is based on the four di�erent
Stokes numbers: St = {0.5, 1, 3, 8}. This choice is made to cover the various
regimes that can be encountered in industrial applications:
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• small particles that are characterized by a highly correlated motion to
the carrier phase,
• particles at critical Stokes number leading to high concentrations and
vacuum zones,
• moderately inertial particles where the two phenomena of high concen-
tration and of particles trajectory crossing coexist,
• inertial particles where the occurrence of PTC governs the underlying
dynamics.

Unless mentioned otherwise, the Eulerian simulations are done using the same
level of mesh re�nement as the gas, namely the 1283 mesh. In fact, the native
mesh of the gas carrier simulation is always kept unchanged and the Lagrangian
results are projected on this Eulerian grid as mentioned in the previous chapter.
When it comes to the Eulerian results, this mesh can be re�ned in order to
decrease the numerical di�usion and to be able to evaluate the AG model based
on more accurate results.

8.1.1 Small Stokes number: St = 0.5

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.1: Number density �eld at t = 40 on the 1283 mesh for St = 0.5

For small Stokes numbers, the particles are gathered in low vorticity and high
strain zones driven by the hypercompressibility1 e�ect (Maxey 1987; Squires
and Eaton 1991b). In this case the occurrence of PTC is not signi�cant, thus

1Since the local concentration of particles is modeled as a "�uid", the segregation can be
interpreted as a hypercompressibility feature of this "�uid", this is when the concentration
�eld becomes strongly non-uniform and faces rapid changes from vacuum to accumulation
zones. For small St, the carrier phase dominates the behavior of the disperse phase through
the drag force, so the gas velocity drives the compression of the particle phase into high
strain/low vorticity zones.
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the only energy of the disperse phase is the kinetic energy created by the parti-
cles advection. Therefore, both Eulerian models are capable of reproducing the
real dynamics and capture the structure of the number density �eld including
the zones of preferential accumulations and the vacuum zones (Figure 8.1). The
di�erence between the Lagrangian and Eulerian results in this case is mainly
due to numerical di�usion. In fact, the maximum value of the number density
for the Lagrangian result is 70.28 compared to 24.97 for the MK and 21.75 for
AG.

When comparing qualitatively the velocity �elds in Figure 8.2, the structures
as well as the maximum values are in a very good agreement, except for vacuum
regions. Actually, for the Lagrangian simulation the velocity is intuitively set to
zero in the vacuum regions. However for Eulerian cases, the velocity is de�ned
everywhere since in the corresponding regions the number density might be
very small but still simulated. In this case a velocity is associated to this small
number density. Therefore, zero velocity magnitude is reached with Lagrangian
simulations, but it is not the case for the MK and AG results. This di�erence
decreases with mesh re�nement.
In order to make sure that this di�erence is only found in the regions of

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.2: Velocity magnitude �eld at t = 40 on the 1283 mesh for St = 0.5

vacuum or very low number density, the momentum magnitude is evaluated.
The momentum is underestimated by both Eulerian simulations. This is due
to numerical di�usion as mentioned before with the number density results.
However, the Eulerian models reproduce well the zones of zero momentum
depicted in white in Figure 8.3. This con�rms the explanation of the di�erence
between the minimum values of the velocity of the Lagrangian and Eulerian
simulations. Numerically, this di�erence does not prevent from capturing the
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correct dynamics, since the solved equations are based on the conservative
variables.
In the St = 0.5 case, no considerable PTC is taking place since the disperse

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.3: Momentum magnitude at t = 40 on the 1283 mesh for St = 0.5

phase relaxation time is smaller than the Kolmogorov time scale of the gas. In
fact, based on the distribution of the local dissipation rate (Figure 7.8) only
0.04% of the carrier turbulent �eld has local Kolmogorov time scale smaller than
or equal to the relaxation time of the particles. Thus, the velocity dispersion
represented by its covariance matrix should be negligible if not zero. It is indeed
the case as one can notice in Figure 8.4, for both the Lagrangian and AG
results. Nevertheless, we observe that the AG model overestimates the velocity
dispersion in comparison with the Lagrangian results. To avoid redundancy,
the other elements of the covariance matrix are not presented for this particular
Stokes number.
The behavior of the disperse phase for this Stokes number is expected and

already seen in the literature (Maxey 1987; Squires and Eaton 1991b). The
particles do not have enough inertia to create their own path but follow the
carrier phase instead.
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(a) Lagrangian σ11 (b) Anisotropic Gaussian σ11

Figure 8.4: Velocity dispersion �elds σ11 at t = 40 on the 1283 mesh for St = 0.5

8.1.1.1 Mesh re�nement for the Eulerian results for St = 0.5

In order to evaluate the Eulerian results while decreasing the numerical dif-
fusion, the results for the MK are presented on the 643, 1283, 2563 and 5123

meshes. This is done to decouple as much as possible the modeling e�ects from
the numerical e�ects. The study is only shown for the MK results since for this
Stokes number the results for both Eulerian models are nearly the same. This
comparison is performed on the 2-D diagonal slice shown in Figures 8.5. From

Figure 8.5: The diagonal slice plan shown in red

Figures 8.6(a), we observe that the number density �eld using MK tends to the
Lagrangian number density. The result on the 5123 grid captures globally the
right structures, the correct vacuum zones and even the thin high concentration
�laments.
For the velocity, the results are not highly a�ected by the mesh re�nement,
as shown in Figure 8.6(b). For the coarsest mesh the right motion is already
captured, except near the vacuum regions.
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In order to check the di�erences found in the regions of vacuum or very low

(a) Number density

(b) Velocity

(c) Velocity �elds where the velocity is set to 0 when n < ∆x

(d) Momentum

Figure 8.6: From left to right: Lagrangian, MK on 643, 1283, 2563 and 5123 meshes
at t = 40 for St = 0.5

number density, the Eulerian velocity is set to zero in the regions of small
number density, as shown in Figure 8.6(c). For a minimal value adapted to
the di�usion of the numerical scheme, the �rst choice was selected to be equal
to the grid size ∆x. We observe that when decreasing the numerical errors,
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the vacuum zones match the Lagrangian ones. This behavior can also be de-
picted by the qualitative convergence of the momentum �eld of MK toward the
Lagrangian one when re�ning the mesh (see Figure 8.6(d)).
Finally, a two-dimensional zoom in is shown for a small structure of the number
density �eld containing a high concentration spot along with vacuum zones.
The size of this zoom represents nearly 6% on the full box size as shown in
Figure 8.7. The meshes are also shown for the di�erent results in Figure 8.8.
The MK result on the 643 mesh has dissipated the structure in a way that
the preferential concentrations and vacuum spots are not reproduced. When
re�ning the mesh, the structure begins to be clearer until reaching a well-de�ned
shape similar to the Lagrangian one. This re�ned case captures the vacuum
and the accumulation zones. One must however keep in mind the fact that this
mesh is more re�ned that the native mesh (1283) used for the carrier phase
simulation.

Figure 8.7: Two dimensional zoom in for a structure of 8x8x8 hexahedrons within
the native 1283 grid.

Figure 8.8: Number density for the two-dimensional zoom in, from left to right:
Lagrangian, MK on 643, 1283, 2563 and 5123 meshes at t = 40 for St = 0.5

8.1.2 Critical Stokes number: St = 1

For St = 1, the physics to be captured is more challenging from the numerical
point of view, since it has to deal with very high concentration in thin structures
close to large depletion zones. In fact, the more we approach the critical Stokes
number, the greater is the probability to have hypercompressibility zones and
δ-shocks. The MK model deals naturally with these challenges, especially when
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solved with adapted numerical schemes similar to the Finite Volume Kinetic
Scheme or the new RKDG class presented in part II. Such numerical schemes
are able to capture δ-shocks and high gradients, with a minimum level of nu-
merical di�usion.

When it comes to the number density (Figure 8.9), the Lagrangian results is pro-
viding �ner structures and higher preferential concentration than the Eulerian
results. Nevertheless, the global structure of the number density is captured by
both the MK and AG models. Some structures in the MK results match more
precisely the Lagrangian one than the AG results and some others are better
captured by the AG model. The maximal value of the number density obtained
in the Lagrangian results is higher than the one resulting from the Eulerian re-
sults: 56.35 for the Lagrangian compared to 33.50 for the MK and 12.78 for
AG. This di�erence is due to the numerical di�usion e�ect. In addition, the
MK model creates δ-shocks and leads to higher accumulations than the AG.
Through the comparison of the velocity �elds plotted in Figure 8.10, the same

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.9: Number density �eld at t = 40 on the 1283 mesh for St = 1

behavior as for St = 0.5 is found: a very good agreement between the La-
grangian and Eulerian results, except for vacuum regions shown as black spots
in the Lagrangian velocity �eld. The analysis of this latter observation is the
same as the one done for the lower St.
The momentum magnitude depicted in Figure 8.11 shows that the di�erence
of the velocity �elds between the Lagrangian and Eulerian results are localized
in the regions of very low number density or of vacuum. The Eulerian models
underestimate the momentum. Nevertheless, the MK results have some struc-
tures of higher momentum than the AG ones and thus closer to the Lagrangian
result.
From Figures 8.12, it is clear that for this Stokes number, the di�erent ele-
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(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.10: Velocity magnitude �eld at t = 40 on the 1283 mesh for St = 1

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.11: Momentum magnitude at t = 40 on the 1283 mesh for St = 1

ments of the covariance matrix have small values in most regions in the domain
except where PTC begin to occur. In fact, the amount of local Kolmogorov
time scales equal or smaller than the relaxation time of the particles is 11.22%.
This percentage explains the occurrence of PTC in some regions of the domain.
In this case the structures seem to be qualitatively the same for the Lagrangian
and the AG solutions, with an overestimation by the AG model. At these PTC
locations the MK model generates Dirac δ-shocks and an amount of the total
kinetic energy is lost irreversibly whereas with the AG model when PTC oc-
curs, an amount of the total kinetic energy is transformed into internal energy
or energy of agitation.
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(a) Lagrangian σ11 (b) Lagrangian σ22 (c) Lagrangian σ33

(d) AG σ11 (e) AG σ22 (f) AG σ33

(g) Lagrangian σ12 (h) Lagrangian σ13 (i) Lagrangian σ23

(j) AG σ12 (k) AG σ13 (l) AG σ23

Figure 8.12: Velocity dispersion �elds at t = 40 on the 1283 mesh for St = 1
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In order to check whether the overestimation of the velocity dispersion by the
AG model is localized in the vicinity of the vacuum regions, the pressure in the
x-direction is shown in Figure 8.13. This possibility is refuted since the pressure
is overestimated as well. This overestimation of the pressure accompanied with
the underestimation of the number density surely means an ampli�ed covari-
ance. This overestimation is mainly due to the numerical dissipation that is
included in the covariance terms. In future works, further evaluation of this
numerical dissipation is needed to be able to extract the physical velocity dis-
persion created by the AG model along with the procedure of transforming the
di�usion on the density into an increase in the internal energy by conservation
of the total kinetic energy.

(a) Lagrangian (b) AG

Figure 8.13: Pressure in the x direction, P11 at t = 40 for St = 1 on the 1283 mesh

8.1.3 Moderate Stokes number: St = 3

In this paragraph, the qualitative results are presented for a moderately inertial
disperse phase having a Stokes number St = 3. Based on the PDF of the
local dissipation rate (Figure 7.8), 91.46% of the carrier �eld is characterized
by a time scale smaller than the relaxation time of the moderately inertial
particles. Thus, the underlying physics leads to signi�cant PTC. In this case,
the MK model is not expected to capture the right dynamics of the particle-
laden �ow. This is clearly seen through the number density �elds plotted in
Figure 8.14 where the preferential accumulations are highly overestimated using
the MK model, compared to the Lagrangian and AG results. In addition,
the structures are thinner with the MK model leading to vacuum zones larger
than the Lagrangian ones. On the other hand, the AG model captures the
global structures, their sizes and does not overestimate the accumulations. A
maximum number density of 23.96 is reached with the Lagrangian, 58.82 with



176 Chapter 8 - Qualitative visual results and quantitative mean
statistics

the MK and 7.06 with the AG. The di�erence between the maximal number
density reached with the Lagrangian value and the AG is expected to decreases
with mesh re�nement, whereas the inverse trend is expected with the MK
model. This analysis is the subject of the next section.

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.14: Number density �eld at t = 40 on the 1283 mesh for St = 3

From Figure 8.15, although globally both Eulerian results match the Lagrangian
velocity, a slight overestimation of the velocity magnitude can be noticed in the
MK result at some points. This overestimation is due to the fact that the
disperse phase modeled by MK has a greater tendency to follow the gas. In
addition Dirac δ-shocks are created at each PTC location with MK.

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.15: Velocity magnitude �eld at t = 40 on the 1283 mesh for St = 3
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The diagonal elements of the covariance matrix are plotted in Figure 8.16 for
the Lagrangian and AG results. This represents the one-dimensional velocity
dispersions. The AG model in comparison with the Lagrangian captures the
structure of the elements of this internal energy tensor. However, the AG model
overestimates the value of the velocity dispersions in all the directions.
The o�-diagonal elements can be seen in Figure 8.17, where once again the
general structure is captured by the AG results but with an overestimation of
the two-dimensional velocity dispersions. The e�ect of the mesh re�nement is
depicted later on for the case of high Stokes number.
For this moderate Stokes number the evaluation of the pressure in the x-
direction (Figure 8.18 ) shows that the AG model does not overestimates the
pressure. In fact the underestimation of the number density is the main reason
for the overestimation of the velocity dispersion.

(a) Lagrangian σ11 (b) Lagrangian σ22 (c) Lagrangian σ33

(d) Anisotropic Gaussian σ11 (e) Anisotropic Gaussian σ22 (f) Anisotropic Gaussian σ33

Figure 8.16: Velocity dispersion �elds σii at t = 40 on the 1283 mesh for St = 3
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(a) Lagrangian σ12 (b) Lagrangian σ13 (c) Lagrangian σ23

(d) Anisotropic Gaussian σ12 (e) Anisotropic Gaussian σ13 (f) Anisotropic Gaussian σ23

Figure 8.17: Velocity dispersion �elds σij for i 6= j at t = 40 on the 1283 mesh for
St = 3

(a) Lagrangian (b) AG

Figure 8.18: Pressure in the x direction, P11 at t = 40 for St = 3 on the 1283 mesh
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8.1.3.1 Mesh re�nement for the Eulerian results for St = 3

Contrary to the MK model, the AG model is found to capture the small-scale
PTC and therefore to reproduce the right number density �eld for moderately
inertial particles. It is now important to check the e�ect of the mesh re�nement
on the AG results, in comparison with the Lagrangian results. The e�ect of
mesh re�nement is also compared between the AG results and the MK ones.
The results for the MK and AG are presented on the 643, 1283 and 2563 meshes.
In addition, the AG results are also shown on the most re�ned mesh: 5123

whereas the MK results are not shown on this mesh since it is clearly notice from
the coarser meshes that the results of this model diverges from the Lagrangian
results with mesh re�nement. From Figures 8.19, we can conclude that number
density �eld using AG matches the Lagrangian number density, while the MK
results diverges from the Lagrangian one when re�ning the mesh.

(a) from left to right, Lagrangian, MK on 643, 1283, 2563

(b) from left to right: AG on 643, 1283, 2563 and 5123

Figure 8.19: Number density �eld at t = 40 for St = 3

For the velocity, the results are not highly a�ected by the mesh size. The
MK model is always overestimating the velocity compared to the Lagrangian
velocity, since it leads to unphysical δ-shocks at each PTC and generates hy-
percompressibility that is not related to the underlying physics at all. This is
not the case with the AG model (Figures 8.20).
When it comes to the internal energy �eld calculated as the trace of the covari-
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(a) from left to right, Lagrangian, MK on 643, 1283, 2563

(b) from left to right: AG on 643, 1283, 2563 and 5123

Figure 8.20: Velocity �eld at t = 40 for St = 3

ance matrix divided by 3, the results from AG model present �ner structures
for �ner mesh but still overestimate the central energy even though this over-
estimation decreases when re�ning the mesh (Figures 8.21).
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Figure 8.21: Internal energy at t = 40 for St = 3: from left to right, Lagrangian,
AG on 643, 1283 (top) , 2563, 5123 (bottom)

Figure 8.22: Pressure at t = 40 for St = 3: from left to right, Lagrangian, AG on
643, 1283 (top) , 2563, 5123 (bottom)
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8.1.4 High Stokes number: St = 8

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.23: Number density �eld at t = 40 on the 1283 mesh for St = 8

(a) Lagrangian (b) Mono-Kinetic (c) Anisotropic Gaussian

Figure 8.24: Velocity magnitude �eld with the scale of the Lagrangian result at t = 40
on the 1283 mesh for St = 8

In the following, the inertial disperse phase is simulated for a Stokes number
St = 8. In this case the local Stokes number is greater than 1 over nearly
the whole domain since the percentage of the local time scale greater than
τp = 10.036 in the THI is 99.88%.
For the number density, unlike the MK model, the AG model captures the
global structures and their sizes without excessive accumulation or enlarged
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(a) Lagrangian σ11 (b) Lagrangian σ22 (c) Lagrangian σ33

(d) Anisotropic Gaussian σ11 (e) Anisotropic Gaussian σ22 (f) Anisotropic Gaussian σ33

Figure 8.25: Velocity dispersion �elds σii at t = 40 on the 1283 mesh for St = 8

vacuum region (Figure 8.23). In this case, the maximum values of the number
density reached with of the Lagrangian, MK and AG are respectively 7.14,
105.87 and 4.36.
When it comes to the velocity shown in Figure 8.24, the AG result matches the
Lagrangian velocity, whereas the MK model clearly overestimates the velocity
magnitude.
The same conclusions and interpretations as for St = 3 result from the velocity
dispersion shown in Figures 8.25 and 8.26 where the AG model overestimates
the covariance but captures the right structure.
Even though the AG model overestimates the velocity dispersion, it leads to
an accurate estimation of the pressure as shown in Figure 8.27 through the
trace of the pressure tensor, since the overestimation of the internal energy is
balanced with the underestimation of the number density.
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(a) Lagrangian σ12 (b) Lagrangian σ13 (c) Lagrangian σ23

(d) AG σ12 (e) AG σ13 (f) AG σ23

Figure 8.26: Velocity dispersion �elds σij for i 6= j at t = 40 on the 1283 mesh for
St = 8

(a) Lagrangian (b) AG

Figure 8.27: Pressure at t = 40 on the 1283 mesh for St = 8
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It is important to keep in mind that the results presented above give only
general qualitative conclusions. Through these results, it is shown that the
AG model is suitable for the description of a large range of Stokes numbers. It
gives accurate results in comparison with the Lagrangian reference for moderate
to inertial particles, where the MK model fails to predict the right dynamics.
This is the �rst step of the comparison of the 3D results and it gives an idea
about the potential of the AG model. However, it is not conclusive about the
range of suitability, the quantitative convergence with mesh re�nement and the
limits of this model. Thus, a more detailed quantitative analysis is required
for a complete validation of the AG model in 3D on the academic test case in
question. This analysis starts with the statistical results conducted in section
8.3 and extends to the results on the distribution and autocorrelation function
presented in Chapter 9.

8.2 One-point correlations

In this section the qualitative scatter plots are presented for the one-point ve-
locity correlations. First, this is done to evaluate the correlation of the disperse
phase motion with the gas motion. Second, the same type of results is per-
formed to compare the velocities resulting from Eulerian simulations (AG and
MK) to the one obtained with the Lagrangian reference. The more the scat-
tered point are accumulated around the �rst bisector, the more the results are
correlated.
Based on the analysis of the di�erence between the Lagrangian and the Eule-
rian velocities in the vacuum zones proposed in subsection 8.1.1, the points of
zero velocity are not included in the Lagrangian scatter data.

8.2.1 Scatter plots of the disperse phase velocity versus the
carrier phase velocity

The scatter plots for the disperse phase velocity as a function of the gas velocity
for the small Stokes number St = 0.5 are similar, as shown in Figure 8.28. The
disperse phase velocity is highly correlated to the gas velocity in this case. This
is already expected from the qualitative results and since the particles are not
inertial enough and follow the carrier phase.
For moderate to high Stokes number, for example St = 8, the disperse phase
velocity is not totally correlated to the gas velocity anymore, since the par-
ticles are inertial enough to have their own motion as shown in Figure 8.28.
In this case, the AG velocity scatter plot is qualitatively much similar to the
Lagrangian than the MK one when looking at the percentage of scatter points
crossed along the �rst bisector. For the Lagrangian and the AG, the �rst bisec-
tor only crosses the blue and cyan regions, whereas the MK crosses the blue,
cyan, yellow and orange regions. This means that the correlation between the
MK velocity and the carrier phase velocity is stronger than the correlation
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between the latter and the Lagrangian velocity. Thus, the MK model overesti-
mates the velocity is this case.

Another comparison can be directly between the Eulerian velocities and the
reference Lagrangian velocity in the following paragraph.

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Lagrangian, St = 0.5 (b) Lagrangian, St = 8

(c) Mono-Kinetic, St = 0.5 (d) Mono-Kinetic, St = 8

(e) Anisotropic Gaussian, St = 0.5 (f) Anisotropic Gaussian, St = 8

Figure 8.28: Scatter plot of the disperse phase velocity magnitude as a function of
the carrier phase velocity at t = 40 on the 1283 mesh for St = 0.5
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8.2.2 Scatter plots of the Eulerian velocity versus the Lagrangian
one

The scatter plots for the velocity for St = 0.5 are nearly the same for both Eu-
lerian results as shown in Figure 8.29. The Eulerian velocities are very similar
to the Lagrangian results.
For St = 8, the scatter plots of the Eulerian velocity as a function of the

 

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Mono-Kinetic (b) Anisotropic Gaussian

Figure 8.29: Scatter plot of the velocity of the Eulerian results as a function of the
Lagrangian one at t = 40 on the 1283 mesh for St = 0.5

Lagrangian velocity show that the AG are much more correlated to the La-
grangian result than the MK one. The latter overestimates the velocity since
the one point correlation are distributed more to the left of the �rst bisector
(Figure 8.30). This was expected based on the one-point correlation of the dis-
perse phase velocity for the MK simulation and the carrier phase velocity where
the former was found to be more correlated to the gas velocity in comparison
with such correlation for the AG or Lagrangian results. It is important to note
that this comparison is only qualitative, and in order to evaluate precisely the
Eulerian velocities more quantitative measures are necessary such as the PDF
and the autocorrelation function. This is the subject of the next chapter.
To conclude, on one hand, the domain of applicability of the MK model is found
to be limited to critical Stokes number. This limitations is due to the Dirac
δ distribution of the disperse phase velocity in the phase space, which limits
the models from treating PTC. On the other hand, the AG visual qualitative
results seem to be capturing the right dynamics of the disperse phase for the
various Stokes numbers studied, ranging from small to high Stokes numbers. A
more quantitative comparison is necessary to validate the AG model and de�ne
its domain of applicability of the scales that it is able to capture.
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 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a) Mono-Kinetic (b) Anisotropic Gaussian

Figure 8.30: Scatter plot of the velocity of the Eulerian results as a function of the
Lagrangian one at t = 40 on the 1283 mesh for St = 8

8.3 Quantitative statistical results

Through the qualitative results the AG model is found to be a very promising
method for the extension of the KBMM to moderately to high inertial particles,
without tremendously increasing the cost of the method, as it is the case for
the other polykinetic models (Fox 2012; Yuan and Fox 2011; Kah et al. 2010;
Chalons et al. 2010; Chalons et al. 2016). To further understand the pros and
cons of this model, the statistical results are essential, especially because the AG
model is expected to statistically capture the PTC and not deterministically as
shown in the two crossing jets con�guration in the work of Vié et al. (2015).
For this reason, hereafter we present quantitative statistical results. The chosen
quantities are the following:
• The segregation that was presented in the previous chapter and is given
by Equation (7.17).
• The mean internal energy or mean central energy (MCE) also presented
in the previous chapter (see Equation (7.18)).
• The mean total energy (MTE) is the spatial average of the actual energy
over the whole domain. It evaluates the quantity of the overall momentum
exchange in both mean and internal kinetic energies. It is given by the
following equation:

MTE =
〈n
∑Nd

i ((ui)
2 + (σii)

2)〉
Nd〈n〉

. (8.1)

The evolution of these quantities with time is compared for the di�erent models
and for di�erent Stokes numbers. In addition, these statistical quantities are
plotted as a function of the Stokes number for the di�erent models.
Before presenting the results, the general color code used in this section and
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through part III is de�ned. The statistical results for the simulation using the
AG model are displayed using solid line, those using the MK model are drawn
with dashed line. Concerning mesh re�nement, the colors green, blue, red and
gray correspond respectively to the 643, 1283, 2563 and 5123 meshes. When
the result is plotted over time for the di�erent models and meshes, the lines
are plain for the AG and Lagrangian and dashed for the MK, as illustrated in
Figure 8.31(a). For a given time when the results are plotted as a function of
the Stokes number, the lines have symbols as shown in Figure 8.31(b). Finally,
for a given model, when a quantity is plotted as a function of time for di�erent
Stokes numbers the color code is a rainbow color map in the Stokes numbers
as shown in the legend of Figure 8.32.0 10 20 30 40
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Figure 8.31: Legend for the Lagrangian result, AG and MK results on the 643, 1283,
2563 and 5123 meshes
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Figure 8.32: Legend when a result is plotted as a function of time for di�erent Stokes
numbers
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8.3.1 Statistical quantities evolution with time for di�erent
Stokes numbers
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(c) AG on the 1283 mesh

Figure 8.33: Evolution of the segregation with time for di�erent Stokes numbers.
The view windows is set to the maximum segregation reached by the simulation, i.e.
∼ 5 for the Lagrangian and MK and ∼ 2 for the AG.

In this part, the time evolution pro�le of the di�erent statistical quantities is
evaluated for di�erent Stokes numbers.
Starting with the segregation in Figure 8.33, the curves are monotonically in-
creasing for Stokes numbers smaller than 1: in this range, the higher the Stokes,
the greater the segregation. For St > 1, the slope of the curves after t = 10
starts to decrease with increasing Stokes number, until, for a Stokes number
of approximately 3, a maximum appears in the curve. Then, this behavior is
the same for even higher Stokes number. The trend of the AG curves matches
relatively well the Lagrangian one. However, we can notice a main di�erence
for Stokes numbers near the critical one, where the AG does not reproduce
the steep slope found in Lagrangian. This can be seen by comparing for the
Lagrangian and AG the di�erence of the temporal evolution of the segrega-
tion for St = 1 and St = 1.5. In addition, the segregation is higher with the
Lagrangian model for all the Stokes numbers. This was already seen in the
qualitative results presented before and is mainly due to the numerical di�u-
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sion. The MK results have the tendency to increase the segregation rate with
the Stokes number, even beyond the critical Stokes number. So that for St > 1,
the segregation is very overestimated with the MK model. This result was also
expected from the qualitative results, since the MK model overestimated the
preferential concentrations and resulted in large vacuum zones in comparison
with the Lagrangian number density �eld.

For the mean agitation energy plotted in Figure 8.34, the trend of the AG
curves matches the Lagrangian one, but only with slightly higher levels of the
mean internal energy. This observation was already found through the qual-
itative results of the velocity dispersion, where the AG results lead to higher
values for the covariance matrix elements in comparison with the Lagrangian
results.
When it comes to the mean total energy, both the MK and AG curves meet
the tendency of the Lagrangian ones (Figure 8.35).
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Figure 8.34: Mean internal energy evolution with time for di�erent Stokes numbers

Now that the trend of the time evolution over the range of Stokes numbers is
assessed, the next goal is to evaluate for a given Stokes number the e�ect of
mesh re�nement on the time evolution of the statistics.
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(b) MK on the 1283 mesh
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(c) AG on the 1283 mesh

Figure 8.35: Mean total energy evolution with time for di�erent Stokes numbers

8.3.2 Statistical results comparison with mesh re�nement

In order to compare the statistical results of the Lagrangian and Eulerian sim-
ulations on di�erent meshes (643, 1283, 2563 and 5123), the moments are pro-
jected on the coarsest mesh: in this case the 643 mesh. In fact, a uni�ed
projection is necessary since the measures of the segregation and the mean in-
ternal energy depend on the scale at which the spatial correlation is computed.
It is important to note that the choice of this projection can bias the compari-
son, if it is not well suited. For example, in our case the ideal projection could
have been on the native carrier phase grid, i.e. the 1283 mesh. However, for the
Eulerian results we have simulation on a coarser level and it is more appropri-
ate to compare the di�erent statistics on the scale of this coarsest mesh chosen
(643). The exact value of the segregation and MCE is a�ected by the choice
but the evolution of these quantities (as a function of time or Stokes number)
is not altered. The proof of this assumption is presented in the next chapter,
in subsection 9.2.1 based on the number density autocorrelations.
Before presenting the results for di�erent Stokes numbers, the di�erence be-
tween the original results and the projected results is shown hereafter for a
Stokes number equal to 3. It is important to note that if the statistics are not
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computed at the same scale, then they are not really comparable. For example
the Lagrangian result that is projected on a 1283 Eulerian mesh (black curves
in Figures 8.36 and 8.37 ) is only comparable to the Eulerian result simulated
on the 1283 mesh (blue curves), since it is already expected to have higher
segregation for example when the results are projected on a �ner mesh.
It is important to note that for the Lagrangian results, if the projection is not
speci�ed then it is done on the 1283 mesh. This means that in the �gures where
the statistics are compared with and without projection, the Lagrangian results
are projected on the native mesh of the gas phase.
From Figure 8.36, one can notice that the segregation level decreases when cal-
culated on a 643 mesh and thus the di�erences between the di�erent curves is
smaller. The inverse is remarked for the mean internal energy (Figure 8.37),
while the mean total energy is una�ected by this projection and can there-
fore be calculated on any given mesh, the total energy should be conserved
(Figure 8.38).
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Figure 8.36: Segregation evolution with time for Lagrangian results and Eulerian AG
results on the 643, 1283, 2563 and 5123 meshes for St = 3

In the following, all the presented statistics are projected on a 643 mesh except
for a couple of speci�c cases where also the projection on a 1283 mesh in taken
into account in order to provide a complete analysis that is mesh-dependent
and that is not biased by the choice of the projection.
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Figure 8.37: Temporal evolution of the mean internal energy for Lagrangian results
and Eulerian AG results on the 643, 1283, 2563 and 5123 meshes for St = 30 10 20 30 40
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Figure 8.38: Temporal evolution of the mean total energy for Lagrangian results and
Eulerian AG results on the 643, 1283, 2563 and 5123 meshes for St = 3
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For the small Stokes number (St = 0.5), the time evolution of the statistics are
plotted in Figure 8.39 for the Lagrangian and the Eulerian results. The MK
and AG results lead to similar level of segregation and mean total energy. For
this case, no signi�cant di�erence is found between the Eulerian results. The
carrier phase is followed by the disperse phase and both Eulerian models cap-
ture the underlying physics. For the segregation, it is clear that the Eulerian
curves have lower segregation than the Lagrangian one but tend to reach this
latter when re�ning the mesh.
In this case, no considerable mean internal energy is found. It is less than 3%
of the MTE at t = 40 (see Figure 8.39). This is expected for this small St since
the probability of having PTC is nearly 0.04%, as mentioned before.
It is important to keep in mind that the mean internal energy include mainly
the e�ect of PTC but also the numerical di�usion for the Eulerian simulation.
Thus, the highlighted importance of studying the mesh re�nement e�ect on the
results in order to be able to evaluate the model by minimizing the numerical
errors. Also the projection a�ects the MCE as well as the segregation for all
the simulations.
The mean total energy moves toward the Lagrangian mean total energy with
mesh re�nement.
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(b) Mean internal energy
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Figure 8.39: Statistics evolution with time for Lagrangian results and Eulerian results
on the 643, 1283, 2563 and 5123 meshes with projection on the same 643 mesh for
St = 0.5
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In Figure 8.40 the statistics are plotted for a Stokes number St =1. The seg-
regation of the MK results is higher than the one of the AG results and is
therefore closer to the Lagrangian segregation. When re�ning the mesh both
Eulerian models generate higher segregation. However for the 5123 mesh the
MK segregation is slightly higher than the Lagrangian one for a time t < 20,
which is due to the local PTC faced where the local Stokes number is higher
than 1 as explained in the previous chapter (see section 7.3.2). These occur-
rences represent nearly 11% of the whole domain. The mean internal energy is
higher with the AG model but tends to converge toward the Lagrangian level
when the numerical di�usion is decreased through mesh re�nement. The MCE
is nearly 7% of the bulk MTE in this case at t = 40.
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Figure 8.40: Statistics evolution with time for Lagrangian results and Eulerian results
using 643, 1283, 2563 and 5123 meshes with projection on the same 643 mesh for St = 1

In addition, the segregation and the mean internal energy are presented for
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a projection on the DNS 1283 mesh (Figure 8.41). At this length scale, the
segregation of the AG model seems to be converging more slowly toward the
Lagrangian one in comparison with the rate of convergence measured on the 643

mesh projection. In fact, the AG 5123 result underestimates the Lagrangian seg-
regation by 18.56% when measured on the 643 mesh projection and by 34.27%
when measured on the 1283 mesh projection. In addition, the mean internal
energy is overestimated by the AG model on the 5123 mesh by respectively
21.21% and 47.87%, when measured on the 643 and 1283 meshes projections.
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Figure 8.41: Statistics evolution with time for Lagrangian results and AG results
using 1283 and 5123 meshes with projection on the same 1283 mesh for St = 1

In the case of moderately inertial particle St = 3 (Figure 8.42), the segregation
is overestimated by the MK model and diverges from the Lagrangian segrega-
tion curve when re�ning the mesh. On the other hand, the AG model captures
the right physics and the segregation level approaches to the Lagrangian one
when re�ning the mesh. This can be clearly seen in Figure 8.42b. The mean in-
ternal energy for the AG results is higher than the Lagrangian one. For the 5123

mesh, the di�erence between the Lagrangian and AG levels has decreased but
the convergence rate in this case is slow. The mean total energy for the re�ned
AG result matches the Lagrangian one, where the MK model underestimates it.
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Figure 8.42: Statistics evolution with time for Lagrangian results and Eulerian results
on the 643, 1283, 2563 and 5123 meshes with projection on the same 643 mesh for
St = 3

When measured on the DNS scale, the segregation of the AG 5123 results
is underestimated by 11.62% (Figure 8.43) while it was underestimated by
nearly half this percentage (5.94%) when measured on the 643 mesh. On the
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other hand, the mean internal energy is overestimated by 22.44% compared to
12.92% on the coarsest mesh scale. The rate of convergence of the AG results
is nearly multiplied by two when the statistics are measured on the 643 mesh in
comparison with the ones measured on the DNS scale, which is twice as re�ned
as the 643 mesh.
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Figure 8.43: Statistics evolution with time for Lagrangian results and AG results
using 1283 and 5123 meshes with projection on the same 1283 mesh for St = 3

For inertial disperse phase, St = 8, the same analysis can be carried out as
for St = 3. For this Stokes number, the rate of convergence of the AG results
with mesh re�nement towards the Lagrangian results is decelerated when it
comes to the mean energies where the energy level are nearly stagnant (see
Figure 8.44). This might mean that the percentage of large-scale PTC that
cannot be statistically reproduced by the AG is high in this case and limits
the performance of this model. This assumption is not con�rmed yet since for
the time range studied, the AG model seems to accurately estimate the mean
total energy at t=40. In this case, the error between the most re�ned solution
and the Lagrangian one is only 0.73%. On the other hand, the MK model
underestimates the mean total energy by 8.32% on the 5123 mesh.
The segregation on the 643 mesh scale is nearly the same for the Lagrangian
result and the AG result on the 5123 mesh, quantitatively the AG overestimates
the segregation by 0.85%. Nevertheless, when measured on the carrier DNS
scale, the segregation of the AG re�ned result underestimates the segregation
by 0.79%. This means that the results are not conclusive in this case.
Actually, particular attention must be paid to the pro�le of the segregation
results that seems to reach a plateau with the AG results but not yet with the
Lagrangian. Thus, the �nal time chosen based on the carrier motion is not
conclusive in this case, and the simulation should be carried for longer time
until reaching a quasi-steady state.
The mean statistical results until t=80 which is nearly 8τp are shown in Figure
8.46 for the Lagrangian simulation and the AG simulation on the 1283 and 5123
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Figure 8.44: Statistics evolution with time for Lagrangian results and Eulerian results
on the 643, 1283, 2563 and 5123 meshes with projection on the same 643 mesh for
St = 8

meshes. For a time higher than t=40, the AG results on the re�ned mesh starts
to overestimate the segregation. The mean internal energy is underestimated for
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Figure 8.45: Statistics evolution with time for Lagrangian results and AG results
using 1283 and 5123 meshes with projection on the same 1283 mesh for St = 8

t>45 on the 5123 mesh. Based on these two measures, the AG solution diverges
from the Lagrangian reference when re�ning the mesh (see Figure 8.46) . When
it comes to the mean total energy, the di�erence between the re�ned AG result
and the Lagrangian one increases with time. It is important to note that for the
Stokes number in question the relaxation time of the disperse phase is 10.036
which is 2.55% higher than the integral time scale.
According to the results at this Stokes number, the AG model is not considered
to be suitable for Stokes number higher than StE = 1, since the AG results
on the re�ned mesh start to diverge from the Lagrangian reference. This is
observed whenever the simulated time is long enough to start encountering
large-scale crossing.
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Figure 8.46: Statistics evolution with time for Lagrangian results and AG results on
the 5123 mesh with projection on the same 643 mesh for St = 8 until t=80

8.3.3 Statistical quantities evolution with Stokes number at
�nal time t=40

Finally, the statistical results are plotted for the di�erent models and meshes
as a function of the Stokes number. Unless mentioned otherwise, this is done
at time t=40 chosen after nearly four times the integral time scale.
The results are plotted as a function of the Stokes number based on the Kol-
mogorov time scale StK (shown on the bottom x-axis) and of the Stokes number
based on the large eddies StE (shown on the top x-axis) as seen for example in
Figure 8.47.
Based on the Lagrangian results, we can note that the segregation increases
for small Stokes number until reaching its global maximum value for a Stokes
number of StK = 1. After the unity critical Stokes numbers, the segregation
decays progressively and tends to a plateau for Stokes number greater than
StE = 1 (see Figure 8.47). Actually, since the small particles tend to follow
the gas phase and segregate in the regions on low vorticities when increasing
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the Stokes number below StK = 1, the segregation is increased. On the other
hand, moderately inertial to high inertial particles will decorrelate from the gas
phase and create PTC that may lower segregation.
This behavior was already observed in the literature (Wang and Maxey 1993;
Reveillon and Demoulin 2007) where the preferential segregation was evalu-
ated through di�erent methods. For example, Reveillon and Demoulin (2007)
computed the preferential segregation through the standard deviation of the
density �eld on one hand and the maximum of the deviation of the density
distribution from the Poisson distribution on the other hand. The latter way
is actually the classical method to evaluate the segregation. They found that
both methods lead to similar pro�les for the evolution of the segregation with
respect to the Stokes numbers, but the standard deviation of the density �eld
is higher than the maximum of the deviation of the density distribution from
the Poisson distribution for StK > 3.
Looking at the MK results, it is clear that this model does not reproduce this
behavior for StK > 1. Instead, the segregation keeps increasing until reaching
nearly a plateau for StE > 1, having a value much higher than the Lagrangian
one. When re�ning the mesh the segregation of the MK results tends to the
Lagrangian reference for a Stokes number StK ≤ 1 but is overestimated for
greater Stokes number and diverges from the Lagrangian reference. This be-
havior is due to the fact that this model is not capable of reproducing the PTC,
and instead generates unphysical δ-shock and high concentrations and vacuum
zones. It is important to note that all the classical QBMM that uses quadra-
tures in the form of a sum of Dirac delta function lead to weakly hyperbolic
conservation laws and face δ-shock singularities (Chalons et al. 2012).
For the AG model, the trend of the segregation dependence on particles inertia
matches the Lagrangian one throughout the range of Stokes numbers studied.
When re�ning the mesh, the AG curve tends to reach the Lagrangian. The rate
of this convergence is higher for StK > 1 and is the lowest at StK = 1 where the
underlying physics including hypercompressibility e�ects and depletion zones
are very challenging for the numerical scheme.
To check the e�ect of the projection on the segregation evolution as a func-

tion of the Stokes number, the segregation is plotted for the Lagrangian and
AG results and all the results are projected on the native DNS mesh. From
Figure 8.48, one can notice that the rate of convergence of the segregation is
nearly half the one obtained on the 643 mesh projection. The maximum di�er-
ence between the AG re�ned results and the Lagrangian ones is obtained for
the critical Stokes number. This di�erence decreases with the increase of the
Stokes number in the range of StK > 1 and StE < 1 and then increase above
this limit.
Another measure for the segregation as a function of the particles inertia

is also presented here. It is the maximum value of the segregation along the
studied time range. For small Stokes number, this value increases if the chosen
�nal time is increased, since as shown in Figure 8.40 the segregation is mono-
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Figure 8.47: Segregation as a function of Stokes number for Lagrangian result and
Eulerian results on the 643, 1283, 2563 and 5123 meshes with projection on the same
643 mesh.
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Figure 8.48: Segregation as a function of Stokes number for Lagrangian result and
AG results on the 1283 and 5123 meshes with projection on the same 1283 mesh.

tonically increasing with time. However for high Stokes numbers (for example
Figure 8.44), the segregation increases with time until reaching a maximum
value and then decreases, thus, the maximum segregation in this case will not
change for longer simulations. This means that for high Stokes numbers, the
maximum measure is a stable way to evaluate the segregation independently
from the �nal time of the simulation, under the condition to have a time long
enough for the segregation to reach its maximal value. Therefore, this is a good
way to evaluate the e�ect of mesh re�nement and thus of the decrease of numer-
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ical di�usion on the results. This measure is plotted in Figure 8.49, where the
results for small Stokes numbers are exactly the same as for the segregation at
t=40 as it was already expected. Whereas for StK ≥ 3 the maximum segrega-
tion is nearly constant for the Lagrangian result. This segregation is drastically
overestimated with the MK model for which the results with mesh re�nement
diverge from the Lagrangian one. On the other hand, the AG model captures
the right evolution of the maximum segregation with the particle inertia. For
StK ≥ 3 a nearly constant value is reached and this value tends to the La-
grangian one when re�ning the Eulerian mesh. This means that when the AG
system is solved with a high order realizable scheme, it gives accurate values
for that maximum segregation along the whole range of the Stokes numbers
studied. These observations emphasize two main points. First, a quality of
this model is highlighted, since independent of the �nal time of the simulation
and of the limits of the AG model that are not de�ned yet, it leads always
to the right value of the maximum segregation that has a great in�uence in
the combustion domain since it governs the maximum fuel vapor mass frac-
tion. Second, the importance of the development of new adapted high order
numerical methods to solve the resulting AG system is asserted, which meets
the perspective of the work presented in Part II of extending the convex state
preserving Runge-Kutta discontinuous Galerkin method to the AG system.
For the mean internal energy, it increases with the Stokes number until reach-
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Figure 8.49: Maximum segregation as a function of Stokes number for Lagrangian
result and Eulerian results on the 643, 1283, 2563 and 5123 meshes with projection on
the same 643 mesh.

ing a nearly constant level with AG for Stokes numbers around StE = 1 and
then decreases for StK > 10 (see Figure 8.50(a)). The increase of the mean
internal energy with the Stokes number is due to the occurrence of PTC and is
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also noticed in the Lagrangian results.
By comparing the AG result to the Lagrangian one, we can conclude that the
mean internal energy is slightly overestimated with the AG model and tends to
the Lagrangian reference when re�ning the mesh. The pro�le of the evolution
of the mean internal energy as a function of the particle inertia is captured ac-
curately with the AG model. The same conclusion can be drawn based on the
MCE computed on the DNS scale but in this case the rate of the convergence
is slower. From Figure 8.51, the mean total kinetic energy is decreasing with
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(a) Projection on the same 643 mesh.
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(b) Projection on the same 1283 mesh.

Figure 8.50: Mean internal energy as a function of Stokes number for Lagrangian
result and Anisotropic Gaussian results with mesh re�nement.

increasing Stokes number.
For St > 1, the MK model underestimates the MTE compared to the La-
grangian reference.
In this case, the AG model performs better and estimates accurately the MTE
in comparison with the Lagrangian results. Furthermore, with mesh re�nement
the MTE of the AG solutions is less a�ected for St > 1 than for the critical
Stokes number. In fact, the di�erence between the MTE obtained on the coars-
est mesh and the reference is 6% for St = 1 and decreases to 3% for St = 3.
Thus, the MTE energy is already accurately reproduced by the AG model for
moderately inertial to inertial particles even on the coarsest meshes.
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Figure 8.51: Mean total energy as a function of Stokes number for Lagrangian result
and Eulerian results on the 643, 1283, 2563 and 5123 meshes.
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Finally, the e�ect of the particle inertia on the ratio of the internal kinetic
energy to the mean total kinetic energy and the ratio of the mean correlated
kinetic energy to the mean total kinetic energy are plotted in Figure 8.52(a).
The mean total energy is equal to the mean correlated kinetic energy for very
small particles where the mean internal energy is negligeable. However for
StK > 1 the mean internal energy increases signi�cantly with the particle
inertia and begins to constitute an important part of the mean total energy.
The mean internal energy keeps rapidly increasing with the Stokes number until
reaching StE = 1. Above this limit, the decrease of mean correlated energy
and the increase of the mean internal energy is slowed down and the di�erence
between the Lagrangian and AG results increases slightly for the highest Stokes
number studied. With a 1283 projection, the energy ratios behave in the same
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(a) Projection on the same 643 mesh.
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Figure 8.52: Mean energy ratios as a function of Stokes number for Lagrangian result
and AG results with mesh re�nement.

way as for the coarser projection, but the di�erence between the Lagrangian
and the AG results is accentuated, especially for St = 15.
It is important to note that the observations and analysis for StE ≥ 1 presented
in this subsection are not fully conclusive. For this reason, the same analysis
is carried for the evolution of the mean statistics as a function of the particles
inertia at time tf ≥ 4τp in the next subsection.

8.3.4 Statistical quantities evolution with Stokes number at
time adapted to the particles relaxation time

In this paragraph, the comparison between the statistical results for the AG
and the Lagrangian simulations as a function of the Stokes number is presented
at �nal times adapted to the relaxation time of the disperse phase. The former
is in general taken to be at least 4τp. In fact, for the small Stokes numbers,
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the chosen �nal time tf is limited by the motion of the gas since it cannot be
smaller than the time tFHIT needed to reach a statistically steady state for the
FHIT. Thus, the adapted �nal time is tf ≥ max(tFHIT , 4τp) and is plotted in
Figure 8.53.
From Figure 8.54, it is clear that the AG model accurately estimates the seg-
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Figure 8.53: The adapted �nal time tf for di�erent Stokes number

regation for StE < 1 and tends to the Lagrangian level when re�ning the mesh.
On the other hand, an overestimation of the segregation by the AG results on
the 5123 mesh is observed for StE ≥ 1. The overestimation itself is not an ev-
idence of the limits of this model. The divergence of the AG segregation from
the Lagrangian reference in this range is in fact the proof that the AG model
is no more suitable to describe the underlying physics.
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Figure 8.54: Segregation as a function of Stokes number for Lagrangian result and
Anisotropic Gaussian results on the 1283 and 5123 meshes with projection on the same
643 mesh at tf .

When it comes to the mean internal energy, the AG model overestimates this
quantity for StE < 1 but tends to the Lagrangian limit even if the speed of
this convergence is slower than in the segregation case. The overestimation for
StE < 1, is due to the numerical dispersion included in the covariance matrix
in the AG model as mentioned before.
Above this limit, the mean internal energy resulting from the AG simulations
diverges from the Lagrangian reference when re�ning the mesh. In fact, as
shown in Figure 8.55 the AG results on the 5123 mesh underestimate the mean
internal energy. This underestimation increases with the Stokes numbers and
is expected to increase with the mesh re�nement. A possible reason to this un-
derestimation is that the statistical estimation of the internal energy through
the AG model is not enough to capture the underlying physics for this range
of Stokes numbers where the scale of the PTC is large and comparable to the
integral length scale. This also implies that treating the PTC through a pres-
sure tensor or a velocity dispersion around the mean value is only suitable for
StE < 1 where the particles are not inertial enough to be completely decorre-
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lated from the gas.
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Figure 8.55: Mean internal energy as a function of Stokes number for Lagrangian
result and Anisotropic Gaussian results on the 1283 and 5123 meshes with projection
on the same 643 mesh at tf .

At this range where the AG underestimates the mean internal energy, it is also
noticed that the mean total energy is slightly underestimated as shown in Fig-
ure 8.56 and this underestimation become more pronounced with higher Stokes
numbers.
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Figure 8.56: Mean total energy as a function of Stokes number (zoom in) for La-
grangian result and Anisotropic Gaussian results on the 1283 and 5123 meshes at tf .

Finally, the pro�le for the energy ratio as a function of the particles inertia
is also modi�ed for high Stokes number when evaluated at tf . Actually, the
intersection between the ratio of the mean correlated energy and the mean
internal energy to the mean total energy is observed with the Lagrangian results
around StK = 14. Knowing that this behavior is reproduced by the AG results
on the 1283 mesh, but this measure diverges from the Lagrangian reference and
the intersection is clearly not reached yet for the AG simulations on the 5123

mesh.
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Figure 8.57: Mean energy ratios as a function of Stokes number for Lagrangian result
and Anisotropic Gaussian results on the 1283 and 5123 meshes with projection on the
same 643 mesh at tf .

In order to compare the e�ect of the particle inertia on the energy ratio found in
this work with the results of Février et al. (2005), the time scale ratio should
be computed. This latter is equal to the ratio of the �uid integral time scale
sampled along particle trajectories over the relaxation time of the particles.
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Figure 8.58 illustrates the comparison between the energy ratio versus the time
scale for the DNS Lagrangian results and the DNS Anisotropic Gaussian re-
sults on the 1283 and 5123 meshes along with the DNS Lagrangian results of
particles inclusion in a �uid �ow simulated using a grid of 1283 and having a
turbulent Reynolds number ReL = 110.
In Février et al. (2005), these curves were plotted for various DNS and LES
simulation having di�erent turbulent Reynolds numbers and di�erent param-
eters for the forcing schemes. The highlighted result is that the evolution of
the energy ratios versus the time scale ratio were similar for all the carried
simulations. Thus, in this work it is enough to compare this evolution with one
of the results presented in Février et al. (2005). It is important to note that
in the work of Février et al. (2005):
• the ratio of the mean correlated kinetic energy to the mean total ki-
netic energy is refered to as the mesoscopic Eulerian particle velocity
�eld (MEPVF) contribution of the total turbulent kinetic energy;
• the ratio of the mean internal (or central) kinetic energy to the mean total
kinetic energy (MCE/MTE) is refered to as the quasi-Brownian velocity
distribution (QBVD) contribution of the total turbulent kinetic energy.

From Figure 8.58, one can conclude that the results of this work in terms of
the evolution of the relative contribution of the mean internal energy and the
mean correlated energy in the mean total kinetic energy as a function of the
time scale ratio are similar to the results presented in Février et al. (2005).
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Figure 8.58: Mean energy ratios versus the time scale for Lagrangian result and
Anisotropic Gaussian results compared to the DNS results of Février et al. (2005)
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8.4 Conclusion

From the qualitative and statistical results presented in this chapter, several
conclusion can be drawn.
First, for particle having small inertia StK < 1 both Eulerian models lead to
accurate results. The qualitative results as well as the scatter plots for the
one-point correlation and the quantitative statistical mean results highlight the
inference that the MK and the AG reproduce the right physics in this case in
comparison with the Lagrangian results. The MK model has the advantage
of being less expensive than the AG model since in 3D the number of equa-
tions to be solved is only 4 for the MK model, versus 10 equations for the AG
models. Thus, the MK is preferred over the AG model for the simulation of
the disperse phase having a Stokes number based on the Kolmogorov scale less
than 1. Also it can be more accurate whenever solved with adapted numerical
methods such as the Finite Volume Kinetic Scheme or the new RKDG class
presented in Part III. However, it is important to keep in mind the fact that
the AG model has the advantage of capturing PTC that can locally occur when
the local Stokes number overcomes the critical one. Here comes the importance
of coupling these two models with adapted numerical methods based on relax-
ation schemes as in the work of Boileau et al. (2015).
Second, for the moderately inertial to inertial disperse phase, the AG model
gives the right qualitative behavior whereas the MK model ceases to reproduce
the right dynamics of the disperse phase for Stokes numbers StK > 1.
In addition, whenever the particle relaxation time is in the range between the
Kolmogorov time scale and the Eulerian integral time scale characterizing the
large eddies, the temporal evolution of the statistical mean variables is captured
precisely with the AG model. The shape of the evolution of these quantities as
a function of the particles inertia for a given time is also reproduced correctly
in comparison with the Lagrangian reference.
For inertial to very inertial particles, StE ≥ 1, the AG model gives much better
results than the MK model in comparison with the Lagrangian reference. The
percentage of the error obtained with the 5123 is no more than 10% for the
segregation in the studied cases, whereas the error with MK model is large.
Nevertheless, the AG model start diverging from this reference from the sta-
tistical point of view, when re�ning the mesh. For the studied �uid �ow, the
limits StE = 1 corresponds to StL = 2.043.
Finally, knowing that the comparisons presented in this chapter are very im-
portant steps towards the validation of the AG model, it is though not enough
to clearly de�ne the limits of this model and to fully understand its constraints.
For this reason, quantitative results for the distribution function and the auto-
correlations function are presented in the next chapter.





Chapter 9

Distribution functions and auto-
correlations

In the previous chapter the AG model was found to give accurate results
for StE < 1 from a qualitative and mean statistical point of view. These
conclusions are essential for the validation of the model in 3D but they
are not su�cient for understanding the limits of this model and clearly
de�ning its domain of applicability. For that purpose, further quantita-
tive comparisons are presented in this chapter. Theses comparisons are
more complicated than the quantitative mean statistics computed over
the whole domain, presented in the previous chapter, and they lead to a
more detailed analysis. The results are divided into two parts.
First, the distribution functions of the number density, velocity and
trace of the pressure matrix are presented for the di�erent models
for four St belonging each to a di�erent range of inertia, namely
St = 0.5, 1, 3 and 8. For the Eulerian results, the mesh re�nement
is also taken into account. In addition the distribution function of the
disperse phase Mach number Map is also presented. This is done for a
classical measure for Map and for another measure based on the ratio
of the slip energy to the internal energy.
Second, the autocorrelation of the number density and the autocorre-
lation of the velocity are shown for the di�erent models and di�erent
Stokes numbers. Based on the number density autocorrelation, a charac-
teristic size of the accumulation zones is de�ned and compared between
the di�erent models for the studied range of Stokes numbers. Similarly,
the integral length scale based on the velocity autocorrelations is inves-
tigated. Based on the same method, a characteristic length scale of the
PTC is also de�ned through an autocorrelation function for the trace of
the internal energy.
Finally, the Stokes number range for which the use of the AG is mostly
suitable is con�rmed (StK > 1 and StE < 1).
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9.1 Distribution functions

There exists several ways to evaluate the distribution of a given quantity. Nu-
merically, they are all based on the idea of dividing the quantity in questions
into bins and counting the number of elements found in each container or bin.
For example, Figure 9.1 shows the distribution of the number density for the
Lagrangian, AG and MK results on the 1283 DNS mesh for St = 8. On the
left, we have the standard histogram plot displaying rectangles, with height
proportional to the number of elements in the bin. On the right, the distribu-
tion function is plotted as the counts versus the location of the bin's center. In
the following, this latter display is chosen for clarity. In addition, the result-
ing number of elements in each bin can be normalized by the area under the
obtained curve. In this way, the resulting distribution function is a probability
density function. Another possible way is to normalize the original distribution
function by the total number of elements. We will use the �rst option to visu-
alize the distribution.
In this section, the distribution function of the number density, the velocity,
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Figure 9.1: Distribution of the number density for the Lagrangian, AG and MK
results on the 1283 mesh for St = 8

the trace of the pressure tensor and the PTC intensity are presented. For each
of these quantities the results are divided into two parts. First, the distribution
functions are plotted over the studied range of Stokes number. This is done
for the Lagrangian, MK and AG model for a given mesh to check whether the
Eulerian models have the same dependency of the distribution function on the
Stokes numbers as the Lagrangian one. Second, for a given Stokes number,
the distribution function of the Lagrangian result, AG and MK results on 643,
1283, 2563 and 5123 meshes are plotted. This helps us to accurately evalu-
ate the distribution function for the Eulerian results in comparison with the
Lagrangian results and to examine the e�ect of mesh re�nement.
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9.1.1 Number density distribution function

In Figure 9.2, stacked plots of the distribution functions for the various Stokes
numbers are shown. The trend of the curves as a function of the Stokes number
obtained from the AG results matches the tendency observed for the Lagrangian
results. Except for the degree of vacuum that is clearly underestimated for
Stokes numbers around 1, the AG model captures the form of the distribution
function. In the next paragraph this di�erence is found to be only due to
the numerical di�usion. For the MK results, the distribution function of the
number density does not change its form for St > 1. Actually when the Stokes
number increases, the MK results have an increasing degree of void and a larger
maximum number density due the singularities of the model such as the δ-shock
generated at every crossing.
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Figure 9.2: Distribution of the number density for di�erent Stokes numbers

For a Stokes number St = 0.5, in the case of a �ne mesh, both Eulerian results
match well the distribution function of the number density of the Lagrangian
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result (Figure 9.3). The Lagrangian results have however a greater degree of
vacuum that is not reached yet with the most re�ned mesh studied due to the
numerical di�usion. The number density PDFs obtained from the AG and MK
results are very similar since the percentage of PTC occurrence is very low
based on the distribution of the local dissipation rate shown in Figure 7.8.
For the critical Stokes number, St = 1, both Eulerian results tend to approach
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Figure 9.3: Number density PDF for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 0.5

the number density PDF of the Lagrangian result (Figure 9.4) with mesh re-
�nement. The PDF obtained from the MK result on the 5123 mesh is however
closer to the Lagrangian PDF than the AG one. The MK result might diverge
from the Lagrangian with more mesh re�nement since the amount of local Kol-
mogorov time scales equal or smaller than the relaxation time of the particles,
is 11.22% and PTC might occur. This explains the di�erence between the MK
and the AG results.
For moderately inertial disperse phase, the number density PDF of the AG

result approaches the Lagrangian one when re�ning the mesh, except for the
underestimation of the vacuum zone. The MK number density distribution
is clearly moving away from the Lagrangian one when re�ning the mesh and
gives a higher number of elements where the number density is zero or very
small (Figure 9.5) due to the singularities created by this model when PTC is
occurring.
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Figure 9.4: Number density PDF for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 1

For a high Stokes number, the distribution of the number density is plotted
in Figure 9.6 at t = 40. In this case the curve of AG has the same form as the
Lagrangian one, even for the coarsest meshes. This curve is however shifted
to higher number densities: the maximum of the distribution is obtained for a
higher number density. The MK result leads to the same shape for the number
density PDF as for the smaller Stokes numbers. Nevertheless, for a longer time,
t = 80, the number density distribution function resulting from the AG sim-
ulations start to digress from the Lagrangian reference with mesh re�nement.
This means that for the inertial particle, for a time long enough compared to
the relaxation time of the particles, the AG model is no longer suitable for
describing the underlying dynamics. Based on the nature of the model, this is
expected since for high inertial particles, the PTC begins to happen at large
scales and in this case the statistical description of the PTC through a velocity
dispersion tensor is no longer su�cient. This possible explanation is still to be
con�rmed. It is important to note that this studied Stokes number StK = 8
corresponds to StE = 1.026.
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Figure 9.5: Number density PDF for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 3
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Figure 9.6: Number density PDF for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 8 at t = 40
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Figure 9.7: Number density PDF for the Lagrangian, AG and MK results on 1283

and 5123 mesh for St = 8 at t = 80
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9.1.2 Velocity distribution function

The distribution of the x-component of the velocity for di�erent Stokes numbers
shows that the more inertial the particles are, the narrower is the distribution
function around 0, as depicted in Figure 9.8. This behavior is the same for
all the models. Actually, for small Stokes numbers the distribution function is
similar to that of the x-component of the gas velocity, as it will be shown in the
next paragraph. It is important to note that the PDF of the velocity for the
Lagrangian results is displayed without taking into account the vacuum zones
where the velocity is zero. This is done to provide a better comparison of the
velocity distribution between the di�erent models, without including informa-
tion about the vacuum zones that was already analyzed through the number
density distribution in the previous subsection.
For a more detailed comparison, the distribution functions of the Lagrangian,
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Figure 9.8: PDF of the x-component of velocity for di�erent Stokes numbers

AG and MK velocity in the x-direction are plotted.
First, for St = 0.5, the distribution functions for the disperse phase velocity in
Figure 9.9 are much alike and they are similar to the gas velocity PDF. In this
case, the motion of the disperse phase is totally governed by the carrier motion
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since the particles are small enough and thus are strongly correlated to the gas.
For this Stokes number, the mesh re�nement does not a�ect signi�cantly the
distribution function. The same behavior is obtained for St = 1, where the
only di�erence is depicted for very small velocities where the AG result on the
re�ned mesh captures the information more accurately than the MK one (see
Figure 9.10). For these near 0-velocities, we can observe a drift from the PDF
of the gas that is caused by the possible local PTC occurrence which explains
the ability of the AG to capture this di�erence when the MK model ceases to
do so.
For St = 3, the AG result matches the Lagrangian one except near zero veloc-
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Figure 9.9: PDF of the x-velocity for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 0.5

ity. For the MK results the velocity in the x-direction is less congregated near
zero velocity and a bit more assembled near the maximum and minimum values
(Figure 9.11). The velocity PDF of the MK result is not a�ected signi�cantly
by the mesh re�nement and is closer to the carrier phase velocity PDF than the
Lagrangian and the AG one. For the AG result, the distribution level of the
AG velocity matches to the Lagrangian except near zero-velocity. In this case
the di�erence with the carrier PDF is signi�cant leading to an important slip
velocity. In fact, in this case the PTC governs the motion of the disperse phase
since 91.46% of the local Stokes number is higher than the critical one. Thus, at
each crossing event the kinetic energy is transformed to internal energy, which
explains the decrease in the disperse phase velocity. This behavior is accurately
captured by the AG model. As for the MK model, �rst, it generates more to-
tal kinetic energy than the actual one since it does not transform any part of
this energy to internal energy and second, a part of the total kinetic energy is
lost irreversibly, as mentioned in the previous chapter. This irreversible energy
loss, is due to the unphysical singularities that the MK model generates at
PTC locations and to the fact that the conservation of the kinetic energy of
the disperse phase is not taken into account.
The di�erence between the MK velocity distribution function and the La-
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Figure 9.10: PDF of the x-velocity for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 1

grangian one is accentuated in the case of inertial particles (Figure 9.12). The
degree near zero-velocity is underestimated with the MK model, and is scat-
tered instead around the maximum and minimum values of the velocity in the
x-direction. On the other hand, the velocity distribution with AG matches
accurately the one obtained using the Lagrangian model at t = 40 and t = 80.
The only e�ect of the mesh re�nement is here noted around 0-velocity where
for �ner meshes at t = 80, the AG result starts to very slightly diverge from
the Lagrangian one).
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Figure 9.11: PDF of the x-velocity for the Lagrangian, AG and MK results on 643,
1283, 2563 and 5123 meshes for St = 3
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Figure 9.12: PDF of the velocity in the x-direction for the Lagrangian, AG and MK
results on 643, 1283, 2563 and 5123 meshes for St = 8
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9.1.3 PDF of the trace of the pressure tensor

The evolution of the distribution function of the pressure trace for di�erent
Stokes number can be evaluated (Figure 9.13). Actually, the higher the Stokes
number, the lower the number of particles that have zero pressure and therefore
zero internal energy. This was already expected from the mean energy ratio
results versus Stokes number presented in the subsection 8.3.3 where it was
found that low inertia particles have high mean correlated kinetic energy and
very low mean internal energy. In addition, the number of particles having
signi�cant pressure increases with the Stokes number. Thus, the occurrence of
PTC is more probable for higher Stokes numbers. This behavior can be noticed
from both the Lagrangian and AG results.
To accurately evaluate the degree of PTC captured by the AG model, the
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Figure 9.13: Distribution of the pressure for di�erent Stokes numbers

distribution functions of the trace of the pressure tensor of the Lagrangian and
AG simulations on di�erent meshes are plotted.
For St = 0.5 and St = 1, the distribution function of the AG results tends

to the Lagrangian one when re�ning the mesh (see Figures 9.14 and 9.15). In
these two cases, the highest amount of particles have zero or very small pressure
since, as explained previously, the probability of having local Stokes numbers
higher than the critical one is less than 1% and 12% for St = 0.5 and St = 1
respectively.
For the moderately inertial particles, St = 3, the PDF of the pressure tensor
is shown in Figure 9.16. The form of the PDF of the pressure trace for the AG
result, on the di�erent meshes, matches the Lagrangian one for high pressures.
However, for zero pressure, the number of particles is underestimated by the AG
results, especially on the coarse mesh. When re�ning the mesh, the di�erence
between the distribution function of the internal energy resulting from the AG
solution and the Lagrangian solution is decreased. Actually, the internal energy
included two contributions, one is purely related to the model and is the reason
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Figure 9.14: PDF of the pressure for the Lagrangian and AG results on 643, 1283,
2563 and 5123 meshes for St = 0.5
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Figure 9.15: PDF of the pressure for the Lagrangian and AG results on 643, 1283,
2563 and 5123 meshes for St = 1

why the AG results are able to capture PTC and the other one is the e�ect
of the numerical di�usion. This explains the convergence of the PDF of the
internal energy using the AG model when re�ning the mesh, since by doing
so, the second contribution is decreased and the physical behavior because
preponderant; whereas for the coarsest mesh, the numerical di�usion part is
overriding.
For the high Stokes number, St = 8 (Figure 9.17), the PDF of the trace of the
pressure tensor for the AG result tends to the Lagrangian one when re�ning
the mesh at t = 40. However, at t = 80, the di�erence between the maximum
of distribution function resulting from the AG simulations slightly diverges
from the Lagrangian one, the same behavior is observed for the location of the
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Figure 9.16: PDF of the pressure for the Lagrangian and AG results on 643, 1283,
2563 and 5123 meshes for St = 3
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Figure 9.17: PDF of the pressure for the Lagrangian and AG results on 643, 1283,
2563 and 5123 meshes for St = 8

9.1.4 Disperse phase Mach number

9.1.4.1 Classical de�nition

A possible measure to evaluate the ratio of the mean motion to the velocity dis-
persion is the disperse phase Mach number Map. This Mach number is de�ned
in analogy to the compressible gas dynamics as the ratio of the characteristic
mean particle velocity and the speed of sound in the disperse phase (Marchisio
and Fox 2013).



234 Chapter 9 - Distribution functions and autocorrelations

Based on this de�nition, it is directly obvious that for Map > 1 the mean ad-
vection is predominant, whereas for Map < 1 , it is the velocity dispersion that
overrides and governs the dynamics of the disperse phase through the internal
energy.

Map =
‖~u‖√
‖Σ‖

. (9.1)

This disperse phase Mach number is investigated for the di�erent models and
Stokes numbers.

For small Stokes number St = 0.5, the PDF and cumulative distribution func-
tion (CDF) of Map are plotted in Figure 9.18. In this case when re�ning the
mesh, the AG does not seem to approach the Lagrangian PDF. This is not a
very important di�erence since it is already known that in this case the parti-
cles are tracers and they do not have their own inertia but instead their motion
is highly correlated to the underlying gas velocity. In fact, in this case the in-
ternal energy tends to zero and Map tends to in�nity. Thus, for computational
purpose, a threshold was applied to the minimal value of the internal energy
taken into account in Map otherwise for this Stokes number we would have
in�nity Map almost everywhere of the domain. Nevertheless, one can still see
the very large Map obtained through the CDF. In this case no signi�cant PTC
occur and the small velocity dispersion found through the Lagrangian result
may be only due to the projection of the Lagrangian results on the Eulerian
mesh. Once again, the predominant contribution of the numerical di�usion in
the covariance matrix, for the AG result on the coarsest mesh, can be observed
through the small value of Map compared to the Lagrangian one.
For Stokes number St = 1, the PDF and CDF of Map for the AG results
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Figure 9.18: Distribution function of the disperse phase Mach number for the La-
grangian and AG results on 643, 1283, 2563 and 5123 meshes for St = 0.5

on the re�ned mesh have the same shape as the Lagrangian distributions (see
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Figure 9.19). However, for the AG result on the 5123 mesh, the maximum of
the PDF is at a Mach number Map

max lower than the one obtained with the
Lagrangian result. For Map > Map

max, the Lagrangian simulation provides a
higher level of matter than the one obtained through the 5123 AG result. In
this case, when re�ning the mesh, the AG results generates Mach numbers that
are in accordance with the Lagrangian ones for Map ≤ 2. Beyond this limit the
Map is underestimated by the AG model on the most re�ned mesh.
For the last two St, the hypercompressibility e�ect governs the dynamics of the
disperse phase as we can see though the large Map reached.
When it comes to the moderately inertial case for the Stokes number St = 3,
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Figure 9.19: Distribution function of the disperse phase Mach number for the La-
grangian and AG results on 643, 1283, 2563 and 5123 meshes for St = 1

the shape of the distribution functions of Map resulting from the AG simu-
lation are similar to the Lagrangian one. They move toward the Lagrangian
results with mesh re�nement. The location of the maximum is however slightly
underestimated with the AG model but this model leads to higher number of
particles at this maximum as compared to the Lagrangian reference. For this
intermediate St, a rich variety of phenomena coexist, the mean advection still
has an important role but the PTC is as important as the mean advection if not
predominant for governing the dynamics of the disperse phase. The AG model
is able to accurately capture this variety as it is illustrated by the distribution
functions of Map in Figure 9.20.
A similar behavior is observed for St = 8 at t=40 as for St = 3, but in this case
the di�erence between the Lagrangian and the AG result is increased as shown
in Figure 9.21. Also, the convergence of the AG result to the Lagrangian one is
clear through the CDF but is more questionable base on the PDF since in the
range of 1 < Map ≤ 2.3 the level of distribution of Map obtained with the AG
model moves away from the Lagrangian one while re�ning the mesh. On the
other hand, at t = 80 the AG result diverges from the Lagrangian one when
re�ning the mesh. It is essential to note though, that right behavior is obtained
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Figure 9.20: Distribution function of the disperse phase Mach number for the La-
grangian and AG results on 643, 1283, 2563 and 5123 meshes for St = 3

for a Map < 1. This indicates that a comparison between the Lagrangian and
AG results having Map less or equal than a given limit might be an interesting
way to better understand the limits of the AG model.
When comparing the percentage of the matter that has a Map ≤ 1 and

Map ≤ 2 we notice that the AG gives better results for Map ≤ 2 (see Fig-
ure 9.22). Nevertheless, this comparison is incomplete and should be also done
at t=80, where the AG results where already found to sidetrack for high Stokes
numbers (StE > 1).
For this reason, the percentage of the cumulative distribution having respec-
tively Map ≤ 1 and Map ≤ 2 at t = 80 are presented in Figure 9.23. The
quantity of particles having predominant velocity dispersion over the mean ad-
vection is estimated accurately by the AG model even for StE > 1 and this
level tends to the Lagrangian one with mesh re�nement. On the other hand,
the AG model underestimates the quantity of particles having Map ≤ 2 on the
5123 mesh for StE > 1. When it comes to moderately inertial particles, the AG
result is coherent with the Lagrangian reference independently on the time of
the simulation and the limit chosen for the Mach number comparison.
The mean value of Map over the domain is computed and plotted as a function
of the Stokes numbers in Figure 9.24. For StK > 1, the mean value of Map

decreases with the increase of St. This behavior is capture by the AG model
until StE = 1. Thus from an average value point of view, with the increase of
the Stokes number, the transport due to the velocity dispersion becomes more
prevailing in comparison to the mean advection.
Above this limit, as it is shown for t=80, the re�ned AG result overestimates
the mean Map for StE > 1.
When analyzing this measure of Map, the e�ect of drag is hidden in the mean
advection part and can not be clearly compared to the velocity dispersion.
Thus, in order to make sure that the analysis presented in this subsection is an
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(c) PDF at t = 80
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Figure 9.21: Distribution function of the disperse phase Mach number for the La-
grangian and AG results with mesh re�nement meshes for St = 8
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Figure 9.22: Percentage of distribution for di�erent Map limits of the Lagrangian
and the AG results on 643, 1283, 2563 and 5123 meshes as a function of Stokes number
at t = 40

evidence that the AG model captures the event where the PTC is predominant
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Figure 9.23: Percentage of distribution for di�erent Map limits of the Lagrangian
and the AG results with mesh re�nement as a function of Stokes number

on the mean advection it is primordial to try to �nd another measure of the
correlated to uncorrelated motion that clearly compares the dispersion to the
relative motion.
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Figure 9.24: Mean value of the disperse phase Mach number for the Lagrangian and
AG results with mesh re�nement as a function of Stokes number

9.1.4.2 De�nition based on energy ratios

In this paragraph a new de�nition for the disperse phase Mach number is de-
rived. For simplicity this derivation is presented hereafter in 1D.

∂t(nV ) + ∂x(nV 2 + P ) =
n(Ug − V )

τp
. (9.2)

First, the momentum equation in the AG model (Equation (9.2)) is non-
dimensionalized. This equation can be writen using the material derivative
notation as:

DtV = −∂xP
n

+
(Ug − V )

τp
. (9.3)

In order to introduce the non-dimensional equation, the reference time τg and
length scales L0 are used and lead to a reference velocity V0 = L0/τg. In
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addition a characteristic slip velocity Vslp and a typical pressure variation δP0

are used. By using these reference variables, the non-dimensional variables are
obtained:

x∗ =
x

L0
, t∗ =

t

τg
, V ∗ =

V

V0
, P ∗ =

P

δP0
, and (Ug−V )∗ =

(Ug − V )

Vslp
.

(9.4)

The resulting dimensionless equation reads:

V 2
0 Dt∗V

∗ = −δP0

n0
∂x∗P

∗ + V0Vslp
(Ug − V )∗

St
. (9.5)

In the case of a speci�c PTC where V0 is of the same order of Vslp and the two
terms at the right hand side of Equation (9.5) balance out, we get:

δP0

n0
∼
V 2
slp

St
. (9.6)

Moreover, by combining the equation of the state P = (γ− 1)ne where e is the
internal energy, and the de�nition of the speed of sound C0 we obtain that the
internal energy is proportional to the square of the speed of sound as follows:

γ0δP0

n0
= C2

0 = γ0(γ0 − 1)e ∼ e. (9.7)

Finally the square of the Mach number is proportional to the square of the
characteristic slip velocity and inversely proportional to the Stokes number
and the internal energy.

Ma2 =
γ0δP0

n0C2
0

∼
V 2
slp

e St
. (9.8)

By extending this result to the general AG equation, a new measure of the
disperse phase Mach number Mae is obtained:

Mae =

√√√√n
(∥∥∥−→Ug − ~u

∥∥∥)2

‖P‖St
, (9.9)

where the norm of the pressure tensor is the trace of this tensor divided by 3:

‖P‖ =
Tr(P)

3
=
Pii
3
. (9.10)

This de�nition takes into account the ratio of the slip energy to the dispersion
energy with a dependency on the Stokes number.
The PDF of Mae is plotted in Figure 9.25 for di�erent Stokes numbers at t = 40.
In this case, as expected the Mach number is higher for small Stokes numbers
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knowing that in this case the in�nite Mach number is predominant over the
whole domain due to the hypercompressibility e�ect. This in�nite Mae is not
shown in the PDF. The di�erence between the form of the Mae PDF of the AG
and the Lagrangian results is big for small Stokes numbers where the maximum
of the distribution is at smaller Mae for the AG results. For the moderately
inertial to inertial cases, the form of the AG PDF matches the Lagrangian one
and is expected to tend to the Lagrangian reference with mesh re�nement.
For the inertial case at t=80, the PDF obtained from the AG simulation on
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Figure 9.25: Distribution function of the disperse phase Mach number Mae for the
Lagrangian and AG results on the 1283 mesh at t = 40

the 1283 mesh is very similar to the Lagrangian one, however it is expected to
slightly diverge from this reference when re�ning the mesh.
Further investigations of the Mae results should be done on the re�ned 5123

AG results to validate this possibility.
When it comes to the mean value of Mae over the whole domain, at t=40 the
AG underestimates this Mach number but is expected to move towards the La-
grangian one when re�ning the mesh. As for the case of the inertial particles at
t = 80 the AG results overestimate Mae for the highest St studied on the 1283

mesh and is expected to moves away from the Lagrangian result for StE > 1
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Figure 9.26: Distribution function of the disperse phase Mach number for the La-
grangian and AG results on the 1283 mesh for St = 8 at t = 80

on the 5123 mesh.
Knowing that the results of both measures for the disperse phase Mach num-
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Figure 9.27: Mean value of the disperse phase Mach number for the Lagrangian and
AG results on the 1283 mesh as a function of Stokes number

ber lead to similar comparison between the Lagrangian and the AG results
for moderate to high Stokes numbers, it is noted that it is easier to deal with
this latter de�nition for the small Stokes number cases. First, the vacuum re-
gions are automatically omitted from while computing Mae since the energy is
weighted with the number density which is not the case for the classical de�ni-
tion. Second, when evaluating the Mach number in the PTC-free regions, using
the �rst de�nition a threshold should be de�ned to avoid computing the in�nite
Mach numbers characterizing such regions. Whereas by using Mae instead of
Map, these PTC-free regions can be excluded as being zones of negligible slip
velocity solving by this the problem on computing in�nite Mae.
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9.2 Autocorrelation functions

The Eulerian two-points spatial autocorrelations are presented in this section
for the number density, the velocity �eld and the trace of the energy tensor
at t = 40 and t = 80. The e�ect of the particle inertia on these macroscopic
two-points statistics is depicted. These results are compared for the di�erent
models, to check whether the AG model in comparison with the Lagrangian
reference reproduces the form of the autocorrelation. Also, the capacity of the
Eulerian models to capture the di�erent characteristic scales based on these
autocorrelation functions is studied. The advantages of the AG versus MK
model is one more time underlined when it comes to these autocorrelations,
the limits of the AG model are proved and the range of applicability of this
model is clearly de�ned.
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Figure 9.28: Illustration of the autocorrelation function

Before presenting the results, the chosen way to display the Eulerian autocorre-
lation functions is �rst clari�ed. In fact, the minimum separation distance that
one can deal with, based on a Eulerian mesh, is the element size ∆x. Thus, the
autocorrelation function is obtained as piecewise constant at intervals of size
∆x unless if, depending on the numerical methods used, the quadrature values
or the slope of the result is taken into account. For simplicity, the choice here
is of �rst order, which means that the �nal result is taken constant per grid
element. Thus, the autocorrelation is obtained as a piecewise constant func-
tion. However, for clarity, the stairs representation is transformed to a linear
representation so that the value of the autocorrelation at a distance of i ele-
ments is drawn at r = i δx2 . As for a separation distance 0 ≤ r ≤ δx

2 the value of
the autocorrelation is set to be equal to its value in the original element which
means that the linear curve is extended horizontally between r = δx

2 and r = 0
as shown in Figure 9.28.
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9.2.1 Number Density

The number density autocorrelation gives the number of pair of particles sep-
arated by a distance r. This autocorrelation quanti�es the accumulation of
two particles. It is also called the radial distribution function and is given by
Equation (9.11) (Février et al. 2005; Sundaram and Collins 1997):

gpp(r) =
〈n(~x)n(~x+ r~e)〉
〈n(~x)〉〈n(~x+ r~e)〉

,where ~e is a given unit vector. (9.11)

When the particles are distributed uniformly gpp(r) is constant and equal to
1. By taking r = 0, one obtains the segregation measured at the length scale
de�ned by the mesh size.
In the following, the number density autocorrelation function is �rst plotted
for the di�erent Stokes numbers in Figure 9.29, in order to understand the
e�ect of the particles inertia on the shape of the radial distribution function.
Lagrangian and Eulerian results are compared to see whether they capture the
same e�ects.
For all the Stokes numbers and models, gpp is equal to the segregation at the
origin and then decreases with increasing separation distance till reaching a
nearly constant value gpp(∞), very close to 1.
From the Lagrangian results at the origin, it is seen that the e�ect of the par-
ticle inertia on the segregation is recovered: it increases with increasing inertia
for StK < 1, reaches its maximum at unity Stokes number and then decreases
after this limit. A similar behavior is obtained along the di�erent values of
the separation distance. In fact, at a given separation distance r, the obtained
number density autocorrelation is the segregation measured at a length scale
equal to r. Nevertheless, the degree of change of the segregation with the par-
ticles inertia, decreases with increasing separation distance and the maximum
segregation is obtained at higher St as shown in Figure 9.29(d). At the end, for
large separation distance, the number density between two particles is no more
correlated. This distance also depend on the Stokes number, it clearly increases
for StK < 1 but its dependence on the particles inertia above this limit is not
conclusive.
This evolution is captured by the AG model, knowing that segregation level
is always underestimated due to the numerical di�usion. On the other hand,
for the MK results, the segregation increases monotonously with the particle
inertia no matter at what length scale it is measured.
Another important conclusion can be drawn from these results (see Figures 9.29(d)
and 9.29(e)), it is actually a con�rmation that the choice of measuring the seg-
regation of the di�erent results at the 643 mesh scale does not bias the study
and analysis presented in section 8.3 of the previous chapter. In fact the depen-
dency of the number density autocorrelation on St at the separation distance
corresponding to the DNS mesh (1283) or the coarsest mesh (643) that was
chosen for the projection of the statistical results is the nearly the same. The
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only di�erence is that the segregation is lower.
Based on these �nding, it is noted that the choice of the scale at which the
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Figure 9.29: Number density autocorrelations for di�erent Stokes number

segregation is measured can highly in�uence the results, leading to inaccurate
analyses and conclusions. Thus, it is important to �nd a more general mea-
sure of the segregation e�ect independent of the scale. One possibility is the
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area under the radial distribution function, which is plotted in Figure 9.30 as
a function of the Stokes number. This measure leads to similar observations as
for the e�ect of the particle inertia on the segregation presented in the previous
chapter in Figures 8.47 and 8.48 based respectively on the original DNS mesh
projection and on the 643 mesh. In fact, the area under the Lagrangian radial
distribution function increases until reaching its maximum for a Stokes number
StK = 1 and then decreases beyond this limit and tends to settle for Stokes
numbers greater than StE = 1. This same behavior is reproduced with the
AG model. However, for the MK results the area increases constantly until
reaching nearly a plateau for StE > 1.
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Figure 9.30: Area under the number density autocorrelation function for the La-
grangian, Eulerian results on the 643, 1283, 2563 and 5123 meshes as a function of
Stokes number

In the following, the number density autocorrelation function is compared for
the di�erent models and meshes at a given Stokes number.

First, for the small Stokes number St = 0.5, both Eulerian models gives the
right shape of the autocorrelation function and tend to the Lagrangian results
when re�ning the mesh (Figure 9.31).
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For St = 1, the MK model predicts a higher level of number density correlation
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Figure 9.31: Number density autocorrelations for the Lagrangian and Eulerian results
on the 643, 1283, 2563 and 5123 meshes for St = 0.5

in comparison to the AG on the same mesh for small separation distance. This
level is closer to the Lagrangian one. However for the MK result on 5123 mesh
the two-point number density correlation is higher than the Lagrangian one for
small separation distance (Figure 9.32). This is caused by the local PTC as
explained in subsection 7.3.2.
For moderately inertial to inertial particles, the MK result predict an overesti-
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Figure 9.32: Number density autocorrelations for the Lagrangian and Eulerian results
on 643, 1283, 2563 and 5123 meshes for St = 1

mated number density autocorrelation as shown in Figure 9.33 for St = 3. On
the other hand, the number density autocorrelation function obtained from the
AG results tends to the one computed with the Lagrangian method for St = 3
as illustrated in Figures 9.33.
When it comes to the inertial particles, St = 8 for example (Figure 9.34), the
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Figure 9.33: Number density autocorrelations for the Lagrangian and Eulerian results
on the 643, 1283, 2563 and 5123 meshes for St = 3

AG result tend to the Lagrangian one at t = 40 but starts to move away from
this reference at t = 80.
It is however important to note that along the studied range of the Stokes
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Figure 9.34: Number density autocorrelations for the Lagrangian and Anisotropic
Gaussian results with mesh re�nement for St = 8

number, the AG model gives accurate results for the number density autocor-
relation at long separation distances r > 0.2 even for StE > 1.
Now that the number density autocorrelation is evaluated and the AG model
is proven to capture the right amount of correlation between two particles es-
pecially for moderately inertial to inertial particles, and for long separation
distances over the whole range of St studied, the characteristic size of the ac-
cumulation zones is evaluated as a function of the particle inertia.

This characteristic size is obtained by evaluating the integral length scale of
the number density autocorrelation function. This length scale represents the
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distance above which the number density is no more correlated. Practically,
it renders a measure of the mean size of the clusters over the whole domain.
The equation of this number density integral length scale (Equation (9.12)) is
inspired from the work of Moreau (2006):

Lp =

∫
(gpp(r)− gpp(∞))

(gpp(0)− gpp(∞))
dr. (9.12)

The characteristic accumulation size, computed from the Lagrangian results
at t = 40, increases with the particle inertia for StK > 1, until reaching a
maximum for StK = 8 and then starts decreasing as shown in Figure 9.35(a).
For the range of Stokes number between StK = 1 and StE = 1 the characteristic
clusters size changes nearly linearly with the Stokes number. The MK model
does not reproduce the right size of the clusters but leads to a nearly contant
value of Lp for StK > 1 that diverges from the Lagrangian result. This was
already expected based on the previous results and on the character of this
model that generates unphysical δ-shock and hypercompressibility at each PTC
event. Through these unphysical singularities the model predicts higher and
higher concentrations and vacuum zones and tends to generate �ne clusters
which explains the underestimated clusters size for StK > 1. On the other
hand, the AG results lead to the correct dimensions of the accumulations,
especially for Stokes numbers ranging between StK = 1 and StE = 1.
In order to take into account the right dynamics of the inertial particles, the
cluster size, obtained from the Lagrangian and AG simulation at t = 80, is
represented in Figure 9.35(b) for the high Stokes numbers StE > 1 and for
StK = 3 added only for the comparison purpose. It is noted that for the
range of St studied, the resulting characteristic cluster size is larger than the
Kolmogorov length scale and the integral length scale L11. The AG results
for StE > 1 diverges from the Lagrangian one when re�ning the mesh, and
lead to smaller clusters sizes. The inability of the AG model to capture the
right dynamics for StE > 1, leads us to inquire about the reason of such limits.
This is related to the fact that the statistical description of the PTC through a
velocity dispersion tensor in the energy equation is not capable of reproducing
the physics. The question then arises: is there a maximum limit of the inertial
energy that can be accurately reproduced statistically by the AG model? In
order to try to answer this question, the computed characteristic scale is plotted
as a function of the ratio of the mean internal energy to the mean total energy
in Figures 9.36(a). From the curve of the Lagrangian result (in Figure 9.36(a)),
the nearly linear rise of the cluster characteristic scale as a function of the ratio
of the energy of the uncorrelated motion to the total energy is observed between
StK > 1 and StE < 1 at t = 40. This behavior is captured by the AG result.
In order to check if this linear dependency is kept for the inertial particle the
mean clusters size divided by the integral length scale of the gas L11, for StK > 1
and StE < 1 at t = 40 and those for StE > 1 at t = 80, are plotted in the same
graph (in Figure 9.37). For the Lagrangian clusters size, this dependency still
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Figure 9.35: Characteristic length scale based on the number density autocorrelations,
for the Lagrangian and Eulerian results with mesh re�nement as a function of Stokes
number
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Figure 9.36: Characteristic clusters size as a function of the ratio of the mean uncor-
related energy to the mean total energy for the Lagrangian and AG results with mesh
re�nement

exists but it is broken with the AG model. Actually, the AG model ceases to
capture the right dynamics when the uncorrelated energy is nearly 35% of the
total energy. The slope obtained from the Lagrangian results is 0.9403 with a
regression of 0.9962, whereas the slope from the AG results on the 5123 mesh
is 0.8683 with a regression of 0.9948.
In order to understand more the dynamics, the limits of the AG model and

the meaning of the slope, further investigations of the linear dependence are
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Figure 9.37: Linear dependence of the mean clusters size on the ratio of the mean
uncorrelated energy to the mean total energy for the Lagrangian and AG results with
mesh re�nement

needed. This is essential to check whether the constraints of this model are
indeed related to a given threshold of the energy ratio or not.

9.2.2 Velocity autocorrelation

The spatial two-points velocity autocorrelation is usually given by Equation (7.14)
(Pope 2000) as presented in Chapter 7 for the FHIT.

Rij(r) =
〈n(~x)ui(~x)n(~x+ r~e)uj(~x+ r~e)〉

〈n(~x)n(~x+ r~e)〉
. (9.13)

In this work, since there is a known di�erence between the zero-velocity of the
Lagrangian results in the vacuum zone and the computed Eulerian velocity in
the region of very low number density, and since the momentum is the con-
servative variable taken into account in the resolved system of equation, it is
better to compute the velocity autocorrelation based on the momentum. Thus,
the correlation of the velocity is then given by Equation (9.13) (Février et al.
2005).
The velocity correlations are plotted for di�erent Stokes numbers in Figure 9.38.
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The pro�le of the evolution of this function for increasing Stokes numbers is the
same for Lagrangian and AG results whereas the MK result gives an unphysical
peak for small separation distance in the case of all the Stokes numbers higher
than 1.
For St = 0.5, the Eulerian results gives nearly the same velocity autocorrela-

0 0.5 1 1.5 2 2.5
Separation distance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

V
el

oc
ity

 a
ut

oc
or

re
la

tio
n

#10-3

0.05
0.10
0.50
1.00
1.50
2.00
3.00
4.00
6.00
8.00
10.00
15.00

(a) Lagrangian

0 0.5 1 1.5 2 2.5
Separation distance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
el

oc
ity

 a
ut

oc
or

re
la

tio
n

#10-3

(b) MK on 1283 mesh

0 0.5 1 1.5 2 2.5
Separation distance

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

V
el

oc
ity

 a
ut

oc
or

re
la

tio
n

#10-3

(c) AG on 1283 mesh

Figure 9.38: Velocity correlations for di�erent Stokes number

tion that tends to the Lagrangian one when re�ning the mesh (see Figure 9.39).
For unity Stokes number, the AG results lead to a more accurate velocity au-
tocorrelation based on the Lagrangian reference at small separation distances.
In fact, the result of the most re�ned MK simulation overestimates the peak
in the autocorrelation at r=0.1 as shown in Figure 9.40. This is due to singu-
larities generated by the MK model at the local PTC events which occur when
the local Stokes number is higher than 1 (this occurrence is faced at 11% of
the whole domain based on subsection 7.3.2). However both Eulerian results
are very similar when it comes to the autocorrelation of the velocity for long
separation distance r > 0.25
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Figure 9.39: Velocity correlations for the Lagrangian and Eulerian results on the
643, 1283, 2563 and 5123 meshes for St = 0.5

For moderately inertial particles (St = 3), the autocorrelation function result-
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Figure 9.40: Velocity correlations for the Lagrangian and Eulerian results on the
643, 1283, 2563 and 5123 meshes for St = 1

ing from the AG simulation has the same shape as the Lagrangian one, unlike
the MK result that depicts an unphysical peak locate at small separation dis-
tance (Figure 9.41) and overestimates the velocity autocorrelation at a large
range of r.
For St = 8 at t = 40, the velocity correlation resulting from the MK simu-

lations is totally di�erent from the Lagrangian one, even for large separation
distance with an important overestimation at small r. On the other hand,
the AG model estimates well the velocity correlation for a separation distance
greater than 0.1 but underestimates the velocity correlation between two par-
ticles separated by a distance smaller than 0.1. In this case, the results for the
Lagrangian and the AG simulations at t = 80 lead to the same interpretation
as at t = 40.
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Figure 9.41: Velocity correlations for the Lagrangian and Eulerian results on the
643, 1283, 2563 and 5123 meshes for St = 3

As presented for the FHIT, the longitudinal integral length scale Llong is usu-
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Figure 9.42: Velocity correlations for the Lagrangian and Eulerian results with mesh
re�nement for St = 8

ally given as the area under the curve of the longitudinal velocity correlation
flong(r) (Pope 2000) (Equation (7.15)). This length scale is plotted for the
di�erent models as a function of the Stokes number at t = 40 in Figure 9.43(a).
The AG simulation leads to a length scale bigger than the Lagrangian one but
tends to this reference with mesh re�nement. On the other hand, the MK model
underestimates this length scale for StK > 1 and diverges from the reference. It
is noticed that for StK ≥ 10, the di�erence between the AG results on the 5123

mesh and the Lagrangian one is higher than the case for StK < 10. However at
t = 80, it is clearly seen that the AG results diverge from the Lagrangian for
StE > 1 which means that the model is not accurately reproducing the corre-
lated motion anymore but instead it is overestimating the correlation between
the particles.
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In this case, the resulting length scale is not always smaller than the longi-
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Figure 9.43: Integral length scale based on the velocity autocorrelations, for the La-
grangian and AG results with mesh re�nement as a function of Stokes number

tudinal integral length scale of the gas L11. One can wonder whether the AG
model ceases to capture the right dynamics for the cases where Llong > L11.

To evaluate this possibility, the normalized integral length scale Llong
L11

is plotted
in Figure 9.44. Through these results the latter statement is denied.
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Figure 9.44: Integral length scale based on the velocity autocorrelations of the disperse
phase normalized by the longitudinal integral length scale of the carrier phase
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9.2.3 Internal energy autocorrelation

In a similar way to the number density and the velocity autocorrelation, the
autocorrelation RΣ of the trace of the internal energy (Tr(Σ)) is evaluated
hereafter and plotted for di�erent Stokes numbers. These correlations are added
in order to quantify the mean PTC length scales based the characteristic length
scale of the internal energy trace autocorrelation function.

RΣ =
〈n(~x)Tr(Σ) (~x)n(~x+ r~e)Tr(Σ) (~x+ r~e)〉

〈n(~x)n(~x+ r~e)〉
. (9.14)

For St = 1, the AG results tends to the Lagrangian one with mesh re�nement
as shown in Figure 9.45.
For moderately inertial particles (St = 3), the autocorrelation function re-
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Figure 9.45: Autocorrelations of the trace of internal energy for the Lagrangian and
AG results on the 643, 1283, 2563 and 5123 meshes for St = 1

sulting from the AG simulation have the same shape as the Lagrangian one
(Figure 9.46). The AG model underestimates this autocorrelation even on the
re�ned mesh for r < 0.4.
For St = 8 at t = 40, the correlation resulting from the AG simulations tends
to the Lagrangian one with a degree of underestimation for r < 0.4. Neverthe-
less, the AG results diverges from the Lagrangian reference at t = 80.

LΣ =

∫
(fΣ(r)− gpp(∞))

(fΣ(0)− fΣ(∞))
dr, where fΣ(r) =

RΣ

〈Tr(Σ) (~x)〉
. (9.15)
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Figure 9.46: Autocorrelations of the trace of internal energy for the Lagrangian and
AG results on the 643, 1283, 2563 and 5123 meshes for St = 3
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Figure 9.47: Autocorrelations of the trace of internal energy for the Lagrangian and
AG results with mesh re�nement for St = 8
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The mean characteristic size of this autocorrelation is given by Equation
(9.15) and plotted as a function of the Stokes numbers in Figure 9.48(a)

and 9.48(b) at t = 40 and t = 80 respectively. The AG results converges to
the Lagrangian ones for StK > 1 and StE < 1 and diverges beyond this range.
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Figure 9.48: Characteristic scale of the PTC based on the autocorrelation function of
the trace of internal energy, for the Lagrangian and AG results with mesh re�nement
as a function of Stokes number
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9.3 Conclusion

Since the PDF and the autocorrelation function take into account the di�erent
points of the domain instead of dealing with averaged values over the domain
as it was the case for the mean statistics presented in the previous chapter,
one can say that the evaluation of the AG model through these functions was
necessary in order to validate the model. Thus the results presented in the last
two chapters represent a complete validation of the AG model on the FHIT
academic test case. Based on the di�erent results, the AG model is found to
be a useful model for an accurate description of the disperse phase motion for
StE < 1. Below this limit, it matches to the Lagrangian results when it comes
to the PDF of the number density, the velocity, the pressure trace and the Mach
number. This model also gives the right amount of the two-points correlations
of the number density, the velocity and the internal energy trace. In the studied
case, the maximum percentage of the mean internal energy below which the AG
model captures the underlying dynamics is 35% of the mean total energy. In
this range, the Stokes number based on the Eulerian integral scale is less than
1, StE < 1, and the corresponding Stokes number based on the Lagrangian
integral scale is less than nearly 2.
In addition, the linear dependence of mean clusters size on the ratio of the
mean uncorrelated energy to the mean total energy is highlighted through the
Lagrangian number density autocorrelations. The AG model capture this linear
dependence for StE < 1 where MCE

MTE
< 0.35.

On the other hand, the MK model overestimated the correlated motion and
the number density for StK > 1 and diverges from the Lagrangian reference.
This behavior is due to the fact that this model is not capable of reproducing
the PTC, and instead generate unphysical δ-shock and high concentrations
and vacuum zones. It is important to note that all the classical QBMM that
uses quadratures in the form of a sum of Dirac delta function lead to weakly
hyperbolic conservation laws and face δ-shock singularities (see Chalons et al.
(2012)).
When comparing the PDF of the disperse phase Mach number, a new measure
for the Mach number is introduced. It is based on the ratio of the slip energy
to the uncorrelated energy inspired from the momentum equation. This latter
is found to be more adapted to the understanding of the underlying dynamics
of the particulate phase. Finally, from all the results and analyses presented
in these last two chapters, the domain of relevance of the use of the AG model
extends from the unity Stokes number based on the Kolmogorov scale to the
unity Stokes number based on the Eulerian integral scale, as shown in the
diagram in Figure 9.49.
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Figure 9.49: Domain of validity of the AG model based on the qualitative and the
statistical results.



Part IV

Towards LES modeling of the
disperse phase





In this part, the objective is to propose a �rst extension to Large Eddy
Simulation (LES) of the AG model with the same level of potentials as
the one obtained in DNS. In Chapter 10, the classical LES framework is
presented and a brief review of existing models for single phase gaseous
�ow, and two-phase �ows using Lagrangian Particle Tracking or Eule-
rian Moment Methods. We then concentrate on LES moment methods
and suggest a �rst classi�cation of the available methods depending on
the way they are derived and on the transported moments. In particular,
asymptotic limits for small Stokes number are exhibited, showing that
moment methods derived from a �ltered kinetic equation could ensure
the correct behaviour in this limit. An emphasis is made on the fact that
even if taking moments of the NDF and �ltering can be done in any or-
der, as they acts on di�erent parts of the phase space, imposing a closure
on the moment breaks this interchangeability, thus leading to di�erent
methods depending on the order of �ltering and moment operations. In
this chapter the derivation of the AG-LES model based on the �ltering
at the kinetic level is introduced. Finally, in Chapter 11, a �rst evalu-
ation of the AG-LES model in a 2D frozen turbulence is performed, in
order to investigate the behaviour of this model with respect to a subgrid
parameter. This evaluation can not be seen as a complete validation
because of the 2D character of our carrier phase, but can still provide
information about the model and is a �rst step toward 3D cases. Re-
sults demonstrates a good sensitivity to Stokes number. The sensitivity
of the LES result on the subgrid closures in general and on the estima-
tion of the Lagrangian characteristic time of the particles interactions
with the residual �uid velocity is also observed. It was noticed that the
error of the LES subgrid model increase with decreasing Stokes number.
Finally, the energy budget is analysed with a comparison between the
�ltered central energy of the DNS results and the central energy of the
�ltered.
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Chapter 10

Large Eddy Simulation of parti-
cle laden �ows

The objective of this chapter is to give an overview of the existing
LES models in the literature. First, an introduction to the Large Eddy
Simulation in the perspective of other methods is brie�y presented,
with the fundamental steps of a LES. Then, the �ltering operation is
detailed, along with the associated potential bias. As particle-laden
�ows are necessary based on a description of the carrier phase, classi-
cal models for gaseous �ows are detailed with an emphasis on actual
progresses and on-going developments. Finally, existing LES strategies
for particle-laden �ows are reviewed with a focus on Eulerian methods.

10.1 Introduction to Large Eddy Simulation

In realistic con�gurations, the multi-scale character of the physics prevents
from simulating the whole range of scales of the problem. For instance, to fully
resolve an aeronautical test rigs which size of about 10 cm with injection holes
of about 100 µm with at least 10 points, one would need about (10−1/10−5)3 =
1012 cells, where high-end up-to-date simulations use about 109 cells.
To circumvent this issue, averaged methods are generally used. There are
two types of methods, which di�er by the range of scales to be modeled (see
Figure 10.1):
• Reynolds-Averaged Navier-Stokes (RANS): RANS methods are based on
a statistical averaging of the equations to be solved. By doing so, the
turbulent structures are completely modeled, and the only remaining part
to be resolved is the mean �ow. This kind of approach has been widely
used in the literature because it does not require a �ne mesh, since the
statistical averaging smears out the small details. However, as all the
turbulence is embedded into a model, the accuracy of the simulation
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Figure 10.1: Di�erent techniques to simulate turbulence

is highly dependent on the closure quality. Moreover, because of the
statistical averaging, unsteady phenomenon cannot be captured.
• Large Eddy Simulation (LES): in LES, the equations are �ltered using
a �ltering function that is characterized by a speci�c width. By doing
so, the resulting set of equations only needs models for the scale smaller
than the �lter width, the larger one being resolved. LES is thus able to
capture a wide range of turbulent scales depending on the �lter width,
and also to reproduce unsteady phenomena.

Nowadays, LES is considered to be an important technique to simulate multi-
phase turbulent �ows since the Direct Numerical Simulation is very expensive
and una�ordable for complicated industrial applications and the RANS tech-
niques cannot capture all the important e�ects caused by the unsteadiness and
instabilities since it models an averaged �eld.

Pope (2000) delineate the four following steps for de�ning a LES strategy:
• the de�nition of the �lter and its width,
• the application of the �lter to the equations of interest,
• the closure of the �ltered equations,
• the numerical resolution of the �nal system.

In the following, we �rst detail the �ltering step and the potential issues arising
from this �ltering. We then present the application of the �ltering along with
available closures in the literature for gas phase, Lagrangian particle tracking
and Eulerian moment methods for particulate �ows. The last point is not
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discussed here since the numerical schemes presented in Part II in the context
of DNS can be used.

10.2 The choice of the �ltering operator

In LES, the fundamental procedure is the �ltering operation. Its objective is
to avoid the resolution of length scales below a certain cut-o� limit. This way,
it will reduce the computational e�ort required for simulating the problem of
interest. The �lter is thus necessarily a low-pass one.
For a given quantity ϕ, the �ltering is a convolution operation between ϕ and
the �lter G∆:

ϕ(~x) =

∫∫∫
G∆(~x− ~x1)ϕ(~x1, t)d~x1, (10.1)

where ϕ denotes a �ltered quantity. The un�ltered �eld can be decomposed
into �ltered and residual parts:

ϕ = ϕ+ ϕ′, (10.2)

where ϕ′ is the residual part of the quantity ϕ.
The other residual terms are designated with the superscrit r. In addition,
the subgrid correlation between two variables ϕ1 and ϕ2 are noted using the
operator (ϕ)r:

(ϕ1ϕ2)r = ϕ1ϕ2 − ϕ1 ϕ2, (10.3)

The �lter has the following properties:
• Normalization condition:∫∫∫

G∆(~x− ~x1)d~x1 = 1; (10.4)

• Linearity:

ϕ1 + ϕ2 = ϕ1 + ϕ2; (10.5)

• Commutation with space and time derivatives (only for constant width
�lter):

∂ϕ

∂t
=
∂ϕ

∂t
,

∂ϕ

∂xi
=
∂ϕ

∂xi
. (10.6)

Multiple �lter de�nitions exist in the literature, in order to extract LES data
from DNS simulations. The most used ones are the box �lter, the Gaussian
�lter and the sharp cuto� �lter also called spectral cuto� �lter (Sagaut 1998).
Other less famous �lters can be found, such as the Cauchy and the Pao �lter
(Pope 2000).
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A discussion about the choice of this �lter to construct LES �elds is available
in (Pope 2000), where it is mentioned that the most compact �lter in both
physical and spectral spaces is the Gaussian �lter, whereas the box �lter is the
most compact in physical space.
In the context of variable density �ows, another important de�nition is the
notion of Favre-averaged quantities:

ρϕ̃ =

∫∫∫
G∆(~x− ~x1)ρ(~x)ϕ(~x1, t)d~x1 = ρϕ. (10.7)

The main interest of this decomposition is that by using it, the closure of the
correlations between velocity and density �elds are no more needed. Neverthe-
less, the Favre-averaging is not necessarily performed by mean of the gaseous
density, but can also be done using another weighting function, such as the
number density of the disperse phase, as it will be shown in the following (Fox
2014).

10.3 LES closures in the literature

10.3.1 Gaseous �ows

Gaseous �ows can be potentially solved using the full system containing mass,
momentum, energy and species equations. Each equation may raise its proper
modeling issues. For example, in the case of combustion, source terms must
account for subgrid scale composition in order to accurately reproduce the
chemical evolution.
As we are interested in the dynamics of particles, we focus on the momentum
equation, which gives the velocity �eld required to close the force term in the
particle momentum equation. Moreover, as constant-density constant-viscosity
�ows with one-way coupling are investigated in this work, we focus on this
regime. The �ltered conservation equations for the velocity �eld ~ug is then:

∂ug,i
∂t

+
∂ug,iug,j
∂xj

=− 1

ρ

∂

∂xj
pδij − ν

∂2

∂x2
j

ug,i −
∂

∂xj
τ rg,ij . (10.8)

Three closures are required for this equation:
• the �ltered pressure p: even though this term should be modeled, in
general turbulent high-order correlations are neglected. As a consequence,
it has the same form as in laminar conditions, except that it is evaluated
using �ltered quantities.
• the subgrid stress tensor τ rg: this is the main term to be modeled. It con-
tains the primary e�ects of the turbulent subgrid scales onto the resolved
scales.

To close the subgrid scale tensor, three types of approach can be found in the
literature (Sagaut 1998):
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• the functional approach: the closure aims at reproducing a speci�c "func-
tion" of the turbulent subgrid scale. The most used method is the subgrid
scale viscosity closure, which reproduces the dissipative character of tur-
bulent eddies. The most commonly used model is the Smagorinsky model
(Smagorinsky 1963) that models the deviatoric part of the stress tensor:

τ r,∗g = −2 (Cs∆)2 |S|S, (10.9)

where S is the shear stress tensor, Cs the Smagorinsky constant and ∆
the �lter width.
• the structural approach: the goal of such method is to give the best ap-
proximation of the SGS tensor by using the resolved velocity �eld struc-
ture. This method permits to consider the tensor anisotropy as well as
backscatter e�ects. An example of such model is the one of Bardina et al.
(1980), which assumes a similar transfer between large to small resolved
scales and between small resolved to unresolved scales:

τ rg = ~ug ⊗ ~ug − ~ug ⊗ ~ug, (10.10)

• the MILES and ILES approaches: in such methods, the main idea is to
consider that the numerical dissipation can be used as a surrogate to the
turbulent subgrid scale physics. This is a pragmatic way to alleviate two
issues at the same time, the numerical dissipation and the LES modeling.

Apart from that, many strategies also exist to improve the models for speci�c
conditions. For example, damping functions can be used to adapt the model
in wall-bounded �ows. Another important improvement can be achieved by
dynamically adapting the constant of the model using the Germano identity
(Germano et al. 1991). Among this list of closing strategies, the most used
in industrial computations, especially in the combustion community, is the
functional approach through the use of eddy-viscosity models.

10.3.2 Lagrangian Particle tracking

Whereas, a wide literature concerning LES can be found and is largely di�used
into CFD community for gaseous �ows, this is not the case for disperse phase
�ows. Even if a lot of contributions can be found in the literature, in general, the
impact of subgrid scales on particle dynamics is simply neglected, assuming that
their impact in complex industrial applications is limited. Such an assumption
may be accurate in the case of moderate to large Stokes number particles, or
in speci�c cases where the subgrid phenomena do not really have an impact
on the results compared to the resolved scales. But in general, subgrid scale
e�ects have to be taken into account (Kuerten 2006; Marchioli et al. 2008).
To determine exactly where the closure is required, we write the equation of
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motion of a particle:

dt~xp = ~cp (10.11)

dt~cp =
~ug(~xp)− ~cp

τp
=
~ug(~xp) + ~u′g(~xp)− ~cp

τp
, (10.12)

where ~xp and ~cp are the position and velocity of the particle, respectively. In
this equation, the issue is to determine the gas velocity along the particle trajec-
tory, which is in fact decomposed into a mean �eld ~ug(~xp) and a random �eld
~u′g(~xp), see Minier and Peirano (2001); Chibbaro and Minier (2008); Pozorski
and Apte (2009) for example.
To recover this information, three types of methods are found in the literature:
• modeling the �uid velocity increment along the particle path (Simonin
et al. 1993; Fede et al. 2006; Shotorban and Mashayek 2006; Minier
2015): in such approaches, the evolution of the �uid is written in the
particle referential,
• reconstructing the velocity �eld at the subgrid level by deconvolution
(Shotorban et al. 2007; Kuerten 2006),
• adding a random �uctuation to the resolved gas velocity (Wang and
Squires 1996; Vinkovic et al. 2006; Bini and Jones 2008; Gorokhovski
and Zamansky 2014).

10.3.3 Eulerian moment methods

When it comes to macroscopic Eulerian approaches, �ltering Equation (2.2)
yields to:

∂tM i,j,k + ∂~x ·

M i+1,j,k

M i,j+1,k

M i,j,k+1

 =− 1

τp

(i+ j + k)M i,j,k − ~ug ·

 iM i−1,j,k

jM i,j−1,k

kM i,j,k−1

 ,

− 1

τp

 iug,1Mi−1,j,k

jug,2Mi,j−1,k

kug,3Mi,j,k−1

r

. (10.13)

The �nal system of equations needs closures for the �uxes on the left hand side
as well as for the velocity �uctuations-particulate phase moments correlations
on the right hand side. To address the resolution of Equation (10.13), sev-
eral approaches have been proposed (Shotorban and Balachandar 2007; Moreau
et al. 2010; Pandya and Mashayek 2002; Zaichik et al. 2009).
They di�er by:
• the range of application: depending on the closure assumptions, some
methods are only suitable for low Stokes numbers (Shotorban and Bal-
achandar 2007) or high Stokes numbers (Moreau et al. 2010), or can
cover all ranges (Pandya and Mashayek 2002; Zaichik et al. 2009),
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• the way the unknown terms are closed: unknown terms can be either
closed by algebraic closures (Moreau et al. 2010; Zaichik et al. 2009) or
assumptions on the NDF (Pandya and Mashayek 2002),
• the transported quantities: either full (Pandya and Mashayek 2002) or
central moments (Moreau et al. 2010; Zaichik et al. 2009) can be trans-
ported and may generate di�erent modeling strategies about the nature
of internal energies.

10.3.3.1 A low Stokes number approach: the �ltered Equilibrium
Eulerian model

In Shotorban and Balachandar (2007), the authors derive a LES strategy by �l-
tering the Equilibrium Eulerian model of Ferry and Balachandar (2001); Ferry
and Balachandar (2002). Consequently, this approach is limited to low Stokes
number, as it is for the Equilibrium Eulerian model. This model is developed in
the context of two-way coupling and gravity, but here we focus on the one-way
coupling, with the drag force as the only external force acting on the particles.
We also neglect the Brownian motion that could arise for su�ciently small
particles. The �ltered equations read:

∂tn̄+ ∂~xn̄~u = −∂~x~q (10.14)

~u = ~ug − τp
(
∂t~ug + ~ug∂~x~ug

)
− τp∂~xτ rg, (10.15)

where ~q = n~u − n̄~u. Both terms need modeling, but here we focus on the
modeling of the disperse phase, so that the subgrid stress of the gas phase
τ rg is supposed to be given. The particulate phase number density-velocity
correlation is:

qi = −Cs
∆2|s|
Sct

∂xin. (10.16)

where Sct is the turbulence Schmidt number, Cs a model constant and |s| the
�ltered rate of strain.

10.3.3.2 From moderate to high Stokes number: the �ltered MEF
with ACBMM

In Moreau et al. (2010), the authors develop a LES method based on the
Mesoscopic Eulerian Formalism (Février et al. 2005) and the ACBMM. In
fact, they �lter the moment equations (Equation (2.2)), but they also use Favre
averaging based on the disperse phase:

nϕ̃ =

∫∫∫
nG∆(~x− ~x1)ϕ(~x1, t)d~x1. (10.17)
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It leads to the following equations:

∂tn̄+ ∂~x · (n̄~̃u) = 0,

∂t(n̄~̃u) + ∂~x · (n̄~̃u⊗ ~̃u+ P̄ + n̄T) =
n̄(~̃ug − ~̃u)

τp
,

∂tP + ∂~x · (P ~̃u+
−→
Q̃ +

−→
R) = −P̄∂~x~̃u−

−2P
τp

+ n̄Π,

, (10.18)

where:

Tij = ũiuj − ũiũj , (10.19)

Π = −Σ̃∂~x~u− Σ̃∂~x~̃u, (10.20)
−→
R = P~u− P ~̃u. (10.21)

In this work, the authors address the closure of T by mean of a Smagorinski-
Yoshizawa model:

Tij = T ∗ij + qp,r, (10.22)

T ∗ij = −CS∆2|S̃∗|S̃∗ij , (10.23)

qp,r = CY ∆2
F |S̃∗|2. (10.24)

In opposite to the equilibrium model, this one considers particle-Favre-averaged
quantities only.

10.3.3.3 Filtering the kinetic equation directly

Kinetic-Based LES models are based on the �ltering of the kinetic equation:

∂tf + ∂~x · (~cf) + ∂~c ·

(
~ug − ~c
τp

f

)
= − 1

τp
∂~c · (~ugf)r, (10.25)

where (~ugf)r = ~ugf − ~ugf̄ is the subgrid correlations between the disperse
phase NDF and the gas velocity.
In the literature, two works have been devoted to this strategy. In Pandya
and Mashayek (2002), the authors derive the kinetic equation in direct analogy
with the work of Reeks (1991; 1992) who uses the Lagrangian History Direct
Interaction (LHDI):

− 1

τp
∂~c · (~ugf)r = ∂~c ·

(
µ∂~cf + λ∂~xf − ~γf

)
. (10.26)
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The expressions of these coe�cients depend on the history of the particles and
especially on the gas velocity seen by the particles along their trajectories:

λki =
1

τ2
p

∫ t

0
(ug,i(~x, t), ug,i(~x,~c, t|t1))rGjkdt1, (10.27)

µki =
1

τ2
p

∫ t

0
(ug,i(~x, t), ug,i(~x,~c, t|t1))r

dGjk
dt

dt1, (10.28)

γi =
1

τ2
p

∫ t

0
(∂xkug,i(~x, t), ug,i(~x,~c, t|t1))rGjkdt1, (10.29)

where Gjk is the Green function.
These parameters represent the impact of the subgrid turbulence on the parti-
cle. µ models the fact that the particle agitation energy tends towards the one
of the gas subgrid scales because of the drag force, and acts as a white-noise.
λ is due to the correlations of the turbulence: contrary to white-noise process,
the turbulence is not δ-correlated in time and this coe�cient is here to repre-
sent these correlations. ~γ is an additional correction needed to account for the
inhomogeneity of the �ow into the drag force.
After de�ning these coe�cients, Pandya and Mashayek (2002) propose a Dy-
namic �ltering procedure applied to both gas and disperse phase, to derive a
fully consistent LES approach, keeping the same form for the kinetic equation,
but with di�erent expression for the coe�cients.
After obtaining the kinetic equation, one has to go up to the moment level. In
Pandya and Mashayek (2002), the authors derive equations for zero-to-second
order moments and close the �uxes by using a zero third-order central moments
assumption. Contrary to the model of Moreau et al. (2010), where the sole
�ltered random uncorrelated energy (RUE) is solved, the total energy of the
particles is solved here. The contribution of RUE as well as subgrid scale cor-
related energy is accounted for, without any direct access to the former or the
latter. In fact, this model does not need do have access to each of them sepa-
rately, and it is fully closed. Despite the full derivation of a consistent model,
the authors do not propose any evaluation of the quality of this modeling ap-
proach.
In Zaichik et al. (2009), the authors follow the same strategy but based on
the work of Zaichik (1999), which considers the impact of the gas phase on the
disperse phase to be a Gaussian process, and thus make use of the Furutsu-
Donsker-Novikov Formula (Novikov 1964). Eventually, they obtain a close
shape for the subgrid term, without γi:

− 1

τp
∂~c · (~ugf)r = ∂~c ·

(
µ∂~cf + λ∂~xf

)
. (10.30)

The authors also derive moment equations, and they propose to close the un-
known �uxes using a Chapman-Enskog expansion around the Maxwellian dis-
tribution, and to consider the isotropic assumption for the gas subgrid stresses.
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Like in the model of Moreau et al. (2010), they derive a transport equation for
the trace of the central second order moments.
They rewrite the subgrid terms in the kinetic equation:

λij = gruτ
r
g,ij , µij = τ rg,ik

(
f ru
τp

+ lru∂xkuj

)
, (10.31)

(10.32)

where f ru, g
r
u and lru are response coe�cients which measure the coupling be-

tween the particles and the unresolved small scale turbulent eddies.
If the autocorrelation function of the continuous phase velocity �uctuations de-
termined along the particle trajectory is assumed to be an exponential function
(ΨLp = exp(− τ

T rL
), where T rL is the Lagrangian integral timescale of residual

velocity viewed by a particle Zaichik et al. (2008)), the long-time values of
response coe�cients are obtained (see Zaichik et al. (2009) for details):

f ru =
1

1 + StrL
, gru =

1

StrL(1 + StrL)
, lru =

1

StrL(1 + StrL)2
, (10.33)

where StrL = τp/T
r
L is the Stokes number relative to the Lagrangian integral

timescale of the residual gas �eld velocity T rL. This Stokes number describes
the inertia of a particle in terms of its interaction with energy carrying eddies
at the subgrid scales.

10.4 Low St limits in LES moment models

The modeling of the dynamics of particles has to reproduce the evolution of two
kinds of energy: the uncorrelated central energy of the un�ltered motion (UCE)
and the subgrid correlated energy (SCE). As stated in Zaichik et al. (2009),
these two energies have di�erent behaviors with respect to the Stokes number
and the �lter size. On the one side, the UCE is insensitive to the �lter size,
and is purely related to the description of the PTC, which is a large scale e�ect
Moreau et al. (2010) that appears for large Stokes numbers with respect to the
Kolmogorov length scale. On the other side, the SCE is directly related to the
�lter size, and tends to zero for zero �lter size (DNS limit). Moreover, the SCE
decreases while increasing the Stokes number, as particles become more and
more insensitive to the subgrid scales. Consequently, the low Stokes number
limit of a LES model is of primary importance, as the dynamics of particles
will be primary driven by this model in this limit. Here, a brief analysis of this
limit is given for each model.
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10.4.0.1 Equilibrium model

For the LES model of Shotorban and Balachandar (2007), the limit system is:

∂tn+ ∂~xn~u = ∂xi

(
Cs

∆
2|s|
Sct

∂xin

)
. (10.34)

Equation (10.34) is an advection-di�usion equation with an isotropic di�usion
coe�cient. In the case of zero �lter-width, the model recovers the zero Stokes
number limit of the DNS system, that is a passive scalar equation for the
number density �eld. There is no direct link between the limiting di�usion
coe�cient of the particulate phase and the subgrid tensor of the gas phase in
the context of the dynamic procedure that is used in Shotorban and Balachandar
(2007).

10.4.0.2 Moreau et al.

In this model, the authors do not propose solutions to close the particle-gas
velocity correlations that are included in the particle-Favre-averaged gas ve-
locity. Actually, in a real computation, ~̃ug is not available, as you can have
Reynolds-averaged gas velocity only in the case of incompressible gas velocity
�eld. If the user uses the available gas velocity without modeling this term, it
implies that:

n~̃ug = n~ug, (10.35)

∫∫∫
n~ugG∆(~x− ~x1)ϕ(~x1, t)d~x1 =∫∫∫

nG∆(~x− ~x1)ϕ(~x1, t)d~x1

∫∫∫
~ugG∆(~x− ~x1)ϕ(~x1, t)d~x1,

(10.36)

which can be true only in the case of a constant density �eld or a constant gas
velocity �eld. In fact, the missing term can be mandatory for very small Stokes
numbers. It is still an open subject to check if a transposed gradient model
like the one used in the work of Simonin et al. (1993) is suitable for very small
Stokes numbers.
For the model of Moreau et al. Moreau et al. (2010), the limit system is:

∂tn+ ∂~xnũg = 0. (10.37)

This equation involves the particle-Favre-averaged gas velocity, which needs a
model to be closed. The low Stokes number limit is then not clearly determined.
However, as the work of Moreau et al. (2010) focuses on Stokes number higher
than 1, the impact of the low Stokes number limit was not investigated and
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requires an additional study. In the work of Riber (2007), this velocity was
replaced by the available gas velocity in the computation. The latter is the
Reynolds averaged velocity or gas density-Favre averaged velocity, which can
be considered as a model for high Stokes number, and for which the asymptotic
limit is a passive scalar equation for the number density �eld advected with the
resolved gas velocity:

∂tn+ ∂~xn~ug = 0. (10.38)

It is important to note that the subgrid correlation between the �uid turbulent
velocity and the particles distribution can have an important e�ect when dealing
with dense inclusions such as �uidized beds due to the two way coupling and
need to be modeled as shown in the a posteriori test in the work of Parmentier
et al. (2012).

10.4.0.3 Kinetic-Based LES models

For kinetic-based model, an asymptotic limit can be determined either at the
kinetic or at the moment level. For the sake of simplicity, we only consider the
asymptotic limit of Zaichik's system of equations, as the main features of the
low Stokes number �ows are contained in λ and µ, the γ term of Pandya and
Mashayek being of interest for inhomogeneous �ow only. The non-dimensional
form of the kinetic equation is used and the reference time scale is the La-
grangian Integral one of the turbulence:

∂t∗f +~c∗ · ∂~x∗f + ∂~c∗ ·

(
~u
∗
g − ~c∗

St
f

)
= ∂~c∗ ·

(
µ∗∂~c∗f + λ∗∂~x∗f

)
, (10.39)

where:

µ∗ij = τ∗g,ik

(
f ru
St
δkj + lru

∂u∗g,j
∂x∗k

)
, λ∗ij = gruτ

∗
g,ij . (10.40)

In the following, star exponents implying nondimensionalization are dropped
for the sake of clarity.
To determine the equilibrium state and the asymptotic limit of the �ltered
kinetic equation Equation (10.39), The Chapman-Enskog expansion is used
Chapman and Cowling (1939). Contrary to the one proposed in Alipchenkov
and Zaichik (2007), it is performed in the classical way, assuming a decompo-
sition of the solution into power of St, one gets:

f = f
0

+ Stf
0
ϕ1 +O

(
St2
)
. (10.41)

Rewriting Equation (10.39)

∂tf + ~c.∂~xf =
1

St
J (f), (10.42)
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where J (f) is the relaxation operator:

J (f) = ∂~c ·
[
(~c− ~ug)f + Stµ∂~cf + Stλ∂~xf

]
. (10.43)

Inserting Equation (10.41) into Equation (10.42), and grouping terms by powers
of St:

∂tf
0

+~c · ∂~xf
0

+ St
(
∂tf

0
ϕ1 + ~c · ∂~xf

0
ϕ1
)

=
1

St
J (f

0
) +J (f

0
ϕ1) +O(St).

(10.44)

For small Stokes number, the zeroth order of Equation (10.44) is:

J (f
0
) = Stλ∂~xf

0
+ Stµ∂~cf

0 −
(
~ug − ~c

)
f

0
= 0. (10.45)

The solution of such an equation has the form:

f
0
(x, u) = Γ(~x,~c)

n

(2π)3/2
√
|τ g|

exp
(
−(~c− ~ug)tτ−1

g (~c− ~ug)
)
, (10.46)

where Γ(~x,~c) is an unknown function that tends to 1 in the case of an ho-
mogenous NDF in space. The zeroth order distribution leads to the following
equation on the density:

∂tn+ ∂~x · n~u0 = 0, (10.47)

where u0 =
∫
uf0dv. To �nd u0, the zeroth order moment of Equation (10.45)

is taken and leads to:

~u0 = ~ug −
τ g
n
∂~xn, (10.48)

so that the asymptotic limit at the kinetic level leads to the following asymptotic
limit at the moment level:

∂tn+ ∂~x · n~ug = ∂~x · (τ g∂~xn) . (10.49)

Like the model of Shotorban and Balachandar (2007), the asymptotic limit is an
advection-di�usion equation. Here this di�usion coe�cient is the subgrid tensor
of the gaseous velocity �eld, so that, comparing to Shotorban and Balachandar
(2007), this di�usion coe�cient could be anisotropic and could be de�nitely an
improvement in the low Stokes number limit. It is also worth noticing that the
resulting moment system does not depend on any closure at the moment level.
To achieve the description of the low Stokes number limit, taken the �rst order
moment of Equation (10.45), the asymptotic limit of the internal energy is
recovered (Chalons et al. 2015):

σ0 = τ g

(
1− ∂~x · ~ug − ∂~x ·

(τ g
n
∂~xn

))
. (10.50)
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10.5 Physical contents of the transported moments

Looking at the literature, several ways are available to derive and to close a LES
model. This strategies di�er by the level at which the �ltering is operated, the
moments that are transported and the way the moment equations are closed.
The possible derivation strategies are summarized in Figure 10.2.
Theoretically, there is equivalence between �ltering at the kinetic level and
�ltering at the moment level:

M i,j,k(t,~x) =

∫
G∆(~x− ~x1)

(∫
ci1c

j
2c
k
3f(t,~x1,~c)d~c

)
d~x1 (10.51)

=

∫
ci1c

j
2c
k
3

(∫
G∆(~x− ~x1)f(t,~x1,~c)d~x1

)
d~c (10.52)

= Mf
i,j,k(t,~x). (10.53)

This means that, if full moments are used, methods based on moment �ltering
and kinetic equation �ltering are equivalent, the sole remaining issue being
the closure of the equations. However, this equivalence does not hold when
centered moments are considered instead of full moments because of the space
dependence of the velocity used in the centering procedure (time dependence
is omitted for the sake of clarity):

Ci,j,k(~x) =∫
G∆(~x− ~x1)

(∫
(c1 − u1(~x1))i(c2 − u2(~x1))j(c3 − u3(~x1))kf(~x1~c)d~c

)
d~x1

6=
∫
G∆(~x− ~x1)

∫
(c1 − ũ1(~x1))i(c2 − ũ2(~x1))j(c3 − ũ3(~x1))kf(~x1,~c)

= Cfi,j,k(~x) (10.54)

The main consequence is that the content of the LES models may di�er: if
central moment equations are �rst derived and are then �ltered, the central
moments will not contain the contribution of the subgrid motion, whereas the
other strategy will generate moments which contain both the subgrid motion
and the agitation motion contributions. To illustrate this statement, we can
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have a look to the trace of the pressure tensor:

nTr
(
Σ̃(~x)

)
=

∫
G(~x− ~x1)

∫ ∑
i=1,3

(ci − ui(~x1))2f(~x1,~c)d~c

 d~x1

(10.55)

=

∫
G(~x− ~x1)

∫ ∑
i=1,3

(c2
i − 2ciui(~x1) + ui(~x1)2)f(~x1,~c)d~c

 d~x1

(10.56)

=

∫ ∑
i=1,3

c2
i f(~x,~c)d~c− n

∑
i=1,3

ũ2
i (10.57)

6= nTr
(
Σf (~x)

)
=

∫ ∑
i=1,3

c2
i f(~x,~c)d~c− n

∑
i=1,3

ũ2
i . (10.58)

The di�erence between the �ltered second order central moment, nΣ̃(~x), and
the second order central moment of the �ltered NDF, nΣf (~x), is the subgrid
contribution nΣr:

n~̃u⊗ ~u = n~̃u⊗ ~̃u+ n
(
~̃u⊗ ~u− ~̃u⊗ ~̃u

)
= n

(
~̃u⊗ ~̃u+ Σr

)
, (10.59)

nΣ̃(~x) = nΣf (~x)− nΣr. (10.60)
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Figure 10.2: Derivation strategies for a LES moment method for disperse phase
�ows.

At the end, depending on the way the LES moment method is derived, we can
end up with a di�erent content in the transported moments, containing either
the full velocity variance due to �ltering and PTC, or the PTC contribution
only. Getting the sole contribution of the �ltering on the velocity distribution
is only possible if the un�ltered �eld is monokinetic.
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10.6 Commutativity breaking in the presence of mo-
ment closure

As suggested in Vié et al. (2015), for a chosen moment method, we can cast
the associated kinetic equation using a notional collision operator that leads to
the closed moment system:

∂tf + ∂~x · (~cf) + ∂~c ·
(−→ug − ~c

τp
f

)
=
f − feq
τc

, (10.61)

where τc is the �ctive collision time scale and feq is the expected kinetic closure
for the moment equations. In the limit of in�nitely small collision time τc, this
kinetic equation leads to the following kinetic equation:

∂tfeq + ∂~x · (~cfeq) + ∂~c ·
(−→ug − ~c

τp
feq

)
= 0, (10.62)

which corresponds to the appropriate moment equations. This collision term
exhibits the e�ect of the closure choice, which leads to a �rst level of approxi-
mation of the real kinetic equation.
Through �ltering Eq. 10.62, we get:

∂tfeq + ∂~x · (~cfeq) + ∂~c ·

(
~ug − ~c
τp

feq

)
= − 1

τp
∂~c · (~ugfeq)r, (10.63)

where the �ltered equilibrium distribution feq is:

feq(t,~x,~c) =

∫
G(~x− ~x′,∆)feq(t,~x

′,~c)d~x′. (10.64)

In the limit of zero �lter width, the equilibrium distribution is not modi�ed:

lim
∆→0

feq(~x,~c) =

∫
δ(~x− ~x′)feq(t,~x′,~c)d~x′ = feq(~x,~c). (10.65)

The important point here is that even the �ltered equilibrium distribution has
not necessarily the same shape as the un�ltered one. As a result, in the pres-
ence of a closure assumption, the commutativity between the �ltering and the
moment operations is broken.
A pathological example is when considering a monokinetic closure for the un-
�ltered problem, i.e. fMK

eq = n(t,~x)δ (~c− u(t,~x)). As already stated, this
distribution is a fairly accurate approximation for small Stokes number in tur-
bulent �ows. However, involving a �ltering operation necessarily leads to a
velocity dispersion, incompatible with the zero dispersion assumption of the
MK closure. The main consequence is that the MK closure is not adequate for
LES moment methods.
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The same reasoning can be made using ISO and AG closures. In these cases, a
Gaussian (isotropic or not) distribution is spatially �ltered. In this case, even if
the Gaussian distribution can capture velocity variances, summing over Gaus-
sian distribution does not necessarily lead to a new Gaussian distribution. As a
consequence, the Gaussian closure for the LES moment method is not a direct
�ltering of the DNS Gaussian moment method; it is another approximation by
itself. This approximation is however consistent with the DNS method in the
limit of zero �lter-width.

10.7 The kinetic-based AG-LES moment

The closure on the kinetic level is done based on the Kraichnan's Lagrangian
history direct interaction (LHDI) used by (Reeks 1991; Reeks 1992) in the
context of RANS modeling. Then the correlation between the carrier phase
velocity �uctuation and the number density is given in function of the di�usivity
tensors, λ and µ :

(~ugf)r = ~ugf − ~ug f = −τp
(
∂~x · λf + ∂~c · µf

)
. (10.66)

By multiplying the �ltered WB equation by power the ith, jth and kth power of
the component of ~c and integrating the result over the phase space, the general
�ltered moment equation is obtained:

∂tM i,j,k + ∂~x ·

M i+1,j,k

M i,j+1,k

M i,j,k+1

+ ∂xk

iM i−1,j,k

jM i,j−1,k

lM i,j,k−1

 ∨ −→λk∗ =

1

τp

~ug ·
 iM i−1,j,l

jM i,j−1,k

kM i,j,k−1

− (i+ j + k)M i,j,k + τp

 i(i− 1)M i−2,j,l

j(j − 2)M i,j−2,k

l(l − 2)M i,j,k−2

 ∨ µ
 .

(10.67)

The �ltered number density function is assumed to read: feq(t,
−→x ,~c) = ρ(t,−→x )N (~c−

−→
ũ (t,−→x ),Σ(t,−→x )) where N is a joint Gaussian distribution of center

−→
ũ and

covariance matrix Σ = (σij) in the space of dimension Nd:

N (~c−
−→
ũ ,Σ) =

|Σ|−1/2

(2π)Nd/2
exp

(
−1

2
(~c−

−→
ũ )TΣ−1(~c−

−→
ũ )

)
. (10.68)

where superscript f is omitted on Σ for the sake of clarity. Using this closure,
the solved �ltered kinetic equation is the following:

∂tfeq + ∂~x · (~cfeq) + ∂~c ·

(
~ug − ~c
τp

feq

)
= − 1

τp
∂~c · (~ugf)r, (10.69)
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for which no Equilibrium assumption is made for the subgrid scale. As a result,
the equilibrium distribution will contain the subgrid contribution as well as the
PTC part, without any access to the partitioning between the two, but with a
closed system of equations at the moment level. The LES model based on the
Anisotropic Gaussian distribution on the kinetic level is presented hereafter.
The resulting system of equations is then:

∂tρ+ ∂~x · (ρ
−→
ũ ) = 0,

∂t(ρ
−→
ũ ) + ∂~x · (ρ

−→
ũ ⊗

−→
ũ + P) + ∂xk(ρ ∨

−→
λk∗) =

ρ(
−→
ug −

−→
ũ )

τp
,

∂t(ρE) + ∂~x · ((ρE + P) ∨
−→
ũ ) + ∂xk(ρ

−→
ũ ∨
−→
λk∗) =

ρ(
−→
ug ∨

−→
ũ − 2E) + τpρ ∨ µ

τp
,

where E = 1
2

−→
ũ ⊗

−→
ũ + P/(2ρ) and P = ρΣ.

(10.70)

Models for λ and µ are needed in order to have a closed system. Here the
models based on the work of (Zaichik et al. 2009) are used.
It would be intresting in the continuiation of this work to compare the �nal
system of equations with other LES models from the litterature to clarify the
physical meaning of the terms found in this equation and compare the closures
at the macroscopique level.

By coupling this formalism with the high order Multi-�uid method (TSM), the
TSM AG LES can be obtained. This manipulation is straightforward.
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AG LES preliminary results

In this chapter preliminary results using the AG LES model are con-
ducted and compared to the AG DNS results coupled with the DNS �eld
for the gas velocity and with the �ltered gas velocity. First, the used
subgrid closures are presented in section 11.1 along with the �ltering
procedure. Then, in section 11.2 the qualitative results for the num-
ber density and the velocity are compared for various Stokes numbers,
namely St = {0.1, 1, 5, 15}. Finally, the statistical results for the seg-
regation and the mean total energy are presented in section 11.3 as a
function of time for a given St as well as for �xed times as a function of
the Stokes numbers. The test case presented is a 2D frozen HIT there-
fore one should keep in mind that the results give only a general idea of
the dependence of the LES simulation on the subgrid terms but cannot
be directly translated to realistic con�gurations.

11.1 Subgrid closures and LES �ltering

The DNS gas velocity �eld is a 2D box of a frozen homogeneous isotropic turbu-
lence of size L = 4 based on the energy spectrum of Pope. It has the following
characteristics: the mean dissipation rate 〈ε〉 = 0.01678, the mean turbulent ki-
netic energy 〈TKE〉 = 0.04110. The Kolmogorov length and time scales of this
�eld are respectively η = 0.01563 and τK = 0.24414. Based on the longitudinal
velocity autocorrelation function flong(r) shown in Figure 11.1 the longitudinal
integral scale is computed L11 = 0.37843. Thus the Reynolds numbers based on
the integral length scale is ReL = 76.7. A geometric construction is then used
to calculate the longitudinal Taylor microscale λf by plotting the parabola p(r)
osculating the longitudinal autocorrelation function at zero separation distance
(p(0) = f(0)). This parabola reads (Pope 2000):

p(r) = 1 +
f ′′long(0)r2

2
= 1− r2

λf
. (11.1)
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λf is obtained as the intersection point between the parabola and the axis of
separation distance as shown in Figure 11.1.
Finally the longitudinal Taylor microscale is found to be equal to 0.2 and the
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Figure 11.1: Longitudinal velocity autocorrelation function along with the Taylor
microscale geometric computation.

corresponding Reynolds number based on the transverse microscale λg =
λf
2 is

Reλ = 28.7.
These properties are summarized in Table 11.1.

Table 11.1: Turbulence properties of the HIT

〈ε〉 〈TKE〉 η τK ReL Reλ
0.01678 0.04110 0.01563 0.24414 76.7 28.7

11.1.1 Subgrid closure

For the models of λ and µ presented earlier based on the work of Zaichik
et al. (2009), the subgrid stress tensor τ rg should be modeled as well as the
Lagrangian integral timescale of the residual gas �eld velocity T rL.
In this work the subgrid stress tensor is computed directly from the knoweledge
of the DNS gas velocity �eld.
This timescale T rL is assumed to be given by the following equation in the work
of Zaichik et al. (2009); Fede and Simonin (2006) :

T rL = α
〈TKEr〉
〈εr〉

, α =
4

3C0

(
1 +

C1

Reλ

)
, (11.2)

where 〈TKEr〉 is the averaged subgrid kinetic energy and 〈εr〉 is the averaged
dissipation rate of the residual gas velocity �eld and the constants C0 = 7 and
C1 = 32 for the case of isotropic turbulence (Zaichik et al. 2003).
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In the case of high Re and whenever the �lter size is in the inertial subrange,
the subgrid dissipation rate is assumed to be equal to the dissipation rate of
the original DNS velocity �eld.
Based on these assumption, this time scale is: T rL = 0.1676. In the case studied
by Zaichik et al. (2003), the turbulence is 3D and realistic, plus the Re is
moderate so other estimation for the subgrid dissipation rate might be needed.
Another choice is to estimate the subgrid dissipation rate based on the subgrid
velocity �eld leading to T rL = 0.6832. Finally, in order to conduct a sensitivity
study on this timescale, LES simulations are carried out for various values of
T rL, namely 0.0500, 0.0800 and 0.2965, in addition to the two values computed
based on Equation (11.2): 0.1676 and 0.6832.

11.1.2 Filtered velocity �eld with di�erent �lters

Multiple �lter de�nitions exist in the literature, in order to extract the LES
data from DNS simulations. The most used three are listed below:

• Box �lter:

G∆(~x− ~x1) =

{
1
∆ for |~x− ~x1|<∆

2 ,

0 otherwize.
(11.3)

• Gaussian �lter:

G∆(~x− ~x1) =

√
6

π∆2
exp

(
− (~x− ~x1)2

∆2

)
. (11.4)

• Sharp-cut o� �lter where the transfer function Ĝ∆ is de�ned in the wave
space as:

Ĝ∆(κ) =

{
1 for |κ| < κc = π

∆ ,

0 otherwize.
(11.5)

The energy spectra for the �ltered velocity �eld obtained using these three
�lters for a �lter width ∆ = 0.046875 are shown in Figure 11.2. Although the
sharp-cut o� �lter is sharp in the spectral domain it is non-local in the physical
space and can generate oscillations, the inverse is faced with the box �lter (Pope
2000). As a consequence the Gaussian �lter is preferred in this work.

11.1.3 Filtered velocity �eld with di�erent �lter size

For the selected Gaussian �lter the energy spectra is plotted for various �l-
ter width in Figure 11.3. Because of the periodic boundary conditions used,
one can notice the oscillatory behavior for the wavenumber greater than the
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Figure 11.2: Energy Spectrum �ltered with box �lter, Gaussian �lter and sharp cut
o� �lter with a �lter size ∆ = 0.046875

wavenumber of the �lter width. These oscillations increase with the size of the
�lter and are ampli�ed more with the box �lter.
In addition, the mean value of the subgrid dissipation is plotted at the top left
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Figure 11.3: Energy Spectrum �ltered with Gaussian �lter with various �lter size

of Figure 11.4 as a function of the �lter size. The value based on the subgrid
velocity �eld is shown in red with triangular symbols compared to the mean
dissipation of the DNS velocity �eld in black. It is important to note that
neither one of the two estimations is exact.
The mean subgrid kinetic energy, the Lagrangian integral timescale of the resid-
ual gas �eld velocity T rL using 〈ε〉, the mean value of the subgrid stress tensor
and the percentage of resolved kinetic energy are also shown in Figure 11.4.
For a �lter size ∆ > 0.1, the various quantities have a nearly linear dependence
on the �lter width. The subgrid terms increase with the �lter width whereas
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the percentage of the resolved kinetic energy decrease with increasing ∆.
Finally, the values of T rL computed based on 〈ε〉 and 〈εr〉 are shown in Figure
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Figure 11.4: Subgrid parameters and percentage of resolved kinetic energy as a func-
tion of the �lter size

11.5 for di�erent �lter sizes.
In the following, the �lter size is set to ∆ = 0.14844 where the percentage of
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Figure 11.5: Lagrangian integral timescale of the residual �uid velocity as a function
of the �lter size

the resolved turbulent kinetic energy is nearly 84%.

The selected �ltered gas velocity �eld is now presented. The DNS velocity �eld
of the gas along with the �ltered velocity �lter with a Gaussian �lter of size
∆ = 0.14844 and the corresponding residual velocity �eld are illustrated in
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Figure 11.6.
Using the same �lter, the elements of the subgrid-scale stress tensor are com-
puted and shown in Figure 11.6. This tensor highly in�uences the closure since
it is included directly in the terms λ and µ since the response coe�cients are
multiplied by this tensor and indirectly since the response coe�cients depend on
the value of the Stokes number StrL based on the Lagrangian integral timescale
of the subgrid gas �eld velocity T rL that was assumed to be proportional to the

subgrid turbulence kinetic energy 〈TKEr〉 =
∑
i τg,ii
2 .

Figure 11.6: DNS (left), �ltered (center) and residual (right) �uid velocity

Figure 11.7: Residual stress tensor τg,11 (left), τg,22 (center) and τg,12 (right)

11.2 Qualitative results

Now that the test case is de�ned along with the subgrid terms, the qualitative
results are presented for the DNS, the DNS with �ltered gas, the DNS results
based on the �ltered NDF and the LES with the most suitable value of the
parameter T rL for each case of the studied Stokes numbers. It is important
to note that for the number density and the velocity the �ltered DNS result
and the DNS results based on the �ltered NDF are equivalent so in this case
for simplicity the DNS results based on the �ltered NDF are also called DNS
�ltered results. However, this is not the case for the energy.
The presented results are simulated using a �rst order HLL �nite volume scheme
on a 5122 mesh for both DNS and LES results. The same mesh is chosen for the
various simulations in order to concentrate on the model evaluation by isolating
the di�erences due to numerical errors. In addition, the DNS in this case is
based on the DNS AG simulation which presented itself some limitations in
simulating high St cases. An alternative choice would have been to take the
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Lagrangian simulation as reference. This choice is not retained in this study in
order to compare the DNS and LES results based on the same level of numerical
accuracy.

11.2.1 Stokes number = 0.1

The number density results at a time t = 10τp are shown in Figure 11.8 where
qualitatively the LES result with T rL = 0.05 matched the �ltered DNS number
density while the DNS with �ltered gas is more comparable to the DNS number
density.
When it comes to the velocity, both LES results qualitatively match the DNS

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.05

Figure 11.8: Number density for St = 0.1 at t = 10τp

Favre �ltered velocity as shown in Figure 11.9. In this case, the disperse phase
velocity �eld of the LES is similar the �ltered gas velocity illustrated in Figure
11.6. One can note that in this case even if the time is chosen large enough

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.05

Figure 11.9: Velocity for St = 0.1 at t = 10τp

compared to the relaxation time of the particles but is it not long enough
compared to the integral time of the DNS gas motion (with τL = 1.8667 based
on the velocity autocorrelation function). For this reason, the results are also
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shown for a �nal time t = 36.62 where the number density obtained through
the LES with T rL = 0.05 is dissipated more than the �ltered DNS leading to
smaller vacuum zones as shown in Figure 11.10. As for the velocity, the results

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.05

Figure 11.10: Number density for St = 0.1 at t = 36.62

are kept nearly unchanged in comparison with those at t = 10τp (see Figure
11.11)

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.05

Figure 11.11: Velocity for St = 0.1 at t = 36.62

11.2.2 Stokes number = 1

For the critical Stokes number, the number density results are shown in Figure
11.12 for t = 36.62. The LES number density with T rL = 0.08 is qualitatively
similar to the �ltered DNS number density whereas the DNS with �ltered gas
overestimates the number density compared to the �ltered DNS and even com-
pared to the DNS itself. In order to focus the attention on the di�erences
between the various number density �elds a zoom in view is shown in the bot-
tom of Figure 11.12 where the overestimation of the number density by the
DNS with �ltered gas is clearly seen along with the similarities between the
LES result and the �ltered number density.
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(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.08

(e) DNS (f) DNS, �ltered gas (g) DNS �ltered (h) LES, T rL = 0.08

Figure 11.12: Number density for St = 1 at t = 36.62, full scale (top) and zoom in
(bottom)

This result can also be seen through the velocity �elds where the DNS with
�ltered gas overestimates some regions of vacuum (black spots) compared to the
Favre �ltered DNS velocity as shown in Figure 11.13. In spite of this di�erence
globally both LES results are very similar.

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.08

Figure 11.13: Velocity for St = 1 at t = 36.62

11.2.3 Stokes number = 5

For St = 5 and t = 36.62 the number density is overestimated with the DNS
with �ltered gas. This overestimation can be clearly seen in the zoom in win-
dow shown in Figure 11.14. On the other hand, the general structure of LES
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number density for T rL = 0.1676 qualitatively matches the number density of
the �ltered DNS number density without overestimations. This time scale is
the estimate based on the assumptions of Zaichik et al. (2009).

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.1676

(e) DNS (f) DNS, �ltered gas (g) DNS �ltered (h) LES, T rL = 0.08

Figure 11.14: Number density for St = 5 at t = 36.62, full scale (top) and zoom in
(bottom)

Looking at the velocity �elds in Figure 11.15, no noticeable di�erences are man-
ifested between the di�erent simulations.

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.1676

Figure 11.15: Velocity for St = 5 at t = 36.62
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11.2.4 Stokes number = 15

In the case of the highest Stokes number studied, St = 15, the LES number
density with T rL = 0.2965 is more comparable to the �ltered number density of
the DNS then the DNS with �ltered gas at t = 36.62. The latter overestimates
the number density as shown in Figure 11.16.
It is important to note that for the cases of inertial particles, the reference
DNS results selected is not the most accurate result since it is based on the AG
model. This latter cannot accurately describe the large scale PTC that can be
encountered for high St. As a consequence, the other qualitative and statistical
results for this Stokes number will not be presented individually, they will only
be shown for the evolution of a given statistical quantity in function of the
particles inertia.

(a) DNS (b) DNS, �ltered gas (c) DNS �ltered (d) LES, T rL = 0.2965

Figure 11.16: Number density for St = 15 at t = 36.62

11.3 Statistical results

Even if the qualitative results are an evidence of the utility of the subgrid
model, they are not enough and in some cases they are not conclusive. For a
better comparison between the di�erent LES subgrid models and a sensitivity
study of the Lagrangian integral timescale of the residual gas �eld velocity T rL,
statistical results for the segregation and the mean total energy are presented.
This comparison is carried out for various Stokes numbers and the evolution of
the statistics as a function of time is shown for the di�erent LES results, DNS
results and �ltered DNS results. Finally, the energy budget analysis is presented
for both the total and internal energy along with the comparison between the
�ltered DNS internal energy and the internal energy obtained based on the
�ltered NDF.
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11.3.1 Stokes number = 0.1

For the smallest St studied, the statistics are presented for the full time range
with a zoom on the range where t < 10τp in Figures 11.17 and 11.18 for the
segregation and mean total kinetic energy respectively.
For t < 10τp, the segregation of the LES results with T rL = 0.05 �ts the �ltered
DNS segregation whereas all the other simulations overestimate it.
When investigating these results for a longer time, one can note that the right
level of segregation is not obtained with any LES model. In comparison with
the segregation level obtained with the DNS with �ltered gas, all the subgrid
model corresponding to the studied values of T rL do not present any advantage
if one takes as a reference the �ltered number density segregation.
On the other hand, for the mean total energy all the LES results lead to higher
energy in comparison with the DNS with �ltered gas. This level increases with
the increase of T rL.
For the following comparisons, only the full time range is shown.
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Figure 11.17: Segregation for St = 0.1
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Figure 11.18: Mean total energy for St = 0.1
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11.3.2 Stokes number = 1

The temporal evolution of the segregation for St = 1 is shown in Figure 11.19.
One obtains segregation levels comparable to the �ltered DNS result when tak-
ing 0.05 < T rL < 0.08. The segregation level increases with the decrease of the
T rL until reaching the limit of no subgrid model.
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Figure 11.19: Segregation for St = 1 at t = 36.62

The mean total kinetic energy illustrated in Figure 11.20 shows that the level
of energy increase with T rL and is more comparable to the DNS energy.
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Figure 11.20: Mean total energy for St = 1 at t = 36.62

For any of the chosen values of T rL, the LES results with subgrid model are
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more accurate than the DNS with �ltered gas. It is important to note that
the �ltered DNS is not shown in this case since the �lter does not a�ect the
mean total energy. Thus, the reference is the mean total energy of the DNS
simulation.

11.3.3 Stokes number = 5

For St = 5, the segregation is well estimated by the LES when taking the
Lagrangian integral timescale of the residual gas �eld velocity based on the
estimation of Zaichik et al. (2009): T rL = 0.1676 shown in dashed red lines in
Figure 11.21. For higher T rL, the segregation is underestimated and vice versa.
The mean total energy is shown for this case in Figure 11.22 where the case
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Figure 11.21: Segregation for St = 5 at t = 36.62

of T rL = 0.2965 estimates the best this energy while above this limit the energy
is overestimated as seen for example for T rL = 0.6832 (see Figure 11.22).
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Figure 11.22: Mean total energy for St = 5 at t = 36.62

11.3.4 Statistics as a function of Stokes number

When comparing the segregation of the di�erent simulation at t = 10τp as a
function of the Stokes number, one can directly notice the sensitivity of the
LES results on the estimation of the time scale T rL (see Figure 11.23). The seg-
regation increases with the decrease of T rL. At this time, for St ≤ 5 the most
suitable value of T rL for the right segregation level compared to the �ltered DNS
results is the one estimated based on the assumption of Zaichik et al. (2009):
T rL = 0.1676. For higher Stokes number the results with T rL = 0.2965 are more
comparable to the �ltered results, but one should keep in mind that the DNS
in this case in based on the AG model that generates itself errors in the case
of inertial particles. For the case of small Stokes number, St < 0.5, the most
suitable closure is obtained for T rL = 0.05 but this is only the case for short
times.
The same results are plotted in Figure 11.24 at t = 36.62 where the most

suitable closure is obtained with T rL = 0.08 for St ≤ 1, with T rL = 0.1676 for
1 < St < 8 and with T rL = 0.2965 for 8 ≤ St < 15.
When it comes to the mean total kinetic energy the results are shown respec-
tively for t = 10τp and t = 36.62 in Figures 11.25 and 11.26. Where the LES
closures are shown to be advantageous compared to the DNS with �ltered gas.
For the levels of T rL studied, the mean total energy is better estimated when
increasing T rL for St < 5. Above this limit, the case with T rL = 0.2965 recovers
the energy level more precisely than all the other models.



300 Chapter 11 - AG LES preliminary results

0 5 10 15
Stokes number

1

1.5

2

2.5

S
eg

re
ga

tio
n

Segregation evolution with Stokes number

DNS
DNS filtered
no SG models
LES T

L
r  =0.0500

LES T
L
r  =0.0800

LES T
L
r  =0.1676

LES T
L
r  =0.2965

LES T
L
r  =0.6832

Figure 11.23: Segregation as a function of the Stokes number at t = 10τp
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Figure 11.24: Segregation as a function of the Stokes number at t = 36.62



Part IV - Towards LES modeling of the disperse phase 301

0 5 10 15
Stokes number

0.015

0.02

0.025

0.03

0.035

0.04

M
ea

n 
T

ot
al

 E
ne

rg
y

MTE evolution with Stokes number

DNS
no SG models
LES T

L
r  =0.0500

LES T
L
r  =0.0800

LES T
L
r  =0.1676

LES T
L
r  =0.2965

LES T
L
r  =0.6832

Decreasing T
L
r

Figure 11.25: Mean total energy as a function of the Stokes number at t = 10τp
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Figure 11.26: Mean total energy as a function of the Stokes number at t = 36.62

11.3.4.1 Energy budget analysis as a function of the Stokes numbers

The trace of the total kinetic energy tensor is shown in Figure 11.27 for the DNS
simulation, the �ltered DNS simulation and the computed results based on the
sum of the �ltered central energy and �ltered correlated energy on the one hand,
and based on the sum of central energy of the �ltered NDF and the correlated
energy of the �ltered NDF on the other hand. The correlated part of this total
energy is also depicted as a function of Stokes number. Based on these results,
one can directly notice the di�erence between the �ltered correlated energy

~̃u⊗ ~u and the correlated energy of the �ltered NDF ~̃u ⊗ ~̃u. This di�erence
is the subgrid contribution nΣr as explained in the previous chapter, and it
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decreases with the increase of St. Another important observation is that the
total energy is not sensitive to the �ltering and is equivalent if computed based
on the �ltered DNS results or the results of the �ltered NDF. The fact that
the total energy is una�ected by the �ltering is expected and it was discussed
earlier in Part III.
The di�erence between the traces of the �ltered central energy, nΣ̃(~x), the
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Figure 11.27: Trace of the total energy as a function of Stokes number at t = 36.62
showing the DNS result (black plus sign) and the �ltered results obtained by directly
�ltering the total energy (black line with rectangles) or computed based on the �ltered
central energy (blue circle) and central energy of the �ltered NDF (red diamonds) along
with the �ltered correlated energy (blue line with circles) and the correlated energy of
the �ltered NDF (red line with diamonds).

central energy of the �ltered NDF, nΣf (~x), and the subgrid contribution nΣr

is plotted in Figure 11.28. The decrease of the subgrid contribution already
mentioned in the total energy analysis is veri�ed. In addition, the computed
�ltered internal energy based on the internal energy of the �ltered NDF minus
the contribution of the subgrid scales is found to be identical to the directly
�ltered internal energy. The same can be said about the computed internal
energy of the �ltered NDF based on the �ltered internal energy.
The �ltered internal energy increases with St and is not sensitive to the �ltering
since this is solely based on the de�nition of spatially uncorrelated energy.
However, the internal energy of the �ltered NDF, which is used in this work,
includes the contributions of both the uncorrelated energy and the subgrid
energy. One can notice that the �nal dependence of this internal energy of
the �ltered NDF on St is the results of the competition of the increase of the
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�ltered internal energy and the decrease of the subgrid internal energy.
Lastly, since the di�erence between the internal energy of the �ltered NDF,
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Figure 11.28: Budget analysis of the trace of the internal energy tensor as a function
of the Stokes number at t = 36.62 for the DNS based results: central energy (black plus
sign) , �ltered central energy (blue circle) and central energy of the �ltered NDF (red
diamond) and the subgrid central energy (green triangle).

used in this work as a reference for the LES results, and the �ltered internal
energy classically used in the literature (Moreau et al. 2010) is clari�ed, the
evolution of the mean internal energy for the LES results as a function of St
can be addressed. These results are shown in Figure 11.29. The St dependence
of the mean internal energy previously observed in the internal energy of the
�ltered NDF is recovered by all the LES results with the subgrid models unlike
the case of DNS with �ltered gas. This mean internal energy increase with T rL,
and the point of minimum MCE is obtained for higher St when increasing T rL.
The most comparable result to the mean internal energy of the �ltered NDF is
obtained for T rL = 0.2965.
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Figure 11.29: Mean internal energy as a function of the Stokes number at t = 36.62
for the LES results compared to the mean internal energy of the DNS result (black line
with circles), the �ltered DNS (red dotted line with circles) and the results based on
the �ltered NDF (red line with rectangles).

11.4 Conclusion

The results presented in this chapter are considered only preliminary results
that show the sensitivity of the LES result on the subgrid closures in general
and on the estimation of the Lagrangian characteristic time of the particles in-
teractions with the residual �uid velocity. Through these results, it was noticed
that the error of the LES subgrid model increase for small St, this is expected
since while deriving these closures based on the Furustu-Donsker-Novikov for-
mula for Gaussian random functions, Zaichik et al. (2008) neglected some
terms that results in negligible errors for high St but the error is increased for
low-inertial particles (Zaichik et al. (2008; 2009)).
In addition, the energy budget is analyzed with a comparison between the �l-
tered central energy, Σ̃(~x), the central energy of the �ltered NDF Σf (~x). The
total kinetic energy in the case of the fully kinetic based LES was found to
be composed of three contribution: the �ltered correlated kinetic energy, the
internal (or central) energy of the �ltered NDF and the subgrid internal energy
Σr.
Finally, in order to evaluate the AG LES model more realistic 3D simulations
must be carried out, in the future, coupled with a dynamic turbulence. For
these simulations, one can envision local values at the scale of the �lter width
of the time scale T rL. The present work proves the important for these prospect
studies since the LES results were found to be very sensitive to the subgrid
closure in general and to T rL more speci�cally.



Conclusions and future works

In the general framework of predictive simulations of two-phase combustion
in aeronautical burners, various phenomena can be encountered. These latter
belong to three main disciplines: the dynamics of the liquid fuel phase, the
turbulence of the carrier gas phase and the combustion process. High-�delity
simulation of the combustion chamber should rely on the accurate description
of these multi-scale multi-physics building blocks driving the two-phase com-
bustion as well as the complex interactions between them.

Figure 11.30: The general liquid fuel dynamics, combustion and turbulence interac-
tions along with the focus of the presented study in blue.

In fact, the full understanding of these various phenomena and their reciprocal
in�uence on each other is the main milestone towards designing new combus-
tion chambers where the pollutants emission is controlled, the global e�ciency
of the system is increased, the noise is reduced and the combustion instabilities
are monitored.
In this context, the focus of the work presented in this thesis was the model-
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ing and the simulation of the spray in the turbulent region downstream of the
injector. This center of attention is situated in the general context along with
the various phenomena and the practical long-term objectives that drove this
study in Figure 11.30.
The precise modeling of this disperse phase is necessary as well as the accurate
and robust numerical strategy used for the resolution of the resulting systems
of equation, thus these two axes constituted the di�erent contributions of this
thesis. These contributions along with short- and long-term prospects are pre-
sented in the following sections.

Results and achievements

The contributions of this thesis are divided into three major parts:
• Modeling and simulation of the disperse phase in the context of DNS
The Anisotropic Gaussian model was chosen in this work based on the
review of the models available in the literature that can treat polydis-
persion and polykineticity. This choice was based on the objectives of
guaranteeing the realizability of the controlled moment set and the well-
posedness of the resulting equations.
The polydisperse extension of the AG model has also been proposed based
on the OSM and TSM multi-�uid methods.
The main goal of this work was a nearly extensive evaluation of the AG
model on a 3D turbulent con�guration, through a one-way coupling with a
forced Homogeneous Isotropic Turbulence �eld for the gas. For this objec-
tive, the AG3D model was implemented in the parallel solver MUSES3D
using a realizability-preserving second order MUSCL/HLL scheme. This
evaluation was done for a wide range of Stokes number ranging from
St = 0.05 to St = 15. The model was compared to a Lagrangian refer-
ence simulation and to the monokinetic model based on:
� qualitative results such as the number density �eld, the velocity
magnitude and the velocity dispersion;

� quantitative mean statistical results .i.e. the segregation, the mean
total energy and the mean internal energy;

� quantitative results for the distribution functions of the number den-
sity, the velocity, the pressure and the disperse phase Mach number
based on the classical de�nition and on a new de�nition proposed in
this work;

� quantitative results for the number density autocorrelation, the lon-
gitudinal velocity autocorrelation and the internal energy autocorre-
lation, as well as characteristic scales based on these autocorrelation
functions.

These qualitative and quantitative results were used to compare and as-
sess the AG model. This latter was found to be a useful model for the
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accurate description of the disperse phase motion for StE < 1. This
model gives a compromise between the level of details of the description
of the PTC and the cost and complexity of the method and is thus, a
good candidate for complex applications of spray combustion.
• Numerical resolution of the resulting systems
In order to obtain accurate and robust results, the resulting systems of
equations should be solved with realizability-preserving high order meth-
ods. In addition, the scheme should be applicable to unstructured mesh
computations needed to simulate the spray in real con�gurations includ-
ing complex geometries such as the combustion chamber. Based on these
objectives, a new scheme for the resolution of weakly hyperbolic and hy-
perbolic systems on unstructured grids was used. This is the realizability-
preserving DG scheme. The DG results were compared in 1D and 2D
con�gurations to other third order and second order schemes. It was also
evaluated and compared on a 2D test case qualitatively and quantita-
tively to the Lagrangian results and to the reference simulations provided
by the second order structured realizability-preserving MUSCL/HLL �-
nite volume scheme.
This evaluation was carried out for the resolution of the PDG and Euler
system resulting respectively from the MK and isotropic Gaussian models.
This was done based on structured mesh. Through these comparisons,
the DG method was shown to be competitive for the description of the
spray dynamics and suitable for the spray combustion application. This
parameter-free scheme stays robust even when facing the severe singular-
ities created by the models, especially the MK model that generate dirac
δ-shocks. It can accurately reproduce the high preferential concentration
that characterizes the dynamics of low inertia particles as well as the right
segregation level. These accurate description of these quantities is essen-
tial in the domain of spray combustion since they a�ect the local mixture
fraction, the evaporation rate and the �ame structure.
• Extension of the AG model to the LES
The AG model was extended for LES in this work in order to be able
to compute realistic con�gurations where high Reynolds �ows make the
simulation of the whole range of scales unreachable. In the aeronautical
burners these scales range from the system size of about 10cm to the
smallest turbulent eddies that can reach the order of 1µm.
Classically, in the literature the extension of a DNS model for the disperse
phase is usually done by directly �ltering macroscopic conservation laws
constituting the DNS model (Moreau et al. 2010). In this thesis, another
approach was chosen by applying the �lter at the mesoscopic kinetic level
(Zaichik et al. 2009), in order to keep a direct link between the �ltered
moment equation and the �ltered kinetic equation that helps guaranteeing
the realizability of the moment set.
Based on this strategy a LES formalism was developed using fully kinetic-
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based closure. Finally, the AG-LES model was assessed in a monodisperse
con�guration using the simplest form of the subgrid term on a 2D frozen
HIT. These results constitute only a �rst preliminary example that shows
the importance of the accurate description of the unresolved scales and
the challenge faced to select the right subgrid closures.

These contributions represent a step forward toward the long objectives of the
high �delity simulation of the spray combustion. In fact, the studied AG model
opens a new possibility for accounting for the moderate to inertial droplets
(or particles) dynamics in industrial con�gurations. The implementation of
this model in the CEDRE code is an on-going work in the thesis of Dupif
(2017). In addition, this realizable model along with the realizability-preserving
parameter-free high order numerical schemes can o�er great advantages in the
AVBP code. This possibility comes in the continuity of the support of SNECMA
SAFRAN for this work.

Finally, it is important to note that even if the general context of this study is
oriented to spray combustion in aeronautical burners, the models and numerical
methods studied in this thesis can be used in many other applications such as
the alumina particles in rocket engines, aerosols and clouds in environmental
applications and proto-planetary nebula in astronomical applications.

Future works

As far as the prospects of this work are concerned, several types of extensions
can be envisioned whether in the general academic context or the industrial
context of the spray combustion applications. Some of these future works can
be ful�lled on the short term and others need further improvement in various
domains in order for them to be reachable. Among the diverse possibilities,
eight openings are considered:
• The evaluation of the AG model on other con�gurations should be con-
ducted namely on the 3D turbulent sheared �ows similar to the one stud-
ied in the work of Dombard (2011); Masi and Simonin (2012). In addi-
tion, the AG model from the KBMM hierarchy should be compared on
such a 3D con�guration to the 2Φ-EASM model from the ACBMM family
as an extension of the 2D comparison presented in the work of Vié et al.
(2012).
• The development of a comprehensive two-way coupled, polydisperse model
based on the AG model to statistically treat the PTC and on a similar
model to take into account the temperature dispersion. The two-way
coupling itself for the AG model is treated in the theses of Dupif (2017);
Mercier (2018). In this model, one should also account for the coalescence
and break-up (Doisneau 2013) of the particles. In this way, the di�erent
interactions between the particles themselves and between the disperse
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Figure 11.31: Liquid fuel number density (left) and fuel vapor mass fraction (left)
obtained with the multi-�uid MK simulations for a cold �ame con�guration on a 2D
HIT.

phase and the carrier phase would be represented.
• AG for spray combustion: the direct extension of the simulation presented
in this work concerns the physical analysis of evaporating spray prior to
the combustion. This can be done based on the TSM-AG that should be
implemented in the MUSES3D code in order to simulate simpli�ed cold
�ames con�gurations similar to the ones conducted in the work of Fréret
et al. (2010); Fréret et al. (2012) based on the OSM-MK model. An
example of this con�guration in 2D is illustrated in Figure 11.31.
This test should be done �rst in the simpli�ed framework of 3D HIT with
two-way coupling that can lead to understand the interaction between the
3D turbulent eddies and the spray dynamics. This is possible based on
the TSM-AG model presented in this thesis, since it was designed in a
way to keep the genericity so that the two way coupling can be added
and complex laws for evaporation and heat transfer can be used in order
to accurately simulate the spray evaporation and combustion.
Another application in this context belongs to the NEXTFLAME-ANR1

that targets to compare experimental results against numerical simula-
tions for laminar stationary and pulsated spray of heptane evaporating
in a counter�ow con�guration. The �rst step of this comparison is done
based on the multi-�uid MK model (Brandle De Motta et al. 2016) as
shown in Figure 11.32. The next step comes as a prospect of this thesis
by comparing the experimental and Lagrangian results with the Eulerian
results based on the multi-�uid AG model for the cases where PTC occur.
The importance of extending this study to include the AG model can be
seen through the overestimated number density of the droplets by the
MK models as shown in Figure 11.32(b). The 2D axisymmetric version
of the AG model is studied in the thesis of Dupif (2017) and can be found

1supported by the ANR and the FRAE through the grant ANR-13-BS09-0023-01 and is
a joint work between the EM2C laboratory and the CERFACS.



310 Conclusions and future works

1.0 0.5 0.0 0.5 1.0
Radial position r/D

1.5

1.0

0.5

0.0

Ax
ia

l p
os

iti
on

 z
/D

0.0

0.26

0.52

0.78

1.04

1.3

1.56

1.82

2.08

2.34

Dr
op

le
ts

 d
en

si
ty

 Y
l
/
Y
l 0

(a) The droplets density

1.0 0.5 0.0 0.5 1.0
Radial position r/D

1.5

1.0

0.5

0.0

Ax
ia

l p
os

iti
on

 z
/D

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Va
po

r m
as

s 
fra

ct
io

n 
Y
v
/
Y
l 0

(b) The fuel vapor mass fraction

Figure 11.32: Comparison between the Lagrangian (left on each sub�gure) and OSM-
MK (right on each sub�gure) results for the axisymmetric counter�ow con�guration
(Source Brandle De Motta et al. (2016))

in the work of Dupays et al. (2016).
• Extension of DG: the evaluation of the realizability preserving DG scheme
was done in this thesis on 1D and 2D con�gurations for the resolution
of the PDG and Euler system on structured mesh. Thus, a �rst exten-
sion can be sought by applying this scheme to the Anisotropic Gaussian
closure model, a preliminary result for this case was presented in this
thesis based on the work of Larat et al. . This should be followed by
quality/cost comparisons between the DG and the MUSCL/HLL results
for this model similar to the one carried on for MK model in this thesis.
A second prospect is to extend the DG scheme to higher order and to
three-dimensional space. This extension should be supported with a
cost/quality comparison between DG and other FV (similar to the one
presented in this work) on 3D con�guration on unstructured meshes. To
do so, the multi-slope version of the MUSCL/HLL scheme developed in
the work of Dupif (2017) can be used. This comparison is essential to
prove that the DG scheme is competitive with the FV scheme for the
simulation of the spray in complex industrial con�gurations.
• Coupling between MK and AG: depending on the particles St and local
�ow regime one can prefer to choose between the MK or the AG. On
the one hand, the MK model is cost e�ective and treats accurately the
vacuum regions and the singularity faced for low inertia particles but is
incapable of reproducing the PTC. On the other hand, the AG model
can reproduced the right physics for low inertia to moderately-inertial
particles but is more expensive than the MK model where compared for
the same level of accuracy for small St. For this reason one tends to prefer
the MK for small St and AG for moderately-inertial to inertial particles.
For this reason, a relaxation scheme should be used similar to the one
used in the work of Boileau et al. (2015) to treat both PGD and Euler
system. This extension is a on-going work (Boileau et al. 2016).
• Subgrid models for AG LES: the extension of the AG model to the LES
context that leads to a new fully kinetic based closure formalism for the
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LES of spray is the �rst step toward the development of a realizable
polydisperse/polykinetic model for the LES of the disperse phase. In
future works, accurate subgrid models should be developed and evaluated
on con�gurations of increasing complexity in order to reach the level faced
in industrial applications. In addition the two-way coupling between the
disperse and the carrier phases should be taken into account. These two
subjects are on-going work in the thesis of Mercier (2018).
• Higher order models can be used such as the quadrature based moment
model based on a dirac distribution or a Anisotropic Gaussian for the
velocity leading respectively to QMOM or MG. The former is studied in
various con�gurations in the literature whereas the latter is still consid-
ered as a new model that is not fully assessed. The evaluation of the AG
model can be seen as a �rst step in the evaluation of the MG model since
this latter is based on the AG distribution for the quadratures choice,
however further evaluation of the MG model should be conducted but
one should keep in mind that the used on the MG is not considered for
industrial applications for the time being to its una�ordable cost. In ad-
dition other higher order models can be sought based on the Levermore
(1996) hierarchy of the rari�ed gas dynamics.
• High �delity predictive simulation of the complete fuel injection in the
aeronautical combustion chambers: this objective depends also the accu-
rate simulation of the separated phase itself and more challengingly of the
transition between the pure disperse phase and pure separated-phases and
thus the accurate simulation of the atomization process. Thus, it is envi-
sioned as an objective on the long run. The modeling of this transition is
a building block for future complete simulations. For more information
one can refer to the work of Reveillon et al. (2013); Le Touze (2015);
Zuzio et al. (2016), this subject in also an on-going work by Drui et al.
(2016); Essadki et al. (2016).
• Industrial simulation of aeronautical combustion chambers using the AG
model for the spray dynamics: in order to reach this objective, the AG
model should be implemented in the AVBP code. In order to simplify this
task, one can start by the implementation of this model along with the
realizability-preserving parameter-free numerical method for a monodis-
perse phase. Once this �rst step is validated on industrial con�gurations,
the extension to polydisperse evaporating cases can be then implemented.





Appendix A

Droplet models

The empirical correlations for the physical phenomena related to the unclosed
terms in theWBE are presented hereafter. They are classical models for isolated
droplets that are compatible with the deterministic and the kinetic description
of the disperse phase. These laws are essential to be able to replace the physical
droplet of mass mp, surface S = 4πr2

p, velocity ~c and temperature T by a point-
particle. The density of the liquid disperse phase ρl is considered to be constant.

A.1 External forces per unit mass

The external forces acting on a droplet can be divided into gravity, drag force,
Basset force and lift force (Crowe et al. 1998). In the context of gas-liquid
�ow, the gas to liquid density ratio is of order 10−3 to 10−2. In this case the
external forces reduce to the gravity and drag (Dufour 2005). In the present
work, the only external force that will be accounted for is the drag force. The
gravity is neglected only for the sake of simplicity.
A general form of the drag force per unit mass is written as a function of the
drag coe�cient (O'Rourke 1981; Sirignano 1999):

mp
−→
F =

1

8
ρgS(

−→
Ug − ~c)‖

−→
Ug − ~c‖ (A.1)

where the drag coe�cient depends on the turbulent regime and therefore on
the droplet Reynolds number Rep as shown in �gure A.1 (Clift et al. 1978).
The Reynolds number of the droplet is given by:

Rep =
ρg‖
−→
Ug − ~c‖

√
S

µg
√
π

(A.2)

The drag coe�cient is then given by the Stokes law (Stokes 1846) for Rep < 1,
by the experimental correlation of Schiller and Naumann (1935) for Rep > 103

or by many other relationships (Clift et al. 1978) such as the constant value
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Figure A.1: Drag coe�cient of a sphere as a function of Reynolds number

coe�cient given by Crowe et al. (1998) for higher Rep:

CD =


24Re−1

p if Rep < 1,

24Re−1
p (1 + 0.15Re0.687

p ) if 1 < Rep < 103,

0.445 if 103 < Rep < 3.5x105
(A.3)

The modeling approach presented in this thesis is valid for all the drag laws
and correlations depicted above, however the simplest model is chosen here.
This choice is acceptable when the droplets are small enough not to reach the
turbulent regimes. The drag force per unit mass reads:

F =
18πµg
Sρl

(
−→
Ug − ~c) =

(
−→
Ug − ~c)
τp

(A.4)

where τp is the characteristic momentum transfer time of the droplets also called
the velocity relaxation time:

τp =
Sρl

18πµg
(A.5)

A.2 Evaporation rate

The rate of change of the size is here reduced to only the evaporation since the
dilatation is not taking into account due to the assumption of constant disperse
phase density. The evaporation rate is then implicitly written in relation with
the mass variation of the droplet or the mass �ux of vapor at the droplet surface:

[ṁp]S = −ρl
√
S

4
√
π
RS (A.6)
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Then a di�usive mass boundary layer δm is de�ned to take into account the
relative velocity between the droplet and the carrier phase. In this case the
convective Sherwood number reads:

Shc = 2
δm

δm − rp
(A.7)

Based on the spherical symmetry of the droplet, a unidimensional formulation
is considered so that when no cheminal reaction takes place the conservation
laws of the fuel vapor mass fraction YF and of the total mass give:

[ṁp]S = 2πrpρgShcDYF ln(1 +BM ) (A.8)

where BM = [YF ]S−[YF ]∞
1−[YF ]S

is the Spalding dimensionless mass transfer number
and DYF is the binary di�usion coe�cient in the Fick's law.
Thus, the evaporation rate reads:

Rs = 4πrp
ρg
ρl
ShcDYF ln(1 +BM ) (A.9)

The details of the derivation of this model can be found in (Abramzon and
Sirignano 1989; Versaevel 1996; Reveillon and Demoulin 2007).
In the special case where the droplet temperature is assumed to be constant,
the d2 law (Godsave 1953; Spalding 1953) is obtained. This law states that the
rate of change of the square of the droplet diameter is equal to a coe�cient
ϕ independent from the droplet diameter and only depends on the local gas
properties.

dtd
2 = −ϕ (A.10)

In this case convective Sherwood number is equal to 2 and the evaporation rate
reduces to:

Rs = 8πrp
ρg
ρl
DYF ln(1 +BM ) (A.11)

where BM is either found through a saturation law (Reveillon and Demoulin
2007) or it is assumed to be constant.

A.3 Temperature change rate

The heat absorbed by the liquid Hl is the source of the temperature change
rate of the droplets:

Hl = mpCp,lHT (A.12)

In fact, this heat comes from the gas Hg so that the conductive heat balance
on the droplet surface gives:

Hg = [ṁp]SLv +Hl (A.13)
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where Lv is the vaporization latent heat and Hg = SλgdtTg = Shc(T∞ − [T ]S)
with hc being the convective modi�ed heat transfer coe�cient.
Similarly to the evaporation rate derivation, a thermal di�usive boundary layer
δT is de�ned with the Nusselt number Nuc = 2 δT

δT−rp . Then through the energy
conservation a new expression for the mass �ux of fuel vapor at the droplet
surface is obtained:

[ṁp]S = 2πrpC
−1
p,gNucλgln(1 +BT ) (A.14)

where BT =
ρgUgCp,g

hc
is the dimensionless heat transfer number. Based on

equations (A.8) and (A.14), the following expression for the temperature rate
of change is obtained:

HT = 6π
ρg

ρlSCp,l
ShcDYF ln(1 +BM )

(
Cp,g(Tg(~xp)− [T ]s)

BT
− Lv

)
(A.15)

with

BT = (BM + 1)
ShcSc
NucPr (A.16)

and the dimentionless Prandtl and Schmidt number respectively equal to:

Pr =
Cp,gµg
λg

and Sc =
µg
ρgDk

(A.17)

The above procedure can be found in details in Reveillon and Demoulin (2007);
de Chaisemartin (2009).
In general for given Shc, BM and BT the models for the evaporation and tem-
perature change rate are obtained. As it was mentioned before the simplest
case is for Shc = 2 when the heat transfer is negligeable. For more realistic
cases, many choices exist in the literature to take the convection into account
(Sirignano 1999) such as the empirical expressions for Shc and Nuc by Faeth
(1983) or other methods found in Abramzon and Sirignano (1989); Clift et al.
(1978).
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Academic, semi-industrial and in-
dustrial codes

B.1 Academic codes

NGA is a 3-D massively parallel, fully conservative, low mach CFD solver
for both DNS and LES of reacting turbulent �ows. The �uid mass, momentum
and energy conservation laws are solved using a high accuracy variable density
energy conserving �nite di�erence scheme (Desjardins et al. 2008) on cartesian
or cylindrical meshes. This code also includes a Lagrangian solver for the par-
ticle. The �rst version of this code have seen the light in 2005 at the Center for
Turbulence Research. Currently, it is maintained and developed by the research
group of Olivier Desjardins at Cornell University and Guillaume Blanquard at
CalTech. An example of a simulation of cluster induced turbulence using NGA
done by Capecelatro et al. (2014; 2015) is shown in �gure B.1.

NTMIX is a 3D fully parallel, structured DNS and LES solver for reactif two
phase �ows. The compressible Navier Stokes equations for the gas phase are
solved with a compact �nite di�erence scheme of order 6 (Lele 1992) and a three
stage Runge-Kutta scheme for the time evolution. The second part of this code
is the Lagrangian disperse phase solver. NTMIX is developed by the CRCT
(Centre de Recherche en Combustion Turbulente ) including CERFACS, IFP,
IMFT and EM2C (Poinsot et al. 1993; Cuenot and Poinsot 1996; Vermorel
et al. 2003; Riber 2007; Moreau 2006).

ASPHODELE is a 3D DNS low mach number code for the turbulent gas
phase with lagrangian tracking solver for the disperse phase. It is a structured
cartesian and axisymmetric code with MPI parallelisation. It uses an implicit
high-order compact �nite-di�erence scheme (Lele 1992) for the gas, it is a gen-
eralization of the classical FD schemes of type Padé. A third-order explicit
Runge-Kutta (RK) scheme with a minimal data storage method is used for

https://ctflab.mae.cornell.edu/nga.html
http://cerfacs.fr/logiciels-de-simulation-pour-la-mecanique-des-fluides/
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the time resolution. It is developed at CORIA by Reveillon and collabora-
tors (Reveillon and Demoulin 2007; Thomine 2011). At the time being, it is
maintained and evolved by CORIA and EM2C.

Figure B.1: Fluid vorticity magnitude in gravity-driven Cluster Induced Turbulence
(Capecelatro et al. 2015)

ARCHER is a 3D code for liquid/gas interface simulations. For the gas
phase, the convective terms are solved with a �fth order WENO scheme while
the di�usive terms are solved with a second order centered scheme with Adams
Bashforth or RK3 schemes in time. This code is developped at CORIA by
the group of Demoulin, F.-X. and Réveillon, J. (Tanguy and Berlemont 2005;
Menard et al. 2007).

FAST3D is a �ow solver based on the SHASTA algorithm Sharp and Smooth
Transport Algorithm (Boris and Book 1973; Zalesak 1997) that uses the Flux-
Corrected Transpor scheme in the LCPFCT library by Boris et al. (1993). It
was developped more than 20 years ago at the Laboratories for Computational
Physics and Fluid Dynamics of the US naval research laboratory. This code
used for example for the LES of urban aerodynamics by contaminant transport
(Patnaik and Boris 2010).

AZURE is a CFD software that includes an unstructured and structured
grids modules. For the unstructured one, the compressible Navier-Stokes sys-
tem is discretized using a cell-centered �nite vol-ume formulation on mixed-
element grids. The convective terms are solved by either second or third-
order MUSCL that satisties the TVD condition or 3rd and 5th orders WENO
schemes. It is developped at (Antoniadis et al. 2015).

MUSES3D is the the MUlti-�uid Solver for Eulerian Spray initially devel-
oped by de Chaisemartin (2009) at the EM2C. For the physical transport the

https://www.coria-cfd.fr/index.php/Archer
http://www.nrl.navy.mil/lcp/LCPFCT
http://perso.ecp.fr/~massotm/Page_personnelle_de_Marc_Massot/MUSES3D.html


Appendix B - Academic, semi-industrial and industrial codes 319

Finite Volume Kinetic Scheme (Bouchut et al. 2003) was implemented for the
resolution of the PDG system. Since this scheme is limited to the resolution
of the MK model, in this work, the implementation of second order MUSCL
scheme was carried out for the treatment of PDG and AG systems. This code is
massively parrallel and it includes both cartesian and axisymmetric discretiza-
tion.

CHOMBO is a software for AMR solutions of partial di�erential equations.
It is developped by the Applied Numerical Algorithms Group part of the Com-
putational Research Division at Lawrence Berkeley National Laboratory. Few
years ago, the PPMmethod was implemented in this code by Sekora and Colella
(2009).

TENET is astrophysical code that is an extension of the AREPO code of the
Heidelberg Institute for Theoretical Studies that is presented in the following
section. It is an MPI-parallel RKDG code that solves the Euler system on
AMR grids (Bauer et al. 2016; Schaal et al. 2015). One of the simulation done
recently on this code is the Kelvin-Helmholtz simulation shown in �gure B.2
that was solved with fourth order DG scheme by Schaal et al. (2015).

Figure B.2: Kelvin-Helmholtz simulation with DG-4 and AMR using the TENET
code (Schaal et al. 2015)

BoSSS is the Bounded Support Spectral Solver which is a CFD code initiated
by Kummer (2012). It is based on the DG scheme ans is currently developped
at the Technische Universitat Darmstadt.

DLR-PADGE is the Parallel Adaptive Discontinuous Galerkin Environment
of the German aerospace center (DLR). It solves the RANS equations with high
order adaptive DG methos on unstructured frids. Its main application is the
aerospace engineering (Hartmann et al. 2010; Schoenawa and Hartmann 2014;
Hartmann and Leicht 2016).

https://commons.lbl.gov/display/chombo/Chombo+-+Software+for+Adaptive+Solutions+of+Partial+Differential+Equations
http://www.fdy.tu-darmstadt.de/forschung_16/entwicklungcfdcode/entwicklungcfdcode.en.jsp
http://www.dlr.de/as/en/desktopdefault.aspx/tabid-4083/6455_read-9239/
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B.2 Semi-industrial and industrial codes

AVBP is is a parallel CFD code that solves the three-dimensional com-
pressible Navier-Stokes on unstructured and hybrid grids based on a cell-vertex
formulation. The associated numerical scheme is a Two-Step Taylor-Galerkin
scheme called TTGC, which is a �nite element scheme. This compact central
scheme achieves third order in time and space, and is well-designed for Large
Eddy Simulation (LES), especially in terms of dissipation and dispersion (Colin
and Rudgyard 2000). Despite the good properties of such a scheme for turbu-
lent reactive �ows, it has a hard time to solve the Eulerian moment equations:
because of the very sti� accumulations and gradients and vacuum zones, it re-
quires stabilisation procedures such as arti�cial viscosity which end up to be a
long iterative process for �nding the stable set of parameters (Lamarque 2007;
Martinez 2010; Vié 2010; Dombard 2011). This code started as a project in
1993 by Michael Rudgyard and Thilo Schönfeld. Currently, it represents one
of the most advanced CFD tools for the simulation of unsteady turbulence for
reacting �ows.
The ownership of this code is shared with IFPEN and CERFACS under the
leadership of Thierry Poinsot. It is used by multiple laboratories in Europe for
example IMFT, EM2C, Von Karmann Institute and ETH Zurich and compa-
nies such as SNECMA, TURBOMECA and Airbus Safran Launchers.
One of the recent simulation carried out using this code is the LES of the igni-
tion sequence of an full annular multiple-injector burner by Philip et al. (2015)
shown in �gure 5.1.

YALES2 is a massively parallel unstructured low-Mach number code for the
DNS and LES of reacting two-phase �ows. For the convective terms, it uses
secons and fourth order �nite volume scheme for the spatial descretization and
fourth order explicit integration in time. It was developed by Moureau et al.
(2011a). One of the interesting simulation done using this code is the LES pre-
diction of the PRECCINSTA burner shown in �gure B.3 performed byMoureau
et al. (2011b) at CORIA.

CharLES is an unstructured compressible �ow solver for LES. It uses a novel
FV scheme for the resolution of the spatially-�ltered compressible Navier-Stokes
equations (Khalighi et al. 2010). The shocks are handled with a hybrid sec-
ond order central-ENO scheme along with the HLLC numerical �ux (Hu et al.
2009). It is owner and developed by Cascade Technologies at Stanford.

RAPTOR is a turbulent combustion code developed at Combustion Re-
search Facility of Sandia National Laboratories by Oefelein et al. (2007). It
uses LES to explore the chemical and physical processes of combustion LES
using non-dissipative, discretely conservative, staggered, �nite-volume di�er-
encing.

http://www.cerfacs.fr/avbp7x/
https://www.coria-cfd.fr/index.php/YALES2
http://www.cascadetechnologies.com/charles/
https://www.olcf.ornl.gov/caar/raptor/
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Figure B.3: Turbulent structures resulting from the massively parallel LES predic-
tions of the PRECCINSTA burner with YALES2 code (Moureau et al. 2011a)

CEDRE is an unstructured multi-physics solver in the �eld of propulsion
and energetics. It can treat many physical phenomena such as combustion,
acoustics, compressibility and two-phase �ow. Thus, several solver constiture
the software; for example Charme solver for the �uid transport, SPIREE solver
for the eulerian description of the disperse phase, and SPARTE solver for the
Lagrangian description of this phase. It is developped at the ONERA and
is used for research and industrial applications using Arbitrary Lagrangian-
Eulerian (ALE) formalism. This software is presented by Re�och et al. (2011).
For the �uid solver called Charme, the equations are solved with a cell-centered
�nite volume approach where the interpolation is of type MUSCL. This method
can be either monoslope or multislope (Le Touze et al. 2015); the latter is very
useful on unstructured meshes. This scheme is also used in SPIREE along with
kinetic schemes FVKS for the spatial discretization of the convective terms
when the model is based on the MK closure (Murrone and Villedieu 2011).

SU2 is the Stanford University Unstructured tool suite. It solves complex
multi-physics problems on arbitrary unstructured meshes based on both FV
methods. The space discretization is a dual grid with control volumes con-
structed using a median-dual, vertex-based scheme. It also included FE meth-
ods. It is parallelized with MPI paradigm. This tool suite is is under devel-
opment in the Aerospace Design Lab of the department of aeronautics and
astronautics at Stanford university and has been released as an open-source
software.
In the main transport solver SU2-CFD, the convective �uxes can be discretized
using central or upwind methods at �rst order whereas for second order schemes
MUSCL approach is used with gradient limitation (Palacios et al. 2013). Re-
cently, single and multi-node optimizations of SU2 for implicit RANS calcula-
tions on unstructured grids is carried out byEconomon et al. (2016).

AREPO is a cosmological hydrodynamical simulation parallelized code on
a fully dynamic unstructured mesh with adaptive mesh re�nement. It uses a

https://www.coria-cfd.fr/index.php/YALES2_Gallery
http://cedre.onera.fr
http://su2.stanford.edu/index.html
http://www.h-its.org/tap-software-en/arepo/ 
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�nite-volume approach , based on a second-order unsplit Godunov scheme with
an exact Riemann solver. The FV scheme used is the MUSCL-Hancock scheme
with the Voronoi cells as principle control volumes. This code is developped
at Heidelberg Institute for Theoretical Studies by Springel (2010). Figure B.4
illustrate an astrophysical simulation using AREPO; it shows the time evolution
of the two galaxies falling together freely and undergoing a galaxy merger.

Figure B.4: Simulation of the evolution of the projected gas density in a galaxy
collision with non-radiative gas using the AREPO code (Springel 2010)

DLR-TAU is a software that solves the RANS equations using second order
�nite volume scheme. It is used on complex geometries and simulate subsonic
to hypersonic �ow regime on hybric unstructured mesh. It is developped by
the numerical methods department of the German aerospace center as both a
research tool and production tool for the aircraft industry and research com-
munity (Schwamborn et al. 2006).

KIVA is a family of CFD software for the simulation of chemically reacting
�ows with sprays. It is a 3D, transient, multiphase, multicomponent code de-
veloped by Los Alamos National Laboratory since 1985 (Amsden and Amsden
1993). The current version is unstructured and parallel (Torres and Trujillo
2006; Torres et al. 2010). It uses a �nite volume discretization technique
with ALE approach. For the disperse phase, a stochastic method is used for
Lagrangian particle dynamics. This software was used by many intustrial com-
panies such as General Motors and Cummins. This software is still used for
research in the combustion �eld for example the most recent simulation with
KIVA is of compressed natural gas direct injection engine (Choi and Park 2016).

Code_Saturne is open-source CFD software that solves the Navier-Stokes
equations in RANS or LES context for steady or unsteady �ows, laminar or
turbulent, incompressible or weakly dilatable, isothermal or not and with op-
tional scalars transport. For the convective terms this code propose di�erent
�nite volume solver with collocated arrangement for solution variables such
as the �rst order upwind scheme and Second Order Linear Upwind (SOLU)
Scheme. It also includes a Lagrangian particle-tracking method for the dis-
perse phase with ALE technique.

http://tau.dlr.de/code-description/
https://lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/index.php
http://code-saturne.org/cms/
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In 1997, this code was initially developed by Electricité de France (EDF) (Ar-
chambeau et al. 2004). Some of recent advancement on this code is its optimiza-
tion on Petascale systems by Fournier et al. (2011) and the implementation
of adapted numerical scheme for the simulation of the presence of spacer grids
with mixing vanes in nuclear reactors fuel assemblies by Capone et al. (2016).

Neptune_CFD is a fully unstructured �nite volume solver created by EDF and
CEA and �nancially supported by AREVA and IRSN. It is developped for
analysing and simulating thermal-hydraulics nuclear reactors. It is based on
advanced physical models such as two-�uid or multi �eld model combined with
interfacial area transport and two-phase turbulence (Guel� et al. 2007). A
version of this code is developped at the IMFT for the study of gas-particle
�ows in general and �uidized bed more speci�cally (Neau et al. 2010).

ARGO is massively parallel CFD code for compressible or incompressible
�ows. It includes several numerical scheme for example for the convective terms
a second order �nite volume scheme, a kinetic energy central scheme and also
high order discontinuous Galerkin schemes (de Wiart and Hillewaert 2015). It
is developped by Cenaero and included RANS and LES methodologies.

MIGALE is a parallel high-order accurate Discontinuous Galerkin code al-
lowing to solve the RANS equations. The high-order DG is used for the un-
steady simulation of turbulent �ows by using high-order implicit time integra-
tion schemes (Codenotti et al. 1998; Bassi et al. 2011; Bassi et al. 2015; Lorini
et al. 2016). An example of a simulation done using this code by Bassi et al.
(2014) on a delta wing is shown in �gure B.5.

Figure B.5: Turbulence intensity contours around VF2 medium radius delta wing
simulated with MIGALE code (Bassi et al. 2014)

http://hmf.enseeiht.fr/travaux/bei/beiep/content/g12/logiciel-neptunecfd 
http://www.cenaero.be/Page_Generale.asp?DocID=15338&langue=ENdeWiart2015
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AGHORA is a 3D massively parrallel, unstructured solver for the simulation
of NS equations. It is based on the DG scheme where the numerical �uxes across
the elements interfaces are based on Roe or Lax-Friedrichs approximations. Two
parallel implementation are found in this code the �rst one is based on the MPI
technique while the second is a hybrid MPI and OpenMP approach.

NEKTAR++ is an open-source software framework designed to support the
development of high performance scalable solvers for partial di�erential equa-
tions on unstructured grids. It included both continuous and discontinuous
Galerking FE schemes (Cantwell et al. 2015; Bolis et al. 2016) for the 3D
simulation of both compression and incompressible NS or Euler equations. The
software is currently maintained and developed by members of the SherwinLab
at Imperial College London and Kirby's group at the University of Utah.

It is important to note that is the above list some of the widely used commercial
codes are not mentionned such as ANSYS Fluent, ANSYS CFX, COMSOL
Multiphysics, Gerris and Star_CD. A comparison of three of these software,
namely Fluent, CFX and Star_CD was carried out by Iaccarino (2001) for
simulation of the turbulent �ow in an asymmetric two-dimensional di�user.

http://www.onera.fr/en/news/onera-a-world-class-leader-in-cfd
http://www.nektar.info


Appendix C

Slope limiters

van Leer (2006) de�ned the limiter as "a nonlinear algorithm that reduces
the high-derivative content of a subgrid interpolant in order to make it non-
oscillatory".
In order to ensure that the solution does not contain any spurious oscillations
and that a monotone advection is reproduced robustly using the �nite volume
methods, the limiter must satisty a Total Variation Diminishing (TVD) condi-
tion.
This property was �rst introduced by Harten (1983) inspired by the work of
Glimm and Lax (1967). The term TVD �gured at the �rst time in Harten
(1984); Sweby (1984).
The total variation TV is de�ned as the sum of the local variations:

TV(u) =
∑
i

|ui+1 − ui| (C.1)

In fact, if the scheme introduces oscillations then the total variation will in-
crease. Thus, a numerical scheme is said to be TVD if its total variation does
not increase with time. For this reason, this property was �rst called total
variation nonincreasing (TVNI) (Harten 1983).

TV(un+1) ≤ TV(un) (C.2)

Based on these de�nition, Harten (1983) proved that:
• a monotone scheme is TVD,
• a TVD scheme is monotonicity preserving.

Through this TVD property the ability of a scheme to stay globally stable in
the boundary variation space is evaluated.
In reality, a TVD scheme is used to capture the discontinuities without gener-
ating misleading spurious oscillations.
The theorem of Godunov (1959) presented earlier translates that TVD linear
schemes are at most of �rst order. Therefore, as mentioned before, high or-
der schemes require nonlinear techniques to stay TVD and the most famous
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method is based on the limiting procedure. The limiting technique was �rst
used by Boris and Book (1973); van Leer (1974). A detailed review of these
limiters can be found for example in Sanders and Bradford (2006); Toro (2009),
however in the following only a summary of the most widely used limiters is
presented.
The limiting functions de�ned by equation (C.3) is plotted in �gure C.1 as a

function of the smoothness monitor given by r =
ui+1 − ui
ui − ui−1

(van Leer 1974).

This is done for the following limiters: van Leer, van Albada, minimum-modulus
(minmod), Superbee and Double Minmod (also called monotonized central-
di�erence limiter (MC)) that are respectively given by equations (C.5), (C.6),
(C.7), (C.8) and (C.9).

R(r) =
2Dui

ui+1 − ui−1
(C.3)

And, the TVD condition is translated by equation (C.4) (Sanders and Bradford
2006).

R(r) 6 min

[
4r

r + 1
,

4

r + 1

]
∀ r > 0 (C.4)

As for the dissipation, if R(r) > 1 the limiter is antidissipative whereas when
R(r) < 1 it is dissipative.

Rvan Leer(r) =
2(r + |r|)
(1 + r)2

(C.5)

Rvan Albada(r) =
2r

1 + r2
(C.6)

RMinmod(r) = max

[
0,min

(
2r

1 + r
,

2

1 + r

)]
(C.7)

RSuperbee(r) = max

[
0,min

(
4r

1 + r
,

2

1 + r

)
,min

(
2r

1 + r
,

4

1 + r

)]
(C.8)

RMC(r) = max

[
0,min

(
1,

4r

1 + r
,

4

1 + r

)]
(C.9)

Thus, for r 6= 1, the minmod limiter is dissipative and smeares the discontinu-
ities. On the other hand, the double minmod or MC limiter generates the least
truncation error over the range of r, since for 1/3 < r < 3, it is characterised by
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Figure C.1: Van Leer diagram of slope limiters

R(r) = 1. In addition, the MC limiter has exactly the dissipation level required
to garantee the TVD limit. Another choice may be the Superbee limiter which
is anti-dissipative and therefore sharpens the edges.
Another way to represent these limiters is the Sweby diagram (Sweby 1984)
where the limiters are interpreted as �ux limiters. The limiter function ϕ is

represented as a function of the consecutive gradient ratio θ =
ui − ui−1

ui+1 − ui
which

is a measure of the smoothness of the data near the interface. This plot is
shown in �gure C.2 where the region of second-order TVD methods is shaded
in gray.
We can clearly notice that the Superbee limiter lies along the upper boundary
of the TVD region. whereas the Minmod limiter lies along its lower bound-
ary (LeVeque 2002) these two limiter are respectively the less and the most
restrictive limiters in the TVD region. Both of these limiters are not smooth
at θ = 1 since at this point they are changing from the Beam-Warming to the
Lax-Wendro� approximation. This problem is resolved with the MC limiter
where the limiter function is smooth near θ = 1.
For more information about this representation one may refer to the article of
Sweby (1984) or the book of LeVeque (2002) for example.
It is important to note that the list of the limiter presented in the above para-
graph is not complete for example a successful limiter that is not presented here
is the Koren limiter Koren (1993).
In the litterature several limiters were developped to attempt to remedy the
problem of degenerating to lower order of accuracy faced with all the classical
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limiters (Cada and Torrilhon 2009; Sekora and Colella 2009) but will not be
adressed in this work.
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