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Titre : L’Analyse de Micro-Expression Faciale 

Mots clés : Micro-expression, Détection, Motif temporel et local, Augmentation des données, Modèle 
d’Hammerstein 

Résumé : Les micro-expressions (MEs) sont 
porteuses d'informations non verbales spécifiques. 
Cependant, en raison de leur nature locale et brève, il 
est difficile de les détecter. Dans cette thèse, nous 
proposons une méthode de détection par 
reconnaissance d'un motif local et temporel de 
mouvement du visage. Ce motif a une forme 
spécifique (S-pattern) lorsque la ME apparait. Ainsi, à 
l'aide de SVM, nous distinguons les MEs des autres 
mouvements faciaux. Nous proposons également une 
fusion spatiale et temporelle afin d'améliorer la 
distinction entre les MEs (locaux) et les mouvements 
de la tête (globaux).  
Cependant, l'apprentissage des S-patterns est limité 
par le petit nombre de bases de données de ME et 
par le faible volume d'échantillons de ME. Les 
modèles de Hammerstein (HM) est une bonne 
approximation des mouvements musculaires. 

En approximant chaque S-pattern par un HM, nous 
pouvons filtrer les S-patterns réels et générer de 
nouveaux S-patterns similaires. Ainsi, nous effectuons 
une augmentation et une fiabilisation des S-patterns 
pour l'apprentissage et améliorons ainsi la capacité 
de différencier les MEs d'autres mouvements.  
Lors du premier challenge de détection de MEs, nous 
avons participé à la création d’une nouvelle méthode 
d'évaluation des résultats. Cela a aussi été l’occasion 
d’appliquer notre méthode à longues vidéos. Nous 
avons fourni le résultat de base au challenge. 
Les expérimentions sont effectuées sur  CASME I, 
CASME II, SAMM et CAS(ME)2. Les résultats 
montrent que notre méthode proposée surpasse la 
méthode la plus populaire en termes de F1-score. 
L'ajout du processus de fusion et de l'augmentation 
des données améliore encore les performances de 
détection. 

 

 

Title : Facial  Micro-expression Analysis 

Keywords:  Micro-expression, Spotting, Local temporal pattern, Data augmentation, Hammerstein model 

Abstract: The Micro-expressions (MEs) are very 
important nonverbal communication clues. However, 
due to their local and short nature, spotting them is 
challenging. In this thesis, we address this problem by 
using a dedicated local and temporal pattern (LTP) of 
facial movement. This pattern has a specific shape 
(S-pattern) when ME are displayed. Thus, by using a 
classical classification algorithm (SVM), MEs are 
distinguished from other facial movements. We also 
propose a global final fusion analysis on the whole 
face to improve the distinction between ME (local) 
and head (global) movements.  
However, the learning of S-patterns is limited by the 
small number of ME databases and the low volume of 
ME samples. Hammerstein models (HMs) are known 
to be a good approximation of muscle movements.  
 

By approximating each S-pattern with a HM, we can 
both filter outliers and generate new similar S-
patterns. By this way, we perform a data 
augmentation for S-pattern training dataset and 
improve the ability to differentiate MEs from other 
facial movements.  
In the first ME spotting challenge of MEGC2019, we 
took part in the building of the new result evaluation 
method. In addition, we applied our method to 
spotting ME in long videos and provided the baseline 
result for the challenge.  
The spotting results, performed on CASME I and 
CASME II, SAMM and CAS(ME)2, show that our 
proposed LTP outperforms the most popular spotting 
method in terms of F1-score. Adding the fusion 
process and data augmentation improve even more 
the spotting performance. 
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Résumé Français

Chapitre 1: Introduction

L’expression faciale est l’un des indicateurs externes les plus importants pour connaître

l’émotion et le statut psychologique d’une personne [12]. Parmi les expressions faciales,

les micro-expressions (MEs) [28] sont des expressions locales et brèves qui apparaissent

involontairement, notamment dans le cas de forte pression émotionnelle. Leurs durées

varient de 1/25 à 1/5 de seconde [28]. Leur caractère involontaire permet souvent d’affirmer

qu’elles représentent des émotions véritables d’une personne [28]. La détection de MEs a

des applications nombreuses notamment dans le domaine de la sécurité nationale [26], des

soins médicaux [30], des études sur la psychologie politique [108] et la psychologie de

l’éducation [17].

L’existence de MEs a d’abord été découverte par Haggard et Isaacs en 1966 [39] puis

Ekman et Friesen [28] l’ont nommée en 1969. Plusieurs années plus tard, ils ont développé

un outil pour former les personnes à la détection de micro-expressions (METT) [25]. Pour-

tant, le taux de reconnaissance global pour les 6 émotions de base à l’œil nu est inférieur à

50%, même par un expert formé [31].

Pour coder les MEs, le système de codage d’actions faciales (FACS) [27] est souvent

utilisé. Il a été créé pour analyser la relation entre la déformation du muscle facial et

l’expression émotionnelle. Les unités d’action (AUs) sont les composantes faciales du

FACS, qui représentent le mouvement musculaire local. L’étiquette de l’AU sur le visage

permet d’identifier la ou les régions où la ME se produit. En conséquence, le système FACS

peut aider à annoter l’apparence et la dynamique d’une ME dans une vidéo.

Depuis les années 2000, la recherche sur la détection et la reconnaissance automatique
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de micro-expressions (micro-expression spotting and recognition, MESR) s’est dévelop-

pée. La figure 0-1 indique l’évolution du nombre d’articles de recherche MESR. Le nom-

bre des articles reste faible et les résultats ne sont pas encore très satisfaisants du fait de

la nature même des MEs (micro) ainsi que du nombre limité de bases de données (BDDs)

publiques de MEs. Cependant, il y a eu de plus en plus d’études émergentes ces dernières

années. Nous pouvons remarquer qu’il y a beaucoup plus de papiers qui concernant la

reconnaissance de ME que la détection. Le taux de reconnaissance commence à être satis-

fisant, par exemple 86.35% de précision pour 5 classes dans [20]. En revanche, les résultats

de la détection de ME sont loin d’être bons, certainement à cause de la nature de ME et

également du nombre limité de bases de données publiques de ME. En effet, la plupart

Figure 0-1: Tendance de la recherche MESR. Le nombre d’articles sur MESR augmente
d’année en année, principalement dans le domaine de la reconnaissance de l’ME (colonne
du bas). La recherche sur la détection de ME n’a pas encore suffisamment attiré l’attention
(colonne en haut).

des méthodes de reconnaissance de ME supposent connues les images d’onset et d’offset

des MEs. Mais trouver les images de départ (onset) et des images de fin (offset), en par-

ticulier lorsque les ME sont des mouvements micro-faciaux spontanés dans une séquence

vidéo complète, reste un énorme défi. Les résultats de détection des méthodes proposées

actuellement ne sont pas assez précis. Par exemple, dans la tâche de détection du deuxième

grand challenge de micro-expression faciale (MEGC2019) [64], le F1-score de base est

inférieure à 0,05. Même lorsque les ME sont produites dans un environnement strictement

contrôlé, les faux positifs sont très nombreux en raison des mouvements de la tête ou du
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clignement des yeux.

L’analyse de micro-expression est limitée par le petit nombre de donneés. Cela est

dû à la taille des bases de données de ME. Par exemple, la plus grande base de données

de micro-expressions spontanées ne contient que 255 échantillons vidéo. Cette situation

limite grandement l’utilisation de l’apprentissage automatique pour la détection de ME.

Un autre problème non résolu en ce qui concerne la détection de micro-expressions est

que les métriques utilisées pour analyser le résultat dans différents papiers sont diverses.

Les précisions sont étudiées par image, par intervalle ou par vidéo, tandis que la mesure

peut être TPR, ROC, ACC ou encore d’autres mesures. Les métriques utilisées sont souvent

choisies en fonction de la méthode proposée. Comme les méthodes ne sont pas les mêmes,

chaque papier utilise des métriques différentes des autres papiers. Il est alors difficile de

comparer les résultats.

Dans cette thèse, nous explorons un système automatique permettant de détecter des

MEs. Un tel système doit être capable de :

• détecter des frames de micro-expression dans des séquences vidéo

• séparer les mouvements relatifs aux MEs des mouvements de la tête ou du clignement

des yeux.

• détecter la région où la ME se produit.

• traiter le problème du petit nombre de données.

Nous avons quatre contributions dans cette thèse. La principale consiste à proposer

un motif temporel local (local temporal pattern, LTP) dédié, qui extrait les informations

pertinentes pour la détection de ME [63]. Une ME étant un mouvement bref et local, le

modèle de mouvement est analysé à partir des régions de visage locales. Les emplacements

sont les petites régions d’intérêt (ROI) où des ME peuvent se produire. Lorsqu’il y a une

ME, la texture (c’est-à-dire la valeur du niveau de gris) de la ROI change. Nous calculons

donc ce changement, qui correspond à la distance entre le niveau de gris de 2 frames de

la même ROI. L’une des originalités de cette approche réside dans l’utilisation d’un motif

temporel sur ces ROIs. La durée est celle de ME (300ms). La courbe de la figure 0-2
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représente la variation temporelle locale de la texture (au niveau des gris) lorsqu’une ME

se produit dans la ROI. Nous pouvons remarquer qu’il forme un motif en S (S-pattern)

depuis le début jusqu’à l’apex de la ME. Ce S-pattern apparaît chaque fois qu’une micro-

expression se produit dans une région et il est indépendant de la ROI et du sujet, ce qui

la rend pertinente pour la détection de ME. Plus précisément, ce motif de LTP est calculé

sur un intervalle de la durée d’une ME (300 ms) et le motif est une liste de distances entre

les textures de niveau de gris du premier frame et du kième frame de l’intervalle. Afin de

conserver la variation la plus significative, une analyse en composantes principales (ACP)

est d’abord effectuée (pour la ROI correspondant) sur l’ensemble de la vidéo.

0 100 200 300
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1.5
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 onset

apex 

Figure 0-2: Exemple de motif temporel local (LTP) au cours d’une ME située dans la région
du sourcil droit sur une période de 300 ms (durée moyenne de ME). Ce LTP représente
l’évolution de la texture (niveau de gris) d’une ROI pendant la ME. Il forme un motif en S
(S-pattern). La courbe atteint son sommet au bout de 150 ms environ, puis reste stable ou
diminue légèrement. Ce motif est spécifique aux mouvements ME et est appelé motif en S
(S-pattern) en raison de la forme de la courbe.(Vidéo: Sub01_EP01_5 of CASME I)

La deuxième contribution concerne l’élimination des mouvements liés au mouvement

de la tête ou au clignement des yeux. La particularité de cette approche est la combinaison

de traitements locaux et globaux. La détection de LTP est effectué localement dans les

ROIs. Un système de fusion sur tout le visage sépare ensuite les ME des autres mouvements

du visage. Enfin, en fonction des S-patterns détectés, il est possible de déterminer l’indice

temporel du début de la ME. Notez que, comme le LTP est local, nous avons également les

informations sur le lieu où la ME se produit.

Une autre contribution principale concerne l’amélioration de la détection à la fois en

filtrant les mauvais S-patterns et en augmentant les données. En effet, les échantillons dans
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les bases de données de ME existantes sont faibles, ce qui limite grandement l’amélioration

des performances de détection de ME. De plus, les bases de données ne sont pas étiquetées

avec l’emplacement précis des MEs (la partie gauche ou droite du visage n’est pas men-

tionnée par exemple). Cela conduit à des annotations erronées de LTPs. L’originalité est

d’utiliser le modèle d’Hammerstein (Hammerstein model, HM), qui est connu pour approx-

imer efficacement les mouvements musculaires. Chaque S-pattern peut être approximé par

un HM avec deux paramètres. En utilisant la distribution de ces deux paramètres, nous

pouvons filtrer les mauvais motifs et générer d’autres S-patterns similaires. L’utilisation

de ces modèles contribue à l’extension et à la fiabilité des échantillons de données pour

l’apprentissage de S-patterns. L’entraînement est ensuite effectuée sur des motifs réels et

synthétiques.

La dernière contribution est la tâche de détection du deuxième grand challenge de

Micro-Expression (MEGC2019). Nous avons fourni la méthode de base et le résultat en

détectant les ME sur de longues séquences vidéo. De plus, pour assurer la cohérence de la

méthode d’évaluation des résultats, nous fournissons un ensemble de nouvelles mesures de

performance. Il a été utilisé comme guide pour l’évaluation des résultats de ME détection

dans MEGC2019.

Le document est organisé comme suit: le chapitre 2 mène une revue sur l’etat de l’art de

la détection et de la reconnaissance automatique de micro-expressions faciales (MESR). Le

chapitre 3 décrit notre méthode en utilisant le motif temporel local (LTP) pour la détection

de ME. Le chapitre 4 propose d’augmenter la taille de la base de données de S-pattern pour

l’étape d’apprentissage de la classification locale. En effet, le petit volume des bases de

données de S-pattern limite les performances de notre méthode. Le chapitre 5 présente les

résultats expérimentaux de notre méthode. Le chapitre 6 résume nos contributions à cette

thèse et présente les perspectives des travaux futurs.

Chapitre 2: État de l’art

Dans ce chapitre, nous menons une revue sur l’état de l’art de la reconnaissance et de

la détection automatique de micro-expressions faciales (MESR). Tout d’abord, nous intro-
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duisons une analyse systématique des bases de données de micro-expression(1). Deuxième-

ment, une analyse des méthodes d’évaluation des résultats et des métriques pour l’analyse

des micro-expressions est présentée(2). Troisièmement, toutes les méthodes de détection

publiées sont analysées avec leurs avantages et leurs inconvénients(3). Ensuite, le schéma

de la détection et de la reconnaissance de ME est discuté(4). Enfin, nous donnons notre

point de vue sur ce domaine de recherche et les contributions de notre méthode(5).

1). Les bases de données sont analysées selon 13 caractéristiques regroupées en quatre

catégories (population, matériel, protocole expérimental et annotation). Ces caractéris-

tiques fournissent une référence non seulement pour le choix d’une base de données à des

fins d’analyse spéciales, mais également pour la construction future de bases de données.

2). Concernant les méthodes d’évaluation des résultats et métriques, nous proposons

une revue complète. Nous nous concentrons sur les méthodes d’évaluation des résultats

et les métriques pour la reconnaissance et la détection des ME, respectivement. Pour la

reconnaissance, outre un résumé quantitatif pour chaque métrique, nous avons également

examiné et discuté le nombre de classes de reconnaissance. En effet, le nombre de classes

impacte grandement le résultat de reconnaissance. En ce qui concerne la détection de ME,

les métriques sont introduites en fonction des différentes méthodes de détection. Cette

section présente également une discussion sur la standardisation des métriques.

3). Nos recherches portent sur la détection de micro-expressions. La revue des travaux

connexes indique les avantages et les désavantages des méthodes de détection actuelles.

Comme une micro-expression est une expression faciale involontaire, nous nous concen-

trons sur les méthodes de détection de ME développées à partir de bases de données spon-

tanées ou à "in-the-wild". Nous comparons d’abord les méthodes en fonction de leurs

algorithmes, puis nous étudions les descripteurs pour la détection de micro-expressions.

Sur la base de ces analyses, nous concluons cette section et éclairons l’orientation de nos

recherches.

4). Dans cette section, nous discutons des schémas de détection et de reconnaissance de

micro-expression. Comme l’analyse de micro-expression automatique est censée être ap-

pliquée dans la vie réelle, il convient de prendre en compte un processus complet dans

lequel la séquence vidéo constitue l’entrée et la classe de l’émotion est la sortie. De

8



notre point de vue, il existe deux types de schémas. L’un consiste à traiter la non-micro-

expression comme une classe émotionnelle, puis à appliquer une méthode de reconnais-

sance pour classifier les échantillons en différentes classes émotionnelles. L’autre consiste

tout d’abord à détecter les séquences de micro-expression dans une longue vidéo, puis à

identifier le type d’émotion de cette séquence ME par des méthodes de reconnaissance.

5). En conclusion, la recherche sur la détection de micro-expressions est importante

pour les applications dans la vie réelle. Nous étudions les caractéristiques locales et tem-

porelles pour la détection de micro-expressions. Une fusion tardive du local au global est

appliquée pour améliorer la capacité de distinguer la micro-expression et les autres mouve-

ments faciaux. De plus, nous explorons les méthodes d’augmentation des données afin de

résoudre le problème du petit nombre d’échantillons de micro-expression.

Chapitre 3: Motif local et temporel pour la détection de

micro-expressions

Dans ce chapitre, nous proposons notre méthode pour détecter les micro-expressions. Il

se concentre particulièrement sur deux contributions: 1). la définition d’un nouveau de-

scripteur pertinent pour la détection de micro-expressions: le motif temporel local (local

temporal pattern, LTP); 2). la fusion spatiale et temporelle tardive, réalisée pour obtenir le

résultat final de détection de micro-expressions. La Figure 0-3 affiche le processus global.

La méthode proposée comprend trois parties: un pré-traitement pour détecter avec préci-

sion les points caractéristiques du visage et extraire les régions d’intérêt (ROIs), puis le

calcul du motif temporel local (LTP) sur ces ROIs et finalement la détection de micro-

expressions. Les trois premières sections de ce chapitre présentent les sous-étapes de notre

méthode appliquées dans de courtes vidéos. Notre méthode est ensuite adaptée aux situa-

tions de longues vidéos. Enfin, nous concluons le chapitre et soulignons les exigences pour

améliorer les performances de notre méthode.
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Pré-traitement: 
Détection des 
ROIs locales

Détection des points 
caractéristiques du visage

Extraction de Region d’Intérêt
(ROI)

Extraction de principaux 
mouvements locaux par ACP

Extraction du motif local et 
temporel (LTP)

Classification de LTP par SVM

Détection de ME: Fusion Spatiale
& Temporelle

Extraction de 
caractéristiques
: Calcul de LTP

Détection de 
ME: 

Classification 
et Fusion

Entraînement

Test

Sélection de LTP

Filtrage de LTP et Synthèse de S-
pattern – Modèle d’Hammerstein

Global

Local-
Region 

d’Intérêt

Global

Figure 0-3: Vue d’ensemble de notre méthode. La méthode proposée comporte trois
étapes de traitement: pré-traitement, extraction de caractéristiques et détection de micro-
expressions. Nous mélangeons des processus globaux (tout le visage) et locaux (les ROIs).
La sous-étape d’extraction des caractéristiques et la première sous-étape de la détection
de la micro-expression sont effectuées sur des régions d’intérêt (ROIs) pertinentes, tan-
dis que les autres étapes sont réalisées sur tout le visage (global). Les LTPs, y compris
les S-patterns, sont ensuite utilisés comme échantillons d’apprentissage pour construire le
modèle d’apprentissage automatique (SVM) en vue de la classification. En particulier, une
fusion spatiale et temporelle finale est réalisée pour éliminer les faux positifs tels que les
clignements des yeux. L’une des spécificités du processus réside dans l’utilisation de mo-
tifs temporels locaux (LTP), pertinents pour la détection de micro-expressions: les micro-
expressions sont des mouvements brefs et locaux.
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Pré-traitement

Comme la micro-expression est un mouvement facial local, l’analyse sur une région locale

permet d’extraire des caractéristiques plus pertinentes. Le pré-traitement est effectué sur

le visage pour déterminer les régions d’intérêt locales (ROI). Ce processus comporte deux

étapes: les points caractéristiques du visage sont d’abord détectés, puis les points liés aux

micro-expressions sont choisis pour extraire les régions d’intérêt (ROIs).

Extraction de caractéristiques: calcul du motif temporel local

L’objectif de cette section est d’extraire un nouveau descripteur pertinent pour la détection

des micro-expressions: les motifs temporels locaux (LTPs). Les micro-expressions étant

des mouvements locaux brefs, les LTPs visent à extraire les informations locales sur la

distorsion de la texture dans une fenêtre temporelle de la taille d’une micro-expression

(300 ms).

Les LTPs sont calculés pour chaque image et chaque ROI. Ils sont basés sur le change-

ment de texture du niveau de gris du ROI. Pour détecter la distorsion principale de la tex-

ture de niveau de gris d’une ROI en fonction du temps, nous utilisons une ACP sur toute la

séquence de ROI. La figure 0-4 illustre ce traitement sur l’une des séquences de ROI.

…

t

ACP sur N 
frames 

consécutives 
pour une ROI

����

1

N

ROI1

0

ROI1
ROI4

ROI5 ROI6
ROI7

ROI11

ROI14

ROI32
ROI35

ROI41

ROI38

ROI10

Figure 0-4: ACP sur l’axe des temps par ROI. Une séquence vidéo locale ROI j avec N
images (durée de la vidéo ≤ 3s) est traitée par l’ACP sur l’axe des temps. Les premières
composantes de l’ACP conservent le mouvement principal de la texture de niveau de gris
sur cette ROI pendant cette durée (N images). L’échantillon vidéo provient de CASME I
( c©Xiaolan Fu)

Après avoir obtenu la distribution des frames de la séquence de ROI par la réduction des
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dimensions (ACP), un 2D point dans la distribution représente une ROI frame. En calculant

de distance entre les points et faisant une normalisation, les LTP sont obtenus. Enfin, nous

démontrons que le S-pattern est unique pour toutes les micro-expressions.

Détection de micro-expressions: classification et fusion

La détection de la micro-expression est traité en deux étapes: une classification locale de

LTP et une fusion spatio-temporelle (voir la figure 0-3). En ce qui concerne la classifica-

tion de LTP, comme montré dans la figure 0-2, le S-pattern représente le mouvement de la

micro-expression. Et il est identique pour toutes sortes d’émotions. Donc, les LTPs sont

d’abord sélectionnés pour un entraînement efficace en apprentissage automatique. Ensuite,

les LTPs sont classés comme S-patterns ou non-S-patterns à l’étape de test. Enfin, une anal-

yse de fusion du local au global est effectuée pour obtenir un résultat global pour chaque

image. Son objectif est à la fois d’éliminer le mouvement global de la tête et de fusionner

les résultats positifs locaux de différentes ROIs appartenant à la même micro-expression

globale.

Pour l’étape d’entraînement, les LTPs doivent être séparés en 2 groupes: le S-pattern

(micro-expression) et le non-S-pattern (autre mouvement du visage). Dans les bases de

données publiques, les séquences de micro-expression sont annotées avec les informations

d’onset et les AUs. Ainsi, nous devons pré-traiter les étiquettes des bases de données

pour obtenir la vérité terrain pour notre entraînement. Comme montré dans la figure 0-5,

cette labellisation s’effectue en 3 étapes: une annotation temporelle, une sélection locale

(sélection AU par ROI) et une sélection liée à la forme de LTP.

Une fois que l’annotation (S-pattern et non-S-pattern) est effectuée, une classification

supervisée (SVM) est utilisé. Les résultats de la classification sont générés par LOSub-

OCV (validation croisée de leave-one-class-out). Les ROI avec S-pattern sont reconnus,

indiquant qu’un mouvement similaire à la micro-expression se produit dans cette région.

Cette classification permet d’identifier les motif locaux correspondant à une ME. Pour-

tant, le résultat d’identification de ME doit être global. Ainsi, nous effectuons une fusion

spatiale et temporelle. Le processus comprend trois étapes: la qualification locale, la fusion
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Figure 0-5: Sélection de LTP pour l’étape d’entraînement. Tous les LTPs sont classés en
2 classes: S-patterns et non-S-patterns. Les LTPs passent par 3 étapes pour l’annotation:
l’annotation par image, la sélection de ROI à partir de l’AU et la sélection du motif de LTP.
Les S-patterns annotés et les non-S-patterns sont ensuite transmis à l’étape d’apprentissage
du classifieur SVM.

spatiale et le lissage des frames.

Détecter les micro-expressions dans les longues vidéos

Les travaux précédents portaient sur la détection de micro-expressions dans de courtes

vidéos (moins de 2 secondes). Cependant, dans la vie réelle, les vidéos pour l’analyse de

micro-expression sont beaucoup plus longues. Par conséquent, il est nécessaire de dévelop-

per et de tester notre méthode dans la situation de longue durée. Il existe deux bases de

données de micro-expressions spontanées contenant de longues vidéos: SAMM [19] et

CAS (ME) 2 [104]. Toutes les expérimentations dans les longues vidéos sont effectuées sur

ces deux bases de données.

Cette section présente la modification de notre méthode pour les applications en vidéos

longues. Deux étapes sont impactées: le pré-traitement et la détection de ME.

Chapitre 4: Augmentation des données à l’aide du modèle

d’Hammerstein

Comme présenté au chapitre précédent, notre méthode se base sur du machine learning.

Elle est donc limitée par la quantité d’échantillons de micro-expression (ME). En effet, il

n’y a pas beaucoup de bases de données avec des MEs étiquetées, donc pas beaucoup de

images de ME étiquetés. En outre, la quantité de images non ME est supérieure à celle

des images ME, c’est-à-dire que la taille de la base de données de S-pattern n’est pas assez
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grande. En synthétisant les caractéristiques de micro-expressions (S-pattern), le volume de

données d’apprentissage peut être étendu.

Dans ce chapitre, afin d’améliorer les performances de notre méthode, nous proposons

d’augmenter la taille de la base de données de S-pattern pour la phase d’entraînement de

la classification locale. Pour ce faire, nous utilisons le modèle de Hammerstein (HM), qui

est connu pour simuler la dynamique du mouvement musculaire. La figure 0-3 illustre la

modification de l’ensemble du processus: la sélection du modèle LTP est remplacée par le

filtrage de LTP et la synthèse de S-pattern. Plus précisément, les annotations et la sélection

d’AU de la partie "sélection de LTP" dans la figure 0-5 sont conservées. Ensuite, nous

remplaçons la partie "sélection du motif de LTP" de la troisième étape par un filtrage du

LTP et une synthèse du S-pattern par le modèle d’Hammerstein. Le schéma de ce nouveau

sous-processus est illustré à la figure 0-6. Les S-patterns issus de l’annotation des étiquettes

et de la sélection AU (S-patternsO) sont d’abord modélisés par l’identification du modèle

d’Hammerstein. Ils sont ensuite filtrés, et les S-patterns restants (S-patternsOF ), servent de

base à la synthèse de davantage de S-patterns (S-patternsST ).

Hammerstein Model

Le modèle d’Hammerstein [11] est un modèle populaire en génie biomédical. C’est un

modèle de simulation traditionnel, basé sur des formules mathématiques solides et com-

portant des explications physiques. Le modèle a été utilisé avec succès dans [18, 109] pour

la modélisation de la dynamique musculaire isométrique. Le modèle d’Hammerstein con-

tient deux modules en série: un module de non-linéarité précédant un module linéaire de

second ordre. Le module non linéaire en entrée représente l’ampleur de la déformation

et la dynamique musculaire stimulée est déterminée par le module linéaire. Le modèle

d’Hammerstein peut être caractérisé par les paramètres de deux sous-modules:

• p pour le module non linéaire;

• (α,β) pour le module linéaire

et par l’erreur d’estimation EH .
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Motifs locals et temporels (LTPs) sur les frames de micro-expression 

Identification du modèle
d’Hammerstein (HM)

Filtrage de LTP

n
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{S−���������}
��,…,�

S−���������
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Figure 0-6: Filtrage de LTP et synthèse du S-pattern par le modèle d’Hammerstein (HM)
pendant la phase d’entraînement. Dans le bloc de droite, le S-pattern original (S-patternO),
après l’annotation et la sélection de l’AU de la figure 0-5) passe par l’identification du
système du modèle d’Hammerstein. L’ensemble de paramètres (α,β,EH) correspondant à
ce S-pattern est ensuite estimé. Les S-patterns sont sélectionnés par le processus de filtrage
de LTP en fonction de l’erreur d’estimation EH . Les motifs sélectionnés (S-patternOF ) sont
utilisés pour générer n S-patterns synthétisés (S-patternsST ). Pour la comparaison, le bloc
de gauche montre notre méthode sans modèle d’Hammerstein, c’est-à-dire le résultat après
la sélection du motif de LTP: S-patternOS.

Les abréviations ci-dessous sont fréquemment utilisées.
S-patternO: S-pattern original après annotation de l’étiquette et sélection de l’AU de la
Figure 0-5.
(α,β): paramètres dans le module linéaire du modèle d’Hammerstein.
EH : Erreur d’estimation du modèle d’Hammerstein
S-patternOF : S-pattern original (S-patternO) conservé après le filtrage de LTP.
S-patternST : S-pattern synthétisé par le modèle d’Hammerstein.
S-patternOS: S-pattern original (S-patternO) conservé après la sélection du motif LTP de la
Figure 0-5.
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Appliquer le modèle d’Hammerstein au S-pattern

En appliquant le modèle d’Hammerstein à une estimation de S-Pattern, nous nous concen-

trons sur les deux paramètres de module linéaire et sur l’erreur d’estimation pour synthé-

tiser les S-patterns. En effet, le paramètre p a peu d’influence sur la propriété dynamique

de la micro-expression. Nous nous focalisons, dans les deux dernières sous-sections, sur

la distribution de (α,β) du module linéaire et sur l’erreur d’estimation EH . Ces paramètres

sont associées à la forme de la courbe en S-pattern. L’analyse nous permet de filtrer les

S-patterns mal étiquetés par EH , puis de synthétiser davantage de S-patterns avec la répar-

tition des (α,β).

Filtrage de LTP

Dans cette section, un traitement de filtrage utilisant le modèle d’Hammerstein (filtrage de

LTP) est proposé. Ce processus remplace la sélection du motif de LTP à l’étape d’apprentissage

de la classification locale. Le processus de filtrage de LTP utilise l’erreur d’estimation EH

pour filtrer les S-patterns mal étiquetés. Cela permet de conserver les S-patterns les plus

fiables pour l’entraînement.

Synthèse de S-patterns

Ensuite, nous visons à augmenter le nombre de S-patterns pour l’entraînement du clas-

sificateur. Les S-patterns avec différentes formes de courbes peuvent être générés par le

modèle d’Hammerstein en faisant varier (α,β) autour de paramètre (ᾱ, β̄) appris sur des

données réelles.

Chapitre 5: Résultats expérimentaux

Nous présentons les résultats expérimentaux de notre méthode dans ce chapitre. Tout

d’abord, nous présentons la méthode SOA (État-de-l’art) pour la comparaison. Les bases de

données, les configurations et les mesures relatives aux expériences sont également présen-

tées.
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Pour prouver l’efficacité de notre méthode, nous la comparons avec la méthode SOA:

LBP-χ2-distance (LBP-χ2) [91]. Notre méthode surpasse la méthode de LBP-χ2. Ensuite,

les résultats expérimentaux sont analysés concernant nos contributions.

La première contribution principale consiste à détecter les MEs en classant une nouvelle

caractéristique: le motif temporel local. Afin de démontrer la pertinence du motif LTP, nous

le comparons à une autre caractéristique temporelle utilisée couramment (LBP-TOP). Notre

LTP fonctionne mieux que LBP-TOP pour la sélection de MEs. Nous prouvons également

la généralité de notre caractéristique proposée: LTP parmi les bases de données différentes.

En plus, la performance de détection par émotion et l’analyse statistique de LTP pour les

émotions différentes prouvent que le S-pattern est identique pour tous les types d’émotions.

Ensuite, nous analysons les paramètres dans deux sous-processus: extraction des ROI dans

le pré-traitement et l’ACP dans le calcul de LTP. L’analyse permet de déterminer le réglage

optimal du ROI et de prouver l’efficacité de l’ACP.

La deuxième contribution est la fusion spatiale et temporelle. L’étude du processus de

fusion montre sa capacité à différencier le ME des autres mouvements. De plus, l’impact

des valeurs de seuil dans le processus de fusion est analysé pour trouver les paramètres

optimaux.

La troisième est l’autre contribution principale de notre processus: l’augmentation des

données à l’aide du modèle d’Hammerstein. La comparaison entre notre méthode avec et

sans modèle d’Hammerstein montre que l’augmentation des données améliore les perfor-

mances de détection. Nous montrons l’efficacité de la synthèse du S-pattern par le mod-

èle d’Hammerstein, en le comparant à la méthode GAN. Nous montrons aussi l’impact

du filtrage de LTP et de la synthèse du S-pattern sur l’ensemble du processus. Pour

finir, nous trouve la valeur de seuil optimale pour l’erreur d’estimation (TE) et le multi-

ple de génération n pour la détection de MEs, en étudiant respectivement l’impact de ces

paramètres sur deux sous-processus. Enfin, l’analyse de différents modèles de distribution

de ( al pha, beta) montre que la quantité de génération de S-pattern importe plus que le

choix du modèle de distribution.

La quatrième contribution concerne la détection de la micro-expression dans de longues

vidéos utilisant notre méthode. Le résultat de la détection montre que notre méthode sur-
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passe la méthode de base (méthode LBP-χ2-distance).

Conclusion

Nos contributions sont décrites ci-dessous:

• Une nouvelle caractéristique pertinente pour la détection de la micro-expression:

motif temporel local (LTP);

• Une fusion spatiale et temporelle tardive, qui aide à renforcer la capacité de distinguer

les micro-expressions des autres mouvements du visage;

• Un filtrage de LTP et une augmentation des données par le modèle d’Hammerstein

• Le premier challenge de détection de micro-expressions: 1. une nouvelle méthode

d’évaluation des résultats par intervalle permettant d’évaluer les performances de dé-

tection; 2. la détection de micro-expressions dans les longues vidéos par la méthode

de base et la méthode proposée

Quatre perspectives sont discutées comme suit:

1). En ce qui concerne la perspective de notre méthode, nous discutons des trois

points suivants:

a. Réduction du nombre de faux positifs: Les recherches à venir devraient se concen-

trer sur l’amélioration de la capacité de distinguer ME des autres mouvements faciaux.

b. Schéma de «la détection et la reconnaissance de la micro-expression»: la position

locale des S-patterns détectés peut être utilisée comme caractéristique pour la reconnais-

sance d’une micro-expression.

c. Généralisation de la méthode de détection: Nous soulignons des pistes d’amélioration

ultérieure de notre méthode: d’abord, la validation inter-base de données; deuxièmement,

la généralisation des paramètres pour différentes bases de données.

2). En ce qui concerne l’augmentation des données pour la détection de la micro-

expression, étant donné que l’analyse de la micro-expression est limitée par la quan-
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tité d’échantillons de micro-expression, l’augmentation des données est nécessaire pour

améliorer les performances.

3). En ce qui concerne la cohérence de la métrique, comme l’apprentissage automa-

tique est la tendance des recherches pour l’analyse de la micro-expression, le F1-score est

recommandé. En outre, détecter des micro-expressions par intervalle semble prometteur

car il donne plus d’échantillons pour étudier le mouvement détecté.

4). En ce qui concerne les applications de détection de micro-expressions, nous

attendons avec intérêt les applications de détection de micro-expressions dans le monde

réel, avec un contexte applicatif effectif.
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Abstract

Abstract

The Micro-expressions (MEs) are very important nonverbal communication clues. How-

ever, due to their local and short nature, spotting them is challenging. In this thesis, we

address this problem by using a dedicated local and temporal pattern (LTP) of facial move-

ment. This pattern has a specific shape (S-pattern) when ME are displayed. Thus, by using

a classical classification algorithm (SVM), MEs are distinguished from other facial move-

ments. We also propose a global final fusion analysis on the whole face to improve the

distinction between ME (local) and head (global) movements.

However, the learning of S-patterns is limited by the small number of ME databases

and the low volume of ME samples. Hammerstein models (HMs) are known to be a good

approximation of muscle movements. By approximating each S-pattern with a HM, we

can both filter outliers and generate new similar S-patterns. By this way, we perform a

data augmentation for S-pattern training dataset and improve the ability to differentiate

micro-expressions from other facial movements.

In the first micro-expression spotting challenge of MEGC2019, we took part in the

building of the new result evaluation method. In addition, we applied our method to spot-

ting micro-expression in long videos and provided the baseline result for the challenge.

The spotting results, performed on CASMEI and CASMEII, SAMM and CAS(ME)2,

show that our proposed LTP outperforms the most popular spotting method in terms of F1-

score. Adding the fusion process and data augmentation improve even more the spotting

performance.
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Résumé

Les micro-expressions (MEs) sont porteuses d’informations non verbales spécifiques, par

exemple lors de douleurs. Cependant, de part leur nature locale et brève, il est difficile

de les détecter. Dans cette thèse, nous proposons une méthode de détection par recon-

naissance d’un motif local et temporel de mouvement du visage. Ce motif a une forme

spécifique (motif en S, S-pattern) lorsque la ME apparait. Ainsi, à l’aide d’un algorithme

de classification classique (SVM), nous distinguons les MEs des autres mouvements fa-

ciaux. Nous proposons également une analyse de fusion finale globale sur l’ensemble du

visage afin d’améliorer la distinction entre les mouvements due à la MEs (locaux) et les

mouvements de la tête (globaux).

Cependant, l’apprentissage des S-patterns est limité par le petit nombre de bases de

données de ME et par le faible volume d’échantillons de ME. Les modèles de Hammerstein

(HM) sont connus pour être une bonne approximation des mouvements musculaires. En

approximant chaque S-pattern par un HM, nous pouvons à la fois filtrer les S-patterns

réels et générer de nouveaux S-patterns similaires. De cette manière, nous effectuons une

augmentation et une fiabilisation des données pour la base de données d’apprentissage de

S-patterns et améliorons ainsi la capacité de différencier les MEs d’autres mouvements du

visage.

Lors du premier challenge de détection de MEs (MEGC2019), nous avons participé à

la création d’une nouvelle méthode d’évaluation des résultats. Cela a aussi été l’occasion

d’appliquer notre méthode pour détecter les MEs à longues vidéos. Pour ce challenge, nons

avons fourni le résultat de base (baseline) du challenge.

Les expérimentions sont effectuées sur CASMEI, CASMEII, SAMM et CAS(ME)2.

Les résultats de détection montrent que la méthode proposée surpasse la méthode de dé-

tection la plus populaire en termes de F1-score. L’ajout du processus de fusion et de

l’augmentation des données améliore encore les performances de détection.
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Chapter 1

Introduction

Background

Micro-expression (ME) is a brief local spontaneous facial expression [28], particularly ap-

pearing in the case of high psychological pressure. The movement only lasts between 1/25

and 1/5 of a second [28]. Their involuntary nature helps to affirm they convey the real

emotions of a person [26]. This kind of facial expression is a very important non-verbal

communication clue. It can reveal the genuine emotion and the personal psychological

states [12]. Thus, ME detection and recognition (MEDR) has many potential applications

in national security [26], medical care [30], educational psychology [17], and political psy-

chology [108]. For example, by analyzing ME, doctors may observe the level of pain [30],

psychologists could find indications of suicide [28].

MEs were discovered by Haggard and Isaacs in 1966 [39] and then, named by Ekman

and Friesen [28] in 1969. Ekman developed a first ME training tool: Micro Expressions

Training Tools (METT) in 2002 [25]. The tool has several visual samples which belong

to the universal emotions. This tool aims at training human beings to detect and interpret

MEs. Yet, the overall recognition rate for the 6 basic emotions by human naked eyes is

lower than 50%, even by a trained expert [31].

Since the 2000s, research on automatic spotting and recognition of ME (MESR) has

developed. Figure 1-1 shows the trend of the number of the MESR research articles. This

number is low but is increasing, and we can notice there are much more ME recognition
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papers than ME spotting ones. Thus, the recognition rate is getting higher, e.g. 86.35% of

accuracy for 5 classes in [20]. Yet, most of ME recognition methods are performed between

the onset and offset frame. But finding onset and offset frames, especially when MEs are

spontaneous micro facial movements in a whole video sequence, is still a huge challenge.

0
5

10
15
20
25
30
35
40

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
ME spotting ME recognition Micro-expression spotting and recognition (MESR)

Figure 1-1: MESR research trend. The number of articles on MESR is increasing by year,
mainly in the area of ME recognition (bottom column). ME spotting research has not yet
attracted sufficient attention (column at the top).

The spotting results of current proposed methods are not accurate enough, certainly

because of the ME nature and also of the limited number of public ME databases. For

instance, in the spotting task of the Second Facial Micro-Expression Grand Challenge

(MEGC2019) [64], the baseline of f1-score is less than 0.05. Even though the ME samples

are produced in a strictly controlled environment, there are many false positives due to head

movement or eye blinking. It is challenging to differentiate ME from them.

Micro-expression analysis is limited by the small feature volume. It is due to the size of

ME databases. For instance, the largest spontaneous micro-expression database only con-

tains 255 video samples. This situation largely restricts the utilization of machine learning

for ME spotting.

Another unsolved problem for micro-expression spotting is that the metrics used to

analyze the result in different papers are divers. The spotting results are studied per frame,

per interval or per video, while the metric could be TPR, ROC, ACC, F1-score and other

measures. Indeed, researchers try to provide as many metrics as possible in the article to

analyze comprehensively the method. The used metrics are chosen based on the proposed

method. As the methods are not the same, each paper uses different metrics from the other
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papers. It is difficult to define one metric rather than another.

Our Contributions

We explore an automatic system for spotting MEs which could:

• spot micro-expression frames in video sequences

• separate motions related to MEs from head movement or eye blinking.

• detect the region where the ME occurs.

• increase the size of ME feature dataset for training step in machine learning.

We have four contributions in this article. The main one is to propose a dedicated local

temporal pattern (LTP), which extracts relevant information for ME spotting [63]. Since

ME is a brief and local movement, the motion pattern is analyzed from local face regions.

The locations are the small regions of interest (ROIs) where MEs can occur. When there

is an ME, the texture (i.e. the grey level value) of ROI changes. Hence, we calculate this

change, which is called the distance between two grey level ROI frames in our document.

One originality of the approach is the utilization of a temporal pattern on those ROIs. The

duration is the one of ME (300ms). The curve in Figure 1-2 represents the local temporal

variation on grey level texture when a ME is occurring in the ROI. We can notice it forms

an S-pattern from the onset to the apex of the ME. This S-pattern appears each time a

ME occurs in a region and is independent of the ROI and of the subject, which makes it

relevant for ME spotting. More precisely, this LTP pattern is computed over an interval of

the duration of a ME (300ms) and the pattern is a list of distances between the grey level

textures of the first frame and of the kth frame of the interval. In order to conserve the

most significant variation, principal component analysis (PCA) is first performed (for the

corresponding ROI) on the whole video.

The second contribution concerns the elimination of motions related to head movement

or eye blinking. The particularity of the approach is the combination of local and global

treatments. The LTP spotting is done locally by ROI. A fusion system on the entire face
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Figure 1-2: Example of Local temporal pattern (LTP) during a ME located in the right
eyebrow region over a period of 300ms (average duration of ME). This LTP represents the
evolution of the grey level texture of one ROI during the ME. The curve reaches the top
in around 150ms and then stays stable or slightly declines. This pattern is specific of ME
movements, and is referred to S-pattern due to the curve shape. (Video: Sub01_EP01_5 of
CASME I)

then separates MEs from other facial movements. Finally, depending on the spotted S-

patterns, the time index of the onset of the ME can be determined. Note that as the LTP is

local, we also have the information of the location where ME occurs.

Another main contribution concerns spotting improvement by both filtering wrong S-

patterns and data augmentation. Indeed, the sample amounts in existing ME databases

are small, which largely limits the improvement of ME spotting performance. Moreover,

databases are not labelled with the precise location of ME (left or right part of the face

is not mentioned for example). This leads to wrong annotations of LTP-patterns. The

originality is to use Hammerstein model (HM), which is known to approximate efficiently

muscle movements. Each S-pattern can be approximated by a HM with two parameters.

Using the distribution of those two parameters, we can filter wrong patterns and generate

other similar S-patterns. The utilization of those models contributes to the extension and

the reliability of the data samples for S-pattern training. Training is then performed on both

real and synthesized patterns.

The last contribution is the spotting task of the second Micro-Expression Grand Chal-

lenge (MEGC2019). We provided the baseline method and result by spotting ME on long

videos sequences. In addition, for the consistency of result evaluation method, we provide

a set of new performance metrics. It has been used as the guideline for result evaluation on
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ME spotting of MEGC2019.

Thesis Organization

The document is organized as follows:

• Chapter 2 conducts a survey on the state of arts of automatic facial micro-expression

spotting and recognition (MESR). First of all, we introduce a systematic analysis of

micro-expression databases. Secondly, a review on result evaluation methods and

metrics for micro-expression analysis is presented. Thirdly, all published spotting

methods are analyzed with their merits and demerits. Then, the micro-expression

spot-and-recognize schema is discussed. Finally, we gives our perspective on this

research domain and the contributions of our method.

• Chapter 3 propose our method to spot micro-expression. It focus on our novel rel-

evant feature for micro-expression spotting: local temporal pattern (LTP). Another

main point is the late spatial-and-temporal fusion, which is performed to obtain the

final micro-expression spotting result. The proposed method consists of three parts:

a pre-processing to precisely detect facial landmarks and extract the regions of inter-

est (ROIs), then the computation of local temporal pattern (LTP) on these ROIs and

eventually the spotting of micro-expressions. The first three sections in this chapter

present these sub-steps of our method applied in short videos. Our method is then

adapted to the situations of long videos. Finally, we conclude the chapter and points

out the requirements to improve the performance of our method.

• Chapter 4 proposes to increase the size of S-pattern dataset for the training stage of

the local classification, because the small volume of S-pattern dataset limits the per-

formance of our method. To that purpose, we use Hammerstein model (HM). After a

brief introduction of Hammerstein model, the model is applied to S-pattern. We find

that the parameters (α,β) of the linear module and the estimation error EH are asso-

ciate with the dynamic property of micro-expressions (curve shape of S-pattern). The

LTP filtering can use EH to filter unreliable S-patterns. Meanwhile, more S-patterns
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can be synthesized based on the (α,β) distribution. A brief conclusion is given at the

end of this chapter.

• Chapter 5 presents the experimental results of our method. Firstly, we introduce

the state-of-arts (SOA) method for comparison. The databases, configurations and

metrics for the experiments are also presented.

To prove the efficiency of our method, we compare it with the SOA method: LBP-

χ2-distance method [91]. Then, the experimental results are analyzed regarding our

contributions.

The first main contribution is to spot ME by classifying a novel relevant feature: lo-

cal temporal pattern. In order to demonstrate the relevancy of the LTP pattern, we

compares it with another common used temporal feature (LBP-TOP). We also proves

the generality of our proposed LTP feature among different databases. As we men-

tions that S-pattern is identical for all kinds of emotions, the spotting performance

per emotion and the statistic analysis of LTP for different emotions are investigated

to prove the theory Then, we analyse parameters in two sub-processes: extraction of

ROIs in pre-processing and PCA in LTP computation. The analysis allows to find the

optimal ROI setting and to prove the effectiveness of PCA.

The second contribution is the spatial and temporal fusion. The fusion process is

investigated to show its capacity to differentiate ME from other movements. As well,

the impact of threshold values in the fusion process are analyzed to find the optimal

parameters.

The third is the other main contribution of our process: data augmentation using

Hammerstein model. Experiments are performed with and without Hammerstein

model, and the results show that the data augmentation improves the spotting perfor-

mance. To show the effectiveness of S-pattern synthesizing by Hammerstein model,

the method is compared with GAN. The analysis shows the impact of LTP filter-

ing and S-pattern synthesizing on the entire process. Meanwhile, in order to find

the optimal threshold value for estimation error (TE) and generation multiple n for

ME spotting, the impact of these parameters on two sub-processes are investigated
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respectively. Finally, the analyze of different distribution models of (α,β) shows

that the generation amount of S-pattern matters more than the choice of distribution

model.

The fourth contribution concerns spotting micro-expression in long videos utiliz-

ing our method. The spotting result show that our method outperforms the baseline

method (LBP-χ2-distance method).

• Chapter 6 summarizes our contributions in this thesis and presents the perspectives

of future work.
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Chapter 2

State of Arts

As presented in Chapter 1, facial micro-expression (ME) analysis has emerged in last 10

years. In this chapter, a survey on the state of arts of automatic facial micro-expression

spotting and recognition (MESR) is conducted. First of all, a systematic analysis of micro-

expression databases is given in Section 2.1. A review on result evaluation methods and

metrics for micro-expression analysis is then presented in Section 2.2. In section 2.3, all

published spotting methods are analyzed with their merits and demerits. Then, section 2.4

discusses micro-expression spot-and-recognize schema. Finally, Section 2.5 gives our per-

spective on this research domain and the contributions of our method.

2.1 Micro-Expression Databases

As shown in Table 2.1, unlike large amounts of macro-expression databases, there are only

15 published micro-expression databases. Besides the limited amount, the samples were

recorded under various condition for each database. In this section, we propose an all-

inclusive survey and comparison on for these published micro-expression databases. Sub-

section 2.1.1 shows the detailed information for all published micro-expression databases.

Then, subsection 2.1.2 presents a systematic analysis based on 13 characteristics. In ad-

dition, a discussion is given in subsection 2.1.3 for the further micro-expression database

creation. Finally subsection 2.1.4 concludes this section.
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Table 2.1: Database amount for macro- and micro-expression.
Posed Spontaneous In-the-wild Total

Macro-expression [127] 26 27 13 611

Micro-expression 3 10 2 152

1 Some macro-expression databases contain both posed and sponta-
neous samples.

2 Two micro-expression databases are mentioned in two published ar-
ticles, but the databases are not public yet.

2.1.1 Introduction for Published Micro-Expression Databases

In this subsection, the development history and basic information of the databases are pre-

sented. In Table 2.2, the micro-expression databases are classified into three categories:

posed, spontaneous and in-the-wild databases. Then they are sorted depending on the

publish year. For a purpose of clarity, databases listed in this thesis are given by their

abbreviation.

Table 2.2: Reference of published micro-expression databases.
Expression type Database Reference

Posed
Polikovsky’s Database [101]

USF-HD [106]
MoblieDB [44]

Spontaneous

York-DDT [126]
SMIC-sub [100]
CASME I [137]

SMIC [66]
CASME II [135]

Silesian Deception Database [105]
SMIC-E [67]

CAS(ME)2 [104]
Grobova’s database [34]

SAMM [19]

In-The-Wild
Canal9 [112]

MEVIEW [52]

Since 2009, four databases: Canal9 [112], York-DDT [126], Polikvsky’s database [101]

and USF-HD [106] were published. However, these databases are not used nowadays.

Canal9 and York-DTT do not dedicate to the research of automatic micro-expression anal-

ysis: one is for analysis of social interaction, and the other is created for psychological
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study for a deception detection test. Meanwhile, the Polikvsky’s database and USF-HD are

posed ME databases. In the ensuing years, several spontaneous ME databases were cre-

ated. In 2011 and 2013, the research group of Oulu University published SMIC-sub [100],

SMIC [66]. During the same period, CASME I (2013) [137], CASME II (2014) [135] were

created by Chinese Academy of Science. In 2015, Radlak et al. built a Silesian Deception

Database [105], which provided video samples of deceivers and truth-tellers. In 2017,

four public databases are published, including three spontaneous databases and one In-the

wild database. Oulu University published an extended version of SMIC: SMIC-E [67] to

provide video samples for ME spotting. Afterwards, Davison et al. created SAMM [19],

which is a spontaneous micro-facial movement dataset. Meanwhile, a database which con-

tains both macro and micro expression: CAS(ME)2 [104] was published. Furthermore,

Huasak et al. published an in-the-wild database MEVIEW [52]. In addition, there are two

private databases: MobileDB and Grobova’s database, which were mentioned in [44] and

[34] respectively but are not yet publicly available.

Table 2.3, 2.4 and 2.5 list a comprehensive summary of all the databases. Databases

are sorted by alphabetical order. These three tables contain the essential characteristics of a

micro-expression database. Further comparison are presented in the following subsections.
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*1: Four LED under umbrella reflectors.

*2: Sad (obvious sadness), neutral and blocked (hidden sadness).

*3: The videos are normalized to 30 frames.

*4: A high speed (HS) camera, a normal visual camera (VIS) and a near-infrared (NIR).

*5: Three lights were used for shadow cancellation, and diffusion sheets were used to

minimize hot spots on the facial image.

*6: Two lights that contain an array of LEDs was used. DC (direct current) source was

used to avoid flickering. Light diffusers were placed around the lights to soften and even

out the light on participants’ faces.

*7: Video samples in SAMM database were divided into 7 objective classes. And the

number of emotional classes is 8.

*8: The database contains eye closures, gaze aversion including saccadic eye move-

ments and facial distortions.

*9: The database contains two types of emotional labels. One is positive and negative.

The other one is happy, sad, disgust, surprise and fear.

Samples in Spontaneous Micro-Expression Database

The samples in spontaneous micro-expression databases are shown in Figure 2-1. CASME II

and SAMM provide raw images from video sequences. Meanwhile, CASME I, SMIC and

CAS(ME)2, also contain cropped images, i.e. the facial region image.
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(a) CASME I

(b) CASME II

(c) SMIC

(d) SAMM

(e) CAS(ME)2

Figure 2-1: Samples in spontaneous micro-expression database
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2.1.2 The 13 Characteristics of Micro-Expression Databases

Instead of listing the information for each database respectively, comparison depending on

certain characteristics can indicate more the clearly their merits and demerits. A classifi-

cation system based on chosen characteristics facilitates the database selection for micro-

expression analysis. In addition, it points out the direction for future micro-expression

database creation.

Thus, in this sub-section, we list 13 characteristics which can comprehensively repre-

sent the feature of ME databases. They are classified into four categories, as set out in

Table 2.6, including population, hardware, experimental protocol and annotations. This

classification is inspired by Weber et al. [128], and has been adapted to be more appropri-

ate for ME databases description. These four categories will be presented comprehensively

in following sub-subsections.

Table 2.6: Categories and characteristics of ME databases. The characteristics are coded to
simplify further representation.

Category Characteristic Code

Population

# of subjects P.1
# of samples P.2
Gender (%) P.3
Age range P.4

Ethnic group(s) P.5

Hardware
Modalities H.1

FPS H.2
Resolution H.3

Experimental
protocol

Method of acquisition EP.1
Environment

(Image/video quality)
EP.2

Available expressions EP.3

Annotations
Action Units A.1

Emotional labels A.2

Population

The first category: population contains the basic characteristics for databases, which con-

cern the participants’ information. This analysis of population focuses on the number of
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subjects (P.1), the number of samples (P.2), the gender distribution (P.3), the age range

(P.4) and the ethnic groups (P.5). A ME has a general variation pattern, but also differs

for different subjects, because of the shape of their face, their texture, their gender and the

cultural influence. For instance, eastern people express their emotions with dynamic eye

activity, while western people use more mouth area [53]. As a result, the genericity of ME

database, i.e. the amount of subjects, a large age range, uniform women/men distribution

and wide ethnic groups, is essential for improving the ability of automatic ME spotting and

recognition.

As shown in Table 2.7, most of ME databases contain less than 50 subjects (P.1),

whether they are posed, spontaneous or in-the-wild. Moreover, the amount of ME sam-

ples (P.2) is not significant. Even the largest database CASME II [135] does not exceed

255 samples, which make it difficult to train spotting or recognition algorithms. This is

because the ME samples are difficult to produce. It requires a strict recording environment

and professional eliciting methods. Moreover, the annotation is time-consuming. Besides,

even though the ME exists in our daily life, it is complicated to gather video samples and

to identify the facial movement precisely in the in-the-wild environment.

The women/man percentage (P.3) for ME databases is not well balanced. Canal9 [112],

CASME I [137], SMIC [66] and MEVIEW [52] contain much more male subjects than

female, while the number of female subjects in York-DDT [126] is almost two times the

male subject amount. Yet, the percentage in the three most recent databases CASME II

[135], SAMM [19] and CAS(ME)2 [104] are well balanced between 40/60 and 60/40. (See

Table 2.3 and Table 2.4 in Appendix for exact values)

The age range (P.4) for most ME databases is quite low, since the majority of samples

were produced by volunteers in university. The average age is around 25 years old and the

standard deviation (STD) is around 3. Yet, York-DDT [126] has a moderate range (18-45),

and the average age of SAMM [19] is 33.24 with a large STD (11.32). However, the age

distribution is still far from the reality. A good database should also contain the samples

gathered from children and elderly people.

For ME database, the ethnic groups (P.5) are not very diverse. China Academy of Sci-

ence (CAS) has built three databases: CASME I [137], CASME II [135] and CAS(ME)2 [104],
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Table 2.7: Classification of the databases according to the characteristic P.1, P.2, H.1,
A.1 and A.2 (# of subjects, # of samples, modalities, action units and emotional la-
bels). Databases are sorted by alphabetical order. The following formatting distinguishes
databases: normal for posed databases, bold for spontaneous database, italic for in-the-
wild databases, * means the database is not available online. 2D V: 2D video. SMIC and
SMIC-E both have three sub-classes: NIR, VIS and HS. Sub-class HS of SMIC / SMIC-E
is separated from the other two because of the different number of ME video samples.

Databases P.1 P.2 H.1 A.1 A.2
Canal9 ∈ (200,250) ∈ (50,100) 2D V

CASME I ≤ 50 ∈ (100,200) 2D V X X
CASME II ≤ 50 ∈ (200,300) 2D V X X
CAS(ME)2 ≤ 50 ∈ (50,100) 2D V X X

Grobova’s database∗ ≤ 50 ∈ (50,100) 2D V X
MEVIEW ≤ 50 ≤ 50 2D V X X

MobileDB* ≤ 50 ∈ (200,300) 2D V X
Polikovsky’s Database ≤ 50 ≤ 50 2D V X

SAMM ≤ 50 ∈ (100,200) 2D V X X
Silesian Deception ∈ (100,200) ∈ (100,200) 2D V X

SMIC-sub ≤ 50 ∈ (50,100) 2D V X
SMIC-NIR, VIS ≤ 50 ∈ (50,100) 2D V + IF X

SMIC-HS ≤ 50 ∈ (100,200) 2D V X
SMIC-E-NIR, VIS ≤ 50 ∈ (50,100) 2D V + IF X

SMIC-E-HS ≤ 50 ∈ (100,200) 2D V X
USF-HD ≤ 50 ∈ (100,200) 2D V X

York-DDT ∈ (50,100) ≤ 50 2D V X
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but there is only one ethnic group: Asian. Meanwhile, SMIC [66] has 3 ethnic groups:

Caucasian, Asian and Africa, and Polikovsky’s database [101] have Caucasian, Asian and

Indian groups. Furthermore, SAMM [19] contains 13 ethnic groups, which makes it the

most varied ME database in term of ethnic groups (P.5). A widely collected database is rec-

ommended for ME analysis in the real world. Yet, the construction of this kind of database

may need the international cooperation.

Hardware

In this part, this category: hardware links to the necessary information of video samples.

The characteristics related to hardware, i.e. modalities, resolution and FPS, are discussed.

The first characteristic is modalities (H.1), which means the ME sample recorded format.

Until now, as listed in Table 2.7, the modality for most ME databases is unified: a unimodal

2D video. However, SMIC [66] and SMIC-E [67] have multi-modalities, with three differ-

ent 2D videos: high speed (HS) video, normal visual (VIS) video and near-infrared (NIR)

video, as shown in Figure 2-2. Multi-modalities (e.g. facial thermal variation from infrared

images) can allow the analysis methods to extract more different features and therefore

enhance the reliability of emotion classification. Meanwhile, the synchronization should

catch our attention. Compared with macro-expression databases [128], there is no audio,

3D model, or body movements in the databases. If the ME databases follow the same evo-

lution as the macro-expression databases, we can imagine having more modalities in the

future databases.

Figure 2-2: Three Modalities of SMIC database. Sample at the left side is NIR image, in
the middle is the VIS image and at the right side is the HS image.

As the ME average duration is around 300ms [63] and the movement usually appears on
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the local facial regions, a high FPS (H.2) and a high resolution (H.3) will help to capture the

subtle facial movements. Table 2.8 lists the frame amounts for a micro-expression with an

average duration (300ms) depending on different FPS. Most ME databases have at least 60

FPS with a facial resolution larger than 150×190. The FPS of Polikovsky’s Database [101],

CASME II [135] and SAMM [19] reach to 200. The resolution of the facial region in

SAMM [19] is 400×400. These ME sequences were recorded by a high-speed camera in a

strictly controlled laboratory environment to reduce the noise. Meanwhile, USF-HD [106],

SMIC [66], CAS(ME)2 [104] and MEVIEW [52] contain clips with low FPS, lower or

equal to 30. These databases fit more the situation in real life. However, depending on

the average duration of ME, 30 fps means that the video just contains 9 frames for ME

(300ms). Thus, the data scale is small, and this may make the ME analysis more complex

and less reliable.

Table 2.8: Number of frames for a micro-expression with average duration (300ms) de-
pending on different FPS.

FPS 30 60 100 200
NbFrME 9 18 30 60

Experimental Protocol

The experimental protocol refers to the acquisition method (EP.1), experimental environ-

ment (image/video quality) (EP.2) and the available expressions (EP.3). As the protocols

are quite different according to the type of database: posed, spontaneous and in-the-wild,

we discuss them separately in the following paragraphs. Moreover, as image/video quality

is a very important factor for ME databases, this characteristic is specifically discussed in

Paragraph Image/Video Quality.

Posed Micro-Expressions Posed ME means that the facial movement is expressed by a

subject on purpose with simulated emotion. If we look at the macro-expression, there are

three methods of reproduction: free reproduction, ordered reproduction and portrayal [128]

which means the subject is required to improvise on an emotionally rich scenario. But

things are different for micro-expressions. ME is challenging to produce because ME is a
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very brief and local facial movement. The ME sequences in Polikovsky’s Database [101],

USF-HD [106] and mobileDB [44] are all reproduced by ordered reproduction (EP.1). In

the Polikovsky’s Database, volunteers were requested to perform 7 basic emotions slightly

and quickly after being trained by an expert. Subjects in USF-HD were demanded to mimic

the MEs in sample video and the participants in mobileDB mimicked the expressions based

on 6 MEs (i.e. happiness, surprise, fear, sadness, disgust and anger).

The experimental environment (image/video quality) (EP.2) contains the number of

cameras, background, lighting conditions and occlusions. For existing ME databases, there

is only one camera facing the subject. As a side note, the video samples in mobileDB were

recorded by a mobile device, which could be used for daily emergency situations. Regard-

ing background and lighting condition, it is the same situation for posed and spontaneous

databases: an indoor environment with uniform lighting. Concerning occlusions, almost

all the databases contain subjects wearing glasses. However, other occlusions and the head

pose variation are very rare in ME databases.

Joy, sadness, surprise, fear, anger and disgust are six basic emotions [29]. They are

regarded as available expression (EP.3) in these three databases. The Polikovsky’s Database

has one more emotional content: contempt. Moreover, the videos in this database are

FACS-coded.

Spontaneous Micro-Expressions Spontaneous ME is generated naturally by emotion af-

fect. All the spontaneous ME database used passive task as the emotion elicitation method

(EP.1). The most common method is the neutralization paradigm, i.e. asking participants

to watch videos containing strong emotions and try to neutralize during the whole time or

try to suppress facial expressions when they realized there is one. The samples in York-

DDT [126] and Silesian Deception database [105] were generated by lie generation activity.

Moreover, there is another kind of micro-expression, which is masked ME. It is hidden be-

hind other facial movements, and it is more complicated than neutralized ME. We will

discuss the masked ME in section 2.1.3.

Regarding the experimental environment (EP.2), it is quite similar to that of pose MEs,

except that SMIC [66] has three cameras: a high speed (HS) camera, a normal visual
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camera (VIS) and a near-infrared (NIR) camera. Most of the databases have only one

lightning condition. CASME I [137] is the exception. The database is divided into two

sections for two different lighting conditions: natural light and two LED lights.

As already introduced for characteristic H.1, ME database modality is 2D video. The

duration of video sequences is quite short: most videos are less than 10s (see Table 2.3

and Table 2.4 for more details). For ME recognition, most methods only use the frames

between the onset and the offset. Yet, longer video, with sometimes several MEs, is

better for ME spotting. SMIC-E [67] provided a longer version of video samples in

SMIC [66], SAMM [19] contains videos with a long duration, the average time is 35.3s. In

CAS(ME)2 [104], the longest video can reach to 148s.

Concerning available expressions (EP.3), there are two classification methods. One is

respecting the 6 basic emotion classes, e.g. York-DDT [126], CASME I [137], CASME

II [135] and SAMM [19]. The other one is classifying emotions into three or four classes:

positive, negative, surprise and others, such as SMIC [66], SMIC-E [67] and CAS(ME)2 [104].

In addition, Silesian Deception Database [105], SAMM [19] and CAS(ME)2 [104] consist

of not only micro movements but also macro expressions.

In-The-Wild Micro-Expressions In-the-wild ME means that the acquisition is not limited

by population and experiment acquisition conditions (EP.1). There are only 2 in-the-wild

ME databases: Canal9 [112] and MEVIEW [52]. They both consist of a corpus of videos

of spontaneous expressions. Canal9 [112] contains 70 political debates recorded by the

Canal9 local station. ME can be found when the politicians try to conceal their real emo-

tion. MEVIEW [52] contains 31 video clips from poker games and TV interviews down-

loaded from the Internet. The poker game can help to trigger ME thanks to the stress and

the need to hide emotions. Image samples are shown in Figure 2-3. For the experimental

environment (EP.2), it is worth noting that the facial area in MEVIEW [52] varies because

the camera is often zooming, as well as changing the angle and the scene. For instance, the

upper images in Figure 2-3 illustrate the subject with different facial resolutions because

the camera zoomed in. Furthermore, as most videos came from television programs, there

are some body movements and head poses. The available expressions (EP.3) in these two
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databases are based on 6 basic emotions. It is a big challenge to detect and recognize the

ME automatically since there are a lot of other irrelevant movements.

Figure 2-3: Images samples from MEVIEW database

Image/Video Quality Image/video quality is a very important aspect of facial expression

analysis. This subsection is dedicated to the discussion of this subject. It already exists

various macro-expression databases which contain different image quality situations. Un-

fortunately, the majority of published ME databases are spontaneous ME databases. Video

samples are recorded in a strictly controlled laboratory environment. Figure 2-4 [135]

shows a typical acquisition setup for recording micro-expression samples. The improve-

ment of the latest published databases focuses more on population augmentation and video

length rather than image quality. The illumination condition is maintained to be stable.

LED lights are commonly used, and in some cases, researchers used extra equipment to

reduce the noise. For instance, in SAMM database [19], light diffusers were placed around

the lights to soften the light on the participants’ faces. The background is normally white

or gray. Besides, to avoid unrelated movements, participants were required to stay still

and face directly the camera. The most recent published database MEVIEW [52] is an

in-the-wild database. The video samples were gathered from poker-game television shows.
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The image quality varies when the camera zooms in or out. Moreover, it is still challeng-

ing to accurately spot and recognize ME in single viewing angle videos with little noises.

Thus, the community has not paid sufficient attention to get various image quality situ-

ations. However, as it is an essential factor for ordinary facial expression databases, we

could expect its importance in future ME databases.

Figure 2-4: Acquisition setup for elicitation and recording of micro-expressions [135]

Annotations

This characteristics in this category directly link to automatic micro-expression analysis.

The evaluation of prediction result is based on annotations (ground truth) of databases.

Regarding of ME databases, low-level information: action units (A.1) and high-level infor-

mation: emotional labels (A.2) are the two major annotations.

Facial Action Coding System (FACS) [27] is an essential tool for facial expression an-

notation. Indeed, the facial components of FACS, i.e. actions units (AUs), identify the

local muscle movement, and the combination of AUs shows the emotional expression, e.g.

AU6+AU12 (Cheek raiser and Lip corner puller) could indicate happiness. Since ME is

a local brief movement, identifying the AUs will help to facilitate the spotting and recog-

nition for ME. However, some databases were not labeled by AUs, e.g., USF-HD [106],

SMIC [66] and SMIC-E [67].
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Figure 2-5 shows a histogram for the sum of AU annotations in all the databases and

lists the number of AUs annotation in ME databases. The highest AU amount represents the

regions where have the most ME movements. AUs which are annotated less than 5 times

are not shown in the table: AU13 was utilized 4 times; AU19, AU23 AU31 and AU34 were

used 2 times; AU8, AU21 and AU56 were mentioned just 1 time. For better understanding,

the FACS table in Appendix A lists the AUs and their descriptions.

CASME I
CASME II
SAMM
CAS(ME)2

MEVIEW

Figure 2-5: Histogram of action units (AUs) annotations for ME databases. The AU amount
on the region of eyebrows (e.g. AU 1,2,4) and mouth (e.g. AU 12, 14) indicate that these
two regions have the most frequent ME movement.

Davision et al. [21] proposed an objective ME classification method using AUs. The

facial movements are labeled by AU combinations, and this would help to avoid the un-

certainty cause by subjective annotation. In the Facial Micro-Expression Grand Challenge

(MEGC) organized by FG2018 [139], the ME classes for recognition are labeled by this

objective classification.

Emotional labels (A.2) are used for ME recognition. As listed in Table 2.7, almost all

the ME datasets have emotional labels except Canal9 [112] and Polikovsky’s Database [101].

As mentioned in paragraph Spontaneous Micro-Expressions of sub-section 2.1.2, the emo-

tion labels differ in different databases. However, there are two exceptions. One is the

Silesian Deception Database [105], who contains micro-tension, eye closures and gaze

aversion of subjects. Another one is Canal9, there are no emotional labels, the samples
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are annotated by agree/disagree since the videos came from debate scenes. Until now, to

our knowledge, there are no ME databases that provide facial features or emotional dimen-

sions. Table 2.9 shows a quantitative summary for commonly used databases, and they list

the emotion classes and the numbers of corresponding samples. SMIC-sub and CAS(ME)2

are shown in both tables, because they have the two types of emotional labels. In SMIC-

sub, positive contains all the samples annotated with happiness; negative is the ensemble

of disgust and sad samples; fear and surprise samples are not included in the 2 emotional

classification. In addition, as the SAMM database is a micro facial movement dataset, there

are still 26 video samples which are classified as emotion ’other’.

Table 2.9: Emotion classes and sample numbers for micro-expression databases.

Dataset Positive Surprise Negative Others
SMIC-sub 17 0 18 0
SMIC-HS 51 43 70 0

SMIC-VIS/NIR 28 20 23 0
SMIC-E-HS 51 42 71 0
CAS(ME)2 8 9 21 19

(a) Part 1.

Dataset H D Su R T F C Sa He Pa A
S-sub 17 10 20 0 0 16 0 8 0 0 0

CASIA 4 4 7 30 48 1 2 0 0 0 0
CASIB 5 42 14 10 23 1 0 6 0 0 0
CAS2 15 16 10 0 0 4 0 1 1 2 0
MEV 6 1 9 0 0 3 7 0 0 0 2

SAMM 26 9 15 0 0 8 12 6 0 0 57
CASII 33 60 25 27 102

(b) Part 2. H: Happiness, D: Disgust, Su: Surprise, R: Repression, T: Tense, F:
Fear, C: Contempt, Sa: Sadness, He: helpless, Pa: pain, A: anger. S-Sub : SMIC-
sub, CASIA: CASME I-A , CASIB: CASME I-B, CAS2: CAS(ME)2, MEV: MEVIEW,
CASII: CASME II.

2.1.3 Discussion on Micro-Expression Database

The posed ME is a reaction commanded by the brain. The duration is longer than that of

spontaneous ME. Yet, the short duration is one of the most important characteristics for

ME. Hence, posed datasets are not used anymore.
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Nowadays, the majority of automatic ME analysis researches performed their exper-

iments on spontaneous ME databases. CASME II [135] and SMIC [66] are two most

commonly used databases. Each spontaneous database has its own advantages. CASME I,

CASME II and SAMM have both emotional labels and AU labels. SMIC provides a possi-

bility to analyze ME by multi-modalities. SAMM responds to the necessity of multi-ethnic

groups. In addition, SAMM has not only the ME but also other facial movements, and

CAS(ME)2 contains both macro and micro expressions. Moreover, the video length of

these two databases is longer than the others. The advantages of SAMM and CAS(ME)2

can help to enhance the ability to distinguish ME from other facial movements. Thus, they

are two very promising databases for improving the ME analyzing performance in the real

world.

Nevertheless, there is still plenty of work to do. First of all, the genericity of subjects

should be increased.

1. There are too few participants and most of them are university students. The age

range needs to be extended. For example, the wrinkle on the face may influence the

recognition result. Furthermore, the students do not have much experience of hiding

their emotions in high stake situations. To apply the ME analysis in the real world,

e.g. interrogation or medical care, it needs to recruit more participants from society.

2. As it’s a difficult task for children to hide their genuine emotions, the feature of facial

movement could be different from that of adults. Thus, ME samples collected from

children should be considered. However, building a database containing children

subjects would concern many legislative issues.

Secondly, more modalities, e.g. infrared video, could help improve the recognition

ability by cross-modalities analysis.

Thirdly, as the research on automatic MESR just begun in the last ten years, almost all

the ME databases were built in a strictly controlled laboratory environment to facilitate the

pre-processing. Along with the development of MESR research, in-wild-world ME videos

sequences with more occlusions, such as pose variation, hair on the face, lightning change,

etc., are expected by collecting from TV shows or by crowd-sourcing.
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Fourthly, concerning annotation, utilizing AU annotations could be a more objective

way for classification of facial movements. Meanwhile, the accuracy of annotation needs

to be improved since there are still many non-labeled detected facial movements in the

existing databases.

Fifthly, the number of ME databases could be augmented by considering FACS Coded

Databases like DISFA [89] and BP4D [143]. The spontaneous facial expressions in these

databases are labelled with AUs intensities, expression sequences with short duration and

low intensity could be used as ME samples.

In addition, due to the limited acquisition condition, we are looking forward to a com-

prehensively collected database by cooperation among worldwide research groups.

The last discussion is about the definitions of eye gaze change, subtle expression and

masked expression. They have not attracted much attention. Nevertheless, for the future

ME database construction and ME analysis, we think that it is worth discussing.

1. The eye gaze shifts also reveals the personal emotion, even without any action units

that associate with it. It could be considered as a clue for identifying MEs. For in-

stance, as we mentioned in the subsection 2.1.2, eye change for eastern people carries

emotions. However, to officially use it as ME sample, it still needs acknowledgment

from psychologists and automatic MESR research communities. Furthermore, the

samples in Silesian Deception Database [105] could be used for analyzing the ME

with eye gaze shift.

2. The subtle expression is a small facial movement (spatial), but the duration could be

longer than 500ms. The study of subtle expression would be a challenge due to the

duration is not defined.

3. Regarding the masked expression, there might be some MEs masked in other facial

movements. For example, the tense expression could be hidden during an eye blink-

ing. Analyzing this kind of ME seems to be impossible based on currently proposed

methods. We are looking forward to more studies on this problem.
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2.1.4 Conclusion for Micro-Expression Databases

By comprehensibly reviewing the existing databases, this section gives some guidelines

and suggestions for the further ME database construction. Regarding databases, 13 char-

acteristics are presented in 4 categories for posed, spontaneous and in-the-wild databases.

This classification could help other researchers to choose databases as needed. The future

direction for databases is under discussion. The diversity of the population and the number

of modalities should be increased. More in-the-wild databases are expected.
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2.2 Result Evaluation Methods and Metrics

In this section, we propose a comprehensive survey, which focuses on result evaluation

methods and metrics for ME recognition and spotting respectively. For recognition, besides

a quantitative summary for each metric, we also reviewed and discussed the number of

recognition classes. Concerning ME spotting, the metrics are introduced based on the

different spotting methods. This section also gives a discussion on the metric consistency

and its future direction.

The section is organized as follows: subsection 2.2.1 and subsection 2.2.2 review re-

spectively the evaluation methods for ME recognition and spotting. Subsection 2.2.3 con-

cludes this section.

2.2.1 Evaluation of Micro-Expression Recognition Result

Micro-expression recognition aims at identifying the emotion type of a ME video sequence.

The classification is usually performed by machine learning. There are more than 90 ar-

ticles on ME recognition. The metrics are the same in most papers. Yet, the number of

emotion classes for recognition differs depending on the different databases and the re-

searchers’ choice. The following two sub-subsections present the common metrics and

discuss the emotion classification for micro-expression recognition.

Micro-Expression Recognition Metrics

TP (true positive), FP (false positive), TN (true negative) and FN (false positive) are the

basic measures for classification system evaluation [103]. The main metrics for ME clas-

sification are accuracy / recognition rate and confusion matrix. Table 2.10 summarizes the

amount of 7 metrics in 80 articles, that we reviewed for ME recognition. As shown in this

table, accuracy (ACC) is the most commonly used metric for automatic recognition:

ACC =
TP+TN

TP+FP+FN+TN
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The result is always evaluated by n-fold cross validation or leave-one-subject-out valida-

tion.

Table 2.10: The number and frequency of ME recognition articles, according to the metrics
used.CM means the confusion matrix, time includes the training time, recognition time and
computation/run time.

Metric Accuracy CM F1-score Recall Precision Time ROC
# of articles 67 27 17 14 11 6 4

Frequency (%) 83 34 21 17 14 7 2

We classified the published articles depending on their corresponding metrics and databases.

The number of articles for each class is shown in Table 2.11. A table that lists all the ref-

erences of articles with same classification can be found in Appendix B. CASME II [135]

and SMIC [66] are two most used databases. Moreover, the number of articles used two

new published databases: SAMM [19] and CAS(ME)2 [104] is still small.

Table 2.11: Summary of number of published articles, with their corresponding metrics
and databases. CAS I: CASME I; CAS II: CASME II; SMIC includes SMIC and SMIC-E.
ACC: accuracy, CM: confusion matrix.

CAS I CAS II SMIC SAMM CAS(ME)2

ACC 22 61 37 5 2
CM 13 29 17 3 1

F1-score 5 22 13 6 NaN
Recall 3 13 8 2 NaN

Precision 2 11 7 NaN NaN
Time 1 5 5 NaN 1
ROC 2 3 2 2 1

As the ME samples correspond to different emotion types, to reveal the classification

performance for each emotion class, the confusion matrix is worth to analyze. In the mean

time, the emotion sample distribution is not balanced [60], some emotions account for a

great proportion in the databases. For instance, 50% samples in CASME I-A [137] are la-

beled as tense. This situation will influence the accuracy of the entire classification process.

Analyzing the confusion matrix would help to improve the ability to distinguish singular

emotions. In addition, more and more metrics are used to evaluate the machine learning

system, e.g. TPR/recall (True positive rate), FPR (False positive rate), precision, ROC (Re-
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ceiver Operator characteristic Curve), etc. One of the most highlight metrics is F1-score:

F1-score = 2× precision× recall
precision+ recall

=
2TP

2TP+FP+FN

As shown in the formula, F1-score considers both the precision and recall: it is the

harmonic average of these two metrics. Thus, F1-score can evaluate the method in an

unbalanced dataset. The higher the F1-score is, the more robust the system is.

Moreover, even though the most articles focus on the recognition rate and other above

mentioned metrics, there are a few articles which also give the metrics to improve the

efficiency of the proposed method. For instance, Hao et al. [41] listed the training time and

recognition time. Wang et al. gave the recognition time [124], and other papers ([78, 84,

150] etc.) provided computation time/run-time.

The above metrics can help to evaluate the recognition method in a single database.

The amount of ME samples in the published database is smaller than 300, and the ma-

jority of recognition methods are trained and tested in one small-scale database. This sit-

uation causes problems. In the real world, the data could come from different sources.

Hence, to improve the recognition reliability, the cross-database ME recognition is neces-

sary. In [151, 150], Zong et al. performed the cross-database recognition on SMIC [66] and

CASME II [135]. Besides, the MEGC (Micro-Expression Grand Challenge) of FG2018 [139]

proposed a ME cross-database recognition challenge [56, 98, 90], CASME II and SAMM [19]

are utilized for evaluation.

There are two kinds of cross-database recognition. One is to use all the samples from

selected databases, and the method is evaluated by the n-fold cross validation. The other

one is training the proposed method in one database and then testing the method in another

database. For the first kind of cross-database, F1-score can be given for evaluation. Mean-

while, for the second situation, the results could be evaluated by two metrics which have

been typically used in cross-database speech emotion recognition: unweighted average re-

call (UAR) and weighted average recall (WAR). UAR is defined as the average accuracy of

each class without consideration of sample numbers in each class; and the WAR is obtained
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by dividing the TP sample numbers by the sum of all the samples:

UAR =
Accuracy sum of each class

Total number of classes

WAR =
Number of TP in all classes

All samples

Evaluating cross-database recognition by these two metrics can help to avoid the un-

balanced emotion classes distribution problem.

Recognition Classes

The emotion classes for recognition vary depending on different chosen databases. This is

no valance/arousal space for micro-expression recognition. As listed in Table 2.9 of subsec-

tion 2.1.2, there are various emotional classifications for some commonly used databases.

One type depends on the emotion valence, and the other one type classifies the expression

based on 6 basic emotions [29].

Furthermore, since the emotion classes have very different volumes, some authors have

defined their own emotion classes. They may combine emotion classes which have small

proportions in the entire database into one class. For example, in [131], the emotion classes

for CASME I [137] was set as positive, negative, surprise and others. Another solution is to

select useful samples for evaluation. For instance, in [37], only ME samples in CASME I

corresponding to happiness, surprise, repression and tense are used for the experiment.

For articles which performed their experiments on SMIC [66], the most common emo-

tion classification is positive, negative and surprise [67]. Meanwhile, for articles using

CASME II [135], the ME samples were usually classified as happiness, surprise, repres-

sion, disgust, and others [119].

Table 2.12 lists all kinds of emotional classes and the corresponding number of articles.

The emotion classes of database SMIC (positive, negative, surprise) and CASME II (happi-

ness, sadness, disgust, repression, tension/others) are most frequently used. Since there are

many combinations, it is difficult to analyze different methods. Hence, researchers could

use these two kinds of emotion classes for result comparison.
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Moreover, as shown in Table 2.12, it is worth noticing that there are only 5 emotional

classifications, which contain neutral emotion. Usually, the researchers use the frames

from onset to offset as recognition samples. There are few articles recognizing videos

samples who do not contain ME sequences. The frames that are not labeled as ME may

contain lots of unrelated facial movements. Thus, it would cause a high false positive for

recognition. However, to apply the automatic ME analysis in real life, it requires the ability

of spotting the frames that contain ME in a long video. Then these frames can be used for

ME classification. We will discuss the ME spotting in section 2.2.2.

Table 2.12: Summary of emotion classes for micro-expression recognition. The two most
commonly used emotion classes are highlighted in bold. P: positive, N: negative, H: Hap-
piness, D: Disgust, SU: Surprise, R: Repression, T: Tense, F: Fear, C: Contempt, SA:
Sadness.

# of emotions Emotion types Article number
2 P, N 2

3
P, N, SU 28

P, N, Neutral 1
H, SU, SA 1

4
P, N, SU, others 9

SU, R, T, D 6
SU, R, T, H 1

5
Attention, SU, D, R, T 1
H, SU, D, R, T/others 33
H, SU, SA, A, Neutral 1

6
H, SU, D, F, SA, A 2
H, SU, D, F, SA, R 1

H, SU, D, F, T, Neutral 1

7
H, SU, D, F, SA, A, Neutral 1

H, SU, D, F, SA, A, C 2
8 H, SU, D, F, SA, A, C, Neutral 1
9 H, SU, D, F, SA, A, C, T, others 1

One main difficulty in ME recognition is to identify precisely the facial movement as

one definite emotion without consideration of gesture and context. It occasionally exists

some conflicts between emotional label manually annotated by the psychologists and the

recognition result performed by machine learning. Hence, the objective classification has

been encouraged. It means that classes are built by the combination of AU. This could

avoid the above-mentioned conflicts. Recognizing facial movement with AU combination
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would be more rational and reliable rather than defining the emotion type. What’s more,

this kind of classification can serve to unify the number of classes in different databases. It

would facilitate the comparison between different methods.

To develop the transferability of ME recognition methods, the experiments on cross-

database is necessary. In two published articles of Zong et al. [151, 149], the emotional

classes are positive, negative and surprise, and the databases are SMIC [66] and CASME II [135].

Meanwhile, in articles published in FG2018-MEGC [56], the ME recognition was per-

formed on five objective classes. CASME II and SAMM [19] were utilized. The number

of recognition classes and the sub-groups vary depending on the chosen databases. It is

reasonable to use different emotion classes when the databases are different. Yet, when the

chosen databases are the same, we need to pay attention to the fact that the experiments

should take the same sub-groups to facilitate the result comparison.

2.2.2 Evaluation of Micro-Expression Spotting Result

ME spotting is a broader term for identifying whether there is a ME in a video or not. In

contrast, ME spotting means more specifically locating the frame index of ME in videos.

In this chapter, we use spotting to represent these two definitions. There are only around

30 articles for automatic ME spotting, and the metric consistency for result assessment is

still an open field. The final analysis result could be evaluated by temporal window or

by frame, and the metrics vary according to different methods. Therefore, this situation

makes it difficult to compare results obtained by various methods. This subsection firstly

presents the result evaluating methods for ME spotting, then introduces the most frequently

used databases. Furthermore, the metric standardization is discussed at the end of this sub-

section for the future research.

Analyze Methods and Corresponding Metrics

There are just a few research articles on ME spotting, less than 40 articles from 2009 to

2019. In 2014, Moilanen et al. [91] published the first article which performed the ME

spotting method on spontaneous database. The results were evaluated per video. Except
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this article [91], the spotting results from other articles are evaluated by different criteria,

i.e. per frame and per temporal window. We discuss the metrics for these two evaluation

criteria in the following paragraphs.

Micro-Expression Spotting per Frame ME per frame means spotting ME frames in a

video sequence. There are two types of spotting result: one is finding the apex or onset

frame [77] (DF.1), one is locating the frames in ME interval [23]. As presented in [63],

the second one contains two kinds of spotting methods, i.e. feature difference (DF.2) and

machine learning (DF.3).

Table 2.13 lists the published micro-expression spotting methods per frame and their

corresponding metrics. Some methods are re-implemented in several articles and they are

evaluated by different metrics. For instance, the original article [67], which proposed the

LBP-χ2 distance method, used accuracy and ROC. Meanwhile, Li et al. [63] compared their

proposed method with the LBP-χ2 distance method. In this paper, the results are evaluated

by TPR and F1-score. It is an existing problem for micro-expression spotting research.

In order to be able to compare the results, researchers need to re-produce the methods in

published articles.

For the first one (DF.1), the average error (AE), mean absolute error (MAE) and stan-

dard deviation (STD) are used as the evaluation metrics. Liong et al. [77] introduced an-

other metric: Apex Spotting Rate (ASR). As it is not yet commonly used by other research

groups, this metric is not listed in Table 2.13.

The second spotting format per frame is the most common ME spotting method, and

the basic measure is TPR:

TPR =
all detected true positive frames

sum of all ME frames in each video sequence

For feature difference methods (DF.2), ROC and AUC (Area under the curve) are two

popular metrics as there are some thresholds to be adapted [91]. The ROC is drawn as TPR

versus FPR. The larger the AUC, the better the system performs. However, the ROC does

not deal well with the unbalanced sample distribution situation. We take an example of a
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Table 2.13: Published spontaneous micro-expression spotting per frame methods and their
corresponding general metrics. The method highlighted in bold is the most commonly
used method for comparison. DF.1: apex/onset spotting methods, DF.2 : feature difference
methods, DF.3: machine learning methods. ACC: accuracy; ROC: receiver operating char-
acteristic curve; TPR: true positive rate; AE: average error, and this column also includes
the articles which used MAE (mean absolute error).

Methods ACC ROC TPR F1-score AE / MAE

DF.1

OS [79] X
CLM [134] X

LBP-correlation [134] X
OF [134] X

Spatio-temporal integration of
OF [96]

X X

RHOOF [87] X
Apex frame spotting by

frequency filter [69]
X

DF.2

LBP-χ2 feature
difference [91, 67, 79, 20]

X X X X X

HOOF [67, 20] X X X X
MDMD [116] X

HOG-χ2 feature difference [23] X X
3D-HOG-χ2 [20] X X X X

IP [83] X
OF [83] X

Riesz Pyramid [24] X
CFD [40] X

DF.3

Adaboost [130] X
Characteristic image

intensity [52]
X

Motion descriptors[13] X
LTP-SVM [63] X X X
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fictional database, in which there are 100 false samples and 10 true samples. Supposing

that the system detects 20 FP samples and 9 TP samples, the point position of (FPR, TPR)

on ROC would be (0.2, 0.9). If we just consider the ROC metric, the system performs well.

However, the fact is that there are too many false positives influencing the reliability of test

results. ROC and AUC are useful to study the parameter influence for one method. Yet, they

are not suitable for result comparison among different methods. F1-score is commanded

because it considers both TPR and FPR, and deals well the problem of imbalanced sample

distribution, as introduced in subsection 2.2.1.

Meanwhile, machine learning methods (DF.3) for micro-expression apply the same

evaluation method as most classification methods, i.e. they use the most common met-

rics for classification: recall, precision, confusion matrix, and F1-score [13].

Another key point for the measurement per frame is the ground truth setting. The

ground truth can be the interval from onset to offset [23] or [onset− k/2,offset+ k/2],

where k is the sliding window length in spotting method [91]. All these varieties of the

result calculation would cause the problems for comparison.

Micro-Expression Spotting per Window In 2017, Tran et al. [111] proposed a novel spot-

ting method. The spotting is evaluated by a search window W . The window would be

considered as positive if it meets the following condition:

GT ∩XW

GT ∪XW
> ε

where GT means ground truth in the video, i.e. the frame index from onset to offset; XW

is the spotted frame index in the search window, ε is set to 0.5 according to the study

in [130]. And if the spotting result is smaller than 0.5, it is treated as negative. Thus, each

searching window has one corresponding label (positive or negative). Then these windows

are used as training and testing samples for machine learning. To analyze the performance,

the Detection Error Tradeoff (DET) curve is firstly used. The measurement DET is plotted

as: miss rate versus FP per window.

This kind of measurement can help to reduce the true negatives which are caused by
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spotting per frame. Moreover, the labels of frame samples are sometimes not quite accurate,

and it would influence the result evaluation. Spotting and evaluating the result per window

could help to avoid this situation. There is a disadvantage for this evaluation per interval is

that for each spotting method, the interval length might be different, then the result could

not be compared between methods.

Even though there are a few articles which spot ME per temporal window until now,

we think this method is promising and it could be extended to other general metrics or

methods.

The Frequently Used Databases for Micro-Expression Spotting

In this sub-section, we will introduce the spontaneous ME database for ME spotting. Be-

cause there is only one article [52] which spotted micro-expression in in-the-wild database

MEVIEW. All the other articles performed their methods on spontaneous database. Ta-

ble 2.14 shows the number and frequency of databases used for spotting. CASME II and

SMIC-E are two databases used most frequently.

Table 2.14: Database numbers and frequency (%) for ME spotting. The number of two
most frequently used databases are highlighted in bold. CAS II : CASME II, CAS I ;
CASME I.

Databases CAS II SMIC-E CAS I SAMM CAS(ME)2 MEVIEW
# of articles 12 11 6 2 2 1

Frequency (%) 57 52 29 9 9 5

In addition, the two most recent spontaneous databases (SAMM [19] and CAS(ME)2 [104])

are recommended. They contain longer video samples compared with other spontaneous

databases. There are more non-ME samples, including neutral faces, eye blinks, eye gazes

change, subtle head movement, etc. As applications in real life are applied on long videos,

performing experiments on these two databases would help to improve the adaptability of

spotting methods.
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Standardization of Micro-Expression Spotting Metrics

All the researchers try to provide as many metrics as possible in the article to analyze

comprehensively the method. The used metrics seem to be adapted to the proposed method.

As the methods are not the same, each paper uses different metrics from the other papers.

As shown in Table 2.15, all the frequencies are less than 50%, there is no dominant metric

for spotting result evaluation. MAE is used for single frame spotting, ROC works well

when there is an important parameter to manipulate, while ACC is the basic metric for

classification. Hence, it’s difficult to define which result evaluation method or metric is

better.

Table 2.15: The number and frequency of ME spotting articles, according to the metrics
used. ACC: accuracy, AE: average error, AE also includes MAE.

Metric ROC ACC AE TPR F1-score
# of articles 9 7 7 3 3

Frequency (%) 43 33 33 14 14

Here are some suggestions for the future ME spotting. As the ME is a continuous facial

movement, spotting ME frames by sliding window and evaluating the result per windows

would help to provide more reliable ME sample frame for the further recognition process.

Besides, as shown in [63], the movement variation of ME is more regular during the period

of the onset compared to the variation after apex frame. Spotting onset frame or the onset-

apex interval would obtain a more accurate result.

In addition, concerning the metrics, F1-score is recommended. There are three reasons:

• First of all, as the machine learning method is the trend for ME spotting, F1-score

is a very important metric for demonstrating the performance of machine learning

process.

• Secondly, the ratio of ME frames and non-ME frames is quite small in a long video

sequence. The F1-score can avoid the unbalanced sample distribution problem with

consideration of TP, FP and FN.

• Thirdly, due to the local and brief nature of ME, it is challenging for a spotting

system to distinguish the ME movement from other facial movements. For example,
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the eye blinks, the eye gaze and the subtle head poses change would cause many false

positives. The problem can be reflected in the value of F1-score while the value of

TPR or accuracy could be high.

MCC (Matthews correlation coefficient) [88] could also be used for the binary classifi-

cation even if the classes have different sizes. MCC is presented:

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)

It is regarded as a balanced metric as it considers all four basic metrics (TP, FP, TN, FN).

The value varies between [−1,1]. The ideal situation is that MCC equals to 1. 0 means that

the classification result has no difference with random prediction. And -1 means the result

is worse than that of random prediction. The MCC has already been a common metric

for the community of automatic facial expression analysis. We could expect it would be a

useful metric for the result evaluation of automatic ME analysis.

2.2.3 Conclusion for Result Evaluation Methods and Metrics

Detailed quantitative information of the metrics and emotional classes for micro-expression

recognition help researcher to establish a proper result evaluation method for their own

research purpose. In addition, objective classes are recommended to obtain more rational

micro-expression recognition result. Concerning micro-expression spotting, we pointed out

that the consistency of spotting metric because of the difficulty of result comparison. The

ME spotting per interval is recommended. To unify the metrics for algorithm comparison,

F1-score seems to be adequate, for it considers both precision and recall. Due to the limited

number of articles on ME spotting, it is not easy to find a direction for metric consistency.

We are looking forward to more research on micro-expression spotting, which would help

to standardize the result evaluation methods.
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According to our above survey, we have chosen to perform experiments on CASME I and

CASME II for my thesis research (micro-expression spotting), since most articles used

these two databases to evaluate the result. Furthermore, SAMM and CAS(ME)2 are used

to test our method in long videos. Meanwhile, the F1-score per frame is applied for the

spotting result evaluation. In addition, we have developed a new result evaluation method,

which is inspired by result evaluation per interval.
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2.3 Micro-Expression Spotting Methods

Our research focus on micro-expression spotting. The review of related works indicates

the merits and shortness of current spotting methods. Since the micro-expression is an

involuntary facial expression, we focus on the ME spotting methods which are developed

based on spontaneous or in-the-wild databases. [107] used a 3D-gradient descriptor to de-

tect micro-expression in USF-HD database. [102] applied the micro-expression detection

in hi-speed video based on facial action coding system (FACS) using the histogram of 3D-

gradient features. These two articles are not discussed in the following paragraphs because

the methods are performed on posed micro-expression databases.

Subsection 2.3.1 compares the related method depending on their algorithms, then Sub-

section 2.3.2 investigates the features for micro-expression spotting. Subsection 2.3.3 con-

cludes this section and enlightens the direction of our research.

2.3.1 Related Works Comparison by Algorithms

The common workflow for micro-expression spotting is to firstly extract feature and then

to spot ME based on proposed algorithms. In this subsection, we only pay attention to

the algorithms for ME spotting after feature extraction, i.e. regardless the methods to ex-

tract features. The two main algorithms for ME spotting: feature difference and machine

learning are introduced in following paragraphs.

Feature Difference Methods Most methods utilize the feature difference. The aim is to

calculate the difference between dedicated features in a time window. The most significant

movement is spotted by setting a threshold in the entire video.

Moilanen et al. [91, 65] used the linear binary pattern (LBP) feature difference analysis

to spot ME. MEs were then extracted by thresholding and peak spotting. Yan et al. [135]

quantified ME and spotted the apex frames by three feature extraction algorithms: Con-

straint Local Model (CLM), LBP and optical flow. Liong et al. [77] developed the method

and spotted the apex frame by employing a binary search strategy. Patel et al. [96] uti-

lized optical flow and then a spatiotemporal integration to spot apex frame and identify
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the location of onset and offset. Davison et al. [20] applied 3D-HOG as the feature dis-

tance measure to calculate the dissimilarity between frames and detected the ME using an

individualized baseline. Liong et al. [74] spotted apex frame by employing optical strain

which is more effective in identifying the subtle deformable facial muscle. Li et al. [68]

integrated a deep multi-task learning method to locate the facial landmarks and then spot-

ted the ME with HOOF (histograms of oriented optical flow). Yet, deep learning is only

applied for feature extraction, the algorithm for ME spotting is still feature difference in

this article. Wang et al. [115] proposed the main directional maximal difference analysis of

optical flow to spot the ME. Lu et al. [83] presented a method with a low computation cost

based on differences in the Integral Projection (IP) of sequential frames for ME spotting.

Ma et al. [87] proposed a region histogram of oriented optical flow ( RFOOF) feature to

spot the apex frame. The feature difference is calculated per Region of interest (ROI) and

the spotting result can be obtained by a spatial fusion. Inspired by the video magnification,

Duque et al. [24] extracted features by Riesz pyramid. A filtering and masking scheme was

applied to segment the interested motion, including eye blinks. Han et al. [40] introduced a

collaborative feature difference method which combined the LTP and MDMO. In addition,

the Fisher linear discriminant was used to assign a weight for each ROI. Li et al. [69] de-

tected apex frames in frequency domain, depending on the correlated relationship between

apex frame and the amplitude change in the frequency domain.

Since micro-expression is almost undetectable by one single frame, the main advan-

tage of these approaches is to be able to make comparisons between frames over a time

window of the size of ME. Yet, only the first and last frame in the interval are utilized for

the feature difference calculation of the current frame. They do not take into account the

temporal variation of ME. Another shortcoming of feature difference method is that, they

spot the movement between frames, and not specifically the ME movement. There are two

articles [20, 115] which have made improvements: Davison et al. [20] created an indi-

vidualized baseline to differentiate the videos which do not contain the micro-expression,

[115] distinguishes the macro-and micro expression by their duration. Nonetheless, the

ability to distinguish MEs from other movements (such as blinking or head movements) re-

mains weak, especially in long videos. Feature difference method would cause many false
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positives as it spot the movements which are above the threshold, regardless of whether or

not they are ME.

Machine Learning Methods Nowadays, methods utilizing machine learning are emerg-

ing. Xia et al. [130] utilized Adaboost model to estimate the initial probability for each

frame and then a random walk model to spot the ME by considering the correlation be-

tween frames. Hong et al. [111] proposed a multi-scale sliding window based approach.

LBP-TOP, HOG-TOP and HIGO-TOP were extracted as the feature and MEs were detected

by binary classification. Borza et al. [13] used the movement magnitude across frames by

simple absolute image differences, then the Adaboost algorithm was applied to detect ME

frames. Husák et al. [52] tried to spot micro-expression in an in-the-wild database. The

feature was extracted based on analyzing image intensity over a registered face sequence.

Then an SVM classifier was used to for the classification. Furthermore, [144] employed

CNN for the first time to perform the ME spotting.

Since the features extracted from ME are trained for the classification, the machine

learning process enhances the ability of distinguishing ME from other facial movement.

Yet, there are less than 10 papers using machine learning or deep learning for ME spotting.

The ME spotting in this domain is limited by the size of the database. The amount of

ME samples in published databases is not large enough to train a performant classifier. In

addition, the performance highly depends on the relevancy of the features. Features adapted

to characteristics of ME need to be exploited.

2.3.2 Related Works Comparison by Features

Various features are applied to spot micro-expressions, including LBP [65], HOG [20],

optical flow [96, 68, 115, 40], optical stain [74], integral projection [83], features extracted

by Riesz pyramid [24] and features extracted in frequency domain [69].

ME is a local facial movement with a very short duration. Its local and temporal char-

acteristics can help to spot ME in videos.

• Concerning the local information, facial movements such as eye blinks may have

a similar feature compared with ME, but the regions where the movement occurs
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are different. Local characteristic is useful to enhance the ability to differentiate the

ME from other movements, which have similar duration and intensity. Yet, the local

information has not attracted sufficient attention in ME spotting research. For almost

all the methods, even if the features are extracted from ROIs, an early spatial fusion is

performed on all these extracted features to obtain a global descriptor for one entire

frame, which is the input of the algorithms. [87] and [40] are two exceptions: the first

one calculated the feature difference per region of interest (ROI), and the second one

assigned a weight for each ROI.

• Regarding the temporal information, features like LBP-TOP [111] extracts temporal

characteristics in a small temporal window. Yet, the duration is too short to represent

a whole temporal movement pattern for ME. And as introduced in above subsection,

the temporal information is taken into account in algorithms, but not in the feature

construction of ME. Focusing on the temporal pattern variation in a ME duration

may help improve the result.

2.3.3 Conclusion

Compared with feature difference method, machine learning seems to be the more perfor-

mant algorithms for micro-expression spotting. In addition, the local information and the

temporal pattern are two important characteristics of micro-expression. Exploiting them as

features for micro-expression spotting may help improve the performance.

As a conclusion, the temporal and the local information is taken into account for the fea-

ture extraction in our proposed method. Meantime, the machine learning method for ME

spotting is considered to improves the ability to distinguish ME from other movements.
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2.4 Micro-Expression Spot-and-Recognize Schemes

In this section, we would like to discuss the micro-expression spot-and-recognize schemes.

As the automatic micro-expression analysis are expected to be applied in real life, an entire

process need to be considered, in which, the video sequence is the input and finally the

emotion class is the output. To our knowledge, there are two kinds of schemas as shown

in Figure 2-6. One is to treat the non-micro-expression as one emotional classes, then

applying the recognition method to classify the samples into different emotional classes,

e.g. [129]. The other one is firstly spotting the micro-expression sequences in long video,

then identifying the emotion type of this ME sequence by recognition methods, e.g. [65].

(a)

(b)

Figure 2-6: Micro-expression spot-and-recognize scheme. 2-6a: the non-micro-expressions
are identified by recognition method. 2-6b:the micro-expression samples are firstly spot-
ted in long videos, then they are classified into different emotion classes by recognition
methods.

Non-Micro-Expression as One Emotion Class for ME Recognition

As mentioned in section 2.2.1, there are few recognition methods which could also iden-

tify the non-ME expression frames. In these articles, the classes for recognition not only

includes the different emotional types but also the neutral expression. The process pipeline

is shown in Figure 2-6a. Wu et al. [129] classified the video samples into 6 basic emo-

tional classes and a neutral class. The feature was extracted by Gabor filter and then the

GentleSVM was applied for recognition. Lu et al. [85] used a Delaunay-based temporal
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coding model for micro-expression recognition, and the experiments included separating

micro-expressions from non-micro-expressions. Takalkar and Xu [110] generated exten-

sive datasets of synthetic images using data augmentation and then constructed a satisfac-

tory CNN-based micro-expression recognizer. The classes also contain the neutral expres-

sion. Guo et al. [35] proposed a multi-modalities CNNs based on visual and geometric

information for the micro-emotion recognition. Yet, the test dataset is iCV-MEFED [86]

which is not a commonly used database. In this dataset, samples are classified into 7 emo-

tional classes and a neutral class.

The above mentioned methods regard non-micro-expressions as neutral emotion. How-

ever, in the real world, the non-micro-expression is undefined, it could also include many

other facial movements, such as macro-expression, eye blinks, slight head movement and

etc. Identifying the non-micro-expression as one kind of emotion type is quite challeng-

ing, since this task need an accurate definition and annotation for non-micro-expressions.

Moreover, for the real application, there might not exist any micro-expressions in the testing

video. Thus, this kind of scheme is limited to the videos which contain micro-expressions.

Micro-Expression Spot-then-Recognize Scheme

For the second scheme, the micro-expression samples are firstly separated from non-micro-

expression in long videos, then these spotted samples are used for micro-expression recog-

nition. The pipeline is illustrated in Figure 2-6b.

Li et al. [65] proposed micro-expression spotting and recognition methods respectively.

As already introduced in subsection 2.3, micro-expressions are spotted by feature (LBP

and HOOF) difference method. For recognition task, the LTP-TOP, HOG-TOP and HIGO-

TOP were extracted from ME samples. Then a linear support vector machine (LSVM) was

used for classification. The recognition experiments were also performed on the spotted

ME sequences. The accuracy is lower than the recognition result of ground-truth micro-

expression sequences. This is because the spotting process cannot always locate the ME

sequences precisely. Hence, it is important to concentrate on micro-expression spotting re-

search and try to improve its performance. In 2018, Li et al [69] detected the apex frame us-

ing frequency filter then recognize the emotion type of this apex frame by deep convolution
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neural network (DCNN). In the same year, Liong et al [72] proposed an OFF-ApexNet for

micro-expression recognition. Apex frame locations are already given in CASME II [135]

and SAMM [19]. However, in SMIC [66], just onset and offset locations are indicated.

Thus, in this paper, apex frames of SMIC were acquired by calculating the correlation co-

efficient of LBP feature between frames [77]. Boza et al. [15] also utilized CNN to detect

and recognize micro-expressions. The first, the middle and the last frames of a sliding tem-

poral window are used as input volume. At the spotting stage, the intervals are classified

as non-ME or ME, then the intervals which are identified as ME went into the recognition

process. Compared with the first scheme, spot-then-recognize seems to be easier to adapt

to the real situation. The recognition process would only be executed when there are spot-

ted micro-expressions. In addition, there are already many recognition researches for ME

samples between onset and offset. Improving the spotting accuracy would be more efficient

than classifying the non-micro-expressions into one class.
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2.5 Conclusion

The automatic micro-expression analysis has emerged in the last decades, and most of the

researches are focusing on micro-expression recognition. There is still not much research

on micro-expression spotting, which is the bottleneck of automatic micro-expression anal-

ysis. In addition, the number of databases that can be used for micro-expression spotting

is still limited, and the result evaluation method for spotting also need to be unified. Yet,

for the applications in real life, spotting micro-expression in long videos is the first step for

micro-expression analysis. It is essential to spot the micro-expression sequences precisely.

Thus, in my thesis, we focus on developing micro-expression spotting method.

• We address this problem by using dedicated local and temporal pattern (LTP) of

facial movement. In our system, with the purpose of improving the spotting accuracy,

temporal local features are generated from the video in a sliding window of 300ms

(mean duration of a ME). This pattern represents the main movement extracted on

the time axis by PCA. For all micro-expressions, the local temporal patterns are the

same (S-pattern). Using a classical classification algorithm (SVM), S-patterns are

then distinguished from other LTP patterns.

• Our method allows to distinguish micro-expression from other facial movements,

such as eye blinks and head movements, thanks to a combination of local and global

analysis. Movements which are similar to micro-expression (S-pattern) are classified

on the local regions. Then, in order to eliminate the false positives, a spatial and

temporal fusion analysis is applied from local to global.

• To increase the size of training dataset, we utilize Hammerstein models to synthesize

S-patterns. In addition, the model can also filter outliers by learning the patterns

of the facial ME movement both in space and duration. This can enlarge the data

volume for training while maintaining the ability to differentiate facial movements.

In the following chapters, the method and the experiments will be introduced.
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Chapter 3

Local temporal pattern for

Micro-expression Spotting

As introduced in Chapter 2, local information and temporal variation during a micro-

expression may help to improve micro-expression spotting performance. In this chapter,

we propose a novel relevant feature for micro-expression spotting: local temporal pattern

(LTP). Furthermore, to enhance the ability of distinguishing micro-expression from other

movements, the machine learning method is utilized to classify the proposed feature on lo-

cal regions. A late spatial-and-temporal fusion is then performed to obtain the final micro-

expression spotting result. The proposed method consists of three parts: a pre-processing

to precisely detect facial landmarks and extract the regions of interest (ROIs), then the

computation of local temporal pattern (LTP) on these ROIs and eventually the spotting of

micro-expressions. Figure 3-1 displays the overall process.

The chapter is organized as follows: the first three sections present the sub-steps of

our method applied in short videos: pre-processing, feature extraction (LTP computation)

and micro-expression spotting (classification and fusion). Our method is then adapted to

the situations of long videos in section 3.4. Finally, section 3.5 concludes the chapter and

points out the requirements to improve the performance of our method.
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Pre-processing: 
Local ROI 
Detection

Facial landmarks detection

Extraction of Region of Interest 
(ROI)

Main local movement extraction 
by PCA

Extraction of local temporal 
pattern (LTP)

LTP Classification - SVM

ME Spotting- Spatial & Temporal 
fusion

Feature 
Extraction: 

LTP 
Computation

ME Spotting: 
Classification 

and Fusion
Train

Test

LTP selection

Global

Local-
Region 

of 
Interest

Global

Figure 3-1: Overview of our method. The proposed method contains three steps of process-
ing: pre-processing, feature extraction and micro-expression spotting. We mix both global
and local processes. Both sub-step of feature extraction and the first sub-step of micro-
expression spotting are performed on relevant regions of interest (ROIs). LTPs including
S-patterns are then used as the training samples to build the machine learning model (SVM)
for classification. Especially, a final spatial and temporal fusion is performed to eliminate
the false positives such as eye blinks. The specificity of the process is the use of local tem-
poral patterns (LTP), which are relevant for micro-expression spotting: micro-expressions
are brief and local movements.
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3.1 Pre-Processing

As the micro-expression is a local facial movement, the analysis on local region allows

to extract features which are more relevant to micro-expression. The pre-processing is

performed on the face to determine local regions of interest (ROIs). This process contains

two stages: facial landmarks are firstly detected, and points which are related to micro-

expressions are then chosen to extract regions of interest (ROIs).

3.1.1 Facial Landmarks Detection

The first step consists in detecting 49 landmarks (LMs) on the human face for each image.

We use the tool ’Intraface’ [132]. Except the Section 3.4 which applies the method on long

videos, our spotting method is performed on short spontaneous micro-expression video

samples (less than 2s). As introduced in Section 2.1.2, the participants barely move and

they face directly the camera in the recorded videos. There are few disturbances caused by

head global movement. Meantime, the purpose of our method is to extract the deformation

of local texture instead that of landmarks. Thus, we just use the detected landmarks in the

first frame as reference. Thus. the ROIs in the following frames are extracted depending

the landmarks detected on the first frame in the short video.

Regarding the long videos, since the head movement is inevitable for a long period of

time, the facial landmarks of each frame are tracked. The long video is divided into several

short sequences by a sliding temporal window. ROIs in short sequence are then extracted

depending on the landmarks of the first frame in this interval. The detailed process for long

video is presented in Section 3.4.

3.1.2 Extraction of ROIs

The second step consists in extracting ROIs where the micro-expressions could possibly

occur. These ROIs are generated in the form of a square around the chosen landmarks.

The length of the side of the square a is determined by the distance L between the distance

between the left and right inner corners of eyes: a = (1/5)×L. Figure 3-2 illustrates the

result of pre-processing on an image. ROIs are labeled with the index of the corresponding
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landmark. The ROIs include the regions of the two eyebrows and the contour of the mouth.

ROI10
ROI1 ROI4

ROI5 ROI6
ROI7

ROI11

ROI14

ROI32 ROI35

ROI41

ROI38

ROI10

Figure 3-2: Facial landmarks and ROIs distribution. 49 landmarks are detected and
ROIs are generated depending on the position of 12 chosen landmarks. 12 ROIs, rel-
evant for micro-expression, are selected from the region of eyebrows, nose and mouth
contour.( c©Xiaolan Fu)

As presented in Figure 2-5, these ROIs contain most evident action units (AUs) for micro-

expression description. The eye area is neglected due to blinking. Because of the rigidity

of the nose, this area is chosen as a reference to eliminate overall movements of the head.

Table 3.1 gives the link between AU and ROI location.

Table 3.1: Chosen ROIs and related AU index. The ROI index is annotated depending on
the detected facial landmarks. 12 ROIs mean that the local regions which have most evident
motion for micro-expressions are selected.

Facial region Related AU 12 ROI index
Eyebrows 1, 2, 4 1, 4, 5, 6, 7, 10

Nose NaN 11, 14
Mouth 10, 12, 14, 15, 17, 25 32, 35, 38, 41
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3.2 Feature extraction: Local Temporal Pattern Compu-

tation

The aim of this section is to extract a new relevant feature for micro-expression spotting:

Local Temporal Patterns (LTPs). As micro-expressions are brief local movements, the

LTPs aim at extracting the local information of the texture distortion in a time window of

the size of a micro-expression (300ms).

The main local movements extracted by PCA are presented in subsection 3.2.1, then

subsection 3.2.2 presents the deduction process of the local temporal patterns. Finally,

subsection 3.2.3 demonstrates the unique pattern of LTP for all micro-expressions.

3.2.1 Main Local Movement Extraction by PCA

This section presents the process of main local movement extraction by PCA. LTPs are

computed for each frame and each ROI. They are based on the change in the grey level

texture of the ROI. To detect the main distortion of grey level texture of one ROI though

time, we use PCA [6] on the whole ROI sequence. Figure 3-3 illustrates this processing on

one of the ROI sequences.

…

t

PCA on N

consecutive 

frames for 

one ROI

ROI�

1

N

Figure 3-3: PCA on time axis per ROI. A local video sequence of ROI j with N frames
(video duration ≤3s) is processed by the PCA on the time axis. The first components of
PCA conserve the principal movement of grey level texture on this ROI in this duration (N
frames). The video sample comes from CASME I ( c©Xiaolan Fu)

Let N be the number of frames in a video, and a2 be the size of the jth ROI in pixels,

the size of matrix I j processed by PCA is a2×N. We note Ī j ∈Ma2,N(R) the mean value

matrix of each pixel in chosen ROI and Φ ∈ M2,N(R) the projection matrix in the PCA
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space reduced to the first 2 dimensions, which conserve more than 80% of the energy.

Figure 3-4 shows an example of PCA energy analysis, the first two components conserve

more than 80% of the energy.

0 5 10

with 2 components >80% 

0.2

0.4

0.6

0.8

1
0.84

Figure 3-4: PCA energy analysis. The movement is contained in the first 2 components
with more than 80% energy. (Sub01_EP03_5_ROI10 of CASMEI)

The matrix P j in size of 2×N, i.e. the projection of I j in the PCA space with the first

two dimensions, is obtained by following formula:

P j
1(x) · · · P j

N(x)

P j
1(y) · · · P j

N(y)

= Φ× (


I j
1(1) · · · I j

N(1)
. . .

I j
1(a

2) · · · I j
N(a

2)

− Ī j) (3.1)

Each point P j
n represents the most significant regional motion for one frame. Facial changes

can be analyzed on the time axis.

The results of the PCA on a ROI video sequence (ROI 5) of 2.5 seconds (148 frames in

60 fps (Frame Per Second)) are shown in Figure 3-5. It is an interface to observe the global

distribution of 2D frames (3-5a) and to compare the image change between the studied

frame (current frame) and the first frame of the video. We can find the distance between

the yellow point (apex frame) and the first blue point (first frame in ROI sequence) is

larger than the distance between the blue points (before onset frames). The movement

of ROI are then displayed on grey level images (3-5b, 3-5c and 3-5d), including the first

frame, current frame (CF), and the two frames before and after the CF. The red arrow
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indicates the movement magnitude in the ROI. By comparing the length of red arrow, a

relation between the distance of the points and the magnitude of the movement can be

observed: while the distance gets larger, the magnitude increases. That is why we use

the distance for micro-expression movement analysis.
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(a) Example of frame distribution after PCA for ROI 5 (Sub01_EP05_2 in CASME I)

(b) Comparison of ROI images between the first frame and other frames before onset.

(c) Comparison of ROI images between the first frame and apex frames of ME.

(d) Comparison of ROI images between the first frame and other frames after offset.

Figure 3-5: Interface of the result distribution after PCA process. (3-5a) The point distribu-
tion corresponds to all frames in one ROI sequence in PCA projection space. The chosen
ROI is the inner side of left eye brow. The blue, red and green dots represent the frames
before onset, from onset to offset and after offset respectively, and the yellow dots mean
the apex frames. (3-5b, 3-5c and 3-5d) Displacement comparison by ROI images. The
first image illustrate the first frame in the ROI sequence. The three images on the right
represent the current frame (CF), CF-1 and CF+1. The red arrow shows the displacement
of the eyebrow. In 3-5b, there is barely no movements at the beginning of the sequence.
In 3-5c, the eyebrow goes down due to the micro-expression. In 3-5d, the eyebrow is raised
up compared with apex frame because the ME fades out. Besides, the position of eyebrow
is even higher than the first frame due to other facial movements. Comparing the arrow
length in the different frames, a conclusion can be obtained, i.e. geometric features in the
3-5a depending on the distribution of frames can represent the temporal displacement in
ROI.
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3.2.2 Extraction of Local Temporal Pattern

After obtaining frame distribution of ROI sequence after dimension reduction, the feature

of LTP is processed by distance calculation and normalization.

In this section, a point is not the x,y coordinates of a pixel in the image, but the

grey-level value of a ROI. P j
n represents the projection of nth frame for ROI j on PCA

space with the first two components: P j
n(x),P

j
n(y). The temporal trajectory of the points

P j
n gives the information of the local texture movement in the ROI. A relation between

the distance of the points and the movement magnitude can be found: while the distance

gets larger, the magnitude increases. Figure 3-6a shows an example of the trajectory of the

points P j
n for ROI j of one video.
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(a) Temporal trajectory of points on whole video ROI j, axes are the two first component of PCA.
A part of green points (from P j

m to P j
m+K , non-ME frames) and Red points (from P j

n to P j
n+K , ME

frames) are zoomed in 3-6d and 3-6b.

(b) K points (from P j
n to P j

n+K ) used for pattern
computation of ME frame n on ROI j.

(c) Resulting pattern for ME frame: LTP j
n (S-

pattern).

(d) K points (from P j
m to P j

m+K ) used for pattern
computation of non-ME frame m on ROI j.

(e) Resulting pattern for non-ME frame: LTP j
m.

Figure 3-6: Extraction of local temporal pattern. In the sequence ROI j , the nth frame can
be represented as point P j

n in the PCA projection space. The frame distribution on the PCA
projection space of this video sequence is illustrated in 3-6a.(Continued on the next page)
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Figure 3-6: The larger the distance between two points is, the more evident the displace-
ment on ROI region between these two frame is. 3-6b shows the point distribution from P j

n

to P j
n+K (frames from n to n+K, 300ms). Normalized distances between this nth frame

and other K following frames are calculated as shown in 3-6c. The ensemble of distances
forms a curve, which is called the local temporal pattern (LTP). And here is the S-pattern
for the ME frames. Meantime, 3-6d shows the point distribution from P j

m to P j
m+K (Non-ME

frames from m to m+K). The corresponding LTP pattern is illustrated in 3-6e.
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Distance Computation

The variation of the distances is then studied on the sliding windows of each ROI. The

duration taken is 300ms (that is K + 1 frames) to correspond to the average duration of a

micro-expression. K distances between the first frame and the other frames in the interval

is calculated. Suppose there are K + 1 frames in the interval, the set of distances in this

interval is:

{∆ j(n,n+1), · · · ,∆ j(n,n+ i) · · · ,∆ j(n,n+K)}

Where i∈ [1,K], j is the ROI index, n is the index of the first frame in the interval, ∆ j(n,n+

i) represents the Euclidean distance between the point Pn+i of the (i+ 1)th frame in the

interval and the point Pn of the first frame n in interval. Therefore, each frame has a dataset

which consists of K distances as listed in Table 3.2. Figure 3-6b and 3-6d respectively show

the distance computation for the ME frame n and non-ME frame m on the ROI j (red and

a part of green trajectories in Figure 3-6a).

Table 3.2: Distance sets per frame for one ROI video sequence
Frame index Original distances

1st frame ∆ j(1,2), · · · ,∆ j(1,K +1)
· · · · · ·

n th frame ∆ j(n,n+1), · · · ,∆ j(n,n+K)
· · · · · ·

N th frame 0, · · · ,0

Distance Normalization

As the movement magnitudes are not same in different videos, these above distance sets

need to be normalized. In average, the distance values reaches the top in 150ms (K/2)

for the micro-expression. Thus, the normalization is applied depending on the maximum

distance in this period for each ROI:

∆ jmax = maxn=1···N, i=1···K/2(∆ j(n,n+ i)) (3.2)
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Then, the coefficient of normalization (CN) is computed :

CN j = 1/∆ jmax (3.3)

And the normalized distance is:

d j(n, i) =
∆ j(n,n+ i)

∆ jmax

= ∆ j(n,n+ i)×CN j (3.4)

The curve formed by the K normalized distances (blue curve in Figure 3-6c and 3-6e)

is the extracted local temporal pattern.

Configuration of Normalisation Coefficients

The CN value represents the movement magnitude in the entire video sequence for current

ROI: while the CN is smaller, the movement is more significant; and vice versa. Figure 3-7

shows the CN value distribution for all ROI sequences in database. Most CN values are

smaller than 10.

Figure 3-7: Histogram for normalization coefficient (CN) value for all ROI sequences in
CASME I. X axis means the CN value, Y axis is the ROI sequence amount for each bin.
The average CN value is around 4. Yet, there is a few ROI sequences which have CN values
larger than 10, which represents there is almost none evident movement in this video. In
the feature construction step, the CN value for this kind of ROI sequences is set to 10.

As the studied samples come from a strictly controlled environment, the head rarely
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moved. Therefore, micro-expression motion is normally the most significant movement in

ROI. According to the equation 3.3, the bigger the CN is, the more subtle the movements

in the ROI sequence are. We consider the ROI sequence with a CN value bigger than 10

as a video clip without any movements. Thus, in our experiment, if the CN value for one

certain ROI sequence is larger than 10, then it is set to 10.

Feature construction

Finally, CN is added into the feature in order to eliminate the movements which are too

subtle. Hence, for each frame and each ROI, the final LTP feature is the concatenation of

the CN and the K normalized distances. For instance, the feature composition for the nth

frame of jth ROI sequence is:

CN j,d j(n,n+1), · · · ,d j(n,n+K)

Regardless of the ROI and the subject, each feature is feed into the machine learning (Sec-

tion 3.3) network separately.

3.2.3 S-pattern: a Unique Invariant LTP Pattern for All Micro-Expressions

Figure 3-8 shows examples of LTP-patterns in different conditions: different ROI, different

subjects, different moment of the video. We can notice that the LTP-patterns are identical

when a micro-expression is displayed and forms an S-pattern, regardless of the ROI, the

subject and the micro-expression emotion type. Indeed, because the first two components

of PCA retain the main variations of the grey level texture in the ROI sequence, the pattern

is only influenced by the movement in this local region. Thanks to the invariance of the

S-pattern when micro-expression occurs, the local movements can be classified by machine

learning into two classes: S-patterns and non S-patterns. A supervised classification SVM

is employed (Section 3.3).
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Figure 3-8: Local temporal patterns (LTPs) of two different videos.(Continued on the next
page)
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Figure 3-8: Local temporal patterns (LTPs) of two different videos. 3-8a and 3-8b are
the LTPs during the micro-expression movement at ROI 32 and ROI 38 (the right and left
corners of the mouth) in the video Sub01_EP01_5. The emotion of this video is labeled
as joy, which is often expressed by mouth corner displacement. 3-8e and 3-8f are the
LTPs during the micro-expression movement at ROI 5 and ROI 6 (the inside corners of the
right and left eyebrows) in the video Sub04_EP12. The emotion of this video is labeled as
stress, which is often expressed by the movement of the eyebrows. The pattern of curves
in these four images are similar even through the ROIs and subjects are different, we call it
S-pattern. 3-8c and 3-8g show the LTP of other ROIs at the same time as 3-8a/ 3-8b and 3-
8e/ 3-8f respectively. The pattern is different from S-pattern because the micro-expression
does not occur on these regions. 3-8d and 3-8h illustrate the LTPs in the same ROI as 3-8a
and 3-8f respectively, but at a different moment in the video. These patterns differ from
S-pattern since the micro-expression does not occur at this moment. (video samples in
CASME I)
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3.3 Micro-Expression Spotting: Classification and Fusion

The micro-expression spotting is processed by two steps: a local LTP classification and a

spatial and temporal fusion (see Figure 3-1). Concerning the LTP classification, the LTPs

are firstly selected for efficient machine learning training (subsection 3.3.1). Then, LTPs

are classified as S-pattern or non S-pattern at the test stage (subsection 3.3.2) . Finally, a

fusion analysis from local to global is performed (subsection 3.3.3) to get one global result

for each frame. It aims at both eliminating global head movement and also merging the

local positive results from different ROIs that belongs to the same global micro-expression.

3.3.1 LTP Selection for Training

For training stage, LTPs should be separated into 2 groups: S-pattern (micro-expression)

and non-S-pattern (other facial movement). In the public databases, the micro-expression

sequences are annotated with the onset and AU information. Thus, we need to pre-process

the labels of the databases to get the ground truth for our training. As shown in Figure 3-9,

LTPs pass through a pre-processing with 3 steps: a temporal annotation, a local selection

(AU selection per ROI) and an LTP shape related selection.

AU 
selection 
per ROI

LTP-
pattern 

selection

Label 
annotation 
per frame

All LTPs from all 
ROIs

+
Onset & AU 
informations

S-patterns
& 

Non-S-patterns

Training 
stage

Temporal Local Shape

Figure 3-9: LTP selection for training stage. All the LTPs are classified into 2 classes: S-
patterns and non-S-patterns. LTPs pass through 3 steps for the annotation: label annotation
per frame, AU selection per ROI and LTP pattern selection. The annotated S-patterns and
non-S-patterns are then fed to the training stage of the SVM classifier.

Label annotation per frame

To label the database, the K/3 frames before micro-expression onset are found to retain the

best pattern, where K + 1 is the length of interval as mentioned in the above section and

K/3 is an empirical value. Hence, the frames are annotated as shown in Figure 3-10.
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0                                                  00
Onset

1
Onset -K/3 Offset

0            00

Onset

1

Onset -K/3 Offset

Figure 3-10: Label annotation per frame. The rectangle represents an entire video, and
the interval from onset to offset is the ME sequence. The S-pattern is expressed at the
beginning of the onset. Hence, frames with S-pattern (in the range [onset-K/3, onset]) are
labeled with label 1 (S-pattern) and the other frames are labeled with 0 (non S-pattern).

In addition, the sample distribution of S-patterns and other LTPs (non-S-patterns) is not

well balanced, there are more than 10 times of other LTPs than the amount of S-pattern.

Thus, the other LTPs are sub-sampled by a rate of 1/8 for model training.

AU selection per ROI

The LTP pattern is extracted from each ROI per frame. For the frames which is labeled

as micro-expression, not all the patterns from these frames fit the S-pattern since micro-

expression is a local movement. Hence, the ROI index for training is firstly selected based

on the AU annotation info for each video, as illustrated in Table 3.3. For instance, if the AU

annotation is AU4, as the index 4 is smaller than 6, the selected ROIs for training are ROI

1,4,5,6,7,10. This selection is a weak selection, for some ROI may not have any movement

even if they are located on the corresponding upper or lower part of the face.

Table 3.3: ROI selection for training stage of machine learning. Since micro-expression
is a local movement, ROIs which have annotated AU are chosen to represent the micro-
expression movement.

AU condition ROI index Facial region

All given AU index <6 1,4,5,6,7,10 Eyebrows

All given AU index >9 32,35,38,41 Mouth contour

Otherwise all chosen ROIs Entire face

LTP pattern selection

Hence, after the AU selection, a further LTP pattern selection process is performed. Three

criteria are enforced, as shown in Figure 3-11. All S-patterns which do not fit at least one

96



of the requirements would be deleted from S-pattern training dataset. First of all, since

the micro-expression is the most significant movement on the chosen ROI after the PCA

process, the distance value d j is a criteria for S-pattern selection. If the maximum distance

value is smaller then a threshold distance Tdist (found empirically), then the S-pattern is

removed. Secondly, depending on formula 3.3, the ROIs which generate micro-expression

should have lower CN values than other ROIs of the same face at the same time. The

average value of CNs (C̄N) for ROIs is set as threshold to select proper patterns. Finally, as

introduced in Figure 1-2, the S-pattern has a certain curve shape. The curve slope of onset

frame should be positive in the first 150ms, then the slope becomes zero or negative in the

following 150ms.

LTP labeled as S-pattern
After AU selection

Delete this LTP for training Keep this LTP as S-pattern

N N

Y Ymax
���,…,	

(��	
�	LTP)

> �����

���� 1:�/2 > 0		 &
���� �/2:� < 0

Y
$%��� < $%

N

Figure 3-11: LTP pattern selection of training stage for local classification. LTPs labeled
as S-pattern pass through this process to conserve reliable S-patterns. The selection criteria
include distance value d in LTP, normalization coefficient (CN) and curve slope(pLT P).

The LTP selection step construct the training dataset: label annotations identifies

the S-patterns and non-S-patterns, than the AU selection and LTP selection help to

conserve reliable S-patterns for training the classifier.

3.3.2 LTP Classification - SVM

Once the feature annotation (S-pattern and non S-pattern) is performed, a supervised classi-

fication SVM is employed. The results of local classification are generated by LOSubOCV

(Leave-One-Subject-Out Cross Validation). ROIs with S-pattern are recognized, indicating

that a movement similar to micro-expression occurs in this region.
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3.3.3 Spatial and Temporal Fusion

The local information per frame is obtained by the LTP classification. Yet, the spotting

result should be a global information. Thus, we perform a spatial and temporal fusion. The

process includes three steps: local qualification, spatial fusion and merge process. This

fusion process is illustrated in Figure 3-12.

LC������,…	


��,…,
 Local qualification 
(LQ) per ROI

Spatial Fusion 
(SF) from ROIs 

to entire face
Merge process 

(MP)

LQ
������,…	


��,…,


STF
��,…,
 SF
��,…,


Local
Global

Figure 3-12: Spatial and temporal fusion. The predicted labels from local classification
for all ROIs are represented as LCn=1,...,N

ROI j=1,...,J
, where N is the number of frames in the whole

video, J is the chosen ROIs amount. Passing through the local qualification (LQ) per ROI
sequence, the spotting intervals which are too short or too long are deleted. Then for
each frame n, the local spotting results LQn

ROI j=1,...,J
are integrated into a single SFn, which

represents the spotting result for the entire frame. A merge process is applied on SFn=1,...,N
to form a consecutive ME movement. Thus, we get the final result STFn=1,...,N for one
video sequence.

Local Qualification

First of all, two thresholds TCN and Tdist are set to enhance the ability of differentiating S-

pattern from other LTPs. If the CN value for the recognized S-pattern is bigger than TCN or

the maximal distance value (max(d j)) of this S-pattern is smaller than Tdist , the movement

related to this S-pattern will not be considered as ME. Furthermore, a temporal selection

is performed. The frame number with the label 1 is limited locally in an interval of length

K. In fact, the duration of micro-expression is normally around K frames, and the optimal

condition is to detect all K/3 frames before the micro-expression onset. Having less than

K/9 or more than K/2 patterns detected is not considered as micro-expression. Therefore,

the number of frames detected as label 1 is limited to K/9−K/2. The detected frames

are searched by a sliding non-overlap window, and only the frames that fit the criteria can
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be conserved. For the purpose of reproducibility of the algorithm, the flow chart of this

temporal selection process is illustrated in Figure 3-13.
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Figure 3-13: Flow chart of temporal selection process in local qualification. The jth ROI
sequence passes through the distance and normalization coefficient threshold selection,
then predicted label of this sequence LCn=1,...,N

ROI j
enter the process as input. LQn=1,...,N

ROI j
is

the output of the process, i.e. the result after local qualification (LQ).

Spatial Fusion

Secondly, a spatial fusion is performed. The recognized S-patterns from local regions are

integrated into a global spotting result. Indeed, micro-expressions are local movements.

This spatial fusion process aims at eliminating head movement. The rule is the following

one: if there are more than J/2 ROIs of entire face or more than one nose region that

have been detected with some movement, this motion is then considered as a global head

movement. What’s more, the eye blinking leads to all the muscles around the eye. Thus, if

all the ROIs of eyebrows detect movement, the micro-expression spotting system supposes
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there is an eye blinking, and treat the current frame as non-micro-expression. For the

purpose of reproducibility of the algorithm, the entire process is shown in Figure 3-14.
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Figure 3-14: Flow chart of spatial fusion. Inose means the all the ROI index on nose region,
and Ieyebrow means all the ROI index on eyebrows. For nth frame in video sample, predicted
label of all J ROIs LQn

ROI j=1,...,J
enter the spatial fusion process. The output SFn is a predicted

label for this frame, and it represents that whether there is micro-expression on this entire
frame or not.

Merge Process

Thirdly, the S-pattern is until now recognized per frame. The result is not a consecutive

interval. To get more robust results, the nearby frames classified as ME are merged with

proper criteria. For two adjacent spotted intervals with their frames indexes: [ fi, f j] and

[ fm, fn], if the distance in terms of frame number between their midpoints is smaller than

K, i.e. (m+ n)− (i+ j) <2K, then these two intervals are merged to a longer interval, in

which all the frames are predicted as ME. The flow chart is shown in Figure 3-15 for the

reproducibility of the algorithm.
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(b) The noted frame indexes in spotI are merged in 3-15b. After the merge
process, spotI contains the final spotted intervals.

Figure 3-15: Flow chart of merge process.
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Since the S-pattern is unique for all kinds of micro-expressions, we can use ma-

chine learning method to classify local movements with S-patterns or non-S-patterns.

The LTP selection constructs the training dataset, then the SVM classifier is used to

spot S-patterns on local regions. Finally, the spotting result is obtained by this spatial

and temporal fusion. The local qualification and the spatial fusion reduce the spot-

ted movements which are not micro-expressions, then the merge process enhance the

robustness of our method.
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3.4 Spotting Micro-Expression in Long Videos

The previous work focus on the micro-expression spotting in short videos (less than 2s).

However, in the real life, the videos for micro-expression analysis are much longer. Hence,

it is necessary to develop and test our method in the long video situation. There are

two spontaneous micro-expression databases which contain long videos: SAMM [19] and

CAS(ME)2 [104]. All the experiments of the following research are performed on these

two databases.

This section introduces the modification of our method for the applications in long

Videos, including two steps in pipeline figure: pre-processing (subsection 3.4.1) and ME

spotting (subsection 3.4.1).

3.4.1 Pre-Processing in Long Videos

As micro-expression is a local facial movement, we analyze micro-expression only on a

selection of regions of interest (ROIs). This subsection introduces the ROI sequence ex-

traction in long videos.

Since the samples in SAMM and CAS(ME)2 were recorded in the strictly controlled

laboratory environment, the subjects barely moved in one second. As the average duration

of micro-expression is around 300ms, the long video in these two databases are processed

by a temporal sliding window Wvideo whose length is 1s. The overlap is set to 300ms to

avoid missing any possible micro-expression movements. Thus, the video is divided into

an ensemble of small sequences [I1, I2, ..., IM] by sliding temporal window as shown in

Figure 3-16, where M is the total number of small sequences.
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��
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Figure 3-16: The long video is divided into several short sequences (I1, .., Im, ..., IM) by a
sliding window (1s).
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For each Im (m≤M) video sequence, the basic pre-process is the same as presented in

section 3.1. First of all, 84 facial landmarks are tracked in the video sequence by utilizing

the Genfacetracker ( c©Dynamixyz) [2]. Genfacetracker is utilized instead of Intraface,

because it detects the landmarks more precisely than Intraface in long videos. Then 12

ROIs in size of a = (1/5)×L are chosen as the same process presented in sub-section 3.1.

Figure 3-17 illustrates the two facial images after pre-process in SAMM and CAS(ME)2.

In addition, the positions of ROI sequence ROIm
j ( j ≤ 12) in Im short video are determined

by the detected landmarks of the first frame in Im.

(a) CAS(ME)2 (b) SAMM

Figure 3-17: Facial landmarks tracking and ROI selection. On the right: an example from
SAMM; on the left: an example from CAS(ME)2

3.4.2 Obtaining Spotting Result in a Long Video

After the pre-processing, the following process for micro-expression spotting is the same

as the process for short videos (presented in section 3.2 and 3.3). The subscript of formulas

in LTP feature extraction is changed, because there multiple short sequences in one long

video. The detailed process is introduced in AppendixC. LTP for each ROIm
j is classified

as S-pattern or non-S-pattern. After the spatial and temporal fusion, we obtain the spotting

result for the short video Im.
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Results from all short videos are then merged to get the final spotting for the entire long

video. Concerning the overlap region, suppose the spotting result of preceding sequence

for this region is Sm
i=1,...,K , and that of following sequence is Sm+1

i=1,...,K , then for frame i, the

spotting result is positive as long as Sm
i > or Sm+1

i >.

In this section, we apply our proposed method in long videos to spot micro-expressions.

The long video is firstly divided into short sequences with an overlap, then the our

method is performed to spot micro-expressions. The final spotting result for the long

video is obtained by merging the results of short sequences.

105



3.5 Conclusion
Our proposed method spots micro-expressions using a local temporal pattern of facial

movement, which is the same pattern for all the ROIs and all the micro-expression types.

Micro-expressions can be distinguished from other movements by this pattern. A super-

vised learning algorithm is utilized to achieve this goal. In addition, this pattern allows

us to identify the spatial location where the micro-expression occurs. Moreover, PCA is

performed to facilitate the classification through the SVM by reducing the data dimension

and removing the noise. Meantime, the spatial and temporal fusion from local to global

enhances the ability of differentiating ME from other facial movements.

Yet, the performance of our method may be restricted if the dataset is not big enough.

Unfortunately, available databases give very few micro-expression samples, as mentioned

in Chapter 2. For instance, only 78 LTPs are qualified as S-patterns by the basic LTP

selection and then used for micro-expression spotting in CASME I-section A. Hence, in

order to efficiently increase the size of S-pattern dataset, we propose to filter LTPs and then

synthesize more S-patterns by Hammerstein model, that will be added to the training stage.
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Chapter 4

Data augmentation using Hammerstein

Model

As introduced in previous chapter, our method is limited by the amount of micro-expression

(ME) samples. There are not many labeled ME databases, hence not many labeled ME

frames. In addition, the amount of non-ME frames is much larger than that of ME frames,

i.e. the size of S-pattern dataset is not big enough. By synthesizing the features of micro-

expression, the training data volume can be extended. Since micro-expressions are brief

and local facial expressions, the deformation intensity is not evident while the duration is

very short. Thus, generating directly facial images may import the generation error into

the texture feature extraction, and the brief temporal variation between frames is difficult

to simulate. As a consequence, we propose to synthesize micro-expression features for the

data augmentation.

In this chapter, to improve the performance of our method, we propose to increase the

size of S-pattern dataset for the training stage of the local classification. To that purpose,

we use Hammerstein model (HM), which is well known to simulate the dynamic of mus-

cle movement. Figure 4-1 illustrates the modification in the whole process: LTP pattern

selection is replaced by LTP filtering and S-pattern synthesizing. More precisely, label an-

notation and AU selection from LTP selection in Figure 3-9 are kept as preceding steps.

Then, we replace the third step, ’LTP pattern selection’ by ’LTP filtering and S-pattern syn-

thesizing by Hammerstein model’. The scheme of this novel sub-process is illustrated in
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Figure 4-2. The S-patterns coming from label annotation and AU selection (S-patternsO)

are firstly modelled by the system identification of Hammerstein model. They are then

filtered, and the remaining selected S-patternsOF serve as seeds for synthesizing more S-

patterns (S-patternsST ).

After a brief introduction of Hammerstein model (subsection 4.1), the model is applied

to S-pattern (subsection 4.2). Afterwards, LTP filtering and S-pattern synthesizing are

presented respectively in subsection 4.3 and 4.4.

Pre-processing: 
Local ROI 
Detection

Facial landmarks detection

Extraction of Region of Interest 
(ROI)

Main local movement extraction 
by PCA

Extraction of local temporal 
pattern (LTP)

LTP Classification - SVM

ME Spotting- Spatial & Temporal 
fusion

Feature 
Extraction: 

LTP 
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ME Spotting: 
Classification 

and Fusion
Train

Test

LTP selection

LTP Filtering and S-pattern 
Synthesizing - Hammerstein Model

Global

Local-
Region 

of 
Interest

Global

Figure 4-1: Overview of our method combining Hammerstein model. Our proposed
method has been presented in Figure 3-1. The grey block replaces the LTP selection by
using Hammerstein Model. More reliable S-patterns (LTP patterns specific to ME move-
ments) are produced by this model. LTPs including S-patterns (both real and synthesized)
are then used as the training samples to build the machine learning model (SVM) for clas-
sification.
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Local temporal patterns (LTPs) on micro-expression frames

System Identification of  
Hammerstein Model (HM)

LTP Filtering

n

Synthesized S-
patterns:

{S−���������}
��,…,�

S−���������
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S-pattern
Synthesizing
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→ HM���,…,�
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LTP Pattern Selection

S−���������

Without Hammerstein model

Label Annotation
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Figure 4-2: LTP filtering and S-pattern synthesizing by Hammerstein model (HM) dur-
ing the training stage. In the right block, the original S-pattern (S-patternO, after label
annotation and AU selection in Figure 3-9) passes through the system identification of
Hammerstein model. The parameter set (α,β,EH) corresponding to this S-pattern is esti-
mated. S-patterns are selected by LTP filtering process according to the estimation error
EH . The selected patterns (S-patternOF ) are used to generate n synthesized S-patterns (S-
patternsST ). For comparison, the left block shows our method without Hammerstein model,
i.e. the result after LTP pattern selection: S-patternOS.

The below abbreviation are frequently used:
S-patternO: original S-pattern after label annotation and AU selection of Figure 3-9.
(α,β): parameters in the linear module of Hammerstein model.
EH : Estimation error of Hammerstein model
S-patternOF : Conserved S-patternO after LTP filtering.
S-patternST : Synthesized S-pattern by Hammerstein model.
S-patternOS: Conserved S-patternO after LTP pattern selection of Figure 3-9.
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4.1 Hammerstein Model

In order to use Hammerstein model for data volume augmentation, first of all, the theory

and the mathematical formulas of this model need to be studied. Thus, in this section, the

Hammerstein model is briefly introduced.

Hammerstein model [11] is a popular black box model in biomedical engineering. It is

a traditional simulation model, which is based on the solid mathematical formulas and has

physic explications. The model has been successfully used in [18, 109] for the modeling of

isometric muscle dynamics. Figure 4-3 show a Hammerstein model which can represent a

discrete-time electrically stimulated muscle model.

Non-linearity 

Module(�)

Second order 

linear dynamic 

module (�, �)

(�, �) Synthetized pattern Real pattern 
1 n n n

Data

Input: Constant 

Command

Output: Pattern

System 

identification

Estimated 

Hammerstein 

Model

Non-linearity 

module

(�, �, ���	�
)

u(t) v(t) y(t)

Figure 4-3: Hammerstein model structure. Hammerstein model represents well the muscle
movement. S-patterns are caused by the facial muscle movement and the variation curve
is similar to the local muscle movement. Thus, S-patterns can be well synthesized by
Hammerstein model. The model is a concatenation of two modules: a static non-linearity
module (that manipulates the magnitude) and a second-order dynamics linear module (that
simulates the movement pattern).

The above mentioned Hammerstein model contains two modules in series: a non-

linearity module preceding a second-order dynamics linear module. The input nonlinear

module represents the magnitude of the deformation and the stimulated muscle dynamics

are determined by linear module. The complexity of the model is the amount of parameters.

The more complex the system is, the more precise the estimated behavior is. However, it is

difficult to identify all parameters in the model. According to [11], the dynamic properties

can be described accurately with a second order linear module. The performance is largely

better than that of 1-order, but just slight worse than the model with a third-order linear

module. The second-order linear module is more competitive in terms of the number of

parameters for Hammerstein model. This is why we choose it for our method. The transfer
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function of the linear module in our method is then:

Y (s)
V (s)

=
s

1+αs+βs2 (4.1)

where α and β are module parameters. Y (s) and V (s) are the Laplace transform of v(t) and

y(t), which are the input and output of the linear module (see Figure 4-3).

In conclusion, the Hammerstein model is a well-developed traditional simulation model.

For our purpose, the Hammerstein model can be characterized by the error and the param-

eters of two sub modules:

• p for the non-linear module;

• (α,β) for the linear module

• the global estimation error EH .

The parameters (α,β) in the linear module can help to manipulate the dynamics of facial

movement.

In conclusion, the data augmentation by Hammerstein model utilizes the traditional

simulation model, with solid physic explications. Yet, concerning the the emerging gen-

eration method: GAN [33] (Generative Adversarial Network), the interpretability of this

method is weak. The performance is depending on the selection of the training set and the

parameter manipulation. The model construction is empirical and it is difficult to explain

the result. However, concerning the applications of medical care or national security, the

reliability of the system should be ensured. Since the mathematical theory of deep learning

is still on exploring, we choose to use well-developed traditional simulation model: Ham-

merstein model to synthesize S-patterns. More experimental analysis for the comparison

between Hammerstein model and GAN is presented in subsection 5.4.2.
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4.2 Applying Hammerstein Model to S-Pattern

In this section, we analyze the values and the impacts of the parameters of Hammerstein

model to build model for S-patter. The analysis allows us to filter wrongly-labeled S-

patterns (Section 4.3) and then synthesize more S-patterns (Section 4.4).

Firstly, the system identification is introduced to identify the parameters in the non-

linear module and the linear module. Then, we present the estimator of the non-linear

module and indicate that parameters p in this module has little influence on dynamic prop-

erty of micro-expression. Finally, in the last two sub-sections, the distribution of (α,β)

of the linear module and the estimation error EH are investigated and associated the curve

shape of S-pattern.

4.2.1 System Identification

The system identification enables to identify the parameters of two modules in Hammer-

stein model based on measured input-output data. The process is illustrated in 4-4. In

our case, the input u(t) in formula 4.1 is a constant command, and the output y(t) is an

original S-pattern (S-patternO). Once the input and output are fixed for the model, the

system parameters of the two sub-modules, i.e (p, α, β) can be identified. With the esti-

mated Hammerstein model and a constant command, we can synthesize a virtual S-pattern

(S-patternST ) which is similar to S-patternO. Figure 4-5 shows an example of the origi-

nal S-pattern (S-patternO) and synthesized S-pattern (S-patternST ) by Hammerstein model.

The detailed process is presented in following paragraphs.

Non-linearity 

Module(�)

Second order 

linear dynamic 

module (�, �)

(�, �) Synthetized pattern Real pattern 
1 n n n

Data

Input: Constant 

Command

Output: Pattern

System 

identification

Estimated 

Hammerstein 

Model

Non-linearity 

module

(�, �, ���	�
)

u(t) v(t) y(t)

System 
identification

Estimated Hammerstein Model:
(�, �, �, �
)

Data
Input: Constant Command

Output: S−pattern�

Figure 4-4: The basic system identification process for Hammerstein model. Depending
on the data which is constructed by constant command and chosen S-patternO, the corre-
sponding Hammerstein model can be estimated by system identification. In other words,
the parameters of the non-linearity module (p), of the linear module (α,β) and the system
estimation error (EH) are determined.
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(a) S-pattern from databases
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(b) S-pattern estimated by Hammerstein model

Figure 4-5: One Example of real S-pattern (S-patternO) and the corresponding synthesized
S-pattern (S-patternST ) by estimated by Hammerstein model.

Data Construction A time domain data object is constructed for the system identifica-

tion, where u and y are time domain input and output respectively (see Figure 4-3), T s is

the sample times for the experiment.

• u(t): Since the micro-expression is a local brief facial movement, the motion inten-

sity is low. Hence, the forces to trigger the displacement from different ROIs are

small and the difference between these forces can be ignored. As a consequence, the

input of Hammerstein model for S-patterns from all ROIs is set to the same constant

command.

• y(t): S-pattern is considered as the output of the system as its curve shape is our

target for synthesizing.

• T s: The starting time is set to zero considering that the spontaneous micro-expression

occurs unconsciously and very rapidly. The sample time for experimental data is set

as the reciprocal of FPS of the video sequence, i.e. T s = 1/FPS.

After the data construction, the data objet (y(t),u(t),T s) is imported into the system iden-

tification.

Model Design and estimation During this step, we design the basic setting of Hammer-

stein model, i.e. the type of the non-linear module and order of the linear module. The non-
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linearity module for input channels is set as the pwlinear (piecewise-linear) estimator with

10 breakpoints (default). A focus on non-linear module types is given in subsection 4.2.2.

Meanwhile, the order of the linear module is set to 2 as introduced in Subsection4.1. The

parameters of the linear module are analyzed in subsection 4.2.3.

Estimated Hammerstein Model The struct of the estimated Hammerstein model con-

tains all the parameters of the two modules and the performance report: p,α,β,EH . Ac-

cording to equation 4.1, (α,β) can determine the linear module and hence influence the

entire Hammerstein model. Since the S-pattern is an 1-D curve, MSE (mean squared error,

EH) is sufficient for the estimation evaluation.

4.2.2 Parameter for the Non-Linear Module

The non-linear module controls the magnitude of the output signal. As the S-patterns

are obtained after a normalization process, the variations of p for different S-patterns

are subtle, i.e. p has little influence on S-pattern synthesizing.

Yet, to construct the Hammerstein model, the configurations of the non-linear module

need to be clarified. A well-chosen estimator can help to improve the efficiency of the

system identification process and reduce the estimation error.

Concerning the non-linear module, there are several estimation representations [3], in-

cluding pwlinear, sigmoidnet, poly1d, saturation, waveNET and deadZone. In our applica-

tion case, there are only 18 distance values for S-pattern extracted from ME video sequence

of 30FPS. WaveNet is not suitable for our case, since there are too few data samples for ini-

tializing the WAVENET object. Thus, except waveNet, all the other estimators have been

tested by system identification with an original S-pattern (S-patternO) as input. After the

system identification, an Hammerstein model is estimated. Meantime, an synthesized S-

pattern (S-patternST ) is generated by this Hammerstein model. The fit rate (R2, pronounced

r-square) of S-patternST to the S-patternO, the result of loss function and the computation

time are used to evaluate these non-linear estimators. Table 4.1 shows the evaluation result.

Pwlinear and sigmoidnet are both competitive with a high fit rate and short computation

time. To choose between these two, we use more metrics: LossFcn (the result of loss func-
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tion) and computation time to evaluate them. 78 S-patterns1 (S-patternOS) are used as an

entire input to identify the Hammerstein model with these two estimators. The results of

loss functions are 0.1131 and 0.1175 respectively. As a result, pwlinear [4] is chosen as the

estimator for the non-linearity module.

Table 4.1: Estimation performance of different non-linearity modules in Hammerstein
model. Fit rate is the fit rate of generated pattern to original pattern; LossFcn means the
result of loss function. All the estimators are performed with default parameters.

Non-linear Module Fit rate LossFcn Time
Pwlinear 89.84% 0.001747 2.335s

Sigmoidnet 89.84% 0.001747 2.246s
Poly1d 89.56% 0.001773 0.248s

Saturation 89.84% 0.00175 2.452s
DeadZone -82.53% 0.6412 1.821s

4.2.3 Relationship between the Linear Module and S-patterns

As the dynamic property of the output signal is controlled by the linear module, we

emphasize on (α,β) and analyze the influence of their variation on the curve shape of

the S-pattern.

The relationship between parameters of Hammerstein model1 and original S-pattern is

investigated on CASME I-section A. 78 Hammerstein models with their corresponding (p,

α, β) have been estimated by system identification for this analysis.

As illustrated in Figure 4-6, the distribution of (α,β) is related to the curve shape of the

S-patterns. The (α,β) points, which are on the upper-left side of the figure, are linked to the

most representative shapes of S-pattern. In addition, EH is the mean squared error between

the S-patterns after LTP pattern selection (S-patternOS) and the synthesized S-pattern (S-

patternST ) estimated by the Hammerstein model. The estimation errors EH of the points

on the upper-left side of the figure are acceptable. Hence, we would be able to both filter

real LTPs depending on EH values and also synthesize the virtual S-patterns based on the

upper-left zone of the distribution figure.

1These patterns are the S-patterns of CASME I database that have been conserved after the LTP pattern
selection process (S-patternsOS) (Subsection 3.3.1)
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Figure 4-6: The distribution of (α,β) is related to the curve shape of S-pattern. Each
S-pattern (S-patternOS) has been associated with its own identified Hammerstein model
(α,β,EH). The upper-left figure shows the distribution of (α,β) (x: α, y: β) and the
associated error: EH (heat map). (α,β) densely distributes at the top-left corner with a small
error. In the six below images, the blue curve means the original S-patterns (S-patternOS).
Then, based on the estimated Hammerstein model with original (α,β), the synthesized S-
patterns (S-patternST0) are generated (red curve). The curve shape of S-patterns in these six
figures vary along with the change of (α,β). The first three curve images correspond to
the densely distributed region of (α,β). The corresponding (α,β) for the last three curve
images are far from the upper-left region. They have different curve shapes compared with
the first three. The distribution of (α,β) is associated with the dynamic property of ME
(shape of S-pattern). Hence, we would be able to both filter wrongly-labeled S-patternsO
using EH values and also synthesize virtual S-patterns based on the value range of (α,β).
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4.2.4 Configurations for LTP Filtering and S-pattern Synthesizing

LTP filtering and S-pattern synthesizing can be performed thanks to the analysis in

subsection 4.2.3. Firstly, S-patterns, which are wrongly labeled, can be filtered by EH .

Secondly, the (α,β) distribution allows to define the (α,β) value range for synthesizing

reliable S-patterns by Hammerstein model.

For each database, the S-patterns after the whole LTP selection process of subsec-

tion 3.3.1 (S-patternOS) are used to get the distribution of (α,β) and their corresponding

estimation error EH . S-patternsOS are the most optimal LTPs for micro-expression thanks

to the strict selection process. Hence, the (α,β) distribution of S-patternsOS can be used

as a reference for following LTP filtering and S-pattern Synthesizing. More precisely, we

calculate the mean values and standard deviations: ᾱ, β̄, ĒH , σα and σβ for LTP filtering

and S-pattern Synthesizing. Figure 4-7 shows the deduction process.
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Figure 4-7: Parameter configuration for LTP filtering and S-pattern synthesizing. For one
database, each selected S-pattern is treated separately to estimate its specific Hammerstein
model. Based on these obtained data, the mean value (ᾱ, β̄, ĒH) and the standard deviation
(σα,σβ) can be calculated.

In this section, we find that the parameters (α,β) of the linear module and the estima-

tion error EH are associate with the dynamic property of micro-expressions (curve shape

of S-pattern). The LTP filtering can use ĒH to filter un-reliable S-patterns (section 4.3).

Meanwhile, the ᾱ, β̄, σα and σβ can be utilized for S-pattern synthesizing (section 4.4).
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4.3 LTP Filtering

Based on the previous analysis, a filtering processing using Hammerstein model (LTP fil-

tering) is proposed in this subsection. This process replaces the LTP pattern selection in the

training step of local classification (see Figure 4-1 at the beginning of this chapter). LTP

filtering allows to conserve more reliable S-patterns for training.

LTP filtering process use the estimation error EH to filter S-patterns which are wrongly

labeled. The detailed process is presented as follows. For each LTP which is labeled as

S-pattern, its mean squared error of the estimation (EH) for Hammerstein model can be

obtained by system identification. Then, EH is compared with a threshold of error value

TE to filter LTP patterns. The value assignment of TE depends on ĒH that is defined in

subsection 4.2.4. The larger TE is, the more LTPs are conserved and treated as qualified

S-pattern. A simple flow chart for LTP filtering process is shown in Figure 4-8

S−pattern�

System Identification of 
Hammerstein Model

�	

�	 < ��

S−pattern�


Y

Remove this S−pattern�
from training dataset

N

Figure 4-8: Flow chart of LTP filtering process. The original S-patternO dataset may con-
tain some wrongly-labeled samples. Each original S-pattern (S-patternO) passes through
the system identification to obtain its estimation error EH . By comparing with the thresh-
old TE , the S-patternO is decided to be kept as S-pattern after LTP filtering (S-patternOF ) or
be removed from training dataset.

Figure 4-9 shows 4 examples of LTPs (labeled as S-pattern) who are not in accordance

with the ideal S-pattern. They are removed from the training set by LTP filtering. The
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movements which do not begin at real onset frame or are not similar to ME variation are

eliminated efficiently. In this way, reliable S-patterns for training are conserved with a

large amount. For example, for CASME I database, the amount of S-patterns after filtering

is 2781, which is much larger than that of basic LTP pattern selection of subsection 3.3.1

(78). Indeed, in LTP pattern selection process, the curve shape is filtered by expert rules:

the curve is raised up in first 150ms, and then the curve stabilizes or goes down. Yet, con-

cerning LTP filtering, we ’learn’ the curve shape with Hammerstein model. In other words,

we create a selection by EH : if the EH of an S-patternO is smaller than the threshold TE , this

S-patternO is conserve as S-patternOF ; otherwise, S-patternO is deleted from the training

dataset. Hence, the data-scale can be increased using LTP filtering with Hammerstein

model while the ability of distinguishing ME is maintained.
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(a) Estimation error EH = 0.0292
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(b) Estimation error EH = 0.0256
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(c) Estimation error EH = 0.0442
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(d) Estimation error EH = 0.0390

Figure 4-9: Examples of eliminated real LTPs (labeled as S-patterns) after S-pattern filter-
ing. The threshold TE is set to 0.0250. The curve shape in 4-9a represents a movement
which begins to fade out. 4-9b and 4-9c show facial movements which are about to be-
gin. 4-9d is the movement at the end of video sequence. These patterns are removed from
training set by LTP filtering.
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4.4 S-pattern Synthesizing

This section aims at increasing even more the number of S-patterns for the training of the

classifier.

Reliable S-patterns are synthesized by Hammerstein model. We call them S-patternST

As introduced in sub-section 4.1 and 4.2, S-patterns with different curve shapes can be

generated by Hammerstein model based on the variation of (α,β). Thus, depending on the

parameters: ᾱ, β̄, σα and σβ of the distribution for S-patterns, n sets of (αi,βi) for each

original S-pattern after LTP filtering (S-patternOF ) are generated from a normal distribution

as follows:

αi = ᾱ+σα×Ri, (4.2)

βi = β̄+σβ×Ri (4.3)

where Ri is a value drawn from the standard normal distribution, i= 1, ...,n. The (αi,βi) are

close to the most densely distributed region of initial distribution. Thus, it can be used to

construct the Hammerstein model and synthesize representative S-patternSTi . For the sake

of reproducibility of the algorithm, a flow chart is illustrated in Figure 4-10.

Figure 4-11 shows an example for S-pattern synthesizing. Once the generation mul-

tiple n is defined, n S-patternsST can be synthesized based on n sets of (α,β).

After the S-pattern synthesizing, the S-patternsOF and their corresponding S-patternsST

are concatenated for a bigger training dataset and are used to train the SVM classifier.

After the spatial and temporal fusion (subsection 3.3.3), we get the final spotting result. In

section 5.4 of Chapter 5, we will prove that the data augmentation by S-pattern synthesizing

improve the spotting performance.
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Figure 4-10: Flow chart of S-pattern synthesizing. The number of generation loops is
defined by n. Once the (αi,βi) is determined, along with the S-patternOF , the specific
Hammerstein model is constructed for synthesizing. S-patternOF is needed in this step
because it helps to identify the parameters p in the non-linear module. Then the S-patternSTi

is synthesized by the Hammerstein modeli whose input is the constant command u(t).
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(a) Original S-pattern (S-patternO)
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(b) Multiple synthesized S-patterns

Figure 4-11: Example of 1 original S-pattern (S-patternO) and 10 S-patterns generated by
Hammerstein model (S-patternsST ). Depending on the S-patternO, we can generate n times
similar S-patternsST for data augmentation.
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4.5 Conclusion

In this chapter, we propose to use Hammerstein model for the data augmentation of the

training set. With LTP filtering and S-pattern synthesizing, our method conserves a large

amount of reliable S-patterns, increases the size of S-pattern dataset for training stage of

machine learning, and therefore improves the spotting performance.

The following chapter will presents the experimental results. The comparison with the state

of arts method proves the efficiency of our method.
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Chapter 5

Experimental Results

This chapter aims at proving the efficiency of our whole method. The method is com-

pared with the state of art (SOA) method: LBP-χ2-distance method [91] (subsection 5.2.1

and 5.4.1).

The chapter is organized based on our four contributions, as illustrated in Figure 5-1.

LTP-ML : 

An efficient 
method for ME 

spotting

Spatial and 
temporal fusion

Data 
augmentation 

by 

Hammerstein 
model 

A novel result 
evaluation 

method

and 

Spotting in long 
videos

Figure 5-1: Organization of Chapter5 based on our four contributions.

One of our main contribution is to spot ME by classifying a novel relevant feature:

local temporal pattern. In order to demonstrate the relevancy of the LTP pattern, sub-

section 5.2.2 compares it with another common used temporal feature (LBP-TOP). Sub-

section 5.2.3 proves the generality of our proposed LTP feature among different databases.
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As we mentions that S-pattern is identical for all kinds of emotions, the spotting perfor-

mance per emotion and the statistic analysis of LTP for different emotions are investigated

to prove the theory (subsection 5.2.4). Then, we analyse parameters in two sub-processes:

extraction of ROI (Subsection 5.2.5) and PCA in LTP computation (Subsection 5.2.6). The

analysis allows to find the optimal ROI setting and to to prove the effectiveness of PCA.

Concerning our second contribution, the spatial and temporal fusion is investigated

to show its capacity to differentiate ME from other movements (Subsection 5.3.1). As

well, the impact of threshold values in the fusion process are analyzed to find the optimal

parameters (Subsection 5.3.2).

Another main contribution of our process is data augmentation using HM. The com-

parison between our method with and without Hammerstein model shows that the data aug-

mentation improves the spotting performance. To show the effectiveness of S-pattern syn-

thesizing by Hammerstein model, the method is compared with GAN (Subsection 5.4.2).

The analysis in subsection 5.4.3 shows the impact of LTP filtering and S-pattern synthe-

sizing on the entire process. Meanwhile, in order to find the optimal threshold value for

estimation error (TE) and generation multiple n for ME spotting, the impact of these pa-

rameters on two sub-processes are investigated respectively (subsection 5.4.4 and 5.4.5).

Finally, the analyze of different distribution models of (α,β) shows that the generation

amount of S-pattern matters more than the choice of distribution model.

Finally, our contribution of the novel result evaluation method and metrics are intro-

duced in section 5.1.4, and section 5.5 shows the results of spotting micro-expression in

long videos utilizing our method.

The databases, the method for comparison, configurations and metrics for the experi-

ments are firstly introduced in subsection 5.1. In this chapter, our method without and with

Hammerstein model is mentioned as LTP-ML and LTP-SpFS respectively.
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5.1 Databases, Comparison Method, Experimental Con-

figuration and Metrics

In this section, as we need to perform our method on video samples to verify its feasibil-

ity, four databases are firstly introduced (subsection 5.1.1). Then in order to compare our

method with the state-of-arts (SOA) method, LBP-χ2-distance that is most commonly used

for spotting method comparison is presented (subsection 5.1.2). For the reproducibility of

our method, the configurations of experiments are listed in subsection 5.1.3. Finally, in

order to evaluate the performance of our method, the result evaluation method and metrics

for micro-expression spotting are introduced in subsection 5.1.4.

5.1.1 Databases

Four public spontaneous micro-expression databases are utilized for our experiments. CASME I

and CASME II are two databases with short video sequences. They are chosen because

most articles used these two databases to evaluate the result. Meanwhile, CAS(ME)2

and SAMM the only two databases which contain long video samples. We use these two

databases to test our method in long video situation. The detailed information is introduced

in following paragraphs.

Databases with Short Videos

Experiments are firstly performed on two spontaneous ME databases: CASME I [137] and

CASME II [137]. The MEs in these two databases are labeled with reliable ground truth,

including the temporal location of the onset, apex and offset of the ME. In addition, the AU

information is given for each video, permitting to create our ground truth for recognizing

the LTP.

CASME I: The database contains 19 subjects, 177 videos and 197 MEs (some videos

have several MEs). All videos are at a frequency of 60 fps. There are two sections : section

A and section B because of two lighting conditions and also two different resolutions. In

section A, there are 7 subjects, 96 ME sequence, and the resolution is 720 × 1280. In
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section B, there are 13 subjects, 101 sequences of MEs and the resolution is 640 × 480.

CASME II: There are 26 subjects and 255 ME sequences. All CASME II videos are

at 200 fps to retain more facial information and the resolution is 640 × 480.

All ME sequences in CASME I and CASME II are used in the experiment. The main

parameters of these two databases are listed in Table 5.1.

Databases with Long Videos

CAS(ME)2 [104]: In the part A of CAS(ME)2 database, there are 22 subjects and 87

long videos. The average duration is 148s. The facial movements are classified as macro-

and micro-expressions. The video samples may contain multiple macro or micro facial

expressions. The onset, apex, offset index for these expressions are given in an excel file.

In addition, the eye blinks are labeled with onset and offset time.

SAMM database [19]: In SAMM database, there are 32 subjects and each has 7 videos.

The average length of the videos is 35.3s. For this challenge, we focus on 79 videos, each

contains one/multiple micro-movements, with a total of 159 micro-movements. The index

of onset, apex and offset frames of micro-movements are outlined in the ground truth excel

file. The micro-movements interval is from onset frame to offset frame. In this database,

all the micro-movements are labeled. Thus, the spotted frames can indicate not only micro-

expression but also other facial movements, such as eye blinks.

5.1.2 SOA Method For Comparison: LBP-χ2-distance

The LBP-Chi-square-distance method (LBP-χ2) was first proposed by Moilanen et al. in

2014 [91]. The pipeline of this method is shown in Figure 5-2. We use this method to

compare with, because it is the one that is most commonly used in other articles to compare

with their own ME spotting results. However, most methods [83, 65] evaluate their results

using ROC and AUC metrics. In our method, these metrics are not suitable since there

is no valuable parameter to adjust. Another point is that, the results presented in [91]

consider that the eye blinking is a true positive, which is not the case of the ground truth

in the databases. As a result, we re-implement the method from the article and succeed to
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achieve the same level of spotting rate. As the configurations of the experiment were not

clearly indicated in the article, the setting of this method in our article will be presented in

following sub-section.

5.1.3 Parameters Configuration

LBP-χ2: The configuration of LBP-χ2 method is based on the descriptions of the three

articles: [91], [65] and [111]. The face is divided into 36 blocks with an overlap. The

overlap rates in the direction of X and Y are 0.2 and 0.3 respectively. A uniform mapping

is applied for the LBP feature extraction from the block, the radius r is set to r = 3, and

the number of neighboring points p is set to p = 8. The χ2 distances of the current frame

are computed in an K interval. The K value for two databases are listed in Table 5.1. The

ground truth of LBP-χ2 is put in the range of [onset−K/2, offset+K/2].

LTP-ML and LTP-SpFS: For our method, 12 ROIs are selected at the eyebrows, the

nose and the mouth contour, as shown in Figure 3-2. The size of the time interval K

corresponds to 300ms according to the fps of each database as shown in Table 5.1. 300ms

is the average duration of a ME. Training and recognition are performed using the software

Lib-SVM with linear kernel [16]. Since the dataset is very unbalanced, non-ME frames are

sampled by 1 out of 8 for SVM training stage. The parameter of cost c for SVM training

is set to 5 and the weight w for each class are set to 1 and 2.5 respectively. All frames are

considered in the testing stage. The results are obtained by LOSubOCV.

Since our method detects the special pattern of the onset of local facial movement, the

optimal condition is to detect patterns in the interval of [onset−K/3, onset] and in the

meantime in [apex−K/3, apex]. Thus, the ground truth of our method is defined by adding

a K/3 shift to that of LBP-χ2, i.e. [onset−K/3−K/2, offset−K/3+K/2].

5.1.4 Result Evaluation Method and Metrics

As introduced in chapter 2, there is no consistency of result evaluation methods for micro-

expression spotting. To evaluate our method and to compare it with other methods, we

evaluate the spotting result per frame and per interval, as introduced in following para-
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Figure 5-2: Baseline method -LBP χ2-distance difference. In the first step, the face image
is divided into several blocks. Then LBP is computed per pixel. The feature for the jth
block on current frame (CF) is the LBP histogram per ROI after a normalisation. The
second step is χ2-distance computation. i is the ith bin in the histogram. AFF (Average
feature frame) means the feature vector representing the average of tail frame and head
frame, where tail frame is K/2th frame before the CF, head frame is K/2th frame after the
CF. The third step is to obtain the final feature difference value CCF for current frame. F is
obtained by the first M blocks with the biggest feature difference values. The fourth step
spots micro-expression by setting a threshold, where p is an empirical data.
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Table 5.1: Main parameters and experiment parameters configuration for CASME I (Sec-
tion A and B), CASME II, CAS(ME)2 and SAMM.

Database Subject ME sequence FPS K
CASME I-A 7 96 60 18
CASME I-B 12 101 60 18
CASME II 26 255 200 60
CAS(ME)2 22 97 30 9

SAMM 32 79 200 60

graphs. The evaluation method per interval is proposed by MEGC2019 (Micro-expression

Grand Challenge) [64], and we participated to the elaboration.

Evaluating ME Spotting Result per Frame

Concerning the result evaluation, we choose a measurement per frame. Indeed, LTPs are

extracted from each frame. In addition, local classification and the first two steps of spatial

and temporal fusion are performed per frame. Since F1-score is the most commonly used

metric for the evaluation of MESR method using machine learning, it is chosen to confirm

the effectiveness of our method. In the following experiments, if we do not mention specif-

ically, the F1-score is the F1-score per frame by default. F1-score can be calculated based

on recall and precision. Here are the definitions of these two metric for our results:

recall = T PR =
All spotted ME frames

All ME frames in database
(5.1)

precision =
All spotted ME frames

All spotted frames in database
(5.2)

Yet, one of the challenges in ME spotting is to have a low FPR (False Positive Rate).

That is why we consider that having a FPR over 0.2 is not acceptable.

131



Evaluating ME Spotting Result per Interval

LTP-ML : 

An efficient 
method for ME 

spotting

Spatial and 
temporal fusion

Data 
augmentation 

by 

Hammerstein 
model 

����A novel result 
evaluation 

method
and 

Spotting in long 
videos

We participated to the ME spotting task of the MEGC2019 (Micro-expression Grand

Challenge) [64] and proposed a new result evaluation method and metrics through an

international collaboration. It is an F1-score by interval.

The annotation of micro-expression is not always accurate. As it is the ground truth

for ME spotting evaluation, the uncertainty influences the evaluation result. To avoid this

inaccuracy, we propose to evaluate the spotting result per interval. Moreover, since the

distribution of ME and non-ME sequences is not balanced, F1-score is utilized.

There are three evaluation steps used to compare the performance of the spotting tasks:

1. True positive in one video definition Supposing there are m micro-expressions

in the video, and n intervals are spotted. The result of this spotted interval Wspotted is

considered as true positive (TP) if it fits the following condition:

Wspotted ∩WgroundTruth

Wspotted ∪WgroundTruth
≥ k (5.3)

where k is set to 0.5, WgroundTruth represents the micro-expression interval (onset-offset).

Otherwise, the spotted interval is regarded as false positive (FP).

2. Result evaluation in one video Supposing the number of TP in one video is a (a≤m

and a≤ n), then FP = n−a, false positive (FN) = m−a, the Recall, Precision and F1-score
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are defined:

Recall =
a
m
, Precision =

a
n

(5.4)

F− score =
2T P

2T P+FP+FN
=

2a
m+n

(5.5)

In practical, these metrics might not be suitable for some videos, as there exist the

following situations on a single video:

• The test video does not have micro-expression sequences, thus, m = 0, the denomi-

nator of recall will be zeros.

• The spotting method does not spot any intervals. The denominator of precision will

be zeros since n = 0.

• If there are two spotting methods, Method1 spots p intervals and Method2 spots q

intervals, and p≤ q. Supposing for both methods that the number of true positive is 0,

thus the metrics (recall, precision or F1-score) values both equal to zeros. However,

in fact, the Method1 spots less false positives than Method2 .

Considering these situations, for a single video, we propose to record the result in terms

of TP, FP and FN. For performance comparison, we produce a final calculation of other

metrics for the entire database.

3. Evaluation for entire database Supposing that in the entire database, there are V

videos and M micro-expression sequences, and the method spot N intervals in total. The

database could be considered as one long video. Thus, the metrics for entire database can

be calculated by:

RecallD =
∑

V
i=1ai

∑
V
i=1mi

=
A
M

(5.6)

PrecisionD =
∑

V
i=1ai

∑
V
i=1ni

=
A
N

(5.7)

F1− scoreD =
2× (RecallD×PrecisionD)

RecallD +PrecisionD
(5.8)

The final results by different methods would be evaluated by F1-score since it considers

the both recall and precision.
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5.2 LTP-ML : An Efficient Method for ME Spotting
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This section shows the first contribution of my thesis. The performance of LTP-ML is

evaluated by the comparison with the LBP-χ2-distance method using two public databases

CASME I and CASME II. The results are analyzed per frames. Then, we demonstrate

the relevancy of our proposed LTP feature for micro-expression spotting. We also prove

the generalization of LTP for different databases. Parameters for ROI extraction are also

discussed in this section. Meantime, PCA is proven to be suitable for our method by the

comparison with Auto-Encoder and GPLVM. In addition, we evaluate the spotting perfor-

mance per emotion and perform the statistical analysis on S-patterns for different emotions,

which shows that our LTP pattern is identical for all emotions.

5.2.1 LTP-ML Outperforms SOA LBP-χ2 Method

Compared with the LBP-χ2 method, LTP emphasizes on the local temporal facial defor-

mation. Classifying LTPs by machine learning also enhances the ability of differentiating

ME from other facial movements. In this subsection, the spotting results of LTP-ML are

compared with LBP-χ2.

Since the original LBP-χ2 process does not perform any merge after the peak detection,

the results obtained by our method are firstly compared with LBP-χ2 without the merge
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process. The results are listed in Table 5.2. All the results have FPR lower than 0.2,which

means that the spotting method is acceptable. LTP-ML without the merge process outper-

forms LBP-χ2 in term of F1-score for each database, because the TPR of our method is

higher than 20%. Even though FPR is slightly higher, the value of F1-score is raised due

to the increase of TPR (True Positive Rate).

Table 5.2: Result evaluation and comparison for LTP-ML and LBP-χ2. LTP-ML (without
merge) can spot more TP frames with an acceptable FPR. In addition, LTP-ML outperforms
state-of-art LBP-χ2 method in terms of F1-score in both cases: with or without merge
process. Merge process helps to reduce the true negatives. (F1-score f r: F1-score per frame)

Database Method Without merge With merge

TPR FPR F1-score f r TPR FPR F1-score f r

CASME I-A
LBP-χ2 0.05 0.02 0.09 0.13 0.05 0.20

LTP-ML 0.23 0.08 0.30 0.37 0.12 0.40

CASME I-B
LBP-χ2 0.07 0.02 0.12 0.18 0.05 0.24

LTP-ML 0.22 0.05 0.30 0.34 0.09 0.38

CASME II
LBP-χ2 0.09 0.02 0.16 0.24 0.08 0.35

LTP-ML 0.24 0.09 0.35 0.55 0.19 0.59

Due to the absence of merging the detected frames into a temporal interval, the TPR is

not very high. In our proposed method, to reduce false negatives, the spotted frames pass

through the merge process. For a fair comparison, we perform the same merge process on

the LBP-χ2 method. Table 5.2 also shows the final spotting result with merge. As expected,

the merge process improves the spotting performance for both methods. Our LTP-ML

method still performs better than LBP-χ2. A focus on the merge process is detailed in

subsection 5.3.

5.2.2 Relevancy of LTP Compared with LBP-TOP for ME Spotting

To prove the relevancy of our proposed LTP pattern, another commonly used feature (LBP-

TOP) is computed in CASME I-A. LBP-TOP is extracted by a sliding window per frame,

and the configuration of block division is inspired by [111]. Figure 5-3 shows an example of

LBP-TOP extraction process per ROI. Then, the same machine learning and fusion process
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as LTP-ML are performed on LBP-TOP. Experiments are performed on an Intel (R) Core

(TM) i7 (-5820K CPU @ 3.3GHz) PC with 64GB RAM using Matlab R2018b. The average

computation time for one video with 200 frames is counted for comparison. Table 5.3 lists

the spotting results and the computation time for LBP-TOP and LTP. Our LTP allows to

spot ME more accurately by extracting the main temporal variation from local regions.

Moreover, our method takes less computation time than LBP-TOP, which is known to be

efficient but time-consuming. LTP is faster thanks to a smaller feature dimension.

X

Y

T

XY XT YT

Figure 5-3: LBP-TOP extraction per ROI. LBP feature is extracted from three orthogonal
planes: xy, xt and yt.

Table 5.3: LTP outperforms LBP-TOP on both spotting accuracy and computation time.
Timeextract means the average time for feature extraction per one video sample with 200
frames, and Timesvm means the average time for SVM training and classifying per video.
(CASME I-A)

F1-score f r Timeextract(s) Timesvm(s)
LBP-TOP 0.30 15.00 9.89

LTP 0.40 0.79 0.05
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5.2.3 Generalization of LTP for Different Databases

To investigate the generalization of our proposed feature: LTP among different database,

we performed the cross database validation. The SVM model is firstly trained in one

database, then predict the labels in another database. As listed in Table 5.4, the result proves

the generalization of out proposed LTP pattern. The SVM model trained on CASME II

can obtain a better classification result on CASME I-A and CASME I-B than their self-

validation in the same database. It is because that CASME II has more S-patterns to train

the classifier. Then, as the S-patterns that are extracted from different databases have the

same property, the classifier trained by CASME II is able to spot micro-expressions in

CASME I-A and CASME I-B.

Table 5.4: Cross database ME spotting performance shows the generality of LTP among
different databases. The cross-database result is evaluated by F1-score f r. The experiments
in the same database is performed by leave-one subject-out cross validation.

Test
Train

CASME I-A CASME I-B CASME II

CASME I-A 0.40 0.40 0.40
CASME I-B 0.37 0.38 0.42
CASME II 0.52 0.41 0.59

5.2.4 Unique S-pattern for All Emotions

In our method, we treat all the regions of interest (ROIs) as undifferentiated. In other

words, we make the assumption that the S-patterns are unique for all ROIs. To verify this

assumption, we compare the F1-score per emotion in CASME I.

ME spotting on different emotions

The video samples in CASME I are labeled by emotion type and AU information. Table 5.5

lists the measurement per frame for CASME I. Despite of fear emotion with only one video

sequence, there is nothing significant found by the analysis of F1-score measure. While the

tense and surprise emotion are mostly linked to the AU1, AU2 and AU4 of eyebrow, the

emotion of happiness and repression always lead to the mouth movement. The different
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emotion links to different AU combination, which means the ROIs which contains ME

movement are different for each emotion. Yet, the type of emotion does not influence the

spotting result. These results confirm that our proposed S-pattern is similar regardless of

the ROI and the ME type.

Table 5.5: Spotting results per emotion on CASME I

Emotion
CASME I-A CASME I-B

NbVideo F1-score f r NbVideo F1-score f r
Tense 48 0.27 23 0.33

Happiness 4 0.48 5 0.28
Repression 30 0.28 10 0.08

Disgust 4 0.30 42 0.41
Surprise 7 0.45 14 0.57

Contempt 4 0.18 6 0.58
Fear 1 0.55 1 0.34

Statistic Analysis of S-pattern

This subsection proves the S-pattern is unique for micro-expressions and it has the similar

pattern for different emotions. The maximal value of S-pattern (Dmax) and the slope of

S-pattern curve (Slope150ms) are chosen for the statistic analysis. It is because the slope

indicates the speed of the facial movement and the maximal values of S-pattern shows the

movement intensity. The first part of this subsection shows the uniqueness of S-pattern for

micro-expression, then the second part proves that S-patterns are identical for all emotions.

S-pattern is Unique for Micro-expressions As show in Table 5.6, S-pattern differs from

other LTPs (non-S-patterns). The maximal value of S-patterns is around 1 while the non-S-

patterns have a much smaller value. Because most frames are neutral face, they barely have

movements, the LTPs for non-ME frames have a small value. In addition, since LTPs are

normalized by the maximal original distance (λmax) in the first 150ms, the Dmax shows that

most micro-expressions reach the maximal value in the first 150ms then the values begin to

decline. If not, the average value will be bigger than the current one. Besides, the average

curve slope for S-patterns is sharper than non-S-patterns, because micro-expression is a

very brief facial movement.
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Table 5.6: S-pattern differs from other LTP (non-S-patterns). The LTP is statistically an-
alyzed by the average value and the standard deviation of the following two characteris-
tics: the maximal value of S-pattern (Dmax) and the curve slope of S-pattern in first 150ms
(Slope150ms).

Database Feature Dmax σ(Dmax) Slope150ms σ(Slope150ms)

CASME I-A
S-pattern 1.03 0.13 0.09 0.03

non-S-pattern 0.52 0.36 0.02 0.03

CASME I-B
S-pattern 1.00 0.10 0.09 0.03

non-S-pattern 0.44 0.33 0.01 0.03

S-pattern is Identical for Different Emotions This subsection shows the statistical anal-

ysis of S-patterns for different emotions. The two sub-table in Table 5.7 listed the results

for two kinds of emotion classifications. The maximal distance value and the curve shapes

for different emotions are similar, and the deviation is small. In conclusion, S-pattern is

identical for all emotions

Table 5.7: Unique S-pattern for different emotions. The S-pattern is statistically analyzed
by the average value and the standard deviation of the following two characteristics: the
maximal distance value in S-pattern (Distmax) and the curve slope of S-pattern in first 150ms
(Slope150ms).

Database Emotions Distmax σ(Distmax) Slope150ms σ(Slope150ms)

CASME I-A
Positive 1.15 0.09 0.11 0.01
Negative 1.01 0.13 0.09 0.04
Surprise 1.08 0.02 0.11 0.01

CASME I-B
Positive 1.11 0.11 0.08 0.02
Negative 1.00 0.10 0.09 0.03
Surprise 1.00 0.11 0.09 0.03

(a) S-patterns for 3 classes of emotions

Emotions Distmax σ(Distmax) Slope150ms σ(Slope150ms)
Happiness 1.11 0.11 0.08 0.02

Tense 0.99 0.10 0.09 0.03
Repression 1.04 0.07 0.07 0.05

Disgust 1.01 0.10 0.09 0.03
Contempt 0.98 0.09 0.08 0.03
Surprise 1.00 0.11 0.09 0.03

(b) S-patterns for 6 emotions
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5.2.5 Impact of ROI Parameters on Spotting Results

There are two main parameters for ROI extraction process which influence the spotting

performance: ROI size and ROI amount. In this section, the impact of these two parameters

on our method is investigated to find the optimal setting for ROI extraction.

Impact of ROI size on spotting results

The block length a of ROI is worth to study in order to find an appropriate size for feature

extraction. The influence of the size on spotting result is analyzed in CASMEI [137]. The

facial resolution of participants is around 150×190. The dataset of a for the experiment is

[5, 10, 15, 20, 25, 30, 35, 40, 50, 70]. The spotting results depending on different ROI size

are illustrated in Figure 5-4. As shown in this figure, spotting method with ROIs of 20× 20

(pixel2) has the best result. In this case, a = 1/5×L = 20, where L is the average inner eye

corner distance for all video samples in CASME I. The ROI in this size contains sufficient

local facial displacement, while avoiding the overlap of adjacent ROIs. Thus, a = 1/5×L

is applied as an empirical setting for the pre-processing in all databases.
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Figure 5-4: Influence of ROI size on Spotting performance. The F1-score increases along
with the augmentation of ROI size before the region length reaches 20. It is because that the
information in regions which are too small is not enough to represent the micro-expression
local movement. Yet, the spotting performance is then affected when the ROI size gets
larger than 20. More irrelevant information is included in the region for analysis. It raise
the false positive in the final analysis.
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Impact of ROI amount on spotting results

The amount of ROIs is analyzed in this part, since it is related to the efficiency of our

method. As shown in Table 5.8, two conditions of ROI amount are utilized. The first one

is an entire selection, i.e. all 26 ROIs of eyebrows, nose and mouth are chosen for micro-

expression spotting. And the second one is a partial selection (12 ROIs): ROI 1, 4, 5, 6,

7, 10 (eyebrows); ROI 32, 35, 38, 41 (mouth) and ROI 11, 14 (nose). These ROIs are the

regions which contain the most evident muscle movement of micro-expression compared

with other ROIs in the same area. Table 5.9 lists the spotting result of these two conditions.

The F1-score for the entire selection is moderately improved since there are more samples

for training. Yet, the false positive rate (FPR) is largely raised. Since the partial selection

can get the proximate spotting result and a smaller FPR compared with the entire selection,

the following processes are performed on only 12 ROIs for computation efficiency.

Table 5.8: Two situations of ROI index. The ROI index is annotated depending on detected
facial landmarks.

Facial region 12 ROI index 26 ROI index
Eyebrows 1, 4, 5, 6, 7, 10 [1-10]

Nose 11, 14 11,12,13,14
Mouth 32, 35, 38, 41 [32-43]

Table 5.9: Spotting performance evaluation (F1-score) based on different amount of chosen
ROIs.

Databases CASMEI-A CASMEI-B
FPR F1-score f r FPR F1-score f r

12 ROIs 0.12 0.40 0.09 0.38
26 ROIs 0.20 0.41 0.17 0.40

5.2.6 PCA is More Suitable for Dimension Reduction in Our Method

than Auto-Encoder and GPLVM

Auto-encoder is an emerging machine learning tool for dimension reduction. It is an un-

supervised process with multiple-layer neural networks. Compared with PCA, the auto-

encoder system has a stronger ability of extracting information, because the process also
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conserves the non-linear characteristic of features. The auto-encoder system applied in our

LTP extraction process is illustrated in figure 5-5.
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Figure 5-5: Auto-encoder system for dimension reduction of ROI sequence on time axis
(N). The auto-encoder system can encode the ROI sequence (a2 ∗N) into a 2D dimension
point distribution, and then reconstruct the input by decoder process. a is the ROI width, a2

is the pixel amount in one ROI image, and N means the frame amount in this ROI sequence.
The frame index represents the temporal relation in this video.

To obtain the 2D point set P1, ...,Pn, the ROI sequence in size of a2 ∗N passes through

an encoder. This model is the left part of the AE system shown in Figure 5-5. The system

is trained by concatenating ROI sequences in one video, i.e. each video sample has its own

specific trained encoder. The detailed schema is illustrated in Figure 5-6.
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Figure 5-6: Dimension reduction schema by Auto-encoder. The process contains two
stages: AE training stage and dimension reduction. For each video sample, all J ROI
sequences are concatenated into one matrix in size of (a2 ∗N) ∗ J. To conserve the prin-
cipal variation, the matrix is normalized for AE training. Then, the obtained encoder can
extract the maximal movement on time axis of the chosen ROI sequence. Like PCA pro-
cess, the dimension of the input data is reduced to 2 dimensions. Thus, N 2D points which
represent the ROI sequence can be obtained in AE projection space.

After analyzing the point distribution, we could find the similar variation pattern as LTP.

An example of the comparison of LTPs obtained by PCA and AE is shown in Figure 5-7.

Local temporal patterns have the same curve shape for the same ROI at the same moment.
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Thus, the point set obtained by AE can be treated by the same process as PCA for further

micro-expression spotting.
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Figure 5-7: Comparison between LTP examples obtained by PCA, AE and GPLVM. For
the same micro-expression sequence, these two dimension reduction methods can obtain
similar LTP patterns. (CASMEI-A, sub1_EP07_10, ROI5)

Table 5.10 shows the spotting result. The experiments are performed on an Intel(R)

Core(TM) i7(-3740QM CPU @ 2.7GHz) PC with 8GB RAM using Pycharm. AE can

conserve more useful movement in only 2 dimensions, and the spotting performance is

slightly better than that of PCA. However, by comparing the time of feature extraction for

the entire database of CASME I, we find that the AE process is time consuming. The

computation time is almost 10 times of that of PCA. Hence, PCA is more suitable for

feature extraction, since it is rapid and conserves sufficient movement information.

GPLVM (Gaussian Process Latent Variable Models) is also a frequently used method

for dimension reduction.Figure 5-7 shows that the local temporal pattern of GPLVM also

forms the S-pattern for micro-expression. We compare the spotting result using LTPs ex-

tracted by GPLVM and PCA, as shown in Table 5.10. The two process can get the similar

spotting but GPLVM takes more computation time for feature extraction. Thus, for the

purpose of efficiency, PCA is chosen in our method.
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Table 5.10: Spotting performance evaluation after PCA and AE process. The F1-score of
AE is slightly higher than that of PCA. And the GPLVM does not improve much the spot-
ting performance. Yet, the time for feature extraction from the entire database by AE and
GPLVM is much longer than PCA. PCA is more suitable for spotting micro-expressions in
real time.

Databases CASMEI-A CASMEI-B
F1-score f r Timeextract(s) F1-score f r Timeextract(s)

PCA 0.40 36.00 0.38 3.64
AE 0.42 230.4 0.41 36.36

GPLVM 0.33 172.8 0.40 121.2
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5.3 Differentiating ME from Other Facial Movement by

Spatial and Temporal Fusion
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This section shows the second contribution of my thesis: the spatial and temporal fu-

sion. As described in Chapter 3, the spatial and temporal fusion is one essential part of

our method, and it is divided into three steps: local qualification, spatial fusion and merge

process. We have already shown in Tabel 5.2 of Subsection 5.2.1 that the merge process

improves the spotting result. In this section, we analyze the impact of each step on the

spotting performance (subsection 5.3.1). Moreover, to optimize the fusion process, the

impacts of two threshold values: Tdist and TCN on the fusion process are investigated (sub-

section 5.3.2).

5.3.1 Impact of Each Step of the Fusion process on the Spotting Per-

formance

Figure 5-8 presents a qualitative analysis. It illustrates an example of the contribution of

each step. As shown in the second and third layer of the figure, the local qualification

and the spatial fusion eliminate some detected peaks which do not fit the selection criteria.

There is a risk that some TPs (True Positives) frames are deleted. Yet, in the fourth layer,
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the merge process puts the neighboring detected frames into an interval who has appropriate

length. The figure at the fifth layer illustrates the result with the three steps of spatial and

temporal fusion. Frames that meet both the requirements of LQ and SF are conserved and

merged into intervals.

0 20 40 60 80
0

0.5
1

Spotting result after local classification (LC)

0 20 40 60 80
0

0.5
1

Local qualification : LC->LQ

0 20 40 60 80
0

0.5
1

Spatial fusion : LC->SF

0 20 40 60 80
0

0.5
1

Merge process : LC->MP

0 20 40 60 80
0

0.5
1

Spatial and temporal fusion (STF) : LC->LQ+SF+MP

Figure 5-8: Example of global result obtained by each step in spatial and temporal fusion.
The X axis is the frames index, the Y axis is the predicted label, and the red curve repre-
sents the ground truth for this video. As introduced in Figure 3-12, local classification and
qualification are applied on ROIs. The first and second layers in the figure show the result
obtained directly by the local classification (LC) and result after local qualification (LQ).
The different colored lines represent the spotting results per ROI. The third and fourth lay-
ers give the global results after separately applying spatial fusion (SF) and merge process
(MP) over the LC global result (blue curve). And the fifth layer is the final result after the
three spatial and temporal fusion steps (STF). (CASME I_Sub08_EP12_2_1)

We also evaluate quantitatively the contribution of each step for CASME I-A (Ta-

ble 5.11). In order to compare the local result of LC and LQ with the result of the other

three steps, a naive global fusion is performed on LC and LQ: the frame is treated as ME

if there is at least one ROI that spots S-patterns. The result in Table 5.11 shows that the
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local qualification and spatial fusion can largely reduce the FP frames, while the number

of TP also decreases. Conversely, the merge process increases the number of both TP and

FP. Even though the F1-score of LC and MP are higher than other processes, their FPRs

exceed 0.2. Therefore, the single process of LC or MP cannot be considered as an efficient

ME spotting method. Yet, the combination of these three steps can reach to a balance:

the F1-score almost remains the same while the FPR is acceptable and the TPR is slightly

impacted.

Table 5.11: Analysis of each step for spatial and temporal fusion (STF) on CASME I-A.
LC: local classification result; LQ: local qualification; SF: spatial fusion and MP: merge
process. The decreasing of FP amount shows that LQ and SF process helps to reduce the
irrelevant facial movements. More TP frames are spotted due to the merge process. A
combination of these three steps keeps the spotting performance and largely reduces the
false positives.

TP FP F1-score f r TPR FPR

LC 1515 2943 0.40 0.50 0.25

LQ 712 959 0.30 0.23 0.04
SF 592 701 0.37 0.19 0.05
MP 2123 4903 0.42 0.69 0.41

STF 1138 1591 0.40 0.37 0.13

5.3.2 Impact of Tdist and TCN on the Fusion Process

This subsection analyze the impact of two parameters of local qualifications: Tdist and TCN

on the fusion process.

Since the distance values in S-pattern are normalized, the threshold range of distance

is set around 1 : [0.6, 0.7, 0.8, 0.9, 1]. Values larger than 1 are not used because they

are too high to conserve useful S-patterns. As shown in Table 5.12, when the Tdist has a

lower value, the algorithm spot more true positives (TPs). Yet, there are also too many false

positives (FPs). When Tdist equals to 1, we get the smallest FP amount, and the spotting

performance is not highly influenced. Also, Tdist = 1 conserves the most ideal S-pattern

according to our normalisation condition.
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Table 5.12: Impact of Tdist on the fusion process.
Tdist TP FP FPR Accuracy F1-score f r
0.6 1505 2228 0.19 0.74 0.43
0.7 1486 2166 0.18 0.74 0.42
0.8 1462 2034 0.17 0.75 0.42
0.9 1359 1798 0.15 0.76 0.41
1 1149 1469 0.12 0.77 0.40

Concerning the threshold setting for normalisation coefficient (TCN), because for differ-

ent ROI sequence, the movement magnitude is different, it is not reasonable to set a specific

value for different samples. Hence, the average value of CN (CN) of each ROI sequence

is set as the baseline. The threshold range is shown in Table 5.13, the larger the TCN is,

the more FPs there are. Yet, when TCN get too small, too many qualified S-patterns are

eliminated, which affects the spotting performance. The CN is set as the TCN , because it

can get a good spotting result while the FP amount is acceptable.

Table 5.13: Impact of TCN on the fusion process. CN means the average value of normal-
ization coefficient for each ROI sequence.

TCN TP FP FPR Accuracy F1-score f r
0.8×CN 428 522 0.04 0.79 0.21
0.9×CN 797 1044 0.09 0.78 0.32
1×CN 1149 1469 0.12 0.77 0.40

1.1×CN 1369 2022 0.17 0.75 0.42
1.2×CN 1485 2332 0.20 0.73 0.42
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This section presents the third contribution of my thesis : data augmentation by Ham-

merstein model. The whole process: LTP-SpFS (our method with Hammerstein model)

is firstly evaluated, and compared with the SOA LBP-χ2 and with LTP-ML method. In

addition, the S-pattern synthesizing by Hammerstein model is also compared with a simple

GAN. The spotting result shows that Hammerstein model is more appropriate for the data

augmentation of micro-expression spotting. Then, we investigate the impact of LTP filter-

ing and S-pattern synthesizing on the entire process. The impact of parameters of these two

sub-steps are also analyzed separately. Finally, we study the distribution of (α, β) in the

linear module. The comparison of different distribution models of (α, β) : normal distri-

bution and Poison distribution shows that the model choice has few influences on the final

spotting result.
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5.4.1 Improvement of Spotting Performance by Data Augmentation

Using Hammerstein Model

In order to increase the size of S-pattern dataset for training, the LTP pattern selection

of LTP-ML is replaced by LTP filtering and S-pattern synthesizing. Our method with

Hammerstein model is called as LTP-SpFS. The results of LTP-SpSF are compared with

the SOA (LBP-χ2)+ method (LBP-χ2 with a supplementary merge process - see subsec-

tion 5.2.1) and with LTP-ML. Table 5.14 shows the spotting result. The spotting results are

Table 5.14: Result evaluation of LTP-SpFS and comparison with state-of-art method.
(LBP-χ2)+ method represents the LBP-χ2 with a supplementary merge process. F1-score f r
means F1-score of an evaluation per frame; F1-scoreI means the metric proposed by MEGC
(F1-score of an evaluation per interval). Our proposed LTP-SpFS method improves the
spotting performance of LTP-ML and outperforms the SOA LBP-χ2 method in terms of
F1-score (both metrics).

Database CASME I-A CASME I-B CASME II

F1-score f r

(LBP-χ2)+ 0.20 0.24 0.35

LTP-ML 0.40 0.38 0.59

LTP-SpFS 0.44 0.43 0.61

F1-scoreI

(LBP-χ2)+ 0.09 0.06 0.12

LTP-ML 0.26 0.23 0.42

LTP-SpFS 0.31 0.28 0.47

evaluated by two metrics: one is F1-score per frame, the other one is F1-score per inter-

val which is proposed by MEGC [64]. LTP-SpSF outperforms these two methods in both

databases thanks to the extension of the training dataset by employing Hammerstein model.

5.4.2 Hammerstein Model is More Appropriate than GAN for ME

Spotting

Hammerstein model is a traditional simulation model, which can be used for the modeling

of isometric muscle dynamics. A recent method for generation, largely used in data aug-

mentation, is GAN [33] (Generative Adversarial Network). In this subsection; we compare

both method to prove the superiority of our proposed S-pattern synthesizing.
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We utilize a basic GAN network to synthesize S-patterns. Since for one database, there

are just around 100 S-pattern samples for training, a shallow network is utilized for the

generation. The structure of our GAN is illustrated in Figure 5-9.

Random
noise

Databases

Discriminator

Generator

S−pattern�

S−pattern�	

Loss

Real

Fake

Figure 5-9: GAN structure for S-pattern synthesizing. Ransom noise is used as the in-
put, the generator is trained to generate S-patterns, and the discriminator will compare the
synthesized pattern with S-patterns from databases. Generator and discriminator are two
shallow convolution networks.

Figure 5-10 shows four samples of S-pattern generated by GAN. GAN synthesizes the

S-patterns more randomly than Hammerstein model, the process generates LTP patterns

instead of reliable S-patterns. Yet, all generated curves are labeled as S-patterns and then

feed into the training process. It imports noise for training the classifier. Table 5.15 lists

the best spotting result for S-pattern synthesized by GAN and Hammerstein model. The

F1-score f r (F1-score per frame) values for GAN in both databases are smaller than these

of Hammerstein model. For the further analysis, the SVM classifier is trained in two con-

ditions:

• Situation 1: training set which contains both original and synthesized S-patterns (S-

patternsO+S-patternsST )

• Situation 2: training set which contains only synthesized S-patterns. The original

S-patterns are not involved in the training of SVM classifier.

The spotting result with GAN in situation B is worse than that in situation A. That is

because GAN generates S-patterns without restricted conditions, and some synthesized

curve shape could not be treated as qualified S-patterns. The SVM classifier trained only
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(a) (b)

(c) (d)

Figure 5-10: Synthesized S-pattern samples for CASME I-section A by GAN. Only 5-
10a represents well the S-pattern. The other three LTPs can not be treated as reliable
S-patterns. 5-10b and 5-10c show the movement with onset too long or too short. 5-10d is
a on-going movement which has longer duration than micro-expression.
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with synthesized patterns by GAN is not able to spot ME accurately. Otherwise, the S-

patterns synthesized by Hammerstein model are more similar to original S-patterns (S-

patternsO), the performance is barely influenced whether the classifier is trained with or

without S-patternsO.

Table 5.15: S-patterns synthesized by Hammerstein model outperform that generated by
GAN for micro-expression spotting.

GAN Hammerstein model

CASME I-A
With S-patternO 0.40 0.44

Without S-patternO 0.22 0.44

CASME I-B
With S-patternO 0.39 0.43

Without S-patternO 0.05 0.42

CASME II
With S-patternO 0.57 0.61

Without S-patternO 0.03 0.60

In conclusion, the data augmentation by a simple GAN model is less performant than S-

pattern synthesizing by Hammerstein model. The performance of GAN might be improved

when there are more data for training. In the case that there is just a few features, a synthetic

model is needed. Even GAN is popular, it does not mean it is suitable in our case.

5.4.3 Analysis Combining LTP Filtering and S-pattern Synthesizing

Our method with Hammerstein model contains two processes: LTP filtering (LTP-SpF)

and S-pattern synthesizing (LTP-SpS). In this part, we compare the impact of these two

processes separately. The baseline result is LTP-ML. The spotting results and their corre-

sponding S-pattern amounts are listed in Table 5.16. The combination of LTP filtering and

S-pattern synthesizing, i.e. LTP-SpFS performs better than LTP-SpF and LTP-SpS respec-

tively. This is due to more reliable S-patterns. Moreover, S-pattern synthesizing (LTP-SpS)

improves the ME spotting performance compared with LTP-ML by synthesizing more re-

liable S-patterns.

Yet, the spotting performance of LTP-SpF (LTP filtering) varies depending on the

databases. It performs slightly better than LTP-ML in CASME I but not in CASME II.

Indeed, LTP filtering conserves more unqualified S-pattern than LTP pattern selection. It

is possible that the SVM model for CASME II is trained with more wrongly-labeled S-
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Table 5.16: ME spotting result in terms of F1-score f r with data augmentation by Hammer-
stein model. LTP-ML represents our method without Hammerstein model (HM); LTP-SpF
is our method with HM but only LTP filtering; LTP-SpS is our method with HM but only
S-pattern synthesizing; LTP-SpFS represents the whole process with Hammerstein model
(LTP filtering + S-pattern synthesizing). The spotting results for SpF and SpS are better
than LTP-ML in CASME I because the size of S-pattern dataset for training stage is in-
creased. In addition, the combination of these two steps improves the spotting performance
due to a larger data volume of S-pattern.

CASME I-A CASME I-B CASME II

LTP-ML 0.40 0.38 0.59

LTP-SpF 0.40 0.39 0.56

LTP-SpS 0.42 0.42 0.60

LTP-SpFS 0.44 0.43 0.61
(a) ME spotting result with data augmentation.

CASME I-A CASME I-B CASME II

LTP-ML 78 500 2567

LTP-SpF 2776 4308 13569

LTP-SpS 1170 2500 16540

LTP-SpFS 13880 21402 19589

(b) Data amount of LTP training set after the four different processes.
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patterns, and the spotting performance is affected.

We can also notice that for the whole process LTP-SpFS (our method with LTP filtering

and S-pattern synthesizing), the improvement for CASME II is not as good as that for

CASME I. To explain this observation, we analyze the spotting result of LTP-SpFS in

CASME II for different generation times n, as shown in Figure 5-11. The performance

begins to decline when the ratio of S-patterns are bigger than 0.3. Lots of unreliable S-

patterns are still conserved after the LTP filtering process. Then, the synthesizing process

increases their amount in the training dataset. Therefore, the spotting result is influenced

by these wrongly-labeled S-patterns.

(a) (b)

Figure 5-11: Result Evaluation according to the generation times n for the combination of
LTP filtering and S-pattern synthesizing on CASME II. TE is set to 0.25 for LTP filtering. 5-
11a shows the ratio between S-pattern and the total quantity of LTPs for training. And 5-11b
illustrates the F1-score for ME spotting. The parameter n for S-pattern synthesizing stops
at 5 for CASME II, because the amount of S-patterns in training dataset is large enough
and the F1-score have already begun to decline. By comparing these two figures, when
the proportion of S-patterns is around 0.3, the spotting method performs best. Otherwise,
the data augmentation process also synthesizes more wrongly-labeled S-patterns. It would
import extra noise into the training process and then influence the spotting performance.

5.4.4 Impact of Threshold Value for LTP Filtering

One main parameter for LTP filtering is the threshold of estimation error of Hammerstein

model (TE). Hence, we analyze the influence of TE on the amount of original S-pattern

after LTP filtering (S-patternsOF ) and also on the spotting performance. The process filters
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LTP patterns by Hammerstein model with the threshold TE . When the threshold value

gets larger, the conserved S-pattern amount becomes larger. As shown in Figure 5-12,

the spotting performance is improved along with the increasing of the S-pattern amount.

However, more noise is brought to the classification system along with the data volume

augmentation since more different pattern types are conserved. Thus, F1-score f r (F1-score

per frame) begin to decrease when the false positives are significant. In each database, in

order to find the optimal value for the spotting performance, all the samples are utilized to

learn the threshold of LTP filtering .
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Figure 5-12: Result Evaluation according to the error threshold value for LTP filtering
process. 5-12a shows the data augmentation of the S-pattern in the training dataset. More
S-patterns are conserved while the threshold is larger. The increasing trend stops when the
threshold can not filter any patterns. Unlike the curve for S-pattern amount, in 5-12b the
curve of F1-score f r increases at the beginning when there are more samples for training,
then it starts to decline as the filtering process conserves too many wrongly-labeled S-
patterns.

5.4.5 Impact of n for S-pattern Synthesizing

The generation multiple n is an essential input of S-pattern synthesizing process. n defines

the amount of synthesized S-patterns: for one original S-pattern, the process would gener-

ate n synthesized S-patterns. Hence, we investigate the impact of n on the spotting result

with this process. The amount of S-patterns in the training set after S-pattern synthesiz-

ing is n+ 1 times of that before the process. As illustrated in Figure 5-13, the bigger the
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S-pattern amount is, the higher the F1-score f r (F1-score per frame) is. When the total S-

pattern amount is 5 times of S-patternOF amount, the slope stabilizes as the feature amount

reaches saturation for the training. Thus, n is set to 5 for our experiments.

0 5 10 15 20

n times

0.3

0.32

0.34

0.36

F
1
-s

c
o
re

S-pattern synthesizing

(a) CASME I-Section A
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(b) CASME I-Section B

Figure 5-13: Improvement of F1-score f r by increasing the training set volume with syn-
thesized S-patterns from Hammerstein model. The result is evaluated depending on the
S-pattern amount. x axis means the generation multiple n of S-patternO. Y axis is the
F1-score. As the quantity of S-pattern increases, the F1-score f r value becomes higher than
that of S-patternOF .

5.4.6 S-pattern Synthesizing by Poisson Distribution of α and β

To generate more synthesized S-patterns, the distribution of α and β for qualified original

S-patterns (S-patternO) is analyzed. As illustrated in Figure 5-14, the distribution fits the

Poisson distribution.

The Poisson distribution can be represented as :

p(k) =
λk

k!
e−λ (5.9)

where λ is the mean value of the distribution. By setting λ as ᾱ and β̄ separately, (αi, βi)

set for S-pattern synthesizing can be obtained as:

αi = random(’Poisson’, ᾱ), βi = random(’Poisson’, β̄) (5.10)
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Figure 5-14: Histogram of α and β of the linear model for S-pattern

S-patterns are synthesized based on normal distribution and Poisson distribution re-

spectively. Table 5.17 shows the comparison result. When the generation times is set to 1,

Poisson distribution has a better result than the normal distribution, because Poisson distri-

bution is more similar to the α and β distribution, and it is able to generate more qualified

S-patterns. But the difference of S-patterns (S-patternsST ) synthesized by these two distri-

butions are not significant. When the generations times increase, they obtain the similar

spotting results. Under this condition, the sample amount for training is more important for

improving the spotting performance.

Table 5.17: Spotting performance comparison between S-pattern synthesizing by normal
distribution and Poisson distribution.

Generation times 1 2 3 4 5
Normal Distribution 0.37 0.39 0.41 0.42 0.42
Poisson Distribution 0.39 0.40 0.42 0.42 0.42
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This section shows one part of the fourth contribution of my thesis, which addresses

the challenge of spotting ME on long videos sequences. It uses two most recent databases,

i.e. SAMM and CAS(ME)2. Indeed, the experiments in this section is related to our con-

tributions to the micro-expression spotting task of MEGC2019 (Micro-expression Grand

Challenge) [64]. We firstly proposed the baseline result by the SOA LBP-χ2-distance

method (LBP-χ2) for the challenge. Then we perform our method without Hammerstein

model (LTP-ML) to compare the spotting performance. We demonstrate that our proposed

method is better than the SOA method: LBP-χ2-distance in spotting MEs.

As introduced in subsection 5.1.1, SAMM and CAS(ME)2 have different frame rates

per second (FPS) and facial resolution. Hence, the lengths of sliding window Wvideo, the

overlap size, the interval length of WROI and the ROIs size are different for these two

databases. Table 5.18 lists the experimental parameters.

For CAS(ME)2 database, there are 97 videos, but only 32 videos contain micro-expressions.

Thus, different results are given under two conditions: one is only considering 32 videos

which have ME (CAS(ME)2
ME), another one is to include the entire database (all 97 videos)

(CAS(ME)2).

Since the raw videos in SAMM database are too big to download (700GB, 224 videos),

only 79 videos were provided for the challenge. In this work, we report the results based
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Table 5.18: Parameter configuration for SAMM and CAS(ME)2 depending on FPS and
faical resolution. Lwindow is the length of sliding window Wvideo, Loverlap is the overlap
size between sliding windows, Linterval is the interval length of WROI . The facial resolution
given in the table is the average value among the entire database.

Database FPS Facial Resolution Lwindow Loverlap Linterval sizeROI
SAMM 200 400×400 200 60 60 15

CAS(ME)2 30 200×240 30 9 9 10

on these two versions of SAMM database: one is the cropped videos (only facial regions

are conserved, SAMMc
ME) provided by the authors using the method in [23], and the other

one is the videos with full frame (original video without any pre-processing) (SAMM f
ME).

The spotting process is performed only on the downloaded databases.

Experiments Results of LBP-χ2-distance (LBP-χ2) Method

The baseline method is LBP-χ2-distance (LBP-χ2) method. The spotting result is listed

in Table 5.19. For CAS(ME)2
ME , when the threshold for peak selection is set to 0.15, we

can get the best result for LBP-χ2 method, the F1-score is 0.0111. Meanwhile, the highest

F1-score of SAMMc
ME is 0.0055 when the threshold is set to 0.05.

Experiments Results of LTP-ML Method

After performing the LTP-ML method on these two databases, the spotting results for the

whole database are listed in Table 5.19. The F1-score for (SAMMc
ME) and CAS(ME)2

ME

are 0.0316 and 0.0179 respectively. LTP-ML performs better in SAMMc
ME than SAMM f

ME ,

since the cropped-face process has already aligned the face region in the video, and reduced

the influence of irrelevant movements. Concerning the spotting result of CAS(ME)2, there

are more FPs because the video in this database which has no ME may contain macro-

expressions.

Compared with LBP-χ2 method, LTP-ML is more accurate. LTP-ML method is

capable of spotting the subtle movements based on the patterns which represented the

temporal pattern variation of ME. Yet, the value of F1-score is low because of the large

amounts of FP. Both databases contain noises and irrelevant facial movements, especially
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Table 5.19: Micro-expression spotting result in long videos. SAMMc
ME represents the

SAMM cropped-face videos contain ME, SAMM f
ME are the ME videos with full frame,

CAS(ME)2
ME means all the videos in this sub-dataset of CAS(ME)2 have ME sequences.

Method LBP-χ2

Database SAMMc
ME CAS(ME)2

ME CAS(ME)2

nb_vid 79 32 97
TP 12 10 10
FP 4172 1729 5435
FN 147 47 47

Precision 0.0028 0.0057 0.0018
Recall 0.0755 0.1754 0.1754

F1-score 0.0055 0.0111 0.0035
(a) Baseline method

Method LTP-ML
Database SAMMc

ME SAMM f
ME CAS(ME)2

ME CAS(ME)2

nb_vid 79 79 32 97
TP 34 47 16 16
FP 1958 3891 1711 5742
FN 125 112 41 41

Precision 0.0171 0.0043 0.0093 0.0028
Recall 0.2138 0.2956 0.2807 0.2807

F1-score 0.0316 0.0229 0.0179 0.0055
(b) Our proposed method
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for CAS(ME)2, it is not easy to separate macro-expressions from micro-expressions based

on 30fps videos. The ability of distinguishing ME from other movements still need to be

enhanced.

In conclusion, whilst our method was able to produce a reasonable amount of TPs,

there are still a huge challenge lays ahead due to the large amount of FPs. Further research

should focus on enhancing the ability of distinguishing ME from other facial movements

to reduce FPs.

5.6 Conclusion

In this chapter, we demonstrate our proposed LTP pattern is relevant for micro-expression

spotting. In addition, our method is more performant than the SOA LBP-χ2 method in both

short video and long video databases. Furthermore, the LTP filtering and data augmentation

by Hammerstein model help to improve the micro-expression spotting performance.
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Chapter 6

Conclusion and Perspective

6.1 Conclusion

The Micro-expressions (MEs) are very important nonverbal communication clues. How-

ever, due to their local and short nature, spotting them is challenging. We showed in the

state of arts that there are few but increasing articles on micro-expression analysis. Mean-

time, the spotting accuracy is low. Yet, the research begins to attract more attentions,

and the community organized the first micro-expression spotting challenge in MEGC2019

(Micro-Expression Grand Challenge).

In this thesis, we addressed this problem by using a dedicated local and temporal pattern

(LTP) of facial movement. This pattern has a specific shape (S-pattern) when ME are dis-

played. Thus, by using a classical classification algorithm (SVM), MEs are distinguished

from other facial movements. We also proposed a global final fusion analysis on the whole

face to improve the distinction between ME (local) and head (global) movements.

The automatic micro-expression analysis is restricted by the small size of database.

There are only 6 public spontaneous micro-expression database, and the average amount

of ME sequence samples for these databases is 152. A performant classifier requires more

samples for training. On the other side, there is no agreement on the result evaluation meth-

ods and metrics. Each paper has its own metric which is adapted to its proposed method.

Yet, the inconsistency influences the comparison between different spotting methods.

Concerning our method, the learning of S-patterns is also limited by the small number
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of ME databases and the low volume of ME samples. Hammerstein models (HMs) are

known to be a good approximation of muscle movements. By approximating each S-pattern

with a HM, we have both filtered outliers and generate new similar S-patterns. By this way,

we performed a data augmentation for S-pattern training dataset and improved the ability

to differentiate micro-expressions from other facial movements.

Besides, we participated to the micro-expression spotting challenge (MEGC2019). Through

an international cooperation, we proposed a novel result evaluation method per interval to

evaluate the spotting performance. Meanwhile, we applied our method to spotting micro-

expression in long videos and provided the baseline result for the challenge.

The spotting results, performed on CASMEI and CASMEII, SAMM and CAS(ME)2,

showed that our proposed LTP outperforms the most popular spotting method: LBP-χ2-

distance in terms of F1-score. The experimental analysis was according to our contri-

butions. Firstly, the relevancy of our proposed feature (local temporal pattern) has been

proved by the comparison with another commonly used feature (LBP-TOP). The spotting

per emotion verified the assumption: the S-patterns are similar for all kinds of emotions.

Secondly, adding the fusion process helped enhance the ability of distinguish the micro-

expressions and other movements. Thirdly, data augmentation with Hammerstein model

improved even more the spotting performance. It is because that LTP filtering conserves

more reliable S-patterns and S-pattern synthesizing largely increases the size of training

dataset. Except the global analysis on the contributions, the impact of several parameters

in the process on the spotting performance were analyzed to identify the optimal configu-

ration of experiment.

Therefore, our contributions are highlighted as below:

• A novel relevant feature for micro-expression spotting: local temporal patterns (LTPs);

• A late spatial and temporal fusion, which helps to enhance the ability of distinguish-

ing micro-expressions from other facial movements;

• LTP filtering and Data augmentation by Hammerstein model;

• The first micro-expression spotting challenge : a novel result evaluation method per

164



interval to evaluate the spotting performance, and spotting micro-expression in long

videos by baseline method and our proposed method.

6.2 Perspectives

6.2.1 Perspective of Our Method

Concerning the perspective of our method, we discuss the following three points:

1. Reducing false positives: The micro-expression spotting ability is still weak due to

the large amount of irrelevant movement and noise. In order to reduce the false positives

causing by other facial movement or environment change such as eye blinks and lighting

variation, further researches should focus on enhancing the ability of distinguishing ME

from other facial movements, including the implementation of deep learning approaches

when we have enough data.

2. Micro-expression spot-and-recognize schema: As long as the micro-expression

is spotted in the video, the spotted clips can be used for micro-expression recognition. In

our proposed method, the S-patterns are recognized from local regions, the combination

of different ROI indicates the different action units, i.e. different emotion types. There-

fore, the local position of spotted S-patterns can be used as a feature for micro-expression

recognition.

3. Generalization of spotting method: We emphasize on the further improvement for

our method:

• First of all, the cross-database validation of micro-expression spotting is expected.

The classifier of our method is trained and tested in the same database by leave-

one-subject-out-cross-validation (LOSubOCV). The further experiments can be per-

formed in these two situations: 1). train the classifier in one database and then per-

form the test in another database; 2). treat multiple database as one database and

performed the machine learning method by LOSubOCV.

• Secondly, the parameters in data augmentation method with Hammerstein model

is specific for each database. It is worth to generalize the parameters for different
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databases to develop the common S-patterns for micro-expressions. In this case,

even for a database without annotations, micro-expressions can be spotted thanks to

the common S-pattern.

6.2.2 Data Augmentation for Micro-Expression Spotting

Since the micro-expression analysis is restricted by the amount of micro-expression sam-

ples, the data augmentation is necessary to improve the performance.

• More micro-expression databases are expected. Chinese Academy of Science has

built a platform for micro-expression annotation, more micro-expression sequences

may be available in the future. In addition, some macro-expression frames with small

intensity can be utilized as micro-expression samples.

• Beside creating more database, synthesizing either micro-expression features (as we

have done) but also video sequences is an option for data augmentation. More gen-

eration method can be exploited to synthesize reliable relevant micro-expression fea-

tures.

6.2.3 Consistency of Metrics

Concerning the consistency of metrics, as the machine learning is the trend for the further

research of micro-expression analysis, the common metrics of machine learning method:

precision, recall and F1-score are recommended. In addition, spotting micro-expression

interval seems promising as it gives more samples to study the spotted movement. Yet, to

reach an agreement on the result evaluation method and metrics, it requires more research

and more experiments to verify which metric is more appropriate for the applications of

micro-expression spotting.

6.2.4 Micro-Expression Spotting Applications

We look forward to the applications for micro-expression spotting in real world.
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• More research should focus on spotting micro-expression in long videos or in in-

the-wild video samples (e.g. MEVIEW database [52]). Spotting micro-expression

in these kinds of situation is more challenging than that in short videos samples

with spontaneous micro-expression. For instance: differentiating micro-and macro-

expressions, variation of lightness situation, masked face, large head movement etc.

• The micro-expression spotting can target to an applicative situation. For example,

the technique can spot the symptoms when the patient in coma is going to wake up.

However, it requires specific databases and annotations which are adapted to this

application instead of emotion labels.

• Micro-expression spotting in real time is also expected. The task requires not only a

strong ability of differentiating micro-expression and other movements, but also the

rapid computation capacity.

• Fusion of macro- and micro-expression spotting could be interesting for application

concerning emotion analysis.
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Glossary

Abbreviation of Definitions

AE: Auto-Encoder

AU: Action Unit

CN: Normalisation Coefficient

F1-score f r: F1-score per frame

F1-scoreI: F1-score per interval

FACS: Facial Action Coding System

FN: False Negative

FP: False Positive

FPR: False Positive Rate

GAN: Generative Adversarial Network

HM: Hammerstein model

LBP: Local Binary Pattern

LBP-χ2: LBP-χ2 distance method

LBP-TOP: Local Binary Pattern on three orthogonal planes: xy, xt and yt

LC: Local Classification

LoSubOCV: Leave-One-Subject-Out-Cross-Validation

LQ: Local Qualification

LTP: Local Temporal Pattern

LTP-ML: Micro-expression spotting by local temporal pattern without Hammerstein model

LTP-SpF: LTP filtering

LTP-SpFS: Micro-expression spotting by local temporal pattern with LTP filtering and S-
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pattern synthesizing

LTP-SpS: S-pattern Synthesizing

ME: Micro-Expression

MESR: Micro-Expression Spotting and Recognition

MP: Merge Process

PCA: Principal Component Analysis

ROI: Region of Interest

SF: Spatial Fusion

SOA: State-of-atrs

S-pattern: Local temporal pattern when micro-expression oocurs

STF: Spatial and Temporal Fusion

SVM: Support Vector Machine

TP: True Positive

TPR: True Positive Rate

Abbreviation of Variables and Parameters

(α,β): Parameters in the linear module of Hammerstein model.

EH : Estimation error of Hammerstein model

K +1: Number of frames during the average micro-expression duration, 300ms

p: Parameters in non-linear module of Hammerstein model

J: Amount of chosen ROIs

TCN : Threshold CN value for local qualification

Tdist : Threshold distance value for LTP pattern selection and local qualification

S-patternO: Original S-pattern after label annotation and AU selection (Figure 3-9).

S-patternOF : Conserved S-patternO after LTP filtering.

S-patternOS: Conserved S-patternO after LTP pattern selection (Figure 3-9).

S-patternST : Synthesized S-pattern by Hammerstein model.

TE : Threshold of estimation error for LTP filtering.

WROI: Sliding window per frame with length K +1 for LTP computation.
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Publication

International Journal

WEBER Raphaël, Li Jingting, SOLADIE, Catherine, et SEGUIER, Renaud. (2019) A

Survey on Databases of Facial Macro-expression and Micro-expression. In: Bechmann

D. et al. (eds) Computer Vision, Imaging and Computer Graphics Theory and Applica-

tions. VISIGRAPP 2018. Communications in Computer and Information Science, vol

997. Springer, Cham

International Conference

LI, Jingting, SOLADIE, Catherine, SEGUIER, Renaud, Wang, Su-Jing, et Yap, Moi

Hoon. Spotting Micro-Expressions on Long Videos Sequences. In : 2019 14th IEEE Inter-

national Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE, 2019.

p. 1-5.

SEE, John, YAP, Moi Hoon, LI, Jingting, Hong, Xiaopeng, et Wang, Su-Jing. MEGC

2019 – The Second Facial Micro-Expressions Grand Challenge. In : 2019 14th IEEE

International Conference on Automatic Face & Gesture Recognition (FG 2019). IEEE,

2019. p. 1-5.

LI, Jingting, SOLADIE, Catherine, et SEGUIER, Renaud. A Survey on Databases for

Facial Micro-expression Analysis. VISIGRAPP(5: VISAPP).2019

LI, Jingting, SOLADIE, Catherine, et SEGUIER, Renaud. LTP-ML: Micro-Expression

Detection by Recognition of Local Temporal Pattern of Facial Movements. In : Automatic

Face & Gesture Recognition (FG 2018), 2018 13th IEEE International Conference on.

IEEE, 2018. p. 634-641
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National Conference

LI, Jingting, SOLADIE, Catherine, et SEGUIER, Renaud. Détection de Micro-expressions

par Reconnaissance de Motif Local Temporel de Mouvements Faciaux. apex, 2017, vol. 1,

p. 1.5. (Reconnaissance des Formes, Image, Apprentissage et Perception (RFIAP), 2018)

Community activity

Oral presentation at «Réunion du GdR ISIS : Journée Action, Visage, geste, action et com-

portement» : A survey on Automatic Facial Micro-expression Spotting: Databases, Metrics

and Methods

Organisation of The Third Facial Micro-Expressions Grand Challenge (MEGC2020)
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Appendix A

FACS - Facial Action Coding System[1]

AU Description Facial muscle Example image

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer Corrugator supercilii,

Depressor supercilii

5 Upper Lid Raiser Levator palpebrae superioris

6 Cheek Raiser Orbicularis oculi, pars

orbitalis

7 Lid Tightener Orbicularis oculi, pars

palpebralis

9 Nose Wrinkler Levator labii superioris

alaquae nasi
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10 Upper Lip Raiser Levator labii superioris

11 Nasolabial Deepener Zygomaticus minor

12 Lip Corner Puller Zygomaticus major

13 Cheek Puffer Levator anguli oris (a.k.a.

Caninus)

14 Dimpler Buccinator

15 Lip Corner Depressor Depressor anguli oris (a.k.a.

Triangularis)

16 Lower Lip Depressor Depressor labii inferioris

17 Chin Raiser Mentalis

18 Lip Puckerer Incisivii labii superioris and

Incisivii labii inferioris

20 Lip stretcher Risorius w/ platysma
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22 Lip Funneler Orbicularis oris

23 Lip Tightener Orbicularis oris

24 Lip Pressor Orbicularis oris

25 Lips part Depressor labii inferioris or

relaxation of Mentalis, or

Orbicularis oris

26 Jaw Drop Masseter, relaxed Temporalis

and internal Pterygoid

27 Mouth Stretch Pterygoids, Digastric

28 Lip Suck Orbicularis oris

41 Lid droop Relaxation of Levator

palpebrae superioris

42 Slit Orbicularis oculi
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43 Eyes Closed Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis

44 Squint Orbicularis oculi, pars

palpebralis

45 Blink Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis

46 Wink Relaxation of Levator

palpebrae superioris;

Orbicularis oculi, pars

palpebralis
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Appendix B

Summary Table for Published

Micro-Expression Recognition Articles

with Their Corresponding Metrics and

Databases

Table B.1 comprehensively lists the published articles of micro-expression recognition.

And all the articles are classified into their corresponding metrics and databases.

CASME II [135] and SMIC [66] are two most used databases. The number of articles

using SAMM [19] and CAS(ME)2 [104] are still small. This is due to that they are still

new for the community. Since these two databases contain long video samples, we look

forward that more research could perform their experiments on them.
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Appendix C

Feature Extraction for Micro-Expression

Spotting in Long Videos

In this appendix, the LTP computation process of chapter 3 is updated for the long video

situation. The subscript of formulas in LTP feature extraction is changed, because there

multiple short sequences in one long video.

After the pre-processing in subsection 3.4.1, local temporal patterns (LTPs) [63] are

analyzed in the local region to distinguish micro-expression from other movements. They

are extracted from 12 ROIs (Regions of Interest) respectively in each short sequence.

Supposing there are M short sequences in one long video. Then in the short video Im

(m≤M), the jth ROI sequence is noted as ROIm
j ( j ≤ 12). The following paragraphs

introduce the LTP computation process in one short ROI sequence: ROIm
j .

Main Local Movement Extraction by PCA

PCA is performed on the temporal axis to conserve the main distortion of the grey level

texture. The first two components of each ROI frame are used to analyze the variation

pattern of local movement. The process can be presented as in equation C.1.

Pm, j
1 (x) · · · Pm, j

N (x)

Pm, j
1 (y) · · · Pm, j

N (y)

= Φ× (


Fm, j

1 (1) · · · Fm, j
N (1)

. . .

Fm, j
1 (a2) · · · Fm, j

N (a2)

− Ī) (C.1)
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where Fm, j
n represents the pixels in one ROI frame, Pm, j

n = [Pm, j
n (x),Pm, j

n (y)] are the first

two components of PCA, n is the frame index in this ROI sequence (n≤ N, where N is the

total number of frames in this sequence). Hence, each frame in ROIm
j can be represented

by a point Pm, j
n .

LTP Extraction: Distance Computation

A sliding window WROI per frame with length K +1 (300ms, the average duration of ME)

is performed on ROIm
j . The distances between the first frame and the other frames in this

window are calculated. The window goes through each frame in the sequence ROIm
j , and

the distance set can be got as [∆m
j (n,n+1),∆m

j (n,n+ k), ...,∆m
j (n,n+K)], as shown in

Figure C-1.

��
�,�

���	

\Delta_{j}(n,n+1)

∆�
�(�, � + 1) ∆�

�(�, � + �)

…
t

1s

��
�� ��

300ms

Figure C-1: Distance calculation for one ROI sequence ROIm
j in video clip Im.

The values of distance are then normalized for the entire ROIm
j to avoid the influence of

different movement magnitude in different videos. Hence, the feature of frame n for ROIm
j

can be represented as: [CNm
j , dm

j (n,n+1), · · · ,dm
j (n,n+K], where dm

j (n,n+ k) is the

normalized distance value and the CNm
j is the normalization coefficient.
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List of Figures

0-1 Tendance de la recherche MESR. Le nombre d’articles sur MESR aug-

mente d’année en année, principalement dans le domaine de la reconnais-

sance de l’ME (colonne du bas). La recherche sur la détection de ME n’a

pas encore suffisamment attiré l’attention (colonne en haut). . . . . . . . . 4

0-2 Exemple de motif temporel local (LTP) au cours d’une ME située dans la

région du sourcil droit sur une période de 300 ms (durée moyenne de ME).

Ce LTP représente l’évolution de la texture (niveau de gris) d’une ROI

pendant la ME. Il forme un motif en S (S-pattern). La courbe atteint son

sommet au bout de 150 ms environ, puis reste stable ou diminue légère-

ment. Ce motif est spécifique aux mouvements ME et est appelé motif en

S (S-pattern) en raison de la forme de la courbe.(Vidéo: Sub01_EP01_5 of

CASME I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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0-3 Vue d’ensemble de notre méthode. La méthode proposée comporte trois

étapes de traitement: pré-traitement, extraction de caractéristiques et détec-

tion de micro-expressions. Nous mélangeons des processus globaux (tout

le visage) et locaux (les ROIs). La sous-étape d’extraction des caractéris-

tiques et la première sous-étape de la détection de la micro-expression sont

effectuées sur des régions d’intérêt (ROIs) pertinentes, tandis que les autres

étapes sont réalisées sur tout le visage (global). Les LTPs, y compris les

S-patterns, sont ensuite utilisés comme échantillons d’apprentissage pour

construire le modèle d’apprentissage automatique (SVM) en vue de la clas-

sification. En particulier, une fusion spatiale et temporelle finale est réal-

isée pour éliminer les faux positifs tels que les clignements des yeux. L’une

des spécificités du processus réside dans l’utilisation de motifs temporels

locaux (LTP), pertinents pour la détection de micro-expressions: les micro-

expressions sont des mouvements brefs et locaux. . . . . . . . . . . . . . . 10

0-4 ACP sur l’axe des temps par ROI. Une séquence vidéo locale ROI j avec N

images (durée de la vidéo ≤ 3s) est traitée par l’ACP sur l’axe des temps.

Les premières composantes de l’ACP conservent le mouvement principal

de la texture de niveau de gris sur cette ROI pendant cette durée (N images).

L’échantillon vidéo provient de CASME I ( c©Xiaolan Fu) . . . . . . . . . . 11

0-5 Sélection de LTP pour l’étape d’entraînement. Tous les LTPs sont classés

en 2 classes: S-patterns et non-S-patterns. Les LTPs passent par 3 étapes

pour l’annotation: l’annotation par image, la sélection de ROI à partir de

l’AU et la sélection du motif de LTP. Les S-patterns annotés et les non-S-

patterns sont ensuite transmis à l’étape d’apprentissage du classifieur SVM. 13
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0-6 Filtrage de LTP et synthèse du S-pattern par le modèle d’Hammerstein

(HM) pendant la phase d’entraînement. Dans le bloc de droite, le S-pattern

original (S-patternO), après l’annotation et la sélection de l’AU de la fig-

ure 0-5) passe par l’identification du système du modèle d’Hammerstein.

L’ensemble de paramètres (α,β,EH) correspondant à ce S-pattern est en-

suite estimé. Les S-patterns sont sélectionnés par le processus de filtrage

de LTP en fonction de l’erreur d’estimation EH . Les motifs sélection-

nés (S-patternOF ) sont utilisés pour générer n S-patterns synthétisés (S-

patternsST ). Pour la comparaison, le bloc de gauche montre notre méthode

sans modèle d’Hammerstein, c’est-à-dire le résultat après la sélection du

motif de LTP: S-patternOS.

Les abréviations ci-dessous sont fréquemment utilisées.

S-patternO: S-pattern original après annotation de l’étiquette et sélec-

tion de l’AU de la Figure 0-5.

(α,β): paramètres dans le module linéaire du modèle d’Hammerstein.

EH : Erreur d’estimation du modèle d’Hammerstein

S-patternOF : S-pattern original (S-patternO) conservé après le filtrage

de LTP.

S-patternST : S-pattern synthétisé par le modèle d’Hammerstein.

S-patternOS: S-pattern original (S-patternO) conservé après la sélection

du motif LTP de la Figure 0-5. . . . . . . . . . . . . . . . . . . . . . . . . 15

1-1 MESR research trend. The number of articles on MESR is increasing by

year, mainly in the area of ME recognition (bottom column). ME spotting

research has not yet attracted sufficient attention (column at the top). . . . . 28
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1-2 Example of Local temporal pattern (LTP) during a ME located in the right

eyebrow region over a period of 300ms (average duration of ME). This LTP

represents the evolution of the grey level texture of one ROI during the ME.

The curve reaches the top in around 150ms and then stays stable or slightly

declines. This pattern is specific of ME movements, and is referred to S-

pattern due to the curve shape. (Video: Sub01_EP01_5 of CASME I) . . . 30

2-1 Samples in spontaneous micro-expression database . . . . . . . . . . . . . 42

2-2 Three Modalities of SMIC database. Sample at the left side is NIR image,

in the middle is the VIS image and at the right side is the HS image. . . . . 46

2-3 Images samples from MEVIEW database . . . . . . . . . . . . . . . . . . 50

2-4 Acquisition setup for elicitation and recording of micro-expressions [135] . 51

2-5 Histogram of action units (AUs) annotations for ME databases. The AU

amount on the region of eyebrows (e.g. AU 1,2,4) and mouth (e.g. AU 12,

14) indicate that these two regions have the most frequent ME movement. . 52

2-6 Micro-expression spot-and-recognize scheme. 2-6a: the non-micro-expressions

are identified by recognition method. 2-6b:the micro-expression samples

are firstly spotted in long videos, then they are classified into different emo-

tion classes by recognition methods. . . . . . . . . . . . . . . . . . . . . . 74

3-1 Overview of our method. The proposed method contains three steps of pro-

cessing: pre-processing, feature extraction and micro-expression spotting.

We mix both global and local processes. Both sub-step of feature extraction

and the first sub-step of micro-expression spotting are performed on rele-

vant regions of interest (ROIs). LTPs including S-patterns are then used

as the training samples to build the machine learning model (SVM) for

classification. Especially, a final spatial and temporal fusion is performed

to eliminate the false positives such as eye blinks. The specificity of the

process is the use of local temporal patterns (LTP), which are relevant for

micro-expression spotting: micro-expressions are brief and local movements. 80
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3-2 Facial landmarks and ROIs distribution. 49 landmarks are detected and

ROIs are generated depending on the position of 12 chosen landmarks.

12 ROIs, relevant for micro-expression, are selected from the region of

eyebrows, nose and mouth contour.( c©Xiaolan Fu) . . . . . . . . . . . . . 82

3-3 PCA on time axis per ROI. A local video sequence of ROI j with N frames

(video duration ≤3s) is processed by the PCA on the time axis. The first

components of PCA conserve the principal movement of grey level texture

on this ROI in this duration (N frames). The video sample comes from

CASME I ( c©Xiaolan Fu) . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3-4 PCA energy analysis. The movement is contained in the first 2 components

with more than 80% energy. (Sub01_EP03_5_ROI10 of CASMEI) . . . . . 84

3-5 Interface of the result distribution after PCA process. (3-5a) The point dis-

tribution corresponds to all frames in one ROI sequence in PCA projection

space. The chosen ROI is the inner side of left eye brow. The blue, red and

green dots represent the frames before onset, from onset to offset and after

offset respectively, and the yellow dots mean the apex frames. (3-5b, 3-5c

and 3-5d) Displacement comparison by ROI images. The first image illus-

trate the first frame in the ROI sequence. The three images on the right

represent the current frame (CF), CF-1 and CF+1. The red arrow shows

the displacement of the eyebrow. In 3-5b, there is barely no movements at

the beginning of the sequence. In 3-5c, the eyebrow goes down due to the

micro-expression. In 3-5d, the eyebrow is raised up compared with apex

frame because the ME fades out. Besides, the position of eyebrow is even

higher than the first frame due to other facial movements. Comparing the

arrow length in the different frames, a conclusion can be obtained, i.e. ge-

ometric features in the 3-5a depending on the distribution of frames can

represent the temporal displacement in ROI. . . . . . . . . . . . . . . . . . 86
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3-6 Extraction of local temporal pattern. In the sequence ROI j , the nth frame

can be represented as point P j
n in the PCA projection space. The frame dis-

tribution on the PCA projection space of this video sequence is illustrated

in 3-6a.(Continued on the next page) . . . . . . . . . . . . . . . . . . . . 88

3-6 The larger the distance between two points is, the more evident the dis-

placement on ROI region between these two frame is. 3-6b shows the point

distribution from P j
n to P j

n+K (frames from n to n+K, 300ms). Normalized

distances between this nth frame and other K following frames are calcu-

lated as shown in 3-6c. The ensemble of distances forms a curve, which

is called the local temporal pattern (LTP). And here is the S-pattern for

the ME frames. Meantime, 3-6d shows the point distribution from P j
m to

P j
m+K (Non-ME frames from m to m+K). The corresponding LTP pattern

is illustrated in 3-6e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3-7 Histogram for normalization coefficient (CN) value for all ROI sequences

in CASME I. X axis means the CN value, Y axis is the ROI sequence

amount for each bin. The average CN value is around 4. Yet, there is a

few ROI sequences which have CN values larger than 10, which represents

there is almost none evident movement in this video. In the feature con-

struction step, the CN value for this kind of ROI sequences is set to 10. . . . 91

3-8 Local temporal patterns (LTPs) of two different videos.(Continued on the

next page) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
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3-8 Local temporal patterns (LTPs) of two different videos. 3-8a and 3-8b are

the LTPs during the micro-expression movement at ROI 32 and ROI 38 (the

right and left corners of the mouth) in the video Sub01_EP01_5. The emo-

tion of this video is labeled as joy, which is often expressed by mouth cor-

ner displacement. 3-8e and 3-8f are the LTPs during the micro-expression

movement at ROI 5 and ROI 6 (the inside corners of the right and left eye-

brows) in the video Sub04_EP12. The emotion of this video is labeled as

stress, which is often expressed by the movement of the eyebrows. The

pattern of curves in these four images are similar even through the ROIs

and subjects are different, we call it S-pattern. 3-8c and 3-8g show the LTP

of other ROIs at the same time as 3-8a/ 3-8b and 3-8e/ 3-8f respectively.

The pattern is different from S-pattern because the micro-expression does

not occur on these regions. 3-8d and 3-8h illustrate the LTPs in the same

ROI as 3-8a and 3-8f respectively, but at a different moment in the video.

These patterns differ from S-pattern since the micro-expression does not

occur at this moment. (video samples in CASME I) . . . . . . . . . . . . . 94

3-9 LTP selection for training stage. All the LTPs are classified into 2 classes:

S-patterns and non-S-patterns. LTPs pass through 3 steps for the annota-

tion: label annotation per frame, AU selection per ROI and LTP pattern

selection. The annotated S-patterns and non-S-patterns are then fed to the

training stage of the SVM classifier. . . . . . . . . . . . . . . . . . . . . . 95

3-10 Label annotation per frame. The rectangle represents an entire video, and

the interval from onset to offset is the ME sequence. The S-pattern is ex-

pressed at the beginning of the onset. Hence, frames with S-pattern (in the

range [onset-K/3, onset]) are labeled with label 1 (S-pattern) and the other

frames are labeled with 0 (non S-pattern). . . . . . . . . . . . . . . . . . . 96

3-11 LTP pattern selection of training stage for local classification. LTPs labeled

as S-pattern pass through this process to conserve reliable S-patterns. The

selection criteria include distance value d in LTP, normalization coefficient

(CN) and curve slope(pLT P). . . . . . . . . . . . . . . . . . . . . . . . . . 97
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3-12 Spatial and temporal fusion. The predicted labels from local classifica-

tion for all ROIs are represented as LCn=1,...,N
ROI j=1,...,J

, where N is the number of

frames in the whole video, J is the chosen ROIs amount. Passing through

the local qualification (LQ) per ROI sequence, the spotting intervals which

are too short or too long are deleted. Then for each frame n, the local

spotting results LQn
ROI j=1,...,J

are integrated into a single SFn, which repre-

sents the spotting result for the entire frame. A merge process is applied

on SFn=1,...,N to form a consecutive ME movement. Thus, we get the final

result STFn=1,...,N for one video sequence. . . . . . . . . . . . . . . . . . . 98

3-13 Flow chart of temporal selection process in local qualification. The jth

ROI sequence passes through the distance and normalization coefficient

threshold selection, then predicted label of this sequence LCn=1,...,N
ROI j

enter

the process as input. LQn=1,...,N
ROI j

is the output of the process, i.e. the result

after local qualification (LQ). . . . . . . . . . . . . . . . . . . . . . . . . . 99

3-14 Flow chart of spatial fusion. Inose means the all the ROI index on nose

region, and Ieyebrow means all the ROI index on eyebrows. For nth frame

in video sample, predicted label of all J ROIs LQn
ROI j=1,...,J

enter the spatial

fusion process. The output SFn is a predicted label for this frame, and it

represents that whether there is micro-expression on this entire frame or not. 100

3-15 Flow chart of merge process. . . . . . . . . . . . . . . . . . . . . . . . . . 101

3-16 The long video is divided into several short sequences (I1, .., Im, ..., IM) by

a sliding window (1s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3-17 Facial landmarks tracking and ROI selection. On the right: an example

from SAMM; on the left: an example from CAS(ME)2 . . . . . . . . . . . 104
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4-1 Overview of our method combining Hammerstein model. Our proposed

method has been presented in Figure 3-1. The grey block replaces the

LTP selection by using Hammerstein Model. More reliable S-patterns (LTP

patterns specific to ME movements) are produced by this model. LTPs in-

cluding S-patterns (both real and synthesized) are then used as the training

samples to build the machine learning model (SVM) for classification. . . 108

4-2 LTP filtering and S-pattern synthesizing by Hammerstein model (HM) dur-

ing the training stage. In the right block, the original S-pattern (S-patternO,

after label annotation and AU selection in Figure 3-9) passes through the

system identification of Hammerstein model. The parameter set (α,β,EH)

corresponding to this S-pattern is estimated. S-patterns are selected by

LTP filtering process according to the estimation error EH . The selected

patterns (S-patternOF ) are used to generate n synthesized S-patterns (S-

patternsST ). For comparison, the left block shows our method without

Hammerstein model, i.e. the result after LTP pattern selection: S-patternOS.

The below abbreviation are frequently used:

S-patternO: original S-pattern after label annotation and AU selection

of Figure 3-9.

(α,β): parameters in the linear module of Hammerstein model.

EH : Estimation error of Hammerstein model

S-patternOF : Conserved S-patternO after LTP filtering.

S-patternST : Synthesized S-pattern by Hammerstein model.

S-patternOS: Conserved S-patternO after LTP pattern selection of Fig-

ure 3-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
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4-3 Hammerstein model structure. Hammerstein model represents well the

muscle movement. S-patterns are caused by the facial muscle movement

and the variation curve is similar to the local muscle movement. Thus,

S-patterns can be well synthesized by Hammerstein model. The model is

a concatenation of two modules: a static non-linearity module (that ma-

nipulates the magnitude) and a second-order dynamics linear module (that

simulates the movement pattern). . . . . . . . . . . . . . . . . . . . . . . . 110

4-4 The basic system identification process for Hammerstein model. Depend-

ing on the data which is constructed by constant command and chosen S-

patternO, the corresponding Hammerstein model can be estimated by sys-

tem identification. In other words, the parameters of the non-linearity mod-

ule (p), of the linear module (α,β) and the system estimation error (EH) are

determined. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4-5 One Example of real S-pattern (S-patternO) and the corresponding synthe-

sized S-pattern (S-patternST ) by estimated by Hammerstein model. . . . . 113
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4-6 The distribution of (α,β) is related to the curve shape of S-pattern. Each

S-pattern (S-patternOS) has been associated with its own identified Ham-

merstein model (α,β,EH). The upper-left figure shows the distribution of

(α,β) (x: α, y: β) and the associated error: EH (heat map). (α,β) densely

distributes at the top-left corner with a small error. In the six below images,

the blue curve means the original S-patterns (S-patternOS). Then, based

on the estimated Hammerstein model with original (α,β), the synthesized

S-patterns (S-patternST0) are generated (red curve). The curve shape of S-

patterns in these six figures vary along with the change of (α,β). The first

three curve images correspond to the densely distributed region of (α,β).

The corresponding (α,β) for the last three curve images are far from the

upper-left region. They have different curve shapes compared with the first

three. The distribution of (α,β) is associated with the dynamic property of

ME (shape of S-pattern). Hence, we would be able to both filter wrongly-

labeled S-patternsO using EH values and also synthesize virtual S-patterns

based on the value range of (α,β). . . . . . . . . . . . . . . . . . . . . . . 116

4-7 Parameter configuration for LTP filtering and S-pattern synthesizing. For

one database, each selected S-pattern is treated separately to estimate its

specific Hammerstein model. Based on these obtained data, the mean value

(ᾱ, β̄, ĒH) and the standard deviation (σα,σβ) can be calculated. . . . . . . 117

4-8 Flow chart of LTP filtering process. The original S-patternO dataset may

contain some wrongly-labeled samples. Each original S-pattern (S-patternO)

passes through the system identification to obtain its estimation error EH .

By comparing with the threshold TE , the S-patternO is decided to be kept

as S-pattern after LTP filtering (S-patternOF ) or be removed from training

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
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4-9 Examples of eliminated real LTPs (labeled as S-patterns) after S-pattern

filtering. The threshold TE is set to 0.0250. The curve shape in 4-9a rep-

resents a movement which begins to fade out. 4-9b and 4-9c show facial

movements which are about to begin. 4-9d is the movement at the end of

video sequence. These patterns are removed from training set by LTP fil-

tering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4-10 Flow chart of S-pattern synthesizing. The number of generation loops is de-

fined by n. Once the (αi,βi) is determined, along with the S-patternOF , the

specific Hammerstein model is constructed for synthesizing. S-patternOF is

needed in this step because it helps to identify the parameters p in the non-

linear module. Then the S-patternSTi is synthesized by the Hammerstein

modeli whose input is the constant command u(t). . . . . . . . . . . . . . . 122

4-11 Example of 1 original S-pattern (S-patternO) and 10 S-patterns generated

by Hammerstein model (S-patternsST ). Depending on the S-patternO, we

can generate n times similar S-patternsST for data augmentation. . . . . . . 122

5-1 Organization of Chapter5 based on our four contributions. . . . . . . . . . 125

5-2 Baseline method -LBP χ2-distance difference. In the first step, the face

image is divided into several blocks. Then LBP is computed per pixel. The

feature for the jth block on current frame (CF) is the LBP histogram per

ROI after a normalisation. The second step is χ2-distance computation. i

is the ith bin in the histogram. AFF (Average feature frame) means the

feature vector representing the average of tail frame and head frame, where

tail frame is K/2th frame before the CF, head frame is K/2th frame after

the CF. The third step is to obtain the final feature difference value CCF

for current frame. F is obtained by the first M blocks with the biggest

feature difference values. The fourth step spots micro-expression by setting

a threshold, where p is an empirical data. . . . . . . . . . . . . . . . . . . 130

5-3 LBP-TOP extraction per ROI. LBP feature is extracted from three orthog-

onal planes: xy, xt and yt. . . . . . . . . . . . . . . . . . . . . . . . . . . 136

206



5-4 Influence of ROI size on Spotting performance. The F1-score increases

along with the augmentation of ROI size before the region length reaches

20. It is because that the information in regions which are too small is

not enough to represent the micro-expression local movement. Yet, the

spotting performance is then affected when the ROI size gets larger than

20. More irrelevant information is included in the region for analysis. It

raise the false positive in the final analysis. . . . . . . . . . . . . . . . . . 140

5-5 Auto-encoder system for dimension reduction of ROI sequence on time

axis (N). The auto-encoder system can encode the ROI sequence (a2 ∗N)

into a 2D dimension point distribution, and then reconstruct the input by

decoder process. a is the ROI width, a2 is the pixel amount in one ROI

image, and N means the frame amount in this ROI sequence. The frame

index represents the temporal relation in this video. . . . . . . . . . . . . . 142

5-6 Dimension reduction schema by Auto-encoder. The process contains two

stages: AE training stage and dimension reduction. For each video sample,

all J ROI sequences are concatenated into one matrix in size of (a2 ∗N) ∗

J. To conserve the principal variation, the matrix is normalized for AE

training. Then, the obtained encoder can extract the maximal movement on

time axis of the chosen ROI sequence. Like PCA process, the dimension

of the input data is reduced to 2 dimensions. Thus, N 2D points which

represent the ROI sequence can be obtained in AE projection space. . . . . 142

5-7 Comparison between LTP examples obtained by PCA, AE and GPLVM.

For the same micro-expression sequence, these two dimension reduction

methods can obtain similar LTP patterns. (CASMEI-A, sub1_EP07_10,

ROI5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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5-8 Example of global result obtained by each step in spatial and temporal

fusion. The X axis is the frames index, the Y axis is the predicted label,

and the red curve represents the ground truth for this video. As introduced

in Figure 3-12, local classification and qualification are applied on ROIs.

The first and second layers in the figure show the result obtained directly by

the local classification (LC) and result after local qualification (LQ). The

different colored lines represent the spotting results per ROI. The third and

fourth layers give the global results after separately applying spatial fusion

(SF) and merge process (MP) over the LC global result (blue curve). And

the fifth layer is the final result after the three spatial and temporal fusion

steps (STF). (CASME I_Sub08_EP12_2_1) . . . . . . . . . . . . . . . . . 146

5-9 GAN structure for S-pattern synthesizing. Ransom noise is used as the

input, the generator is trained to generate S-patterns, and the discrimina-

tor will compare the synthesized pattern with S-patterns from databases.

Generator and discriminator are two shallow convolution networks. . . . . 151

5-10 Synthesized S-pattern samples for CASME I-section A by GAN. Only 5-

10a represents well the S-pattern. The other three LTPs can not be treated

as reliable S-patterns. 5-10b and 5-10c show the movement with onset too

long or too short. 5-10d is a on-going movement which has longer duration

than micro-expression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
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5-11 Result Evaluation according to the generation times n for the combina-

tion of LTP filtering and S-pattern synthesizing on CASME II. TE is set

to 0.25 for LTP filtering. 5-11a shows the ratio between S-pattern and the

total quantity of LTPs for training. And 5-11b illustrates the F1-score for

ME spotting. The parameter n for S-pattern synthesizing stops at 5 for

CASME II, because the amount of S-patterns in training dataset is large

enough and the F1-score have already begun to decline. By comparing

these two figures, when the proportion of S-patterns is around 0.3, the spot-

ting method performs best. Otherwise, the data augmentation process also

synthesizes more wrongly-labeled S-patterns. It would import extra noise

into the training process and then influence the spotting performance. . . . 155

5-12 Result Evaluation according to the error threshold value for LTP filtering

process. 5-12a shows the data augmentation of the S-pattern in the training

dataset. More S-patterns are conserved while the threshold is larger. The

increasing trend stops when the threshold can not filter any patterns. Unlike

the curve for S-pattern amount, in 5-12b the curve of F1-score f r increases

at the beginning when there are more samples for training, then it starts

to decline as the filtering process conserves too many wrongly-labeled S-

patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5-13 Improvement of F1-score f r by increasing the training set volume with syn-

thesized S-patterns from Hammerstein model. The result is evaluated de-

pending on the S-pattern amount. x axis means the generation multiple n of

S-patternO. Y axis is the F1-score. As the quantity of S-pattern increases,

the F1-score f r value becomes higher than that of S-patternOF . . . . . . . . 157

5-14 Histogram of α and β of the linear model for S-pattern . . . . . . . . . . . 158

C-1 Distance calculation for one ROI sequence ROIm
j in video clip Im. . . . . . 180
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