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A B S T R A C T

Computing platforms, such as embedded systems or laptops, are built
with layers of preventive security mechanisms to help reduce the
likelihood of attackers successfully compromising them. Nevertheless,
given time and despite decades of improvements in preventive security,
intrusions still happen. Therefore, systems should expect intrusions to
occur, thus they should be built to detect and to survive them.

Systems are monitored with intrusion detection solutions, but their
ability to survive them is limited. State-of-the-art approaches from in-
dustry or academia either involve manual procedures, loss of availabil-
ity, coarse-grained responses, or non-negligible performance overhead.
Moreover, low-level components, such as the BIOS, are increasingly
targeted by sophisticated attackers to implant stealthy and resilient
malware. State-of-the-art solutions, however, mainly focus on boot
time security, leaving the most privileged part of the BIOS—known as
the System Management Mode (SMM)—a prime target.

The introduction of new solutions raises various challenges such as
the security of the monitor, its ability to gather information about its
target, the detection models, responding to intrusions and maintaining
the availability of the system despite the presence of an adversary.

Our contribution is two-fold:

• At the OS-level, we introduce an intrusion survivability approach
aimed at commodity OSs. The initial idea behind this

contribution was presented as a
short-paper at RESSI’18 then the
final work was published at
ACSAC’19.

We combine intrusion recovery and
fine-grained cost-sensitive intrusion response to leverage a safe
degraded mode when an intrusion is detected. Such a degraded
mode prevents attackers to reinfect the system or to achieve their
goals if they managed to reinfect it. It maintains the availability
of core functions while waiting for patches to be deployed.

• At the BIOS level, we introduce an event-based and co-processor-
based behavior monitoring approach to detect intrusions target-
ing the SMM on x86 platforms. This contribution has been

published at ACSAC’17.
We isolate the monitor using

a co-processor to ensure its security and we bridge the seman-
tic gap resulting from it by using a dedicated communication
channel. This channel is used to send relevant information about
the SMM code behavior that we compare with the model of
its expected behavior—using invariants of its control-flow and
relevant CPU registers.

Keywords: Information Security, Intrusion Detection, Intrusion Re-
sponse, Intrusion Recovery, Intrusion Survivability

iii





P U B L I C AT I O N S

This thesis is based on previously published papers written jointly with several collabo-
rators:

international conference papers

• Ronny Chevalier, David Plaquin, Chris Dalton, and Guillaume Hiet. “Survivor:
A Fine-Grained Intrusion Response and Recovery Approach for Commodity Op-
erating Systems”. In: Proceedings of the 35th Annual Computer Security Applications
Conference. ACSAC’19. ACM, Dec. 2019. doi: 10.1145/3359789.3359792.

• Ronny Chevalier, Maugan Villatel, David Plaquin, and Guillaume Hiet. “Co-
processor-based Behavior Monitoring: Application to the Detection of Attacks
Against the System Management Mode”. In: Proceedings of the 33rd Annual
Computer Security Applications Conference. ACSAC’17. ACM, Dec. 2017, pp. 399–
411. doi: 10.1145/3134600.3134622.

national conference papers

• Ronny Chevalier, David Plaquin, and Guillaume Hiet. “Intrusion Survivabil-
ity for Commodity Operating Systems and Services: A Work in Progress”.
In: Rendez-vous de la Recherche et de l’Enseignement de la Sécurité des Systèmes
d’Information. RESSI’18. May 2018.

In addition, during the three years of this Ph.D. I was employed by HP, patent
applications related to the work, ideas, or solutions presented in this document were
filed:

patent applications

• Ronny Chevalier, David Plaquin, Guillaume Hiet, and Adrian Baldwin. “Miti-
gating Actions”. Pat. req. Hewlett-Packard Development Company, L.P. May
2018.

• Ronny Chevalier, David Plaquin, Maugan Villatel, and Guillaume Hiet. “Intru-
sion Detection Systems”. Pat. req. Hewlett-Packard Development Company, L.P.
June 2017.

v

https://dx.doi.org/10.1145/3359789.3359792
https://dx.doi.org/10.1145/3359789.3359792
https://dx.doi.org/10.1145/3359789.3359792
https://doi.org/10.1145/3359789.3359792
https://dx.doi.org/10.1145/3134600.3134622
https://dx.doi.org/10.1145/3134600.3134622
https://dx.doi.org/10.1145/3134600.3134622
https://doi.org/10.1145/3134600.3134622
https://ressi2018.sciencesconf.org/190500/document
https://ressi2018.sciencesconf.org/190500/document


• Ronny Chevalier, David Plaquin, Maugan Villatel, and Guillaume Hiet. “Monitor-
ing Control-Flow Integrity”. Pat. req. Hewlett-Packard Development Company,
L.P. June 2017.

Finally, during these years I also contributed to another related area, but the following
publication is not discussed in this thesis:

international conference paper

• Ronny Chevalier, Stefano Cristalli, Christophe Hauser, Yan Shoshitaishvili,
Ruoyu Wang, Christopher Kruegel, Giovanni Vigna, Danilo Bruschi, and Andrea
Lanzi. “BootKeeper: Validating Software Integrity Properties on Boot Firmware
Images”. In: Proceedings of the 9th ACM Conference on Data and Application Security
and Privacy. CODASPY’19. ACM, Mar. 2019, pp. 315–325. doi: 10.1145/3292006.
3300026.

vi

https://dx.doi.org/10.1145/3292006.3300026
https://dx.doi.org/10.1145/3292006.3300026
https://doi.org/10.1145/3292006.3300026
https://doi.org/10.1145/3292006.3300026


A C K N O W L E D G M E N T S – R E M E R C I E M E N T S

No one does everything alone. Many people contributed—sometimes even without
knowing it—to this research and dissertation either intellectually, financially, logis-
tically, or personally. This is my attempt at acknowledging their help, interest, and
contributions over the years.

First and foremost, I would like to thank Herbert Bos, Joaquin Garcia-Alfaro, Karine
Heydemann, and Laurence Pierre for taking an interest in my work and for accepting
to be members of the jury. Especially Herbert and Joaquin for their detailed review of
this manuscript.

I was fortunate to be advised by Boris Balacheff, Guillaume Hiet, Ludovic Mé, and
David Plaquin. They all shared different responsibilities and duties during this work,
but they all provided me with their expertise, helpful criticism, and time. I want to
thank in particular Guillaume and David whose advice, comments, and discussions
helped shape this dissertation and my research in many respects.

During these three years I was also part of two teams: the CIDRE team at Centrale-
Supélec and the Security Lab at HP. I want to thank them for giving me an academic
and industry perspective on research. I would like to thank the members of CIDRE for
the scientific and technical discussions that I had with them over the years, but also
all the "team building" we had at lUnchTime with the PhD students and interns. So
thanks to all of them, especially to David Lanoë with his unrelenting force when hitting
the cue ball, Pierre Graux with his nice collection of little orange men, Cédric Herzog
with his love for Germany, Benoît Fournier who likes to keep a log of what we say, and
Aïmad Berady le malicieux.

I also want to thank HP and especially the Security Lab at Bristol. Working with
them gave me an insight at what it is like to work with a competent industry research
lab. In particular, I would like to thank Philippa Bayley and Boris who worked hard
to make sure that I could work at HP for my PhD. I would also like to acknowledge
the expertise and time that Chris Dalton and Maugan Villatel provided me over the
years; I was fortunate to have them as co-authors on some of my papers. I would also
like to thank Vali Ali, Pierre Belgarric, Rick Bramley, Carey Huscroft, Jeff Jeansonne,
and Thalia Laing for their feedback and technical discussions on my work. I am also
grateful to Daniel Ellam, Jonathan Griffin, and Stuart Lees for their help in setting up
and running some experiments in their malware lab, and Josh Schiffman for giving me
opportunities to present my work at HP.

I would also like to thank François Bourdon and Laurent Jeanpierre. They were
teachers of mine respectively in operating system and computer architecture during
the first two years of my higher education. Both motivated me—probably without

vii



knowing it—to think about pursuing a career in research. François is also the reason
why I went to Rennes for my studies. He told me that there was a research team in
Rennes working on computer security, and he pointed me towards someone called
Ludovic Mé. Unaware at the time that four years later I would be doing a PhD in this
team and with Ludovic as my doctoral advisor.

I would also like to thank Jérémy and Martin who went from classmates, to friends,
to best men at my wedding, and who also happened to follow a similar career path as
PhD students.

Je vais terminer par remercier, en français, ma famille. En particulier, mes parents,
qui m’ont toujours soutenu même s’ils ne réalisaient probablement pas que tout ce
temps passé sur un ordinateur à l’époque allait être utile un jour. Puis, Léni, sans qui je
ne me serais problablement jamais intéressé à l’informatique à l’origine. Enfin, Agathe,
qui a relu le résumé français de ce manuscrit, et qui a surtout accepté de faire partie de
ma vie.

viii



C O N T E N T S

abstract iii
publications v
acknowledgments – remerciements vii
acronyms xv

i prologue

1 introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Preventive Security is not Sufficient . . . . . . . . . . . . . . . . . 4

1.1.2 Commodity OSs Can Detect but Cannot Survive Intrusions . . . 5

1.1.3 Low-Level Components Increasingly Targeted . . . . . . . . . . . 6

1.2 Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Evaluation Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 background : from x86 power-on to login prompt 9

2.1 BIOS and UEFI-Compliant Boot Firmware . . . . . . . . . . . . . . . . . 9

2.1.1 Platform Initialization . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Boot Time Security Mechanisms . . . . . . . . . . . . . . . . . . . 12

2.1.3 Runtime Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.4 System Management Mode . . . . . . . . . . . . . . . . . . . . . . 14

2.1.5 Attacks Against the SMM . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Operating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2 User Space Initialization, Service Manager, Login . . . . . . . . . 21

2.2.3 Isolation Primitives: The Case of the Linux Kernel . . . . . . . . 21

2.2.4 Limitations of OS Security Principles . . . . . . . . . . . . . . . . 23

2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 state of the art : detection and survivability 25

3.1 Terms and Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Common Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Intrusion Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Intrusion Survivability and Related Concepts . . . . . . . . . . . 28

3.2 Intrusion Detection for Low-Level Components . . . . . . . . . . . . . . 29

3.2.1 Isolation of the Monitor . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2 Hardware-Based Monitoring . . . . . . . . . . . . . . . . . . . . . 32

3.2.3 Detection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



x contents

3.3 Intrusion Survivability for Commodity Operating Systems . . . . . . . . 42

3.3.1 Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Intrusion Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3.3 Intrusion Response Systems . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

ii surviving intrusions at the os level

4 introducing an intrusion survivability approach 59

4.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Threat Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4 Illustrating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 cost-sensitive response selection 65

5.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.1.1 Malicious Behaviors and Responses . . . . . . . . . . . . . . . . . 65

5.1.2 Malicious Behavior Cost and Response Cost . . . . . . . . . . . . 67

5.1.3 Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.4 Risk Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.5 Policy Definition and Inputs . . . . . . . . . . . . . . . . . . . . . 71

5.2 Optimal Response Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Pareto-Optimal Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2.3 Response Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 architecture and implementation 75

6.1 Architecture and Requirements . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.2 Last Known Safe State . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.3 Isolation of the Components . . . . . . . . . . . . . . . . . . . . . 76

6.1.4 Intrusion Detection System . . . . . . . . . . . . . . . . . . . . . . 77

6.1.5 Service Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Linux-based Prototype Implementation . . . . . . . . . . . . . . . . . . . 78

6.2.1 Checkpoint and Restore . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Monitoring Modified Files . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.4 Bugs and Patches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 evaluation and results 83

7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1 Responses Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.2 Cost-Sensitive Response Selection . . . . . . . . . . . . . . . . . . 85



contents xi

7.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.1 Availability Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.3.2 Monitoring Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3.3 Storage Space Overhead . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Stability of Degraded Services . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 concluding remarks 95

8.1 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 97

8.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 98

iii detecting intrusions at the firmware level

9 introducing a smm behavior monitoring approach 103

9.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

9.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

9.3 Approach Overview and Requirements . . . . . . . . . . . . . . . . . . . 106

9.3.1 Co-Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

9.3.2 Communication with the Monitor . . . . . . . . . . . . . . . . . . 107

9.3.3 Instrumentation of the Target . . . . . . . . . . . . . . . . . . . . . 108

9.4 Threat Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 108

10 detection methods and models 111

10.1 Type-Based Control Flow Integrity . . . . . . . . . . . . . . . . . . . . . . 111

10.1.1 Overview and Motivation . . . . . . . . . . . . . . . . . . . . . . . 111

10.1.2 Illustrating Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 112

10.1.3 Code Analysis and Instrumentation . . . . . . . . . . . . . . . . . 114

10.1.4 Shadow Call Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

10.2 Execution Context Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . 116

10.3 Isolation of the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

11 architecture and implementation 119

11.1 Co-Processor and Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

11.2 Communication Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2.1 Existing Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . 120

11.2.2 Restricted FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

11.3 Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

12 evaluation and results 125

12.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.1.1 Simulator and Emulator . . . . . . . . . . . . . . . . . . . . . . . . 125

12.1.2 Simulated Communication Channel Delay . . . . . . . . . . . . . 126

12.1.3 SMI Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.2 Security Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

12.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xii contents

12.3.1 Runtime Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

12.3.2 Co-Processor Performance . . . . . . . . . . . . . . . . . . . . . . . 130

12.3.3 Firmware Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

12.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

13 concluding remarks 133

13.1 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 133

13.2 Comparison with Related Work . . . . . . . . . . . . . . . . . . . . . . . . 134

13.3 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 136

iv epilogue

14 conclusion 139

14.1 Summary of the Contributions Supporting Our Claims . . . . . . . . . . 139

14.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

14.2.1 Extend the Approaches and their Evaluation . . . . . . . . . . . . 141

14.2.2 Surviving and Adapting Intrusions . . . . . . . . . . . . . . . . . 141

appendices

a malware samples 145

b gem5 parameters 147

résumé substantiel en français 149

bibliography 157

copyright permissions 183



L I S T O F F I G U R E S

Figure 1.1 The Maginot Line during WWII . . . . . . . . . . . . . . . . . . . 4

Figure 1.2 Computer abstraction layers . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.3 Computer abstraction layers covered in this dissertation . . . . 7

Figure 2.1 Simplified diagram of a recent Intel x86 architecture . . . . . . . 10

Figure 2.2 UEFI PI phases and the UEFI interfaces exposed during the boot
sequence to the OS . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 2.3 Simplified diagram of various boot security mechanisms . . . . 13

Figure 2.4 SMM execution flow and SMRAM memory layout . . . . . . . . 15

Figure 2.5 Difference of isolation between main kernel types . . . . . . . . 20

Figure 3.1 Timeline of a transient attack . . . . . . . . . . . . . . . . . . . . 33

Figure 3.2 A prover attests its integrity via a challenge-response protocol . 36

Figure 4.1 High-level overview of our intrusion survivability approach . . 61

Figure 5.1 Example of a non-exhaustive malicious behavior hierarchy . . . 66

Figure 5.2 Example of a non-exhaustive per-service response hierarchy . . 67

Figure 6.1 Overview of the architecture of our intrusion survivability ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 7.1 Impact of checkpoints on the latency of HTTP requests made to
an nginx server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 7.2 Results of synthetic benchmarks to measure the overhead of the
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Figure 7.3 Results of real-world workload benchmarks to measure the over-
head of the monitoring . . . . . . . . . . . . . . . . . . . . . . . . 92

Figure 9.1 High-level overview of our co-processor-based monitoring ap-
proach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 10.1 Simplified view of the stack frame of the function before the
attacker overwrites functions[0] . . . . . . . . . . . . . . . . . . 112

Figure 10.2 Example of the mappings that the source code analysis outputs 114

Figure 10.3 How the monitor detects illegitimate indirect calls . . . . . . . . 115

Figure 10.4 How the monitor detects illegitimate returns using a shadow
call stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Figure 11.1 High-level overview of our architecture that monitors the SMM 119

Figure 12.1 Time to execute SMI handlers divided between the communica-
tion and the instrumentation overhead . . . . . . . . . . . . . . . 129

Figure 12.2 Time to process all the messages sent by one execution of each
SMI handler for the co-processor . . . . . . . . . . . . . . . . . . 131

xiii



L I S T O F TA B L E S

Table 2.1 Summary of the main attacks targeting and vulnerabilities af-
fecting the SMM with their countermeasures . . . . . . . . . . . 18

Table 5.1 Example of a 5 × 5 risk matrix that follows the requirements for
our risk assessment . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 6.1 Projects modified for the implementation of our intrusion sur-
vivability approach . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Table 7.1 Summary of the experiments that evaluate the effectiveness of
the responses against various malicious behaviors . . . . . . . . 85

Table 7.2 Responses to withstand ransomware reinfection with their asso-
ciated cost and performance for Gitea . . . . . . . . . . . . . . . 86

Table 7.3 Time to perform the checkpoint operations of a service . . . . . 88

Table 7.4 Time to perform the restore operations of a service . . . . . . . 90

Table 8.1 Summary of the comparison between our intrusion survivability
approach and the related work . . . . . . . . . . . . . . . . . . . 97

Table 12.1 Effectiveness of our approach against state-of-the-art attacks . . 128

Table 12.2 Number of packets sent during the execution of one SMI handler 130

Table 13.1 Summary of the comparison between our SMM behavior moni-
toring approach and the related work . . . . . . . . . . . . . . . 135

Table A.1 Malware used in our experiments with the SHA-256 hash of the
samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Table B.1 Parameters used with gem5 for the x86 and the ARM simulation 147

L I S T O F C O D E S N I P P E T S

Listing 10.1 Example of a simulated non-SMM vulnerable code . . . . . . . 113

Listing 10.2 Example of a vulnerable function from a real SMI handler based
on decompiled code . . . . . . . . . . . . . . . . . . . . . . . . . . 113

xiv



xv



xvi acronyms

A C R O N Y M S

AL After Life. 11, 12

AP Application Processor. 11

ATRA Address Translation Redirection Attack. 34

BAR Base Address Register. 18

BDS Boot Device Selection. 11–13

BIOS Basic Input/Output System. iii, 6, 7, 9–19, 24, 32, 45,
55, 103, 104, 109, 112, 123, 125, 136, 151, 152, 154, 155

BITS BIOS Test Suite. 16, 120

BSP Bootstrap Processor. 9

C&C Command and Control. 64–66, 84, 85

CFG Control-Flow Graph. 38–40, 111, 128, 132, 154

CFI Control-Flow Integrity. 34, 38–41, 105, 106, 111–113,
115, 116, 118, 123, 128, 133–136

COW Copy-On-Write. 79

DAC Discretionary Access Control. 22

DDoS Distributed Denial-of-Service. 64, 84

DKOM Direct Kernel Object Manipulation. 37

DMA Direct Memory Access. 15, 32, 33, 37

DNC Democratic National Committee. 6

DOS Denial Of Service. 121

DXE Driver Execution Environment. 11–13, 15, 117, 123

FIFO First In First Out. 121, 122, 125, 126, 129, 135, 155

IDS Intrusion Detection System. 5, 27–31, 33, 35, 41–43,
45, 46, 50, 53, 61, 64, 66, 70, 71, 76, 77, 86, 87, 95, 98,
150

IDT Interrupt Descriptor Table. 36

IETF Internet Engineering Task Force. 25, 26



acronyms xvii

IPC Inter-Process Communication. 20, 22, 77

IR Intermediate Representation. 123

JOP Jump-Oriented Programming. 38

KOH Kernel Object Hooking. 37

MAC Mandatory Access Control. 22, 76–78

MAEC Malware Attribute Enumeration and Characteriza-
tion. 65, 67, 77, 153

MBR Master Boot Record. 11

MMU Memory Management Unit. 9, 22, 23, 35, 36, 41, 135

MOO Multi-Objective Optimization. 71, 72

NIST National Institute of Standards and Technology. 28

Or-BAC Organization-Based Access Control. 53

OS Operating System. iii, xiii, 3–9, 11–16, 18–25, 29, 31,
34, 36, 42, 45, 46, 49, 50, 54, 55, 59, 61, 62, 66, 71,
76–78, 98, 103, 104, 109, 139, 141, 142, 150–152

P2P Peer-to-peer. 84

PCH Platform Controller Hub. 9–11

PCI Peripheral Component Interconnect. 11, 18, 32, 33

PEI Pre-EFI Initialization. 11–13

PI Platform Initialization. xiii, 11, 12

PID Process IDentifier. 21

POSIX Portable Operating System Interface. 22

PSP Platform Security Processor. 119–121

QPI QuickPath Interconnect. 121, 125, 126, 155

ROP Return-Oriented Programming. 38, 113–115

RPC Remote Procedure Call. 77

RT Runtime. 11, 12

SCM Service Control Manager. 21



xviii acronyms

SCRTM Static Core Root of Trust for Measurement. 13

SEC Security. 11–13

SEP Secure Enclave Processor. 119–121

SMI System Management Interrupt. xiii, xiv, 15–18, 31,
108, 109, 112–114, 116, 117, 120–122, 125–127, 129–
133, 140, 142, 154, 155

SMM System Management Mode. iii, xiii, xiv, 14–19, 24,
25, 30–34, 36, 37, 39–41, 55, 103–106, 108, 109, 111,
112, 114, 116, 117, 119–123, 125–136, 140–142, 151,
153–156

SMRAM System Management RAM. xiii, 15–19, 32, 109, 114,
115, 117, 126–128, 154

SMRAMC System Management RAM Control. 15, 16

SMRR System Management Range Register. 17, 18

SOO Single-Objective Optimization. 72

STIX Structured Threat Information eXpression. 69, 77

STM SMI Transfer Monitor. 31, 142

TCB Trusted Computing Base. 43

TEE Trusted Execution Environment. 14

TLS Transient System Load. 11, 12

TPM Trusted Platform Module. 13, 36, 127

UEFI Unified Extensible Firmware Interface. xiii, 11–15,
44, 104, 125, 127, 154

VLAN Virtual Local Area Network. 83

VM Virtual Machine. 43, 45, 83



Part I

P R O L O G U E
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1 The word party is used in the
general sense and applies to
entities, processes, systems, or
individuals.

I N T R O D U C T I O N„I am convinced that there are only two
types of companies: those that have been
hacked and those that will be. And even
they are converging into one category:
companies that have been hacked and will
be hacked again.

— Robert Mueller
Director of the FBI from 2001 to 2013

Organized crime, corporate espionage, opportunistic attacks, state-
sponsored attacks, or activism, are all part of the threat landscape [188]
that organizations and individuals have to take into account for the
security of their computing platforms (e.g., laptops, servers, or smart-
phones). Decades of research in information security provided us with
a large number of preventive security mechanisms—such as cryptogra-
phy, access controls, and network security—that reduce the likelihood
of these actors to successfully compromise such platforms.

Why, despite such mechanisms, do intrusions still happen? Why are
we still not able to build secure systems by design? Multiple factors
come into play that need to be explained to answer these questions.
Before exposing the thesis behind this dissertation, we discuss these
factors and the different problems that current systems face.

1.1 problem statement

Preventive security mechanisms generally aim to prevent an attacker
from violating the following security properties during the execution
of any system or application on those platforms:

confidentiality Information must not be disclosed to unautho-
rized parties.1 For example, some cryptography primitives en-
force this property. By encrypting the content of a document,
only the parties in possession of the decryption key can read
it—an attacker cannot.

integrity Information must not be tampered by unauthorized par-
ties or without being detected. For example, access control mech-
anisms enforce this property when ensuring that only adminis-
trators can modify the configuration of a system.

availability Information must be available to authorized parties
when requested. For example, on modern Operating Systems

3

https://archives.fbi.gov/archives/news/speeches/combating-threats-in-the-cyber-world-outsmarting-terrorists-hackers-and-spie
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2 Their strategy was to push the
battles inside Belgium to avoid a

front in French soil.

"Security isn’t a matter of absolutes;
it’s a matter of picking the best set of
strategies given assorted constraints

and objectives."
— Steven Bellovin, Thinking

Security

"Real world attackers are of course
not physically stopped by

mathematical proofs."
— Cormac Herley and

P.C. van Oorschot, “SoK: Science,
Security and the Elusive Goal of

Security as a Scientific Pursuit”
3 See the work of Fonseca et al.

[112] that studied formally
verified systems and found

several violations of assumptions
leading to various bugs.

(OSs), unprivileged processes cannot kill core components of the
OS. Otherwise, an attacker could make the system unavailable
to its users.

1.1.1 Preventive Security is not Sufficient

Figure 1.1: The Maginot Line
during WWII

The mechanisms that we use to enforce the aforementioned prop-
erties, however, are not flawless. Indeed, much like the strong for-
tifications of the Maginot Line from World War II (WWII) that the
Germans went around—by going through the Netherlands, Belgium,
and Luxembourg—determined attackers will find a way to bypass de-
fenses. One could easily think that France just had to expand the line
to the coast, thus preventing any invasion from the Germans if they
were to go through Belgium (which they did). France anticipated such
an attack, but while it was straightforward to spot such weaknesses,
expanding the line was not. Due to politics (Belgium was an ally
when the construction started), wrong assumptions (they thought the
German would not go through the Ardennes forest), time and budget
constraints (hundreds of kilometers to cover with costly fortifications),
only weak fortifications were eventually built along that border.2

Information security is similar in that regard. While many systems
are designed with preventive security mechanisms (strong fortifica-
tions), the people designing and building these systems can make
mistakes and are also constrained by time, money, or internal politics
within their organization. These issues mean that information systems
can only prevent the violation of security properties to a certain extent.

Furthermore, in contrast to troops on the battlefield, most threat
actors do not have to take unnecessary risks, since they can attack infor-
mation systems from a distance. Either via Ethernet, Wi-Fi, Bluetooth,
or the cellular network, devices are exposed and can be attacked con-
tinuously, until compromised, without any attacker physically present.
Thus, for example, it reduces the entry barrier for malicious individ-
uals since it is perceived as a less risky endeavor than traditional
crime.

Even formally verified secure systems will not keep determined
attackers from compromising a system. While they can eliminate
classes of attacks, formal proofs rely on assumptions that can turn
out to be wrong—much like the Ardennes forest that France assumed
that the Germans will not cross. Such wrong assumptions can then be
exploited by attackers to violate security properties.3

More technically speaking, we consider that intrusions—attacks
that successfully compromise a system—may happen due to the com-
bination of two sources: technical and economic reasons. Technical
reasons—such as a misconfiguration, a wrong assumption, a system
not updated, or an unknown vulnerability—render a system vulnera-
ble. Attackers, or threat actors, can exploit a vulnerability to violate

https://books.google.fr/books?id=r3seCwAAQBAJ&pg=PT47
https://books.google.fr/books?id=r3seCwAAQBAJ&pg=PT47
https://dx.doi.org/10.1109/SP.2017.38
https://dx.doi.org/10.1109/SP.2017.38
https://dx.doi.org/10.1109/SP.2017.38
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4 See the seminal work by
Anderson [8] and Anderson and
Moore [9] that studies
information security with an
economic perspective.
5 Contrary to popular belief, the
Maginot Line was successful in a
way—it worked as a
deterrent—since the German
army considered that the cost of
invading France through the
north-east border was too
high—avoiding a cross-border
assault.

6 See the work of Anderson [7]
and Denning [90].

7 See the work of Morin and Mé
[203] that studied the link
between IDSs and anti-virus
software.

the security policy of the system to achieve their goals (e.g., steal con-
fidential information). It is common to think that by only considering
technical measures (e.g., by deploying firewalls and two-factor authen-
tication) intrusions will be stopped. Economic reasons, however, are
also in play.4 They are the different incentives that drive the decisions
that organizations and individuals make—attackers or defenders. For
example, do the benefits of an intrusion for attackers outweigh their
costs in terms of time and money? (cost-benefit principle)5

Given these factors, we arrive at the conclusion that when building
systems with security in mind, one must always remember that given
time, an intrusion will occur. It means that we should not only build
systems to prevent intrusions, but also to detect and survive them.

1.1.2 Commodity OSs Can Detect but Cannot Survive Intrusions

The idea of Intrusion Detection Systems (IDSs)—systems that auto-
matically detect intrusions—dates back to the 1980s.6 Since then, more
intrusion detection approaches were introduced, refined, and trans-
ferred from academia to industry. Most of today’s commodity OSs
are deployed with some kind of IDS—a well-known example would
be anti-virus software which share many aspects of host-based IDSs.7

Likewise, we find IDSs not only at the host level, but also at the net-
work level [217]. However, as the name suggests, an IDS only focus on
the detection and do not provide the ability to survive or withstand
an intrusion once it has been detected.

Systems that aim at automatically withstanding intrusions exist.
They are associated with various close and overlapping concepts
from the literature such as intrusion tolerance, intrusion survivability,
self-protecting systems, intrusion recovery, intrusion response, and
intrusion resiliency. For example, the concept of intrusion tolerant
systems—systems that can maintain their security properties even
when some of their components are compromised—also dates back to
the 1980s [116].

Most of the research on intrusion response, intrusion recovery, or
intrusion survivability focuses on critical infrastructure, distributed
systems, and networks [105, 157, 239, 294]. The ability of commodity
OSs to withstand intrusions, however, is less studied. For example,
nowadays when a system is compromised administrators have two
choices while waiting for patches to fix the vulnerabilities. First, they
can stop the compromised system. It would ensure the integrity and
confidentiality properties, but they would lose availability. Unfortu-
nately, the cumulative time to analyze the system to find the vulner-
ability, to either wait for a patch from the vendor or to develop the
patch, to test the patch, and to finally deploy the patch, can be long
(e.g., several days) depending on the organization. Hence, the system
can be offline for a long time until it is patched. Second, administrators
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8 They are believed to be
responsible for the attacks on the
Democratic National Committee

(DNC) [3] and the French
television network TV5

Monde [273].

can restore the system to a previous safe state. It would lose some
availability (some information might be lost due to the restoration),
but the system would be online. However, it would remain vulnerable
and nothing would stop attackers from reinfecting the system again.

While there are solutions to help OSs to either recover from an
intrusion [122, 286] or limit the impact of the intrusion on the sys-
tem [20], these solutions have various limitations that hamper their
deployment. For example, these solutions can incur a loss of availabil-
ity by forcing a reboot of the system or an application. They can also
apply coarse-grained responses that affect the rest of the system or
the whole application in order to thwart one specific intrusion. Finally,
they do not necessarily prevent the system from being reinfected or
do not stop the attackers from achieving their goals if they manage to
reinfect the system. We arrive at the conclusion that while commodity
OSs can detect intrusions, current state-of-the-art solutions either from
academia or industry do not allow these systems to survive intrusions
once they have been detected.

1.1.3 Low-Level Components Increasingly Targeted

We argued that preventive security mechanisms are not sufficient
and that while today’s OSs can detect some intrusions, they cannot
automatically withstand them without various limitations. The state
of security of applications and OSs, however, improved nonetheless
since the 1980s or 1990s for example. These improvements mean that
it becomes more difficult for attackers to compromise systems at the
application and OS abstraction layers, or at least to do it stealthily.
It results in an increased focus by sophisticated and well-resourced
attackers on lower abstraction layers [118, 176, 181, 226].

Hardware

Firmware

Operating System

ApplicationsPrivileges

More

Less

Figure 1.2: Computer abstrac-
tion layers

Firmware—software developed by device manufacturers—is one
of such lower abstraction layers, as illustrated in Figure 1.2. It can be
found in motherboards with the flash containing the Basic Input/Out-
put System (BIOS), storage devices, network cards, graphic cards, or
many other components that computers rely on. Firmware is present
in all kind of platforms whether it is servers, laptops, or industrial
systems.

Due to its direct access to the hardware and its often-early execution,
such a low-level piece of software is highly privileged. Hence, any
alteration to its expected behavior, malicious or not, can have dramatic
consequences for the confidentiality, integrity, or availability of the
system. We need to ensure that firmware, such as the BIOS, has
not been compromised. Otherwise, attackers can control any upper
layer software components, such as the OS, and can render moot any
security solution present.

For example, in 2018, the malicious threat actor known as APT28,
Fancy Bear, or Sednit,8 used attacks against the BIOS to compromise



1.2 thesis 7

some of its targets [226]. These attacks allowed them to have a stealthy
malware implant in the BIOS that survived even if you reinstalled the
OS or removed the storage devices.

While solutions exist to ensure firmware integrity (with detection
and recovery) at boot time, runtime firmware code—that executes
when the OS is running—has not gotten the same level of atten-
tion. Runtime firmware code security relies mainly on preventive
security mechanisms (e.g., memory protections [289]). However, as
concluded previously, such mechanisms are not sufficient. Without
intrusion detection mechanisms, the most privileged components of
our computing platforms remain unmonitored and a prime target for
sophisticated attackers.

Unfortunately, low-level components introduce challenges for any
intrusion detection solution. Such components must respect hard con-
straints in terms of resource usage to not degrade the user experience,
and they are the most privileged on the platform. Hence, any mod-
ification might increase their resource usage and attackers with the
same privileges might impede any monitoring.

1.2 thesis

This dissertation shows that computing platforms can be designed
to detect intrusions at the firmware level and withstand intrusions at
the OS level without significantly impacting the quality of service to
users. First, by demonstrating that intrusion survivability is a viable
approach for commodity OSs. Second, by developing a hardware-
based approach that detects attacks at the firmware level.

More precisely, in this dissertation, we introduce and validate the
two following claims:

Claim 1. OSs can survive intrusions by restoring the infected services
to a previous state and by temporarily leveraging a degraded mode
with fine-grained cost-sensitive responses while waiting for more
long-term fixes.

Claim 2. Attacks targeting highly-privileged low-level components
at runtime, such as the BIOS, can be detected by using an event-
based and co-processor-based behavior monitoring approach without
degrading the user experience of the platform.

Hardware

Firmware

Operating System

ApplicationsPrivileges

More

Less

Abstraction layer of claim 1

Abstraction layer of claim 2

Not covered

Figure 1.3: Computer abstrac-
tion layers covered in this dis-
sertation

Each claim focuses on different abstraction layers. As illustrated
in Figure 1.3, the former focuses on the OS and applications layers,
while the latter focuses on detecting intrusions at the firmware layer.
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9 The initial idea was presented
at RESSI’18 [59], then the final

work was published and
presented at ACSAC’19 [58].

10 This work was published and
presented at ACSAC’17 [60].

1.3 evaluation approach

In this work, we proposed new approaches and architectures to tackle
the aforementioned challenges. We took into account real-world con-
straints, and we relied on realistic use cases to drive our design choices.

In addition, we evaluated our solutions and validated our claims
by developing proof-of-concept and prototype implementations that
required significant development efforts. This work has thus a strong
experimental focus.

For each claim, we evaluated both the security of the solution against
real-world attacks and its performance (e.g., runtime overhead or
storage space overhead) using real-world and synthetic benchmarks.
Each time, we described our experimental setup, how we measured
the performance overhead, and how we validated that our solution
was successful.

Finally, we also discussed some limitations (or threats to validity)
that our implementations and evaluations have, and how we addressed
them. It allows us to reason about the level of confidence we have in
the results and how they can be generalized.

1.4 outline

This dissertation contains four parts: a prologue, two independent
main parts with our contributions, and an epilogue. Part I, the pro-
logue, contains this introduction, Chapter 2, which provides an over-
view and general background on the various components involved in
the boot process with a security perspective, and Chapter 3, a chapter
on state-of-the-art intrusion detection, intrusion recovery, and intru-
sion response, focusing on our use cases (i.e., host-based approaches,
low-level components, and commodity OSs). As mentioned previ-
ously, the two claims, introduced in this dissertation, target different
abstraction layers. Hence, we split the rest of the dissertation in two
main independent parts. Part II describes our first main contribution
that about how to design an OS able to survive intrusions.9 Part III
describes our second main contribution about how to detect intrusions
in runtime firmware.10 Finally, Part IV, the epilogue, summarizes our
contributions and provides some perspectives for future work.
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11 It means there is no stack
available so no higher-level
languages, such as C, can be
used.

12 The PCH exists since the Intel
Nehalem architecture (2008).
Previously, Intel processors were
connected with multiple chips
often referred as north and south
bridge. Nowadays, the
northbridge is integrated into the
processor, and the processor is
connected to the PCH that
handles the southbridge’s
features [261].

B A C K G R O U N D : F R O M X 8 6 P O W E R - O N T O L O G I N
P R O M P T

In this chapter, we describe with a security perspective what happens
from the moment you press the power up button of your computer
until the OS can launch basic services—such as a login prompt. We
do not describe necessarily in detail these steps, but we provide
the required background to understand the subsequent parts of this
dissertation. While our focus is on x86 platforms, the general ideas
are similar to other platforms—such as ARM.

The rest of this chapter is structured as follows. First, we provide
the various steps of the initialization of the platform performed by
the BIOS, why such steps are required, their complexity, and most
importantly how we can and why we must guarantee security proper-
ties from the start (Section 2.1). We also mention various attacks and
vulnerabilities against some runtime BIOS code. Such a background
is important to understand the context and the models we use in the
work described in Part III, and the reasoning behind our contributions.
Second, we describe the key components of an OS and the various
isolation primitives that one can use to enforce security policies on
services or applications (Section 2.2). This section is important to
understand Part II.

2.1 bios and uefi-compliant boot firmware

After the power button has been pressed, the motherboard waits for
a signal—known as the power good signal—that the power supply
has stabilized its voltage output before allowing the main processor
(CPU) to start executing. The initial state of the CPU and the platform,
however, is limited. For example, the CPU has no cache enabled, the
Memory Management Unit (MMU) is disabled, the system memory
(RAM) is not initialized11 and cannot be used, the CPU is in a special
legacy 16-bit mode known as the unreal mode, and only one core—also
known as the Bootstrap Processor (BSP)—is active [218].

2.1.1 Platform Initialization

The goal of boot firmware, such as the BIOS, is to initialize the hard-
ware (e.g., CPU or RAM) before any subsequent software can take
over (e.g., an OS). The BIOS code is stored inside a small flash (e.g.,
16 MB or 32 MB) on the motherboard. The flash is connected to the
Platform Controller Hub (PCH)12 which is connected to the CPU—as

9
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13 Now it is possible to use C
code.

14 While summarized in one line,
such an initialization is a

complex process to implement
which is often described in

documents of hundreds of pages.

illustrated in Figure 2.1. When the CPU starts executing, it fetches
code at a hard-coded physical address (0xFFFFFFF0 also known as the
reset vector). This address is mapped to the BIOS flash, meaning that
when the CPU fetches code at this address it retrieves code from the
BIOS flash.

Main
Processor

Platform
Controller

Hub

Display
System

Memory

USB

Audio

Network

SATA

M.2

PCI Express

BIOS
Flash

Figure 2.1: Simplified diagram of a recent Intel x86 architecture [270]

Since fetching code and data from the flash is slow, the goal of the
initial BIOS code is to set up as soon as possible the RAM [218]:

1. Switch from 16-bit unreal mode to flat protected mode.

2. Apply processor microcode update.

3. Set the CPU cache as a RAM to set up a stack.13

4. Initialize the PCH.14

5. Initialize and test the RAM.14

6. Copy the BIOS flash content into the RAM.

7. Set up the stack in RAM and disable the previous cache-as-RAM
mechanism.

8. Jump to BIOS code now stored in RAM.

This enumeration is only the early initialization phase. The BIOS
code still needs to initialize interrupt controllers, interrupt tables,
timers, real time clock, to discover and initialize other cores—also
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15 Based on the initial work of
Intel, 11 industry vendors (e.g.,
Intel, HP, and Apple) formed the
UEFI Forum in 2005 that is
responsible for the
standardization of the UEFI and
UEFI PI specifications [298,
Chapter 1].

known as Application Processors (APs). Moreover, it needs to discover
Peripheral Component Interconnect (PCI) compliant devices and to
assign them resources (e.g., memory space or interrupt request reg-
isters). For example, the various components connected to the left or
the right of the PCH on Figure 2.1 are PCI compliant devices.

In our context, one important aspect of the initialization is the setup
of runtime firmware code. It will be used to handle critical services
when the OS is running. We will go into more details about such
runtime firmware code in Section 2.1.4.

After the initialization, discovery, and configuration phases, the
BIOS needs to select and hand-off the control to a boot loader or an
OS. Legacy BIOSs rely on the Master Boot Record (MBR)—a 512-byte
data structure at the beginning of hard drives. It contains a partition
table and a bootstrap code used to execute the next phase.

Recent BIOSs follow the Unified Extensible Firmware Interface
(UEFI) and the UEFI Platform Initialization (PI) specifications [271,
272, 298].15 The former allows OSs or boot loaders to use standard
interfaces to communicate with the BIOS, while the latter helps the
various firmware vendors involved in the implementation of a BIOS
to have implementations that follow standard interfaces between the
different boot phases. The phases, illustrated in Figure 2.2, are the
following:

1. The Security (SEC) phase contains the early initialization that,
among other things, switches from real mode to protected mode,
initializes the memory space to run stack-based C code, and
discovers, verifies, and executes the next phase.

2. The Pre-EFI Initialization (PEI) phase initializes permanent mem-
ory, handles the different states of the system (e.g., recovery after
suspending), and executes the next phase.

3. The Driver Execution Environment (DXE) phase contains most of
the platform initialization, since it initializes the chipset, discov-
ers and executes drivers which initialize platform components.

4. The Boot Device Selection (BDS) phase chooses the device (e.g.,
a hard drive) to boot from and executes its boot loader.

5. The Transient System Load (TLS) phase executes the boot loader
from the OS or handles special UEFI applications.

6. The Runtime (RT) phase is when the OS is executing, but there
are still runtime services available to communicate with the OS.

7. The After Life (AL) phase takes control back over the OS when
it has shutdown, crashed, or it is hibernating.

In this dissertation, we use the term BIOS as an inclusive way to
mean both legacy BIOSs and UEFI-compliant firmware. We only use
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Figure 2.2: UEFI PI phases and the UEFI interfaces exposed during the boot
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16 See Section 1.1.3.

17 For example, recent BIOSs
have a network stack with

support to boot from a remote
image over HTTP [278] and have
a Bluetooth stack [182] to be able
to use devices such as a wireless

mouse.

18 In theory we could verify each
components individually, but in

practice for performance reasons
a set of components are verified.

specifically the former term when we talk about boot firmware that do
not follow UEFI specifications, and the latter term for when we want
to specifically talk about firmware that follow these specifications.

2.1.2 Boot Time Security Mechanisms

As mentioned in the introduction,16 due to its early execution and
its direct access to the hardware, the BIOS is considered a highly
privileged software. It has access to and can configure almost all
pieces of hardware and software on the platform, and it is responsible
for the execution of the next component in the boot sequence (e.g., an
OS). Hence, if we want to trust that the various components of the
platform, the OS, and the applications behave as expected, one must
first have guarantees that the BIOS does as well.

The UEFI specifications increased the extensibility and the interop-
erability of firmware implementations, allowing multiple vendors to
contribute to various drivers and parts of a BIOS. Unfortunately, it
also increased the attack surface of the BIOS with more components
exposed through various interfaces and a more complex code base
due to its various features.17 Moreover, some drivers or other soft-
ware components might be coming from various vendors following
potentially different practices in terms of software development and
security. Finally, the platform manufacturer must also trust that the
code in its platform is provided by the legitimate vendors and has not
been compromised.

To guarantee the integrity of the platform software, various solutions
(that can be combined) have been proposed and implemented. We
illustrated them in Figure 2.3 and categorized them in the following
list:

cryptographically signed updates The BIOS verifies that the
update (UEFI Capsule) is cryptographically signed ( ) by the
legitimate vendor before applying it [68, 225].

verified boot Each component of the boot sequence verifies ( )
that the subsequent ones are cryptographically signed by the
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19 BitLocker—Microsoft’s drive
encryption solution—relies on
such guarantees. It stores the
decryption keys within the TPM
and the TPM only releases them
if the platform has the expected
state based on the measurements.

20 HP Sure Start [130] and Intel
Boot Guard [230] are two existing
implementations of this
component.

legitimate vendor before executing it.18 For example, UEFI Se-
cure Boot [272, section 32] has been designed to ensure that
UEFI-compliant firmware only executes trusted OSs or boot
loaders.

measured boot Each component of the boot sequence takes cryp-
tographic measurements (hashes) of the next ones ( ) and
records them ( ) into a Trusted Platform Module (TPM) [268]
chip—a passive tamper-resistant cryptographic co-processor. It
allows the platform to prove to other services19 its configuration
and which components were executed.

immutable core root of trust The core trust of the various so-
lutions exposed relies on the integrity of the first component
executed that performs these checks or measurements—also
called the Static Core Root of Trust for Measurement (SCRTM).
This component must be immutable and hardware protected to
ensure its integrity.20

These various mechanisms can give us strong guarantees in terms
of boot time security. Having described these mechanisms and why
they are needed, we know discuss the phase that is less known about
the BIOS which is its runtime part, and its security.

2.1.3 Runtime Services

UEFI-compliant firmware provides runtime services with standard
interfaces that may be used by other software executed in the UEFI
environment (e.g., an OS) [298, Chapter 5]. The services are exposed
via the UEFI Runtime Services Table [272, Section 4.5] that contains
pointers to the associated functions that the OS can call. These services
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21 x86 processors have 6

operating modes: unreal mode,
real mode, protected mode,

virtual 8086 mode, long mode,
and SMM.

22 Our focus is on Intel x86

platforms, but ARM platforms
provide a TEE—known as the

ARM TrustZone secure
world [13]—that offers a similar

environment than SMM.

are OS-independent and platform-specific. We differentiate two types
of runtime services: normal and privileged.

normal runtime services We call these services normal, be-
cause they have the same privileges as the kernel of the OS: they are
executed on the same privilege level (ring 0) and on the same operat-
ing mode. It means that in terms of security, if an attacker managed
to compromise the OS, it can also compromise these services. Here is
a non-exhaustive list of these runtime services:

• set the system wake up alarm clock time;

• reset the system;

• get or set non-secure variables that are passed between OSs, boot
loaders, or other UEFI applications on the platform.

privileged runtime services To handle critical services, the
BIOS exposes runtime services that can transition into a more priv-
ileged and restricted environment. This environment is more privi-
leged, because in addition to being in ring 0, it is also in a specific
operating mode of the CPU called the System Management Mode
(SMM) [139].

2.1.4 System Management Mode

SMM is a highly privileged operating mode of x86 processors.21 It is
not intended for general-purpose software, but only for the firmware.
It provides the ability to implement critical OS-independent and
platform-specific functions [139, 291]. Here is a non-exhaustive list of
such functions:

• shutdown the system if it is in a danger of overheating;

• protect the access to the BIOS flash;

• BIOS update;

• get or set UEFI secure boot variables.

The peculiarity of the SMM is that it provides a separate execution
environment, invisible to the OS—similar to a Trusted Execution
Environment (TEE).22 In terms of security for the platform, only the
code executed in SMM can modify the firmware stored into flash to
prevent any unintentional modifications by the OS, and in particular, to
prevent malware—executing with kernel privileges—from overwriting
the firmware and becoming persistent.
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23 In UEFI-compliant firmware,
the SMM is usually set up and
locked early during DXE
phase—prior to any third-party
code execution such as option
ROMs.

24 For example, writing a byte to
the port 0xB2—also known as
APM_CNT—will trigger an
SMI [132].

system management ram The code and data used in SMM
are stored in a hardware-protected memory region only accessible in
SMM, as illustrated in Figure 2.4, called System Management RAM
(SMRAM). Access to the SMRAM depends on the configuration of the
memory controller, done by the BIOS during the boot process. Once all
the necessary code and data have been loaded in SMRAM by the BIOS,
the firmware locks the memory region23 by setting the D_OPEN bit to 0
and D_LCK bit to 1—both from the System Management RAM Control
(SMRAMC) register. When protected, or locked, the SMRAM can only
be accessed by code running in SMM, thus preventing an OS from
accessing it and even preventing any Direct Memory Access (DMA)
from other components of the platform. The memory controller can
determine if a memory access is done in SMM thanks to the SMIACT#

signal asserted by the processor.
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Figure 2.4: SMM execution flow and SMRAM memory layout
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1 Execution Flow

system management interrupts SMM is entered by generat-
ing a System Management Interrupt (SMI), as illustrated in Figure 2.4,
which is a hardware interrupt. Software can also make the hardware
trigger an SMI.24 The BIOS sets up the SMRAM with code that pro-
cesses the SMIs—also known as SMI handlers. The particularity of an
SMI is that it makes all the CPU cores enter SMM. It is non-maskable
and non-reentrant (i.e., when a handler processes an SMI it cannot
handle other SMIs). In terms of security, SMI handlers are the main
attack surface, since they can process attacker’s-controlled data.

save state area and smbase Upon entry to SMM, after receiv-
ing an SMI, the CPU saves its state (i.e., registers and special data
related to SMM) into a dedicated part of the SMRAM called the save
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25 Since each CPU core might
have a different state, the BIOS

set up the SMBASE of each core
so that their save state area does
not overlap with the others, thus
having their own dedicated save

state area and their own
SMBASE.

state area. When the CPU executes the rsm instruction, it exits the SMM
and restores its state from this area. The save state area contains the
value of various CPU registers. For example, an important CPU regis-
ter in terms of security, the SMBASE, determines the entry point of
an SMI in memory (SMBASE + 8000h).25 SMBASE has a default value
(3000h) and if the BIOS wants to relocate the SMRAM, it can modify
the SMBASE value in the save state area while in SMM. When exit-
ing, the processor will store the new value of the SMBASE and upon
processing the next SMI, it will use this new value.

smm performance considerations Any time spent in SMM is
time not available to the OS since it is paused. Therefore, for example,
during that time it cannot process interrupts, network packets, audio
streams, or run any task in general. Hence, SMIs must be processed as
fast as possible to reduce the time the OS has to wait. The Intel BIOS
Test Suite (BITS) defined the maximum acceptable latency of an SMI
to 150 µs [135]. Delgado and Karavanic [88] showed that, when the
latency exceeds this threshold, it causes a degradation of performance
(e.g., I/O throughput or CPU time) or user experience (e.g., severe
drop in frame rates in game engines).

2.1.5 Attacks Against the SMM

As explained in Section 2.1.4, SMM is one of the most privileged
operating mode of x86 processors. It is the ideal target for attackers
that want to control the OS without being detected, to tamper with
the content of the flash containing the BIOS (e.g., for persistence), or
in general to bypass various security mechanisms on the platform due
to its unrestricted access.

To the best of our knowledge, Duflot et al. [97, 98] in 2006 were
the first to consider the SMM as a way to circumvent OS security
mechanisms. This idea motivated them to look at how one could have
arbitrary code execution in SMM (e.g., how an attacker could inject
code in SMRAM and then trigger an SMI to execute that code).

Their initial work, however, assumed that the platform was mis-
configured, and that the D_LCK bit from the SMRAMC register—that
determines if the configuration of the SMRAM is locked—was set
to 0. It allowed them to set the D_OPEN bit to 1, thus allowing the
modification of the SMRAM content from code not executing in SMM.
In practice, if D_LCK is correctly set by the BIOS “there is no way to
access SMRAM while in protected mode” [97].

Three years later two research teams [99, 283], including Duflot
et al., independently discovered an attack that gave arbitrary code
execution in SMM despite the D_LCK bit set to 1. Thus, contradicting
the initial assumption that the D_LCK bit was sufficient to protect the
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26 While initially thought as
hypothetical, recent
discoveries—such as the
exploitation of SMM
vulnerabilities by
APT28 [226]—show that attackers
targeting the SMM and the BIOS
are a real threat nowadays.
27 See Section 2.1.2.

28 One has to set the
SMM_Code_Chk_En register to
1 [138].

SMRAM. Since then, additional attacks and vulnerabilities [23, 33, 64,
99, 100, 211, 212, 223, 282–284] were publicly disclosed.26

We now provide a summary of the main vulnerabilities that were
discovered, how to exploit them, and we describe the existing counter-
measures. We only focus on those vulnerabilities that can be exploited
to take control of the SMM at runtime, since our work focuses in that
area and existing boot time integrity solutions27 try to address the
other attacks. For example, we do not discuss attacks that exploit a
vulnerability—involving the SMM—to overwrite the BIOS flash [146],
that require a reboot or to resume from sleep mode (S3 resume) [282].

smram cache poisoning attack Two research teams [99, 283]
independently discovered cache poisoning attacks in SMM. Since the
cache is shared between all the operating modes of the CPU, the at-
tack consists in marking the SMRAM region to be cacheable with a
write-back strategy. Then, the attacker stores in the cache malicious
instructions. After that, once an SMI is triggered, the processor fetches
the instructions from the cache. Thus, the processor executes the mali-
cious instructions of the attacker instead of the legitimate code stored
in SMRAM. The solution proposed by Intel was to modify the behavior
of the cache depending on whether the CPU is in SMM or not. They
introduced a new special-purpose register called System Management
Range Register (SMRR). This register can only be modified in SMM, it
specifies the SMRAM range, and it decides the cache strategy of the
SMRAM. If the processor is not in SMM, it considers the SMRAM as
uncacheable, it ignores the write accesses, and it returns a fixed value
for read accesses. Recent platforms deploying this solution should not
be vulnerable to this attack anymore.

insecure call outside of smram Multiple BIOS implemen-
tations [64, 284] provided SMM code that calls (or jumps to) code
segments outside of the SMRAM. An attacker with kernel-level priv-
ileges can easily modify this code, thus providing the attacker with
arbitrary code execution in SMM. These vulnerabilities have been fixed
by forbidding the processor to execute instructions located outside of
the SMRAM while in SMM.28 If such a case happens, a machine-check
exception—an unrecoverable error—is triggered.

insecure indirect call pointer handling Other vulnera-
bilities due to indirect calls [212, 284] (i.e., a call to a function where
the address of the function is known at runtime) allow attackers to
perform code-reuse attacks against the SMM code. In 2009, Wojtczuk
and Tereshkin [284] discovered that some SMI handlers perform an
indirect call with the function address stored in a memory region
outside of the SMRAM. It allows an attacker with kernel-level privi-
leges to run arbitrary code by modifying the value of the pointer to
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a location controlled by the attacker. Oleksiuk [212] found a similar
vulnerability in 2016 with a more recent platform where the pointer of
an indirect call was inside a data structure controlled by the attacker.

In general, such attacks are usually prevented by patching these
vulnerabilities. However, recent vulnerabilities might not have been
discovered yet, or the patches might take some time to be applied by
the users.

insecure pointer handling : arbitrary read and write

Some SMI handlers rely on data provided by the OS (i.e., controlled
by the attacker). If they do not sanitize such data, the attacker can
influence the behavior of the SMM.

For example, pointer vulnerabilities in an SMI handler can lead to
arbitrary write into SMRAM [23, 211, 223]. It can occur because the
SMI handler writes data into a buffer located at an address controlled
by the attacker. For example, such an address can be provided thanks
to a register that could have been modified by the attacker. Bulygin et
al. [33] demonstrated a similar attack by modifying the Base Address
Registers (BARs) used to communicate with PCI devices. Such an
attack can be used to modify the SMBASE value stored in the save
state area of the SMRAM. Upon entry of the next SMI, the attacker has
control over the SMM. Similarly, SMI handlers can have vulnerabilities
giving arbitrary read into SMRAM to the attacker.

It is the responsibility of SMI handlers to verify that the data given
or controlled by the OS is valid. For example, they should check
that the address of the communication buffer is not pointing into the
SMRAM, and that the BARs point to valid addresses (i.e., not in RAM
or SMRAM). Hence, since the BIOS developers bear this responsibility,
recent platforms might be vulnerable to such vulnerabilities. Either
because the developers forgot or were not aware of the need to sanitize
the pointers.
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SMRAM writable while not in SMM Set the D_OPEN bit to 0 and the D_LCK bit to 1 ● ❍

SMRAM cache poisoning attack [99, 283] Configure the SMRR [139] ● ❍

Insecure call outside of SMRAM [64, 284] Set the SMM_Code_Chk_En bit to 1 [138] ● ❍

Insecure indirect call pointer handling [212, 284] Validate pointers ❍ ●

Insecure pointer handling: arbitrary write [23, 211, 223] Validate pointers ❍ ●

Insecure pointer handling: arbitrary read [23] Validate pointers ❍ ●

Table 2.1: Summary of the main attacks targeting and vulnerabilities affecting the SMM with their countermeasures
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29 Tools such as chipsec [61] can
be used to detect misconfigured
platforms. Moreover, there is
work on using formal methods to
detect, at design-time,
inconsistencies in hardware
specifications that can help to
bypass security mechanisms of
the SMM [173] (e.g., SMRAM
cache poisoning attacks).

30 Other more specialized or
related kernel architectures exist,
such as unikernels or hybrid
kernels, but their isolation is
similar to the ones presented
here.

31 The terms user space (or
userland) and kernel space are
commonly used to refer to
memory areas, such as code,
reserved respectively for user
mode or kernel mode.

concluding remarks When looking at the vulnerabilities and
their related countermeasures, summarized in Table 2.1, we noticed
that there are two main types: those that require a correct configuration
of the platform and those that require a constant discipline from the
developer to not introduce the vulnerability (e.g., by following coding
practices or by using analysis tools). The former only needs to be
found and fixed once for the BIOS.29 The latter, however, is due to
how lax the C language is. While secure coding practices and static
or dynamic analysis of the code can reduce the number of memory
corruption bugs, they can still be introduced. It requires constant
discipline from the developers, analyzing and testing of the code.

2.2 operating systems

After initializing the platform, the BIOS lets an OS take over or ex-
ecutes a boot loader that subsequently executes an OS. The goal of
the OS is to manage the resources of the computer to allocate them to
various tasks or applications. The OS provides a set of functions that
are used by these tasks to access and use the resources. In terms of
security, the main goal of the OS is to isolate the tasks from each other
and to ensure that the tasks respect certain security policies (e.g., the
OS handles the access control for the file system).

2.2.1 Kernel

The most well-known component of an OS is its core component:
the kernel. It provides all the basic code to control the hardware and
the resources. For example, it is responsible for the management of
the address space and the scheduling of the processes that share the
CPU time. Depending on its type, however, the size of the kernel, its
functions, and its complexity can vary.

We differentiate three common main types, as illustrated in Fig-
ure 2.5, depending on the security domains they provide: no isolation,
monolithic kernel, microkernel.30

no isolation There is no isolation between the kernel and the
applications. If an attacker compromised an application, it can
also infect the rest of the OS without difficulty. Such a design is
used for some embedded and resource constrained systems.

monolithic kernel The kernel comprises most of the OS compo-
nents, but it is isolated from the applications. The applications
are executed in a lower privilege level—called user mode (ring
3)—while the kernel is executed in a higher privilege level—
called kernel mode (ring 0).31 The applications are also isolated
from the others by the kernel. It means that it is more difficult
for attackers to compromise the OS, but this architecture is still
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32 Unfortunately, experience
shows us that most of the kernel

vulnerabilities originate from
device drivers (third-party

code) [48].

33 Some OSs (e.g., Windows or
Mac OS X) are based on a hybrid

kernel that attempts to share
aspects of both a monolithic and

a microkernel, but in terms of
security most drivers are still

executed in kernel mode.

34 In practice, programs rarely
directly use the system calls, but

they rely on a library that
provides wrapper functions for

the system calls (e.g., glibc on
Linux).

efficient in terms of performance. If an attacker compromises
any of the kernel components (e.g., device drivers), however, the
rest of the kernel is compromised as well.32

microkernel The kernel only comprises the minimum require-
ments to schedule tasks, to isolate them, and for them to perform
Inter-Process Communication (IPC). The drivers, however, are
executed in user mode [256]. Due to such a design, if a driver is
compromised it does not directly lead to a complete compromise
of the OS. While the increased isolation of the OS components
helps in terms of security, it incurs an overhead due to each
component needing to perform IPC when interacting with other
components.
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Figure 2.5: Difference of isolation between main kernel types

While there are still debates in the community regarding which ar-
chitecture should be preferred, current commodity OSs that dominate
the market share (e.g., Android, Linux, or Windows) are based on a
monolithic kernel.33 Hence, in this dissertation, and most importantly
in Part II, we assume that the OS follows this design.

When the kernel initializes itself, it sets up the various structures it
needs to manage the memory and the tasks, it sets up the interrupt
handlers, and it loads drivers needed to control various hardware
components on the platform (e.g., a Wi-Fi adapter or a webcam).

The kernel also sets up a communication interface between the
user mode and the kernel mode—known as system calls—so that the
processes executed in user mode can perform privileged operations.
Modern OSs configure the platform so that programs executing in user
mode cannot interact directly with the hardware (e.g., to write files
on storage devices or to use network devices), only code executing in
kernel mode can. Such an interface ensure that programs use a safe
implementation to communicate with the hardware.34 Moreover, in
terms of security, it allows the kernel to implement security policies
by checking that the calling process has the right to perform such an
action.
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35 On Intel x86 processors, the
instructions int 80h or, more
recently, sysenter can be
executed to trigger such an
interrupt [137].

36 This process is therefore a
highly privileged process of the
OS since it is executed early and
can configure the privileges of
the other processes.

System calls are initiated by interrupts35 that puts the CPU in ring
0 and passes the execution control to the kernel. The kernel then
executes the appropriate system call handler that exits by executing
an instruction that puts back the CPU in ring 3 before returning the
control to the calling program.

2.2.2 User Space Initialization, Service Manager, Login

After the kernel initialized, it launches one process that is responsi-
ble for the initialization of the user space. This process creates the
environment expected by the user mode processes (e.g., it mounts
file systems or starts system services) and can start multiple initial-
ization processes.36 On Windows, the first user mode process is the
Session Manager Subsystem (smss.exe) which then starts subsequent
processes such as the Windows Initialization Process (wininit.exe)
and the Service Control Manager (SCM) (services.exe) [231, Chapter
13]. On Linux, the initialization process—also known as init or PID
1—depends on the distribution.

An important component of an OS is its service manager that is
started during the initialization phase of the user space. On Windows,
it is the SCM that is responsible for starting services, some device
drivers, and interacting with their processes. On Linux, at the time
of writing, major distributions rely on systemd [253]—a system and
service manager—to act as their initialization process, and to start and
maintain their user space services.

Finally, the login components are initialized (winlogon.exe on Win-
dows and systemd-logind on many Linux distributions). At the end
of the system startup, the login prompt appears (e.g., logonui.exe for
Windows, and getty or GDM for Linux distributions).

2.2.3 Isolation Primitives: The Case of the Linux Kernel

Without support from the kernel and the OS in general, applications
would share the same global state (i.e., they would share the same
memory space, and they would all have access to the same data on
the storage devices). In terms of security, however, it means that if
a process is compromised, the attacker also has access to this same
global state.

The principle of least privilege states that: “Every program and
every user of the system should operate using the least set of privileges
necessary to complete the job.” [233, p. 1282] The reasoning is that the
less privileges a program has, the less likely it is to compromise the
system stability or security.

Even if determining the least set of privileges is a difficult and
error-prone process, this principle of least privilege is what drives the
development and adoption of many security features provided by OSs.
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37 On Linux, one can implement
a MAC policy using e.g.,

SELinux [210] or AppArmor [40].

38 As a more thorough overview
and analysis on OS security
designs, principles, models,

isolation primitives, or
hardening, we recommend the

report from Bos [30].

39 In addition to applying
resource constraints on services,

systemd also relies on cgroups to
keep track of the processes they

create.

40 Inspired from the namespaces
feature in the Plan 9 [221]

distributed OS.

41 Capabilities and
capability-based system were

formalized by Dennis and
Van Horn [91] in 1966. Linux,
however, does not implement
their model, and the naming

"capabilities" should not be
confused with their

capability-based system, since
Linux capabilities do not have

the notion of objects.

42 For instance, kernel
vulnerabilities are often exploited

by using specific system calls.
Either because the vulnerability

is in a system call [69, 80] or
because some system calls are

needed to set up the exploit [79,
82].

Among the common features are the memory address space isolation
between processes (by configuring the MMU), access control lists—
such as Mandatory Access Control (MAC)37 or Discretionary Access
Control (DAC)—or privilege levels.38 Modern OSs also offer more
advanced primitives to isolate a process, reduce its set of privileges or
its quotas to access some resources. Here, we focus on Linux-based
systems as a use case, and we give a non-exhaustive list of such
primitives.

control groups A control group [125], or cgroup, is a hierarchical
set of processes bound to a set of limits, quotas, or parameters,
affecting the availability of system resources (e.g., CPU or mem-
ory).39 For instance, one can limit the memory usage of a set of
processes to 200 MB. It is also possible to freeze the processes of
a cgroup (i.e., to remove them from the scheduling queue).

namespaces Linux has the notion of namespaces [149] where sys-
tem resources can be seen differently by processes depending
on the namespace they belong to.40 Hence, one can isolate the
access to some resources by creating a namespace in that re-
gard. Linux has namespaces for the mount points (file system),
process identifiers, network, IPC, user identifiers, cgroups, and
the system identifiers (hostname). For example, one can make
a process see the /home directory (normally containing the user
files) as empty by creating a new mount namespace and binding
/home on an empty directory. The other processes, however, all
see the normal /home directory.

capabilities Linux can divide the privileges of the superuser (or
root) in multiple distinct chunks called capabilities—also known
as POSIX capabilities [236].41 In particular, with ambient capabil-
ities, a process can retain only the specific capabilities it needs
(e.g., clock synchronization services would require CAP_SYS_TIME

to set the system clock) while being a non-privileged user (not
root). Such POSIX capabilities, however, are limited [148] since
some of them (e.g., CAP_SYS_ADMIN) are coarse-grained and some
can even lead to gaining back full root privileges using multiple
transitions [251].

system call filters Linux offers the ability to filter the system
calls made by processes with seccomp [104]. Whether it is a
blacklist or whitelist filtering policy, the process that does not
follow the policy can be terminated or the system call can return
an error. Filtering system calls reduces the overall privileges of
a process and it also reduces the attack surface of the kernel
for attackers that try to exploit kernel vulnerabilities to escalate
privileges and bypass kernel restrictions.42 For example, we can
use this feature to block a system call (e.g., socket), a system
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44 Docker, however, did not
initially use these features for
security, but to easily package
and ship applications.

45 See Section 1.1.1.

46 If you need more information
about how attackers can exploit
memory corruption bugs, we
recommend the study from
Szekeres et al. [254] (in addition
to the papers that they reference).

47 In practice, it is not binary but
more a spectrum of services that
restrict to a certain extent their
privileges.

call with specific parameters (e.g., socket with the AF_PACKET

domain), or a set of system calls.

network packet filters Instead of entirely disabling access to
the network (with a network namespace) of a process, Linux also
provides the ability to filter network packets per-process [111].
It thus differs from a system-wide firewall that would apply
rules for the whole system. These filters can be attached to a
cgroup in order to affect a set of processes. For example, one can
whitelist the port 80 and 443 for the processes of an HTTP server,
or whitelist the IP addresses used by a clock synchronization
service.

Nowadays, services can be configured with the principle of least
privilege in mind by using these features, thus reducing the impact of
an intrusion. For example, systemd relies on some of those solutions
to allow administrators or developers to set the least set of privileges
required to run their services [92].43

43 Unfortunately, at the moment,
only a small set of these options
are used in practice by
developers and administrators.Similarly, Docker—a service used

to manage containers—also uses some of them to implement their
technology [209] that can host single services.44

Finally, while we focused on Linux, other OSs can provide similar
primitives. For example, on Windows, one could use the Integrity
Mechanism [196], Restricted Tokens [195], or the Job Objects [193].

2.2.4 Limitations of OS Security Principles

As argued in the introduction,45 we should assume that given time, an
intrusion will occur. There are various technical reasons why an intru-
sion can occur. For instance, it might be a memory corruption bug46

(e.g., a use-after-free or an integer overflow) or a misconfiguration (e.g.,
a known default password has not been changed). Memory protec-
tions (e.g., read-only code using the MMU), hardening or mitigation
features (e.g., stack canaries or address space layout randomization),
safer programming languages (e.g., Rust or Java), or access controls,
help to reduce the number of successful attacks on OSs and their
services, but eventually a vulnerability is found. Therefore, we should
assume that services (e.g., an HTTP server, a clock synchronization
service, or a database) will get compromised.

When a service gets compromised, we have two possible cases.
First, if the service has not been configured with the principle of
least privilege in mind—thus having unnecessarily highly privileged
components—attackers can exploit the privileges of the service to
further compromise the rest of the system, or simply achieve their
goal (e.g., compromise data availability or data theft). Second, if the
service has been fully configured with the principle of least privilege
in mind,47 the attackers would still be able to exploit the privileges
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left to the service. For example, if a service has access to some files,
the attacker also has access to them, and can steal or corrupt them.

In both cases, it shows the limitation of relying only on the isolation
of a service to withstand an intrusion. In Part II, we describe one of
our contributions that addresses this issue by allowing a compromised
service to survive an intrusion. We first restore the compromised ser-
vice to a previous state that we assume safe, then we apply responses
that prevent attackers from achieving their goals—a fact that is often
not possible with the initial preventive isolation since it must maintain
the privileges needed by the service.

2.3 conclusion

In this chapter, we described the software components involved during
the boot process with a security perspective. First, the BIOS that plays a
key role in initializing the platform. We also described the mechanisms
that ensure the integrity of the boot process and we discussed the
privileged runtime BIOS code running in SMM along with the threats
that it faces. In Part III, we use the services executed in SMM as a use
case, and we rely on the background described here to develop threat
models and build detection models.

Second, we described the OS that manages the resources and the
applications, and that enforces security policies on them. We described
succinctly the role of the user space initialization processes and of the
service manager. Moreover, we detailed the isolation primitives that
modern OSs provide by mentioning multiple features from the Linux
kernel. In Part II, we work at the OS and application abstraction layers
where we rely on the service manager and the isolation primitives
provided by the OS to orchestrate and implement our approach.

Finally, in both cases, we mentioned that we can expect to be com-
promised. Thus, with such an assumption, we should not focus on the
specific vulnerabilities that might be exploited, since we do not know
in advance their existence or which ones will be targeted. Instead,
we can rely on specific behaviors that are exhibited by an intrusion.
We can use the behaviors exhibited by the attacker when exploiting
a vulnerability to detect an intrusion. We can also use the malicious
behaviors exhibited by the intrusion to know how to respond and to
survive it. We will explain in Part II and Part III how we make use of
these behaviors to improve the detection capability and survivability
of the platform.

Before discussing our contributions, we end the first part of this
dissertation with a review of state-of-the-art solutions related to our
work.
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S TAT E O F T H E A RT: D E T E C T I O N A N D
S U RV I VA B I L I T Y„Progress was often achieved by a “criticism

from the past”

— Paul Feyerabend
Philosopher of science

The high-level goal of this work is to study how to improve the
resiliency of a computing platform at its various abstraction layers.
Preventive security mechanisms are not sufficient to ensure the security
of a system. In our work, we assume that the system is under attack
and that the attackers have either compromised the system or will.
The ability of computer systems to detect intrusions and to be resilient
against them, however, has been heavily studied since the 1980s.

In this chapter, we present the state of the art by first describing the
definitions and concepts related to our work. Second, we detail the
existing work on intrusion detection for low-level components (e.g.,
the kernel of an OS or the SMM code). Third, we review existing work
on intrusion recovery and intrusion response to help achieve intrusion
survivability for commodity OSs. Finally, we conclude on the gaps
that we identified in the literature, and we present what motivated
our contributions.

3.1 terms and concepts

In this section, we define terms that we use in this dissertation. Then,
we describe the concepts in which our work depends: intrusion detec-
tion and intrusion survivability.

3.1.1 Common Terms

While we assume that the reader is knowledgeable in the field of infor-
mation security, we use various terms related to this field throughout
this dissertation that can bring confusion: vulnerability, attack, intru-
sion, threat, or risk. We first give an overview of these terms and how
they are related. Then, we quote more standard definitions of these
terms from the Internet Engineering Task Force (IETF) [246].

A vulnerability is any weakness (e.g., a bug or a misconfiguration)
in a system that an attacker can exploit to violate a security policy.
When attackers attempt to exploit vulnerabilities, it is called an attack.
When attackers successfully compromise a system or violate a security

25
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policy, it is called an intrusion. A threat is any entity or event that has
the potential to exploit a vulnerability to inflict harm on any resources
(e.g., a computer or data) of the organization. Security mechanisms are
often designed to protect against certain threats, but not all. Finally,
a risk is the potential that a given threat compromise the system by
exploiting a vulnerability and inflicting harm on resources of the
organization. A risk is often expressed as the product of the likelihood
of occurrence of a particular threat times the severity of the impact if
it were to occur.

The IETF defined these terms in the RFC 4949 as follows:

vulnerability “A flaw or weakness in a system’s design, imple-
mentation, or operation and management that could be exploited
to violate the system’s security policy.” [246, p. 333]

attack “An intentional act by which an entity attempts to evade
security services and violate the security policy of a system. That
is, an actual assault on system security that derives from an
intelligent threat.” [246, p. 22]

threat “A potential for violation of security, which exists when
there is an entity, circumstance, capability, action, or event that
could cause harm.” [246, p. 304]

risk “An expectation of loss expressed as the probability that a
particular threat will exploit a particular vulnerability with a
particular harmful result.” [246, p. 251]

intrusion “A security event, or a combination of multiple security
events, that constitutes a security incident in which an intruder
gains, or attempts to gain, access to a system or system resource
without having authorization to do so.” [246, p. 165]

Except for the last definition (an intrusion), our definitions are
similar, and this manuscript assumes these definitions. In the case of
an intrusion, however, we do not consider “attempts to gain access” as
an intrusion, we only consider a successful compromise of a system as
an intrusion. Indeed, we use the word attack to refer to “attempts to
gain access” in order to differentiate both an attempt and a successful
compromise, since the impact of the latter is more important to the
security of the system than the former.

3.1.2 Intrusion Detection

In the information security field, intrusion detection dates back to
the 1980s with the work of Anderson [7] and Denning [90]. While
initially thought as a way to automatically detect intrusions on a
system based on audit trails, it evolved since then with many new
approaches proposed and studied.
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48 The first term "false" is about
the characterization of the IDS.
The IDS was wrong, it made a
false statement.

In general, intrusion detection refers to a set of techniques, or ap-
proaches, that monitors information systems in order to automatically
detects intrusions, or any malicious activity. An implementation of
an intrusion detection approach is referred as an Intrusion Detection
System (IDS).

In practice, many IDSs detect both attacks and intrusions. When
an IDS wrongly considers a legitimate event as an intrusion, we call
it a false positive.48 Likewise, if it detects an attack that was not
an actual intrusion, we call it a false positive. When it erroneously
considers a malicious activity as a legitimate one, we call it a false
negative. On the opposite side, we have the true positives that refer to
malicious behaviors that have been correctly categorized by the IDS as
intrusions. Finally, true negatives refer to legitimate events that have
been correctly categorized as normal by the IDS.

Based on the taxonomy from Debar et al. [86, 87], we can classify
an IDS depending on five characteristics:

detection method We can differentiate two types of IDSs based
on the method they use or the kind of model they use to de-
tect intrusions. First, knowledge-based IDSs—also known as
signature-based or misuse-based—rely on information or pat-
terns about attacks to detect their exploitation. Second, behavior-
based IDSs—also known as anomaly-based—do the opposite
by relying on a model of the expected legitimate behavior to
detect any discrepancy between the reference model and what
is observed.

behavior on detection An IDS can either be passive (it only
generates alerts) or active by responding to attacks or intrusions
(proactively or reactively).

detection paradigm An IDS can either analyze the states of a
system or the transitions between the states (events). State-based
IDSs analyze the current state of a system and determine whether
it is in a secure state, or a non-secure state (compromised).
Transition-based IDSs analyze the transitions and detect those
that lead to a non-secure state.

location Depending on where the probe—the source of the infor-
mation that the IDS relies on—is located, we can characterize
an IDS as either host-based or network-based. For example, a
network-based IDS could analyze network packets. An host-
based IDS, on the other hand, could analyze the behavior of an
application. In our work, we focus only on host-based IDSs.

usage frequency An IDS can either monitor continuously its tar-
get or it can run periodically checks or scans.

Even if this taxonomy originated in 1999 and 2000, its five high-
level characteristics are still relevant to classify today’s IDSs. We rely
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49 They mention overlapping
system engineering disciplines
such as resilience engineering,

intrusion-tolerant systems,
survivability, or self-healing

systems. The NIST and MITRE
publications and especially their
appendices [28, 229] summarize

well these disciplines and how
they overlap.

on some of these characteristics to discuss various related work in
subsequent sections.

Finally, IDSs are evaluated based on three measures:

accuracy The ability of the IDS to correctly generate an alert when
an intrusion occurred (true positive) and to not generate an alert
when no actual intrusion occurred (false positive).

completeness The ability of the IDS to generate alerts for all intru-
sions (true positives).

performance The rate at which the IDS process events or the time
to analyze a state.

For example, in general, knowledge-based IDSs have a high accuracy
since they have a precise model of attacks, while anything that deviate
from that model is considered legitimate. Their completeness, however,
depends on how up-to-date their models are. On the other hand, we
have behavior-based IDSs that usually have a high completeness, but a
lower accuracy. Their advantage is that they can detect new intrusions
or attacks, but one must build a reference model that limit the number
of false positives.

3.1.3 Intrusion Survivability and Related Concepts

Our contributions in Part II, and the idea behind this thesis in general,
are related to concepts such as security, dependability, resiliency, and
survivability. As a reference, we recommend the work of Avizienis
et al. [16] (“Basic Concepts and Taxonomy of Dependable and Secure
Computing”) that defined, compared, and summarized most of these
concepts. They describe in detail the various attributes related to these
concepts (e.g., reliability, integrity, or availability), the threats they face
(e.g., faults or errors), and how to achieve them (e.g., fault prevention
or fault tolerance).

The United States National Institute of Standards and Technology
(NIST) and MITRE Corporation also publish standards and guidelines
that list existing engineering techniques,49 approaches, procedures,
and provide frameworks to help organizations anticipate attacks,
withstand intrusions, recover from them, and adapt to the current
threat [229].

Here we give an overview of core concepts related to our work,
and how we interpret them for the rest of this dissertation. For more
details, the reader can consult the aforementioned references.

resiliency and dependability Laprie defined the concept of
resilience as “the persistence of dependability when facing changes”
[163], where dependability is “the ability of a system to avoid service
failures that are more frequent or more severe than is acceptable” [16].
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To achieve dependability, or other close concepts, four categories of
techniques exist [16]:

• fault prevention (e.g., design choices in software development),

• fault tolerance (e.g., error detection or recovery),

• fault removal (e.g., static or dynamic analysis),

• or fault forecasting (e.g., probabilistic evaluation with fault mod-
els).

intrusion tolerance The first problem exposed in the intro-
duction of this dissertation—that preventive security is not sufficient—
emerged from the concept of fault tolerance, and more specifically
intrusion tolerance (i.e., an intentional malicious fault). We should
assume that a system is vulnerable and that it will be compromised
at some point, therefore we should design systems that can tolerate
intrusions (to a certain extent). The goal of intrusion tolerance is to
continue to deliver service and to maintain security properties despite
intrusions. Intrusion survivability is related to this concept.

intrusion survivability Ellison et al. defined survivability as
“the capability of a system to fulfill its mission, in a timely manner,
in the presence of attacks, failures, or accidents” [105]. Avizienis
et al. [16] suggested that—based on this definition—dependability
and survivability were similar concepts. Knight et al. [158] weighed
that survivability distance itself from dependability, since it should
encompass the notion of degraded service, and a trade-off between
the availability of some functions and the cost to maintain and provide
them. Intuitively, Knight et al. defined survivability as the ability “to
provide one or more alternate services (different, less dependable,
or degraded) in a given operating environment” [158] essentially
providing “a trade-off between functionality and resources” [158].

In the rest of this dissertation, we assume that survivability refers
to such a degradation and trade-off. More specifically, since we care
about intrusion survivability, we consider the trade-off to be between
the availability of the different functionalities of a vulnerable service
and the security risk associated to maintaining them.

Moreover, the definition of survivability has always be applied
to networked systems or critical information systems. In our case,
however, we apply the concept of intrusion survivability to commodity
OSs (e.g., Linux-based distributions or Windows).

3.2 intrusion detection for low-level components

Building a sound and reliable IDS for low-level components raise three
main questions:
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50 Depending on the field (e.g.,
runtime monitoring, network

security, or system security), the
words monitor and IDS can refer

to the same concept. In the
hardware community, we

observed that the term monitor is
often used to refer to an IDS that

executes on a co-processor or
similar. In this document, we also

often use this term.
51 Anderson [6] described the

concept of a reference monitor
that observes software execution

at runtime. Schneider [234]
formalized the concept of

enforcing security policies by
monitoring system execution.

1. How to isolate?

It pertains to the approaches that we can use to isolate the
monitor from the component it is observing—its target.

2. How to monitor?

It relates to the approaches that we can use to gather information
about the behavior or the state of the target.

3. How to detect?

It refers to the methods that we can use to determine if an
intrusion occurred based on the information gathered.

The second and the third are respectively related to the detection
paradigm and the detection method of the taxonomy from Debar et al.
The first one, however, was not part of the taxonomy, but it is still an
important question to answer. For the rest of the taxonomy, while the
behavior on detection is an important aspect, our contribution related
to the detection of intrusions targeting the SMM services focused
only on the detection, hence in this section we only mention the
detection aspect of the approaches from the state of the art. Moreover,
as mentioned previously, since our goal is to monitor the SMM, our
work only relates to host-based IDSs.

3.2.1 Isolation of the Monitor

In this document, we use the term monitor50 to refer to the compo-
nent of an IDS that observes the target and from this observation
determines if an intrusion occurred.51 The integrity of the monitor is
crucial, because it is a trusted component that we rely on to detect
the intrusions. The monitor could also be used to start remediation
strategies. If the attacker compromises the monitor, we cannot trust
the detection nor the remediation anymore. Therefore, we first discuss
how to isolate the monitor from the target. We distinguish two types of
monitor regarding their isolation from their target: inlined monitors
and external monitors.

inlined monitor Inlined monitors are executed on the same
layer of privilege as their target. For instance, they add the full logic
of the monitoring by instrumenting the code to perform runtime
checks [1, 107, 264]. In such a case, the monitor corresponds to all
the instructions added in the code. The main drawbacks of inlined
monitors are their performance impact and their limited isolation.
Since all the logic is integrated in the target, it can incur a significant
performance overhead if the logic is complex. Moreover, the target and
the monitor share the same memory space and the same execution
environment. It provides a wide attack surface for the attacker. If the
target is compromised, the monitor can be compromised as well.
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52 For more details about
hypervisor-based monitoring
approaches in general and their
challenges, see the survey from
Bauman et al. [22].

53 Jain et al. [142] explored in
depth the challenges due to the
semantic gap for a hypervisor
and its guests, and the existing
solutions to bridge this gap.

external monitor External monitors are either one layer be-
neath the target (e.g., a hypervisor), thus more privileged, or are fully
isolated from the target they are monitoring (e.g., a co-processor). In
both cases, solutions rely on hardware features to isolate the monitor.
In the case of the SMM, recent work from Intel provides us with the
ability to run SMM code in a virtualized environment [288]. An SMI
Transfer Monitor (STM) acts as a hypervisor that supervises SMI han-
dlers to ensure that they only access the resources they need. While
the STM has been designed only to limit the impact of a potentially
compromised or malicious SMI handler, it could also be used to mon-
itor the behavior of SMI handlers to detect intrusions. Instead of a
hypervisor, Bulygin and Samyde [34] proposed to use an embedded
microcontroller to monitor the code and data of the SMM. Such a
co-processor offers more flexibility to the IDS than a hypervisor solu-
tion, since it can combine different monitoring approaches and it can
be asynchronous. Indeed, hypervisors-based approaches only rely on
specific events (e.g., hypervisor calls such as Intel VT-x instructions)
to trigger their monitoring.52 It makes it more difficult to implement
some approaches (e.g., taking periodic snapshots of the memory of
the target—an approach that we describe in the next section). Finally,
a main issue with external monitors is the more isolated they are,
the less information they have on their target. This issue—known as
the semantic gap [49, 142]—means that the monitor might only have
a partial view of the state of its target.53 It can potentially help an
attacker to bypass the IDS [143].

Coudray et al. [74] mix both inline and external approaches, since
they instrument a program (the target) to send information to another
program (the external monitor) about its behavior. The instrumenta-
tion is similar to inline-based approaches, but the instrumentation
does not contain the full logic, it is only used to send information. The
benefit of such an approach (mixing both worlds) is that the instru-
mentation is minimal in comparison to inline-based approaches [1,
264, 276] that include the monitoring and full detection logic with
their instrumentation. By externalizing the detection logic, and by only
keeping the communication of behavioral information, the attacker
cannot leak secret or corrupt data structures used for the detection,
since they are isolated. Their approach, however, targets applications
of an OS and only externalize the monitor in another program of the
system. Moreover, they do not evaluate the performance impact of
their solution only the security aspect. Unfortunately, the performance
of approaches using external monitors is important aspect due to the
extra steps needed to communicate information to the monitor.

In our work (Part III), we use a similar hybrid approach, since we
externalize as much as possible the IDS from our target. We isolate
our monitor and the detection logic thanks to a dedicated co-processor.
However, since we need to have information about our target, we
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54 See Section 2.1.2.
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main memory without using the
CPU during the transfer.

also instrument the code of the target (SMM code) to send informa-
tion to our external monitor—bridging the semantic gap introduced
by the isolation. We send this information through a low-latency
communication channel to minimize the performance impact of the
communication.

3.2.2 Hardware-Based Monitoring

We now discuss approaches that focus on how to monitor low-level
components—such as firmware and kernels—-using a hardware-based
approach. To the best of our knowledge, the only commercially avail-
able technology that offers SMM integrity monitoring is HP Sure
Start [128–130]. It uses the chipset and the CPU to monitor SMM
code integrity and relies on additional hardware to take actions per a
predefined policy. The details of its implementation, however, are not
public. Thus, we cannot compare it in detail to other approaches in
the literature.

The approaches presented here are not necessarily focused on mon-
itoring the SMM, but they could be adapted to that aim. Since our
work focuses on the SMM—the runtime part of the BIOS—we only dis-
cuss approaches that provide runtime intrusion detection, and do not
consider, for example, approaches that provide boot time integrity.54

We distinguish two different types of approaches: snapshot-based ap-
proaches are presented in Section 3.2.2.1 and event-based approaches
in Section 3.2.2.2.

3.2.2.1 Snapshot-Based Monitoring

The first approach consists in taking periodic snapshots of all or any
part of the target state and then to analyze these snapshots to detect
intrusions. In the taxonomy of Debar et al. [87], it relates to the state-
based detection paradigm.

To the best of our knowledge, Zhang et al. [297] were the first to
propose a co-processor for intrusion detection using a snapshot-based
approach. However, they did not implement their design. Notable
implementations of such approach are Copilot [220], DeepWatch [34],
and HyperSentry [18].

Copilot is a kernel integrity monitor using a co-processor on a PCI
card to take periodic snapshots of the main memory using DMA re-
quests.55 The authors also described how to write rules describing the
relationships between kernel objects to detect the presence of kernel
rootkits [219]. Copilot, however, cannot monitor the SMM since it
does not have access to SMRAM. Even if it was shown that Copilot
was effective against 12 common kernel rootkits at that time, it has
two main limitations. First, since the monitor runs an out of context
measurement there is a semantic gap between the monitor and the
host. For example, it is difficult to have knowledge over virtual to
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physical memory mappings. Moreover, race conditions between a ker-
nel process and the DMA requests from the monitor can occur, which
create inconsistent states of kernel data structures. Second, Rutkowska
[232] shows the practicability of a data substitution attack by modi-
fying the memory controller. An attacker can remain undetected by
redirecting memory accesses from the PCI card to another location
where is located a copy of the original non-tampered kernel.

DeepWatch uses a similar approach to Copilot, but the monitor runs
on an embedded core in the chipset, which allows the monitoring of
the SMM. HyperSentry leverages the SMM to perform measurements
giving access to the CPU-context, but it impedes its ability to monitor
the SMM itself.

Snapshot Snapshot Snapshot

t1 t2 t3
time

Figure 3.1: Timeline of a transient attack where the attacker clears any trace
of its presence on the system, before each snapshot at t1, t2 and t3

Legend

Clear state
Compromised state

Nevertheless, a major limitation of snapshot-based approaches that
takes periodic snapshots, is that attackers could erase their traces
before each snapshot, or leave a minimum amount of traces making
the detection of its presence unlikely, as illustrated in Figure 3.1. Such
attacks, that do not make persistent changes to the system, are called
transient attacks [18, 202]. In general, snapshot-based solutions suffer
from this limitation. A solution against this attack would be to increase
the frequency at which a snapshot is taken, but at the price of high
performance overhead and a race between the attacker and the monitor.
Another solution would be to randomize the snapshot interval, it
would make it more difficult for the attackers to predict when to erase
their traces, but the time between the attack and its detection would be
non-deterministic. Even if there is a non-zero probability of detecting
the intrusion, the attacker could remain undetected even for extended
periods of time. For example, a worst-case scenario would be that the
IDS always takes a snapshot at the wrong time just after the attackers
erased their traces.

3.2.2.2 Event-Driven Monitoring

The inability to detect transient attacks motivated researchers to de-
velop event-driven approaches where the monitor observes events
generated by the monitored system to know whether an intrusion
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occurred. In the taxonomy of Debar et al. [87], they relate to the
transition-based detection paradigm. All the following event-driven
approaches require a new specific hardware component or a modifica-
tion of an existing hardware component.

Vigilare [202] snoops the memory bus traffic of the host by using an
external hardware component to detect modifications of immutable re-
gions of a kernel. This approach does not suffer from transient attacks:
as soon as an illegal modification is made it is detected. KI-Mon [167]—
its successor—also monitors mutable kernel objects. MGuard [180]
follows a similar approach but incorporates the integrity monitor in-
side a DRAM DIMM device. One limitation, however, that affects these
solutions, is their inability to access the CPU state of the host they
are monitoring (semantic gap issue). Jang et al. [143] demonstrated
the practicability of an evasion scheme—called Address Translation
Redirection Attack (ATRA)—that modifies the page table entries and
the CR3 register that contains the physical base address of the page
directory. By modifying the memory mappings, such an attack can de-
ceive hardware monitoring solutions that assume legitimate mappings
for their monitoring.

Instead of monitoring memory accesses, Duflot et al. [101] propose
a runtime firmware integrity verification system for a network adapter
which monitors every instruction executed on the network adapter
processor using available debugging features. Their approach is two-
fold: first, they use a step-by-step verification of each instruction
executed to detect code injection; second, they use a shadow call
stack [114] to detect control flow alterations.56 Since they monitor
every instruction executed they have a full knowledge of the current
CPU state, hence they are not affected by ATRA. This approach can
detect multiple attacks, and more specifically the ones that the authors
previously found on network adapter firmware [102]. The monitoring
required to verify each instruction executed, however, incurs a high
computational cost (100% CPU-usage when the firmware is in a busy
loop).

Finally, Lee et al. [169] took a similar approach that monitor in-
structions, where they used debugging features available in ARM
processors to monitor branch behaviors (e.g., jumps or calls) of a pro-
gram and compare it to a reference model built via static analysis.57

In comparison, their solution incurred only a 2.39 % running time
overhead in average, because they observe branch behaviors and not
all instructions executed. Davi et al. [84] extend the instruction set of
the processor to enforce a similar policy. A document from Intel [136]
suggests that future Intel processors will have a backward-compatible
technology to monitor branch behaviors in hardware (and available
for the SMM). The main limitation of such approaches, in terms of
monitoring, is their lack of flexibility. The hardware modifications
made can only provide control flow events to the monitor. If the de-
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tection method or the detection model evolves in the future—due to
an evolution of the threats and the vulnerabilities exploited—more
hardware modifications will be required.

3.2.3 Detection Method

We now focus our attention to the last question that is how to detect an
intrusion based on the information (a state or an event) obtained by
the monitor.

3.2.3.1 Knowledge-Based vs Behavior-Based Approaches

The knowledge-based detection is a popular approach among com-
mercial IDSs due to its simplicity. For example, host-based IDSs such
as Prelude-LML [274] or OSSEC [63] monitor log files and try to
match the signatures to each log entry, if one matches it raises an alert.
This approach has also been used to detect intrusions in low-level
components by DeepWatch [34].

This approach, however, has multiple limitations. First, it lacks flexi-
bility, because it cannot detect novel attacks since it needs signatures
for them. Second, if a signature is too generic it creates false positives,
if it is too specific it does not match with variants of an attack. Third, it
imposes a maintenance burden, because the freshness of the signature
database is an important factor for the quality and efficiency of the
IDS.

Due to these limitations, in the rest of this work, we focus on
behavior-based approaches. Such approaches rely on a model of the
expected behavior, and they detect any discrepancy between the refer-
ence model and what the monitor observed. The advantage of these
approaches is that they can detect new attacks, but great care needs to
be taken when constructing the reference model to limit the number
of false positives.

3.2.3.2 Code Integrity

Code integrity is often guaranteed by existing hardware features, like
the MMU (e.g., a non-writable page of memory), even for low-level
software such as a kernel or a firmware. Hence, attackers focus on
either trying to violate the integrity of the data or the control-flow, as
we see in the subsequent sections.

In terms of detection—in case the hardware features are not avail-
able or if they are bypassed—a common approach is to perform a
measurement of the code and to compare it against a known legiti-
mate value. For example, Copilot [220]—which is a snapshot-based
approach—uses cryptographic hashes to ensure the integrity of a
kernel against rootkits.
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58 This approach is usually
intended for

resource-constrained systems
without cryptographic hardware

features (e.g., systems that
cannot embed a TPM chip).

Another approach, called software-based attestation allows a soft-
ware component—the prover—to attest its integrity to a trusted third-
party—the verifier [174, 175, 238]. It uses a challenge-response protocol
where the prover computes a checksum of its memory and returns the
result to the verifier.58 The verifier expects that the prover responds
within a predictable time. To detect any modification in the program,
the verifier computes the checksum using the expected memory con-
tent, and compares its value with the received one. A mismatch means
that the prover is likely compromised.

Prover Verifier

𝑛𝑜𝑛𝑐𝑒
𝑡 = 𝑡𝑖𝑚𝑒()

𝑟 = 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑛𝑜𝑛𝑐𝑒)
𝑟

if 𝑡𝑖𝑚𝑒() − 𝑡 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 𝑒𝑟𝑟𝑜𝑟()
if 𝑟 ≠ 𝑐ℎ𝑒𝑐𝑘𝑠𝑢𝑚(𝑛𝑜𝑛𝑐𝑒) then 𝑒𝑟𝑟𝑜𝑟()

Figure 3.2: A prover attests its integrity via a challenge-response protocol

Software-based attestation systems, however, have various limita-
tions [43, 174]: 1) they require a predictable computation time 2) the
software is unresponsive during the computation 3) the device is reset
after a verification 4) it requires an optimal implementation of the
checksum function so that any modification is noticeable. These limi-
tations make us question the suitability of software-based attestation
for software components like firmware or OSs [43, 101].

In the case of the SMM code, the memory protection provided by
the MMU is now used by firmware vendors [287, 289]. Since current
platforms can ensure code integrity at runtime, we consider that this
aspect is out-of-scope in the rest of our work, and we now focus on
other detection methods.

3.2.3.3 Data Integrity

Data integrity approaches aim at detecting any malicious modifica-
tion of the data used by the software (e.g., argument of a function or
authentication data). Like code integrity, data integrity can be guaran-
teed using hardware features, like the MMU (e.g., a non-writable page
of memory), when it is known to be immutable. Other approaches
exist for when such features are not available, if we assume it can be
bypassed, or if the data is mutable.

Vigilare [202]—which is an event-driven approach—focuses on de-
tecting modifications of immutable regions of an OS kernel, such as
the system call table or the Interrupt Descriptor Table (IDT). Vigilare
filters out the traffic to only handle write accesses, and it detects vi-
olations of the integrity if a write access is performed between the
bounds of an immutable region.
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The main limitation of Vigilare is that it cannot monitor mutable
kernel objects. Such data are modified during runtime and should
only be modified in a specific context (e.g., the user identifier of a
process is modified when calling the execve or setuid system calls).
Thus, attacks such as Direct Kernel Object Manipulation (DKOM) [39]
which modify or remove dynamic kernel data, or Kernel Object Hook-
ing (KOH) which is a subset of DKOM that only modifies function
pointers, are not detected.

As a follow-up work, Lee et al. [167] proposed KI-Mon—an event-
triggered kernel integrity monitor, similar to Vigilare—that handles
dynamic kernel objects. They added the notion of monitoring rules.
Each rule defines what region needs to be monitored and a callback
function. This callback function is called by KI-Mon when it noticed
that the region is modified. Then, it is possible for the callback function
to send DMA requests when a dynamic object is modified to fetch
its current value and to verify invariants. They demonstrated that it
detects attacks such as hooking functions to hide traces of a rootkit or
hiding a kernel module (usually stored in a linked list). For instance,
to detect illegitimate function hooking, a rule can define the data
structure containing function pointers as a region to monitor, and the
callback function can verify if a modification is legitimate by checking
that the new value of a function pointer is within a whitelist. Such an
approach, however, is low-level and time-consuming since you need
to specify implementation details about the kernel.

As a follow-up work to Copilot [220], Petroni Jr et al. [219] pro-
posed a specification-based approach to detect the presence of kernel
rootkits. Their approach uses a high-level security specification that
defines invariants and relationships among kernel data objects. This
specification is then compiled into low-level machine code executed
by the monitor at runtime against the kernel memory to ensure that
the specification is followed. The difference with KI-Mon is that they
write a high-level specification—leaving the low-level details to the
compiler of the rules. For example, to detect hidden processes, they
can write a rule using predicates that states that for each process t that
is in the list of running tasks, t must be in the list of all the tasks.

Currently, those approaches are difficult to automate, and they
require an expert with deep knowledge of the monitored kernel. That
is why, in our work described in Part III, we focus on a subset of
data integrity that allows us to develop approaches that are easier to
automate. First, we implement the detection method described in the
next section, as it can be automated more easily with less involvement
from the developers. Second, we rely on data invariants to ensure
the integrity of security-relevant CPU in the context of the SMM. The
general framework of our approach, however, could be used in theory
to implement data integrity approaches similar to the ones previously
mentioned.
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59 It leads to, what is called in the
community, a “weird machine”

[32] with its own “weird
instructions”.

60 It illustrates the fact that, in
computer science, many ideas at

a high level, that have already
been proposed, are

"rediscovered". However, in
practice, the context, the threat

model, or the constraints evolved
since then. It results in new

problems that need to be solved,
even if at a high level the ideas

are similar.
61 For example, on x86 platforms,

the NX bit (no-execute) in the
entry of a page table allows a

system to mark a page as
non-executable.

3.2.3.4 Control Flow Integrity

Widely used defense mechanisms such as non-executable data and
non-writable executable code impede attackers in their ability to ex-
ploit low-level vulnerabilities. Nevertheless, if an attacker managed
to modify an instruction pointer due to a vulnerability, then program
execution would be compromised. For example, in an x86 architecture,
programs store the return address of function calls on the stack. An at-
tacker could exploit a buffer overflow to overwrite the return address
with an arbitrary one that redirect the execution flow. Code-reuse
attacks, such as Return-Oriented Programming (ROP) [228] or Jump-
Oriented Programming (JOP) [27, 47], use indirect branch instructions
(i.e., indirect call to a function, return from a function and indirect
jump) to chain together short instruction sequences of the existing
code to perform arbitrary computations.59

The enforcement of a policy over the control-flow can prevent such
an attack. This defense mechanism, called Control-Flow Integrity
(CFI), enforces integrity properties for each indirect branch where the
control-flow transfer is determined at runtime. It ensures that a given
execution of a program follows only paths defined by a Control-Flow
Graph (CFG). This graph represents all the legitimate paths that the
program can follow. The CFG needs to be defined ahead of time and
it can be computed via source code analysis [1], binary analysis [296],
or execution profiling [285].

threat model The idea of checking the integrity of the control
flow of a program at runtime dates back to the 1980s [183, 292]. At
that time, however, their threat model and constraints were differ-
ent.60 Memory protections, such as non-writable executable code and
non-executable data, are widely deployed nowadays on modern plat-
forms.61 Therefore, CFI approaches that target such platforms focus
on indirect branches and ignore direct branches. The target of a direct
branch is encoded in the instruction performing the control-transfer,
hence with a non-writable executable code an attacker is unable to
change the target. On the other hand, the target of an indirect branch
is encoded in some data (e.g., in a register or in memory). Thus, a
vulnerability can be exploited to modify such data and change the
target of an indirect branch even if the code section cannot be modified.
Some implementations of CFI [1] also require non-executable data,
because each potential destination of an indirect branch is encoded
by a unique identifier added next to it. If the data section could be
executed, an attacker could exploit a vulnerability to inject instruc-
tions into a writable data section and add the identifier of a legitimate
function. Then, when the control-flow is redirected to this area, the
runtime check passes.
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62 The qualitative terms
fine-grained or coarse-grained
that we use to compare the
various CFI approaches are
limited [35]. Such terms, however,
are sufficient to give an overview.
For a more in-depth
classification, taxonomy, and
analysis of CFI, we recommend
the survey of Burow et al. [35].

inlined vs external monitor A typical way to enforce CFI is
by instrumenting the code, e.g., during the compilation phase. This
inlined-based approach adds runtime checks before each indirect
branch [1, 264, 276]. If the address is not within a finite set of allowed
targets, the program stops. Inlined-based approaches, however, share
the same execution environment than the attacker, therefore if attack-
ers manage to leak secrets or corrupt data structures that the runtime
checks rely on, they could bypass the detection.

In contrast to inlined CFI, which predominates the current imple-
mentations of CFI [1, 115, 208, 216, 264, 276, 296], Coudray et al. [74]
chose to externalize the mechanism enforcing the policy. Here the
monitored program communicates with an external process before
every control-flow transfer. If the external monitors detect a viola-
tion of the policy, it kills the monitored process. In comparison to an
inlined monitor, the external monitor and its data are isolated from
the program, but the communication induces a runtime overhead.
Coudray et al. use a push-down automaton to detect policy violations,
instead of validating if the target of a control transfer is within a finite
set of targets, like previous approaches. They instrument the code
during compilation where they add a call to the external monitor at
different sites: before and after a call to a function, at the start of a
function, at the end of a function, before and after a jump.

Full hardware-based CFI solutions [136, 169] also externalize the
verification, but do not require any instrumentation. However, they
either need to modify the CPU [136] or to rely on debugging features
from the CPU [169]. Moreover, the full detection logic gets locked into
hardware.

Depending on the use case and the constraints, one approach would
be preferred over the others. As mentioned in Section 3.2.1, we decided
to use a hybrid approach in our work (Part III) on the behavior
monitoring of the SMM. We use a dedicated co-processor to isolate our
monitor and an instrumentation step to send behavioral information
to the monitor—bridging the semantic gap. Indeed, our solution does
not focus specifically on CFI but aims at supporting various detection
approaches. To limit the hardware modifications, we chose to add
one generic hardware component that can be reused to implement
various detection approaches. Moreover, in comparison to inline-based
approaches, we ensure the confidentiality and integrity of the secrets,
data structures, or models used by the detection approaches.

fine-grained vs coarse-grained A fine-grained62 CFI com-
bines a shadow call stack (i.e., an independent protected stack that
only stores return addresses) and a precise CFG (i.e., a CFG with a
small approximation regarding indirect branches) to enforce CFI on
all indirect control transfers.
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Some implementations [115, 296] sacrifice security over performance
by building a less precise CFI. They either focus on protecting the
backward-edge on the CFG (e.g., with a shadow call stack) or on
protecting the forward-edge (e.g., indirect calls). Davi and Monrose
[85] demonstrated that such implementations, called coarse-grained
CFI, fail to protect against control-flow hijacking. Carlini et al. [41]
also raised awareness on this issue by consolidating the argument that
without stack integrity (i.e., without using a shadow call stack), CFI is
insecure.

Evans et al. [108], however, demonstrated that preventing attacks
via a fine-grained CFI is difficult for real-world applications due to
software engineering good practices making the construction of a
precise CFG a hard task. When constructing a CFG via static analysis,
pointer analyses are required if the code use indirect jumps or indi-
rect calls. Such analyses help to infer the set of possible destinations
(e.g., functions) for each indirect jump or call. Since a sound and
complete pointer analysis is undecidable [224], a CFG is built using
an incomplete pointer analysis leading to an over-approximation of
the possible values of each pointer. This over-approximation can help
an attacker to redirect the control-flow to an address within the sets
of over-approximated targets of a branch, but that should not have
been considered. Hence, the more precise this analysis is, the less
chance an attacker can take advantage of it. Evans et al. [108] argued
that a solution to improve the precision of pointer analyses would
be that developers add annotations alongside the source code. Other
approaches [208, 216, 264] improve the precision by relying on the
types of the functions called indirectly—a type-based CFI—instead of
relying on pointer analyses.

As mentioned previously, future Intel processors will have the ability
to enforce a CFI policy [136], which could be used in SMM. It will
use a shadow call stack and state machines to track indirect branches.
Intel, however, decided to enforce a coarse-grained CFI when tracking
the indirect branches. All indirect calls will be able to call any function
in the code (over-approximation), and not just the expected legitimate
functions.

In Part III, we implement two detection methods where one is based
on CFI. It enforces a type-based CFI on forward edges ensuring that
each function called indirectly has an expected type signature known
at compile time, and a shadow call stack for the backward edges. We
chose a type-based CFI since it outperforms the pointer analysis,63

63 We initially tried a pointer
analysis to extract the precise set

of possible destinations, but we
had poor results forcing us to

over-approximate to avoid false
positives.

and we combined it with a shadow call stack to have a fine-grained
CFI enforcement.
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3.2.4 Summary

In this section, we reviewed the state-of-the-art IDS approaches for low-
level components. While we focused our reasoning on the SMM, we
did not ignore other approaches that were designed for the SMM that
could be adapted. We articulated our review around three questions
about the isolation of the monitor, the methods to monitor the target,
and the detection models. We now summarize our review of the
literature and our findings:

• External monitors offer a better isolation than inlined monitors
at the cost of a semantic gap. The semantic gap must be bridged
otherwise attackers could potentially bypass the monitoring.

• Snapshot-based approaches will always be limited due to tran-
sient attacks.

• Event-based approaches solve this issue, but they might intro-
duce other challenges. For example, some solutions process too
many events leading to performance issues. Other solutions limit
the events they process, but they rely on CPU modifications or
debug interfaces that limit them to specific detection models and
make them not flexible.

• Vendors already rely on the MMU for SMM code and data
integrity. Detection approaches exist, but they are either not
suitable in the context of the SMM, require experts, or cannot be
easily automated.

• Few existing approaches were designed to monitor the SMM
at runtime [34, 180]. They focus only on ensuring code or data
integrity but cannot enforce CFI for example. In addition, they
are either vulnerable to transient attacks [34] or suffering from a
semantic gap [180].

• A recent document suggests that future Intel processors will
be able to enforce a CFI in SMM [136]. Such a technology is,
however, unavailable at the moment, and when it is released it
will be coarse-grained.

Based on this review of the state of the art, we introduce in Part III
a new SMM behavior monitoring approach that aims at addressing
the aforementioned limitations. Our approach relies on a dedicated
co-processor to isolate the monitor and it bridges the semantic gap by
introducing a secure low-latency communication channel. We enforce
the communication of behavioral information via this channel by
instrumenting the SMM code. With this approach, we demonstrate the
feasibility of a flexible SMM behavior monitoring by implementing a
type-based CFI policy and execution context policy.
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64 “Systems whose failure could
result in loss of life, significant

property damage, or damage to
the environment.” [156]

65 The work we present in Part II
was not designed for

safety-critical systems, but in
theory one could adapt it for

such systems.

In the next section, we switch to the OS abstraction layer, and we
review the state-of-art approaches to achieve intrusion survivability
for a commodity OS.

3.3 intrusion survivability for commodity operating systems

Existing intrusion tolerance or intrusion survivability approaches often
focused on safety-critical systems64 and distributed systems [105, 157,
239, 294]. The reasoning is that these systems and the organization that
maintain them have the most to lose (e.g., human lives or big financial
impact due to a cascade of failures). Non safety-critical systems and
single platforms (e.g., non safety-critical embedded systems, desktop
or enterprise systems) have been less studied and are currently limited
on their ability to survive intrusions. In our work, we focus on such
systems.65 We structure the rest of this section based on three questions
that one needs to answer when building systems that needs to survive
or withstand intrusions:

1. How to isolate?

Like IDSs in the previous section, it refers to the approaches that
we can use to isolate the components we rely on.

2. How to recover?

It relates to the approaches that can recover from a compromised
system, or an application, to a previous state that we assume not
compromised.

3. How to respond?

It pertains to the approaches (e.g., containment) that respond to
an intrusion to limit the future actions of the attackers on the
system and also the approaches that select such responses.

In the rest of this manuscript, we differentiate a recovery from a
response as explained above. While one could argue that a recovery
is a specific form of a response, a recovery only limits the impact
of previous malicious actions and it does not prevent the attacker
from e.g., reinfecting the system. Moreover, a recovery has specific
challenges in comparison to other form of responses, and since various
papers focused on the recovery, we decided to separate the notion of
recovery from the notion of response.

3.3.1 Isolation

As mentioned by Avizienis et al., “it is essential that the mechanisms
that implement fault tolerance should be protected against the faults
that might affect them” [16]. Indeed, if attackers can compromise any
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66 Since we only consider
host-based approaches, and not
network-based ones.

67 Such analysis is entirely based
on the number of CVEs, thus it
does not include vulnerabilities
with no CVEs assigned. The fact
of not assigning CVEs for
vulnerabilities in the Linux
kernel is a recurrent
criticism [250].
68 This does not even include the
fact that there is also a time
between when a vulnerability is
fixed, and when the kernel on
the platform is actually updated
with the relevant patches.

of the components used to achieve intrusion survivability, they could
disable the recovery logic and circumvent any response.

Most of the work that we mention in subsequent sections often
consider the kernel as trusted66 and they rely on the kernel to isolate
any of the components used to implement their approach [122, 131,
153, 242, 277]. While such an assumption might be reasonable, in
practice the kernel is often the source of many vulnerabilities.

For example, the Linux kernel security as a long history of not being
taken seriously [265]. Moreover, the life span of kernel vulnerabilities
(i.e., how long a vulnerability might be exploitable before it is fixed)
is long. An analysis made in 2010 [72] shows that Linux kernel vul-
nerabilities have on average a 5 years life span.67 Another analysis
made 6 years later [65] has a similar conclusion.68 The issue with
these kernel vulnerabilities is that they can be used to bypass security
features offered by the kernel (e.g., to escalate privileges or bypass
restrictions). Thus, the high number of kernel vulnerabilities combined
with their ability to bypass kernel security features makes us question
the suitability of trusting the kernel to isolate our components when
facing advanced and determined attackers.

Fortunately, the Linux kernel community is starting to take the
security of its kernel seriously. For instance, Kees Cook has been work-
ing these past few years on upstreaming strategies that go “beyond
bug fixing” [66, 67, 73], based on out-of-tree (i.e., not included in
the mainline kernel) security patches, such as grsecurity [124] and
PaX [257].

Nevertheless, the less trust we put in the kernel, the smaller our
Trusted Computing Base (TCB) is. Therefore, some approaches [19,
242, 286] ran their target inside a Virtual Machine (VM) and moved
the recovery or response logic in a hypervisor or another machine.

Unfortunately, as mentioned in Section 3.2.1 about the isolation of
the IDS, the more isolated we are, the less information we have on
our target. In the case of intrusion response and recovery, the issue
is less about information, and more about control. For example, to
recover from an intrusion, our solution must be able to control the
target (e.g., to restore a file or a process to a previous state). Therefore,
if we do not have access to the kernel interfaces, we have a semantic
gap that needs to be bridged to control the abstraction and notions of
processes or files—only understood by a kernel or a user space process
in general. For example, Xiong et al. [286] built SHELF—an intrusion
recovery system—on top of a hypervisor. The authors implemented
a basic prototype that can record the state of processes (i.e., copying
the address space and some kernel data structures) and rollback
their state to a previous checkpoint by introspecting the guest kernel.
Their prototype, however, does not fully handle the state of modern
applications (e.g., external resources, invisible files, or namespaces).
Handling such cases would significantly increase the complexity of
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69 As an example, Linux kernel
maintainers rejected merging a

checkpoint and restore
functionality in the kernel due to

its complexity and lack of
benefits in contrast to a userland

solution [71].

the code introspecting the guest kernel.69 In addition, one would need
to maintain the introspecting code for each new version of the kernel.

In general, there is a trade-off between the control and the isolation
that depends on the context and the engineering effort to bridge the
semantic gap. Such an engineering effort might introduce complexity
into the solution, thus a higher maintenance burden, and more im-
portantly a higher chance to introduce vulnerabilities. In Part II, our
approach works at the level of services, and it needs the abstractions
and features of the kernel to manage them. We considered that trying
to isolate our components without trusting the kernel would introduce
too much complexity and engineering effort. Finally, since this aspect
was not the focus of our work, we decided to trust and use the kernel
to isolate our components.70

70 While we consider it
out-of-scope, approaches exist

that aim at improving the
security of the kernel. For
example, Azab et al. [17]

introduced a hardware-based
security monitor to ensure the

integrity of the kernel at runtime,
and UEFI-secure boot [272,

section 32] can be used to ensure
the integrity of the kernel at boot

time.

3.3.2 Intrusion Recovery

Intrusion recovery solutions focus on system integrity after a system
has been compromised. They either recover legitimate persistent data
that may have been infected, remove any non-legitimate data present
(e.g., malware payloads or illegitimate settings in the system), or both.

First, we discuss the industry solutions that are used nowadays
by consumers and administrators when they know that one of their
system has been compromised. Second, we describe various log-based
approaches proposed by the academic community to address the
limitations of the industry, and we also mention their limitations
as well. Third, we describe container-based solutions. Finally, we
explain the main limitation of intrusion recovery solutions in regard
to intrusion survivability.

3.3.2.1 Traditional Industry Solutions

Many industry solutions exist to remove the traces of malware on
a system (i.e., remove non-legitimate files and restore legitimate but
compromised files). For example, anti-malware or anti-virus solutions,
such as Windows Defender [198], can remove the traces of malware or
the changes they made based on the knowledge of the malware. Paleari
et al. [214] also introduced an approach to automatically generate
the remediation procedures for malware infection by analyzing their
behavior. One main limitation with such approaches is that they can
only remove illegitimate objects (e.g., files) from the system, they
cannot restore destructive malicious actions such as files being deleted
by the malware. Moreover, they might also have false negatives with
unknown malware or malware with only scarce information about its
behavior (e.g., they might not know that it created some malicious
registry keys). Finally, it only works for malware with a predictable or
deterministic behavior, but for instance it fails for malware controlled
remotely by an attacker.
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71 If we assume that neither the
BIOS nor other firmware on the
platform have been
compromised.

72 While they do not necessarily
focus on recovering from a
compromised system, it can be
used for such a case.

73 In their paper, they use the
term “OS-level virtual machine”,
also known as “feather-weight
virtual machines” [293].
Nowadays, however, the term
container is more common.

Another common solution, to help to recover to a safe state after an
infection, is by reimaging the system, or by reinstalling it, completely.
While it ensures that all traces of the malware have been removed,71

this approach also incurs a high cost to the users since they lose their
files (no false negatives, but many false positives).

Other industry solutions exist that rely on periodic snapshots of the
file system to restore a system to a previous safe snapshot in case it gets
compromised.72 For example, Windows System Restore [197] allows
a user to restore system objects—no user data is restored. Another
traditional approach is to use a VM where one performs sensitive
tasks in the VM and takes periodic snapshots of the VM. In case of
an intrusion, one can revert the VM to a previous snapshot. Such
solutions, however, perform a coarse-grained recovery that recover
to a previous state many non-infected and legitimate data. Another
issue is that to limit the data loss, users might have to identify the
files that needs to be restored or not—which might be a difficult and
error-prone task.

The approaches proposed by the academic community try to ad-
dress these limitations. They differ from industry solutions since they
try to minimize the number of false positives, the number of false neg-
atives, or the availability cost while doing the process automatically.
We now discuss these approaches.

3.3.2.2 Container-Based Approaches

As mentioned before, one can execute a monitored system in a VM
and can take periodic snapshots to recover in case of an intrusion. Such
a recovery approach, however, lose the accumulated modifications of
many legitimate and non-infected objects (e.g., files or processes) since
the last non-infected snapshot. In addition, starting or restoring a VM
is a heavy-weight process. Thus, it might incur a high availability cost
to the user.

Shan et al. [242] proposed an approach to address this issue using
containers.73 They introduce a secure commitment approach where a
container commits, or merges, only legitimate persistent data changes
to the host. They track information flow in the OS and attach labels
to objects to put them into clusters. Then, they identify malicious
clusters based on their behaviors, and they filter them out when
committing the changes back to the host. However, they only focus
on persistent data, and they do not preserve availability (i.e., they
lose the processes’ state), since the commitment only occurs when the
container is shutdown.

CRIU-MR [277] restores infected systems running within a Linux
container. When an IDS notifies CRIU-MR that a container is infected,
CRIU-MR checkpoints the container’s state (using CRIU [76]), and
identifies malicious objects (e.g., files) using a set of rules. Then, it
restores the state of the container while omitting the restoration of
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the malicious objects previously identified. It differs from the work of
Shan et al. [242], since CRIU-MR does not filter out malicious objects
during a commitment phase, but it identifies the malicious objects at
checkpoint time and filter them out during the restoration. In addition,
they do not need to reboot the container, and they manage to keep the
state of active TCP connections during the operation. However, they
rely on the ability of the IDS to identify the illegitimate objects. Hence,
much like traditional approaches, this solution can suffer from false
negatives (e.g., the IDS does not know that a specific file has been
compromised or is malicious).

In comparison to these approaches, in our work presented in Part
II, we do not restrict our solution to containers. Indeed, while many
services can be containerized, some system services still need access
to many resources from the system—using a container would hamper
their function. We do, however, use some features from the OS used
by containers to simplify our recovery process (i.e., we can track all
the processes created by a service).74

74 We also rely on other features
from the OS used to implement

containers for the responses that
we apply, but in this section we

only focus on the recovery.

3.3.2.3 Log-Based Approaches

Other approaches focus on trying to minimize the number of false
positives and false negatives when doing a recovery. Most of these ap-
proaches log all system events to later replay legitimate operations [19,
122, 153, 286] or rollback illegitimate ones [131], thus providing a
fine-grained recovery.

Taser [122] recovers legitimate persistent file system data after an
intrusion by relying on taint tracking, audit logs, a legitimate file
system snapshot, and replay operations. During the normal operation
of the system, Taser logs all system events (e.g., arguments of system
calls or file system operations) and the identity of the objects (e.g.,
processes) associated with those events. After an intrusion occurred,
Taser uses taint tracking by following the information flow generated
by systems calls (e.g., if a process is tainted and it writes to a file,
this file is also tainted) to identify all the events associated with an
intrusion. It first finds the source object (e.g., a process or a socket) that
is responsible for the intrusion, and from there taints all the events
that follows their dependency rules. Finally, the system is shut down
and Taser replays only the legitimate operations (i.e., non-tainted) on
an immutable file system snapshot.

In practice, Taser has many false positives—it marks as tainted
legitimate events and rollbacks many legitimate data. To mitigate
the number of false positives, Taser uses whitelists (e.g., never taint
/dev/null) or ignores completely some events (e.g., reading file at-
tributes, names, or content). While such policies reduce the number of
false positives, it introduces false negatives (e.g., it does not rollback
illegitimate events).
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Retro [153] follows an approach close to the one of Taser. During
the normal operation of the system, it records periodic checkpoints
of the file system, and it logs system events to build an action history
graph that represents objects in the system and their dependencies.
After an intrusion is detected, it relies on its action history graph to
find the first intrusion point. During the recovery phase, the system
is rebooted, and Retro restores the affected files to a previous state,
and changes malicious system call arguments to benign ones (e.g.,
instead of executing malware, a program executes /bin/true). More
importantly, to minimize the recovery of legitimate data and to avoid
inconsistencies, it re-executes the actions affected by the intrusion with
the new benign arguments since their behavior might be different.
Finally, it only re-executes actions with dependencies that are seman-
tically different after a repair. For example, if a legitimate program
reads the last line of a file and an illegitimate process only modified
the first line of a file, Retro does not re-execute the former action since
it would be equivalent.

In comparison to Taser, Retro has less false positives and false
negatives. They claim to achieve such better results based on their
action history graph, on the re-execution and selective re-execution,
instead of Taser’s taint tracking.

A limitation of intrusion recovery systems that only focus on per-
sistent data, such as Taser or Retro, is that they do not preserve the
availability of the system, nor any of the services. Their restore proce-
dure either forces a system shutdown or reboot [19, 122, 153].

SHELF [286], however, does not suffer from this limitation. During
the normal operation of the system, it takes periodic snapshots of both
the state of the processes and the files, and it logs system events like
Taser. In case of an intrusion, it allows SHELF to recover the state
of processes using a previous snapshot and to identify infected files
using taint tracking on the logs. During the recovery procedure, SHELF
quarantines infected objects by freezing processes or forbidding access
to files. SHELF, however, removes this quarantined state as soon as
it restores the system. The main advantage of SHELF is its ability
to minimize the availability loss. First, it does not lose the state of
processes by restarting them, but checkpoint and restore them to their
last checkpoint. Second, it does not require shutting down the system,
shutting down applications, or closing network connections. Therefore,
it maintains a higher availability than previous approaches.

The approaches previously discussed, that relies on logging system
events, have all a limitation related to the explosion of the number
of dependencies per object. They monitor all the system events and
follow the dependencies between these events (e.g., a process created
a file, the file is read by another process, this process creates another
process etc.). In practice, unfortunately, a system generates many
events during its lifetime, and they need to store this information to
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reuse it in case of an infection. It results in gigabytes of logs generated
per day inducing a high storage cost.75

75 There is, however, some
work [168, 185] on how to reduce

the size of the logs.
In our work, described in Part II, we restore services to a previous

state if they are compromised. Our approach is close to the log-based
approaches that we mentioned, but we make a trade-off between the
precision of the recovery and the amount of logs generated by restrict-
ing the monitoring per-service and by focusing on specific events. In
addition to restoring the files, we restore their processes to maintain
as much as possible the availability. The intrusion recovery, however,
is only one component of our work among others that together aim at
achieving intrusion survivability.

3.3.2.4 Application for Intrusion Survivability

While intrusion recovery is necessary to have a system that can survive
intrusions (otherwise illegitimate content would still be present), it is
not sufficient. Indeed, one common limitation affecting all the prior
work discussed in that area is that they prevent neither the attacker
from reinfecting the system nor the attackers from achieving their goals
(e.g., integrity violation or propagation) when successfully reinfecting
the system.

It means that the system is restored to a safe state, but it cannot
withstand a reinfection. After the recovery, the attacker can still attack
the system, and the vulnerabilities used initially to compromise the
system are not fixed. A worst-case scenario could be a loop of infec-
tions and recoveries impacting the availability of the system, or its
services, since the cost of the recovery is not negligible.

3.3.3 Intrusion Response Systems

Having discussed systems that recover from intrusions and showed
that it is not sufficient to withstand them, we now discuss intrusion
response systems that focus on applying responses or countermeasures
to limit the impact of an intrusion.

Shameli-Sendi et al. showed that there is an abundance of prior
work on intrusion response systems [239, 240]. They classify existing
approaches based on:

• the level of automation (e.g., manual or automated),

• the evaluation of the response cost (e.g., static or dynamic),

• the response time, the ability to adjust (e.g., adapt or not the
responses based on their successes or failures),

• the response selection (e.g., static or cost-sensitive),

• the location of the response enforcement (e.g., a firewall, the
infected host, or another intermediary),
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76 Their category of response
systems, however, is broad since
(unlike us) it also includes
intrusion recovery systems.

77 While we focus this part of our
study of the state of the art on
intrusion response approaches
for an OS, we also mention some
related work initially designed as
a network-based solution since
some ideas could be adapted.

• and the response lifetime (i.e., temporary or long-term).

Yuan et al. [294] also made a survey on self-protecting software
systems—systems that are “capable of detecting and mitigating se-
curity threats at runtime”—that includes intrusion response systems.
While other taxonomies and surveys have been proposed in the
past [42, 110, 123, 252], these are the most recent, they took into
consideration limitations of previous surveys, and they provide an
overview of the existing approaches.

While we reuse some classifications presented in these surveys, we
do not go into as many details for each paper we mention as they are.
In addition, we take into account aspects that are missing from these
taxonomies, but that we consider relevant and needed to characterize
and differentiate our work. The rest of this section is thus structured
as follows. In Section 3.3.3.1, we discuss the lack of work on single
platforms that are not part of a distributed system. In Section 3.3.3.2,
we discuss the methods used to select responses and the models they
rely on. Finally, in Section 3.3.3.3, we study the granularity of the
response strategy of various approaches.

3.3.3.1 Response Topology: Global vs Local Approaches

One point that we notice in the literature is that prior work mostly
studied intrusion responses that work at the level of a network of
hosts, and not at the level of a single host that is not part of a globally
managed network. Yuan et al. [294] characterize systems based on
their “control topology”: local only, globally centralized, or globally
decentralized. Only 30 % (32/107) of the papers they reviewed had
the ability to “respond” with a local only control topology.76 More-
over, Shameli-Sendi et al. [239] presented almost only network-centric
approaches. Indeed, they even considered as a limitation the fact that
an approach cannot be applied to a network of several hosts. While
we understand the need to scale intrusion response approaches to
globally managed networks (e.g., for enterprise environments), the
focus on a global scale also means that most of the prior work do not
apply to single hosts that are not part of globally managed networks
or distributed systems (e.g., embedded systems, single servers, or
consumer laptops and desktops). This analysis was already made by
Balepin et al. in 2003: “The analysis of related work leads us to the
conclusion that the primary area of interest so far has been a computer
network that consists of multiple hosts. The idea of responding at a
level of a single host has received relatively little attention.” [20]

Some ideas of network-based and host-based approaches are similar
at a high level. The difference in scale, however, means that in prac-
tice different problems need to be solved. The different context and
environment also have an impact on how we approach the constraints
(e.g., performance) and how we design the solutions.77
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78 For more details about attack
graphs, attack trees, or defense
tree see the work of Shandilya

et al. [243] on the “Use of Attack
Graphs in Security Systems” and

the survey of Kordy et al. [161]
on attack and defense modeling

techniques.

3.3.3.2 Response Selection and Models

One area of focus of prior work is on how to select optimal responses.
Most of recent approaches use a cost-sensitive response selection
process that take into account both the cost of the intrusion and the
cost of the responses [239]. Many approaches also use graphs to help
select responses. For example, they rely on one or a combination
of directed graphs about system resources [20], attack graphs [113],
attack defense trees [241], or service dependencies [151].

A graph about system resources [20] have nodes that represent
resources of the system, and its edges represent the functional de-
pendencies between them. Each node contains its type, its cost (or
importance), and a list of response actions that can be triggered to
restore the resource to a working state if it gets compromised. The
graph is built manually, but some nodes can be added dynamically
based on alerts from the IDS if it mentions resources not present on
the graph. Kheir et al. [151] also propose a functional graph that fo-
cuses on services and their dependencies to evaluate the impact of an
intrusion and its responses on services.

Attack graphs represent the paths that attackers can use to com-
promise a system or a network. Logical ones have nodes that contain
information about the preconditions that attackers need to carry out
an attack, and the edges represent the dependencies between them.
Topological ones have nodes that represents assets (e.g., a host) and
the edges represent possible attacks between each node. They can be
generated automatically e.g., from vulnerability scans and network
topology [213, 245]. Attack-defense trees [160] adds the ability to
model the various defensive measures that one can take to thwart
the progress of the attacker by adding defense nodes.78 Various ap-
proaches have been proposed using such models.

Foo et al. [113] proposed an automated intrusion response system
using attack graphs to contain intrusions in a distributed e-commerce
environment. When an alert occurs, the system determines which
goals the attackers most likely achieved in the graph and which
goals the attackers will most likely target next. Then, it chooses the
responses to deploy in order to contain the intrusion according to
the effectiveness of the response against the ongoing attack and the
perceived disruptiveness to legitimate users. Their solution, however,
is aimed at a distributed system, and does not work at the granularity
of the service of an OS.

Kheir et al. [151] rely on both attack graphs and a service depen-
dency graph to evaluate the impact of an intrusion and the responses.
They take into account the confidentiality, integrity, and availability
impact on the services. They also rely on the notion of privileges that
attackers need for their attack. They model the privileges that one
service needs from another service, and may remove such privileges
to thwart an intrusion. However, while their model aims at limiting
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79 We do not necessarily mean all
publicly known vulnerabilities,
since vulnerabilities can be
public, but still unknown to the
organization. Moreover, the
organization can be aware of
vulnerabilities not yet public.

80 Privately known
vulnerabilities that have not been
addressed are often referred as
zero-days.

the impact of an intrusion, it only focuses on limiting the propagation
of an intrusion from one service to another. The privileges that they
consider are basic access controls mechanisms, such as credentials or
whether an IP address is approved. In addition, they only evaluated
their model via a simulation, but they did not evaluate the feasibility,
security, or performance of their approach on real systems. In our
work (Part II), our approach makes the system survive an intrusion
by removing privileges not only to limit propagation, but to stop the
attackers from achieving their goal in general. In addition, we use a
more low-level notion of privileges (e.g., the ability to perform system
calls or accessing specific files in the system) and resource constraints
(e.g., CPU quotas) allowing us to target precise malicious behaviors.

Shameli-Sendi et al. [241] also use a service dependency graph, but
they rely on an attack-defense tree to model the attacker and defender
actions. They also use multi-objective optimization methods to select
an optimal response based on the performance, the deployment cost,
and the quality of service cost of a response.

One thing that these approaches [113, 151, 241] have in common
is that they rely on some information about the vulnerabilities affect-
ing the system for their models. They either assume the knowledge
of vulnerabilities present on the system, or that they know which
vulnerabilities the attacker exploits. In practice, however, one is not
necessarily aware of all the vulnerabilities present on the system. First,
with all known vulnerabilities,79 one needs to continuously check the
systems to determine whether they are vulnerable to those. Second,
there are unknown vulnerabilities80 that can be exploited by attackers
to compromise the system. For example, Ablon and Bogart [2] found
that “exploits and their underlying vulnerabilities have a rather long
average life expectancy (6.9 years)” and that “for a given stockpile
of zero-day vulnerabilities, after a year, approximately 5.7 percent
have been discovered by an outside entity”. It shows that intrusion
response systems that only rely on the assumption of prior knowledge
about the vulnerabilities present in the system cannot always select
appropriate responses, since attackers can use unknown paths and
bypass the underlying logic.

Balepin et al. [20] designed a specification-based automated intru-
sion response system that focuses on one host in comparison to other
approaches. It relies on a directed graph about system resources, and
cost models of responses, to select responses minimizing the cost of
the intrusion (the sum of the costs of each resource nodes affected)
and the cost of the responses against the resources. While their ap-
proach does not rely on information about vulnerabilities, they do
not describe any models regarding the attacker, the intrusion, or the
malicious behaviors to help them select responses. Indeed, in addition
to the difficulty of building a precise graph of system resources, they
need precise information about the resources affected by an intrusion
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to compute its cost. In our work (Part II), we build and rely on a
model of intrusions based on the various malicious behaviors that
they can exhibit. It allows our approach to handle the case where we
have precise information about an intrusion (we know exactly what
it is doing and how), and the case where we only have a generic
understand of its behavior (e.g., we only know it is ransomware but
not any more details).

Others also proposed non graph-based solutions. For example,
Gehani and Kedem [119] defined a formal framework for real-time
risk management. It allows one to dynamically reconfigure an access
control subsystem to limit the exposure of the system when the risk is
above a tolerance threshold. They compute the risk based on multiple
factors such as the likelihood of a threat, the consequences, and the
exposure of the system. Their approach, however, is intrusive since
they require a reference monitor to be present in the applications to
enforce their policy.

Finally, we can also distinguish approaches based on whether their
risk assessment methodology is quantitative or qualitative. Quantita-
tive methods rely on numbers such as monetary values to compute
the risk using statistical or probabilistic models. For example, Motzek
et al. [204] propose quantitative methods to help select response plans
by assessing the financial impact and the operational impact of a
response. Qualitative methods use linguistic constants (e.g., low or
high) to rate the risks and rely on security experts to define them.
Both methods have benefits and limitations [279]. Quantitative ones
are complex and require an accurate value of assets and historical data
of previous intrusions to be effective. Qualitative ones are prone to
biases and inaccuracies, but they are easier to understand, to reason
about, and to implement. In our work (Part II), we rely on qualitative
risk assessment, since we do not assume to have historical data of
previous intrusions, and we want to limit the difficulty for a user to
provide input to our models—thus improving its usability.

3.3.3.3 Response Granularity: Precision and Scope

The response granularity is linked to the scope and the precision of
the responses that intrusion response systems apply. The scope of the
response is the amount of components impacted by a response. We
say that responses are fine-grained if they only affect compromised
components. Coarse-grained responses, on the other hand, impact ad-
ditional non-infected components. For example, an intrusion response
system might apply a response that impacts all the hosts of a network
(e.g., modify the firewall rules of a firewall node or a router), a single
host (e.g., add additional local firewall rules or restart the system), or
a service inside a host (e.g., deny the HTTP server to access specific
files).
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The precision of the response is its ability to target specific malicious
behaviors. A fine-grained response should only impact a specific
malicious behavior or threat while minimizing the impact on the
compromised component. Coarse-grained responses may impact other
non-malicious functions of a component. For instance, if a response
stops a compromised service to withstand an infection, it is considered
coarse-grained, because the response impacted the whole service just
to thwart one specific threat.

It is important to distinguish the granularity from the topology
discussed in Section 3.3.3.1. One approach can be global but fine-
grained if it is able to apply a response only to infected hosts and if it
targets only the specific malicious behavior.

The response cost Shameli-Sendi et al. [239] is a close aspect of
the response granularity. Indeed, the more coarse-grained a response
is, the more components of the system it impacts, therefore it has a
greater cost.

The response granularity is an aspect that has not been subject to
the same level of attention in prior work and surveys in comparison to
the other aspects (e.g., computation of response selection and response
cost). Indeed, most of the prior work apply coarse-grained responses
to compromised hosts [20, 113, 241]. They often list simple coarse-
grained responses, such as restarting a service, modifying the firewall,
rebooting the system, deleting a file, or changing file permissions. Such
responses do not offer enough flexibility to withstand intrusions that
exhibit various malicious behaviors, without impacting the availability
of the compromised components.

Some approaches offer more fine-grained responses than others.
Gehani and Kedem [119] provided a fine-grained approach since it
can reconfigure access control policies per application if the risk is
above a tolerance threshold. As mentioned in Section 3.3.3.2, their
approach, however, is intrusive.

Thomas [262] described a threat response approach that automati-
cally updates a security policy—built upon Organization-Based Access
Control (Or-BAC) [144]—according to alerts from the IDS. He also
introduces a response strategy taxonomy that includes the target layer
of the response. The approach takes into account the need for more
fine-grained response where, for example, it gives the ability to deploy
responses either at the network or service level depending on the
threat. However, it only offers basic responses at the service level. For
example, at the service level, it can restart, stop, patch, or reconfigure
a service (e.g., change the listening port). More importantly, the re-
sponses may impact the whole host even if they were meant to target
a specific service (e.g., blocking the port 80 on the host and not just
for one specific service running on the host).

Our approach that we present in Part II takes into account the
need for fine-grained responses. Indeed, the more coarse-grained a
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response is, the more impact it has on the system. Therefore, our
solution applies responses that target precise malicious behaviors.
In addition, it can apply responses per-service that only impact one
specific service (e.g., an HTTP server) and not the rest of the system.
Finally, we designed our approach so that it does not require to modify
the services, nor their configuration. It applies transparent responses
that are agnostic to the type of service.

3.3.4 Summary

In this section, we reviewed the state-of-the-art approaches to help
achieve intrusion survivability for a commodity OS. Much like the
previous section, we articulated our review around three questions
about the isolation, the approaches to recover, and the approaches
to respond. We now summarize our review of the literature and our
findings:

• Intrusion recovery is necessary but not sufficient to withstand
intrusions. Regardless of the details of the approaches, current
intrusion recovery solutions cannot withstand intrusions—an
attacker can reinfect the system at the end of the recovery. We
noticed that none of the approaches combined intrusion recovery
and fine-grained intrusion response with an intrusion surviv-
ability approach.

• The preferred approach for the moment to recover the files or to
enforce the responses is to trust the kernel. The high number of
kernel vulnerabilities, however, makes us question the suitability
of such an approach when facing advanced and determined
attackers. Nevertheless, we need to take into account the engi-
neering effort and complexity introduced by solutions that do
not trust the kernel.

• Most industry intrusion recovery solutions incur a high false
positive rate. Most of the academic solutions address this issue,
but they have a high resource cost and monitoring cost in return.

• Many approaches need to reboot or stop the system to start their
recovery procedure. Few intrusion recovery approaches [277,
286] studied how to maintain the availability of the system and
its applications when restoring.

• Most of the intrusion response systems focus on a globally man-
aged network of hosts, distributed systems, or safety-critical
systems. Few approaches [20] studied how to design intrusion
response systems for a single platform (e.g., an embedded sys-
tem, a single server, or a consumer laptop) with a commodity
OS.
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• Several approaches assume to know the vulnerabilities present
to select responses. In practice, however, attackers can exploit
unknown ones.

• Finally, most of the intrusion response systems apply coarse-
grained responses that impact the whole system and not just
the compromised component. In addition, their responses are
not precise and impact significantly the compromised compo-
nent. Other approaches were able to apply more fine-grained
responses [119, 262], but they are either intrusive, limited in their
type of response, or require a semantic understanding of the
configuration files of each service.

The next section summarizes this chapter, concludes our review of
the various disciplines and existing approaches, and it introduces our
contributions.

3.4 conclusion

In this chapter, we gave an overview of concepts such as intrusion
detection, intrusion survivability, intrusion recovery, and intrusion
response. These concepts are essential to the understanding of our
work, since we derived our ideas and subsequent contributions from
them. Moreover, related to these concepts, we reviewed the state-of-art
approaches and techniques that we consider the most relevant to our
work and the problems detailed in Section 1.1.2 and Section 1.1.3. In
particular, we took an in-depth look at intrusion detection approaches
for low-level components, and intrusion recovery and response ap-
proaches for commodity OSs.

While studying the state of the art in these fields, we noticed gaps
in the literature that we summarized in Section 3.2.4 and Section 3.3.4.
These gaps motivated our research and our contributions. While we
do not pretend to fill all the gaps, the approaches we present in Part II
and Part III address limitations that we identified in the literature.

More specifically, in Part II, we address the inability of commodity
OSs to withstand intrusions by introducing a new intrusion survivabil-
ity approach aimed specifically at such systems. Our approach differs
from the state of the art, since we combine both intrusion recovery and
intrusion response, apply fine-grained responses without modifying
applications, and maintain the availability of the system.

In Part III, we address the lack of intrusion detection approaches
for components at the firmware level. To demonstrate our approach,
we use the runtime part of the BIOS—the SMM code—as a target
for an event-based and co-processor-based monitoring approach. Our
approach differs from the state of the art by the fact that it manages
to isolate the monitor while bridging the semantic gap, it is flexible
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with regard to the detection models, and it takes into account the
performance considerations of the target.

We give more details about these approaches, their differences with
state-of-the-art approaches, and the experiments we ran in subsequent
chapters.
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I N T R O D U C I N G A N I N T R U S I O N S U RV I VA B I L I T Y
A P P R O A C H

Having explained the necessary background and discussed the current
state-of-the-art solutions, we now introduce our first main contribu-
tions.

The rest of this chapter is structured as follows. First, we recall the
motivation behind our work and introduce our contributions. Second,
we give an overview of our approach and its goals. Third, we provide
the threat model and the assumptions that we make throughout the
rest of this part. Finally, we provide some illustrative examples about
how our approach can withstand different intrusions.

4.1 motivation and contributions

To limit the damage done by security incidents, intrusion recovery
systems help administrators restore a compromised system into a
sane state. Common limitations of such solutions are that they do not
preserve availability [122, 131, 153] (e.g., they force a system shutdown)
or that they neither stop intrusions from reoccurring nor withstand
reinfections [122, 131, 153, 277, 286]. If the recovery mechanism restores
the system to a sane state, the system continues to run with the same
vulnerabilities, and nothing stops attackers from reinfecting it. Thus,
the system could enter a loop of infections and recoveries.

Existing intrusion response systems, on the other hand, apply re-
sponses [113] to stop an intrusion or limit its impact on the system.
However, existing approaches apply coarse-grained responses that af-
fect the whole system and not just the compromised services [113] (e.g.,
blocking port 80 for the whole system because a single compromised
service uses this port maliciously). They also rely on a strong assump-
tion of having complete knowledge of the vulnerabilities present and
used by the attacker [113, 241] to select responses.

These limitations mean that they cannot respond to intrusions with-
out affecting the availability of the system or of some services. Whether
it is due to business continuity, safety reasons, or the user experience,
the availability of services is an important aspect of a computing plat-
form. For example, while web sites, code repositories, or databases,
are not safety-critical, they can be important for a company or for
the workflow of a user. Therefore, the problem that we address is
the following: how to design an OS so that its services can survive
ongoing intrusions while maintaining availability?

59
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Our approach distinguishes itself from prior work on three fronts.
First, we combine the restoration of files and processes of a service
with the ability to apply responses after the restoration to withstand
a reinfection. Second, we apply per-service responses that affect the
compromised services instead of the whole system (e.g., only one
service views the file system as read-only). Third, after recovering a
compromised service, the responses we apply can put the recovered
service into a degraded mode, because they remove some privileges
normally needed by the service.

The degraded mode is on purpose. When an intrusion is detected,
we do not necessarily have precise information about the vulnerabili-
ties exploited to patch them, or we do not have a patch available. The
degraded mode allows the system to survive the intrusion for two
reasons. First, after the recovery, the degraded mode either stops the
attackers from reinfecting the service, or it stops the attackers from
achieving their goals. Second, the degraded mode keeps as many func-
tions of the service available as possible, thus maintaining availability
while waiting for a patch.

We maintain the availability by ensuring that core functions of
services are still operating, while non-essential functions might not
be working due to some responses. For example, a web server could
have "provide read access to the website" as core function, and "log
accesses" as non-essential. Thus, if we remove the write access to the
file system it would degrade the service’s state (i.e., it cannot log
anymore), but we would still maintain its core function. We developed
a cost-sensitive response selection where administrators describe a
policy consisting of cost models for responses and malicious behaviors.
Our solution then selects a response that maximize the effectiveness
while minimizing its impact on the availability of the service based on
the policy.

This approach gives time for administrators to plan an update to fix
the vulnerabilities exploited by the attacker (e.g., wait for a vendor to
release a patch). Finally, once they patched the system, we can remove
the responses, and the system can leave the degraded mode.

Our main contributions are the following:

• We propose a novel intrusion survivability approach to with-
stand ongoing intrusions and maintain the availability of core
functions of services (Section 4.2).

• We introduce a cost-sensitive response selection process to help
select optimal responses (Chapter 5).

• We design an architecture and we develop a Linux-based proto-
type implementation (Chapter 6).

• We evaluate our prototype by measuring the effectiveness of the
responses applied, the ability to select appropriate responses, the
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81 Other files that the service
depends on can be modified by
another service, we handle such
a case with dependencies
information between services
(see Section 6.1.5).

82 However, if components
depend on a degraded service,
they can be affected indirectly.

availability cost of a checkpoint and a restore, the overhead of our
solution, and the stability of the degraded services (Chapter 7).

4.2 approach overview

Since we focus our research on intrusion survivability, our work starts
when an IDS detects an intrusion in a service.
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Figure 4.1: High-level overview of our intrusion survivability approach
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When the IDS detects an intrusion, we trigger a set of responses. The
procedure must meet the following goals: restore infected objects (e.g.,
files and processes), maintain core functions, and withstand a potential
reinfection. We achieve these goals using recoveries, responses, and
policies.

recovery Recovery actions restore the state of a service (i.e., the
state of its processes and metadata describing the service) and
associated files to a previous safe state. To perform recovery
actions, we create periodic snapshots of the file system and
the services, during the normal operation of the OS. We also
log all the files modified by the monitored services. Hence,
when restoring services, we only restore the files they modified.
This limits the restoration time and it avoids the loss of known
legitimate and non-infected data.81 To perform recovery actions,
we do not require for the system to be rebooted, and we limit
the availability impact on the service.

response A response action removes privileges, isolates components
of the system from the service, or reduces resource quotas (e.g.,
CPU or RAM) of one service. Hence, it does not directly affect
any other component of the system (including other services).82

Its goal is to either prevent an attacker to reinfect the service or
to withstand a reinfection by stopping attackers from achieving
their goals (e.g., compromising data availability or integrity)
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83 We address such issues in the
Part III of this dissertation.

after the recovery. Such a response may put the service into a
degraded mode, because some functions might not have the re-
quired privileges anymore (or limited access to some resources).

policies We apply appropriate responses that do not disable core
functions (e.g., the ability to listen on port 80 for a web server). To
refine the notion of core functions, we rely on policies. Their goal
is to provide a trade-off between the availability of a function
(that requires specific privileges) in a service and the intrusion
risk. We designed a cost-sensitive response selection process
based on such policies. Administrators, maintainers, and devel-
opers of the services can provide the policies by specifying the
cost of losing specific privileges (i.e., if we apply a response) and
the cost of a malicious behavior (exhibited by an intrusion).

4.3 threat model and assumptions

We make assumptions regarding the platform’s firmware (e.g., BIOS
or UEFI-compliant firmware) and the OS kernel where we execute the
services. If attackers compromise such components at boot time or
runtime, they could compromise the OS including our mechanisms.
Hence, we assume their integrity. Such assumptions are reasonable
in recent firmware using an hardware-protected root of trust [130,
230] at boot time and protection of firmware runtime services [60,
288, 290].83 For the OS kernel, one can use UEFI Secure Boot [272,
section 32] at boot time, and rely on e.g., security invariants [248] or
a hardware-based integrity monitor [17] at runtime. The main threat
that we address is the compromise of services inside an OS.

We make no assumptions regarding the privileges that were initially
granted to the services. Some of them can restrict their privileges to
the minimum. On the contrary, other services can be less effective
in adopting the principle of least privilege. It depends on the design
choices and the skills of the developers or maintainers of the services.
The specificity of our approach is that we deliberately remove priv-
ileges that could not have been removed initially, since the service
needs them for a function it provides. Finally, we assume that the
attacker cannot compromise the mechanisms we use to checkpoint,
restore, and apply responses (Section 6.1 details how we protect such
mechanisms).

We model an attacker with the following capabilities:

• Can find and exploit a vulnerability in a service,

• Can execute arbitrary code in the same context as the compro-
mised service,
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• Can perform some malicious behaviors even if the service had
initially the minimum amount of privileges to accomplish its
functions,

• Can compromise a privileged service or elevate the privileges of
a compromised service to superuser,

• Cannot exploit software-triggered hardware vulnerabilities (e.g.,
side-channel attacks [154, 159, 177, 235]),

• Cannot perform hardware attacks (e.g., fault attacks [29]),

• Do not have physical access to the platform.

4.4 illustrating examples

We now describe different examples based on common malicious
behaviors and capabilities [155, 200] that malware, or intrusions in
general, could exhibit in a compromised service. For each example,
we explain how our approach can survive it while maintaining the
availability of the compromised service. The following lists, however,
have no intention to be exhaustive.

We first discuss how our approach can thwart malicious behaviors
that are the explicit goal of the intrusion.

compromise data availability Let us consider the case of en-
cryption ransomware that infect vulnerable web servers [205].
Such malware renders files unavailable by encrypting them and
then asking the owners to pay a ransom to obtain the decryption
key. Depending on how the web server was initially confined,
the damage can be limited only to the files that the web server
should have access to, or it could affect the whole system. Using
our approach, we can apply the following process: erase any
trace of the malware in the service by restoring its state, restore
the encrypted files, and put the service into a degraded mode
by making some parts of the file system read-only for the web
server, or block the access to some cryptographic APIs [150].

consume system resources Let us consider the case of cryp-
tocurrency mining malware. The specificity of such malware
is that it can consume all the CPU (or GPU) resources of the
system. Hence, it can hinder other services that would be less
responsive or unusable. In this case, for example, our approach
can restore the service, and put it into a degraded mode by ap-
plying quotas (or limits) to the CPU usage of the service. Thus, if
the service is compromised again by the cryptominer, the impact
on the resources of the system will be limited. Only this service
will suffer and could be less responsive.
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data theft and exfiltration Let us consider an attacker using
a compromised service to steal and exfiltrate confidential data.
In this case, when the IDS detects the intrusion (e.g., using
honeyfiles, traps, or decoys [31, 295]) our approach can restore
the service and put it into a degraded mode by removing read
access privileges from the service to a subset of the file system
containing confidential data.

We now give examples of how our approach can instead survive an
intrusion by targeting the malicious behaviors or capabilities which
are needed or exhibited but are not the actual goal of the intrusion.

command and control Let us consider malware remotely con-
trolled by a Command and Control (C&C) server. The attacker
might use the compromised host to send e-mail spam, partic-
ipate in a Distributed Denial-of-Service (DDoS) attack, or run
some cryptocurrency miner as we previously mentioned. In each
case, the attacker needs to provide the targets or the payloads
to the malware. Using our approach, we might not necessarily
try to hamper the malware actual purpose (e.g., DDoS or crypto-
mining), but its ability to fetch or request information from the
C&C to perform malicious actions. For example, our approach
can restore the service and ban IP addresses associated with the
C&C server (where only the service will have these IP banned
but not the rest of the system).

privilege escalation Let us consider malware that rely on priv-
ilege escalation (e.g., brute forcing su or sudo). While this is
not their primary goal, malware may elevate privileges before
other steps. In this case, during the mitigation procedure, our
approach can remove access to the program, API, or system call
required to elevate privileges, thus stopping the next malicious
steps.
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84 Another project that can help
is the MITRE ATT&CK
knowledge base [199], but it does
not provide a hierarchy.

C O S T- S E N S I T I V E R E S P O N S E S E L E C T I O N

For a given intrusion, multiple responses might be appropriate, and
each one incurs an availability cost. We devised a cost-sensitive re-
sponse selection process that minimize such a cost and maintain the
core functions of the service.

We use a qualitative approach using linguistic constants (e.g., low
or high) instead of a quantitative one (e.g., monetary values). Quanti-
tative approaches require an accurate value of assets, and historical
data of previous intrusions to be effective, which we assume missing.
Qualitative approaches, while prone to biases and inaccuracies, do
not require such data, and are easier to understand [279]. In addition,
we would like to limit the input from the user so that it improves the
approach’s usability and its likelihood to be adopted in production.

In this chapter, we first describe the models that we rely on. Then,
we detail how we select cost-sensitive responses using such models.

5.1 models

In comparison to previous approaches, we do not introduce a model
and a response selection based on vulnerability graphs, attack graphs,
or similar [113, 151, 239, 241]. We consider that we do not know how
the attacker managed to compromise the service at the moment. We
also assume that we cannot predict the next steps of the attacker.
Instead, we use a different paradigm where we consider that we have
information about the characteristics of the intrusions, or the behaviors
exhibited by the attacker.

5.1.1 Malicious Behaviors and Responses

Intrusions may exhibit multiple malicious behaviors that need to be
stopped or mitigated differently. In our approach, we work at the level
of a malicious behavior, and we select a response for each malicious
behavior of an intrusion.

Our models rely on a hierarchy of malicious behaviors where the
first levels describe high-level behaviors (e.g., compromise data avail-
ability), while lower levels describe more precise behaviors (e.g., en-
crypt files). The malware capabilities hierarchy [201] from the project
Malware Attribute Enumeration and Characterization (MAEC) [155]
of MITRE is a suitable candidate for such a hierarchy.84 Figure 5.1 il-
lustrates an example of a non-exhaustive malicious behavior hierarchy
with behaviors that relates to availability violations and to C&C.
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Malicious behaviors
Availability violation

Consume system resources
Crack passwords

Mine for cryptocurrency

Compromise data availability
Compromise access to information assets

Compromise system availability
Denial of service
Compromise local system availability

Command and Control
Determine C&C server

Generate C&C domain name(s)
Receive data from C&C server

Control malware via remote command
Update configuration

Send data to C&C server
Send system information

Send heartbeat data
Check for payload

Figure 5.1: Example of a non-exhaustive malicious behavior hierarchy

We model this hierarchy as a partially ordered set (M,≺M) with ≺M

a binary relation over the set of malicious behaviors M. The relation
m ≺M m′ means that m is a more precise behavior than m′. Let I
be the space of intrusions reported by the IDS. We assume that for
each intrusions i ∈ I, we can map the set of malicious behaviors
Mi ⊆ M exhibited by i. By construct, we have the following property:
if m ≺M m′ then m ∈ Mi =⇒ m′ ∈ Mi.

We also rely on a hierarchy of responses where the first levels
describe coarse-grained responses (e.g., block the network), while
lower levels describe more fine-grained responses (e.g., block port 80).
We define the hierarchy as a partially ordered set (R,≺R) with ≺R

a binary relation over the set of responses R (r ≺R r′ means that r
is a more fine-grained response than r′). Let Rm ⊆ R be the set of
responses that can stop a malicious behavior m. By construct, we have
the following property: if r ≺R r′ then r ∈ Rm =⇒ r′ ∈ Rm. Such
responses are based on the OS-features available to restrict privileges
and quotas on the system.

Figure 5.2 is an example of this response hierarchy. Note that for
each response with arguments (e.g., read-only paths or blacklisting
IP addresses), the hierarchy provides a sub-response with a subset
of the arguments. For example, if there is a response that puts /var

read-only, there is also the responses that puts /var/www read-only.
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Per-service responses
File system

Read-only file system
Read-only path

Read-only subpath

Inaccessible path

System calls
Blacklist any system call

Blacklist a list or a category of system calls
Blacklist system calls with specific arguments

Capabilities
Deny a set of capabilities

Network
Disable network

Blacklist any IP address
Blacklist IP address range

Blacklist IP address
Blacklist any port

Blacklist port range
Blacklist port

Restrict address families
Devices

Isolate device
Resources

Limit the number of tasks
CPU quota
Limit memory consumption

I/O quota

Figure 5.2: Example of a non-exhaustive per-service response hierarchy

5.1.2 Malicious Behavior Cost and Response Cost

Let the space of services be denoted S and let the space of qualitative
linguistic constants be a totally ordered set, denoted Q composed as
follows: none < very low < low < moderate < high < very high <

critical. We extend each service configuration file with the notion of
malicious behavior costs and response costs (in terms of quality of
service lost) that an administrator needs to set.

A malicious behavior cost cmb ∈ Cmb ⊆ Q is the qualitative impact
of a malicious behavior m ∈ M. We define mbcost : S × M → Cmb, the
function that takes a service, a malicious behavior, and returns the
associated cost.

We require for each service that a malicious behavior cost is set
for the first level of the malicious behaviors hierarchy (e.g., there
are only 20 elements on the first level of the hierarchy from MAEC).
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We do not require it for other levels, but if more costs are set, then
the response selection will be more accurate. The mbcost function
associates a cost for each malicious behavior m. The cost, however,
could be undefined. In such a case, we take the cost of m′ such that
mbcost(s, m′) is defined, m ≺M m′, and ∄m′′ such that m < m′′ < m′

with mbcost(s, m′′) defined.
For example, the policy of a web server w could express that any

malicious behavior that violate availability has a high cost in general:

mbcost(w, "availability-violation") = "high"

It means that malicious behaviors that are children of this node in the
hierarchy also have their cost automatically defined, such as:

mbcost(w, "compromise-data-availability") = "high"

We could consider that the cost of this malicious behavior does not
need to be refined since an intrusion that compromise data availability
(e.g., ransomware) have a high cost, since the web server would not
provide access to the websites anymore. However, if not all availability
violations have the same cost, they could be refined. For instance, the
policy could express that an intrusion that only consumes system
resources (e.g., a cryptocurrency mining malware) has a moderate cost
since it would only slow down the system or the service. It would
be expressed by overriding the cost for a more specific malicious
behavior:

mbcost(w, "consume-system-resources") = "moderate"

A response cost cr ∈ Cr ⊆ Q is the qualitative impact of applying a
response r ∈ R on a service to stop a malicious behavior. We define
rcost : S × R → Cr, the function that takes a service, a response, and
returns the associated response cost.

Response costs allow an administrator or developer of a service to
specify how a response, if applied, would impact the overall quality of
service. The impact can be assessed based on the number of functions
that would be unavailable and their importance for the service. More
importantly, with the value critical, we consider that a response would
disable a core function of a service and thus should never be applied.
Similarly, the cost could be undefined, hence we take the cost of r′

such that rcost(s, r′) is defined, r ≺R r′, and ∄ r′′ such that r < r′′ < r′

with rcost(s, r′′) defined.
Following the same example, the policy could express that the

network, and especially the ability to listen on ports 80 and 443 is
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85 Organizations such as the
Information Technology -
Information Sharing and
Analysis Center (IT-ISAC) [140]
or national Computer Emergency
Response Teams (CERTs) [258]
provide threat intelligence feeds
to their members using STIX.

critical for the core functions of the web server, while removing the
ability to listen on other ports does not have any impact on the service:

rcost(w, "network") = "critical"

rcost(w, "blacklist-any-port") = "none"

rcost(w, "blacklist-port-80") = "critical"

rcost(w, "blacklist-port-443") = "critical"

Similarly, having access to the file system is critical, but if the web
server would lose write access to the file system, the cost could be
high and not critical, since it can still provide access to websites for
many use cases:

rcost(w, "filesystem") = "critical"

rcost(w, "read-only-filesystem") = "high"

Both costs need to be configured depending on the context of the
service. For example, a web server that provides static content does
not have the same context, hence the same costs as one that handles
transactions.

5.1.3 Response Performance

While responses have varying costs on the quality of service, they
also differ in performance against a malicious behavior (i.e., their
efficiency at stopping a specific malicious behavior). For example,
making a subset of the file system read-only is less efficient to stop
some ransomware than making the whole file system read-only. Hence,
we consider the performance as a criterion to select a response, among
others. The most effective response in terms of performance would be
to stop the infected service. While our model allows it, in this work
we only mention fine-grained responses that aim at maintaining the
availability. Other work described in Section 3.3.3.3 already studied
the use of such coarse-grained responses.

The space of qualitative response performances is denoted Pr ⊆ Q.
We define rper f : R × M → Pr, that takes a response, a malicious
behavior, and returns the associated performance.

In contrast to the cost models previously defined that are specific to
a system and its context (and need to be set, e.g., by an administrator of
the system), such a value only depends on the malicious behavior and
is provided by security experts that analyzed similar intrusions. This
response performance come from threat intelligence sources that are
shared, for example, using Structured Threat Information eXpression
(STIX) [21].85 For example, STIX has a property called "efficacy" in its
"course-of-action" object that represent responses.
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5.1.4 Risk Matrix

We rely on the definition of a risk matrix that satisfies the axioms
proposed by Anthony Tony Cox [11] to provide consistent risk as-
sessments: weak consistency, betweenness, and consistent coloring.
While he defines these axioms more formally, we summarize them as
follows:

weak consistency Each risk qualified as high should have a quan-
titative risk higher than all risk qualified as low.

betweenness A small increase in confidence or in cost should not
change the risk rating from low to high (there should always be
an intermediate).

consistent coloring Equal quantitative risks should have the
same qualitative risk rating if either one of them is rated as high
or low.

The risk matrix needs to be defined ahead of time by the adminis-
trator depending on the risk attitude of the organization: whether the
organization is risk averse, risk neutral, or risk seeking. The 5 × 5 risk
matrix shown in Table 5.1 is one instantiation of such a matrix.

Malicious Behavior Cost

Confidence
(Likelihood)

Very low
0 – 0.2

Low
0.2 – 0.4

Moderate
0.4 – 0.6

High
0.6 – 0.8

Very high
0.8 – 1

Very likely
0.8 – 1

L M H H H

Likely
0.6 – 0.8

L M M H H

Probable
0.4 – 0.6

L L M M H

Unlikely
0.2 – 0.4

L L L M M

Very unlikely
0 – 0.2

L L L L L

Table 5.1: Example of a 5 × 5 risk matrix that follows the requirements for
our risk assessment

The risk matrix outputs a qualitative malicious behavior risk k ∈
K ⊆ Q. The risk matrix depends on a malicious behavior cost (impact),
and on the confidence level ic f ∈ Icf ⊆ Q that the IDS has on the
intrusion (likelihood).

We define risk : Cmb × Icf → K, the function representing the risk
matrix that takes a malicious behavior cost, an intrusion confidence,
and returns the associated risk.
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5.1.5 Policy Definition and Inputs

Having discussed the various models we rely on, we can define the
policy as a tuple of four functions ⟨rcost, rper f , mbcost, risk⟩. The risk
function is defined at the organization level. It needs to be defined
once, it is the same for each service, and unless the risk tolerance
of the organization evolve it should not change. Moreover, rper f is
constant and can be applied for any system. However, mbcost and
rcost are defined for each service depending on its context. Hence, the
most time-consuming parameters to set are mbcost and rcost.

The function mbcost can be defined by someone that understands
the impact of malicious behaviors based on the service’s context (e.g.,
an administrator). rcost can be defined by an expert, a developer of
the service, or a maintainer of the OS where the service is used, since
they understand the impact of removing certain privileges to the
service. For example, some Linux distributions provide the security
policies (e.g., SELinux or AppArmor) of their services and applications.
Much like SELinux policies, rcost could be provided this way, since
the maintainers would need to test that the response do not render a
service unusable (i.e., by disabling a core functionality).

5.2 optimal response selection

We now discuss how we use this policy to select cost-sensitive re-
sponses. Our goal is to maximize the performance of the response
while minimizing the cost to the service. We rely on known Multi-
Objective Optimization (MOO) methods [189] to select the most cost-
effective response, as does other work on response selection [204,
241].

For conciseness, since we are selecting a response for a malicious
behavior m ∈ M and a service s ∈ S, we now denote rper f (r, m) as pr,
rcost(s, r) as cr, and mbcost(s, m) as cmb.

5.2.1 Overview

When the IDS triggers an alert, it provides the confidence ic f ∈ Icf
of the intrusion i ∈ I and the set of malicious behaviors Mi ⊆ M
corresponding to this intrusion. Before selecting an optimal response,
we filter out any response that have a critical response cost from
Rm (the space of responses that can stop a malicious behavior m).
Otherwise, such responses would impact a core function of the service.
We denote R̂m ⊆ Rm the resulting set:

R̂m
= { r ∈ Rm | cr < critical }
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86 Also known as a Pareto front.

87 An alternative would be to use
fuzzy logic to reflect the

uncertainty regarding the risk
assessment from experts when
using linguistic constants [89].

For each malicious behavior m ∈ Mi, we compute the Pareto-
optimal set from R̂m, where we select an optimal response from. We
now describe these last steps.

5.2.2 Pareto-Optimal Set

In contrast to a Single-Objective Optimization (SOO) problem, a MOO
problem does not generally have a single global solution. For instance,
in our case we might not have a response that provides both the
maximum performance and the minimum cost, because they are
conflicting, but rather a set of solutions that are defined as optimum.
A common concept to describe such solutions is Pareto optimality.

A solution is Pareto-optimal (non-dominated) if it is not possible
to find other solutions that improve one objective without weakening
another one. The set of all Pareto-optimal solutions is called a Pareto-
optimal set.86 More formally, in our context, we say that a response is
Pareto-optimal if it is non-dominated. A response r ∈ Rm dominates a
response r′ ∈ Rm, denoted r ≻ r′, if the following is satisfied:

[pr > pr′ ∧ cr ≤ cr′ ] ∨ [pr ≥ pr′ ∧ cr < cr′ ]

MOO methods help to choose solutions among the Pareto-optimal
set using preferences (e.g., should we put the priority on the perfor-
mance of the response or on reducing the cost?) [189]. They rely on
a scalarization that converts a MOO problem into a SOO problem.
One common scalarization approach is the weighted sum method that
assigns a weight to each objective and compute the sum of the product
of their respective objective. However, this method is not guaranteed
to always give solutions in the Pareto-optimal set [189].

Shameli-Sendi et al. [241] decided to apply the weighted sum
method on the Pareto-optimal set instead of on the whole solution
space to guarantee to have a solution in the Pareto-optimal set. We
apply the same reasoning, so we reduce our set to all non-dominated
responses. We denote the resulting Pareto-optimal set O:

O = { ri ∈ R̂m | ∄rj ∈ R̂m, rj ≻ ri }

5.2.3 Response Selection

Before selecting a response from the Pareto-optimal set using the
weighted sum method, we need to set weights, and to convert the
linguistic constants into numerical values.

We rely on a function l that maps the linguistic constants to a nu-
merical value87 between 0 and 1. In our case, we convert the linguistic
constants critical, very high, high, moderate, low, very low, and none,
to respectively the value 1, 0.9, 0.7, 0.5, 0.3, 0.1, and 0.
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We use the risk matrix to set the weight of the response performance:

k = risk(cmb, ic f )

wp = l(k)

Then, we set the weight of the response cost as follows:

wc = 1 − wp

This means that we prioritize the performance if the risk is high, while
we prioritize the cost if the risk is low.

We obtain the final optimal response by applying the weighted sum
method:

arg max
r∈O

wpl(pr) + wc(1 − l(cr))





6
A R C H I T E C T U R E A N D I M P L E M E N TAT I O N

The architecture and an implementation of our solution is discussed
in this chapter. We provide the reasoning behind our design, what we
require, and the choices we made to build our prototype.

6.1 architecture and requirements

Our approach relies on four components. In this section, we first give
an overview of how each component works and interacts with the
others, as illustrated in Figure 6.1. Then, we detail requirements about
our architecture.

Service n
Service 2

Service 1

Service
ManagerStates

Logger

LogsResponses
Selection

IDS
Policies

Isolated Components Monitored
Services

User space

Per-service
Privileges
& Quotas

dynamic policy

MAC
static policy

Resources, Files, Devices, Network,. . .

Kernel space

Trigger
Checkpoint

Use Notify
Alerts

Send Responses

Monitor

Store

Log

Store & Fetch

Manage

Use

Isolate

Configure

1 2 n

Figure 6.1: Overview of the architecture of our intrusion survivability
approach
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88 We could also take a snapshot
just before restoring the infected
service to a previous state. This

snapshot would be helpful to
perform further offline forensic

analyses. Such an approach,
however, was not implemented

in our prototype.

89 It also means that we can
sustain a privileged attacker (e.g.,

with root privileges).

6.1.1 Overview

During the normal operation of the OS, the service manager creates
periodic checkpoints of the services and snapshots of the file system.
In addition, a logging facility logs the path of all the files modified by
the monitored services since their last checkpoint. The logs are later
used to filter the files that need to be restored.

The IDS notifies the response selection component when it detects
an intrusion and specifies information about possible responses to
withstand it. The selected responses are then given to the service
manager. The service manager restores the infected service88 to the last
known safe state including all the files modified by the infected service.
Then, it configures kernel-enforced per-service privilege restrictions
and quotas based on the selected responses.

Finally, we rely on a static MAC policy to isolate our components.
This policy is also enforced by the kernel, but in comparison to the
per-service responses, it does not change over time.

6.1.2 Last Known Safe State

To select the last known safe state, we rely on the IDS to identify the
first alert related to the intrusion and to provide us with a timestamp.
Then, we consider that the first state prior to the timestamp of this
alert is safe. In practice, however, the IDS might not be aware of the
intrusion until a certain point in time. For example, if an intrusion
happens at time t, but the IDS is only aware of this intrusion at time
t + 2, we would select the state taken at t + 1 as the last known safe
state. Therefore, we would restore the state of the service to an infected
state.

Nevertheless, even if the restored state is infected because the IDS
was not aware of the intrusion at the time, we apply responses. The
per-service privilege restrictions and quotas that we apply stop the
exploitation of a vulnerability (i.e., the attacker is not able to reinfect
the service) or withstand a reinfection (i.e., attackers successfully
reinfected the service, but they are restricted).

6.1.3 Isolation of the Components

For our approach to be able to withstand an attacker trying to impede
the detection and recovery procedures, the integrity and availability
of each component is crucial. Different solutions (e.g., a hardware
isolated execution environment or a hosted hypervisor) could be used.
In our case, we rely on a kernel-based MAC mechanism, such as
SELinux [210], to isolate the components we used, as illustrated in Fig-
ure 6.1. Such a mechanism is available in commodity OSs, can express
our isolation requirements, and does not modify the applications.89
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90 One can also use a watchdog
to ensure that the components
are alive.

We now give guidelines on how to build a MAC policy to protect our
components.

First, the MAC policy must ensure that none of our components
can be killed.90 Otherwise, e.g., if the responses selection component
is not alive, no responses will be applied.

Second, the MAC policy must ensure that only our components have
access to their isolated storage (e.g., to store the logs or checkpoints).
Otherwise, attackers might e.g., erase an entry to avoid restoring a
compromised file.

Third, the MAC policy must restrict the communication between
the different components, and it must only allow a specific program to
advertise itself as one of the components. Otherwise, an attacker might
impersonate a component or stop the communication between two
components. In our case, we assume a Remote Procedure Call (RPC)
or an IPC mechanism that can implement MAC policies.For example,
the D-Bus [83] IPC mechanism—which is adopted by most Linux
distributions and used by many services—is SELinux-aware [275].

6.1.4 Intrusion Detection System

Our approach requires an IDS to detect an intrusion in a monitored
service. We do not require a specific type of IDS. It can be external to
the system or not. It can be misuse-based or anomaly-based. We only
have two requirements.

First, the IDS should be able to pinpoint the intrusion to a specific
service to apply per-service responses. For example, if the IDS analyzes
event logs to detect intrusions, they should mention the service that
triggered the event.

Second, the IDS should have information about the intrusion. It
should map the intrusion to a set of malicious behaviors (e.g., the
malware capabilities [201] from MAEC [155]), and it should provide
a set of responses that can stop or withstand them. Both types of
information can either be part of the alert from the IDS or be generated
from threat intelligence based on the alert. Generic responses can
also be inferred due to the type of intrusion if the IDS lacks precise
information about the intrusion. For example, a generic response for
ransomware consists in setting the file system hierarchy as read-only.
Information about the alert, the responses, or malicious behaviors,
are shared between members of threat intelligence sources [140, 258]
using standards such as STIX [21] and MAEC [155, 200].

6.1.5 Service Manager

Commodity OSs rely on a service manager executed in user space (e.g.,
the Service Control Manager [231] for Windows, or systemd [253] for
Linux distributions) to launch and manage services. In our architecture,
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we rely on it, since it provides the appropriate level of abstraction
to manage services and it has the notion of dependencies between
services. Using such information, we can restore services in a coherent
state. If a service depends on other services (e.g., if one service writes
to a file and another one reads it), we checkpoint and restore them
together.

We extend the service manager to checkpoint and restore the state
of services. Furthermore, we modify the service manager so that
it applies responses before it starts a recovered service. Since such
responses are per-service, the service manager must have access to OS
features to configure per-service privileges and resource quotas.

The service manager must be able to kill a service (i.e., all alive
processes created by the service) in case it is compromised and needs
to be restored. Therefore, we bound processes to the service that
created them, and they must not be able to break the bound. For
example, we can use cgroups [125] in Linux or job objects [193] in
Windows.

The MAC policy must ensure that only the service manager can
manage the collections of processes (e.g., /sys/fs/cgroup in Linux).
Otherwise, if an attacker breaks the bound of a compromised service,
it would be difficult to kill the escaped processes. Similarly, the MAC
policy must protect configuration files used by the service manager.

Finally, the service manager must have the notion of dependencies
between services. Using such information, provided by the adminis-
trator or the vendor, we can restore services in a coherent state. If a
service depends on other services (e.g., if one service writes to a file
and another one reads it), we checkpoint and restore them together.
For example, with systemd, one has to state in the configuration file of
a service the dependency requirements on other services with the di-
rective Requires= followed by the name of the services [93]. If service
A depends on service B, it needs to state Requires=A.service.

6.2 linux-based prototype implementation

We implemented a Linux-based prototype by modifying several exist-
ing projects. While our implementation relies on Linux features such
as namespaces [149], seccomp [70], or cgroups [125], our approach
does not depend on OS-specific paradigms. For example, on Windows,
one could use Integrity Mechanism [196], Restricted Tokens [195], and
Job Objects [193]. In the rest of this section, we describe the projects
we modified, why we rely on them, and the different modifications
we made to implement our prototype. You can see in Table 6.1 the
different projects we modified where we added in total nearly 3600

lines of C code.
At the time of writing, the most common service manager on Linux-

based systems is systemd [253]. We modified it to checkpoint and
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Project From version Code added

CRIU 3.9 383 lines of C

systemd 239 2639 lines of C

audit

user space 2.8.3 79 lines of C

Linux kernel 4.17.5 460 lines of C

Total 3561 lines of C

Table 6.1: Projects modified for the implementation of our intrusion
survivability approach

91 We also modified CRIU to use
it as a bundled library inside
systemd.
92 It mainly relies on the /proc

special file system that provides
an access to many kernel data
structures about processes.

93 They rely on the ptrace

system call that allows a
privileged process to control the
execution of another process.

to restore services using CRIU [76] and snapper [247], and to apply
responses at the end of the restoration.

6.2.1 Checkpoint and Restore

CRIU is a checkpoint and restore project implemented in user space
for Linux. We chose CRIU because it allows us to perform trans-
parent checkpointing and restoring (i.e., without modification or
recompilation) of the services.91 It can checkpoint the state of an
application by fetching information about it from different kernel
APIs.92 For each process that is checkpointed, CRIU collects infor-
mation such as its memory mappings (/proc/[pid]/maps), the files
it opened (/proc/[pid]/fd and /proc/[pid]/fdinfo), or other infor-
mation about the process (/proc/[pid]/stat). Then, CRIU needs to
gather information that only the process has access to. To achieve that,
it injects “parasite code” inside the process address space and it makes
the process execute that code.93 Using this “parasite code”, CRIU can
dump the memory content or the system call filters for instance. CRIU
stores all the information gathered during the checkpointing inside
an image. To restore the application, CRIU reuses this image and use
other kernel APIs to recreate the exact same state.

Snapper provides an abstraction for snapshotting file systems and
handles multiple Linux file systems (e.g., BTRFS [227]). It can create a
comparison between a snapshot and another one (or the current state
of the file system). In our implementation, we chose BTRFS due its
Copy-On-Write (COW) snapshot and comparison features, allowing a
fast snapshotting and comparison process.

When checkpointing a service, we first freeze its cgroup (i.e., we
remove the processes from the scheduling queue) to avoid inconsis-
tencies. Thus, it cannot interact with other processes nor with the file
system. Second, we take a snapshot of the file system and a snapshot
of the metadata of the service kept by systemd (e.g., status informa-
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94 See Section 6.2.3 for more
details.

tion). Third, we checkpoint the processes of the service using CRIU.
Finally, we unfreeze the service.

When restoring a service, we first kill all the processes belonging
to its cgroup. Second, we restore the metadata of the service and ask
snapper to create a read-only snapshot of the current state of the file
system. Then, we ask snapper to perform a comparison between this
snapshot and the snapshot taken during the checkpointing of the
service. It gives us information about which files were modified and
how. Since we want to only recover the files modified by the monitored
service, we filter the result based on our log of files modified by this
specific service94 and restore the final list of files. Finally, we restore
the processes using CRIU. Before unfreezing the restored service,
CRIU calls back our function that applies the responses. We apply
the responses at the end to avoid interfering with CRIU that requires
certain privileges to restore processes.

6.2.2 Responses

Our implementation relies on Linux features such as namespaces [149],
seccomp [70, 104], and cgroups [125], to apply responses. Here is a
non-exhaustive list of responses that our implementation supports:

• file system constraints (e.g., putting all or any part of the file
system read-only),

• system call filters (e.g., blacklisting a list or a category of system
calls),

• network socket filters (e.g., denying access to a range or a specific
IP address),

• resource constraints (e.g., enforcing CPU quotas or limit memory
consumption).

As mentioned previously, all the responses we apply are per-service.
For example, if we put the file system read-only or deny access to a
range of IP addresses, only the service that we target is impacted and
degraded, none of the other processes or services on the system are
impacted.

We modified systemd to apply most of these responses just before
unfreezing the restored service, except for system call filters. Seccomp
only allows processes to set up their own filters and prevent them to
modify the filters of other processes. Therefore, we modified systemd
so that when CRIU restores a process, it injects and executes code
inside the address space of the restored process to set up our filters.
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6.2.3 Monitoring Modified Files

The Linux auditing system [141, 260] is a standard way to trigger
events from the kernel to user space based on a set of rules. Linux
audit can trigger events when a process performs write accesses on the
file system. However, it cannot filter these events for a set of processes
corresponding to a given service (i.e., a cgroup). Hence, we modified
the kernel side of Linux audit to perform such filtering in order to
only log files modified by the monitored services. Then, we specified
a monitoring rule that relies on such filtering.

We developed a userland daemon that listens to an audit netlink
socket and processes the events generated by our monitoring rules.
Then, by parsing them, our daemon can log which files a monitored
service modified. To that end, we create a file hierarchy under a
per-service private directory. For example, if the service abc.service

modified the file /a/b/c/test, we create the following empty file
/private/abc.service/a/b/c/test. This solution allows us to log
modified files without keeping a data structure in memory.

6.2.4 Bugs and Patches

During the development of our prototype, we encountered various
bugs in the projects we used. We reported them and contributed to
several patches to fix them. We found a use-after-free in the Linux
kernel audit code [53], parsing bugs in systemd [52, 57], missing APIs
in CRIU [55, 56], and performance issues in snapper [54].

One of particular relevance was the one in snapper. When using
BTRFS as a backend, and when trying to perform a comparison be-
tween two snapshots, snapper first tries to use the built-in BTRFS
in-kernel features to perform a fast comparison. If this were to fail,
snapper would fallback to using a slow userland operation that would
call the system call stat to compare each file one by one. Unfortu-
nately, snapper always failed to use the BTRFS features (due to a
breaking change in the BTRFS library) and was always falling back to
the slow method. Therefore, to perform a comparison, snapper would
take around 30 s. We reported and fixed the bug; the operation now
takes less than 300 ms.
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95 This is consistent with the
study of Cozzi et al. [75] that
showed that in the 10 548 Linux
malware they studied, only
0.24 % of them tried to detect if
they were in a virtualized
environment.

E VA L UAT I O N A N D R E S U LT S

We performed an experimental evaluation of our approach to answer
the following questions:

1. How effective are our responses at stopping malicious behaviors
in case a service is compromised?

2. How effective is our approach at selecting cost-sensitive re-
sponses that withstand an intrusion?

3. What is the impact of our solution on the availability or respon-
siveness of the services?

4. How much overhead our solution incurs on the system re-
sources?

5. Do services continue to function (i.e., no crash) when they are
restored with less privileges that they initially needed?

The rest of this chapter is structured as follows. First, we describe our
experimental setup (Section 7.1). Second, we address security related
questions 1 and 2 (Section 7.2). Third, we address performance related
questions 3 and 4 (Section 7.3). Finally, we address the stability related
question 5 (Section 7.4), before summarizing our results (Section 7.5).

7.1 experimental setup

For the experiments, we installed Fedora Server 28 with the Linux
kernel 4.17.5, and we compiled the programs with GCC 8.1.1. We ran
the experiments that used live malware in a virtualized environment
to control malware propagation.

The setup consisted of an isolated network connected to the Internet
with multiple Virtual Local Area Networks (VLANs), two VMs, and
a workstation. We executed the infected service on a VM connected
to an isolated VLAN with access to the Internet. We connected the
second VM, that executes the network sniffing tool (tcpdump), to
another VLAN with port mirroring from the first VLAN. Finally, the
workstation, connected to another isolated VLAN, had access to the
server managing the VMs, the VM with the infected service, and the
network traces.

While malware could use anti-virtualization techniques [51, 215],
to the best of our knowledge, none of our samples used such tech-
niques.95 We executed the rest of the experiments on bare metal on

83
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96 See Appendix A for the hashes
of the malware samples.

a computer with an AMD PRO A12-8830B R7 at 2.5 GHz, 12 GiB of
RAM, and a 128 GB Intel SSD 600p Series.

Throughout the experiments, we tested our implementation on dif-
ferent types of services: web servers (nginx [206] and Apache [12]),
database (mariadb [187]), work queue (beanstalkd [24]), message
queue (mosquitto [103]), and git hosting services (gitea [120]).

7.2 security evaluation

In Section 7.2.1, we first evaluate how effective our responses and
recovery are at withstanding an intrusion and reinfection. Then, we
focus on how effective is our selection of responses in Section 7.2.2.

7.2.1 Responses Effectiveness

Our first experiments focus on how effective our responses against
distinct types of intrusions are. We are not interested, per se, in the
vulnerabilities that the attackers can exploit, but on how to stop
attackers from performing malicious actions after they have infected a
service.

The following list describes the malware96 and attacks we used:

linux .bitcoinminer Malware that connects to a mining pool us-
ing attackers-controlled credentials and mines cryptocurrency
by using the resources of the system [267].

linux .rex .1 Malware that joins a Peer-to-peer (P2P) botnet to receive
instructions to scan systems for vulnerabilities to replicate itself,
elevate privileges by scanning for credentials on the machine,
participate in a DDoS attack, or send spam [95].

hakai Malware that receives instructions from a C&C server to
launch DDoS attacks, and to infect other systems by brute forcing
credentials or exploiting vulnerabilities in routers [96, 207].

linux .encoder .1 Encryption ransomware that encrypts files com-
monly found on Linux servers (e.g., configuration files, or HTML
files), and other media-related files (e.g., JPG, or MP3), while
ensuring that the system can boot so that the administrator can
see the ransom note [94].

goahead exploit Exploit that gives remote code execution to an
attacker on all versions of the GoAhead [126] embedded web
server prior to 3.6.5 [126].

Our work does not focus on detecting intrusions but on how to
recover from and withstand them. Hence, we selected a diverse set
of malware and attacks that covered different malicious behaviors,
without selecting multiple malware with the same malicious behavior.
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97 Gitea is considered as an open
source clone of the services
provided by GitHub [121].

98 In our experiments, we used
an exploit for Gitea version
1.4.0 [255].

For each experiment, we start a vulnerable service, we checkpoint
its state, we infect it, and we wait for the payload to execute (e.g.,
encrypt files). Then, we apply our responses and we evaluate their
effectiveness. We consider the restoration successful if the service is
still functioning and its state corresponds to the one that has been
checkpointed. Finally, we consider the responses effective if we cannot
reinfect the service or if the payload cannot achieve its goals anymore.

Attack Scenario Malicious Behavior
Per-service

Response Policy

Linux.BitCoinMiner Mine for cryptocurrency Ban mining pool IPs

Linux.BitCoinMiner Mine for cryptocurrency Reduce CPU quota

Linux.Rex.1 Determine C&C server Ban bootstrapping IPs

Hakai Receive data from C&C Ban C&C servers’ IPs

Linux.Encoder.1 Encrypt data Read-only file system

GoAhead exploit Exfiltrate via network Forbid connect syscall

GoAhead exploit Data theft Render paths inaccessible

Table 7.1: Summary of the experiments that evaluate the effectiveness of the
responses against various malicious behaviors

The experiments are summarized in Table 7.1. In each experiment,
as expected, our solution successfully restored the service after the
intrusion to a previous safe state. In addition, as expected, each re-
sponse was able to withstand a reinfection for its associated malicious
behavior and only impacted the specific service and not the rest of the
system.

7.2.2 Cost-Sensitive Response Selection

Our second set of experiments focus on how effective is our approach
at selecting cost-sensitive responses. We chose Gitea, a self-hosted
Git-repository hosting service,97 as a use case for a service, because
it requires a diverse set of privileges and it shows how our approach
can be applied to a complex real-world service.

In our use case, we configured Gitea with the principle of least
privileges. It means that restrictions which corresponds to responses
with a cost assigned to none are initially applied to the service (e.g.,
Gitea can only listen on port 80 and 443 or Gitea have only access to
the directories and files it needs). Even if the service follows the best
practices and is properly protected, an intrusion can still do damages
(e.g., compromise the integrity of the repositories or the database) and
our approach handles such cases.

We consider an intrusion that compromised our Gitea service with
the Linux.Encoder.1 ransomware.98 When executed, it encrypts all the
git repositories and the database used by Gitea. Hence, we configured
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99 One would have to assign a
cost for other malicious

behaviors, but for the sake of
conciseness we only show the

relevant ones.

100 For more details, see the
study of Kharraz et al. [150] on

ransomware attacks and their
suggestions to detect them.

101 If the IDS does not provide
confidence metrics, the

organization or an administrator
could define one by default that
would need to be defined once.

the policy to set the cost of such a malicious behavior to high,99 since
it would render the site almost unusable:

mbcost("gitea", "compromise-data-availability") = "high"

Since our focus is not on intrusion detection, we assume that the
IDS detected the ransomware. This assumption is reasonable with,
for example, several techniques to detect ransomware such as API
call monitoring, file system activity monitoring, or the use of decoy
resources [150].100

However, in practice, an IDS can generate false positives, or it can
provide non-accurate values for the likelihood of the intrusion leading
to a less adequate response.101 Hence, we consider three cases to
evaluate the response selection: the IDS detected the intrusion and
accurately set the likelihood, the IDS detected the intrusion but not
with an accurate likelihood, and the IDS generated a false positive.

In Table 7.2, we display a set of responses for the ransomware. We
devised this set based on existing strategies to mitigate ransomware,
such as CryptoDrop lockdown [77] or Windows controlled folder
access [194]. None of these responses could have been applied proac-
tively by the developer of Gitea, because it degrades the quality of
service. We set their respective cost for the service and the estimated
performance. Finally, as a risk matrix, we use the one previously
described in Table 5.1.

# Response Cost (cr) Performance (pr)

1 Disable open system call Very High Very High

2 Read-only file system except sessions folder High Very High

3 Paths of git repositories inaccessible High Moderate

4 Read-only paths of all git repositories Moderate Moderate

5 Read-only paths of important git repositories Low Low

6 Read-only file system Critical Very High

Table 7.2: Responses to withstand ransomware reinfection with their
associated cost and performance for Gitea

Now let us consider the three cases previously mentioned. In the
first case, the IDS detected the intrusion and considered the intru-
sion very likely. After computing the Pareto-optimal set, we have
three possible responses left (2, 4, and 5). The risk computed is
risk("high", "very likely") = high. The response selection then priori-
tizes performance and selects the response 2 that sets the file system
as read-only except the session folder. This protects all information
stored by Gitea (git repositories and its database). The session folder
remains writable since having this folder read-only would render the
site unusable, thus it is a core function (see the cost critical in Table 7.2).
Gitea is restored with all the encrypted files. The selected response
prevents the attacker to reinfect the service since the exploit require
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102 In this case, technically
speaking, we would deactivate
the response by remounting the
directories as writable in the
namespace of the service.
However, as mentioned
in Section 8.3, other responses
might be more difficult to
deactivate.

write accesses. In terms of quality of service, users can connect to
the service and clone repositories, but due to the response a new
user cannot register and users cannot push to repositories. Hence,
this response is adequate since the service cannot get reinfected, core
functions are maintained, and other functions (e.g., users can log in)
are available.

In the second case, the IDS detected the intrusion but considered
the intrusion very unlikely while the attacker managed to infect the
service. The risk computed is risk("high", "very unlikely") = low. The
response selection then prioritizes cost and selects the response 5

that sets a subset of git repositories (the most important ones for the
organization) as read-only. With this response, the attacker managed to
reinfect the service and the ransomware encrypted many repositories,
but not the most important ones. In terms of quality of service, users
can still access the protected repositories, but due to the intrusion
users cannot login anymore and they cannot clone the encrypted
repositories (i.e., Gitea shows an error to the user). Hence, the response
is less adequate when the IDS provides an incorrect value for the
likelihood of the intrusion, since the malware managed to encrypt
many repositories, but the core functions of Gitea are maintained.

In the third case, the IDS detected an intrusion with the likelihood
being very likely, but it is in fact a false positive. The risk computed is
risk("high", "very likely") = high. It is similar to the first case where
the response selected is response 2 due to a high risk. However, in
this case, there is no actual ransomware. In terms of quality of service,
users still have access to the service, since they can access the site,
they can log in, and they can clone all repositories. However, they
cannot register, they cannot push modifications to the repositories,
and they cannot add issues. It shows that even with false positives,
our approach minimizes the impact on the quality of service. Once
an analyst classified the alert as a false positive, the administrator can
configure the service to leave the degraded mode by deactivating the
response.102

7.3 performance evaluation

Having evaluated and discussed the effectiveness of our approach at
withstanding intrusions, we now focus on the availability and overall
performance impact of our solution.

7.3.1 Availability Cost

In this subsection, we detail the experiments that evaluate the avail-
ability cost for the checkpoint and restore procedures.

Each time we checkpoint a service, we freeze its processes. As
a result, a user might notice a slower responsiveness from the ser-
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vice. Hence, we measured the time to checkpoint different services:
Apache HTTP server (v2.4.33), nginx (v1.12.1), mariadb (v10.2.16),
and beanstalkd (v1.10). We repeated the experiment 10 times for each
service. In average the time to checkpoint was always below 300 ms.
In Table 7.3, we show more detailed timings about the different op-
erations executed during a checkpoint: initialize (i.e., to initialize
structures, to create or open directories, and to freeze processes), snap-
shot the file system, serialize the service’s metadata, and checkpoint
the processes using CRIU. We see that the time to perform this last
operation varies depending on the service while other operations are
not dependent on the service. It is related to the resources used by the
service (e.g., the number of processes, memory used, or files opened):
more resources used means more time spent by CRIU to checkpoint
them.

Checkpoint Operation Mean
Standard

deviation

Standard error

of the mean

Service-independent operations

Initialize (µs) 643.20 90.75 14.35

Checkpoint service metadata (µs) 51.47 8.45 1.33

Snapshot file system (ms) 98.95 1.38 2.19

Checkpoint processes (CRIU)

httpd (ms) 199.24 11.05 3.49

nginx (ms) 51.59 3.99 1.26

mariadb (ms) 171.77 8.52 2.69

beanstalkd (ms) 16.25 1.37 0.43

Total

httpd (ms) 298.88

nginx (ms) 151.24

mariadb (ms) 271.41

beanstalkd (ms) 115.89

Table 7.3: Time to perform the checkpoint operations of a service

In Figure 7.1, we illustrate the results of the availability cost that
users could perceive by measuring the latencies of HTTP requests
made to an nginx server. We generated 100 requests per second for 20

seconds with the HTTP load testing tool Vegeta [237]. During this time,
we checkpointed nginx at approximately 5, 11, and 16 seconds. We
repeated the experiment three times. The output gave us the latency of
each request, and we applied a moving average filter with a window
size of 5. All requests were successful (i.e., no errors or timeouts) and
the maximum latency during a checkpoint was 286 ms.

Both results show that our checkpointing has a small, but acceptable
availability cost. We do not lose any connection, we only increase the
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Figure 7.1: Impact of checkpoints on the latency of HTTP requests made to
an nginx server (less is better)

103 Note that in this experiment,
we performed a checkpoint then
directly afterward we restored
the service, it means the service
did not modify files during the
procedure. Hence, we only
evaluated the time to compare
snapshots and not the time it
takes to effectively restore files.
The time it takes to restore the
files would vary depending on
their number and their size.
104 It could be possible to
implement a method that retains
packets in a buffer during the
operation to avoid losing them,
as implemented by
CRIU-MR [277].
105 For example, checking
whether a process is part of the
monitored services adds
additional operations in the
kernel.

requests’ latency when the service is frozen. Since the latency increases
only for a small period of time (maximum 300 ms), we consider such
a cost acceptable. In comparison, SHELF [286] incurs a 7.6 % latency
overhead for Apache during the whole execution of the system.

We also evaluated the time to restore the same services. In average,
it took less than 325 ms. In Table 7.4, we show more detailed timings
about the different operations executed during a restore: initialize (i.e.,
to initialize structures and to open directories), kill the processes, com-
pare the snapshots of the file system, restore the service’s metadata,
and restore the processes using CRIU. When restoring, the time to
kill the processes is service-dependent due to the different processes
used and their number. We also see that the operation related to the
comparison of the snapshots prior to restoring infected files takes a
significant portion of the time.103

In contrast to the checkpoint, the restore procedure loses all network
connections since we kill the processes before restoring them.104 The
experiments, however, show that the time to restore a service is small
(less than 325 ms). For example, in comparison, CRIU-MR [277] took
2.8 s in average to complete their restoration process.

7.3.2 Monitoring Cost

As detailed in Section 6.2.3, our solution logs the path of any file
modified by a monitored service. This monitoring, however, incurs
an overhead for every process executing on the system—even for the
non-monitored services.105 There is also an additional overhead for
monitored services that perform write accesses due to the audit event
generated by the kernel and then processed by our daemon.
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Restore Operation Mean
Standard

deviation

Standard error

of the mean

Kill processes

httpd (ms) 16.39 2.52 1.13

nginx (ms) 19.24 3.69 1.65

mariadb (ms) 28.48 2.16 0.97

beanstalkd (ms) 10.85 1.19 0.53

Service-independent operations

Initialize (µs) 209.40 32.07 7.17

Compare Snapshots (ms) 148.23 32.01 7.16

Restore service metadata (µs) 212.75 36.23 8.10

Restore processes (CRIU)

httpd (ms) 132.42 6.09 2.72

nginx (ms) 59.88 4.88 2.18

mariadb (ms) 147.07 2.59 1.16

beanstalkd (ms) 36.63 2.87 1.28

Total

httpd (ms) 299.29

nginx (ms) 227.79

mariadb (ms) 324.22

beanstalkd (ms) 196.16

Table 7.4: Time to perform the restore operations of a service

Therefore, we evaluated the runtime overhead due to the monitoring
by running synthetic and real-world workload benchmarks, from the
Phoronix test suite [164], for three different cases:

1. no monitoring is present (baseline),

2. monitoring rule enabled, but the service running the benchmarks
is not monitored (no audit events are triggered),

3. monitoring rule enabled and the service is monitored (audit
events are triggered).

7.3.2.1 Synthetic Benchmarks

We ran synthetic I/O benchmarks that stress the system by performing
many open, read, and write system calls:

compilebench It emulates disk I/O operations related to the com-
pilation of a kernel tree, reading the tree, or its creation [190].

fs-mark It creates files and directories, at a given rate and size, either
synchronously or asynchronously [280].
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postmark It emulates an email server by performing a given number
of transactions that create, read, append to, and delete files of
varying sizes [147].

The results of the read compiled tree test of the compilebench

benchmark (Figure 7.2c) confirmed that the overhead is only due to
open system calls with write access mode. This test only reads files,
and we do not observe any noticeable overhead (less than 1 %, within
the margin of error).
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Figure 7.2: Results of synthetic benchmarks to measure the overhead of the monitoring

We now focus on the results of the fs-mark and Postmark bench-
marks, respectively illustrated in Figure 7.2a and Figure 7.2b. In both
experiments, we notice a small overhead when the service is not mon-
itored (between 0.6 % and 4.5 %). With fs-mark (Figure 7.2a), when
writing 1000 files synchronously, we observe a 7.3 % overhead. In com-
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106 While build-linux-kernel is
CPU bound, it also performs

many system calls, such as
opening files to store the output

of the compilation.

parison, when the files are written asynchronously, there is a 27.3 %
overhead. With Postmark (Figure 7.2b), we observe that the overhead
is quite important (28.7 %) when it writes many small files (between
5 KiB and 512 KiB) but remains low (3.1 %) with bigger files (between
512 KiB and 1 MiB).

In summary, these synthetic benchmarks show that the worst case
for our monitoring is when a monitored service writes many small
files asynchronously in burst.

7.3.2.2 Real-world Workload Benchmarks

To have a different perspective than the synthetic benchmarks, we
chose two benchmarks that use real-world workloads:

build-linux-kernel It measures the time to compile the Linux
kernel.106

unpack-linux It measures the time to extract the archive of the
Linux kernel source code.
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Figure 7.3: Results of real-world workload benchmarks to measure the overhead of the monitoring

We illustrate the results in Figure 7.3. When the service is monitored,
the overhead is only significant with unpack-linux (Figure 7.3a) where
we observe a 23.7 % overhead. It concurs with our results from the syn-
thetic benchmarks: writing many small files asynchronously incurs a
significant overhead when the service is monitored (the time to decom-
press a file in this benchmark is negligible). With build-linux-kernel

(Figure 7.3b), we observe a small overhead (1.1 %) even when the
service is monitored (the time to compile the source code masks the
overhead of the monitoring).



7.4 stability of degraded services 93

107 For example, the CERT C
Coding Standard recommends
not to ignore values returned by
functions, and it provides a list of
tools that automatically detect
any violation of this
recommendation [46]. It also
recommends “implement[ing] a
consistent and comprehensive
error-handling policy” [45] with
an example of a tool to help
detect when this is not the case.

In comparison, SHELF [286] has a 65 % overhead when extracting
the archive of the Linux kernel source code, and an 8 % overhead
when building this kernel.

In conclusion, both the synthetic and non-synthetic benchmarks
show that our solution is more suitable for workloads that do not write
many small files asynchronously in burst. For instance, our approach
would be best suited to protect services such as web, databases, or
video encoding services.

7.3.3 Storage Space Overhead

Checkpointing services requires storage space to save the checkpoints.
To evaluate the disk usage overhead, we checkpointed the same
four services used in Section 7.3.1. Each checkpoint took respectively
26.2 MiB, 7.5 MiB, 136.0 MiB, and 130.1 KiB of storage space. The mem-
ory pages dumps took at least 95.3 % of the size of their checkpoint.
Hence, if a service uses more memory under load (e.g., Apache), its
checkpoint would take more storage space.

7.4 stability of degraded services

We tested our solution on diverse types of services: web servers (ng-
inx, Apache), databases (mariadb), work queues (beanstalkd), message
queues (mosquitto), or git hosting services (gitea). In terms of restora-
tion, none of the services crashed when restored with a policy that
removed privileges that they required (i.e., when they are in a de-
graded mode). The reason is twofold.

First, we provided a policy that specified the responses with a
critical cost. Therefore, our solution never selected a response that
removes a privilege needed by a core function. Second, the services
checked for errors when performing various operations. For example,
if a service needed a privilege that we removed, it tried to perform the
operation and failed, but only logged an error and did not crash. If
we generalize our results, it means our solution will not make other
services (that we did not test) crash if they properly check for error
cases. This practice is common, and it is often highlighted by the
compiler or static analysis tools when this is not the case.107

7.5 summary

Our evaluation shows that our approach is applicable to a diverse set
of services and it was able to withstand different types of intrusions.
The services do not crash when they are in a degraded mode. The
checkpointing does not lose any network connection, or other informa-
tion. We do, however, freeze the service, thus inducing an increase in
requests’ latency (as high as 300 ms). The restoration procedure does
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lose the network connections of the service, but the time to restore the
service is still under 325 ms. Finally, our evaluation of the monitoring
cost shows that our solution is suitable for CPU-intensive services,
and I/O-intensive services, except for rare cases where services create
many small files asynchronously. In the latter case, the overhead can
be as high as 28.7 %.
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C O N C L U D I N G R E M A R K S

Having demonstrated the effectiveness of the responses, and showed
the performance impact of our prototype, we now discuss the limita-
tions of our approach, we give a quick summary of the comparison of
our approach against the related work, and we conclude Part II while
providing some potential areas to investigate in the future.

8.1 discussion and limitations

We discuss non-exhaustively limitations, areas that would need further
work, or alternative choices for our solution.

false positives Since our approach relies on an IDS, we also in-
herit the limitations of this IDS. It is possible that we start the
recovery and response procedures due to a false positive from the
IDS. In this case, it will negatively impact the service’s availabil-
ity and its functions, despite thwarting no threat. Our approach,
however, minimizes this risk by considering the likelihood of
the intrusion for the selection of cost-sensitive responses and by
ensuring that core functions are maintained.

criu limitations At the moment, CRIU cannot support all types
of applications, since it has issues when handling external re-
sources or graphical applications. For example, if a process has
opened a device to have direct access to some hardware, check-
pointing the state of the process may not be possible (except if it
uses virtual or pseudo devices not corresponding to any phys-
ical devices). This technical limitation is because CRIU cannot
be sure that when it restores a process, the physical device has
the same state as when CRIU checkpointed the process. Since
our implementation relies on CRIU, we inherit its limitations.
Therefore, at the moment, our implementation is better suited
for system services that do not have a graphical part and do not
require direct access to some hardware.

alternative checkpointing An alternative to our transparent
checkpointing with CRIU would be to implement a cooperative
checkpointing approach where the service itself saves its state
and uses it to restore itself after the IDS detected an intrusion.
On one hand, such an approach would require changes in each
service by adding a procedure to dump their state. For exam-
ple, Android applications have such methods [10]. On the other

95
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108 The host-based approach
from Balepin et al. [20] requires

administrators to give
dependency information between

applications and the resources
they use on the system. While it

may be more precise than service
dependencies, it is a tedious,

error prone process, and it
introduces a maintenance burden.

109 For example, Linux
distributions rely on packages to

install services. Each package
contains the files to install on the

system. In addition, it may
contain instructions to create

directories or files that the
service requires. We could use

both information to improve the
reliability of the recovery in the

case we discussed.

hand, we would be able to apply more fine-grained mitigations,
because the restoration procedure would have semantic informa-
tion and knowledge of the data structures used by each service.
For example, as a more fine-grained mitigation, we could change
the implementation of a protocol.

service dependencies In our work, at the moment, we only use
the service dependency graph provided by the service manager
(e.g., systemd) to recover and checkpoint dependent services
together. We could also use this same graph to provide more
precise response selection by taking into account the dependency
between services, their relative importance, and to propagate
the impact a malicious behavior can have. It could be used as a
weight (in addition to the risk) to select optimal responses. Simi-
lar, but network-based, approaches have been heavily studied in
the past [152, 241, 266].108

state inconsistencies Let us consider a service that does not
follow properly the principle of least privilege with unnecessary
write access to various files on the system. This service gets
compromised and an attacker compromise files on the system
that other services depends on. If we restore the files after the
intrusion is detected, it could result in state inconsistencies in
the services that depends on these files. Indeed, since we do
not have information about which services use or depend on
these files, we cannot restore their processes as well. It is the
result of the trade-off we initially made where we do not monitor
every event on the system to limit the performance overhead.
More work would be needed to maintain the low overhead
while improving the reliability in such cases. For example, we
could use the information available during the installation of
a service109 to know a subset of the files it depends on, or we
could ask maintainers to list the directories or files it relies on.

models input For our cost-sensitive response selection, we first
need to associate an intrusion to a set of malicious behaviors, and
the course of action to stop these behaviors. While standards exist
to share threat information [21] and malicious behaviors [155,
200, 201] exhibited by malware, or attackers in general, we were
not able to find open sources that provided them directly for the
samples we used. This issue might be related to the fact that, to
the best of our knowledge, no industry solution would exploit
such information in an automated fashion. In our experiments,
we extracted information about malicious behaviors from textual
descriptions [94–96, 207, 267] and reused the existing standards
to describe such malicious behaviors [155, 200, 201]. Likewise, we
extracted information about responses to counter such malicious
behaviors from textual descriptions [77, 94–96, 194, 207, 267].
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110 See Section 3.3 for more
details about the state of the art
related to our work.

One may, nonetheless, assume that if approaches similar to ours,
or intrusion response systems in general, are becoming more
prevalent and used in production, threat intelligence sources
will eventually provide such data.

generic responses If we do not have precise information about
the intrusion, but only a generic behavior or category associated
to it (one of the top elements in the malicious behaviors hier-
archy), we could automatically consider generic responses. For
example, with ransomware we know that responses that either
render the file system read-only or only specific directories will
work. Such generic responses might help mitigate the lack of
precise information.

8.2 comparison with related work

Our approach addresses various issues that we identified from the
literature.110 We summarize in Table 13.1 a comparison of our intrusion
survivability approach against previous related work.
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Recover from intrusions ● ● ● ● ● ● ❍ ❍ ❍ ❍

Withstand (re)infections ● ❍ ❍ ❍ ❍ ❍ ● ● ● ●

Maintain availability ● ● ● ❍ ❍ ❍ ❍ ❍ ❍ ●

Host-based approach ● ● ● ● ● ● ❍ ● ❍ ●

Transparent ● ● ● ● ● ● ● ● ● ❍

Fine-grained responses ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ●

Use service dependency graphs ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ● ❍

Quantitative risk assessment ❍ ❍ ❍ ❍ ❍ ❍ ❍ ● ● ●

Qualitative risk assessment ● ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍ ❍

Table 8.1: Summary of the comparison between our intrusion survivability
approach and the related work

Legend

● Has the property
❍ Does not have the property
❍ Partially

To the best of our knowledge, our approach is the first to combine
the ability to recover from intrusions with the ability to withstand
potential reinfections after the system has been restored. Balepin et al.
[20] had the ability to recover a file from a backup as a response,
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111 We saw in Section 3.3.2.3
some intrusion recovery

approaches that tried to address
these issues—by limiting the

number of false positives and
false negatives—while

introducing performance issues.
112 We assume that we might not
know all the illegitimate actions

that were done.

113 Restoring to a previous state
also allows us to implement

responses that would be more
difficult otherwise (e.g.,

additional system call filters).

but they assume that the IDS knows precisely which file has been
compromised (and did not described how they were taking a backup
of the files nor the performance impact). In practice, we might not have
an accurate view of the illegitimate actions that have been carried out
by the attacker—we can overestimate them or miss some of them.111 In
our approach, we make a trade-off between precision and performance
by restoring all the files modified by a compromised service.112 In
addition, Balepin et al. [20] do not maintain the consistency between
the state of the processes and the files they depend on. In our approach,
to reduce the possibility of inconsistencies, we first freeze the processes.
Then, we take simultaneously a checkpoint of both the file system and
the state of the processes.

The fact that we can maintain the availability of the services and their
core functions despite the presence of an adversary means that the OS
can survive intrusions. Previous work on intrusion response [20, 113,
240] considered the cost of a response on the availability only in their
models. Some of their responses, however, would significantly impact
the availability without significant benefit for the security. For example,
Shameli-Sendi et al. [240] has responses that reboot completely a
system or restart a compromised service. In our approach, in addition
to taking into account the cost of a response, our ability to restore
the state of a service to a previous safe state minimize the availability
impact.113 Finally, in comparison to previous work, since we apply
per-service responses we minimize the impact of a response on the
rest of the system.

8.3 conclusion and future work

The work presented in this part of the dissertation introduces an intru-
sion survivability approach for commodity OSs. In contrast to other
intrusion recovery approaches, our solution is not limited to restoring
files or processes, but it also applies responses to withstand a potential
reinfection. Such responses enforce per-service privilege restrictions
and resource quotas to ensure that the rest of the system is not directly
impacted. In addition, we only restore the files modified by the in-
fected service to limit the restoration time. We devised a way to select
cost-sensitive responses that do not disable core functions of services.
We specified the requirements for our approach and proposed an
architecture satisfying its requirements. Finally, we developed and
evaluated a prototype for Linux-based systems by modifying systemd,
Linux audit, CRIU, and the Linux kernel. Our results show that our
prototype withstands known Linux attacks. Our prototype only in-
duces a small overhead, except with I/O-intensive services that create
many small files asynchronously in burst.

The initial idea behind this work has been presented at RESSI
in 2018 [59], then the work was finally published and presented at
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114 Shameli-Sendi et al. [239]
noticed that this capability is
rarely present among intrusion
response systems.

115 Much like CRIU-MR [277].

116 This history might rarely be
available for a response if we lack
sensors to evaluate its success,
and we also do not have data at
the beginning.

ACSAC in December 2019 [58]. For future work, we would like to
investigate the following areas:

response deactivation At some point the response we applied
that degrade the service’s state should be disabled (e.g., if a
patch fixing a vulnerability has been applied).114 We would like
to implement such ability, but it might raise some challenges. For
instance, for some responses on our Linux-based prototype, such
as system call filters, it would be difficult to deactivate them
without doing a checkpoint directly followed by a restore.115

System call filters cannot be disabled once set, so we would need
to recreate the current state of the service while removing some
system call filters in the image of the processes.

dynamic response adaptation At the moment we rely on ex-
perts to assess the performance of a response. This assessment,
however, might be biased or wrong. We would like to add the
ability of our approach to adapt the selection of responses based
on the history of their success or failure [239, 252]. Our approach
would still by default rely on expert assessments,116 but it would
use an additional weight to select a response if there is a success
rate available for a response.

hardware-based isolation and enforcement We trust the
kernel to isolate our components from the attacker. In addition,
we trust the kernel to enforce our policies and responses. Un-
fortunately, as mentioned in Section 3.3.1, kernel vulnerabilities
exist, have a long life span, and could be used to bypass our
solution. We would like to investigate if and how we could
change our architecture to execute some of our components in
a hardware-based isolated environment without introducing a
semantic gap or a maintenance burden.
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I N T R O D U C I N G A S M M B E H AV I O R M O N I T O R I N G
A P P R O A C H

In the previous part, we described our approach on how to survive
intrusions at the OS-level. Before being able to survive, however, one
must be able to detect an intrusion. As mentioned in Section 1.1.3,
there are many solutions to detect intrusions at the OS-level. On the
other hand, at the firmware level, there are fewer solutions available
to detect intrusions or attacks targeting the low-level components of
a platform. Therefore, in this part, we focus on intrusion detection at
the firmware level.

Throughout this part, we use the BIOS as a use case. Indeed, it is
the low-level software component of the platform that acts as the boot
firmware, it is one of the most privileged software components, and it
is increasingly targeted by attackers; as explained in Section 1.1.3.

Current platforms focus mostly on boot time integrity of the BIOS
and the subsequent software components. The runtime part of the
BIOS—that provides services to the OS and the platform in general—
and more importantly the privileged services, have received less inter-
est from the community. Unfortunately, while the attacks targeting the
BIOS and the SMM were initially just proof of concepts [23, 33, 64, 99,
100, 211, 212, 223, 282–284], real-world attackers [118, 176, 226] have
started to exploit vulnerable systems.

In this part, we describe a solution to improve the current situation,
specifically on the detection side. The rest of this chapter is structured
as follows. In Section 9.1, we recall why the security of the privileged
services running in SMM is important, and why current platforms
are most likely vulnerable. Then, in Section 9.2, we introduce our
contributions. In Section 9.3, we give an overview of our approach
and the requirements we have. Finally, in Section 9.4, we provide the
threat model and the assumptions that we make for the subsequent
chapters.

9.1 motivation

As explained in Section 2.1.5, the SMM is the last bastion of firmware
security. It is the only mode that can write to the flash storage of the
BIOS, and its execution is invisible to the OS, thus a perfect place to
hide malware [106, 118, 176, 226]. In addition, it allows the attacker
to perform actions that cannot be realized with kernel privileges.
For example, the attacker could remain persistent on the platform or
modify security policies (e.g., disable secure boot).

103
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117 Often referred as a “bricked”
system or platform.

118 It has a low probability of
bricking the platform, but the
impact is high. Hence, even to

this day, the fear of updating still
persists—for instance one can
search "bios update risk" in a

search engine and find various
people asking in forums about

this risk.
119 For example, HP Sure Start

offers this capability [130].

In practice, vendors typically use third-party code to build their
firmware. It makes code review and vulnerability management more
difficult, since they do not necessarily follow the same coding style or
best practices. Hence, if a vulnerability is present in third-party code,
it might be more difficult to find and to fix.

Even if a vulnerability related to the SMM has been found, reported,
and patched in the BIOS’s source code, all affected platforms needs
to update their BIOS. In practice, however, the BIOS is not updated
frequently [162]. This may be due to two reasons.

First, there is a fear that updating the BIOS may render the platform
unusable117 if a bug occurs. In comparison to OS updates where if a
bug occurs one can simply reinstall the OS, a corrupted BIOS renders
the platform unusable. While such a fear may have been legitimate in
the past, current platforms can safely update their BIOS, but such a
belief still remains.118 Even in the unlikely case of a corrupted BIOS,
platform vendors offer solutions to automatically reflash the BIOS
without needing to send back the device.119

Second, the adoption of an automatic vendor-agnostic BIOS update
mechanism remains slow. Indeed, in the past, updating the firmware
of a device either required an inconvenient manual operation and to
use vendor-specific software for each platform. Recently, thanks to
the UEFI specifications, the update mechanism is more standardized
with the UEFI Capsules [272]. In addition, recent efforts from Win-
dows [192] or the LVFS [184] project for Linux provide an automatic
update mechanism using the UEFI Capsules. Both the adoption from
the vendor side (they have to upload their firmware voluntarily) and
from the OS side (they need to enable and use such mechanisms),
however, are slow. It results in platforms with outdated and vulnerable
BIOSs.

In summary, if a vulnerability is found in a BIOS it can remain
unfixed for a long period until an update is applied. Therefore, we
can assume that an attacker will find a vulnerability.

In this part of the dissertation, we present an intrusion detection
approach that address this issue by detecting intrusions that exploit
those vulnerabilities. Such an approach allows platforms to be resilient
against attackers despite the vulnerabilities and it reduces the risk of
unpatched BIOSs.

9.2 contributions

Our work focuses on designing an event-based monitor for detecting
intrusions that modify the expected behavior of the SMM code at
runtime. While monitoring the behavior of SMM is our primary goal,
ensuring the integrity of the monitor itself is critical to prevent an
attacker from evading detection. Thus, we isolate the monitor from
the monitored component (i.e., the target) by using a co-processor.
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A common issue affecting hardware-based approaches that rely on
an isolated monitor is the semantic gap between the monitor and the
target [49, 142]. This issue occurs when the monitor only has a partial
view of the target state. For example, if the monitor gets a snapshot of
the physical memory without knowing virtual to physical mapping
(e.g., CR3 register value on x86) it cannot reconstruct accurately the
memory layout of the target. Our monitor addresses this issue by
leveraging a communication channel that allows the target to send
any information required to bridge this semantic gap. We enforce the
communication of information relevant to the detection methods via
an instrumentation phase. In addition, we ensure that the attacker
cannot forge messages without first being detected.

Our detection approach relies on a model of the expected behavior
of the monitored component, where any significant deviation from this
behavior is flagged as illegal. We chose an anomaly-based approach
as we aim not only to detect the exploitation of known vulnerabilities,
but also of unknown or unreported (zero-day) vulnerabilities.

This approach is generic since it can rely on different detection meth-
ods i.e., different models of the legitimate behavior. It can be applied
to monitor different types of low-level software such as SMM or ARM
TrustZone secure world [13], which have the following properties:
expose primitives called infrequently by upper layers and perform
minimal computation per primitive. While generic, our approach
introduces multiple challenges (e.g., the overhead involved by the
communication, the provenance of the messages, or the integrity of
the monitor and the code added by the instrumentation phase). In this
work, we focus on the detection of attacks targeting the SMM code as
a use case and show how we tackled these challenges. To illustrate the
feasibility of our approach, we implement two detection methods: a
CFI policy and a policy that enforces the integrity of CPU registers
that control the execution context (e.g., CR3 and SMBASE).

Our contributions are the following:

• We propose a new approach using an event-based monitor tar-
geting low-level software (Section 9.3).

• We study the applicability of our approach using two detec-
tion methods (CFI and execution context integrity) to detect
intrusions and attacks against SMM runtime firmware code
(Chapter 10).

• We develop a prototype implementing our approach (Chap-
ter 11).

• We evaluate our approach in terms of detection capability and
performance overhead on real-world firmware widely used in
the industry (Chapter 12).
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9.3 approach overview and requirements

In this section, we describe the generic concepts and requirements of
our event-based behavior monitoring approach. As explained previ-
ously, such concepts could be used to monitor different targets and
could rely on different detection methods. We detail in Chapter 10 one
possible implementation of this approach to detect runtime attacks on
SMM code using CFI and other invariants.

Our approach, illustrated in Figure 9.1, relies on three key compo-
nents, which we detail in the following subsections: a co-processor, a
communication channel, and an instrumentation step. The dedicated
co-processor isolates the monitor from the target. The target uses
the communication channel to give more precise information about
its behavior to the monitor. The instrumentation step enforces the
communication.

Co-processor RAM Processor RAM

Co-processor

Expected
target behavior

Monitor

Processor

Instrumented code

Target

Communication
channel

Figure 9.1: High-level overview of our co-processor-based monitoring
approach

9.3.1 Co-Processor

The integrity of the monitor is crucial, because it is a trusted compo-
nent that we rely on to detect intrusions in our system. The monitor
could also be used to start remediation strategies and restore the sys-
tem to a safe state. If the attacker compromised our monitor, we could
not trust the detection nor the remediation.

When the target and the monitor share the same resources (e.g.,
CPU or memory), it gives the attacker a wide attack surface. Thus, it is
necessary to isolate the monitor from the target. Modern CPUs provide
hardware isolation features (e.g., SMM or ARM TrustZone [13]) to help
reduce the attack surface of privileged code. However, if one wants to
monitor the code executed in these environments, the monitor itself
cannot benefit from these isolation features.
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In our approach, we use a co-processor to execute the monitor’s
logic. This co-processor has its own execution environment and mem-
ory. Thus, the attacker cannot directly access this dedicated memory
even if the target has been compromised. The attacker could only
influence the behavior of the monitor via the communication channel,
which becomes the only remaining attack surface. The simplicity of
such an interface, however, makes it harder to find vulnerabilities
and to attack the monitor. Such a design reduces its attack surface.
Nevertheless, using a safe programming language for the monitor and
a careful code review should be considered.

In the following subsection, we discuss the requirements for our
communication channel.

9.3.2 Communication with the Monitor

Since we isolate the monitor from the target, the monitor cannot
retrieve entirely the execution context of the target. Thus, there is a
semantic gap between the current behavior of the target and what the
monitor, executed on the co-processor, can infer about this behavior [49,
142].

We introduce a communication channel between the monitor and
the target. It allows the target to send messages to the monitor. Dif-
ferent types of information could be sent using this communication
channel such as the content of a variable in memory, the content of a
register, or the address of a variable. The nature of such information
depends on the detection approaches implemented on the monitor,
providing flexibility in our approach.

This flexibility is an important aspect, because the class of vulnera-
bilities exploited over time evolves. If the attackers cannot exploit a
class of vulnerability due to preventive security mechanisms or due to
the monitoring, they might switch to other vulnerabilities currently
not handled by the monitoring or the mitigations.

The communication channel is the only remaining attack vector
against the monitor. Thus, how the monitor processes the messages
and how the target sends them are an important part of the security
of the approach. To this end, we require the following properties:

(cc1) message integrity If a message is sent to the monitor, it
cannot be removed or modified by code executed on the CPU.
Otherwise, an attacker could compromise the target and then
hide the intrusion by modifying or deleting the messages before
they are processed by the monitor.

(cc2) chronological order Messages are retrieved by the mon-
itor in the order of their emission. Otherwise, an attacker could
rearrange the order to evade the detection.
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(cc3) exclusive access The instrumented code and the monitor
have exclusive access to the communication channel. Other soft-
ware components of the platform cannot access it. Otherwise, an
attacker could forge messages faking a legitimate behavior.

(cc4) low latency Sending a message should be fast (e.g., sub-
microsecond), because low-level components need to minimize
the time spent performing their task to avoid impacting higher-
level components and the user experience.

9.3.3 Instrumentation of the Target

We enforce the communication from the target to the monitor by
adding the communication code during an instrumentation step. We
can perform the instrumentation step during the compilation or by
rewriting the executable binary code.

If an attacker tampers with the instrumentation, the monitor would
get inaccurate context of the behavior of the target, which can be
exploited by the attacker to evade the detection. Thus, the integrity
of the instrumentation (i.e., the communication code of the target) is
crucial. To this end, we require the following properties:

(i1) boot time integrity The code and data at boot time are gen-
uine and cannot be tampered with by the attacker.

(i2) runtime code integrity The code cannot be modified by
the attacker at runtime.

9.4 threat model and assumptions

In this section, we describe the threat model that we consider for the
subsequent chapters of Part III. We focus our threat model for SMM
code executed on x86 platforms. Nevertheless, similar threat models
could be defined for other contexts such as code executed on ARM
TrustZone.

As mentioned in the introduction of this chapter, our first assump-
tion is that the attacker can find and exploit a vulnerability in SMM,
more specifically a memory corruption in an SMI handler. Avoiding
such vulnerabilities requires a strong discipline (e.g., following secure
coding practices and reviewing the code). Even with the help of vari-
ous tools (e.g., static or dynamic analysis), however, vulnerabilities can
still be introduced. In Section 2.1.5, we describe attacks and vulner-
abilities affecting the SMM—summarized in Table 2.1. We explicitly
focus on the vulnerabilities that could be present in SMI handlers.

To ensure the integrity of our solution, we also make assumptions
regarding the state of the platform at boot time, and the configuration
of the platform at runtime. We assume that the code during the boot
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120 We can use the platform
security assessment framework
called chipsec [61] to detect
misconfigured platforms that
expose the SMRAM for example.

121 See Section 11.2.2.

122 See Section 10.1.

process is legitimate and that no attack is performed during that phase
until the SMRAM is locked. Such an assumption is reasonable with
the use of existing security mechanisms for recent firmware such as
cryptographically signed BIOS updates [68, 225], measured boot [268],
and verified boot with an immutable hardware root of trust [130, 230].

These mechanisms provide us with code and data integrity at boot
time (i1, a requirement stated in Section 9.3.3). In addition, since
recent firmware use page tables [281] in SMM we can enable write
protection [289, 290] of the SMM code. We also expect that the platform
has been configured properly in regard to the hardware registers that
set up the SMRAM.120 Therefore, we can assume code integrity at
runtime (i2).

Another key assumption is that the attacker cannot send messages
in lieu of SMM without being detected. First, by design, messages
cannot be sent by other components than the CPU and among the
messages sent by the CPU only those sent in SMM are processed by
the monitor.121 Second, we assume that there is no vulnerability in
SMM code that can be exploited by an attacker to forge messages
without altering the control flow. Since any attempt to alter the con-
trol flow results in the emission of a message describing an invalid
control flow,122 the attacker cannot forge messages without first being
detected.

Finally, we do not consider an attacker trying to impede the avail-
ability of the system (denial of service) by flooding the communication
channel. Attackers already have sufficiently high privileges to perform
a denial of service, they do not need to target the SMM or our com-
munication to achieve such a goal—they can already shut down or
disable most of the components of the system.

We model an attacker with the following capabilities:

• Complete control over the OS or the hypervisor, meaning that the
attacker already found vulnerabilities that elevate its privileges
to kernel-level or hypervisor-level,

• Complete control over the memory, except the SMRAM, which
is hardware-protected,

• Cannot exploit hardware vulnerabilities (e.g., cache poisoning
attacks [99, 283] or bypassing SMRAM protection),

• Can trigger as many SMIs as necessary,

• Can exploit a memory corruption issue in an SMI handler.
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123 To the best of our knowledge,
all SMM code is currently
written in C (and a small part in
assembly), thus we do not take
into consideration other
languages such as C++.

D E T E C T I O N M E T H O D S A N D M O D E L S

In this chapter, we discuss the detection methods and the models that
we use to detect an intrusion in SMM. The first method, discussed
in Section 10.1, enforces a CFI policy. The second method, described
in Section 10.2, ensures the integrity of hardware registers that defines
the execution context of the SMM code. These are the two methods
that we consider the most relevant based on the state-of-art attacks that
we detailed in Section 2.1.5. Finally, in Section 10.3, we describe how
we ensure the integrity of the models used to enforce these policies.

10.1 type-based control flow integrity

We enforce a CFI policy, because it is suited to detect attacks on low-
level vulnerabilities that often appears in code written in C.123 Recent
platforms enable page table protections to enforce code integrity and
non-executable data in SMM. Hence, with a non-writable executable
code an attacker is unable to change the target of a direct branch en-
coded in the instruction performing a control-transfer. Likewise, with
non-executable data, the attacker is unable to inject code to subse-
quently execute it. However, attacks that targets indirect branches are
still possible. The target of an indirect branch is encoded in a register
often populated by the address of a function or the return address of a
function stored in memory before executing the indirect branch. Since
this memory is not read-only—allowing legitimate modifications of
the targets—it could be possible for an attacker to exploit a vulnerabil-
ity that can modify a function pointer or a return address stored in
memory and change the target of an indirect branch. To detect such
attacks, we enforce a CFI policy on forward edges (indirect calls) and
on backward edges (returns) of the CFG.

10.1.1 Overview and Motivation

We enforce a type-based CFI [208, 216, 264] policy on forward edges.
It ensures that the address used in an indirect call matches the ad-
dress of a function having an expected type signature known at com-
pile time. For example, the call site s->func(s, 1, "abc") is an in-
direct call where the function pointer func has the following type
signature: int (*func)(struct foo*, int, char *). Our approach
ensures that the address of func used at that call site always points to
a function having the same signature.

111
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Our approach over-approximates the set of expected pointers with
all functions with the same type signature. In practice, type-based
CFI gives small equivalence classes [36] where one equivalence class
contains all the possible targets for one call site. Other approaches use
points-to analysis that try to determine all the targets that a pointer
can point to. This type of analysis can sometimes give precise results
(i.e., the complete set of pointers). However, in practice, as shown
by Evans et al. [108], such analysis often fails to give the accurate set
of pointers. Therefore, to avoid false positives, they over-approximate
resulting in large equivalent classes such as all the available functions
in the program.

In addition, in comparison to other type-based CFI approaches that
were designed for more general-purpose software, our approach is
designed for a more constrained environment. For example, we do
not have to handle the dynamic loading of libraries (DLLs) in SMM.

We have divided our approach in two phases: compile time and
runtime. At compile time, we analyze the SMM code to gather the type
signatures, and we provide them to the monitor. We instrument the
code to send the target of an indirect call site (known at runtime) to the
monitor and to send the return address from the stack at the prologue
and epilogue of each function. The analysis and the instrumentation
are automatic, and they only require an additional step during the
compilation of the BIOS. At runtime, the monitor checks that each
indirect call and return from a function is legitimate.

10.1.2 Illustrating Examples

We now give two examples to illustrate the exploitation of vulnerabili-
ties where an attacker hijacks the control flow by calling an illegitimate
function from an indirect call site. We first give an example voluntarily
simplified for an illustrative purpose. Then, we give an example based
on a vulnerability found in a real SMI handler.

Listing 10.1 shows an intentional, simulated, but simple to under-
stand, vulnerable (non-SMM) code. The function vulnerable (line 13)
reads a number (as bytes) from the standard input and use it to access
the functions array that contains 4 function pointers. Then, it makes
an indirect call by using the function pointer retrieved from the array.
The code checks that the number is within the bounds of the array,
but a vulnerability allows an attacker to overwrite the first function
pointer in the array—more precisely the last 6 bytes. The read call
at line 17 reads 8 bytes while the variable i is only 2 bytes long. An
attacker can forge an input so that it overwrites the last 6 bytes of
the first pointer to hijack the control flow, and e.g., call the function
named secret. We illustrate the state of the stack before the attacker
overwrites the first pointer in Figure 10.1.

...

Return address

Old rbp

functions[3]

functions[2]

functions[1]

functions[0]

i (2 bytes)

rbp

rsp

Array of
function
pointers

Figure 10.1: Simplified view of
the stack frame of the function
before the attacker overwrites
functions[0]

By overwriting the pointer,
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the attacker changed the target of the indirect call to an illegitimate
function that did not have the correct type.

1 static void secret(void) {

2 system("/bin/sh");
3 }

4

5 static void func1(int a) {

6 puts("func1");
7 }

8

9 static void func2(int a) {

10 puts("func2");
11 }

12

13 static int vulnerable(void) {

14 void (*functions[4])(int) = { func1, func2, func2, func1 };

15 short i;

16

17 read(fileno(stdin), &i, sizeof(long));

18 if (i < 0 || i > 3) {

19 fprintf(stderr, " invalid function number\n");
20 return -1;

21 }

22

23 functions[i](0x1234);

24

25 return 0;

26 }

Listing 10.1: Example of a simulated non-SMM vulnerable code

Our type-based CFI policy detects this by ensuring that the function
pointer used at an indirect call site always points to a function having
the same signature as the indirect call. In this example, our solution
performs the check at line 23 of Listing 10.1, and an attacker may
only call the functions func1 and func2. Any other function pointer,
whether it is a pointer to the first gadget of a ROP-chain or any other
function in the code (e.g., secret or vulnerable), will trigger an alert.

1 EFI_STATUS sub_AD3AFA54(EFI_HANDLE SmmImageHandle, VOID *CommunicationBuffer, UINTN *SourceSize) {

2 VOID *v3;

3 VOID *v4;

4

5 v3 = *(VOID **)(CommunicationBuffer + 0x20);

6 v4 = CommunicationBuffer;

7 if (v3) {

8 *(v3 + 0x8)(*(VOID **)v3, &dword_AD002290, CommunicationBuffer + 0x18);

9 *(VOID **)(v4 + 0x20) = 0;

10 }

11

12 return 0;

13 }

Source: Vulnerability discovered by Oleksiuk [212]
Listing 10.2: Example of a vulnerable function from a real SMI handler

based on decompiled code
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124 Oleksiuk dumped the
SMRAM from a machine and he

analyzed the dump to find
functions registered as an SMI
handler. Then, he decompiled
some of them and found this

vulnerability.

Listing 10.2 illustrates the case of a vulnerability in a real SMI han-
dler [212].124 While the vulnerability is simple, the decompiled code
makes it more difficult to understand. At line 8, we have *(v3 + 0x8)

that fetches a function pointer from a structure. The structure is part of
the communication buffer structure that is controlled by the attacker
(v3). Consequently, at line 8, the code performs an indirect call using
a function pointer controlled by the attacker—giving the attacker the
ability to hijack the control flow in SMM. Here the attacker can either
call an illegitimate function, or more likely build a ROP chain and call
the first gadget from this indirect call site.

10.1.3 Code Analysis and Instrumentation

We now explain how we analyze the SMM source code to build the
models needed by the monitor to check each indirect call.

For each indirect call site, we assign a unique identifier (CSID),
we create a mapping between their CSID and the type signature of
the function called, and we add this type into a set of types called
indirectly (SIND). We instrument each indirect call site to send the
CSID and the branch target address to the monitor before executing
the indirect call.

Then, for each function whose type signature is in SIND, we build
at compile time a mapping between the function offset in memory
and its type. This mapping gives us all the functions that could be
called indirectly with their type signature and offset in memory.

Call Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...

Function Offset Type

0x0000b804 i8(i32)

0x0000ca04 i32()
... ...

Figure 10.2: Example of the mappings that the source code analysis outputs

At the end of the build process, our analysis outputs two pieces
of information: (1) a mapping between a CSID and its expected type;
and (2) a mapping between an offset and the type of the function at
that location. Figure 10.2 illustrates the mappings that are generated
by our analysis. The indirect call with the ID 1561 expects a function
that takes an integer (i32) and outputs a character or byte (i8). The
function at offset 0x0000b804 is one possible target.

These mappings are then provided to the monitor. Such information,
however, is not enough for the monitor to check the indirect calls. With
these mappings, it only has the functions offset and not their final ad-
dress in memory which are determined at runtime. The monitor needs
the base address at which they are located, for each of these func-
tions. We provide this information to the monitor by instrumenting
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125 These mappings offer O(1)
access time. We could merge
both mappings into one that
maps a CSID to its type and its
list of expected functions with a
matching type, or we could also
have the second mapping match
a type to a list of function
addresses instead. However, both
would offer an O(1) followed by
an O(n) access time.

the firmware code to send the address during the initialization phase
(before the SMRAM is locked). This way, at boot time, the monitor
computes the final mapping by adding the offset to the corresponding
base address resulting in: a mapping between a CSID and its expected
type; and a mapping between the address of a function and its type.125
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Call Site ID 1561

Target Address 0x0fffb804
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SMM code

Target

Message

Call Site ID 1561

Target Address 0x0fffb804

MessageCall Site ID Type

1561 i8(i32)

4852 i32(i8)
... ...
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0x0fedb804 i8(i32)

0x0fefca04 i32()
... ...

Monitor

Compilation

SMM source
code

valid?

Send
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Figure 10.3: How the monitor detects illegitimate indirect calls
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Thanks to the mappings and the instrumentation that sends mes-
sages, as illustrated in Figure 10.3, the monitor can verify that the
target address (function pointer) received in a message has the ex-
pected type according to the call site ID from the same message. The
attacker can control the target address, but not the call site ID. There-
fore, if the attacker uses an address that points to a ROP chain, the
monitor detects it, because this address it not in the second mapping.
If the attacker uses a function address pointing to a function with an
invalid type, the monitor detects it by checking the mappings.

10.1.4 Shadow Call Stack

Since CFI can be bypassed if it only checks forward edges, we imple-
ment a shadow call stack to check backward edges. A shadow call
stack compares the value of the return address at the prologue and at
the epilogue of the function. The CPU stores the return address in the
stack at the prologue of a function, and when arriving at the epilogue,
there is no legitimate reason for this value to be different. The role of
the shadow call stack is to create a copy of the call stack (the succession
of return address on the stack) and to verify independently whether
the value changed.
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We implement our shadow call stack by instrumenting the SMM
code so that it sends one message at the prologue and epilogue of
each function. The message at the prologue of a function sends a push
and the one at the epilogue sends a pop. Each message contains the
current value of the return address on the stack. The monitor uses the
messages to create its own copy of the call stack. In addition, after
the monitor receives a pop message, it checks that the return address
received matches the one on top of its copy of the stack—as illustrated
in Figure 10.4.

Legend

Compile time
Runtime
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Message Message
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Send
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Send
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Figure 10.4: How the monitor detects illegitimate returns using a shadow
call stack

In comparison to other shadow call stack implementations, due to
the SMM environment and constraints, we do not have to deal with
exceptions, longjmp, or even multi-threading [222].

10.2 execution context integrity

In addition to a CFI policy, the monitor ensures the integrity of relevant
x86 CPU registers in SMM. It stores expected values in its memory at
boot time and verifies the values sent by the target at runtime.

When entering SMM, the main CPU stores its context in the save
state area and restores it when exiting [139]. For example, the value of
the SMBASE register is stored in this save state area. The processor
uses the SMBASE register every time an SMI is triggered to jump to
the SMM entry point, and when exiting the SMM it restores the value
of the SMBASE register from the value stored in the save state area.
It is not possible to directly modify the SMBASE register, but it is
possible for an SMI handler to modify the SMBASE value stored in
the save state area. In that case, the SMBASE register will be restored
with this modified value when the processor leaves the SMM. Thus,
the next time an SMI is triggered, the processor will use the new value
of SMBASE. This behavior is genuine at boot time to relocate the
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SMRAM to another location in RAM. At runtime, however, there is no
valid reason to do this. If an attacker manages to change the SMBASE,
it results in arbitrary code execution when the next SMI is triggered.

To detect this attack, our approach checks that the SMBASE value
does not change between SMIs at runtime. At boot time, when the
SMM and SMRAM are set up (during the DXE phase), we instrument
the code to send the final value (after the relocation) of the SMBASE
to the monitor. At runtime, we send the current value of the SMBASE
just before the rsm instruction that returns from SMM. The monitor
can then detect if the SMM has been compromised and if an attacker
modified the SMBASE.

In addition, MMU-related registers, like CR3 (i.e., an x86 register
holding the physical address of the page directory), are interesting
targets for attackers [143]. We need to protect their integrity, since
recent firmware use page tables [281, 288, 290]. The CPU resets these
registers at the beginning of each SMI with a value stored in memory.
Such a value is not supposed to change at runtime. If an attacker
succeeds in modifying this value stored in memory, then the corre-
sponding register is under the control of the attacker at the beginning
of the next SMI.

Similarly, to detect this attack, we instrument the SMM code to
register at boot time the expected value of CR3 and to send at runtime
the value of CR3 (stored in memory, not the register) before the rsm

instruction. The monitor can then detect if an attacker tries to perform
an attack similar to the one described by Jang et al. [143].

10.3 isolation of the models

Since inlined-based approaches are within the same execution envi-
ronment than the attacker, they often rely on information hiding to
protect the data structures they rely on for their approach. For exam-
ple, inline-based approaches that implement a shadow call stack need
to hide the shadow stack in the same address space as the attacker.
They rely on the assumption that attackers will not be able to find the
shadow stack [37]. However, since the shadow stack is in the same
address space, and since the instrumentation writes to this shadow
stack, attackers also have write access to it. Therefore, if attackers
can find other vulnerabilities—that differ from the ones allowing to
hijack the control flow—they could potentially leak that information
or corrupt the data structures without being detected.

Likewise, if attackers can modify the data structures or models
that we use to detect an illegitimate behavior, they could bypass the
detection. Our approach solves this issue by isolating the detection
logic, the models of the behavior, and the data structures (e.g., shadow
call stack and indirect call mappings) in the dedicated memory of the
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monitor. This isolation provides a more robust CFI solution against
attackers in comparison to inlined-based CFI approaches.
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A R C H I T E C T U R E A N D I M P L E M E N TAT I O N

The design of our solution is illustrated in Figure 11.1. In this figure,
straight arrows represent the steps taken during runtime and dashed
arrows the steps taken during the instrumentation phase (compilation
time). We describe our architecture and our implementation in more
details in the following sections.

Processor RAMCo-processor RAM
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Target
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LLVM-based
Compiler

SMM source
code

BIOS source code

control-flow
data

execution
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Figure 11.1: High-level overview of our architecture that monitors the SMM

11.1 co-processor and monitor

Our goal is to extend existing platforms without requiring a change
of the main processor, and to limit the changes we make in regard to
the performance of the platform and its cost. Therefore, the choice of
the co-processor for our architecture has several constraints: enough
processing power to process the messages, energy efficient, and low-
cost.

For example, existing platforms are shipped with co-processors
respecting these constraints, such as the AMD Secure Processor—also
known as the Platform Security Processor (PSP) [5]—and the Apple
Secure Enclave Processor (SEP) [186]. Both are used as a security
processor to perform sensitive tasks and handle sensitive data (e.g.,
cryptographic keys). In those solutions, the main CPU cannot directly
access the memory of the co-processor. The CPU can only ask the
co-processor to perform security-sensitive tasks via a communication
channel. In our case, the main processor does not request any service

119
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provided by the co-processor, but it uses the communication channel
to send behavior related information.

The PSP is an ARM Cortex A5 and the SEP is an ARM Cortex A7.
Such processors are similar, they are both 32-bit ARMv7 with in-order
execution and 8-stage pipeline. The main difference is that the A5 is
single-issue and the A7 is partial dual-issue.

In our architecture, we chose a similar design, and we propose to
use an ARM Cortex A5 [14] co-processor to execute our monitor. It
gives us the isolation needed and enough processing power to process
the messages for our use case. In practice, we do not necessarily need
to add another co-processor to the architecture of the platform if an
existing one is present that can be reused—such as the AMD Secure
Processor.

For the monitor, as mentioned before, we should reduce the risk of
exploitable vulnerabilities that could be used by an attacker to bypass
our solution. We focused on memory corruption vulnerabilities by
implementing our monitor with approximately 1300 lines of Rust [191],
a safe system programming language.

11.2 communication channel

In this section, we look at how existing co-processors communicate
with the main CPU and explain why they do not fit our requirements.
Then, we describe how we design our communication mechanism to
fulfill the properties we defined in Section 9.3.2.

11.2.1 Existing Mechanisms

A major characteristic of the communication channel is its perfor-
mance, especially its latency, since each message sent by the instru-
mented code impacts the overall latency of SMI handlers. The Intel
BITS defined the acceptable latency of an SMI handler to 150 µs [135].
Delgado and Karavanic [88] showed that, if the latency exceeds this
threshold, it causes a degradation of performance (I/O throughput or
CPU time) or user experience (e.g., severe drop in frame rates in game
engines).

Both the PSP and the SEP use mailbox communication channels to
send and receive messages with the main CPU [4, 186]. Mailboxes
work as follows. One processor writes to a mailbox register, which
triggers an interrupt in a second CPU. Upon receiving the interrupt,
the second CPU executes code that fetches the value in the mailbox,
processes the message, and then writes a response.

We could use such a mechanism to fulfill our security properties
(CC1 and CC2) by making the SMM code wait until the co-processor
acknowledged the message—an attacker should then be unable to
violate the integrity of the pending messages. Shelton [244] studied
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126 As mentioned in Section 9.4,
we also assume code integrity
thanks to various memory
protections which ensure that the
messages cannot be tampered
with before being sent.
127 At the beginning of each SMI,
there is a synchronization code
ensuring that only one core
executes in SMM. This implies
that we do not instrument the
code responsible for the
synchronization between the
cores. This code does not interact
with any attacker-controlled data
and cannot be influenced by the
attacker; hence we trust it.

128 It would be similar to a DOS
attack. Nevertheless, as we
mentioned previously
in Section 9.4, the attacker
already has the privileges to shut
down the machine without
needing to compromise the
SMM.
129 At the time of this work, these
were the interconnects used by
Intel and AMD. Recent
architectures now use newer
versions called Intel Ultra Patch
Interconnect [133] and AMD
Infinity Fabric [172].

the latency of mailboxes on Linux and measured on average a 7500

cycles latency. For example, with a 2 GHz clock this gives 3.75 µs per
message, which does not fulfill the low-latency requirement (CC4).

Since the mechanism used by existing co-processors, like the PSP or
the SEP, does not allow low latency communication while fulfilling
our security requirements, we propose to use a specific hardware
component to that end.

11.2.2 Restricted FIFO

We propose to add a restricted First In First Out (FIFO) queue between
the main CPU and our co-processor. This FIFO is an additional hard-
ware component connected to the main CPU and the co-processor,
because we want to re-use existing processors without modifying
them.

The goal of the FIFO is to store the messages sent by the target
awaiting to be processed by the co-processor. The FIFO only allows
the main CPU to push messages and our co-processor to pop them.
The FIFO receives messages fragmented in packets. Only our FIFO
handles the storage of the messages, if the queue is full it does not
wrap over (to avoid overwriting previous messages), and the attackers
do not have access to its memory, thus they cannot violate the integrity
of the messages after they have been sent.126 We consider single-
threaded access to the FIFO, since only one core handles the SMI,
while other cores must wait [139]. 127

We are using a co-processor with less processing power than the
main CPU and the monitor usually processes messages at a lower rate
than their production. Thus, the FIFO could overflow or reach its limit.
Such a case would happen if the monitored component would be
continuously executing, which is not the case with SMM code. Most
of the time the main CPU will execute code in kernel mode or user
mode, which are not monitored and hence do not send any message.
An SMI, on the other hand, will create a burst of messages when
triggered. Hence, the only case where the FIFO could overflow is if an
attacker deliberately triggered SMIs at very high rate, which would be
detected as an attack.128

Our design requires a fast interconnect between the main CPU
executing the monitored component and the FIFO. The precise in-
terconnect depends on the CPU manufacturer. In the x86 world two
major interconnects exist: QuickPath Interconnect (QPI) [134] from
Intel and HyperTransport [127] from AMD.129

These interconnects are used for inter-core or inter-processor com-
munication and are specifically designed for low latency. For example,
CPU manufacturers are using them to maintain cache coherency. Fur-
thermore, they have been leveraged to perform CPU-to-device com-
munication [117, 178, 179]. The co-processor could be connected to the
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130 For example, ARM platforms
can use the AMBA [15]

interconnect.

FIFO using these interconnects (using glue logic) or an interconnect
with similar performance.130

Our monitored component has a mapping between a physical ad-
dress and the hardware component (i.e., the FIFO) allowing it to send
packets via the interconnect. Routing tables are used by interconnects.
Such routing tables are configured via a software interface (with kernel
privileges) to decide where the packets are sent. Thus, as explained
by Song et al. [249], it would be possible for an attacker to modify
the routing tables to prevent the delivery of the messages to the FIFO.
Such an attack would be the premise of an attack against a vulnerable
SMI handler. Therefore, at the beginning of each SMI, we enforce the
mapping by overwriting the routing table in the SMM code to prevent
such an attack.

In addition, the FIFO filters the messages by checking the SMIACT#
signal of the CPU specifying whether the main CPU is in SMM or
not [127, 139]. Hence, the monitor only processes messages sent in
SMM and prevents an attacker from sending messages when the target
is not executing (e.g., an attacker sending messages in kernel mode).

Finally, an important part to consider when designing the com-
munication channel is whether it is synchronous or asynchronous.
An asynchronous channel can send a message without waiting its
acknowledgment—which reduces the overhead of the communication
for the target. However, it increases the delay between an intrusion
and its detection. A synchronous channel, on the other hand, allows
the monitor to stop the target at the first invalid behavior detected.
However, it requires waiting for the acknowledgments and to add
more instrumentation code to handle the acknowledgment. This in-
creases the code size, and it increases the overall performance cost.
Our approach works with a synchronous or asynchronous channel,
but in the context of the SMM, we chose to use an asynchronous
channel for performance reasons.

To summarize, this design fulfills the message integrity property
(CC1), since the target can only push messages to the restricted FIFO.
Moreover, if the queue is full it does not wrap over, and the target
enforces the routing table mapping. It fulfills the chronological order
property (CC2), because it is a FIFO and there is no concurrent access
to it while in SMM. In addition, it fulfills the exclusive access property
(CC3), since we filter messages to ensure they only come from the
SMM, the integrity of the instrumentation code is ensured with the use
of page tables with write-protection enabled, and the attacker cannot
forge messages without first being detected. Finally, we fulfill the
last property (CC4) by using a low latency interconnect between the
main CPU and the FIFO and having an asynchronous communication
channel.
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131 An idea would be to
automate part of this work by
scanning the source code to find
any usage of the relevant
registers, such as CR3.

11.3 instrumentation

The instrumentation step of our implementation that modifies the
SMM code is twofold: (1) an instrumentation to send CFI related
information; and (2) an instrumentation to send information regarding
x86 specific variables and registers.

We rely on LLVM 3.9 [165], a compilation framework widely used
in the industry and the research community, to instrument the SMM
code. LLVM is following the architecture of other compilers where
a frontend reads the source code and translates it into an Intermedi-
ate Representation (IR). The LLVM IR is a strongly-typed low-level
programming language similar to assembly, but it is generic in order
to abstract architecture details (e.g., it uses an infinite number of reg-
isters). After the translation to the IR, multiple passes either gather
information from the IR via static analysis, or optimize the IR for size
or running time. After the passes are done, the backend translates
the IR to target specific machine code (e.g., x86). The backend can
also incorporate multiple passes specific to the architecture and its
constraints to optimize even more the code by relying on architecture
features.

We implement two LLVM passes with approximately 600 lines of
C++ code. We execute our passes at link time. The first pass enforces
the forward-edge CFI (i.e., indirect calls always branch to valid targets).
It is performed on the LLVM IR since it provides us with all the type
information that we need. The second pass enforces the backward-
edge CFI (i.e., a shadow call stack). It is done in the backend since
it is architecture specific, and more importantly we want to ensure
that it will not be optimized away or placed outside the prologue or
epilogue.

As mentioned previously for the type-based CFI policy, the monitor
needs the base address of the functions. We instrument the SMM
code manually to send at boot time this information by modifying the
functions that load SMM modules in memory during the DXE phase.

We also instrument the SMM code to send some values related
to x86 CPU registers. These values, such as SMBASE or the saved
value of CR3, could be modified by an attacker to take control of the
SMM or evade detection. This part is done manually, since it requires
knowledge of the source code to know which variable to send and
when.131 The amount of code required, however, is low and it can be
reused for many implementations. Indeed, vendors usually rely on a
common framework for their BIOS, such as EDK II [263].
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132 At the time of the
experiments, to the best of our
knowledge, there was no
off-the-shelf FPGA-based
solutions with direct access to
HyperTransport or Intel QPI
commercially available.

E VA L UAT I O N A N D R E S U LT S

We evaluated our approach on two real-world implementations of
code running in SMM. We first conducted a security evaluation of
our approach, as described in Section 12.2, to answer the following
questions:

1. Can we detect the exploitation of vulnerabilities in SMI handlers?

2. Do we encounter false positives?

Then, we evaluated the performance of our approach, as detailed
in Section 12.3, to answer the following questions:

3. What is the performance impact of the instrumentation and the
communication on the SMI handlers?

4. How much time does it take for the co-processor to process the
messages sent by the SMI handlers?

5. What is the impact of the instrumentation on the firmware size?

12.1 experimental setup

We used a simulation-based prototype in order to have enough flexi-
bility in exploring the hardware architecture, in a manner that would
have been difficult to achieve using real hardware, such as FPGA-
based solutions.132 A simulation allows us to simulate an interconnect
and to simulate the delay it takes for the main CPU to send one packet
to the restricted FIFO.

We used EDK II [263] and coreboot [259], two real-world imple-
mentations of code running in SMM. EDK II is an open source UEFI-
compliant firmware used as the foundation for most vendor-based
firmware. Coreboot is an open source firmware performing hard-
ware initialization before executing a payload (e.g., legacy BIOS or
UEFI-compliant firmware). We built this firmware using our LLVM
toolchain, and we only instrumented the SMM related code.

12.1.1 Simulator and Emulator

We both used a simulator and an emulator to validate our approach.
The main goal of emulators is to be as feature-compatible as possible.
However, they are not cycle-accurate and does not try to model accu-
rately the performance of x86 or ARM platforms. Simulators, on the
other hand, try to model accurately the performance of the platforms

125
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133 We give the parameters used
for gem5 in Appendix B.

134 Litz et al. [178] designed an
FPGA card with the HTX3

interface, which is needed for
point-to-point communication

with HyperTransport. Xilinx
used to sell such products, but

they are now discontinued.
135 Choi et al. [62] had access to a

QPI-based CPU-FPGA platform
thanks to a collaboration between

Intel and academics at that time.

they simulate, but often do not implement all their features (e.g., no
possibility to lock the SMRAM). Therefore, we use an emulator to
have all the SMM features for the security evaluation, and a simulator
to model accurately the performance of our implementation.

For the security evaluation, we used the QEMU 2.5.1 [25] emulator
and we modified it to emulate our communication channel.

We used the gem5 [26] cycle-accurate simulator to estimate the per-
formance impact both on the main CPU by modeling an x86 system,
and on the co-processor by modeling an ARM Cortex A5. We modi-
fied gem5 to simulate our FIFO communication channel. It allowed
us to specify the delay (in nanoseconds) it takes to send or receive
information from it.133

12.1.2 Simulated Communication Channel Delay

We relied on previous studies on interconnects [62, 178] to estimate the
delay of the communication channel. Litz et al. [178] encountered a la-
tency between 36 to 64 cycles to send one packet with HyperTransport
on a CPU-FPGA platform.134 Even with a small clock rate, for example
500 MHz, we can expect a latency of around 72 to 128 ns, close to an
uncached memory access. Choi et al. [62] have similar results with
QPI-based platforms.135

Hence, we simulated a delay of 128 ns to send one packet. This
corresponds to the worst-case scenario to send one packet. Since
the reference latency we have for AMD HyperTransport and Intel
QPI are for FPGA prototypes, lower latencies are expected with an
ASIC implementation. Furthermore, since we use a point-to-point
connection, and since only one core of the main CPU is running while
in SMM and sending packets, we did not consider a fluctuation of the
latency or any additional delays.

Finally, we simulate the same interconnect and delay between the
main CPU and the FIFO, and between the co-processor and the
FIFO.136

136 In a real prototype, one may
need to use a glue logic for the

ARM architecture.

12.1.3 SMI Handlers

To evaluate the performance of our prototype, we need to test its
impact on the various types of SMI handlers. Some are platform-
specific and interact with specific hardware interfaces with platform-
specific, but they are often proprietary. While others are more generic,
are reused by multiple implemantations, and they are part of open-
source implementations.

For our performance evaluation, we used SMI handlers from EDK II
and coreboot. EDK II does not implement any hardware initialization
nor vendor-related SMI handlers. At the time of writing, most of
the SMI handlers available in EDK II at runtime are dependent on
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motherboards from Apple, ASUS,
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139 See Section 2.1.5 for more
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standard hardware components that cannot be easily simulated (e.g., a
storage device that follows the Opal specifications [269] for encryption
or a TPM chip).

In our evaluation, we used the VariableSmm SMI handlers from
EDK II. They manage variables within the SMM [291] thanks to four
different handlers: GetVariable, SetVariable, QueryVariableInfo and
GetNextVariableName (GNVN).

Since coreboot provides hardware initialization and vendor-related
SMI handlers, we use them for our evaluation. In addition, these
handlers communicate with devices that can be simulated with gem5.
A majority of these handlers, however, are simpler compared to the
VariableSmm SMI handlers. We used three SMI handlers for the Intel
ICH4 i82801gx137 and two for the AMD Agesa Hudson southbridge.138

These SMI handlers process hardware events such as pressing the
power button (PM1), General Purpose Events (GPE), Advanced Power
Management Control (APMC) events, or Total Cost of Ownership
(TCO) events.

For the performance evaluation with gem5, in the case of EDK II,
we modified EmulatorPkg (usually used to simulate an UEFI en-
vironment) where we added support for the SMM. It gave us an
environment similar to the execution in SMM to execute the SMI han-
dlers. It does not fully model the SMM, but this part of the evaluation
does not focus on the functionality but on the performance. Moreover,
the missing features (e.g., no possibility to lock the SMRAM) do not
impact the performance results in any way. In the case of coreboot, we
extracted the 5 SMI handlers and compiled the source code of the SMI
handlers and not the whole firmware, since coreboot did not support
the use of clang (LLVM) as a compiler.

12.2 security evaluation

There is no public data set of vulnerable SMM code, in contrast to
userland applications. Attacks targeting the SMM are highly specific
to the architecture and to the proprietary code of the platform. This
code is therefore not publicly available and would not execute on our
experimental setup, thus it cannot be used to test our solution.

Consequently, we have implemented SMI handlers with vulnera-
bilities similar to previously disclosed ones139 affecting real-world
firmware. We reproduced attacks exploiting the following vulnerabili-
ties giving arbitrary execution:

• A buffer overflow in a SMI handler allowing an attacker to
modify the return address stored on the stack [145];

• An arbitrary write allowing an attacker to modify a function
pointer used in an indirect call [211];
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• An arbitrary write allowing an attacker to modify the SM-
BASE [223];

• An insecure indirect call where the function pointer is retrieved
from a data structure controlled by the attacker [212].

Vulnerability Attack Target Security Advisories Detected

Buffer Overflow Return address CVE-2013-3582 [78] Yes

Arbitrary write Function pointer CVE-2016-8103 [81] Yes

Arbitrary write SMBASE LEN-4710 [170] Yes

Insecure call Function pointer LEN-8324 [171] Yes

Table 12.1: Effectiveness of our approach against state-of-the-art attacks

As shown in Table 12.1, the monitor detected all these attacks as
soon as it received and processed the messages, since these attacks
modify the control-flow of the SMM code (i.e., its behavior). We
did not encounter false positives, which is expected since we use a
conservative strategy regarding indirect calls. Also, while bad software
engineering practices using function type cast could introduce false
positives, we did not encounter such cases in the code we evaluated,
as no function cast was present.

Finally, our CFI implementation performs a sound analysis to re-
cover the potential targets of an indirect call. Therefore, the analysis
is not complete, and it would be possible for an attacker to redirect
the control flow to a function that should have never been called, but
that has the expected type signature (a type collision). Nonetheless,
we argue that a type-based CFI increases the difficulty for the attacker,
since the only available targets for an indirect call are a subset of the
existing functions within the SMRAM with the right type signature.
Our analysis with EDK II gave 158 equivalence classes of size 1, 24

of size 2, 42 of size 3, 2 of size 5, 1 of size 9, and 1 of size 13. As
mentioned by Burow et al. [36], a high number of small equivalence
classes provides a precise CFG. A way to improve the precision of
the CFG would be to combine our static analysis (providing some
context-sensitivity with the type information), with a points-to analy-
sis, such as the work from Lattner et al. [166]. Points-to analyses can
sometimes give the complete set of the functions being called at an
indirect call site. An idea would be that if we know that the points-to
analysis gave a complete set, the monitor uses this information to
validate an indirect call, otherwise it uses the over-approximation of
the type signature.
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140 See Section 12.1.3.

12.3 performance evaluation

As explained in Section 11.2.1, the time spent in SMM has to be
limited (threshold of 150 µs) [88, 135]. On that account, we evaluated
the running time overhead of our solution on SMI handlers for the
main CPU. We also evaluated the time it takes for the co-processor
to process the messages sent by different SMI handlers. Thus, we
can estimate the time between an intrusion, its detection, and its
remediation.

Finally, the size of firmware code is limited by the amount of flash
(e.g., 8MB or 16MB). Thus, we evaluated the size of the firmware
before and after our instrumentation.

12.3.1 Runtime Overhead

The additional SMM code added with our instrumentation introduces
two costs: the raw communication delay between the main CPU and
the hardware FIFO; and the instrumentation overhead. The former
is related to the time it takes the main CPU to push the packets to
the FIFO. The latter is due to multiple factors, such as fetching and
executing new instructions or storing intermediate values resulting
in register spilling (e.g., the return address of a function fetched from
the stack).

We performed 100 executions of each SMI handler we selected for
our evaluation.140 For each SMI handler, we measured the time it takes
for the original handler to execute, the cost of the communication, and
the additional instrumentation overhead. The results we obtained are
illustrated by Figure 12.1.
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Figure 12.1: Time (in microseconds) to execute each SMI handler (averaged over 100 executions) with the original
time, and the overhead divided between the communication overhead due to pushing packets to the FIFO and the
instrumentation overhead

We see that even with a low latency of 128 ns for the communication
channel, there is a high overhead due to the communication. The
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instrumentation overhead, on the other hand, is negligible in compari-
son. For the SMI handlers from EDK II, the high overhead is also due
to the number of messages related to the shadow stack (see Table 12.2),
while the number of messages for indirect calls or the integrity of
the relevant CPU registers (SMBASE and CR3) are negligible. For the
SMI handlers from coreboot, we see a lower overhead since the code
is less complex, calls fewer functions, and perform less indirect calls.
Nevertheless, for each SMI handler, even with the overhead of our
solution, we observe that the time spent in SMM is below the 150 µs
threshold [135]. It ensures that the impact on the performance of the
system is low and not noticeable for the user.

Number of packets sent

SMI Handler

Shadow stack

(SS)

Indirect call

(IC)

SMBASE & CR3

(SC)

Total number

of packets

EDK II

VariableSmm

SetVariable 384 4 4 392

GetVariable 240 4 4 248

QueryVariableInfo 299 4 4 208

GetNextVariableName 212 4 4 220

coreboot

Intel i82801gx

APMC/TCO/PM1 8 2 4 14

AMD Agesa Hudson

APMC/GPE 4 0 4 8

Table 12.2: Number of packets sent during the execution of one SMI handler (Number of packets per message type: SS=2,
IC=2, SC=4)

12.3.2 Co-Processor Performance

We measured the time it takes for the monitor to process all the
messages generated by one execution of each SMI handler. We made
an average of 1000 executions. Results are illustrated in Figure 12.2.

For each SMI handler there is at least a factor of 4 between the time
it takes for the target to execute the instrumented SMI handler and
the time it takes for the co-processor to process all the messages that
have been sent by the instrumented SMI handler. For example, we see
in Figure 12.1 that it takes around 52 µs to execute the SetVariable SMI
handler, and in Figure 12.2 that it takes around 230 µs to process all
the messages. This means that there is a delay between an intrusion
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Figure 12.2: Time (in microseconds) to process all the messages sent by one
execution of each SMI handler for the co-processor

141 We could measure the size of
coreboot compiled with gcc, but
the size varies when using clang
or gcc.

and its detection, but such a delay will be less than a millisecond.
Hence, the co-processor could start a remediation action within one
millisecond after an intrusion occurred.

In our threat model, the attacker already has kernel privileges before
attacking the SMM code. Our objective is not to detect intrusions that
could have been done solely with kernel privileges, such as leaking
confidential data. We consider that the final objective of the attacker is
to remain persistent in the system even in the case of a reboot. In this
case, a remediation action would not prevent the intrusion and does
not have to be taken immediately.

12.3.3 Firmware Size

For EDK II, our instrumentation added 17408 bytes to the firmware
code. However, firmware is compressed before being stored in the
flash and only a subset of the firmware is related to the SMM. We
measured a 0.6 % increase in size of the compressed firmware. Thus,
our instrumentation incurs an acceptable overhead in terms of size for
the firmware.

For coreboot, our instrumentation added 568 bytes for the AMD
Agesa Hudson SMI handlers and 3448 bytes for the Intel i82801gx
SMI handlers. However, at the time of the experiments, we were not
able to measure the whole firmware size when building coreboot
with our LLVM toolchain, since coreboot did not support clang as
a compiler.141 We built separately the SMI handlers from coreboot
toolchain for our evaluation, but compiling the whole firmware (not
just the SMM related code) was not possible.
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12.4 summary

In this chapter, we described our experimental setup that relies on a
simulator and an emulator. We evaluated the ability of our prototype
to detect attacks against the SMM. All attacks were detected, and no
false positives were encountered. The analysis gave a precise CFG with
a high number of small equivalence classes. We also evaluated the
runtime overhead for the SMI handlers (due to the instrumentation
and communication), and none of them crossed the 150 µs threshold
(despite a high overhead). We then evaluated the time the co-processor
takes to process messages. It gave us a maximum of 230 µs—allowing
us to expect a time to detection less than 1 ms in general. Finally,
we evaluated the firmware size overhead when compiled with our
solution. Since our solution only instruments the SMM code, we
observed a low overhead (0.6 %). These current results are encouraging,
since they show that our solution can detect intrusions at the SMM
level, while not impacting the availability of the system.
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142 A preliminary analysis using
the size of the equivalence classes
(see Section 12.2) tells us that
type collisions are rare in the
code that we used in the
evaluation.

C O N C L U D I N G R E M A R K S

In this chapter, we discuss the limitations of our detection approach,
we give a quick summary of the comparison of our approach against
the related work, and we conclude Part III while providing some
potential areas to investigate in the future.

13.1 discussion and limitations

Having demonstrated the effectiveness of the detection against state-
of-the-art attacks and showed that the performance impact of our
solution still kept the SMI handlers below the 150 µs threshold, we
now discuss some limitations of the approach or the evaluation, and
areas that would need further work.

type collisions A year after the publication of this work, Farkhani
et al. [109] published a study on the effectiveness of type-based
CFI in userland applications (e.g., nginx and Exim). They showed
that the main threat for such an approach is type collision—
illegitimate functions having the same type as legitimate func-
tions for an indirect call. In practice, the target functions—that an
attacker wants to call when exploiting the vulnerability—rarely
have the same type as the indirect call site. They showed, how-
ever, that it is possible to find type collisions with functions that
call the intended target function of an attacker. For example,
the attacker wants to call the function foo, but it does not have
the same type as the indirect call site. The function bar does
have the same type and also calls foo. Using this technique,
they found multiple chains allowing arbitrary code executions
in userland applications with multiple nested functions calls
eventually leading to the execve function. This may make us
question the effectiveness of type-based CFI. In the case of the
SMM, however, we do not have functions similar to execve. Nev-
ertheless, it would be interesting to perform a similar study on
various SMM code implementations to understand whether type
collisions are also prevalent142 and if this technique could be
used to achieve arbitrary code execution in SMM (e.g., by calling
functions that first disable code integrity or non-executable data
protections).

shadow call stack As mentioned previously, a recent document
from Intel [136] suggests that their future processors will be
shipped with a CFI technology in hardware and available for

133
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average.
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related to our work.

the SMM. If this technology does appear, it would be possible
to reduce our overhead by using it, since our current main
performance overhead is related to the handling of the shadow
stack. It is important to note that we would still instrument the
indirect calls, because the tracking of indirect branches with
the Intel solution is too coarse-grained Indeed, Intel solution
allows an indirect call to target any function, while our solution
reduces the set of targets to any function with a legitimate type.
Finally, we would send messages to ensure that the hardware
CFI is enabled and a message when an exception occurs due to
a violation of the shadow call stack. Such an implementation
would allow us to implement other detection methods since our
overhead would be lower. Another idea to reduce the current
overhead would be to evaluate the feasibility of reducing the
number of packets (e.g., if we use an unused bit in the target
address to distinguish whether this is a pop or a push; we save
one packet). Finally, we could also investigate approaches that
do not instrument functions if we can prove that they cannot
corrupt the stack [216].

simulation-based prototype In the evaluation of our approach,
we used a simulation-based prototype since we were not able
to find suitable boards to implement an FPGA prototype for
the communication channel (no commercially available FPGA
boards with direct access to the low latency interconnect with
Intel or AMD x86 processors). In addition, it gave us more flexi-
bility to test and explore the hardware architecture. Simulations,
however, do not offer the same characteristics as real systems.
The performance results could thus be considered unsound.
To mitigate this threat, we used the state-of-the-art simulator
gem5

143 to model as accurately as possible the systems we were
using, and we based our timing model for the communication
channel on various studies.

13.2 comparison with related work

Our approach addresses various issues that we identified from the lit-
erature.144 We summarize in Table 13.1 a comparison of our approach
against previous work that we consider the most relevant.

To the best of our knowledge, our approach is the first that provides
a flexible (i.e., that allows us to implement various policies or detection
methods) anomaly-based SMM monitoring while addressing issues
such as the semantic gap or transient attacks. For example, if we
look at the three approaches showed in Table 13.1 that can monitor
the SMM, they are either knowledge-based [34], have a semantic gap
issue [34, 180], cannot detect transient attacks [34], or lack flexibility
since they can only enforce one specific policy [136].
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Monitor the SMM ● ❍ ● ❍ ❍ ● ●

Code integrity ■ ● ● ● ● ● ■

Control Flow Integrity ● ❍ ❍ ❍ ❍ ❍ ●

SMBASE and CR3 integrity ● ❍ ❍ ❍ ❍ ❍ ❍

Flexible ● ● ● ● ● ● ❍

No semantic gap issue ● ❍ ❍ ● ❍ ❍ ●

Detect transient attacks ● ❍ ❍ ❍ ● ● ●

Detect unknown attacks ● ● ❍ ● ● ● ●

No new or modified hardware ❍ ❍ ● ● ❍ ❍ ❍

Table 13.1: Summary of the comparison between our SMM behavior
monitoring approach and the related work

Legend

● Has the property
❍ Does not have the property
■ Assumed

In our approach, we add a new hardware component—the restricted
FIFO—to allow the main processor to send information. This new com-
ponent, however, does not need to change in the future if the threat
or the types of vulnerabilities evolve over time. For example, in com-
parison to other approaches that enforce CFI [136, 169] by modifying
the processor or relying on debugging features, our approach is more
flexible since we only need to update the instrumentation and the
monitor’s logic to implement another detection method.

Finally, in comparison to other work, we assumed code integrity by
relying on memory protection from the MMU. An idea to investigate
would be to combine our approach with others that detects if the
code has been compromised (e.g., if the page table has been tampered
with)—strengthening the robustness of the detection method.
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13.3 conclusion and future work

In this part of the dissertation, we proposed a new event-based
approach for low-level software using three key components: a co-
processor to isolate the monitor, a communication channel to reduce
the semantic gap, and an instrumentation of the software to enforce
the communication of behavior related information. We show that
we can use this approach to detect intrusions targeting SMM services
by maintaining a CFI policy and by ensuring the integrity of the ex-
ecution context (CR3 and SMBASE). Nevertheless, it is flexible, and
it can implement other detection methods. Unlike other approaches,
we solve the challenges of the semantic gap and the transient attacks
while remaining flexible.

We implemented our approach by instrumenting and monitoring
real-world firmware, and by simulating the co-processor executing
our monitor. The results show that we detect state-of-the-art attacks
against the SMM, while remaining below the 150 µs threshold, thus
avoiding any noticeable impact on the user.

This work has been published and presented at ACSAC in December
2017 [60]. For future work, we would like to investigate the following
areas:

recovering from the intrusion Current state-of-the-art solu-
tions help to restore (at boot time) the BIOS—stored in the flash—
in a safe state in case it has been compromised or corrupted
unintentionally. However, to the best of our knowledge, no solu-
tion exists to recover the state of the SMM at runtime without
impacting the user experience, in case it gets compromised.

monitoring other targets Our approach could be used to mon-
itor other low-level targets such as the ARM TrustZone secure
world [13]—since it offers a similar environment than SMM (e.g.,
a non-secure bit to know whether the CPU is in the secure world
or not, like the SMIACT# signal). We would like to investigate
whether this is feasible and to know if there are potential barriers
or new challenges to the generalization of the approach.

implementing other detection methods Previous work fo-
cused on ensuring code integrity and data integrity for runtime
firmware. In our work, we focused on ensuring the integrity
of the control-flow and the integrity of registers that affect the
execution context. Chen et al. [50] demonstrated that non-control
data attacks are realistic threats against real-world programs.
Therefore, we would like to investigate whether approaches
such as data flow integrity [44] could be implemented in our
context.
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C O N C L U S I O N„Let’s go exploring!

— Calvin
Calvin and Hobbes, Bill Watterson

We began this dissertation by describing three problems that today’s
platforms face:

1. preventive security is not sufficient,

2. commodity OSs can detect but cannot survive intrusions,

3. and low-level components are increasingly targeted by attackers.

The first problem is well-known, and decades of research try to address
this issue. In our work, however, we noticed that despite such a well-
known fact, the second and the third problem—affecting today’s
platforms such as servers, laptops, or smartphones—are either not
addressed in the literature or the state-of-the-art solutions are limited
(e.g., loss of availability or coarse-grained responses). These gaps
motivated our research and eventually led to this dissertation.

In the rest of this chapter, we first provide a summary of the con-
tributions that support the two claims that we exposed in Section 1.2.
Then, we list some potential areas to investigate for future work.

14.1 summary of the contributions supporting our claims

In Part II, we demonstrated that intrusion survivability is a viable
approach for commodity OSs. The goal of the approach is to recover
the compromised service to a previous state and then to put it in
a degraded mode to withstand future reinfection. It minimizes the
availability cost and allows the system to survive the intrusions while
waiting for a patch to be applied fixing the vulnerabilities used by the
attackers. We introduced a cost-sensitive response selection process
to help select optimal responses when an intrusion is detected. We
designed an architecture to orchestrate the selection, recovery, and the
application of the responses that degrade the state of the compromised
service. We implemented a Linux-based prototype and used it to
evaluate our approach. The results support our claim that commodity
OSs can survive intrusions by showing that:

• responses allow the service to withstand a reinfection or stop it,
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• suitable responses are selected based on the available informa-
tion that we have on the intrusion,

• the availability cost is small,

• the monitoring cost is small (except in the rare case of a service
that performs many small write accesses to the file system in
burst),

• and that the approach is applicable to various types of services.

In Part III, we demonstrated that we can detect intrusions at the
firmware level with the highly privileged SMM as a use case. Low-
level software components—such as the SMM—are increasingly tar-
geted and our approach helps to detect intrusions that compromise
them. We introduced an event-based and co-processor-based behavior
monitoring approach specifically targeted at low-level software com-
ponents. Our approach addressed limitations from the literature (e.g.,
the semantic gap or transient attacks) while remaining flexible. We
detailed two detection methods and the architecture of our solution.
We implemented a simulation-based prototype and used it to evaluate
our approach. The results support our claim that a hardware-based
approach is suitable to detect intrusions at the SMM level by showing
that:

• state-of-the-art attacks against the SMM are detected,

• no false positives were encountered,

• the instrumentation of the SMI handlers does not make them
exceed the 150 µs threshold,

• the co-processor can detect an intrusion in less than a millisec-
ond,

• and the firmware size did not increase significantly.

These contributions and results, however, are only the starting point
to build platforms that can withstand, survive, or be resilient against
intrusions. There is still a long way to go to apply these ideas to real
world systems at scale. We now discuss the next steps.

14.2 perspectives

We focused our work on the aspects that we considered the most
relevant in consideration of the problems we listed. Moreover, we only
evaluated certain aspects of our approaches (e.g., security, effectiveness,
or performance). However, during our work we identified areas that
require further work, or other aspects that we should evaluate. We
already listed some directions for future work—that are specific to
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each contribution—in the conclusion of each part (Section 8.3 and
Section 13.3). We first summarize them here, then we discuss more
long-term perspectives that are related to the general idea behind this
thesis.

14.2.1 Extend the Approaches and their Evaluation

For the work described in Part II related to the intrusion survivability
at the OS level, we would like to investigate the following areas for
future work:

• Evaluating the feasibility of deactivating responses.

• Maintaining a history of the success and failures of the responses
against a specific malicious behavior to mitigate the bias and er-
rors that experts can introduce when assessing the performance
of a response.

• Using hardware-based isolation mechanisms to improve the secu-
rity of our architecture and increase our trust in the enforcement
of the responses.

For the work described in Part III related to the intrusion detection
at the firmware level, we would like to investigate the following areas
for future work:

• Performing runtime SMM recovery after an intrusion has been
detected—without impacting the availability of the platform—to
evaluate whether our approach can successfully recover from an
intrusion in SMM.

• Monitoring other low-level targets (e.g., ARM TrustZone secure
world) to evaluate the generalization of the approach.

• Implementing other detection methods—such as data flow in-
tegrity [44]—to evaluate the flexibility of the approach.

Here, we only listed non-exhaustively directions that could extend
our current approaches. We now take a look at less immediate steps
related to our work.

14.2.2 Surviving and Adapting Intrusions

Let us now consider more long-term and less immediate directions.
They do not necessarily require that the previously listed directions
are addressed. We consider the following perspectives less immediate
since they would require more work, and we do not have a clear view
of how to tackle the challenges involved.

The first open question is how—based on the ability to recover at
the SMM-level—can we make the SMM able to survive intrusions?
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145 An area to investigate would
be the use of virtualization in

SMM by looking at SMI Transfer
Monitors (STMs) [288].

146 A fix could also be changing
the implementation of a protocol.

At the beginning of this dissertation, we explained that low-level
components—such as the SMM—did not have sufficient intrusion
detection capabilities, while OSs did not have intrusion survivability
capabilities. We introduced approaches to fill these gaps, but we
are now at a point where the SMM is only able to detect without
surviving. While being able to do recovery at the SMM-level could
be possible technically, we wonder whether it would be possible to
put SMI handlers in a degraded mode. First, we do not know how
feasible it would be to reduce the privileges of code executing in SMM
at the granularity of one SMI handler.145 Second, even if we had such
an ability, an SMI handler performs specific tasks with most of the
time only one specific function. It is not sure whether it would be
possible to restrict an SMI handler without rendering its only function
unavailable.

The second open question is how to automatically adapt the system
so that it is not vulnerable anymore to the vulnerabilities used by the
initial intrusion—allowing us to deactivate the responses that degrade
the services. Intrusions may be due to a software flaw (e.g., a memory
corruption or a race condition), thus we should patch the software. Or
it may be due to a misconfiguration, thus we should reconfigure the
service properly. The difficulty lies in both the ability to automatically
determine what and where the vulnerability is (e.g., a software flaw or
a misconfiguration), but also in determining how to patch it.146 Finally,
an important aspect is how can we guarantee that the automatic fix
indeed makes the system not vulnerable anymore and not just one
particular exploitation of the vulnerability.
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A
M A LWA R E S A M P L E S

Malware SHA-256

Linux.BitCoinMiner 690aea53dae908c9afa933d60f467a17ec5f72463988eb5af5956c6cb301455b

Linux.Rex.1 762a4f2bf5ea4ff72fce674da1adf29f0b9357be18de4cd992d79198c56bb514

Linux.Encoder.1 18884936d002839833a537921eb7ebdb073fa8a153bfeba587457b07b74fb3b2

Hakai 58a5197e1c438ca43ffc3739160fd147c445012ba14b3358caac1dc8ffff8c9f

Table A.1: Malware used in our experiments with the SHA-256 hash of the
samples

In Table A.1, we list the malware samples used in our experiments
alongside their respective SHA-256 hash.
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B
G E M 5 PA R A M E T E R S

Parameter x86 ARM Cortex A5

CPU Type DerivO3Cpu timingi

Clock 2 GHz 500 MHz

Restricted FIFO latency 128 ns 128 ns

Cache line size 32 B 32 B

L1 I
Size 32 kB 16 kBii

Associativity 2 2

L1 D
Size 64 kB 16 kB ii

Associativity 2 4

L2

Size 2 MB 512 kB

Associativity 8 8

DRAM
Type DDR3_1600 LPDDR3_1600_x32iii

Size 1024 MB 10 MB

i We use the timing model since the A5 is a single-issue in-order CPU and our
evaluation mainly depends on load/store operations. ii The cache size has a range

of options: 4 kB, 8 kB, 16 kB, 32 kB or 64 kB. iii Educated guess, based on the fact
that this is a standard for low power consumption memory.

Table B.1: Parameters used with gem5 for the x86 and the ARM simulation

In Table B.1, we show the different parameters we used to configure
gem5 for the simulation of the main CPU and the co-processor. We
used the default parameters of the out-of-order x86 simulation, except
the CPU clock, which we set to a higher frequency. For the ARM
Cortex simulation, we derived the parameters from the ARM technical
reference manual [14].

147





147 Pour plus d’informations, voir
le rapport annuel de l’agence
européenne chargée de la
sécurité des réseaux et de
l’information (abrégée ENISA en
anglais) [188] étudiant l’évolution
des menaces ciblant les systèmes
d’information.

148 Le terme entité est à prendre
au sens large et fait référence à
des utilisateurs, des processus,
ou des systèmes par exemple.

149 C’est pourquoi il est
important d’élaborer des
modèles d’attaquant (threat model
en anglais) afin de savoir
précisément contre quoi on
souhaite se protéger.

R É S U M É S U B S TA N T I E L E N F R A N Ç A I S

Le crime organisé, l’espionnage industriel, les attaquants opportu-
nistes, ou encore les acteurs étatiques, font tous partie des menaces
potentielles147 pour la sécurité du système d’information d’une orga-
nisation ou d’un individu. Des décennies de recherche et de progrès
en sécurité informatique nous ont permis de mettre en place de nom-
breux mécanismes de sécurité préventifs. Parmi ces mécanismes, nous
pouvons citer comme exemples la cryptographie, le contrôle d’accès,
ou les pare-feux.

Pourquoi, malgré ces mécanismes, des intrusions surviennent-elles ?
Pourquoi ne nous est-il pas possible de construire des systèmes par-
faitement sécurisés ? Plusieurs facteurs entrent en jeu et doivent être
pris en compte afin de répondre à ces questions. Avant d’exposer la
thèse soutenue par ce manuscrit, nous expliquons ces facteurs et les
différents problèmes auxquels nos systèmes d’information font face
de nos jours.

introduction

Les mécanismes de sécurité préventifs visent à empêcher un attaquant
de violer des propriétés de sécurité. Les trois propriétés principales
sont la confidentialité (seules les entités autorisées peuvent accéder à
l’information), l’intégrité (seules les entités autorisées peuvent modifier
l’information), et la disponibilité (les entités autorisées doivent avoir
accès à l’information quand elles le souhaitent).148

Insuffisance des mécanismes de sécurité préventifs

Bien que nos systèmes soient conçus avec des mécanismes cherchant
à garantir les propriétés susnommées, les personnes en charge de
la conception de systèmes peuvent faire des erreurs, sont contraints
par des budgets (en temps et en argent), sont biaisés, ou limités par
des politiques internes au sein de leur organisation. Ainsi, certaines
protections ne seront pas mises en place ou seront vulnérables. Cela
signifie qu’en pratique, nos systèmes d’information sont conçus pour
prévenir la violation des propriétés de sécurité jusqu’à un certain
point.149 De plus, nos systèmes sont exposés que ce soit via Ethernet,
Wi-Fi, Bluetooth, ou le réseau de téléphonie mobile. Les attaquants
peuvent donc attaquer nos systèmes en continu jusqu’à ce qu’ils soient
compromis, tout en prenant peu de risque, car l’attaque est réalisée à
distance et est difficile à attribuer.

149
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150 Voir les travaux de Anderson

[8] et Anderson et Moore [9]
qui étudient ces aspects

économiques.

151 Voir les travaux de Anderson

[7] et Denning [90].

152 Voir les travaux de Morin et
Mé [203] qui ont étudié les

similarités et différences entre un
IDS et un antivirus.

Plus précisément, des intrusions peuvent survenir par la combi-
naison de plusieurs facteurs techniques et économiques. Les facteurs
techniques rendent un système vulnérable comme, par exemple, une
mauvaise configuration du système, un système qui n’est pas main-
tenu à jour, ou une vulnérabilité d’un composant (logiciel ou matériel).
Les attaquants peuvent exploiter ces vulnérabilités pour violer la po-
litique de sécurité du système (c.-à-d., réaliser une intrusion) afin
d’atteindre leurs buts (p. ex., voler des données confidentielles). Les
raisons économiques sont les différentes motivations qui guident les
décisions des organisations ou des individus — attaquants ou défen-
seurs.150 Par exemple, le questionnement d’un attaquant pourrait être :
les bénéfices d’une intrusion sont-ils supérieurs aux coûts engendrés ?

En prenant en compte ces facteurs, nous en concluons que nous
devons supposer qu’à terme une intrusion aura lieu. C’est pourquoi
nous devons non seulement construire des systèmes capables de
prévenir des intrusions, mais aussi capables de détecter et survivre à
ces intrusions.

Incapacité des systèmes d’exploitation à survivre aux intrusions

L’idée d’un système capable de détecter automatiquement des intru-
sions, abrégé IDS en anglais (pour Intrusion Detection System), date des
années 1980.151 De nos jours les IDSs sont présents dans la plupart
des systèmes d’exploitation, abrégés OSs en anglais (pour Operating
Systems), par exemple sous la forme d’un antivirus,152 ou sont implan-
tés au sein du réseau [217]. Cependant, comme leur nom l’indique, les
IDSs se concentrent uniquement sur la détection et ne permettent pas
aux OSs de survivre ou résister à une intrusion.

Malheureusement, bien que le concept de tolérance aux intrusions
date lui aussi des années 1980 [116], la plupart des travaux de re-
cherche se sont concentrés sur les systèmes critiques, distribués, ou
sur la résilience d’un réseau. Ainsi, la capacité des OSs généralistes
à survivre à une intrusion — après que celle-ci a été détectée — est
limitée.

Des solutions existent afin de restaurer le système dans un état
sain [122, 153, 197, 277, 286] ou limiter l’impact d’une intrusion [20,
113, 119, 239, 241], mais ces solutions sont limitées. Par exemple,
elles peuvent engendrer une perte de disponibilité, impliquer un
fort coût en performance, et nécessiter des modifications dans les
applications, ou simplement ne pas être capables de survivre face aux
intrusions après une restauration. Nous arrivons donc à la conclusion
que les solutions de l’état de l’art, provenant du monde académique ou
industriel, ne permettent pas à un système d’exploitation généraliste
de survivre aux intrusions.
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153 Au meilleur de notre
connaissance, Duflot et
co-auteurs [97, 98] furent les
premiers à considérer le SMM
comme moyen de contourner les
sécurités du système
d’exploitation.
154 Ils sont soupçonnés d’être les
responsables de l’attaque sur le
Comité national démocrate
américain [3] et la chaîne de
télévision française TV5

Monde [273].

155 Ainsi toutes les vulnérabilités
qui sont présentes et connues ne
seront pas corrigées.

Ciblage accru des composants de bas niveau

Néanmoins, la sécurité des OSs et de leurs applications s’est grande-
ment améliorée depuis les 1980 ou 1990. Ces améliorations rendent
la tâche des attaquants plus difficile. Il est désormais plus compliqué
d’infecter un système, ou une application, sans être repéré ou sans
laisser de traces. C’est pourquoi certains attaquants — plus sophisti-
qués et ayant plus de ressources — s’attaquent aux composants de bas
niveau.

Matériel

BIOS

Système d’exploitation

ApplicationsPrivilèges

Plus

Moins

Couches d’abstraction

Plus spécifiquement, un de ces composants, le BIOS (abréviation de
Basic Input/Output System en anglais) est une cible particulièrement
intéressante. Il s’agit du composant logiciel responsable de la confi-
guration du matériel au démarrage de l’ordinateur, juste après avoir
appuyé sur le bouton démarrage. En effet, en raison de son accès
direct au matériel, et comme il s’agit d’un composant qui s’exécute en
premier sur la plateforme, le BIOS est hautement privilégié. Il est aussi
responsable de la mise en place d’un des modes d’exécution les plus
privilégiés de l’architecture x86 : le System Management Mode (SMM).
Garantir l’intégrité du BIOS et du code s’exécutant en SMM est donc
primordial pour maintenir l’intégrité du reste de la plateforme. Si
un attaquant arrive à compromettre le BIOS, il peut compromettre
n’importe quel composant qui le suit, tel que le système d’exploitation,
et donc rendre contournable toute solution de sécurité implémentée
au niveau de l’OS.153

Par exemple, en 2018, le groupe nommé APT28, Fancy Bear, ou
Sednit,154 a utilisé ce type d’attaque [226]. Cela lui permettait d’avoir
un logiciel malveillant furtif implanté dans le BIOS qui était capable
de survivre face à une réinstallation de l’OS ou un remplacement du
disque dur.

Malheureusement, bien que de nombreuses solutions existent pour
garantir l’intégrité du BIOS et des composants qui le suivent au dé-
marrage [68, 130, 225, 230, 268, 272], peu de travaux se sont intéressés
à la sécurité du SMM. Soit ils reposent sur des principes de sécurité
préventive qui — comme nous l’avons expliqué précédemment — ne
suffisent pas, soit ils offrent des capacités de détection, mais celles-ci
sont limitées (p. ex., faussé sémantique, impossibilité de détecter des
attaques inconnues, ou rigidité de l’approche de détection). Nous en
concluons que les composants de bas niveau de nos plateformes sont,
pour le moment, incapables de détecter si une intrusion a eu lieu. Ce
constat est particulièrement inquiétant, car ces composants ne sont
pas nécessairement mis à jour155 et la durée de vie ou d’utilisation
d’une plateforme avec ces composants se compte en années.
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Thèse soutenue par ce manuscrit

Ce manuscrit soutient que les plateformes peuvent être construites afin
qu’elles détectent des intrusions au niveau du BIOS et survivent auto-
matiquement aux intrusions au niveau du système d’exploitation sans
impacter significativement la qualité de service de l’utilisateur. Dans
un premier temps, nous démontrons qu’une approche de survivabilité
aux intrusions est viable et praticable pour des OSs généralistes. Dans
un second temps, nous démontrons qu’il est possible de détecter des
intrusions au niveau du BIOS avec une solution basée sur du matériel.

contributions

Nos travaux contribuent à l’amélioration de la survivabilité aux in-
trusions au niveau de la couche du système d’exploitation et des
applications, et à l’amélioration de la détection d’intrusion au niveau
de la couche du BIOS. Ces travaux ont fait l’objet de publications à
ACSAC en 2017 [60], RESSI en 2018 [59], et ACSAC en 2019 [58].

Survivabilité des systèmes d’exploitation généralistes aux intrusions

Notre première contribution répond à la question suivante : comment
concevoir un OS de façon que ses services puissent survivre aux
intrusions tout en maintenant leur disponibilité ?

L’approche que nous proposons se distingue de l’état de l’art en
trois points. Nous combinons la restauration de l’état des fichiers et des
processus d’un service avec la capacité d’appliquer des réponses qui
limitent l’impact de l’attaquant dans le cas d’une nouvelle compromis-
sion. Nous restaurons et appliquons des réponses par service qui vont
impacter seulement le service qui a été compromis et n’impacteront
pas le reste du système. Nous mettons le service qui a été compromis
dans un état dégradé après avoir restauré son état (fichiers et proces-
sus). Pour ce faire, nous retirons des privilèges qui sont normalement
utilisés par le service (p. ex., la capacité d’écrire dans un dossier ou
un fichier).

L’état dégradé est volontaire. Lorsqu’une intrusion est détectée,
nous n’avons pas d’information précise concernant les vulnérabilités
exploitées afin de les corriger, ou nous n’avons pas de correctif dispo-
nible. L’état dégradé permet au service et au système de survivre à
l’intrusion pour deux raisons. Premièrement, cela empêche l’attaquant,
soit de réinfecter le service, soit d’effectuer des actions malveillantes
(il n’a, en effet, plus les privilèges nécessaires). Deuxièmement, l’état
dégradé maximise le nombre de fonctionnalités disponibles au sein
du service, cela permettant d’attendre le ou les correctifs nécessaires.

Afin de maximiser le nombre de fonctionnalités disponibles, nous
avons mis en place un modèle permettant de calculer les réponses
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156 Le projet Malware Attribute
Enumeration and Characterization
(MAEC) [155] propose une liste
des comportements malveillants
les plus répandus sous forme de
hiérarchie [201].

157 Pour ce faire, nous nous
sommes basés sur des projets tels
que systemd [253], CRIU [76],
snapper [247], ou encore Linux
audit [141].

optimales à appliquer. Ce modèle vise à limiter le coût des réponses —
en termes de disponibilité — tout en maximisant leur efficacité face à
l’intrusion. Bien que ce type de modèle — basé sur le coût — ne soit
pas nouveau, notre manière de le calculer l’est. En effet, les méthodes
précédentes se basent principalement sur des graphes d’attaques ou
de vulnérabilités [113, 151, 239, 241].

Dans notre approche, nous utilisons la notion de comportement
malveillant. Nous associons un comportement malveillant156 à un coût,
les réponses possibles pour contrer ce comportement à un coût, et
nous calculons un risque en utilisant une matrice de risque qui prend
en compte la probabilité de l’intrusion et le coût du comportement
malveillant. Nous utilisons ensuite une méthode d’optimisation multi-
objectifs afin de déterminer la réponse optimale. Nous déterminons
la priorité des objectifs à l’aide d’un poids. Le poids est le niveau de
risque ; plus le risque est fort et plus la solution sera choisie afin de
favoriser l’efficacité de la réponse. À l’inverse, plus le risque est faible
et plus la solution sera choisie afin de minimiser le coût de la réponse.

Nous avons développé un prototype de notre approche de surviva-
bilité sur un système basé sur le noyau Linux.157 Nous avons utilisé
ce prototype pour nos expériences. Grâce à celles-ci, nous avons tout
d’abord pu déterminer que notre approche est capable de résister à
différents types d’intrusions et que les services qui sont dans un état
dégradé fonctionnent toujours. Ensuite, nous avons pu déterminer
que notre modèle permet de sélectionner des réponses adaptées à
l’intrusion et au service. Enfin, nous avons observé que le coût en per-
formance est négligeable excepté dans le cas de services qui effectuent
de nombreuses écritures de petite taille en rafale sur le système de
fichiers.

Détection d’intrusion au niveau du SMM

Notre seconde contribution répond à la question suivante : comment
détecter des intrusions au sein de composants de bas niveau tel que le
SMM ?

L’approche que nous proposons repose sur quatre éléments : un
coprocesseur, un canal de communication restreint, une instrumen-
tation du code cible, et un modèle du comportement attendu de la
cible. Le coprocesseur — avec sa mémoire dédiée — permet d’isoler
le moniteur dans un environnement d’exécution distinct de la cible.
Ainsi, si l’attaquant compromet la cible, il n’a pas d’accès direct à
la mémoire du moniteur, ni n’a de contrôle direct sur le moniteur.
Cependant, cette isolation introduit un faussé sémantique — il nous
est difficile d’avoir accès à l’état de la cible (p. ex., ses registres ou ce
qu’elle exécute). Le canal de communication résout ce problème en
permettant l’envoi d’information liées au comportement actuel de la
cible à notre moniteur. Cependant, celui-ci doit garantir l’intégrité des
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158 Par exemple, éteindre
l’ordinateur dans le cas d’une

surchauffe du système, la mise à
jour du BIOS dans la flash et sa
protection, ou encore la gestion

sécurisée de variables UEFI [139,
291].

159 Des attaques ont été montrées
exploitant ces registres [143, 223].

messages quand ils ont été envoyés et nécessite une faible latence pour
ne pas impacter significativement la cible qui envoie ces messages.
Nous imposons cette transmission d’information en instrumentant
le code de la cible. Cette instrumentation permet ainsi d’éviter de
modifier le processeur au niveau du matériel. Enfin, le modèle qui
permet de détecter si une intrusion a eu lieu — en déterminant si
le comportement observé n’est pas celui attendu — est généré après
analyse de la cible.

Comme cas d’utilisation, nous avons choisi d’étudier et d’évaluer
notre approche avec le code du BIOS s’exécutant en SMM. Le SMM
est un mode d’exécution très privilégié des processeurs x86 [139].
De nos jours, il est utilisé pour exécuter des services privilégiés158

du BIOS — durant l’exécution du système d’exploitation — dans un
environnement de confiance. En effet, le code qui s’exécute en SMM
est stocké dans une zone protégée de la mémoire appelée SMRAM.
Seul le code qui s’exécute en SMM peut accéder au SMRAM — le
système d’exploitation ne le peut donc pas. De plus, seul le code qui
s’exécute en SMM peut écrire dans la flash du BIOS. Pour passer en
mode SMM, une interruption nommée SMI doit être déclenchée, qui
ensuite bascule sur l’exécution du gestionnaire d’interruption associé.
Malheureusement, comme le reste du système est en pause durant la
gestion de cette interruption, le gestionnaire ne doit pas prendre plus
de 150 µs pour traiter l’interruption [135].

Pour détecter des intrusions, nous utilisons deux modèles. Le pre-
mier modèle repose sur le graphe de flot de contrôle (abrégé CFG en
anglais pour Control-Flow Graph). Nous vérifions que chaque appel
indirect cible une fonction avec un type valide (celui de l’appel indi-
rect) et nous vérifions que chaque retour de fonction utilise l’adresse
préalablement stockée sur la pile. Pour la vérification des types, nous
analysons le code source pour extraire les types des appels indirects
et des fonctions, puis nous instrumentons le code pour envoyer un
message à chaque appel indirect contenant un identifiant unique as-
socié à l’appel et l’adresse utilisée. Pour les retours de fonction, nous
instrumentons le code pour envoyer un message au prologue et à
l’épilogue de chaque fonction. Ainsi, le moniteur peut recréer une
pile permettant de vérifier les adresses (shadow call stack en anglais) et
vérifier que chaque appel indirect est valide. Le second modèle repose
sur des invariants liés à des registres qui permettent de modifier le
contexte d’exécution. Dans notre cas, nous nous sommes intéressés
à CR3 (qui est l’adresse physique du quatrième niveau des pages
utilisées pour la traduction d’adresses virtuelles) et à SMBASE (qui
est utilisé pour calculer le point d’entrée en SMM).159 Les valeurs de
ces registres sont temporairement stockées en mémoire et peuvent
être modifiées par un attaquant. Nous vérifions à chaque SMI que
les valeurs des registres n’ont pas été modifiées, car il n’y a aucune
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160 D’autres architectures
nécessitant un coprocesseur de
sécurité reposent sur ce type de
processeur [5, 186].

161 Par exemple, le mécanisme de
communication par boîte aux
lettres (ou mailbox en anglais)
aurait nécessité d’attendre un
accusé de réception de la part du
moniteur avant de continuer
l’exécution pour garantir
l’intégrité du message.
Malheureusement, cette attente
aurait donné en moyenne une
latence de 7500 cycles [244].

162 Ils sont généralement utilisés
pour connecter des processeurs
entre eux ou un processeur avec
le chipset.

163 Au meilleur de notre
connaissance, au moment où les
expériences ont été réalisées, il
n’existait aucune carte FPGA
ayant accès au bus AMD
HyperTransport ou Intel QPI
disponible à la vente. Certaines
furent disponible par le passé,
mais elles ont été retirées de la
vente.

raison légitime qu’elles le soient après la configuration du système au
démarrage.

Pour le coprocesseur, nous nous reposons sur un ARM Cortex
A5 [14].160 Il nous permet d’isoler le moniteur et a suffisamment de
puissance de calcul pour traiter les messages.

Nous avons étudié les mécanismes existants de communication
entre deux processeurs et aucun ne répondait à nos exigences en
termes de sécurité et de performance.161 Nous introduisons donc un
nouveau composant qui fonctionne comme une file d’attente de type
« premier entré, premier sorti », abrégé FIFO en anglais (pour First In
First Out), mais restreinte. En effet, le FIFO n’acceptera que l’entrée de
messages de la part de la cible et interdira de retirer ou de modifier
leur contenu — garantissant ainsi leur intégrité. Pour répondre à la
problématique de la latence, nous utilisons un bus à faible latence
pour connecter le processeur de la cible au FIFO, ainsi que pour le
coprocesseur. Intel QPI et AMD HyperTransport sont deux exemples
de bus à faible latence.162

Afin d’instrumenter le code SMM, nous avons développé deux
modules d’instrumentation en utilisant l’infrastructure LLVM [165].
Le premier analyse le code qui s’exécute en SMM et l’instrumente
pour la politique visant à garantir l’intégrité des appels indirects. Le
second instrumente le code pour garantir l’intégrité de l’adresse de
retour stockée sur la pile. Nous instrumentons ensuite manuellement
le code pour envoyer la valeur stockée en mémoire de CR3 et SMBASE
au moniteur.

Pour évaluer notre approche, nous avons utilisé un émulateur et un
simulateur.163 Grâce aux différentes expériences menées, nous avons
pu déterminer que notre approche est capable de détecter des attaques
de l’état de l’art tout en respectant la contrainte du seuil des 150 µs. Le
moniteur mettait au maximum 230 µs pour traiter les messages reçus
durant l’exécution d’un SMI. Enfin la taille du BIOS n’a augmenté que
de 0.6 % en raison de l’instrumentation d’une partie du code.

travaux futurs

Ces travaux nous ont permis d’établir les premières bases d’une pla-
teforme capable de détecter et survivre aux intrusions. Cependant,
durant nos recherches, nous avons concentré notre analyse et nos
expériences sur des points spécifiques. D’autres aspects restent donc à
étudier.

Dans un premier temps, nous envisageons d’évaluer des aspects
supplémentaires de nos approches. Par exemple, évaluer la capacité
de nos approches à se généraliser à d’autres cas d’utilisation tels
que l’observation du comportement du code s’exécutant en ARM
TrustZone secure world [13] — un environnement proche du SMM
— et appliquer l’approche de survivabilité à Windows. Il serait aussi
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164 Pour le moment, nous nous
reposons entièrement sur le

noyau du système d’exploitation
pour les isoler. Cependant, les

noyaux sont connus pour avoir
des vulnérabilités avec une

longue durée de vie pouvant
aller jusqu’à 5 ans en

moyenne [65, 72].

intéressant d’améliorer certains aspects de nos approches. Par exemple,
nous souhaitons ajouter d’autres modèles de détection pour le SMM,
et améliorer l’isolation des composants utilisés pour la survivabilité
du système (p. ex., les composants en charge de la restauration et de
l’application des réponses).164

Dans un second temps, nous souhaitons nous intéresser à ce qui suit
la capacité de survivre à une intrusion : la capacité d’adaptation. C’est-
à-dire, comment faire en sorte que la plateforme soit en mesure de ne
plus être vulnérable afin de retirer les réponses qui ont été appliquées ?
En effet, les tâches d’analyse de l’intrusion, de détermination des
vulnérabilités exploitées, de développement, et d’application d’un
correctif s’effectuent actuellement manuellement. Nous souhaitons
rendre automatiques ces tâches afin qu’à terme nous puissions corriger
automatiquement le système et retirer automatiquement les réponses
mises en place.
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and Ivo Pletikosić. The style was inspired by Robert Bringhurst’s seminal book on
typography “The Elements of Typographic Style”. The font for the main body of the text is
TeX Gyre Pagella 11pt. The graphics were drawn using pgfplots and tikz, while some
of them were generated with matplotlib and seaborn. The bibliography was typeset
using biblatex and biber.



 

Titre : Détecter et survivre aux intrusions : exploration de nouvelles approches de détection, de 
restauration, et de réponse aux intrusions 

Mots clés : sécurité, détection d’intrusion, réponse aux intrusions, survivabilité 

Résumé : Les systèmes informatiques, tels que 
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embarqués, sont construits avec des couches de 
mécanismes de sécurité préventifs afin de 
réduire la probabilité qu’un attaquant les 
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intrusions surviennent toujours. Par conséquent, 
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qu’ils puissent les détecter et y survivre. 
  Les systèmes d’exploitation généralistes sont 
déployés avec des mécanismes de détection 
d’intrusion, mais leur capacité à survivre à une 
intrusion est limitée. Les solutions de l’état de l’art 
nécessitent des procédures manuelles, 
comportent des pertes de disponibilité, ou font 
subir un fort coût en performance. De plus, les 

composants de bas niveau tels que le BIOS sont 
de plus en plus la cible d’attaquants cherchant à 
implanter des logiciels malveillants, furtifs, et 
résilients. Bien que des solutions de l’état de l’art 
garantissent l’intégrité de ces composants au 
démarrage, peu s’intéressent à la sécurité des 
services fournis par le BIOS qui sont exécutés 
au sein du System Management Mode (SMM). 
  Ce manuscrit montre que nous pouvons 
construire des systèmes capables de détecter 
des intrusions au niveau du BIOS et y survivre 
au niveau du système d’exploitation. Tout 
d’abord, nous démontrons qu'une approche de 
survivabilité aux intrusions est viable et 
praticable pour des systèmes d’exploitation 
généralistes. Ensuite, nous démontrons qu'il est 
possible de détecter des intrusions au niveau du 
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embedded systems or laptops, are built with 
layers of preventive security mechanisms to 
reduce the likelihood of attackers successfully 
compromising them. Nevertheless, given time 
and despite decades of improvements in 
preventive security, intrusions still happen. 
Therefore, systems should expect intrusions to 
occur, thus they should be built to detect and to 
survive them. 
Commodity Operating Systems (OSs) are 

deployed with intrusion detection solutions, but 
their ability to survive them is limited. State-of-
the-art approaches from industry or academia 
either involve manual procedures, loss of 
availability, coarse-grained responses, or non-
negligible performance overhead. Moreover,  
low-level components, such as the BIOS, are 

increasingly targeted by sophisticated attackers 
to implant stealthy and resilient malware. State-
of-the-art solutions, however, mainly focus on 
boot time integrity, leaving the runtime part of 
the BIOS—known as the System Management 
Mode (SMM)—a prime target. 
  This dissertation shows that we can build 
platforms that detect intrusions at the BIOS level 
and survive intrusions at the OS level. First, by 
demonstrating that intrusion survivability is a 
viable approach for commodity OSs. We 
develop a new approach that address various 
limitations from the literature, and we evaluate 
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