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ABTRACT

In order to ensure total safety during maintenance operations within nuclear power plants, it is mandatory to preserve the optimal quality of the internal weld beads. To this end, we use Computational Magnetohydrodynamics to simulate adjacent phenomena within the plasma and the weld pool in order to improve the knowledge of welding operating process. One of the difficulties is to take into account the effects induced by the thermal gradient and the variations of surfactant element concentrations on the weld pool surface known as the Marangoni effect. In order to take into account all the physical phenomena at the plasma/weld pool interface, we use an interface tracking method (Arbitrary Lagrangian-Eulerian) to improve 3D finite volume simulation of weld pool with free surface deformation. Subsequently, it enables to capture more precisely the interfacial forces such as the Marangoni effect, the arc pressure and the gravity, and improve vertical/cornice welding simulation. Thus, this work is part of the development of a tridimensional unsteady two-way coupling in order to overcome the Gaussian boundary condition used to model the heat transfer from plasma torch towards the work piece surface. Ultimately, we could obtain an unified model for an optimal welding process simulation. 
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Industrial context

This work is part of the research activities of EDF R&D (SPAR 2 project (Anticipate Repairs with Simulation), which aims to develop numerical tools to allow the realization of in-depth studies in support of EDF Engineering during welding repairs. The industrial context is centered around the will to improve welding operating modes in order to guarantee the quality of the weld beads carried out during maintenance operations on EDF's nuclear power plant [START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF]. In the case of thin seal welds, each repair is costly and the result is not always predictable. Risks of cracking from defective welds already appear at the end of an operating cycle. Conclusions on the quality of the welds are made through external visual and dimensional inspections. Indeed, after repairs and due to the specific geometry of the seal weld, it is impossible to guarantee the reverse quality of these seal welds by non-destructive testing to ensure any risk of lack of penetration and fusion.

As the experiments for each operation are difficult to perform due to the large number of parameters to be controlled, a numerical model could provide indications to adapt the welding procedures in order to achieve a better quality of the weld beads [START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF].

In this work, we are particularly interested in TIG (Tungsten Inert Gas) welding of thin steel parts where the penetration and shape of the metal weld pool can vary greatly. This is due in particular to the surface tension force of the liquid metal depending on the temperature and the chemical composition of the parts to be joined. Indeed, a numerical simulation of the weld pool, taking into account the preponderant phenomena, would allow to improve the knowledge on the formation of weld beads. Thus, it is important to be able to model the underlying phenomena such as multi-physical couplings, surface tension force, etc. Based on the welding process parameters such as current intensity, feed rate, overall process efficiency, etc., one of the difficulties of modeling is to take into account the strong non-linearities induced by the multiple thermophysical couplings.

Welding generalities

This section describes the basic principles of welding, its applications and the various techniques available. Welding processes are detailed to explain the complexity of the welding operation.

Welding and its processes

Welding is a permanent assembly method and ensures the continuity of the material to be joined. In the case of metals, this continuity is achieved at the scale of the atomic edifice. Apart from the ideal case where inter-atomic forces and diffusion slowly ensure the welding of metal parts that are fully in contact along perfectly compatible and pollution-free surfaces, it is necessary to use activating energy to quickly achieve the desired continuity.

This manufacturing process connects materials, usually metals or thermoplastics, by causing local melting or diffusion through the application of heat and possibly metal. New and more efficient processes are constantly being developed to ensure the highest quality welded joints with very good reproducibility.

In the energy sector, welding is often applied to steels of all types via the arc welding process with non-fusible TIG (Tungsten Inert Gas) electrodes or via an arc welding process with coated electrodes. These two types of process are presented in the rest of this chapter.

Coated arc welding

Shielded Metal Arc Welding (SMAW ) is a manual arc welding process that uses a consumable electrode coated with a flux to lay the weld. The coated electrode (or welding rod) is composed by a coating [START_REF] Hamide | Modélisation numérique du soudage à l'arc des aciers[END_REF].

An electric current from a power supply is used to form an electric arc between the electrode and the metals to be joined. When the coated electrode is brought close to the parts to be joined, an electric arc is created with a high calorific value which causes the electrode to melt. As the weld is applied, the electrode flux coating disintegrates, releasing fumes that act as shielding gas and provide a layer of slag. These two coatings thus protect the weld from atmospheric contamination.

After they have cooled, they must be removed to expose the weld bead. As the electrode melts as the weld progresses, the welder must periodically stop welding, remove the remaining electrode and insert a new electrode into the electrode holder. This activity, combined with slag removal, reduces the time the welder can spend on the actual welding, making this process one of the least efficient. However, because of the flexibility of the process and the simplicity of its operation, this process is one of the first and most appreciated welding processes. This is why it is one of the most dominant welding processes in the industry for maintenance and repair [START_REF] Brochard | Etude expérimentale et numérique de la modélisation du bain de fusion en soudage d'aciers de teneurs en éléments tensioactifs différentes[END_REF].

TIG (Tungsten Inert Gas) or GTAW (Gas Tungsten Arc Welding) is an arc welding process with a non-fusible electrode. The electrode and weld pool are protected against air oxidation by a shield of inert gas, usually pure Argon. Sometimes an Argon-Helium mixture is used to increase the penetration of the weld pool and the addition of Helium increases the arc voltage due to a higher ionization potential [START_REF] Traidia | Multiphysics modelling and numerical simulation of GTA weld pools[END_REF].

An electric arc is established between the end of a tungsten refractory electrode (which can be pure tungsten with the percentage of 1% and 2% or Zirconium but the latter type is reserved for Aluminium welding) and the part to be welded, under the protection of a shielding gas (Argon, Helium or an Argon-Helium mixture). The filler metal is added if necessary in the form of a rod or strip placed in the molten bath and must not pass through the electric arc or come into contact with the tip of the electrode [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF].

Unlike other welding processes such as laser or electron beam welding, which involve high energy densities (> 106 W/cm 2 ) and cause some of the metal to vaporize, TIG welding causes only melting of the metal, with in some cases very localized vaporization.

TIG welding is a process that can be easily automated. It is widely used in the nuclear industry for the production of primary or secondary circuit piping for Pressurized water reactor nuclear power plants. Indeed, it is well adapted for the manufacture of welded rolled tubes in austenitic stainless steel. In general, a constant current is imposed with a positive pole connected to the part to be welded (direct polarity) which allows to locate the greatest heat input on the metal to be melted [START_REF] Nguyen | Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG[END_REF].

Arc welding with the non-fusible electrode (TIG process) Welding process parameters

In most welding processes, the electric arc is mobile, which makes it possible to better ensure the continuity of materials. Especially in the automatic TIG process, welding is carried out by a robot that controls the speed of the torch movement. However, in the SMAW process, the speed is difficult to know because it is imposed manually.

Arc welding processes are powered from an electrical source. Thus, the important physical quantities are the speed of the torch movement and the electrical power formed by the product of the intensity of the electric current and the voltage. The actual power is always less than the power of the source and the efficiency depends on several factors. Indeed, it is often difficult to measure precisely. Even between two consecutive welding operations, the efficiency is not equal, for several reasons. According to [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF], the shape of the electrode tip affects the shape and power density distribution of the arc. As soon as the electrode tip becomes blunt, the diameter of the arc is reduced and the power density distribution increases. The arc becomes tighter as the angle of the tungsten tip increases. This influences not only the amount of vapors released but also the shape of the melt.

Purpose of the thesis

Given the importance of maintaining optimal weld bead quality and the impossibility of ensuring any risk of lack of penetration and fusion by non-destructive testing, this thesis will develop expertise and numerical tools for the three-dimensional numerical simulation of fusion welding processes in order to predict the final bead geometry. This requires the connection of various scientific skills such as Fluid Mechanics, Plasma Physics, Materials Chemistry, as well as Numerical methods.

To do so, it is necessary to implement an interface tracking method in order to improve the consideration of thermophysical phenomena at the level of moving free surfaces. This will also allow to take into account the forces acting on the surface of the metal bath such as arc pressure, the normal component of surface tension, aerodynamic shear, etc.

Then, it is envisaged to improve the estimation of the heat transfer between the arc and the parts to be joined via an unsteady coupling of the plasma and weld pool models to simulate the final shape of the weld bead in an optimal way. This thesis will allow to treat some industrial applications specific to EDF, in particular thin seal welds, allowing in-depth studies on cornice welding repair operations.

Chapter 2

Bibliographic study on arc welding modeling 

Introduction on the state of the art

We are interested in modeling the TIG arc welding process used during repairs on EDF's nuclear reactors. According to feedback from the operating units, there are uncertainties about the quality of the weld beads obtained due to lack of fusion of the edges, which leads to leaks. In this context, an attempt is being made to accurately describe the heat transfer between the arc plasma and the molten metal workpiece during welding, as well as the formation of the bead under the effect of the heat input.

This part presents a non-exhaustive state of the art on plasma-to-piece heat transfer modelling. Works on weld pool modelling can be separated from works on arc plasma modelling. For this, several theses have been carried out within EDF R&D on the modelling of the weld pool in steel welding [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF] and on the heat transfer in an arc plasma [START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF][START_REF] Douce | Modélisation 3D du chauffage d'un bain métallique par plasma d'arc transféré. Application à un réacteur axisymétrique[END_REF][START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF]. In addition, other works [START_REF] Pfender | Electric arcs and arc gas heaters[END_REF][START_REF] Traidia | Multiphysics modelling and numerical simulation of GTA weld pools[END_REF][START_REF] Hamide | Modélisation numérique du soudage à l'arc des aciers[END_REF][START_REF] Brochard | Etude expérimentale et numérique de la modélisation du bain de fusion en soudage d'aciers de teneurs en éléments tensioactifs différentes[END_REF][START_REF] Mougenot | Modélisation de l'interaction entre un arc électrique et un matériau : application au soudage TIG[END_REF][START_REF] Baudry | Contribution à la modélisation instationnaire et tridimensionnelle du comportement dynamique de l'arc dans une torche de projection plasma[END_REF][START_REF] Shirvan | Modelling of Electric Arc Welding: arc-electrode coupling[END_REF][START_REF] Chemartin | Modélisation des arcs électriques dans le contexte du foudroiement des aéronefs[END_REF] have also been carried out outside EDF in the field of applied research.

The model used in this work for the description of the flow subjected to an electromagnetic field is based on the equations of magnetohydrodynamics (MHD) with the following assumptions:

• The flow considered is laminar and expandable,

• The thermophysical properties of the flow (volumic mass, thermal conductivity, electric conductivity, specific heat and dynamic viscosity) are temperature-dependent.

In the following sections, the state of the art in arc welding modeling is presented. When the welding arc is ignited, only thermal and electrical conduction phenomena are involved. Through the surface tension force, buoyancy, electromagnetic forces, arc pressure and aerodynamic shear, the flow gradually builds up from the solidus temperature (T s ). In addition, there is a liquid thickness at the weld pool surface from which the change in surface temperature initiates Marangoni convection within the weld pool [START_REF] Brackbill | A continuum method for modeling surface tension[END_REF], and the greater this force, the more it influences the direction of the flow in the pool, depending on the temperature and the chemical composition of the materials.

Weld pool model

The weld pool model thus takes into account the forces of surface tension, buoyancy and electromagnetic forces. On the other hand, the surface tension force γ(c s , T ) is a function of temperature (T ) and the concentration of surfactant species (c s ) in the liquid metal.

Surface tension model

For a binary mixture (iron/sulfur), it is often described by [START_REF] Belton | [END_REF][START_REF] Heiple | Mechanisms for minor element effect on gta fusion zone geometry[END_REF][START_REF] Kozakevitch | Tension superficielle du fer liquide et de ses alliages[END_REF] :

γ(c s , T ) = γ 0 m -A(T -T m ) -RT Γ s ln 1 + k exp - ∆H RT a s , N m , ( 2.1) 
with T m the melting temperature of the pure metal, γ 0 m the surface tension of the pure metal, A the opposite of ∂γ ∂T for pure metal, Γ s the excess sulfur concentration, R the perfect gas constant, ∆H the heat of absorption and k the segregation entropy, c s the sulfur concentration and a s the sulfur activity in iron.

The surface tension gradient is written as follows:

∇γ(c s , T ) = ∂γ ∂T ∇T + ∂γ ∂c s ∇c s , (2.2) 
with the expressions of the thermo-dependent coefficient of the surface tension:

∂γ ∂T (c s , T ) = -A -Γ s R ln(B) + 1 -B B ∆H RT , B = 1 + ka s exp - ∆H RT , (2.3)
and the chemo-dependent coefficient:

∂γ ∂c s (c s , T ) = - RT Γ s k exp -∆H RT 1 + Ka s , ( 2.4) 
The empirical expressions of these most frequently encountered coefficients correspond to the work of Mills [START_REF] Mills | Equations for the calculation of the thermo-physical properties of stainless steel[END_REF] and Sahoo [START_REF] Sahoo | Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy[END_REF] : where ω s is the mass level of sulfur. Firstly, it has been experimentally shown [START_REF] Belton | [END_REF][START_REF] Heiple | Mechanisms for minor element effect on gta fusion zone geometry[END_REF] that the impurities in the workpieces to be welded influence the result of the welding process via the surface tension force. Results of numerical simulations of weld pool are present in various works at EDF, such as [START_REF] Hamide | Modélisation numérique du soudage à l'arc des aciers[END_REF][START_REF] Tanaka | A unified numerical modeling of stationary tungsten-inert-gas welding process[END_REF][START_REF] Murphy | Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour[END_REF][START_REF] Mougenot | Modélisation de l'interaction entre un arc électrique et un matériau : application au soudage TIG[END_REF][START_REF] Traidia | Multiphysics modelling and numerical simulation of GTA weld pools[END_REF][START_REF] Nguyen | Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG[END_REF] as well as [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF][START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF][START_REF] Khristenko | Rôle des éléments tensio-actifs dans la modélisation de la force de tension de surface d'un bain métallique[END_REF]. All these results are obtained with the same weld pool model but often with different boundary conditions and numerical methods.

Coefficients Sahoo (Fe-S) Mills (steel 304L) γ 0 m (N/m)
The weld pool model currently used at EDF is based on the thesis work of K. Koudadje [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF]. It was found that if the thermo-dependent coefficient of the surface tension gradient is positive, the flow is directed towards the center of the bath. If it is negative, the flow is directed towards the outside of the bath. An important species is sulfur. The depth of the bath, to the detriment of its width, is greater with a low chemical concentration of sulfur in the material and vice versa. Apart from numerical simulations in a low sulfur configuration (70 ppm), the results are in agreement with the experiments. This may be due to the actual sulfur content or to the evaporation of certain elements in the alloy. This model was tested for a welding configuration of two plates with different sulfur content. The deviation of the bath was highlighted as a function of sulfur [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF][START_REF] Khristenko | Rôle des éléments tensio-actifs dans la modélisation de la force de tension de surface d'un bain métallique[END_REF]. Concerning the internal work on the simulation model of the weld pool [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF], a numerical simulation model of the TIG welding process of austenitic stainless steels has been developed which is able to predict the dimensions of the pool as well as the thermal fields within the part to be welded as a function of the welding process parameters.

Predominant forces in weld pool convection

The forces influencing the weld pool are the following:

• Volumic forces :

-Gravity (buoyancy), -Electromagnetic forces (Lorentz forces),

• Surface forces :

-Surface tension (Marangoni effect), -Arc pressure, -Aerodynamic shear.

In order of influence, the forces involved in the weld pool are as follows:

1 The surface tension (or Marangoni effect) models the imbalances at the free surface of a fluid. Locally, the greater the force, the more the fluid is locally entrained. This force is predominant in weld pool modeling. Depending on the temperature as well as the chemical composition of the materials, it directly influences the flow direction of the bath. If the temperature-dependent coefficient of the surface tension gradient is positive, then the flow is directed out of the bath. If it is negative, then the flow is directed towards the center of the bath.

2 The buoyancy induces convection in the bath. This force depends on the variation of the density of the liquid metal as a function of temperature. In vertical or cornice welding configurations, the influence of this force is not negligible.

3 The Electromagnetic forces (Lorentz force) come from the magnetic field induced by the passage of electric current through the metal during welding. This force has a symmetrical characteristic. 4 The plasma arc pressure acts on the surface of the weld pool. This force deforms the surface of the bath and increases the depth of the bath to the detriment of its width.

5 The aerodynamic shear is due to the spread of the plasma arc over the weld pool surface. It is a tangential force corresponding to the momentum exchange between the plasma and the weld pool. Depending on the velocity gradient and viscosity, this force induces centrifugal convection on the bath surface.

The three major forces convecting the bath are surface tension, buoyancy and, to a lesser extent, electromagnetic forces. The latter are highly dependent on the welding energy applied in the process.

Usually, a sufficiently large computational domain is chosen so that the edges are at room temperature, thus avoiding the modelling of boundary conditions.

The model used is based on the equations described above with:

TS = F b + S u R .
F b = ρ(T )g is the buoyancy force as a function of the metallic density depending on temperature and gravity force and S u R is a source term to progressively cancel velocities when approaching solid walls. The role of this term is to impose in the transition zone a relative solid-liquid velocity that progressively cancels out as one approaches the solid zone, thus simulating the transition to the solid zone. For this, we consider Darcy's law which gives the stationary flow velocity of a viscous fluid through a porous matter for a certain permeability C:

u = - C µ ∇p.
Permeability is related to the porosity of the matter by the Carman-Kozeny equation:

C = λ 2 2 f 3 L kτ 2 π 2 (1 -f L ) 2 ,
with λ 2 the inter-dendritic space in the transition zone, k the Carman-Kozeny constant, τ the tortuosity of the transition zone and f L the liquid fraction defined as follows:

f L =          1 , T > T L , T -T s T L -T s , T ∈ [T s , T l ] 0 , T < T s
with T S the temperature of the solidus and T L the temperature of the liquidus. This method of extinction of the velocities in the solid phase thus avoids a sudden cancellation.

Plasma arc model

Numerical simulations of plasma remaining rather expensive in CPU time, their use in welding simulation remains infrequent [START_REF] Mougenot | Modélisation de l'interaction entre un arc électrique et un matériau : application au soudage TIG[END_REF][START_REF] Traidia | Multiphysics modelling and numerical simulation of GTA weld pools[END_REF][START_REF] Brochard | Etude expérimentale et numérique de la modélisation du bain de fusion en soudage d'aciers de teneurs en éléments tensioactifs différentes[END_REF][START_REF] Cayla | Modélisation de l'interaction entre un arc électrique et une cathode[END_REF][START_REF] Freton | Energy equation formulations for two-temperature modelling of thermal plasmas[END_REF][START_REF] Haidar | Non-equilibrium modelling of transferred arcs[END_REF]. Plasma is often assimilated to boundary conditions of the "equivalent heat source" type where heat and electric current flows of Gaussian distribution are defined with experimentally calibrated parameters. However, this latter approach has limitations since this type of model is only valid for a given welding situation.

In addition, it has been shown [START_REF] Murphy | Modelling of arc welding: The importance of including the arc plasma in the computational domain[END_REF] that the equivalent heat source method is not always suitable for modelling TIG welding because the shielding gas composition influences the arc properties such as arc pressure, aerodynamic shear, heat flux and electric current densities. Finally, the evaporation of chemical species from the metal in the plasma implies changes in the plasma properties.

Therefore, it is important to find a more suitable model for the calculation of thermal and electrical flows. A plasma model has been developed at EDF for welding simulations [START_REF] Pfender | Electric arcs and arc gas heaters[END_REF][START_REF] Douce | Modélisation 3D du chauffage d'un bain métallique par plasma d'arc transféré. Application à un réacteur axisymétrique[END_REF][START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF][START_REF] Chemartin | Modélisation des arcs électriques dans le contexte du foudroiement des aéronefs[END_REF]. The model currently used in Code Saturne [START_REF][END_REF] is based on the thesis work of D. Borel [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF] where improvements have been made with the inclusion of metallic iron vapors. Moreover, this work has shown that the most influential operating parameters are the intensity of the electric current, the arc height, the sharpening angle of the tip, the diameter and the composition of the electrode. A parametric study on the different contributions to the electrode flux density and on the operating parameters showed that the anode potential drop greatly influences the heat flux density. The lower the sharpening angle of the tip, the higher the maximum temperature. Numerical and experimental results agree on arc voltage, temperature and electron density. On the other hand, the heat flux densities per unit area in [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF] are higher than those obtained in [START_REF] Kaddani | Modélisations 2 D et 3 D des arcs électriques dans l'argon à la pression atmosphérique avec la prise en compte du couplage thermique et électrique arc-électrodes et de l'influence des vapeurs métalliques[END_REF][START_REF] Tanaka | A unified numerical modeling of stationary tungsten-inert-gas welding process[END_REF]. One of the accepted assumptions involves taking into account the drop in anodic potential drop. By neglecting this term, the surface temperature becomes too low in [START_REF] Kaddani | Modélisations 2 D et 3 D des arcs électriques dans l'argon à la pression atmosphérique avec la prise en compte du couplage thermique et électrique arc-électrodes et de l'influence des vapeurs métalliques[END_REF]. Experimental results and those from [START_REF] Murphy | Modelling of arc welding: The importance of including the arc plasma in the computational domain[END_REF][START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF] plasma simulations invalidate the hypothesis of Gaussiantype heat flux density for the thermodynamic study of the weld pool.

In addition, a too high potential drop leads to an overestimation of the heat flux density due to the evaporation of metal vapours. From a numerical point of view, the developed 3D model solves the magnetohydrodynamic equations describing a thermal plasma at local thermodynamic equilibrium.

In the momentum conservation equation, a source term is imposed in order to impose the value of velocity in different regions:

TS = - ρ τ (u -u 0 ) + F b ,
with u 0 the velocity to be imposed and τ a time constant taken less than the time step ∆t. The calculation simulates welding with a speed of the plate under the electrode and by an injection of cover gas through the nozzle. With a set of given operating parameters, it is possible to obtain the thermal and electric current profiles to be transferred to the workpiece to be welded.

During the course of this thesis, a bibliography on the hierarchy of plasma models was carried out showing the need to develop a more accurate model. Details are given in the appendix (cf. A).

Electrostatic sheath modeling

Arc plasmas are part of cold thermal plasmas which at atmospheric pressure are characterized by temperatures where collisions between electrons and heavy particles (ions, neutrons) are preponderant [START_REF] Callen | Fondamentals of plasma physics[END_REF]. This assumption allows the hypothesis of local thermodynamic equilibrium (LTE) and thus to consider the plasma as a homogeneous and macroscopically quasi-neutral mixture. However, in areas close to the electrodes, this balance is no longer verified. These thin zones close to the wall are called electrostatic sheaths [START_REF] Callen | Fondamentals of plasma physics[END_REF] which, depending on the polarity of the electrode, repel ions or electrons. Their thickness is of the order of 10 -6 m. Between the sheaths and the arc plasma (in thermal and electrical equilibrium) are the pre-sheaths, ionization zones of thickness 10 -4 m where electrons are accelerated involving a greater frequency of collisions with ions and neutrons. In this case, the electron density n e and ion density n i remain equal but the electron temperature is much higher than that of heavy particles. The plasma, still colliding, is then out of local thermodynamic equilibrium. In the sheath, there is a decay of charged particles as a function of the electrode (the anode has an overpopulation of electrons and the cathode of ions) under the effect of the electric field between the electrode and the workpiece. Thus, the electron and ion densities are no longer equal. Consequently, the plasma, no longer being collisional, is out of thermodynamic and electrical equilibrium. The heat flow from the pre-sheath is not equal to that transferred to the electrode. The heat transfer model from the sheath to the electrode must therefore take this discontinuity into account via the cathode ∆V c and anode ∆V a potential drops [START_REF] Benilov | A model of the cathode region of atmospheric pressure arcs[END_REF] :

∆V a,c = k B T e e ln n n e , (2.5) 
with n the density at thermodynamic and electrical equilibrium, n e the electron density in cathodic and anodic sheaths, and T e , T i the electron and ionic temperatures. However, existing work on the modelling of heat transfer between the plasma and the workpiece often relies on the local thermodynamic equilibrium plasma model. Here we present a quick overview of some reference works in the physical description of arc plasmas.

The authors of [START_REF] Lowke | Theory of free-burning arc columns including the influence of the cathode[END_REF] neglect the sheath close to the cathode due to its thin thickness. Thus, the model used is based on the assumption of LTE in a two-dimensional axisymmetric configuration. The current density for the thermoionic emission at the cathode is calculated using the energy conservation and current conservation equations. Thus, the cathode current density is no longer an arbitrary boundary condition. The author takes into account the electrical imbalance at the plasma-cathode interface. With this model, temperatures are higher at the cathode. It has been shown that taking into account radiation losses implies a decrease in temperature near the cathode of 400K and near the anode of 1000K. Thus, it was concluded that the effects of radiation losses are small.

In [START_REF] Zhou | Analysis of the arc-cathode interaction of free-burning arcs[END_REF], the sheath and the pre-sheath are taken into account with a one-dimensional model. An energy balance is implemented in the duct. In the pre-sheath, they use:

• the Saha's equation:

n e n i n 0 = 2Z i Z 0 2πm e T e h 3 p 3 2 exp - i k B T e , ( 2.6) 
with n e , n i , n 0 respectively the electron, ion and neutral densities; Z i , Z 0 respectively the ion and neutral partition functions, h p Planck's constant, k B the Boltzmann's constant and i the ionization energy,

• the Dalton's law for the pressure:

p = n e k B T e + (n i + n 0 )k B T i , ( 2.7) 
• the assumption of quasi-neutrality:

n e = n i , ( 2.8) 
to obtain ionic and electronic densities and temperatures. Thus, it has been shown that, at low intensities, heat at the cathode is compensated by radiation losses. At high intensities, cooling by thermoionic emission of electrons compensates for the heat brought to the cathode. As a result, cathode erosion and evaporation are minimal. A perspective of this work would be a better estimation of the cathode drop which is overestimated compared to experimental measurements.

In [START_REF] Hsu | Analysis of the cathode region of a free-burning high intensity argon arc[END_REF], the duct is described as a collision-free zone. Thus, the authors use a bitemperature model with two charge conservation equations and two energy conservation equations. The current density at the cathode is taken as an input parameter. On the other hand, it seems that the electron current density gradient at the cathode is overestimated.

In [START_REF] Benilov | A model of the cathode region of atmospheric pressure arcs[END_REF], the authors develop a model out of thermodynamic equilibrium taking into account the sheath and the pre-sheath. A Poisson's equation for electrical potential is solved there. The electron density in the sheath is calculated using the Boltzmann factor defined by:

n e = n exp eP R k B T e , (2.9) 
with n the density at LTE. For ion density, the stationary Boltzmann equation is solved. The ion density is calculated as follows:

n i = n 0.8 2 + α , α = k B T i m i D i0 k r n 2 1 2 , ( 2.10) 
where D i0 is the ion-neutron diffusion coefficient in the pre-sheath, k r is the thermal conductivity by translational reaction between heavy particles, m i is the ionic mass and T i is the ionic temperature. Energy balances are implemented for heat flow transfer at the interface. In addition, the potential drops are not taken as input parameters but calculated with the temperatures and densities of the ions and electrons. However, the cathode surface temperature, the electron temperature and the potential difference in the sheath are taken as input parameters. On the other hand, radiation losses are neglected due to their small influence. The calculation of these fluxes gives the current density in the sheath as well as the heat flow from the cathode to the plasma. The ion current density is obtained by differentiating the total current density at equilibrium by the electron current density given by the Richardson-Dushmann equation given by:

j e = A R T 2 c exp -eW e k B T c , ( 2.11) 
where j e is the electron current density, T c is the cathode temperature, A R is Richardson's constant and W e is the effective output work of the cathode, used to calculate the electron current density.

A recent paper [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF] is based on a bi-temperature model: the single-phase model here has two enthalpy conservation equations (ionic and electronic). From the hypothesis of quasi-neutrality, Saha's equation and Dalton's law, ionic and electronic densities and temperatures can be obtained. On the other hand, the anodic potential drop is slightly overestimated compared to the experimental values. It is however lower than that calculated with a model in thermodynamic and electrical equilibrium [START_REF] Trelles | Multiscale finite element modeling of arc dynamics in a dc plasma torch[END_REF].

Thus, it is envisaged to find a better description of the transition zones taking into account the deviations from the thermodynamic and electrical equilibrium in the sheath and relying on the state of the art.

Coupling of fusion weld pool/plasma models

In numerical simulation of welding, we have seen that a good description of the heat transfer from the arc to the workpiece is an important aspect. Thus, coupling the plasma and weld pool models would make it possible to simulate the entire welding process. However, some aspects need to be addressed to take advantage of this coupling, such as more relevant plasma modelling and consideration of the deformation of the workpiece surface. Indeed, as the plasma arc exerts a certain pressure on the surface of the weld pool, it is necessary to take into account that the free space between the cathode tip and the lowered surface of the pool can modify the heat transfer.

Concerning the coupling of plasma/fusion weld pool models, several approaches are possible: two-phase or single-phase unified description, interfacial coupling of models or coupling of models via boundary conditions. 1. Two-phase description: the plasma and the weld pool are each represented by a continuous thermodynamic phase. These fluids are immiscible creating an interface separating the domain into two discontinuous geometries.

2. Unified single-phase description: the arc plasma and the weld pool are represented by phases in the same computational domain and the deformation of the bath surface can be described with an interface tracking method (Volume-of-Fluid, Level Set, etc.) ;

3.

Coupling of models via a thin wall: The plasma and bath domains are in the same computational domain but are separated by an invisible wall with boundary conditions on the velocities in both sub-domains. The coupling is performed on scalars, pressure, enthalpy, electric and magnetic potentials implicitly. The contributions to the fluxes of the coupled variables are added in the matrix of the system [START_REF] Omnes | Couplage mono-instance réalisé via une paroi mince[END_REF].

Code Coupling:

This method is relevant if we have two domains separated by an interface with very distinct physical phenomena. A set of equations per domain is solved. The explicit coupling is done at each instant via boundary conditions.

In the case of a coupling involving a wall, the weld pool surface deformation can be taken into account via a free surface flow method such as Arbitrary Lagrangian-Eulerian (ALE). Some work has already been done in this area and their framework is described below. However, they are all based on a hypothesis of local thermodynamic equilibrium in the entire field.

The authors of [START_REF] Murphy | Modelling of arc welding: The importance of including the arc plasma in the computational domain[END_REF][START_REF] Murphy | Modelling of thermal plasmas for arc welding: the role of the shielding gas properties and of metal vapour[END_REF] have been working on a coupling of axisymmetric models in two dimensions. The arc plasma and the electrodes (cathode and weld pool) are present in the same computational domain. They have shown that it is impossible to accurately estimate the heat transfer via boundary conditions without taking into account the arc plasma. Firstly, the composition of the shielding gas strongly influences the thermophysical properties of the arc. Higher values for the viscosity, specific heat and density of the plasma increase the heat exchange and the depth of the weld pool. On the other hand, the evaporation of metallic species increases the electrical and thermal conductivity at a given temperature. The results showed that the geometry and depth of the weld pool is highly dependent on the properties of the arc plasma. On the other hand, the model used does not take into account the cathodic potential drop, plasma radiation and surface deformation which they consider important.

In [START_REF] Haidar | A theoretical model for gas metal arc welding and gas tungsten arc welding. i[END_REF], a unified monophasic description is proposed in two dimensions. Source terms are introduced into the energy conservation equation to describe the heat transfer at the plasma-electrode interface. In this work, potential drops are calculated using the plasma temperature, total current density, ion and electron fluxes and the Richardson equation (for the cathode). In the anode, the thermocapillary forces dependent on the Marangoni effect are taken into account. The deformation of the plasma-anode interface is modelled by the VOF method which is only functional in the anode and the meshes close to the interface. Interface monitoring allows the influence of shear forces, arc pressure and surface tension on the surface of the weld pool to be taken into account. The results show that the calculated voltage is 14.9V with an anodic drop of 3.1V and a cathodic drop of 1V. It was also shown that the cathodic potential drop influences the arc properties. The deformation of the interface revealed a concave surface of the weld pool. Perspectives include the need to separate electronic and ionic temperatures and to take into account the evaporation of species.

In [START_REF] Tanaka | A unified numerical modeling of stationary tungsten-inert-gas welding process[END_REF], a unified two-dimensional description is studied. The authors model welding in a spot configuration with the weld pool in the anode. The Marangoni effect is modelled by a constant thermo-coefficient while neglecting the chemo-coefficient. The surface is assumed to be dimensionally stable and metal vapours are not taken into account. Concerning the plasma model, the LTE hypothesis is assumed in the whole domain without taking into account the electrostatic sheaths. Specific source terms describe the transfers to the electrodes. At the cathode, the radiative transfer term and the potential drop are neglected. At the anode, electron heating, radiative transfer and electron acceleration including the anode potential drop are not considered. The authors assume the presence of collisions in the sheaths. They claim that the anode potential drop implies an overestimation of the energy flow transferred to the anode. Thus, the electron acceleration term is calculated intrinsically in the energy conservation equation. On the other hand, if the welding current is low (<100A), the plasma out of LTE and the anode drop being positive, the electron heating term becomes important and a bi-temperature model is needed to take this contribution into account. The results showed plasma and weld pool temperature profiles that were consistent with the experiments. However, the total volume of the weld pool is not in agreement. The authors suppose that this could be due to the evaporation of surface active elements (Sulfur, Oxygen). The Marangoni effect, depending on the concentrations of surfactant species, influences the final geometry of the bath. In addition, evaporation takes place in the arc plasma and changes the thermophysical properties of the plasma. As a perspective, the need to take into account the deformation of the weld pool surface in order to describe the effect of the arc pressure that increases the depth of the molten bath is highlighted.

In [START_REF] Traidia | Multiphysics modelling and numerical simulation of GTA weld pools[END_REF], a coupling of 2D plasma / 3D weld pool codes is implemented. First of all, the plasma model is based on the LTE assumption. In order to model non-LTE effects in electrostatic sheaths, the conductive sheath method is used: the cathodic and anode zones being ohmic conductors allow the transition between the plasma and the electrodes. In these sheaths, we keep the electric conductivity of the electrodes and preserve the dynamic viscosity, the thermal conductivity, the specific heat of the gas. The anode potential drop is taken as an input parameter but the cathode potential drop is considered negligible. On the other hand, for the weld pool, the Sahoo model is used to model the surface tension force. Concerning the plasma/weld pool interface, the forces taken into account are the surface tension and the arc pressure. Surface deformation is simulated using the quasistatic ALE method. However, the quasi-static approach does not allow the calculation of the surface dynamics. Among the results, the author observed that for a high sulfur content (600 ppm), the surface does not deform in the opposite direction to the low-sulfur configuration (10 ppm). This is due to a larger surface area of the molten bath with a low Sulfur content. Concerning the coupling, the author performed a coupling of 2D plasma and 3D weld pool codes where the plasma is in an axisymmetric configuration. The transfer of the flows is done via boundary conditions to the weld pool model.

In addition, it was noted that the arc stabilizes after 15 ms. The heat flux and current density at the anode are not sensitive to its thickness but rather to its composition. In vertical position, asymmetry is observed especially at high intensity (200 A). The asymmetry within the weld pool is probably due to buoyancy and surface deformation with a shift towards low-sulfur areas. Perspectives include a three-dimensional coupling and consideration of metal vapours.

The author of [START_REF] Mougenot | Modélisation de l'interaction entre un arc électrique et un matériau : application au soudage TIG[END_REF] offers a unified single-phase 3D description [5]. For plasma, the assumptions of LTE and quasi-neutrality are accepted for the whole field. The cathode is not taken into account and is represented by a boundary condition. For this, the current density at the output of the cathode is defined by an experimental profile. At the plasma-electrode interfaces, thermal source terms are implemented. Electron absorption and electron thermal energy are taken into account, but not the enthalpy transport by electrons and ions; and radiation losses. On the other hand, anode and cathode potential drops are neglected due to numerical overestimation of heat transfer to the workpiece. For the weld pool, the added value comes from the Marangoni effect which, according to Sahoo's law, depends on the temperature and the concentration of surfactant elements i.e. sulfur.

It has been shown that the presence of metal vapours decreases the plasma temperature, resulting in a lower heat flow to the workpiece and without movement of the bath, the vapour production is overestimated. Taking into account the anodic potential drop implies an overestimation of the bath dimensions. At 200A, the vapour concentration stands at 34% after 2s. As perspectives, the author mentioned the consideration of a deformable surface, radiation losses, a configuration taking into account the displacement of the torch and the consideration of the cathode in the calculation domain.

This work [START_REF] Kaddani | Modélisations 2 D et 3 D des arcs électriques dans l'argon à la pression atmosphérique avec la prise en compte du couplage thermique et électrique arc-électrodes et de l'influence des vapeurs métalliques[END_REF] deals with multi-instance coupling composed of the arc, cathode, anode, cathodic and anodic layers in 2D axisymmetric. Each model is discretized separately and they are coupled by boundary conditions. In the arc, the LTE is assumed and the MHD equations are solved there. In the cathode layer, a dual temperature model with one temperature transport equation for ions and one for electrons is implemented. Energy balances are calculated taking into account radiation losses. With the hypothesis of quasi-neutrality, Saha's law and Dalton's law, electronic and ionic densities and temperatures are calculated. In the anodic layer, the LTE hypothesis is preserved. Although this zone has strong temperature and density gradients, the author assumes that the convection and scattering in directions other than normal are negligible. Thus, the anodic and cathodic layers are modeled in one dimension. In the electrodes, the temperature and current density conservation equations are solved. Thus, the coupling is closed and does not require assumptions about density distributions. At initialization, only the coupling of the electrodes with the arc is considered. They just impose a condition on the thermal fluxes to the wall. This allows the materials to be preheated before coupling the five domains. It has been shown that the ion and electron temperatures, electron density and total current density increase with the cathode potential drop. This also implies a higher maximum axial velocity within the arc. In the anode layer, the temperature is lower due to a decrease in current density and increased radiation losses from the vapours. In addition, the presence of vapours implies an increase in electrical conductivity at the periphery of the arc where the temperature is lower. This leads to a decrease in the average current density. Thus, the workpiece is less heated. Moreover, the calculated arc voltage is underestimated with the presence of vapours. The perspectives include consideration of metallic vapours in the bi-temperature model and the 3D passage in order to avoid forced symmetry which can prevent the observation of instabilities resulting from an offset of the arc.

Synthesis

This chapter provides an update on the state of the art in numerical welding simulation. In the field of welding, experimental studies on weld pool flow present non-negligible constraints, thus justifying the development of a numerical model that provides access to additional information on welding physics. According to the feedback from the operational units, there are uncertainties about the quality of the weld beads obtained due to the lack of fusion of the edges leading to leaks. Thus, there is interest in numerical modelling of the TIG arc welding process used during repairs. In this context, we are attempting to accurately describe the heat transfer between the arc plasma and the molten metal workpiece during welding, as well as the formation of the weld bead under the effect of the heat input.

Several theses were carried out within EDF R&D on the modeling of the weld pool [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF] and on heat transfers in an arc plasma [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF].

The main objective is to implement an unsteady three-dimensional model allowing an integral numerical simulation of welding with Code Saturne [START_REF][END_REF]. The important parts of this thesis are initially to improve the modeling of plasma and then fusion weld pool models. To do so, stability and sensitivity studies to numerical and physical parameters will be undertaken. Then, an interface tracking method (from the Arbitrary Lagrangian Eulerian approach) will be implemented [34,[START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF] in order to model the deformation of the free surfaces of the weld pool.

Finally, an unsteady mono-instance coupling between the plasma and the weld pool via a thin wall is envisaged [START_REF] Omnes | Couplage mono-instance réalisé via une paroi mince[END_REF] with consideration of cathode, plasma and workpiece in the same computational domain. The aim is to replace the parametric boundary conditions of the "equivalent heat source" type in the simulations of the weld pool by a plasma model and thus obtain a better description of the heat transfer. This will allow the simulation of the entire welding process and the optimal prediction of the final weld bead geometry.

Chapter 3

Sensitivity study for the plasma model 

Introduction

In order to model the physical phenomena through the different industrial applications, EDF has developed a number of simulation codes to take them into account. Among this range, there is an open-source calculation code called Code Saturne [START_REF][END_REF] which addresses problems related to Fluid Dynamics to simulate single-phase flows. It calculates the approximate solutions of the Navier-Stokes equations with finite volume method on unstructured and/or non-conforming meshes. The three-dimensional flows modeled can be stationary or unsteady, compressible or incompressible and of laminar or turbulent nature. In addition, it is possible to take into account heat transfers as well as scalar transport.

We focus on the module Electric arc where the magnetohydrodynamics, heat transfer and scalar transport equations are solved in a coupled manner, allowing arc plasma and weld pool simulations to be performed.

In welding, the heat transfer from the plasma arc to the workpiece is firstly carried out in order to obtain a weld pool. Therefore, it is necessary to study the stability of these two models. In this chapter, sensitivity and stability studies of the plasma model are introduced. In order to speed up the execution of the calculations, the code is carried out on a cluster. In this section, a sensitivity study of the numerical and physical parameters of the plasma model is presented. As a reminder, this model takes into account the electrodes in the computational domain. However, in the plasma-electrode transition zones, source terms are implemented in the enthalpy equation in order to take into account the electrostatic contributions in the heat transfer between the plasma and the electrodes. In addition, the model describes the evaporation of metallic iron vapours in the plasma and the radiation from the electrodes.

Initially, a study of sensitivity to physical parameters is carried out on the different modes of current resetting, anodic and cathodic potential drops, iron evaporation, plasma radiation, emissivity cooling and taking into account the rescaling of electric conductivity in the boundary layer hypothesis.

Set of equations

The set of equations is presented as follows: where u is the velocity, p the pressure and h the mass enthalpy. Then follow the electromagnetic variables i.e. electric potential P R , magnetic potential A and current density j. Thermophysical properties include density ρ, dynamic viscosity µ, equivalent specific heat C P , thermal conductivity λ and electrical conductivity σ. The transport equation for the mass fraction X i of iron metal vapours is also introduced with L a the latent heat of vaporization of iron [START_REF] Douce | Modélisation 3D du chauffage d'un bain métallique par plasma d'arc transféré. Application à un réacteur axisymétrique[END_REF] and D F e the diffusivity coefficient of iron in argon. The source terms in the momentum conservation equation correspond to Lorentz's forces (j × B) as well as external volume source terms such as the speed penalty term S u and the gravity g. In the enthalpy conservation equation, the source terms are the plasma radiation term S ray [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF], plasma-electrode thermal flux S h and the Joule's effect (j • E) which takes into account electrical resistance heating. The plasma is assumed to be macroscopically neutral and the electromagnetic fields quasi-stationary, thus allowing the use of simplified Ohm's law:

                                                                         div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p + div µ ∇u + ∇u T - 2 3 tr(∇u)I + j × B + ρ(T )g + S u , ∂ ∂t (ρh) + div(ρuh) = div λ C p ∇h + j • E -S ray + S h , ∂ ∂t (ρX i ) + div(ρuX i ) = L a X i -1 ρD F e ∇X i , div(σ∇P R ) = 0 div(σ∇P R ) = 0, ∆A = -µ 0 j, E = -∇P R , (
j = σE. (3.2)

Electrostatic sheath modeling

Currently, the presence of the electrodes in the computational domain is done via additional source terms in the enthalpy equation in the areas close to the electrodes (A.112) [START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF] :

• the plasma heat flux at the cathode [START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF] :

-λ c ∂T c ∂n = -λ p ∂T p ∂n + q(j i ) + q(j e ) + χ c q ray -c σ B T 4 c , ( 3.3) 
with the ion heating term defined by:

q(j i ) = j i 5k B 2e T c + ∆V c + V i , ( 3.4) 
where k B = 1, 38.10 -23 JK -1 is the Boltzmann's constant, V i is the ionization potential, ∆V c is the cathodic potential drop and j i = j -j e . The electronic cooling is given by: q(j e ) = -j e 2k B e T c + W c , (3.5) where W c the effective cathode work (or the flow of electrons emitted by the cathode surface) and j e the electron current density through the cathode surface by the thermoelectronic effect defined by the Richardson-Dushmann equation:

j e = A R T 2 c exp -eW e k B T c , ( 3.6) 
where A R is the Richardson's constant and W e is the effective output work of the cathode used only in Richardson-Dushmann's equation [START_REF] Tanaka | A unified numerical modeling of stationary tungsten-inert-gas welding process[END_REF]. χ c q ray corresponds to the radiative transfer with χ c the radiative absorption of plasma at the cathode surface [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF]. Emissivity cooling is given by c σ B T 4 c with c the emissivity at the cathode. • the heat flux from the plasma to the anode is written:

-λ a ∂T a ∂n = -λ p ∂T p ∂n + q(X i ) + q(j e ) + χ a q ray -a σ B T 4 a . (3.7)
Most terms have their cathodic equivalents. Since the potential in the anode sheath is ion repellent, the total current is taken equivalent to the electron current density and the ion heating term is negligible. On the other hand, at the anode, it is necessary to take into account the enthalpy exchange term by evaporation of metallic species q(X i ) with X i the mass fraction of metallic vapours of the species i.

The term electronic heat-up is written as follows:

q(j e ) = j e 5k B 2e (T p -T a ) + ∆V a + W a , ( 3.8) 
with W a the effective anodic work and ∆V a the drop in anode potential.

The potential drop at the electrodes is given by the following relationship:

∆V = k B T e e ln n n e , ( 3.9) 
with n the density in the arc core and n e the electronic density.

Verification case: Stationary Maxwell equations

It is recalled that the model currently used at EDF for plasma simulations is a simplified form of resistive MHD [START_REF][END_REF]5] where we place ourselves in a framework of dilatable Navier-Stokes equations.

As shown in the A.4 section, we solve Maxwell's equations using electrical and magnetic potentials. Then, using Gauss's law (A.13), Faraday's law (A.15) and Lorenz's gauge condition (A.73)-(A.74) assuming quasi-stationarity of electric and magnetic fields, this allows us to calculate the electromagnetic field and current density that are used in the momentum and enthalpy conversion equations.

In order to justify the stability and convergence of the electromagnetic field calculated in our case study, a study is carried out in this section on the boundary conditions on the magnetic potential as well as its stability in the Code_Saturne.

Test case description: Infinite Thread [START_REF] Gonzalez | Simulation tridimensionnelle instationnaire de l'interaction entre un arc électrique et un écoulement environnant[END_REF] In order to verify the stability of the boundary conditions on the magnetic potential in Code_Saturne, we study the case of the "infinite thread" which corresponds to the passage of current in a thread of "infinite" length inducing a magnetic field. The analytical expressions of the magnetic potential A and of the magnetic field B, respectively in the collinear and normal directions to the wire, allow the validation of the approximations obtained by Code Saturne [START_REF][END_REF].

Introduction

A thread is represented by an arbitrarily large cylinder C 1 of radius R containing an inner cylinder C 0 of radius r 0 < R. A current intensity of 200A is imposed and it can be assumed that the current density is written as follows:

J z = σE z .
(3.10)

The expression of the current intensity I is defined by :

I = 2π 0 r 0 0 J z r drdθ, ( 3.11) 
= J z πr 2 0 .

(3.12)

According to [START_REF] Gonzalez | Simulation tridimensionnelle instationnaire de l'interaction entre un arc électrique et un écoulement environnant[END_REF], one has:

E z ≈ dpot L , (3.13) 
with L the length of the wire (in geometry), which implies:

dpot = I πr 2 0 L σ . (3.14)
Thereafter, we take r 0 = 1 mm. So we have a current density J = 6, 366.10 7 Am -2 . In order to respect (3.10) within the thread, the thermophysical properties are adapted such as [START_REF] Gonzalez | Simulation tridimensionnelle instationnaire de l'interaction entre un arc électrique et un écoulement environnant[END_REF] :

• for r ≤ r 0 :
electric conductivity: σ = 11275 Ω/m, temperature: 20000 K,

• for r > r 0 electric conductivity: σ = 1, 32.10 -4 Ω/m, temperature: 300 K.

Analytical solutions

The analytical expression of the magnetic potential according to z and that of the magnetic field according to y are defined by:

• Magnetic potential in Z:

A z (r) =          A z (0) - µ 0 Jr 2 4 si r ≤ r 0 , A z (0) - µ 0 Jr 2 0 2 1 2 ln r r 0 si r > r 0 , (3.15) 
• Magnetic potential in Y:

B y (r) =          µ 0 Jr 2 si r ≤ r 0 , µ 0 Jr 2 0 2r si r > r 0 , (3.16) 
with µ 0 the magnetic permeability of the vacuum.

Solved equations

The system of stationary Maxwell's equations describing electric and magnetic fields is written as follows: (3.21)

div(σ∇P R ) = 0, (3.17 

Three-dimensional case

Data entry

Geometry

The computational domain is represented by a cylinder of radius 7cm and height 1cm. The mesh used is the one described in Figure 3.2, we keep the same notations for the boundary conditions. Thus, the top face corresponding to the upper base of the cylinder C 0 is the cathode and the lower face which is the lower base is called anode. The side of the domain is the side and the free exits are named free. The cathode tip is not modeled.

Space-time discretizations

For the discretization, we have a hexahedral mesh with minimum mesh volume ∆V = 1.4.10 -12 m and maximum volume ∆V = 4.1.10 -8 m. The de-refining is done at the surface exponentially (Figure 3.1). The timestep is: ∆t = 1.10 -6 s. The volume rescaling is used for the electrostatic variables necessary for the boundary condition at the upper base of the thread. Ten iterations are sufficient to reach the steady state. 

Initial and boundary conditions

As initial conditions, the electrical and magnetic potentials are cancelled out: P R = 0 and A = 0. We initialize the temperature at T = 20000 K in the thread and at T = 300 K on the outside. As described above, there are four zones in the geometry:

1 the upper face of the cylinder C 0 , 2 the low face of C 0 , 3 the side of the cylinder C 1 , 4 the free exits.

The following boundary conditions are imposed:

1 Upper face (wall):

-A x , A y = 0, ∂A ∂z = 0, - ∂P R ∂n = 0,
2 Lower face (wall) :

-A x , A y = 0, ∂A ∂z = 0,

-P R = -dpot = -56.46 V , 3 
Side (wall):

-A x , A y , A z = 0, - ∂P R ∂n = 0,
4 Free exits (outlet): 

-A x , A y = 0, ∂A ∂z = 0, - ∂P R ∂n = 0.

Results

In this section, comparisons of the approximations of magnetic potential A z and magnetic field B y are presented with the analytical expressions (3.15). At first glance, one can see that in the comparisons between the analytical expressions (upper part of Figure 3.5) and the calculated potential and magnetic field (lower part of Figure 3.5) do not differ significantly.

For the profiles, they are chosen close to the lower face (z = 0.1mm, close to the upper face (z = 9.9mm) and halfway up the wire (z = 5mm). In Figure 3.3, we see that for the magnetic potential, there are no significant differences between the analytical profiles and those calculated by Code_Saturne. In addition, profiles taken at different heights do not differ from each other.

Likewise, in Figure 3.4, we draw the same conclusions. This is an improvement over a similar study done previously on Code_Saturne 1.2 [START_REF][END_REF] where discrepancies could be observed [START_REF] Beldame | Contribution à l'amélioration des conditions aux limites du potentiel vecteur pour la simulation d'arcs électriques dans Code Saturne : validation dans la version 1.2.2[END_REF]. 

Axisymmetric case

For the same case, a mesh convergence study is carried out on a two-dimensional axisymmetric geometry.

Data entry

Geometry

In Code_Saturne, it's not possible to run purely two-dimensional simulations. To do this, a three-dimensional mesh can be used, in which one dimension is taken small compared to the other two dimensions. For our study, we choose a "slice" of cylinder of angle θ = π 180 , in order to preserve the axi-symmetrical character of the case. We have four edge faces in the geometry (upper face, lower face, slice, free exits) with an extra side of symmetry.

Spatial discretization

We have a mesh in the y direction, so the mesh is refined in the (x, z) directions. Thus, we construct a first coarse mesh that we refine by a factor of 2 in each direction:

(∆x i+1 , ∆z i+1 ) = 1 2 (∆x i , ∆z i ), i ∈ {1, ..., 4} , (3.22) 
in order to get five more and more refined meshes. In addition, the mesh size at the end of the mesh is coarser such as:

(∆x i , ∆z i ) =    (∆x i , ∆z i ) sur 0.1 mm, 4 7 L , 3(∆x i , ∆z i )
sur 4 7 L, L , (3.23) in order to optimize the calculation time and starting from the principle that the magnetic potential tends towards 0 when approaching the slice of the geometry. In order to verify the stationary Maxwell equations, a mesh convergence study on magnetic potential is carried out. As described above (3.22), for the i e mesh, we divide the i e mesh by two. Therefore, we obtain the following five meshes:

∆z (m)
∆x (m) n 1 2, 500.10 -4 1, 500.10 -4 13320 2 1, 250.10 -4 7, 500.10 -5 53280 3 6, 250.10 -5 3, 750.10 -5 212960 4 3, 125.10 -5 1, 875.10 -5 851840 5 1, 562.10 -5 9, 400.10 -6 3402880 Table 3.1: Infinite thread -2D axy-symmetrical case -Mesh convergence study: spatial discretizations

Initial and boundary conditions

The same conditions are imposed on the limits as in the previous case (3.3.3) with a condition of symmetry to preserve axisymmetry, an initial current intensity that is proportional to the surface area of the Upper face of the thread: I = 200 360 = 1.1 A. A current voltage is imposed on the Upper face of the thread via a Neumann condition:

σ ∂P R ∂n = I 1 360 πr 2 0 . (3.24)
The approximations are therefore calculated without recalibration.

Numerical Parameters

Simulations are performed with a centered convection scheme with a solver accuracy of = 1.10 -12 .

Results

In the post-processing (Figure 3.7-Figure 3.8), we compare approximations of the magnetic potential and field on different meshes. In Figure 3.9, the profiles of the different meshes are compared with the analytical profile. The same is true for the magnetic field (Figure 3.10) which is only obtained by analytical rotation of the magnetic potential.

The relative error is calculated on the volume limited by x ∈ 0.1 mm, 4 7 L (named Ω ) weighted according to the mesh size:

||A th z -A cal z || 2 L 2 = Ω ||A th z -A cal z || 2 dV = n i=1 ||A th z (i) -A cal z (i)|| 2 |Ω i | (3.25) ||A th z || 2 L 2 = Ω ||A th z || 2 dV = n i=1 ||A th z (i)|| 2 |Ω i | (3.26) ⇒ Erreur = ||A th z w -A cal z || L 2 ||A th z || L 2 . (3.27)
By plotting the errors on a logarithmic scale, we obtain an order of convergence of 1.93 for the magnetic potential (Figure 3.9) and 1.94 for the magnetic field (Figure 3.10).

Conclusions

Verification of the resolution of the stationary Maxwell equations has validated the numerical resolution of the magnetic and electrical potentials in Code Saturne [START_REF][END_REF]. This allows us to conclude on the stability of the model to calculate the electromagnetic field and current density that are used in the momentum and enthalpy conservation equations. In addition, the boundary conditions in the module Electric arc have been verified. The convergence orders are approaching 2. It is possible that the prism tip of the mesh probably has gradient interpolation errors on this type of mesh. The use of a coupled solver for the magnetic potential components is being considered to improve the estimates. 

Sensitivity to numerical parameters for the plasma model

In this part of the chapter, the data entry for the simulation of an arc plasma is described, taking into account the presence of the electrodes in the computational domain, the metal vapors and the radiation from the electrodes. A numerical stability study is presented first, followed by a sensitivity study to physical parameters.

Geometry

The mesh is a quarter cylinder composed by the tip of the cathode and the anode, made up of 29,000 hexahedral meshes with a minimum volume of ∆V min = 1, 9.10 -14 m and a maximum volume ∆V max = 3, 5.10 -6 m. The discretization is finer at the electrode-plasma interfaces. The time step is ∆t = 2.10 -6 s and the simulated time is t f = 500 ms. 

Initial conditions

At t = 0, u = 0, A = 0 and P R = 0. The electric potential at the cathode is P R = -U , with U being an arbitrarily large voltage allowing the current to be established via a potential difference. For the enthalpy, we have h = 14000 J/kg in the electrodes corresponding to room temperature and in the plasma, we have h = 5.88.10 7 J/kg in the conductor column of radius r 0 = 1 mm.

Boundary conditions

The boundary conditions are as follows:

1 Lower face of the anode (wall):

λ C p ∂h ∂n = σ B (T 4 -T 4 0 ) + h c (T -T 0 ), P R = 0, A = 0, p = p 0 , ∂X i ∂n = 0,
with σ B = 5.67.10 -8 W m -2 K -4 the Stefan-Boltzmann's constant, = 0.5 the emissivity and h c = 15 W m -2 K -1 the convective exchange coefficient.

2 Anode slice (free exit):

h = 14000 J/kg, P R = 0, A x , A y , ∂A z ∂n = 0, p = p 0 = 1013, 25 hP a, ∂X i ∂n = 0,
3 Free exits (free entry and exit):

h = 14000 J/kg, ∂P R ∂n = 0, A x , A y , ∂A z ∂n = 0, ∂X i ∂n = 0,
4 Upper zone of the cathode (wall):

h = 14000 J/kg, P R = -U (the tension), A x , A y , ∂A z ∂n = 0,
5 Upper free exit (free entry and exit):

h = 14000 J/kg, ∂P R ∂n = 0, A x , A y , ∂A z ∂n = 0, ∂X i ∂n = 0,
6 Faces with symmetry condition (symmetry).

Sensitivity to numerical parameters

In this section, we group together all the studies of sensitivity of the convective schemes (upwind, centered), to the consideration (or not) of hydrostatic pressure, to linear solvers (Jacobi or stabilized bi-Gradient conjugate) and to time steps (∆t = 2.10 -4 , 2.10 Subsequently, the following profiles are presented (Fig. 3.11):

• horizontal half-profile taken one mesh below the anodic surface,

• half horizontal profile taken one mesh above the cathodic surface,

• half horizontal profile taken halfway up the arc plasma,

• vertical profile according to z at (x, y)=(0,0).

Numerical results

With regard to the convection schemes, there is a certain discrepancy between the approximations from the upwind and centered profiles, in particular temperature differences of 5 % and speed differences of 10% (Figure 3.12). There are no significant differences in the profiles of the other variables.

Taking into account the hydrostatic pressure does not modify the results in the whole except for the temperature in the anode (Figure 3.14) where a variation between 1500 K (with hydrostatic pressure) and 1400 K (without hydrostatic pressure) is noted. Apart from that, the influence of hydrostatic pressure is very small, which is rather in accordance with the physical phenomena concerned.

For linear solvers, the profiles of variables calculated with different solvers (bi-CG-Stab2 and Jacobi) are presented. The residuals of the linear system resolution (Residual norm : ||Ax n+1 -b||) are of the same order of magnitude. So there is no noticeable effect of the resolution parameters and the chosen scheme for this case.

In order to avoid numerical instabilities present at the beginning of the calculation when the current is established where temperatures and speeds are extremely high, the calculation is initialized with an initial time step of ∆t i = 2.10 -6 s then the time step is increased by a factor of 10 and 100 after 100 iterations i.e. ∆t 100 = 2.10 -5 et 2.10 -4 s. In addition, the approximations for the two convection schemes (upwind and centered) are compared. This corresponds to four simulations: cases 1 to 4 of the Tab.3.3. With the two convection schemes (upwind and centered), the greater the time step, the greater the axial velocity. (Figure 3.12). For the axial temperature (Figure 3.14), the differences are negligible except in the anode, where the maximum temperature increases with the time step. Stable approximations are obtained for all variables for ∆t ≤ 2.10 -5 s. As a complement to these results, a spatial discretization sensitivity study is envisaged in order to obtain a space-time convergent solution for the plasma model. 

Sensitivity to physical parameters for the plasma model

In this section, the results of the sensitivity study to the physical parameters of the plasma model are presented.

Electrical parameters recalibration

In the module Electric arc of Code_Saturne, after imposing the target current (couimp) and the arc tension (U = dpot), the electrical variables (electric potential, current density and magnetic potential) must be adjusted in such a way that the calculated current corresponds to the set current (elcou = couimp). To do this, there are two modes of resetting: volume and surface. The volume rescaling coefficient (coepot) is calculated as the ratio of the imposed power and the calculated power, which corresponds to the product of the voltage (dpot) and target current (couimp) relative to the integral of the Joule effect on the volume of the domain:

coepot = couimp × dpot Ω j • EdV . (3.28)
The surface rescaling is calculated for a plan P on which the surface integral of the current density is given by: elcou = j dS. The coefficient (coepot) is then calculated as follows:

coepot = couimp P jn σ dS . (3.29)
The coefficient (coepot ∈ [0.75, 1.5]) has an additional offset equivalent to an enthalpy limiter to mitigate large enthalpy variations when the current is established. This additional adjustment can be taken into account (clipping) or not. This coefficient is then used to adjust the electrical potential, voltage and current density.

This rescaling can be overridden by directly imposing a Neumann boundary condition on the cathode:

∂P R ∂n = couimp πr 2 0 , ( 3.30) 
with r 0 the cathode radius.

In this section, the plasma approximations obtained with the following adjustments are compared:

• Volume without clipping,
• Volume with clipping,

• Surface without clipping,

• Surface with clipping,

• without recalibration.

Numerical results

The results (Figure 3.17-Figure 3.21) show that the approximations of the variables obtained with the surface and volume rescaling show a deviation on the order of 5%. We notice that on the profiles in the middle of the arc (z = 1 cm), the variables solved according to the calculation without electrical readjustment and with a Neumann condition at the cathode show a deviation from the other profiles. Given the preponderance of u z in regard to u x and the relative differences between the different u x , this difference may not be taken into account. Furthermore, this is not verified in the axial profile.

For axial pressure profiles, it can be seen in Figure 3.18 that the case without electrical rescaling and with a Neumann condition at the cathode for the electrical potential has a lower pressure. In addition, deviations remain in the horizontal profiles. The cause might be a pressure boundary condition at the edges which is not fully adapted. This is corrected in the appendix B.

On the other hand, the calculation without electric rescaling and with a Dirichlet condition at the cathode for the electric potential presents profiles similar to those coming from calculations with surface or volume rescaling.

The enthalpy limiter has no effect on the results in this case. The results obtained in the case without rescaling differ slightly from the others in temperature and real potential. All the results are generally in agreement with T max = 25000 K and P R = 14.8 V . To be in the most general case, we will use volume recalibration without clipping for the rest of the work. 

Potential drops

First of all, we recall the source terms for heat transfer between the plasma and the electrodes:

-λ a ∂T a ∂n = -λ p ∂T p ∂n + L a X i -1 ρD F e ∂X i ∂n -j e 5k B 2e (T p -T a ) + ∆V a + W a + χ a q ray -a σ B T 4 a , (3.31) -λ c ∂T c ∂n = -λ p ∂T p ∂n + j i 5k B 2e T c + ∆V c + V i -j e 2k B e T c + W c + χ c q ray -c σ B T 4 c . (3.32)
In this section, the sensitivity to potential drop in transition zones is studied. In the thermal source term at the plasma-anode interface, the anodic potential drop ∆V A appears in the electronic heating, which is greater the larger the ∆V A . In the same way, for the cathode, the cathodic potential drop (∆V C ) intervenes in the ionic heating. The parameters are known to have a strong influence on the results of plasma simulations. Thus, the following cases are studied in order to observe the influence of the cathodic and anodic potential drops at the electrodes:

-(∆V A , ∆V C ) = (3.5 V ; 4 V ), -(∆V A , ∆V C ) = (3.5 V ; 0 V ), -(∆V A , ∆V C ) = (0 V ; 4 V ), -(∆V A , ∆V C ) = (0 V ; 0 V ).

Numerical results

From the profiles it can be seen that the potential drops only influence the temperature. The results confirm that the cathodic potential drop does not influence the temperature (Figure 3.23) at the electrode surface and that the temperature at the anode increases significantly with the anodic potential drop. This modeling is therefore one of the possible ways to improve the current plasma model by taking into account the imbalance between electrons and ions in the anode transition zone. It would therefore be more judicious to model them via temperatures and ion and electron densities. 

Radiation and evaporation enthalpy source terms

In this part, the relative effect of plasma radiation on the electrodes is studied (q ray ) as well as the effect of cooling of the electrodes by radiative exchange with or without iron vapours. Thus, the following simulations are carried out to highlight the joint effects below: 

Numerical results

In the presence of metal vapours, there is a significant effect of radiative transfer (radiation) from the plasma to the electrodes. Indeed, the radiative exchange coefficient is very high for Iron vapours and increases that of the Argon-Iron mixture. It is then observed that the axial velocity (Figure 3.26) at the core of the arc plasma is greater. In the cathodic layer, the maximum temperature (Figure 3.27) decreases from 25000 K to 22000 K due to radiation loss. In the anode, the maximum temperature with vapours decreases from 3800 K to 2800 K. The radiation of the plasma without the presence of vapors is negligible for the electrodes. Without taking into account the radiation losses, if we look only at the effect of the presence of vapors in the plasma in terms of modification of the properties, we see the important effect of the presence of iron vapors on the electric potential (difference of 1 V ) (Figure 3.28) and on the temperature in the anode (the presence of vapors decreases the maximum temperature of 1000 K). Although the evaporation model (here, a model under LTE assumption) and the term of the latent heat flux of evaporation are important, cooling of the electrodes by radiative exchange did not show any influence on the results. Therefore, calculations with metal vapours are more accurate from a physical point of view. The model of the evaporation latent heat flux is constructed for the moving spot. As a perspective for future work, the evaporation model could be improved to take into account the physics in the anode transition zone. The iron vapour diffusion coefficient in Argon could be improved especially as it is involved in the latent heat of evaporation term. The mixing laws of the species should also be reviewed and the evaporation rate should be validated during the validation of the model as a function of the saturation pressure. 

Numerical processing of electrostatic sheaths -Electric conductivity adjustment

To account for partial out-of-equilibrium effects, an electric conductivity adjustment is used to increase the temperature at the anode surface by simulating the presence of electrons and the absence of ions in the anode transition zone. By taking this model into account in Code_Saturne, the maximum temperature (Figure 3.31) at the anode increases by 50%. The arc voltage (Figure 3.32) stands at 20 V without correction compared to 15 V with correction. Again, the relative deviation on the mid-arc profiles (Figure 3.30) may not be taken into account since it is negligible compared to the order of magnitude of the axial velocity.

The results are more physical with this model. It is therefore one of the important parameters of the current modeling. A calculation of the densities and temperatures of ions and electrons would improve the model thanks to a better estimation of the thermal and electrical conductivities in the anodic transition zone. 

Conclusions

In this section, we have presented some numerical improvements for plasma simulation in Code_Saturne. Stability and sensitivity studies of the numerical and physical parameters were carried out to identify the optimal configuration to be used for the calculations as well as the influencing terms in the model. The physical parameter sensitivity study showed an influence of the anode potential drop on the anode surface temperature. Electrode radiation is only influential in the simulations if the evaporation of metal vapours is taken into account, which reduces the temperature distribution at the weld pool surface and increases the velocity within the arc plasma. Consequently, it also gives a significant influence on the arc pressure at the bath surface and increases the depth of penetration of the weld pool.

Thus, a stable basis for the plasma model has been obtained in order to allow further developments to refine the heat transfer to the workpiece such as the implementation of a coupled plasma/weld pool model and the improvement of the description of the non thermodynamic equilibrium zones at the plasma sheaths.

Introduction

In this chapter, we continue the sensitivity study of the physical and numerical parameters for the weld pool model.

As a preamble, a comparison (the results are not explicitly presented in this manuscript) was made on temperature profiles and weld pool penetration cuts on plates of different surfaces and thicknesses in order to identify for experimental purposes the smallest plate surface on which the edges are at room temperature at the final welding time. Another study on the identification of the equivalent welding energy was undertaken to obtain the same temperature profiles whether with a 2 mm or 1 cm. Thus, we will be able to correctly visualize the dimensions of the bath while adapting to our industrial case of the canopy seal weld, which will be only 2 mm thick. At the same time, a calculation of the total weld bead volume has been implemented to provide an additional tool for studies on weld pool dimensions e.g. offset.

In order to speed up the execution of the calculations, the code is carried out on a cluster. The post-processing of this study, which consisted in comparing the cross-sections and surface profiles of the different solved variables with each other, allows us to define the choice of plate size for future calculations. A square plate with a side of 8 cm and 2 mm thick in order to leave a margin to get ambient temperature at the edges but also to optimize calculation times. This is therefore the subject of a preliminary case study before allowing any further study.

Set of equations

Weld pool modelling is based on magnetohydrodynamics (MHD) equations to simulate the flow of a fluid induced to an electromagnetic field. The system to be solved is the same as the one used in the plasma model in order to allow coupling of the models. Thus, it is composed of the dilatable Navier-Stokes equations coupled with the Maxwell equations and the enthalpy conservation equation:

                                                         div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p + div(µ(∇u + ∇u T )) + j × B + F b + S u R , ∂ ∂t (ρh) + div(ρuh) = div λ C p ∇h + j • E, div(σ∇P R ) = 0, ∆A = -µ 0 j, E = -∇P R , B = rot(A), j = σE, ( 4.1) 
with j the current density, texbfE the electric field, texbfB the magnetic field, µ 0 = 4π.10 -7 Hm -1 the permeability of the vacuum, h the enthalpy, F b the buoyancy, S u R the Carman-Kozeny speed cancellation term. The dynamic viscosity µ(T ), the density ρ(T ), the electric σ(T ) and thermal λ(T ) conductivities and the specific heat C p (T ) are from Kim et al. [START_REF] Kim | Heat and fluid flow in pulsed current gta weld pool[END_REF].

Marangoni effect

The surface tension gradient (5.30) is not monotonous with respect to T and depends on the concentration of the surfactant elements c. At low concentration of these elements, the surface tension decreases proportionally to the temperature and at high concentration, it increases with the temperature up to a certain critical temperature T c before decreasing again.

γ(c s , T ) = γ 0 m -A(T -T m ) -RT Γ s ln 1 + k exp - ∆H RT a s , N m (4.2)
from which we deduce the expression of the thermo-and chemo-dependent coefficients of the surface tension:

∂γ ∂T (c s , T ) = -A -Γ s R logB + 1 -B B ∆H RT , (B = 1 + kc s exp - ∆H RT -C , (4.3) ∂γ ∂c s (c s , T ) = - RT KΓ s 1 + Kc s , ( 4.4) 
with T m the melting temperature of steel, gamma 0 m the surface tension of pure metal, A the opposite of df rac∂γ∂T for pure metal, Gamma s the excess sulfur concentration, R the perfect gas constant, ∆H the heat of absorption and k the segregation entropy.

The expressions of the most frequently encountered coefficients correspond to the work of Mills [START_REF] Mills | Equations for the calculation of the thermo-physical properties of stainless steel[END_REF] and Sahoo [START_REF] Sahoo | Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy[END_REF]: The values proposed in [START_REF] Sahoo | Surface tension of binary metal-surface active solute systems under conditions relevant to welding metallurgy[END_REF] needs a correction made in the table (Tab.4.1).

Coefficients Sahoo (Fe-S) Mills (steel 304L) γ 0 m (N/m) 1,
According to an internal EDF study [START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF], it would appear that Mills' model is the most appropriate one, as it correctly reproduces the welding behavior of materials with the same surfactant content. Thus, in the following section, new contributions to the modeling of the weld pool model are discussed.

Case description 4.4.1 Geometry

The calculation area is a square plate with a 80 mm side and a thickness of 2 mm. The reference mesh is represented in Figure 4.1.

By default, we take a minimum mesh size of 1.3.10 -4 m for a hexahedral mesh of 1,350,000 cells. Indeed, since Code Saturne [START_REF][END_REF] is a code based on the method of colocalized finite volumes, the gradients are reconstructed by averaging in the center of the mesh its values taken on each side. Therefore, it becomes judicious to generate a hexahedral mesh so that the reconstructions are done as well as possible. In order to obtain optimal reconstructions, a cubic mesh geometry is chosen.

The molten zone is meshed by cubes, i.e. the central square with a side of 4 cm and then the rest of the domain is exponentially unrefined..

For time iterations, we take a time step ∆t = 1.10 -3 s. 

Thermophysical properties

The thermophysical properties of steel are taken constant per phase (solidus temperature: 

T s =

Initial and boundary conditions

At t = 0, the workpiece to be welded is at room temperature and atmospheric pressure P 0 = 101325 P a. Concerning the thermophysical properties of steel at this temperature, the density stands at ρ 0 = 7500 kg/m 3 , the specific heat at C p,0 = 602 J.K -1 kg -1 , the thermal conductivity at λ = 24 W.m -1 K -1 and the electric conductivity at σ = 8, 60.10 5 Ω.m -1 . The initial velocity u 0 is zero. The electric potential P R is taken initially equal to U , the magnetic potential A is not taken into account. Boundary conditions are defined for three groups of faces:

• Upper face : upper (heated) side of the plate,

• Lower face : facing the back of the plate,

• Side: side of the plate.

On all faces, a homogeneous Neumann condition is imposed on the pressure. On the heated side (Upper face), we have:

• the speed: u • n = 0 and the Marangoni effect:

µ ∂(u • τ ) ∂n = f L ∂γ ∂T (c s , T )∇T • τ + f L ∂γ ∂c s (c s , T )∇c s • τ , ( 4.5) 
with τ the unit tangent vector and f L the liquid fraction defined as follows:

f L =          1 , T > T L , T -T s T L -T s , T ∈ [T s , T l ] 0 , T < T s
where T S is the solidus temperature and T L is the liquidus temperature. The surface tension force γ(c s , T ) is a function of temperature and concentration of surfactant species (here, sulfur) in the liquid metal. The thermo-and chemical dependent terms contained in the surface tension gradient are described in the Section 2.2. In the studies that will be presented later, the chemical coefficient of the surface tension gradient will not be taken into account and the thermo-dependent coefficient will be constant:

∂γ ∂T = -4.10 -4 N.(mK) -1 . ( 4.6) 
• l'enthalpy:

λ C p ∂h ∂n = Φ equiv + Φ radiative + Φ convective = ηU I 2πr 2 h exp - r 2 2r 2 h -σ B (T 4 -T 4 0 ) -h c (T -T 0 ), (4.7) 
with σ B = 5.67.10 -8 W m -2 K -4 the Stefan-Boltzmann's constant, = 0.5 the emissivity, h c = 15 W m -2 K -1 the convective exchange coefficient and r h = 4.10 -3 m the characteristic distance of the heat distribution. The equivalent heat source Φ equiv based on the Gaussian distribution assumption is a function of the distance from the center of the flare and is characterized by the radius limiting the heated surface r h .

• the scalar potential:

σ ∂P R ∂n = I 2πr 2 j exp - r 2 2r 2 j , ( 4.8) 
with the following simplification r j = r h .

On the other faces, conditions are imposed as wall boundaries with an enthalpy flux composed of radiative and convective exchange fluxes.

• scalar and vector potentials:

σ ∂P R ∂n = 0, (4.9 
)

1 µ 0 ∂A ∂n = 0. (4.10)
4.5 Sensitivity study to spatio-temporal discretization

Introduction

In this section, a mesh sensitivity study is conducted. The same operating parameters, initial and boundary conditions as well as the same geometry are used. In the first approach, we keep a short time step ∆t = 0.001 s for each calculation with a different mesh. The profiles are compared to t f = 6 s at the ending position of the torch.

Results

A comparison of the approximations obtained for four uniform meshes is presented. The space and time steps follow a linear refinement. The transverse, longitudinal and depth profiles of velocity u, pressure p, enthalpy h, scalar real potential P R and vector potential A are presented, as well as the liquid fraction l L and temperature gradient ∇T . In addition, two tables are also presented, showing the residuals on the equations of the solved variables as well as the number of iterations performed by the linear solver. It should be noted that all these post-processing operations are carried out at the last iteration in time. (t f = 6 ms).

1 ∆x i = 2.
By observing the relative deviations between the profiles of the different resolved variables (Figure 4.3-Figure 4.9), we notice that from mesh 3, i.e. with a cell ∆x i = 7.10 -5 mm, the maxima seem to converge. Likewise, we see in Figure 4.9 that the overall size of the weld pool stabilizes at mesh 3. Tab.4.3 shows that the residuals of the different solved variables stabilize from mesh 3. For pressure depth profiles (Figure 4.8), since the starting point is the ending position of the flare, the relative deviations are derived from the difference in pressure minima at this surface point. Tab.4.4 shows that the finer the spatial and temporal discretization, the greater the number of iterations of the solvers.

Due to the unsteady nature of this case study i.e. mobile torch, a constant heat input coupled with non-negligible unsteady terms is preserved. This may explain why it is not possible to obtain a small absolute difference between the different profiles.

Equation residual residuals ∆x i 2, 0.10 -4 m 1, 0.10 -4 m 7, 0.10 -5 m 5, 0.10 -5 m iterations k u 5, 0. 

Force and power balances

In this section, discrete mass, momentum and thermal balances are studied in order to identify the most influential physical contributions of the weld pool model. Thus, discrete balances are calculated for each term of the mass conservation, momentum and enthalpy equations. The same operating parameters, initial and boundary conditions are maintained for a time step of ∆t = 0.001 s.

Mass balance

According to the mass balance (Tab.4.5) as well as the time derivative term (Tab.4.6), a small contribution of the mass flux is noticeable.

Mass balance continuous discrete Mass conservation Ω div(ρu)dΩ 2, 78.10 -7 

Momentum balance

For momentum balances (Tab.4.6), we observe that, in decreasing order of importance of convective contributions, we find the surface tension force which has a factor of 100 of deviation from the Lorentz force and buoyancy which are of the same order of magnitude. In another welding configuration e.g. cornice, the order can be changed. The high balance of the viscous stress tensor may be due to the numerical dynamic viscosity imposed by default for the solid (100 kg/m/s) which is the one that governs the entire flow. We will consider taking a lower value i.e. closer to that of liquid steel. So we notice that the relative error of the model in relation to the total balance of mechanical forces is of the order of 1%.

Mechanical balances continuous discrete

Marangoni S ∂γ ∂T ∇ s T dS 3, 18.10 -4 

Stress Tensor

Ω div [µ (∇u + ∇u t )] dΩ -3, 06.10 -4 Carman-Kozeny Ω K (1 -f L ) 2 (f 3 L + b) u) dΩ -7,

Thermal balance

For the thermal power balances (Tab.4.7), there is a strong contribution from the heat source which has a factor 10 deviation from thermal convection and diffusion which are of the same order of magnitude. Radiation and surface convection appear to be negligible. Thus, we observe that the relative error of the model in relation to the total thermal power balance is of the order of 0.1%. 

Convection-diffusion linear operator

In this section, we compare the computation times as well as the residuals of the variables obtained with the linear Jacobi and Stabilized Conjugate Bi-gradient linear solvers, used to solve the linear convection-diffusion operator defined by [START_REF][END_REF]:

n (a n+1,k+1 ) = f exp s -f imp s (a n+1, k -a n ) -θ div((ρu) a n+1,k ) -div(µ ∇a n+1,k ) , ( 4.11) 
with (a

(n+1,k k
) a series defined by:

a n+1,0 = a n , a n+1,k+1 = a n+1,k + δa n+1,k+1 , (4.12) 
where δa n+1,k+1 is solution of:

n (a n+1,k + δa n+1,k+1 ) = 0. (4.13)
The stop test is written as follows [START_REF][END_REF]:

|| n (a n+1,k+1 )|| < ||f exp s -div((ρu) a n ) + div(µ∇a n ) +div((ρu) a n+1,k ) + div(µ ∇a n+1,k )|| (4.14)
with = 1.10 -6 .

Results

In Tab.4.8, we present the residuals on the equations of the solved variables, their number of iterations as well as the CPU time for a time iteration. We can see that the time for a time iteration is 2.7 times shorter with the stabilized Conjugate Bi-gradient compared to Jacobi. The number of iterations for the BiCGStab is lower compared to the Jacobi. The residuals for velocities and real scalar potential are of the same order of magnitude for both solvers. On the other hand, the residual for the enthalpy obtained with BiCGStab is lower than that of the Jacobi while the residual for the BiCGStab vector potential is higher. By default in Code Saturne [START_REF][END_REF], the number of sub-iterations k for speed is 1 and 2 for pressure. It might be a good idea to increase k in order to reduce these residuals on the equations. Thus, in situations where a very precise convergence is not necessarily required, it may be wise to choose the Stabilized Conjugate Bi-gradient as a linear solver in order to obtain better performance for future calculations. 

Solvers

Sensitivity to convection schemes

A scalar field Y transported by a convective field ρu is written using Leibniz's theorem as follows:

d dt Ω i ρY dΩ = Ω i ∂ ∂t (ρY ) + div(Y ρu) dΩ, ( 4.15) 
where:

∂ ∂t (ρY ) + div(Y ρu) = ρ ∂Y ∂t + ∇Y • (ρu). (4.16)
The integration of the convection term is written on each cell:

Ω i ∇Y • (ρu) dΩ = Ω i div(Y ρu)dΩ -Y i Ω i div(ρu)dΩ = ∂Ω i Y ρu • dS -Y i ∂Ω i ρu • dS (4.17) = f ∈F i (Y f -Y i )(ρu) f • S f i with Y f = 1 |S| f f Y dS, (4.18)
and |S| f the surface area f . The approximate value of the Y field associated with the center of the i cell is given by:

Y i = 1 |Ω i | Ω i Y dΩ. (4.19)
We introduce m f i the mass flow coming out of the cell Ω i through the f side such that:

m f i = (ρu) f • S f i . (4.20)
Implying:

Ω i ∇Y • (ρu) dΩ = f ∈F i C f i (m f i , Y ), (4.21) 
with C f i the discrete flux via the face F i .

Upwind and centered schemes

This first-order space scheme is defined by :

C upwind ij (m ij , Y ) = (Y upwind ij -Y i )m ij , (4.22) 
with

Y upwind f ij = Y i si m ij ≥ 0, Y j si m ij ≤ 0. (4.23)
This scheme of order 2 in space is written as follows:

Y centered f ij = α ij Y i + (1 -α ij )Y j + 1 2 (∇ i Y + ∇ j Y ) • OF, (4.24) 
with α ij = F J I J and OF taken from Figure 5.2. A centered scheme that is of order 2 is more accurate than the upwind scheme of order 1. On the other hand, it is less stable than the upwind scheme, which can lead to oscillating solutions due to dispersive errors.

Results

From the profiles of the temperature gradient (Figure 4.11) and velocities (Figure 4.12), we notice that the extrema of the upwind scheme are significantly lower than those of the centered scheme. According to the table 4.9, the residuals on the equations of the approximated variables are of the same order of magnitude. Except for the one on the pressure of the upwind scheme which is slightly higher. The choice of the convective scheme does not seem to greatly influence the results despite the difference in order between the schemes. Thus, it is consistent to continue with the centered convective scheme.

Equation residuals upwind centered iterations k u 4, 6.10 -1 5, 5.10 -1 1 h 1, 4.10 -4 2, 1.10 -4 10 P R 9, 7.10 -7 1, 0.10 -6 10 A 2, 8.10 -4 2, 8.10 -5 1 In this section, the sensitivity of the weld pool model to the Carman-Kozeny velocity penalty term is studied. As mentioned previously, this source term S u R allows to progressively cancel the velocities approaching the melting limit. Darcy's law which expresses the stationary flow velocity of an incompressible viscous fluid through a porous medium with permeability C and dynamic viscosity µ is written:

u = - C µ ∇p. (4.25)
It expresses the dependence of the velocity to the pressure gradient. Permeability is related to the porosity of the medium by the Carman-Kozeny equation:

C = λ 2 2 kτ 2 π 2 f 3 L (1 -f L ) 2 , ( 4.26) 
with λ 2 the inter-dendritic space in the transition zone, k the Carman-Kozeny constant, τ the tortuosity of the transition zone and f L the liquid fraction defined as follows: . Thus, the speed penalty term is written as follows:

f L =          1 , T > T L , T -T s T L -T s , T ∈ [T s , T l ] 0 , T < T s (4.
S R u = -µK (1 -f L ) 2 (f 3 L + b) u, (4.28) 
with b (-→ 0 + ) to avoid zero division.

Sensitivity to Carman-Kozeny constants

By imposing a dynamic (numerical) viscosity at 100 kg m -1 s -1 for the solid part of the domain to simulate the liquid-solid transition, the profiles of temperature, temperature gradient and velocities along the y axis are compared in the configurations (K, b) = (0.0), (10 2 , 10 -2 ), (10 6 , 10 -6 ), (10 -12 ). The transverse profiles to the welding direction are presented at the ending position of the torch (t f = 6 s) with a time step of ∆t = 0.001 s.

Results

In Figure 4.15, there are no noticeable differences between the temperature profiles regardless of the configuration. On the temperature gradient profiles (Figure 4.14), we notice that the extrema of the configurations (K, b) = (10 6 , 10 -6 ), (10 12 , 10 -12 ) are more important. On the other hand, for the speeds (Figure 4.13), we notice that the more the Carman-Kozeny constants take extreme values, the more the speeds appear regular. Moreover, by observing the calculation times (Tab.4.10), we notice that the more extreme the values taken by these constants are, the lower the number of iterations of the linear solver. The residual on the equation (i.e. the one by reinjecting the approximate solution at time iteration n) shows, for the velocities, that there is a slight increase when we take larger and larger constants. Nevertheless, we conclude that the optimal configuration from a numerical point of view is (K, b) = (10 

Conclusions

In this chapter, the results of the sensitivity study on the numerical and physical parameters of the weld pool model implemented in Code_Saturnewere presented. The study of sensitivity to time discretization allowed to get closer to a converged solution. Given the unsteady nature of the simulation, it is necessary to have a finer spatio-temporal discretization. The power balances allowed to confirm the influence of the Marangoni effect as well as the heat source on the general solution of the weld pool. Sensitivity studies on linear solvers, convection schemes and modelling of the transition zone yield an optimal choice for the calculation with an optimal precision -calculation time ratio.

Thus, this study allows to establish a stable basis of the weld pool model on which free surface deformation developments can be performed.

Chapter 5

Weld pool model with free surface deformation Contents

Introduction

In this chapter, a model for the numerical simulation of dilatable flows with deformed free surfaces is presented. For this purpose, the interface tracking method derived from the Arbitrary Lagrangian Eulerian approach used in [34,[START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF] has been developed to take into account the presence of free surface deformation. In this chapter, we recall the theory on the kinematic description of the motion of matter. Secondly, we present the ALE model implemented in Code Saturne [START_REF][END_REF] by taking into account the surface tension. For that, we validate the method on two-dimensional and three-dimensional verification cases. Finally, it is applied to the weld pool model in order to deform the free surfaces in different welding configurations.

Kinematic description of the motion of matter

In the field of Continuum Mechanics, the algorithms used belong to two types of motion description: Eulerian and Lagrangian [34]. With a Lagrangian kinematic description, each node of the mesh is associated with a material particle. This motion description allows easier tracking of free surfaces and interfaces between different materials. The disadvantage is that with this method, it is impossible to track a large deformation in the computational domain with few remeshing operations. Thus, Eulerian description is very often used in fluid mechanics. The computational domain is fixed and the flow depends on the mesh. In this case, large deformations can be taken into account quite easily, but the counterpart is that a greater refinement of the mesh is necessary in the areas close to the interfaces. The ALE method combines the advantages of the Eulerian and Lagrangian methods. The nodes of the mesh can move as a function of the flow via a Lagrangian description.

Interface capturing methods

Experimental studies on weld pool flow have significant constraints, thus justifying the development of numerical models that provide additional information on welding physics. From a numerical point of view, moving mesh problems present a coupling between the interface positions and the fluid flow that interact with each other. Therefore, it is necessary to develop a method to solve the equations governing the flow of the weld pool and plasma in a coupled manner with that characterizing the deformation of the interface. For this purpose, various methods exist and are divided into two groups: interface capturing and interface tracking.

In the case of methods based on interface capture such as Level Set (LSM) and Volumeof-Fluid (VOF), the mesh used is stationary and the interface is deduced by the position of the particles or by the reconstruction of the scalar field.

The method Level Set allows to model the interface positions by adapting the method of the level set [START_REF] Osher | Level set methods: an overview and some recent results[END_REF]. The advantage of this method is that it allows to take into account surface deformations on a Cartesian mesh without having to make any parameterization (as in an Eulerian approach). Thus, one can easily follow the deformation even in case of surface splitting. To do so, it is necessary to solve an equation with partial differential equations of convection characterizing the temporal evolution of the scalar field. On the other hand, the conservation of the total volume is not always ensured (e.g. in a case of large distortion) which can be detrimental for long simulations. The Volume-of-Fluid [START_REF] Darwish | Convective schemes for capturing interfaces of freesurface flows on unstructured grids[END_REF] is an Eulerian method for capturing the interface between two phases within a single domain. To do this, a variable α of liquid fraction (0 if in phase A and 1 if in phase B ) is introduced to distinguish the two phases. By solving a transport equation, we thus obtain the dynamics of the interface (nodes on which α ∈ ]0.1[). The advantage of this method is that it allows to follow large deformations. On the other hand, as the interface depends greatly on the calculated liquid fraction, it is not obvious to have an accurate interface without a significant refinement of the mesh in the area of interest.

Interface tracking methods

Interface tracking methods such as DSD/SST (Deforming-Spatial-Domain / Stabilized-Space-Time) and ALE (Arbitrary Lagrangian Eulerian method) are based on a moving mesh approach. At each time step, the nodes of the mesh adapt to respect the shape of the interface. In the DSD/SST [START_REF] Aliabadi | Space-time finite element computation of compressible flows involving moving boundaries and interfaces[END_REF], we write the variational formulation of Petrov-Galerkin on the discretized space-time domain. Therefore, it is not suitable for our case where we rely on a finite volume formulation.

For the purpose of this work, the ALE method is chosen to model the deformation of the free surfaces of the weld pool. In order to better understand the developments made during this thesis as well as the various difficulties, a theoretical introduction to the method is presented in the next section.

ALE method

Set of equations on the mobile domain

To this end, we introduce w as the velocity of the moving mesh corresponding to the velocity of movement of the x(t) points in this domain such as:

w = ∂x ∂t . (5.1)
Let Ω i (t) be a control volume (or cell) of Ω(t). In order to express the Navier-Stokes equations in a general context not only adapted to the weld pool model, source terms such as buoyancy, Lorentz forces and the Carman-Kozeny recall term are omitted. This does not change the demonstration that will be developed later. First of all, we detail the Reynolds transport theorem allowing to express a field (scalar or vector) Y in time on the moving mesh:

d dt Ω i (t) YdΩ i = Ω i (t) ∂ ∂t (Y)dΩ i + ∂Ω i (t) Y ⊗ w • dS i . (5.2)
A new equation is introduced using the Reynolds theorem with Y = 1 to express the volume variation on the moving mesh, an important notion for the rest of the chapter. Thus, we obtain the geometric conservation law (GCL) :

d dt Ω i (t) dΩ i = Ω i (t) div(w)dΩ i . (5.3)
For the mass conservation equation, the same development is done by taking Y = ρ in Reynolds' theorem which gives:

d dt Ω i (t) ρdΩ i = Ω i (t) ∂ρ ∂t dΩ i + Ω i (t) ρw • dS i .
By injecting the mass conservation equation into the first integral and using Green-Ostrogradski's theorem on the second integral, we finally have:

d dt Ω i (t) ρdΩ i + Ω i (t)
div(ρ(u -w))dΩ i = 0.

(5.4)

In order to establish the momentum conservation equation on the moving mesh, we take Y = ρu in Reynolds' theorem and we get this:

d dt Ω i (t) ρudΩ i = Ω i (t) ∂ ∂t (ρu)dΩ i + ∂Ω i (t) ρu ⊗ w • dS i . (5.5)
By introducing the momentum conservation equation into the first integral, one obtains [START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF]:

d dt Ω i (t) ρudΩ i = Ω i (t) div(τ -pI) -div(ρu ⊗ u) dΩ i + ∂Ω i (t) ρu ⊗ w • dS i .
Then using Green-Ostrogradski's theorem for the second integral, the equation (5.5) takes the form:

d dt Ω i (t) ρudΩ i + Ω i (t) div(ρu ⊗ (u -w))dΩ i = Ω i (t)
div(τ -pI)dΩ i .

(5.6)

For the enthalpy conservation equation, we take Y = ρh and we get:

d dt Ω i (t) ρhdΩ i = Ω i (t) ∂ ∂t (ρh)dΩ i + ∂Ω i (t) ρhw • dS i = Ω i (t) -div(ρuh)dΩ i + div λ C p ∇h + j • E dΩ i + Ω i (t) ρhw • dS i = Ω i (t) -div(ρ(u -w)h) + div λ C p ∇h + j • E dΩ i .
(5.7) Code Saturne [START_REF][END_REF] is a code based on the finite volume method where the resolution of the pressure p, velocity u and other fields (scalar or vector) is done at the center of gravity I of a control volume Ω i . Thus, a field Y is defined at the center of gravity of a cell by:

Spatial discretization

Y i = 1 |Ω i | Ω i YdΩ i . (5.8)
After expressing the Navier-Stokes equations, the enthalpy conservation equation and the geometric conservation law on the deformable time domain, a spatial discretization is established by integrating these equations on a control volume Ω i . The following equations result:

• Mass conservation:

d dt (|Ω i |ρ i ) + j∈V (i) (ρ(u -w)) f ij • S ij + k∈γ(i) (ρ(u -w)) f ik • S ik = 0, (5.9) 
• Momentum conservation:

d dt (|Ω i |(ρu) i ) + k∈γ(i) u f ik (ρ(u -w)) f ik • S ik = j∈V (i) (τ fij -p fij I) • S ij + j∈V (i) u f ij (ρ(u -w)) f ij • S ij + k∈γ(i) (τ f ik -p f ik I) • S ik ,
(5.10)

• Enthalpy:

d dt (|Ω i |(ρh) i ) + j∈V (i) h f ij (ρ(u -w)) f ij • S ij = j∈V (i) λ C p i ∇ fij h + (j • E) fij • S ij + k∈γ(i) h f ik (ρ(u -w)) f ik • S ik + k∈γ(i) λ C p i ∇ ik h + (j • E) ik • S ik ,
(5.11)

• Geometry conservation:

d dt (|Ω i |) - j∈V (i) w f ij .S ij - k∈γ(i) w f ik • S ik = 0, (5.12) 
with V (i) and γ(i) respectively the set of j internal faces f ij (respectively the set of k external faces f ib ) of the cell Ω i . Thereafter, the edge (external) terms will not be taken into account in order to facilitate the lecture.

Time discretization

Next, we choose a first-order explicit time scheme to compute the displacement of the nodes of the cell Ω n+1 via the mass flows taken from Ω n . It has been shown in [START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF] that this type of scheme is stable by maintaining a uniform velocity field. Thus, first, we integrate the equations ((5.9) -(5.12)) on a time step ∆t between t n and t n+1 which gives:

• Mass conservation:

|Ω i |(ρ n+1 i -ρ n i ) ∆t + j∈V (i) 1 ∆t t n+1 t n (ρ(u -w)) f ij • S ij dt = 0 ⇒ |Ω i |(ρ n+1 i -ρ n i ) ∆t + j∈V (i) 1 ∆t (ρ(u -w)) n→n+1 f ij • S n ij = 0, (5.13) 
• Momentum conservation:

(|Ω i |ρ i ) n+1 u n+1 i -(|Ω i |ρ i ) n u n i ∆t + j∈V (i) 1 ∆t t n+1 t n u f ij (ρ(u -w)) f ij • S ij dt = j∈V (i) 1 ∆t t n+1 t n (τ f ij -p f ij I) • S ij dt ⇒ (|Ω i |ρ i ) n+1 u n+1 i -(|Ω i |ρ i ) n u n i ∆t + j∈V (i) 1 ∆t u n+1 f ij (ρ(u -w)) n→n+1 f ij • S n ij = j∈V (i) 1 ∆t (τ n+1 f ij -p n+1 f ij I) • S n ij , ( 5.14) 
• Enthalpy conservation:

(|Ω i |ρ i ) n+1 h n+1 i -(|Ω i |ρ i ) n h n i ∆t + j∈V (i)
1 ∆t

t n+1 t n h f ij (ρ(u -w)) f ij • S ij dt = j∈V (i)
1 ∆t

t n+1 t n λ C p i ∇ f ij h + (j • E) f ij • S ij dt ⇒ (|Ω i |ρ i ) n+1 h n+1 i -(|Ω i |ρ i ) n h n i ∆t + j∈V (i) 1 ∆t h n+1 f ij (ρ(u -w)) n→n+1 f ij • S n ij = j∈V (i) 1 ∆t   λ C p n+1 i ∇ n+1 f ij h + (j • E) n+1 f ij   • S n ij (5.15)
• Geometry conservation:

|Ω i | n+1 -|Ω i | n ∆t = j∈V (i) 1 ∆t t n+1 t n w f ij • S ij dt ⇒ |Ω i | n+1 -|Ω i | n ∆t = j∈V (i) 1 ∆t w n→n+1 f ij • S n ij .
(5.16)

By integrating the mass conservation equation (5.13) into (5.14) to implicit Ω n+1 i and ρ n+1 i , we detail the prediction step [START_REF] Chorin | Numerical solution of the navier-stokes equations[END_REF] which allows to calculate an intermediate velocity field ũn+1 i with an explicit pressure field:

(|Ω i |ρ i ) n (ũ n+1 i -u n i ) ∆t + j∈V (i) ũn+1 f ij (ρ(u -w)) n-1→n f ij • S n ij = j∈V (i) τ n+1 f ij -p n f ij I • S n ij + j∈V (i) ũn+1 i (ρ(u -w)) n-1→n f ij • S n ij .
(5.17)

The correction step does not differ from its expression on a fixed mesh and allows to calculate an increment of the pressure field δp n i with (5.4) to allow the mass flows to verify the mass conservation equation on a moving mesh. Indeed, by taking into account the low compressibility of density in the total volume conservation equation ( 5.3) and inserting it into (5.4), the mesh-velocity dependent terms w cancel each other out:

ρ ¨¨¨¨¨d dt Ω i (t) dΩ i + Ω i (t) div(ρu)dΩ i -ρ $ $ $ $ $ $ $ $ $ Ω i (t) div(w)dΩ i = 0.
Then we take into account the correction step following Hodge's decomposition:

1 ∆t Ω i (ρu) n+1 dΩ n i - Ω i (ρũ) n+1 dΩ n i = - Ω i div(δp n I)dΩ n i , (5.18)
with explicit incremental pressure δp n = p n -p n-1 . This allows to update the mass flow, velocity and pressure field at the moment n + 1. Thus, we verify the mass conservation equation with the fluid velocity u :

j∈V (i) (ρu) n+1 f ij • S n ij = 0. (5.19)
The next section discusses the different methods that can be used to calculate the displacements of the nodes of the mesh.

Free surface deformation of the weld pool: Solv-

ing the Poisson's equation

Weld pool model

Remember that the flow is laminar and dilatable. The different thermophysical properties of the material (specific heat, thermal and electric conductivity, dynamic viscosity and density) are a function of temperature. We use the same set of equations (4.1) based on the resistive magnetohydrodynamics model. In this section, we will express these equations taking into account the deformation of the mesh. For that, we first try to describe the Navier-Stokes equations in its integral formulation on a moving mesh as a function of time Ω(t). Then, this description will be extended to the enthalpy conservation equation. As the Maxwell equations are of pure diffusion type solved on a fixed mesh [START_REF][END_REF], the expression of these equations on the moving domain are the same as for a fixed domain.

Calculation of the displacement of the nodes: velocity of the mesh

In order to better take into account the different forces acting on the surface of the weld pool such as the Marangoni effect, buoyancy, arc pressure, shear forces, it is chosen to use an ALE type interface tracking method to simulate the deformation of the free surface of the weld pool. As mentioned above, [START_REF][END_REF] is a collocated finite volume code where the variables are solved at the center of gravity of the cells and not at the nodes as in the finite element method. In addition, there is an ALE method already implemented in the code. In the case of a spatio-temporal discretization based on finite volumes, one must calculate the displacement of the nodes δz N via a moving mesh velocity w i at the cell center before being extrapolated to the nodes. The equations of magnetohydrodynamics on the moving mesh are described as follows:

                                                                   d dt Ω i (t) ρdΩ i + Ω i (t) div(ρ(u -w))dΩ i = 0, d dt Ω i (t) ρudΩ i + Ω i (t) div(ρu ⊗ (u -w))dΩ i = Ω i (t) div(τ -pI) + j × B + ρg + S u R dΩ i , d dt Ω i (t) ρhdΩ i + Ω i (t) div(ρ(u -w)h)dΩ i = Ω i (t) div λ C p ∇h + j • E dΩ i , div(λ ∇w) = 0, div(σ∇P R ) = 0, ∆A = -µ 0 j, E = -∇P R , B = rot(A), j = σE. (5.20)
Thus to obtain this mesh velocity w i , we additionally solve a Poisson equation associated with the boundary conditions described as follows [START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF]:

                     div(λ ∇w) = 0, w |Γ(t n ) = w, ∂ ∂n (w -(w.n)n) |∂Ω\Γ(t n ) = 0, w.n |∂Ω\Γ(t n ) = 0, (5.21) 
with w the imposed velocity, n the outer normal, Γ(0) the stationary free surface in its initial state, Γ(t n ) the free surface deformed at t n and λ the mesh viscosity matrix:

λ =    λ x 0 0 0 λ y 0 0 0 λ z    . (5.22)
The mesh viscosity can be either isotropic or orthotropic. In the case of isotropic mesh viscosity, the nodes move in the direction of gravity. Thus, an isotropic viscosity is equivalent to an orthotropic mesh viscosity with λ x = λ y = λ z = 1. The nodes moving in the direction i is more important since the coefficient of mesh viscosity λ i is big [START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF].

With [START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF], we have the following relationship:

λ z = 1 ∆z , (5.23)
allows for better movement of the nodes in the mesh. By verifying the CFL condition bounded by 1, we have only:

λ z = max|u z | ∆t .
(5.24)

Mesh velocity extrapolation -node displacement

The previous section shows that in our case, we first calculate the velocity of the mesh w i via the Laplacian solved at the cell centers Ω i of the meshes at the free surface Γ(t). One obtains the velocity of the mesh w f ib at the boundary face S ib by calculating the mass flow (ρu) f ib .S ib . Then one extrapolates the boundary velocity w f ib to the k nodes N b k (k = 4, if the face is quadrangle) associated with the face f ib . In our case, the mesh used is composed of regular hexahedrons which implies that the boundary faces are quadrangles. Thus the mesh velocity at the face w f ib is equally distributed to the nodes ( 14 w f ib , for a quadrangle). Now an edge node N is the only element common to all four boundary faces f ib i.e.:

N = card(γ) j=1 N jb l ∈ f jb , l = 1, ..., card(f jb ) , (5.25)
with γ all the free surface's faces. Therefore, the velocity of the mesh at node w n N k is written as follows: For each node N k , k = 1, ..., T N ,

w n N k = i∈C N k 1 |Ω i | (w i + ∇w i • IN) i∈C N k 1 |Ω i | , ( 5.26) 
with T N , and C N k the set of cells Omega i to which the N k node belongs. Thus, the displacement to the node d n N k at t n is written as follows:

d n N k = w n N k ∆t, (5.27) 
and we have:

N n k (z) = N 0 k (z) + d n N k (z), (5.28) 
with N n k (z) and N 0 k (z) respectively the coordinates z of node N k at t n = n∆t and t 0 = 0.

Algorithm

We detail the different steps of the algorithm in the course of a time step between t n and t n+1 done on Ω n i : • Velocity prediction: ũn+1 

ρ(u -w) n→n+1 f ib .S n ib = 0 ⇒ u n+1 f ib .n n ib = w n→n+1 f ib .n n ib (5.29)
• Enthalpy and electromagnetic potential computation:

h n+1 i and (P R n+1 i , A n+1 i ) • Node displacement computation: d n→n+1 N k
• Mesh geometry update:

Ω n i ⇒ Ω n+1 i
We notice that the equation (5.29) which is a local verification of the mass conservation thus introduces a kinematic condition at the boundary.

Case description

In this section, we describe the data entry for the simulation of a weld pool with a free surface deformation in a spot configuration:

• gravity along the z-axis,

• speed and pressure boundary conditions on the weld pool surface: a homogeneous Neumann condition is imposed for the normal speed component and a Dirichlet condition for the pressure,

• non-slipping boundary edges : it is assumed that the boundary of the mesh will be immobile given the estimated liquid fraction size,

• pre-calculated solution of a stable and established weld pool (to optimize computation time). 

Geometry and space-time discretization

The geometry is a square plate with a side of 8 cm and a thickness of 2 mm (Figure 5.4). The mesh is composed of regular hexahedrons of minimal volume ∆V = ∆x 3 = (2.10 -4 ) 3 m in a central area of 4 2 cm 2 with an exponential unrefinement towards the edges of the domain. The temporal discretization is: ∆t = 1.10 -3 s. 

Initial conditions

At t = 0, the workpiece to be welded is at room temperature and atmospheric pressure P 0 = 101325 P a. Concerning the thermophysical properties of steel at this temperature, the density stands at ρ 0 = 7500 Kg/m 3 , the specific heat at C p,0 = 602 JK -1 Kg -1 , the thermal conductivity at λ = 24 W m -1 K -1 and the electric conductivity at σ = 8, 60.10 5 Ωm -1 . The initial velocity u 0 is zero. The operating parameters are the same as for 4.4.2.

Boundary conditions

Boundary conditions are defined as follows:

• Upper face: upper (heated) side of the plate,

• Lower face: facing the back of the plate,

• Side: the plate's edges.

On all boundary faces a homogeneous Neumann condition is imposed on the pressure. On the heated face (Top face), we impose:

• the Marangoni effect for tangential velocities:

µ ∂ ∂n (u-(u•n)n) = f L ∂γ ∂T (c s , T )(∇T -(∇T •n)n)+f L ∂γ ∂c s (c s , T )(∇c s -(∇c s •n)n),
(5.30) with f L the liquid fraction and: (5.31)

f L =          1 , T > T L T -T s T L -T s , T ∈ [T s , T l ] 0 , T < T s γ(c s ,
• the enthalpy:

λ C p ∂h ∂n = ηU I 2πr 2 h exp - r 2 2r 2 h + σ B (T 4 -T 4 0 ) + h c (T -T 0 ), (5.32) 
with σ B = 5.67.10 -8 W m -2 K -4 Stefan-Boltzmann's constant, = 0.5 the emissivity, h c = 15 W m -2 K -1 the convective exchange coefficient and r h = 4.10 -3 m the characteristic distance of the heat distribution.

• the scalar potential:

σ ∂P R ∂n = I 2πr 2 j exp - r 2 2r 2 j , ( 5.33) 
with the simplification: r j = r h .

On the other boundary faces, we imposed a wall condition with an enthalpy flux composed of the radiative and convective exchange fluxes; and the same conditions for the electric and magnetic potentials.

• electrical and magnetic potentials:

σ ∂P R ∂n = 0 et 1 µ 0 ∂A ∂n = 0.
(5.34)

Numerical results

After only one physical second, the method based on moving the nodes of the mesh with the solution of the Poisson's equation to calculate the velocity of the mesh w produces numerical results with very high speeds in the transition zone. This results show negative control volume, which means that the calculation is interrupted (Figure 5.6). This could be a cause of instability due to the time lag in the calculation of the pressure increment during the correction step. Indeed, the liquid fraction being dynamic as a function of the distribution of the temperature field in the domain can lead to non-zero mass flows close to the transition zone. Thus, an overall mass loss can be observed over the weld pool domain which has an influence on the geometrical conservation of the total volume (5.16).

A possible solution to the problem would be to perform sub-iterations when solving the Navier-Stokes equations in order to implicate the velocity of the mesh to minimize the deviation present in the geometrical volume variation. [START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF].

Conclusions

Since the algorithm currently available in Code Saturne [START_REF][END_REF] interpolates the velocities from center-cells to the faces and does not allow for proper mass conservation, an alternative method must be developed. Indeed, having chosen to calculate the mesh velocity by solving a Poisson equation, it is possible to know the analytical solution of (5.21) which is the solution of an elasticity problem [START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF]. Therefore, we can explicitly determine the kinematic displacement d N of the nodes without going through the interpolation between the velocity of the mesh at the center-cell to the nodes of the mesh. This method is presented in the next section. 

Motivation

During this thesis, a numerical method was developed to allow a more stable modeling of the free surface of the weld pool in colocalized finite volumes. In this section, the theory describing the explicit displacement of the nodes of the mobile mesh is presented. On the other hand, two validation test cases are presented in order to validate the implemented method (two-dimensional problem of sloshing):

• Gravitational wave -oscillations due to gravity,

• Capillary wave -oscillations due to surface tension.

Finally, numerical results on free surface deformation will be presented in a three-dimensional case before deforming the weld pool with the normal component of the surface tension taken into account γ (depending on the curvature radii) as well as on the arc pressure P arc .

Numerical model

The previous method based on solving the mesh velocity using the Poisson equation did not preserve a good conservation of the mass. As the geometrical variation of the volume is not totally preserved, the accumulation of this deviation can lead to mesh reversals if the Physics is highly non-linear. To overcome this, a new numerical model is implemented to explicitly compute the kinematic displacement of each node on the surface. The deformations of the free surface are considered to be of small amplitudes and it is assumed that the displacements tangent to the surface are negligible compared to the normal displacement. Thus, the choice is made to privilege the displacements of nodes in the normal direction to the surface (Oz ). In addition, this method is developed on a structured hexahedral mesh. In this case, the displacements of the internal nodes depend only on the displacements of the surface nodes of the weld pool. This can be seen as a stiffness constant (related to the analytical solution of an elasticity problem) that is applied to the internal displacements thus preventing any negative control volume.

In the following section, the method for a fully liquid domain is first detailed (i.e. non-biphasic solid-liquid ).

Algorithm

The main steps of the algorithm are presented for a time step between t n et t n+1 done on Ω n i :

• Velocity Prediction:

ũn+1 i with (ρ(u -w) n-1→n f ib .S n ib ) and p n i • Velocity correction: u n+1 i , p n+1 i and (ρu n+1 f ib .S n ib ) • Mesh velocity computation for k ∈ {1, ..., K} surface nodes N b k : w n→n+1 N b k = j∈C N b k u n+1 f jb .n n jb Card(N ∈ f jb ) , ( 5.35) 
• Internal node displacement computation:

Let d n→n+1 N b = w n→n+1 N b
∆t be the surface node displacement N b of coordinates z = N b (z b ) and N in (z) the coordinates z of any internal node (We can think of them as vertical columns of nodes following z). Then:

∀z ∈ T N t.q. (N b (x b ), N b (y b ), N b (z b )) = (N in (x b ), N in (y b ), N in (z)), d n→n+1 N in (x b , y b , z) = d n→n+1 N b (x b , y b , z b ) z -z min z b -z min , ( 5.36) 
with z min the coordinates z corresponding to N in the farthest node from the surface.

• Free surface mesh velocity computation f ib :

w n→n+1 f ib = Card(N ∈f ib ) k=1 d n→n+1 N b k Card(N ∈ f ib )∆t , ( 5.37) 
• Volume conservation verification:

ρ(u n+1 f ib -w n→n+1 f ib ).S n ib = 0, (5.38) 
• Computation of enthalpy and electromagnetic potentials:

h n+1 i et (P R n+1 i , A n+1 i ) • Computation of node displacement: d n→n+1 N ,
• Geometry mesh update:

Ω n i ⇒ Ω n+1 i .

Remarks

Moreover, we can see through this algorithm that the mesh velocity is taken into account in a consistent way allowing to keep the geometrical volume variation without time lag. In order to validate the method, the test case of the gravity wave is presented in the next section.

Validation test case: Gravitational wave

In order to validate the algorithm for the numerical simulation of free surface flows, we choose the two-dimensional problem of the sloshing [START_REF] Cortelezzi | Small-amplitude waves on the surface of a layer of a viscous liquid[END_REF][START_REF] Ramaswamy | Numerical simulation of unsteady viscous free surface flow[END_REF] with small deformations. This allows the numerical results to be compared with an analytical solution representing the temporal evolution of the free surface. In the case of the gravity wave, one is supposed to observe damped oscillations of a liquid contained in a square recipient.

Set of equations

The solved equations are Navier-Stokes equations on a moving mesh defined by:

           d dt Ω i (t) ρdΩ i + Ω i (t) div(ρ(u -w))dΩ i = 0, d dt Ω i (t) ρudΩ i + Ω i (t) div(ρu ⊗ (u -w))dΩ i = Ω i (t)
div(τ -pI) + ρg dΩ i .

(5.39)

Geometry and mesh

The geometry is a hexahedron of dimension 1 x 1 x ∆y m 3 with ∆y taken in such a way that the cells of the mesh are cubic. As first step, a mesh size of 25 x 25 x 1 cells is chosen i.e. ∆y = 4.10 -2 m Figure 5.7.

Physical and numerical parameters

The timestep is ∆t = 5 ms for N = 4000 iterations corresponding to a physical time of 20 s. The dynamic viscosity is taken at µ = 10 Pa.s for a density of ρ = 1000 kg.m -3 .

Initial and boundary conditions

The oscillation is caused by a gravity following z such as g z = -1 m.s -2 . At t = 0, the fluid velocity is zero and the initial profile of the free surface is described as follows:

h = 1 + a 0 sin π 1 2 -x , (5.40) 
with a 0 = 0.01 m the maximum amplitude of the mode taken at x = 0 (i.e. the left-most node on the surface of the mesh). Except for the free surface, the other edge faces follow a slipping boundary condition i.e. the normal component of velocity and the tangential components of the stress tensor are zero. The initial pressure follows the distribution of a hydrostatic pressure field. 

Numerical results

In order to study the space-time convergence of the test case, three meshes and three time steps are chosen, classified in the following table: On Figure 5.8, we notice that for the mesh 25 2 , the frequencies as well as the amplitudes are slightly lagged from to the analytical solution. Then for the two others, no more phase lag is noticed and the more refined the mesh is, the closer the calculated amplitude is to the analytical solution. However, it is not easy to conclude qualitatively on the convergence in time.

On Figure 5.9, the relative errors calculated according to the formula:

r = a ana t i -a num t i a 0 , ( 5.41) 
with i ∈ {t 0 , t n } the different timesteps, a num t i the variation of the numerical amplitude of the mode and a ana t i the variation of the analytical amplitude of the mode (given in C.2). The differences in relative errors are greatest at the oscillation level. However, it is clear that this error is smaller with smaller time steps, which allows us to have a first conclusion on convergence in space and time. In Figure 5.10, we see that the L 2 error is decreasing:

L 2 = 1 Ω N k=1 a ana t i -a num t i a 0 2 Ω k , ( 5.42) 
depending on the mesh size and the time step, going from = 1, 4.10 -4 to = 6, 1.10 -6 . On Figure 5.11, we plot the L 2 error in logarithmic scale for the following combinations:

• (∆y, ∆t) = (4.10 -2 m, 10 ms),

• (∆y, ∆t) = (2.10 -2 m, 5.0 ms),

• (∆y, ∆t) = (1.10 -2 m, 2.5 ms).

Thus, this result allows us to conclude on the order of convergence of the study, which is of order 2 in space. We notice that the spatial discretization error interferes with the temporal integration for coarse meshes (cf. Figure 5.10) since it tends to accumulate. The order of temporal convergence is of order 1 because of the temporal discretization scheme used to update the mesh which is explicit and of order 1. Relative amplitude (m) Time (s)
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Calculation of algebraic curvatures Introduction

Surface tension models the microscopic imbalances at the interface of two fluids (gas, water, etc.). In the case of a curved surface, it represents the pressure differential on either side of the surface implying a rise or fall. Thus the normal component of the surface tension is defined by:

γ(c s , T ) n = γ(c s , T )κ = γ(c s , T ) 1 R x + 1 R y , ( 5.43) 
with κ the algebraic curvature of the compound surface and R x , R y the radii of curvature in tangential directions to the surface. With three points in a plane, it is a sufficient condition to determine the arc of a circle passing through these points. The purpose of this development is to estimate the algebraic radius of curvature of the oscillating circle (i.e. the "best" circle approximating the curve at a point M ) passing through three nodes in a plane (Ox) or (Oy) thus making it possible to take into account the convexity (or concavity) associated with the central node. However, as mentioned previously, Code_Saturne is based on the method of collocated finite volumes. Therefore, the different variable fields are solved at the center-cells and not at the nodes like the finite difference or finite element methods. The curvatures are used in the expression of the normal component of the surface tension which is taken as a free surface condition for pressure. Based on the spatial discretization of the finite volumes, these curvatures are therefore taken at the center of gravity of a face. The difficulty lies in obtaining a good estimate for extrapolating the radius of curvature R of the circle passing through a node at the center of the faces to which it belongs.

In the following sections, we detail the two-and three-dimensional calculations of the radii of curvature as well as their extrapolations from the center-cells of the faces. In order to geometrically minimize the approximation of extrapolation of curvatures on surface meshes in finite volumes, we choose to estimate the radius of curvature of the circle passing through three nodes by taking the circle passing through the center of the two faces to which the node belongs. Among the known variables, we have:

Two-dimensional case

• F 1 and F 2 the two faces to which the node belongs V (v x , v y ),

• C 1 (c 1x , c 1y ) and C 2 (c 2x , c 2y ) respectively the centers of the faces F 1 and F 2 ,

• n 1 (n 1x , n 1y ) and n 2 (n 2x , n 2y ) respectively the outer normals for C 1 and C 2 .

We're trying to estimate:

• M (m x , m y ) center of the circle passing through C 1 , V and C 2 ,
• R, the radius of curvature.

The radius of curvature is defined as the norm of the vector MV with M the point of intersection between the two straight lines carried respectively by the outer normals n 1 and n 2 . By construction, the vectors M C 1 and n 1 are collinear and the same is for M C 2 and n 2 . This leads to the following system to be solved:

   det(M C 1 , n 1 ) = 0, det(M C 2 , n 2 ) = 0.
(5. [START_REF] Haidar | Non-equilibrium modelling of transferred arcs[END_REF] In matrix form, the equation (5.44) becomes:

-n 1y n 1x -n 2y n 2x m x m y = det(n 1 , OC 1 ) det(n 2 , OC 2 ) . ( 5.45) 
Thus, you just have to invert the matrix to obtain the coordinates of the center M of the circle. By the co-factor method defined for a square matrix A:

A -1 = 1 det(A) t com(A), (5.46) 
where com(A) is the comatrix of A, we get M (m x , m y ) as follows:

m x m y = 1 n 1y n 2x + n 2y n 1x n 2x -n 1x n 2y -n 1y c 1y n 1x + c 1x n 1y c 2y n 2x + c 2x n 2y . ( 5.47) 
The coordinates of the point M being now known, we just need to calculate the Euclidean norm of the M V vector which gives:

R = ||M V || 2 .
(5.48)

Three-dimensional case

In the three-dimensional case, the above method is not sufficient on its own to estimate the radius of curvature of a node. One seeks to estimate the circle of radius R passing through C 1 , C 2 and V * , the center of the edge

[V 1 V 2 ].
Since the nodes only move in the direction z, estimating the coordinates of V * can be done via an arithmetic mean of V 1 and V 2 on the components x and z since: 

∀t n (n = 0, ..., N ), ∀(v t n 1y , v t n 2y ), V * t n (v * ,t n x , v * ,t n y , v * ,t n z ) = 1 2 V t n 1 (v t n 1x , v t n 1y , v t n 1z ) + V t n 2 (v t n 2x , v t n 2y , v t n 2z and (5.49) v * ,t 0 y = ... = v * ,t N y .
Since the calculation of a determinant in three dimensions requires three equations for as many unknowns, it is not possible to use the previous method alone. To do this, we take into account the fact that any vector defined on the surface's face is orthogonal to the outgoing normal vector, so by taking C 1 V * (or C 2 V * ) the vector from the center of F 1 towards the center of the edge, the following equation is introduced where for i = 1 ou 2:

M C i • C i V * = 0.
(5.50) Thus, the system to be solved becomes:

∀(y 1 , y 2 , y 3 , y 4 ) ∈ R 4 ,            det(M C 1 (x, y 1 , z), n 1 (x, y 2 , z)) = 0, det(M C 2 (x, y 3 , z), n 2 (x, y 4 , z)) = 0, M C i • C i V * = 0 (avec i = 1 ou 2).
(5.51)

At t n , no matter which way the nodes V 1 and V 2 moves such that v 1y = v 2y , this following orientation variation in y is taken into account in the n 1y and n 2y the normal vectors n 1 and n 2 . Thus, it is possible to carry out the calculation of the determinant in two dimensions to calculate m x and m z without taking into account the components in y then, to do the scalar product to calculate the last missing component m y .

In matrix form, the equation (5.51) splits into:

m x m z = 1 n 1z n 2x + n 2z n 1x n 2x -n 1x n 2z -n 1z c 1z n 1x + c 1x n 1z c 2z n 2x + c 2x n 2z and
(5.52)

m y = c iy + (c ix -m x )v * x + (c iz -m z )v * z v * y (avec i = 1 ou 2). (5.53) 
The radius of curvature was obtained such that R = ||M V * ||. The case treated was described in the tangential direction x. Being mutually independent of each other, the procedure is equivalent according to y. In this way, we obtain the radii of curvature R x and R y in tangential directions to the free surface.

Extrapolation of the radius of curvature: edge -face

In this step, the extrapolation of the radii of curvature of each edge to its associated faces is described. In our case, the boundary faces f b are quadrangles. Each face has four edges, which gives two radii (R 1

x , R 2 x ) (left -right) in a tangential direction (x ) and two (R 1 y , R 2 y ) (up -down) in the other (y). Intuitively, the procedure could be to take the average radius of curvature. This presents a counter-example observable on the Figure 5.13 where the curvature (F 1 -F 2 ) is concave while the curvature (F 3 -F 1 ) is convex. If the curvature is concave, the radius of curvature is positively oriented. This implies that you have a negatively oriented radius of curvature for a convex curvature. The average of the radii of curvature oriented is interpreted as a null average radius of curvature i.e. infinite curvature.

The alternative consists, for each face, in taking the average of the curvatures κ x = 1

Rx

(and κ y ) to avoid the previously mentioned case (e.g. the concave-convex transition zone of the free surface seen in the problem of sloshing). In addition, we choose to weight the curvature with a coefficient corresponding to the ratio of faces associated with an edge (we detail this in the rest of the document).

Algorithm

Let F b be all the faces of the free surface, (V * x 1 , V * x 2 ) the edge centres following x (leftright) associated with the boundary face f i , (V * y 1 , V * y 2 ) the edge centres following y (haut -bas) associated with the boundary face f i , F V * all faces to which V * belongs; κ V * the curvature associated with the edge, κ x f i and κ y f i the curvatures following x and y associated to the face.

So, for each face f i belonging to F b :

• (Direction x ) : ∃(V * x 1 , V * x 2 )/∀ (f i , f x j ), (f i , f x l ) ∈ F V * x 1 xF V * x 2 , κ f x i N x = κ V * x 1 |min(S i , S x j )| |max(S i , S x j )| N x 1 + κ V * x 2 |min(S i , S x l )| |max(S i , S x l )| N x 2 , ( 5.54) 
• (Direction y) :

∃(V * y 1 , V * y 2 )/∀ (f i , f y j ), (f i , f y l ) ∈ F V * y 1 xF V * y 2 , κ f y i N y = κ V * y 1 |min(S i , S y j )| |max(S i , S y j )| N y 1 + κ V * y 2 |min(S i , S y l )| |max(S i , S y l )| N y 2 , ( 5.55) 
where N x , N y are respectively the unit normal mean vectors with s the curvilinear abscissa. N x 1 , N y 2 are respectively the unit normal vectors in the direction x respectively oriented towards the centres C 1 and C 2 of their associated circles. Thus, this allows to indicate the orientation of the concavity of the curve and de facto, the sign of the algebraic radius of curvature (Figure 5.14). The same reasoning is carried out for unit normal vectors in the y direction. In this way, we obtain a curvature associated with a face allowing to take into account the normal component of the surface tension for free surface condition in pressure. The next test case allows to validate the adopted method. 

V*y1 V*y2 V*x2 V*x1 ( f y l ; S y l ) ( f x l ; S x l ) ( f y j ; S y j ) ( f x j ; S x j ) Nx2 Nx1 Ny2 Ny1 ( fi ; Si ) ϰV*y2 ϰV*y1 ϰV*x2 ϰV*x1 ( ϰf x i ; ϰf x i )

Validation test case: Capillary wave

In this section, the method adopted with the case of the capillary wave is validated by studying the free oscillations, under the influence of the surface tension force, of a liquid contained in a square container.

Geometry and mesh

The geometry is a hexahedron of dimension 1 x 1 x ∆y m 3 with ∆x = ∆y. Firstly, we choose a mesh with 100 x 100 x 1 cells i.e. ∆x = 1.10 -2 m and ∆y = 1.10 -1 m 5.15.

Physical and numerical parameters

The time step chosen is ∆t = 4 ms for N = 5000 iterations corresponding to a physical time of 20 s. As in the previous case, the dynamic viscosity is taken at µ = 10 Pa.s for a density at ρ = 1000 kg.m -3 . 

Initial and boundary conditions

The oscillation is due solely to the normal component of the surface tension taken at γ(c s , T ) = 0.1 N/m. At t = 0, the fluid velocity is zero and the initial profile of the free surface is defined as for the case of the gravity wave 5.4.4. Similarly, apart from the free surface, the other boundary faces follow a slipping condition i.e. the normal component of the velocity and the tangential components of the stress tensor are zero. The pressure boundary condition for the free surface is written as follows:

p = p 0 + γ(c s , T )κ x f .
(5.56)

Numerical results

In order to study the spatio-temporal convergence of the test case, three meshes and three time steps are chosen, classified in the following table: On Figure 5.16, we notice that for the 100 2 mesh, the frequencies as well as the amplitudes are slightly lagged with respect to the analytical solution. Then for the two others, we do not notice any more phase lag and the more refined the mesh is, the closer the calculated amplitude is to the analytical solution.

On Figure 5.17, it is noticeable that the differences between the relative errors calculated are the largest in terms of oscillations. On the other hand, we can see that this error is all the smaller with smaller time steps, which allows us to have a first conclusion on the convergence in space and time. With Figure 5.18, we notice the decrease of the L 2 error depending on the mesh size and the time step from = 3, 9.10 -4 à = 1, 6.10 -5 .

The last Figure 5.19, we plot the L 2 error in logarithmic scale for the following combinations:

• (∆x, ∆t) = (1, 0.10 -2 m, 4 ms),
• (∆x, ∆t) = (5, 0.10 -3 m, 2 ms),

• (∆x, ∆t) = (2, 5.10 -3 m, 1 ms).

Thus, this result allows us to conclude on the order of convergence of the study which is also 2 in space and order 1 in time. We notice that for the 400 2 mesh, it is necessary to satisfy a CFL condition in order to keep the stability of the computation. Relative amplitude (m) Time (s) dx=1,0.10 -2 -dt=1.10 -3 s dx=1,0.10 -2 -dt=2.10 -3 s dx=1,0.10 -2 -dt=4.10 -3 s dx=5,0.10 -3 -dt=1.10 -3 s dx=5,0.10 -3 -dt=2.10 -3 s dx=5,0.10 -3 -dt=4.10 -3 s dx=2,5.10 -3 -dt=1.10 -3 s analytical Relative error Time (s) dx=1,0.10 -2 -dt=1.10 -3 s dx=1,0.10 -2 -dt=2.10 -3 s dx=1,0.10 -2 -dt=4.10 -3 s dx=5,0.10 -3 -dt=1.10 -3 s dx=5,0.10 -3 -dt=2.10 -3 s dx=5,0.10 -3 -dt=4.10 -3 s dx=2,5.10 -3 -dt=1.10 -3 s 

Three-dimensional test case

In this test case, the dynamics of the free surface is studied taking into account the influence of the tension force with the radii of curvature in both tangential directions.

The free oscillations of a liquid contained in a cubic container are simulated.

Geometry and mesh

The geometry is a cube of 1 m side composed by cubic cells. As a first step, a mesh size of 25 x 25 x 25 cells is chosen. i.e. ∆x = 4.10 -2 m.

Physical and numerical parameters

The time step chosen is ∆t = 1 ms for N = 12000 iterations corresponding to a physical time of 12 s. As in the previous cases, the dynamic viscosity is taken at µ = 10 Pa.s for a density at ρ = 1000 kg.m -3 .

Initial and boundary conditions

The oscillation is due solely to the normal component of the surface tension taken at γ(c s , T ) = 0.1 N/m. At t = 0, the fluid velocity is zero and the initial profile of the free surface is defined as follows:

h = 1 -4a 0 cos π 1 2 -x cos π 1 2 -y , ( 5.57) 
with a 0 = 0.01 m the maximum amplitude of the mode. Similarly, apart from the free surface, the other boundary faces follow a slipping condition i.e. the normal component of the velocity and the tangential components of the stress tensor are zero. The pressure edge condition for the free surface is written as follows: (5.58)

Numerical Results

Figure 5.22 shows the temporal evolution of the amplitude of the point taken as the minimum argument of the free surface. As it is not possible to compare these results with an analytical solution, it is nevertheless possible to judge the stability of the model. Thus, a progressive attenuation of the oscillations in time is observed. In Figure 5.21, the curvatures κ x f and κ y f presented take well into account the convexity and concavity of the different faces of the free surface. Thus, the velocity in z of the fluid is higher in the centre, which corresponds well to the fact that at t > 0, we see that the tension surface tends to return to its equilibrium position in order to minimize energy.

In Figure 5.23, we plot the geometric variation of the volume at each iteration. We notice that the calculation ρ(u

n+1 f b -w n→n+1 f b ).S n
b is bounded by 1.10 -10 to verify the kinematic condition. In addition, the calculation of the resolution error of the equations shows residuals for the velocity of 9, 02.10 -7 and for the pressure of 4, 69.10 -7 . The case of the weld pool presents physical phenomena that can cause instabilities in the dynamics of the free surface. We have seen previously that the method via the solution of the Poisson equation to obtain a mesh velocity is unstable in our weld pool case. A risk of non-zero mass flow in the transition zone leads to a loss of total volume of the computational domain which no longer allows to preserve the conversation of the mass. This justified the need to implement an alternative method to deform the free surface. In this section, the previously validated method is tested on the weld pool model. The data entry is the same as the one used for sensitivity studies to the numerical and physical parameters of the weld pool model 5.3.5 and the numerical results are presented at t f = 6 s = 6000∆t.

Liquid node identification

A specific treatment is done in the transition zone to avoid this 5.24. The face velocity is extrapolated to the nodes only on liquid (red) faces whose nodes are strictly liquid (i.e. not belonging to a solid (blue) face). This allows to minimize the fluid-solid discontinuity where the progressive transition via the transition zone is not taken into account on some cells due to the dynamic character of the liquid fraction which is a function of the temperature field. In order to complete the weld pool model presented previously, new developments on the normal component of the surface tension with radii of curvature as well as the arc pressure are taken into account.

p = p 0 + γ(c s , T )(κ x f + κ y f ) (+P arc ), (5.59) 
with P arc defined by:

P arc = F 2πσ 2 P exp - r 2 2σ 2 P , ( 5.60) 
with σ p = 4.10 -3 m the characteristic application distance of this pressure, F is the total arc force at the surface of the weld pool defined for a grinding angle of 60 • as follows [START_REF] Nguyen | Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG[END_REF] : F = -4, 017.10 -2 + 2, 553.10 -3 x I (N ), (5.61) where I is the current intensity.

Numerical results of the weld pool free surface deformation with algebraic curves

In this simulation, only the upper free surface is mobile and the lower surface is initially fixed. The surface tension force is taken into account at both surfaces. Figure 5.25 shows a swelling in the centre of the bath, which is physical given the fact that the surface tension represents the pressure differential on either side of the surface thus implying this elevation.

One observes the two recirculation zones characteristic of a negative thermocoefficient of surface tension dragging the bath outwards. Figure 5.26 shows a positive mass flow. We notice that in the solid zone, the mass flux is zero. In this calculation, the arc pressure is taken into account in addition to the surface tension force at the bath surface. Thus, in Figure 5.27, we observe a hollowing of the center of the molten bath. Other results are post-processed in order to compare the size of the molten zone, the surface velocity, etc. So far, we have only moved the nodes from the upper free surface of the molten pool, maintaining the lower face with a wall condition with a Marangoni boundary condition. In this section, the simultaneous displacements of the upper and lower free surfaces are presented in the case where the weld pool completely penetrates the plate. When only the nodes on one face are displaced, it was shown that the displacement of the internal nodes can be calculated with a weighting of the displacement of a surface node. Thus, one approach is to divide each column of nodes in half such that the nodes in the lower plate thickness (i.e. in ]0mm; 1mm[) follow the movement of the lower surface node and that the nodes in the top thickness of the plate (i.e. dans ]1mm; 2mm[) follow the movement of the upper face node. This means using the 5.4.3 in both thicknesses of the plate.

The node located exactly in the middle of the plate (i.e. z = 1mm) has a displacement calculated as the algebraic mean of the displacements of the nodes of the upper and lower faces. However, for a given column, if the top and bottom nodes tend to move towards the middle of the plate, then the displacement of the node in the middle of the plate will be zero, so there is a special case where this method may present a mesh reversal. An alternative is to calculate the global displacement of a column of nodes at time t n+1 and then make a subdivision equidistant of the new column length from the total number of nodes in the plate thickness. Thus, this displacement is distributed to all the internal nodes of the mesh, which gives the following algorithm: 

w n→n+1 N b k = j∈C N b k u n+1 f jb .n n jb Card(N ∈ f jb ) , ( 5.62) 
4 Internal node displacement computation: Let d n→n+1 N (h,β) = w n→n+1 N (h,β) ∆t, be respectively the displacement of the upper face node (N h ) and lower face node (N β ). Let the nodes N h of coordinates z = N h (z h ) and N in (z) of coordinates z of any internal node (we can think of them as vertical columns of the following nodes z). So:

∀z ∈ T N t.q. (N h (x h ), N h (y h ), N h (z h )) = (N in (x h ), N in (y h ), N in (z)), d n→n+1 N in (x b , y b , z) = N in (z) + n z N in (z) N h (z) D, ( 5.63 
)

with D = dist N h (z 0 ) + d n→n+1 N h (x h , y h , z h ), N b (z 0 ) + d n→n+1 N b (x h , y h , z β )
, the overall movement of a column from node to node t n+1 , T N all the nodes in the mesh, and n z the total number of nodes in a column, 5 Mesh velocity calculation on the surface face f ib : 

w n→n+1 f ib = Card(N ∈f ib ) k=1 d n→n+1 N b k Card(N ∈ f ib )∆t , ( 5 
Ω n i ⇒ Ω n+1 i .

Numerical results

In this calculation where we represent a welding simulation in spot configuration by taking into account the arc pressure and the algebraic curvatures on the free surfaces, we observe on Figure 5.28 that the effect of the arc pressure and gravity influences considerably the geometry of the weld pool which tends to sag. The surface tension keeps the weld pool liquid to prevent any loss of material. In this section, we present the simulation results of welding with a moving torch with deformation of the free surfaces of the weld pool. At t = 0, we start at x = -8mm. We simulate 6 physical seconds of welding with a feed rate of 16 cm/min in the direction x. Thus, in final time, we advanced exactly 16mm with a fully penetrating weld pool. By default, a time step ∆t = 1.10 -3 s.

Weld pool free surface deformation in a horizontal welding configuration

In Figure 5.29, a section according to the welding direction is observed showing the temperature field on the bath surface, the liquid fraction on the section and the velocity vectors in the liquid zone. It is observed that due to the torch advance and the arc pressure, a sagging of the upper surface is created at the front of the weld pool. At the rear, we physically see a concavity of the surface verifying the conservation of the total volume. Globally, we observe that the lower surface presents a convexity due to gravity. Deformation of the free surfaces of the weld pool in horizontal welding configuration: convergence of approximations

In order to obtain approximations of the resolved variables with optimal convergence, the same geometry is preserved and the mesh is refined to be composed of regular hexahedrons of minimum volume ∆V = ∆x 3 2 = (1.10 -4 ) 3 m in a central area of 4 2 cm 2 with exponential derefinement to the edges of the domain.

In order to preserve a stable CFL condition, a temporal discretization is taken such as: ∆t 10 = 1.10 -4 s. The ALE method is suitable for small surface deformations. Therefore, one cannot just afford to adapt the time step to the space step in a linear way because the displacement of the nodes composing the surface cells can undergo relatively large deformations relatively to their size.

In Figure 5.30, a section according to the welding direction is observed showing the temperature field at the weld pool surface, the liquid fraction on the section and the velocity vectors in the liquid zone. Compared to the previous calculation, it can be seen that the velocity fields within the weld pool show more precise vortex recirculation with the condition u • n = 0 which is better accounted for on the surface. Furthermore, it can be seen on the upper surface of the weld pool that the rear part of the solidified bath has a more accurate representation of the final weld bead. In order to show the added value of taking into account the deformation of free surfaces on a simulation of cornice welding, this simulation is first carried out on a fixed mesh. To do this, gravity is directed in the direction of y. In Figure 5.31, we see that, if we do not take into account the deformation of the free surfaces of the weld pool, then gravity has no effect on the offset of the weld pool in cornice welding. The velocity vectors within the bath have axially symmetrical vortex structures. Indeed, it has been shown in [START_REF] Nguyen | Modélisation et simulation multiphysique du bain de fusion en soudage à l'arc TIG[END_REF] that by taking into account the surface deformation, the effect of gravity on the dynamics of the bath gains a factor of 2.

Weld pool free surface deformation in cornice welding configuration: Base mesh

In this section, a cornice welding simulation is presented to observe the importance of the influence of gravity on the deformation of the free surfaces of the weld pool and the overall geometry of the weld bead.

In Figure 5.33, the section presented is in the direction orthogonal to the welding direction which is as follows x. It can be seen that in a cornice welding configuration, the weld pool tends to expand on either side of the free surfaces of the plate and changes the size of the weld pool. Indeed, the gain of material at the bottom of the bath is balanced by the loss at the top of the bath. Deformation of the free surfaces of the molten pool in a cornice welding configuration: convergence of approximations This section presents a simulation of cornice welding on a refined mesh in order to improve the accuracy of deformation of the free surfaces of the weld pool. To do so, the same geometry is preserved and the mesh is composed of regular hexahedrons of minimal volume ∆V = ∆x 3 2 = (1.10 -4 ) 3 m in a 4 2 cm 2 central zone with exponential derefinement towards the edges of the domain. To preserve the stability of the computation, we choose a more restrictive CFL such that: ∆t 20 = 1.10 -4 s. In addition, the value of the normal component of the surface tension is doubled. This is because the ALE method is suitable for small surface deformations. Therefore, one cannot just adapt the time step to the space step in a linear way because the displacements of the nodes composing the surface cells can undergo relatively large deformations compared to their size.

Numerical results

In Figure 5.33, a more precise deformation of free surfaces with velocity vectors with better convergence can be noticed by distinguishing vortex structures at free surfaces. It is observed that two slight depressions are formed on the upper zones of the free surfaces. Indeed, due to its cornice welding position, the weld pool tends to escape on both sides on the lower zones of the free surfaces of the plate. The importance of gravity is also noticeable since it can be seen that the lower free surface of the plate tends to move off-centre depending on the orientation of gravity. In Figure 5.34, one observes in a more quantitative way the decentration of the weld pool to the reverse side of the cord. Moreover, it can be seen that this decentration is observable only in the case of the refined mesh. The velocity profiles have an asymmetrical character in contrast to a cornice simulation with fixed free surfaces. On the other hand, there are no real differences in the temperature profiles.

Conclusions

In this chapter, the ALE method and its implementation to allow deformation of the free surfaces of the weld pool in a cornice welding configuration was presented. For this purpose, the theoretical aspects of the ALE method were presented and the implementation of the model was verified on two-and three-dimensional validation cases. In order to take into account the contribution of the normal component of the surface tension, it was necessary to implement an algorithm to locally estimate the face-averaged algebraic curvatures to be taken into account in the case of a colocalized finite volume method. This improved algorithm was then used on the weld pool model to deform the free surfaces. To do this, the numerical results were presented in spot, horizontal and cornice configurations.

It is envisaged to make this method of free surface deformation more robust by improving the calculation of algebraic averaged curvatures for surface tension as well as making the CFL condition less restrictive. The perspective will be to make this method parallelizable and functional on unstructured meshes in order to allow numerical simulations of weld pool with free surface deformation on geometries from industrial cases. Conclusions and perspectives

Conclusions

This work is part of the research activities of the project SPAR 2 of EDF R&D (Simulate To Anticipate Repairs), with the aim of developing numerical tools to enable in-depth studies to be carried out in support of EDF Engineering during welding repairs. The industrial context is centered around the will to improve welding operating modes in order to guarantee the quality of the weld beads carried out during maintenance operations on EDF's nuclear power plant [START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF]. Feedback has highlighted the influence of the difference in chemical composition of the parts to be assembled during repairs. This implies a modification of the overall geometry of the weld pool (depth, width, etc.) and therefore of the weld bead after solidification.

In the case of thin seal welds, each repair is costly and the result is not always predictable, which can lead to a risk of leakage. The risk of cracking due to defective weld seams already appears after one operating cycle. Conclusions on the quality of the welds are made through external visual and dimensional checks. In fact, after repairs and due to the specific geometry of the bead, it is impossible to guarantee the reverse quality of these seal welds by non-destructive testing to ensure any risk of lack of penetration and fusion. Thus, a numerical model could provide indications to adapt welding procedures in order to achieve optimal quality of the weld beads [START_REF] Dorogan | Simulation numérique de soudage des joints canopy[END_REF].

In this work, particular attention was paid to TIG welding of thin steel parts where the penetration and shape of the metal weld pool can vary greatly. This is due in particular to the Marangoni effect at the surface of the pool, which is a convection force depending on the thermal gradient and the concentration gradient of the surface-active elements (in our case, sulfur). Therefore, an attempt is made to accurately describe the heat transfer between the arc plasma and the molten metal workpiece during welding as well as the formation of the weld bead as a result of the heat input.

During this thesis, a bibliographic study was conducted to determine the state of the art in numerical welding simulation. In addition, two internal PhD works at EDF allowed to define a starting point. The work of K. Koudadje [START_REF] Koudadje | Etude expérimentale et modélisation numérique du bain de fusion en soudage TIG d'aciers[END_REF] has enabled the development of a three-dimensional model of the weld pool that takes into account Marangoni effect, buoyancy and Lorentz's forces. This allowed numerical simulations of welding on plates of different chemical compositions and experimental comparisons has been carried out. The work of D. Borel [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF] has focused on numerical and experimental studies of heat transfer in the plasma arc.

Thus, from numerical models of plasma and weld pool implemented in Code Saturne [START_REF][END_REF],

The main objective of this thesis is to implement an unsteady three-dimensional model allowing an integral numerical simulation of welding. First of all, stability studies on the resolution of magnetostatic equations and sensitivity to physical and numerical parameters have been carried out to identify the optimal configuration to be used for the calculations as well as the influencing terms in the model. The sensitivity study of the physical parameters showed an influence of the anode potential drop on the anode surface temperature. Electrode radiation is only influential in the simulations if the evaporation of metal vapours is taken into account, which reduces the temperature distribution at the weld pool surface and increases the velocity within the arc plasma. Consequently, it also gives a significant influence on the arc pressure at the weld pool surface and increases the depth of penetration of the molten bath.

On the other hand, similar sensitivity studies of the physical and numerical parameters on the weld pool model have resulted in a quasi-stationary converged solution. This provides a stable basis for the weld pool model to allow the development of an interface tracking method (ALE) [34,[START_REF] Rabier | Computation of free surface flows with a projection fem in a moving mesh framework[END_REF][START_REF] Ferrand | Couplage des composantes de vitesse dans Code Saturne . adaptation du module ale et application aux écoulements à surface libre[END_REF] to take into account the deformation of the free surfaces of the weld pool. For this purpose, the theoretical aspects of the ALE method were exposed and the implementation of the model was verified on two-and three-dimensional validation cases. In order to take into account the contribution of the normal component of the surface tension, it was necessary to implement an algorithm to locally estimate the algebraic curvatures averaged over the faces in order to be taken into account in the case of a collocated finite volume method. This improved algorithm was then used on the weld pool model to deform the free surfaces. To do this, the numerical results were presented in spot, horizontal and cornice configurations.

The other important aspect of the thesis was to propose an unsteady mono-instance coupling between the plasma and the weld pool via a thin wall with the consideration of the cathode, the plasma and the workpiece in the same computational domain. The goal was to replace the parametric boundary conditions of the "equivalent heat source" type in the simulations of the weld pool by a plasma model and thus obtain a better description of the heat transfer. This will allow the simulation of the entire welding process and the optimal prediction of the final weld bead geometry. A first attempt at coupling plasma and weld pool simulation codes currently in use at EDF [START_REF] Omnes | Couplage mono-instance réalisé via une paroi mince[END_REF] was undertaken to demonstrate the feasibility of coupling. However, as the operationality of the module is not yet optimal and does not yet allow to take into account the coupling of vectorial variables, it was not possible to apply it immediately to the plasma arc/weld pool case.

Perspectives

First of all, it is envisaged to make the ALE method for modeling the deformation of free surfaces more robust by improving the calculation of the algebraic averaged curvatures for surface tension as well as by making the CFL condition less restrictive. In addition, an improvement of the node displacements with the ALE method in the transition zone would lead to an improvement in the overall reliability of the algorithm. The prospect will be to make this method parallelizable and functional on unstructured meshes in order to allow numerical simulations of weld pool with deformable free surfaces on geometries coming from industrial cases such as the cornice welding of a thin cylindrical seal weld.

On the other hand, it is necessary to make the unified coupling module functional in our case (technical details on the coupling are given in the Annex D) with vectorial variables taken into account to couple the magnetic potential. In addition, this will allow a global modelling of the metal fusion welding process from anode to cathode and an improvement of the thermophysical forces at the interface (surface tension, arc pressure, aerodynamic shear, heat transfers, etc.) via a numerical coupling between the plasma and the weld pool with a deformable interface.

Finally, the modelling of the weld pool can be improved by taking into account the transport of a greater number of chemical species within the bath (Manganese, etc.).

For the plasma model, a more detailed description of the zones out of thermodynamic equilibrium at the level of the plasma sheaths is envisaged. Indeed, the modelling of the heat transfer between the plasma and the workpiece assumes the local thermodynamic equilibrium. However, in the areas close to the plasma sheaths, there is an imbalance between the densities of ions and electrons. The temperature considered can no longer be taken as an averaged temperature. It is necessary to obtain the temperatures of the ions and electrons separately for the heat transfer to the workpiece to be more accurate. For this purpose, a bibliographical study on the hierarchy of plasma models (presented in Annex A) allowed to identify the model that can be taken into account in Code Saturne [START_REF][END_REF].

A.1 Introduction

Considering the large number of physical phenomena and scales present in a plasma, there are also a number of plasma models which, depending on the physical particularities of each case, offer a description that can range from a microscopic (kinetic) scale model to a macroscopic (fluid) scale model. On one hand, we have physical processes that take place at small space characteristic scales, i.e. smaller than the mean free path of electrons. In this situation, a kinetic description taking into account the plasma from a particle point of view is necessary. On the other hand, one can study more macroscopic phenomena occurring in situations where, for example, the frequency of collisions between particles is high. Thus, the spatial scales are larger than the mean free path of the electrons, allowing to make a hypothesis of local thermodynamic equilibrium and thus to describe the plasma from a mono-fluid point of view. Intermediate states exist and correspond to phenomena taking place between the mean free path of the electrons (≈ 10 -6 m) and the Debye's length (λ D ≈ 10 -8 m) which represents the scale at which charge separation becomes significant and is given by:

λ D = 0 k B T e en e , (A.1)
with 0 the permissivity of the vacuum, k B the Boltzmann's constant, T e the electron temperature, e the elementary charge of the electron and n e the electron density. Thus, plasmas are not in thermodynamic equilibrium. In this situation, multi-fluid models would allow to partially take into account these phenomena [START_REF] Freton | Energy equation formulations for two-temperature modelling of thermal plasmas[END_REF][START_REF] Huba | Numerical methods: Ideal and hall mhd[END_REF][START_REF] Loverich | A numerical approach to solving the hall mhd equations including diamagnetic drift[END_REF][START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF][START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Tashiro | Two-temperature plasma modeling of argon gas tungsten arcs[END_REF]. In our case study, the objective is to model the arc plasma during a TIG welding process. Within the arc plasma, the ionic and electronic charge densities are considered macroscopically equivalent. Arc plasmas belong to the class of cold plasmas: the ionic temperature is much lower than the electronic temperature, resulting in a local thermal imbalance (T i T e ). However, at atmospheric pressure, the collisions within the plasma are sufficiently numerous for these temperatures to equalize in the arc column, which also implies a high degree of ionization α ≈ 1. A magnetohydrodynamic description is thus possible to model the physics of the plasma within the arc.

In Fig.

A.1, the charge distribution within the arc plasma between cathode and anode is represented schematically. In the sheath, the number of collisions is negligible [START_REF] Benilov | A model of the cathode region of atmospheric pressure arcs[END_REF][START_REF] Hsu | Analysis of the cathode region of a free-burning high intensity argon arc[END_REF][START_REF] Zhou | Analysis of the arc-cathode interaction of free-burning arcs[END_REF][START_REF] Pfender | Electric arcs and arc gas heaters[END_REF]. The sheath is a thin zone close to the electrode such that its thickness is approximately 10 -6 m. At the negatively charged cathode, electrons are repelled and ions are attracted to form a positive charge space representing a barrier between the arc and the cathode. For the anode that is positively charged, the opposite occurs where electrons are attracted and ions are repelled. Thus, the electron and ion densities are unequal in the sheaths. This implies that there is no ionization, thus excluding the hypothesis of local thermodynamic equilibrium. Between the sheath and the arc there is a zone of ionization called pre-sheath. Here, electrons are accelerated from the sheath and then collide with the heavy particles. If the electron kinetic energy is large enough, then during the collision, the atoms in the gas decompose into electrons and ions due to the ionization during the collisions. The thickness of the pre-sheath (≈ 10 -4 m) is greater than the electronic average free path. Consequently, there are collisions between electrons and heavy particles but the electron temperature remains much higher than the ionic temperature, which does not allow to assume a thermodynamic equilibrium. As the free run is greater than Debye's length, the pre-sheath is assumed to be almost neutral. In practice, the pre-sheath is characterized by a degree of ionization α < 0.6 [START_REF] Benilov | A model of the cathode region of atmospheric pressure arcs[END_REF]. Thus, in pre-sheaths where the ionic and electronic densities are equal and in sheaths where the charge densities are no longer equal, the electronic temperature is much higher than the ionic temperature. In this situation, the hypothesis of thermodynamic equilibrium is no longer valid due to a low frequency of collisions. Therefore, the magnetohydrodynamic description is no longer adequate.

In this chapter, we will try to build a hierarchy of plasma models from kinetic description to MHD description (Fig. A.2). This approach should make it possible to identify the most appropriate model in terms of calculation cost and modelled physical phenomena in order to better estimate the heat transfer between the plasma and the part to be welded. scopic electric and magnetic fields E m , B m such that for each particle k ∈ {1..., N }:

dx i dt = v i , (A.5) m dv i dt = q [E m (x i , t) + v i × B m (x i , t)] . (A.6) For a closed system, df m s (x, v, t) dt = 0, (A.7)
and one can thus introduce the Klimontovich's equation [START_REF] Callen | Fondamentals of plasma physics[END_REF] which describes the temporal evolution of the microscopic distribution function of plasma f m s for a velocity v of a particle in s ∈ {électrons, ions, neutres} influenced by microscopic electromagnetic fields E m , B m [62]:

∂f m s ∂t + v • ∂f m s ∂x + q s m s (E m (x, t) + v × B m (x, t)) • ∂f m s ∂v = 0. (A.8)
Next, we define a spatial volume ∆X = ∆x 1 ∆x 2 ∆x 3 and a velocity space volume ∆V = ∆v 1 ∆v 2 ∆v 3 such that:

l < ∆x < λ D , (A.9)
where l is the mean free path of the particles. Thus, the fundamental distribution function f (x, v, t) for a charged particle is defined as the averaged microscopic distribution function f m (x, v, t) for a number of particles in a volume of space (x,v) by:

f m (x, v, t) = ∆X d 3 x ∆V f m d 3 v ∆X d 3 x ∆V d 3 v . (A.10)
The discrete particle distribution function δf m is then defined by: .11) This function represents the discrete effects of charged particles for spatial scales between Debye's length and mean free path. The same decomposition is applied to the microscopic electric and magnetic fields:

f m = f m + δf m . ( A 
E m = E m + δE m and B m = B m + δB m , (A.12)
in order to obtain the electric E m and magnetic B m fields in the Maxwell's equations, given by:

Gauss's law: div(E m ) = ρ m q 0 , (A.13)
Gauss's law for magnetic field: div(B m ) = 0, (A.14)

Faraday's induction law:

∂B m ∂t + rot(E m ) = 0, (A.15)
Ampère's law:

µ 0 0 ∂E m ∂t + rot(B m ) = µ 0 j m , (A.16)
with 0 the vacuum permittivity, µ 0 vacuum permeability, ρ m q the microscopic density of electrical charge and j m the microscopic current density, defined for each species s by:

ρ m q = s q s f m s (x, v, t) d 3 v, (A.17) j m = s q s vf m s (x, v, t) d 3 v. (A.18)
By substituting the microscopic distribution function averaged by the expression (A.11) and taking the microscopic electromagnetic field (A.12) from Klimontovich's equation (A.8), we obtain:

∂ f m s ∂t + v • ∂ f m s ∂x + q s m s ( E m + v × B m ) • ∂ f m s ∂v = - q s m s [δE m + v × δB m ] • ∂δf m s ∂v , (A.19)
with the term of the second member representing discrete correlations between particles. This term is called Coulomb collision operator C( f m s ). In the following, we replace in the notations the microscopic distribution function averaged by the fundamental distribution function:

f m s (x, v, t) → f s (x, v, t).
The same applies to averaged electric E and magnetic B fields, the average current density j m and the average charge density ρ m q . We can write the fundamental kinetic equations for each type of charged particles (s) e.g. electrons (e) or ions (i) [START_REF] Callen | Fondamentals of plasma physics[END_REF]: The set of Boltzmann's equations is supplemented by Maxwell's equations (A.13)-(A.16) to allow a complete kinetic description of the plasma. The collision terms C(f s ) are classically closed using the diffusion processes (??) which naturally leads to the writing of the Fokker-Planck's equations:

∂f i ∂t + v i • ∂f i ∂x i + q i m i (E + v i × B) • ∂f i ∂v i = C(f i ), (A.
∂f s ∂t + v s • ∂f s ∂x s + q s m s (E + v s × B) • ∂f s ∂v s = - 3 k=1 ∂ ∂v k s (f s ∆v k s ) + 3 k=1 3 l=1 1 2 ∂ 2 ∂v k s ∂v l s (f s ∆v k s ∆v l s ), (A.22)
with ∆v k s and ∆v k s ∆v l s the covariances of velocities due to particle collisions s = (electrons (e), ions (i), neutrals (ne)).

In this case, in the sheaths where the density of one family of charged particles is negligible compared to another, the collisions between the charged particles can be neglected, which allows to reduce (A.22) to Vlasov's equation :

∂f s ∂t + v s • ∂f s ∂x s + q s m s (E + v s × B) • ∂f s ∂v s = 0. (A.23)

A.2.2 From kinetic to fluid description

In this section, we introduce the moments of f s needed to obtain the equations in the fluid boundary for each species s ∈ {i, e}:

density per phase:

n s = f s d 3 v s , (A.24)
velocity per phase:

u s = 1 n v s f s d 3 v s , (A.25)
temperature per phase:

T s = 1 n m s v 2 s,r 3 f s d 3 v s = m s v 2 s,T 2 , (A.26)
conductive heat flux per phase:

q' s = v s,r ( m s v 2 s,r 2 )f s d 3 v s , (A.27)
pressure per phase:

p s = m s v 2 s,r 3 f s d 3 v s = n s T s (A.28)
stress tensor:

σ s = m s (v s,r ⊗ v s,r - v 2 s,r 3 I)f s d 3 v s , = -p s I + τ s , (A.29)
anisotropic stress tensor:

τ s = m s v s,r ⊗ v s,r f s d 3 v s (A.30)
density conservation in collisions :

C(f s )d 3 v s = 0, (A.31)
density of collision forces:

R s = m s v s C(f s )d 3 v s , (A.32)
density of of energy exchange due to collisions:

Q s = 1 2 mv 2 s,r C(f s ), (A.33)
with v s,r = v s -u s the relative velocity. Thus, we obtain the fluid equations for the statistical moments of the plasma kinetic equations (A.20)-(A.21) pour s ∈ {i, e}:

g(v s ) ∂f s ∂t + ∂ ∂x s • v s f s + ∂ ∂v s • q s m s (E + v s × B)f s -C(f s ) d 3 v s = 0, (A.34)
with v -→ g(v), the velocity function. In order to obtain the mass conservation equation for each species, we take g = 1:

∂ ∂t (m s n s ) + div(m s n s u s ) = 0. (A.35)
To obtain the momentum conservation equation, g = m s v s :

∂ ∂t (m s n s u s ) + div(m s n s u s ⊗ u s ) = div(σ s ) + n s q s [E + u s × B] + R s , (A.36)
with q s [E + u s × B] the Lorentz's force and R s the inter-species collision force. The total energy per phase is then defined as:

E s = s + E k s = s + m s ||v s || 2 2 , (A.37)
where s is the internal energy per phase and E k s the kinetic energy per phase. With g = 1 2 m s |v s | 2 , we can write the total energy conservation equation as follows:

∂ ∂t (m s n s E s )+div(m s n s u s E s ) = -div(q' s )-div(σ s u s )-R s •u s -n s q s u s •E-Q s . (A.38)
The equation of kinetic energy per phase E k s is given by:

∂ ∂t (m s n s E k s ) + div(m s n s u s E k s ) = -div(σ s u s ) -σ s : (∇u s ) t -R s • u s . (A.39)
By subtracting the kinetic energy equation (A.39) from the total energy equation (A.38), we get the internal energy equation per phase:

∂ ∂t (m s n s s ) + div(m s n s u s s ) = -div(q' s ) -div(σ s u s ) + σ s : (∇u s ) t -Q s + j s • E. (A.40)
Using the relationship of specific enthalpy:

h s = s + p s n s , (A.41)
in the internal energy equation (A.40), we get the enthalpy equation:

∂ ∂t (m s n s h s )+div(m s n s u s h s ) = -div(q' s )+σ s : (∇u s ) t -Q s +j s •E+n s d dt p s n s . (A.42)
The particle derivative of phase pressure is the work of pressure. The heat transfer term in the stress tensor σ s : (∇u s ) t is low compared to other forces such as the Joule effect and radiation losses Q s [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Tashiro | Two-temperature plasma modeling of argon gas tungsten arcs[END_REF]. Finally, we reduce the enthalpy equation to:

∂ ∂t (m s n s h s ) + div(m s n s u s h s ) = -div(q' s ) -Q s + j s • E + dp s dt . (A.43)
By putting together the equations described above, we obtain a non-closed two-phase system. and the average speed is defined by:

u = n(m e u e + m i u i ) ρ ≈ u i + m e m i u e ≈ u i . (A.55)
Thus, in order to obtain a monophasic description from the bi-fluid model (A.44), the electronic and ionic mass equations are added together to give the mass conservation equation:

∂ρ ∂t + div(ρu) = 0. (A.56)
We then sum up the momentum equations of ions and electrons:

∂ ∂t (ρu) + div(ρu ⊗ u) = -∇(p i + p e ) + n [( $ $ $ $ q i + q e )E + (q i u i + q e u e ) × B] . (A.57)
The total current density is given by: j = s n s q s u s = s j s = n(q e u e + q i u i ).

(A.58)

Thus, the averaged momentum equation is given by:

∂ ∂t (ρu) + div(ρu ⊗ u) = -∇(p i + p e ) (A.59) +n [( $ $ $ $ q i + q e )E + (q i u i + q e u e ) × B] + $ $ $ $ $ R e + R i = -∇p + j × B, (A.60) 
where R e = -R i , q e = -q i due to the quasi-neutral nature of the plasma. The ion and electron enthalpy equations are preserved by introducing the averaged density and velocity:

∂ ∂t (ρh i ) + div(ρuh i ) = -div(q i ) + Q ei + dp i dt , (A.61) ∂ ∂t (ρh e ) + div(ρuh e ) = -div(q e ) -Q ei + dp e dt + j • E -Qrad , (A.62)
with Qrad the net radiation loss balance defined by [START_REF] Tashiro | Two-temperature plasma modeling of argon gas tungsten arcs[END_REF][START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]:

Qrad = 4π r - 5k B 2e j • 1 C p e ∇h e . (A.63)
with r the effective emission factor with C p e electronic specific heat. It represents the sum of the radiation losses with the energy transported by electronic diffusion.

The term for the exchange of energy between an electron and a heavy particle Q ei is given by [START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]:

Q ei = 3k B m e m i (m i + m e ) 2 ν ei (T e -T i ).
(A.64)

Thermal diffusion fluxes follow Fourier's law [START_REF] Boulos | Thermal Plasmas : Fundamentals and Applications[END_REF][START_REF] Chen | The reactive thermal conductivity for a two-temperature plasma[END_REF]:

q i = λ i C p,i ∇h i , (A.65)
q e = λ e C p,e ∇h e + h e j e , (A.66)

∂ρ ∂t + div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p + j × B, ∂ ∂t (ρh i ) + div(ρuh i ) = div(λ i ∇T i ) + Q ei + dp i dt , ∂ ∂t (ρh e ) + div(ρuh e ) = div(λ e ∇T e + h e j e ) -Q ei + dp e dt + j • (E + u × B) -Qrad , div σ ∇P p R + ∂A ∂t -u × rot(A) = 0, (conservation de la charge) ∂A ∂t + ∇P p R -u × rot(A) - η µ 0 ∆A = 0, (loi d'Ampère) j = σ(E p + u × B), (loi d'Ohm généralisée) E p = E + ∇p e en e , rot(A) = B.
(A.68) We will now detail the steps leading to the electromagnetic equations presented in the system. The hypothesis of quasi-neutrality implies the current conservation equation:

∂ρ q ∂t + div(j) = 0. (A.69)
Assuming the speed of infinite light ||u|| 2 c 2 -→ 0, the Gauss's law (A.13) can no longer be used to determine the electric field E and the Ampère's law becomes:

¨¨¨-c -2 ∂E ∂t + rot(B) = µ 0 j. (A.70)
The generalized Ohm's law is given by [START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]:

j = σ(E p + u × B), (A.71)
with E p the effective electric field which is used in the generalized Ohm's law but not in the Joule effect term used in the electron enthalpy conservation equation. In LTE, E = E p . In non-LTE, another relationship is given [START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]: .72) This writing of Ohm's law does not take into account Hall's physics (i.e. the diamagnetic and Hall's terms) and the collisions. According to Lorenz's gauge condition hypothesis, there are a magnetic potential A and an effective electrical potential P p R such that:

E p = E + ∇p e en e . ( A 
div(B) = 0 ⇒ B = rot(A), (A.73) rot(E p ) + ∂B ∂t = 0 ⇒ E p = -∇P p R - ∂A ∂t . (A.74)
Using generalized Ohm's law (A.71) and the potentials (A.73)-(A.74), the charge conservation equation found in the (A.68) system is written as follows:

div σ ∇P p R + ∂A ∂t -u × rot(A) = 0. (A.75)
Finally, Ampere's law for magnetic potential, is written under the form:

rot(rot(A)) = $ $ $ $ $ $ ∇(div(A)) -∆A = µ 0 j, (A.76)
with div(A) = 0 to meet the Coulomb gauge condition involving magnetic potential uniqueness A. Finally, with generalized Ohm's law (A.71) and potentials (A.73)-(A.74), Ampère's law is written:

∂A ∂t + ∇P p R -u × rot(A) - η µ 0 ∆A = 0, (A.77) 
with η = σ -1 the magnetic diffusivity.

In order to determine the composition of the plasma i.e. to determine the electron and ion densities, we use Dalton's law (A.78), the hypothesis of quasi-neutrality (A.53) and Saha's law (A.79).

The pressure follows Dalton's law:

p = p i + p e = n e k B T e + n i k B T i , (A.78)
with k B the Boltzmann's constant. Saha's equation is given for k ∈ {i, n} by [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Trelles | Arc plasma torch modeling[END_REF][START_REF] Trelles | Computational study of flow dynamics from a dc arc plasma jet[END_REF][START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF] : .79) with Q k the species partition function k, h p the Planck's constant and k the species ionization energy k. It has been proven [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Benilov | A model of the cathode region of atmospheric pressure arcs[END_REF][START_REF] Cayla | Modélisation de l'interaction entre un arc électrique et une cathode[END_REF]] that above 22,000 K, the second ionisation must be taken into account involving four species in order to correctly estimate temperatures and ionic and electron densities. However, the associated calculation costs are too high. The ion and electron densities and enthalpies are given by: ρ = m i n i + m e n e , (A.80)

n e n k n k-1 = Q e Q k Q k-1 2πm e T e h 2 p 3 2 exp - k k B T e , ( A 
ρh e = 5 
2 n e k B T e , (A.81)

ρh i = 5 2 n i k B T i . (A.82)
These equations form a system of non-linear equations to determine the electron n e and ion n i densities knowing the pressure p and the electron h e and ion h i enthalpies.

The final form of the enthalpy conservation equation is:

∂ ∂t (ρh) + div(ρuh) = -div(q ) + dp dt + j • E -η|j| 2 , (A.90)
with η = σ -1 . So we get the set of equations: 

∂ρ ∂t + div(ρu) = 0, (A.91) ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p + j × B, ( 
∂ ∂t (ρh) + div(ρuh) = div λ C p ∇h + j • E + dp dt -η|j| 2 , (A.94)
The hypothesis of a negligible electronic mass implies: where j e the electron current density [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Huba | Hall magnetohydrodynamics in space and laboratory plasmas[END_REF][START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF][START_REF] Loverich | A numerical approach to solving the hall mhd equations including diamagnetic drift[END_REF][START_REF] Lin | A discontinuous galerkin method for two-temperature plasmas[END_REF]:

j e =
-en e u e . (A.97) with the law of state of perfect gas and thermal diffusion flow [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF]:
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q = -λ B × B ||B|| 2 • ∇T, (A.103)
and the speed of the mixture:

u = E × B ||B|| 2 + m i ρe B × ∇p i ||B|| 2 + u || , (A.104)
where u || is the ionic parallel velocity [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF]. This model allows us to deal with certain microscopic phenomena. However, in practice, it is very expensive due to the large number of algebraic operations to be performed [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF].

A.7 Magnetohydrodynamics

In this section, one of the most macroscopic descriptions of plasma assuming local thermodynamic and electrical equilibrium is presented: magnetohydrodynamics (MHD). The different assumptions and asymptotic limits that allow the derivation of the MHD equations from alternative models such as Hall MHD, extended MHD and bi-temperature MHD are studied in detail. Here, the various additional assumptions are presented in order to obtain the class of models based on magnetohydrodynamics.

A.7.1 Ideal MHD

In ideal MHD, the fluid is considered perfectly conductive. Thus, this is represented by zero resistivity. Theoretically, this assumption implies that the magnetic Reynolds number R m is infinitely large: with the state laws of perfect gas. In thermodynamic equilibrium, the total work of the pressure forces dp dt is neglected due to its small influence compared to other effects such as the Joule effect, radiation losses, etc.

A.7.2 Resistive MHD

Resistive MHD describes a magnetized plasma that is not fully conductive. The resistivity comes from collisions between charged particles that convert magnetic energy into heat. If the plasma is no longer fully conductive, the magnetic field moves through the fluid following a diffusion law. Although some physical systems appear to be perfectly conductive, resistivity can be important. In addition, electronic turbulence from a strong influence of the Hall effect increases the resistivity [START_REF] Palenzuela | Beyond ideal mhd: towards a more realistic modelling of relativistic astrophysical plasmas[END_REF][START_REF] Shivamoggi | Ideal and resistive magnetohydrodynamic modes[END_REF][START_REF] Huba | Hall magnetohydrodynamics in space and laboratory plasmas[END_REF]. Thus, the gel theorem is no longer verified and the Reynolds magnetic number is given by: Thus, the set of equations for the resistive MHD model (A.107) is given by: with the state law of perfect gas. The model currently used at EDF for plasma simulations is a simplified form of resistive MHD [START_REF][END_REF]5] where we use a framework of dilatable Navier-Stokes equations. As shown in the section (A.4), the electrical and magnetic potentials are obtained from Gauss's law (A.13), Faraday's law (A.15) and Lorenz's gauge condition (A.73)-(A.74). Assuming quasi-stationarity of the electric and magnetic fields, we get: However, this model has disadvantages, especially when it is necessary to take into account thermodynamic imbalance phenomena in the boundary layers at the electrodes, where the densities of the species differ. This implies that the collision frequency becomes too low to assume thermodynamic equilibrium. Close to the anode, the electronic temperature is much higher than that of the ions and MHD models based on the mixing temperature are not suitable in the general case.

η = 0 ⇒ R m = U L η 1. (A.
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In practice, the temperature of the mixture does not allow to model separately the potential drops ∆V a , ∆V c , which are consequently taken as parameters to be calibrated. For the continuation of this work, it would be important to have a finer model (two temperatures and two densities) in order to estimate more precisely these potential drops.

In order to analyse the causes, the test case is simplified by omitting the terms thermal sources: radiation losses, production of metallic iron vapour in the plasma and without rescaling the electrical conductivity in the sheath. Three configurations are studied:

• No axial rotation,

• With axial rotation of θ = π 2 , • With axial rotation of θ = π 4 .

Numerical results

According There is also a problem of overpressure at the free outlet in the case without rotation (Figure B.7). This is probably due to inadequate consideration of the boundary condition. This problem is discussed in the following paragraph. The value of the face diffusivity is determined by an arithmetic (imvisf = 0, by default) or harmonic (imvisf = 1 ) mean from adjacent cell values. Without taking into account the boundary faces, the discretization of the diffusion term is written as follows [START_REF][END_REF]:

Ω i div(µ∇Y )dΩ = j∈V ois(i) µ ij Y J -Y I I J S ij , (C.1)
with Ω i the cell i, V ois(i) all the adjacent cells Ω i , S ij the face's area ij, Y I the variable Y reconstructed in I such that:

Y I = Y I + II • ∇ I Y, (C.2)
with Y I the value of Y in Ω i , ∇ I Y the reconstructed gradient [5] and µ ij the diffusivity value on S ij given by the following means:

-arithmetic:

µ ij = α ij µ i + (1 -α ij )µ j , α ij = 1 2
, en pratique , (C.3) or -harmonic:

µ ij = µ i µ j α ij µ i + (1 -α ij )µ j , α ij = F J I J . (C.4)
It is easy to show that with a non-constant diffusivity, the measured convergence is of order 2 in space with harmonic mean and of order 1 in space with the linear interpolation. Therefore, in the following work, harmonic interpolation will be used to calculate the value of face diffusivity. Previously, all the weld pool simulation results were obtained with an arithmetic mean of (imvisf = 0, by default Code Saturne ). Thus, by being in the configuration of continuity of flow on the face (imvisf = 1 ), a new mesh sensitivity study was conducted. This study revealed the presence of physically unacceptable speeds in the transition zone. As these speeds increase with the refinement of the mesh, the stability and convergence of the approximations have been questioned.

C.1.2 Secondary viscosity term

In the momentum conservation equation, velocity gradients and secondary viscosity are treated in Code Saturne 4.0 in semi-implicit form and the face viscosity in these terms is calculated by arithmetic mean. The viscous stress tensor is generally written as: with S the strain rate tensor given by:

τ = 2µS -
S = 1 2 ∇u + ∇u t . (C.6)
In order to be consistent with the integration of the diffusion term, the value of the secondary viscosity (- 2 3 µ) on the face is obtained by harmonic mean: The A matrix (of size (N 1 + N 2 ) 2 ) of coupling is diagonal by blocks where a i (i = 1, 2) are the convection-diffusion matrices of the scalar to be coupled of size N 2 i in the D i domain with N i cells. In the zero extra-diagonal blocks, we add the diffusive coupling matrices c 1 and c 2 . We notice that the general system to be solved is composed of two independent uncoupled matrix-vector products. The first step consists in exchanging h eq and Y e in the cells to be coupled then, in order to avoid changing the structure of the matrix A, we add these diffusive exchange flows after the matrix-vector product i. 

µ ij = µ i µ j α ij µ i + (1 -α ij
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  S u : velocity source term of velocity cancellation in solids) B = rot(A), (S h : source term of thermal plasma-electrode interfaces) j = σE. (3.1)

  ) E = -∇P R , (3.18) j = σE, (3.19) ∆A = -µ 0 j,(3.20) B = rot(A).
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 4546 Figure 4.5: Mesh sensitivity study: Electric potential profiles

Figure 4 . 7 :Figure 4 . 8 :

 4748 Figure 4.7: Mesh sensitivity study: velocity profiles

Figure 4 . 9 :
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4. 7

 7 Sensitivity to linear solvers 4.7.

Figure 4 . 11 :Figure 4 . 12 :

 411412 Figure 4.11: Comparison of the temperature gradient approximations obtained with the upwind and centered schemes

  [START_REF] Cortelezzi | Small-amplitude waves on the surface of a layer of a viscous liquid[END_REF] with T S the solidus temperature and T L the liquidus temperature.By deducting K from the Carman-Kozeny term with k = 5 and tau = 1.91 in (4.26), we have K = 180 λ 2 2
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 51 Figure 5.1: Movements of the mesh nodes and particles in Lagrangian, Eulerian and ALE descriptions[34] 
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 52 Figure 5.2: Spatial discretization: Geometric description [1]
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 53 Figure 5.3: Pre-calculated weld pool solution: Liquid fraction -Velocity field
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 54 Figure 5.4: Mesh used for weld pool simulations

  T ) the surface tension force such as: ∂γ ∂T = -4.10 -4 N.(mK) -1 ;
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 5556 Figure 5.5: Weld pool free surface deformation: Liquid fraction
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 513 Figure 5.13: Analytical geometry for three-dimensional calculation of radii of curvature
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 514 Figure 5.14: Analytical geometry for the three-dimensional calculation of face-averaged algebraic curvatures
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 5 Figure 5.15: Sloshing 2D -Capillary wave: Initial mesh size
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  Details of the analytical solution are given in C.2.)
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 5 Figure 5.16: 2D Sloshing -Capillary wave: Mesh convergence -Temporal evolution of the free surface amplitude

Figure 5 . 17 :Figure 5 . 18 :Figure 5 . 19 :

 517518519 Figure 5.17: 2D Sloshing -Capillary wave: Mesh convergence -Relative error
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 5 Figure 5.20: Three-dimensional test case -Capillary wave: Initial mesh size
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 5352213523 Figure 5.21: Three-dimensional test case -Capillary wave: Curvatures on x and y -Displacement -Velocity
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 524 Figure 5.24: Free surface of the weld pool: schematic extrapolation of velocity from node to face
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 525 Figure 5.25: Deformation of the weld pool free surface with radii of curvature: liquid fractionvelocity field
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 527 Figure 5.27: Deformation of the weld pool free surface with radii of curvature and arc pressure: liquid fraction -velocity field -radii of curvature

Algorithm 1 3

 1 Velocity prediction: ũn+1 i with (ρ(u -w) Mesh velocity computation: k ∈ {1, ..., K} surface nodes N b k :
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 528 Figure 5.28: Weld pool free surface deformation: Temperature and liquid fraction
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 529 Figure 5.29: Weld pool free surface deformation in horizontal welding configuration: Temperature and liquid fraction
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 531 Figure 5.31: Simulation of cornice welding on fixed meshes
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 532 Figure 5.32: Deformation of the free surfaces of the weld pool in a cornice welding configuration: Temperature and liquid fraction
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 533534 Figure 5.33: Deformation of the free surfaces of the weld pool in a cornice welding configuration on refined mesh: Temperature and liquid fraction
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 1 Figure A.1: Diagram of the cathodic boundary layer with sheath[START_REF] Shirvan | Modelling of Electric Arc Welding: arc-electrode coupling[END_REF] 

  A.92) ∂ ∂t (n e m e u e ) + div(n e m e u e ⊗ u e ) = -∇p e + j e × B, (A.93)

  ∂ ∂t(n e m e u e ) + div(n e m e u e ⊗ u e ) = 0. (A.95)Finally, we can rewrite the electronic momentum equation under the form of generalized Ohm's law:ηj = E + u e × B = Ej e × B en e

  + div(ρu ⊗ u) = -∇p + j × B, ∂ ∂t (ρh) + div(ρuh) = -div(q ) + j • E, E + u × B = ηj + m i ρe j × B -

  R m = U L η , avec η -→ 0, (A.105)where U, L are the velocity and length scales, and η is the magnetic diffusivity. Thus, R m 1 and the diffusion processes are weak on L. The current lines of the magnetic∂ρ ∂t + div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p -j × B, ∂ ∂t (ρh) + div(ρuh) = -div( λ C p ∇h) + j • E, E + u × B = 0, ∂B ∂t + rot(E) = 0, div(j) = 0, div(B) = 0, µ 0 j = rot(B), (A.107)

= πe 2 m 1 2 ( 2 .

 22 108) So Ohm's law becomes:E + u × B = ηj, (A.109)with the resistivity defined by:η 4π 0 ) 2 (kT ) 3 (A.110)

  + div(ρu ⊗ u) = -∇p + j × B, ∂ ∂t (ρh) + div(ρuh) = -div( λ C p ∇h) + j • E, E + u × B = ηj, ∂B ∂t + rot(E) = 0, div(j) = 0, div(B) = 0, µ 0 j = rot(B),(A.111)

  div(ρu) = 0, ∂ ∂t (ρu) + div(ρu ⊗ u) = -∇p + div µ ∇u + ∇u T -2 3 tr(∇u)I + j × B, ∂ ∂t (ρh) + div(ρuh) = div λ C p ∇h -Qrad + j • E, div(σ∇P R ) = 0, ∆A = -µ 0 j, E = -∇P R , B = rot(A),j = σE, (A.112) with Qrad the net radiation loss balance.

  to Figure B.4-Figure B.5, approximations of the electromagnetic variables are rotationally invariant. On the other hand, the deviations persist for velocity (Figure B.1) and temperature (Figure B.3) on the rotated calculation θ = π 4 . For pressure (Figure B.2), there are large discrepancies in the slice of the domain regardless of the angle of rotation.
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 123 Figure B.1: Simplified plasma: Rotational invariance: Speed
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 45 Figure B.4: Simplified plasma: Rotational invariance: Electric potential
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 1111 Figure B.11: Completed plasma: Rotational invariance: Electric potential
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 34 Figure C.3: Transverse temperature profiles with arithmetic and harmonic secondary viscosity
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 1 Figure D.1: Spatial discretization: geometric description [1]

  

  

  

  

Table 2 .

 2 

1: Thermo-and chemo-dependent coefficients of surface tension

Table 3 .

 3 

	Case	Solvers	Convective schemes ∆t (s) Hydrostatic pressure
	1	bi-CGStab	Upwind	2.10 -6	no
	2	bi-CGStab	Upwind	2.10 -5	no
	3	bi-CGStab	Upwind	2.10 -4	no
	4	bi-CGStab	Centred	2.10 -4	no
	5	Jacobi	Upwind	2.10 -6	no
	6	bi-CGStab	Centred	2.10 -6	no
	7	bi-CGStab	Upwind	2.10 -6	yes

-5 

, 2.10 -6 s). This can be summarized by the following simulations: 2: Sensitivity study to numerical parameters

Table 3 .

 3 3: Sensitivity study on thermal source terms

	Case Radiation Vapours Cooling
	1	no	yes	yes
	2	yes	yes	yes
	3	no	no	yes
	4	no	yes	yes
	5	no	yes	no

Table 4 .

 4 1: Thermal and chemical dependent coefficients of surface tension

	943	1,84

Table 4 .

 4 1696 K and liquidus temperature: T l = 1740 K): 2: Thermophysical properties of solid/liquid steel

	properties	solidus	liquidus
	∂γ/∂t (N/mK)	0	-4.10 -4
	ρ (kg/m 3 )	7, 50.10 3 6, 35.10 3
	C p (J/kg/K)	6, 02.10 2 6, 95.10 2
	σ (Ω/m)	8, 60.10 5 7, 35.10 5
	µ (k/m/s)	1, 00.10 2 2, 50.10 -3
	λ (W/m/K)	2, 4.10 1	2, 0.10 1

Table 4 .

 4 3: Residuals on equations for variables from the mesh sensitivity study

		10 -1	4, 8.10 -1	3, 8.10 -1	3, 4.10 -1	1
	p	3, 7.10 -5	9, 7.10 -6	6, 0.10 -6	1, 7.10 -5	2
	h	1, 8.10 -4	1, 5.10 -4	1, 2.10 -4	1, 1.10 -4	10
	P R	9, 2.10 -7	9, 0.10 -7	7, 9.10 -7	7, 8.10 -7	10
	A x	8, 2.10 -7	6, 9.10 -7	1, 1.10 -6	1, 4.10 -6	10
	A y	1, 1.10 -6	9, 9.10 -7	8, 4.10 -7	8, 2.10 -7	1
	A z	3, 3.10 -3	7, 2.10 -4	1, 3.10 -4	2, 5.10 -5	1
			Linear solver iterations		
	∆x i 2, 0.10 -4 m 1, 0.10 -4 m 7, 0.10 -5 m 5, 0.10 -5 m k
	u	12	27	42	61	1
	p	162	332	515	655	2
	h	69	134	194	263	10
	P R	98	145	241	326	10
	A x	62	110	214	283	10
	A y	53	101	211	269	1
	A z	171	242	367	463	1

Table 4 .

 4 

4: Number of iterations of the linear solver for the variables from the mesh sensitivity study

Table 4 . 5

 45 

: Mass balance

  84.10 -6 

	Convection	Ω (ρ∇u • u)dΩ	-6, 40.10 -6
	Lorentz	Ω (j × B)dΩ	-1, 51.10 -6
	Buoyancy	Ω (ρg)dΩ	4, 29.10 -9
	Pressure	Ω ∇pdΩ	6, 57.10 -8
	Unsteady terms	∂ ∂t Ω ρudΩ	1, 18.10 -7

Mechanical power balances -3, 56.10 -6 Table 4.6: Mechanical power balances

Table 4 .

 4 

	Thermal balance	continuous			discrete
	Equivalent heat source S Diffusion Ω	ηU I 2πr 2 h λ Cp ∆T dΩ exp -	r 2 2r 2 h	dS	1, 11.10 3 -8, 69.10 2
	Convection	Ω ρ∇h • udΩ			-8, 33.10 2
	Radiance	∂Ω σ B (T 4 -T 4 0 )dS		-4, 27.10 1
	Convective exchange	∂Ω h c (T -T 0 )dS		-6, 08
	Joule effect	Ω j • EdΩ			2, 04
	Unsteady terms	∂ ∂t Ω ρhdΩ			6, 39.10 2
	Thermal power balance 2, 59.10 -1

7: Thermal power balance

Table 4 .

 4 

		Jacobi		BICGStab	
	CPU Time / it	1.05 s		0.39 s		
	performances	residual iterations residual iterations sub-iterations k
	u	3, 0.10 -1	55	3, 0.10 -1	22	1
	p	7, 9.10 -7	274	2, 3.10 -5	1706	2
	h	1, 5.10 -3	173	2, 0.10 -4	60	10
	P R	6, 6.10 -7	129	9, 0.10 -7	111	10
	A x	9, 4.10 -7	85	2, 2.10 -4	30	10
	A y	6, 8.10 -7	84	9, 4.10 -3	15	1
	A z	1, 6.10 -4	200	7, 2.10 -1	25	1

8: CPU time, iterations and residuals on variable equations for linear solvers

Table 4 .

 4 9: Variable residuals for convective schemes (upwind and centered )

				DIFFUSIVE SCHEMES: UPWIND/CENTRED : TEMPERATURE			
								Centred	
								Upwind	
	T (K)								
	-0.04	-0.03	-0.02	-0.01	0	0.01	0.02	0.03	0.04
					TRANSVERSE PROFILE x=8mm				
	Figure 4.10: Comparison of the temperature approximations obtained with the upwind and
	centered schemes								

Table 4 .

 4 12 , 10 -12 ). 10: Iterations and equation residuals for different values of (K, b)

	(µ, K, b)	solver iter. CPU/iter. residual (velocity)
	(10 2 , 0, 0)	1899	4.2s	1, 5.10 -1
	(10 2 , 10 2 , 10 -2 )	1431	3.1s	1, 8.10 -1
	(10 2 , 10 6 , 10 -6 )	55	1.4s	1, 9.10 -1
	(10 2 , 10 12 , 10 -12 )	18	1.2s	5, 5.10 -1
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Appendix A Bibliographic study on the hierarchy of plasma models 

Kinetic equation

In this section, we recall the theory of the kinetic description of plasma. We consider the spatial and velocity distributions of a particle moving along the trajectory x(t) with a particle velocity v(t) defined as follows:

with δ the Dirac's delta function, (x, v) ∈ R 6 the Eulerian coordinates of the six-dimensional state space (x 1 , x 2 , x 3 , v 1 , v 2 , v 3 ) and (x(t), v(t)) = (x 1 (t)..., x N (t), v 1 (t)..., v N (t)) are the Lagrangian coordinates of the N particles. Thus, we can introduce the joint distribution function:

Particle trajectories x k (t), v k (t) are given by Newton's laws in the presence of micro-

A.3 Bi-fluid description of the plasma

The bi-fluid model built in the previous section describes separately the two particle phases: electrons (e) and heavy particles (ions i and neutrals ne) [START_REF] Loverich | A discontinuous galerkin method for the full two-fluid plasma model[END_REF][START_REF] Shumlak | Approximate riemann solver for the two-fluid plasma model[END_REF][START_REF] Callen | Fondamentals of plasma physics[END_REF][START_REF] Gurnett | Introduction to plasma physics: with space and laboratory applications[END_REF][START_REF] Bellan | Fundamentals of plasma physics[END_REF]:

, (Gauss's law) div(B) = 0, (Gauss's law for magnetic field)

with j s • E the Joule's effect, n s q s [E + u s × B] the Lorentz's force and j e , j i the ionic and electronic current densities defined as follows:

The heat flux induced by the temperature gradient is given by the Fourier's Law:

with λ s and C p,s respectively the thermal conductivity and specific heat of the species s ∈ {e, i}.

A.3.1 State laws

If the collision frequency is high enough to maintain thermodynamic equilibrium in the plasma, it is common to use thermodynamic state laws to close the system. In fact, microscopic wave-particle interactions preserve the physical properties of a perfect gas [START_REF] Bellan | Fundamentals of plasma physics[END_REF][START_REF] Gurnett | Introduction to plasma physics: with space and laboratory applications[END_REF]. In this study, we assume the perfect gas framework, so we get [START_REF] Bellan | Fundamentals of plasma physics[END_REF][START_REF] Gurnett | Introduction to plasma physics: with space and laboratory applications[END_REF][START_REF] Callen | Fondamentals of plasma physics[END_REF]:

A.3.2 Colliding moments

In order to close the system (A.44), it is necessary to explicitly define the collision terms R s and Q s . Coulomb's collision model takes into account collisions between different species that occur on the same time scale. Referring to [START_REF] Callen | Fondamentals of plasma physics[END_REF], we introduce the density of the frictional forces due to collisions within the electron flow relative to the ion flow:

R e = -m e n e ν ei (u e -u i ) = n e e σ j, (A. [START_REF] Helluy | Relaxation models of phase transition flows[END_REF] with σ the electric conductivity, u e , u i respectively the electronic and ionic velocities. The frequency of collisions between electrons and ions is given by ν ei = n i v e,T Q ei where Q ei is the rate of change of average energy due to collisions on a section and v e,T is the thermal velocity of the electrons. Since Coulomb's collisions are considered anelastic, the momentum is conserved and we get:

Inherently to collisions, energy is transferred from ions to electrons and vice versa. The rate of change of total energy after collision between ion and electron is given by [START_REF] Callen | Fondamentals of plasma physics[END_REF]:

As the total energy is conserved, we get:

A.4 Bi-temperature description of the plasma

We recall that at the heart of the plasma arc, the frequency of collisions is high and the hypothesis of local thermodynamic equilibrium (LTE) is admissible allowing a single-fluid description. However, in the sheaths, this hypothesis is no longer appropriate because there is only one species (ions or electrons) present. In addition, the electron temperature is much higher than the ion temperature. Each species is characterized by its own Maxwellian distribution and a bi-fluid model would be most appropriate. In practice, this type of model is more difficult to implement and involves a significant calculation cost for industrial studies.

Alternative models based on a single phase description taking into account electronic and ionic temperatures have been developed. [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Trelles | Arc plasma torch modeling[END_REF][START_REF] Trelles | Computational study of flow dynamics from a dc arc plasma jet[END_REF][START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF][START_REF] Al-Mamun | Two-temperature two-dimensional non chemical equilibrium modeling of ar-co2-h2 induction thermal plasmas at atmospheric pressure[END_REF][START_REF] Freton | Energy equation formulations for two-temperature modelling of thermal plasmas[END_REF][START_REF] Tashiro | Two-temperature plasma modeling of argon gas tungsten arcs[END_REF][START_REF] Lin | A discontinuous galerkin method for two-temperature plasmas[END_REF][START_REF] Lowke | Theory of free-burning arc columns including the influence of the cathode[END_REF] in order to take into account the phenomena out of thermal equilibrium. However, using a single-fluid LTE model in the sheaths, the calculated potential drop is greater than the experimentally measured values [START_REF] Shumlak | Approximate riemann solver for the two-fluid plasma model[END_REF][START_REF] Trelles | Multiscale finite element modeling of arc dynamics in a dc plasma torch[END_REF][START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF].

In this section, we present the bi-temperature plasma model based on [START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF][START_REF] Trelles | Arc plasma torch modeling[END_REF][START_REF] Trelles | Computational study of flow dynamics from a dc arc plasma jet[END_REF][START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]] which allows a more precise description of the transition zones in order to better estimate potential drops. The plasma is always assumed to be quasi-neutral:

Since the mass of an electron is negligible compared to that of an ion: me m i -→ 0, and the averaged density is given by:

with j e the electron current density, λ i , λ e respectively the ionic and electronic thermal conductivities, and C p,i , C p,e the specific ionic and electronic heat. Moreover, as the charge transport is dominated by electronic charge, we have:

(A.67)

The system of equations of the bi-temperature model is written as follows [START_REF] Trelles | Variational multiscale method for nonequilibrium plasma flows[END_REF]:

A.5 Hall-MHD

In this section, we present a model generally used to describe space plasmas or those studied in the laboratory and taking into account the Hall effect which comes from the voltage difference within an electrical conductor. For electric arc plasmas, these effects can be important due to the potential drop in the sheaths [START_REF] Shumlak | Approximate riemann solver for the two-fluid plasma model[END_REF]. More precisely, these Hall-MHD models take into account the diamagnetic term and the Hall term [START_REF] Chacón | A 2d high-β hall mhd implicit nonlinear solver[END_REF][START_REF] Harned | Accurate semi-implicit treatment of the hall effect in magnetohydrodynamic computations[END_REF][START_REF] Huba | Hall magnetohydrodynamics in space and laboratory plasmas[END_REF][START_REF] Huba | Numerical methods: Ideal and hall mhd[END_REF][START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF][START_REF] Hesse | Collisionless magnetic reconnection: Electron processes and transport modeling[END_REF]. They are valid for spatial scales below the ion inertia length and for time scales below the cyclotron period of the ions [START_REF] Huba | Numerical methods: Ideal and hall mhd[END_REF]. At these scales, the electric and magnetic fields no longer follow the same current lines involving a strong Hall effect. The ion flow is no longer related to the electron flow and the generalized Ohm's law can no longer be taken in simplified form. This creates a magnetic current and the electrons generate an electric field in the charge space to preserve quasi-neutrality. The Hall-MHD description takes these assumptions into account by preserving the Hall effect terms and the electron pressure gradient in the generalized Ohm's law thus modifying Faraday's induction law (A.15). In addition, the Hall effect term introduces an additional characteristic length scale into the system of equations.

The Hall-MHD description represents an asymptotic limit of the bi-fluid model (A.44) with the closures (A.49)-(A.52) where we assume infinite speed of light and negligible electronic mass. The hypothesis of quasi-neutrality implies [START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF]:

Due to the negligible electronic mass, the mixture speed is written as follows [START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF]:

It is assumed that the enthalpy and pressure of the mixture are given by [START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF]:

The mixture density and the current density are given by [START_REF] Besse | A model hierarchy for ionospheric plasma modeling[END_REF]:

(A.87)

and we can write the enthalpy conservation equation for the mixture as follows: [START_REF] Shumlak | Approximate riemann solver for the two-fluid plasma model[END_REF] with:

where λ i , λ e are respectively the ionic and electronic thermal conductivities, and C p i , C p e are respectively the ionic and electronic specific heats. The rate of change of total energy after collision is defined by:

Thus, the Hall-MHD model is given by:

with the state law of perfect gas. However, it has been proven [START_REF] Hesse | Collisionless magnetic reconnection: Electron processes and transport modeling[END_REF][START_REF] Huba | Hall magnetohydrodynamics in space and laboratory plasmas[END_REF][START_REF] Huba | Numerical methods: Ideal and hall mhd[END_REF][START_REF] Loverich | A numerical approach to solving the hall mhd equations including diamagnetic drift[END_REF] that the Hall term introduces stabilities into the system due in particular to high wave velocities and low electron densities. A study associating the Hall-MHD and bi-temperature models has been proposed to solve this problem. [START_REF] Loverich | A numerical approach to solving the hall mhd equations including diamagnetic drift[END_REF].

A.6 Extended magnetohydrodynamics

An alternative to the bi-temperature and Hall-MHD models to deal with some thermodynamic unbalance effects would be the extended MHD model [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF] which is based on the assumptions of quasi-neutrality of plasma (A.53), negligible electronic mass and infinite speed of light. Starting from the bi-fluid model (A.44) with the closures (A.49)-(A.52), we introduce the mixing variables defined in (A.83)-(A.86):

The magnetostatic hypothesis implies the stationary Ampère's law:

The electronic momentum equation becomes the generalized Ohm's law [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF]:

The energy transfer rate due to collisions is defined by:

The particle derivative of pressure will not be considered in the enthalpy equation. Thus, summing the electron and ion enthalpy equations will give Ohm's heating term η|j| 2 which will be neglected later.

We get the equations of the extended MHD [START_REF] Franck | Hierarchy of fluid models and numerical methods for the jorek code[END_REF]:

field are constant and follow the plasma flow. This represents the gel theorem which leads to the expression of generalized Ohm's law under the form:

The ideal MHD is applicable when collisions between particles are sufficiently numerous with negligible resistivity [START_REF] Huba | Numerical methods: Ideal and hall mhd[END_REF][START_REF] Trelles | Non-equilibrium modelling of arc plasma torches[END_REF].

The MHD description is based on the Euler and Maxwell equations. It consists of the mass, momentum, energy and electromagnetic equations that describe a magnetized plasma at thermodynamic and electrical equilibrium.

The MHD equations are conventionally written as follows [START_REF] Callen | Fondamentals of plasma physics[END_REF][START_REF] Gurnett | Introduction to plasma physics: with space and laboratory applications[END_REF][START_REF] Bellan | Fundamentals of plasma physics[END_REF]:

Modeling non-LTE zones with MHD

Currently, the presence of the electrodes in the computational domain is done via additional source terms in the enthalpy equation in the areas close to the electrodes (A.112) [START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF]:

• the plasma heat flow at the cathode [START_REF] Delalondre | Modelisation aérothermodynamique d'arcs électriques a forte intensité avec prise en compte du déséquilibre thermodynamique local et du transfert thermique à la cathode[END_REF]:

with the ion heating defined by:

where k B = 1, 38.10 -23 JK -1 is the Boltzmann's constant, V i is the ionization potential, ∆V c is the cathodic potential drop and j i = j -j e . The electronic cooling is given by:

with W c the effective cathode work (or the flow of electrons emitted by the cathode surface) and j e the electron current density through the cathode surface by the thermo-electronic effect defined by the Richardson-Dushmann equation:

where A R is Richardson's constant and W e is the effective output work of the cathode used only in the Richardson-Dushmann equation [START_REF] Tanaka | A unified numerical modeling of stationary tungsten-inert-gas welding process[END_REF]. The term χ c q rad corresponds to the radiative transfer with χ c the radiative absorption of the plasma on the cathode surface. Emissivity cooling is given by c σ B T 4 c with c the cathode emissivity. • the heat flux from the plasma to the anode is written:

-λ a ∂T a ∂n = -λ p ∂T p ∂n + q(X i ) + q(j e ) + χ a q raya σ B T 4 a .

(A.117)

Most terms have their cathodic equivalents. Since the potential in the anode sheath is ion repellent, the total current is taken equivalent to the electron current density and the ion heating term is negligible. On the other hand, at the anode, it is necessary to take into account the enthalpy exchange term by evaporation of the metallic species q(X i ) with X i the mass fraction of the metallic vapours of the species i.

The electronic heating term is written as follows:

with W a effective anodic work and ∆V a the drop in anode potential.

The potential drop at the electrodes is given by the following relationship: 

B.1 Weighted gradient and face flow reconstruction

In order to allow a more complete numerical study on plasma calculation, i.e. with the presence of electrodes in the calculation domain, we use the electric arc data entry developed in [START_REF] Borel | Etude numérique et expérimentale des transferts thermiques dans un plasma d'arc[END_REF] in Code_Saturne 2.0. In order to do this, it is necessary to update in the version Code_Saturne 4.1. In this section, a study of numerical stability of the approximations, mesh sensitivity and numerical options is presented.

In this section, a sensitivity study is presented on the gradient calculation and face flux reconstruction for the model presented in 3.2.

Observations

In this case, the numerical corrections made previously are applied: the face diffusivity and the secondary viscosity at the face are calculated with a harmonic mean in order to ensure the continuity of the diffusion flows. The calculation of the gradient must be consistent with this formulation, the gradient being used in the reconstruction of diffusion flows with internal faces presenting non-orthogonalities. In the model used previously, for the electric potential which is the most sensitive variable of the plasma model, we took into account the discontinuity of the electric conductivity by weighting in the calculation of the gradients which is only valid on orthogonal meshes. On meshes with non-orthogonalities, the reconstruction of the flows on the faces is deactivated for all the variables in order to avoid taking unweighted gradients into account. Since version 4.0 of Code_Saturne, the weighted gradient calculation of a variable available for the least-squares method allows to take into account the diffusivity discontinuity at the internal faces for all scalar variables on orthogonal or non-orthogonal meshes and thus to calculate reconstructed and continuous diffusion flows at the interfaces. These modifications are recent improvements that significantly improve the robustness of the computations. We finally find stable approximations over physical times longer than 15 ms.

B.2 Rotational invariance study for simplified plasma calculation

Another interesting test would consist in carrying out the same simulations on the rotating mesh along the z axis by taking the bisection of the central mesh in order to observe if the solved system remains invariant by rotation, which would partly answer the question on velocity instabilities for t f > 5 ms in the validation case PFENDER of Code Saturne [START_REF][END_REF].

A first test consisted of performing a θ = π 4 rotation with the following configuration:

• linear solver: bi-CG-Stab,

• convection scheme: upwind,

• hydrostatic pressure: no,

• time step: ∆t = 2.10 -6 s.

According to the profiles (Figure 3.12-Figure 3.16), the results of the simulations on a rotating geometry show non-negligible differences. 

B.3 Boundary conditions with free inlet pressure calibration

As a result of a change in the boundary condition type in Code Saturne [START_REF][END_REF] where we go from a free output condition (isolib, pressure calibration with a homogeneous Dirichlet condition) to a free outlet and inlet condition (ifrent = isolib + calibration of the pressure by a Bernoulli relation with the velocity at the free inlet), we obtain a stable and symmetrical plasma simulation with physical output pressures. 

B.5 Conclusions

Numerical studies carried out in this section have established a stable configuration for the simulations of the completed plasma with Code_Saturne 4.1. The modifications preserved are as follows:

• Face diffusivity calculated by harmonic mean (imvisf=1),

• Secondary viscosity calculated by harmonic mean (secvif),

• Calculation of gradients with weighting (iwgrec=1) least squares (imrgra=1),

• Reconstruction of face flows (ircflu =0),

• Centered Convection Scheme (blencv=1),

• Linear solver: bi-Gradient conjugate stabilized,

• Temporal discretization : ∆t ≤ 2.10 -5 s,

• Boundary condition of free entry and exit (ifrent).

Appendix C

Additional numerical results on weld pool simulation 

C.1 Additional numerical results on weld pool C.1.1 Interface diffusivity interpolation

For this numerical study, we take the geometry, the mesh, the operating parameters, the thermo-physical properties and the model described in the previous chapters. For comparisons, profiles are presented transverse to the welding direction ( In this section, the transverse profiles to the welding direction at t f = 6s at the ending position of the torch are presented. For the case where the face diffusivity value is obtained by harmonic mean (imvisf = 1 ), we compare the approximations obtained for the cases of face viscosity from arithmetic, zero and harmonic means in the term of secondary viscosity. The profiles of temperature, temperature gradient and flow velocity are presented following y.

From the temperature and temperature gradient profiles ( Figure C.6 shows the velocity profiles with the harmonic and zero secondary viscosity. We notice that within the weld pool, the velocity profiles are not totally equivalent. At convergence, the secondary viscosity tends towards zero. In addition, a loss of monotony is observed on both sides of the transition zone. Following the description in sloshing : the gravitational wave (5.4.4) and the capillary wave (5.4.6), The analytical solution of the variation of the amplitude of a damped oscillation in a tanker is detailed in this section.

In the initial state, we consider a fluid with a sinusoidal perturbation given by:

with a 0 = 0.01 m the maximum amplitude of the mode taken at x = 0 (i.e. the left-most node on the mesh surface). Depending on the case, the fluid is either subjected to gravity alone, or to capillary force where the surface tension is proportional to the local curvature of the free surface.

In [START_REF] Cortelezzi | Small-amplitude waves on the surface of a layer of a viscous liquid[END_REF][START_REF] Ramaswamy | Numerical simulation of unsteady viscous free surface flow[END_REF], the analytical solution is described as follows:

where k = 2π m -1 the number of waves with a unit wavelength, ν = 0.01 m 2 .s -1 the kinematic viscosity and ω 2 0 = gk + γk 3 the gravity-dependent eigenpulse g and the surface tension γ. Remember that for the gravity wave 5.4.4, the gravity is normalized and for the capillary wave 5.4.6, the surface tension coefficient is taken at 0.1 N.m -1 . The terms z j are solutions of the following algebraic equation:

The analytical expression for complex roots z i is defined as follows:

On the other hand, we have that Z 1 = (z 2 -z 1 )(z 3 -z 1 )(z 4 -z 1 ) and the other Z j are obtained by circular permutation of the complex roots z j .

Appendix D

Mono-instance coupling of weld pool/plasma models

The purpose of this coupling is to replace the parametric boundary conditions of "equivalent heat source" type in the weld pool simulations by a plasma model to obtain a better description of the heat transfer. In addition, it will allow to obtain a global modeling of the metal fusion welding process from anode to cathode and an improvement of the thermophysical forces at the interface (surface tension, arc pressure, aerodynamic shear, heat transfer, etc.) with consideration of a deformable interface. This approach will make it possible to simulate the entire welding process and to optimally predict the final geometry of the weld beads. In our study case, the variables to be coupled are enthalpy, electric potential and magnetic potential. The plasma and weld pool models are grouped in a single computational domain. In addition, a thinwall functionality in Code Saturne [START_REF] Omnes | Couplage mono-instance réalisé via une paroi mince[END_REF] enables to split the domain into two sub-domains by splitting the boundary faces. In our case, the convective and diffusive flows at the interface are described under the assumption of zero mass flow and homogeneous Neumann conditions, and replaced by a diffusive coupling flow. In the case of an orthogonal mesh, the discretization of the diffusion operator of a scalar Y on a Ω i cell is performed as follows [START_REF][END_REF]: