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Abstract

Most of the literature considers different works on the flow-induced noise and vibrations for
basic structural parts, such as Kirchhoff plates. The main objective of this research is to
extend the work done to periodic structures targeting a number of novelties with regards to
different scales: the aerodynamic scale, the periodicity scale and the frequency scale.
Even though analytical and Finite Element(FE)-based numerical approaches have been
developed to deal with specific problems, some limits still persist. For example, the com-
putational effort can easily become cumbersome even for simple structural shapes or for
increasing excitation frequency; the convective wavelengths, for most industrially-relevant
cases, are largely smaller that flexural ones and, thus, the meshing requirements become
more demanding. When the structural complexity increases, even small scale models might
require a high number of elements increasing computational cost.
In the frameworks of FE and WFE based methods, this work proposes two numerical ap-
proaches to deal with the vibrations and noise induced by a Turbulent Boundary Layer
(TBL) excitation on periodic structural systems.
Firstly, a 1D WFE (Wave Finite Element) scheme is developed to deal with random excita-
tions of flat, curved and tapered finite structures: multi-layered and homogenised models are
used. In this case a single substructure is modelled using finite elements. At each frequency
step, one-dimensional periodic links among nodes are applied to get the set of waves prop-
agating along the periodicity direction; the method can be applied even for cyclic periodic
systems. The set of waves is successively used to calculate the Green transfer functions be-
tween a set of target degrees of freedom and a subset representing the wetted (loaded) ones.
Subsequently, using a transfer matrix approach, the flow-induced vibrations are calculated
in a FE framework.
Secondly, a 2D WFE approach is developed in combination with a wavenumber-space load
synthesis to simulate the sound transmission of infinite flat, curved and axisymmetric struc-
tures: both homogenised and complex periodic models are analysed. In this case, finite-size
effects are accounted using a baffled window equivalence for flat structures and a cylindrical
analogy for curved panels.
The presented numerical approaches have been validated with analytical, numerical and
experimental results for different test cases and under different load conditions. In particular,
analytical response and classic FEM have been used as references to validate the flow-
induced vibrations of plates and cylinders under turbulent boundary layer load; FE method
has been used also to validate a tapered conical-cylindrical model under diffuse acoustic
field excitation and the flow-induced noise computations under TBL.
From experimental point of view, the approach has been validated comparing results in
terms of transmission loss evaluated on aircraft fuselage panels (composite honeycomb and
doubly-ribbed curved panels) under diffuse acoustic field excitation.
Finally, the use of the presented methodologies for the vibroacoustic optimization of sand-
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wich plates, is analysed and proposed through some case-studies. Standard periodic core
designs are modified tailoring the bending and shear waves’ propagation versus frequency
against the acoustic and convective wavenumbers. The resulting sound transmission losses
are computed using the numerical approaches developed in this work and validated with
measurements under diffuse acoustic field, taken from 3D-printed models. Strong increases
of sound transmission loss are observed for fixed mass of the plates and between 1.5 kHz
and 10 kHz.
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Résumé

La plupart de la littérature considère différents travaux sur le bruit et les vibrations induit
par l’écoulement du fluide pour les pièces structurelles de base, comme les plaques de Kirch-
hoff. L’objectif principal de cette recherche est d’étendre le travail effectué à des structures
périodiques ciblant un certain nombre de nouveautés en ce qui concerne différentes échelles:
l’échelle aérodynamique, l’échelle de périodicité et l’échelle de fréquence.
Même si des approches analytiques et numériques fondées sur des éléments finis (FE) ont
été élaborées pour traiter des problèmes particuliers, certaines limites persistent. Par ex-
emple, l’effort de calcul peut facilement devenir lourd même pour les formes structurelles
simples ou pour augmenter la fréquence d’excitation; les longueurs d’onde convectives, pour
la plupart des cas d’intérêt industriel, sont largement plus petites que les longueurs d’onde
flexionnelles et, par conséquent, les maillages deviennent plus exigeantes. Lorsque la com-
plexité structurelle augmente, même les modèles à petite échelle peuvent nécessiter un grand
nombre d’éléments augmentant le coût de calcul.
Dans les cadres des méthodes basées sur la FE, ce travail propose deux approches numériques
pour traiter les vibrations et le bruit induits par une excitation de la couche limite tur-
bulente (TBL) sur les systèmes structurels périodiques. Tout d’abord, une methode 1D
WFE (Wave Finite Element) est développé pour traiter les excitations aléatoires de struc-
tures finies plates, courbes et coniques: modèles multicouches et homogénéisés sont utilisés.
Dans ce cas, une seule sous-structure est modélisée à l’aide d’éléments finis. À chaque
pas de fréquence, des liens périodiques unidimensionnels entre les noeuds sont appliqués
pour obtenir l’ensemble des ondes se propageant le long de la direction de la périodicité; la
méthode peut être appliquée même pour les systèmes périodiques cycliques.
L’ensemble des vagues est successivement utilisé pour calculer les fonctions de transfert de
Green entre un ensemble de degrés de liberté cibles et un sous-ensemble représentant les
zones chargées. En utilisant une matrice de transfert, les vibrations induites par l’écoulement
sont calculées dans un cadre FE.
Ensuite, une approche 2D WFE est développée en combinaison avec une synthèse de charge
baseé sure le nombre d’ondes pour simuler la transmission sonore de structures infinies
plates, courbes et axisymétriques: des modèles périodiques homogénéisés et complexes sont
analysés. Dans ce cas, les effets de taille finie sont comptabilisés en utilisant une équivalence
pour les structures plates et une analogie cylindrique pour les panneaux courbes. Les ap-
proches numériques présentées ont été validées avec des résultats analytiques, numériques
et expérimentaux pour différents cas d’essai et dans des conditions de charge différentes.
En particulier, la réponse analytique et la FEM classique ont été utilisées comme références
pour valider les vibrations des plaques et des cylindres sous charge de la couche limite turbu-
lente; la méthode FE a également été utilisée pour valider une structure complexe et effilée
sous excitation acoustique diffuse et le calcul du bruit induit par couche limite turbolente.
Du point de vue expérimental, l’approche a été validée en comparant les résultats en termes
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de perte de transmission acoustique évaluée sur les panneaux de fuselage des aéronefs (pan-
neaux composites en nid d’abeille et panneaux courbes à double nervure) sous excitation
diffuse du champ acoustique.
Enfin, l’utilisation des méthodologies présentées pour l’optimisation vibroacoustique des
plaques sandwich, est analysée et proposée à travers certaines études de cas. Les concep-
tions périodiques standard du cœur sont modifiées en adaptant la propagation des ondes
de flexion et de cisaillement par rapport à la fréquence, aux nombres d’ondes acoustiques
et convectives. Les transmissions du son sont calculées à l’aide des approches numériques
développées dans ce travail et validées avec des mesures sous champ acoustique diffus avec
des modèles imprimés en 3D. De fortes augmentations de la perte de transmission sonore
sont observées entre 1,5 kHz et 10 kHz, pour une masse fixe des plaques.
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Chapter 1

Introduction

1.1 Framework of the Research

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Sklodowska-Curie grant agreement No. 675441. The
research of the candidate is conducted following the Early Stage Researcher No. 2 objectives
and topics within the VIPER Project. The research topic in question is Aerodynamic Loading
of Periodic Structures.
VIPER is a European Joint Doctorate network focused on research in VIbroacoustic of PE-
Riodic media. Structural periodic design is a powerful strategy for lightweight structures
achievements while remaining a convenient solution for manufacturing aspects. One of the
research targets is the inclusion of vibroacoustic design rules at early stage of products de-
velopment through the use of periodic media which exhibit proper dynamic filtering effects.
In order to understand how periodic concepts can improve the broadband vibroacoustic sig-
natures and performances, the VIPER project aims at developing and validating tools for
the design of global vibroacoustic treatments based on periodic patterns, allowing passive
control of structural and acoustical paths in layered concepts.
Dealing with large scale periodic structural-acoustic concepts involves a multi-scale aspect
that needs specific numerical tools. A two scale strategy will be pursued to handle periodicity
effects: the meso-scale, related to the cell or the span size, and the macro-scale related to
the final structure size. Bridging the cell scale behaviour and the vibroacoustic indicators is
a challenging issue which will dramatically improve the macro structural design. As the cell
topology and constitutive materials are important data, VIPER considers the combination
of different materials and structural arrangements, in which viscoelastic, poroelastic, auxetic
materials will play a major role.
VIPER has a multi-disciplinary character, coupling expertise from material science, vibra-
tion and acoustics as well as applied mathematics. It can offer different applications in
transports (aeronautics and space, automotive), energy and civil engineering sectors, where
vibroacoustic integrity and comfort can be crucial points.

1.2 Motivations

Flow-induced vibrations are among the major causes of high noise levels and, thus, re-
duced internal comfort, for almost all modern transport means. It is a main issue in the
aeronautical, automotive, naval and rail industry.
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Figure 1.1: Typical noise levels in a jet aircraft cabin during take-off and climb to cruising
altitude, as described in [1]; A) start of take-off roll; B) lift-off from the runway; C)

stabilized level flight at cruising altitude and air speed.

Aircraft interior noise is, in reality, a result of several sources:

• Blade passage frequency tones of the engines and their harmonics (for propellers)
and/or jet noise (for turbofans/jets).

• Structure-borne noise caused by un-balanced forces within the engines (inducing vi-
brations into the aircraft structure).

• On-board systems, such as the auxiliary power unit, pressurization and air-conditioning
systems.

• Aerodynamic noise, in which turbulent boundary layer induced noise is included, which
is characterized by a fluctuating pressure field, random by nature, which excites the
fuselage skins.

The turbulent boundary layer is the highest contributor to internal flow-induced noise in an
aircraft cabin, in cruise flight conditions, which are, for commercial passenger aircraft, the
operations conducted for the majority of the flight time [1]. The situation gets even worse
with increasing flight speed [2]. Reduced levels of cabin noise, which can only be achieved
by using dedicated predictive tools, are desirable both for comfort and health-related issues
of the passengers. High low-frequency noise levels, especially for long-time exposures, can
produce hearing loss, fatigue, loss of concentration, and reduced comfort [3, 4]. Particularly,
the low-frequency sound can lead to annoyance, deficit of attention, reduced wakefulness and
sleep disturbances; in the worst cases the respiratory, heart, stomach and intestine functions
can be altered by the environment.
In addition to the comfort and health problems typical of transport means, another main en-
gineering issues caused by the flow-induced vibrations is connected to space launch vehicles.
Missile and launchers’ fairings are subject to a strong aeroacoustic environment, random
in nature and of frequency broadband extent. This arousal of noise and vibrations may
deteriorate fragile structures and equipment, including electronic components of on-board
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Figure 1.2: Typical aeroacoustic loadings on a space launcher structure during the lift-off
(a) and the ascent phase (b).

equipments. Aeroacoustic fatigue can even occur for reusable components. These strong
pressure fluctuation levels influence the weight and the cost of the launch vehicle.
Then, it is necessary to carry out a predictive model of the structure and model the fluid-
structure interaction properly, in order to determine the vibration levels of the structures and
internal equipment, in the entire frequency spectrum, before the system gets operational.
Nowadays most of the methodological issues are associated with the complexity of the
analytical modelling and the computational cost of the numerical simulations.

1.3 Thesis Outline

This manuscript is organised as follows:

• Chapter 2 gives a literature review to frame the state-of-the-art methods and re-
searches connected the similar topics.

• Chapter 3 proposes a combination of a WFE and transfer matrix (TM) method to
compute the flow-induced vibrations of structures with linear and cyclic periodicity.
Enhanced WFE formulations are developed for the forced response of flat, curved and
axisymmetric finite periodic structures with and without impedance variations along
the waveguides. Validations are proposed using full finite element (FEM) computa-
tions and analytical methods.

• Chapter 4 develops a 2D WFE approach for the prediction of the flow-induced noise of
periodic flat and curved structures. A load approximation in the wavenumber domain
is developed to link any type of excitation with the structural periodicity scale. The
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results are validated for homogeneous and heterogeneous flat and curved structures
using analytical, numerical and experimental results.

Experimental tests are performed in coupled reverberant-semi-anechoic rooms; a large
scale thick composite sandwich panel and a thin aluminium fuselage panel with stiff-
ening elements (stringers and frames) are analysed for validation purposes.

• Chapter 5 analyses the possibility of including aeroelastic coupling within a periodic
cell scale to include the effects of a stronger fluid-structure coupling in the prediction of
the sound transmission loss under aerodynamic excitation. The effects of the one-sided
flow are also studied on the elastic wave propagation identifying dynamic instabilities
for supersonic flows.

• Chapter 6 shows a coupled numerical-experimental work on the periodic cell design.
The numerical methods developed in the previous chapters are used to investigate
some periodic designs and the chosen solutions are the 3D printed and tested in a
small Transmission Loss facility. Experimental evidence of increased vibroacoustic
performance for fixed structural mass are given.

A conceptual scheme is proposed in Fig. 1.3.
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Figure 1.3: Conceptual map of the present work.
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Chapter 2

Literature Review

The main focus of this work is placed on modelling the flow-induced vibrations and noise of
periodic and homogeneous structures, in the most general combination of structural com-
plexities and excitation models. Many authors, even though not specifically for periodic
media, contributed to the vibroacoustic modelling of simple structural models under aeroa-
coustic sources. Higher order theories have also been developed to include the auto-excited
forces induced by the coupling between the structural vibrations and the flow field.
Most of the approaches available in the literature, differ depending on the frequency region
of interest. Generally, in fact, the structural dynamic behaviour might strongly change
depending on the frequency of analysis. For example, in the Low Frequencies (LF), the
response exhibits isolated modal resonances and has local characteristics. This region is
usually investigated through deterministic methods, such as the Finite Element Method
(FEM) and/or the Boundary Element Method (BEM). In the High Frequencies (HF), the
diffuseness of the field prevents any isolated resonance condition and the response is in-
dependent on local parameters. In this cases the structure can be investigated through
probabilistic techniques, such as the Statistical Energy Analysis (SEA) and/or the Energy
Distribution Approach (EDA). Differently, the Mid Frequencies (MF), represent a region of
intermediate behaviour for which well-established prediction techniques are not yet avail-
able; while actual FE-based method require an unacceptable computational effort due to
the huge size of models, even for small structural scales, the assumptions of probabilistic
methods are not valid yet.
In this chapter, most of the relevant literature is reviewed, for each of the macro areas
investigated within the present manuscript.

2.1 Characterisation of Random Vibrations

The response to a random spatially-correlated load is expressed in terms of power spectral
density, deduced from the correlation function, defined as [5]:

Rpp(ξ, τ) = 〈p(r, t) · p(r + ξ, t+ τ)〉 (2.1)

where the symbol <> denotes the statistical average, the vector r measures the distance
of a given point from the origin of the reference system, while the vector ξ is the vector of
the relative distance among two given points. The space-frequency spectrum can then be
written as follows:

Spp(ξ, ω) =

∫ +∞

−∞
Rppe

−iωτdτ (2.2)
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The Spp function can also be expressed, in a general form, as:

Spp(ξ, ω) = Sp(ω)Γpp(ξx, ξy, ω) (2.3)

where Sp is the single-point auto-spectral density of the pressure fluctuations; Γpp represents
the correlation between two points whose relative distances in the stream-wise and cross-wise
directions are ξx and ξy, respectively.
The pressure field is assumed to be blocked (or frozen); the wall-pressure fluctuations are
not affected by the structural vibration and, thus, a one way coupling is hypothesised [6, 7].
The pressure field is thus the same as observed on a rigid wall. The power spectral density
of the structural velocity can be expressed as follows from the generalized Green functions
[5, 6]:

Svv(x, y, ω) = ω2
∑
r

∑
s

Re(αr(ω)α∗s(ω))Ψr(x, y)Ψs(x, y)·

·
∫
Ap

∫
Ap

Ψr(x, y)Ψs(x
′, y′)Sp(ω)Γ(ξx, ξy, ω)dApdAp

(2.4)

where Ψr is the structural mode shape, Ap the area of the structure wetted by the flow and
αr the modal receptance of the structure:

αr(ω) =
1

ω2
r (1 + iηr)− ω2

(2.5)

where ωr and ηr represent the natural pulsation and the structural damping factor of the
mode Ψr. The stream-wise and cross-wise distances, ξx and ξy, are |x − x′| and |y − y′|
respectively.
The most important factor in Eq. 2.4 is the joint acceptance function jrs (Eq. 2.6). It is a
double surface integral of the product of the correlation function of the load and the mode
shapes of the structure. The main issue connected to Eq. 2.6 is given by the complexity
and feasibility in expressing the structural mode shapes in analytical form and performing
the integration of its product with a random, and generally exotic, correlation function Γ.

jrs(ω) =
1

A2
p

∫
Ap

∫
Ap

Ψr(x, y)Ψs(x
′, y′)Γ(ξx, ξy, ω)dApdAp (2.6)

2.2 Aeroacoustic Excitations

The second-order statistics of the wall pressure fluctuations beneath a fully developed TBL
are generally modelled as a random process, homogeneous in space and stationary in time,
that can be characterised by the cross-spectral density function [5, 7].

2.2.1 Models for TBL Autospectrum

Most of the existent turbulent boundary layer models differ both for their autospectrum (Sp
in Eq. 2.3) and correlation model (Γ in Eq. 2.3). These models are usually defined from
empirical relations which depend on characteristic scales that might be different case-by-
case.
A representation of a typical TBL autospectrum Sp is plotted in Fig. 2.1, as a function of the
dimensionless frequency. The spectrum shows different characteristic slopes depending on
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Figure 2.1: Representation of a TBL wall pressure spectrum for different frequency ranges
[8].

the considered frequency range. There is no single-scaling that is able to represent correctly
the spectrum over all the frequency ranges and thus several scales are used depending on
the considered frequency region. They are presented in [8].
In particular, the displacement thickness δ∗ and the momentum thickness θ∗ are integral
length scales defined by:

δ∗ =

∫ δ

0

(
1− U

U0

)
dy

θ∗ =

∫ δ

0

U

U0

(
1− U

U0

)
dy

(2.7)

where U is the speed of the flow in the boundary layer, U0 the flow speed outside the
boundary layer and δ the thickness of the layer.
Some of the most common models are here reported:

Corcos - Robert

This single-sided spectrum is defined as a function of the outer scaling variables U0, δ∗ and
q (free-stream dynamic pressure) by the following relation [9]:

Sp(ω)

(
U0

q2δ∗

)
=


2 · 2.14 · 10−5 ωδ∗/U0 < 0.25

2 · 7.56 · 10−6(ωδ∗/U0)−0.75 0.25 < ωδ∗/U0 < 3.5

2 · 1.27 · 10−4(ωδ∗/U0)−3 ωδ∗/U0 > 3.5

(2.8)

For a flat plate with zero-pressure gradient, Finndeven et al. [10] showed that Robert model
agrees with their experimental data with a maximum difference of 1 dB.
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Cockburn - Robertson

Cockburn and Robertson [11] calibrated the model when investigating the vibration response
of spacecraft shrouds to in-flight fluctuating pressures. They established the following spec-
trum model Sp for flows at transonic and supersonic speeds, using empirical data:

Sp(ω)

(
U0

q2δ

)
=

Ep2

q2

(
ω0δ
U0

)[
1 + ω

ω0

0.9

]2 (2.9)

where:

Ep2 =

(
0.006 · q

1 + 0.14M2
0

)2

; ω0 = 2π · 0.346U0/δ, (2.10)

where M0 is the Mach number that becomes negligible at transonic and subsonic speeds
[11].

Smolyakov - Tkachenko

Smolyakov and Tkachenko [12] measured spatial pressure correlations as a function of spatial
separation and boundary layer thickness, and fitted exponential curves to their results. The
model of Smolyakov and Tkachenko writes as follows [12]:

Sp(ω)

(
U0

τ2
ωδ
∗

)
=

5.1

1 + 0.44

(
ωδ∗

U0

)7/3
(2.11)

where τω represents the wall-shear stress. The resulting low wavenumber levels are an
improvement on the Corcos prediction, but are still higher than experimental values, so a
correction was added to the model to bring it into agreement without significantly affecting
the convective peak levels [13].

Chase - Howe

Howe proposed the following model using the variable scaling δ∗ and τω [8, 14]:

Sp(ω)

(
U0

τ2
ωδ
∗

)
=

2ω̄2

(ω̄2 + 0.0144)3/2
(2.12)

where ω̄2 = ωδ∗/U0. According to Hwang et al. [8], since this spectrum does not decay
faster than ω−1 at high frequencies, the model applicability appears to be limited near or
below the universal range ων/u2

τ < 0.3, being ν the fluid viscosity and uτ the wall friction
velocity.

Efimtsov

The model proposed by Efimtsov [8, 15] accounts for the effects of the Reynolds number
Re. In particular, the autospectrum is expressed as:

Sp(ω)

ρ2
0u

3
τδ

=
2παrβr

(1 + 8α3
rSh

2)1/3 + αrβrRe(Sh/Re)10/3
(2.13)
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Table 2.1: TBL autospectrum models and input parameters

Model: U0 ρ0 uτ ν δ δ∗ τω Re

Corcos - Robert • ◦ ◦ ◦ ◦ • ◦ ◦
Cockburn - Robertson • ◦ ◦ ◦ • ◦ ◦ ◦
Smolyakov - Tkachenko • ◦ ◦ ◦ ◦ • • ◦
Chase - Howe • ◦ ◦ ◦ ◦ • • ◦
Efimtsov ◦ • • • • ◦ ◦ •
Goody • ◦ • • • ◦ • •

where αr = 0.01, βr = (1+(Re0/Re)
3)1/3, Sh = ωδ/uτ and Re0 = 3000. This model applies

to zero-pressure gradient boundary layers. It has been calibrated from measurements of
TBL wall pressure fluctuations on aircraft. It is valid for a wide range of Mach Number
(0.01 < M0 < 4), Reynolds numbers (6 · 102 < Re < 1.5 · 105) and Strouhal numbers (0.2
< Sh < 104).

Goody

The Goody model is limited to zero pressure gradient flows but takes into account the effect
of the Reynolds number variations through the time scale ratio RT (= (δ/U0)/(ν/u2

τ )).
This model shows a good agreement with experimental data over the Reynolds number
range [1400, 23400]. The spectrum can be expressed as:

Sp(ω)

(
U0

τωδ

)
=

C2(ωδ/U0)2[
(ωδ/U0)0.75 + C1

]3.7
+
[
C3(ωδ/U0)

]7 (2.14)

where C1 = 0.5, C2 = 3.0, C3 = 1.1R−0.57
T .

A comparison between the different models is exploited in [8]. A comparison in terms of
needed parameters and characteristics is summarised in Table 2.1.

2.2.2 Models of TBL Correlation Functions

The function Γpp(ξx, ξy, ω) in Eq. 2.3 characterizes the spatial correlations of the wall pres-
sure fluctuations. A generic correlation spectrum in the wavenumber domain (Γpp(kx, ky, ω))
is provided in [16] and reported in Fig. 2.2. Considering the wavenumber domain, an am-
plitude increase is evident for wavenumbers close to the convective wavenumber kc = ω/Uc,
where Uc is the convective speed (generally 0.8 U0) of the turbulent structures in the bound-
ary layer. The energy part associated with the acoustic is centered around the origin k =
0 and is bounded by the acoustic wavenumber k0. Between the acoustic and hydrodynamic
region, for k0 < k < kc, a sub-convective zone is identified.
Some of the most common models are here reported:

Corcos

The first characterisation of the wall pressure fluctuations of a turbulent boundary layer has
been carried out by Corcos [9, 13], on experimental measurements. This model, which does
not take into account the position of each point on the structure, considering just the relative
distances, is one of the simplest and most used in literature. Specifically, the cross spectral
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Figure 2.2: Correlation spectra Γpp in the wavenumber domain [16].

density of the pressure fluctuations, through the assumption of separation of variables, is
function of the relative distance among points, the convection velocity and the frequency.
The coherence model for the wall pressure fluctuations proposed by Corcos can be expressed
through the product of two separate functions in the stream-wise and cross-wise directions,
respectively:

Γpp(ξx, ξy, ω) = e−αx|ωξx/Uc|e−αy|ωξy/Uc|ei|ωξx/Uc| (2.15)

Uc is the convective flow speed and αx and αy are the correlation coefficients. Some as-
sumptions are present in this model as the separation of variables, the exponential form
of the functions, the dependency on the distances instead of the point locations and the
stream-wise harmonic variation accounted. It has to be underlined, also, that the correla-
tion coefficients, αx and αy, are to be determined from wind tunnel gallery measurements
of the spatial coherence of the wall pressure fluctuations, which is, of course, a limit to its
applicability. However, this model is extensively used in literature as a predictive model,
due to the possibility to use a range of universal values for the correlation coefficients if the
assumptions of no-gradients effects and fully developed turbulent boundary layer (TBL) are
assumed [17]. In any case, more than other models, the Corcos one is the best choice for
simplicity versus predictive capabilities.

Many other models have been proposed to improve the accuracy of the Corcos model in the
estimation of the WPFs (Wall Pressure Fluctuations) in the sub-convective domain, which
is the wavenumber domain comprised between the acoustic and the convective wavenumber.
Some of these models are directly linked to the Corcos one [15, 18], on the contrary, others
do not take into account the separation of the stream-wise and cross-wise coherence [12, 14].
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When moving to the wavenumber domain, the spectra Γpp(kx, kx, ω) becomes:

Γpp(kx, kx, ω) =
4αxαy[

α2
y +

U2
c k

2
y

ω2

][
α2
x +

(
1 + Uckx

ω

)2] (2.16)

Efimtsov

The Efimtsov model [15], for example, is based on the Corcos formulation; the idea is to
introduce a dependency of the correlation lengths Uc(ωαx)−1 and Uc(ωαy)−1 with respect
to the boundary layer thickness δ, the wall friction velocity uT and the Mach number M0 =
U/a0, where a0 is the speed of sound. The expression of Γ is identical to Corcos’s formulation
(Eq. 2.15) with:

Uc
ωαx

= δ

((
a1ShuT
Uc

)2

+
a2

2

S2
h + (a2/a3)2

)−1/2

(2.17)

Uc
ωαy

=


δ

((
a4ShuT
Uc

)2

+ a2
5

S2
h+(a5/a6)2

)−1/2

M0 < 0.75;

δ

((
a4ShuT
Uc

)2

+ a2
7

)−1/2

M0 > 0.90;

(2.18)

where Sh = ωδ/uT , a1 = 0.1, a2 = 72.8, a3 = 1.54, a4 = 0.77, a5 = 548, a6 = 13.5, a7 = 5.66
[13, 15]. At high frequencies, this correlation function corresponds to a Corcos model with
αx = 0.1 and αy = 0.77. At low frequencies, the boundary layer parameters considerably
modify the spectrum shape.
An extensive description of many turbulent boundary layer models is given in [8, 13]; a
comparison is reported in Fig. 2.3.

2.2.3 Acoustic Excitation: Diffuse Acoustic Field

This load model, which represents the excitation of an infinite sum of uncorrelated plane
waves, has the following correlation function, depending on the convective constant only:

Γ(ξx, ξy, ω) =
sin(ωξx/Uc)

ωξx/Uc

sin(ωξy/Uc)

ωξy/Uc
(2.19)

The DAF is often used to describe the TBL load in the low frequencies since both models
take into account the stream-wise and cross-wise correlations. Moving up with the frequency
the DAF model strongly overestimates the exciting contribution of a TBL.
In this thesis, it is used to deal with cases in which the applicability of the Corcos model is
impeded by the presence of pressure gradient effects [19].
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Figure 2.3: Wavenumber–frequency spectra for Sh =248: ——) Corcos [9]; — —) Emtsov
[15]; - - -) Smol’yakov and Tkachenko [12]; · · ·) Ffowcs Williams [18]; —·—·) Chase I [14];

–·–·, Chase II [13, 14]. The spectra are plotted against longitudinal wavenumber
non-dimensionalized on the convective wavenumber [13].

2.3 Flow-Induced Vibrations and Noise

The vibrations, induced by a convective or an acoustic field exciting an elastic structure,
arise strong interest in many engineering areas. These induced vibrations can even damage
internal devices and payloads in the case of a space-launcher in the lift-off phase. As a
result, the random vibrational and noise levels on the structures must be predicted in the
design phase, in order to fix eventual issues before operating the system.

2.3.1 Modal Approaches

The predictive methodologies actually available in literature are mainly modal-based [5–
7, 20, 21]. De Rosa et al. [7] presented both the exact and numerical procedures for the
response of a simply-supported plate under a turbulent boundary layer excitation. Hambric
et al. [20], studied the effects of the boundary conditions of a flat plate on the flow-
induced response, identifying how the modal acceptance function changes with respect to
the convective wavenumber peaks. Da Rocha [22] analysed the influence on the boundary
layer induced vibrations of different TBL models.
Among the modal approaches, the full finite element approach, which requires a discretisa-
tion of the structural operator in finite elements, is the most developed and diffuse. However,
the main drawback is connected to the required number of the finite elements, which is, gen-
erally, strongly affected by the fluid loading wavelength at the design frequency of analysis
[21]. This is, for most of applications, lower than the structural one, increasing, thus, the
size of the problem in terms of degrees of freedom (DoF) (see Fig. 2.4).
Some authors propose different methods to reduce the computational cost associated with
this approach. For example, a method of load approximation through equivalent determinis-
tic forces, analysing the eigenvalues distributions of the load matrix for a general convective
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Figure 2.4: The structural, convective and acoustic wavelengths versus frequency for a
3mm-thick panel - Flow speed U0 = 100m/s

load distribution, called PEDEM , is proposed in [23]. Two frequency ranges are identified
in which the convective load can be approximated through a purely coherent or purely inco-
herent equivalent load, proposing thus, a pseudo equivalent deterministic excitation method
as an upgrade of the classic pseudo excitation method [23]. This approach proves to work
very well in the LF (Low-Frequency) or HF (High-Frequency) range since the behaviour of
the eigenvalues of the load matrix is easily predictable. In the MF (Mid-Frequency) range,
some approximations have to be made and the accuracy lowers [24]. De Rosa et al. also
studied the effects on the TBL-induced response of plates of concentrated masses, in [25],
and non-lifting aeroelasticity, in [26, 27].
Another possibility is to use scaled models or similitude to reproduce the response of smaller
systems, which have a reduced computational cost for given wavelength to describe, assum-
ing fixed mesh sizes. In these cases, the main issues, are associated with the application of
scaling laws to rebuild the response of the original system [19, 24]. Bonness et al. [28], on
the other hand, propose a modelling approach for combining FE structural models of large
and complex structures with TBL pressure fluctuations using asymptotic approximations
of the modal force matrix; these are equivalent to full numerical integration when the TBL
correlation lengths are one order of magnitude smaller than the structural wavelengths.
Additionally, the asymptotic solution also removes any dependence of the structural mesh
resolution [28]. Maxit [29] proposes the use of the wavenumber space to simulate random
loads using uncorrelated wall plane waves. The non-correlation of the waves is imposed
a-priori and the integration limits are case-dependent and justified by the filtering effects
of the structure, which should also be known a-priori; these are not always applicable, es-
pecially if a complex media is analysed or high frequencies are approached, due to coupled
bending wavemodes which might arise in the frequency band. The randomization of load
cases is also required to avoid excessive computational cost [29].
Birgersson et al. [30], on the contrary, propose a spectral finite element method for the
simulation of structural vibrations under distributed pressure fluctuations. The response of
a plate to a distributed excitation with a plane pressure wave, is calculated with the spectral
FEM and used as a reference when the cross-spectral density of the TBL wall pressure cross-
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Figure 2.5: Sketch of the elastic plate in the rigid aerodynamic baffle.

correlation is expressed as a finite exponential Fourier series [30]. Finnveden et al. [10] then
validated the approach with an experimental-numerical comparison.

The response of a rectangular panel: Analytical Approach

A thin, flat and rectangular panel is made up with an isotropic material and simply sup-
ported on all four edges. It is mounted in an infinite rigid plane baffle flush with the TBL
and the flow in the X direction, as in Fig. 2.5. The lengths of the panel in X and Y are
respectively Lx and Ly.
The displacement cross-spectral density function between any arbitrary couple of points
belonging to a thin, isotropic and homogeneous plate, A(xa,ya) and B(xb,yb), due to an
assigned stochastic distributed excitation, can be found with the following modal expansion
as given by Elishakoff in [5]:

Sww(xa, ya, xb, yb, ω) =
∑
j

∑
n

[Ψj(xa, ya)Ψn(xb, yb)

ZHj (ω)Zn(ω)γjγn

]
Sp(ω)AQjQn(ω) (2.20)

where Ψj is the j-th mass-normalised analytic mode shape calculated in each of the points
and γj is the generalized mass coefficient for the same mode order and Zj is the dynamic
structural impedance(Eq. 2.22); AQjQn is the normalised joint acceptance integral (Eq.
2.21). In particular:

AQjQn(ω) =

∫ Lx

0

∫ Lx

0

∫ Ly

0

∫ Ly

0

[Γpp(x, y, x
′, y′, ω)

Sp(ω)
Ψj(x, y)Ψn(x′, y′)

]
dx dy dx′ dy′

(2.21)

γj =

∫ Lx

0

∫ Ly

0
Ψ2
j (x, y)dx dy Zj(ω) = ms

[
ω2
j − ω2 + iηω2

j

]
(2.22)

where ms is surface density of the plate.
In details, the auto-spectral density of the displacement at a selected point is given as
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follows:

Sww(x, y, ω) =
∑
j

[Ψ2
j (x, y)

|Z2
j |γ2

j

]
Sp(ω)AQjQj (ω) +

+ Re

[∑
j

∑
n 6=j

[ Ψj(x, y)Ψn(x, y)

ZHj (ω)Zn(ω)γjγn

]
Sp(ω)AQjQn(ω)

] (2.23)

where the last quantity is strictly real.

The response in a Finite Element Framework

For a discretized approach, as standard FEM, the evaluation of the structural displacement
cross-spectrum matrix to a statistically stationary and ergodic random excitation, such as
TBL flow, can be performed as follows [5, 21, 24]:

Sww(ω) = ΨH(ω)ΨTSFF (ω)ΨH∗(ω)ΨT (2.24)

where H being a complex diagonal matrix with:

Hj(ω) =
1

ω2
j − ω2 + iηω2

j

(2.25)

and Ψ is the real mass-normalised matrix of the modal shapes, SFF is the load matrix in
discrete coordinates. The superscripts T and ∗ denote, respectively, the matrix transposition
and the conjugation. The output matrix Sww is the matrix of the auto and cross spectral
densities of the structural field.
Each element of the load matrix has to be calculated solving a double integral on the nodal
surface of the product of the structural shape functions (NF ) and the wall pressure cross
spectra as in Eq. (2.26):

Si,jFF =

∫ xi+∆x/2

xi−∆x/2

∫ yi+∆y/2

yi−∆y/2

∫ xj+∆x/2

xj−∆x/2

∫ yj+∆y/2

yj−∆y/2
NT
F Γpp(ξ

ij
x , ξ

ij
y , ω)NFdxidxjdyidyj .

(2.26)
The size of the finite elements is, generally, strongly ruled by the fluid wavelength at the
design frequency of analysis. For most of applications, this is lower than the structural one
and the need of a finer mesh increases the size of the problem and, thus, the computational
cost. For example, with reference to Fig.2.6, a structural mesh sized on 10 KHz is able to
describe the fluid wavelength only up to ≈ 2 KHz. It is clear how, moving up with the
frequency, the computational cost increases more and more. In Fig.2.6 it is also identifiable
the critical frequency which is the point where the fluid wavelength equals the structural
one. This double space integration on the wetted (excited) surface (Eq. (2.26)), can be
approximated trying to reduce the time associated to this analysis step. Considering that
the pressure fluctuations, due to TBL, do not fluctuate very quickly in the nodal area,
given by ∆x∆y, a direct lump-on-the-nodes of the wall pressure cross spectra is a good
approximation of the integral, as in Eq.(2.27) [7, 21, 24]:

Si,jFFL = Γpp(ξ
ij
x , ξ

ij
y , ω)∆2

x∆2
y . (2.27)

This approximation is always true if the frequency range is low or the nodal area is small
enough to guarantee that the pressure is effectively not fluctuating much in the considered
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Figure 2.6: The structural and aerodynamic wavelengths versus frequency - Convective
speed Uc = 100m/s

spatial domain. Thus, once a mesh is defined, it is straightforward to evaluate the maximum
frequency where the fluid pressure fluctuations are well described, which is called aliasing
frequency. Overcoming this value, the load matrix is no more an accurate discretization of
the pressure fluctuations and the model exponentially loses accuracy. A deep investigation
on this numerical aspects is extensively made in literature, [21].
This numerical finite element-based approach is used as a reference for the results of this
chapter, when an analytic approach in not available. These are, in fact, available only for
flat simply-supported panels subjected to Corcos load [7].

2.3.2 Energy Approaches

On the other hand, moving to high-frequencies, energy-based approaches can be used, such
as the Statistical Energy Analysis (SEA). The total mean energy of an SEA subsystem
excited by a spatially correlated excitation is expressed as follows:

〈SEr(ω)〉 = 〈jrmm(ω)〉
∑
m

∫
∆ω

ω2|αm(ω)|2(Lx · Ly)2

∆ω
Spp(ω)dω (2.28)

where the <> symbol represents the ensemble average and 〈jrmm〉 is the average of the joint
acceptance functions over the resonant modes in the considered frequency band, for the
generic subsystem r. Then, in an SEA framework, the energy influence coefficients Aj,s can
be derived by:

Ar,s =
〈SEr〉
〈Pins〉

(2.29)

where Pins represents the injected power in the subsystem s (see Fig. 2.7) and can be
expressed as:

〈Pins〉 =
1

2

∑
j

ηω2
j

∆ω

∫
∆ω

ω2|αj(ω)|2Spp(ω) 〈jsjj(ω)〉 dω (2.30)
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Figure 2.7: Graphical sketch of the energy exchange between SEA subsystems.

Among the methods proposed in literature, the most effective is surely the equivalent rain-
on-the-roof method, [6, 31]. This approach considers the fact that even spatially-correlated
fluctuations, when moving to high-frequencies, head towards uncorrelated models. Then,
it is possible to evaluate an equivalent uncorrelated load which approximates the real load
correlation function. This gives huge advantages to the calculation of the joint acceptance
integral, which will become a function of this kind [6]:

jrs(ω) =
1

A2
p

∫
Ap

∫
Ap

Ψr(x, y)Ψs(x
′, y′)δ(ξx)δ(ξy)dApdAp =

δr,s
A2
p

(2.31)

where δ represents the Delta Dirac function.
Finnveden [32] used a spectral finite element approach to get the modal densities and cou-
pling loss factors of SEA subsystems loaded with stochastic excitations, as turbulent bound-
ary layer, and validated the approach with measurements [10]. Similarly, Orrenius et al.
[33, 34] proposed an SEA-based approach using a single 2D periodic cell for the calculation
of SEA parameters. The numerical approach has been validated with measurements under a
diffuse acoustic field, proving a general good correlation in the medium and high frequencies
[33].
An efficient alternative in terms of computational cost is, for example, the transfer ma-
trix method (TMM). It is a general method used for the prediction of the propagation of
monochromatic plane waves in planar and multi-layered structures of infinite extent [35].
This approach in particularly easy for homogenised and infinite multilayers made up from
a combination of elastic, porous and fluid layers, using a representation based on the plane
wave propagation in different media in terms of transfer matrices. For example, considering
Fig. 2.8, in the TMM context, a two by two transfer matrix is first computed at each wave
heading θ and for each couple of consecutive layers j and j + 1:[

pj
vj

]
=

[
1 Zt(kt, θ)
0 1

] [
pj+1

vj+1

]
(2.32)

where the vectors <p,v> represents the pressure-velocity state variables at the inlet and
outlet of each layer, kt the trace wavenumber, generally connected to the acoustic one (k0

= ω/c0) and Zt the heading-dependent impedance [35, 36]. The matrices in Eq. 2.32
are then coupled to the matrices defining the source, the attached fluid, elastic or porous
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Figure 2.8: Sketch of a multi-layered laterally infinite system with pressure and velocities
particles inward and outward of each layer.

Figure 2.9: A simple scheme summarizing the main methods for the flow-induced
vibrations and noise in finite structures and the frequency ranges where they are

applicable, given hypotheses and computational cost.

layers and the semi-infinite receiver medium (transmission problem) [36]. The assembled
Transfer Matrix of the system is then solved for the transmission coefficient of the sys-
tem. Many applications of the TMM to the modelling of sound transmission of composite
structures have already been validated [36, 37] for simple and complex excitation models.
Finite size effects, important at low frequencies, can be included through appropriate cor-
rections [38–40]. Within the frameworks of curved structures, alternative methods have also
been presented. A mathematical model, for the transmission of airborne noise through the
walls of an orthotropic cylindrical shell, has been firstly proposed by Koval, [41–43]. For
curved composite laminates, the vibroacoustic problem has been further developed through
a spectral approach based on a discrete lamina description, [44, 45]. Other semi-analytic
approaches, based on a receptance method, have also been proposed in order to analyse the
sound transmission of aircraft panels with stringers and ring frames, [46, 47].
A simple scheme summarising the placements versus frequency of most of the methods cited
here, is given in Fig. 2.9.

2.3.3 Non-lifting Aeroelastic coupling

When developing the general formulation of the problem, in Eq. 2.4, the hypothesis of
blocked pressure is used: the structural deformation/vibrations do not affect the fluid field
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Figure 2.10: Example of buckled cylinder due to inclined supersonic/hypersonic flow [55].

outside and thus the pressure fluctuations are the same ones for a rigid body. However, a
variation of the pressure field given by the elasticity (motion) of the structure, is always
present.
The aeroelasticity of plates and shells faces the difficulty of distinguishing between the
self-induced vibration components and the external one. Phenomenological non-linearities
induce fatigue failures instead of catastrophic instantaneous failures, typical of the aeroelas-
ticity of lifting surfaces [48, 49]. In this context, the modal approach is often preferred to a
wave-based one, because it allows a clearer evaluation of the flutter conditions, analysing the
effect of the aerodynamic induced forces on each structural mode or on one of their combi-
nation [48–50]. Amabili et al. [51] investigate the aeroelastic stability of simply supported,
circular cylindrical shells in supersonic flow exploiting the non-linearities (large amplitudes)
by using the Donnell non-linear shallow-shell theory; the effect of viscous structural damping
is also taken into account. Similarly the flow-induced non-linear dynamics in circular vessels
conveying flow is studied with a similar theoretical model by Amabili et al. in [52, 53]. An
application to the non-linear flutter analysis of cylinders under supersonic flow is also given
by Amabili et al. in [54]; both linear aerodynamics (first-order piston theory) and non-linear
aerodynamics (third-order piston theory) are used.
More recently, Klock et al. [55], presented a FEM approach, with a third order piston theory,
against experimental results for the local aeroelastic stability boundaries of an internally
pressurized circular cylindrical shell applied to supersonic/hypersonic vehicles; the local
instabilities are analysed even for inclined flow conditions (see Fig. 2.10)

With specific focus on the flow-induced vibrations for turbulent boundary layer excitation,
the works from Ciappi et al. [26] and Vitiello et al. [27], show the plate TBL-induced re-
sponses with and in absence of subsonic aeroelastic coupling; The effect at higher frequencies
is investigated using a free-field formulation in [26], while the shift of natural frequencies in
the LF region has been studied in [27].
The effects of aerodynamics on the elastic structural waves’ propagation, are also present
in the literature [56–64]. J.W. Miles presents a work discussing the flutter of an isotropic
infinite panel in a two-dimensional incompressible flow [56], driving the wave speed relative
to the panel, identifying the flutter conditions versus the circular frequency. J.W. Miles also
studies the supersonic flutter of a cylindrical shell using the same approach [57]. Similar
investigations have been conducted by Olson [65, 66] on the supersonic flutter of shells. Olson
[65], discusses also the use of the Piston Theory to model the auto-excited aerodynamic
influence on a shell. Some experimental works trying to reproduce flutter conditions for
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shells in a supersonic flow have been grouped and described by [67].
Benjamin analysed in [59] the three types of instabilities of laminar boundary layers over
surfaces, that might arise due to the flexibility. Similarly, to study the same infinite-plate
problem, Crighton & Oswell [60] develop an analytical model that described, in a neutral
stability zone, some highly unusual wave propagation effects. The effect of mean flow on
cylindrical structures has been then studied by [58] and [64], while sandwich structures have
been investigated by Sorokin et al. [68].

2.4 Elastic Waves in Periodic Structures

A plane free wave that propagates along a periodic structure is assumed to take the form
of a Bloch wave [69], as the one in Eq. 2.33:

ψr = e−iβrur (2.33)

where r is the distance vector, β is the propagation constant, ur is a spatially periodic
function.
The Bloch wave theory is largely employed in quantum mechanics and photonics crystal,
and has been progressively applied in phononic physics and engineering periodic structures
[69]. Bloch showed how electron wave functions (in crystals) have a basis consisting entirely
of Bloch wave energy eigenstates.
This reflect in periodic structures to exhibit pass–bands and stop–bands, in that each dis-
turbance can propagate freely only in specific frequency ranges, otherwise they decay with
distance [69–71]. Some of the first applications in mechanics concern infinite lattices of
spring-mass systems, and then the research is enlarged to bi-dimensional structures; a first
review and application of the Floquet-Bloch theory to mechanics is given by Brillouin [72].
Lately, a description of the Floquet-Bloch theory to the mechanics of more complicated
systems in a finite element framework, is given by Mead [73].
In the description of wave propagation characteristics, wave vectors can be expressed in
terms of the reciprocal lattice basis, also periodic; one can analyse the wave vectors just in
certain regions of the reciprocal lattice called First Brillouin zone [72]. A bi-dimensional
periodic structure with a unit cell of size Lx and Ly is illustrated in Fig. 2.11 with the
so-called Fist Brillouin Zone corresponding to the wavenumber space within [-π/Lx, π/Lx]
x [-π/Ly, π/Ly]. Given the symmetric properties in the reciprocal lattice, the wave analysis
can be restricted to the Irreducible Brillouin Zone (zone OABC in Fig. 2.11).
The wavenumbers versus frequency along the Irreducible Brillouin Zone form the band
structure, known as band diagram. The pass- and stop- bands of the free wave propagation
in the periodic media can be identified from the band structure/dispersion relation. For
bi-dimensional periodic structures, the stop band can be complete, if the specific wavemode
type is unable to propagate in any direction, or partial, is the wave type can still propagate
in one or more directions; the phenomenon is known also as wave beaming effect [75].
The stop bands mechanisms can be of different nature. The Bragg band-gap (scattering;
see [71]) is physically connected to the wavelengths of the disturbance being of the same
order of the periodicity scale. This creates a periodic impedance mismatch that induces a
destructive interference among impinging and reflected elastic waves in the periodic media.
On the contrary, resonance-induced stop-bands are connected to the resonance conditions
of locally attached (or embedded) resonant elements that are triggered around their nature
modal frequencies; The periodicity scale does not play a role in this case. Furthermore, it has
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Figure 2.11: A bi-dimensional periodic structure with rectangular unit cell and its
Brillouin zone [74].

been observed that unlike Bragg scattering which produces symmetric frequency-dependent
transmission functions, local resonances exhibit Fano-like transmission characteristics [74,
76]. The distinction between the two mechanisms has also been addressed from the point
of view of differences in wave shapes at stop band edges [77] and the nature of the spatial
attenuation profile downstream to the periodic media [78].

2.4.1 The Wave Finite Element Method

The Wave Finite Element method is a technique to investigate wave motion in one- dimen-
sional and two- dimensional periodic structures. In this method an elementary period of the
structure, that, reproduced in one or two dimensions, recreates the target periodic (or homo-
geneous) structure, is modelled using conventional finite elements. Assuming time–harmonic
motion, the dynamic stiffness equation of the elementary segment can be obtained; the ex-
traction of the stiffness and mass matrices in a classic FE form, is required [79]. Periodicity
conditions are then applied and an eigenvalue problem is formulated whose solutions give
the dispersion curves and wavemodes. Unlike the Spectral Finite Element approach [80],
does not require any analytical knowledge, case-by-case, of the shape functions of the ele-
ments. Conventional or commercial FE packages can be used for the scope, especially for
complex cases.
One of the very first applications of the method is the one of Orris and Petyt [81], where
a FE approach with a receptance method is proposed to simulate the dispersion curves of
periodic structures. Later, the free wave propagation in rail track is analysed by Thompson
[82] using a similar approach and by Gry then [83]. More recently, the one-dimensional
wave-based methodologies for the wave propagation and the forced response of waveguides
using a single periodic element, have been exploited [84, 85]. In the same context, the free
wave propagation in simple waveguides is analysed by Mace et al. [86] for the estimation
of energy and power inputs and group velocity. Waki et al. [87] apply the method for
predicting flexural wave propagation in a plate and exploited the numerical issues of the
method in [87].
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One of the first applications of a two-dimensional wave finite element method for evaluating
the propagation of elastic waves within cellular structures, such as a honeycomb plates is
given in [75]. Duhamel [88] also apply the WFE approach to evaluate the Green’s functions
of a bi-dimensional structure. Manconi et al. [79, 89, 90], develop and investigate the
two-dimensional WFE approach for the free wave propagation in isotropic and composite
panels. The method has also been applied for the estimation of loss factors in viscoelastic
laminated plates [91].
A Floquet-Bloch decomposition in a WFE framework has been proposed by Collet et al.
[92], where an enhancement of the classic formulations allows the analysis of periodic struc-
tures with complex damping configurations and materials, resulting for example from active
control schemes or the use of shunted piezoelectric patches. In addition, a stochastic wave
finite element formulation to analyse uncertain elastic media has been presented in [93].
The analysis of the free and forced wave propagation of systems with a piezoelectric patches
has also been investigated in [94]. Droz et al. [95, 96] and Zhou et al. [97, 98] develop a
modal order reduction technique to analyse complex heterogeneous periodic structures char-
acterised by many degrees of freedom in a FE framework. The methods make use of the free
bounded modes at cell scale, which are assumed to be periodically repeated following the
periodicity scale. Serra et al. [99] then presented a WFE formulation to analyse poroelastic
homogeneous media.
Some applications to curved structures have been recently developed in [90, 100–102], show-
ing how the method can be used also for the free and forced propagation along shells, by
rotating the translational degrees of freedom of the elementary cells.

2D Periodic Conditions

The wave finite element method is an FE-based method applicable to periodic structures.
The first step is to perform a FE discretisation of the unit cell and extract the mass and
stiffness matrices, M and K respectively. Classic meshing considerations for an appropriate
wavelength description are valid as in any FE framework. With reference to Fig. 4.1, the
dynamic stiffness equation of the segment can be written as:

[K− ω2M]q = Dq = f + e, (2.34)

where q, f and e are the vectors of nodal degrees of freedom (DoFs), internal and external
forces, respectively; D is the dynamic stiffness matrix. For periodic structures, assuming
time and space harmonic excitation, the periodicity conditions are translated in a magnitude
and phase link among each point belonging to the periodic pattern, based on complex
propagating constants for each elastic wave. Displacements and forces at any point of the
cell can thus be connected to the ones of a limited subset, exploiting periodic links, as
follows:

qA = IλY qF ; qR = IλXqL; q2 = IλXq1; q3 = IλY q1; q4 = IλXλY q1; (2.35)

with
λX = e−ikXLX , λY = e−ikY LY , (2.36)

where kX and kY are wavenumbers of the propagating wave in the periodicity directions X
and Y , while LX and LY represent the cell lengths along the same directions, respectively;
I is the identity matrix. Assembling in a block-diagonal form the periodicity condition
matrices, as in Eq. 2.35, a periodicity matrix Λ can be used to link the total displacements
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Figure 2.12: Example of a FE cell model with periodicity along the X-Y directions.

and forces vectors to a reduced subset of degrees of freedom. Pre-multiplying Eq.4.1 by
ΛH , where H stands for the hermitian operator, the dynamic stiffness matrix of the reduced
model (DS) is given by Eq. 4.2.

DS = ΛH[K− ω2M]Λ. (2.37)

Given the equilibrium of the internal forces between consecutive cells, only potential external
forces are considered [89], thus ΛHΛfr = 0.
The problem in Eq. 4.2, in absence of external forces, represents a three-parametric eigen-
problem in ω, λX and λY , that can be solved by imposing two of the variables at each
step [89]. In this way, the propagating wavemodes and the corresponding constants of
propagation can be derived.
The eigenvalue problem of Eq. 4.2 is here derived in the simpler case of an in-plane ho-
mogenised periodic cell (see Fig. 2.13), where the whole set of degrees of freedom (q) is
equal to:

q =


q1

q2

q3

q4

 =


I

IλX
IλY

IλXλY

q1 = Λq1. (2.38)

In this case, decomposing the dynamic stiffness matrix considering the four corners, Eq.
4.1 becomes: 

D11 D12 D13 D14

D21 D22 D23 D24

D31 D32 D33 D34

D41 D42 D43 D44

 ·


q1

λXq1

λY q1

λXλY q1

 = 0. (2.39)

At this stage, when the propagation constants are imposed and the frequency derived,
the problem becomes a standard linear eigenvalue problem. If one wavenumber and the
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Figure 2.13: Example of an in-plane (X-Y) homogenised FE cell model.

frequency are fixed, deriving the other one from Eq. 4.2, the problem becomes quadratic.
For example, exploiting Eq. 4.2 using Eq. 2.39, the following form is derived:

[(D11 + D22 + D33 + D44)λxλy + (D12 + D34)λx
2λy+

(D13 + D24)λxλy
2 + D32λx

2 + D23λy
2+

(D21 + D43)λx + (D31 + D42)λy + D14λx
2λy

2 + D41]q1 = 0

(2.40)

Solving the quadratic eigenvalue problem in λx or λy, the dispersion curves of the media
can be derived. Similarly, for a non-homogenised structure, as the one in Fig. 4.1, an
eigenproblem equivalent to the one in Eq. 2.40, can be derived starting from the following
equation:



DII DFI DLI D1I DAI DRI D2I D3I D4I

DIF DFF DLF D1F DAF DRF D2F D3F D4F

DIL DFL DLL D1L DAL DRL D2L D3L D4L

DI1 DF1 DL1 D11 DA1 DR1 D21 D31 D41

DIA DFA DLA D1A DAA DRA D2A D3A D4A

DIR DFR DLR D1R DAR DRR D2R D3R D4R

DI2 DF2 DL2 D12 DA2 DR2 D22 D32 D42

DI3 DF3 DL3 D13 DA3 DR3 D23 D33 D43

DI4 DF4 DL4 D14 DA4 DR4 D24 D34 D44





I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I
0 IλY 0 0
0 0 IλX 0
0 0 0 IλX
0 0 0 IλY
0 0 0 IλXλY




qI
qF
qL
q1



= 0.
(2.41)

1D Periodic Conditions

Considering a single repetitive substructure of a 1D periodic media (see Fig. 2.14), the
waves and their cross-sectional waveshapes (wavemodes) travelling in the structure can
be calculated by solving the eigenproblem which derives from imposing the 1D Floquet’s
conditions (periodicity). These are defined by imposing the equilibrium of the displacement
and forces among the common hypernodes of two subsequent periodic cells (see Fig. 2.14).
Damping can be modelled by viscous damping matrix and/or K being complex, as in this
case. In the following dynamic stiffness equations, the left and right side hypernodes are
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Figure 2.14: Two adjacent elementary cells of a waveguide.

defined with the letters L and R respectively.[
DLL DLR

DRL DRR

]{
qL
qR

}
=

{
FL
FR

}
(2.42)

where D = [ K - ω2 M]. For unit-cells involving complex cross-sections, a state vector
reduction can be used to reduce the computational effort [96]. It can be combined with
Craig-Bampton (CB) dynamic condensation method of the inner degrees of freedom in case
of structural periodicity [95].
Imposing continuity of displacements and equilibrium of forces at the interface between
adjacent points, and putting all in a matrix form, one can get the so-called Transfer Matrix,
T, [84, 85, 87, 89]. It relates the nodal displacements and forces (evaluated on the left side)
between two adjacent substructures, as in Fig. 2.14.[

T
]

=

[
−D−1

LRDLL D−1
LR

−DRL + DRRD−1
LRDLL −DRRD−1

LR

]
(2.43)

It has been demonstrated that the eigenvalues of the transfer matrix occur in reciprocal
pairs as , λ+

j = 1/ λ−j corresponding to pairs of positive (+) and negative (-) going waves,
respectively. The positive and negative going eigenvectors φ−j and φ+

j are associated with
the above eigenvalues and are called wavemodes, which are the displacement and force
distributions in the substructure section [85, 95, 103]. Every wavemode can be partitioned
into a sub-vector of DoFs, Φ+,−

q , and internal forces/moments, Φ+,−
f .

Positive waves are characterized by the magnitude of the propagating constant being inferior
to unity (|λ+

j | < 1), which means that if the wave propagates, its amplitude must decrease
in travelling along the positive-defined directions.
A transformation between the physical domain, where the system behaviour is described
in terms of q and f , and the wave domain, where the behaviour is described in terms of
waves of amplitudes a+ ans a− travelling in the positive and negative directions, is derived
through these matrices [104, 105]. In particular{

qL
fL

}
=

[
Φ+
q Φ−q

Φ+
f Φ−f

]{
a+

a−

}
(2.44)

Where a+,− are the wave amplitudes of the positive and negative going waves. The filtering
issues associated with the wave basis are deeply investigated in literature [84, 89, 106] and
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are not repeated here. At each frequency step, when and if new wavemodes cut-on, these
are included in the wavemode-basis.
The forced vibrations can be evaluated through the superposition of the direct and rever-
berant field. The first is the result of the excitation and the second is the incident wavefield.
The problem has been analysed in literature by different authors [105–107].

Waves’ Filtering

The proper selection of propagating waves can be done considering the imaginary part of
the propagating contant of each wavemode. The criteria are to be chosen case by case and a
well established method is still not available in literature. In the present work, the criteria
used can be summarized in the following way, considering α as a tolerance parameter:

imag|ki · LX | < α (2.45)

Where ki and LX are the wavenumber associated to the wavemode i and the spatial step
among the cells of the periodic structure. Physically this means considering the only con-
tribution, to structural response, of the propagating (or close-to) waves; at each frequency
step, when and if new wavemodes cut-on, these are included in the wave base.
However, a remark has to be made about this. The evanescent field might still have a
significant effect on the response around the excitation point (near field). On the other hand,
the effect is negligible as soon as we analyse the field far from the singularity. The ideal
criteria would select correctly the number of waves to retain in the wave base considering
also the distance from the excitation point.

2.5 Periodic Design Investigation

In transport industry, the requirements for light and stiff structures often lead to sand-
wich structural solutions. The design of the core of sandwich panels can induce different
anisotropies keeping a high stiffness-to-mass ratio. On the other hand, while a reduced mass
is an advantage for fixed structural resistance, it generally induces lower vibroacoustic per-
formance. Therefore, the design of sandwich panels for reduced acoustic radiation, limiting
the mass of the system, has received more and more attention in the last decades [108–111].
One of the main reasons for a larger acoustic radiation of sandwich panels is the shear core
effect in the mid-frequencies [108–113]; the transition from global bending to core shear
is fundamental [114]. The effects of this wavemode transition has been investigated by
describing panel using an equivalent shear core [115–117].
Some authors tried to design the core geometry in order to optimize the sound transmis-
sion. Palumbo et al. [118] and Grosveld et al. [119] proved experimentally the increase of
vibroacoustic performance of honeycomb-cored sandwich plates when periodical voids and
recesses are included in the core original geometry. While this approach creates regions
of reduced bending stiffness, a strong benefit is observed in the sound transmission loss
for large frequency bands. A brilliant work was also proposed by Hambric et al. [120]; a
complex structural honeycomb panel is optimised by altering the original design, targeting
a different the bending wave speed in the media versus the acoustic one. In [113] the suit-
ability of orthotropic cores is investigated to exploit directivity properties of an incident
pressure field as compared to the performance obtained with isotropic cores; in particular
those having a trusslike geometry are investigated to control the core stiffness along two
orthogonal directions in a decoupled manner.
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With the arise of new numerical approaches that imply the periodic structure theory (as
the Wave Finite Element Method), some topological design researches have been conducted.
Baho et al [121], for instance, used a wavemode energy method, coupled with a wave as-
surance criterion (WAC), to predict the transition frequency of honeycomb panels modelled
using a single periodic cells. In addition, the core geometry effects on the shear-core tran-
sition and sound transmission loss of honeycomb sandwich plates, are investigated in [122].
Zergoune et al. [122] show the transmission loss sensitivity to most of the classic topological
parameters of honeycomb cored sandwich panels, such as angles between walls, thickness
and deformation of hexagonal core cells. Similarly, sandwich panels with arbitrary shaped
core are studied in [123]. Again, a comparative study of periodic cells that share the same
mass-to-stiffness ratio, is performed to achieve a significant variation of the transition fre-
quency and modal density, compared to classic honeycomb.
Alternative approaches, are connected to the use of periodically distributed resonant ele-
ments on a host plate [124–127]. Even though, in this case, the addition of mass cannot
be avoided, some difficulties persist in targeting broadband enhancements of the acoustic
performance of the panels. Particularly interesting is the work from Liu et al. [126] which
focuses on tuning spring-mass elements (the resonators) around the first coincidence region
of the original panel to avoid the transmission loss drop typical in those regions. However,
the work is mainly conducted, as for other works in the literature, for simplified excitation
models or single acoustic plane-waves. Differently, the resonators are also used to target the
ring frequency of shells, which is typically a tonal problem [127].

2.5.1 Periodically Ribbed Structures

The presence of axial and ring stiffeners on aircraft fuselages, space launchers fairings and
submarines structures is a very common design choice. These solutions are widely used in
many engineering applications, ensuring a compromise between weight and high apparent
rigidity. Many works investigating the vibro-acoustic behavior of stiffened cylindrical shells
can be found in literature [128–134]. The response of ribbed panels under mechanical force
or fluid-load excitation is studied by different authors. In the context of fluid-loaded plates,
Mace et al. [135, 136] developed a plane-wave based approach to investigate periodically
stiffened plates.
Maxit et al. [137] investigated the flow-induced response of periodically stiffened plate in
the wavenumber domain, proposing also a discrete Fourier Transform to obtain the same
information in the physical space. A vibroacoustic analysis of stiffened composite panels is
shown in [138], in which the influence of the shape and the position of the stiffening elements
is analyzed.
Using the generalized nearfield acoustical holography, the calculation of the vibration and
of the sound radiation of a submerged cylinder excited by a point force is shown in [139];
the analysis was then extended in wavenumber domain in [140]. Photiadis et al. [141] in-
vestigated the acoustic response of a ribbed shell in the wavenumber domain, identifying
the flexural behavior in the mid-frequency range. Meyer et al. [142] experimentally inves-
tigated the influence of internal frames on the response of stiffened aluminum cylindrical
shells, focusing on the analysis of the effect of the non-axisymmetric frames on the radiation
efficiency.
Some works analysed the sound radiation of ring-stiffened shells as a function of the number
of stiffeners and their pitch [132, 143]. For example, Laulagnet et al. [143] treated the
sound radiation problem using stiffeners of hollow cross-section, to simulate real industrial
case-studies; tangential and radial forces are applied on the skins and the stiffeners and
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the fluid-structure interaction modelled using a modal decomposition. Lee et al. [144]
investigated the problem varying the angle of incidence of an acoustic plane wave excitation.
The circumferential stiffeners induce an increased sound transmission loss before the ring
frequency, that is simultaneously slightly reduced with respect to the one of the bare case.
On the contrary, shells with axial stiffeners are investigated in terms of acoustic radiation
in [145]. The presence of axial stiffeners is studied only in terms of additional impedance
and difference configurations are analysed by varying the number of axial stiffeners.

2.6 Thesis Novelties versus Literature

The main objective of this thesis work is to develop methods able to simulate the vibrations
and the radiated noise of periodic structural systems in a fast and accurate manner, inde-
pendently on the structural complexity, curvature, excitation model and mean-flow effects.
The minimum targets are to overcome the state-of-the-art in:

• The reduced flexibility and applicability of analytical approaches, valid only for simple
structural elements under specific load models.

• The computational cost issues associated with classic finite element based numerical
approaches .

• The reduced frequency bands of validity of energy-based approaches and find hybrid
approaches to account for complex periodic cell dynamics in an energy analysis context

• The complexity of accounting for mean-flow effects on complex-shaped structures

The basic idea is to use, as often done for the analysis of structural dispersion, periodic
cell approaches to reduce the modelling complexity and computational effort. However, this
requires a description, in a periodic framework, of a loading environment which follows non-
periodic schemes and/or different scales. In fact, as described previously in this chapter,
especially for complex-shaped structures, the main issue is to have an accurate description
of the structural mechanics at cell scale and link the periodic structural frameworks with a
totally random and non-periodic excitation environment.
Then, the final target of this thesis work is to apply the methodologies to investigate periodic
designs for enhanced vibroacoustic performance. In this context, the targets are:

• Provide design guidelines for existent core designs in sandwich panels, by using periodic
structure theory

• Investigate the effects of periodic design or stiffening of flat and curved structures
under complex loading conditions (i.e. aerodynamic)

• Investigate the effects of periodic add-ons (i.e mechanical resonators) on the flow-
induced response.
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Modelling the Flow-Induced
Vibrations with a 1D WFE Approach

In this chapter, the stochastic response of periodic flat and axial-symmetric structures un-
der random and spatially-correlated loads, is analysed. Wave-based formulations, in a FEM
framework, are developed to deal with a large variety of test-cases and coupled with a
transfer matrix method. Although giving a lower computational cost, the present approach
keeps the same accuracy of classic finite element methods. When dealing with homoge-
neous structures, the accuracy is also extended to higher frequencies, without increasing
the time of calculation. Depending on the complexity of the structure and the frequency
range, the computational cost can be reduced more than two orders of magnitude. The
presented methodology is here validated both for simple and complex structural shapes,
under deterministic and random loads.

3.1 The Proposed Method

The following approach is based on a combination of the transfer matrix method with a
wave finite element method for periodic structures. A new formulation is proposed in order
to deal with cyclic periodic structures.

3.1.1 The Transfer Matrix Method

The method uses a transfer matrix between the fluid excitation and specific target degrees
of freedom. This is built through the evaluation of the Green functions of each target
DoF. Assuming a field of interest v (displacement, velocity, acceleration, pressure etc.) the
response to the random load can be calculated as such:

Svv(xi, xj , ω) = Θv
T (xi, ω)SFF (ω)Θv(xj , ω) (3.1)

where Θv is the transfer matrix, which is a mxt matrix, and Svv is the matrix of the
auto/cross spectral densities of the field v. The value of t is associated to the target DoFs
while the value of m is dependent on the fluid mesh (wetted surface); Fig. 3.1 shows an
illustrative example. If, on the contrary, the excitation is distributed but deterministic, Eq.
3.2 can be used instead.

V (xi, ω) = LTv (xi, ω)PF (ω) (3.2)
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Figure 3.1: Illustration of degrees of freedom distribution in a transfer matrix framework:
target (t) degrees of freedom and wetted/loaded ones (m).

where V is the target quantity of interest, while PF is the matrix describing the pressure
load distribution.
This method gives an immediate advantage in the possibility to easily choose the value of
t depending on the analysis needs; it can be even one or the total number of DoFs of the
model.
It is important to point out that the values of t and m, apart from being flexible and
objectives oriented, are always inferior to the total number of degrees of freedom of the
whole FE model. Moreover, the non-wetted degrees of freedom do not increase the problem
size, even if included in the system dynamics when computing the transfer matrix, being
able to choose the values of t and m almost arbitrary.
The elements Θi,j

v of the transfer matrix are values of the transfer Green function between
the two points i and j. This work proposes to numerically calculate these elements through
the a wave-based technique, based on section 2.4, and the Maxwell-Betti reciprocal work
theorem; This theorem states that for a linear elastic structure subjected to two sets of
forces P and Q, the work done by the set P through the displacements produced by the set
Q is equal to the work done by the set Q through the displacements produced by the set P .

3.1.2 The Wave Finite Element Method (WFEM)

The adopted wave-based technique is a wave finite element (WFE) method applicable for
homogeneous and periodic structures, based on section 2.4. The method makes use of the
periodic conditions to derive, through an eigenvalue problem, the wavemodes of the periodic
media. The solution is based on a wavemode approach, in which the problem is analysed
through the superposition of different wavefields, [72, 73, 87, 89]. The method perfectly fits
our need to calculate the Green functions due to its flexibility.
Considering a single repetitive substructure of our periodic media, the waves and their
cross-sectional waveshapes (wavemodes), travelling in the structure, can be calculated by
solving the eigenproblem which derives from imposing the Floquet’s conditions (periodicity).
In the 1D case the periodicity conditions are defined by imposing the equilibrium of the
displacement and forces among the common hypernodes of two subsequent periodic cells
(Fig. 2.14).
Starting from the dynamic stiffness matrix problem of a partial assemble of cells, reordering
the DoFs so that internal, left and right nodes’s degrees of freedom are properly separated,
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one can move to the eigenvalue problem imposing the periodic conditions, assuming time
and space harmonic excitation. Damping can be modelled by viscous damping matrix C
or by K being complex. In the following equations, the left and right side hypernodes are
defined with the letters L and R respectively:Dll Dlr Dli

Drl Drr Dri

Dil Dir Dii



qL
qR
qI

 =


FL
FR
FI

 , (3.3)

where D = [ K - ω2 M]. Condensing the internal degrees of freedom (I), substituting the
third equation of Eq. (3.3), in the first two, one obtains his base-work equation:[

DLL DLR

DRL DRR

]{
qL
qR

}
=

{
FL
FR

}
, (3.4)

with:

DRR = Drr −DriD−1
ii Dir

FR = Fr −DriD−1
ii FI

DLL = Dll −DliD−1
ii Dil

FL = Fl −DliD−1
ii FI

(3.5)

where B stands for cell boundary, left or right. Eq.(3.5) is general, but in the cases here anal-
ysed, the forces on the inner nodes are considered null. This is valid within the framework of
homogenized structures and it is used in this work for validation purposes. Other techniques
can be used to condense the inner nodes, as a Craig-Bampton (CB) dynamic condensation
method. This is strongly suggested for complex cross-sectional shapes [95, 96, 146].
Imposing continuity of displacements and equilibrium of forces at the interface between
adjacent points and putting all in a matrix, the Transfer matrix, T, can be derived, [84, 85,
87, 89]. It relates the nodal displacements and forces (evaluated on the left side) between
two adjacent substructures:

T =

[
−D−1

LRDLL D−1
LR

−DRL + DRRD−1
LRDLL −DRRD−1

LR

]
. (3.6)

It has been demonstrated that the eigenvalues of the transfer matrix occur in reciprocal
pairs as λ+

j = 1/ λ−j corresponding to pairs of positive (+) and negative (-) going waves,
respectively, [72, 73, 89]. The positive and negative going eigenvectors φ−j and φ+

j are asso-
ciated with the above eigenvalues. These eigenvectors are referred to as wavemodes, which
are the displacement and force distributions in the substructure section [85, 96, 103]. Every
wavemode can be partitioned into a sub-vector of DoFs, Φ+,−

q , and internal forces/moments,
Φ+,−
f .

Positive waves are characterized by the magnitude of the propagating constant being inferior
to unity (|λ+

j | < 1), which means that if the wave propagates its amplitude must decrease
in travelling. If |λ+

j | = 1 then the time average power transmission in the positive direction
is evaluated to select the positive and negative going waves.
A transformation between the physical domain, where the system behaviour is described
in terms of q and f , and the wave domain, where the behaviour is described in terms of
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Figure 3.2: The rotation of the global reference into the local one in each location and
layer of the cell.

waves of amplitudes a+ ans a− travelling in the positive and negative directions, is derived
through these matrices [95, 105, 146]. In particular{

qL
fL

}
=

[
Φ+
q Φ−q

Φ+
f Φ−f

]{
a+

a−

}
(3.7)

where a+,− are the wave amplitudes of the positive and negative going waves. It is important
to emphasize that the wavemode-basis needs a filtering process to avoid numerical issues in
the analysis. This is mainly addressable to the presence of waves which do not propagate
in a certain frequency range but which are still present in the base as complex or purely
imaginary wavenumbers. Mantaining these components in the wavebase is not a conceptual
mistake but it generally gives numerical conditioning. Physically, this means considering
the only contribution, to structural response, of the propagating or close-to propagating
waves. At each frequency step, when and if new wavemodes cut-on, these are included in
the wavemode-basis.

3.1.3 Curvature Simulation

In the present thesis, a WFE formulation is presented in order to deal with complex axial-
symmetric structures. The main issue of the standard WFE approach relies in the complex-
ity in dealing with axisymmetric non-cylindrical structures since each subsection is different
from the previous one. Moving along the rotation axis, each point behaves on a circumfer-
ence of different radius, or complex shapes.
The first idea is to simulate the curvature of our substructure through the rotation of the
degrees of freedom at the borders, as shown in Fig. 3.2, [101].
A rotational matrix r is defined and assembled in a block diagonal matrix, Rot. It is
intended to be done for each curvature; in this case a single curvature is considered.

Rotj =


rj 0 . . . 0
0 rj . . . 0
...

...
0 . . . rj

 (3.8)
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As in Fig. 3.2, the curvature simulation must be made for every layer composing the
elementary cell. Each layer can have a different nature and even fluid-structure coupling at
cell scale can be included if fluid layers are present [89].
Hence the mass and stiffness matrices of the curved waveguide are obtained from the flat
ones:

M = RotTj MflatRotj

K = RotTj KflatRotj .
(3.9)

Imposing the periodicity conditions, the wave propagation is automatically considered along
the curved path and the results are circumferential wavemodes; the waves analysed along
the locally curved reference (X’ in Figs. 3.2) are circumferential and/or helical waves.
Moreover, considering the relationships among arcs and angles, one can analyse the wave
propagation using the circumferential wavenumber and the angular distance between points
(Eq. 3.10). This is useful since, for tapered structures, different points run different lengths
along the curved path, causing some technical issues.

λθ = e−ikθ∆θ (3.10)

where kθ=kxR=kx∆x/∆θ is the circumferential wavenumber and ∆θ is the angular distance.
It is worth to emphasize that the curvature simulation, showed here, aims at connecting
the edge sections of the unit cell through a curved (discrete) system of coordinates. If
point of inflections are present at cell scale, depending on the structure to be described, two
approaches are possible, once the cell is modelled with the inflected parts. In one case, the
wave propagation can be analysed along the global X-Y axes, simulating a flat waveguide
with inflected sections. Otherwise, the cell curvature can be simulated using the nodal
coordinates, even the ones belonging to the inflected part of the cell, to evaluate the local
rotation of the coordinate system to be simulated; this is translated in a rotation matrix in
Eq. 3.9.

3.2 Forced Vibrations for a Punctual Load

With reference to Fig. 3.3, the forced vibrations in a response point can be evaluated
through the superimposition of the direct and reverberant field. The first is the result of
the excitation and the second is the incident wavefield.

3.2.1 The Direct Field

Recalling Section 2.4, lets write the continuity of displacements and the equilibrium of the
force at the excitation point using the wave-base expansion, from which we can rewrite the
equilibrium equations in matrix form:[

Φs+
q −Φs−q

Φs+
f −Φs−f

]{
e+

e−

}
=

{
0

fext

}
(3.11)

where e+,− is the vector of the amplitudes of the wavemodes. They define, in other words,
the direct wavefield in a wave-basis framework. The inversion of the above left-hand side
matrix can lead to numerical errors, especially for complex structures and cell shapes [87,
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Figure 3.3: Waves in a finite waveguide excited by point load.

106]. Exploiting the orthogonality of the left and right eigenvectors, avoids this numerical
issue; pre-multiplying both sides of the previous equation by the matrix of left eigenvectors
properly rearranged [87, 106, 147]:{

e+

e−

}
=

{
Ψs+

f fext
−Ψs−f fext

}
(3.12)

This, of course, requires a left-eigenvalue problem, whose eigenvectors are Ψs+,−
f , to be

solved too. Fig. 3.3 can be used as illustrative reference.

3.2.2 Waves at Boundaries

Waves incident upon boundaries are partially reflected, transmitted and absorbed. Instead,
in the case of elastic boundary conditions, an incident wave is only reflected, without any
transmission. In Fig. 3.3 this is illustrated with d−,+ and c−,+, at the edges of the structure.
Considering a generic wave of amplitude h+ travelling in the medium, we can model the
reflection and the subsequent opposite-going wave amplitude, h−, with the use of reflection
matrices at boundaries. Given R as the matrix of reflection coefficients, which depends on
the type of constraint, the wave problem at the boundaries can be expressed as h+,− =
Rh−,+. Each boundary condition can always be expressed in the form: Af + Bq = 0.
Substituting the wave base expansion for forces and displacements [105, 106]:

Rright = −
(
AΦs−f + BΦs−q

)−1(AΦs+
f + BΦs+

q

)
Rleft = −

(
AΦs+

f + BΦs+
q

)−1(AΦs−f + BΦs−q
) (3.13)

where the matrices A and B are dependent on the type of constrain, as said. In the case of
force-free boundaries, for example, A = I and B = 0.

3.2.3 The Scattering Matrix

If some discontinuities, such as linear or complex joints, are reached by the waves, the
scattering properties become largely impactive on the structural behaviour. Considering
a junction as in Fig. 3.3 one can analyse the scattering properties taking into account
the waves in the first and second waveguide, in terms of incident and outgoing (reflected
and transmitted) wave amplitudes along the junction itself [148, 149]. In Fig. 3.3 this is
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illustrated with b−,+1 and b−,+2 , at the edges of the structure. The scattering matrix s can
be defined taking into account what just said and thus has the following expression{

b−1
b+

2

}
=

[
s1 s2

s3 s4

]{
b+

1

b−2

}
(3.14)

where the scattering matrix has been splinted in four matrices: s1 and s4 represent transmis-
sion matrices, while s2 and s3 represent reflection ones. The joint is assumed to be infinite
in the direction normal to the propagation one and is modelled using finite elements. This
assumption does not affect the results even for finite-size structures. It is to be underlined
that there is no restriction on the type of FE model to be used for the joint.
Condensing the FE of the junction to the borders and express the dynamic equation of
the junction as condensed to its edges, one gets Eq. 3.15. Typical methods are static
condensations or a component mode synthesis [95, 97]. If internal forces are present, these
can be substituted by structurally equivalent forces at the joint interface.

DJ QJ = FJ (3.15)

where QJ and FJ are the vectors of dofs and nodal forces of the joint to its borders.
Since the force and displacement vectors at the borders of the joint are in common with the
two waveguides, they can be expressed in wave base using the wavemodes of each periodic
substructure. Imposing the continuity and equilibrium conditions for the joint and using
the eigenvectors of the two waveguides incident on the joint, the displacements QJ and the
force field FJ can be expressed in a wave-basis:

QJ =

[
Φ1,+
q b+

1 + Φ1,−
q b−1

Φ2,+
q b+

2 + Φ2,−
q b−2

]
(3.16)

FJ =

[
Φ1,+
f b+

1 + Φ1,−
f b−1

−Φ2,+
f b+

2 − Φ2,−
f b−2

]
. (3.17)

Substituting the previous equations in the equilibrium equation of the joint (Eq. 3.15),
condensed to boundaries, the scattering matrix can be obtained straightforwardly.

s =

[
−DJ

[
Φ1,−
q 0
0 Φ2,+

q

]
+

[
Φ1,−
f 0
0 −Φ2,+

f

]]−1 [
DJ

[
Φ1,+
q 0
0 Φ2,−

q

]
−

[
Φ1,+
f 0
0 −Φ2,−

f

]]
(3.18)

The inversion in the previous equation can cause numerical instabilities and the use of the
left eigenvalues is required [148], as in the case of section 3.12. It should be underlined that
the actual description is applicable also for lap joints, L-shaped, T-shaped or more complex
junctions, as deeply investigated in [105] and [148].

3.2.4 Waves Propagation

Moving in the medium, the amplitude of all the waves changes, depending on the distance
and the wave characteristics itself.
Their variations can be derived by applying the definition of propagation constant. For
instance, if the waveguide has n wave components, the waves amplitudes at two points,
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distant "x" apart, are given by: h+ = Tr s+, where Tr is the wave propagation matrix. It
can be expressed as:

Tr(x) = diag
(
e−ik1x, e−ik2x, . . . , e−iknx

)
(3.19)

All the elements of the wave propagation matrix have a magnitude less or equal to the unity,
by definition.

Waves’ Amplitudes link in the Waveguide Using again Fig. 3.3 as reference we can
evaluate the amplitude of waves in the reference point. The following is the set of equilibrium
equations, made of algebraic equations in matrix form. At the excitation location, one can
sum the incident and direct field:

a+ = e+ + g+; g− = e− + a− (3.20)

At boundaries, instead, the following reflection relations are valid (see Fig 3.3):

c− = Rrightc
+; d+ = Rleftd

− (3.21)

At the same time, along the waveguide, the following propagation relations hold:

g+ = Tr(xf )d+; d− = Tr(xf )g−; a− = Tr(L− xf )c−; c+ = Tr(xf )a+. (3.22)

3.2.5 Incident Field and Waves Superposition

Once the amplitudes of direct wavefield are known, the amplitudes of the waves can be
calculated at a given response point by considering the excitation, reflection and propagation
relations. Using again Fig. 3.3 as reference, the amplitude of waves in the reference point
can be calculated.
In general, the structures might not be fully periodic. It might happen, however, that the
entire structure can be identified as the sum of periodic parts connected through joints.
In these cases, the technique presented above can still be considered valid if the scattering
around the joint is taken into account.
Now, using all the previous equations the wave amplitudes can be evaluated in the driving
point, in this case, the excitation location. Before doing that the scattering equation can
be solved obtaining the values of the incoming and out-coming waves at the joint:

b+2 =
[
I− s4Tr(L2)RleftTr(L2)

]−1[s3Tr(L1 − xf )
]
a+ (3.23)

b−1 = s1Tr(L1 − xf )a+ + s2Tr(L2)RleftTr(L2)b+2 (3.24)

with L1 and L2 the lengths of the first (left) and second (right) waveguide, xf the position
of the force. The following form of the wave amplitudes is derived, assuming, in this case,
that the force is applied, for example, on the first waveguide:
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Figure 3.4: Waves in an axial-symmetric jointed structure excited by a point load

a+ =
[
I−Tr(xf )RleftTr(xf )Tr(L1 − xf )s2Tr(L2)RleftTr(L2)

[
I− s4Tr(L2)RleftTr(L2)

]−1

s3Tr(L1 − xf )−Tr(xf )RleftTr(xf )Tr(L1 − xf )s1Tr(L1 − xf )
]−1[

e+ + Tr(xf )RleftTr(xf )e−
]

(3.25)

a− = Tr(L1 − xf )
[
s2Tr(L2)RleftTr(L2)

[
I− s4Tr(L2)RleftTr(L2)

]−1

s3Tr(L1 − xf )− s1Tr(L1 − xf )
]
a+.

(3.26)

Finally, the response in the reception point can be then calculated applying the propagation
relations to the target distance, [105–107, 147].

3.2.6 An axisymmetric 1D-WFE formulation for wavefields along circular
paths

As previously done for flat waveguides, the response in a target point can be calculated
considering the superposition of an equivalent direct field and the reverberant one, taking
into account that, in the case of closed axial-symmetric structures, no real boundaries are
present, if impedance variations do not appear. For example, with reference to the scheme
in Fig.3.4, the same equations adopted in the case of a flat structure are valid and the
response in a target point can be expressed as:

a+ =
[
I−Tr(2π − θ1)s3Tr(θ1)−Tr(2π − θ1)s4Tr(2π − θ1)

[
I−Tr(θ1)s2Tr(θ1)

]−1

Tr(θ1)s2Tr(θ1)
]−1[

e+ + Tr(2π − θ1)s4Tr(2π − θ1)
[
I−Tr(θ1)s2Tr(θ1)

]−1
e−
]
(3.27)
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Figure 3.5: Mesh adaptation scheme

a− =
[
I−Tr(θ1)s2Tr(θ1)

]−1[
e− + Tr(θ1)s1Tr(θ1)a+

]
− e− (3.28)

Eqs. (3.27) and (3.28) represent the general solution when an impedance variation is also
present on the circumferential wave-path. In the case the axisymmetric structure is homo-
geneous, or simply there is no variation of impedance, Eq. (3.27) and (3.28) remain the
same, while the values of the sJ (J =1,. . . ,4) matrices change in zeros and identity matrices
since a full transmission must be simulated. For example, in the case of closed axisymmetric
structures with no impedance variations, no scattering is present and assuming a ∆θ>0, the
reverberant field is simply given by:

g+ = Tr(2π)b+ g− = Tr(2π −∆θ)b−. (3.29)

3.2.7 Variable mesh for Homogenised Layers

The use of the WFE approach gives many advantages in building the transfer matrix Θv.
In particular, in Eq.(3.19), it is clear how the wave propagation can be taken into account
using an analytic (non-discretised) system of coordinates; the coordinate system is not
forced to respect the mesh spacings. This opens to the possibility of using variable meshes
in the periodicity direction, evaluating the response in more intermediate point which do
not strictly belong to the starting FE mesh. The value of m, connected to the mesh size on
the wetted (external) surface, can be changed frequency-by-frequency imposing a different
spatial step (∆y), allowing a strong save in computational cost, with respect to the cases in
which the mesh is initially set on the finest value. The size of the transfer matrix is, then,
tuned on the fluid wavelength variation (i.e. versus the frequency of interest). In Fig. 3.5, a
simple scheme illustrating this operation, with g as an integer generally comprised between
6 and 10 to correctly describe the desired wavelength.
A single coarse substructure can be used to analyse the dynamic problem to higher fre-
quencies, instead of creating a finer representation of it through FE codes. The immediate
results of this approach are evident when dealing with the stochastic response to random
load. First of all the aliasing frequency moves forward enlarging the frequency range of
accuracy for the approximation in Eq.(2.27). Then, given a frequency range of analysis, the
computational advantage is higher and higher approaching the lower frequency limit of the
band, since an equivalent coarser grid can be considered. In a next section, the effects of
this numerical property is shown with a specific test-case.
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Figure 3.6: Simple representation of two in-plane jointed waveguides

3.3 Results for Deterministic Load

The above-described wave based methodologies are the instrument to calculate the Green
functions of each target degree of freedom with respect to the wetted points, which are the
nodes where the stochastic load is translated. The validation of the forced response to point
load for flat structures, i.e. panels, using the standard WFE technique has been already
done by many authors in literature [84, 85, 87, 89, 105] and is reproduced here only for the
enhanced formulations that have been developed for jointed and periodic structures with
cyclic periodicity.

3.3.1 Results for periodicity along a rectilinear direction

In this section, a series of results are presented to assess the accuracy of the presented
methodology.
The validation of the forced response to point load for flat structures, i.e. panels, using the
standard WFE technique has been already done by many authors in literature [84, 85, 87,
89, 105].

In-plane Jointed Panel

With reference to Fig. 3.6, two isotropic panels are considered; they are waveguides, con-
nected through a 2D in-plane junction, discretised using FE. Free-Free boundary conditions
are implemented.
The proposed hybrid method is used to analyse the vibrations on the first (left) waveguide
for a point force applied on the other panel domain. The FE model of the junction has been
condensed to the borders using a static or dynamic condensation [95, 97].
As noticeable in Fig. 3.7 the accuracy of the present method is excellent in the whole
frequency range of analysis.

Stiffened Cylinder with non-Periodic Holes

With reference to Fig. 3.8 , a doubly- stiffened cylidrical model is considered as a waveguide
but connected through a complex junction. The idea is to simulate, even if in a simplified
model, the presence of windows in aircraft fuselages. This specific part, so, is modelled
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Figure 3.7: Nodal mobility on the first waveguide for a point load in the second one (see
Fig. 3.6). The reference solution is calculated using FEM. Boundary conditions: Free-Free.

Table 3.2: Cylinder Geometry

Length 4.2 m
Diameter 2.8 m

Skins Thickness 4.0 ·10−3 m
Frames Thickness 7.0·10−3 m

using FE and condensed to the borders using a CB (Craig-Bampton) method, retaining 200
modes.
In particular,the skins are modelled using a composite material whose data are available in
Table 3.1, while the frames and the stiffeners are in aluminium. The model is periodic and
composed of 37 identical substructures. Solid elements are used to model as the skins and
frames, while the stringers are modelled using beam elements.

Table 3.1: Material constants for cylinder skins

Ex Ey Gxy νxy Layup
125 GPa 12.5 GPa 6.89 GPa 0.38 [0, 90,+45,−45, 0]sym

Table 3.3: Hat-Stiffener Geometry

Height 3.0 ·10−2 m
Thickness 5.0 ·10−3 m

Upper Width 2.0 ·10−2 m
Lower Width 3.0 ·10−2 m
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Figure 3.8: Two waveguides (stiffened cylinders) connected with a complex junction in
between.
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Figure 3.9: Nodal mobility on the first waveguide for a point load (see Fig. 3.8). The
reference solution is calculated using FEM. Boundary conditions: Simply-Supported at the

edges.
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Figure 3.10: Axial-symmetric Models analysed - (a) Conical; (b) Cylindrical; (c) Complex
- SYLDA

Table 3.4: Axial-symmetric models geometrical parameters

Data Conical Cylindrical Complex - SYLDA

Length [m] 0.20 0.6 0.40
Diameter at x = 0 [m] 0.20 0.40 0.15
Diameter at x = L [m] 0.40 0.40 0.34
Diameter at x = L/2 [m] 0.30 0.40 0.29

Skin thickness [mm] 4.0 4.0 7.0

The results in Fig. 3.9 show a good accuracy in the whole frequency range even if the
numerical issues that arise in complex cases like this are exponentially higher due to the
inversion of the scattering matrix and the wavemodes filtering of such an heterogeneous
model

3.3.2 Results for periodicity along a circular direction

Three basic axisymmetric geometries are analysed: cylinder, cone and a complex assembly
of them (Fig. 3.10). The latter is a scaled model of the SYLDA (SYstème de Lancement
Double Ariane) structure, generally used in the Ariane V launcher for multiple simultaneous
launch [103]. In any case, the structures are homogenized and made in aluminium. For sake
of completeness, the geometrical properties of the models are reported in Table 3.4.
A full FE model is used in each case, as a reference, to compare and validate the numerical
results. All the structures in Figs. 3.10 and 3.11 are modelled and the mass and stiffness
matrices are extracted using a commercial code (ANSYS). In Fig. 3.12, 3.13 and 3.14, the
frequency response functions, in different specific points (∆x and ∆θ the axial and circum-
ferential coordinates, with respect to the point of application of the force), are compared
for the present method and the full FEM. Both circumferential and coupled modes, typi-
cal for axial-symmetric structures, are identified and precisely described (Fig. 3.15) and it
is evident how the proposed methodology provides very accurate results with the highest
relative error, inside the whole frequency band, inferior to 10−2 dB.
A case with impedance variations along the circumferential path of the axisymmetric struc-
ture is also analysed. The structure is a simple aluminium cylinder/ring with a section of
different thickness, as shown in Fig. 3.16. The results, shown in Fig. 3.17, for a single point
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Figure 3.11: The relative substructures of the axial-symmetric models - (a) Cylindrical;
(b) Complex - SYLDA
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Figure 3.12: Mobility on the cylindrical model [dB ref. 1 m/s] - Numerical comparison
between the present technique (formulation for curved wave paths - θWFE) and the full

FEM for a point load excitation.
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Figure 3.13: Mobility on the conical model [dB ref. 1 m/s] - Numerical comparison
between the present technique (formulation for curved wave paths - θWFE) and the full

FEM for a point load excitation.
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Figure 3.14: Mobility on the SYLDA model [dB ref. 1 m/s] - Numerical comparison
between the present technique (formulation for curved wave paths - θWFE) and the full

FEM for a point load excitation.
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Figure 3.15: The circumferential and coupled modes for the SYLDA test-case; (a) 229.6
Hz, (b) 357.2 Hz, (c) 640.2 Hz, (d) 984.5 Hz

Figure 3.16: A cylindrical structure with impedance variations along the circumference.

load, are computed using Eqs. 3.27 and 3.28. The reference solution, again, is a full FEM
computation. The results are in good agreement.
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Figure 3.17: Nodal displacement on the model shown in Fig. 3.16 [dB ref. 1 m] -
Numerical comparison between the present technique (θWFE) and the full FEM for a

point load excitation.

3.4 Results for Stochastic Load

In this section, a series of results for flat ad axial-symmetric structures under aeroacoustic
load are presented to assess the accuracy of the presented methodology. It is worth to
remind that, using the transfer matrix method, the accuracy validation of the deterministic
response leads also to the validation of the stochastic one. In each of the following cases a
10-elements per minimum wavelength mesh is used for convergence purposes.

3.4.1 Flat Panel under TBL excitation

A flat panel is considered, whose geometrical parameters are in Table 3.5, under a turbulent
boundary layer load (Corcos model; αx = 0.15; αy = 0.77; Uc = 120 m/s). The panel is
made in aluminium: E = 7.0 1010 Pa, ρ = 2750 kg/m3, ν = 0.33 and 1% of structural
damping. The analytic solution is used as a reference and a comparison between a full FEM
and the proposed method is shown. The analytic approach can be developed only for a flat
rectangular panel simply-supported to the edges under a Corcos TBL model, as it is in this
case. The final equation is here shown for more clearness [7]:

Sww(xa, ya, ω) =
∑
j

∑
n

[Ψj(xa, ya)Ψn(xa, ya)

ZHj (ω)Zn(ω)γjγn

]
AQjQn(ω) (3.30)

where Ψj is the jth analytic mode shape, γj is the generalized mass coefficient for the same
mode order, Zj is the dynamic structural impedance and AQjQn is the well-known joint
acceptance integral.
The numerical load approximation in Eq. (2.27) is used for both the full FE model and the
WFE-based. The mesh sizes are so that the aliasing frequency is 2000 Hz and the critical
frequency is 580 Hz. The response is computed in any point of the mesh grid. Fig.3.18
reports the comparison of the results for a specific grid point. The present methodology,

Flow-Induced Vibrations and Noise in Periodic Structural Systems 64



Chapter 3. Modelling the Flow-Induced Vibrations with a 1D WFE Approach

Table 3.5: Panel geometrical parameters

Panel Geometrical Data

Length stream-wise (x) [m] 0.36
Length cross-wise (y) [m] 0.20

Skin thickness [mm] 3.0

Table 3.6: Computational cost comparison for a flat panel to TBL load

Method Design frequency Elapsed time/frequency [sec]

FEM - Eq.(2.24) and Eq.(2.27) 6 kHz 82.65
WFE - Eq.(3.1) and Eq.(2.27) 6 kHz 3.25
WFE - TM and variable mesh 6 kHz in y; variable in x 1

through the use of a variable mesh, feasible due to the wave-based method coupled with the
transfer matrix in Eq. (3.1), calculated step-by-step in the frequency domain, extends the
accuracy even over the aliasing frequency. On the contrary, as expected, the FEM results
become more and more inaccurate above the aliasing frequency. A difference in the modal
content of the structural response between the analytic and numerical model is present. This
is addressable to the analytic model being developed to take into account the only bending
of the plate, while the FE-based methods, are modelled to take into account a more complete
behaviour. Obviously, the possibility to easily refine the solution mesh moves the aliasing
frequency to higher one. This explains the results enhancements versus the full FEM ones.
Moreover the present method is much faster than the standard one, thus giving a double
advantage for the analysis of these specific problems (Table 3.6). It is important to underline
that, if a variable mesh is used, the elapsed time per frequency is given by an average on the
whole frequency band, because the real time is very low when the computed frequency step
is far from the upper limit of the frequency band and increases as the frequency increases
up to the maximum frequency band. The flexibility of the method allows huge advantages
in the easier link among the structural and fluid mesh. It must be emphasized also that all
the degrees of freedom, which are not “wetted”, do not increase the problem size, but, at
the same time, the response can be calculated even in “non-wetted” points.
Damping does not affect the mesh sizes, thus the computational cost, but, on the other hand,
it can be modelled, in the framework of the dynamic stiffness matrix approach, through
frequency-depending matrices [84, 95, 150]. The method, however, has a drawback in the
eigenvalue problem, which must be solved at each frequency in order to obtain the wave-
modes of the periodic structure. This might be a problem with very complex industrial
structures, if an order reduction is not used.

3.4.2 Un-stiffened Cylindrical Structure under TBL load

The cylinder, described in Table 3.4, is used as a test-case here under TBL excitation, using
a Corcos model. A simple application of this model to a cylindrical model is still acceptable,
if the stream-wise direction is parallel to the axis of rotation and the cross-wise is assumed
to be the circumferential one [151]. The θWFE method is used and compared with the full
FE model.
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Figure 3.18: Analytic-Numerical results comparison for a flat panel subjected to TBL -
Auto Spectral Density in one point, [dB ref. 1 m/s].
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Figure 3.19: Numerical results comparison for a cylinder subjected to TBL - Auto Spectral
Density in one point, [dB ref. 1 m/s].

Flow-Induced Vibrations and Noise in Periodic Structural Systems 66



Chapter 3. Modelling the Flow-Induced Vibrations with a 1D WFE Approach

Table 3.7: Computational cost for a cylindrical structure to TBL load

Method Design frequency Elapsed time/frequency [sec]

FEM - Eq.(2.24) and Eq.(2.27) 1.25 kHz 287.2
θWFE - Eq.(3.1) and Eq.(2.27) Variable 1

Table 3.8: Material Data of the Lamina

EX [GPa] EY [GPa] ρ [Kg/m3] GXY [GPa] GXZ [GPa] νXY
129 8.25 1600 4.23 4.23 0.0192

In this case, the aliasing frequency is 1250 Hz and, as shown in Fig.3.19, the discrepancy
among the FE scheme and the present method increases above this frequency. This can
be addressed to the loss of validity of Eq.(2.27), which is circumvented with the present
method through the use of variable meshes. The results show a good agreement in the
whole frequency range, as expected, because, as previously stated, the validation of the
method of calculation of the Green functions guarantees the results for the stochastic cases,
assuming that the load description in discrete coordinates is correct.
It is worth underlining also the ease of use of this technique when dealing with pressure
loads since the local system of coordinates, which becomes the only reference (lagrangian)
when the curvature of the system is simulated, gives the chance of having always one axis
normal to the surface so the load translation into nodes is easier that the one needed for
classic FE methods and requires a lower size of the load matrix itself.

3.4.3 Stacking Sequence Effects on the TBL-induced response of a Shell

It is interesting now to compare different laminations for a composite laminate shell. In
fact, a different stacking sequence can lead to a different wave propagation along the shell
and thus a different vibration field for given excitation model. The set of configurations and
stacking sequences analysed are listed in Table 3.8 and 3.9. Each lamina is 0.425mm thick
and the laminate is composed by 8 layers, in each configurations. The 0◦ and 90◦ represent
fibres orientations corresponding to the axial and circumferential directions of the cylinder.
The choice of the sequences A and B, reported in Tab. 3.9, is justified by the need of having
higher axial or circumferential bending stiffness, while the configurations C and D, apart
from notching issues, that usually require ±45◦ orientations on the outside, is aiming at
inducing helical bending waves, which attenuate the excitation of the purely circumferential
and axial modes of the shell. Of course, the model must be purely cylindrical (not tapered)
to avoid pressure gradient effects which would un-validate the application of the Corcos
model. The convective speed is 180 m/s. The cylindrical model analysed is 0.2m long and is
3.4mm thick. The auto spectral densities of the radial velocity are averaged in four random
points and compared. Different cylinder radius are analysed: 0.36m in Fig.3.20, 0.2m in

Table 3.9: Stacking Sequences

A B C D

[902/04/902] [02/904/02] [±45/04/± 45] [±45/904/± 45]
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Figure 3.20: Numerical results comparison. Cylinder under TBL (Radius 0.36m) - Auto
Spectral Density averaged on four response points, [dB ref. 1 m/s].

Table 3.10: Stiffeners geometrical parameters

Data Circumferential Longitudinal

Height [mm] 10.0 4.0
Bottom Width [mm] 5.0 3.0
Top Width [mm] 2.0 2.5
Thickness [mm] 2.0 1.0

Fig.3.21, 0.12m in Fig.3.22. The results show that altering the lamination sequence the
structural modes shift in frequency. However, having kept the mass of the structure constant
(each lamina has the same density), the dynamic content in frequency is similar among the
cases, which would result in a similar radiated power. In fact Fig. 3.20 shows how, for
the configurations analysed, not much difference is observed. On the other hand, when
the radius of the cylinder is reduced, as in Fig. 3.22, it is clearer how the best result is
achieved with the configuration A, which is the stiffest in the stream-wise direction. This is
in accordance with the main energy content of the excitation being transported along the
stream-wise direction.

3.4.4 Stiffened Cylindrical Structure under TBL load

Singly and doubly stiffened cylinders are often used in many engineering areas, so a stiffened
structure is here considered for completeness. The structure is a build up of the cylinder
analysed in the previous case and a pattern of frames and stringers. The considered sub-
structure is shown in Fig. 3.23 and a condensation of the inner dynamics is performed
before applying the θWFE method. A Corcos TBL load model is used to simulate the
excitation of the outer surface and the response is calculated for all the nodes of the full
FE model with the present technique and the reference method (FEM). The stringers and
frames geometrical properties are described in Table 3.10.
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Figure 3.21: Numerical results comparison. Cylinder under TBL (Radius 0.20m) - Auto
Spectral Density averaged on four response points, [dB ref. 1 m/s].
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Figure 3.22: Numerical results comparison. Cylinder under TBL (Radius 0.12m) - Auto
Spectral Density averaged on four response points, [dB ref. 1 m/s].

Figure 3.23: The elementary substructure used to analyse the structural response using
the θWFE method
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Figure 3.24: Numerical results comparison for a stiffened cylinder subjected to TBL -
Auto Spectral Density in one response point, [dB ref. 1 m/s].

Table 3.11: Computational cost for a stiffened cylindrical structure to TBL load

Method Design frequency Elapsed time/frequency [sec]

FEM - Eq.(2.24) and Eq.(2.27) 1.5 kHz 197.8
θWFE - Eq.(3.1) and Eq.(2.27) 1.5 kHz 1

In Fig. 3.24 the agreement among the curves proves again the accuracy of the method, as
Table 3.11 proves the computational efficiency.

3.4.5 Complex Axisymmetric Structure under Diffuse Acoustic Field

A first analysis is conducted on the scaled model of the SYLDA presented in Figs. 3.10 and
3.11. The structures are homogenized and made in aluminium. For sake of completeness,
the geometrical properties of the models are reported in Table 3.4. However, due to gradient
effects, it is not completely correct to apply a Corcos model: an incident diffuse field (DAF)
is thus simulated. In Fig. 3.11, the relative substructure used within the present approach is
also shown. The DAF is often used to describe the TBL load in the low frequencies (i.e. load
description on a space launcher fairing during take-off and climb phases), overestimating
the effects for increasing excitation frequency.
Fig. 3.25 shows the comparison between a full stochastic FE method and the proposed
θWFE with the TM approach. No variable meshes are used in this case: as expected,
the two models are equivalent in terms of accuracy. Nevertheless the huge difference of
the computational cost is in Table 3.12. The use of the transfer matrix, in fact, strongly
increases the flexibility in terms of selection of the degrees of freedom, both for the target
and the wetted, while the wave-based method to evaluate the Green functions allows the
use of a reduced model for all the calculation steps.
In addition, a complex and tapered axisymmetric structure, similar to a space launcher
fairing (Fig. 3.26), is used as a second complex test-case. An incident diffuse field (DAF)
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Figure 3.25: Numerical results for the SYLDA models subjected to DAF load - Auto
Spectral Density in one point, [dB ref. 1 m/s].

Table 3.12: Computational cost for a complex axial-symmetric structure to DAF load

Method Design frequency Elapsed time/frequency [sec]

FEM - Eq.(2.24) and Eq.(2.27) 2.5 kHz 244.8
θWFE - Eq.(3.1) and Eq.(2.27) 2.5 kHz 1

Figure 3.26: A tapered axisymmetric structure, used as a test-case: full finite element
model (a); substructure in the framework of the proposed method (b).
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Figure 3.27: Numerical results comparison for a fairing-like structure under diffuse
acoustic excitation - Auto Spectral Density in one point, [dB ref. 1 m/s].

is simulated, instead, since it is often used to describe the TBL load in the low frequencies
(i.e. load description on a space launcher fairing during take-off and climbing phases),
overestimating the effects for increasing excitation frequency. In Fig. 3.26, the relative
substructure used within the present approach is also shown. The structure is made again
of aluminium.
Fig. 3.27 shows the comparison between a full stochastic FE method and the proposed WFE
with the TM approach. As expected, the two models are equivalent in terms of accuracy,
up to the aliasing frequency, where the full stochastic finite element model starts to lose
precision.

3.5 Conclusions

This chapter proposes a numerical methodology for the analysis of the flow-induced vibra-
tions of periodic and axial-symmetric structures. The approach involves a transfer matrix
to couple the translated load to the required (target) degrees of freedom. The method
through which the Green functions are calculated is a wave finite element method, reformu-
lated in the case of axial-symmetric structures to cope with complex and tapered shapes.
Impedance variations are also accounted in the model for rectilinear and circumferential wave
propagation. A dynamic or static condensation is also possible for complex cross-sectional
geometries.
While the analytic methods are limited to very simple cases and the standard FEM ap-
proaches can only cope with the low frequency range, the present method allows an exten-
sion of the FE-based numerical analysis of the flow-induced structural vibrations to higher
frequencies within the medium frequency range, for a given computational cost, or a re-
duced calculation time, given a frequency band of interest. The method uses FE matrices
extracted from any commercial code, thus has also the advantage of being able to use all
the available FE formulation.
Various test-cases are analysed in order to validate the methodology proposed. The transfer
matrix building (Green functions calculation) is validated for the axial-symmetric wave-
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based formulation, then, the stochastic response of cylinders and complex structures is
calculated. The method proves being accurate and much faster than classic FEM, by two
orders of magnitude. Depending on the complexity of the structure, the frequency range
of analysis and the number of degrees of freedom of the single substructure, the computa-
tional cost save can be even higher. The robustness of the technique is proved both with
uncorrelated and spatially-correlated loads. Moreover, the possibility to consider the wave
propagation through an analytic system of coordinates and, consequently, through the use
of variable meshes, gives huge advantages in extending the accuracy to higher frequency
bands (over the aliasing frequency) having, at the same time, a great save in CPU time.
The flexibility of the proposed method to link the structural and fluid meshes gives the possi-
bility of using a single substructure to analyse different test-cases. For a given substructure,
many parameters can be arbitrary set to specific values: the curvature, the mesh spacing
and extension of the structure along the periodicity direction. Within this framework, for
example, an entire class of cylinders can be tested by using a single FE model.
The presence of complex structural parts which are not excited does not increase the size
of the WFE problem even if the stochastic response can be easily evaluated in such points.
Differently, the standard FEM approaches would experience a strong increase in the number
of degrees of freedom of the problem.
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Chapter 4

The Prediction of the Flow-Induced
Noise using a 2D Periodic Cell

This chapter describes a methodology for computing the sound transmission loss of any flat,
curved and cylindrical, homogeneous and periodic structure, under any type of acoustic
and/or aerodynamic load. An approximate excitation model is introduced to reproduce un-
correlated and spatially-correlated loads using a wavenumber integration of surface waves.
Then, a wave finite element formulation is developed and interfaced with the excitation
models in order to cover industrially-relevant case studies. Analytical, numerical and exper-
imental transmission losses are presented for validation purposes. Finite size effects are also
taken into account using a spatial windowing and a cylindrical analogy, for curved struc-
tures. An investigation is carried out, under turbulent boundary layer excitation, versus the
wavenumber-based integration parameters and domains.

4.1 Introduction

Sandwich composite structures are extensively used in modern aerospace industry as well
as in the automotive, naval and civil ones because they are lighter and stronger than most
advanced panels in aluminium alloys. The anisotropy of such structures can be easily
modified by changing the material and the shape of the core, obtaining different wave
propagation properties. However, these types of structures are also known for having poor
vibroacoustic performances which, often, can result in higher interior noise levels. This
problem has a strong impact in many engineering areas, from space launchers to aircraft
fuselages. Strong efforts have been recently placed on advanced methodologies for the the
modelling of acoustic radiation of laminates and sandwich panels, since, classical models,
using for example the finite element method (FEM), lead to cumbersome computational
cost. Some FEM applications for the vibroacoustic analysis of simple structures, under
random aeroacoustic loads, are present in literature [6, 7, 20, 21, 24].
An efficient alternative in terms of computational cost is, for example, the transfer ma-
trix method (TMM). It is a general method used for the prediction of the propagation of
monochromatic plane waves in planar and multi-layered structures of infinite extent [35].
Many applications of the TMM to the modelling of sound trasmission of composite struc-
tures have already been validated [36, 37].
Finite size effects, important at low frequencies, can be included through appropriate cor-
rections, leading to a broadband accuracy of the method [38–40].
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Alternatively, the wave finite element method (WFE), specifically for homogeneous and
periodic structures, allows the modelling of just a single repetitive cell, applying on it the
periodicity conditions for a correct description of the entire (infinite) waveguide [72, 73, 89,
104, 107, 152]. The use of finite elements, for the cell description, enhances this method
allowing the description of any type of complex structural shape, even in case of curvature
[90, 91, 100, 101]. While mainly used for the analysis of the elastic waves’ propagation
in periodic media, the application of the WFEM for the sound transmission of sandwich
panels has been recently proposed, under a plane wave load [153, 154] or diffuse acoustic
load [33, 34], even though, to authors’ knowledge, no application is available for curved and
complex configurations, under general loads.
Within the frameworks of curved structures, alternative methods have also been presented.
A mathematical model, for the transmission of airborne noise through the walls of an or-
thotropic cylindrical shell, has been firstly proposed by Koval, [41–43]. For curved com-
posite laminates, the vibroacoustic problem has been further developed through a spectral
approach based on a discrete lamina description, [44, 45]. Other semi-analytic approaches,
based on a receptance method, have also been proposed in order to analyse the sound
transmission of aircraft panels with stringers and ring frames, [46, 47].
Periodic structures and innovative material configurations (often indicated as meta-materials),
on the other hand, can be used as frequency-selecting structures. The related waveguides,
because of their complex shapes, require a higher computational cost for an accurate nu-
merical simulation. In addition, the knowledge and the modelling of the correct operating
conditions are fundamental in automotive and aerospace applications. For example, when-
ever a convective flow is present, boundary layer models should be included for completeness.
None of the models in literature, at this stage, allows the analysis of complex structural pe-
riodic shapes, in presence of curvature and under aeroacoustic excitations, at the same time.
For example, in the work of Yang et al. [154] only infinite flat homogenised structures can
be analysed under plane waves’ excitation. On the other hand, in the case of curved struc-
tures, the work of Kingan et al. [155] is limited to a single plane wave excitation, once a
circumferential number is fixed; thus the sound transmission of complex curved structures
under stochastic excitation can not be obtained, in this case.
The novelty of the present work stands in overcoming some of these limits proposing a
methodology for dealing with a wider range of case-studies, under operational conditions:
space launcher fairings, fuselage panels, pipes, ducts and acoustic barriers. Periodic flat,
curved and cylindrical structural designs can be compared in terms of their vibroacoustic
performance, under any desired convective and acoustic load.

4.2 The Wave Finite element Method

A 2D periodic structure is composed by an assembly, along two arbitrary directions, of
identical elementary cells. Using any FE commercial code, the mass and stiffness matrices
of the cell, whenever complex, can be extracted and post-processed. Of course, since being
FEs, all classic meshing considerations for an appropriate wavelength description are valid.
With reference to Fig. 4.1, the dynamic stiffness equation of the segment can be written as

[K− ω2M]q = Dq = f + e (4.1)

where q, f and e are respectively the nodal vectors of degrees of freedom (DoFs), internal
and external forces; K, M and D are the stiffness, mass and dynamic stiffness matrices.
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Figure 4.1: Example of a FE cell model with periodicity along the X-Y directions. a)
Isometric view; b) Top view with nodes’ subsets.

As in chapter 2, a periodicity matrix Λ (see Eq. 2.41), can be used to link displacements
and forces in the periodic structure with a reduced subset of them (superscript red). A
reduced dynamic stiffness equation can be derived as:

DS = ΛH[K− ω2M]Λ. (4.2)

The linearity of the stress tensor with respect to the displacement field, in addition to the
periodicity relations, leads to an equilibrium of the internal forces between neighbouring
cells; thus only external forces are considered.
At this stage, different eigenvalue problems can be solved, if the target is the estimation of
the dispersion curves of the periodic structure, [89, 95].

4.2.1 Modal Order Reduction: A Craig-Bampton Scheme

The use of modal reduction is highly suggested for very fine meshes. In these cases, the
internal degrees of freedom, defined before as qI , are substituted by the modal participation
factors [96, 97]. Here an example of component mode synthesis (CMS) procedure, performed
at the cell’s scale, is shown. The aim of the CMS procedure is to achieve a significant
reduction of the number of inner DOFs, by replacing displacements with the local modes
of the cell. Here, the displacement vector q defined in Eq. 4.1, is partitioned into the
inner displacements, qIn, and boundary displacements, qB. In this specific case, since the
nodes belonging to the top and bottom of the cell are used for load translation, as shown in
subsection 4.2.3, qIn is a subset of the qI in Eq. 2.35. By using this division, Eq. 4.1 takes
the form of Eq. 4.3:([

KBB KBIn

KInB KInIn

]
− ω2

[
MBB MBIn

MInB MInIn

])[
qB
qIn

]
=

[
fB
0

]
, (4.3)

where fIn is zero, since no load is applied on this subset of nodes. The reduced basis involves
the static boundary modes ΨB and component modes ΨC .
In this way the final displacements vector can be re-written as:[

qB
qIn

]
= G

[
qB
PIn

]
; G =

[
I 0

ΨB ΨC

]
(4.4)
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Figure 4.2: Rotation of the local system of reference for each node of the periodic cell FE
model

where I and 0 are the identity and zero matrix respectively, and PIn is the set of retained
modal participation factors. The static boundary modes ΨB and component modes ΨC

can be derived from Eq. 4.5,

ΨB = K−1
InInKInB; (KInIn − ω2MInIn)ΨC = 0. (4.5)

In the Craig—Bampton (CB) approach, the modal selection is based on the lower resonance
frequencies. This method has been extended in a wave approach context, when the aim is to
capture the local deformed shape of the periodic unit cell. This means that the displacements
inside a unit-cell can be expanded on a subset of stationary modes [96, 97].
Finally the stiffness and mass matrices, that can be post-processed a-priori if curvature has
to be simulated (see subsection 4.2.2), can be written in the reduced set of coordinates using
the projection matrix G defined by Eq. 4.4:

MCond = GTMG

KCond = GTKG.
(4.6)

The set of retained modal participation factors, PIn, can be, then, statically condensed at
each frequency step.

4.2.2 Curvature Simulation

Curved structures deserve also some interest. Here a method, to take into account the
curvature effects, is presented. With reference to Fig. 4.2, the idea is to rotate the local
reference for each node belonging to the cell FE.
The procedure followed is the same as in Chapter 3 in Eq. 3.9. The waves analysed along
the locally curved reference (X’ in Figs. 4.2 and 4.3) are circumferential waves. Forcing
wavenumbers, imposed after Eq. 3.9, represent, in general, helical waves exciting the semi-
infinite cylindrical panel/shell (Fig. 4.3). It is worth to emphasize that the curvature
simulation, showed here, aims at connecting the edge sections of the unit cell through a
curved (discrete) system of coordinates. If point of inflections are present, at cell scale,
depending on the structure to be described, two approaches are possible, once the cell is
modelled with the inflected parts. In one case, the wave propagation can be analysed along
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Figure 4.3: Global and Local reference systems used for waves along curved structures and
shells. a) Global Cartesian reference; b) Local Curved Reference.

Figure 4.4: Illustration of an infinite the structure excited by a plane wave and radiating
sound.

the global X-Y axes, simulating a flat waveguide with inflected sections. Otherwise, the
cell curvature can be simulated using the nodal coordinates, even the ones belonging to
the inflected part of the cell, to evaluate the local rotation of the coordinate system to be
simulated; this is translated in a rotation matrix in Eq. 3.9.

4.2.3 Fluid-Structure Coupling

Let us assume a forcing wave impinging on one face of the structure, with an amplitude pI .
The structure, as a result, transmits and reflects waves in the fluid adjacent to the top and
bottom surfaces. On the excited side (subscript 1), the sound field is the superposition of
the incident and reflected acoustic sound waves, while, in the receiver side (subscript 2), it
is given by the transmitted waves. Assuming the X-Y as the plane of reference (Fig. 4.4
as example), a forcing acoustic pressure wave can be defined, on the surface of the cell,
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omitting the time harmonic dependence for simplicity, as (see Fig. 4.3a):

Flat Surface : PW = pIe
−i(kXX+kY Y−kZ,1Z);

Curved Surface : HW = pIe
−i(kXR sin Φ+kY Y−kZ,1R cos Φ);

(4.7)

where, kX , kY and kZ are the projections in the global X-Y-Z reference of the plane wave
(see Fig. 4.3a). Here, in the case of curved surfaces, as described also in subsection 4.2.2,
the assumed plane wave is approximated through its projection components on the locally
curved surface (Fig. 4.3b):

HW = pIe
−i(kX′X

′+kY Y−kZ′,1Z′) ≈ pIe−i(kθθ+kY Y−kRZ′); (4.8)

where kX′ kY and kZ′ are the wavenumber components in the new locally rotated refer-
ence (see Fig. 4.3b) and are directly proportional to the circumferential, axial and radial
wavenumber components, respectively. It is worth to emphasize that a typical decomposi-
tion in cylindrical waves, implying the use of Bessel functions, is not necessary when using
a locally rotated reference system as the one in Fig. 4.3b: Eq. 4.8 depicts helical waves in
cylindrical coordinates and the equivalent plane waves in cartesian coordinates, respectively
[89–91, 100].
From now on, the approximated representation of Eq. 4.8 is used independently on the
curvature of the structural model; for infinite radius of curvature (flat structure), the local
and global reference system coincide.
If in-plane homogeneous layers are assumed, the local wavenumber components kX and kY
are conserved along the structure, and the only parameter which can vary with the nature
of the fluid (or the excitation) is the k′Z component, derivable using the Helmholtz equation.
When non-homogenised periodic cells are considered, multiple harmonics are added to the
kX and kY terms [156]. In this framework, the multiple harmonics that arise for periodic
non-homogenised structures, are numerically accounted in the structural response of the
radiating side (subscript 2). In fact, when applying the WFE, discrete periodic conditions
are applied for the forcing (see Eq. 4.7) wavenumber couples kX and kY (see Eqs. 2.35, 2.36
and 2.41) and for each node subset; the resulting free or forced structural vibration includes
any periodicity effects in the frequency band of analysis.
To express the nodal forces on the periodic cell as a function of the pressure amplitudes
in the forcing and radiating side of the structure, the dynamic stiffness of the fluids must
be derived. From continuity of the normal particle velocity on the excited and radiating
surfaces:

ρ1ω
2qin =

∂(pI − pR)

∂z
; Df,1 =

−iρ1ω
2

kZ,1

ρ2ω
2qrad =

∂(pT )

∂z
; Df,2 =

−iρ2ω
2

kZ,2

(4.9)

where ρ1 and ρ2 are the fluid densities, qin and qrad are the out-of-plane displacements,
respectively of the incident and radiating surfaces, and Df,1 and Df,2 the dynamic stiffness
of the fluid in the incident and radiating domains; pI , pR and pT are the incident, reflected
and transmitted amplitudes of the sound pressure waves. It is important to notice that,
regardless of the homogeneity of the structural model, the derivations over Z, in Eq. 4.9,
makes the modelling of the radiating acoustic field somewhat non-sensitive to the presence
or absence of multiple harmonics which might arise due to heterogeneity of the structure.
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These effects are included in the dynamic stiffness of the cell in Eq. 4.2 and are accounted
in the structural response.
The load imposed on the plate, by the forcing surface waves of trace wavenumbers kX and
kY , can be derived from the two pressure fields, on both sides of the structure; it is lumped
on the wetted nodes of the finite element model. As the forces act normal to the surfaces, the
only excited degrees of freedom are the ones connected to the out-of-plane displacements.
These ones are identified with the subscript T (top) and B (bottom), while all other degrees
of freedom (not excited) are identified by I (internal). The vector of the external forces can
be written as: eredTeredI

eredB

 =

S · (pI + pR)
0

S · pT

 (4.10)

where S is vector of the free nodal surface of each excited node and pI , pR and pT are the
nodal pressure vectors. A finer way to calculate consistent nodal forces, requires, however,
the knowledge of the shape functions associated with the out-of-plane displacements [154].
The dynamic stiffness matrix and the reduced displacement vector can be rearranged in
the same way as in Eq. 4.10, then an energetic equivalence through-thickness applied,
condensing all the non-excited nodes [37]. Including the relation of Eq. 4.9, the dynamic
problem results in: [

Dc
STT Dc

STB
Dc
SBT Dc

SBB

] [
pI − pR

pT

]
=

[
S ·Df,1 · (pI + pR)

S ·Df,2 · (pT )

]
(4.11)

where the superscript c indicates that the original DS matrix (Eq. 4.2) is condensed for
the non excited (I) degrees of freedom, through the thickness. The algebraic system in Eq.
4.11 can be solved in pR and pT obtaining the power transmission coefficient τ associated
with the couple of forcing wavenumbers kX and kY .

τ(kX , kY ) =
(kZ,2/ρ2)S|p2

T |
(kZ,1/ρ1)S|p2

I |
. (4.12)

Finite size effects, can be included through correction factors, in order to increase the
accuracy at low frequencies. While a formal and accurate spatial windowing approach is
present in literature [38], the computational cost associated with this step might be high.
For this reason, even losing some accuracy in the low frequency bandwidth range, the use
of asymptotic formulas, as in [39], is here used to reduce the computational cost.

4.2.4 A TMM-based extension for attached porous layers

While some works have been developed directly to model and analyse porous materials using
WFE [99, 157], here a simple approach is proposed to couple the present approach with the
modelling of infinite porous layers using TMM. Lets consider two laterally infinite sections,
as in Fig. 4.7, where the first one represents a potential periodic structure analysed using
WFE-based approach and the second one a porous material attached to the previous layer.
By considering the continuity of the velocities at the interface between the structural cell
and the porous layer (plane 2 in Fig. 4.5), the incoming pressure in the second layer can be
derived using the surface impedance of the porous layer itself, assuming the surface to be
fully covered by the subsequent one. First, by solving Eq. 4.11 and substituting pT in Eq.
4.9, the averaged vibrational velocity, on the radiating side of the first layer, is calculated.
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Figure 4.5: Illustration of the two laterally infinite sections representing the structural
layer and the porous one.

Then, once the nature of the second layer is established, the surface impedance (ZS) can be
derived and p2 calculated, using the equivalent fluid layer theory [35, 158]. In addition, no
interaction between nodes on a face or cross face of the porous layer is assumed [35, 158].
Finally, the sound pressure in the radiating side (plane 3 in Fig. 4.7) is evaluated using the
classic Transfer Matrix Method, as in Eq. 4.13.[

p2

v2

]
=

[
cos kZhp iZc sin kZhp

iZ−1
c sin kZhp cos kZhp

] [
p3

v3

]
, (4.13)

where hp represents the thickness of the porous layer, Zc its characteristic impedance and
the subscripts 2 and 3 are used to identify the sound pressure and the particle velocity at
interface/plane 2 and 3 (Fig. 4.5), respectively. The transmission coefficient of the cell
including the porous treatment equals the product of the transmission coefficients of the
single stations 1− 2 and 2− 3 (see Fig. 4.5).
This extension, while exact and immediate for homogenised structures, it is an approxi-
mation for complex-shaped cells. A proper coupling for each structural part exposed or
in contact with the subsequent fluid layer is not performed, but, as will be shown in the
following sections, this approximation still provides accurate and predictive results in the
case of complex shaped cells.

4.3 Stochastic Load Translation into Surface Waves

The sound transmission to plane wave excitation, as discussed in Sec. 4.2, is not sufficient
for many applications. Herein, a method, to take into account a general type of excitation,
is proposed. An illustration is reported in Fig. 4.6. The idea is to use a forcing surface wave
excitation for each couple of forcing wavenumbers kX and kY , able to represent the desired
excitation, once its wall pressure spectra, in the wavenumber domain, is known. Using a
vectorial form and omitting the harmonic dependence for the sake of readability, a sum of
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Figure 4.6: Illustration of the load simulation using surface waves in a general test-case. a)
Real/Physical situation; b) Simulated case.

wall plane waves can be written as:

P (X̄) =

NW∑
j=1

Aje
−iK̄jX̄ . (4.14)

where X̄ stands for the couple of surface coordinates (i.e. X–Y in Fig. 4.1), K̄j is the
wavenumber vector associated with each wall surface wave of amplitude Aj , and NW is the
total number of waves constituting the pressure field. It is worth recalling that the surface
coordinates can be the global coordinates, if the structure is flat, or, equivalently, the local
coordinates if a curvature is present. In the first case, Eq. 4.14 is physically representative
of the classic sum of plane waves. In the other case, it reports a sum of wall helical waves
on the curved cylindrical structures.
The description of the desired load is based on the knowledge of the proper values of K̄j

and Aj (Eq. 4.14). They are obtained by equating the wavenumber spectra φPP , of the
pressure field (Eq. 4.14), with the one of the fluid excitation model to be simulated, ΦPP ,
for a specific fluid wavenumber K̄. Many fluid excitation models are investigated in the
wavenumber domain in literature [13]. The cross correlation of the pressure field P is:

RPP ( ¯∆X1, ¯∆X2) =

NW∑
j=1

A2
je
−iK̄j( ¯∆X1− ¯∆X2) +

NW∑
j=1

NW∑
n=1;n6=j

AjAne−i(K̄j ¯∆X1−K̄n ¯∆X2) (4.15)

where the auto and cross correlations have been divided in two different summations. Per-
forming the Fourier transform of Eq. 4.15, the wavenumber spectra is obtained:

φPP (K̄, ω) = ΦPP (K̄, ω) =
1

4π2

(NW∑
j=1

A2
j

[
ei(K̄j−K̄)( ¯∆X1− ¯∆X2)

i(K̄j − K̄)

]+∞

−∞

+

NW∑
j=1

NW∑
n=1;n 6=j

AjAn

[
ei(K̄j−K̄)( ¯∆X1)

−i(K̄j − K̄)

]+∞

−∞

[
ei(K̄n−K̄)( ¯∆X2)

−i(K̄n − K̄)

]+∞

−∞

)
.

(4.16)
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The expressions in Eq. 4.16 are known and can be written as Dirac delta-functions ((Eq.
4.18)). [

ei(K̄j−K̄)( ¯∆X1)

−i(K̄j − K̄)

]+∞

−∞
→ δ(K̄j − K̄) (4.17)

Moving from summations to integrals (Eq. 4.18) and after some algebra, the final expression
of φPP is given in Eq. 4.19.∑

j

δ(K̄j − K̄) →
∫

1

∆K̄j
δ(K̄j − K̄)dK̄j (4.18)

The second term in Eq. 4.19 can be erased since, by definition, the correlation indices j and
n must be different while the integration of the product of the Dirac functions is not null
only for K̄j = K̄n.

φPP (K̄) = ΦPP (K̄) =

∫
4π2

A2
j

∆K̄j
δ(K̄j − K̄)dK̄j

+

∫ ∫
8π4 AjAn

∆K̄j∆K̄n
δ(K̄j − K̄)δ(K̄n − K̄)dK̄jdK̄n

(4.19)

The amplitudes and the wavenumbers of the simulated waves, able to describe a fluid exci-
tation with the wavenumber spectra ΦPP , are straightforwardly obtainable from Eq. 4.19.
For each forcing kX and kY , the desired loading model is simulated through the following
surface wave:

PW (X,Y, ω) =

√
ΦPP (kX , kY , ω)∆kX∆kY

4π2
e−i(kXX+kY Y ). (4.20)

In conclusion, at each frequency and for each wavenumber of the fluid excitation model, a
surface wave of specific wavenumbers and amplitudes can be used to simulate the load. No
hypothesis on the correlation of the forcing waves is imposed as for the reference coordinates.
The proposed approximation is thus valid for correlated and uncorrelated loads acting on
plane and curved surfaces, independently on their complexity.

4.3.1 Sound Transmission Loss

In order to simulate the sound transmission for a specific excitation, an integration of the
transmission coefficient is performed, in the wavenumber domain. Thus, the total transmis-
sion coefficient can be calculated as follows:

τTOT (ω) =

∫ ∫
τ(kX , kY )×WA(kX , kY , ω)dkXdkY∫ ∫

WA(kX , kY , ω)dkXdkY
(4.21)

whereWA is the element corresponding to the wall surface wave of wavenumbers kX and kY ,
in the matrix of the normalized amplitude functions of all the wavenumber couples involved
in the integration process. Within the framework of sound transmission, as identifiable
from Eq. 4.12, the variation of waves amplitudes does not have an influence. The difference
among different fluid loads is given by the weighting functions WA being involved in the
integration. The convergence of the method is assured by the convergence of the integration
process. The choice of the integration limits can be changed depending on the type of
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Figure 4.7: Excited surface comparison between a curved finite panel and its equivalent
cylindrical portion.

load to be described. For example, for a diffuse acoustic field, at each frequency step, the
wavenumber spectra ΦPP is null outside the acoustic border, so, there is no need for the
use of higher integration limits. The final transmission loss is, by definition:

TL(ω) = −10 log10(τTOT(ω)) (4.22)

The TL expression in Eq. 4.22 includes the assumption, if a curvature is simulated, that the
excited surface is a plan projection of the shell surface. The transmission coefficient in Eq.
4.21, must be multiplied by the ratio of cylindrical section and its plan projection. However,
in the case of curved finite structures, instead of using a baffled window equivalence, for
accounting the effects of the finiteness of the structure, an alternative approach based on the
ratio of the excited surfaces is here proposed. With reference to Fig. 4.7, the ratio between
the area of the equivalent cylindrical portion (Acyl), built starting from the finite curved
panel analysed, and the effectively excited area (Aexc), is multiplied, in a SEA (Statistical
Energy Analysis) fashion, to the transmission coefficient in Eq. 4.21. The approach is
consistent since, given a certain length of the panel, along the non-curved side, its area can
increase just up to the one of the equivalent cylindrical portion. The resulting TL, thus,
can asymptotically converge toward the one of the equivalent cylinder. In these cases, Eq.
4.22 becomes:

TL(ω) = −10 log10

(
τTOT(ω)

πAcyl
2Aexc

)
. (4.23)

The advantage of the present approach relies in its generality and applicability to a wide
range of test-cases both in terms of structural shapes and excitation models. The wall surface
wave approximation releases the constraints to the plane waves angles of incidence, generally
implied in literature, widening the analysable combinations of structural and excitation
models. On the structural point of view, the only requirement, for the applicability of
the present approach, is given by the homogeneity or periodicity, independently on the
reference direction (flat or curved). On the other hand, for the simulated excitation, the
basic requirement is the knowledge of the wall pressure spectrum.

4.4 Validations for Flat Structures

In this section, a series of comparisons are presented for validation purposes. In all the
test-cases proposed here, the dispersion curves in the in the X and Y direction (Fig. 4.1,4.2)
will be provided in order to observe acoustic coincidences in terms of waves.
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Figure 4.8: A sandwich flat panel under diffuse acoustic field excitation. a) Dispersion
curves; b) Transmission Loss comparison with literature references ([153, 154]) in a

logarithmic frequency step, between 100 Hz and 10KHz.

4.4.1 Diffuse Acoustic Field load

In Fig. 4.8, a comparison among the proposed method and two other approaches available
in literature is shown [153, 154]. The analysed sample is a 3mm thick flat sandwich panel
made of 1mm-thick aluminium skins and a 1.5mm-thick isotropic core (E = 3 GPa, ν = 0.2,
ρ = 48 Kg/m3). The cell is modelled using four ANSYS solid elements through thickness.
The dispersion curves in Fig. 4.8a, show an acoustic coincidence at ≈ 6 kHz. In Fig. 4.8b an
excellent agreement is observed for the sound transmission loss calculated using the present
approach and the numerical ones in [153, 154]. Finite size effects are not included in the
model and thus the comparisons in Fig. 4.8 are for infinite panels. The second test-cases
consist in an aluminium double-wall flat panel with mechanical connections (Fig. 4.9a), and
a sandwich panel with rectangular core (Fig. 4.9b) made in ABS (E = 1.8 GPa, ν = 0.35,
ρ = 998 Kg/m3).
The dispersion curves of the two test-cases analysed are plotted in Fig. 4.10 with the acous-
tic wavenumbers versus frequency. The wavenumbers are derived from the propagations
constants which are solutions of the eigenvalue problem in Eq. 4.2. Respectively, Fig. 4.11a
shows the comparison for the TL, using an in-house reproduced code of the method pre-
sented by Christen et al. [153], whereas, Fig. 4.11b, shows the comparison for the TL of
the sandwich rectangular-cored panel using, as a reference, the transfer matrix approach
proposed by Parrinello et al. [37]. The double-wall cell is 5mm thick, 10mm long in the
periodic direction (X), 1mm long in the homogeneous direction (Y) and the walls have a
thickness of 1mm. The rectangular cored sandwich cell is 10mm thick, 10mm long both in
X and Y, the skins and the core walls have a thickness of 0.6mm. Finite size effects are
not included in the model and thus the comparisons in Fig. 4.11 are for infinite panels.
Again excellent agreement is observed, even for this complex structural shape, validating
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Figure 4.9: Portion of a double wall flat panel with structural links and the detail of the
unit cell analysed

the proposed approach also for large heterogeneity scales and non-homogenised structure
models. In this case, ANSYS shell elements are used instead, for the FE modelling. In all
presented results, the mesh used for the calculations is verified to converge in the frequency
band investigated.

4.4.2 Turbulent Boundary Layer Excitation

The load approximation proposed in Section 6.1, leading to Eq. 4.21, allows the simulation
for loads with different characteristics. In this section, for example, the flow-induced trans-
mission caused by turbulent boundary layer (TBL) excitation is considered. This is known
for being one of the main sources of radiated noise inside an aircraft cabin, in cruise flight
conditions.
While many boundary layer models are proposed in literature, here, the characterisation of
the wall pressure fluctuations proposed by Corcos is used [9, 13]. It is assumed that no-
gradients effects are present and the TBL is fully developed. The wavenumber spectra, ΦPP ,
proposed by Corcos, is here reported for the sake of completeness assuming the directions
X and Y as the stream-wise and cross-wise ones:

ΦPP (kX , kY , ω) = Spp(ω)
4αXαY[

α2
Y + U2

c k
2
Y

ω2

][
α2
X +

(
1 + UckX

ω

)2] (4.24)

where Uc is the convective flow speed, Spp is the single-point auto spectral density of the
wall pressure distribution. The stream-wise and cross-wise correlation coefficients, αX and
αY , are assumed to be 0.125 and 0.78, respectively, in all following test-cases.
First, a validation for the boundary layer transmission, in the case of a flat isotropic panel
with simply-supported boundary conditions (edges), is proposed in Fig. 4.12. The reference
solution is calculated using a full FE method, as proposed, and validated, in many works
in literature [7, 21]. The eigen-frequencies and the modal shapes of the reference panel
are calculated using analytic solutions, while the load matrix is described using a direct
method [21]. The incident power, for the transmission loss calculation, in the FEM cases,
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Figure 4.10: Dispersion Curves for the sandwich panel designs in Fig. 4.9. The
wavenumbers represent derive from the eigenvalues of Eq. 4.2: a) Double-wall panel with

structural link; b) Sandiwch panel with rectangular core.
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Figure 4.11: Transmission Loss comparison for the sandwich panel designs in Fig. 4.9,
under diffuse acoustic field excitation. A logarithmic frequency step, between 100 Hz and
10KHz, is used to generate the curve labelled as Present Method. a) Reference method in

[153]; b) Reference method in [37]
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is calculated using Eq. 4.25 as proposed in literature [36, 159]:

Πinc =
ASpp(ω)

4ρ1c1
(4.25)

where A is the excited area and c1 the speed of sound on the incident side. A modal be-
haviour can not be described using the present method, as in an SEA framework, since the
wave propagation is considered to the infinite (reflections at the borders are neglected) and
a semi-infinite fluid termination is assumed (no internal cavity modes). The averaged sound
transmission losses are calculated in discrete frequencies (in logarithmic space), while the
FEM calculation is in third octaves bands. In both the test-cases proposed here, the disper-
sion curves in the flow direction (X) is provided in order to show the convective/aerodynamic
and acoustic coincidences.
For the aluminium case (Fig. 4.12), the aerodynamic and acoustic coincidences are at ≈ 1.6
kHz and ≈ 6.0 kHz, as shown in the dispersion curves in Fig. 4.12a. Here, the finite size
effects are accounted using a radiation efficiency formulation for flat panels, as proposed by
Leppington [39]. As shown in Fig. 4.12b, both the aerodynamic and acoustic coincidence
dips are correctly identified in the sound transmission curves, as shown by the comparison
with the octaves averaged FEM solution. The convective load induces a smoother and
damped coincidence effect, with respect to the acoustic one.
Differently, an honeycomb–cored sandwich panel is analysed under a turbulent boundary
layer in Fig. 4.13. A Corcos model is used for the loading description and the proposed
approximation into surface waves is used. The panel is made of 1mm-thick aluminium
skins and a 10mm-thick hexagonal Nomex honeycomb core (material properties in Table
4.1), homogenised in an equivalent orthotrophic model. Both the aerodynamic and acoustic
coincidences are well predicted in the sound transmission loss curves, in Fig. 4.13b. The
first one is somewhat highly damped (≈ 600 Hz; see Fig. 4.13a) while the second one is
clearly visible (≈ 9 KHz; Fig. 4.13a).
The strong agreement observed in Fig. 4.12 and 4.13, validates the proposed load approxi-
mation even for spatially-correlated random loads, as the TBL. It is worth underlying how
the use of boundary layer excitation is here allowed even for infinite structures, differently
from other methods in literature [36].

4.4.3 TBL Models: A flow-induced noise comparison

Many works, dealing with flow-induced vibrations, compare the auto and cross correlation
function of different TBL models [13]. Here, using the approach described in the present
work, some of the most commonly used TBL models are compared in terms of induced
noise on a flat isotropic plate. The choice of such a simple structural model is necessary to
avoid filtering the effects and peculiarities of each single excitation model. The turbulent
boundary models compared here are: Corcos [9], Chase [14], Cockburn–Robertson [11],
Smolyakov–Tkachenko [12]. The same unitary auto spectral density is assumed for all the
models, in order to evaluate the sensitivity to the cross-correlation model. The results here
proposed, should be coherently scaled for the autospectra assumed in each TBL model, if
the real transmission loss is the target.
In Fig. 4.18, the comparison shows how the Corcos model and the Cockburn-Robertson are
in agreement almost in the whole frequency band. A higher transmission loss is observed,
for the Cockburn-Robertson, around the aerodynamic coincidence, while a good agreement
is evident among the other models. The Smolyakov-Tkachenko model, instead, seems the
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Figure 4.12: An aluminium plate under TBL excitation: a) Dispersion curves with
convective and acoustic wavenumbers; b) TL numerical comparison with full FEM - Uc =
180 m/s; A = 0.5x0.3m2. A logarithmic frequency step, between 100 Hz and 10KHz, is

used to generate the curve labelled as Present Method.

Figure 4.13: An honeycomb sandwich plate under TBL excitation: a) Dispersion curves
with convective and acoustic wavenumbers; b) TL numerical comparison with FEM

method - Uc = 152 m/s; A = 0.8x0.6m2. A logarithmic frequency step, between 100 Hz
and 10KHz, is used to generate the curve labelled as Present Method.
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Figure 4.14: A comparison of the sound transmission resulting from different of TBL
models (Uc = 190 m/s). Flow data (see [13]): δ = 0.027 m; δ∗ = 0.0018 m; uT = 1.9 m/s;

α = 0.125; β = 0.83

one that induces the highest sound transmission in the superconvective and subsonic fre-
quency region, as in the subconvective one. On the other hand, with the modified Chase
model (Chase II) a strong overestimation the transmission loss, above the convective ridge
is simulated. In that case, the drop caused by the approach of the structural wavenumbers
to the convective ones, starts critically before the other models and somewhat re-joins the
others just before the real coincidence. The results are also in accordance with the ones in
[160] where the difference in the radiated power of a plate, associated to each TBL model,
is investigated. In accordance to Fig. 4.14, in [160], the Corcos model induces a higher
radiated sound power with respect to the Chase one, in the low frequency range.
It must be pointed out that each model might fit specific operational conditions and thus
a preliminary study of the excitation environment to be simulated, might lead to a better
choice in selecting the most adequate model. In respect to this, the status of the research is
such that the models are not generally predictive: each of them works well for specific cases
and frequency ranges.

4.5 Validations for Cylindrical Shells

4.5.1 Diffuse Acoustic Field Transmission

The presence of curvature induces an alteration in the structural behaviour, at least, up
to the ring frequency. This is the eigenfrequency corresponding to the first extensional
mode at which the longitudinal wavelength is equal to the circumference of the structural
element. At this frequency, the shell sound radiation is amplified similarly to a coincidence
condition [41]. The transmission of curved panels and cylinders is here validated, under
diffuse acoustic load, using, as a reference, numerical and experimental data available in
literature.
The shell is a 3mm thick aluminium one and the curvature radius is 2m and the dispersion
curves versus the acoustic wavenumbers are reported in Fig. 4.15a. First, in Fig. 4.15b,
the transmission loss of an infinite cylinder is compared to the numerical work by Ghinet
[45]. Both the ring frequency (≈ 400 Hz; see Fig. 4.15a) and the acoustic coincidence (≈
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Figure 4.15: An isotropic cylinder under diffuse acoustic field excitation. a) Dispersion
curves; b) Sound Transmission Loss comparison with numerical results form [45].

4.0 kHz; see Fig. 4.15a) are accurately described and the overall agreement is excellent.

4.5.2 The Effective Transmission Loss of Cylinders

In the case of shells, the load is translated in helical waves, instead of wall plane waves.
For example, the effective transmission loss of a shell, in the case of simultaneous acoustic
and aerodynamic excitation, can be estimated, assuming the axial direction of the shell as
the stream-wise and the circumferential as an approximated cross-wise. In Fig. 4.16 the
dispersion curves in the circumferential direction (wavenumbers of purely circumferential
waves) are plotted for three different 3.2mm-thick aluminium shells; 3.0, 2.0 and 0.75 m
curvature radii are considered and the ring frequencies are, respectively, 280, 400 and 1090
Hz. Differently, in Fig. 4.17, the effective transmission loss is calculated and compared.
The aim, in this case, is to investigate how the aerodynamic coincidence influences the shell
transmission.
In the case of the two bigger cylinders (see Fig. 4.16), the ratio between the ring frequency
and the aerodynamic coincidence frequency is lower than one (on the flat case the radius
equal to infinite). Right after the ring frequency, when the curvature effects start to vanish,
these shells still behave in a sub-convective domain, thus, the effects of the coincidence
are clearly visible in the sound transmission loss (see Fig. 4.17). On the other hand, in
the case of the small cylinder, the ring frequency is superior to the critical aerodynamic
frequency and the shell behaves in a sub-convective domain only when the curvature effects
are important. The aerodynamic coincidence peak, in the transmission loss, is no more
identifiable.
Similarly, if a single shell is analysed under different convective speeds, the aerodynamic
coincidence region moves in accordance to what happens in the operative conditions of a
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Figure 4.16: Dispersion curves in the circumferential direction of shells of different
curvature. The acoustic and convective (Uc = 185 m/s) wavenumbers are shown.

102 103 104

f [Hz]

10

20

30

40

50

60

T
L 

[d
B

]

Radius = 0.75 m
Radius = 2.0 m
Radius = 3.0 m

Figure 4.17: The effective transmission loss for shells of different curvature - Uc = 185 m/s.
A logarithmic frequency step, between 100 Hz and 5KHz, is used to generate the curves.
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transport system as an aircraft, a train or a vehicle. The boundary layer effect vanishes
when the speed lowers, since, the convective critical frequency lowers, up to getting inferior
to the ring frequency.

4.6 Experimental Tests and Validations for Curved Panels

4.6.1 Comparison with Literature Results

On the other hand, in Figs. 4.18, a validation versus experimental measurements for curved
finite panels is shown. In both cases the curvature radius is 2m; the skin and core material
are reported in Table 4.1.
Fig. 4.18b shows the sound transmission loss for a 2x2.4m2 sandwich composite panel whose
skin and core are, respectively, 1.2mm and 12.7mm thick. The present method leads to a
very good agreement even in the low frequency range. Again, both the ring frequency (≈
400 Hz) and the acoustic coincidence (≈ 1.0 kHz), observable from the dispersion curves in
Fig. 4.18a, are well predicted.
The proposed validations demonstrate the accuracy for both the methodology to account
for curvature effects and the proposed approach to include finite size effects in the case of
curved structures (Eq. 4.23 is used here) .

4.6.2 Experimental Set-Up - Transmission Loss Measurements

The measurements were performed in the coupled reverberant-anechoic rooms at Groupe d’
acoustique de Université de Sherbrooke, following closely the standard (ISO 15186-1: 2000),
as in [161, 162] (see Figs. 4.19 and 4.20). The reverberant room has dimensions 7.5 x 6.2 x
3 m3 with an averaged reverberation time (T60) of 5.5 s in the frequency band [50-1000] Hz
(Schroeder frequency = 2000

√
T60/V ≈ 400 Hz; [163]). The acoustic excitation is generated

using loudspeaker installed close to a corner of the room, with a white noise input from 50
to 5000 Hz.
The transmitted sound power is estimated using a sound intensity probe in the receiving
semi-anechoic room: a Bruel & Kjaer sound intensity probe composed of two half-inch
microphones and a 12 mm spacer was used. The incident sound power is obtained by
the averaged sound pressure level in the source room measured using a rotating boom
microphone, as in Fig. 4.19. The sound transmission loss (TL) is finally calculated, assuming
that the excited and radiating surfaces are the same, as:

TL = Lp − Li − 6, (4.26)

Table 4.1: Materials’ properties for curved finite panels transmission loss validation

Skin Core
E1 (GPa) 48.0 0.145
G1,2 (GPa) 18.1 0.05
G1,3 (GPa) 2.75 0.05

ν1,2 0.3 0.2
ρ (Kg/m3) 1550.0 110.44
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Figure 4.18: A finite curved sandwich composite panel under diffuse acoustic field
excitation. a) Dispersion Curves comparison with results from [44]. b) TL comparison

with measurements from [44] are compared with the actual method, in third octave bands.

Figure 4.19: Illustration of the test facility with coupled reverberant-anechoic rooms. TL
measurement following pressure-intensity standard.
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Figure 4.20: A detail of the reverberant room and the equipments used for the test.
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Figure 4.21: Standard deviation of the whole set of TL measurements following
pressure-intensity standard. a) Composite Panel; b) Ribbed Panel

where Lp is the average pressure level measured in the reverberant room, Li the average
sound intensity level over the surface of the test-panels in the semi-anechoic room, while the
-6 factor arises from reference values in dB conversion [164].
The tests have been performed multiple times and the curves presented in Fig. 4.24 and
4.26 represent a global average, in third octave bands. The standard deviation of the sound
transmission loss, for the two tested panels, is reported in Fig. 4.21.

Tested Panels A thick sandwich composite panel and a thin aluminium stiffened with
frames and stringers are considered (Figs. 4.22 and 4.23). The composite panel has dimen-
sions 1.54 m x 1.62 m, with a 0.94 m radius of curvature. The ribbed panel has dimensions
1.45 m x 1.70 m, with a 1.30 m radius of curvature. For each of the two panels, two different
configurations are tested and numerically simulated: a bare configuration and one with a
5cm-thick melamine layer attached (see Fig. 4.9). The material and property data for the
sandwich composite panel are provided in Table 4.2; the physical properties of the melamine
foam are given in Table 4.3; the geometrical parameters for the ribbed aluminium panel are
in Table 4.4, while the material is aluminium for all its substructures.
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Figure 4.22: A view of the two test panels hanged in the the semi-anechoic chamber.

Figure 4.23: A view, from the semi-anechoic chamber, of the two test panels mounted in
the linking window. Sandwich curved panel configurations: a) bare; b) with attached
porous layers. Ribbed fuselage panel configurations: c) bare; d) with attached porous

layers.
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Table 4.2: Material properties for the thick curved composite sandwich panel.

Skins Core
E1 (GPa) 46.0 0.01 x 10−3

E3 (GPa) 46.0 0.179
G1,2 (GPa) 17.7 1.0 x 10−3

G1,3 (GPa) 17.7 26.0 x 10−3

G2,3 (GPa) 17.7 56.0 x 10−3

ν1,2 0.3 0.45
ν1,3 0.3 0.01

ρ (kg/m3) 1570 64
h (mm) 0.98 25.5

Table 4.3: Physical properties for the porous layers attached to the panels [165].

Thickness Open porosity Flow resistivity Tortuosity Viscous length Thermal length
5 cm 0.99 7920 [Nm−4s] 1.02 132 [µm] 149 [µm]

A double wall system links the rooms with a 2.44 m x 1.63 m test window, decoupled by
a 12.7 mm air gap. Both panels were mounted in the test window using frames of adapted
sizes, that were made of plywood with acoustic sealant made of neoprene adhesive and
silicone. Only the panels’ skin was actually clamped over approximately 20 mm in the
mounting frame (stiffeners of the aluminium panel were thus not clamped). The frames
and surrounding surfaces were finally covered with a flexible decoupled barrier material
composed of an open-cell foam and a heavy PVC layer. Great care was used in mounting
to avoid leakage and excellent repeatability of the experiments was observed.

4.6.3 Thick Sandwich Panel

First, the numerical results obtained with the presented method are compared with the
measurements of the sound transmission for the curved composite sandwich panel. The
unit cell is modelled using 20 solid elements (ANSYS SOLID45) through the thickness of
the plate and using Eq. 3.9 to simulate the curvature. The porous layer is simulated using
an equivalent fluid model [35].
The results in Fig. 4.24 show that, above the 400 Hz third octave, the numerical and exper-
imental results are in agreement. The TMM-based extension for porous layers, described
in Section 4.2, is here exact and gives excellent predictive results. Some discrepancies are
present below 400 Hz and are attributable to a lack of accuracy of the measurements below
the Schroeder frequency and to the way finite-size affects are accounted in the model. Being
below the ring frequency region (≈ 500 Hz), a strong stiffness of the shell, in the circumfer-

Table 4.4: Geometrical parameters of the ribbed fuselage panel.

Frames Stringers Skin
Thickness (mm) 1.8 1.2 1.2
Height (mm) 72 28
Spacing (mm) 40.6 15.2
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Figure 4.24: The Transmission Loss of a thick curved sandwich panel under diffuse
acoustic field excitation. A comparison of the numerical results in log-space with

measurements in third octaves.

ential direction increases the sound transmission loss in that frequency band. The averaged
contribution for all the integration angles of a diffuse acoustic field, induces an horizontal
trend of the TL curves versus frequency, as observed in the literature [41, 44].
A high level of damping is observed in the experimental TL curves (Fig. 4.24), since both
the ring frequency (≈ 500 Hz; numerically calculated from dispersion curves; Eq. 4.2) and
the acoustic coincidence (≈ 1.5 kHz; calculated from experimental dispersion curves) are
characterised by very smooth dips. The structural damping is 3% in the whole frequency
band, to simulate the increased damping added by the installation in the test window,
leading to a good agreement of the numerical and experimental curves.

4.6.4 Ribbed Aircraft Fuselage Panel

Next, the sound transmission for a curved and ribbed fuselage panel (Fig. 4.9 (c) and (d)),
is measured and compared to the presented model. The averaged TL curves, in third octave
bands, are presented in Fig. 4.18.
A numerical simulation is performed using the method presented in Section 4.2. The unit
cell is illustrated in Fig. 4.25; shell elements (ANSYS SHELL181) are used for all structural
parts, while joints and connections are not included in the model. In the real model, the
stringer passes through a small hole in the frame; this is omitted in the cell model since
not considered relevant for a sound radiation problem. In addition, the real panel is not
perfectly periodic: some bays between the two last frames (on the left side, Fig. 4.23) are
not coincident to the other ones in the whole panel, while the two frames at the lateral
borders of the panel do not have the same geometry and size of the ones in the middle.
Differences between the real structure and the ideally periodic model are thus present.
The modelled periodic cell has almost 2.9·104 degrees of freedom; the modal order reduction
reduces this number to less than 4000. More than 10 elements per wavelength are used to
guarantee mesh convergence for the sound transmission up to 3 kHz. This was a trade-off
choice to guarantee accurate results and keep a relatively low computational cost.
In Fig. 4.26, a good agreement with the numerical method is observed in the 300 Hz -
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Figure 4.25: The unit cell used for the WFE simulation. The cell has global sizes given by
the spacing of frames and stringers (Table 4.4).
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Figure 4.26: The Transmission Loss of the ribbed fuselage panel for a diffuse acoustic load.
A comparison of the numerical results in log-space, with measurements in third octaves.
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2500 Hz frequency range. Both for the bare configuration (Fig. 4.23 (c)) and the one with
attached soundproofing material (Fig. 4.23 (d)), the numerical TL curves closely follows
the experiments. The ring frequency (≈ 670 Hz; [46]) gives a dip in the transmission loss,
which is well described by the simulation, proving that the curvature simulation presented
in Eq. 3.9 is still applicable even for large cell periods. Thus, unless small curvatures must
be simulated, the periodic cell can be modelled as flat and Eq. 3.9 applied to simulate the
desired curved shape.
Using the approach described in subsection 4.2.4 a proper fluid-structure coupling at cell
scale is not performed. In addition, the air-gap between the radiating skins of the panel,
between the fuselage bays, and the porous layer, have not been modelled. Considering
the approximations regarding the handling of the sound package and the size effect, the
discrepancies between the real structure and the model, the results observed in the test-case
with the attached melamine layer, are accurate enough.

4.7 Discussion on approximations and limits of the approach

It is useful to discuss and emphasize some aspects regarding the approximations and the
limits of the present numerical method, presented in Sections 4.2 and 6.1, using as reference
and illustrative schemes Figs. 4.1, 4.2, 4.3, 4.6 and 4.7.
The curvature simulation in Eq. 3.9, is a good approximation for homogenised models. For
periodic non-homogenised models, relatively small curvatures can be simulated. In fact,
when the ratio between the length of the cell (in the curvature direction) and the radius of
curvature is not small enough, the piecewise-flat approximation used here is critical even for
fine structural meshes. In addition, great care must be placed on not curving even potential
internal elements which can be flat (i.e resonator beams).
The interior acoustic field, as illustrated in Fig. 4.6, is assumed to be equivalent to a semi-
infinite fluid termination: the modal behaviour of a finite cavity can not be described in
this context, even for a closed cylindrical model. In analogy to what happens for an infinite
flat structure, the internal acoustics is assumed to be composed by single out-going waves
and internal acoustic waves’ reflections/transmission are not modelled (see Eq. 4.9). These
are the same assumptions/approximations used in [44, 45].
In this framework, the multiple harmonics that arise in the radiated acoustic field, for
periodic non-homogenised structures, are numerically included in the structural response
of the radiating side, when applying discrete periodic conditions for each couple of forcing
wavenumbers kX and kY . It, coherently to what has been discussed for the semi-infinite
fluid termination condition, does not need to be analytically exploited since the only useful
factor, in this method, for the acoustics in the radiating side is the kZ term, dependent on
the nature of the fluid itself (see Eq. 4.9). In fact, when comparing the present approach
with the work by Ghinet et al. [45], for an infinite isotropic cylinder under a diffuse acoustic
field the agreement is excellent in the whole frequency band; the reference method, in [45],
which is semi-analytical, properly describes the acoustic field in global coordinates, with a
full development using spherical harmonics.
Moreover, the structural wave propagating in the periodic media is here considered to the
infinite. In other words, waves’ reflections, transmission and absorption, typical at the
borders of a finite media, are not accounted and, thus, a single-modal behaviour can not
be described with this model. However, the finite size effects, which help in re-scaling the
sound transmission loss versus frequency (with respect to the one of an infinite structure)
can be included in the model using correction factors, as described in [40].
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4.8 Convergence Aspects

The presented numerical method, requires some care on convergence aspects.
First the cell must have a size coherent with a proper description of the structural wave-
lengths, at the maximum frequency of analysis. Here, at least 6 elements per (minimum)
wavelength are used. In addition, the integration scheme in Eq. 4.21 must be carried out
using a proper mesh in the wavenumber space, to describe the wavenumber spectrum of the
excitation model of interest, at each frequency step. No general approach is available since,
depending on the characteristics of the load, a coarser or finer meshing of the wavenumber
space can be a good compromise solution between accuracy and calculation time.
In the work by Maxit [29], a specific case for a flat plate under turbulent boundary layer is
investigated and some rules are given with respect to the wavenumber sampling of the load.
In that case, it is suggested to take, as limits of integration, the maximum between the flexu-
ral wavenumber and the convective one, for the stream-wise direction, and the maxim value
of the structural bending wavenumber, for the cross-wise direction. These solutions, which
are justified by the filtering effects of the structure, and thus represent an approximation
of the total response, are not always applicable. In fact, when a complex media (i.e multi-
layered, ribbed, curved, etc.) is analysed, some coupled bending wavemodes might arise in
the frequency band of interest and these can be equally excited by the turbulent layer load.
Moreover, to set the choice of the integration limits on maximum frequency of analysis, as
in [29], is computationally inefficient. The convective wavenumbers, as the structural ones
connected to dispersive waves, are frequency dependent and, therefore, if the wavenumber
resolution is fixed (as in [29]), keeping large integration limits even in the lower frequency
bands would induce a useless higher computational cost. On the other hand, with respect
to the wavenumber sampling, a general rule, to identify the correct resolution, is not given
and a trial-error approach is suggested before launching the simulations [29].
Nevertheless, the present developments can be considered as an evolution of the work done
in [29] since they are in the same research line aiming at the same goal. In this framework,
a study on different criteria based solely on the fluid operator, is conducted for two different
turbulent boundary layer models: the Corcos model [9] and the Chase one [14]. Two ap-
proaches are initially followed: first the wavenumber space is sampled using a fixed number
of points in kX and kY , for each frequency; then a fixed wavenumber resolution is used.

4.8.1 TBL Model: Corcos

Four integration domains are described in Table 4.5 and Fig. 4.27 and are valid for each
frequency step. The use of reduced integrations limits stands in using the advantage coming
from the symmetry of the wavenumber spectra of some excitation models, as the Corcos one
(which is also used in this study). Differently from [29], the scaling factor for the limits of
integration is assumed to be 1.9 (Table 4.5). The results in Fig. 4.28 show the transmission
loss for the same isotropic plate tested in Fig. 4.7a, when the wavenumber spectrum is
sampled first with a coarse scheme (50x50 mesh) and then with a finer one (120x120 mesh).
In using integration limits that exclude the lowest amplitude sector of the wavenumber
spectrum of the load, which coincides with the reverse-stream-wise wavenumber components
(kx ≤ 0; as Domain III; Table 4.5), the sound transmission levels are not affected. The
integration of Eq. 4.21, being the ratio of equally weighted integrations, allows the use of
symmetric domains (as Domain I or II; Table 4.1), with excellent accuracy even if coarse
wavenumber meshes are used for the integration. On the contrary, when higher limits have
to be imposed, a finer mesh is needed to avoid aliasing (see Domain IV in Fig. 4.28a).
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Table 4.5: Integration limits in the wavenumber domain (see Fig. 4.8)

I II III IV
kX,min [m−1] 0 -1.9 ω/Uc 0 -1.9 ω/Uc
kX,max [m−1] 1.9 ω/Uc 1.9 ω/Uc 1.9 ω/Uc 1.9 ω/Uc
kY,min [m−1] 0 0 -1.9 ω/Uc -1.9 ω/Uc
kY,max [m−1] 1.9 ω/Uc 1.9 ω/Uc 1.9 ω/Uc 1.9 ω/Uc

Figure 4.27: The wavenumber spectra of a TBL load (Corcos: Uc = 130 m/s; f = 1 kHz).
The fours solutions correspond to the four integration tests performed with variable

domains in Eq. 4.21.

The computational cost in Fig. 4.28 is kept constant since the same mesh is used for each
frequency.
It is worth to underline that, the use of Domain III is physically justified by the joint-
acceptance of Corcos-like TBL models, which have a dominant amplitude of the spectra
in the positive stream-wise direction, inducing dominant wavenumber components of the
structural response in the positive kx sector. Differently, the use of Domain I and II,
derives from pure mathematical considerations on the form of the weighted integration in Eq.
4.21, which gives band-averaged sound transmission levels. In fact, for a purely structural
response in weak coupling conditions, as in [7, 20, 21, 29], the use of these reduced domains
as I and II (Fig. 4.27) would reduce the accuracy of the response, especially in the anti-
resonance regions, due to an incomplete description of the single structural modes for the
cutting of the negative-cross-wise structural wave components in the solution.
Differently, in Fig. 4.29, a fixed wavenumber resolution is kept. This approach increases, at
each frequency step, the mesh size in the wavenumber domain and, thus, the computational
cost of the integration, depending on the wavenumber limits of integration. In this case, thus,
the integration over the domain I, II or III (Table 4.5) can speed up the total computation.
In Fig. 4.29 it is observed how a finer resolution in the wavenumber domain gives a better
accuracy, especially in the low frequency domain. This effect is physically justified by
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Figure 4.28: The sound transmission of a flat isotropic panel loaded with TBL (Corcos: Uc
= 190 m/s). The fours integration domains is Fig. 4.8 are compared with a fixed mesh in

the wavenumber domain. Mesh: a) 50x50; b) 120x120.

the enlargement of the boundaries of the convective region versus frequency. For a fixed
wavenumber resolution, the smoother shape of the wavenumber spectrum, based on the
model of Corcos, at higher frequencies, helps the predictive power of coarser resolutions.

4.8.2 TBL Model: Chase

A similar investigation is conducted for the TBL model proposed by Chase [13, 14]. Differ-
ently from the model of Corcos, this model is dependent on the boundary layer thickness
(δ), displacement thickness (δ∗) and the friction velocity (uT ). The Chase II formulation
[13] implemented here, is a modified version of the original Chase model. A comparison
of the normalised wavenumber spectrum, in the positive stream-wise wavenumber space, is
presented in Fig. 4.30: the Chase model presents a narrower convective peak and lower
relative amplitudes at high and low wavenumbers.
First, in Fig. 4.31a a comparison among fixed wavenumber meshes of finer sampling, is
proposed. The critical frequency, for a convective velocity of 80 m/s, is 380 Hz and is
correctly captured in the TL curve. The sensitivity of the solutions is larger around the
acoustic coincidence (6 kHz) since the Chase model (Chase II) is characterised by strong
derivatives versus the cross-wise wavenumber components. Similarly, in Fig. 4.31b, the
effect of the limits of integration are investigated using the domains described in Table 4.1.
As for the Corcos model, the domain III (Table 4.1), physically justified by the form of
the wavenumber spectrum of the Chase model, gives excellent results. Differently, enlarged
domains as IV (Table 4.1), require finer meshes: in this case, in opposition to the case of
Corcos, the effects are visible at higher frequencies.

4.8.3 The Influence of the Cross-Flow Components

It is interesting to verify if the reduced cross-wise amplitude gradient of the wavenumber
spectra, around the convective ridge region of the Corcos and Chase model, with respect
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Figure 4.29: The sound transmission of a flat isotropic panel loaded with TBL (Corcos: Uc
= 190 m/s). The fours integration domains is Fig. 4.27 are compared with a fixed

resolution in the wavenumber domain. Sampling: a) Coarser; b) Finer.
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m/s) - a) Corcos [9]; b) Chase II [14].
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Figure 4.31: The sound transmission of a flat isotropic panel loaded with TBL (Chase II:
Uc = 80 m/s) - a) Comparison of mesh sizes; b) Comparison of integration domains for a
100x100 mesh (Fig. 4.8). Flow data (see [13]): δ = 0.027 m; δ∗ = 0.0018 m; uT = 1.9 m/s.

to the stream-wise component, allows the use of larger sampling in the cross-flow direction.
A simple example is reported in Fig. 4.32 where two computations are presented, with a
fine stream-wise sampling and a larger cross-wise one and vice-versa. A full integration
domain is used (Domain IV; Table 4.5). The results demonstrate that, in the case of
Corcos (Fig. 4.32a), the stream-wise resolution has a higher impact than the cross-wise
one. Thus, a strong speed-up of the computation, can be achieved by using larger cross-
wise sampling and a restricted integration domain, making use of the symmetry of the
loading wavenumber spectra and the smoother decay of the convective region in the cross-
wise direction. However, as shown in Figs. 4.28 and 4.29, some sensitivity and variations
are observed below the aerodynamic coincidence, which is the frequency band where the
structural bending wavenumber is higher than the convective one. In these frequency bands,
an integration criterion, based solely on the load, might be critical approximation, because
the structural wavelength is lower than the convective one. On the other hand, a criterion
based just on the excitation model has the advantage of not being case-dependent and not
requiring an a-priori the knowledge of the structural filtering effects.
When the model of Chase (Fig. 4.32b) is used instead, the sensitivity of the solutions seems
to be higher for the cross-wise wavenumber components. As said, this can be addressed to
strong amplitude gradients of the model in the acoustic region, which lead to a deficient
description, not in accordance with many experimental data, as discussed extensively by
Graham [13]. The convective region, on the other hand, does not seem to be sensitive to
directional sampling parameters and is always well described.
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Figure 4.32: The sound transmission of a flat isotropic panel loaded with TBL. The
wavenumber sampling is studied for single stream-wise and cross-wise resolutions. TBL

Model: a) Corcos, Uc = 190 m/s; b) Chase II, Uc = 80 m/s

4.9 Conclusions

This work proposes a numerical approach for the estimation of the sound transmission loss
of complex flat, curved and cylindrical periodic structures, under any type of acoustic and
aerodynamic load. The approach involves a wave finite element method, for the structural
part, and proposes a load simulation into surface waves. The fluid-structure interaction is
performed in analogy to the acoustic wave excitation, discriminating among the different
forcing models, using a weighted wavenumber integration. The only requirement is the
knowledge of the wavenumber spectra of the wall pressure fluctuation. Finite size effects are
accounted using the baffled window equivalence or asymptotic formulations, for flat struc-
tures. An alternative and efficient method is proposed in the case of curved finite structures,
in similitude to the semi-infinite equivalent cases. Static and dynamic condensation can be
applied if fine meshes are used in the modelling phase.
Both the accuracy and robustness of the present method are proved using analytic, numer-
ical and experimental references. Both uncorrelated (diffuse acoustic field) and spatially-
correlated loads (turbulent boundary layer) are used for the validations, in the case of flat
and curved structures. Calculations performed using finite elements of different nature do
not affect the accuracy of the estimations. The convergence of the approach is assured by
the one of the wavenumber integration process. The choice of the integration limits must
be calculated on the base of the wavenumber spectra of the load.
The combination of boundary layer and acoustic excitation is simulated in the case of shells,
resulting in an effective sound transmission loss. The ring frequency, the aerodynamic and
acoustic coincidences are efficiently estimated, independently on the curvature radius and
convective velocity simulated. Moreover, the use of boundary layer excitation does not
require the accounting of finite size effects and a comparison of the structural and acoustic
design is possible, independently from the size of the analysed structure.
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Chapter 5

Non-Lifting Aeroelastic Coupling
using WFE

In classical aeroelasticity of plates and shells, instability analyses are carried out by using the
natural modes of the structures with and without flow coupling. On the contrary, the study
of travelling elastic waves in presence of flow, never had a deep and concrete application.
Here, within a wave-based finite element framework, sub- and super-sonic aerodynamic
theories are introduced to analyse the effect of self-excited aerodynamic loading terms on
the dispersive characteristics of the structural waves. The method is validated by using two
specific literature test-cases and is applicable both on isotropic and multi-layered flat and
curved structures. The sound transmission is also computed under a sub- and super-sonic
turbulent boundary layer excitations: the effect of including or not the aeroelastic coupling
is analysed.

5.1 Introduction

Structural failures caused by aeroelastic phenomena have affected many fighter aircraft,
spacecraft and jet engines, in the history of aviation and furthermore they are well present
in the civil engineering too.
The aeroelasticity of plates and shells, extensively studied in the last decades, faces the
difficulty of distinguishing between the self-induced vibration components and the external
one. Phenomenological non-linearities induce fatigue failures instead of catastrophic instan-
taneous failures, typical of the aeroelasticity of lifting surfaces [48, 49]. In this context, the
modal approach is often preferred to a wave-based one, because it allows a clear evaluation
of the flutter conditions, analysing the effect of the aerodynamic-induced forces on each
structural mode [48–50, 56, 57, 61]. Consequently, the effects of aerodynamics on the elastic
structural waves’ propagation, are rarely studied and few works are present in the literature
[56, 61–63].
The infinite-plate problem, has been developed by Miles [56] and Crighton & Oswell [60].
The first [56] presents a work discussing the flutter of an isotropic infinite panel in a two-
dimensional incompressible flow, identifying the flutter conditions versus the circular fre-
quency in terms of wave speed. The latter [60] develops an analytical model that describes,
in a neutral stability zone, some highly unusual wave propagation effects in presence of flow.
On the other hand, the effect of mean flow on cylindrical structures has been then studied
by the same Miles [57] and others authors [58, 64]. In particular, Peake [64] provides a
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closed-form dispersion relation for circumferential waves in infinite cylinders in presence of
incompressible external flow; this is here used for validation purposes.
Hereby, both subsonic and supersonic aerodynamic flows are introduced in models of ho-
mogenised periodic plates and shells; the elastic wave propagation is thus investigated,
assuming that only one side of the structural domain is wetted by the flow. The sound
transmission loss is also computed, using a set of aleatory surface waves [166] and discussed
versus aeroelastic effects.

5.2 Aerodynamic Loading in Periodic Framework

The method here presented is based on the Wave Finite Element Method and the develop-
ments of Chapter 4.
To simulate a mean flow, working on one side (or two) of an infinite structural domain,
a specific aerodynamic theory has to be used to model the self excited aerodynamic com-
ponents of the load. Here, supersonic flows are described using the simplest aerodynamic
theory, the Piston Theory [48, 167], while for subsonic aerodynamic flows, an approximated
formula for incompressible flows is used, as proposed by Dowell [48].
Under the hypothesis of small disturbances, the aerodynamic pressure can be normally con-
sidered as made up of two components [48], as in Eq. (5.1): one is given by the pressure fluc-
tuations for a rigid body (∆E

P ); the second is dependent on the structural motion/elasticity
(∆M

P ). The following developments are connected to the second of these contributes; an
illustration is given in Fig. 5.1.

∆P = ∆M
P + ∆E

P (5.1)

5.2.1 The Piston Theory

The Piston Theory, valid from Mach > 1.5 [48, 167], assumes that the pressure fluctuations
in any point of the system are independent. Using the notation of Chapter 4, the dispersion
relation of an homogenised periodic cell can be written as:

ΛH [K − ω2M ]Λ q1 = ΛHΛf + ΛHΛ(eM + eE) (5.2)

where K and M are the stiffness and mass matrices of the periodic cell, ω the circular
frequency, Λ the periodicity matrix and f and e are the nodal vectors of internal and external
forces respectively. It is important to note that here the external forces are separated in
two components as in Eq. 5.1. In particular, the self-excited force terms can be written as
a function of the convective and continuity derivative, [48, 50, 56, 167]:

eM = −ρ0a0An

(
∂w
∂t

+ U
∂w
∂x

)
(5.3)

where w represents the vector of the out-of-plane displacements of the structural nodes
belonging to the surfaces in contact with the flow (coordinate Z in Fig. 5.1), ρ0 is the
fluid density, a0 the sound speed, An the nodal area vector and U the flow-speed. The
out-of-plane displacements can be expressed by multiplying q for a matrix (ε) of 0 and 1
in the positions corresponding to the target degrees of freedom (i.e. the translations in Z).
For example, with reference to Fig. 5.2, the matrix ε, can be built as such:

εi,j =

{
1 if j = 3; i = 1, N ;

0 else
(5.4)
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Figure 5.1: An illustration on the effects of a flexible structure in terms of variation of
pressure distribution in a turbulent boundary layer.

Figure 5.2: Distribution of degrees of freedom for a single cell with respect to the excited
(flow) and radiating side.
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where i represents the number of nodes, as in Fig. 5.2, and j the nodal degree of freedom (3
corresponds to translation along Z). In a periodic structural framework, the spatial derivative
in Eq. (5.3) is a function of the structural propagation constant (λx, assuming X as the flow
direction), and can be expressed, using a simple numerical scheme for the first derivative,
as follows:

∂w
∂x

= Λ

(
λx − 1

Lx

)
εq1 (5.5)

The final dynamic stiffness equation can be derived, as in Eq. (5.6), substituting Eqs. (5.3)
and (5.5) in Eq. (5.2).

ΛH

[
K − ω2M − iωρ0a0Anε + Uρ0a0Anε

(
λx − 1

Lx

) ]
Λ q1 = ΛHΛf = 0 (5.6)

Additional damping and stiffness terms are observed in the new dynamic stiffness equation
(Eq. (5.6)). The additional damping is proportional to the circular frequency, but, as
discussed in [48], it is not a dominant term. A strong variation of the results of Eq. (5.2)
versus the Eq. (5.6) ones, is given by the additional stiffness terms, which are proportional
to the stream-wise elastic waves’ propagation coefficient.

5.2.2 Subsonic Aerodynamic Flows

Similarly, when a different aerodynamic model is investigated, as a subsonic incompressible
flow, the spatial derivatives can still be expressed as a function of the structural waves’ prop-
agation constants, using, generally, numerical schemes of higher order. The aerodynamic
forces connected to the structure motion can be expressed, in this case, as follows [48]:

eM =
ρ0U

2An

π

[
∂2w
∂x2 +

2

U

∂2w
∂x∂t

+
1

U2

∂2w
∂t2

]
(5.7)

Substituting Eq. (5.7) in Eq. (5.2), using a second order numerical scheme for the second
order spatial derivatives, the final dynamic stiffness matrix is obtained:

ΛH

[ (
K +

2ρ0U
2Anp

L2
x

ε

)
− ω2(M− 2ρ0Anpε)+

+
ρ0UAnp

Lx

(
2iω +

(
2iω − U

Lx

)
λx −

U

Lx
λ−1
x

)
ε

]
Λq1 = 0

(5.8)

where Anp = An
π .

Here, the derivation schemes used are:

∂2w
∂x2

= Λ

(
λx − 2 + λ−1

x

L2
x

)
εq1 (5.9)

∂2w
∂x∂t

= −iωΛ

(
λx − 1

Lx

)
εq1 (5.10)

∂2w
∂t2

= −ω2Λεq1 (5.11)

Comparing Eq. (5.2) and Eq. (5.8), additional stiffness, damping and inertia terms, depen-
dent on the flow speed and density, can be observed. In addition, some explicit influence
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on the structural waves’ propagation appears with stream-wise (terms proportional to λx)
and cross-wise (terms proportional to λ−1

x ) aerodynamic components. Again, the eigenvalue
problem is parametric and can be solved by fixing two parameters between k, ω and U .
It is interesting to observe the absence of non-linearities in the eigenvalue problem.

5.3 Numerical Results

Here, the eigenvalue problems of Eqs. (5.6) and (5.8) are solved, for specific test-cases. A
validation for flat plates in supersonic flows is performed using the travelling wave approach
by Miles [56, 57, 61]. The dispersion curves for shells are also computed and a validation
with the Donnel-Mushtari theory with and without flow is performed [64]. In both cases
the external flow is assumed to be inviscid air.
Finally, the sound transmission under an external turbulent boundary layer excitation, is
computed and compared when aeroelastic effects are accounted in the model, for both
supersonic and subsonic flows. The approach used for fluid-structure coupling and random
load simulation, within a wave finite element framework, follows the same proposed in
[166]. Despite the numerical complexity in Eqs. (5.6) and (5.8), the proposed numerical
framework allows simpler evaluations of the effective sound transmission loss, due to a
turbulent boundary layer load, than classic modal approaches [27, 168, 169].

5.3.1 Wave Propagation in Plates and Shells

First, a 2mm-thick flat aluminium plate is considered. The test-case analysed by Miles [56],
is reproduced and the analytic solution is used to validate the proposed approach. In Fig.
5.3 the bending wave speed and wavenumbers of the plate in the stream-wise direction, are
plotted and compared to the case a one-sided flow (Mach 1.6) is simulated; the present
approach is compared to the approach of Miles [56]. A good agreement with the reference
solution is observed, as a variation of the bending wavenumbers with respect to the purely
structural case, in the lowest frequency bands. The increase of the wavenumbers is somewhat
representing a reduction of bending stiffness of the plate, caused by the action of the flow,
that vanishes when the frequency increases, approaching the purely structural solution.
Differently, in Fig. 5.4, the dispersion curves of an aluminium shell (2mm-thick; 1.5m ra-
dius), with and without flow, are plotted and compared, both in the axial direction (stream-
wise), and the circumferential one. The use of the aerodynamic model presented in Section
5.2 (Piston Theory), which excludes three-dimensional effects is presented in some works in
the literature [170, 171]. In fact, the mitigation of circumferential cross-flow pressure gra-
dients by means of flow viscosity, justifies the use of the linear piston theory as a simplified
aerodynamic model for shells [65].
In Fig. 5.4a, the wavenumbers in the direction of the flow (axial direction) are increased with
respect to the purely structural case (absence of flow), as in the case of a flat plate [56]. On
the other hand, for circumferential waves (Fig. 5.4b), the effects mainly visible around and
above the ring frequency, because of the higher stiffness of shells before the first extensional
mode. In both cases, for increasing frequency, the dispersion curves converge to the ones
of the purely structural case (absence of flow) and only bending waves are affected by the
presence of the flow; shear and longitudinal wavemodes are not excited by the pressure
fluctuations. A good agreement with the reference solutions [64, 172] is observed, with and
without flow.
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Figure 5.3: Stream-wise bending waves in a 2mm-thick flat aluminium panel with a
one-sided flow at Mach 1.6. Reference solution from [56, 61]: a) Wave Speed; b)

Wavenumber.

Figure 5.4: Dispersion curves for an aluminium shell (2mm-thick, 1.5m curvature) with a
one-sided flow at Mach 2.5: a) Axial Waves; b) Circumferential Waves. Analytical model:

Ref. [64].)
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Figure 5.5: Dispersion curves for an aluminium shell (2mm-thick, 1.5m curvature) with a
one-sided flow at Mach 2.5 and 4.5. Analytical model: Ref. [64].

The effects of increasing flow speed and circumferential order are shown in Fig. 5.5. In Fig.
5.5, a fixed circumferential order is considered and the flow speed is increased from Mach
2.5 to 4.5; a larger wavenumber region is affected, for increasing speed, inducing a distorted
transition to the flat-plate bending behaviour after the cut-on frequency. Differently, in Fig.
5.6, the effect of increasing the circumferential order from 1 to 10 is shown; the effects seem
independent on the presence of the flow, being coherent with the variation one has for the
purely structural case [64]. A further validation is also provided in Figs. 5.5 and 5.6 by the
presence of the analytical curves derived from [64].

5.3.2 Sound Transmission under Turbulent Boundary Layer

The effect of the mean flow on the sound transmission of flat and curved panels is here
investigated. The external load, corresponding to a turbulent boundary layer, is simulated
using a weighted integration of surface waves in the wavenumber space [166]. Finite size
effects can be accounted using a baffled window approach [39]. First, a supersonic flow is
simulated (Mach 1.35) and a Cockburn-Robertson TBL model is used [11] on flat and curved
panels. In this case, the Piston Theory is used for the load contribution auto-generated by
the structure elasticity (∆M

P in Eq. (5.6)).
In Fig. 5.7, the sound transmission loss is affected by the aeroelastic effects in the low
frequencies. This is caused by the strong alterations in bending waves’ propagation, caused
by the flow itself. However, differences are observed also before the acoustic coincidence (≈
6 kHz). In fact, the variation of wavemodes induced by the aeroelastic effects, eigenvectors
from Eqs. (5.6), induces different structural reaction with respect to the case in absence of
flow. The drop caused by the critical aerodynamic frequency is hardly visible being close to
the acoustic coincidence (≈ 6.7 kHz).
For the curved panel (Fig. 5.7b), before the ring frequency, the effects are strongly amplified.

On the other hand, a subsonic flow (Mach 0.5) is simulated in Fig. 5.8, using the TBL model
of Corcos [9]. In this case, Eqs. (5.7) is used for the subsonic load contribution generated
by the structural motion. Again, flat and curved panels are studied. Differently to the
supersonic case, the effects of the flow are somewhat distributed in the whole frequency
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Figure 5.6: Dispersion curves for an aluminium shell (2mm-thick, 1.5m curvature) with a
one-sided flow at Mach 2.5, for increasing circumferential order. Analytical model: Ref.

[64].
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Figure 5.7: Sound transmission under a supersonic turbulent boundary layer load (Mach
1.35): a) Flat Panel (0.5x0.3 m2); b) Curved Panel (0.5x0.3 m2; 2m curvature)
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Figure 5.8: Sound transmission under a subsonic turbulent boundary layer load (Mach
0.5): a) Flat Panel (0.7x0.5 m2); b) Curved Panel (0.7x0.5 m2; 2m curvature).

Table 5.1: Materials’ properties of the sandwich plate.

Skins Core
E1 (GPa) 69.0 0.3

ν1,2 0.33 0.2
ρ (Kg/m3) 2742 48

Thickness (mm) 1 10

band. The aeroelastic effects induce a slightly higher transmission loss and a shift of the
aerodynamic and acoustic coincidence to higher frequencies. It is a classic mass addition
effect, that, in term of elastic waves, can be read as a monotonic increase of bending waves’
wavenumbers versus frequency.
It must be underlined that the physical mechanism that induces an increase of the wavenum-
bers (or reduction of bending wave speed) in the structure, is different between the super-
sonic and subsonic aerodynamics. While in the first case, a reduction of dynamic stability
plays a role (travelling flutter [56]), in the subsonic case is physically similar, as said, to an
added mass effect. In the latter case, given the aerodynamic model applied here, the effects
of the presence of the mean flow might be neglected.
A more complex example is illustrated in Fig. 5.9 with a sandwich panel under a subsonic
turbulent boundary layer; the material data are in Table 5.1. The mean-flow effects are
observable in the whole frequency range and differently from the simple aluminium panel,
the effects at higher frequencies seem to reduce the sound transmission loss. As expected
(see Ref. [166]) the accuracy of the approach in the lowest frequency ranges is reduced. The
present approach, in fact, considers a wave propagation to the infinite and does not take
into account the boundaries of the finite structure (see Ref. [166]). One-dimensional wave-
based finite element approaches (see Ref. [107]), on the contrary, can account for boundaries
but require a higher computational cost. A comparison with a classic FEM approach (Ref.
[107]) is also proposed in terms of computational cost in Table 5.2.
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Figure 5.9: Sound transmission loss of a sandwich flat panel (0.8x0.6 m2) under a subsonic
turbulent boundary layer load at Mach 0.62.

Table 5.2: Computational cost comparison for an Intel(R) Core(TM) i7-7700 CPU
3.60GHz processor (16Gb RAM).

Method Model DoFs Time/freq [sec] Reduction Ratio
FEM (Ref. [107]) Full 120x103 440 –
Present Approach Unit-cell 888 35 12.6

5.4 Conclusion

A procedure to account aeroelastic effects in the computation of dispersion curves and sound
transmission of panels and shells is developed. The structural framework is based on the
wave finite element method. The modelling of a single elementary cell is needed; homo-
geneous and multi-layered plates and shells can be studied with a reduced computational
effort.
Once an aerodynamic theory is used, the components of the load connected to the pressure
fluctuations that are produced by the motion of the flexible body, are described developing
temporal and spatial derivatives in a periodic framework; the convective terms become
function of the elastic waves’ propagation constants and are injected in the new dynamic
stiffness equation of the system.
A validation of the method is proposed using literature results for the travelling flutter of
infinite thin plates. The supersonic flow effects on the bending waves of a plate and shell are
studied. The resulting sound transmission, under turbulent boundary layer excitation, is
computed and compared to the one in absence of flow. A similar study, with subsonic flows
is also presented. Different effects are observed in the low frequency region and around the
acoustic coincidence.
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Chapter 6

Periodic Design for Reduced Sound
Radiation

Three design investigations are carried out in this chapter. The first one, which is mainly
experimental, is conducted on flat sandwich panels with acoustic excitation. The following
two investigations are numerical and are focused on ribbed and sandwich curved panels
under acoustic and aerodynamic load.

In the case of flat structures, a design investigation on two types of sandwich panels is
performed using the periodic structure theory. A double-wall panel with mechanical links
and a sandwich panel with rectangular core are studied. The elastic bending waves’ propa-
gation versus the acoustic wavenumbers is trimmed using folded and corrugated core walls,
trying to keep the same mass and compression stiffness of the original configurations. Stan-
dard and proposed configurations are 3D-printed and sound transmission measurements are
conducted using a facility with an uncoupled reverberant-anechoic configuration. The exper-
imental evidences of enlarged bending band-gaps and deformation mechanisms are proved
using a reverse approach based on the acoustic radiation of the panels.

For curved panels and shells, a first investigation is carried out on the effects of axial and
ring stiffeners on the acoustic response of the panels. The effects of the stiffening direction
are analysed and compared for diffuse acoustic and turbulent boundary layer excitation;
physical explanations are given using the wavenumber domain. The effect of the pitch
distance on sound radiation is also investigated.

Secondly, the use of periodic embedded resonators in curved panels under turbulent bound-
ary layer is explored by tuning single or multiple resonant elements inside the core. Again a
double wall panel is analysed in addition to a sandwich design with auxetic core. The reso-
nant elements are analysed in different tuning combination to investigate the effect on the
aerodynamic coincidences and the ring frequency of the shell. The advantages regarding the
sound transmission and the cost associated to the added-masses of the periodic resonators,
are also discussed

In the first two cases, the waves are tailored following the needs. In particular, the Bragg
band-gap mechanism is targeted, especially in the case of the double-wall panel with mechan-
ical links. Differently, in the last case, when using resonant elements, the resonance-induced
local band gaps are investigated.

119



Chapter 6. Periodic Design for Reduced Sound Radiation

Figure 6.1: Cell models extracted from a Double-Wall Panel with Mechanical links. a)
Standard design. b) Proposed Design.

6.1 Corrugated-Walls Design for Sandwich Panels

A core design with corrugated walls is here proposed for two classic types of sandwich
panels. First a double-wall panel with rectilinear mechanical links (Fig. 6.1a) is analysed
for a trapezoidal shape of the stiffener (Fig. 6.1b). A similar idea has been applied to a
sandwich panel with rectangular core (Fig. 6.2a), where the core walls have been folded in
one direction (Fig. 6.2b). Full geometrical details of the proposed cell designs are given in
Appendix A.
The frequency band targeted for the optimization is 600 Hz to 10 kHz, corresponding to the
frequency range of reliability of the measurements, for the facility used within this work.

6.1.1 Double-Wall Panel with Mechanical Links

The initial double-wall panel studied (Fig. 6.1a) is 1.06 cm thick (total thickness) has a 1.0
cm spacing between consecutive stiffeners, in the periodicity direction (axis x in Fig. 6.1).
The thickness of the skins and core walls is 0.6 mm. A unit cell, as the one illustrated in
Fig. 6.1a, is modelled with finite elements (ANSYS Shell181) and the eigenvalue problem
developed in Chapter 2 solved to get the wave dispersion in the media.
The modified design, proposed here for increasing the flexural band-gap region versus fre-
quency, in the periodicity direction, is characterised by a trapezoidal (top-view) shape of the
stiffer (Fig. 6.1b). The same global thickness and stiffeners’ spacing as the classic double-
wall panel is used; the skins are 0.6 mm-thick and the core walls are 0.45 mm-thick, in order
to keep the same mass of the system. The idea of using such a geometrical shape comes from
the usually low bending and shear stiffness of this kind of panels in the direction normal
to the stiffener envelope (axis x). The addition of oblique elements, periodically repeated
in the x-y plane due to the periodicity of the system, has a main function: the core shear
stiffness increases with respect to the classic design where the bending of the mechanical
link was proving the whole core-shear stiffness in the x direction.
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Figure 6.2: Cell models extracted from a Sandwich Panel with Rectangular Core. a)
Standard design. b) Proposed Design.

6.1.2 Rectangular-Cored Sandwich Panel

For the rectangular-cored panel, the initial design (Fig. 6.2a) has a total thickness of 1.06
cm and a 1.0 cm spacing between consecutive stiffeners, in both directions (Fig. 6.2a).
As for the double-wall panel, both skins and core-walls are 0.6 mm-thick. Similarly to the
previous case, the modified design proposed here is characterised by a trapezoidal (top-view)
shape of the stiffer in one direction (axis y in Fig. 6.2b), while the rectilinear geometry is
kept in the other direction. To keep the same mass, global thickness and stiffeners spacing
of the original system, the skins are 0.6 mm-thick and the core walls are 0.36 mm-thick.
Hereby, the target is to tailor the elastic waves dispersion in the panel, against the acoustic
wavenumbers. Differently from the previous case, the presence of additional components
of the stiffener in the x direction (Fig. 6.2b) does not have the function of increasing the
core-shear stiffness. The idea is to induce a larger deformation mechanism for the folded
core walls both for bending in y and core-shear in x.

6.1.3 Experimental Set-Up

The work flow followed for the study and testing of the presented corrugated-walls based
designs is illustrated in Fig. 6.3. Using the method described in Section 4.2, the numerical
dispersion curves and transmission loss are computed and compared. Then, a CAD model
is developed and transformed into a CAM input file for a Stratasys Fortus 450mc industrial
3D-printer with a maximum printable volume of 40 x 35 x 40 cm3 (Fig. 6.3). The material
used for the modelling and 3D-printing of the panels is the ABS-M30 (Acrylonitrile buta-
diene styrene) [173]. The material was experimentally characterised and has the following
properties: E = 1.8 GPa; ρ = 988 kg/m2; ν = 0.32. Both the 3D-printed panels with
standard and proposed designs are shown in Figs. 6.6 and 6.7.
The sound transmission measurements were performed in an un-coupled reverberant-anechoic
room as in Fig. 6.4. The reverberant room has volume of 2.50 x 1.40 x 1.75 m3. The mea-
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Figure 6.3: Work-flow scheme for panel design optimisation based on numerical and
experimental data.

sured reverberation time (T60) of 2.75 s, at to 1000 Hz: the calculated Schroeder frequency
is ≈ 1.3 kHz [163]. The acoustic excitation is generated using four speakers installed at the
four top corners of the reverberant room, with an uncorrelated white noise input from 50
to 10 kHz.
The transmitted sound power is measured using a Bruel & Kjaer sound intensity probe with
two half-inch microphones and a 6.0 mm spacer (see Figs. 6.4 and 6.5). The incident sound
power is obtained by the sound pressure level measurements in the cabin room, averaged
among four half-inch microphones disposed as in Fig. 6.4. The anechoic conditions of
the receiving room are simulated by covering the room walls with absorbing layers, whose
distance from the tested panel is larger than 2 m. The sound transmission loss (TL) is
finally calculated, assuming that the excited and radiating surfaces are the same, as:

TL = Lp − Li − 6.18, (6.1)

where Lp is the average pressure level measured in the reverberant room, Li the average
sound intensity level over the surface of the test-panels in the semi-anechoic room, while the
-6.18 factor arises from reference values in dB conversion [164].

6.1.4 Waves Tailoring versus Acoustic Wavenumbers

The approach presented in Chapter 2 is used for studying the waves’ propagation in the
periodic structures proposed in Section 6.1. the main idea is to evidence two phenomena:
an increase of the bending band-gap in the periodicity direction, for the double-wall panel
with mechanical links; an increase of bending wavenumbers versus the acoustic ones, for the
sandwich panel with rectangular core.
In Fig. 6.8, the dispersion curves for the two designs illustrated in Fig. 6.1 are compared in
the direction orthogonal to the stiffening elements. The band-gap present in the standard
design (standard Band-Gap in Fig. 6.8) extends from 3.3 kHz to 5.4 kHz and an acoustic
coincidence is observed around 8.4 kHz. Differently, for the proposed design proposed in
Fig. 6.1, the band-gap is strongly enlarged in frequency from 3.6 kHz to 9.1 kHz, while
a coincidence is observed only at the end of the frequency band of interest (≈ 10 kHz).
A double advantage is thus observed both in structural waves’ filtering (band-gap) and
coincidence shift, keeping the same mass of the system.
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Figure 6.4: Illustration of the test facility with un-coupled reverberant-anechoic rooms for
transmission loss measurements.

Figure 6.5: Facility and frame details: a) wooden external adaptive frame; b) clamping
system on the internal chamber side; c) view of the open room with reflective panels and

microphones.

Figure 6.6: The 3D-printed panels front-view following the standard (left) and proposed
(right) designs for the double-wall panel with mechanical links.
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Figure 6.7: The 3D-printed panels front-view following the standard (left) and proposed
(right) designs for the sandwich panel with rectangular core.
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Figure 6.8: Dispersion Curves of the Double-Wall Panel designs; eigenvalue solutions of
the eigenvalue problem in Eq. 4.2.
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Figure 6.9: Wavemodes of the Double-Wall Panel designs for waves propagating in x
direction; eigenvector solutions of the eigenvalue problem in Eq. 4.2. a) f = 4.5 kHz; b) f

= 6.5 kHz.

In Fig. 6.9 the eigenvectors of Eq. 4.2, which represent wavemodes of the wave-type
propagating in the media with the wavenumbers of Fig. 6.8, are showed for two frequencies.
In particular, the wavemodes with the highest wavenumbers of the set of waves propagating
at 4.5 kHz and 6.5 kHz are shown for the two designs in Fig. 6.1. It is interesting to observe
how, in Fig. 6.9, the cell modal wave deformations are completely different. The increase
of core-shear stiffness in the periodicity direction, for the proposed design, induces almost
null modal out-of-plane displacements of the skin surfaces. In opposition, the wavemodes
of the classic design still present mode-shapes efficient for sound transmission (non-null
out-of-plane displacements).

Differently, for the classic sandwich panel with rectangular core, band-gaps are not present
in the frequency range of interest (see Fig. 6.10). Here, a coincidence effect is not observed,
but the bending waves follow closely and almost parallel the acoustic wavenumbers versus
frequency. This means that the sound transmission loss is expected to be reduced in a large
frequency bandwidth.

The target of the proposed design, in this case, was to distance the structural and acoustic
wavenumbers for a large frequency band, by inducing a larger deformation mechanism of
the folded core walls. Coherently, in Fig. 6.10, the waves’ dispersion, both in x and y
directions, is characterised by higher wavenumbers: the larger distance from the acoustic
ones is expected to induce an enhanced sound transmission loss. In addition, a band-gap
formation in x, at the end of the frequency band, is also observed for the proposed design.
The wave shapes in x (wavemodes) at 4 and 6 kHz are presented in Fig. 6.11 for bending
waves. As said before, the folded walls design offers a larger core deformation mechanism
and this is clearly observable in Fig. 6.11 for both frequencies: a part of the vibrational
energy is absorbed through the core deformation. In this way, the shear core waves reduce
their speed and the corresponding wavenumbers increase, as targeted.
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Figure 6.10: Dispersion Curves of the Sandwich Panel with Rectangular core designs;
eigenvalue solutions of the eigenvalue problem in Eq. 4.2.
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Figure 6.12: Calculated Transmission Loss for infinite panels the proposed designs. a)
Double-Wall panels designs; b) Rectangular-Cored Sandwich panel designs.

6.1.5 Sound Transmission Loss under DAF excitation

The sound transmission loss of the two couples of designs is numerically simulated for
equivalent infinite panels. The effects of the design optimisation, observed in terms of waves
in Figs. 6.8 and 6.10, are specular in the transmission loss curves presented in Fig. 6.12.
In Fig. 6.12a, the double-wall panel with mechanical links is studied and the effect of
the enlarged band-gap effect is visible in shifting the coincidence frequency: starting from
1.5kHz, the sound transmission loss of the proposed panel is constantly larger than the one
of the standard plate design with the same mass.
On the other hand, in Fig. 6.12b, as observed from the dispersion curves, while a real
coincidence region is not observed for the standard sandwich plate design, a drop of the
transmission loss is still evident due to the proximity of the structural and acoustic wavenum-
bers/wavelengths. Differently, for the proposed design, the induced distance of structural
and acoustic wavenumber results in a constant increase of the sound transmission loss versus
frequency, in absence of evident drops: from 1.5 kHz to 10 kHz, the new design assures a
larger sound transmission loss with the same global mass of the panel.
To experimentally prove the increase of sound transmission loss for the proposed designs,
the 3D-printed panels are installed and clamped in the TL facility, as in Fig. 6.4. The
expected and real weights of the printed panels are reported in Table 6.1. It is observed in
Table 4.1 that, when the geometrical complexity of the single cell design increases (proposed
designs), the discrepancies between the expected and real weight of the 3D-printed panels
increases too. To compare mass-normalised results, the approach proposed by De Rosa in
[174] is used to scale the measured transmission loss curves of the proposed panels versus
the ones of the lighter (standard; see Table 6.1) panels.
In Fig. 6.13, the measured sound transmission losses of the two design couples proposed
in Section 6.1 are compared. While the total surface of the plates is 0.40 x 0.35 m2, the
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Table 6.1: Expected and Measured weights of the 3D-printed panels

Expected [gr] Measured [gr] Difference [%]
Standard (Fig. 6.1a) 246 245 - 0.4
Proposed (Fig. 6.1b) 246 287 + 16.6
Standard (Fig. 6.2a) 341 346 + 1.4
Proposed (Fig. 6.2b) 342 360 + 5.3

250 1000 10000
f [Hz]

0

10

20

30

40

50
Rect.-Core: Standard
Rect.-Core: Proposed
Mass Law: 346 gr

250 1000 10000
f [Hz]

0

10

20

30

40

50

T
L 

[d
B

]

DWP: Standard
DWP: Proposed
Mass Law: 245 gr

b)a)

Figure 6.13: Measured Transmission Loss for the 3D-printed panels. Total panel surface:
0.40x0.35 m2. Exposed panel surface: 0.34x0.29 m2. a) Double-Wall panels designs; b)

Rectangular-Cored Sandwich panel designs.

exposed panel surface is 0.34 x 0.29 m2. In Fig. 6.13a, the measured sound transmission
loss trends are strongly in accordance to the simulated ones for an equivalent infinite plate
in Fig. 6.12a: as expected, the increase of sound transmission loss starts from 1.5 kHz and
continues up to the end of the frequency band of interest. It must be highlighted that the
damping induced by the 3D-printing, the installation and the clamping in the TL cabin
might be high. It is also observed by the measured transmission loss curve around the
coincidence region (≈ 8.4 kHz) for the standard DWP in Fig. 6.13a, with respect to the
simulated drop in Fig. 6.12a.
Similarly, in Fig. 6.13b, the same trends of the simulation Fig. 6.12b, for the sandwich plate
with rectangular core, are experimentally observed. Again, the reduction of transmission
loss expected for the standard design is highly damped with respect to the simulation. The
agreements is, however, satisfying and validates the expected trends versus frequencies. The
increase of sound transmission loss, as in the previous case, appears in a very large frequency
band that goes from 1 kHz to 10 kHz, at least, for a fixed mass of the panel.
Although there is a general agreement between expected results and experimental evidence,
some discrepancies are present. For example, in both cases the sound transmission loss
increase starts in frequencies a bit lower than the expected ones. This should be addressed
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to two factor that act simultaneously. First, as discussed before, the Schroeder frequency
of the TL cabin (≈ 1.3 kHz) is very close to the expected frequency of transmission loss
increase (in both cases ≈ 1.5 kHz) and a this can have an influence on the reliability
of the measurements in that low frequency bands. In addition to that, the uncertainties
connected to the 3D-printing and the effective differences among the ideal models and the
real structures are not perfectly controlled and might, obviously, induce discrepancies by
the predictions and the measurements.

6.2 Axial and Ring Stiffening of Curved Panels

A bare test case panel is considered, then a periodic distribution of stiffeners is applied in the
axial and in the circumferential directions, separately. The curvature radius R = 1.0 m and
thickness equal to 1.2 mm. The material properties are chosen similar to a standard aeronau-
tical aluminum alloy, with Young’s modulus E = 70.0 GPa, mass density ρ = 2700.0 kg m−3

and Poisson coefficient ν = 0.33. From this properties, the ring frequency (the frequency
at which the longitudinal wavelength is equal to the vehicle circumference and it coincides
with the first extension mode) results equal to:

fR =
1

2πR

√
E

ρ
= 800 Hz. (6.2)

The FE model is built using solid structural elements (ANSYS SOLID73). For the stiffeners
three different cross-sections are analysed: T-, H- and Ω-shape, as shown in Fig. 6.14; the
cross-section properties are listed in Table 6.2. The stiffeners are modelled trying to keep
constant the cross-section properties, in particular the Moments of Inertia, choosing the
T-shape as reference. All the stiffeners are built using the same element property and the
same material employed for the skin.
The periodic stiffeners are placed in the axial and in the circumferential direction, as shown
in Fig. 6.15 respectively. The effect of the shape on the vibroacoustic response is analyzed
keeping equal to 6 cm the stiffeners inter-spacing.

6.2.1 Effects on the Sound Transmission Loss

In this section the effects of the different stiffeners are evaluated in terms of sound trans-
mission. The numerical approach adopted for the acoustic simulations is given in [175, 176].
The structure is modelled using a periodic cell approach and using ANSYS SOLID45 ele-
ments. The calculations are carried out considering two excitation models: a purely diffuse
acoustic field (DAF) and a simultaneous presence of a diffuse acoustic field and a turbu-
lent boundary layer (DAF + TBL) to simulate more realistic loading conditions in some
transportation sectors. The hypothesis of semi-infinite fluid termination is applied in the

Table 6.2: Cross-section properties of the stiffeners.

T-shape H-shape Ω-shape

Cross-section Area [m2] 3.46 · 10−5 3.70 · 10−5 2.78 · 10−5

Moment of Inertia, Ixx [m4] 2.54 · 10−10 2.85 · 10−10 2.61 · 10−10

Moment of Inertia, Iyy [m4] 8.01 · 10−10 8.11 · 10−10 7.87 · 10−10
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(a)

(b)

(c)

Figure 6.14: Front view of the stiffeners cross-section: a) T-shape; b) H-shape; c) Ω-shape.

Figure 6.15: Direction of the flow on the shell for: a) Axial stiffeners; b) Ring Stiffeners.
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internal radiating domain and thus single acoustic cavity modes are not considered while
a band-averaged result (in classic SEA fashion) are given [175]. The numerical approach
proposed is validated with measurements of real ribbed aircraft panels by Errico et al [176].
The three configurations described in Fig. 6.14, are analysed under a diffuse acoustic field
in Fig. 6.16. Both configurations with axial and circumferential stiffeners are considered.
In all cases, two phenomena are observed. First, as before, the ring frequency of the shell
is reduced and thus the first drop of sound transmission loss is anticipated in the frequency
band. At the same time, an increase of transmission loss ins evident in the region before
the ring frequency because of the strong stiffening of the structure compared to the bare
test case.
Among all the configurations, the main differences between the axial and circumferential
stiffening are observed for the H shape, in the whole frequency band after the ring frequency.
Even though the differences are not important, the circumferential stiffening provides a
slightly reduced sound radiation. Comparing the three shapes the T shape seems to provide
a higher sound transmission loss than the other configurations in the band between 1000
and 2000 Hz.
Differently, when changing the excitation model as in Fig. 6.17, the differences between
structures with axial and circumferential stiffeners became more important. The TBL model
used is the one of Corcos [177], with flow direction always along the axis of the shell: Uc =
190 m/s; stream-wise and cross-wise correlation coefficients equal to 0.125 and 0.81.
In contrast with the diffuse acoustic excitation, the convective nature of the TBL load
requires stiffening elements in the direction of the flow; the axial stiffening provides a sound
transmission loss at least 5 dB higher in the whole frequency band, as observable from
Fig. 6.17. This can be explained by looking at the wavenumber transforms (see Fig. 6.18)
of the structures in bare, axially-stiffened and ring-stiffened configurations. The response
to turbulent boundary layer load, in fact, can be calculated starting from the product of
the wavenumber transforms of the structure and the load model; the joint-acceptance is a
fundamental parameter [178]. In Fig. 6.18 the wavenumber transforms show how the bare
configuration is characterised by axially propagating waves (see Fig. 6.18a) with almost the
same wavenumber as the convective ridge of the load model in Fig. 6.18d. At the same
frequency, the ring stiffeners reduce the peaks of the circumferential wavenumbers in the
circumferential direction by stiffening the structure (see Fig.6.18b); only small changes are
present on the ones in the axial direction, that couple very well with the convective load.
Differently, when axial stiffeners are adopted (see Fig.6.18b), the axial wavenumber peaks
shift to lower frequencies (stiffer structure in this direction) and thus distance from the
convective ridge of the TBL model at that frequency; the result is a reduced vibration and
sound radiation of the shell.
It is also worth to observe how, with convective load, the Ω shaped stiffeners give the better
results, in Fig. 6.17, due to their higher torsional stiffness, that induced a reduced local
bending of the skins that contributes to the sound radiation.

6.2.2 The effect of pitch distance on sound radiation

The effect of the pitch distance on the sound radiation is analysed here for the T shaped
stiffeners. Two different inter-spacings are chosen: 6 cm and 10 cm. Again, both a pure
diffuse acoustic excitation and turbulent boundary layer load are considered. The main
differences observed are in the low-frequency region. A slight variation of the ring frequency
is followed by a global reduction of sound transmission loss that eventually approaches the
one of the un-stiffened shell for increasing pitch. This is of course given by the reduced
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Figure 6.16: Sound Transmission Loss for the stiffened panels under DAF excitation: a)
T-shape; b) H-shape; c) Ω-shape.

0 500 1000 1500 2000

f [Hz]

0

10

20

30

40

50

T
L 

[d
B

]

Bare test case
T-shape, axial stiffeners
T-shape, ring stiffeners

(a)

0 500 1000 1500 2000

f [Hz]

0

10

20

30

40

50

T
L 

[d
B

]

Bare test case
H-shape, axial stiffeners
H-shape, ring stiffeners

(b)

0 500 1000 1500 2000

f [Hz]

0

10

20

30

40

50

T
L 

[d
B

]

Bare test case
-shape, axial stiffeners
-shape, ring stiffeners

(c)

Figure 6.17: Sound Transmission Loss for the stiffened panels under DAF and TBL
excitations: a) T-shape; b) H-shape; c) Ω-shape..
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Figure 6.18: Wavenumber transforms for the structures and the load model at 1.5kHz: a)
Unstiffened Shell; b) Shell with Axial T shaped Stiffeners; c) Shell with Ring T shaped

Stiffeners; d) DAF and TBL load spectra.
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Figure 6.19: Sound Transmission Loss for the T shape stiffened panels with different pitch
distances: a) Ring Stiffeners and DAF load; b) Axial Stiffeners and DAF load; c) Ring

Stiffeners and DAF + TBL load; d) Axial Stiffeners and DAF + TBL load.

stiffening of the global structure compared to the cases with small pitch, as observed also
in [144].
In particular, being the axial stiffening important when a turbulent boundary layer excita-
tion is applied, the different pitches induce a frequency broadband variation of the sound
transmission loss (see Fig. 6.19), in contrast to the mainly low-frequency effects in the cases
of pure acoustic excitation (see Fig. 6.16).

6.3 Embedded Resonators in Curved Panels

As discussed in Chapter 2, the periodic mismatch of impedance typical in periodic media
causes the phenomena of the Bragg scattering. In this Section, the resonance-induced band-
gap mechanism is targeted to enhance the sound transmission loss of two types of structures.

6.3.1 Resonators’ Efficiency for Different Excitation Models

Depending on the excitation model assumed, the sound transmission loss of a panel changes.
Similarly, the exotic nature of some excitation models might reduce the efficiency of the
use of resonators. With reference to Eq. 4.21, each couple of forcing wavenumbers kX
and kY , contributes to the final transmission coefficient as a function of the weighting
factors WA(kX , kY , ω). For a diffuse acoustic field, the integration scheme is equivalent to
integrating all plane-wave inclinations [37]. In Fig. 6.23a, some acoustic plane-wave trace
wavenumbers versus frequency are plotted with the flexural ones of a 2mm-thick aluminium
plate; the coincidences shift depending on the inclination angle and the final coincidence we
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Figure 6.20: Illustration of the inclination of the single plane wave exciting the panel.

would obtain from integrating on every angle (Eq. 4.21), is the one given by assuming the
acoustic wavenumber ω/c0, where c0 is the speed of sound in the media analysed.

This means that tuning a single resonator on a specific coincidence/inclination (see Fig.
6.20), even if the global one, means, averaging its increased sound transmission losses over
a large number of cases where the resonator is "mis-tuned" and thus induces a lower trans-
mission loss, as shown in [46]. The global advantages in using the resonant elements are
attenuated (cancelled, in the worst cases), by the diffusiveness of the loading model. For ex-
ample, in Fig. 6.21, the sound transmission of the auxetic-cored sandwich panel in Fig. 6.28,
with a mis-tuned resonant element, is investigated for different angles of incidence. In any of
the cases presented, the bad tuning of the first natural frequency of the resonator (bending
mode) creates zones of increased TL, followed immediately by a reduction of TL; the effects
is more or less evident depending on the inclination of the forcing plane waves (see Fig.
6.21). On the other hand, in Fig. 6.22, the sound transmission loss of an aluminium-made
honeycomb panel is analysed by using a resonant element tuned on the acoustic coincidence
of the panel; this configuration is here considered as properly-tuned since it is the only one
that avoids any anti-resonance drop of the TL (see Fig.6.22a). However, as explained before,
even in this "optimal" case, when changing the inclination of the plane waves, the effects
typical of mis-tuned resonators appears; in a diffuse field, the excellent effects observable in
Fig. 6.22a, are constantly integrated with many drops of TL that appear for most of other
angles of incidence.

Differently, for a turbulent boundary layer model, the aerodynamic coincidence (or critical
frequency; see Fig. 6.23b) is stream-wise filtered by the physical nature of the load itself.
Similarly, the structural-induced acoustic drops, as for the ring frequency of shells/curved
panels, are not dependent on any inclination. For these reasons, the use of simple resonant
elements (as beams) to contrast these frequency-fixed issues, can be a valid approach; the
resonators "mis-tuning" effects are somewhat damped with respect to the ones integrated
for a diffuse acoustic field.
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Figure 6.21: Sound Transmission Loss of for the auxetic-cored sandwich panel in Fig. 6.28
with a mis-tuned resonant element: a) θ = π/2, α = 0; b) θ = π/4, α = 0; c) θ ≈ π/2, α

= π/2; d) θ ≈ π/2, α = π/4;
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Figure 6.22: Sound Transmission Loss of for a 12mm-thick aluminium honeycomb panel
with a properly-tuned resonant element: a) θ ≈ π/2, α = 0; b) θ ≈ π/2, α = π/2; c) θ =

π/4, α = 0; d) θ = π/4, α = π/2;
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Figure 6.23: Dispersion Curves - The bending wavenumbers of a flat isotropic plate with:
a) acoustic wavenumbers for different plane wave angles. b) convective wavenumbers for

different flow speeds

6.3.2 Resonators’ Efficiency around the Ring Frequency of Shells

Differently from the acoustic coincidences, that shift depending on the anisotropy and in-
clination of the plane waves, the ring frequency of a shell is an angle-invariant property and
thus represents a tonal (fixed-frequency) problem in this context (see Fig. 6.24). For this
reason, a resonant metamaterial can be easily tuned to absorb energy at that frequency.
However, it is still important to evaluate the right direction of operation for this device.
In fact, the ring frequency can be identified as the first extensional mode of the shell along
its circumference. Because of the coupling between bending and normal forces, this causes
a breathing mode of the shell, as illustrated in Fig. 6.25. Two ideal resonant configurations
are considered to test the efficiency of these devices in the ring frequency zone. Considering
Fig. 6.25, the first resonant configuration explicitly targets the out-of-plane vibrations,
while the second one targets the extensional vibrations caused by the ring mode.
In Fig. 6.26, the sound transmission loss of the three configurations of Fig. 6.25 is calculated
and compared for different angles of plane-wave incidence. In both cases the resonant beams
are tuned around the ring frequency (≈ 50 Hz), but they operate along different directions,
both involved in the ring mode of the shell. However, in terms of acoustic radiation, the only
efficient one is the one acting on the out-of-plane displacements, as observable in Fig. 6.26.
This can be explained by observing that, even though the resonant configuration acting for
displacements along the circumference might damp the vibrations, still a resonance condition
(steady mode) is present for the acoustic cavity, while, in the other configuration acting
specifically on the out-of-plane displacements, the ring mode can be almost suppressed at
that frequency. Thus the TL strongly increases at the resonance condition of the beams.
In the next proposed analyses, when targeting the ring frequency of the shell using res-
onators, the configuration denoted by Resonator 1 in Fig. 6.25 is used.
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Figure 6.24: The sound transmission loss of a shell for different angles of incidence.

Figure 6.25: Illustration of ring mode of a shell (a) and the potential applications for
resonant metamaterials (b).
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Figure 6.26: The sound transmission loss of a curved shell with embedded resonators as in
Fig. 6.25: a) θ ≈ π/2, α = π/2; b) θ ≈ π/2, α = 0;

6.3.3 Metamaterial Designs Analysed

The original panel designs analysed in this work are a double-wall with mechanical link
(see Fig. 6.27a) and an auxetic-cored sandwich (see Fig. 6.28a). In both cases resonant
laminas/beams are attached to the core walls (see Figs. 6.27b and 6.28b,c) and case-by-case
tuned considering the first cantilever-beam-like mode. Both the models are made with skins
in aluminium. The double-wall panels have a core in aluminium too and both skins and core
walls are 0.6mm-thick, while the global thickness is 15mm. The auxetic core of the sandwich
plates, which have a total thickness of 14mm, is instead made of an isotropic material with
the following properties: E = 1.45 GPa, ν = 0.27, ρ = 1100 Kg/m3. In this case, the skins
are 1mm-thick and the core walls are 0.5mm-thick.
Depending on the tuning and the number of the resonant elements, different configurations

Figure 6.27: The periodic cell extracted from the double-wall panel with mechanical links.
a) Standard design; b) Designs with Resonant Elements.
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Figure 6.28: The periodic cell extracted from the Auxetic-Cored Sandwich Plate. a)
Standard design; b) Designs with single Resonant Elements; c) Designs with triple

Resonant Elements.

Table 6.3: Double-Wall plate with mechanical links: Configurations Info

ID Number of Added Mass Target Curvature
Resonantors [%] Coincidence [m]

Standard 0 0 N/A 1.6
Resonant (Ring) - D1 1 6 Ring Mode 1.6
Resonant (Aero)- D2 1 15 Aerodynamic 1.6

Doubly-Resonant (Aero)- D3 2 18 Aerodynamic 1.6

are studied: for the double-wall plate three configurations are analysed and reported in
Table 6.3; for the auxetic-cored sandwich panel four configurations are analysed instead and
are reported in Table 6.4.

Considering the mass ratio influence, as discussed in [46], the effects of the resonant elements
should be strongly visible for the double-wall panels, where the added masses are largely
superior to the ones added in the auxetic-core configurations (see Tables 6.3 and 6.4)

The approach described in Chapter 4 is applied to simulate the sound transmission loss of
the panel designs described in Sec. 6.1 under a turbulent boundary layer excitation (TBL).
The Corcos model [9, 13] is used in these cases; the flow data are: δ = 0.027 m, α = 0.125
and β = 0.83.

Table 6.4: Auxetic-Cored Sandwich Plate: Configurations Info

ID Number of Added Mass Target Curvature
Resonantors [%] Coincidence [m]

Standard 0 0 N/A 1.0
Resonant (C1) 1 0.78 Ring Mode 1.0
Resonant (C2) 3 2.36 Ring Mode 1.0
Resonant (C3) 2 1.49 Ring Mode 1.0
Resonant (C4) 1 0.52 Aerodynamic 1.0
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Figure 6.29: Dispersion curves for the double-wall panel with a 1.6m curvature. With
reference to Table 6.3: a) D2; b) D3; c) D1. Legend: Or) Standard Configuration; .b)

Resonant Configurations; -) Convective Wavenumbers for Uc = 160 m/s.

6.3.4 Dispersion Curves

First, the dispersion curves of the panel designs described in Sec. 6.1 are plotted in Figs.
6.29 and 6.30. In Fig. 6.29, the double-wall panel with mechanical links is analysed imposing
a 1.6m curvature; due to the typical low core-shear stiffness of these types of structures,
the presence of the resonant beam (see Fig. 6.27) seems to strongly influence even the ring
frequency zone and, as shown late for the transmission loss, this will cause a shift of the
ring frequency to lower values. For the resonant configurations targeting the aerodynamic
coincidence (see Table 6.3 and Figs. 6.29a,b), resonance-induced band-gaps appear around
the critical frequency.
Differently, in Fig. 6.30, the dispersion curves of three configurations presented in Table 6.4
for the auxetic-cored sandwich plate with a 1.0m curvature, are compared to the standard
circumferential waves. In these cases, the presence of the resonant beams embedded in the
auxetic core, does not influence the wave propagation in the original structure in frequency
regions outside the resonance modes of the beams, as happens for the double-wall panel.
This effect is connected to the reduced mass addition of this test-cases (see Table 6.4).

6.3.5 Sound Transmission Loss under TBL excitation

Here, the sound transmission loss is finally calculated and compared, for all the configura-
tions analysed, using the approach of Chapter 4. Infinite shells made with the elementary
cells of Figs. 6.27 and 6.28 are simulated under an axial turbulent boundary layer flow.
As a rule of thumb, the lower the mass addition the lower should be the advantages of the
resonant elements around their frequency of resonance, in terms of sound transmission loss;
with reference to Table 6.3 and 6.4 the addition of mass is between 6-18% for the double
wall panel and between 0.5-2.4% for the auxetic-cored sandwich panel.
In Fig. 6.31 the sound transmission loss for the double-wall panel under a 160 m/s flow is
presented. As evidenced also in the dispersion curves, the presence of the resonators shifts
the ring frequency of the modified configurations and, thus, a mis-tuning of the resonance
frequency of the embedded beams appears when targeting the original ring frequency of
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Figure 6.30: Dispersion curves for the Auxetic-cored sandwich panel with a 1.0 m
curvature. With reference to Table 6.4: a) C1; b) C2; c) C4. Legend: Or) Standard

Configuration; .b) Resonant Configurations; -) Convective Wavenumbers for Uc = 285 m/s.
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Figure 6.31: The sound transmission loss of the panel design in Fig. 6.27, with a 1.6 m
curvature, under a TBL excitation at Uc = 160 m/s. Comparison between design

configurations in Table 6.3.
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the shell. Differently, for the other configurations targeting the aerodynamic coincidence,
a strong increase of the sound transmission loss is observed; a narrower band is targeted
when using a single resonant beam, while a larger one, with a reduced peak of STL, is tar-
geted when using two beams with a slightly different natural frequency. It is worth notice
that the bands of increase of the sound transmission loss, when targeting the aerodynamic
coincidence, are larger than expected by looking at the free wave propagation of the disper-
sion curves. This effect is attributable to the flow-induced increase of damping around the
critical frequency (typical of TBL; [166, 179]), usually larger than the one observed for the
acoustic coincidences.
On the other hand, in Fig. 6.32 the sound transmission loss for the sandwich panel with
auxetic core, under a 285 m/s flow, is presented. Differently from the previous case, the
increases of the STL are reduced because of the minimum addition of mass. Still, the con-
figurations C1, C2 and C3 (see Table 6.4) induce a non-negligible increase of performance
around the ring frequency region, as observed in Fig. 6.32. The use of three resonant el-
ements with slightly shifted first natural frequencies (see C2 in Table 6.4 and Fig. 6.28c)
helps in enlarging the coverage in frequency of the resonance-induced band-gaps and, thus,
also the region of STL increase. Differently, the resonant configuration targeting the aerody-
namic frequency (see C4 in Table 6.4) gives a relatively good increase of sound transmission
loss even being single-element based and adding less that 1% of mass to the system.
This last configuration is analysed also using a combination of simultaneous TBL and DAF
excitation in Fig. 6.33. The convective flow speed is again 285 m/s and the curvature
equal to 1.0 m. The results show how the drop of transmission loss linked to the convective
coincidence is efficiently contrasted using the embedded resonant beams between 2.0 kHz
and 4.0 kHz with peaks of increased TL around 5 db.
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Figure 6.33: The effective sound transmission loss of the panel design in Fig. 6.28, with a
1.0 m curvature, under simultaneous TBL and DAF excitation at Uc = 285 m/s.

Comparison with design configuration C4.

6.4 Concluding Remarks

Three different types of design rules are investigated: one based on the corrugation of core
walls for sandwich panels, a second one based on the placement of periodic axial or ring
stringers in fluid-loaded shells and the last one based on the addition/embedding of resonant
mechanical elements.

Corrugated Walls Design In the first case, two sandwich panels are analysed in terms
of waves’ propagation and sound transmission loss by using periodic structure theory. A
double-wall panel with mechanical links and a sandwich panel with rectangular core are
considered. A core optimization using corrugated core walls is proposed targeting the struc-
tural waves’ propagation versus the acoustic wavenumbers, forcing the mass to be fixed to
the value of the original designs.For the double-wall panel with mechanical links an enlarged
bending band-gap is achieved in a large frequency band, shifting the acoustic coincidence
almost out of the frequency band of interest.
For the sandwich panel with rectangular core, an increased core deformation mechanisms is
achieved distancing the structural(bending) and acoustic wavenumbers versus frequency.
Standard and proposed configurations are 3D-printed and sound transmission loss measure-
ments are carried out using a small facility with uncoupled reverberant and semi-anechoic
configuration. Numerical simulations and experimental tests evidence an increased vibro-
acoustic performance of the new designs. The transmission loss measurements showed that,
even keeping the same total mass of the panels, the sound transmission loss is increased in
a very large frequency band that goes from ≈ 1.5 kHz to 10 kHz.

Axial and Ring Stiffening In the second case, the role of axial and ring stiffeners is
exploited for curved shells under acoustic and fluid excitation. The effect of stiffeners in the
direction of the flow is fundamental when convective loads are present while the direction of
stiffening doe not influence the sound transmission loss for purely acoustic loads. The form
of the stiffeners has important impacts below the ring frequency while is reduced after. The
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pitch distance, similarly, has effects only in the low frequency range but is coupled with the
effects of axial stiffeners, when a turbulent boundary layer excitation is applied, providing
a broadband increase of sound transmission loss when the pitch is reduced.

Embedded Resonators In the third case, again two sandwich cylindrical panels are
analysed embedding resonant beams inside the core and under a turbulent boundary layer
excitation. A double-wall panel with mechanical links and a sandwich panel with auxetic
core are considered. The resonant elements are analysed in different resonance tuning com-
bination to investigate the effect on the aerodynamic coincidences and the ring frequency
of the shell. A discussion on the use of such devices to target specific coincidences or res-
onances is also given. The effects of the resonant structural configurations with respect to
the wave propagation, sound transmission and added-masses are observed and discussed.
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Chapter 7

Conclusions and Prospectives

7.1 Achievements

Within the present thesis different approaches are developed, validated and later applied
for design and simulation purposes. In terms of methodologies, two macro-approaches are
developed. These can be categorised by considering the wave propagation tracked in the
structure: for structural vibrations a one-dimensional wave propagation is considered, while
for the flow-induced noise a two-dimensional wave propagation is analysed.
For structural vibrations, the main achievements with respect to the previous literature,
are linked to a reduced modelling complexity and the release of mesh constraints in the
periodicity/homogeneity direction. This allows to keep the same accuracy of a standard
finite element approach while reducing the computational cost of the calculation. Moreover,
the formulations developed in Chapter 3 are quite general and applicable for flat, curved
and axisymmetric structures even in presence of impedance variations along the direction
of wave propagation. Differently, the literature is limited to simple geometries and reduced
frequency bands to constrain the computational cost.
In terms of flow-induced noise, the approach proposed in Chapter 4, is generally applicable
independently on the curvature, load model and model homogeneity/heterogeneity. Val-
idations are provided with analytical, numerical and experimental data for acoustic and
aerodynamic load, for flat and curved structures, with and without attached noise control
materials. The method requires a simple FE modelling (unit cell) and provides accurate
band-averaged results (as SEA) and a strongly reduced computational cost. The sensibility
of the approach to meshing and wavenumber resolutions is also investigated.
The method is also further developed by introducing mean-flow effects (aeroelastic coupling)
at cell scale. The convective derivatives of the (aerodynamic) load components are expressed
in terms of waves’ propagation constants in the structure. Validations are provided with
available semi-analytic models for plates and shells.
However, some drawbacks are present in the developed methodologies:

• Increasing number of operations for increasing number of target degrees of freedom.

• Eigenvalue problem to be solved at each frequency step, to move in the wave base.

• Increasing computational cost if a proper baffled window integration has to be calcu-
lated for finite size effects in 2D approaches.
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• Requires a modal order reduction at cell scale if the model has too many internal
degrees of freedom.

• For 2D approaches, the boundary effects (reflections) are not accounted and thus a
purely modal behaviour can not be captured.

The methods developed in Chapters 3, 4 and 5 are then applied for the investigation of pe-
riodic design tools to enhance the vibro-acoustic capabilities of standard structures. Three
approaches are developed and applied to different structural models. In the first cases, cor-
rugated core walls are used targeting the structural waves’ propagation versus the acoustic
wavenumbers, forcing the mass to be fixed to the value of the original designs. Standard and
enhanced configurations are 3D-printed and sound transmission loss measurements are car-
ried out using a facility with uncoupled reverberant and semi-anechoic configuration. The
results proved that, even keeping the same total mass of the panels, the sound transmission
loss is increased in a very large frequency band that goes from ≈ 1.5 kHz to 10 kHz.
In the second case, the influence of axial and ring stiffeners on curved shells is studied
in terms of the sound radiation under acoustic and aerodynamic load. The effects of the
axial stiffening for convective load is studied and compared to ring stiffening identifying the
physical reasons of the increase of sound transmission loss.
In the third case, the approach consisted in embedding resonant beams inside the core of
curved panels, targeting the ring frequency mode and the aerodynamic coincidence. The
effects of the resonant configurations is discussed relating the advantages in terms of sound
transmission with the drawbacks of increasing the total mass of the system.

7.2 Future Developments

As the manuscript is basically divided into a mainly methodological part and an applicative
part, some future developments might be strictly connected to the drawbacks of the numer-
ical approaches and further optimizations of the raw schemes proposed here for increasing
the vibroacoustic performance of plates.
For the numerical part, a more efficient modal order reduction scheme is needed for both the
1D and 2D WFE approached developed here. In fact, as the size of the unit cell increases
(number of nodes) the computational cost raises, especially considering the integration in
Chapter 4. The potential solutions can be:

• Exploring a more efficient reduction scheme that involves the modes of the loaded sur-
face, thus allowing to reduce significantly the size of the reduced matrices in Chapter
4.

• Use a more accurate selection of the integration domains in the wavenumber space
to reduce to the minimum the combinations of wavenumbers to be involved in the
scheme, thus reducing the total number of operations.

• Developing a more detailed approach to include finite size effects even at low-frequencies,
without sacrificing the computational cost.

In terms of design solutions, the ones proposed in this manuscript did not mean to be
proper optimizations but rather types of solutions. Further developments can be achieved
by employing machine learning of other automatic numerical schemes to explore different
similar solutions and performing a proper optimization of the unit cell design.
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Appendix A

Geometrical Details of Proposed
Designs

Full geometrical details for the designs analysed in Chapter 6 are given: the double wall panel
with mechanical link is illustrated in Fig. C.19, while the sandwich panel with rectangular
core is illustrated in Fig. A.2.

Figure A.1: Cell model extracted from the optimized double-wall panel with mechanical
links. Distances in millimetres.
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Figure A.2: Cell model extracted from the optimized sandwich panel with rectangular
core. Distances in millimetres.
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Appendix B

Reducing Tyre Vibrations using
Embedded Mechanical Resonators

An investigation is carried out on structure-borne vibration and noise propagation of tyres’
models at low frequencies. The idea is to use embedded resonant meta-materials to damp the
tyres’ vibrations and thus reduce the transferred energy to the main attached structures.
A simplified tyre model is used, being the investigation of the effects of the embedded
substructures the main target of the work; internal pressure and tyre rotation effects are
neglected at this stage. Different configurations are tested targeting different natural modes
of the tyre, while mechanical excitation is assumed on one section of the tyres. The results
show how the proposed designs are a feasible solution for vibration control.

B.1 Introduction

Tyre noise and vibrations are becoming some key comfort parameters in the automotive
industry, even before 40 km/h [180, 181], because of the advent of hybrid and electric
power-units [182]. In fact, the broadband noise distribution coming from an ICE (Internal
Combustion Engine) is replaced by a generally high-frequency tonal whistling, which al-
lows other noise sources, as tyre/road noise, to become dominant in other frequency ranges.
Among these, the tyre noise, is dominant both in terms of structure-borne and air-borne
propagations, respectively before and after 500Hz [183–185]. The structure-borne contri-
butions derive mainly from the first natural modes of the tyre while the air-bone ones are
mainly due to higher frequency circumferential modes of the tyre [185–188]. Modelling tech-
niques based on finite elements (FEM) are often limited to low frequencies due to a high
computational cost [185, 186]; wave-based approaches are also efficient to investigate the
wave propagation in the tyre [189].

B.2 Proposed design

To investigate the effect of embedded resonant substructures on tyre vibrations, the config-
uration in Fig. B.1b is proposed.
First, it is fundamental to know the frequencies or frequency bands to target with the
embedded substructures. The transversal modes appear in lower band with respect to the
mainly radial ones and thus the resonant configurations will be tuned depending on the
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Figure B.1: Simplified tyre model with shell elements. Tyre Configuration: a) Bare; b)
Resonant. Target: c) Transversal Vibrations; d) Radial Vibrations.

needs. A modal analysis is conducted on the bare tyre configuration using NX NASTRAN
shell elements (CQUAD4) and using more than 20 elements per wavelength at 2KHz. The
first four modes of the structure at illustrated in Fig. B.2. The material properties used
are: E = 19.8 GPa, ν = 0.32 and ρ = 1850 Kg/m3.
The targets of this work will be the first two modes in Fig. B.2, for the transversal vibrations,
and the fourth mode (and higher orders) in Fig. B.2, for the radial vibrations. For this
reason, when targeting the transversal motion of the tyre, the concept in Fig. B.1c is used,
while the one in Fig. B.1d is employed when the radial motion of the tyre is targeted too.
In the case of Fig. B.1c, the first vibration modes of the embedded beams, which are classic
cantilever-beam modes, are in the same direction of the transversal tyre motion. In the case
of Fig. B.1d, the resonator behanves as a bridge structure with two main vibration modes in
the transversal direction (cantilever-beam modes of the pylon) and radial direction (simply-
supported beam mode of the deck). The idea is to create resonance-induced band-gaps
around the targeted tyre modes, in order to control vibrations in that region.

B.2.1 Force vibrations of resonant configurations

A set of forces normal to the tyres’ plane, in order to simulate a mechanical road input, are
used as white noise load. The response of the tyre is numerically calculated in a set of ten
random point around the tyre and plotted in Figs. B.3 and B.4. Only structural damping
is considered and the effect of pressure and tyre rotation is neglected.
In Fig. B.3, the resonant configuration illustrated in Fig. B.2c is tuned once on the first
and once on the second transversal mode of the tyre. Two circumferential rows of 10
resonant elements are considered in both cases. The results show how the modal peaks
in the response are strongly reduced, even if anti-resonances of the beams appear close to
the modal frequencies, increasing the vibrations compared to the bare configuration. The
effects, for both tuning conditions, are identical. No coupling between the tyre and the beam
motion is observed and the resonators behave as classic TVAs (Tuned Vibration Absorbers)
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Figure B.2: First four modes of the bare tyre. Transversal Modes: a) 243.6 Hz; b) 338.5
Hz; c) 610.6 Hz. Radial Mode: d) 702.4 Hz.

with every narrow band effect.
In Fig. B.4, the resonant configuration illustrated in Fig. B.2d is tuned on the first purely
radial mode of the tyre at ≈ 703 Hz and targets also the transversal vibration of the tyre at ≈
330 Hz. A single circumferential row of 25 and then 5 resonant elements are considered, with
added masses of ≈ 20% and ≈ 3% respectively. The average vibrations of the tyre in Fig. B.4
show some main effects. First, the appearance of band-gaps around the targeted frequency
bands with the second transversal mode of the tyre (≈ 330 Hz) always well damped. In
the configuration with five circumferential resonators, the band-gap opens also around the
600-750 Hz band, allowing a decrease of vibration levels of 15dBs. On the other hand, the
same effect is not achieved when more resonators are added, since a strong coupling with
the tyre dynamics is present, probably given by the excessive added mass. For this reason,
there is a frequency shift to lower frequencies and vibrations are increased in the 400-500
Hz frequency band.
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Figure B.3: Average structural mobility of the tyre with and w/o mechanical resonators
for transversal vibration control.
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Figure B.4: Average structural mobility of the tyre with and w/o mechanical resonators
for radial vibration control.
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B.3 Concluding remarks

The effects of embedded mechanical resonators in a tyre compound is analysed in terms of
forced vibrations on a simplified tyre model. Two main configurations are analysed in order
to target two main regions of tyre dynamics, strongly related to the structure-borne and
air-borne issues respectively. Numerical simulations are carried out using a FEM approach
and average vibrations on random tyre points are computed. The resonant substructures
are observed to be very efficient when targeting the transversal motion of the tyre, while
higher order coupling between the resonators and the tyre dynamics appears when targeting
radial vibrations. The latter effect can be investigated with a detailed modelling of the tyre.
Further investigations could target the efficiency of the resonant configurations as a function
of the resonators’ shape and added mass.
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Appendix C

Dispersion of Periodic Media through
Modal Analysis of Rings

This work presents an approach for using a modal analysis on an equivalent finite cylin-
drical model, to predict the elastic waves in infinite, isotropic or composite, panels. In the
description of the infinite paths, an analogy, between the classical topologies of a straight
line and a circumference, is exploited and tested. Different aspects, concerning the wave-
mode duality and the discretization and the needed radii of curvature, are investigated to
frame the problem and test the robustness of the methodology. The analysis presents a
well conditioned problem and solution for any propagation wave angle by transforming the
original problem into a simple modal analysis.

C.1 Introduction

The correct knowledge of how elastic waves freely behave inside a specific structure is manda-
tory for a correct modelling and analysis of the structure itself. Moreover, the generally
frequency-dependent wavelengths, to be described in the modelling phase, must be known
in advance for a correct discretization of the model. In FEA (Finite Element Analysis)
[190], the knowledge of the wavelength is absolutely mandatory for the mesh sizing and
for selecting the proper elements in the frequency range of analysis; in SEA, [191], detailed
information about the group velocity and the modal density are necessary for the charac-
terization of the specific subsystem and to analyse the energy exchange among them.
For an isotropic and homogeneous panel, three wave types are, present: bending, shear and
longitudinal waves. An analytic procedure is available in literature for the corresponding
wavenumbers, assuming the Kirchhoff-Love plate theory [172, 192]. In order to deal with
composite laminates, the CLPT (Classical Laminate Plate Theory) [193] can be used once
the characteristic matrices of the laminate are calculated and is the simplest available theory.
More recently, some authors have proposed alternative methodologies for the calculation of
the dispersion curves of more complex composite structures [194–198].
Among the finite-element based methods, the SFEM (Spectral Finite Element Method) is
a wavenumber-based procedure which reformulates the wave propagation problem through
a linear algebraic eigenproblem in the wavenumber space, assuming a three-dimensional
displacement field within the plate [80, 196–198].
The WFEM (Wave Finite Element Method) is also used similarly to the SFEM for obtaining
the dispersion curves of homogeneous and periodic structures. The method makes use of
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the Bloch-Floquet theory, [72], and analyses the wave propagation in the media imposing
the periodicity conditions to a single repetitive cell [72, 73, 87, 89, 95, 96, 101].
Both these procedures are affected by numerical conditioning when an heading angle, dif-
ferent from a few specific values, is imposed. For example, in the case of the WFEM, the
polynomial eigenproblem, to be solved, when an general angle is imposed, might turn to
a transcendental eigenvalue problem which is characterized by numerical instabilities and
eigenvalue tracking issues, [89]. Moreover, it is fundamental determining which solutions
of the eigenvalue problem are artefacts of the spatial discretisation and which are valid
estimates of wavenumbers in the continuous structure, [95, 146, 150].
The tracking of eigenwaves, performed through a Wave Assurance Criterion, [95, 199], is a
time-consuming task and it does not assure correct and robust results for two dimensional
waveguides. Other issues of the method are associated with the periodicity effects: the solu-
tion scheme gives the same result for the wave modes and the frequencies of the propagation
constants with period 2π, because of the spatial periodicity, giving rise to aliasing effects,
[89].
On the other hand, the wave propagation in curved waveguides, i.e. cylinders and cones, is
deeply analysed in the literature [152, 200]. The propagation of longitudinal and flexural
waves in axial-symmetric circular cylindrical shells with periodic circular axial curvature
is studied using a finite element method in [201]. The waves in thin uniform cylindrical
shells, periodically stiffened by uniform circular frames of general cross-section, is analysed
in [200]. Modern methods appeared continuously in the literature, for curved structures,
both for the free wave propagation and the forced response [107, 202].
A wave-based methodology for the free and forced analysis of the circumferential wave prop-
agation of axial-symmetric structures, whatever they complexity and tapering, is proposed
in [107].
Differently, some attempts to use a finite model to gather informations of an infinite waveg-
uide are present in literature, with success in the identification of the periodic structural
band-gaps [203, 204].
The issues of having a correct mathematical formulation for the out-of-resonance wave-mode
duality is analysed and discussed by Langley in [205]. It is stated and proved that, at least
in the case of a 1D wave propagation, in a resonance condition a mode can be represented
using a wave description [205].
To authors knowledge, very few works, dealing with a full representation of the disper-
sion curves of the periodic (or homogeneous) waveguide, are present in literature and, in
this work, an alternative approach is proposed which allows to overcome all the numeri-
cal instabilities. The approach produces results for every heading angle, through a simple
real modal analysis of a cylindrical equivalent finite element model, performable with any
available in-house or commercial code.
The paper is structured as follows: Section 2 gives an overview of all the reference solutions
adopted; Section 3 describes the analogy proposed and Section 4 contains the analytic and
numerical validations for all the analysed test-cases.

C.2 Reference Solutions

In the following section an overview of the adopted reference solutions is given for isotropic
beams and plates and for composite laminates.
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C.2.1 Isotropic beam and plate

Considering a beam with E as the Young modulus, I the area moment of inertia, ρ the
mass density and A the cross-sectional area; The phase wave speed in a flexural beam can
be expressed a follows, [73, 147, 172]:

cb =
(EI
ρA

)1/4√
2πf (C.1)

Similarly a uniform thin and flat plate is here considered, made of an homogeneous
material. From classical thin plate theory, [172], three wave types propagate in the material
of thickness h: longitudinal, shear and bending waves. Each of these is associated with the
respective wavenumber: kl, ks, kb.

kl = 2πf

√
ρ(1− ν2)

E
ks = 2πf

√
2ρ(1 + ν)

E
kb =

√
2πf

(ρh
D

)1/4
(C.2)

where D is the well known flexural stiffness of the plate and ν the Poisson ratio. By
using these relationships, any information for a predictive methodology can be gathered.
For example, the discretization of the predictive finite element model could be designed to
work up to a given excitation frequency, once the wavelengths are known.

C.2.2 The Classical Lamination Theory (CLPT)

The basic analytic equations for a thin composite plate are here summarized. For a laminate,
the relations between forces/moments and strain/curvatures can be written as, [80, 193]:

N = Aε0 + Bγ0 MI = Bε0 + Dγ0 (C.3)

where ε0 are the strains of the middle plane and γ0 the curvatures of it.
A, B and D are the matrices which compose the well known matrices which depends on
stress-strain relation of each lamina and the chosen layup sequence [80, 193].

ε0 =


∂u

∂x
∂v

∂y
∂u

∂y
+
∂v

∂x

 (C.4)

γ0 =


−∂

2w

∂x2

−∂
2w

∂y2

−2
∂2w

∂y∂x

 (C.5)

where u and v are the in-plane displacements, while w is the out-of-plane displacement.
Following the procedure explained in [193], a 3D displacements wave is assumed to propagate
along the plate: uv

w

 =

UV
W

 ej[k(cos(θ)x+sin(θ)y)−ωt] (C.6)
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where θ is the heading angle of the wave and U, V, W the displacement field variables. It
is possible to converge to a polynomial problem in k (the wavenumber).
The following expressions can be used to compute the wavenumbers of the laminated waveg-
uide, once the material is chosen, [80, 193].

kb(θ, f) =
√

2πf
( ρs

PTDP

)1/4
(C.7)

ks(θ, f) = 2πf

√
ρs
ηs(θ)

(C.8)

kl(θ, f) = 2πf

√
ρs
ηl(θ)

(C.9)

where:

PT =
[
cos(θ)2 sin(θ)2 2sin(θ)2cos(θ)2

]
(C.10)

L =

cos(θ) 0
0 sin(θ)

sin(θ) cos(θ)

 (C.11)

ηl and ηs eigenvalues of the matrix LTAL.

C.3 The Proposed Analogy

The method, presented here, is based on the assumption that the free wave propagation
in an infinite flat media, i.e. a panel, can be also described considering a free wave propa-
gation along a circumferential path. In fact, in a local reference system which follows the
geometrical (circumferential; Fig. C.1) path, the waves are free to propagate in analogy
to what they do in the case of the equivalent infinite flat structure. The finiteness of the
circular structure does not affect the wave propagation since no impedance variations are
encountered running in loop along the curved path. Equivalently, this is a way to describe an
infinite periodic condition, in a local coordinate system, as resulting from the Bloch-Floquet
theorem [72, 73]. The difference stands in its implicit geometrical definition through a finite
circular structure, instead of explicitly defining a propagation relation on a reference line.
In a periodic waveguide, the link between a wavefield Γ (displacement, velocity, force, etc.),
at two points x and x+ ∆x, is given by complex propagating constants, [72, 73]:

Γ(x+ ∆x, f) = Γ(x, f)ej∆xkn(f) (C.12)

where kn is the wavenumber associated with the wavetype n and f the frequency. On the
other hand, for a circumferential mode of order i, the field in two points is related, similarly,
as follows:

Γ(θ + ∆θ, f) = Γ(x, f)ej∆θi/2πR (C.13)

where i/2πR is the circumferential wavenumber associated with the mode of order i.
In a set of discrete (natural) frequencies, each specific circumferential mode is representative
of the corresponding wavemode and Eq. (C.12) and (C.13) are equivalent. Figure C.1 and
C.2 illustrate the previous concepts.
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Figure C.1: The analogy proposed: (a) Free wave propagation along an infinite flat
waveguide; (b) equivalence in a circular topology generated from the original model.

It is worth to emphasize that the aim of the approach is not related to the analysis of the
waves in a cylindrical waveguide. The equivalent circular geometry is here used only to
simulate a wave propagation in an infinite domain: in this way, the wave properties in an
infinite panel (or beam) can be calculated working on the circumferential wave propagation
in a finite circle.
A modal analysis (Eq. C.14) of cylinders or rings, built from the reference structure, gives
a discrete set of frequencies (natural modal frequencies) where the modal circumferential
wavelength represents the wave propagation in the infinite media. The dispersion curves of
the laminate can be thus calculated in discrete points.
By using the equation of motion in discrete coordinates and assuming no external forces are
applied to the system, the eigenvalue problem can be written as:

[K− ω2M]q = 0 (C.14)

where q is the nodal vector of degrees of freedom (DoFs); K and M are the stiffness and
mass matrices. Damping can be modelled by including, in Eq. C.14, appropriate complex
matrices and/or coefficients. The operation is easily performable using any commercial FE
software.
It is useful to remind the role of the modal wavelengths in rings; a purely circumferential
mode for a circular structural model is in Fig. C.2. Given a certain radii (R), in general,
the wavelength associated to a given mode is given by:

λi =
2πR

i
(C.15)

where i is the order of the circumferential mode and can be rawly identified in the number
of lobes present in the modal deformed shape.
A key parameter is, here, the modal angular sampling factor, given by the ratio of the
modal wavelength and the radii of the circumference: 2π/i. Its importance, within the
present method, is discussed in next section.
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Figure C.2: Purely circumferential bending modes in a circular structure: (a)
Circumferential Order = 2; (b) Circumferential Order = 3; (c) Circumferential Order = 4;

(d) Circumferential Order = 5.

The modes of a finite structure describe a steady wave condition while the dispersion curves,
for any structure, describe a wave propagation [205]. Any wave type propagating in an
infinite media, can be described using this analogy. However, to correctly and easily identify
the bending, shear and longitudinal wavemodes singularly, the circular waveguide can be
constrained, in a Finite Element Solution, in order to show only the desired circumferential
wave types. For example, in the case of bending waves, the constraints of the cylindrical
domain must allow ony out-of-plane displacements and rotations. Similar considerations are
applied for shear and longitudinal waves.
In summary, the proposed method is composed by the following sequential passages:

1. Generate a finite element model of the unit cell of the structure to be analysed, as
usually done in a SFEM or WFEM framework (Fig. C.1(a))

2. Generation of a circular topology using the elementary cell as a base. The radius and
the number of elements has to be chosen in accordance to the target frequency band
(Fig. C.1(b))

3. Perform a modal analysis of the circular structure (Eq. C.14)

4. Identify the wave branches and evaluate the circumferential wavenumbers (Eq. C.15)
of the structural eigenmodes calculated at the previous step

5. Plotting the λi for each natural frequency and for each branch.

C.4 Validations

In the following section the validation of the proposed approach is performed for different
test-cases.

C.4.1 Analytic Validation: Infinite Beam and Ring

A first test-case is the one of a beam. This is particularly convenient since both the bending
wave speed of an infinite beam and the natural frequencies of a beam-ring can be calculated
using analytic formulas. For every ring wavelength λi, where i is the circumferential order,
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Figure C.3: Bending, shear and longitudinal wavemodes wavelength in an infinite beam
and the corresponding beam-ring circumferential modes

the natural frequencies for bending, shear and longitudinal modes, respectively fb,i, fs,i and
fn,i, are given by Blevins in [206]:

fb,i =
i(i2 − 1)

2πR2i

(EI
ρA

)1/4
; fs,i =

√
i2 + 1

2πR

√
G/ρ; fl,i =

√
i2 + 1

2πR

√
E/ρ; (C.16)

with E as the Young modulus, G the shear modulus, I the moment of inertia, ρ the mass
density and A the cross-sectional area.
In Fig. C.3, a beam with rectangular section is used as a test-case and the results obtained
with Eq. (C.1) and (C.16) are compared. The results show a very good agreement which
validates the analogy proposed. The results introduce a range of validity of the approach
starting from a specific value of the modal sampling factor (modal order). The accuracy of
the proposed method is high enough starting from the sixth modal order and it is indepen-
dent on the radii and length of the ring considered, as expected (Fig. C.4).

C.4.2 Analytic Validation: Infinite Cylinder Ovaling Modes

Another analytic validation is here proposed, using the natural ovaling modes of an infinite
cylinder. The natural frequencies, for this specific modes of the infinite cylinder, can be
calculated using the formulas proposed by Blevins in [206], here reported for completeness
in Eq. (C.17). For every ring wavelength λi, where i is the circumferential order, the natural
frequency fn,i is:

fn,i =
h

2πR2
√

12

√
E

ρ(1− ν2)

i(i2 − 1)√
i2 + 1

(C.17)

In Fig. C.5, an infinite plate of thickness h is used as a test-case and the results obtained
with Eq. (C.1) and (C.17) are compared for bending waves. The results show a very good
agreement, validating the analogy proposed also for a higher order model. Moreover, again,
the range of validity depends on the modal sampling factor. In Fig.C.4, the relative error
for this specific case is shown for different radii. The error, in percentage, is independent on
the radii of the cylinder and is inferior to 2% starting from the sixth modal order, as found
in the previous section.
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Figure C.4: Relative error (log-scale) between the bending wavelength in an infinite panel
and the modal wavelengths of an infinite cylinder
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Figure C.5: Bending wavelength in an infinite panel and the ovaling modes of an infinite
cylinder
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Figure C.6: Isotropic uniform plate: infinite panel solution and the circumferential modes
of a cylindrical finite structure made of plate elements

C.4.3 Numerical Validation: Isotropic Panel

A first validation with an isotropic aluminium material is performed: E = 7.0x1010 Pa,
ρ = 2750 kg/m3, ν = 0.33. The analytic solution is used as a reference. In Fig. C.6 a
comparison of the infinite plate bending wavelength (versus frequency) with the results of
a modal analysis on cylinders of different radii is shown. As in the case of the beam, the
accuracy of the method is only dependent on the modal angular sampling factor; as soon
as it reaches the unitary value, thus the sixth modal order is reached, the relative error of
the present method is inferior to 2%. This is illustrated more specifically in the case of
laminates, comparing the error for every heading angle.
Depending on the value of R, the region of accuracy moves with the frequency, approaching
higher bands when R lowers, and vice-versa, since any modal order shifts with the frequency.
Depending on the discretization adopted, the accuracy method can strongly vary. Two cases
are here analysed: fixed radii R (Fig. C.7) and fixed element size ∆X (Fig. C.8).
In the first case the question moves to a classic sampling problem. Given a number of
elements (Nel), through which the circumference is discretized, assuming, as a rule of thumb,
at least four elements per wavelength as an acceptable approximation (six or ten are, in
general, preferred), the maximum modal order predicted is given by the integer of the ratio
Nel/4. The error starts increasing up to modal order Nel/2 before diverging (Fig. C.9).
On the other hand, keeping the element size fixed and increasing the number of elements
means increasing the circumference radii R (Fig. C.10). The expected effect is a frequency
shift of the validity region, in the wavenumber domain, when moving from one case to the
other, as in Fig. C.10.

C.4.4 Laminated Panel

An heading angle can be specified in order to analyse the wave propagation in a specific
direction (Fig. C.11). In this solutions scheme, the problem is never ill-conditioned and
can be normally solved with a simple real modal analysis, independently on the value of the
angle itself. The graphite-epoxy lamina elastic properties, used in the present work, are in
Table C.1. The thickness of each lamina is 1mm.
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Figure C.7: Comparison for increasing number of elements for a given element size . (a)
32, (b) 80, (c) 300 elements

Figure C.8: Comparison for increasing number of elements for a given circumference radii
R. From the left side: 8, 32, 80 elements
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Figure C.9: Effect of the mesh: comparison for increasing number of elements for a given
circumference radii R (isotropic panel). Elements size variable.

Table C.1: Lamina elastic properties and stacking sequence

E11 E22 G12 ν12 Layup

125 GPa 12.5 GPa 6.89 GPa 0.38 [90◦, 0◦, 0◦, 0◦, 90◦]
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Figure C.11: Scheme of the laminate heading angle with respect to the wave propagation
direction.

In the framework of the present approach, a cut-on wavenumber can be defined; below this
value, a cylinder with radii R, has no predictive capability. In general, given a certain radii
R the cut-on wavenumber can be defined from the smallest modal order (i = 2): 2/R. This
aspect has an impact only for bending waves, as evident in Fig. C.12, C.13 and C.14, where,
in addition, the accuracy of the method is shown also for shear and longitudinal wave types.
Increasing the size of the radii, this limit moves to lower wavenumbers and frequencies.
As previously stated, the accuracy of the method is only dependent on the modal angular
sampling factor, and, when it reaches the unitary value, the accuracy is acceptable as in
Fig. C.15, where the relative errors are compared. For a modal order superior to the fifth,
the relative error is inferior to 2% and keeps lowering for increasing the frequency, as found
in all previous test-cases.
The great advantage is in the ease of use and the possibility to arbitrarily choose an heading
angle, without taking care about the eventual ill-conditioning of the mathematical problem,
[80, 89, 95]. Moreover, the eigenvalue tracking is no more needed since any wave type evolves
singularly if specific boundary conditions are imposed to the the finite cylinder before the
modal analyses, as previously discussed. In Fig. C.16 a pattern of bending wavenumbers
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Figure C.12: Dispersion curves of the laminate panel; heading angle 0◦. CLPT results
used as a reference.
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Figure C.13: Dispersion curves of the laminate panel; heading angle 90◦. CLPT results
used as a reference.
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Figure C.14: Dispersion curves of the laminate panel; heading angle 45◦. CLPT results
used as a reference.
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Figure C.15: Relative errors (log-scale) for different heading angles (bending waves). The
CLPT results used as reference.
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Figure C.16: Pattern of the bending wavenumbers for the laminate plate analysed; 3000 Hz

Figure C.17: Purely circumferential modes in a laminate infinite panel; X-Y as cross
sectional plane. Fourth circumferential mode - (a) Bending: 16.6 Hz; (b) Shear: 1364 Hz;

(c) Longitudinal: 4674 Hz

is calculated, for a specific frequency, with the present method, and compared to the one
obtained using the CLPT.
Once a modal analysis is performed, the modal shapes can be extracted straightforwardly.
A better way to visualize the mode shapes, will be the stretching of the circumferential
modes along a rectilinear path. In Fig. C.17 a fourth order mode has been chosen and
the mode shapes are visualized for bending, shear and longitudinal wave types, along the
circular model. On the other hand, in Fig. C.18, the same modes are visualised in a rectified
model.

C.4.5 Complex Structural Shapes

In order to prove the accuracy of the analogy, even for non-homogeneous structures and large
heterogeneity scales, an aluminium-made double-wall panel with mechanical connections is
used as a test-case (Fig. C.19). A wave finite element method (WFEM) is used for obtaining
the reference results [89, 101, 107]. Figure C.20 shows the comparison among the modes
generated by the cylindrical model (R = 0.4 m), built from the elementary cell representing
the reference waveguide, and the flat infinite reference waveguide. In this case only bending
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Figure C.18: Rectified circumferential modes in a laminate infinite panel; X-Y as cross
sectional plane. Fourth circumferential mode - (a) Bending: 16.6 Hz; (b) Shear: 1364 Hz;

(c) Longitudinal: 4674 Hz

Figure C.19: A double-wall panel with mechanical connection: (a) Elementary FE Cell;
(b) Cylindrical Model.

waves have been analysed. Even in this complex case the agreements is excellent above the
sixth modal order.

Flow-Induced Vibrations and Noise in Periodic Structural Systems 173



Appendix C. Dispersion of Periodic Media through Modal Analysis of Rings

101 102

f [Hz]

101

102

W
av

en
um

be
r 

k 
[m

- 1]

Dispersion Curves: Bending - WFE
Circumferential Bending Modes

Figure C.20: Bending Waves for the double-wall panel with mechanical connection.
Numerical comparison between the WFEM and the present analogy.

C.5 Conclusions

The proposed analogy proved to be accurate and robust in predicting the dispersion curves
of beams and plates through a simple modal analysis of a cylindrical finite element model.
The calculations are always well-conditioned for every heading angle chosen, differently from
most of the methods present in literature. The results are accurate and the relative error
is independent on the cylinder axial length and radii (R). A test on a double-wall panels
with mechanical connections shows how the features of the method are applicable also to
complex structural shapes.
The predictive region can be easily trimmed using different values of the curvature or,
instead, using a high value of R and a fine mesh in order to be able to move from low
(low cut-on wavenumber) to high frequencies. The computational cost associated with
such meshes, especially for a simple real modal analysis, is not a relevant parameter and,
moreover, the numerical conditioning is null.
A generic FE-based code can be used for the purpose and both plate and solid elements have
been tested and validated for the accuracy of the results. Again, it must be highlighted that
for bending motion, the results start to have an acceptable accuracy (lower than 2%) starting
from the fifth modal order. A correct mesh size is required to avoid aliasing problems at
higher frequencies.
Further developments might be related to the possibility of predicting also coupled wave-
types which arise to higher frequencies and the possibility to include global and through-
thickness damping.
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