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Chapter 1

Introduction

The emergence and rapid expansion of e-commerce are drastically impacting the structure
of warehousing and distribution activity. According to the Ecommerce foundation, the Euro-
pean online retailers have shown an increase of 14% in 2017 [112]. Similarly, the United States
reaches a growth of 16% according to U.S. Census Bureau [68]. Moreover, the development of
e-commerce is boosting the shift to an on-demand economy. This shift is tremendously affect-
ing the distribution schema of several companies that aim to continue improving response time
to customers while efficiently offering their products in a multi-channel setting. The delivery
service level expectancy has significantly increased in the last decade: it is now expressed in
hours rather than days [220]. To this end, several global B-to-C players, and especially compa-
nies operating in the retail sector, such as Walmart, Carrefour, Amazon or jd.com, have recently
engaged a sustained reengineering of their distribution networks. They have favored a high
proximity to customers ship-to location as stores, and relay points among others, in addition to
home delivery [83]. This was done without reducing the efficiency of their consolidation poli-
cies in warehousing and transportation. When locating their warehouse platforms, companies
have followed various optimization rules going from centralization and risk-pooling incentives
to sourcing-dependent and financial constraints. Therefore, the warehouses’ location and the
structure are critically relevant attributes for a distribution network as much as the transporta-
tion to meet customer expectations.

With this in mind, having a cost-effective distribution network with a service level im-
provement mission is a strategic question for companies to increase competitiveness. In the
distribution network, finished products flow towards end-customers or aggregated zones from
a set of storage/warehouse platforms (WPs). These WPs location should be appropriately cho-
sen in order to cope with the business needs over time. More precisely, such problem consists
in deciding the network structure and the transportation scheme. The former determines the
number of echelons, facility platform types at each echelon, their number and their location,
where an echelon represents one level of the distribution network. Hence, the design of distribu-
tion networks involve both strategic location decisions and operational transportation decisions.
Clearly, strategic decisions have a direct effect on the operation’s costs as well as its ability to
serve customers [59, 99].

Distribution network design problems (DDPs) are particularly important. They have at-
tracted the attention of many researchers in the operations research (OR) literature over the last
decades. In [139], they have been classified in terms of the number of echelons in the distri-
bution network, echelons in which location decisions are made, and the transportation option
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involved in each echelon. Consequently, the DDP involves several classical OR problems and
innovative ones based on the problem modeling features. Figure 1.1 identifies five modeling
features that mostly affect the distribution network. These features are namely the transporta-
tion, the customer demand, the number of distribution echelons, the planning horizon and the
uncertainty.

Modeling features

Uncertainty
Typical scenario ω̄
Scenario sample ΩN Ă Ω

Ω

Planning horizon One design period
Multiple design periods

Distribution echelon
Multiple
Two
One

Customer demand Ship-to location / product
Aggregated zones / products

Transportation
Routes
Flow-based
Capacity allocation

Figure 1.1: Modeling features options

Looking at the transportation modeling feature in the upper level of Figure 1.1, we can
distinguish between capacity allocation, flow-based arcs and multi-node routes, and each op-
tion concerns a well-studied OR model. The capacity-allocation option results in a capacity
planning and warehouse location problem in which the aim is about deciding the warehouse lo-
cation and the amount of capacity assignment [147, 4]. When the transportation is represented
as origin-destination flows, a flow-based location-allocation problem is defined where a set of
warehouses should be located from a finite set of potential sites and customers are delivered by
direct flows from selected warehouses at the minimum cost [54, 15]. The third transportation
option concerns multiple node route that visits more than one node. This leads to a location-
routing problem (LRP). It integrates vehicle-routing problems (VRPs) that compute a set of
minimum-cost routes to meet customer demands [63, 221], with facility location-allocation
problems [97, 65]. Therefore, its aim is to find an optimal number of warehouses and their
locations, while building routes around them to serve the customers, simultaneously [139].
Moreover, these transportation options influence the modeling of customer demand feature in
terms of aggregated zones or products, and of single ship-to location.
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On the other hand, most of the DDP models studied so far consider a one-echelon distri-
bution structure where the network includes a set of WPs and customers. Nonetheless, with
the growth of e-commerce and continuous increase in cities population [70] contrasted with the
rising levels of congestion, such one-echelon networks constrain the companies’ ability to pro-
vide fast delivery services, and reduce their opportunities to meet today challenges: they are not
specifically optimized to provide next day and/or same day deliveries, or to operate efficiently
fast fulfillment and shipment services for online orders. In this new context, strategic considera-
tions imply a distribution schema with more than one-echelon that can be dynamically adjusted
to the business needs over time, as mentioned in the third level of Figure 1.1. Practitioners are
nowadays turning much attention to two-echelon distribution structures. The network topology
includes an intermediate echelon of distribution/fulfillment platforms (DPs) located between
the initial sites where inventory is held and the customers. According to Tompkins Supply
Chain Consortium, more than 25% of retail companies are adapting their distribution networks
by adding a new echelon of DPs [220]. For instance, Walmart plans to convert 12 Sam’s Club
stores into e-commerce fulfillment centers to support the rapid e-commerce growth [122]. In the
United Kingdom, Amazon is looking to acquire 42 Homebase stores to expand its network of
fulfillment centers and warehouses [157]. Additionally, this two-echelon distribution structure
covers recent city logistics models with two tiers of platforms for the case of multiple compa-
nies sharing platforms [61, 160]. Postal and parcel delivery also involves two-echelon structure
to distribute their products, but it concerns non-substitutable product [236]. From methodologi-
cal perspective, several authors have recently recalled the need to expand one-echelon networks
by considering an intermediate echelon of platforms where merging, consolidation or transship-
ment operations take place [215, 194]. As far as we know, only few works have investigated
this issue for distribution networks. Detailed reviews are presented in [178, 62, 71]. They show
that two-echelon distribution structure is still a relatively unexplored area.

Furthermore, strategic design decisions have a long-lasting effect. They are expected to
efficiently operate in a long-term period fulfilling future distribution requirements and parame-
ters fluctuations over time, as pointed out by Klibi et al. [130]. Studies have mostly considered
a single design period. But, this limits the strategic design decisions capability to be easily
adaptable to changes in the business environment over time. As highlighted in Figure 1.1, the
planning horizon can be partitioned into a set of design periods characterizing the future oppor-
tunities to adapt the design along with the evolution of the business needs. The design decisions
should be then planned as a set of sequential decisions to be implemented at different design
periods of the horizon (a year, for example).

Finally, there is a significant trend toward reducing the planning horizon in strategic stud-
ies. According to Tompkins report in (2011), the length of the re-engineering period defined in
strategic network design studies has reduced on average from 4 years to under 2 years due to
business uncertainty increasing, and distribution practices becoming more complex [219]. In
the literature, models are generally deterministic relying on a single typical scenario for prob-
lem parameters. However, incorporating uncertainty as a set of scenarios representing plausible
future realizations will provide a better design (see uncertainty feature options in Figure 1.1).
The uncertainty can involve the demand level, facility costs and transportation costs, etc. In
addition to their uncertainty, the problem parameters vary dynamically over periods following
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WPs DPs Customers

Capacity assignment Routes Recourse delivery

1rst Echelon

2nd Echelon

Figure 1.2: A generic Two-Echelon Distribution Network Design Problem (2E-DDP)

a trend function. Hence, the traditional deterministic-static representation of the planning hori-
zon is due to be replaced by a more realistic stochastic and multi-period characterization of the
planning horizon.

Extensive studies have addressed DDPs models. Nevertheless, the number of papers that
investigate the relevant modeling features jointly is very limited. The few works proposed in
this regard examine only a subset of these options and are, mostly, dealing with the one-echelon
distribution structure omitting the impact of extended two-echelon structure. They also assume
that strategic and operational decisions are made simultaneously for the planning horizon.

Our objective in this thesis is to point out the need to take into account the aforementioned
issues when designing an effective distribution network that offers more dynamic adjustment
to the business requirements over time and copes with the uncertain parameters factors. For
this aim, we introduce a comprehensive framework for the stochastic multi-period two-echelon
distribution network design problem (2E-DDP) under uncertain customer demand, and time-
varying demand and cost. As highlighted above, the 2E-DDP topology includes an advanced
echelon of DPs standing between WPs and customers. Figure 1.2 illustrates a typical 2E-
DDP partitioned into two capacitated distribution echelons: each echelon involves a specific
location-assignment-transportation schema that must be adapted in response to the uncertainty
shaping the business horizon.

Our modeling approach in this thesis involves periodically over a set of design periods
strategic facility-location decisions and capacity allocation to links between WPs and DPs to
efficiently distribute goods to customers’ ship-to bases. Then, on a daily basis, the transporta-
tion decisions are made on a response to the orders received from customers. This temporal
hierarchy gives rise to a hierarchical strategic-operational decision problem and argues the ne-
cessity of a stochastic and multi-period characterization of the planning horizon. Besides, our
planning horizon allows the design decisions to be adapted periodically at each design period
to align the distribution network to its business environment, especially when operating under
uncertainty. Therefore, the design of the two-echelon distribution network under a multi-period
and stochastic setting leads to a complex multi-stage stochastic decisional problem.

To study this comprehensive modeling approach, several models are proposed and dis-
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cussed in terms of solvability. The quality of solution is examined through exact based Benders
decomposition approach and heuristic.

In the following section, we define the structure of the thesis and subsequently highlight the
contributions of each chapter.

Thesis structure

The thesis is made by six chapters including this one. In the following, we present a brief
description of the contributions of each chapter.

Chapter 2: Two-echelon Distribution Network Design Problem under
Uncertainty: Literature Review

The literature contains a growing body of works focusing on the design of an efficient distri-
bution network. In this chapter, we present a comprehensive review on distribution network
design problems (DDPs) and provide a global survey of the current stream of research in this
field. We point out several shortcomings related to DDPs. These critical aspects involve two-
echelon structure, multi-period setting, uncertainty, and solution approaches. We discuss the
DDPs works with respect to these issues and stress their impact on the design of a distribution
network. Therefore, this survey emphasizes our interest to this type of problems in the thesis.

Chapter 3: Designing a Two-Echelon Distribution Network under De-
mand Uncertainty

This chapter first introduces our comprehensive modeling approach for the two-echelon distri-
bution network design problem under uncertain demand, and time-varying demand and cost,
formulated as a multi-stage stochastic program. Here, we are interested in 2E-DDPs dealing
with a generic context involving the deployment of the distribution network for a retailer. Thus,
the problem involves at the strategic level decisions on the number and location of DPs along
the set of planning periods as well as decisions on the capacity assignment to calibrate DP
throughput capacity. The operational decisions related to transportation are modeled as origin-
destination arcs, which correspond to a sufficiently precise aggregate of daily decisions over
several products, transportation means, and working periods.

Secondly, considering the curse of dimensionality of the multi-stage stochastic setting and
the combinatorial complexity in the 2E-DDP, two approximate modeling approaches are pro-
posed to capture the essence of the problem, while providing judicious accuracy-solvability
trade-offs. The two models are: the two-stage stochastic location and capacity-allocation model
(LCA) in which DP location decisions and capacity decisions are first-stage decisions, and
the two-stage stochastic flow-based location-allocation model (LAF) where capacity decisions
are transformed into continuous scenario-dependent origin-destination links within the second-
stage.
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Finally, we develop a Benders decomposition approach to solve the resulting models. The
adequate sample size of scenarios is tuned using the sample average approximation (SAA) ap-
proach. A scenario-based evaluation procedure is introduced to assess the quality of the design
solutions. The extensive computational experiments validate the proposed models and confirm
the efficiency of the solution approaches. They also illustrate the importance of uncertainty in
the 2E-DDP. The key findings highlight a significant variability in the design decisions with
respect to the demand processes modeling uncertainty. In addition, the analysis of the two
alternative models shows the high sensitivity of assignment-capacity decisions to uncertainty
comparing to location decisions.

This paper is under revision for the European Journal of Operational Research. Preliminary
versions of the work have been presented in the following conferences:

Ben Mohamed I., Klibi W., Vanderbeck F. Designing two-echelon distribution network under
demand uncertainty. Fifth meeting of the EURO Working group on Vehicle Routing an
Logistics Optimization (VEROLOG), Nantes, France, June 6-8, 2016.

Ben Mohamed I., Klibi W., Vanderbeck F. Designing stochastic two-echelon distribution net-
works. 18th Edition of the French Society for Operational Research and Decision Aiding
Conference (ROADEF), Metz, France, February 22-24, 2017.

Ben Mohamed I., Klibi W., Vanderbeck F. Modeling and solution approaches for the stochastic
two-echelon distribution network design problem. 21st Conference of the International
Federation of Operational Research Societies (IFORS), Quebec, Canada, 17-21 July 17-
21, 2017.

Chapter 4: A Benders Decomposition Approach for the Two-Echelon
Stochastic Multi-period Capacitated Location-Routing Problem

In this paper, we consider the last-mile delivery in an urban context where transportation deci-
sions involved in the second echelon are characterized through vehicle-routing.

To this end, we define the two-echelon stochastic multi-period capacitated location-routing
problem (2E-SM-CLRP). The hierarchical 2E-SM-CLRP aims to decide at each design period
on opening, operating and closing of both WPs and DPs, as well as the capacity allocated to
links between platforms. In the second level, daily routes are built to visit customers using a
vehicle routed from an operating DP. A two-stage stochastic program with integer recourse is
introduced that relies on a set of multi-period scenarios generated with a Monte-Carlo approach.

Next, we build on the Benders decomposition approach and on the SAA to solve realistic-
size instances for the 2E-SM-CLRP. The operating WPs and DPs as well as the capacity de-
cisions are fixed by solving the Benders master problem. The resulting subproblem is a ca-
pacitated vehicle-routing problem with capacitated multi-depot (CVRP-CMD). This latter is
formulated as a set partitioning model and then solved by a branch-cut-and-price algorithm.
Standard Benders cuts as well as combinatorial Benders cuts are generated from the subprob-
lem solutions in order to converge to the optimal solution of the 2E-SM-CLRP.
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Numerical results indicate that our solution method is able to solve optimally a large set
of instances, and to get good lower bounds on large-scale instances with up to 50 customers
and 25 demand scenarios under a 5-year planning horizon. The impact of the stochastic and
multi-period settings is also confirmed in comparison to the static model (i.e., no multi-period
setting is considered for design decisions).

We plan in the upcoming weeks to submit this work to Operations Research . It has been
presented in two conferences:

Ben Mohamed I., Klibi W., Sadykov R., Sen H., Vanderbeck F. Stochastic two-echelon location-
routing. 23rd International Symposium on Mathematical Programming (ISMP), Bor-
deaux, France, July 1-6, 2018.

Ben Mohamed I., Klibi W., Sadykov R., Sen H., Vanderbeck F. Benders approach for the two-
echelon stochastic multi-period capacitated location-routing problem. 20th Edition of the
French Society for Operational Research and Decision Aiding Conference (ROADEF),
Le Havre, France, February 19-21, 2019.

Chapter 5: Rolling Horizon Approach for the Multi-stage Stochastic
Two-Echelon Distribution Network Design Problem

In this chapter, we are interested in the multi-stage framework proposed for the two-echelon
distribution network design problem under a stochastic multi-period characterization of the
planning horizon, and we aim to evaluate its tractability.

Using a scenario tree to handle the set of demand scenarios, we first introduce a compact
formulation for the multi-stage stochastic programming model. Then, a rolling horizon ap-
proach is developed to solve the problem. The main idea of the algorithm is to use a reduced
finite sub-horizon in each iteration, instead of the whole time horizon. Then, the multi-stage
model defined over the sub-horizon is solved, fixes the solution for the current period and moves
forward the optimization horizon. The fixed decisions are introduced as an initial conditions
for the following iterations. A complete solution for the stochastic multi-period 2E-DDP is
progressively built by concatenating the decisions related to the first periods of each reduced
sub-horizon.

The computational experiments compare our solution method to solving directly the com-
pact formulation. The results show the efficiency of the rolling horizon approach to provide
good quality bounds in a reasonable time, and confirm our multi-stage modeling approach pro-
posed in this thesis.

We plan to submit the paper in the upcoming weeks to Transportation Science. It has been
presented in the following conference:

Ben Mohamed I., Klibi W., Sadykov R., Vanderbeck F. Multi-stage stochastic two-echelon
distribution network design. 19th Edition of the French Society for Operational Research
and Decision Aiding Conference (ROADEF), Lorient, France, February 21-23, 2018.
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Chapter 6: Conclusions and perspectives

This chapter draws conclusions and proposes directions for further research.



Chapter 2

Two-Echelon Distribution Network Design
Problem: Literature review

Abstract

Designing an effective and efficient distribution network is a crucial question for compa-
nies. It concerns finished products flows from a set of storage/warehouse platforms towards
customers, possibly through a set of intermediate distribution platforms. This topic has inspired
a growing number of works in the literature. This paper provides a comprehensive review on
distribution network design problems (DDPs), and discusses the proposed models. We point
out several issues and missing aspects in DDPs such as uncertainty and two-echelon structure.
In this work, we survey the DDPs related works with respect to these issues, motivating the
inclusion of these missing aspects in DDPs.

Keywords: Distribution network design problem, two-echelon networks, facility location,
routing problem, uncertainty, multi-period.

2.1 Introduction

In the recent decades, companies are experiencing a fast evolution of the business environment.
Given the high competitiveness, companies have to continue improving customer service level
expectancy in terms of the delivery lead-time, the delivery period and the customers ship-to
location. Designing an efficient and effective distribution network is then a crucial strategic
question for companies. In addition, their network must cope with the business needs over the
time as pointed out by Klibi et al. [130]. Chopra and Meindl [49] highlight that distribution-
related costs make up about 10.5% of the US economy and about 20% of the manufacturing
cost. It is therefore not surprising that such topic has attracted many researchers attention in the
operations research literature. Thousands of works have been proposed aimed at developing
effective optimization models and solution algorithms capable of providing support tools to
decision makers.

In the distribution network, finished products flow towards end-customers or ship-to bases
from a set of storage/warehouse platforms. When considering distribution network design prob-
lems (DDPs), the structure of the network involves the best configuration of the facilities. It
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must be decided, in addition to the optimization of goods’ flow through the network. It consists
in determining the number of echelons, facility platform types at each echelon, their number
and their location. Thus, an echelon represents one level of the distribution network. Therefore,
the design of distribution networks involve strategic decisions which influence the operational
decisions [59]. It implies facility location problems at the strategic level and transportation
problems at the operational level to supply customers.

The DDP generalizes two hard combinatorial optimization problems that have been the sub-
ject of intensive research efforts: facility location problems (FLPs) and transportation problems.
In the former, a set of warehouses should be located from a finite set of potential sites and cus-
tomers are delivered by direct routes from selected warehouses at the minimum cost [97, 65].
On the other hand, vehicle-routing problems (VRPs) are among the most extensively studied
classes in transportation problems where the aim is to compute a set of minimum-cost routes to
meet customer demands using a fleet of vehicles [63, 221]. These two types of problems have
been addressed separately in the literature modeling only some aspects related to the com-
plex network decisions. However, location and transportation are interdependent decisions.
Webb [234] and later, Salhi and Rand [192] show that ignoring the interdependence between
the two decisions may often lead to sub-optimal solutions. The study of this interdependence
has given rise to location-routing problems (LRP) [150] in the context of distribution network
design problem. In the LRPs, the aim is to find at a minimum cost which warehouse platforms
to open and their number, while building vehicle routes around them to visit the customers,
simultaneously [139]. It is worth to mention most production-distribution problems in sup-
ply chain management literature generally rely on FLP to formulate the problem. These studies
tend towards functional expansions related to procurement, production policies and constraints,
and specific manufacturing-linked transportation issues, rather than focusing on the strategic
needs of the distribution of finished products stressed here.

LRPs have drawn a consistent attention, and particularly in the last years. Early surveys
can be found in [18, 139, 140, 34, 155, 159]. Recent surveys are presented in [71, 178, 62]. It
is worth noting that other strategic decisions may be considered in the DDPs such as sourcing,
capacity decisions and technology selection. This further complicates the problem. In the
following, we refer to all strategic decisions by design decisions. Laporte [139] has proposed a
classification in terms of the number of echelons in the distribution network, in which echelons
location decisions are made, and the type of routes involved in each echelon. More specifically,
the author distinguishes between origin-destination routes or direct routes, and a multiple node
routes: a direct route connects a customer and a platform, or two different types of platforms,
and a multiple node route visits more than one customer, or more than one platform. Moreover,
the author characterizes a location-routing problem by location decisions and multiple node
routes at least for one echelon.

In the literature, several models are proposed to formulate and solve DDPs. Nevertheless,
the obtained designs may not provide an effective distribution network that copes with the rise
of the on-demand economy. Many important real-life issues still need to be incorporated and
analyzed to design an efficient distribution network.

First, most approaches proposed for DDPs and LRPs implicitly assume that design and
transportation decisions are made simultaneously for the planning horizon. However, in prac-
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tice, the strategic design decisions and the operational transportation decisions are not made at
the same time scales. In fact, the strategic design decisions must be made here-and-now, and
then after an implementation period, the distribution network will be used on a daily basis for a
planning horizon. Thus, the temporal hierarchy between these decisions should be considered
when modeling DDPs.

Next, the models are mostly developed under a single echelon structure. In this case, the
network includes a set of warehouse platforms and customers. Given the high growth of e-
commerce and the continuing increase in world population, such configuration constrains the
companies’ capability to provide fast delivery services. It also reduces their opportunities to
capture online orders, especially when the customers’ bases are located in a large geographical
area. In this case, distribution networks should be beyond more than one-echelon to offer more
dynamic adjustment to the business needs over time. A typical predisposition schema, claimed
now by practitioners, is the two-echelon distribution network. The network topology includes
an intermediate echelon of distribution/fulfillment platforms standing between the warehouse
platforms (i.e., initial sites) where the inventory is held, and the customers. Savelsbergh and
Van Woensel [194] have motivated the need for such multi-echelon structures. These latter offer
a tool to reduce urban congestion and nuisance, and increase mobility in cities [216, 61, 45].

Furthermore, strategic design decisions have a long-lasting effect and are time-sensitive.
They are expected to efficiently operate in a long-term period handling future business changes
and data fluctuations over time. Therefore, the use of a multi-period characterization in the
context of distribution network design helps to adjust the network to the evolution of its data.
A planning horizon including a set of planning periods should then be considered.

Finally, distribution practices have got more complex over the years, and problem data have
higher uncertainty. The adequate design of a distribution network requires the anticipation
of its future activity levels. Consequently, relevant models should incorporate the inherited
uncertainty of data such as customer demands and costs, as over the last two decades, a large
number of publications have emphasized its importance.

Although extensive studies have addressed DDPs, the developed models have raised only
a subset of the aforementioned issues. In the recent years, few works have examined these
issues. We start our study by reviewing in Section 2.2 works addressing one-echelon distribu-
tion network design problems (1E-DDPs), and discuss them with respect to the aforementioned
missing aspects. In Section 2.3, we analyze works dealing with two-echelon models, and par-
ticularly two-echelon distribution network design problems (2E-DDPs). Section 2.4 discusses
uncertainty modeling in the context of DDPs and reviews optimization aspects.

2.2 Deterministic one-echelon distribution network design
problems

This section surveys deterministic 1E-DDP works with a particular focus on the temporal hier-
archy aspect between decisions and multi-period feature.

Single echelon LRPs are the core of distribution network design problems. The first work
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is back to Maranzana [150], later a large number of papers on generalized LRP has appeared.
Many studies have considered uncapacitated warehouses [222]. Then, since the survey of Nagy
and Salhi [159], several authors introduce capacity constraints on warehouses and vehicules,
leading to the so-called capacitated LRP (CLRP). However, few works still concern the unca-
pacitated cases with either uncapacitated vehicles or uncapacitated warehouses. LRP versions
mostly formulate the vehicle routing part as a node routing problem (i.e., each pickup or deliv-
ery point is considered separately and is identified with a specific location in the network), and
a few authors have studied arc routing versions [87, 98].

LRPs, related variants and applications have been largely addressed through exact and
heuristic approaches, as illustrated by the recent surveys of Prodhon and Prins [178], Drexl and
Schneider [71], Cuda et al. [62] and Schneider and Drexl [196]. Belenguer et al. [25] introduce
a two-index vehicle-flow formulation for the CLRP strengthened with several families of valid
inequalities. They solve the problem using a branch-and-cut algorithm. Contardo et al. [50]
present three new flow formulations from which they derive new valid inequalities for each
formulation. For each inequality, the authors either generalize separation methods introduced
in [25] or propose new ones. Baldacci et al. [20] describe a new exact method for solving the
CLRP based on a set partitioning formulation of the problem. The same formulation in [20] is
strengthened by Contardo et al. [51] using new valid inequalities and solved through column-
and-cut generation algorithm with subsequent route enumeration. Although approaches by
Baldacci et al. [20] and Contardo et al. [51] are the state-of-the algorithms, they are based on
an enumeration procedure for the subset of opened platforms. Thus, they cannot be applied for
solving instances with more than 10 potential depots. Several heuristics are also proposed to
solve LRPs, based on greedy randomized adaptive search procedure (GRASP) [175], variable
neighborhood search (VNS) metaheuristics combined with integer-linear programming tech-
niques [172], adaptive large neighborhood search (ALNS) [104], and a GRASP coupled with
integer programming methods [52]. Schneider and Löffler [197] present a tree-based search
algorithm, which is the best performing heuristics for CLRPs. This approach first explores the
space of depot configurations in a tree-like fashion using a customized first improvement strat-
egy. Then, in the routing phase, the multi-depot vehicle-routing problem defined by the depot
configuration is solved with a granular tabu search that uses a large composite neighborhood
described by 14 operators. These models have considered static and deterministic versions of
the LRP ignoring the hierarchical structure of the strategic problem.

Further works involve hierarchical strategic problems as in facility location problems (FLP)
[97, 65]. However, most FLP studies approximate the transportation and fulfillment character-
istics related to the distribution case by direct routes and ignore the capacity decisions. FLPs
consider a single distribution echelon with uncapacitated (UFLP) or capacitated (CFLP) facil-
ities. UFLPs are tackled in many works as in Mirchandani and Francis [156] and Revelle and
Eiselt [180] and CFLPs are proposed for example in Sridharan [214]. Owen and Daskin [165]
and Klose and Drexl [134] present detailed reviews of the large literature available on these
problems. Supply chain management generally relies on FLPs to formulate their problem in
addition to other functions of the supply chain such as procurement, production, inventory,
and capacity decisions. Static and deterministic models are proposed by Arntzen et al. [14],
Martel [151] and Cordeau et al. [55]. A comprehensive review on this area can be found
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in [228, 180, 154] and in [130].
DDPs are long term planning problems. Several models have been studied under a multi-

period setting. We distinguish between static models and multi-period models. Static models
involve design decisions only at the beginning of the planning horizon whereas the operational
transportation decisions are made over a multi-period setting to better anticipate operational
decisions. The static LRP has been tackled in many works, known as a periodic LRP (PLRP)
in the literature. This variant has been addressed by Prodhon and Prins [177], Prodhon [176]
and Pirkwieser and Raidl [172]. On the other hand, multi-period models allow to review design
decisions at the beginning of each period of the planning horizon through opening and/or clos-
ing warehouses and adjusting capacity decisions, etc. Laporte and Dejax [141] is the first to
address dynamic multi-period uncapacitated LRP (ULRP) with capacitated vehicles. Recently,
Albareda-Sambola et al. [11] examine the multi-period LRP with uncapacitated warehouses
and vehicles and decoupled time scales for the location and the routing decisions. An approxi-
mation of the problem is solved in which routing decisions are approximated by forests rooted
at available facilities. Two heuristics are then applied to get solutions for the origin problem.

Multi-period FLPs and production-distribution problems are studied in [77, 207, 66, 42, 69]
and [1] among others. Exact and heuristic approaches are developed to solve these multi-period
models. Capacity expansion problems are by definition multi-period [123]. Jena et al. [118]
introduce a unifying model that generalizes several existing formulations of the multi-period
FLP: the problem with facility closing and reopening, the problem with capacity expansion
and reduction, and their combination. In [119], the authors propose Lagrangian relaxation
based heuristics to solve the same problem with additional features such as relocation and
partial facility closing. Surveys on facility location problems with a complete discussion about
location problems in a multi-period context are provided by Daskin et al. [67] and Klose and
Drexl [134]. A recent review on dynamic FLPs is given in [13].

2.3 Deterministic two-echelon distribution network design
problems

As mentioned in the previous section, several models are addressed to handle DDPs with a
single distribution echelon. Given the high growth of e-commerce in the recent years, such
one-echelon networks limit the companies’ capabilities to meet today’s challenges. In fact, in
the 1E-DDPs, warehouses are not specifically designed to provide next day and/or same day
deliveries, or to efficiently operate to fast delivery services. In the new context, more attention is
turned to two-echelon distribution structures by adding an intermediate echelon of distribution
platforms standing between warehouses and customers. Two-echelon distribution network aims
to design a network stucture that offers more flexibility to the future business needs.

LRPs are extended to the two-echelon LRP (2E-LRP). The literature on the 2E-LRPs is
still scarce. The first works on the 2E-LRPs are credited to Jacobsen and Madsen [117] and
to Madsen [148]. They consider the context of newspapers distribution in which location de-
cisions involve only the intermediate platforms. Further references on the 2E-LRP are much
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more recent. Gonzalez-Feliu [89] formalizes the multi-echelons LRP providing a unified no-
tation as well as a generic formulation. The 2E-CLRP is the most studied variant of the class
of 2E-LRPs. It is formally introduced by Sterle [215] where integer programming models are
presented. A tabu search heuristic is proposed in [39]. Later, Nguyen et al. [160, 161] study
a particular case of the 2E-CLRP with a single warehouse in the first echelon whose position
is known a priori. The authors propose two heuristics: a GRASP metaheuristic enhanced by
a learning process [160], and a multi-start iterated local search (MS-ILS) coupled with path-
relinking (MS-ILSˆPR) [161]. Contardo et al. [53] examine the generic case for the 2E-CLRP
where the location decisions concern both echelons. They introduce a branch-and-cut algo-
rithm based on a new two-index vehicle-flow formulation, strengthened by several families of
valid inequalities, and also develop an Adaptive Large Neighborhood Search (ALNS) algorithm
outperforming previous heuristics. A variable neighborhood search (VNS) for the 2E-CLRP is
presented by Schwengerer et al. [200]. Recently, Breuning et al. [41] present a large neighbor-
hood search based heuristic (LNS) for two-echelon routing problems. Their approach finds bet-
ter solutions on benchmark instances for the 2E-CLRP with a single warehouse. Winkenbach
et al. [236] study a particular static-deterministic variant of the 2E-CLRP in which a routing
cost approximation formulæare used instead of explicit routing decisions. A literature survey
on the two-echelon LRPs can be found in Prodhon and Prins [178], Cattaruzza et al. [45], Drexl
and Schneider [71] and in Cuda et al. [62]. These models are static and deterministic versions
of the 2E-CLRP. Additionally, they implicitly assume that location and routing decisions are
made simultaneously for the planning horizon, without considering the hierarchical structure
of the strategic problem.

Further studies have addressed other variants of the two-echelon problems, defined as two-
echelon vehicle-routing problems (2E-VRPs) [61, 169]. In this class of problems, the main
focus is about the transportation capabilities of the network, without considering location de-
cisions (i.e., platforms are used freely without inducing a setup cost). Generally, 2E-VRP
consider a single main warehouse platform in the upper level, and platforms do not have fixed
capacities. For a detailed review, the reader is referred to [62].

On the oher hand, some papers use a hierarchical approach to the two-echelon distribution
problem, extending the FLP, to the two-echelon FLP (2E-FLP) introduced in [85]. Similarly
to FLPs, distribution operations are also represented by direct flows in the 2E-FLPs. Two-
echelon hierarchical capacitated FLP (2E-CFLP) are investigated in many works as in [107,
108, 46, 132, 133, 182, 84]. The uncapacitated variant is discussed in [217, 23, 47, 46]. Re-
cently, Ortiz-Astorquiza ett al. [164] study a general class of multi-echelon uncapacitated FLP
and propose an exact algorithm based on a Benders reformulation. However, most of these
studies consider static and deterministic models. Furthermore, we note that most production-
distribution problems have a two-echelon structure, but with a single distribution echelon (see
for instance [229, 24, 16, 80]). In this study, we assume that the two echelons are dedicated to
distribution operations, i.e., responsible for the delivery of finished goods.

As highlighted in section 2.1, multi-period planning horizon should be considered when
designing the distribution network. As far as we know, the only work tackling the multi-period
setting in the 2E-LRPs is proposed by Darvish et al. [64]. Nevertheless, several studies con-
sider the multi-period feature in the 2E-FLP variants. Similarly to the 1E-DDPs, we distinguish
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Table 2.1: Network structure, key decisions and solution approaches for deterministic distribution net-
work studies

Article Network structure Planning horizon Distribution
operations

Capacity
planning

Specific
constraints Solution approach

S/P WP DP Static Multi-
period

Ambrosino and Scutellà [12] -
‘ ‘ ‘

R Fc Lagrangean-based heuristic
Badri et al. [16]

‘ ‘ ‘

F Dv
‘

Lagrangian-based heuristic
Boccia et al. [40]

‘ ‘

R Fc Commercial solver
Breuning et al. [41]

‘ ‘

R Fc LNS
Canel et al. [43] -

‘ ‘

F U
‘

Branch-and-bound and dynamic
programming algorithm

Contardo et al. [53]
‘ ‘

R Fc Branch-and-Cut and ALNS
Correia et al. [56]

‘ ‘ ‘

F Dv Commercial solver
Cortinhal et al. [58]

‘ ‘ ‘

F Dv
‘

Commercial solver
Darvish et al. [64] -

‘ ‘

R Fc Commercial solver + valid in-
equalities

Fattahi et al. [80]
‘ ‘ ‘

F Dv
‘

Simulated annealing with a lin-
ear relaxation-based heuristic

Gendron and Semet [84] -
‘ ‘

F Dv Commercial solver
Georgiadis et al. [86] -

‘ ‘ ‘

F Dv
‘

Commercial solver
Hinojosa et al. [110, 109]

‘ ‘ ‘

F Fc
‘

Lagrangian-based heuristic
Jacobsen and Madsen [117] -

‘

R Fc Three constructive heuristics
Nguyen et al. [160] -

‘

R Fc GRASP
Nguyen et al. [161] -

‘

R Fc MS-ILS
Schwengerer et al. [200]

‘ ‘

R Fc VNS
Winkenbach et al. [236]

‘ ‘

RF Fc Heuristic
S/P: Supplier/Production site, WP: Warehouse platform, DP: Distribution platform.

-: Implicit decision,
‘

: Explicit decision.
U: Uncapacitated, Fc: Fixed capacity a priori, Dv: Decision variable.

static from multi-period models. Static models are addressed in [12, 86] where three-echelon
production-distribution models compromising a two-echelon distribution schema are studied.
In these models, multi-period settings concern the operational decisions, and the strategic deci-
sions are taken once at the beginning of the planning horizon. Multi-period setting is examined
by Correia et al. [56] for a two-echelon distribution model in which design decisions are de-
cided over several periods. Other works such as in Hinojosa et al. [110, 109] and Cortinhal
et al. [58] tackle a multi-period variants for two-echelon production-distribution problem, but
therein, they consider a single distribution echelon. In addition, considering multiple design
periods enables making adjustments to location decisions through opening, closing, and/or
reopening facilities [64, 58], and adjustments to facility capacities through reduction and ex-
pansion [56, 80] in each design period due to demand variability over time. Detailed reviews
can be found in [205, 154, 78].

Table 2.1 summarizes the aforementioned deterministic works in terms of the network struc-
ture (the echelons involved in the network other than the customer level), and provides the main
distinguishing features in terms of the distribution operations (routes (R), flows (F) and route
formulæ (RF)), and capacity planning decisions. The specific constraints column identifies
works addressing production-distribution problems with additional manufacturing issues, pro-
duction and inventory constraints. The table also illustrates the solution approaches used to
solve the problem.
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2.4 DDPs under uncertainty

In section 2.2 and 2.3, we have discussed the proposed deterministic models in the context of
DDPs. Nonetheless, when design decisions are deployed, problem parameters such as costs, de-
mand and distances, may fluctuate widely. Thus, the obtained design has no performance guar-
antee for plausible futures, since the aforementioned models do not handle uncertainties and
information inaccuracy about expected plausible future business environments [106]. Hence,
integrating uncertainty feature is crucial for more realistic DDPs.

Optimization under uncertainty have followed several modeling approaches. Rosenhead
et al. [185] and Sahinidis [191] identify three decision-making environments categories: cer-
tainty, risk and uncertainty. This characterization is then used by Snyder [210], Klibi et al. [130]
and Govindan et al. [92]. In certainty situations, all parameters are deterministic and known
in advance. Risky and uncertainty cases involve randomness. In risk situations, the proba-
bility distribution of uncertain parameters is known by the decision maker. These parameters
are thus referred as stochastic parameters that can be either continuous or described by dis-
crete scenarios. In this case, problems are known as stochastic optimization problems, and
their common goal is to optimize the expected value of some objective function. Uncertainty
corresponds to the case in which the decision maker has no information about probability distri-
butions of uncertain parameters. Under this setting, robust optimization models are developed.
They often look to optimize the worst-case performance of the system. Further uncertainty
approaches rely on fuzzy numbers to handle random parameters rather than probabilistic ap-
proaches. Fuzzy programming is thus used to manage the planner’s expectations about the level
of objective function, the uncertainty range of coefficients, and the satisfaction level of con-
straints by using membership functions. For further details, the reader may refer to Inuiguchi
and Ramık [115], Sahinidis [191] and Govindan et al. [92]. In the DDPs related literature,
models under uncertainty are mostly based on a probabilistic approach. Stochastic program-
ming and chance-constraints programming are developed to handle this case. Next, we discuss
models for the risky case using probabilistic modeling approach. Then, we briefly describe the
robust optimization approach introduced to deal with non-probabilistic cases.

2.4.1 Stochastic programming for DDPs

In the stochastic optimization, uncertainty is modeled by a set of discrete scenarios and each
of these scenarios has a probability of occurrence. A stochastic programming approach relates
uncertainty and information structure to different stages in time. In this case, we identify deci-
sions that have to be made prior to obtaining information about future parameters’ realizations
and decisions that are made when information is revealed [105]. Therefore, we recognize two
main approaches for stochastic optimization: i) two-stage stochastic programs with recourse
(TSSP) and ii) multi-stage stochastic programs (MSSP) [124, 204, 38]. In the following, we
will recall the main concept of each approach and overview works using both approaches.
Stochastic programming relies on a scenarios approach to build the model. However, this latter
raises some difficulties as discussed in Snyder [210]. First, identifying scenarios and assessing
their probabilities entail a tremendous effort. Secondly, determining an adequate number of
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scenarios may result in a large-scale optimization problem.

2.4.1.1 Two-stage stochastic programs

Two-stage stochastic programs with recourse (TSSP) involve two-stage nature of decisions:
first- and recourse second-stage decisions [38]. First-stage decisions x are taken in the presence
of uncertainty about future realizations of the stochastic parameters vector ξ. In the second-
stage, the actual value of ξ is known, and some corrective actions or recourse decisions ypωq
can be taken depending on each scenario ω. First-stage decisions are, however, chosen by
taking their future effects into account. These future effects are measured by a recourse cost
function, Qpxq , which computes the expected value of taking decision x.

The two-stage stochastic programming approach has been applied in several studies to
model stochastic DDPs. In these problems, first-stage decisions generally concern design de-
cisions or long-term decisions such as location and capacity, and are made before knowing
the realization of random parameters. When information uncertainty is revealed, operational
transportation decisions and routing are made as a recourse second-stage actions to evaluate the
obtained design.

Laporte et al. [142] and Albareda-Sambola et al. [10] apply this approach to single echelon
ULRP in which depot locations and a priori routes must be specified in the first-stage, and
second-stage recourse decisions deal with first-stage failures. Shen [205] proposes a stochastic
LRP model based on routing cost estimations. Recently, Klibi et al. [128] formulate a static
stochastic location transportation problem (SMLTP) with uncapacitated facilities as a two-stage
stochastic program with recourse. The location and mission of depots must be fixed at the
beginning of the planning horizon, but transportation decisions are made on a multi-period
daily basis as a response to the uncertain customers’ demand. They solve the SMLTP by a
hierarchical heuristic approach based on sample average approximation (SAA) method. This
latter is a sampling-based approach introduced by Shapiro [202]. Hence, to the best of our
knowledge, no work has yet addressed stochastic variants or combined stochastic and multi-
period settings in the 2E-LRP.

Further works have applied this approach to stochastic variants of FLPs and 2E-FLPs in the
context of DDPs with direct flows. A review on stochastic FLPs can be found in Snyder [210].
Klibi et al. [130] and Govindan et al. [92] present a comprehensive survey of studies addressing
production-distribution problems under uncertainty. As introduced in the previous sections, we
distinguish between static and multi-period stochastic models when a planning horizon is used
with stochastic setting. Santoso et al. [193] study a production-distribution variant compro-
mising a single distribution echelon in which stochasticity is assumed for demand and facility
capacities. The authors integrate the SAA scheme with an accelerated Benders decomposi-
tion algorithm to quickly compute high quality solutions to large-scale stochastic supply chain
design problems with a vast number of scenarios. On the other hand, Schütz [199] and Heck-
mann et al. [101] model a static one-echelon production-distribution problem. In these works,
the second-stage includes multiple periods capturing the variability of stochastic parameters
over the planning horizon whereas first-stage decisions are determined once at the beginning
of planning horizon. Georgiadis et al. [86] also use several combine multiple operational in the
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second-stage to model a two-echelon distribution configuration where product demand is un-
certain and time varying. Other studies consider multi-period stochastic versions of the DDPs,
where first-stage decisions are made over multiple periods of the planning horizon. This is
investigated in [4, 101, 240] for the supply chain context including a single distribution eche-
lon under demand uncertainty. Zhuge et al. [240] also consider an uncertain and time varying
budget. Although few papers apply two-stage stochastic programming approaches in stochastic
multi-period 2E-FLPs and production-distribution problems, its application to the two-echelon
distribution configuration is still limited.

In Table 2.2, we present works investigating stochastic optimization approaches for DDPs
in terms of the number of distribution echelons, the number of location level and optimiza-
tion aspects. We also identify stochastic models with respect to the planning horizon setting.
Therefore, the table points up the few works addressing two-stage stochastic models for the
multi-period stochastic 2E-DDPs.

Table 2.2: Network structure, solution approaches, and modeling approaches for stochastic program-
ming models

Article Network Mathematical
modeling

Planning
horizon Solution approach

Echelons Distribution
echelons

Location
levels

Aghezzaf [4] 2 1 1 TSSP- robust model MP Lagrangian relaxation decomposition
Albareda-Sambola et al. [9] 1 1 1 MSSP-and-TSSP MP Fix-and-Relax-Coordination algorithm
Fattahi et al. [79] 2 1 2 MSSP static Benders decomposition
Georgiadis et al. [86] 3 2 2 TSSP static Commercial solver
Heckmann et al. [101] 1 1 1 TSSP static Commercial solver
Klibi et al. [128] 1 1 1 TSSP static Heuristic ` SAA
Klibi and Martel [129] 1 1 1 MSSP framework MP -
Nickel et al. [162] 1 1 1 MSSP MP Commercial solver
Pimentel et al. [171] 1 1 1 MSSP MP Lagrangian-based heuristic
Santoso et al. [193] 2 1 1 TSSP Benders decomposition ` SAA
Schütz et al. [199] 3 1 3 TSSP static Lagrangian relaxation ` SAA
Zeballos et al. [239] 3 1 3 MSSP MP Commercial solver
Zhuge et al. [240] 2 1 1 TSSP MP Lagrangian-based heuristic

MP: Multi-period for design decisions.
TSSP: Two-stage stochastic program.

MSSP: Multi-stage stochastic program.

In addition, one should mention that in almost all two-stage stochastic developed models,
the second-stage decisions are continuous and positive variables. Therefore, for each feasi-
ble first-stage solutions, the value of the recourse problem is a linear program for each sce-
nario. Most stochastic models have developed a mixed integer linear program solved through
a commercial solver. Decomposition techniques such as Benders decomposition, called also
L-shaped algorithm in stochastic programming [225], are suitable to solve these models. How-
ever, when the second-stage problem implies integer variables, this increases the complexity of
the problem [143, 224, 44, 8].

2.4.1.2 Multi-stage stochastic programs

Integrating a multi-period setting with uncertainty in long-term problems leads to multi-stage
stochastic programming (MSSP) [111]. This is due to the fact that the uncertainty related
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to stochastic parameters is realized progressively in each period. Thus, MSSPs extend two-
stage stochastic programming models by allowing one to adapt decisions in each time stage
as more information regarding the uncertainties is revealed. Consequently, the use of multi-
stage stochastic programming permits one to better capture the dynamics of decision-making
in stochastic multi-period distribution network design problems, and provides more flexibility
than does the two-stage model.

Consider a multi-stage stochastic program with T-stages. It includes a sequences of random
parameters ξ1, . . . , ξT´1 where each ξt, t “ 1, . . . ,T represents the vector of stochastic parame-
ters such as costs, demand, capacity, etc, at stage t in multi-stage stochastic program for DDPs.
A scenario is the realization of these random parameters ξ1, . . . , ξT´1. Hence, a scenario tree is
built for a discrete representation of the stochastic parameters representing the set of scenarios
Ω. Figure 2.1 illustrates a typical scenario tree with eight scenarios for a four-stage stochastic
program.

0

ω “ 1

ω “ 2

.

.

.

ω “ |Ω|

t “ 1 . . . t “ tpgq t “ T

Figure 2.1: A scenario tree example

Assume decision vectors x1, . . . , xT corresponding to stages 1, . . . ,T . In the multi-stage
programming, the realizations of the random parameters are revealed in their respective stages.
Thus, the values of decision vector xt in stage t may depend on the information available up to
stage t, but not on the future observations which is the basic requirement of non-anticipativity.
This distinguishes the multi-stage stochastic programming problems from deterministic multi-
period problems, in which all the information is assumed to be available at the beginning of
the decision process [204, 38]. The sequence of actions xt in each stage t, i.e., decisions and
realization of random parameters, is then given in figure 2.2, and is called an implementable
policy (or a policy).

As pointed out by Dupačová [73], there exist two common approaches for formulating a
multi-stage stochastic program. The first one formulates the non-anticipativity settings im-
plicitly, whereas the second approach imposes the non-anticipativity constraints explicitly.
For further details on multi-stage stochastic programming, the reader can refer to Kall and
Walalce [124], Shapiro et al. [204] and Birge and Louveaux [38].

A illustrated in Table 2.2, most studies have employed two-stage stochastic programs.
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decision px0q

ξ1

decision px1q

ξ2

decision px2q . . .

ξT

decision pxT q

Figure 2.2: Sequencing of decision process in multi-stage stochastic program

Only few works have applied multi-stage stochastic models to DDPs and are mostly studying
production-distribution problems [162, 9, 171, 79]. Ahmed et al. [6] explore this approach
to formulate the multi-period capacity expansion problem under uncertain demand and in-
vestment cost. Recently, Klibi and Martel [129] and Dunke et al. [72] emphasize the need
to such a framework to tackle complex production-distribution problems in the supply chain
context. In [129], the authors define a methodological multi-stage framework for the supply
chain network design problem, but therein a two-stage stochastic program for the one-echelon
location-transportation problem is formulated and solved. Nickel et al. [162] study a multi-
stage modeling framework for the supply network design problem with financial decisions and
risk management involving a single distribution problem. They first formulate the problem as
a multi-stage stochastic program, then propose an alternative formulation based on the paths in
the scenario tree. Later, Albareda-Sambola et al. [9] consider the one-echelon stochastic multi-
period discrete facility location problem, in which uncertainty affects the costs as well as some
of the requirements along the planning horizon. A multi-stage and a two-stage stochastic pro-
gramming approaches are proposed. Additionally, Pimentel et al. [171] present a mixed-integer
multi-stage stochastic programming approach to the stochastic capacity planning and dynamic
network design problem which integrates facility location, network design and capacity plan-
ning decisions under demand uncertainty. Accordingly, no work addresses the multi-stage
stochastic framework for the multi-period stochastic 2E-DDP.

Furthermore, as shown in Table 2.2, most stochastic works use a commercial solver to
solve their mathematical formulations. Benders decomposition approach is also applied in
several cases to solve two-stage stochastic programs. To solve multi-stage stochastic programs,
Albareda-Sambola et al. [9] propose a fix-and-relax coordination algorithm, and Pimentel et
al. [171] develop a lagrangian heuristic.

2.4.1.3 Scenario generation

As mentioned, scenarios are used to represent stochastic parameters. This results in a scenario
tree and a fan of individual scenarios for multi-stage and two-stage stochastic programs [74].
Under a multi-period setting, not only the parameters can be correlated with each other, but
also they can be correlated across the time periods. Therefore, it would be more difficult to
generate an appropriate set of scenarios.

This field has attracted the attention of many researchers. Several scenario generation meth-
ods and reduction techniques are proposed. We cite for instance, Heitsch and Römisch [102],
Dupačová et al. [74, 75], and Høyland and Wallace [113]. Evaluation techniques are also devel-
opped to evaluate scenario methods in terms of quality and stability. One can refer to [126] for
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more details. In DDPs studies, only few ones have proposed an appropriate scenario generation
procedure to obtain a set of scenarios [199, 128].

The sample average approximation (SAA) method has been employed to reduce the size
of stochastic programs through repeatedly solving the problem with a smaller set of scenar-
ios [202, 204]. This approach is involved in [193, 199, 128].

2.4.2 Chance-constrained programming for DDPs

When considering the optimization of a problem under uncertainty, one or multiple constraints
need not hold almost surely. Instead, these constraints can be held with some probability or
reliability level. In this case, probabilistic or chance-constrained programming is used as an
alternative approach to deal with uncertainties [48]. This method often assumes that the distri-
bution probabilities of uncertain parameters are known for decision makers.

Correia and Saldanha-da Gama [57] introduce a particular case of chance-constrained FLP
with stochastic demand under single echelon structure. Using stochastic demand, the decision
maker still wants to design an FLP satisfying all the demand realizations. However, the demand
amount satisfied from each facility should not exceed its capacity. In this case, one should
ensure a certain service level, i.e., ensure that with some pre-specified probability, the overall
demand does not exceed the capacity of the operating facilities.

Getting a deterministic equivalent formulations for chance-constrained programs is a chal-
lenging task. Lin [146] proposes a deterministic equivalent formulation for the above stated
case in which customers’ demands are independent and follow poisson or gaussian probability
distribution.

Chance-constrained have been considered in few studies for production-distribution prob-
lems such as in You and Grossmann [238] and in Vahdani et al. [223]. However, one should
mention that it is not always easy to get a deterministic equivalent constraints for the proba-
bilistic constraints. The reader is referred to Sahinidis [191] and Birge and Louveaux [38] for
more details about this method.

2.4.3 Robust optimization for DDPs

Robust optimization is an alternative framework to stochastic optimization proposed by Mulvey
et al. [158] that allows to handle parameters uncertainties. According to Roy [186], there is dif-
ferent kinds of robustness: it includes model robustness [158, 231], algorithm robustness [211]
and solution robustness [185, 158, 237]. In the solution robustness, the solution (obtained
decisions) is “nearly” optimal in all scenarios, whereas in model robustness, the solution is
“nearly” feasible in all possible realization of uncertain parameters. The definition of “nearly”
depends on the modeler’s viewpoint. Therefore, many measures of robustness are proposed in
the literature: expected value, standard deviation and conditional value at risk, etc, [188, 100].
However, when no probability information is available about the uncertain parameters, these
measures are useless. In this case, different robustness measures have been proposed in the
literature. These measures distinguish between continuous uncertain parameters and discrete
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case specified via some scenarios.
Under discrete scenarios without probability information, two common measures are de-

fined for studies in this context: minimax cost and minimax regret. The minimax cost solution
looks to minimize the maximum cost over all scenarios. It has been examined by Ahmadi-Javid
and Seddighi [5] and Govindan and Fattahi [91] for a production-distribution problem. The sec-
ond one is a minimax regret in which a regret of a solution is determined. This corresponds to
compute the difference (absolute or a percentage) between the cost of a solution and the cost
of the optimal solution in a given scenario. Kouvelis et al. [136] explore another approach for
getting solution robustness in which some constraints on the maximum regret are added. This
approach is defined as p-robustness in Snyder [210] for FLPs. The same approach has been
used in [145, 167, 218] for production-distribution variants. Detailed reviews on these methods
is provided by Snyder [210] and Govindan et al. [92] for the FLPs and production-distribution
problems, respectively.

It is worth noting that several studies consider the risk measures and identify them as ro-
bustness measures. This is the case in [121, 189]. However, only Aghezzaf [4], Jin et al. [121]
and [189] have examined model robustness measures for production-distribution problems with
a single distribution echelon.

For continuous parameters, a pre-defined interval, known as an interval-uncertainty, is gen-
erally used to model uncertainty. In this case, robust models have been applied to handle
the parameters variability in order to protect the optimal solution from any realization of the
uncertainty in a given bounded uncertainty set [31]. This approach is introduced first by Soys-
ter [212], who has looked for a solution that is feasible for all realization of uncertain param-
eters with their pre-defined uncertainty sets. However, its method leads to over-conservative
solutions, the problem cost is much higher than the deterministic problem (i.e., uncertain pa-
rameters are fixed to their deterministic values). Then, Ben-Tal a Nemirovski [29, 30] and El-
Ghaoui et al. [76] have investigated this issue, and proposed to model the uncertainty sets by
ellipsoids. Nonetheless, their robust formulations result in non-linear but convex models, and
thereby more difficult to solve. Later, Berstimas and Sim [36] present a less-conservative robust
approach in which the conservatism level of robust solutions could be controlled and resulted
in a linear optimization model. The literature about robust models for DDPs is limited. Most
developed models have examined inventory management problems [2], production-distribution
problems [173, 127] and vehicle-routing problems [90].

Furthermore, the aforementioned robust approaches are static. They assume that all deci-
sions are made before the uncertainty is revealed. However, real-life applications, particularly
distribution network design problems, have multi-stage nature. Thus, some decisions should
be made after the realization of uncertainty. In this context, a multi-stage robust optimiza-
tion models are developed, called affinely adjustable robust counterpart (AARC) [28]. This
approach limits the adjustable decisions to be affinely dependent upon the primitive uncertain-
ties. But, it requires further development to be applied to multi-period 2E-DDPs. As far as
we know, only few studies have examined this approach for single echelon DDPs [81] and
production-distribution problems [201].

Distributionally robust optimization is a recent robust approach introduced to deal with
situations when some certain distributional properties of the primitive uncertainties, such as
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their support and moments are known [195, 88, 235]. In this case, the uncertain parameters
are characterized by a probability distribution which is itself subject to uncertainty. A recent
review on robust optimization approach is provided in Gabrel et al. [82]. However, one should
note that these approaches still need more attention in future works for multi-period problems
under uncertainty.

2.5 Conclusion

Distribution network design problems (DDPs) have been extensively studied in the operations
research literature. This research field is attracting an increasing attention from practitioners
and academics due to their relevant real-life applications, in addition to the challenges induced
in their studies.

In this work, we review works addressing DDPs in terms of problem aspects, practical ap-
plications, and optimization aspects, as pointed out in the introduction section. Although this
research area has been growing steadily, several weaknesses are identified in DDPs literature,
and particularly related to the extended two-echelon distribution structures. Some of these
issues have been discussed in length all along this survey. However, many aspects and promis-
ing research directions are still unexplored. The main research avenues to develop a flexible
2E-DDPs under uncertainty are:

• Hierarchical methods and use of route length formulæ: Routing decisions are often
used as operations anticipation for the user level (i.e., operational decisions) when de-
signing the strategic distribution network. Instead of explicitly computing vehicle routes,
approximation formulæ can be used to speed up the decision process. This area has not
attracted many researchers. Therefore, more efforts should be focused on route approxi-
mation formulæ, especially for multi-period and stochastic problems where the solution
of the routing part may require too much time.

• Multi-echelon models: Despite its importance in practical applications, only few works
have explored two-echelon structure for DDPs, and are mostly tackling basic problems
under static deterministic settings. Further research in this area would include more
realistic aspects of distribution problems such time windows for customers and time syn-
chronization for distribution operations at intermediate distribution platforms.

• Dynamic and stochastic models: Despite the fact that optimization frameworks under
uncertainty are well established in the literature and have followed several modeling ap-
proaches, its application to distribution problems is still in its infancy, specifically for
two-echelon structures. As far as we know, no work has considered two- and multi-stage
stochastic programming for stochastic multi-period 2E-DDPs. Further research direc-
tions could use these approaches when designing a distribution network. Additionally, it
would be interesting to study robust optimization in multi-period uncertain problems.

• Solution methods: Several studies reviewed here use commercial solvers to solve the
problem. However, for large-scale problems, commercial solvers’ performance is lim-
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ited. This emphasizes the need for designing specific solution approaches. Decomposi-
tion methods such as Benders decomposition or L-shaped method are applied for specific
problem structure, in addition to heuristic methods. Further research perspectives would
go through developing efficient solution methods for two- and multi-stage stochastic pro-
grams and robust models. Another future area is to present hybrid solution algorithms
which are based on the combination of exact methods with heuristics.

To conclude, considering the aforementioned issues helps to capture real-life problems.
But, this further complicates the design of the distribution network problem. We believe that
one should consider the trade-off between the realism and the tractability of the model when
designing a flexible and effective network. This survey provides several research directions
towards developing a comprehensive methodology for DDPs, and particularly 2E-DDPs.



Chapter 3

Designing Two-Echelon Distribution Net-
work under Demand Uncertainty

Abstract

This paper proposes a comprehensive methodology for the stochastic multi-period two-
echelon distribution network design problem (2E-DDP) where product flows towards ship-to-
points are directed from an upper layer of primary warehouses to distribution platforms (DPs)
before being transported to ship-to-points. A temporal hierarchy characterizes the design level
dealing with DPs location decisions and capacity decisions, and the operational level involving
transportation decisions as origin-destination flows. These design decisions must be calibrate
to minimize the expected distribution cost associated to the two-echelon transportation schema
on this network under stochastic demands. We consider a multi-period planning horizon where
demand varies dynamically from one planning period to the subsequent one. Thus, the design of
the two-echelon distribution network under uncertain customers’ demand gives rise to a com-
plex multi-stage decisional problem. Given the strategic structure of the problem, we introduce
alternative modeling approaches of the problem based on a two-stage stochastic programming
with recourse. The resulting models are solved using a Benders decomposition approach. The
size of the scenario set is tuned using the sample average approximation (SAA) approach. Then,
a scenario-based evaluation procedure is introduced to post-evaluate the obtained design solu-
tions. Extensive computational experiments based on several types of instances are conducted
in order to validate the proposed models and to assess the efficiency of the solution approaches.
The evaluation of the quality of the stochastic solution underlines the impact of uncertainty in
the two-echelon distribution network design problem (2E-DDP).

Keywords: Logistics, Two-echelon Distribution Network Design, Location models, Capac-
ity modeling, Uncertainty, Multi-period, Stochastic programming.

3.1 Introduction

The emergence of e-commerce and the arrival of innovative players, such as Amazon, have
unquestionably changed the logistics landscape. More specifically, the major shift to an on-
demand economy has tremendously affected the distribution schemas of several companies that
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aim to continue improving response time to customers while efficiently offering their products
in a multi-channel setting. The delivery service level expectancy has significantly increased in
the last decade: it is now expressed in hours rather than days. In addition, the ship-to-locations
have recently evolved, making use of lockers, relay points, drives, and collection stores as
alternatives to home delivery. In such context, several global B-to-C players, and especially
companies operating in the retail sector, such as Walmart, Carrefour, Amazon or jd.com, have
recently undertaken a sustained reengineering of their distribution networks. They have in-
corporated extra considerations to be closer to their key customer zones without reducing the
efficiency of their consolidation policies in warehousing and transportation. For several global
companies, the location of their primary warehouses followed various optimization rules going
from centralization and risk-pooling incentives to sourcing-dependent and financial constraints.
In practice, companies may have a single centralized warehouse or a reduced set of market-
dedicated regional warehouses where they generally keep about a month or a season’s worth
of inventory depending on the demand dynamics and the production/sourcing cycles. When
customers are globally deployed, these storage-locations are not specifically designed to pro-
vide next day and/or same day deliveries, especially when the customer bases are located in
large geographic and almost urban areas. Such one-echelon networks constrain the companies’
ability to provide fast delivery services, and reduce their opportunities to capture online orders.

In this new context, such strategic considerations imply a distribution schema with more
than one-echelon that can be dynamically adjusted to the business needs over time. A typical
predisposition schema, claimed now by practitioners, is the two-echelon distribution network.
The network topology includes an intermediate echelon of distribution/fulfillment platforms
located between the initial sites where inventory is held and the ship-to-points. For instance,
Walmart plans to convert 12 Sam’s Club stores into e-commerce fulfillment centers to support
the rapid e-commerce growth [122]. City logistics is probably the most significant example
of the shift from a one-echelon to a two-echelon distribution network setting [61, 160]. This
is achieved by creating peripheral distribution/consolidation centers dedicated to transferring
and consolidating freight from back-level platforms on large trucks into smaller and environ-
mentally friendly vehicles, more suitable for city distribution. Parcel delivery is also a relevant
context where two-echelon distribution networks operate [89]. Parcels travel from storing plat-
forms to distribution platforms, and are then loaded onto smaller trucks that ship parcels to
relay points, to lockers, or to customer homes.

With this in mind, most of the literature considers the one-echelon network topology to
characterize distribution operations where the aim is to find optimal locations, minimize the
number of depots, and build routes around the depots to serve customers [178]. At the tacti-
cal level, the notion of multi-echelon distribution is well studied from an inventory optimiza-
tion perspective [93], however, its strategic counterpart is less developed [71, 62]. Several
authors recently recalled the need to expand one-echelon networks by considering an interme-
diate echelon of platforms where storing, merging, consolidation or transshipment operations
take place [40].

This is specifically the focus of this paper where we address the two-echelon distribution-
network design problem (2E-DDP). This strategic problem aims to decide on the number and
location of distribution platforms (DPs), and the capacity allocated to these platforms to effi-
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ciently distribute goods to customer ship-to-bases. It also integrates the allocation decisions
related to the assignment of ship-to-points to DPs, and DPs to primary warehouses. The over-
riding challenge of a two-echelon setting is that the location of such DPs does not only depend
on the trade-off between ship-to-point demand versus DP capacity and the type of outbound
routes that could be designed, but is also influenced by the inbound assignment/replenishment
policy and the trade-off between location versus capacity at the preceding echelon. Further-
more, in view of the demand process, the cost variability over time, and demand uncertainty,
the question is when and how much distribution capacity to add to the network. We address
this related issue by examining the periodic capacity decisions for the distribution network over
a multi-period planning horizon. Figure 3.1 illustrates a typical 2E-DDP where the network is
partitioned into two capacitated distribution echelons. Each echelon has its own assignment-
transportation schema that must be adapted in response to the uncertainty shaping the business
horizon.

Warehouses DPs Ship-to-points

DPs capacity-allocation DPs to Ship-to-points flow External delivery

1rst Echelon

2nd Echelon

Figure 3.1: A potential Two-Echelon Distribution Network Design Problem (2E-DDP)

Some authors consider such a distribution context by explicitly modeling routes to for-
mulate the two-echelon location-routing problem (2E-LRP) as an extension of the well-known
location-routing problem (LRP) [139]. The 2E-LRP is formally introduced in Boccia et al. [40]
in an urban context and is further studied by Contardo et al. [53]. However, the literature on 2E-
LRP is still scarce and considers only a deterministic-static setting [178, 71, 62]. Additionally,
2E-LRP and most LRP modeling approaches implicitly assume that location and routing deci-
sions are made simultaneously for the planning horizon, without considering the hierarchical
structure of the strategic problem stressed here. Alternatively, some papers use a hierarchi-
cal approach to the two-echelon distribution problem, extending the facility location problem
(FLP) [97, 65], to the two-echelon facility location problem (2E-FLP) introduced in [85]. How-
ever, most 2E-FLP studies approximate the transportation and fulfillment characteristics related
to the distribution case, ignoring the capacity decisions, and studying mostly deterministic ver-
sions. Furthermore, we note that most production-distribution problems in the supply chain
management literature have a two-echelon structure, but with a single distribution echelon,
generally relying on FLP to formulate the problem. These studies tend towards functional
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expansions related to production policies and constraints, and specific manufacturing-linked
transportation issues, rather than focusing on the strategic needs of the distribution businesses
stressed above (see for instance [229, 16, 24, 80]). Comprehensive reviews on FLPs can be
found in [154, 78].

Moreover, given the strategic nature of decisions in 2E-DDP, the network must be designed
to last for several years, fulfilling future requirements. It should also be efficiently adapt-
able to changes in the business environment over time. According to the Tompkins report
in (2011) [219], there is a significant trend toward reducing the planning horizon in strategic
studies: the length of the re-engineering period defined in strategic network design studies has
reduced on average from 4 years to under 2 years due to business uncertainty increasing and
distribution practices becoming more complex. Accordingly, the traditional deterministic-static
representation of the planning horizon is replaced by a more realistic stochastic-multi-period
characterization of the planning horizon. More specifically, the horizon is modeled with a set
of planning periods shaping the evolution/uncertainty of random factors (e.g., demand, costs,
etc.), and promoting the structural adaptability of the distribution network. Such decisional
framework leads to a multi-stage stochastic programming problem as addressed here. Despite
the fact that the multi-stage stochastic programming framework is well established [203, 38], its
application to distribution problems is still in its infancy. Recently, some authors [129, 72] raise
the need for such a decisional framework to tackle complex supply chain problems. Klibi and
Martel [129] propose a multi-stage framework for a supply chain network design problem, but
the two-stage stochastic location-transportation model formulated and solved relies on a single
distribution echelon. Dunke et al. [72] underline the importance of meeting time-dependent
and uncertain ship-to-point demand subject to time-dependent cost parameters with decisions
on opening, operating, or closing facilities, and capacity adjustment decisions along the hori-
zon. Further studies, such as Nickel et al. [162], Pimentel et al. [171], and Albareda-Sambola
et al. [9], address the multi-stage stochastic setting but only for one-echelon distribution prob-
lems. To the best of our knowledge, no study addresses the multi-period and stochastic versions
of 2E-LRP and 2E-FLP.

The aim of this paper is thus to first define 2E-DDP under uncertain and time-varying de-
mand, and time-varying DP opening costs, formulated as a multi-stage stochastic program with
recourse. Our modeling framework considers that the planning horizon is composed of a set
of planning periods shaping the evolution of uncertain ship-to-point demand over time. It also
assumes that the number and location of DPs are not fixed a priori and must be decided at the
strategic level along the set of planning periods. Furthermore, it considers strategic assignment-
transportation decisions to calibrate DP throughput capacity based on transportation capabil-
ities. Our approach looks at a hierarchical strategic-operational decisional framework where
the emphasis is on the network design decisions and their impact on the company’s distribu-
tion performance. The operational decisions related to transportation operations are modeled
as origin-destination arcs, which correspond to a sufficiently precise aggregate of daily deci-
sions over several products, transportation means, and working periods, as discussed in [131].
Second, 2E-DDP is an NP-hard stochastic combinatorial optimization problem since it inherits
several complexities from the FLP and LRP models, in addition to the curse of dimensionality
of its multi-stage stochastic setting. This justifies the development of approximate modeling
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approaches that allow handling realistic instances and guarantee the generation of good-quality
design solutions. Consequently, we propose solvable two-stage stochastic versions of the 2E-
DDP. These models differ in the modeling of distribution operations, and we discuss their solv-
ability with respect to the capabilities of current solvers. Our solution methodology builds on a
Benders decomposition [32] and on the sample average approximation (SAA) method [203] to
formulate the deterministic equivalent model with an adequate sample size of scenarios. The
results obtained from the extensive experiments show the trade-off between solvability and the
quality of the designs produced by both models. They also illustrate the importance of tackling
the stochastic problem by evaluating the quality of the stochastic solutions. Several managerial
insights are also derived on the behavior of design decisions under the stochastic-multi-period
characterization of the planning horizon.

The remainder of this paper is organized as follows. Section 3.2 summarizes the related
works on distribution network design models under deterministic and stochastic settings, and
the exact solution methods applied to such models. Section 3.3 defines the 2E-DDP, presents
the characterization of the uncertainty by scenarios, and provides a comprehensive multi-stage
stochastic formulation. Section 3.4 discusses the solvability of our model and introduces two-
stage stochastic program approximations of the multi-stage model that make it tractable. Sec-
tion 3.5 presents the solution approaches proposed to solve the problem using Benders decom-
position and the SAA technique. It also introduces an evaluation procedure to assess the quality
of the stochastic solutions, and evaluate the performance of the designs obtained. Section 3.6
reports our computational results and discusses the quality of the solutions obtained in con-
junction with the solvability effort of the associated models. Section 3.7 provides conclusions
and outlines future research avenues.

3.2 Related works

2E-DDP is closely related to several classes of problems in the operations research (OR) liter-
ature that we classify according to their modeling options. Table 3.1 presents the main studies
related to 2E-DDP and classifies the related works in terms of network structure (the echelons
involved in the network other than the ship-to-point level), and provides the main distinguish-
ing features in terms of the distribution operations (routes (R) versus flows (F)) and capacity
planning decisions under single/multi-period (SP vs MP) and deterministic (D)/stochastic (S)
settings. Table 3.1 also highlights the mathematical modeling and the solution approaches used
to tackle the problem.

As mentioned in Table 3.1, existing studies include different numbers and types of echelons.
The echelons differ in terms of location decisions as an implicit or explicit decision. Boccia et
al. [40] and Sterle [215] formulate a static two-echelon distribution problem as a 2E-LRP where
location decisions involve warehouses and distribution centers, and distribution operations are
modeled by routes. They introduce a two-index and three-index vehicle-flow formulation, and
a set-partitioning formulation. Nguyen et al. [160, 161] study a special case of 2E-LRP in
the urban context including one single main warehouse at the first echelon and several po-
tential distribution centers. Correia et al. [56] focus on a multi-period two-echelon network
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with central and regional distribution centers where distribution decisions are approximated by
flows. Supply chain networks have provided suitable applications of FLPs in the last decades.
Ambrosino and Scutellà [12] and Georgiadis et al. [86] address designing a supply chain net-
work comprising a two-echelon distribution schema in addition to inbound flows (i.e., from
suppliers/plants). Further studies use the two-echelon structure in supply chain network de-
sign problems [58, 80, 240], in closed loop supply chains [239], and in production-distribution
problems [43, 229], but only considering a single distribution echelon. These studies are ori-
ented toward functional expansions, such as production policies and constraints, and specific
manufacturing-linked transportation issues, rather than focusing on the strategic needs of the
distribution businesses. In this study, we assume that the two echelons are dedicated to distri-
bution operations, i.e., responsible for the delivery of finished goods (see for instance [56, 86]).

The complexities of distribution systems in real world applications lead to integrating oper-
ational decisions at the strategic level. More specifically, capacity decisions as strategic/design
planning decisions and transportation and distribution policies as operational planning deci-
sions are included in 2E-DDPs, as well as classic location-allocation decisions. Moreover,
considering a time horizon of multiple periods is of great importance to decision-makers, since
facility location decisions are long-term problems. Ambrosino and Scutellà [12], Georgiadis
et al. [86] and Heckmann et al. [101] limit the multi-period settings to operational decisions,
and the strategic decisions are taken once at the beginning of the planning horizon, whereas
Correia et al. [56] and Darvish et al. [64] consider multi-period settings for strategic deci-
sions. In [128], a single design period is used and coupled with multiple operational periods.
Albareda-Sambola et al. [11] tackle a multi-period LRP where two interconnected time scales
for design and operational decisions are considered.

In addition, considering multiple design periods enables making adjustments to location
decisions through opening (O), closing (C), and/or reopening (Re) facilities [162, 64, 171], and
adjustments to facility capacities through reduction and expansion [56, 4, 240] in each design
period due to demand variability over time (see Table 3.1). Pimentel et al. [171] focus on the
one-echelon stochastic capacity planning and dynamic network design problem in which ware-
houses can be opened, closed, and reopened more than once during a planning horizon. This
is more suited to new warehouses that are being rented instead of built, since lower fixed setup
costs are incurred. Heckmann et al. [101] introduce a single echelon risk-aware FLP in which
capacity expansions with different levels are possible in each facility. Capacity expansion is ex-
ecuted at the second-stage decision when uncertainty is revealed. Jena et al. [118] introduce the
one-echelon dynamic facility location problem with generalized modular capacities that gener-
alizes several existing formulations for the multi-period FLP: the problem with facility closing
and reopening, the problem with capacity expansion and reduction, and their combination.

One-echelon distribution problems under uncertainty are studied in the literature as in [193,
101] and [199] where stochasticity is assumed for demand and facility capacities. Additionally,
incorporating a multi-period planning horizon with uncertainty is investigated in Aghezzaf [4],
and Zhuge et al. [240] in the supply chain context with one distribution echelon to meet the
variability of demand uncertainty. Zhuge et al. [240] also consider an uncertain and time vary-
ing budget. Georgiadis et al. [86] combine multiple operational periods with the stochastic
setting in a two-echelon distribution configuration where product demand is uncertain and time
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varying.
In 2E-DDP, distribution operations may take the form of routes (R) or direct flows (F) gen-

eralizing the classic problems in the literature: 2E-LRPs [62] and 2E-FLPs [154, 78], respec-
tively. Table 3.1 shows that the majority of papers using routes are studied in a deterministic-
static setting, and to the best of our knowledge, no work has yet addressed the multi-period
and stochastic settings simultaneously. However, some papers consider the multi-period and
stochastic settings in 2E-FLPs and supply chain network design, but its application to the two-
echelon distribution configuration is still limited.

Furthermore, Table 3.1 shows that most studies in the deterministic-static and multi-period
setting are formulated with a mixed-integer linear program (MILP) (for instance, [53, 56]).
Nevertheless, under uncertainty, stochastic programming approaches are more appropriate as
in [86, 101, 240], where the problem is modeled as a mixed-integer two-stage stochastic pro-
gram with recourse (TSSP).

Integrating a multi-period setting with uncertainty in long-term problems leads to multi-
stage stochastic programming (MSSP) [111]. This approach is applied in Nickel et al. [162],
Albareda-Sambola et al. [9], and Pimentel et al. [171] for the one-echelon distribution network,
and in Zeballos et al. [239] for the closed-loop supply chain context. Ahmed et al. [6] formulate
the multi-period capacity expansion problem as a MSSP where both the demand and investment
costs are uncertain.

The multi-stage modeling approach adds complexity to the problems. Theoretical develop-
ments and approximations are proposed in the literature: Guan et al. [95] present cutting planes
for multi-stage stochastic integer programming enhanced by inequalities that are valid for indi-
vidual scenarios. When a set of scenarios is assumed for modeling uncertainty in a multi-stage
setting, it is possible to build a scenario tree. However, in practice, accurate approximations of
a complex stochastic process with a modest-sized scenario tree represent a very difficult prob-
lem. Thus, several scenario generation methods and reduction techniques are proposed. We
refer the reader to Heitsch and Römisch [102], Dupačová et al. [74, 75], and Høyland and Wal-
lace [113]. Römisch and Schultz in [183] explore the scenario tree and propose a path-based
alternative modeling framework. Later, Huang and Ahmed [114] used the same framework to
improve the modeling of uncertainties in a MSSP context.

Accordingly, no work addresses the multi-stage stochastic framework for the multi-period
stochastic 2E-DDP. Furthermore, although some works propose tackling mixed-integer multi-
stage stochastic programs using exact and heuristic methods based on decomposition tech-
niques and/or scenario sampling methods [198, 38], further progress is required to solve real-
istic two-echelon distribution design problems.
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The aforementioned studies mostly use commercial solvers to solve their mathematical pro-
grams as in [56, 86, 40]. Exact solution methods are proposed to solve the two-echelon distribu-
tion configuration, such as the branch-and-cut algorithm in [53]. Lagrangian-based heuristics
in [12] are the most popular heuristics used in this context. Metaheuristics are also proposed to
solve the deterministic and static 2E-DDP with routes such as the Greedy Randomized Adaptive
Search Procedure (GRASP) in [160], the Multi-Start Iterated Local Search (MS-ILS) in [161],
and the Adaptive Large Neighborhood Search (ALNS) [53]. Sampling methods [202] such
as sample average approximation (SAA) are also used in stochastic models to limit the large
number of scenarios. This is applied in supply chain network design problems with a one dis-
tribution echelon in [193, 230, 199, 128]. Santoso et al. [193] integrate the SAA scheme with
an accelerated Benders decomposition algorithm to quickly compute high quality solutions to
large-scale stochastic supply chain design problems with a vast number of scenarios.

3.3 The two-echelon multi-period distribution network de-
sign problem

3.3.1 Problem definition

We consider the business context of a retail company that sources a range of products from
a number of supply sites (e.g., suppliers, manufacturing plants), and stores them at primary
warehouses. Without loss of generality, these products are aggregated in a single product fam-
ily in our modeling approach because they are relatively uniform and share the same handling
and storage technology [152]. This is done by taking average cost and demand information
related to the entire product family. Under a make-to-stock policy, the company operates a set
of primary warehouses, formerly designed to centralize inventories and ensure distribution to
demand zones periodically. However, the locations of the company warehouses are not nec-
essarily designed to provide next day and/or same day delivery. To do so, the company needs
to deploy an advanced set of distribution resources to serve ship-to-points with an adequate
service level. Strategic facility-location decisions concern a new intermediate echelon, dimen-
sioning capacitated DPs used to fulfill orders and deliver finished goods to ship-to-points. This
2E-DDP is illustrated in Figure 3.1: strategic decisions concern the location of DPs at the inter-
mediate level and the capacity of the links between the warehouses and the ship-to-locations.

Ship-to-point orders vary in quantity of product demanded on a daily basis. Once a given
set of DPs is deployed, the company periodically determines the quantities of goods to be al-
located to each DP: this translates into a number of full-load trucks required from warehouses
to deliver products to a DP. Then, on a daily basis, the goods are delivered to ship-to-locations
through common or contract carriers for each single ship-to-point. Thus, while the allocation
decisions are modeled as periodic origin-destination quantities from warehouses to DPs, the
transportation decisions are modeled as daily transportation links from DPs to ship-to-points.
Our focus is on strategic capacity allocation decisions made by distribution platforms and their
transportation capabilities. The operational shipping decisions are modeled to capture the run-
ning cost of strategic decisions. To ensure feasibility, a recourse delivery option is allowed
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if the ship-to-points cannot be satisfied from the set of deployed DPs on a given day. This
recourse comes at a higher shipment cost.

Our model considers a long-term planning horizon T that covers a set of successive design
planning periods T “ t1, . . . ,Tu. Such periods must be defined in accordance with the oper-
ational dynamics. For instance, one can assume that a period corresponds to a year, which is
typical in the context of DPs to lease (in practice, it could be up to 2 years in the case of build-
ing or renovating DPs). Each planning period covers a set of operational periods, represented
generally in a discrete way by “typical” business days. Figure 3.2 illustrates the relationship
between the decision planning periods and operational days, and the hierarchical structure of
the decision problem. It also shows that strategic design decisions (location and capacity de-
cisions) could be adapted periodically at each design period t to align the distribution network
to its business environment, especially when operating under uncertainty. Worth noting is that
the design decisions must be made prior to their deployment period with partial information on
the future business environment. After an implementation period, they will be available for use
as shown by the positioning of the arrows in Figure 3.2. This assumes information asymmetry
between the design level and the operational level, mainly due to the fact that the decisions are
not made at the same time.

Stochastic demand

deploymentperiod

deploymentperiod

usage
period

t Planning periods t P T

Planning horizon

design decisions
yl1, zl1, xlp1

Structural adaptation decisions
yltω, zltω, xlptω

vl jtω, s jtω

Operational periods τ P Tt

Figure 3.2: Decision time hierarchy for the planning horizon under uncertainty

Therefore, our model has a multi-stage decision structure. At the beginning of the planning
horizon, the here and now design decisions are made, and are thus considered as the first-
stage DP design decisions. Next, at the beginning of each subsequent period (t ą 1), a new
opportunity to adapt the distribution network structure to its future environment is offered,
based on the information available at that time. Decisions made at the beginning of the period
t depend on the design decisions up to that period, as illustrated in Figure 3.2 and described
mathematically in the stochastic 2E-DDP model below.

3.3.2 Scenario building and tree representation

Uncertain daily demand of ship-to-points is represented by a random variable, which is esti-
mated by a given probability distribution. Let d j be the random variable for ship-to-point j
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demand that follows a distribution probability F j with a mean value µ j0 estimated from his-
torical data until t “ 0. Under a multi-period planning horizon setting, the random demand
process is time-varying. More specifically, a multi-period plausible future allows capturing
factor transitions (inflation-deflation, population density, market stores, etc.) that perturb the a
priori estimation of demand behavior and could thus impact the design decisions. This means
that a trend function is associated with the random variable and the associated distribution prob-
ability F jt with a mean value µ jt to shape demand realization. The demand process is stationary
if the trend function is fixed at zero, and non-stationary otherwise. Worth noting is that the
uncertainty concerns the order quantity, and can thus shift the demand level from one location
to another in the network.

The uncertainty is characterized by a set Ω of plausible future scenarios where a scenario
ω encompasses the demand realization for each period t and for all the ship-to-points during
a typical business day. Then, at the beginning of each period t, the information available is
updated according to the additional data revealed up to t. Let Ωt be the subset of distinct
scenarios of Ω that share the same realization up to stage t. Hence, Ωt “ tωt : ω P Ωu and
ΩT “ Ω. Thus, d jtω will denote the demand of ship-to-point j at period t under scenario ω P Ωt

following the distribution probability F jt with the parameters µ jt. Given the entire planning
horizon, a scenario tree T should be built to characterize the realization of demand for each
planning period. When using such stochastic process, scenario instances can be generated with
Monte Carlo methods. At each stage t, a discrete number of nodes represent points in time
where realizations of the uncertain parameters take place and decisions have to be made. Each
node g of the scenario tree, except the root, is connected to a unique node at stage t ´ 1, called
the ancestor node apgq, and to nodes at stage t`1, called the successors. We denote with πapgq,g

the conditional probability of the random process in node g given its history up to the ancestor
node apgq. The path from the root node to a terminal (leaf) node corresponds to a scenario ω,
and represents a joint realization of the problem parameters over all periods 1, . . . ,T . Partial
paths from the root node to intermediate nodes correspond to the restricted scenarios up to stage
t denoted ωt.

Figure 3.3a illustrates a typical example of a multi-stage scenario tree. The scenario prob-
ability is obtained by multiplying the conditional probabilities through the path. The non-
anticipativity principle [181] is implemented by requiring that the decisions related to scenar-
ios that are identical up to a given stage are the same and can therefore be represented by a
single variable. In the following, we use branches of the scenario tree to define recourse vari-
ables where each branch represents a restricted scenario ω P Ωt. Accordingly, using restricted
scenarios, one can avoid to write the non-anticipativity constraints explicitly.

3.3.3 The multi-stage stochastic formulation

The stochastic 2E-DDP can be modeled as a multi-stage stochastic program with a set of sce-
narios. As mentioned above, Ωt represents the set of distinct restricted scenarios up to stage t,
for all t “ 1, . . . ,T : Ωt “ tω

t : ω P Ωu. We also define:

precpωq the set of direct ancestors of scenario ω P Ωt, for all t “ 1, . . . ,T ´ 1: precpωq “
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0

apgq

g

Ωt

ωt

ωT “ 1

ωT “ 2

...

ωT “ |Ω|

t “ 1 . . . t “ tpgq t “ T

(a) Multi-stage scenario tree

t “ 1 . . . t “ tpgq t “ T

(b) Fan of individual scenarios

Figure 3.3: Scenario tree representation

tω1 P Ωt´1 : ωτpωq “ ωτpω
1q, @τ ă tu.

ppωq the probability of each scenario ω P Ωt. Note that
ř

ωPΩt
ppωq “ 1 for all t.

Additionally, we consider the following notations:

• Sets

P set of primary warehouses.

L set of distribution platforms (DPs).

J set of ship-to-points.

• Parameters

Cp is the maximum throughput capacity of primary warehouse p P P (expressed in flow
unit for a given period).

Cl is the maximum capacity of the DP l P L.

Clp is the maximum capacity of transportation used for flows from warehouse p P P to
DP l P L.

cl jt is the transportation cost per product unit from a DP l P L to ship-to-point j P J at
period t P T .
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clpt is the unit transportation cost per flow unit from warehouse p P P to DP l P L at
period t P T .

f s
lt is the cost of opening a DP l P L at period t P T .

f u
lt is the cost of operating a DP l P L at period t P T .

c jt is the shipment cost when recourse delivery is employed to cover a proportion of the
demand of a ship-to-point j P J at period t P T .

Since transportation decisions are made within typical business day, the operational transporta-
tion costs cl jt and cr

jt are annualized to cover their daily aspect in the objective function.
The decision variables are:

zltω “ 1 if DP l P L is opened at period t under scenario ω P Ωt, t “ 1, . . . ,T , 0 otherwise.

yltω “ 1 if DP l P L is operating at period t under scenario ω P Ωt, t “ 1, . . . ,T , 0 otherwise.

xlptω “ Inbound allocation from warehouse p P P to DP l P L expressed in number of
truckload units contracted to deliver from the warehouse under scenario ω P Ωt, t “
1, . . . ,T .

vl jtω “ fraction of demand delivered from DP l P L to ship-to-point j P J under scenario
ω P Ωt, t “ 1, . . . ,T .

s jtω “ fraction of demand of ship-to-point j P J satisfied from a recourse delivery under
scenario ω P Ωt, t “ 1, . . . ,T (i.e., external shipment, not from DPs).

The deterministic equivalent formulation for the multi-stage stochastic problem takes the form:

(MS-M) min
ÿ

tPT

ÿ

ωPΩt

ppωq
ˆ

ÿ

lPL

“

p f u
lt yltω ` f s

lt zltωq `
ÿ

pPP

clpt Clpxlptω
‰

`
ÿ

jPJ

d jtωr
ÿ

lPL

cl jt vl jtω ` c jt s jtωs

˙

(3.1)

S. t.
ÿ

lPL

Clpxlptω ď Cp @p P P, t P T , ω P Ωt (3.2)

ÿ

pPP

Clpxlptω ď Clyltω @l P L, t P T , ω P Ωt (3.3)

yltω ´ yltprecpωq ď zltω @l P L, t P T , ω P Ωt (3.4)
ÿ

jPJ

d jtω vl jtω ď
ÿ

pPP

Clpxlptω @l P L, t P T , ω P Ωt (3.5)

ÿ

lPL

v jltω ` s jtω “ 1 @ j P J , t P T , ω P Ωt (3.6)

xlptω P N @l P L, p P P, t P T , ω P Ωt (3.7)
yltω, zltω P t0, 1u @l P L, t P T , ω P Ωt (3.8)

vl jtω ě 0 @l P L, j P J , t P T , ω P Ωt (3.9)
s jtω ě 0 @ j P J , t P T , ω P Ωt (3.10)
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The objective function (3.1) seeks to minimize the total expected cost for the design and
operational costs throughout the planning horizon. The first and second terms refer to the de-
sign costs that include the operating and opening costs for DPs, and the inbound allocation cost
to DPs from warehouses. The third term represents the transportation cost in the second eche-
lon (from DPs to ship-to-points) as well as the external delivery costs. Constraints (3.2)-(3.3)
express capacity limit on warehouses and DPs, respectively, over stages. In addition, con-
straints (3.3) force that a delivery is possible to a DP only if it is operating. Constraints (3.4)
define the setup of the DPs over stages. These constraints manage the status of the DPs op-
erating from one stage to the next and set their opening. Constraints (3.5) aim to cover the
demand of ship-to-points from the operating DPs without exceeding their inbound allocation
from warehouses. Constraints (3.6) ensure that a ship-to-point is either satisfied through the
opened set of DPs or through a recourse delivery. All the other constraints (3.7)-(3.10) define
the decision variables of the problem. Observe that |Ω1| “ 1 and therefore decisions px, y, zq
at the first stage represent here and now decisions concerning the design. Their counterpart at
later periods represents recourse on the design in this multi-stage process. On the other hand,
allocation decisions pv, sq allow evaluating the operational cost of the distribution system given
design px, y, zq that is fixed in each period.

3.4 Two-stage stochastic program approximations

The above multi-stage stochastic formulation for the stochastic 2E-DDP presented highlights
the hierarchical structure of the problem and the scenario-based relation between the different
decisions. For realistic size problems, directly tackling such multi-stage stochastic programs
using exact and heuristic methods is beyond the scope of current technologies [198, 38]. We
build here on the reduction [125, 209] and relaxation [204] approaches recently applied to
transform the multi-stage stochastic program to a two-stage stochastic program, and transform
the multi-stage stochastic program (3.1)-(3.10) into a two-stage stochastic program that is suf-
ficiently accurate to capture the essence of the problem while being solvable in practice.

Accordingly, one modeling approach consists in transferring from the MS-M model all the
design decisions of the T periods (location and capacity-allocation) to the first-stage in order
to be set at the beginning of the horizon. In this case, only first-stage design decisions (t “ 1)
are made here and now, but subsequent design decisions (t ą 1) (see Figure 3.2) are essentially
used as an evaluation mechanism. These latter design decisions for periods (t ą 1) are de-
ferrable in time according to their deployment period. Therefore, the obtained model offers an
approach to set the design decisions for (t “ 1) with an optimistic evaluation at the beginning
of the horizon of subsequent design decisions without losing its hedging capabilities. This ap-
proach gives rise to the two-stage stochastic location capacity-allocation model. The obtained
model is challenging to solve due to the combinatorial difficulty of the resulting mixed-integer
program and the high number of scenarios. Another modeling approach consists in transferring
from the MS-M model only the T periods’ design decisions related to the location decisions
to the first-stage, and relaxing the capacity-allocation decisions to the second-stage for all pe-
riods. These latter capacity-allocation decisions now become part of the recourse problem and
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thus scenario-dependent (see Figure 3.2). This approach gives rise to the two-stage stochastic
flow-based location-allocation model.

The discussion above impacts the scenario building approach: for stages t ě 2, the scenario
tree construction algorithm can reduce the number of nodes to a fan of individual scenarios that
prescribes the random parameter value for the full time horizon with a probability ppωq, ω P Ωt.
This is illustrated in Figure 3.3b where scenarios are independent of the number of periods, as
shown in [74]. Thus, the scenario representation fan of the planning horizon fits well with our
two-stage stochastic programming and clearly simplifies the generation of scenarios. With this
in mind, the remainder of the section provides the formulation of these two design models for
the 2E-DDP.

3.4.1 Location and capacity-allocation model (LCA)

In this two-stage model, the design decisions for (t ą 1) can be taken at the beginning of the
planning horizon and do not depend on the history up to period t. In this case, the first-stage
decisions consist in deciding the DPs to open and to operate as well as the capacities assigned to
DPs from warehouses (i.e., the first echelon of the network) during T periods. In complement,
the second-stage decisions look forward to the distribution operations in the second echelon of
the network (i.e., from DPs to ship-to-points) and the recourse deliveries. This formulation is
referred to as the location and capacity-allocation model (LCA).

The decision variables are defined below:

xlpt “ the number of full truckloads assigned from warehouse p P P to DP l P L at period
t P T .

ylt “ 1 if DP l P L is operating at period t P T .

zlt “ 1 if DP l P L is opened at period t P T .

vl jωt “ fraction of demand delivered from DP l P L to ship-to-point j P J under demand
scenario ω P Ωt.

s jωt “ fraction of demand of ship-to-point j P J satisfied through external delivery under
scenario ω P Ωt of period t (i.e., that ship-to-point is not delivered to from DPs).

We denote the set of feasible combinations of first-stage decisions ylt with y, zlt with z and xlpt

with x. Then, the LCA is formulated as a mixed-integer two-stage stochastic linear program:
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(LCA) min
x,y,z,v,s

EΩhpx, y, z, ωq “ min
ÿ

tPT

ÿ

lPL

p f u
lt ylt ` f s

lt zltq `
ÿ

tPT

ÿ

lPL

ÿ

pPP

clpt Clpxlpt `
ÿ

tPT

EΩrQtpx, ωqs (3.11)

S. t.
ÿ

lPL

Clpxlpt ď Cp @p P P, t P T (3.12)

ÿ

pPP

Clpxlpt ď Cl ylt @l P L, t P T (3.13)

ylt ´ ylt´1 ď zlt @l P L, t P T (3.14)
xlpt P N @l P L, p P P, t P T (3.15)

ylt, zlt P t0, 1u @l P L, t P T (3.16)

where Qtpx, ωq is the solution of the second-stage problem:

Qtpx, ωq “ min
v,s

ÿ

jPJ

d jωtr
ÿ

lPL

cl jt vl jωt ` c jωt s jωts (3.17)

S. t.
ÿ

jPJ

d jωt vl jωt ď
ÿ

pPP

Clpxlpt @l P L (3.18)

ÿ

lPL

v jlωt ` s jωt “ 1 @ j P J (3.19)

vl jωt ě 0 @l P L, j P J (3.20)
s jωt ě 0 @ j P J (3.21)

The objective function (3.11) is the sum of the first-stage costs and the expected second-
stage costs. The first-stage costs represent the opening DP cost, the operating DP cost, as well
as the capacity cost induced by the number of truckloads associated with DPs from warehouses.
The objective function of the second stage (3.17) consists in minimizing the cost of the total
flow delivered from DPs to ship-to-points and the cost of the recourse when the ship-to-point is
satisfied partially or totally through an extra delivery. Constraints (3.12) ensure that the quan-
tity delivered from a warehouse do not exceed its capacity. Constraints (3.13) guarantee the
capacity restriction at an operating DP. Constraints (3.14) define the location setup. To use a
DP, opening decisions must be activated in the same period, unless set as active in a preceding
period. Constraints (3.15)-(3.16) describe the feasible set for the first-stage variables. Con-
straints (3.18) aim to cover the ship-to-point demand from the opened DPs. Constraints (3.19)
ensure that a ship-to-point is either satisfied totally or partially through the designed network
or from the extra delivery option. Constraints (3.20)-(3.21) are the non-negativity constraints
for the second-stage variables.

In the LCA model presented above, the first-stage decisions are projected out in the recourse
problem through the capacity assignment variables xlpt, as expressed in constraints (3.18).
However, the inclusion of assignment-transportation xlpt as integer first-stage decision vari-
ables may complicate its resolution, particularly for large size instances.
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3.4.2 Flow-based location-allocation model (LAF)

As mentioned, the first echelon (warehouses-DPs) distribution operations are represented by a
throughput capacity based on the transportation capabilities in the LCA model. Such modeling
option necessitates the inclusion of capacity assignment-transportation as the integer first-stage
decision variables xlpt, and may complicate its resolution. A common alternative modeling ap-
proach is to consider continuous flows as capacity-allocation variables, which are part of the
second-stage and thus scenario-dependent variables. In such case, the first echelon distribution
operations are represented by a set of origin-destination links, xlptω, and refer to the propor-
tion of truckloads assigned from warehouse p to DP l under scenario ω at period t. With such
modeling approach, a two-stage stochastic program is obtained where location decisions (open-
ing and operating DPs) are first-stage decisions, and the flow-based transportation decisions in
both echelons are second-stage decisions, denoted as the flow-based location-allocation model
(LAF). Given the LCA program, constraints (3.12), (3.13), and (3.15) should be adjusted to
be part of the recourse problem, and thus replaced by (3.24), (3.25), and (3.28), respectively.
Constraint (3.18) is also substituted by (3.26). The LAF can then be written as:

(LAF) min
y,z,x,v,s

EΩhpy, z, ωq “ min
ÿ

tPT

ÿ

lPL

p f u
lt ylt ` f s

lt zltq `
ÿ

tPT

EΩrQtpy, ωqs (3.22)

S. t. p3.14q and p3.16q

where Qtpy, ωq is the solution of the second-stage problem of the LAF formulation:

Qtpy, ωq “ min
x,v,s

ÿ

lPL

ÿ

pPP

clpt Clpxlptω `
ÿ

jPJ

d jωtr
ÿ

lPL

cl jt vl jωt ` c jωt s jωts (3.23)

S. t.
ÿ

lPL

Clpxlptω ď Cp @p P P (3.24)

ÿ

pPP

Clpxlptω ď Cl ylt @l P L (3.25)

ÿ

jPJ

d jωt vl jωt ´
ÿ

pPP

Clpxlptω ď 0 @l P L (3.26)

ÿ

lPL

v jlωt ` s jωt “ 1 @ j P J (3.27)

xlptω ě 0 @l P L, p P P (3.28)
vl jωt ě 0 @l P L, j P J (3.29)
s jωt ě 0 @ j P J (3.30)

In the LAF model, the recourse problem is linked to the problem by constraints (3.25),
where first-stage decisions are projected out through the operating DP variables (ylt). Given the
LCA and LAF models, the next section proposes a solution methodology to solve these multi-
period stochastic versions of the 2E-DDP. Hereafter, we denote for each model o P tLCA,
LAFu, the design vector Xpoq with XpLCAq “ tx, y, zu and XpLAFq “ ty, zu, respectively.
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3.5 Solution methodology

For real-scale instances of the aforementioned models, one would have to manage the inher-
ent combinatorial complexity and the extremely large set of demand scenarios of the 2E-DDP
under uncertainty. Therefore, our solution methodology combines the scenarios sampling ap-
proach and the decomposition schema of the stochastic models. The sample average approx-
imation (SAA) is used to handle the large set of scenarios and determine the most adequate
sample size [204]. This approach has been applied to network design problems in [193, 199]
and to stochastic multi-period location transportation problem in [128]. For more details, in-
terested readers are referred to Appendix A.1. In this section, we first propose a reformulation
of both models based on the Benders decomposition scheme, adapted to the two-stage and
multi-period setting of the stochastic programs. Then, a scenario-based evaluation procedure
is introduced to post-evaluate the alternative design solution produced by the LCA and the
LAF models, and thus discuss their design structure and the quality of the stochastic solutions
obtained.

3.5.1 The Benders decomposition

Given the combinatorial complexity of the stochastic 2E-DDP, cutting plane algorithms such as
Benders decomposition could be suitable to enhance its solvability. The Benders decomposi-
tion is a well-known partitioning method applicable to mixed-integer programs [32, 33]. In the
Benders decomposition, the original problem is separated into a master problem and a number
of sub-problems, which are typically easier to solve than the original problem. By using lin-
ear programming duality, all sub-problem variables are projected out, and the master problem
contains the remaining variables and an artificial variable representing the lower bound on the
cost of each sub-problem. The resulting model is solved by a cutting plane algorithm. In each
iteration, the values of the master problem variables are first determined, and the sub-problems
are solved with these variables fixed. An optimal solution of the master problem provides a
lower bound, and this solution is transmitted to the sub-problems to construct new ones. If the
sub-problems are feasible and bounded, an optimality cut is added to the master problem, oth-
erwise a feasibility cut is added. The solution of the feasible sub-problems provides the valid
upper bound. By adding the new Benders cuts, the master problem is resolved, and the Benders
decomposition algorithm is repeated continuously until the difference between the lower bound
and the upper bound is small enough or zero.

In this paper, we introduce a Benders decomposition algorithm to solve the two SAA pro-
grams related to the LCA and LAF models based on a set of sampled scenarios ΩN . In this
subsection, we present the Benders reformulation developed for the (LCA(ΩN)) program and
keeping the reformulation for the (LAF(ΩN)) in Appendix A.2. In the (LCA(ΩN)) program,
integer variables are first-stage decisions, while continuous variables belong to the second-
stage. If the first-stage decisions are fixed, the resulting sub-problem can be decomposed into
|T | ˆ |ΩN | sub-problems, one for each period t P T and each scenario ω P ΩN . This is inspired
by the original idea of applying Benders decomposition to stochastic integer programs, also
known as the L-shaped method [225, 38]. Given XpLCA(ΩN)q “ tx, y, zu, the fixed vector
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related to the (LCA(ΩN)), the expected total cost of the second-stage decisions, denoted with
φpx, y, zq can be calculated as φpx, y, zq “ 1

N

ř

tPT

ř

ωPΩN
t
φtωpx, y, zq, where φtωpx, y, zq is the

total second-stage cost for each period t and each scenario ω. This cost is obtained through
solving the following primal sub-problem (PSωt):

(PSωt) φtωpx, y, zq “ Qtpx, ωq “ min
ÿ

jPJ

d jωtr
ÿ

lPL

cl jt vl jωt ` c jωt s jωts (3.31)

S. t. p3.18q ´ p3.21q

The (PSωt) is always feasible because the demand can be satisfied from an extra delivery
option, i.e., s jωt, which is uncapacitated. We denote with αl and β j the dual variables associated
with constraints (3.18)and (3.19), respectively. Accordingly, the dual of (PSωt) for each t and
ω, called the dual sub-problem (DSωt), can be formulated as:

(DSωt) φtωpx, y, zq “ max
ÿ

lPL

ÿ

pPP

Clp xlpt αl `
ÿ

jPJ

β j (3.32)

S. t. d jωt αl ` β j ď d jωt cl jt @l P L, j P J (3.33)
β j ď d jωt c jωt @ j P J (3.34)
αl ď 0 @l P L (3.35)
β j P R @ j P J (3.36)

We define as ∆tω the polyhedron under the constraints (3.33) and (3.34) of (DSωt). Let P∆tω

be the set of extreme points of ∆ “ Ytω∆tω. We introduce an additional variable utω representing
the total expected second-stage decision cost per t and ω. Thus, the Benders master problem is
written as:

(BMP) min
ÿ

tPT

ÿ

lPL

p f u
lt ylt ` f s

lt zltq `
ÿ

tPT

ÿ

pPP

ÿ

lPL

clptClpxlpt `
1
N

ÿ

tPT

ÿ

ωPΩN
t

utω (3.37)

S. t. p3.12q ´ p3.16q

utω ´
ÿ

lPL

ÿ

pPP

Clp xlpt αl ě
ÿ

jPJ

β j @t P T , ω P ΩN
t , pαl, β jq P P∆tω (3.38)

utw ě 0 @t P T , ω P ΩN
t (3.39)

Constraints (3.38) represent the Benders optimality cuts.

3.5.2 Evaluation procedure

When using a sampling approach, the assessment of the design solutions produced by the two
models presented in Section 3.4 is restricted to the set of scenarios considered. To better appre-
ciate the performance of the produced design solutions, we develop a complementary evalua-
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tion procedure. This relies on the fact that the higher the evaluation sample size, the more pre-
cise the assessment of the design solution. It also builds on the ability of this post-optimization
phase to introduce additional performance measures to appreciate the robustness of the solution,
which were not part of the optimized model. In practice, a design solution evaluation proce-
dure would be as close as possible to the company’s real operational problem. Hereafter, we
consider the second-stage formulation of the LCA and LAF models as an evaluation model that
practically refers to operational-level decisions. In addition, we base the evaluation on a much
larger sample of Monte Carlo scenarios, Ne " N (Ne “ |ΩNe

|), than those used to generate
the candidate designs. Thus, for a given design vector pXtpoq at period t obtained from the SAA
program o P tLCA(ΩN), LAF(ΩN)u, we compute the cost value for each scenario ω P ΩNe

,
QtppXtpoq, ωq, using the respective sub-model. More specifically, in the (LCA(ΩN)) program, the
design vector is pXt(LCA(ΩN))=tx̂t, ŷt, ẑtu, and the QtppXt(LCA(ΩN)), ωq is evaluated by (3.17)-
(3.21). On the other hand, for (LAF(ΩN)), the design vector is pXt(LAF(ΩN))=tŷt, ẑtu, and the
QtppXt(LAF(ΩN)), ωq is evaluated by (3.23)-(3.30). To note is that the evaluation model used
in the procedure is separable per scenario since the design decisions are fixed, which allows
considering a much larger scenarios sample.

First, a measure of the expected valueVe
t poq for each design period t is computed using the

evaluation sample ΩNe
. Second, a downside risk measure is computed to assess the variability

of each design at period t. More specifically, the variability measure is the upper semi-deviation
from the mean, MS Dtpoq, for each model o P tLCA(ΩN), LAF(ΩN)u, and is formulated as:

MS Dtpoq “
1

Ne

ÿ

ω“1,...,Ne

max
ˆ

0; QtppXtpoq, ωq ´ EΩNe rQtppXtpoq, ωqs
˙

This measure was introduced by Shapiro et al. in [204], and helps assess the penalization
of an excess of a realization ω over its mean. The evaluation procedure is detailed in the
algorithms 3.1 and 3.2 for LCA(ΩN)and LAF(ΩN), respectively.

Algorithm 3.1 Evaluation procedure LCA(ΩN) model
1: for all t “ 1, . . . ,T do
2: for all ω “ 1, . . . ,Ne do
3: Evaluate QtppXtpLCApΩNqq, ωq using the program (3.17)-(3.21)
4: end for
5: return Ve

t pLCApΩNqq “
ÿ

lPL

p f u
lt ŷlt ` f s

lt ẑltq `
ÿ

lPL

ÿ

pPP

clpt Clp x̂lpt ` EΩNe rQtppXtpLCApΩNqq, ωqs

6: Evaluate MS DtpLCApΩNqq

7: end for
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Algorithm 3.2 Evaluation procedure for LAF(ΩN) model
1: for all t “ 1, . . . ,T do
2: for all ω “ 1, . . . ,Ne do
3: Evaluate QtppXtpLAFpΩNq, ωq using the program (3.23)-(3.30)
4: end for
5: return Ve

t pLAFpΩNqq “
ÿ

lPL

p f u
lt ŷlt ` f s

lt ẑltq ` EΩNe rQtppXtpLAFpΩNqq, ωqs

6: Evaluate MS DtpLAFpΩNqq

7: end for

3.6 Computational results

In this section, we describe the experimental study carried out and the related results. First, we
present the data instances used in the experiments. Second, we provide the calibration of the
design models using the SAA method. Then, we discuss the results in terms of the solvability
of the stochastic models and the value of the stochastic solutions. Third, we summarize the
obtained results and evaluate the different designs produced by the two models in terms of
design structure and design value. All experiments were run using a cluster Haswell Intel Xeon
E5-2680 v3 2.50 GHz of two processors with 12 Cores each and 128 Go of memory. We used
CPLEX 12.7 to solve the linear programs.

3.6.1 Test data

In our experiments, we generated several 2E-DDP instances based on the following factors: the
problem size, the network characteristics, and the demand processes. The tested size problems
are shown in Table 3.2. The network incorporates several possible configurations depending
on the number of different DP locations (# DPs) and the number of different capacity config-
urations per DP location (# capacity configurations). Thus, multiplying these two parameters
gives the number of potential DPs, |L|. In the case of several capacity configurations, the
second configuration has a higher capacity. Ship-to-points are realistically scattered in the ge-
ographic area covered (25000 km2). The number of warehouses (|P|) is also given. A 5-year
planning horizon is considered in this context, which is partitioned into 5 design periods in the
tests (i.e., |T | “ T “ 5).

We consider simple and compound demand processes. The simple process refers to a nor-
mally distributed demand level per ship-to-point j and per period t. The compound process
refers to a Bernoulli-normal distribution, where the Bernoulli process shapes the demand oc-
currence for a given ship-to-point j at period t with a probability p jt, j P J , t P T . In both
processes, the normal distribution refers to the demand quantity with a mean value µ jt and a
standard deviation σ jt, j P J , t P T . In addition, we consider a network including large-size
(L) and medium/small-size (S) ship-to-points reflected by the historical mean value µL

j0 and µS
j0

for a given ship-to-point j, respectively. We set large-size ship-to-points that represent 20% of
the network with an associated demand occurrence rate of pL

jt “ 0.95 (in contrast to a rate of
pS

jt “ 0.8 for small-size ship-to-points). Moreover, we assume that each ship-to-point mean
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Table 3.2: Test problems size

Problem instance (P) |J | |P| # DPs # capacity con-
figurations

|L|

P1 50 2 4 1 4
P2 50 3 8 1 8
P3 50 4 8 2 16
P4 75 3 8 1 8
P5 75 4 8 2 16
P6 100 3 8 1 8
P7 100 4 8 2 16

demand µ jt depends on a time varying trend, based on a factor δ j and on the historical mean
µ j0. The coefficient of variation (σ jt

µ jt
) is a fixed parameter for each ship-to-point over periods.

Two alternative time-varying trends are tested here with respect to the two demand processes to
obtain the three problem instances shown in Table 3.3. The normal distribution with a regular
trend (NRT) refers to a ship-to-point mean value that is related to the historical mean at t “ 0,
and following a regular inflating factor δ j over the periods of the planning horizon. The same
regular trend is applied with the compound Bernoulli-normal distribution and is denoted with
CRT. Finally, the normal distribution with a dynamic trend (NDT) refers to the case where each
ship-to-point mean demand varies dynamically over periods according to a perturbation factor
δ jt linked to the preceding period. The values and ranges for all the parameters with regard to
the demand process are given in Table 3.3.

Table 3.3: Demand processes

Normal distribution NRT µ jt “ µ j0p1` δ j ˆ tq δ j P r0, 0.1s
NDT µ jt “ µ jt´1p1` δ jtq δ jt P t0.15,´0.2, 0u

Compound Bernoulli-Normal distribution CRT µ jt “ µ j0p1` δ j ˆ tq δ j P r0, 0.1s
µL

j0 P r300; 400s, µS
j0 P r150; 220s, σ jt

µ jt
“ 0.25, pL

jt “ 0.95 and pS
jt “ 0.8

Warehouse and DP capacities are uniformly generated with respect to the demand level of
the problem instance in the unit intervals r25k, 32ks and r7k, 11ks, respectively. The truckload
capacities between warehouses and DPs are estimated in the interval r1700, 2500s. High and
low levels of fixed costs are defined and denoted with LL and HL, respectively. The fixed costs
for each DP are generated per period t, respectively in the ranges r100k, 150ks and r3500, 6500s,
proportionally to its maximum capacity. An inflation factor is also considered to reflect the
increase of the cost of capital on a periodic basis with r “ 0.005. All the locations of the
network (warehouses, DPs, ship-to-points) are normally scattered in a given space as shown in
the instance of Figure 3.4. We separate in the instances two possible configurations according
to the disposition of the ship-to-points: dispersed (Dis) or concentric (Con). The transportation
costs between the network nodes correspond to the Euclidean distances, multiplied by a unit
load cost per distance unit and the inflation factor r. The unit load cost per distance unit is
different in each echelon to reflect the different loading factors. The external delivery cost c jt
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is calibrated to be higher than internal distribution costs with c jt P r2200; 3000s). To apply the
SAA technique, we used in our experiments M “ 6 samples, a reference sample N 1 “ 2000,
and running N P t100, 200, 500u generated scenarios. We refer to s P ts1, s2, . . . , s6u as
the sample used, and denote with s̄ the average value over the 6 samples. We considered an
evaluation sample size Ne “ 2000.

´100 0 100 200 300
´100

0

100

200

300

400

(a) Dispersed ship-to-points instance (Dis)

´100 0 100 200 300

0

200

400 Warehouses
DPs

Ship-to-points

(b) Concentric ship-to-points instance (Con)

Figure 3.4: Ship-to-points scattering in the space for P6

Combining all the elements above yielded 84 problem instances. Each instance type is a
combination of pa, b, c, dq, a P tDis,Conu, b P tP1, P2, P3, P4, P5, P6, P7u, c P tLL,HLu, d P
tNRT,NDT,CRTu. Each instance problem is denoted by the ship-to-points configuration a,
the problem size b, the cost level c, the demand process d, the sample size N, and its references
s. It has the format a-b-c-dNs (for example, Dis-P1-LL-NRT-500s1).

3.6.2 Results

3.6.2.1 Models’ solvability analysis

The first solution quality-seeking step for stochastic models is the calibration of the number
N of scenarios to include in the optimization phase. Such calibration is carried out using the
SAA algorithm A.1 (see Appendix A.1), and the quality of the obtained solutions is evaluated
using the statistical optimality gap. Table 3.4 summarizes the average optimality gap values for
the sample size N P t100, 200, 500u for instances P1 to P4. The optimality gap is expressed
as a percentage of the objective function value of the best design found for a given problem
instance.

We can see in this table that (LCA(ΩN)) provides satisfactory results, generally less than
1% for most instances starting from N “ 500, for all the demand processes investigated. Our
experiments show that the optimality gap value improves as the sample size N grows and con-
verges to 0%. Moreover, we note that the design solutions produced with alternative samples
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Table 3.4: Average statistical optimality gap values

gapN,2000 (%)

LCA(ΩN) LAF(ΩN)

Sample size N 100 200 500 200 500

Instance

P1-NRT-LL-Ns̄ 0.26 0.26 0.21 0.01 -0.01
P1-NDT-LL-Ns̄ 0.03 0.01 -0.01 0 -0.02
P1-CRT-LL-Ns̄ 0.80 0.31 0.07 -0.01 -0.02

P2-NRT-LL-Ns̄ 0.61 0.23 0.08 0.06 0
P2-NDT-LL-Ns̄ 0.28 0.12 -0.01 0 -0.02
P2-CRT-LL-Ns̄ 0.60 0.24 0.06 -0.01 -0.02

P4-NRT-LL-Ns̄ 0.22 0.09 0.05 0.02 0.02
P4-NDT-LL-Ns̄ 0.15 0.01 0.01 0 0.01
P4-CRT-LL-Ns̄ 0.97 0.42 0.28 -0.04 -0.04

(M “ 6) of 500 scenarios provide the same location decisions. In the same way, regarding the
(LAF(ΩN)) model, the results show a very low gap, almost less than 0.1%, which underlines
the sufficiency of this sample size. Accordingly, the sample size of N “ 500 scenarios is con-
sidered satisfactory in terms of solvability and solution quality, and retained for the rest of the
experiments with both models (LCA(ΩN)) and (LAF(ΩN)).

With this in mind, we next propose exploring the deterministic counterparts of both models
and evaluate the difference between the deterministic and the stochastic solutions using the in-
dicators proposed in [149]. These indicators are detailed in ??. Table 3.5 provides an evaluation
of the estimated value of stochastic solution (zVS S ), the estimated loss using the skeleton solu-
tion ({LUS S ), and the estimated value of loss of upgrading the deterministic solution ( {LUDS )
as a percentage of the expected value of the recourse problem (xRP) for problem sizes P2, P4,
and P6 with both models.

Table 3.5 highlights a large value for the zVS S compared to xRP in the (LCA(ΩN)) program,
and a lower value in the (LAF(ΩN)) program: it can reach 96% in the (LCA(ΩN)) with prob-
lem size (P6), and 8% in (LAF(ΩN)) with (P4), under the NRT demand process. The large
zVS S values obtained in some cases with (LCA(ΩN)) are partly due to the high variability of
the objective function value for these instances. This variability is due to the information as-
sumed when the capacity-allocation decisions of all the periods are anticipated at the first-stage.
Conversely, this effect is attenuated in the case of (LAF(ΩN)) because the capacity-allocation
decisions are scenario-dependent and thus part of the recourse problem.

Regarding the skeleton solution from the deterministic model, we obtain {ES S V equal to
or higher than xRP in the (LCA(ΩN)) model. This leads to a {LUS S greater than zero, but
remains less than the zVS S (i.e., 0 ă {LUS S ď zVS S ). The positive {LUS S obtained in our
evaluation of the (LCA(ΩN)) model means that the deterministic solution tends to open non-
optimal DPs, and sub-optimally allocate DP capacity from warehouses. The same statement
is observed with (LAF(ΩN)) where the variability reaches 8% under the NRT demand process.
In addition, for many problem instances with the (LAF(ΩN)) program, the perfect skeleton
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Table 3.5: Evaluation of the stochastic solution

P2- P4- P6-

Indicators LCA(ΩN) LAF(ΩN) LCA(ΩN) LAF(ΩN) LCA(ΩN) LAF(ΩN)
LL-NRT-500s̄

zVS S p%q 22.82 8.13 45.47 0.6 95.98 0
{LUS S p%q 13.67 8.13 0 0.6 26.3 0
{LUDS p%q 4.13 0.51 0 0.16 1.2 0

LL-NDT-500s̄
zVS S p%q 3.85 0 93.63 0 101.42 0
{LUS S p%q 2.33 0 28.6 0 0.87 0
{LUDS p%q 0.95 0 3.38 0 1.0 0

LL-CRT-500s̄
zVS S p%q 89.49 0 57.08 0 222.01 0.04
{LUS S p%q 11.26 0 11.7 0 0.09 0.04
{LUDS p%q 0.59 0 1.62 0 0.4 0.04

Table 3.6: The average computational time (CPU)

LCA(ΩN) LAF(ΩN)

P Variables Constraints CPU Variables Constraints CPU

Binary Integer Continuous DEF BD Binary Continuous DEF BD
P1 40 80 625000 135050 23m7s 2m54s 40 645000 150020 9m49s 2m29s
P2 80 120 1125000 145095 9h10m 47m49s 80 1185000 172540 2h11m 10m23s
P3 160 320 2125000 145180 35h20m 13h3m 160 2285000 285080 21h30m 1h17s
P4 80 120 1687500 187595 10h38m 1h5m43s 80 1747500 235040 4h 14m41s
P5 160 320 3187500 187180 - 15h15m 160 3347500 347580 - 2h53m
P6 80 120 2250000 270095 39h42m 2h15m 80 2310000 297540 8h26m 20m45s
P7 160 320 4250000 270180 - 40h40m 160 4410000 410080 - 5h

-: Not solved within time limit 48 hours

solution is captured. The last measure evaluates the upgradability of the deterministic solution
to the stochastic solution. The table indicates that (LCA(ΩN)) presents a small and non-zero
{LUDS value (about 4% and 1% for P2 and P6, respectively, in (LCA(ΩN)) and less than 0.5%
for P2 in (LAF(ΩN)). This confirms the non-upgradability of the deterministic solution for
problem sizes P2 and P6. The results using the NDT and the CRT demand processes also
validate the high value of the stochastic solution compared to the deterministic counterpart for
(LCA(ΩN)). In this case, the zVS S value increases as the demand variability grows, and reaches
200% of the xRP for the CRT demand process. On the other hand, the (LAF(ΩN)) model shows
a low variability of the stochastic solutions with the NDT and CRT demand processes. These
primary results show the worthiness of investigating the stochastic formulations of the 2E-DDP.
One may also conclude that (LCA(ΩN)) is much more sensitive to demand uncertainty due to
the anticipation of the capacity-allocation decisions at the first stage.

Finally, solvability is a crucial issue that needs to be taken into consideration given the com-
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plexity of stochastic programming models. Table 3.6 provides the average computational time
(CPU) for the two proposed models. It compares the running time of the deterministic equiva-
lent formulation (DEF) when solving with a commercial solver (Cplex) and when applying the
Benders decomposition (BD). The results show the efficiency of the BD approach in consider-
ably reducing the running time. The BD running time is 4 to 18 times less than using Cplex
for DEF for (LCA(CΩN)) where the higher difference (18 times faster) is observed for P6. In
the case of (LAF(ΩN)), the efficiency of BD is also significant, namely, 25 times faster for P6.
Moreover, the table indicates that the CPU(s) grows as the problem size increases, clearly a fur-
ther complexity with P3, P5, and P7 where two capacity configurations are considered. We also
observe that (DEF) cannot be solved to optimality for problem instance (P5) and (P7) within
the time limit of 48 hours. Nevertheless, the (P7) problem instance is solved to optimality with
the BD approach within 40 hours and 5 hours for the (LCA(ΩN)) and the (LAF(ΩN)) model,
respectively. Further, Table 3.6 confirms the huge discrepancy between the solved models in
terms of complexity and consequently running times. The (LAF(ΩN)) program seems easier to
tackle, where the CPU(s) is 3 to 12 times less than in (LCA(ΩN)). The high computational time
observed in (LCA(ΩN)) is mainly due to the complexity of the integer capacity variables, and
thus the combinatorial nature in the problem, which makes it intractable for larger instances.
These results also confirm the importance of the development of the Benders decomposition
approach to solve a large scale 2E-DDP.

3.6.2.2 Design solutions analysis

In this subsection, we provide an analysis of the design solutions produced by the two models
proposed to deal with the stochastic 2E-DDP. Three facets are relevant: 1) the global perfor-
mance of the design solutions in terms of the expected value and the expected mean semi-
deviation (MSD) value, 2) the sensitivity of DP location decisions to uncertainty under various
problem attributes, and 3) the behavior of the capacity-allocation decision in a multi-period and
uncertain setting. These analyses are based on the numerical results of the 84 problem instances
described above. We recall that the evaluation is based on the procedures given in 3.1 and 3.2
for the LCA and LAF models, respectively, with a large evaluation sample of Ne “ 2000
scenarios.
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To start, Table 3.7 describes relative deviations to the best value recorded on the expected
value, and the MSD for the (LCA(ΩN)) model using large-size problems (P6 and P7) contrasted
with the NRT, NDT, and CRT demand processes. When looking at the solutions’ performance
in terms of expected value, we observe that the designs produced by the alternative samples
present a small deviation, often less than 0.5%, which clearly indicates the stability of the
design structure over the samples. Verter and Dincer in [227] show that location decisions tend
to be highly driven by the network topology, as is the case in our results. The highest deviations
observed are 0.48% for P6-CRT and 1.87% for P7-NDT, deriving from the lesser sensitivity of
the capacity-allocation decisions to the optimization sample. Furthermore, when inspecting the
MSD measure, we first observe a higher deviation between the design solutions, which is due to
the relatively small mean semi-deviation values (about 8k). Also, we underline that for a given
problem instance, the design solution presenting the lowest MSD is always different from that
providing the highest expected value. This offers distribution network designers a better insight
with regard to Pareto optimality. As illustrated in Table 3.7, these observations are still valid
under all the demand processes and network typologies. For problem sizes P2 to P5, the results
led to similar conclusions and are detailed in Tables B.1 and B.2 in Appendix B. In the case
of the (LAF(ΩN)) model, the mean value and MSD deviation results indicate a pronounced
similarity in the design structure, since all the samples lead to the same design value. This is
clearly due to modeling the capacity decisions as scenario-dependent in the second stage in
(LAF(ΩN), which bases the design evaluation only on the location decisions. Therefore, one
can conclude that the DP location is well stabilized, but the capacity-allocation decisions are
sensitive to the demand scenarios. These results are congruent with the insights derived from
the statistical gaps, and confirm the good quality solutions produced by both design models.

Next, we look closely at the design decisions produced by both models presented in Ta-
bles 3.8 and 3.9 for medium- and large-size problems (P4 to P7) with (LCA(ΩN)) and (LAF(ΩN))
respectively. We note that the represented design corresponds to the best solution in terms of
expected value based on Table 7. For each demand process, these tables provide DP opening
decisions and their capacity configuration, where value 1 corresponds to an opened DP with a
low capacity configuration, 2 refers to a high capacity configuration, and blanks refer to DPs
kept closed. The third row corresponds to the list of potential DPs and the first column lists
the instance labels in terms of problem size and cost structure. The first part of the tables
is dedicated to instances with dispersed ship-to-points, and the second part depicts instances
with concentric ship-to-points. First, Tables 3.8 and 3.9 show that the opened DP number is
quite stable in the instances, but the location of DPs and the capacity level are correlated with
the demand process, the ship-to-point dispersion, and the DP fixed cost. In almost all the in-
stances, DP locations 6 and/or 7 are opened, because they benefit from a centralization effect
due to their positioning in the grid (see Figure 4) and the importance of inbound and outbound
transportation costs. Table 3.8 also reveals the impact of the opening DP costs on the strategic
location decisions where in several cases the design structure varies between high and low DP
opening costs. For instance, we observe in Table 3.8 with P5-LL-Dis-NRT that the network
design opens four DPs at capacity level 1, whereas with P5-HL-Dis-NRT, only three DPs are
opened, but two at capacity level 2. Additionally, the results point out the impact of ship-to-
point dispersion (i.e., Dis vs Con) on the DP location decisions, mainly under LL attributes.
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For instance, Table 3.8 illustrates the difference between P7-HL-Dis-NDT and P7-HL-Con-
NDT where DPs 7 and 8 are opened instead of DPs 3 and 4, respectively. In the same way,
Table 3.9 reports different design solutions for all P7 instances and several P5 instances, which
are the problems considering two capacity levels, and thus offer more distribution capabilities
to deal with demand uncertainty.

Moreover, a key finding is the sensitivity of the network design in terms of the opened DPs
and their location with respect to demand uncertainty. First, essential to mention is that all the
opening decisions depicted in these figures are fixed from the first design period and no further
opening are made at periods two to five. This behavior is explained by the fact that in our
context, the DP opening costs follow an increasing trend function along the planning horizon,
and it is thus more efficient to anticipate future DP openings, if any, at design period one. This
anticipation effect is only possible with the explicit modeling of a multi-period design setting,
as is the case in this work, in contrast to a static modeling approach to design decisions. In
addition, these results reveal that the number of opened DPs under the three demand processes
is in general the same for a given problem size. However, for some instances, the number of DPs
under NRT is higher than the two other demand processes. For example, considering instance
P4-LL-Dis, four DPs are opened under NRT, whereas only three DPs are opened with NDT
and CRT. This behavior is observed with the solutions produced by both the LCA and LAF
models, and can be seen as the flexibility hedging of both models to avoid opening additional
DPs when uncertainty increases. We also note a high variability in the location of opened DPs
when comparing solutions from the different demand processes. To emphasize this result, one
can closely observe the instance P4-LL-Dis, where we obtain 66.7% identical DPs for NDT
vs CRT, 50% for NRT vs NDT, and 75% for NRT vs CRT, when the LCA model is solved.
Similarly, when the LAF model is solved, we obtain 50% of identical DPs for both NRT vs
NDT, and NRT vs CRT, and 100% for CRT vs NDT. The worst case is observed for instance
P6-HL-Con with only 33.3% identical DPs for NDT vs CRT, and 66.7% for NRT vs NDT,
and for NRT vs CRT when the LCA model is solved. These results confirm that the stochastic
multi-period demand process is adequately captured by both the two-stage reformulations of
the multi-stage problem.

In complement to the above analysis, Table 3.10 provides similarity statistics on DPs open-
ing and their capacity level for several pairs of instances when LCA is solved. In general, we
observe a very high similarity in the DPs’ location, over 70% identical positions, but a much
lower similarity in the capacity configuration (about 40%). Looking closely at instance P7-LL-
Con, we see that CRT and NDT give two identical DPs location out of three, but these identical
DPs are not opened with the same capacity configuration level. Therefore, the results confirm
the high variability in solutions in terms of location when capacity levels are considered, and
the sensitivity of the two-echelon capacitated distribution network to uncertainty.

Furthermore, we investigate the design solutions to discuss the behavior of the capacity-
allocation decisions in a multi-period and uncertain setting. In Figure 3.5, we examine in
depth the capacity decisions modeled in the LCA model and contrast it to the evolution of each
demand process along the planning horizon. This figure provides the results of the instance
P6-LL-Dis for the three demand processes, which for all cases produced a design solution with
three opened DPs. Each solid line corresponds to the capacity level allocated to an opened DP
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Table 3.8: Best location decisions for (LCA(ΩN))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1 1
P5-LL 1 1 1 1 1 1 1 1 1 2
P5-HL 1 2 2 1 1 1 1 1 2
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 2 1 1 1 1 1 1
P7-HL 1 1 1 2 2 1 1 1

Concentric ship-to-points (Con)
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 1 2 2 1 1 1 1 1 1
P5-HL 1 2 2 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 2 1 2 2 1 1 1
P7-HL 1 2 1 2 2 1 1 1

Table 3.9: Best location decisions for (LAF(ΩN))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P4-LL 1 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 2 1 1 1 1 1 1 1 1
P5-HL 2 1 1 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 1 1 1 1 1 1 1
P7-HL 1 1 1 1 1 1 1 1 1

Concentric ship-to-points (Con)
P4-LL 1 1 1 1 1 1 1 1 1
P4-HL 1 1 1 1 1 1 1 1 1
P5-LL 1 1 1 1 1 1 1 1 1
P5-HL 1 1 1 1 1 1 1 1 1
P6-LL 1 1 1 1 1 1 1 1 1
P6-HL 1 1 1 1 1 1 1 1 1
P7-LL 1 1 1 2 2 1 1 1
P7-HL 1 1 1 1 1 1 1 1 1

Table 3.10: The impact of capacity configuration on the location decisions

P2-LL vs P3-LL P4-LL vs P5-LL P6-LL vs P7-LL

%loc %cap %loc %cap %loc %cap
NRT 75% 79.17% 75% 62.5% 75% 75%
CRT 70.83% 45.83% 100% 100% 83.33% 58.33%
NDT 70.83% 41.67% 79.17% 64.58% 97.22% 100%
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(i.e.,
ř

p Clpxlpt) for each design period t, and each dashed line its related predetermined capac-
ity Cl (each color distinguishes a separate opened DP). Figure 3.5 clearly illustrates the impact
of the multi-period modeling approach where the capacity-allocation decisions for each opened
DP are clearly adapted periodically. Even if for the three demand processes of this instance the
LCA model produces the same DP location decisions, the capacity-allocation decisions behave
differently under each demand process to follow the time-varying demand process. This means
that the two-stage LCA mimics the dynamic capacity model with the inclusion of multi-period
capacity-allocation decisions.
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Figure 3.5: Capacity-allocation decisions versus the a priori capacity Cl for Dis-P6-LL-500 in
(LCA(ΩN))

Figure 3.6 completes the analysis, with the same instance under the three demand pro-
cesses, as it aggregates the capacity-allocation

ř

l

ř

p Clpxlpt over all the opened DPs at each
period t (solid line in black) and the capacity limit

ř

l Cl (dashed line). The figure contrasts



56
Chapter 3: Designing Two-Echelon Distribution Network under Demand

Uncertainty

the global network capacity with the average demand scenario, the maximum demand sce-
nario, and the minimum demand scenario. It also illustrates the relation between these typ-
ical scenarios and the effective demand covered by the opened DPs with a dotted line (i.e.,
ř

j“1..|J| d jωt
ř

l“1..|L| vl jω1t, at each t, as formulated in constraint 3.13). The main insight here is
that the capacity-allocation decisions follow the periodic demand under the regular, and most
importantly, the dynamic demand setting. This insight is accentuated by the observation that the
capacity-allocation decisions follow in all cases the maximum demand scenario. This means
that this first stage decision takes into account the worst case demand (highest demand sce-
nario) and provides the necessary capacity level to hedge against it. Clearly, this latter point
means that the capacity available at DPs at each period precedes the minimum and the expected
demand scenarios. Therefore, one can conclude that the modeling framework employed in the
LCA model provides a capacity hedging approach under uncertain demand with a stationary
or non-stationary process. For further illustration, the example of the instance P6-HL-Con is
reported in Figure B.1 and in Figure B.2 in B.

Similarly, we plot in Figure 3.7 demand vs capacity for the LAF model, which shows that
capacity follows demand for each typical scenario. This means that the scenario-dependent
flows are adjusted to each scenario, and that the demand covered by the designed network
is superposed with the demand scenario. This indicates that the LAF model converges to a
solution driven by the expected value criterion, but does not anticipate any capacity hedging.
It seems that LAF solutions are prone to greater efficiency in terms of capacity-allocation, but
this comes at the price of no flexibility. Finally, to further underline is that in the 2E-DDP, the
demand is covered with respect to the inbound allocation to DPs from warehouses, and not the
DPs’ predefined capacity. This is in accordance with the flow balance constraints at DPs, and
emphasizes the impact of the two-echelon context considered in this work.
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Figure 3.6: Capacity decisions versus demand for Dis-P6-LL-500 in (LCA(ΩN))
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Figure 3.7: Capacity decisions versus demand for Dis-P6-LL-500 in (LAF(ΩN))
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3.7 Conclusion

In this paper, we introduce a comprehensive methodology for the stochastic multi-period two-
echelon distribution network design problem (2E-DDP) where products are directed from pri-
mary warehouses to distribution platforms (DPs) before being transported to ship-to-points
from DPs. The problem is characterized by a temporal hierarchy between the design level
dealing with DP location decisions and capacity decisions, and the operational level involving
transportation decisions as origin-destination flows. A stochastic multi-period characterization
of the planning horizon is considered, shaping the evolution of the uncertain ship-to-point de-
mand and DP opening costs. This problem is initially formulated as a multi-stage stochastic
program, and we propose alternative two-stage multi-period modeling approaches to capture
the essence of the problem, while providing judicious accuracy-solvability trade-offs. Conse-
quently, the two models proposed are: the two-stage stochastic location and capacity-allocation
model (LCA) in which DP location decisions and capacity decisions are first-stage decisions,
and the two-stage stochastic flow-based location-allocation model (LAF) where capacity de-
cisions are transformed into continuous scenario-dependent origin-destination links within the
second-stage. To solve these models, we develop a Benders decomposition approach inte-
grated with the sample average approximation (SAA) method. We also examine the value of
the stochastic solution and compare it to the deterministic solution. The extensive computa-
tional experiments based on 84 realistic problem instances validate the modeling approaches
and the efficiency of the solution approaches.

These computational experiments lead to some important managerial insights regarding the
impact of uncertainty on 2E-DDP. The findings highlight a significant variability in the design
decisions when three demand processes are involved. Moreover, the results point out that con-
sidering several capacity configurations (i.e., low and high configuration on the same position)
changes the design of the network. In some cases, the number of opened DPs is even reduced.
Further, when inspecting the badness/goodness of the deterministic solutions, the results con-
firm the positive impact of uncertainty. It emphasizes that the LCA model is very sensitive to
uncertainty. The value of the stochastic solution (VSS) increases as uncertainty grows in the
network. On the other hand, the LAF is affected by uncertainty, but less significantly. This leads
to conclude that assignment-capacity decisions are more sensitive to uncertainty than location
decisions.

Although the Benders decomposition provides good solutions, its performance is limited
for large-scale instances (more than 40 hours). It might be worthwhile improving the consid-
ered algorithm to reduce the run time and develop efficient heuristics to solve larger problem
instances. We believe that our framework provides ample opportunities for additional research.
Future works could consider stochastic multi-period two-echelon distribution network design
problems with more complex features where the location decisions of the two echelons (ware-
houses and DPs) are questioned, and where operational decisions are modeled by multi-drop
routes. Additionally, it would be interesting to add risk measures to the objective function,
such as mean semi-deviation and conditional value at risk. Another interesting research direc-
tion consists in tackling the multi-stage stochastic program, and further proposing performance
measures on the quality of the obtained solutions compared to two-stage stochastic models.



60
Chapter 3: Designing Two-Echelon Distribution Network under Demand

Uncertainty

However, this remains a challenging task, given the curse of dimensionality of multi-stage
stochastic problems.



Chapter 4

A Benders Approach for the Two-Echelon
Stochastic Multi-period Capacitated Location-
Routing Problem

Abstract

In the two-echelon stochastic multi-period capacitated location-routing prob-
lem (2E-SM-CLRP), one has to decide at each period on the number and the
location of warehouse platforms as well as intermediate distribution platforms;
while fixing the capacity of the links between them. The system must be dimen-
sioned to enable an efficient distribution of goods to customers under a stochas-
tic and time-varying demand. In the second echelon, the goal is to construct
vehicle routes that visit customers from operating distribution platforms. The
objective is to minimize the total expected cost. For this hierarchical decision
problem, the model is a two-stage stochastic program with integer recourse.
The first-stage includes location and capacity decisions to be fixed at each pe-
riod over the planning horizon, while routing decisions in the second echelon
are determined in the recourse problem. We develop a Benders decomposition
approach to solve the 2E-SM-CLRP. In our approach, the location and capac-
ity decisions are taken by solving the Benders master problem. When these
first-stage decisions are fixed, the resulting subproblem is a capacitated vehicle-
routing problem with capacitated multi-depot (CVRP-CMD) that is solved by a
branch-cut-and-price algorithm. Computational experiments show that several
instances of realistic size can be solved optimally, and that relevant managerial
insights are derived on the behavior of the design decisions under the stochastic
multi-period characterization of the planning horizon.

Keywords: Two-echelon Capacitated Location-Routing, uncertainty, multi-period, Ben-
ders decomposition
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4.1 Introduction

Distribution problems have drawn many researchers attention over the last decades as their
applications are of great interest for companies. These latter are always looking to improve
the efficiency of their distribution network in terms of the facilities location and transportation
schemes. Vehicle-routing problems (VRPs) are among the most extensively studied classes of
distribution problems in the operational research literature where the aim is to compute a set
of minimum-cost routes to meet customer demands using a fleet of vehicles [63, 221]. Facility
location problems (FLPs) have also been the subject of intensive research efforts. In the FLPs,
a set of warehouses should be located from a finite set of potential sites and customers are
delivered by direct routes from selected warehouses at the minimum cost [97, 65]. However,
it is now commonly believed that the integration of the two decision levels into a location-
routing problem (LRP), often leads to better network design solutions as introduced in [192]
and recently discussed in [206] and [131]. In LRPs, the aim is to find an optimal number of
warehouses and their locations, while building routes around them to serve the customers. An
extensive literature review including a description of different applications for location-routing
and a classification scheme is given in [159]. However, as pointed out in [71], most of the LRP
models studied so far considered a one-echelon distribution setting.

Nonetheless, the high growth of e-commerce in recent years, and the emergence of om-
nichannel sales approach, have drastically changed the distribution landscape. They have sig-
nificantly increased the delivery service level expectation and favored a high proximity to cus-
tomers ship-to location as home, stores and relay points among others [83]. Such challenges
are especially experienced in urban areas due to the increase in cities population, which is
contrasted with the rising levels of congestion and the regulations to limit pollutant emissions.
Therefore, practitioners oversee limits in the capabilities of the one-echelon distribution net-
work to meet today’s challenges. They have nowadays turned much more attention to two-
echelon distribution structures. For instance, most of retailers have used to operate a single
centralized warehouse per region/market that is optimized for risk pooling and for sourcing
and delivery efficiency. However, in the past, the location of such warehouse was not neces-
sarily optimized to provide next-day/same-day deliveries, or to operate efficiently fast fulfill-
ment and shipment services for online orders. To deal with, several retailers such as Walmart,
JD.com or Amazon have reconfigured their distribution networks by adding an advanced ech-
elon of distribution/fulfillment platforms, mostly in urban areas. According to [122], Walmart
plans to convert 12 Sam’s Club stores into e-commerce fulfillment centers to support the rapid
e-commerce growth. Two-echelon structure is nowadays promoted in several City logistics
applications [61, 160]. This is done by creating peripheral distribution/consolidation centers,
where freights coming from warehouses on large trucks are loaded into smaller and environ-
mentally friendly vehicles, more suitable for city center distribution. Parcel delivery also rep-
resents a relevant application for the two-echelon capacitated location-routing [89]. Parcels
travel from primary platforms to secondary distribution platforms, and they are then sorted and
loaded onto smaller trucks that ship parcels to relay points, and to customers’ homes. This is
studied in [236] considering a route length approximation formulas instead of explicit routing
decisions under a static-deterministic setting.
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Figure 4.1: A potential two-echelon capacitated location-routing problem (2E-CLRP)

In this work, a two-echelon distribution problem is studied with the aim to design a network
structure that offers more flexibility to the future business needs of a given company. More
specifically, this strategic problem aims to decide on the number and location of warehous-
ing/storage platforms (WPs) and distribution/fulfillment platforms (DPs), and on the capacity
allocated from first echelon to second echelon platforms. It also determines transportation
decisions between platforms. As consolidation is generally more pronounced at the primary
echelon, we consider direct assignment with full truckloads transportation option departing
from WPs to DPs. Then, since DPs are generally devoted to more fragmented services, the
transportation activity from the second echelon is shaped by multi-drop routes. This prob-
lem description gives rise to the two-echelon capacitated location-routing problem (2E-CLRP).
Figure 4.1 illustrates a typical 2E-CLRP partitioned into two capacitated distribution echelons:
each echelon involves a specific location-assignment-transportation schema that must cope with
the future demand.

Contrary to the VRP and the LRP, the literature on the 2E-CLRPs is still scarce. It has
been formally introduced by [215]. Later, it is studied by [53] where they introduce a branch-
and-cut algorithm based on a new two-index vehicle-flow formulation, strengthened by several
families of valid inequalities. They also develop an Adaptive Large Neighborhood Search
(ALNS) algorithm that outperforms the other heuristics proposed for the 2E-CLRP. [160, 161]
have examined a particular case of the 2E-CLRP with a single warehouse in the first echelon
with a known position and proposed two heuristics to solve it. A literature survey on the two-
echelon distribution problems can be found in [178, 71] and in [62]. These models considered
static and deterministic versions of the 2E-CLRP.

Moreover, given the strategic nature of the 2E-CLRP, it must be designed to last for several
years, fulfilling future distribution requirements. To this end, the horizon must be partitioned
into a set of periods shaping the uncertainty and time variability of demand and cost. The loca-
tion and capacity decisions should be planned as a set of sequential decisions to be implemented
at different design periods of the horizon (a year, for example) and promoting the structural
adaptability of the network. This is more critical nowadays as distribution practices have got
more complex over the years, and have higher uncertainty in terms of demand level, demand
location, and cost evolution. Accordingly, the traditional deterministic-static representation of
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the planning horizon is due to be replaced by a more realistic stochastic and multi-period char-
acterization of the planning horizon. Hereafter, we refer to the stochastic multi-period version
by the 2E-SM-CLRP. [128] examine a stochastic variant of the one-echelon LRP, but therein
only the transportation level is decided under a multi-period setting, whereas in our study the
multi-period feature involves the design decisions (i.e., location and capacity decisions). [27]
investigate a stochastic multi-period version of the two-echelon location-allocation problem,
where routes are substituted by multi-period inter-facility flow decisions. Hence, as far as we
know, stochastic-multi-period setting has not been tackled yet in the 2E-CLRP. We further note
that existing 2E-CLRP and most LRP modeling approaches implicitly assume that location and
routing decisions are made simultaneously for the planning horizon, without considering the hi-
erarchical structure of the strategic problem that we stress here. To end with, Laporte [139] has
shown that the LRP is NP-hard and thus, the 2E-CLRP inherits the same NP-hardness property
from LRP. When considering uncertainty, the 2E-CLRP is an NP-hard stochastic combinatorial
optimization problem. However, the few exact methods and metaheuristics proposed in the
literature are designed for deterministic-static setting [62]. This justifies the development of
advanced exact solution approaches to solve realistic-size instances of the problem. Decompo-
sition methods such as L-shaped methods [225, 38] and Benders decomposition [32] are crucial
to solve the two-stage stochastic programs.

With this in mind, the contribution of this paper is threefold. First, we provide a more
precise definition of the 2E-SM-CLRP under uncertain demand, and time-varying demand and
cost. The problem is casted as a two-level organizational decision process: Location and ca-
pacity decisions are made on a yearly basis, whereas routing decisions are made on a daily
basis in a response to the customer orders received. This temporal hierarchy gives rise to a
hierarchical decision problem and argues the necessity of a stochastic and multi-period mod-
eling approach. More precisely, the decision process aims to decide at each design period on
opening, operating and closing of WPs and DPs, as well as the capacity allocated to links be-
tween platforms. In the second level, the goal is to periodically build routes that visit customers
using a vehicle routed from an operating DP (as illustrated in Figure 4.1). The objective is to
minimize the total expected cost based on strategic and operational cost components. Second,
we introduce a formulation of the 2E-SM-CLRP as a two-stage stochastic program with re-
course. The scenario-based approach relies on a set of multi-period scenarios generated with a
Monte-Carlo approach. The location and capacity decisions are taken here-and-now for the set
of design periods considered. Second-stage decisions consist in building daily routes in the sec-
ond echelon once customer orders are revealed, replicated for high number of scenarios. The
two-stage stochastic formulation reduces the combinatorial complexity of the multi-stage pro-
cess. However, its solvability is still challenging due to the presence of multiple design periods
in the first stage, in addition to the integer recourse problem [44, 143, 8]. As a third contri-
bution, we propose an exact approach to solve the 2E-SM-CLRP. Our approach builds on the
Benders decomposition approach [32] and on the sample average approximation (SAA) [204]
to solve realistic-size instances. The proposed Benders approach first fixes the operating WPs
and DPs as well as the capacities allocated to links between platforms by solving the Benders
master problem. Then, the resulting subproblem is a capacitated vehicle-routing problem with
capacitated multi-depot (CVRP-CMD), which is harder variant than the uncapacitated case.
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The CVRP-CMD is formulated as a set partitioning model strengthened by a lower bound on
the number of vehicles obtained from the solution of a bin packing problem in preprocessing.
Then, it is decomposed by period and by scenario. These latter are solved in parallel using the
state-of-art branch-cut-and-price algorithm from Sadykov et al. [190]. Subproblem solutions
are used to generate standard Benders cuts as well as combinatorial Benders cuts in order to
converge to the optimal solution of the 2E-SM-CLRP. Extensive computational experiments
emphasize the performance of our algorithm to solve optimally a large set of instances, and to
get good lower bounds on large-scale instances with up to 50 customers and 25 demand sce-
narios under a 5-year planning horizon. Finally, from the results are also derived insights on
the impact of the stochastic and multi-period settings on the 2E-CLRP.

The reminder of this paper is organized as follows. Section 4.2 briefly surveys the related
works on the 2E-CLRP under stochastic and multi-period settings. Section 4.3 describes the
mathematical formulation. Section 4.4 presents our exact approach to solve the problem. The
computational results are presented and analyzed in Section 4.5. Section 4.6 concludes the
study and outlines future research avenues.

4.2 Related works

As mentioned in the introduction, the literature on the 2E-CLRP is limited. Hereafter, we
review the contributions in link with problems related to the 2E-CLRP.

The two-echelon vehicle-routing problem (2E-VRP) is a particular case of the 2E-CLRP,
in which the location of all WPs and DPs is known in advance. Platforms do not have fixed
capacities and can be used freely without inducing a setup cost. Generally, a single main
WP is considered in the upper level of the 2E-VRP. Several exact methods [168, 169, 22]
and heuristics [60, 104, 41, 233] have been developed in the literature. To the best of our
knowledge, the best performing heuristics are the large neighbourhood search (LNS) heuristic
introduced by [41] and the metaheuristic proposed by [233] for the 2E-VRP with environmental
considerations. A well performing exact algorithm is presented in [22]. As for the stochastic
variant, [232] is the first to propose a genetic algorithm for 2E-VRP with stochastic demand.
However, as far as we know, no previous study has considered both stochastic and multi-period
features in 2E-VRP. For further details, interested readers are referred to the recent survey
by [62].

The capacitated location-routing problem (CLRP) is also a related class of problems for
the 2E-CLRP, where the location of main warehouses is known in advance and the cost be-
tween WPs and DPs are neglected. This problem combines the multi-depot vehicle-routing
problem and the facility location problem. Several studies focus on the LRP and its vari-
ants. They are mostly in deterministic setting, and propose exact methods [20, 25, 50, 51]
and heuristics [52, 103, 172, 175] to solve the problem. However, a few authors have studied
stochastic cases as in [142], [205], [10] and [128]. [25] introduce a two-index vehicle-flow for-
mulation strengthened with several families of valid inequalities for the CLRP that they solve
through branch-and-cut algorithm. [50] present three new flow formulations from which they
derive new valid inequalities. The authors also propose new improved separation routines for
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the inequalities introduced in [25]. [20] introduce a set partitioning formulation for the prob-
lem, strengthened with new families of valid inequalities. [51] improve the set partitioning
formulation by new valid inequalities and solve the problem using an exact algorithm based
on cut-and-column generation. [175] develop a greedy randomized adaptive search procedure
(GRASP). [172] also introduce the first hybrid metaheuristic for the CLRP combining the vari-
able neighborhood search (VNS) metaheuristics and integer-linear programming techniques.
[104] present an ALNS for the 2E-CVRP and also test it on the CLRP instances. Finally,
[52] introduce a hybrid metaheuristic combining a GRASP with integer programming methods
based on column generation. Their method provides very good results compared to previous
methods.

Furthermore, the multi-period feature was also considered in some LRP models. [141] ex-
amine a multi-period uncapacitated LRP (ULRP) with capacitated vehicles. [11] consider the
multi-period ULRP with decoupled time scales, in which the routing decisions and the location
decisions follow two different time scales. On the other hand, stochastic setting is tackled in
the ULRP by [142] and by [10]. In the considered stochastic model, depot locations and a
priori routes must be specified in the first-stage, and second-stage recourse decisions deal with
first-stage failures. [205] proposes a stochastic LRP model based on routing cost estimations.
[128] examine the stochastic multi-period location transportation problem (SMLTP) where dis-
tribution centers are uncapacitated. The location and mission of depots must be fixed at the be-
ginning of the planning horizon, but transportation decisions are made on a multi-period daily
basis as a response to the uncertain customers’ demand. They formulate the SMLTP as a two-
stage stochastic program with recourse, and solve it by a hierarchical heuristic approach based
on SAA method. This latter is a sampling-based approach introduced by [202] and has been
successfully applied in [193] and [199].

This review confirms the literature shortcomings to address the stochastic and multi-period
2E-CLRP. It also relates a lack of exact methods to deal with the stochastic version of this novel
problem.

4.3 Mathematical formulation

Our 2E-SM-CLRP considers a long-term planning horizon T that covers a set of successive
design planning periods T “ t1, . . . ,Tu. Such periods are defined in accordance with the evo-
lution of the uncertain customers’ demand over time (typically a year). Each planning period
encompasses a set of operational periods represented generally in a discrete way by “typical”
business days. Under uncertainty, the routing decisions depend on the actual realization of the
demand along each period t. Thus, each realization defines a demand scenario ω representing
a “typical” day of delivery. All potential scenarios characterize the set of demand scenarios Ωt

modeling the uncertainty behavior of customers’ demand at that period t. Each scenario has a
probability of occurrence ppωq. The set of all scenarios is Ω “ YtΩt.

The 2E-SM-CLRP is defined on a graph with three disjoint sets of nodes, potential locations
for warehouse platforms (WPs), P “ tpu, potential locations for distribution platforms (DPs),
L “ tlu and the customers J “ t ju. WPs and of DPs can be opened, maintained operating or
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closed along the sequence of the planning periods, and to each decision, a time-varying fixed
cost is associated (i.e. fwpt, fw

s
pt, fw

c
pt for WP and flt, f s

lt , f c
lt for DP). Each WP (resp DP) has a

limited capacity denoted Cp (resp Cl). Additionally, each customer j has an uncertain demand
dtω

j at period t under scenario ω. Therefore, two echelons are defined.

At the first echelon, we consider an undirected bipartite graph G1 “ pV1,E1q, with the
vertex set V1 “ P Y L, and the edge set E1 “ tpp, lq : p P P, l P Lu represents the links
between the WPs and DPs. These links help to calibrate the DPs throughput. To each link we
can assign one or several full truckloads, each of which has a capacity Q1

lp and a fixed cost hlpt.
Moreover, multi-sourcing strategy is allowed in the first echelon where each DP can be supplied
from more than one operating WP with respect to its capacity Cl and the WPs’ capacity Cp.
At the second echelon, an undirected graph G2 “ pV2,E2q is defined where V2 “ L Y J ,
and E2 “ tpi, jq : i, j P V2, j < Lu. It is worth to mention that no lateral transshipment
between DPs is performed, i.e., there are no direct edges between DPs. A routing cost ct

i j is
associated with each edge pi, jq P E2 at period t in the second echelon.

We consider an unlimited set K of identical vehicles with capacity Q2 used to visit cus-
tomers in the second echelon, where Q2 ă Q1

lp. If used, a fixed cost is paid for each vehicle to
which we assign a route in the second echelon. We assume that this cost is already incorporated
into the routing cost in the following way. For each t and for each edge pi, jq P E2 adjacent to a
DP, value ct

i j is increased by the half of the fixed vehicle cost.
The proposed model decides on the opening, closing and operating periods for each WP and

DP, and well as the number of full truckloads assigned to each link pp, lq P E1 defining thus the
capacity allocated to DPs. In the second-stage, the goal is to build vehicle routes so that each
customer is visited exactly once in each period and each scenario. The quantity delivered to
customers from each operating DP under each scenario is less or equal to the capacity assigned
to that DP from WPs. Our aim is to minimize the total expected cost by minimizing the sum of
the expected transportation cost and the design cost (location and capacity).

The 2E-SM-CLRP is formulated as follows. At the first-stage, let ypt, y`pt and y´pt be binary
variables equal to 1 if WP p P P is selected for operating, opening and closing in period t.
Similarly, we define zlt, z`lt and z´lt for each DP l P L. Let xlpt be an integer variable denoting
the number of full truckloads assigned from WP p P P to DP l P L in period t P T .

Given a fixed first-stage design solution, the second-stage problem is modeled using a set
partitioning formulation [221]. Let us denote by Rtω

l the set of all routes starting and ending
at an operating DP l satisfying capacity constraints for period t under scenario ω P Ωt, and
let R “ YtPT YωPΩt YlPLR

tω
l . Note that a route r P R is not necessarily elementary, i.e. it

can visit a client more than once. Let ψr
i j denotes the number of times edge pi, jq participates

in route r P R, ξr
j denotes the number of times customer j is visited in route r P R. Then

ř

jPJ dtω
j ξ

r
j ď Q2 for every r P Rtω

l . Cost ct
r of route r P Rtω

l is calculated as ct
r “

ř

pi, jqPE2 ψr
i jc

t
i j.

Let λtω
lr be a binary variable indicating whether a route r P Rtω

l is selected in the optimal
solution. The two-stage stochastic integer program with recourse is then written as:
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min
ÿ

tPT

ÿ

pPP

pfwpt ypt ` fws
pt y`pt ` fwc

pt y´ptq`
ÿ

tPT

ÿ

lPL

p flt zlt ` f s
lt z`lt ` f c

lt z´lt q `
ÿ

tPT

ÿ

pPP

ÿ

lPL

hlpt xlpt `
ÿ

tPT

EΩt rφtωpxqs

(4.1)

S. t.
ÿ

lPL

Q1
lpxlpt ď Cp ypt @p, t (4.2)

ÿ

pPP

Q1
lpxlpt ď Cl zlt @l, t (4.3)

ypt ´ ypt´1 ď y`pt @p P P, t P T (4.4)

zlt ´ zlt´1 ď z`lt @l P L, t P T (4.5)

ypt´1 ´ ypt ď y´pt @p P P, t P T (4.6)

zlt´1 ´ zlt ď z´lt @l P L, t P T (4.7)
ÿ

t

y`pt ď 1 @p P P (4.8)

ÿ

t

y´pt ď 1 @p P P (4.9)

ÿ

t

z`lt ď 1 @l P L (4.10)

ÿ

t

z´lt ď 1 @l P L (4.11)

xlpt P N @l P L, p P P, t P T (4.12)

y`pt, ypt, y´pt P t0, 1u @p P P, t P T (4.13)

z`lt , zlt, z´lt P t0, 1u @l P L, t P T (4.14)

where φtωpxq is the solution of the recourse problem:

(SPFtω) φtωpxq “ min
ÿ

lPL

ÿ

rPRtω
l

ct
r λ

tω
lr (4.15)

S. t.
ÿ

lPL

ÿ

rPRtωq

l

ξr
jλ

tω
lr “ 1 @ j P J (4.16)

ÿ

rPRtω
l

˜

ÿ

jPJ

dtω
j ξ

r
j

¸

λtω
lr ď

ÿ

pPP

Q1
lpxlpt @l P L (4.17)

ÿ

lPL

ÿ

rPRtω
l

λtω
lr ě Γtω (4.18)

λtω
lr P t0, 1u @l P L, r P Rtω

l (4.19)

The objective function (4.1) minimizes the sum of the first-stage costs and the expected
second-stage costs. The first-stage costs represent the operating, opening and closing WPs and
DPs cost, and the capacity cost induced by the number of truckloads associated to DPs from
WPs. The objective function (4.15) of the second-stage consists in minimizing the routing
cost and the fixed cost for using vehicles. Constraints (4.2) and (4.3) guarantee the capacity
restriction at operating WP and DP, respectively. Constraints (4.4) and (4.5) determine the plat-
form opening. These constraints manage the status of the WPs and the DPs operating from
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one period to the next and set their opening. Constraints (4.6) and (4.7) build on the same
way to manage the location closing status for WPs and DPs, respectively. Constraints (4.8)–
(4.11) specify that each WP and DP is opened or closed at most once during the planning
horizon. Constraints (4.12)–(4.14) describe the feasible set for the first-stage variables. Con-
straints (4.16) ensure that each customer is served exactly once. Constraints (4.17) are the depot
capacity inequalities. They guarantee that the demand satisfied from an operating DP will not
exceed its throughput capacity. Inequalities (4.18) are added to strengthen the linear relaxation
of (SPF) by imposing lower bound Γtω on the number of vehicles required to serve customers’
demand in period t in scenario ω. This lower bound is obtained through the solution of a bin
packing problem (BPP) in which the aim is to pack a given set of items having different weights
into a minimum number of equal-sized bins [153]. Here, the set of items represents the set of
customers J where each item has a weight dtω

j , i.e. the customer demand, and the bin capacity
is the vehicle capacity Q2. More precisely, Γtω is the value of the linear relaxation of (BPP)
obtained for period t and scenario ω.

4.4 Benders approach

In this section, we develop a Benders decomposition approach to solve the 2E-SM-CLRP where
the integer recourse is handled through two steps iteratively. The algorithm separates the prob-
lem into a Benders master problem (MP) and a number of Benders subproblems, which are
easier to solve than the original problem. By using linear programming duality, all subproblem
variables are projected out and the relaxed MP contains only the remaining master variables
and artificial variables representing the lower bounds on the cost of each subproblem. In the
first-stage, location (WPs and DPs) and capacity assignment decisions are taken by solving the
Benders master problem. When these first-stage decisions are fixed in the original problem,
the resulting subproblem is a capacitated vehicle-routing problem with capacitated multi-depot
(CVRP-CMD) that can be decomposed by period and by scenario. However, solving these
subproblems as an integer program does not produce dual values to generate standard Benders
cuts. In order to overcome this difficulty, we iteratively tackle the second-stage integer program
to get valid and useful Benders cuts. The main steps of our solution approach are summarized
in Figure 4.2. As a preprocessing step, we solve the linear relaxation of a bin packing prob-
lem (BPP) for each period and each scenario through column generation. Rounded up values
of the obtained bounds are then determined and introduced to the Benders subproblems as a
lower bound on the number of vehicles required for each period and each scenario. Further
details on the BPP are given in Appendix C. Then, at each iteration of the Benders approach,
a relaxed integer MP, including only a small subset of Benders cuts, is optimally solved to
obtain a valid dual bound and the first-stage solution. Using such fixed first-stage decisions
(operating DPs and capacity assignment), we first relax the integrality restrictions in the Ben-
ders subproblems (i.e., CVRP-CMD). For each period and scenario, we solve the LP of the set
partitioning formulation (SPF) (4.15)–(4.19) using the column generation approach to generate
a Benders optimality cuts from the dual solutions. These cuts are then added to the MP. If there
are no new Benders optimality cuts, the integer subproblems are then solved using the branch-
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cut-and-price algorithm from [190]. This algorithm is demonstrated to be the best performing
exact approach for many classical variants of the vehicle routing problem. The expected cost
from integer feasible solutions of subproblems yields a primal bound for the 2E-SM-CLRP. If
the gap is still large, combinatorial Benders cuts are added to the MP to eliminate the current
master solution. This process is repeated until an optimal solution is found or the relative gap
is smaller than a given threshold ε.

In the following, we first describe the Benders master problem (MP). Then, we present the
Benders subproblems and the Benders cuts generated. Finally, we give a complete description
of the Benders algorithm used to solve the 2E-SM-CLRP.

BPP LP by Column Generation

Benders Master prob-
lem (MP) by IP solver

LP of (SPF) by Col-
umn Generation

New Cut?

(SPF) by Branch-cut-and-price

Gap ă ε?

End

(x, y, z)
ΓtωFirst-stage solution

No

YesBenders optimality cuts

Yes

NoBenders combinatorial cuts

Figure 4.2: Main steps of our solution approach

4.4.1 Benders master problem

The Benders master problem (MP) includes first-stage decisions: location decisions for WPs
and DPs and capacity assignment decisions. Introducing an additional variable θtω representing
the total second-stage decisions cost for period t and scenario ω, we then formulate the MP as:

(MP) min
ÿ

tPT

ÿ

pPP

pfwpt ypt ` fws
pt y`pt ` fwc

pt y´ptq `
ÿ

tPT

ÿ

lPL

p flt zlt` f s
lt z`lt ` f c

lt z´lt q `
ÿ

tPT

ÿ

pPP

ÿ

lPL

hlpt xlpt `
ÿ

tPT

ÿ

ωPΩ

ppωqθtω

(4.20)

S. t. (4.2)´(4.14)
θtω ě 0 @t P T , ω P Ω (4.21)

It is worth to note that MP contains only the integer design variables and |T | ˆ |Ωt| addi-
tional continuous variables. Benders optimality cuts and combinatorial cuts are added to the
model iteratively after solving subproblems.
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Let k represent the current iteration number. In each iteration, the optimal solution of
the master problem provides a dual bound (vk

MP) for the 2E-SM-CLRP. We define vk
design “

ř

tPT

ř

pPPpfwptypt`fws
pty
`
pt`fwc

pty
´
ptq`

ř

tPT

ř

lPLp fltzlt` f s
lt z
`

lt ` f c
lt z
´

lt q`
ř

tPT

ř

pPP

ř

lPL hlptxlpt

as the cost value of the design variables.

4.4.2 Benders subproblems

For fixed operating DPs and capacity assignment, the recourse problem can be decomposed
into |T | ˆ |Ω| subproblems, which are CVRP-CMD problems, one for each period t P T and
each scenario ω P Ωt.

Let x̄k denote the vector of fixed variables in iteration k. Solution values φtωpx̄kq for the
subproblems can be used to compute the expected total cost φpx̄kq of the second-stage decisions:
φpx̄kq “

ř

tPT

ř

ωPΩt
ppωqφtωpx̄kq.

4.4.2.1 Generating Benders optimality cuts

As pointed out at the beginning of Section (4.4), we start by solving the linear relaxation
(SPLPtω) of the set partitioning formulation (SPFtω) for all periods t P T and for all scenarios
ω P Ωt. Due to the exponential size of Rtω

l , every (SPLPtω) is solved using column generation.
It is an iterative approach in which in every iteration a subset of variables λ is considered, and a
restricted set-partitioning linear program (RSPLPtω) is solved. Let (τtω, ρtω, ιtω) be an optimal
dual solution of (RSPLPtω), corresponding to constraints (4.16), (4.17), and (4.18). To deter-
mine whether this dual solution is optimal for (SPLPtω), the pricing problem should be solved.
In it, we search for a route r P Rtω

l , l P L, with a negative reduced cost. If such routes are
found, the corresponding variables λ are added to (RSPLPtω), and we pass to the next iteration.
The pricing problem is decomposed into |L| problems, one for each DP. Reduced cost ĉtω

lr of a
route r P Rtω

l is computed as

ĉtω
lr “ ct

r ´
ÿ

jPJ

τtω
j ξ

r
j `

˜

ÿ

jPJ

dtω
j ξ

r
j

¸

ρtω
l ´ ιtω. (4.22)

By replacing ξ by ψ and removing the constant part in (4.22), the pricing problem for (RSPLPtω)
and DP l P L can be formulated as

min
rPRtω

l

ĉtω
lr “ min

rPRtω
l

ÿ

pi, jqPE2

pct
i j ´ τtω

j qψ
r
i j. (4.23)

Each pricing problem is a Resource Constrained Shortest Path (RCSP) problem. The aim here
is to find a minimum cost path linking a source vertex to a sink vertex that satisfy the capacity
constraint. This problem can be efficiently handled using dynamic programming labeling algo-
rithms [116, 179]. In this study, we use the bucket graph based labeling algorithm from [190].

Note that set Rtω
l of routes can be restricted to only elementary ones (passing by each cus-

tomer at most once) without eliminating any feasible solution of the 2E-SM-CLRP. Relaxation
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(SPLPtω) is tighter in this case. However, considering only elementary routes in the pricing
can make it hard to be solved. Instead, we use ng-route relaxation [21], known to have a good
trade-off between formulation strength and pricing difficulty. An ng-route can only revisit a
customer i if it first passes by a customer j such that i is not in a pre-defined neighbourhood of
j. In many instances, reasonably small neighborhoods (for example, of size 8) already provide
tight bounds that are close to those that would be obtained by pricing elementary routes [174].

To insure the feasibility of each (SPLPtω), we add slack variables to constraints (4.16)–
(4.18). We set the coefficients for these variables in the objective function large enough, so that
the second-stage decisions are feasible for every period and every scenario in the final solution
obtained for the 2E-SM-CLRP.

Dual solution (τ̄tω, ρ̄tω, ῑtω) is optimal for (SPLPtω) if no route with negative reduced cost if
found after solving the pricing problem. Thus this solution is feasible for the dual of (SPLPtω),
and by linear programming duality theorem, the following inequality is valid for the (MP):

θtω `
ÿ

lPL

ÿ

pPP

Q1
lpρ̄

tω
l xlpt ě

ÿ

jPJ

τ̄tω
j ` Γtωῑtω (4.24)

In iteration k of our Benders algorithm, we solve (SPLPtω) for all periods t and all scenarios
ω. All inequalities (4.24) violated by x̄k are then added to (MP). Such constraints are called
Benders optimality cuts in the literature.

4.4.2.2 Generating combinatorial Benders cuts

If none of inequalities (4.24) is violated, formulations (SPFtω) for each period t and each
scenario ω P Ωt are then solved using the state-of-the-art branch-cut-and-price algorithm
from [190].

The branch-cut-and-price algorithm is based on a combination of column generation, cut
generation and branching. For each node of the branch-and-bound, the lower bound on the
optimal cost is computed by solving the problem (SPLPtω) enhanced with Rounded Capacity
Cuts (RCC) [144] and limited memory Rank-1 Cuts (R1C) [120, 166] using column genera-
tion as described above in Section 4.4.2.1. Column generation convergence is improved with
the automatic dual pricing stabilization technique proposed in [170]. After each convergence,
the algorithm performs bucket arc elimination procedure based on reduced costs [190] Then,
a bi-directional enumeration procedure [19] is called to try to generate all improving elemen-
tary routes with reduced cost smaller than the current primal-dual gap. If the pricing problem
corresponding to a DP l P L is successfully enumerated, the current (RSPLPtω) is updated by
excluding non-elementary columns corresponding to routes in Rtω

l . This pricing problem is
then solved by inspection. When pricing problems for all DPs l P L are enumerated and the
total number of routes is small, the node is finished by a MIP solver.

On the other hand, if there exists at least one non-enumerated pricing problem that be-
comes too time consuming to solve and the tailing off condition for cut generation is reached,
branching is performed. Three different branching strategies are used, they can be expressed as
constraints over the following aggregated variables:
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• branching on the number of vehicles used from a DP l:
ř

rPRtω
l

ř

jPJ
1
2ψ

r
l jλ

tω
lr , @l P L,

• branching on the assignment of a customer j P J to an operating DP l:
ř

rPRtω
l
ξ jλtω

lr , @ j P
J , l P L,

• branching on the edges of the original graph:
ř

lPL

ř

rPRtω
l
ψr

i jλ
tω
lr , pi, jq P E2.

Branching variables are selected according to a sophisticated hierarchical strong branching
procedure, inspired from [166].

Remember that φtωpx̄kq is the solution value of (SPFtω). The branch-cut-and-price algorithm
finds values θk

tω and θ̂k
tω, which are lower and upper bounds on value φtωpx̄kq. If (SPFtω) is solved

to optimality, both values coincide. After solving all problems (SPFtω), primal bound on the
solution value of the 2E-SM-CLRP can be computed as

vk
design `

ÿ

tPT

ÿ

ωPΩt

ppωqθ̂k
tω. (4.25)

If the optimality gap, i.e. difference between dual bound vk
MP and primal bound (4.25) is suffi-

ciently small, the algorithm is stopped. Otherwise, combinatorial Benders cuts are generated,
which we will now describe.

The intuition behind combinatorial cuts is the following. Given period t P T , if for every
l P L the capacity of DP l induced by the first-stage decisions is not larger than

ř

pPP Q1
lp x̄k

lpt,
then for any scenario ω P Ωt the value θtω of the second-stage decisions cannot be smaller than
θk

tω. So, mathematically we can write

@t P T :

#

θtω ě θk
tω, @ω P Ωt, if

ř

pPP Q1
lpxlpt ď

ř

pPP Q1
lp x̄k

lpt, @l P L,

θtω ě 0, @ω P Ωt, otherwise.
(4.26)

In order to linearize conditions (4.26), additional variables are introduced. We define ak
t as

a non-negative variable representing the maximum increase of capacity of a DP in period t in
comparison with DP capacities in iteration k:

ak
t “ max

˜

0, max
lPL

˜

ÿ

pPP

Q1
lpxlpt ´

ÿ

pPP

Q1
lp x̄k

lpt

¸¸

(4.27)

Let also qk
t be a binary variable equal to 1 if and only if the value of ak

t is strictly positive. In
addition, we define binary variables bk

lt and bk
0t involved in the linearisation of expression (4.27).

Let M1 be a value which is larger than any possible value variables a can take, i.e. M1 ě Cl,
l P L. Combinatorial Benders cuts are then formulated as:
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ak
t ď M1qk

t @t P T (4.28)

qk
t ď ak

t @t (4.29)

θtω ě θk
tωp1´ qk

t q @t P T , ω P Ωt (4.30)
ÿ

pPP

Q1
lpxlpt ´

ÿ

pPP

Q1
lp x̄k

lpt ď ak
t @t P T , l P L (4.31)

ak
t ď

ÿ

pPP

Q1
lpxlpt ´

ÿ

pPP

Q1
lp x̄k

lpt ` M1
p1´ bk

ltq @t P T , l P L (4.32)

ak
t ď M1

p1´ bk
0tq @t P T (4.33)

bk
0t `

ÿ

l

bk
lt “ 1 @t P T (4.34)

ak
t P R` @t P T (4.35)

bk
lt, b

k
0t, q

k
t P t0, 1u @t P T , l P L (4.36)

Constraints (4.28) and (4.29) link variables a and g. Constraints (4.30) impose lower bounds
variables θ according to the first condition in (4.26). As for constraints (4.31)–(4.34), they
express a linearization the definition (4.27) of variables a.

4.4.3 Overall algorithm

The complete description of the Benders approach is given in Algorithm 4.1.
We will now prove that our Benders approach converges to an optimum solution of the

2E-SM-CLRP under certain conditions.

Proposition 4.1. Algorithm 4.1 finds an optimum solution to the 2E-SM-CLRP after a finite
number of iterations if ε “ 0 and second-stage integer problems (SPFtω) are solved to optimal-
ity at every iteration.

Proof. The validity of Benders optimality cuts follows from the strong duality of linear pro-
gramming. The validity of combinatorial Benders cuts follows from the fact that they follow a
linearization of conditions (4.26).

The overall number of cuts is finite, as the number of different solutions x̄ is finite. There-
fore, there exists finite iteration k such that solution x̄k is the same as solution x̄k1 at some previ-
ous iteration k1 ă k. The lower bound in iteration k is not smaller than vk

design`
ř

tPT

ř

ωPΩt
ppωqθ̄k.

As all problems (SPFtω) were solved to optimality in iteration k1, upper bound is not larger than
vk1

design `
ř

tPT

ř

ωPΩt
ppωqθk1 .

As x̄k1 “ x̄k, we have vk
design “ vk1

design. Also from the construction of combinatorial cuts, we
have θ̄k ě θk1 for all periods t and all scenarios ω. Thus, the lower and upper bounds match in
iteration k, and feasible solution obtained in iteration k1 is optimal for the 2E-SM-CLRP. �
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Algorithm 4.1 Benders approach for the 2E-SM-CLRP
1: ε is set to the maximum optimality gap
2: ub Ð 8, lb Ð ´8, k Ð 0
3: for all t P T , ω P Ωt do
4: Solve the linear relaxation of the bin packing problem (BPP) to obtain Γtω

5: end for
6: while pub´ lbq{ub ą ε do
7: Solve the (MP) to obtain solution px̄k, θ̄kq of value vk

MP
8: lb Ð maxtlb, vk

MPu

9: newCut Ð f alse
10: for all t P T , ω P Ωt do
11: Solve (SPLPtω) by column generation to obtain dual solution pτ̄tω, ρ̄tω, ῑtωq of value

φLP
tω px̄

kq

12: if θ̄k
tω ă φLP

tω px̄
kq then

13: Add the Benders optimality cut (4.24) to the (MP)
14: newCut Ð true
15: end if
16: end for
17: if newCut “ f alse then
18: for all t P T , ω P Ωt do
19: Solve the (SPFtω) by branch-cut-and-price to obtain lower bound θk

tω and upper
bound θ̂k

tω
20: if θ̄k

tω ă θk
tω then

21: Add combinatorial Benders cuts (4.28)–(4.36) to the (MP)
22: end if
23: end for
24: φpx̄kq Ð

ř

tPT

ř

ωPΩt
ppωqθ̂tωpx̄kq

25: ub Ð mintub, vk
design ` φpx̄kqu

26: if θk
tω ă θ̂k

tω for some t, ω and no violated cuts (4.28)–(4.36) were added to the (MP)
then

27: stop
28: end if
29: end if
30: k Ð k ` 1
31: end while

The algorithm may stop before reaching predefined gap ε if the overall time limit is reached
or if not all second-stage problems (SPFtω) are solved to optimality. In this case, we are not
guarantees to obtain a feasible solution. However, the results of our experiments below show
that we were always able to obtain it in such cases.
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Table 4.1: Test problems size

|P| 4
|L| 8 12 16
|J | 15 20 50 15 20 50 15 20 50

4.5 Computational results

In this section, we describe our experimental results. First, we present the data instances used
in the experiments. Then, we report and discuss the obtained results.

Our approach is implemented in the C++ programming language and compiled with GCC
5.3.0. BaPCod package [226] is used to handle the branch-cut-and-price framework. We use
CPLEX 12.8.0 as the linear programming solver in column generation and as the integer pro-
gramming solver for the set partitioning problem with enumerated columns as well as for the
Benders master problem (MP). All tests are run on a cluster of 2 dodeca-core Haswell Intel
Xeon E5-2680 v3 server running at 2.50 GHz with 128Go RAM. The OpenMP API for paral-
lel computing [163] is considered to solve the |T | ˆ |Ωt| CVRP-CMD subproblems using 24
cores in parallel.

4.5.1 Test data

To test our approach, several 2E-SM-CLRP instances have been randomly generated based on
the following attributes: the problem size, the network characteristics, the demand process, the
cost structure as well as the capacity dimension. Problems of nine different sizes are tested
as shown in Table 4.1. In each case, it is either the number of DPs (|L|) or the number of
customers (|J |) that varies. The number of potential WPs (|P|) is also provided. We mention
that the sets of potential DPs given in instances with |L| “ 8 DPs and |L| “ 12 DPs are
subsets of the large set with |L| “ 16 DPs. A 5-year planning horizon is considered, which is
partitioned into 5 design periods (i.e., |T | “ T “ 5).

Platforms (i.e., WPs and DPs) and customers are realistically scattered in a geographic area
within concentric square of increasing size. We assume that the covered geographic territory
is composed of three urban areas Area1, Area2 and Area3, where Area3 represents the central
area. Figure 4.3a illustrates the partition of the three urban areas made in a way to scatter
realistically the customers locations and the 2-echelon platforms. Coordinates of customers
and platforms potential locations are randomly generated in the defined urban area using the
following criteria. Customers are randomly located within Area2 and Area3. α is the ratio of
customers randomly located in Area3 and p1 ´ αq is the ratio of customers within Area2. DPs
are located within Area2 and Area3. 20% of the total number of DPs is randomly located in
the central Area3, and 80% of DPs are in Area2. WPs are randomly located within Area1.
Depending on the ratio α, two instance types are defined: I1 refers to concentric customers
case where α “ 0.8 of customers are located within Area3 and 20% in Area2. I2 corresponds
to dispersed case where α “ 0.6.
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Area1

Area2

Area3

(a) The three urban area

g1g2

g3 g4

(b) Customers dispersion zones

Figure 4.3: Representation of two-echelon urban area

Euclidean distances between nodes are computed, and two unit costs are defined to com-
pute platform costs and transportation costs. Higher unit cost is attributed to DPs within Area3
compared to the other areas. Two transportation costs configurations are tested: low trans-
portation cost (LT) where the transportation cost represents 40% of the total network cost, and
a high transportation cost (HT) where the trade-off is 60%. These ratios are determined based
on some preliminary tests. At the second echelon, vehicle capacity is fixed to Q2 “ 75, and its
fixed cost is f “ 600 under the (LT) attribute and f “ 1300 under (HT) attribute. The fixed
WPs and DPs opening costs are generated, respectively in the ranges fwpt P r14000, 25000s
and flt P r7000, 10000s per location and period. An inflation factor is considered to reflect the
increase of the cost of capital on a periodic basis with r “ 0.005. The operating cost for both
WPs and DPs is fws

pt “ 0.12fwpt, and the closing cost fwc
pt is about 0.2fwpt. Additionally, we

define two capacity configurations: a tight level (TC) where Cp and Cl are uniformly generated
in the intervals r600, 900s and r220, 400s respectively; and a large level (LC) in which WPs and
DPs capacities are uniformly generated in the intervals r850, 1400s and r550, 800s, respectively.
The truckload capacities Q1

lp between WPs and DPs are generated in the interval r150, 250s.
Furthermore, we assume here, without loss of generality, that the demand scenario dtω

j
of a customer j in period t follows the normal distribution with mean value µ jt and standard
deviation σ jt. The customers are dispersed over four zones g1, g2, g3 and g4 within Area2
and Area3 as mentioned in Figure 4.3b. For each zone g and each period t, we define an
inflation-deflation factor δgt. Each customer mean demand µ jt depends on the time-varying
trend δgt and on its mean value at the previous period. The coefficient of variation (σ jt

µ jt
) is a

fixed parameter for each customer over periods. Two time-varying trends are tested providing
two demand processes. The normal distribution with an increasing trend (NIT) refers to a
customer mean value that follows an increasing factor δgt P r0, 0.4s such that

ř

g δgt “ 0.4.
The second one is the normal distribution with a variable trend (NVT) where each customer
mean demand varies according to an increasing trend δgt P r0, 0.9s for periods t “ 1..3 and
then according to a decreasing trend for t “ 4, 5. The values and ranges for all the parameters
regarding to the demand process are given in Table 4.2. Combining all the elements above
yields several problem instances. Each instance is denoted by a problem size T -|P|/|L|/|J |-
, a scenario sample size N and a combination of customer dispersion pI1, I2q, transportation
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Table 4.2: Demand processes

Demand process Mean value Trend
NIT µ jt “ µ jt´1p1` δz jtq δz jt P r0, 0.4s such that

ř

z jt δz jt “ 0.4

NVT µ jt “ µ jt´1p1` δz jtq δz jt P r0, 0.9s such that
ř

z jt δz jt “ 0.9
µ jt “ µ jt´1p1´ δz jtq δz jt P r0, 0.4s

µ j0 P r5, 25s, σ jt

µ jt
“ 0.25

attribute pLT, HTq, capacity configuration pTC, LCq and the demand process pNIT, NVTq.

4.5.2 Parameters setting

The Benders decomposition algorithm terminates when one of the following criteria is met:
(i) the optimality gap between the upper and lower bounds is below a threshold value ε, i.e.,
pub ´ lbq{ub ă ε, or (ii) the maximum time limit timemax is reached. We set the parameter
values as ε “ 0.0005, and timemax “ 72 hours. A time limit of 50 minutes is considered for
each CVRP-CMD.

Next, an important parameter to calibrate for stochastic models is the number N of sce-
narios to include in the optimization phase. Under a scenario-based optimization approach,
generating the adequate set of scenarios Ω could be complex due to the high enumeration issue
induced by continuous normal distribution [204]. Assessing their probabilities also entails a
tremendous effort. The combination of the Monte Carlo sampling methods [202] and the sam-
ple average approximation technique (SAA) [204] helps in finding a good trade-off in terms of
the scenarios’ probability estimation and the sufficient number of scenarios to consider in the
model. This approach has been applied to network design problems in [193] and to stochastic
multi-period location transportation problem in [128]. The SAA consists in generating at each
time period t, before the optimization procedure, an independent sample of N equiprobable
scenarios ΩN

t Ă Ωt from the initial probability distribution, which removes the need to explic-
itly compute the scenario demand probabilities ppωq. The quality of the solution obtained with
this approach improves as the scenario sample size N increases. However, one would choose
N taking into account the trade-off between the quality of the obtained design and the com-
putational effort needed to solve the problem. Thus, to determine the best value of N, solving
the problem with M independent samples of demand repeatedly can be more efficient. This
leads to a maximum of M different design decisions (i.e. location and capacity). It is worth
to note that some samples may provide identical design decisions. The average value from the
M expected cost based on N scenarios leads to a statistical lower bound. Then, we evaluate
the different obtained designs based on the expected daily routing cost. We fix the first-stage
according to each of these different designs and solve the resulting problem for N 1 “ |ΩN1

t | " N
independent scenarios to get an upper bound on the optimal solution of the problem. Finally,
a statistical optimality gap is computed for each obtained design from these lower and upper
bounds. For more details, interested readers are referred to [193] and [199]. We notice that an
external recourse option is added here, at a high cost, in order to guarantee the feasibility for
all scenarios.
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Table 4.3: Average statistical optimality gap values for (I1,LT,TC,NIT) instances

GapN,120 (in %)

Problem size Sample size (N)

5 10 15 25
5-4/8/15-N- 2.11 0.85 0.39 -0.14
5-4/8/20-N- 2.55 1.07 1.14 0.34

To apply the SAA technique, we solved M “ 10 demand samples and used sample sizes of
N “ 5, 10, 15 and 25 scenarios for each time period t. The best feasible solution of each SAA
sample is then stored as a candidate solution for valuation in the reference sample. The size of
the reference sample per period t is set to N 1 “ |ΩN1

t | “ 120 scenarios. The average gap values
for problem sizes 5-4/8/15-N- and 5-4/8/20-N- under (I1,LT,TC,NIT) instance configuration
using the different values of N are summarized in Table 4.3.

Table 4.3 shows that the optimality gap improves as the sample size N increases and con-
verges to 0%. Samples of N “ 15 and 25 scenarios provide satisfactory results, generally less
than 1% for both instances. Moreover, we note that the decisions produced with alternative
samples (M “ 10) present a high similarity in terms of the opened DPs and the inbound alloca-
tion. However, the solution time increases considerably with the sample size. Accordingly, the
sample size of N “ 15 is retained as the best trade-off to use in the experiments for instances
with 50 customers and N “ 25 is selected for instances with 15 and 20 customers. Recall
that when N scenarios are used in the SAA model, 5 ˆ N instances are then sampled from the
probability distribution as the planning horizon includes 5 periods.

4.5.3 Results

In this section, we evaluate the performance of the Benders approach and provide an analysis
of the design solutions produced to deal with the 2E-SM-CLRP. Further, we examine the sen-
sitivity of WP and DP location decisions to uncertainty under various problem attributes, and
the behavior of the capacity decision in a multi-period and uncertain setting.

In order to evaluate the performance of our approach, we solve the deterministic equivalent
formulation (DEF) of the problem using a commercial solver (Cplex). To this end, in the
DEF, we reformulate the CVRP-CMD as a three-index vehicle-flow formulation as introduced
in [215]. Two instances of size 5-4/8/15-1- and 5-4/8/20-1- under attributes (I1, LT, LC, NIT)
are tested. The results show that Cplex is not able to solve to optimality these two instances
with one scenario and is stopped after 13 hours of run due to a lack of memory with a gap of
13% for 5-4/8/15-1- instance and a gap of 25% for 5-4/8/20-1- instance.

Next, the 2E-SM-CLRP is solved using the Benders approach on the nine size-instances of
Table 4.1, for each sample size. The results are reported in Table 4.4. The two first columns give
the instance attribute and size associated with the sample size N. The third column #Opt refers
to the number of optimal solutions found under each scenario sample size N. The next three
columns #CombCuts, #OptCuts and #Iter provide the average number of generated combinato-
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Table 4.4: Average results per problem-instance

Instance N #Opt #CombCuts #OptCuts #Iter Gap(%) Parallel computing time Sequential computing time
MP CVRP-CMD total

5-4/8/15- 5 24/24 2 6.3 8.5 0.00 4s 50s 2m47s 3m48s
10 24/24 1.9 6.3 8.1 0.01 5s 50s 4m6s 6m55s
15 24/24 1.9 6.3 8.2 0.00 6s 1m4s 5m51s 8m39s
25 24/24 2 6.7 8.7 0.00 9s 1m27s 9m21s 13m49s

5-4/12/15- 5 15/15 1.9 6.8 8.7 0.00 8s 47s 2m32 8m20s
10 15/15 2 7.4 9.4 0.00 12s 59s 4m22s 11m32s
15 15/15 2.1 7.3 9.3 0.00 15s 1m8s 6m5s 18m2s
25 15/15 2.1 7.5 9.6 0.00 25s 1m28s 9m44s 24m7s

5-4/16/15- 5 12/12 2.25 7.3 9.6 0.00 12s 2m35s 4m24s 11m39s
10 12/12 2.3 7 9.3 0.00 20s 1m 4m34s 11m29s
15 12/12 2.3 7.25 9.5 0.00 24s 1m11s 6m24s 17m29s
25 12/12 1.9 7 8.9 0.01 27s 1m32s 9m50s 38m21s

5-4/8/20- 5 24/24 2.1 9 11.1 0.00 6s 1m19s 3m39s 36m7s
10 24/24 2.1 8.7 10.7 0.00 7s 2m40s 7m14s 1h2m
15 24/24 1.9 8.8 10.7 0.01 10s 3m23s 10m15s 1h46m
25 24/24 2.1 9 11.1 0.00 16s 5m48s 17m14s 1h59m

5-4/12/20- 5 15/15 2.1 9.3 11.5 0.00 12s 2m28s 4m55s 39m9s
10 15/15 1.9 8.5 10.5 0.01 16s 1m51s 6m37s 1h25m
15 15/15 2 8.7 10.7 0.00 22s 5m26s 12m29s 2h11m
25 15/15 1.9 7.9 9.9 0.00 30s 14m21s 26m3s 1h34m

5-4/16/20- 5 12/12 1.9 8.8 10.75 0.00 16s 1m47s 4m20s 29m2s
10 12/12 2.2 9.7 11.8 0.01 37s 2m59s 8m7s 1h10m
15 12/12 2.5 9.9 12.4 0.00 1m3s 11m47s 18m33s 2h49m
25 12/12 2.25 9.67 11.91 0.01 1m34s 18m9s 30m56s 5h25m

5-4/8/50- 15 9/15 7.4 20.4 27.8 0.03 39m13s 16h54s 17h54m
5-4/12/50- 15 8/15 7.1 26.5 33.6 0.03 2h50m 13h3m 16h14m
5-4/16/50- 15 9/12 4.8 19.7 24.7 0.02 35m48s 7h34m 8h52m

rial Benders cuts (4.28)–(4.36), the average number of generated Benders optimality cuts (4.24)
and the required number of iterations to converge, respectively. The column Gap(%) indicates
the average optimality gap. The three next columns under the heading Parallel computing time
give the average CPU time spent for solving the Benders master problem (MP), the T ˆ N
CVRP-CMD subproblems and the total time needed to obtain an optimal solution of the prob-
lem using parallel computing. This average is computed over the instances that could be solved
within the time limit (72 hours). For comparison purpose, the last column presents the total
running time using sequential computing for the solved problems. It is worth noting that the
total time includes the MP time, the CVRP-CMD time and the BPP time.

Table 4.4 shows that the developed approach is able to solve most instances in reasonable
time within the threshold value ε “ 0.05%. It solves all instances of 15 and 20 customers,
in less than 30 minutes average time with parallel computing. It is worth to mention that for
instances with 15 customers, the solution of the BPP takes the most computing time (two to
seven minutes) compared to the MP`CVRP-CMD time. This is essentially due to the sequen-
tial computing of the BPP for each period and each scenario. When inspecting the sequential
computing time, it is clear that the parallel computing helps to reduce drastically the running
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time, mainly in moderate-size instances with 20 customers. As illustrated in Table 4.4, the se-
quential solving approach could take from 4 to 10 times more computing time for instances with
20 customers, reaching an average running time of 5 hours and 25 minutes in instances with 16
DPs and 20 customers (which are solved in about 30 minutes in average with parallelization).
Worth noting is that most computing time (about 70%) is spent by the branch-cut-and-price
to get an integer solution to the T ˆ N CVRP-CMD subproblems (see details in Table D.1
in Appendix D). This justifies the use of a parallel computing approach to solve the T ˆ N
CVRP-CMD subproblems.

Furthermore, when inspecting large-scale instances with 50 customers, our algorithm is
able to solve to optimality 26 out of 42 instances in average time of 14 hours 20 minutes. The
average optimality gap in the remaining 16 instances is generally below 0.5% which underlines
the efficiency of the developed Benders approach. These instances are not solvable with the
sequential approach within the maximum allocated time, as solving the T ˆ N CVRP-CMD
subproblems is time consuming. Moreover, Table 4.4 emphasizes the inherent complexity
of the stochastic setting where computing time grows as the size of the scenarios sample N
increases. Additionally, the Benders master problem (MP) takes only few seconds to be solved
in most of the instances with 15 and 20 customers and grows up to two hours in the instances
(5-4/12/50-.) using 15 scenarios. The MP resolution is also highly correlated to the number of
potential DPs in the considered instance. The increase in computing time here is mainly due to
the large number of cuts that are added to the MP iteratively.

Next, we evaluate the performance of the solution approach on the set of problem instances,
given the combination of attributes: customer dispersion, transportation cost, capacity config-
uration and demand process, as defined in Section 5.1. Table 4.5 shows the results obtained for
instances with 8 DPs and 15, 20, 50 customers, respectively, in terms of the best upper bound
(ub), the best lower bound (lb), the optimality gap (%) and the computation time. For consis-
tency purpose, for each instance, three random instantiation of the input parameters is made
as indicated in the second column. For problem instances with 12 DPs and 16, the results are
provided in Tables D.2 and D.3, respectively, in Appendix D.
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We observe that instances under large capacity attribute (LC) are easier to solve than the
other attributes, and are all solved to optimality. Nevertheless, the tight capacity attribute (TC)
makes data set more difficult to solve. Only few instances with 50 customers are solved within
the time limit and the other ones present a reduced gap, below 1%. This is consistent with
former results on capacitated LRPs and VRPs. Furthermore, the instances with network con-
figuration I2 are solved more efficiently compared to I1-based instances. This is mainly due to
the fact that in I2, where customers are more dispersed in the urban area (Figure 3b),the rout-
ing subproblems are easier to solve. Indeed, two instances out of three with 50 customers are
optimally solved under I1, whereas the three instances are solved to optimality under I2. Cost
attribute also impacts the complexity of the problem. In fact, for 5-4/8/50-15-(I1,.,TC,NIT),
two instances out of three are optimally solved under LT attribute. However, no optimality is
obtained under the HT attribute. This is mainly due to the increase of transportation costs under
HT, which makes location-routing cost trade-offs more contrasting. A difference in solvabil-
ity is also observed regarding the demand process attribute. Instances under NVT process are
more difficult to solve compared to those under NIT, which is due to the augmented variability
of the demand process in the former. As seen in Table 4.5 for instance, one instance sized
5-4/8/50-15-(I1,LT,TC,.) is optimally solved under NVT process compared to two under NIT.

Table 4.6: Location decisions and their operating periods for 5-4/./20-25-(.,.,.,.)-3

(I1,LT,TC,NIT) (I1,HT,TC,NIT) (I1,LT,TC,NVT) (I1,LT,LC,NIT) Presence (%)
|L| 8 12 16 8 12 16 8 12 16 8 12 16
l1 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0 0 0 0 0 0 0
l3 0 0 0 0 0 0 1 1 0 0 0 0 14
l4 1 0 1 1 0 0 0 0 1 0 0 0 35
l5 0 2 0 0 2 0 0 0 0 1 0 0 29
l6 1 0 0 1 0 0 1 0 0 0 0 0 29
l7 0 0 0 0 0 0 2‹ 1 0 0 1 0 21
l8 0 0 0 0 0 0 0 0 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 0

l10 0 0 0 0 0 0 0 0 0
l11 0 0 0 0 0 0 0 0 7
l12 1 0 1 0 0 0 0 0 14
l13 0 0 0 0 0
l14 0 1 0 1 14
l15 1 1 1 0 21
l16 0 0 0 0 0

Closed at t= 5

Next, we closely look at the design decisions produced by our model under various problem-
instances. The results are presented in Tables 4.6 and 4.7 for the different problem sizes with
20 and 50 customers, respectively. The results for instances with 15 customers in the network
are given in Table D.4 in Appendix D. These tables provide the DP opening decisions and their
operating periods: value 0 refers to DPs kept closed and a value in the range r1, 5s corresponds
to the DP opening period t. A particular mark (star (‹) or diamond (♦)) next to a value indi-
cates when that DP has been closed and indicates then the closing period. If no mark has been
mentioned, the DP has remained operating until the end of the planning horizon. The first row
corresponds to the combination of attributes and the second row provides the size of potential
DPs. The first column corresponds to the list of potential DPs. The underlined DPs are those
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Table 4.7: Location decisions and their operating periods for 5-4/./50-15-(.,.,.,.)-3

(I1,LT,TC,NIT) (I1,HT,TC,NIT) (I1,LT,TC,NVT) (I1,LT,LC,NIT) Presence (%)
|L| 8 12 16 8 12 16 8 12 16 8 12 16
l1 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 1 0 0 0 0 0 7
l3 4 0 0 2 1 0 0 1 0 0 0 0 42
l4 1 1 1 1 0 1 1 2‹ 1 0 1 1 85
l5 1 1 0 1 2 0 1‹ 1 0 1 0 0 64
l6 2 0 0 4 0 0 1♦ 0 0 0 0 0 28
l7 1 1 2 1 1 1 3 1 2 0 1 1 92
l8 0 0 0 0 0 0 0 0 0 1 0 0 14
l9 0 0 0 0 0 0 0 0 0
l10 4 0 0 0 0 0 0 0 7
l11 0 1 4 1 0 3 0 0 28
l12 1 0 1 0 1 1 0 0 35
l13 0 0 0 0 0
l14 0 0 0 0 0
l15 4 4 1‹ 0 21
l16 1 1 0 0 14

Closed at t= ‹5,♦4 ‹4 ‹5

located in the central urban area Area3 of the network. Tables 4.6 and 4.7 reveal that the opened
DP number increases as the customer size grows, since this latter size impacts the total demand
level of the network. Under tight capacity attribute (TC), two to three DPs are opened for in-
stances with 20 customers. This number reaches five to six opened DPs for instances with 50
customers. Nevertheless, under large capacity (LC), the number of opened DPs is smaller than
under TC as DPs can, in the former case, accommodate more inbound flows from WPs. Re-
garding WPs, the opened number is quite stable in the instances: three WPs at most are opened
with instances covering 50 customers.

Additionally, the location of both WPs and DPs and the throughput capacity level are cor-
related with the demand process, the customers dispersion, and costs. The tables also highlight
the sensitivity of the strategic location decisions where in several cases the design structure
varies between high and low transportation cost. For instance, we observe in Table 4.6 with
5-4/8/20-25-(I1,LT,TC,NIT) that the network opened DPs 4 and 6, whereas with 5-4/8/20-25-
(I1,HT,TC,NIT), DPs 3 and 7 are opened. We noticed that only in few instances the centralized
DPs (i.e., positioned in Area3 and are underlined in tables) were opened, which is due to their
higher fixed costs. In addition, the customer dispersion (i.e., I1 vs I2) impacts the DP location
decisions, mainly under (.,LT,TC,NIT) attributes, as illustrated in Table 4.8. For example, for
the instance size 5-4/12/50-15-, DPs 4, 5, 7, 8 and 12 are opened under I2 attribute instead of
4, 5, 7, 10 and 12 under I1. Even though the DP 12 is identical under the two attributes I1 and
I2, this latter is not opened at the same period: t “ 1 for I1 and t “ 4 for I2.

Moreover, the presence of additional potential DPs has an impact on the location decisions.
It offers additional DPs’ position for the network. In general, we observe a very low similarity
in the DPs’ location between instances with 8, 12 and 16 DPs, respectively. Looking closely
at the instance with 20 customers in Table 4.6, no identical DPs’ location is observed under
(I1,HT,TC,NIT) configuration. However, under (I1,LT,TC,NIT), the instances 5-4/8/20-25-
and 5-4/16/20-25- have DP 4 in common. Additionally, the change in full truckloads capacities
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Table 4.8: Location decisions and their operating periods for the customer dispersion attribute (I1 vs
I2)

5-4/./20-25- 5-4/./50-15-

(I1,LT,TC,NIT) (I2,LT,TC,NIT) (I1,LT,TC,NIT) (I2,LT,TC,NIT)

|L| 8 12 8 12 8 12 8 12
l1 0 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0 0
l3 0 0 0 0 4 0 3 0
l4 1 0 1 0 1 1 1 1
l5 0 2 0 1 1 1 1 1
l6 1 0 1 0 2 0 1 0
l7 0 0 0 0 1 1 1 1
l8 0 0 0 0 0 0 0 1
l9 0 0 0 0
l10 0 0 4 0
l11 0 1 0 0
l12 1 0 1 4

Closed at t=

impacts the location decisions as illustrated in instances 5-4/./50-15 under (I1,LT,LC,NIT).
Furthermore, a key finding is the sensitivity of the problem to demand uncertainty in terms

of location decisions and capacity decisions. The results affirm the multi-period design set-
ting. In fact, we notice in almost all cases that the opening decisions follow the trend function
and are planned over the different design periods. For instance, under the (I1,LT,TC,NIT)
configuration, the problem size 5-4/12/20-25- fixes DP 12 from the first design period, and
further at period t “ 2 it opens DP 5. The same instance under the NVT demand process
fixes all the opening locations from the first design period. The problem instance 5-4/8/20-
25-(I1,LT,TC,NVT) also points out the multi-period design flexibility that we propose in this
work. We can see that DP 7 is opened at t “ 2 to meet the increasing trend of the demand at
periods one to three. This latter is then closed at t “ 5 as the demand decreases at periods four
and five. In several instance cases, the tables do not show the multi-period opening/closing of
location decisions. Instead, the problem adjust its capacity level to meet the demand variability
which we report in Figures 4.4 and 4.5. In addition, we note a high variability in the location
of opened DPs when comparing solutions from the two demand processes. To emphasize this
result, one can closely observe the instance 5-4/12/20-25-(I1,LT,TC,.) where we have no iden-
tical DPs for NIT vs NVT. As for 5-4/16/15-25-(I1,LT,TC,.), we obtain 100% identical DPs
for NIT vs NVT, but they differ in opening and closing periods (see Table D.4). Therefore, the
obtained results confirm that the stochastic multi-period demand process is adequately captured
by the two-stage stochastic formulation we present in this work.

In complement to the above analysis, we investigate the evolution of the capacity deci-
sions in the multi-period and uncertain setting, since in the two-echelon structure, the demand
is covered with respect to the inbound allocation to DPs from WPs, and not the DPs’ prede-
fined capacity. In Figures 4.4 and 4.5, we examine in depth the capacity decisions modeled in
the 2E-SM-CLRP and contrast it to the evolution of each demand process along the planning
horizon. These figures provide the results of instances 5-4/8/15-25-(I1,LT,TC,.) and 5-4/8/20-
25-(I1,LT,TC,.) for both the NIT and NVT demand processes, which produces each a design



86
Chapter 4: A Benders Decomposition Approach for the Two-Echelon Stochastic

Multi-period Capacitated Location-Routing Problem

1 2 3 4 5
0

100

200

300

t

ca
pa

ci
ty

su
pp

ly

ř

p C4px4pt

C4
ř

p C6px6pt

C6

(a) NIT process

1 2 3 4 5
0

100

200

300

t

ca
pa

ci
ty

su
pp

ly

ř

p C4px4pt

C4
ř

p C6px6pt

C6

(b) NVT process

Figure 4.4: Capacity-allocation decisions from multi-period modeling approach versus the a priori
capacity Cl for 5-4/8/15-25-(I1,LT,TC,.)
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Figure 4.5: Capacity-allocation decisions from multi-period modeling approach versus the a priori
capacity Cl for 5-4/8/20-25-(I1,LT,TC,.)
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solution with two or three DPs. Each solid line corresponds to the capacity available at each
opened DP (i.e.,

ř

p Clpxlpt) in period t, and each dashed line its related predetermined capacity
Cl (each color distinguishes a separate opened DP). We use the same color if the same DP is
opened by the two processes. Figure 4.4 and 4.5 clearly illustrate the impact of the multi-period
modeling approach where the capacity decisions for each opened DP are clearly adapted peri-
odically. Even if the two demand processes of the instance 5-4/8/15-25-(I1,LT,TC,.) produce
the same DP location decisions, the capacity decisions behave differently under each demand
process to follow the time-varying demand process. This means that the two-stage model for
the 2E-SM-CLRP mimics the dynamic capacity model with the inclusion of multi-period ca-
pacity decisions.

4.5.4 Multi-period design setting vs static setting

In this subsection, we further explore the multi-period design setting and contrast it to the static
modeling approach, in which all design decisions should be fixed from the first design period
and no further design adaptability is possible over the planning horizon. Table 4.9 provides
the best upper and lower bounds from the static design modeling approach, the optimality
gap(%) as well as an evaluation of the cost loss in respect to the multi-period approach (i.e.,
`

ubstatic´ubmulti´period
˘

ubmulti´period ˆ 100).
In Table 4.9, we can see that in almost all cases the static design setting provides higher

expected cost. The cost loss increases with the problem size and it reaches more than 5%. The
largest losses are observed under the NVT process as it presents more variability. This is in
accordance with the static setting as the model anticipates the DP openings and the required
capacity level at design period one and does not allow further changes at the subsequent periods
resulting in an over-estimation of the capacity allocated. In other instances as in 5-4/12/20-25-
(I1,LT,TC,NIT)-1, we observe that both models converge to the same optimal value. This is
explained by the fact that particular instance fixes its design decisions from the first period
under the multi-period design setting. This behavior is generally detected with small instances
of 15 or 20 customers, and are mostly under NIT process. In addition, the static approach can
solve optimally instances that cannot be solved with the multi-period setting, as it is the case of
5-4/8/50-15- under (I1,HT,TC,NIT) attributes. It is worth noting that a high variability of the
solutions in terms of location and capacity is observed between both modeling approaches. For
further illustration, see the results reported in Table D.5 in Appendix D.

Figure 4.6 completes the analysis by reporting the obtained capacity decisions for instance
5-4/8/20-25-(I1,LT,TC,.) under both demand processes using the static setting. Each color
identifies an opened DP. For comparison purpose, we also mention in Figure 4.6 the capacity
obtained using the multi-period approach. We note that we use the same color for an opened
DP, if it is common in both approaches. From Figure 4.6a, under the NIT process, we notice
that both static and multi-period modeling settings converge to the same location openings,
but therein the static setting fixes all its capacity at the first period for DP 4 contrary to the
multi-period approach. Under the NVT process, both approaches have only DP 3 in common
fixing the same level of capacity from the beginning of the planning horizon. As mentioned, the
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Table 4.9: Comparison between static and multi-period modeling approach

Static modeling approach Cost loss (%)
ub lb Gap(%)

5-4/8/20-25- (I1,LT,TC,NIT) 1 91585.8 91585.8 0 0.34
2 84255.3 84255.3 0 0.0
3 90082.1 90082.1 0 0.97

(I1,HT,TC,NIT) 1 129205 129205 0 0.51
2 123425 123425 0 0.0
3 128426 128383 0.03 1.37

(I1,LT,TC,NVT) 1 110947 110947 0 3.2
2 98895.8 98895.8 0 2.34
3 99970.8 99970.8 0 1.11

5-4/8/50-15- (I1,LL,TC,NIT) 1 208249.7 208181.9 0.03 2.31
2 192102.2 192066.5 0.02 2.46
3 206563.9 205694.3 0.42 3.75

(I1,HT,TC,NIT) 1 292578.7 292541.7 0.01 2.19
2 276247.5 276170.9 0.03 3.01
3 292412.5 292281.1 0.04 3.12

(I1,LT,TC,NVT) 1 194168.8 194130.8 0.02 2.23
2 231215.2 231184.8 0.01 5.75
3 216878.5 216770.3 0.05 4.14

5-4/12/20-25- (I1,LT,TC,NIT) 1 79842.3 79842.3 0 0.00
2 88448.6 88425 0.03 0.04
3 84441.5 84441.5 0 1.96

(I1,HT,TC,NIT) 1 117079 117079 0 0.00
2 126107 126078 0.02 0.00
3 121762 121762 0 1.56

(I1,LT,TC,NVT) 1 98547.9 98547.9 0 1.76
2 94633.7 94633.7 0 2.33
3 92953.5 92953.5 0 0.00

5-4/12/50-15- (I1,LT,TC,NIT) 1 192350.3 192350.3 0 1.87
2 186311.6 186311.6 0 2.35
3 194780.5 194651.3 0.07 3.12

(I1,HT,TC,NIT) 1 281270.5 281136 0.04 2.24
2 270558 270492.9 0.02 2.85
3 281297.2 281042.4 0.1 3.27

(I1,LT,TC,NVT) 1 186052.5 185785.7 0.14 2.40
2 224365.8 224352.7 0.005 4.58
3 203203.1 203143.9 0.03 4.55

static approach over-estimates its capacity level to hedge against the variability of the demand.
Looking closely at the aforementioned example, the system allocates in total about 2620 units
of capacity with the static setting versus 2457 for the multi-period case under the NIT process
(resp, 2740 vs 2572 under NVT). This confirms our statement about the inherent approximation
of the static setting of the problem. Therefore, one can conclude about the effectiveness of the
multi-period modeling approach, as it offers the flexibility to adapt its hedging capabilities over
time.
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Figure 4.6: Capacity-allocation decisions from static modeling approach versus the a priori capacity
Cl for 5-4/8/20-25-(I1,LT,TC,.)

4.6 Conclusion

In this paper, we have addressed the two-echelon stochastic multi-period capacitated location-
routing problem (2E-SM-CLRP). The problem is characterized as a hierarchical decision pro-
cess involving a design level taking network location and capacity decisions, and an operational
level dealing with transportation decisions in the second echelon. A stochastic multi-period
characterization of the planning horizon is considered, shaping the evolution of the uncertain
customer demand and costs. This temporal hierarchy is formulated as a two-stage stochastic
integer program with recourse. To solve the 2E-SM-CLRP, we have presented an exact Benders
decomposition algorithm. In the first-stage, location (WPs and DPs) and capacity assignment
decisions are taken by solving the Benders master problem. When these first-stage decisions
are fixed, the resulting subproblem is a capacitated vehicle-routing problem with capacitated
multi-depot (CVRP-CMD) which is further decomposed by period and scenario. Each CVRP-
CMD is then solved using the state-of-the-art branch-cut-and-price algorithm. Combinatorial
Benders cuts are also proposed to cut off the current solution in order to converge to the opti-
mal solution of the 2E-SM-CLRP. To the best of our knowledge, this is the first exact method
that has been proposed for this class of problems. The method is able to optimally solve sev-
eral realistic instances containing up to 50 customers and 25 demand scenarios under a 5-year
planning horizon, and provides good lower bounds for the instances that cannot be solved to op-
timality. Extensive computational experiments provide relevant managerial insights regarding
the impact of uncertainty on the 2E-SM-CLRP, in addition to the effectiveness of multi-period
modeling setting.
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Although the Benders decomposition provides good solutions, its performance is limited
for large-scale instances. It might be worthwhile improving the considered algorithm to reduce
the running time. In some instances with 50 customers, the CVRP-CMD cannot be solved in an
hour, whereas all multi-depot CVRP instances in the literature are solved within the time limit.
This points out the complexity of the CVRP-CMD involved in the 2E-SM-CLRP, with respect
to the uncapacitated variant. Thus, it would be interesting to propose new cuts adapted to the
CVRP-CMD to strengthen its solution algorithm. Another interesting research direction would
be to develop an efficient heuristic solution method adapted to the 2E-SM-CLRP to solve larger
problem instances. Future works would include more realistic features such as synchronization
constraints at intermediate distribution platforms, and route length limit constraints. Moreover,
since routing decisions are often used as operations anticipation for the operational level, an-
other research perspective of this work would examine route approximation formulæinstead of
explicitly computing vehicle routes. This may speed up the decision process. Last, it would
be interesting to add risk measures to the objective function, such as mean semi-deviation and
conditional value at risk.



Chapter 5

Rolling Horizon Approach for the Multi-
stage Stochastic Two-Echelon Distribu-
tion Network Design Problem

Abstract

The delivery of products from the warehouse platforms (WPs) to customers
is managed through an advanced echelon of distribution/fulfillment platforms
(DPs) where transshipment and consolidation activities are performed. This
type of distribution systems gives the two-echelon distribution network design
problem (2E-DDP). In this paper, we provide a comprehensive methodology for
the stochastic multi-period 2E-DDP, in which we stress the temporal hierarchy
between the design level dealing with DP location and capacity decisions, and
the operational level involving transportation decisions as origin-destination
flows. The system must be dimensioned to enable an efficient distribution of
goods to customers under a stochastic and multi-period planning horizon. Thus,
the design of the two-echelon distribution network under uncertain customer
demand gives rise to a complex multi-stage decisional problem. We develop
a rolling horizon approach to solve the stochastic multi-period 2E-DDP. Our
solution approach solves a sequence of stochastic models with a reduced plan-
ning horizon over the scenario tree. Preliminary experiments using small and
medium sized data instances validate our modeling approach and show the ef-
fectiveness of our approach.

Keywords: Two-echelon distribution network design problem, uncertainty, multi-period,
multi-stage, rolling horizon.

5.1 Introduction

E-commerce has experienced a sustained progress over the last decades. Its growth is influenc-
ing the way the logistics and supply chain management is played. Moreover, the development
of e-commerce is boosting the expansion of an on-demand economy. This shift is tremendously



92
Chapter 5: Rolling Horizon Approach for the Multi-stage Stochastic Two-Echelon

Distribution Network Design Problem

affecting the distribution schema, more specifically the location and transportation networks. It
thus results in more uncertainty and more complexity for the distribution network than logis-
tics’ practitioners are used to, especially with the increase of the customers’ delivery service
level. In addition, the rapid growth of e-commerce has led to the development of alternatives to
home delivery such as lockers, relay points, and collection stores. In such context, several re-
tail players, such as Amazon that continues an inexorable march toward distribution and order-
fulfillment dominance, are examining promising opportunities for all stakeholders modal sector
in designing their distribution networks [213]. In fact, having logistics space closer to customer
zones plays an important role in improving the efficiency and reducing distribution costs and
time to deliver. Consequently, the distribution network should be transformed to manage the
new challenges impacting the distribution activity. In practice, the majority of companies and
studies in the literature considers a single echelon distribution network where centralized ware-
house platforms are deployed and transportation schema are built around [178, 78]. However,
such configuration limits the efficiency of the distribution network.

Given the business requirements, distribution networks should be beyond more than a sin-
gle echelon to be in line with new business conditions and meet strategic objectives. Therefore,
considering an intermediate echelon of distribution/fulfillment platforms (DPs) standing be-
tween the upper echelon of warehouse platforms (WPs) and the customers’ ship-to bases would
be a good compromise. This type of configuration allows considerable savings compared to
direct deliveries from one main warehouse. In particular, exploiting consolidation synergies
allows for a reduction of the number of freight vehicles going into cities. Hence, the need for
such a two-echelon structure becomes crucial in today’s business environment to offer a good
performance in distribution activities. For instance, Amazon is looking to acquire 42 Homebase
stores around the UK to expand its network of fulfillment centers and warehouses [157]. Many
real-life applications involve two-echelon distribution network. They are employed in city lo-
gistics applications for the case of multi-stakeholders sharing network structures [61, 160, 161].
In this case, peripheral distribution centers are created where no storage is allowed, and freight
transfer and consolidation coming from back-level platforms on large trucks is carried out into
smaller and environmentally friendly vehicles, more suitable for city distribution. Dedicated
two-echelon distribution networks are also deployed for the case of non-substitutable products
as in postal and parcel delivery [89], where parcels transit over one or multiple intermediate
distribution centers, before being delivered to relay points, to lockers or to customers’ homes.

With this in mind, we define the two-echelon distribution network design problem (2E-
DDP). The problem involves facility location, capacity allocation and transportation decisions.
More precisely, this strategic problem aims to decide on the number and the location of DPs, as
well as the capacity allocated from first echelon to second echelon platforms. It also determines
transportation decisions between platforms. Since first echelon network is generally devoted for
consolidation, direct assignment with full truckloads transportation option departing from WPs
to DPs is thus considered. In the second echelon, goods are transported as origin-destination
flows from deployed DPs to customers. The objective is to minimize the total cost. Under this
type of configuration, DPs location decisions strongly depend on the inbound allocation from
upper WPs in addition to the trade-off between locations and capacities in the first echelon, as
well as on the transportation decisions in the second echelon designed according to the trade-off
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Figure 5.1: A potential Two-Echelon Distribution Network Design Problem (2E-DDP)

between customers demand versus DPs capacity. In Figure 5.1, we illustrate a typical example
of 2E-DDP where the network includes two capacitated distribution echelons. Each echelon
has its own assignment-transportation schema that must be adjusted in response to the evolution
of the business horizon.

Existing studies related to our problem have been discussed in the literature. Sterle et
al. [215] and Contardo et al. [53] formulate a deterministic-static two-echelon distribution net-
work as a two-echelon location-routing problem (2E-LRP). In this case, distribution operations
are modeled by explicit routes and location decisions may involve both WPs and DPs. In [53],
the authors propose a branch-and-cut algorithm and an Adaptive Large Neighbourhood Search
algorithm (ALNS). Nguyen et al. [160, 161] study a special case of 2E-LRP including one
main warehouse and several potential distributon centers. To the best of our knowledge, only
deterministic-static setting of the 2E-LRPs is addressed [71, 178, 62]. Moreover, the majority
of studies suppose that location and routing decisions are made simultaneously for the planning
horizon, without considering the hierarchical structure of the strategic problem stressed here.
Further works focus on a hierarchical approach to two-echelon distribution problem. They
extend the facility location problems (FLP) [97, 65] to the two-echelon facility location prob-
lem (2E-FLP) as introduced in [85]. Nonetheless, most 2E-FLP studies represent distribution
operations by direct flows and ignore the capacity decisions, studying mostly deterministic ver-
sions. Additionally, most production-distribution problems and supply chain network design
problem have a two-echelon structure, but with a single distribution echelon. The main focus of
these studies is towards functional expansions such as production policies and constraints, and
specific manufacturing-linked transportation issues, rather than the strategic needs of the dis-
tribution business (see for instance [80, 229]). Comprehensive reviews on FLPs can be found
in [154, 78].

Nevertheless, location decisions have to last several years to meet future requirements. Such
decisions should be planned as a set of sequential actions to be implemented at different periods
of a given planning horizon [11]. They should also be tuned to the evolution of problem data
over time. Thus, the 2E-DDP must be designed to last for several years, and robust enough
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to cope with the random environmental factors affecting the normal operations of a company.
Moreover, the business uncertainty continues to increase and distribution practices are get-
ting more complex. The uncertainty may come from strategic trends as well as operational
variations, and both affect the design level [199, 125, 209]. Hence, a stochastic multi-period
characterization of the planning horizon is considered in this case to capture the truly dynamic
behaviour of most real-world applications, specifically in the strategic problem addressed here.
The planning horizon is modeled by a set of planning periods (typically years) shaping the evo-
lution of uncertain parameters (e.g., demand, costs, etc.), and promoting the structural adapt-
ability of the distribution network. Such decisional framework leads to a multi-stage stochastic
decisional problem as introduced in [129, 27].

With the development of stochastic programming [124, 38], scenarios with associated prob-
abilities are increasingly used to represent uncertainties. Two-stage stochastic programming
approach is used in [86, 240] for production-distribution problems under uncertain and multi-
period settings. Georgiadis et al. [86] address designing a supply chain network comprising a
two-echelon distribution schema in addition to inbound flows (i.e., from suppliers/plants) under
uncertain and time-varying demand. But, therein periods involve only operational decisions,
i.e., transportation. Zhuge et al. [240] consider a multi-period supply chain network design
problem with a single distribution echelon to meet the variability of uncertain and time-varying
demand and budget. In these variants, design decisions are determined before the uncertainty
is realized for the entire multi-period planning horizon, and only a limited number of recourse
can be take afterwards. However, such two-stage modeling approach cannot capture well the
dynamic decision process in design problems.

Multi-stage models extend two-stage stochastic models by allowing revised decisions in
each time stage as more information regarding the uncertainties is revealed. Consequently,
multi-stage models are more appropriate for stochastic multi-period distribution network prob-
lems and offer more flexibility. A scenario tree may be built to handle the set of scenarios
representing the uncertainty, and the optimization problem consists of designing the network
that hedges against the scenario tree. The multi-stage stochastic approach is applied in Ahmed
et al. [6] where they formulate the multi-period capacity expansion problem under uncertain de-
mand and investment cost as a multi-stage stochastic program. Recently, Klibi and Martel [129]
and Dunke et al. [72] evoke the need to such a framework to tackle complex supply chain prob-
lems. Klibi and Martel [129] define a methodological multi-stage framework for the supply
chain network design problem, but therein a two-stage stochastic program for the one-echelon
location-transportation problem is formulated and solved. Nickel et al. [162] study a multi-
stage modeling framework for the supply network design problem with financial decisions and
risk management involving a single distribution problem. They first formulate the problem as
a multi-stage stochastic program, then propose an alternative formulation based on the paths in
the scenario tree. Pimentel et al. [171] present a mixed-integer multi-stage stochastic program-
ming approach to the stochastic capacity planning and dynamic network design problem which
integrates facility location, network design and capacity planning decisions under demand un-
certainty. They have also developed a lagrangian heuristic to get good approximate solutions
when a large number of scenarios is considered. Later, Albareda-Sambola et al. [9] consider
the one-echelon stochastic multi-period discrete facility location problem, in which uncertainty
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affects the costs as well as some of the requirements along the planning horizon. A multi-stage
and a two-stage stochastic programming approaches are proposed, and solved through a Fix-
and-Relax coordination scheme. In [3], the authors introduce a a two-stage and a multi-stage
stochastic formulation for the production-distribution problem under demand uncertainty. In
the first-stage, production setup and customer visit decisions are determined. The subsequent
stages involve production, inventory, and delivery flow decisions, which are made when the de-
mand becomes known. A Benders decomposition is developed to solve both formulations that
they improve through the use of a single branching tree for the master problem, lower-bound
lifting inequalities, scenario group cuts, and Pareto-optimal cuts.

Theoretical developments and approximations are proposed in the literature [38]. Solution
methods include nested Benders decomposition [37, 187], progressive hedging [181] and la-
grangian decomposition [184]. However, when integer variables are involved in the subsequent
stages (ě 2), the complexity of the problem increase significantly, and methods would require
further development to provide integer solution to the problem. Sampling methods are also
developed [202] for multi-stage stochastic programs. It is worthwhile to mention, although in
principle, scenario trees can be used to handle uncertainty, in practice, accurate approxima-
tions of a complex stochastic process with a modest-sized scenario tree represent a difficult
problem. Thus, several scenario generation methods and reduction techniques are proposed.
We refer the reader to Heitsch and Römisch [102], Dupačová et al. [74, 75], and Høyland and
Wallace [113]. Therefore, considering the aforementioned studies, mostly have developed a
multi-stage stochastic program for single echelon distribution network design problems. To
the best of our knowledge, no work has addressed the multi-stage stochastic framework for the
multi-period stochastic 2E-DDP. Our paper contributes to fill this gap in the literature.

The main contribution of this work is first to address a comprehensive methodology for
the two-echelon distribution network design problem over stochastic and multi-period settings.
Our modeling framework assumes that the number and location of DPs are not fixed a priori
and must be decided at the strategic level along the set of planning periods. It also consid-
ers strategic assignment-transportation decisions to calibrate DP throughput capacity based on
transportation capabilities. Our approach emphasizes the temporal hierarchy between the de-
sign level dealing with DPs location decisions and the capacity decisions, and the operational
level involving transportation decisions. The transportation decisions are modeled as origin-
destination flows, which correspond to a sufficiently precise aggregate of daily decisions over
several products, transportation means and working periods, as discussed in [131]. A stochastic
multi-period characterization of the planning horizon is considered shaping the evolution of the
uncertain and time-varying customers’ demand. Second, a mixed-integer multi-stage stochas-
tic program is introduced. Our formulation points out the temporal hierarchy between the
strategic design decisions and the operational transportation decisions. Third, network design
problems and facility location problems are NP-hard even in their deterministic versions [7].
However, decision-making under uncertainty is further complicated, and leads to large-scale
optimization models [191]. To solve the multi-stage problem, we propose a rolling horizon
approach. In this approach, a feasible solution is computed by solving a sequence of stochas-
tic programming models having a reduced time horizon. Computational experiments validate
our modeling approach and show the good quality bounds obtained for the original problem in
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reasonable computing time.
The reminder of this paper is organized as follows. In Section 5.2, we further detail the 2E-

DDP under stochastic and multi-period settings. In Section 5.3, the problem is formulated as
a mixed-integer multi-stage model. The rolling horizon approach is described in Section 5.4.
Section 5.5 evaluates the solution procedure for different problem instances. Finally, Sec-
tion 5.6 concludes the work and points out future research directions.

5.2 Problem description

In the two-echelon stochastic multi-period distribution network problem, strategic facility-
location decisions concern the intermediate echelon of capacitated DPs used to distribute goods
to customers. When a set of DPs is deployed, a number of full-load trucks is periodically de-
termined to deliver products from warehouse platforms to each DP. Then, on a daily basis, the
goods are delivered from each DP to the set of customers location. Thus, the allocation de-
cisions are represented as periodic origin-destination full truckloads from warehouses to DPs,
whereas the transportation decisions are represented as daily transportation links from DPs to
customers. Our focus is on strategic capacity allocation decisions made by distribution plat-
forms and their transportation capabilities. The operational decisions are modeled to evaluate
their impact on the strategic decisions. To ensure total demand satisfaction on a given day, an
external recourse delivery option is allowed at a higher shipment cost. A typical 2E-DDP is
illustrated in Figure 5.1.

We consider a long-term planning horizon T that covers a set of successive design planning
periods T “ t1, . . . ,Tu defined in accordance with the operational dynamics. In practice,
a period may correspond to year in the case of DPs to lease, and may be up to 2 years in
the case of building or renovating DPs. Each planning period t P T encompasses a set of
operational periods τ P Tt, represented generally in a discrete way by “typical” business days.
Figure 5.2 illustrates the relationship between the decision planning periods and operational
days. The figure underlines the hierarchical structure of the decision problem. It also shows
that strategic design decisions (location and capacity decisions) could be adapted periodically
at each design period t in response to the uncertainty shaping the business environment. In fact,
design decisions are made prior to their deployment period with a partial information on the
future business environment, and then after an implementation period, they will be available for
use as shown by the positioning of the arrows in Figure 5.2. This emphasizes the information
asymmetry between the design level and the operational level, mainly due to their different time
scale (i.e., strategic vs operational period).

To capture the effect of operational uncertainty about customer demand on design decisions,
our stochastic multi-period 2E-DDP is casted as a multi-stage stochastic program [38]. At time
t “ 1, design decisions are made under uncertainty and represent first-stage decisions. Then, at
the beginning of each working period τ P Tt“1, the value of the uncertain parameters becomes
known providing a set of plausible future scenarios, and operational transportation decisions
are determined. Based on the information available at the beginning of each subsequent time
period (t ą 1), design decisions are revised to offer a new opportunity to adapt the network to
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Figure 5.2: Decision time hierarchy for the planning horizon under uncertainty

its future environment. Therefore, design decisions made at the beginning of a time period t are
first-stage decisions for that period, but they also depend on the previous design decisions up
to that period, as illustrated in Figure 5.2. This underlines the dynamics of multi-stage decision
structure (see Figure 5.3a for a generic multi-stage stochastic tree). Moreover, our model for a
given period of the stochastic multi-period 2E-DDP under uncertain and time-varying demand,
is itself a two-stage stochastic program. It is worth noting that, in practice, decisions are made
under a rolling horizon basis: only first-stage decisions are implemented. Subsequent decisions
(t ą 1) are referred as structural adaptation decisions, and essentially used as an evaluation
mechanism.

5.3 Problem formulation

In this section, we present our mathematical model for the two-echelon stochastic multi-period
distribution network design problem.

Let d j be the random variable for customer j demand. Under a multi-period planning hori-
zon setting, the random demand process is time-varying. Thus, the operational uncertain de-
mand follows a stationary process, and is estimated from a discrete time stochastic process with
a finite probability space. Accordingly, we can model the demand uncertainty as a scenario tree
T.

We start by introducing the necessary terminology for the multi-stage stochastic program
and the related scenario tree. In the scenario tree, a stage corresponds to a decision time point
when new information is received. A period denotes the time interval between two consecutive
time-discretization points in which the uncertainty is realized. Thus, the first time point in the
tree defines a stage.

Nodes in the tree g P T correspond to time points when decisions are made. They represent
distinguishable states of the world of information available up to a given stage. We define two
node types, strategic nodes (illustrated in the figure with �) for design decisions and operational
nodes (illustrated with ‚) for operational transportation decisions. Nd and No denote the set
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of design and operational transportation nodes, respectively. Leaf nodes start a last operational
period illustrating the usage of last design decisions.

With this in mind, our framework for designing two-echelon distribution network problem
under operational demand uncertainty provides a generic multi-stage stochastic. Figure 5.3a
illustrates an example of the generic multi-stage program and its tree with both strategic and
operational periods [209]. We see in the figure how the transportation decisions made at work-
ing times (i.e., operational days τptq) are associated with a particular design stage (i.e. year
t), and the design decisions (location and capacity decisions) are made subject to operational
uncertainty.

0

Day τptq

Year t

Time

(a) Generic multi-stage stochastic program with op-
erational uncertainty

0

‚

‚

‚

‚

‚
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. . .
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g
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Ppgq

Gt

Tpgq
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(b) Our multi-stage stochastic program with oper-
ational uncertainty

Figure 5.3: Multi-stage stochastic trees with both strategic and operational time periods

In our study, operational periods are represented by a typical business day. Under a station-
ary process, it is sufficient to replicate either the number of operational periods or the number
of scenarios. Hence, the typical business day is sufficiently accurate. Recall that transportation
decisions are made with certainty depending on the design decisions made before the realiza-
tion of the demand for a given stage t. For the sake of simplification, we relax the notation τptq,
and defer transportation decisions at the beginning of stage t ` 1. This helps to reduce the size
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of the tree. Figure 5.3b illustrates our multi-stage stochastic program with operational demand
uncertainty over the tree as well as notations for the problem.

Each node g of the scenario tree, except the root (g “ 0), has a unique parent apgq (i.e.,
ancestor node), and each non-terminal node g is the root of a sub-tree Tpgq. Thus, Tp0q denotes
the entire tree. Nodes at any given level of the tree are all related to the same time stage t and are
referred as the set Gt. The time stage corresponding to a node g is denoted tpgq. The path from
root node to a node g is Ppgq. A scenario ω P Ω corresponds to the path Ppgq till a terminal
(leaf) node of the tree and represents a joint realization of problem parameters over all stages.
All leaf nodes refer to the last operational period T ` 1. Thus, d jt g will denote the demand
of customer j at node g for stage t “ 2, . . . ,T ` 1 following a stochastic time space. Let pp.q
be the probability associated to a given state g and let πgi,g j represent a transition between two
consecutive nodes gi and g j. The probability of the realization of any node ppgq is then given
by multiplying the set of pgi, g jq transitions through the path from the root node up to g. Note
that ppgq “ 1 for the root node g “ 0.

Using the aforementioned uncertainty information structure, we can now state a formulation
for the problem. As pointed out by Dupačová [73], there are two approaches to impose the non-
anticipativity constraints in the multi-stage program: the split variable for an explicit modeling
and the compact formulation for an implicit modeling of the non-anticipativity setting.

Hereafter, we will provide a compact formulation. Consider the following notations:

• Sets

T “ t1, . . . ,Tu set of time design stages.

T ‹ “ t2, . . . ,T ` 1u set of operational time stages.

P set of warehouse platforms (WPs).

L set of distribution platforms (DPs).

J set of customers.

• Parameters

Cp is the maximum throughput capacity of WP p P P (expressed in flow unit for a given
period).

Cl is the maximum capacity of the DP l P L.

Clp is the maximum capacity of transportation used for flows from warehouse p P P to
DP l P L.

cl jt is the transportation cost per product unit from a DP l P L to customer j P J at
period t P T ‹.

clpt is the unit transportation cost per flow unit from warehouse p P P to DP l P L at
period t P T .

f s
lt is the cost of opening a DP l P L at period t P T .

f u
lt is the cost of operating a DP l P L at period t P T .
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cr
jt is the shipment cost when recourse delivery is employed to cover a proportion of the

demand of a customer j P J at period t P T ‹.

It is worth to mention that operational transportation costs cl jt and cr
jt are annualized to

cover the daily aspect of transportation decisions in the objective function made within typical
business day.

Then, the decision variables are:

yltg “ 1 if DP l P L is operating at node g P Gt in stage t P T , 0 otherwise.

zltg “ 1 if DP l P L is opened at node g P Gt in stage t P T , 0 otherwise.

xlptg “ Inbound allocation from warehouse p P P to DP l P L expressed in number of full
truckloads to deliver from the warehouse at node g P Gt in stage t P T .

vl jtg “ fraction of demand delivered from DP l P L to customer j P J at node g P Gt in stage
t P T ‹.

s jtg “ fraction of demand of customer j P J satisfied from an external shipment at node
g P Gt in stage t P T ‹ (i.e. recourse delivery, not from DPs).

The compact formulation for the multi-stage stochastic problem takes the form:

min
ÿ

t“1..T

ÿ

gPGt

ppgq
ÿ

lPL

“

p f u
lt yltg ` f s

lt zltgq `
ÿ

pPP

clpt Clpxlptg
‰

`
ÿ

t“2..T`1

ÿ

gPGt

ppgq
ÿ

jPJ

d jtgr
ÿ

lPL

cl jt vl jtg ` c jt s jtgs (5.1)

ÿ

lPL

Clpxlptg ď Cp @p P P, g P Gt, t “ 1..T (5.2)

ÿ

pPP

Clpxlptg ď Clyltg @l P L, g P Gt, t “ 1..T (5.3)

yltg ´ ylt´1apgq ď zltg @l P L, g P Gt, t “ 1..T (5.4)
ÿ

jPJ

d jtg vl jtg ď
ÿ

pPP

Clpxlpt´1apgq @l P L, g P Gt, t “ 2..T ` 1 (5.5)

ÿ

lPL

v jltg ` s jtg “ 1 @ j P J , g P Gt, t “ 2..T ` 1 (5.6)

xlptg P N @l P L, p P P, g P Gt, t “ 1..T (5.7)
yltg, zltg P t0, 1u @l P L, g P Gt, t “ 1..T (5.8)

vl jtg, s jtg ě 0 @l P L, j P J , g P Gt, t “ 2..T ` 1 (5.9)

The objective function (5.1) minimizes the total expected cost for the design and opera-
tional costs over the planning horizon. The first and second terms refer to the design costs that
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include the operating and opening costs for DPs, and the inbound allocation cost to DPs from
WPs. The third term corresponds to the transportation cost in the second echelon (from DPs
to customers) as well as the external delivery costs. Constraints (5.2)-(5.3) ensure capacity
restrictions on WPs and DPs, respectively, over stages. In addition, constraints (5.3) guarantee
that a delivery is possible to a DP only if it is operating. Constraints (5.4) represent the DPs
setup over stages. These constraints manage the status of the DPs operating from one stage to
the next and set their opening. Constraints (5.5) cover the customers demand from the operat-
ing DPs without exceeding their inbound allocation from WPs. Constraints (5.6) force demand
total satisfaction for each customer. Constraints (5.7)-(5.9) define the decision variables of the
problem. Worth noting is that G1 “ tg “ 0u refers to the root node. Therefore, its associated
decisions px, y, zq are first stage decisions and represent here and now decisions concerning the
design. Their counterpart at later stages represents recourse on the design in this multi-stage
process. Operational allocation decisions pv, sq allow to evaluate the quality of the strategic
design decisions px, y, zq in each stage.

5.4 Rolling horizon approach

With the scenario tree specified, the stochastic multi-period 2E-DDP is a large-scale determin-
istic equivalent mixed-integer program (MIP). This formulation can be handled by standard
mixed-integer solvers. However, such scheme will computationally be very expensive. There-
fore, the use of alternative decomposition techniques [94] is often required to produce good
results in less time. In the literature, rolling horizons have successfully been applied to sev-
eral problems under uncertainty in order to deal with large MIPs. The approach drastically
reduces the complexity of the model by solving a sequence of stochastic programming models
over a reduced time horizon. We refer to Kusy and Ziemba [138], Kouwenberg [137], Guigues
and Sagastizábal [96], Silvente et al. [208] and Bertazzi and Maggioni [35] for applications
of this approach to different problems. A recent review about the rolling horizon is provided
by Kopanos and Pistikopoulos [135]. The comparison of the total cost of the Rolling horizon
approach with the optimal total cost is often missing in the literature, as the optimal solution
cannot be computed.

To solve the multi-stage program for the stochastic multi-period 2E-DDP, we apply the
rolling horizon approach, a common business practice in dynamic stochastic environment [17].
In this approach, instead of considering the whole time horizon, we build a sequence of models
with reduced finite time horizon (i.e., sub-horizon), which are easier to solve. Each sub-horizon,
referred to as a rolling sub-horizon T RH “ r ` H, consists of two time periods: the roll stages
r that will be fixed in iteration k, and the look-ahead stages H to foresee future realizations. In
this study, we assume that we have a roll of length r “ 1. Thus, decisions made at r refer to
first-stage decisions.

With this in mind, the rolling horizon heuristic solves a model over a rolling sub-horizon
of size T RH “ H ` 1 in iteration k, and fixes its first-stage solution in roll rk. Before solving
the problem for the sub-horizon in iteration k ` 1, the rolling sub-horizon is shifted forward
in the optimization horizon to reveal new information so that the whole or the first part of



102
Chapter 5: Rolling Horizon Approach for the Multi-stage Stochastic Two-Echelon

Distribution Network Design Problem

the look-ahead Hk stages becomes rk`1. The model starting from the next time period is then
solved and again we store its first-stage solution. The process is repeated until we reach the
end of the original time horizon. A complete solution over the horizon is progressively built by
concatenating the solutions related to the first-stage decisions of a each reduced sub-horizon.
In this manner, the rolling horizon approach helps reducing the size of the problem and thus
improves the computational time required to get a solution for the original problem.

Given the multi-stage tree representing the uncertainty, the rolling horizon heuristic should
go through all the tree nodes Gt related to each stage t. Each rolling sub-horizon is represented
as restriction over T RH stages from the scenario tree providing a sub-tree including T RH stages
(r “ 1). Thus, in each iteration, the obtained MIP over the sub-tree TT RHpgq of root node g
is solved. Figure 5.4 illustrates an example of the rolling horizon approach with T RH “ 2
(H “ 1, r “ 1). In our illustrative example in Figure 5.4, the sub-tree embeds two stages
(T RH “ 2), then a two-stage stochastic program is solved in each iteration. After solving the
resulting MIP, an optimal solution is obtained for all decision nodes m in the sub-tree TT RHpgq.
Therefore, we fix the solution of the root representing the first-stage design decisions (DPs and
capacity). In our example, we refer to a fixed decision by �, as mentioned in Figure 5.4b. In
the next iterations, these fixed DPs location decisions are introduced as an initial conditions
ŷpapgqq coming from the parent apgq of the current root node g. Concatenating all the fixed
decisions leads a feasible solution for the original multi-stage program. In view of this, the
process sequence in the example is as follows: it starts from Figure 5.4a, visits the nodes as in
Figures 5.4b, 5.4c, 5.4d and 5.4e when moving forward in time, and finishes with a full solution
as in Figure 5.4f.

In the following, we denote by vRH the total cost obtained from the rolling horizon algo-
rithm for the original problem. Using the fixed solution, vRH is computed as defined in the
objective function (5.1). The complete description of the rolling horizon approach applied to
the stochastic multi-period 2E-DDP is given in Algorithm 5.1.
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Algorithm 5.1 Rolling horizon approach

1: Planning horizon T Y T ‹ “ t1, . . . ,T ` 1u, roll r “ 1, look-ahead H, rolling sub-horizon
T RH “ H ` 1,

2: px̂, ŷ, ẑ, v̂, ŝq “ 0 initial network state
3: for all h “ 1, . . . ,T ` 1´ T RH do
4: for all g P Gh do
5: Solve the multi-stage stochastic program (5.1)-(5.9) over sub-tree TT RHpgq defined on

stages h, . . . , h` T RH with initial conditions ŷapgq

6: Let tx˚m, y
˚
m, z

˚
m, v

˚
m, s

˚
mu be the optimal solution for decision nodes in the sub-tree m P

TT RHpgq.
7: Fix the solution of the root node g in TT RHpgq: x̂g “ x˚g , ŷg “ y˚g , ẑg “ z˚g , v̂g “ v˚g ,

ŝg “ s˚g .
8: end for
9: end for

10: return feasible solution px̂g, ŷg, ẑg, v̂g, ŝgq for all g P T and total expected cost vRH:

vRH “
ÿ

t“1..T

ÿ

gPGt

ppgq
ÿ

lPL

“

p f u
lt ŷltg` f s

lt ẑltgq`
ÿ

pPP

clptClp x̂lptg
‰

`
ÿ

t“2..T`1

ÿ

gPGt

ppgq
ÿ

jPJ

d jtgr
ÿ

lPL

cl jtv̂l jtg`c jt ŝ jtgs
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Figure 5.4: An illustration of the rolling horizon algorithm with T RH “ 1
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5.5 Computational results

In order to evaluate the solvability of our stochastic multi-period 2E-DDP, we run a set of
computational tests. In this section, we first describe the data instances used in the expriments.
Then, we report and discuss the obtained results.

Our approach is implemented in the C++ programming language and compiled with GCC
5.3.0. We use Cplex 12.8.0 as the mixed-integer programming solver for the the resulting
programs in the rolling horizon approach. All experiments are run on a cluster of 2 dodeca-
core Haswell Intel Xeon E5-2680 v3 server running at 2.50 GHz with 128Go RAM.

5.5.1 Test data

Several stochastic multi-period 2E-DDP instances have been randomly generated. In all in-
stances, a 6-year planning horizon is considered, providing five design stages (|T | “ T “ 5).
The tested size problems are shown in Table 5.1. The network incorporates several possible
configurations depending on the number of potential DPs location (# DPs) and the number of
different capacity configurations per DP location (# capacity configurations). Thus, multiplying
these two parameters gives the number of potential DPs, |L|. When several capacity config-
urations are used, the second configuration has a higher capacity. Customers are realistically
scattered in the geographic area covered. The number of WPs (|P|) is also given.

Table 5.1: Test problems size

|J | |P| # DPs # capacity con-
figurations

|L|

25 3 8 1 8
25 3 8 2 16
50 3 8 1 8
50 3 8 2 16

Customer demand is assumed to be uncertain, and can be seen as continuous random vari-
ables. In stochastic programming, scenario trees are often used to approximately model con-
tinuous distributions of the uncertain parameters. Demands are generated according to an auto-
regressive process: d jtg “ d jt´1apgq ` ε, @t P T ‹ where the demand at the first period (d j10)
follows a log-normal probability distribution with parameters m “ 4.5 and s “ 0.25 and ε
is a white noise generated according to the same log-normal to which we subtract the mean
value of the distribution. To build the scenario tree, we proceed as follows. From each node,
starting from the root, we associate to each node, starting from the root, a number of successor
nodes C representing the number of stochastically independent events. Then, at each succes-
sor, the customer demands d jtg is randomly generated from the auto-regressive process. We test
cases with two, three, five and six independent events, respectively leading to different scenario
sizes. Equiprobability between different events is considered. Table 5.2 present the problem
number of events in each stage |C|, the number of design nodes |Nd|, the number of operational
transportation nodes |No| and the number of scenarios |Ω|.
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Table 5.2: Test problems size

|C| |Nd| |No| |Ω|

2 31 62 32
3 121 263 243
4 341 1364 1024
5 781 3905 3125
6 1555 9330 7776

WP and DP capacities are uniformly generated with respect to the demand level of the
problem instance in the unit intervals r3500, 6000s and r1200, 2200s, respectively. The truck-
load capacities between WPs and DPs are estimated in the interval r700, 1000s. The fixed DPs
costs are generated, respectively in the ranges f s

lt P r18000, 35000s and f u
lt P r1300, 2500s,

proportionally to its maximum capacity. An inflation factor is also considered to reflect the
increase of the cost of capital on a periodic basis with r “ 0.005. The transportation costs be-
tween the network nodes correspond to the Euclidean distances, multiplied by a unit load cost
per distance unit and the inflation factor r. The unit load cost per distance unit is different in
each echelon to reflect the different loading factors. The external delivery cost c jt is calibrated
to be higher than internal distribution costs with c jt P r2000; 4000s. As for the rolling horizon
approach, we test three sub-horizon lengths T RH P t2, 3, 4u with a look-ahead size H “ 1, 2
and 3, respectively.

Each instance is denoted by a problem size T -|P|{|L|{|J |- and a number of scenarios
|Ω|. The next section presents an illustrative instance to compare the solution produced with
our solution approach and solving the compact formulation directly using cplex. Then, in
section 5.5.3, main computational results are reported and discussed.

5.5.2 Illustrative instance

In order to illustrate the solutions produced with our solution approach, we present the results
for one instance of size 5-3/16/25 and three independent events at each stage. The problem
instance includes three WPs (i.e., |P| “ 3), |L| “ 16 potential DPs and |J | “ 25 customers
and T “ 5 design stages. A scenario tree of |Ω| “ 243 scenarios are thus used.

Figure 5.5 depicts the optimal location decisions produced with the rolling horizon ap-
proach using a sub-horizon of size T RH “ H ` 1 “ 2 (i.e., a roll r “ 1 and a look-ahead
H “ 1). For clarity purposes, we only draw few scenarios in the last level of the tree. Using
a sub-horizon T RH “ 2, our approach proposes to open three DPs (2, 4 and 6 with capacity
level 1) at the first stage (t “ 1). These DPs are available at the first stage (t “ 1) for all sce-
narios. Then, as more uncertainty is revealed, our multi-stage approach allows to adapt these
decisions to the different scenarios under consideration. At stage t “ 4, DP 4 with the capacity
level 2 is opened according to the uncertainty realized. Afterwards, an additional DP 5 with
the capacity level 1 is opened depending on scenarios revealed. For instance, looking at the
27 downmost scenarios at stage t “ 5 in the scenario tree, we have 81 scenarios at the end of
the time horizon. Different location decisions are observed in stage 5 and 4 yielding to three
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combinations for their respective descendant leaves over the five design stages where the vector
in each stage t provides opened DPs position in that stage and the value 1 or 2 next to the DP

number refer to the capacity level. The obtained combinations are:

¨

˝

¨

˝

21

41

61

˛

‚ pq pq pq pq

˛

‚,

¨

˝

¨

˝

21

41

61

˛

‚ pq pq
`

42
˘

pq

˛

‚, and

¨

˝

¨

˝

21

41

61

˛

‚ pq pq pq
`

51
˘

˛

‚Therefore, under T RH “ 2, our

approach suggests three different combinations of location decisions over all the considered
scenarios. Further experiments with T RH “ 3 and T RH “ 4 (i.e., look-ahead period H “ 2 and
3 respectively) provides different location decisions. They propose to open DPs 21, 61 and 71

with T RH “ 3, and DPs 21, 51 and 71 with T RH “ 4 at the first-stage, and no further opening
decisions are proposed in latter stages. In fact using larger sub-horizons, more information are
introduced in the optimization phase to offer a higher flexibility in the location decisions which
justifies the difference observed in the obtained design.

Table 5.3: Results for the illustrative case 5-3/16/25-243

T RH “ 2 T RH “ 3 T RH “ 4 Compact formulation

vRH CPU(s) vRH CPU(s) vRH CPU(s) Best bound Gap(%)
5-3/16/25-243 184033 7 176391 100 176110 1122 176449 7.24˚

˚: 24 hours of run

Moreover, Table 5.3 provides the total expected cost vRH obtained using T RH “ 2, 3 and 4
as well as the CPU time in seconds spent to solve each case. The results show that the total
expected cost decreases as the sub-horizon length T RH grows. This is in accordance with our
approach as more information are involved with T RH “ 3 and 4. However, the computational
increases to reach 1100 seconds (i.e., 18 minutes) with T RH “ 4 compared to 7 seconds with
T RH “ 2. With T RH “ 4, a four-stage stochastic program is solved in each iteration, and
thus more difficult to solve. When solving the compact formulation directly with Cplex, the
optimality gap is 7.24% after 24 hours of run. In addition, the returned bound is greater than
the bounds obtained with T RH “ 3 and 4. This points out the good quality of solutions from
the rolling horizon approach obtained in reasonable time.

5.5.3 Preliminary results

In this section, we evaluate the performance of our approach and provide an analysis of the
produced solutions based on some preliminary experiments.

To start, Tables 5.4 and 5.5 describe the average computational results for instances pre-
sented in Tables 5.1 and 5.2. We report the results from the rolling horizon approach with
T RH “ 1, 2 and 3 in terms of the total expected cost vRH, the computing time in seconds (i.e.,
CPU(s)) and the gap between vRH and the optimal value v˚Compact obtained with the compact for-

mulation solved directly with Cplex (
pvRH´v˚Compactq

vRH
). We also provide the computing time spent
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Table 5.4: Average results for 5-3/8/.-.

|J| |Ω|
T RH “ 2 T RH “ 3 T RH “ 4 CPU(s) from Compact

vRH CPU(s) Gap(%) vRH CPU(s) Gap(%) vRH CPU(s) Gap(%)

25

32 184927 1 1.74 181768 3.5 0.00 181768 13.5 0.00 1296
243 182476.5 4 2.19 178566.5 22 0.00 178566.5 302 0.00 88591.5
1024 180831.5 11 176444 116 176443 8388 -
3125 182011.5 30 177237.5 505 177231 75480 -
7776 181441 69 176649.5 2281 - - -

50

32 246706.5 1 0.00 246706.5 3.5 0.00 246706.5 7.5 0.00 118.5
243 252194.5 5 0.23 252040.5 18 0.17 252040.5 57.5 0.17 23423.5
1024 251984 17.5 0.17 251944 72 0.16 251944 347 0.16 135175.5
3125 252906.5 51.5 252881.5 236.5 252093.5 5754 -
7776 252522 124.5 252486 689.5 251669.5 69634 -

-: time limit of 48 hours

Table 5.5: Average results for 5-3/16/.-.

|J| |Ω|
T RH “ 2 T RH “ 3 T RH “ 4 CPU(s) from Compact

vRH CPU(s) Gap(%) vRH CPU(s) Gap(%) vRH CPU(s) Gap(%)

25

32 193986.5 2 6.24 183780.5 19 0.65 182591 134 0.00 12236
243 190629 7.5 179294 76 179153 1867.5 -
1024 187736 23 176974.5 244.5 176914 34727 -
3125 189373.5 63 178399 1131.5 - - -
7776 189168 159 177942.5 5580.5 - - -

50

32 245760.5 2.5 2.01 242552 6.5 0.68 240910 16 0.00 1269.5
243 245081 11 244893 37 244884 203 -
1024 244812 40.5 244762.5 162 244755 3456 -
3125 245869 106 245856.5 546.5 245850 109496 -
7776 245416.5 260 245366 1887.5 - - -

-: time limit of 48 hours

at solving the compact formulation.
When inspecting the results, we observe that the total expected cost vRH decrease as the

rolling sub-horizon length T RH grows. In fact, with a larger T RH, more information about
uncertainty are considered at each iteration of the rolling horizon approach. This yields tighter
bounds for the original problem. Additionally, we compare the obtained expected values vRH to
the optimal value v˚Compact with the compact formulation. We see that the gap decreases as the
rolling sub-horizon T RH is extended. In several cases, the optimality is attained with T RH “ 4.
Looking at instance 5-3/16/25- with 32 scenarios for example, the gap goes down from 6.24%
with T RH “ 2 to 0.65% with T RH “ 3, and it reaches the optimality with T RH “ 4. Therefore,
larger sub-horizon T RH helps to get tighter bounds as more uncertainty is involved.

Nevertheless, the computing time augments drastically with T RH and the problem size. We
notice that the CPU reaches 30 hours in average with large instance up 5-3/16/50- and 3125
scenarios for T RH “ 4. The time limit of 48 hours is also attained in some instances sized
5-3/16/25- and 5-3/16/50- with 7776 scenarios using T RH “ 4. However, our approach makes
only few minutes to solve the same size with T RH “ 2 and 3. Moreover, the tables indicate
that the CPU(s) grows as the number of scenarios increases, clearly a further complexity. Our
rolling horizon approach takes few minutes to solve small trees with 32 and 243 scenarios and
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needs several hours to solve large trees with up to 3125 and 7776 scenarios. Consequently,
one should consider T RH providing a best compromise between the running time and the qual-
ity of the solution. Thus, T RH “ 3 is considered satisfactory and is retained for the rest of
experiments.

From the tables, we observe in some cases for this randomly generated set that instances
with 5-3/./50- are easier to solve compared to instances with 5-3/./25-. This is due to the
reduced combinatorial complexity in instances with 50 customers. In fact, with 25 customers, a
maximum of four DPs are opened whereas with 50 customers, five to six DPs are opened among
eight potential DPs. Hence, in the latter, the combinatorial number is drastically reduced.

Further, the obtained results in Tables 5.4 and 5.5 highlight the efficiency of the developed
approach in considerably reducing the running time. The efficiency of the rolling horizon is
significant: it returns good bounds (a gap of 2% to 6%) of the original problem in reasonable
time and may reach the optimality in some cases. The approach is ten to thousands times
faster than the compact formulation as in 5-3/8/50 with 1024 scenarios. We also observe that
only small instances with relatively small scenario trees are optimally solved with the compact
formulation. The model becomes intractable for larger instances, whereas our approach can
solve these instances in few seconds/minutes. Therefore, Tables 5.4 and 5.5 confirms the huge
discrepancy in our stochastic problem in terms of complexity and consequently running times.
The results also emphasize the importance of the development of such rolling horizon approach
to solve a large scale stochastic multi-period 2E-DDP.
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Table 5.6: Design decisions for 5-3/8/.-. with T RH “ 3

|J| |Ω| Combination for the design vector

25

32

¨

˝

¨

˝

41

61

71

˛

‚ pq pq pq pq

˛

‚
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¨
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˛

‚
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Figure 5.5: The obtained design for 5-3/16/25-243 with H “ 1
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Next, we closely look at the obtained design decisions presented in Tables 5.6 and 5.7 for
the problem sizes with 25 and 50 customers and the different scenario trees’ size produced
by the rolling horizon for T RH “ 3. In these tables, we illustrate the DP opening decisions
and their capacity configuration, where value 1 or 2 next to a DP position corresponds to the
capacity configuration of the opened platform. The first and second columns give the number of
customers |J | and the number of scenarios |Ω|, respectively. Then, the different combinations
of design vectors over the planning horizon according to the revealed uncertainty are provided.
First, we remark that the number of opening DPs grows with the number of customers: three
DPs are opened at the first-stage with 25 customers versus five for instances with 50 customers.
The results also depict the impact of considering two capacity levels. Different designs are
observed between solutions with 8 and 16 DPs, as illustrated in Tables 5.6 and 5.7 respectively.
In several instances 5-3/16/50-., the same DP position is opened with both capacity levels 1 and
2. Based on this, the consideration of different capacity configurations offers more distribution
capabilities to deal with demand uncertainty.

Moreover, a key finding is the sensitivity of the network design in terms of the opened DPs
and their location with respect to demand uncertainty. We can see that in many instances from
this preliminary data set, the design decisions are fixed from the first-stage. However, in others,
design decisions are adjusted over the stages according the realization of uncertainty offering
thus a higher flexibility in the location decisions. The latter leads to different combinations of
location decisions along the time horizon. This is in accordance with the multi-stage modeling
approach in which design decisions are revised with respect to the uncertainty realization. In
practice, only first-stage are implemented, and subsequent periods (t ą 1) decisions will not
be implemented and help essentially to the evaluation. This then confirms the rolling horizon
basis.

5.6 Conclusion

In this paper, we introduce a comprehensive methodology for the stochastic multi-period two-
echelon distribution network design problem (2E-DDP). In the 2E-DDP, products are trans-
ferred from warehouse platforms (WPs) to distribution platforms (DPs) before being trans-
ported to customers. The problem is characterized by a temporal hierarchy between the design
level dealing with DP location decisions and DP throughput capacity based on transportation
capabilities, and the operational level involving transportation decisions as origin-destination
flows. A stochastic multi-period characterization of the planning horizon is considered, shaping
the evolution of the uncertain and time-varying customers’ demand and promoting the struc-
tural adaptability of the distribution network over time. Our emphasis here is on the network
design decisions and their impact on the company’s distribution performance.

The stochastic multi-period 2E-DDP is a multi-stage stochastic decisional framework as in-
troduced in [27]. The first-period design decisions are made here-and-now. Subsequent stages
are considered as structural adaptation decisions depending on the history up to that period,
offering thus a new opportunity to adapt the network to its future environment based on the
realization of the random demand at that time. A scenario tree is assumed to handle the set
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of scenarios representing demand uncertainty. Thus, a compact formulation of the multi-stage
stochastic 2E-DDP is presented stressing the hierarchical structure of the problem.

To solve the multi-stage problem, we develop a rolling horizon approach based on the
solution of a sequence of models defined on a reduced time horizon over the scenario tree.
Our solution approach is motivated by the fact that in practice design decisions are made on
a rolling horizon basis: only first-stage decisions are implemented, and subsequent stages are
essentially used for an anticipation mechanism. The preliminary computational experiments
based on a set of randomly generated instances validate our modeling approach proposed in
this paper and show the efficiency of the solution approach. It provides good quality bounds for
the multi-stage stochastic program in a reasonable time. To confirm our modeling approach,
extensive experiments based on more data sets should be conducted. One should generate
more instances using other scenario generation methods and demand processes to ensure that
all plausible future realizations are covered. Additionally, one have to vary problem parameters
in order to examine the sensitivity of design decisions and the performance of rolling horizon
algorithm to different problem attributes.

Although the preliminary results show that our modeling approach seems to be promising
to deal with multi-period 2E-DDPs under uncertainty, the performance of its solution method-
ologies is still limited for real-life and large-scale instances. From this perspective, alternative
two-stage multi-period modeling approaches are proposed to capture the essence of the prob-
lem, while providing judicious accuracy-solvability trade-offs. These approaches are examined
in depth in [27] yielding to two models based on two-stage stochastic modeling setting for the
stochatic multi-period 2E-DDP. Further complex features have been addressed in [26] for the
stochastic multi-period 2E-DDP. The location decisions of the two echelons (WPs and DPs) are
questioned, and multi-drop routes visiting customers are considered, leading thus to a stochas-
tic multi-period two-echelon capacitated location-routing problem. We solve these two-stage
stochastic models using a Benders decomposition technique, and the size of the scenario set
in these models is tuned using the sample average approximation (SAA) method [204]. These
research applications point out the effectiveness of the stochastic and multi-period settings in
2E-DDPs. They also confirm our methodology to get judicious accuracy-solvability trade-offs.

We believe that our comprehensive framework for the 2E-DDP helps opening new good
perspectives for the development of additional comprehensive models. Future works could
develop efficient heuristic and exact solution methods capable to handle huge stochastic pro-
grams. Exploring hybrid solution methods that combines the rolling horizon approach with a
decomposition method such as Benders decomposition algorithm may improve the computing
time. In this case, the Benders decomposition technique may be used to solve the resulting
model in each iteration of the rolling horizon approach. Additionally, it would be interesting
to add performance measures on the quality of obtained solutions between the multi-stage and
two-stage stochastic modeling approaches. Another interesting research direction would also
consider the optimization of the objective function in a risk averse framework.



Chapter 6

Conclusions and perspectives

Distribution network design problems have drawn the attention of many researchers in the
operations research literature over the last decades. This is due to their relevant real-life appli-
cations (ex: retail sector, city logistics, parcel and postal delivery) where the network structure
and its locations impact the distribution activity performance, in addition to the computational
challenges induced in their studies. These problems are looking to improve the efficiency of
their distribution network in terms of the strategic location decisions and operational trans-
portation schemes.

In the literature, distribution network design problems generally rely on a single echelon
distribution structure. In addition, they implicitly assume that strategic and operational deci-
sions are made simultaneously for the planning horizon. However, such structure may limit the
network capabilities to meet today challenges and to offer a good delivery service level in terms
of the delivery lead-time and the delivery destination.

A first contribution of this thesis has reviewed the operations research literature on this
topic. The survey highlights some weaknesses that should be taken into account to design
an efficient distribution network. These shortcomings are essentially related to ignoring the
two-echelon distribution structure and the temporal hierarchy between the strategic and the
operational level. In addition, omitting an advanced anticipation of future requirements and the
integration of data uncertainty deeply affect the distribution activities’ performance. We have
considered these critical issues in the survey and explored them in the thesis.

To this end, we have proposed a comprehensive framework for the design of an efficient
two-echelon distribution network under multi-period and stochastic settings where products
are directed from warehouse platforms (WPs) to distribution platforms (DPs) before being
transported to customers from DPs. The network should cope with the business changes over
time and be efficiently adaptable to the uncertainty shaping the business horizon. For this pur-
pose, our contributions to this topic are presented through three research papers as highlighted
hereafter.

The first work introduces the comprehensive modeling approach for the stochastic multi-
period two-echelon distribution network design problem. The problem is characterized by a
temporal hierarchy between the design level dealing with DPs location decisions and capac-
ity decisions, and the operational level involving transportation decisions as origin-destination
flows. A stochastic multi-period characterization of the planning horizon is considered, shap-
ing the evolution of the uncertain customer demand and time-varying demand and costs. The
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problem is initially formulated as multi-stage stochastic program. Then, given the strategic
structure of the problem, approximate multi-period modeling approaches are proposed based
on two-stage stochastic programming with recourse to capture the essence of the problem,
while providing judicious accuracy-solvability trade-offs. The two models differ in the model-
ing of transportation decisions: the location and capacity-allocation model (LCA) in which DP
location decisions and capacity decisions are first-stage decisions, and the flow-based location-
allocation model (LAF) where capacity decisions are transformed into continuous scenario-
dependent origin-destination links within the second-stage decisions. Next, we develop a so-
lution method that integrates the Benders decomposition approach with the sample average
approximation technique to produce efficient and robust designs. An extensive computational
study validates the modeling approaches and the efficiency of the solution approach. The results
also reveal some important managerial insights regarding the impact of uncertainty on the two-
echelon distribution network design problem. The findings highlight a significant variability
in the design decisions when several demand processes are involved. Moreover, the inspection
of the stochastic solutions in respect to the deterministic solutions for both two-stage models
confirm the positive impact of uncertainty. Additionally, the analysis of the two alternative
models shows the high sensitivity of assignment-capacity decisions to uncertainty comparing
to location decisions.

The second work is also carried out to validate our methodological framework. First, the
two-echelon stochastic multi-period capacitated location-routing problem is defined. Given
the temporal hierarchy between design and routing decisions, the problem is characterized as a
hierarchical decision problem. Second, we have formulated the problem as two-stage stochastic
program with recourse, in which the uncertainty is handled through a set of scenarios. The
location and capacity decisions for both WPs and DPs are taken here-and-now for the set of
design periods considered. Second-stage decisions consist in building daily routes that visit
customers in the second echelon. As a third contribution to this study, we have introduced
an exact Benders decomposition algorithm to solve the problem. In the first-stage, location
and capacity assignment decisions are taken by solving the Benders master problem. When
these first-stage decisions are fixed, the resulting subproblem is a capacitated vehicle-routing
problem with capacitated multi-depot (CVRP-CMD) which is solved using the state-of-the-art
branch-cut-and-price algorithm. Standard and combinatorial Benders cuts are also generated
in order to converge to the optimal solution. The results emphasize the performance of our
algorithm to optimally solve a large set of instances containing up to 50 customers and 25
demand scenarios under a 5-year planning horizon, and to provide good lower bounds for
the instances that cannot be solved to optimality. Further analysis on the produced design
illustrate how the stochastic and multi-period settings are adequately captured by the two-stage
stochastic formulation. Moreover, the findings point out the effectiveness of the stochastic and
multi-period modeling approach in comparison to the static model (i.e., no multi-period setting
is considered for design decisions).

Lastly, we have been interested in the multi-stage modeling framework introduced in this
thesis. It offers more flexibility to adapt the network its future environment as more information
regarding the uncertainties is revealed in each time stage. A scenario tree is built to handle the
set of scenarios representing demand uncertainty. We have presented a compact formulation
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for the multi-stage stochastic two-echelon distribution network design problem. Then, we have
developed a heuristic method that can provide design solutions for the multi-stage program.
Our solution method is a rolling horizon approach that solves a sequence of stochastic mod-
els defined on a reduced time horizon (sub-horizon), fixes the solution for the current stage
and moves forward the optimization horizon. A complete solution for the original problem is
progressively built by concatenating the decisions related to the first stage of a each reduced
sub-horizon. In the preliminary experiments we have conducted, our algorithm confirms the
good quality bounds obtained for the problem in reasonable times and validates our modeling
approach.

In this thesis work, models and solution methods are investigated to approve our frame-
work in designing an effective two-echelon distribution networks under uncertainty. They also
show that our modeling approach is promising for dealing with multi-period two-echelon dis-
tribution network design problems. At the time of concluding this thesis, several perspectives
are identified to improve this thesis work and to extend it to include additional comprehensive
models.

From a methodological point of view, future works would be interested in the development
of efficient solution methods that can handle the multi-stage modeling approach. The objective
in Chapter 5 was not about developing the best performing solution method. However, we
sought for an approach that allows us to compute bounds on the multi-stage problem and derive
conclusive results. We may enhance the proposed algorithm in several ways. First, one would
be interested in developing hybrid solution method that combines the rolling horizon approach
with a decomposition method such as Benders decomposition algorithm. In this case, the
Benders decomposition will be used to solve the multi-stage approximation at each iteration of
rolling horizon algorithm, instead of commercial solvers such as Cplex. This hybrid solution
algorithm will help to handle large-scale instances. The second enhancement could involve a
backward scheme in the rolling horizon algorithm in which we move backwards in time. In
our algorithm, we use a forward scheme over time. Combining forward and backward steps
may improve the quality of obtained bounds. Moreover, it would be interesting to discuss the
relevance of using a multi-stage stochastic models in contrast with the deterministic problem.
Additionally, exploring the quality of bounds from two-stage stochastic problems and a multi-
stage models could be of great interest.

As another research perspective of our work, we could focus on the development of further
exact and heuristic solution methods to handle large-scale instances for the two- and multi-
stage stochastic models proposed in this thesis. To the best of our knowledge, the Benders
decomposition algorithm presented in Chapter 4 is the first exact method proposed to solve the
two-echelon stochastic multi-period capacitated location-routing problem classes. Even though
it provides good solutions, its performance is limited for large-scale instances. It might be
worthwhile improving the considered algorithm to reduce the running time. One may introduce
an initial good solution and an upper bound on the problem that are computed from some
heuristic. Moreover, it has been observed that the CVRP-CMD cannot be solved in an hour for
some instances with 50 customers. This points out the complexity of the CVRP-CMD instances
in comparison with the uncapacitated multi-depot CVRP instances in the literature. These latter
are all solved within the time limit. Thus, it would be interesting to propose new cuts adapted
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to the CVRP-CMD to strengthen its solution algorithm. Additional works could explore other
methods such as local search based heuristics and hybrid methods developed for deterministic
models to efficiently solve stochastic two-echelon distribution network design problems.

Furthermore, in this thesis, we have limited uncertainty to customer demand and used a sce-
nario set sampled from Monte-Carlo procedure to model uncertainty. However, future require-
ments are getting higher uncertainty. Thus, a natural extension of our work would incorporate
more uncertainty, specifically the strategic uncertainty that can affect fixed costs and capacities,
for instance. Another extension of the work is to test other scenario generation and sampling
methods to ensure that all plausible future realizations are covered by the generated scenario
samples. Besides, the consideration of uncertain problem data with correlations may lead to
better sampled scenarios.

An additional promising research direction is to discuss the proposed stochastic optimiza-
tion models from a point of view of risk averse optimization. In stochastic optimization, the
total objective cost is optimized on average over all the scenarios. But, for a particular realiza-
tion of the data process, the costs could be much higher than its expected value. To this end,
risk averse approaches aim at finding a compromise between minimizing the average cost and
trying to control the upper limit of the costs for some possible realizations of the data set. Thus,
it would be interesting to propose a modeling framework for such cases.

From a practical perspective, we could include more real-life constraints in the framework
such as synchronization constraints at intermediate distribution platforms, and route length
limit constraints. In the two-echelon distribution network design problem, the emphasis is
on the design decisions and transportation decisions are used as operations anticipation for
the operational level. Consequently, it would be interesting to propose route approximation
formulæ to speed up the decision process. Moreover, the incorporation of further decisions
such as transportation modes, and inventory may have an impact on the design decisions. This
will lead to a more complex problem that should be modeled adequately.
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Solution methodology

A.1 Sample Average Approximation (SAA)

Under a scenario-based optimization approach, building scenarios ω P Ω and assessing their
probabilities ppωq could entail a tremendous effort. Moreover, generating the adequate sample
of scenarios |Ω|, Ω “ YtPT Ωt, could be complex due to the large number of scenarios required
under a high degree of uncertainty and the enumeration issue induced by continuous probabil-
ity distributions [204]. The combination of the Monte Carlo sampling methods [202] and the
SAA technique [204] helps in finding a good trade-off in terms of the scenarios’ probability es-
timation and the sufficient number of scenarios to consider in the design model. The approach
is to generate, outside the optimization procedure, an independent sample of N equiprobable
scenarios tω1, . . . , ωNu “ ΩN

t Ă Ωt from the initial probability distribution, which also elimi-
nates the need to explicitly compute the scenario probabilities ppωq. Then, the SAA program
is built and the adequacy of the sample size validated by optimization. Hereafter, for instance,
the SAA program related to the LCA model is provided, denoted with (LCA(ΩN)):

(LCA(ΩN)) VN “ min
ÿ

tPT

ÿ

lPL

p f u
lt ylt ` f s

lt zltq `
ÿ

tPT

ÿ

lPL

ÿ

pPP

clpt Clpxlpt`
1
N

ÿ

tPT

ÿ

ωPΩN
t

ÿ

jPJ

d jωtr
ÿ

lPL

cl jt vl jωt ` c jωt s jωts

(A.1)

S. t. p3.12q ´ p3.16q
ÿ

j

d jωt vl jωt ď
ÿ

p

Clpxlpt @l P L, t P T , ω P ΩN
t

(A.2)
ÿ

l

v jlωt ` s jωt “1 @ j P J , t P T , ω P ΩN
t (A.3)

vl jωt, s jωt ě0 @l P L, j P J , ω P ΩN
t , t P T

(A.4)

It is well established that the optimal value VNpoq of the optimal design vector pXNpoq of
each SAA program o P tLCA(ΩN), LAF(ΩN)u converges to optimality as the sample size in-
creases [204]. This suggests that the quality of the SAA models improves as the size of the
sample employed grows. However, one would in practice choose N, taking into account the
trade-off between the quality of the obtained design for each SAA program o and the com-
putational effort needed to solve it ([131]). In such case, solving the SAA program with M
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independent samples repeatedly can be more insightful than increasing the sample size N. This
leads to calculating a statistical optimality gap for each obtained design vector pXNpoq by es-
timating the lower and upper bounds. The SAA-based procedure employed to calibrate the
samples-size for both the LCA and LAF models is given in A.1.

Algorithm A.1 The SAA method to give model o
1: Generate M independent samples ΩN

m, m “ 1, . . . ,M of N scenarios and solve the SAA program for each
sample.
LetVN

mpoq and pXN
mpoq be the corresponding optimal value and the optimal design solution, respectively.

2: Compute the statistical lower bound:

sVN
Mpoq “

1
M

ÿ

m“1..M

VN
mpoq

3: Choose a feasible solution pXN
mpoq

4: Estimate the upper bound using a reference sample N1 " N,VN1

ppXN
mpoqq

5: Compute an estimate of the statistical optimality gap of solution pXN
mpoq:

gapN,N1

M ppXN
mpoqq “ V

N1

ppXN
mpoqq ´ sVN

Mpoq

An estimate of the average gap for the sample of size N is given by:

gapN,N1

poq “
1
M

ÿ

m“1..M

gapN,N1

M ppXN
mpoqq

6: if acceptablepgapq then
7: return gapN,N1

8: else
9: Repeat step 1-5 using larger N and/or M.

10: end if

Worth noting is that the upper bound VN1ppXN
mpoqq proposed in step 4 for each model o is

computed as follows: in the case of the (LCA(ΩN)) model,

VN1

ppXN
mpLCA(ΩN)qq “

ÿ

tPT

ÿ

lPL

p f u
lt ŷlt ` f s

lt ẑltq `
ÿ

tPT

ÿ

lPL

ÿ

pPP

clpt Clp x̂lpt `
1
N1

ÿ

tPT

ÿ

ωPΩN1

t

Qtpx̂N
m, ωq

and in the case of (LAF(ΩN)),

VN1

ppXN
mpLAF(ΩN)qq “

ÿ

tPT

ÿ

lPL

p f u
lt ŷlt ` f s

lt ẑltq `
1
N1

ÿ

tPT

ÿ

ωPΩN1

t

QtpŷN
m, ωq
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A.2 The Benders reformulation for (LAF(ΩN)

The primal sub-problem for each ω and t is:

(PSωt) φtωpy, zq “ min
ÿ

lPL

ÿ

pPP

clpt Clpxlptω `
ÿ

j

d jωtr
ÿ

l

cl jt vl jωt ` c jωt s jωts (A.5)

S. t.
ÿ

lPL

Clpxlptω ď Cp @p P P (A.6)

ÿ

pPP

Clpxlptω ď Cl ylt @l P L (A.7)

ÿ

j

d jωt vl jωt ´
ÿ

p

Clpxlptω ď 0 @l (A.8)

ÿ

l

vl jωt ` s jωt “ 1 @ j (A.9)

xlptω ě 0 @l, p (A.10)
vl jωt ě 0 @l, j (A.11)
s jωt ě 0 @ j (A.12)

Its dual is :

(DSωt) φtωpy, zq “ max
ÿ

p

Cpθp `
ÿ

l

Cl ylt γl `
ÿ

j

β j (A.13)

S. t. Clpθp `Clpγl ´Clpαl ď clptClp @l, p (A.14)

d jωt αl `
ÿ

j

β j ď d jωt cl jt @l, j (A.15)

β j ď d jωt c jωt @ j (A.16)
θp ď 0 @p (A.17)

γl, αl ď 0 @l (A.18)
β j P R @ j (A.19)

Then, the master problem is as follows:

(MastP) min
ÿ

lt

p f u
lt ylt ` f s

lt zltq `
1
N

ÿ

tω

utω (A.20)

S. t. p3.14q and p3.16q

utω ´
ÿ

l

Cl ylt γl ě
ÿ

j

β j `
ÿ

p

Cp θp @t, ω, pθp, γl, αl, β jq P P∆tω (A.21)

utw ě 0 @t, ω (A.22)
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A.3 The deterministic model (EV)

(EV) min
ÿ

lPL

ÿ

tPT

p f u
lt ylt ` f s

lt zltq `
ÿ

lPL

ÿ

pPP

ÿ

tPT

clpt Clpxlpt `
ÿ

tPT

ÿ

jPJ

µ jtr
ÿ

lPL

cl jt vl jt ` c jt s jts (A.23)

S. t.
ÿ

lPL

Clpxlpt ď Cp @p P P, t P T (A.24)

ÿ

pPP

Clpxlpt ď Cl ylt @l P L, t P T (A.25)

ylt ´ ylt´1 ď zlt @l P L, t P T (A.26)
ÿ

j

µ jt vl jt ď
ÿ

p

Clpxlpt @l P L, t P T (A.27)

ÿ

l

v jlt ` s jt “ 1 @ j P J , t P T (A.28)

xlpt P N @l P L, p P P, t P T (A.29)
ylt, zlt P t0, 1u @l P L, t P T (A.30)

vl jt ě 0 @l P L, j P J , t P T (A.31)
s jt ě 0 @ j P J , t P T (A.32)

A.4 Quality of the stochastic solution

To characterize stochastic solutions, several indicators can be computed [38, 149]. The first
is the statistical optimality gap estimate of the best solution identified by the SAA method for
different sample sizes N as described in subsection A.1. Furthermore, the value of the stochastic
solution (VSS), the loss using the skeleton solution (LUSS), and the loss of upgrading the
deterministic solution (LUDS) proposed in [149] are also assessed as indicators of the quality
of the stochastic solutions produced. Let X˚poq be the optimal solution obtained from the
model o P tLCA, LAFu, the here and now solution, under all ω P Ω, and let RP be the optimal
value of the associated objective function. More specifically, RP is computed by (A.33). Under
a sampling approach, ΩN Ă Ω, pXpoq represents the near-optimal solution obtained from the
SAA program o P tLCA(ΩN), LAF(ΩN)u. A good estimate of RP is given by (A.34).

RP “ EΩrhpX˚poq,Ωqs (A.33)

xRP “ VN “ EΩN rhppXpoq,ΩNqs (A.34)

A common approach in the literature is to consider the expected value problem, where all
the random variables are replaced by their expected value ω̄ “ Epωq, solving the determin-
istic model (EV) as given in (A.35). Let sXpoq be the optimal solution to (A.35), referred to
as the expected value solution. The evaluation of its expected value (EEV) is computed as
given in (A.36). Thus, the estimate of the value of the stochastic solution VSS is defined by
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formula (A.37), and measures the expected gain from solving a stochastic model rather than its
deterministic counterpart.

EV “ min hpXpoq, ω̄q (A.35)

zEEV “ EΩN rhpsXpoq,ΩNqs (A.36)

zVS S “ zEEV ´ xRP (A.37)

The expected value solution sXpoq may behave very badly in a stochastic environment. We
here propose investigating how the expected value solution relates to its stochastic counterpart.
For this purpose, we compute the loss using the skeleton solution (LUSS) and the loss of
upgrading the deterministic solution (LUDS), which provide deeper information than the VSS
on the structure of the problem [149]. To calculate the LUSS, we fix at zero all first-stage
variables, which are at zero in the expected value solution sXpoq, and solve the SAA stochastic
program o P tLCA(ΩN), LAF(ΩN)uwith these additional constraints. Considering the program
(LCA(ΩN)), the additional constraints are:

xlpt “ 0 @l, p, t P Kpx̄, 0q (A.38)
ylt “ 0 @l, t P Kpȳ, 0q (A.39)
zlt “ 0 @l, t P Kpz̄, 0q (A.40)

where Kpx̄, 0q, Kpȳ, 0q and Kpz̄, 0q are sets of indices for which the components of the
expected value solution sX “ tx̄, ȳ, z̄} are at zero. In the (LAF(ΩN)), only constraints (A.39)-
(A.40) are added. The solution of this program gives the near-optimal solution qXpoq. Thus, an
estimate of the expected skeleton solution value (ESSV) is computed with (A.41). Comparing
it to the xRP estimate leads to an estimate of the LUSS as computed in (A.42). This test allows
investigating why a deterministic solution may behave badly. In the case of {LUS S “ 0, this
corresponds to the perfect skeleton solution in which the stochastic solution takes the deter-
ministic solution values. Otherwise, in case of 0 ă {LUS S ď zVS S , it means that alternative
decision variables are chosen for the expected solution, thus providing alternative solution val-
ues.

{ES S V “ EΩN rhpqXpoq,ΩNqs (A.41)

{LUS S “ {ES S V ´ xRP (A.42)

The last indicator considers the expected value solution sXpoq as a starting point (input)
to the stochastic program o P tLCA(ΩN), LAF(ΩN)u, and compares, in terms of objective
functions, the same program without such input. This helps test whether the expected value
solution sXpoq is upgradeable to become good (if not optimal) in the stochastic setting. To do
so, one needs to solve the program o with additional constraints that ensure the expected value
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solution sXpoq as a starting solution, thus obtaining the solution rXpoq. More specifically, for the
(LCA(ΩN)) program, additional constraints are:

xlpt ě x̄lpt @l, p, t (A.43)
ylt ě ȳlt @l, t (A.44)
zlt ě z̄lt @l, t (A.45)

However, the (LAF(ΩN)) program considers only constraints (A.44)-(A.45). The expected
input value is then computed with with (A.41), and this value is used to provide an estimate
of the LUDS with formula (A.41). Worth noting is that {LUDS “ 0 corresponds to perfect
upgradability of the deterministic solution, whereas 0 ă {LUDS ď zVS S leads to no upgrad-
ability.

yEIV “ EΩN rhprXpoq,ΩNqs (A.46)

{LUDS “ yEIV ´ xRP (A.47)
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Table B.3: Best location decisions for (LCA(ΩN))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 2 1 1 2 2 1
P3-HL 1 1 1 2 1 1 2 2 1

Concentric ship-to-points (Con)
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 1 2 1 2 2 1 1
P3-HL 2 2 1 1 1 2 1 1 1

1 and 2 refer to the Capacity configuration

Table B.4: Best location decisions for (LAF(ΩN))

Dispersed ship-to-points (Dis)

NRT-500 NDT-500 CRT-500

DPs l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8 l1 l2 l3 l4 l5 l6 l7 l8
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 1 1 1 1 1 1 1 1 1
P3-HL 1 1 1 2 2 1 1 1

Concentric ship-to-points (Con)
P1-LL 1 1 1 1 1 1
P1-HL 1 1 1 1 1 1
P2-LL 1 1 1 1 1 1 1 1 1
P2-HL 1 1 1 1 1 1 1 1 1
P3-LL 2 1 1 1 1 1 1 1 1
P3-HL 2 1 1 1 1 1 1 1 1

1 and 2 refer to the Capacity configuration
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Figure B.1: Capacity allocation decisions versus the a priori capacity for Con-P6-HL-500 in
(LCA(ΩN))
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Figure B.2: Capacity decisions versus demand for Con-P6-HL-500 in (LCA(ΩN))
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Figure B.3: Capacity decisions versus demand for Con-P6-HL-500 in (LAF(ΩN))





Appendix C

Bin packing problem

In this section, we give the description of the bin packing problem formulated for each
period and each scenario, denoted as (BPPtω), and present its mathematical formulation. Then,
we briefly describe the column generation algorithm used to solve the linear relaxation of the
(BPPtω).

Consider a large set of bins (i.e. vehicles) with capacity q and a set of |J | items (i.e.
customers) with weights d jωt to pack into bins. The objective is to find the minimum number of
bins required to pack the set of items so that the capacity of the bins is not exceeded. Let B be
the family of all the subsets of items which fit into one bin, i.e., the solutions to a subproblem.
We define the parameter xB

j that takes 1 if item j P J is in set B P B. Let λB be the binary
variable taking value 1 if the corresponding subset of items B is selected to fill one bin. The set
covering reformulation is:

min
ÿ

BPB

λB (C.1)

S. t.
ÿ

BPB

xB
j λ

B ě 1 j “ 1, ...,J (C.2)

λk P t0, 1u (C.3)

The linear relaxation of (C.1)-(C.3) is solved by column generation to provide a lower
bound Γ. This lower bound is obtained by iteratively solving:

• the restricted master problem (RMP) which is the linear relaxation of (C.1)-(C.3) with a
restricted number of variables;

• and the pricing problem which determines whether there exists a variable λB to be added
to (RMP) in order to improve its current solution; this refers to solve a knapsack problem
to get the set B P B, satisfying capacity constraints, and yielding to the minimum reduced
cost column for (RMP).

Let π j be the dual variable associated to constraints (C.2), the pricing problem for the
(BPPtω) is written as:
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max
j“1..J

π jz j (C.4)

S. t.
ÿ

j“1..J

d jωtz j ď q (C.5)

z j P t0, 1u j P J (C.6)

A column generated by solving the knapsack problem (C.4)-(C.6) will terminate column
generation procedure in case its reduced cost 1´

ř

j π jz j turns negative.
We apply the MIP solver CPLEX to the pricing formulation (C.4)-(C.6). Then, the linear

relaxation of (C.1)-(C.3) is terminated by LP solver CPLEX. This leads to the lower bound Γ.



Appendix D

Further results for the 2E-SM-CLRP

Table D.1 provides detailed results of the sequential optimization approach.

Table D.1: Average results under attributes (.,.,.,.) with sequential approach

Instance N #Opt #CombCuts #OptCuts #Iter Gap(%) Sequential computing time

MP CVRP-CMD total
5-4/8/15- 5 24/24 2 6.4 8.4 0.0 30s 2m 3m48s

10 24/24 1.8 6.3 8.1 0.0 40s 3m33s 6m55s
15 24/24 2 6.2 8.2 0.0 1m 3m40s 8m39s
25 24/24 2 6.7 8.7 0.0 1m52s 5m29s 13m49s

5-4/12/15- 5 15/15 2 6.8 8.8 0.0 2m47s 4m6s 8m20s
10 15/15 1.8 7.4 9.2 0.0 2m50s 6m 11m32s
15 15/15 2 7.2 9.2 0.0 3m 11m 18m2s
25 15/15 2 7.6 9.6 0.0 2m50s 13m38s 24m8s

5-4/16/15- 5 12/12 2.2 7.4 9.7 0.0 2m16s 7m 11m39s
10 12/12 2.2 7.1 9.3 0.0 2m34s 6m41s 11m29s
15 12/12 2.3 7.2 9.5 0.01 2m28s 10m7s 17m29s
25 12/12 2 7 9 0.01 8m30s 22m39s 38m21s

5-4/8/20- 5 24/24 2.1 8.9 11 0.0 2m 33m 36m
10 24/24 2 8.7 10.7 0.0 2m30s 55m54s 1h2m
15 24/24 2 8.8 10.8 0.0 2m27s 1h38m 1h46m
25 24/24 2.1 9 11.1 0.0 4m20s 1h45m 2h

5-4/12/20- 5 15/15 2 9.4 11.4 0.01 1m50s 35m32s 39m9s
10 15/15 2.2 8.6 10.8 0.0 2m56s 1h19m 1h25m
15 15/15 2.6 8.6 11.2 0.01 7m7s 1h57m 2h11m
25 15/15 2 8.2 10.2 0.0 4m27s 1h19m 1h34m

5-4/16/20- 5 12/12 2 8.9 10.9 0.0 4m38s 22m32s 29m2s
10 12/12 2.1 9.8 11.9 0.0 4m2s 1h2m 1h10m
15 12/12 2.5 9.8 12.3 0.0 16m30s 2h26m 2h49m
25 12/12 2.4 9.9 12.3 0.01 1h16m 3h58m 5h25m
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138 Appendix D: Further results for the 2E-SM-CLRP

Table D.4: Location decisions and their operating periods for 5-4/./15-25-(.,.,.,.)-3

(I1,LT,TC,NIT) (I1,HT,TC,NIT) (I1,LT,TC,NVT) (I1,LT,LC,NIT) Presence (%)
|L| 8 12 16 8 12 16 8 12 16 8 12 16
l1 0 0 0 0 0 0 0 0 0 0 0 0 0
l2 0 0 0 0 0 0 0 0 0 0 0 0 7
l3 0 0 0 0 0 0 0 0 0 0 0 0 0
l4 1 0 1 1 0 1 1 0 1 0 0 0 50
l5 0 0 0 0 0 0 0 0 0 1 0 0 7
l6 3 0 0 3 0 0 1 0 0 0 0 0 36
l7 0 4 0 0 4 0 0 2 0 0 1 0 36
l8 0 0 0 0 0 0 0 0 0 0 0 0 0
l9 0 0 0 0 0 0 0 0 0

l10 0 0 0 0 0 0 0 0 0
l11 0 0 0 0 0 0 0 0 0
l12 1 0 1 0 1 0 0 0 14
l13 0 0 0 0 0
l14 0 0 0 1 7
l15 0 0 0 0 0
l16 3 3 2‹ 0 21

Closet at t= 4

Table D.5: Location decisions under static modeling approach for 5-4/./20-25-(.,.,.,.)-3

(I1,LL,TC,NIT) (I1,HL,TC,NIT) (I1,LL,TC,NVT)

|L| 8 12 8 12 8 12
l1 0 0 0 0 0 0
l2 0 0 0 0 1 0
l3 0 0 0 0 1 1
l4 1 0 1 0 0 0
l5 0 0 0 0 0 0
l6 1 0 1 0 0 0
l7 0 1 0 1 0 1
l8 0 0 0 0 0 0
l9 0 0 0
l10 0 0 0
l11 0 0 0
l12 1 1 0



Appendix E

Résumé en français

Design de réseaux de distribution à deux échelons sous
incertitude

E.1 Introduction

L’émergence et l’expansion rapide du e-commerce ont un impact considérable sur la structure
des activités d’entreposage et de distribution. Selon la fondation Ecommerce, les détaillants eu-
ropéens en ligne ont connu une augmentation de 14% en 2017 [112]. De même, les États-Unis
enregistrent une croissance de 16% selon le bureau U.S. Census [68]. De plus, le développe-
ment du e-commerce stimule le passage à une économie à la demande. Ce changement affecte
considérablement le schéma de distribution de plusieurs entreprises qui cherchent à contin-
uer l’amélioration du temps de réponse aux clients tout en offrant efficacement leurs produits
dans un environnement multi-canal. D’où, nous observons une augmentation de l’attente au
niveau de service de livraison au cours de la dernière décennie: cette dernière est maintenant
exprimée en heures plutôt qu’en jours [220]. A cette fin, plusieurs acteurs mondiaux du B-
to-C, et notamment des entreprises opérant dans le secteur du commerce de détail comme
Walmart, Carrefour, Amazon ou jd.com, ont récemment engagé une réingénierie soutenue de
leurs réseaux de distribution. Ils ont favorisé une grande proximité pour les points de livraisons
aux clients, en utilisant des magasins, des points de relais, entre autres, en plus de la livraison
à domicile [83]. Cela a été fait sans réduire l’efficacité de leurs politiques de consolidation en
matière d’entreposage et de transport. Lors de la localisation de leurs plateformes d’entrepôts,
les entreprises ont suivi diverses règles d’optimisation allant de la centralisation et de la mu-
tualisation des risques aux contraintes financières et dépendantes de l’approvisionnement. Par
conséquent, la localisation et la structure des entrepôts sont des attributs essentiels pour un
réseau de distribution, tout comme le transport, afin de répondre aux attentes des clients.

Dans cet esprit, disposer d’un réseau de distribution rentable avec une mission d’amélioration
du niveau de service est une question stratégique pour les entreprises afin d’accroître leur com-
pétitivité. Dans le réseau de distribution, les produits finis sont acheminés vers les clients finaux
ou les zones agrégées à partir d’un ensemble de plateformes de stockage/d’entrepôt (warehouse
platforms (WPs)). La localisation de ces WPs devrait être choisie de façon appropriée afin de
répondre aux besoins opérationnels au fil du temps. Plus précisément, un tel problème consiste
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à décider de la structure du réseau et du schéma de transport. La première détermine le nombre
d’échelons, les types de plateformes à chaque échelon, leur nombre et leurs localisations, où un
échelon représente un niveau du réseau de distribution. Par conséquent, le design des réseaux
de distribution implique à la fois des décisions stratégiques de localisation et des décisions
opérationnelles de transport. De toute évidence, les décisions stratégiques ont un effet direct
sur les coûts opérationels, ainsi que sur sa capacité à servir les clients [59, 99].

Les problèmes de design des réseaux de distribution (distribution network design problem
(DDPs)) sont particulièrement importants. Ils ont attiré l’attention de nombreux chercheurs
dans la littérature de la recherche opérationnelle (RO) au cours des dernières décennies. Dans [139],
ils ont été classés en fonction du nombre d’échelons dans le réseau de distribution, des échelons
dans lesquels les décisions de localisation sont prises et de l’option de transport utilisée dans
chaque échelon. Par conséquent, le DDP implique plusieurs problèmes classiques de la RO,
ainsi que des problèmes innovants basés sur les caractéristiques de modélisation des problèmes.
Figure E.1 identifie cinq caractéristiques de modélisation qui affectent principalement le réseau
de distribution. Ces caractéristiques sont notamment le transport, la demande de la clientèle, le
nombre d’échelons de distribution, l’horizon de planification et l’incertitude.

Caractéristiques de
modélisation

Incertitude
Scenario typique ω̄
Echantillon de scenarios ΩN Ă Ω

Ω

Horizon de planification Une période de design
Multiple périodes de design

Echelon de distribution
Multiple
Deux
Un

Demande de la clientèle Ship-to location / product
zones agrégées / produits

Transport
Routes
Flux
Allocation de capacité

Figure E.1: Les caractéristiques de modélisation

En regardant la fonction de modélisation de transport située au niveau supérieur de la Fig-
ure E.1, nous pouvons distinguer entre l’allocation de capacité, les flux et les routes à plusieurs
nœuds, où chaque option concerne un modèle bien étudié dans la RO. L’option d’affectation
de capacité entraîne un problème de planification de la capacité et de localisation d’entrepôts
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dans lequel il faut décider la localisation des entrepôts et le niveau de capacité à allouer [147, 4].
Lorsque le transport est représenté par des flux origine-destination, un problème de localisation-
affectation basé sur les flux est défini où un ensemble d’entrepôts devrait être choisi à par-
tir d’un ensemble fini de sites potentiels et les clients sont livrés par flux directs à partir
d’entrepôts sélectionnés au coût minimum [54, 15]. La troisième option de transport concerne
les routes à plusieurs nœuds qui visitent plus d’un client par route. Il en résulte un problème de
localisation-routage (Location-routing problem (LRP)). Il intègre des problèmes des tournées
de véhicules (Vehicle-routing problem (VRP)) qui calculent un ensemble de routes à coût min-
imum pour répondre aux demandes des clients [63, 221], avec des problèmes de localisation
des entrepôts [97, 65]. Son objectif est donc de trouver un nombre optimal d’entrepôts et leur
localisation, tout en construisant des tournées autour d’eux pour servir les clients, simultané-
ment [139]. De plus, ces options de transport influencent la modélisation des caractéristiques
de la demande des clients en termes de zones ou de produits agrégés et de lieu de livraison
unique.

D’autre part, la plupart des modèles DDP étudiés jusqu’à présent considèrent une structure
de distribution à un seul échelon où le réseau comprend un ensemble de WPs et de clients.
Néanmoins, avec la croissance du e-commerce et l’augmentation continue de la population des
villes [70] contrastée avec des niveaux croissants de congestion, ces réseaux à un seul échelon
limitent la capacité des entreprises à fournir des services de livraison rapide et réduisent leurs
possibilités de relever les défis actuels : ils ne sont pas spécifiquement optimisés pour fournir
des livraisons le lendemain et/ou le jour même, ou pour opérer efficacement et rapidement des
services de traitement des commandes en ligne. Dans ce nouveau contexte, les considérations
stratégiques impliquent un schéma de distribution à plus d’un échelon pouvant être ajusté de
manière dynamique aux besoins de l’entreprise au fil du temps, comme mentionné au troisième
niveau de la Figure E.1. Les praticiens accordent de plus en plus d’attention aux structures
de distribution à deux échelons. La topologie du réseau comprend un échelon intermédiaire
de plateformes de distribution / fulfillment (distribution platforms (DP)) situé entre les sites
initiaux où les stocks sont tenus et les clients. Selon le Tompkins Supply Chain Consortium,
plus de 25% des entreprises de détail adaptent leurs réseaux de distribution en ajoutant un nou-
vel échelon de DPs [220]. Par exemple, Walmart prévoit de convertir 12 magasins du Sam’s
Club en centres de fulfillment pour soutenir la croissance rapide du e-commerce [122]. Au
Royaume-Uni, Amazon cherche à acquérir 42 magasins de Homebase pour étendre son réseau
de centres de fulfillement et d’entrepôts [157]. En outre, cette structure de distribution à deux
échelons couvre des modèles récents de logistique urbaine avec deux types de plateformes pour
le cas de plusieurs entreprises partageant les plateformes [61, 160]. La distribution de courriers
et de colis implique également une structure à deux échelons pour distribuer leurs produits,
mais elle concerne des produits non substituables [236]. D’un point de vue méthodologique,
plusieurs chercheurs ont récemment rappelé la nécessité d’étendre les réseaux à un seul éche-
lon en considérant un échelon intermédiaire de plateformes où se déroulent des opérations de
fusion, de consolidation ou de transbordement [215, 194]. Pour autant que nous le sachions,
peu de papiers ont examiné ce type de réseaux de distribution. Quelques revues sont présen-
tées dans [178, 62, 71]. Elles montrent que la structure de distribution à deux échelons est
relativement inexplorée.
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WPs DPs Clients

Affectation de capacité Routes Livraison de recours

1er échelon

2me échelon

Figure E.2: A generic Two-Echelon Distribution Network Design Problem (2E-DDP)

De plus, les décisions stratégiques de design ont un effet durable dans le temps. Elles sont
censées fonctionner efficacement sur une longue période et répondre aux futurs besoins de dis-
tribution et aux fluctuations des paramètres, comme le soulignent Klibi et al. [130]. La plupart
des études ont considéré une seule période de design. Cependant, cela limite la capacité des
décisions stratégiques de design à s’adapter facilement aux changements de l’environnement
au fil du temps. Comme le montre la Figure E.1, l’horizon de planification peut être divisé
en un ensemble de périodes de design caractérisant les possibilités futures d’adapter le design
en fonction de l’évolution des besoins de l’entreprise. Les décisions de design doivent ensuite
être planifiées sous la forme d’un ensemble de décisions séquentielles à mettre en œuvre à
différentes périodes de design de l’horizon (un an, par exemple).

Enfin, on observe une tendance importante à réduire l’horizon de planification dans les
études stratégiques. Selon le rapport de Tompkins (2011), la durée de la période de réingénierie
définie dans les études de design de réseaux est passée en moyenne de 4 ans à moins de 2 ans
en raison de l’incertitude croissante des entreprises et de la complexité des opérations de dis-
tribution [219]. Dans la littérature, les modèles sont généralement déterministes et s’appuient
sur un seul scénario typique pour les paramètres du problème. Cependant, l’intégration de
l’incertitude sous forme d’un ensemble de scénarios représentant des réalisations futures plausi-
bles offrira un meilleur design (voir les options de l’incertitude dans la Figure E.1). L’incertitude
peut concerner le niveau de la demande, les coûts des plateformes et les coûts de transport, etc.
En plus de leur incertitude, les paramètres du problème varient dynamiquement au cours des
périodes suivant une fonction de tendance. Par conséquent, la représentation traditionnelle
déterministe-statique de l’horizon de planification doit être remplacée par une caractérisation
plus réaliste, stochastique et multi-périodes, de l’horizon de planification.

Des études approfondies ont examiné les modèles de DDPs. Néanmoins, le nombre d’articles
qui étudient conjointement les caractéristiques de modélisation pertinentes est très limité. Les
quelques travaux proposés à cet égard n’examinent qu’un sous-ensemble de ces options et trait-
ent, pour la plupart, une structure de distribution à un seul échelon, en omettant l’impact de la
structure étendue à deux échelons. Ils supposent également que les décisions stratégiques et
opérationnelles sont prises simultanément pour l’horizon de planification.
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Notre objectif dans cette thèse est de souligner la nécessité de prendre en compte les enjeux
susmentionnés lors du design d’un réseau de distribution efficace qui offre un ajustement plus
dynamique des besoins de l’entreprise au fil du temps et qui fait face aux aléas des paramètres
incertains. Pour ce but, nous introduisons un cadre global pour le problème stochastique et
multi-période de design de réseau de distribution à deux échelons (Two-echelon distribution
network design problem (2E-DDP)) avec une demande incertaine de la clientèle, et des de-
mande et des coût variables dans le temps. Comme indiqué ci-dessus, la topologie 2E-DDP
comprend un échelon avancé de DPs qui se situe entre les WPs et les clients. La figure E.2
illustre un 2E-DDP typique comprenant deux échelons de distribution avec capacité: chaque
échelon implique un schéma spécifique de localisation-affectation-transport qui doit être adapté
en fonction de l’incertitude qui impacte l’horizon.

Notre approche de modélisation dans cette thèse implique périodiquement, sur un ensemble
de périodes de design, des décisions stratégiques concernant la localisation des plateformes et
l’affectation de la capacité aux liens entre les WPs et les DPs afin de distribuer efficacement les
produits aux clients. Ensuite, chaque jour, les décisions de transport sont prises en réponse aux
commandes reçues des clients. Cette hiérarchie temporelle donne lieu à un problème de hiérar-
chie décisionnelle stratégique-opérationnelle et fait valoir la nécessité d’une caractérisation
stochastique et multi-périodique de l’horizon de planification. De plus, notre horizon de plan-
ification permet d’adapter périodiquement les décisions de design à chaque période de design
afin d’aligner le réseau de distribution à son environnement, notamment en cas d’incertitude.
Par conséquent, le design du réseau de distribution à deux échelons dans un contexte multi-
période et stochastique donne lieu à un problème décisionnel stochastique à plusieurs étapes.

Pour étudier cette approche de modélisation globale, plusieurs modèles sont proposés et
discutés en termes de solvabilité. La qualité de la solution est examinée à l’aide d’une approche
exacte basée sur la décomposition de Benders et une heuristique.

E.2 Design du réseau de distribution à deux échelons
avec demande incertaine

Ce chapitre présente d’abord notre approche de modélisation globale pour le problème de de-
sign de réseau de distribution à deux échelons soumis à une demande incertaine, ainsi qu’une
demande et des coûts variables dans le temps, formulée sous la forme d’un programme stochas-
tique à plusieurs étapes. Ici, nous sommes intéressés aux 2E-DDPs qui traitent un contexte
générique impliquant le déploiement du réseau de distribution pour un détaillant. Ainsi, le
problème implique au niveau stratégique, sur un ensemble de périodes de design, des décisions
sur le nombre et la localisation des DPs, ainsi que des décisions sur l’affectation des capacités
pour calibrer la capacité de débit des DPs. Les décisions opérationnelles relatives au transport
sont modélisées par des arcs origine-destination, qui correspondent à un agrégat suffisamment
précis de décisions quotidiennes sur plusieurs produits, les moyens de transport et les périodes
de travail.

Ensuite, compte tenu du caractère dimensionnel du problème stochastique à plusieurs étapes
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et de la complexité combinatoire du 2E-DDP, deux approches de modélisation alternatives
sont proposées pour capturer l’essentiel du problème, tout en offrant des compromis judicieux
en termes de précision et de solvabilité. Les deux modèles sont: le modèle stochastique à
deux étapes de localisation et d’allocation de capacité (location and capacity-allocation model
(LCA)), dans lequel les décisions de localisation des DPs et de capacité sont des décisions de
première étape, et le modèle stochastique à deux étapes de localisation-allocation basé sur les
flux (flow-based location-allocation model (LAF)), dans lequel les décisions de capacité sont
transformées en liens origine-destination dépendant de scénarios déterminées dans la deuxième
étape. Ces dernières sont de type continu.

Enfin, nous développons une approche de décomposition de Benders pour résoudre les
modèles résultants. La taille adéquate de l’échantillon des scénarios est ajustée à l’aide de la
technique d’approximation moyenne d’échantillon (SAA). Une procédure d’évaluation basée
sur des scénarios est introduite pour évaluer la qualité des solutions de design. Les expérimen-
tations numériques approfondies valident les modèles proposés et confirment l’efficacité des
approches de solution. Ils illustrent également l’importance de l’incertitude dans le 2E-DDP.
Les principales constatations mettent en évidence une variabilité importante dans les décisions
de design en rapport avec l’incertitude de la modélisation des processus de la demande. En
outre, l’analyse des deux modèles alternatifs montre la grande sensibilité des décisions rela-
tives à l’affectation de capacité à l’incertitude par rapport aux décisions de localisation.

E.3 Approche de décomposition de Benders pour le prob-
lème multi-période stochastique de localisation-routage
à deux échelons avec capacité

Dans ce chapitre, nous nous intéressons à la livraison du dernier kilomètre dans un contexte ur-
bain où les décisions de transport dans le deuxième échelon sont caractérisées par des tournées
de véhicules.

A cette fin, nous définissons le problème multi-période stochastique de localisation-routage
à deux échelons avec capacité (Two-echelon stochastic multi-period capacitated location-routing
problem (2E-SM-CLRP)). Le 2E-SM-CLRP, une variante hiérarchique, cherche à décider à
chaque période de design l’ouverture, le maintien opérationnel et la fermeture des WPs et des
DPs, ainsi que de la capacité allouée aux liaisons entre les deux types de plateformes. Au
deuxième échelon, les tournées quotidiennes sont construites pour visiter les clients à l’aide
d’un véhicule acheminé à partir d’un DP opérationnel. Un programme stochastique à deux
étapes avec recours en nombre entier est introduit, qui repose sur un ensemble de scénarios
multi-périodes générés avec une approche de Monte-Carlo.

Puis, nous nous basons sur l’approche de décomposition de Benders et sur le SAA pour ré-
soudre des instances de taille réaliste pour le 2E-SM-CLRP. Les WPs et DPs opérationnels ainsi
que les décisions de capacité sont fixés en résolvant le problème maître de Benders. Le sous-
problème qui en résulte est un problème de tournées de véhicules multi-dépôts avec contrainte
de capacité (capacitated vehicle-routing problem with capacitated multi-depot (CVRP-CMD)).
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Ce dernier est formulé sous la forme d’un modèle de partitionnement, puis résolu par un al-
gorithme de Branch-cut-and-price. Les coupes de Benders standards ainsi que les coupes de
Benders combinatoires sont générées à partir des solutions de sous-problèmes afin de converger
vers la solution optimale du 2E-SM-CLRP.

Les résultats numériques indiquent que notre méthode de solution est capable de résoudre
de manière optimale un grand nombre d’instances, et d’obtenir de bonnes bornes inférieures sur
des instances à grande échelle comprenant jusqu’à 50 clients et 25 scénarios de demande sur
un horizon de planification de 5 ans. L’impact des attributs stochastiques et multi-périodes est
également confirmé par rapport au modèle statique (c.-à-d. aucune modélisation multi-période
n’est considérée pour les décisions de design: elles sont fixées au début de l’horizon et ne sont
plus modifiées).

E.4 Approche d’horizon glissant pour le problème stochas-
tique multi-étapes du design de réseau de distribu-
tion à deux échelons

Ce chapitre adresse le cadre multi-étapes proposé pour le problème de design de réseau de
distribution à deux échelons sous une caractérisation stochastique multi-période de l’horizon
de planification.

En utilisant un arbre de scénarios pour gérer l’ensemble des scénarios de demande, nous
introduisons d’abord une formulation compacte pour le modèle de programmation stochastique
à plusieurs étapes. Ensuite, une approche à horizon glissant est développée pour résoudre le
problème. L’idée principale de l’algorithme est d’utiliser un sous-horizon réduit et fini à chaque
itération, au lieu de l’horizon complet. Puis, un nouveau modèle multi-étapes est défini sur le
sous-horizon et résolu. Il fixe la solution pour la période en cours et fait avancer l’horizon
d’optimisation. Les décisions fixées sont introduites en tant que conditions initiales pour les
itérations suivantes. Une solution complète pour le 2E-DDP stochastique multi-période est
progressivement construite en concaténant les décisions relatives aux premières périodes de
chaque sous-horizon réduit.

Les expériences numériques comparent notre méthode de résolution à la résolution directe
de la formulation compacte par un solveur. Les résultats montrent l’efficacité de l’approche à
horizon glissant pour fournir des bornes de bonne qualité dans un temps de calcul raisonnable,
et confirment notre approche de modélisation à plusieurs étapes proposée dans cette thèse.

E.5 Conclusions & perspectives

Les problèmes de design des réseaux de distribution ont attiré l’attention de nombreux chercheurs
dans la littérature de recherche opérationnelle au cours des dernières décennies. Ceci est dû à
leurs applications réelles pertinentes (ex : secteur du commerce de détail, logistique urbaine,
distribution de courriers et colis) où la structure du réseau et sa localisation ont un impact sur
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la performance de l’activité de distribution, en plus des défis informatiques induits dans leurs
études. Ces problèmes cherchent à améliorer l’efficacité de leur réseau de distribution en termes
de décisions stratégiques de localisation et de schémas de transport opérationnels.

Dans la littérature, les problèmes de design des réseaux de distribution reposent générale-
ment sur une structure de distribution à un seul échelon. En outre, ils supposent implicitement
que les décisions stratégiques et opérationnelles sont prises simultanément pour l’horizon de
planification. Cependant, une telle structure peut limiter les capacités du réseau pour faire face
aux défis actuels et pour offrir un bon niveau de service de livraison en termes de délai de
livraison et de destination.

Une première contribution de cette thèse a passé en revue la littérature de recherche opéra-
tionnelle sur ce sujet. L’étude met en évidence certaines lacunes qu’il convient de les prendre
en compte pour concevoir un réseau de distribution efficace. Ces lacunes sont essentiellement
liées à l’ignorance de la structure de distribution à deux échelons et de la hiérarchie temporelle
entre le niveau stratégique et le niveau opérationnel. En outre, le fait d’omettre une anticipation
avancée des besoins futurs et l’intégration de l’incertitude des données affecte profondément
la performance des activités de distribution. Nous avons examiné ces questions cruciales dans
l’étude et les avons explorées dans la thèse.

À cette fin, nous avons proposé un cadre complet pour le design d’un réseau de distribution
efficace à deux échelons, dans un contexte multi-période et stochastique, dans lequel les pro-
duits sont acheminés depuis des plateformes de stockage vers des plateformes de distribution
(DPs) avant d’être acheminés vers les clients des DPs. Le réseau doit faire face aux varia-
tions opérationnelles au fil du temps et être efficacement adaptable à l’incertitude impactant
l’horizon. À cet égard, nos contributions à ce sujet sont présentées à travers trois papiers de
recherche, comme nous l’avons souligné dans les sections E.2, E.3 and E.4.

Dans cette thèse, des modèles et des méthodes de résolution sont étudiés pour approuver
notre cadre pour le design de réseaux de distribution efficaces à deux échelons sous incertitude.
Ils montrent également que notre approche de modélisation est prometteuse pour traiter les
problèmes multi-périodes de design de réseau de distribution à deux échelons. De ce travail,
plusieurs perspectives ont été identifiées pour améliorer ce travail de thèse et l’étendre à d’autres
modèles compréhensifs.

D’un point de vue méthodologique, les travaux futurs seraient intéressés par le développe-
ment de méthodes de résolution efficaces pouvant gérer l’approche de modélisation à plusieurs
étapes. L’objectif du chapitre 5 ne visait pas à développer la méthode la plus performante.
Cependant, nous avons cherché une approche qui nous permet de calculer des bornes du prob-
lème à plusieurs étapes et d’obtenir des résultats concluants. Nous pouvons améliorer l’algorithme
proposé de plusieurs manières. Tout d’abord, il serait intéressant de développer une méthode
de solution hybride combinant l’approche à horizon glissant et une méthode de décomposition
telle que la décomposition de Benders. Dans ce cas, la décomposition de Benders sera utilisée
pour résoudre l’approximation à plusieurs étapes résultant à chaque itération de l’algorithme de
l’horizon glissant, au lieu d’utiliser des solveurs commerciaux tels que Cplex. Cet algorithme
de solution hybride aidera à gérer les instances à grande échelle. La deuxième amélioration
pourrait impliquer un schéma en remontant dans l’algorithme de l’horizon glissant dans lequel
nous nous déplaçons en remontant dans le temps. Dans notre algorithme, nous utilisons un
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schéma descendant dans le temps. La combinaison des schémas descendant et remontant peut
améliorer la qualité des bornes obtenues. De plus, il serait intéressant de discuter la pertinence
d’utiliser des modèles stochastiques à plusieurs étapes en contraste avec le problème détermin-
iste. Aditionellement, explorer la qualité des bornes à partir de problèmes stochastiques à deux
étapes et de modèles multi-étapes pourrait être d’un grand intérêt.

Comme autre perspective de recherche de notre travail, nous pourrions nous concentrer
sur le développement de méthodes de solutions exactes et heuristiques supplémentaires pour
gérer des instances à grande échelle pour les modèles stochastiques à deux et plusieurs étapes
proposées dans cette thèse. A notre connaissance, l’algorithme de décomposition de Benders
présenté dans le chapitre 4 est la première méthode exacte proposée pour résoudre les classes
de problèmes stochastique multi-périodes de localisation-routage à deux échelons. Même s’il
offre de bonnes solutions, ses performances sont limitées pour les instances à grande échelle. Il
pourrait être intéressant d’améliorer l’algorithme considéré pour réduire le temps de calcul. On
peut introduire une bonne solution initiale et une borne supérieure sur le problème, calculées
à partir d’une heuristique. D’autre part, il a été observé que le CVRP-CMD ne peut pas être
résolu en une heure dans certains cas avec 50 clients. Cela met en évidence la complexité des
instances CVRP-CMD par rapport aux instances CVRP multi-dépôts sans contrainte de capac-
ité traitées dans la littérature. Ces dernières sont toutes résolues dans le temps limite. Il serait
donc intéressant de proposer de nouvelles coupes adaptées au CVRP-CMD pour renforcer leur
algorithme de résolution. D’autres travaux pourraient explorer d’autres méthodes telles que les
heuristiques basées sur la recherche de voisinage et les méthodes hybrides développées pour
les modèles déterministes, afin de résoudre efficacement les problèmes stochastiques de design
de réseau de distribution à deux échelons.

De plus, dans cette thèse, nous avons limité l’incertitude à la demande des clients et utilisé
un jeu de scénarios échantillonné à l’aide de la procédure de Monte-Carlo pour modéliser
l’incertitude. Cependant, les besoins futurs deviennent de plus en plus incertaines. Ainsi, une
extension naturelle de nos travaux incorporerait plus d’incertitude, notamment l’incertitude
stratégique pouvant affecter les coûts fixes et les capacités, par exemple. Une autre extension
du travail consiste à tester d’autres méthodes de génération de scénario et d’échantillonnage
pour s’assurer que toutes les réalisations futures plausibles sont couvertes par les échantillons
de scénario générés. En outre, la prise en compte de données incertaines avec des corrélations
peut conduire à des meilleurs échantillons de scénarios.

Une autre direction de recherche prometteuse consiste à examiner les modèles d’optimisation
stochastique proposés du point de vue de l’optimisation du risque. En optimisation stochas-
tique, le coût total dans la fonction objective est optimisé en moyenne sur tous les scénarios.
Mais, pour une réalisation particulière du processus de données, les coûts pourraient être beau-
coup plus élevés que sa valeur moyenne. À cette fin, les approches d’aversion au risque visent à
trouver un compromis entre la minimisation du coût moyen et la maîtrise de la limite supérieure
des coûts pour certaines réalisations de l’ensemble des données. Il serait donc intéressant de
proposer un cadre de modélisation pour de tels cas.

D’un point de vue pratique, nous pourrions inclure davantage de contraintes réelles dans
notre cadre, telles que des contraintes de synchronisation au niveau des plateformes de dis-
tribution intermédiaires et des contraintes sur la longueur des routes. Dans le problème de
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design du réseau de distribution à deux échelons, l’accent est plutôt sur les décisions de design
et les décisions de transport sont utilisées comme anticipation des opérations pour le niveau
opérationnel. En conséquence, il serait intéressant de proposer des formules d’approximation
des routes pour accélérer le processus de décision. De plus, l’intégration d’autres décisions,
comme les modes de transport et la gestion du stock, peut avoir une incidence sur les décisions
de design. Cela conduira à un problème plus complexe qui devrait être modélisé adéquatement.
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Designing Two-Echelon Distribution Networks under Uncertainty

Keywords: two-echelon distribution network design problems, stochastic optimization, Ben-
ders decomposition

Abstract:
With the high growth of e-commerce and the continuous increase in cities population con-

trasted with the rising levels of congestion, distribution schemes need to deploy additional
echelons to offer more dynamic adjustment to the requirement of the business over time and
to cope with all the random factors. In this context, a two-echelon distribution network is
nowadays investigated by the practitioners.

In this thesis, we first present a global survey on distribution network design problems and
point out many critical modeling features, namely the two-echelon structure, the multi-period
setting, the uncertainty and solution approaches. The aim, here, is to propose a comprehensive
framework for the design of an efficient two-echelon distribution network under multi-period
and stochastic settings in which products are directed from warehouse platforms (WPs) to dis-
tribution platforms (DPs) before being transported to customers. A temporal hierarchy charac-
terizes the design level dealing with facility-location and capacity decisions over a set of design
periods, while the operational level involves transportation decisions on a daily basis.

Then, we introduce the comprehensive framework for the two-echelon distribution network
design problem under uncertain demand, and time-varying demand and cost, formulated as a
multi-stage stochastic program. This work looks at a generic case for the deployment of a
retailer’s distribution network. Thus, the problem involves, at the strategic level, decisions on
the number and location of DPs along the set of design periods as well as decisions on the
capacity assignment to calibrate DP throughput capacity. The operational decisions related to
transportation are modeled as origin-destination arcs. Subsequently, we propose alternative
modeling approaches based on two-stage stochastic programming with recourse, and solve the
resulting models using a Benders decomposition approach integrated with a sample average
approximation (SAA) technique.

Next, we are interested in the last-mile delivery in an urban context where transportation
decisions involved in the second echelon are addressed through multi-drop routes. A two-
echelon stochastic multi-period capacitated location-routing problem (2E-SM-CLRP) is de-
fined in which facility-location decisions concern both WPs and DPs. We model the problem
using a two-stage stochastic program with integer recourse. To solve the 2E-SM-CLRP, we de-
velop a Benders decomposition algorithm. The location and capacity decisions are fixed from
the solution of the Benders master problem. The resulting subproblem is a capacitated vehicle-
routing problem with capacitated multi-depot (CVRP-CMD) and is solved using a branch-cut-
and-price algorithm.

Finally, we focus on the multi-stage framework proposed for the stochastic multi-period
two-echelon distribution network design problem and evaluate its tractability. A scenario tree
is built to handle the set of scenarios representing demand uncertainty. We present a compact
formulation and develop a rolling horizon heuristic to produce design solutions for the multi-
stage model. It provides good quality bounds in a reasonable computational times.



Design de réseaux de distribution à deux échelons sous incertitude

Mots clefs : Design de réseaux de disribution à deux échelons, optimisation dans l’incertain,
décomposition de Benders

Résumé :
Avec la forte croissance du e-commerce et l’augmentation continue de la population des

villes impliquant des niveaux de congestion plus élevés, les réseaux de distribution doivent
déployer des échelons supplémentaires pour offrir un ajustement dynamique aux besoins des
entreprises au cours du temps et faire face aux aléas affectant l’activité de distribution. Dans ce
contexte, les praticiens s’intéressent aux réseaux de distribution à deux échelons.

Dans cette thèse, nous commençons par présenter une revue complète des problèmes de
design des réseaux de distribution et souligner des caractéristiques essentielles de modélisa-
tion. Ces aspects impliquent la structure à deux échelons, l’aspect multi-période, l’incertitude
et les méthodes de résolution. Notre objectif est donc, d’élaborer un cadre complet pour le de-
sign d’un réseau de distribution efficace à deux échelons, sous incertitude et multi-périodicité,
dans lequel les produits sont acheminés depuis les plateformes de stockage (WP) vers les plate-
formes de distribution (DP) avant d’être transportés vers les clients. Ce cadre est caractérisé
par une hiérarchie temporelle entre le niveau de design impliquant des décisions relatives à la
localisation des plateformes et à la capacité allouée aux DPs sur une échelle de temps annuelle,
et le niveau opérationnel concernant des décisions journalières de transport.

Dans une première étude, nous introduisons le cadre complet pour le problème de design
de réseaux de distribution à deux échelons avec une demande incertaine, une demande et un
coût variables dans le temps. Le problème est formulé comme un programme stochastique à
plusieurs étapes. Il implique au niveau stratégique des décisions de localisation des DPs ainsi
que des décisions d’affectation des capacités aux DPs sur plusieurs périodes de design, et au
niveau opérationnel des décisions de transport sous forme d’arcs origine-destination. Ensuite,
nous proposons deux modèles alternatifs basés sur la programmation stochastique à deux étapes
avec recours, et les résolvons par une approche de décomposition de Benders intégrée à une
technique d’approximation moyenne d’échantillon (SAA).

Par la suite, nous nous intéressons à la livraison du dernier kilomètre dans un contexte ur-
bain où les décisions de transport dans le deuxième échelon sont caractérisées par des tournées
de véhicules. Un problème multi-période stochastique de localisation-routage à deux échelons
avec capacité (2E-SM-CLRP) est défini, dans lequel les décisions de localisation concernent les
WPs et les DPs. Le modèle est un programme stochastique à deux étapes avec recours en nom-
bre entier. Nous développons un algorithme de décomposition de Benders. Les décisions de
localisation et de capacité sont déterminées par la solution du problème maître de Benders. Le
sous-problème résultant est un problème multi-dépôt de tournées de véhicule avec des dépôts
et véhicules capacitaires qui est résolu par un algorithme de branch-cut-and-price.

Enfin, nous étudions le cadre à plusieurs étapes proposé pour le problème stochastique
multi-période de design de réseaux de distribution à deux échelons et évaluons sa tractabilité.
Pour ceci, nous développons une heuristique à horizon glissant qui permet d’obtenir des bornes
de bonne qualité et des solutions de design pour le modèle à plusieurs étapes.
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