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Synthèse

Les ondes gravitationnelles sont l'une des prédictions de la théorie de la Relativité Générale d'Einstein. Les ondes gravitationnelles sont des solutions de ses équations qui correspondent à des perturbations de l'espace-temps se propageant à la vitesse de la lumière. La gravitation étant très faible en intensité, de telles ondes sont très difficiles à détecter. Grâce à cette même propriété, les ondes gravitationnelles sont un messager direct des sources les plus compactes de l'Univers, car elles se propagent à travers l'espace, sans être dispersées ou absorbées par la matière intermédiaire, contrairement aux ondes électromagnétiques qui constituent la lumière. Même des phénomènes extrêmement puissants n'engendrent que des amplitudes d'ondes gravitationnelles très faibles. Ainsi, il a fallu développer des instruments extrêmement sensibles: les détecteurs LIGO et Virgo. Les ondes gravitationnelles ont été détectées pour la première fois de façon directe le 14 septembre 2015, par ces même expériences. Depuis, plusieurs dizaines de détections ont été faites ouvrant la voie à une astronomie multi-messagers. Cette thèse est dediée à l'analyse des données des détecteurs d'ondes gravitationnelles de seconde génération Advanced LIGO et Advanced Virgo. En particulier nous nous intéressons à la détection d'ondes gravitationnelles qui pourraient être émises par des structures à une dimension créées dans l'Univers primordial: les cordes cosmiques. Ces objets ont une densité d'énergie particulièrement élevée et vibrent à des vitesses relativistes, ce qui indique qu'elles sont une source naturelle d'ondes gravitationnelles. Au terme des analyses, aucune signature d'ondes gravitationnelles correspondant à celle attendue pour les cordes cosmiques n'a pu être identifiée. Cependant, grâce à ce travail, nous avons pu déterminer des limites sur les différents paramètres caractérisant les cordes cosmiques afin de préciser les conditions d'existence de ces dernières.

Propriétés des ondes gravitationnelles

La théorie de la Relativité Générale décrit le mouvement d'objets sous l'influence de l'interaction gravitationnelle. À la différence de la mécanique galiléenne, la Relativité générale affirme que le temps et l'espace sont inextricablement liés en un seul continuum appelé "espace-temps". La géométrie de l'espace-temps est décrite par la métrique, qui définit le concept de distance entre deux points. La masse-énergie courbe l'espace et en retour la courbure de l'espace détermine comment les objets se déplacent. Les équations d'Einstein:

G αβ = 8πG c 4 T αβ , (1) 
décrivent la structure de l'espace-temps en incluant le mouvement des objets. Le tenseur d'Einstein G αβ est seulement fonction de la métrique et de ses deux premières dérivées spatio-temporelles, alors que le tenseur énergie-impulsion T αβ est le terme source qui décrit la distribution de masse-énergie, d'impulsion et de tension dans l'Univers. Les équations d'Einstein sont non linéaires, et par conséquent il n'existe pas de solution analytique générale pour une distribution quelconque de matière. Cependant, dans la limite d'un champ faible, c'est-à-dire un espace quasiment plat et sans source de champ gravitationnel, ces équations peuvent être linéarisées. On peut utiliser l'invariance de jauge, pour choisir une jauge dite "harmonique" ou jauge de Lorenz, pour réécrire les équations d'Einstein sous la forme d'une équation d'onde. Dans ces conditions, les solutions sont appelées ondes gravitationnelles. Une onde gravitationnelle est décrite par deux degrés de liberté ou états de polarisation. Les deux polarisations linéaires se distinguent par leur effet sur un cercle de masses libres, le plan du cercle étant perpendiculaire à la direction de propagation de l'onde. Une onde polarisée "plus" déforme le cercle en une ellipse qui est périodiquement compressée dans une direction et étirée dans l'autre. Une onde polarisée "croix" a le même effet, mais suivant une direction tournée de 45 • . Toutes les combinaisons linéaires de ces deux polarisations sont possibles. Ainsi, le passage d'une onde gravitationnelle engendre une variation de distance entre deux points. Les équations d'Einstein décrivent aussi les mécanismes de génération d'ondes gravitationnelles par des masses en mouvement. Dans ce cadre, si l'on se situe suffisamment loin de la source et que celle-ci possède une vitesse bien inférieure à celle de la lumière, l'émission des ondes gravitationnelles est bien décrite par l'évolution du moment quadrupolaire de ces masses. L'amplitude d'un rayonnement quadrupolaire est beaucoup plus faible que celle d'un rayonnement dipolaire et ceci, associé au couplage faible de la matière à la gravité, justifie que l'amplitude d'un rayonnement gravitationnel est typiquement beaucoup plus petite qu'un rayonnement électromagnétique. De plus, l'émission quadrupolaire à l'ordre le plus bas implique une brisure de la symétrie sphérique de la source pour émettre des ondes gravitationnelles. Les seules ondes gravitationnelles que l'on peut espérer détecter sont celles provenant de sources astrophysiques. Ces sources peuvent être classées en familles, selon la morphologie du signal qu'elles émettent. En particulier, les signaux transitoires qui durent de quelques millisecondes à quelques secondes, sont émis par des phénomènes cataclysmiques comme l'effondrement du coeur d'une étoile en fin de vie ou la fusion de trous noirs. Les signaux continus et stables par rapport à l'échelle de la durée d'observation, sont émis par exemple par les pulsars. La superposition incohérente d'ondes gravitationnelles émises par l'ensemble des sources transitoires et continues constituent un fond de rayonnement gravitationnel stochastique. De plus, la génération d'ondes gravitationnelles dans l'Univers primordial, nous parviendrait aujourd'hui aussi sous la forme d'un fond, similaire au rayonnement de fond diffus cosmologique dans le domaine électromagnétique. Le fond stochastique d'ondes gravitationnelles n'a toujours pas été détecté, mais pourra entre autres, permettre de "sonder" l'Univers primordial.

Détecteurs d'ondes gravitationnelles

Le passage d'une onde gravitationnelle modifie la distance entre deux masses libres. La variation de distance relative est proportionnelle à l'amplitude de l'onde gravitationnelle. C'est sur cet effet que repose le principe de détection des détecteurs interférométriques d'ondes gravitationnelles Virgo et LIGO. Le concept de base est celui de l'interféromètre de Michelson. Pour que l'interféromètre soit utilisé en tant que détecteur d'ondes gravitationnelles, il faut que les miroirs soient suspendus. Ainsi, ils peuvent être considérés comme des masses libres dans le plan horizontal du détecteur pour des ondes gravitationnelles de fréquence large devant la fréquence de résonance des suspensions. Une onde gravitationnelle qui se propage perpendiculairement au plan de l'interféromètre, alternativement, allonge un bras de l'interféromètre et raccourcit l'autre. Les interférences des deux faisceaux lumineux se trouvent ainsi modifiées. Une onde gravitationnelle est détectée comme une variation de puissance mesurée en sortie de l'interféromètre. On peut assimiler un détecteur interférométrique à une antenne possédant une réponse angulaire qui dépend de la position de la source dans le ciel et qui diffère pour chacune des polarisations. L'amplitude de l'onde gravitationnelle mesurée par un détecteur est une combinaison linéaire des facteurs d'antenne qui représentent la réponse angulaire du détecteur. La réponse est optimale quand l'onde arrive perpendiculairement au plan du détecteur, et nulle quand celle-ci se propage selon les bissectrices du détecteur. Un interféromètre de Michelson de base n'a pas la sensibilité pour mesurer des différences de longueurs relatives de l'ordre de 10 -21 m. Plusieurs améliorations ont été nécessaires pour construire les détecteurs Virgo et LIGO. De plus, les ondes gravitationnelles ne sont pas le seul phénomène physique induisant une fluctuation de la puissance transmise par l'interféromètre. Pour évaluer les performances d'un détecteur, c'est-à-dire sa sensibilité, il faut comparer sa réponse à une onde gravitationnelle aux nombreux bruits qui limitent la mesure. Par exemple, la précision de la mesure de la puissance transmise par l'interféromètre est, entre autres, limitée par les fluctuations quantiques du nombre de photons détecté par une photodiode pour une puissance incidente donnée. Les détecteurs LIGO et Virgo se sont arrêtés plusieurs années pour une mise à jour majeure pour donner naissance à la seconde génération de détecteurs: Advanced LIGO et Advanced Virgo. Ces développements ont conduit à une augmentation significative de la sensibilité des détecteurs. La première prise de données (O1) a débuté en septembre 2015, où Advanced LIGO a recueilli des données jusqu'en janvier 2016. C'est pendant cette période qu'on été détecté pour la première fois de façon directe, des ondes gravitationnelles émises par la coalescence de trous noirs, GW150914. La seconde période d'observation (O2) commence en Novembre 2016 et se termine en Aout 2017. Advanced Virgo a rejoint les détecteurs Advanced LIGO durant le dernier mois. Cette période est riche en détections, en particulier avec la première détection d'ondes gravitationnelles émises par la coalescence d'étoiles à neutrons, GW170817. L'ajout d'Advanced Virgo au réseau des détecteurs a joué un rôle crucial sur la localisation de la source.

Les données des détecteurs sont largement contaminées par des bruits transitoires appelés "glitches", qui dégradent la sensibilité des recherches de signaux d'ondes gravitationnelles, en particulier pour les signaux transitoires d'ondes gravitationnelles ou "bursts". Les bruits transitoires peuvent provenir de nombreuses sources, et il est nécessaire de comprendre leurs origines afin de les supprimer des données. Pour ce faire, les détecteurs sont surveillés par un millier de sondes, et différents outils ont été développés pour identifier et classifier ces bruits transitoires. Grâce à l'identification de familles de bruit transitoires, on génère des data quality flags qui marquent certaines périodes de temps de prise de données comme étant du bruit. Une partie du travail de cette thèse a été consacrée à la compréhension de ces bruits transitoires dans Advanced Virgo. En particulier, pour les détections pendant la seconde période d'observation (O2), j'ai vérifié qu'il n'y a pas de corrélation entre l'évènement détecté et les sondes auxiliaires. J'ai par la suite isolé et caractérisé tous les bruits transitoires autour de chaque évènement dans une fenêtre temporelle de ±5 min. Ce travail a été utilisé pour s'assurer que ces bruits transitoires n'avaient pas d'incidence sur la localisation de la source et l'estimation des paramètres de l'événement.

Les cordes cosmiques

L'Univers en se refroidissant subit une série de transitions de phase, qui peuvent conduire à des brisures spontanées de symétrie dans l'Univers primordial. Kibble a été le premier à montrer que des défauts topologiques du vide formés lors de ces transitions de phase pouvaient survivre au cours de l'évolution de l'Univers. Les cordes cosmiques sont des défauts topologiques unidimensionnels étendus sur des distances cosmologiques prédits dans de nombreux modèles de physiques de très hautes énergies. L'énergie par unité de longueur d'une corde cosmique, µ, est donnée par la température à laquelle la transition de phase se produit µ ∼ T 2 c . Ainsi, des cordes formées dans l'Univers primordial, encore très chaud, sont caractérisées par une énergie extrêmement élevée. La dynamique d'un réseau de cordes cosmiques est donnée par l'action de Nambu-Goto dans le cas de cordes infiniment fines. L'interaction des cordes cosmiques entre elles conduit à la formation de boucles qui oscillent de façon périodique au cours du temps. Le mouvement de ces boucles est relativiste. La tension d'une corde de Nambu-Goto est égale à son énergie par unité de longueur µ et force toute corde cosmique qui n'est pas complètement droite à se déplacer relativistiquement. Il est très courant dans la littérature de se référer à la quantité sans dimension Gµ/c 2 comme étant la tension de la corde. Les simulations numériques de l'évolution d'un réseau de cordes montrent que les cordes échangent toujours leurs branches lorsqu'elles se croisent. Ce mécanisme est appelé intercommutation. Les développements de la théorie des cordes suggèrent que les cordes fondamentales peuvent être étirées à des tailles macroscopiques et jouer le rôle de super cordes cosmiques. La différence majeure avec les cordes cosmiques topologiques est que lorsqu'elles se rencontrent, elles se reconnectent avec une probabilité p qui peut être inférieure à l'unité. Une des conséquences majeures du mécanisme d'intercommutation, est la formation incessante de boucles de cordes cosmiques. Le mouvement d'oscillation des boucles peut conduire à l'apparition de points de rebroussement dans la forme de la corde ou "cusps", qui se propagent à la vitesse de la lumière. Un autre type de discontinuités, apparait lors de l'intercommutation des cordes autour du point d'échange. Ces discontinuités, qui ressemblent à un "coin" sur les boucles de cordes cosmiques sont appelées "kinks". Les "cusps" et "kinks" émettent des puissants sursauts d'ondes gravitationnelles dont la forme d'onde a été determinée par Damour et Vilenkin. La région d'émission d'onde gravitationnelle est conique. Un autre type de sursauts est engendré par la rencontre de deux "kinks" qui se propagent dans des directions opposées. Dans ce cas, il s'agit d'une émission dans toutes les directions de l'espace. Mais les cordes cosmiques peuvent également être la source d'autres phénomènes observables, comme des phénomènes de lentilles gravitationnelles, des variations dans le fond diffus cosmologique, ou encore des émissions de rayons cosmiques à haute énergie.

Analyse des données-Résultats

Les données récoltées par un détecteur interférometrique se présentent sous la forme d'une série temporelle:

s(t) = n(t) + h(t). ( 2 
)
Le but de l'analyse de données des détecteurs d'ondes gravitationnelles est de déceler le signal h(t) qui serait éventuellement caché dans les données s(t) par le bruit n(t). La forme attendue de l'onde gravitationnelle émise par des cordes cosmiques est bien connue. On appelle "template" un modèle de la forme de l'onde gravitationnelle prédite par la théorie. La chaine d'analyse ou "pipeline", dediée à la recherche de sursauts d'ondes gravitationnelles produites par des cordes cosmiques utilise la technique de filtrage adapté pour détecter la présence d'un signal dans les données. Cette méthode consiste à faire la corrélation croisée entre le signal mesuré par le détecteur et un template du signal attendu. Pour détecter la présence d'un signal dans du bruit et mesurer son intensité, il faut un outil: le rapport signal sur bruit ("Signal to Noise Ratio", SNR). Si le SNR est grand, cela indique qu'autre chose que du bruit seul est présent dans les données. On applique ainsi un seuil sur le SNR afin de discriminer un vrai signal d'ondes gravitationnelles d'un bruit. Une partie de mon travail à consister à étudier la distribution des évènements qui ont passé un seuil fixé de SNR ou "triggers". Pour un bruit gaussien, en l'absence de signal caché, la distribution de SNR sera distribuée selon une gaussienne. La figure. 1 représente une distribution typique obtenue lors des analyses conduites. Cette distribution n'est pas gaussienne, on note la présence d'une queue d'évènements à haut SNR. En effet, la technique de filtrage adapté est optimale si le bruit du détecteur est gaussien et stationnaire, ce qui n'est pas le cas. J'ai étudié la distribution des "triggers" à la sortie de cette première étape du pipeline. Le but de ce travail est d'ajuster le seuil en SNR pour pouvoir discriminer au mieux le signal du bruit. Chaque "trigger" est décrit pas un ensemble de paramètres. Une grande partie du travail sur les distributions d'événements a été consacrée à la réduction des queues d'évènements non gaussiennes. Ce travail a permis d'identifier des familles de bruits transitoires et de les supprimer des données dans la suite de l'analyse. Contrairement à un évènement de bruit, un signal d'onde gravitationnelle doit etre observé de façon corrélée dans un intervalle de temps court dans les différents interféromètres. On peut donc chercher des événements en coïncidence temporelle entre plusieurs détecteurs, afin de réduire les bruits transitoires qui peuvent imiter un signal de corde cosmique. La fenêtre de coïncidence est suffisamment large pour tenir compte non seulement du temps maximal de propagation de l'onde gravitationnelle entre les détecteurs, mais aussi de la durée du signal et de l'incertitude temporelle.

Enfin pour améliorer le pipeline, on utilise une technique bayésienne pour distinguer les vrais signaux des évènements de bruit. On calcule un rapport de vraisemblance (likelihood ratio) Λ( x), où x représente l'ensemble des paramètres utilisés pour décrire un évènement coïncident. Cette fonction augmente de façon monotone avec la probabilité qu'un évènement coïncident soit le résultat d'une onde gravitationnelle. On peut ainsi classer les évènements coïncidents du plus probable au moins probable d'être une onde gravitationnelle.

Pour estimer l'importance d'un candidat, nous devons caractériser le bruit des détecteurs d'ondes gravitationnelles qui n'est ni gaussien ni stationnaire. Pour cela, on va décaler temporellement d'une certaine durée (méthode des time-slides) les données des détecteurs. Un éventuel signal de cordes cosmiques ne sera ainsi plus coïncident dans les détecteurs. En augmentant plusieurs fois le décalage temporel, on obtient plusieurs lots de données de bruits indépendants les uns des autres qu'on utilise pour estimer la distribution du bruit de fond. L'étude de la distribution du bruit de fond permet de caractériser entièrement notre analyse.

Enfin, en l'absence de détection on détermine la sensibilité de notre analyse aux signaux recherchés, en ajoutant dans les données des formes d'ondes gravitationnelles simulées. L'efficacité de la recherche est ainsi définie comme la fraction de signaux de cordes cosmiques simulés retrouvés par la chaine d'analyse.

Résultats

J'ai cherché des sursauts d'ondes gravitationnelles produits par des "cusps" ou des "kinks" dans les données collectées lors de la première période d'observation des détecteurs Advanced LIGO. J'ai conduit deux analyses distinctes en parallèle. La période analysée correspond à un total de 49 jours, où les deux détecteurs fonctionnaient simultanément. Une partie essentielle de ce travail a consisté à comprendre et réduire le bruit des detecteurs. Pour cela j'ai testé séparément l'impact de tous les data quality flags sur la distribution d'évènements coïncidents fortuits (bruit de fond de l'analyse). À chaque fois que j'ai appliqué une liste de data quality flags sur les données, j'ai relancé l'analyse et j'ai étudié à nouveau la distribution d'évènements coïncidents fortuits qui a été modifiée. Ce travail est itératif. Grâce à cela, j'ai pu améliorer la sensibilité des analyses en minimisant le risque de supprimer un candidat des données. J'ai ensuite conduit une étude détaillée sur une large partie des événements de la queue de la distribution du bruit de fond de l'analyse. J'ai utilisée des méthodes différentes afin d'isoler et d'identifier les familles de bruits qui limitent la recherche. En particulier, j'ai montré que la recherche est largement limitée par un type particulier de bruits transitoires qui sont semblables au signal attendu des cordes cosmiques: les "blip glitches". Avec la liste de "blip glitches" trouvées, j'ai essayé de comprendre l'origine de ces bruits en cherchant des corrélations dans toutes les canaux auxiliaires. Aucune corrélation significative n'a été mise en évidence.

Pour les deux recherches ("cusps" et "kinks"), il n'y a pas de candidats qui s'écartent de manière significative de la distribution de bruit, cf. Fig 2 . L'évènement le mieux classé est mesuré avec un rapport de vraisemblance Λ h = 232 pour la recherche des "cusps" et Λ h = 611 pour la recherche des "kinks", associé à un taux de fausse alarme FAR O1 = 2.40 × 10 -7 Hz. Une enquête sur ces évènements montre qu'ils semblent appartenir à la famille des "blip glitches". En l'absence de détection, De façon similaire j'ai conduit une recherche d'ondes gravitationnelles produites par des "cusps", en utilisant les données de la seconde période d'observation d'Advanced LIGO. La période analysée correspond à un total de 155.9 jours. Mon travail sur la qualité des données a permis d'augmenter la sensibilité de la recherche. Aucun signal n'a été détecté, cf Fig. 4. En parallèle, j'ai également effectué une recherche à trois détecteurs à l'aide des données recueillies par Advanced Virgo en août 2017, correspondant à un total de 17 jours de données. J'ai montré que malgré le fait que les blip glitches sont bien compris dans Virgo, il ne limitent pas la recherche. Mon étude sur la qualité des données dans Virgo a permis d'augmenter la sensibilité de la recherche de façon significative à haute amplitude. Mais, j'ai montré qu'inclure Virgo dans l'analyse semble légèrement dégrader la sensibilité de la recherche à basse amplitude. Ceci est dû à la faible sensibilité de Virgo par rapport à celle des détecteurs LIGO. Finalement, j'ai estimé la sensibilité de la recherche en combinant cette fois les données des deux périodes d'observations (O1 et O2), cf.4. 

Contraintes-Résultats

Nous avons vu qu'un réseau de cordes cosmiques formé dans l'Univers primordial est d'abord caractérisé par la tension des cordes Gµ/c 2 . Un autre paramètre est la probabilité d'intercommutation (avec p < 1 pour les super cordes cosmiques). En l'absence de détection, j'ai pu contribuer à poser des limites sur ces deux paramètres en utilisant les courbes d'efficacités obtenues lors des analyses. Il était important et nécessaire de dériver le taux de sursauts d'ondes gravitationnelles produit par des cordes cosmiques. À cette fin, trois modèles qui prédisent la distribution de boucles de cordes cosmiques: M=1, M=2 et M=3 ont été considérés. Les modèles M=1 et M=2 sont assez similaires, mais diffèrent par des facteurs de normalisation. La conséquence est que le modèle M=2 prédit une distribution de boucles plus faible que celle du modèle M=1. Le modèle M=3 est très différent des autres, et fait intervenir une physique plus complexe. C'est le modèle qui prédit la distribution de boucle la plus grande, en particulier pour les très petites boucles de cordes cosmiques. Pour cette raison, l'analyse de sursauts d'ondes gravitationnelles a pu contraindre ce modèle pour les cordes topologiques (p=1) avec Gµ < 8.5 × 10 -10 . Nous avons mis à jour ces résultats lors de l'analyse de la seconde période de prise de données d'Advanced LIGO et d'Advanced Virgo avec Gµ < 4.2 × 10 -10 pour le modèle M=3. De plus, un nouveau type d'émission d'ondes gravitationnelles a été étudié. En effet, quand il y a plus d'un "kink" par oscillation de boucles, les "kinks" peuvent se rencontrer et produire un sursaut d'onde gravitationnelle. Par comparaison avec l'émission produite par un "cusp" ou un "kink", cette émission est isotrope. J'ai ajouté cette nouvelle forme d'onde à la chaine d'analyse et j'ai analysé les données de la première et de la seconde période d'observation d'Advanced LIGO et Advanced Virgo. Grâce à ces résultats, j'ai posé des limites sur un nouveau paramètre: le nombre de "kinks" N k par oscillation de boucle. J'ai montré que l'analyse de sursauts d'ondes gravitationnelles émis par les cordes cosmiques n'est pas assez sensible pour poser des contraintes fortes sur ce paramètre. Ces résultats posent les fondations de l'analyse future de la troisième période d'observation des détecteurs de seconde génération.

Introduction

The notion of gravitational waves begins with the confirmation of the existence of electromagnetic waves in 1887 by Heinrich Hertz. However, a mathematical derivation of gravitational waves was only possible thanks to the formulation of the theory of General Relativity in 1915. One year later, Einstein postulated the existence of gravitational waves in 1916. Nevertheless, the physical reality of a gravitational-wave solution of Einstein equations was not showed until the Chapel Hill conference in 1957. It was at this point that a young physicist, Joseph Weber, decided to design the first gravitational-wave detector. Gravitational interaction is very weak, and gravitational waves have only tiny effects on matter. On the other hand, it is this same property that makes the gravitational-wave study so important. Indeed, this allows gravitational waves to be a direct messenger of the most compact sources in the Universe, as they propagate essentially unscathed through space, without being scattered or absorbed from intervening matter. The first evidence for their existence is due to the work of 1993 Nobel laureates Joseph Taylor and Russell Hulse. While this observation did not directly detect gravitational waves, it pointed to their existence.

In the early seventies Robert L. Forward (former student of Joseph Weber) built the first prototype of a laser interferometer (with 8.5m long arms) and Rainer Weiss laid the groundwork with the first design study of a real interferometric detector. This led to the development of the LIGO detectors. In parallel, Alain Brillet initiated the development of a European project of a gravitational-wave detector, the Virgo interferometer. The first generation of ground-based interferometric gravitational-wave detectors LIGO and Virgo stopped to take data in 2011 without making any detection. In order to improve the sensitivity of these detectors, a series of upgrades have led to the second generation of detector: Advanced LIGO and Advanced Virgo. Finally, on September 2015, gravitational waves emanating from a binary black hole coalescence, were finally detected during the first observing run of Advanced LIGO. A bit later, on August 2017, the LIGO-Virgo gravitational-wave network registered a gravitational-wave signal from the inspiral of neutron stars. Since then, several other detections have been made. This marks the dawn of a new era in astronomy, opening an original window with which to observe the Universe.

The existence of cosmic strings has been proposed in the mid-seventies by Tom W.B. Kibble. These are one-dimensional topological defects; structures of extremely high energy density with infinitesimal widths and lengths of cosmological size. Kibble was the first to point out that these objects could have formed naturally during a symmetry breaking phase transition in the early Universe. In the framework of Grand Unifies Theories (GUTs), cosmic strings might have been formed at a grand unification transition, or later. They first became very popular as a potential source for galaxy formation, but they were ruled out as the unique source by the first cosmic microwave background observations. A couple of years later, this field was revived in String Theory, where the formation of a superstring network is generic. In the simplest case, the strength of the gravitational interaction of cosmic strings is given in terms of the dimensionless quantity Gµ/c 2 , with µ the energy per unit length, G the Newton's constant and c the speed of light in vacuum. Strings are relativistic objects that typically move at a considerable fraction of the speed of light. Thus, the combinaison of a high energy scale and a relativistic speed evidently indicates that strings should be considered as a natural source of gravitational waves.

In this thesis we present the results of a search for transient signals of gravitational waves produced by cosmic strings using the LIGO-Virgo data. This search began in the LIGO/Virgo collaboration before this work, using data from the first generation of detectors. So far, no detection of cosmic strings has been achieved. Their non-detection has led to setting constraints on important parameters, such as Gµ/c 2 , describing a network of cosmic strings. This thesis manuscript begins with a brief overview of the framework of General Relativity in which gravitational waves are produced. Gravitational-wave properties and possible sources are presented. The detection principle of current interferometric gravitational-wave detectors is exposed in the second chapter, with the most important sources of noise which limit the current detector sensitivity. Then we present the Advanced LIGO and Advanced Virgo detectors and their first data taking. We conclude this chapter with a discussion on the methods used to study the quality of the data. The next chapter is devoted to cosmic strings. After introducing the standard cosmological model, we present simple models leading to the formation of strings, in order to understand the Kibble mechanism of topological string formation. Next, we give the equations of motion for strings in the limit of zero thickness, and discuss about their dynamic. In particular, we give the definition of two special points produced on strings: cusps and kinks. Finally, this chapter ends with a description of the observational signatures of cosmic strings, in particular the expected gravitational-wave signal produced by cusp/kink features. In the fourth chapter, we give a full description of the dedicated cosmic string burst pipeline. Then, we present the analysis performed to search for gravitational-wave bursts produced by cosmic strings, using the data from the first and second observing run of Advanced LIGO and Advanced Virgo. In the absence of a detection, in the last chapter, we derive the upper limits on the cosmic string parameters obtained with the burst and stochastic search for different cosmic string models. We subsequently discuss the implications of a new type of burst produced when two kinks collide on the burst and stochastic search.

Chapter 1

Gravitational waves

The Einstein equations are complicated to be solved in full generality, only restrictive conditions or approximations allow to obtain a solution. Less than one year after the first paper on General Relativity [START_REF] Einstein | Die Grundlage der allgemeinen Relativitäts theorie[END_REF], Einstein found a solution that predicts three kind of waves [START_REF] Einstein | Approximative Integration of the Field Equations of Gravitation[END_REF][START_REF] Weyl | Space, time[END_REF]. The existence of gravitational waves was expected in a field theory of gravitation by analogy to the electromagnetic case. However, this result has been criticized by several researchers and even Einstein had doubts about it [START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF]. By 1922 the astrophysician Arthur Eddington showed that two of the three waves found by Einstein are mathematical artifacts produced by the coordinate system and thus are only ficitious waves [START_REF] Stanley | The propagation of gravitational waves[END_REF]. But any objections was found about the third wave, and Eddington proved that this last wave type propagates at the speed of light in all coordinates system. More than a decade after, in 1936, Einstein and his young student, Nathan Rosen tried to publish an article in the Physical Review journal that claims that gravitational waves do not exist. One of the reviewer of this article was the mathematician Howard Percy Robertson who revealed an error in the proof and warned Einstein about it, without real feedback. Months later, a new student of Einstein, Leopold Infled confirmed with Robertson the error in the Einstein and Rosen manuscript. This time, Einstein reacted and corrected the proof, however he kept for a while, a linger skepticism toward the existence of gravitational waves. In this chapter we give a rapid overview of the General Relativity material which is relevant for this thesis. In the first section 1.1 General Relativity is introduced culminating in the Einstein equations. The second section 1.2 gives the linearized equations, then we provide an overview of gravitational waves in the Sec. 1.3 and Sec. 1.4. Finally, the last section 1.5 is dedicated to the gravitational waves sources.

General Relativity

Geometry in General Relativity

The theory of General Relativity developed by Einstein is a geometric framework which brings together special relativity and gravitation. The general material below follows the presentation of [START_REF] Gourgoulhon | Relativité générale[END_REF], with some inputs from other sources [START_REF] Deruelle | Introduction aux équations d'einstein de la relativité générale[END_REF][START_REF] Kokkotas | Gravitational waves physics[END_REF][START_REF] Moore | General relativity and gravitational waves[END_REF][START_REF] Houchmandzadeh | Variétés différentielles et champs de tenseurs[END_REF][START_REF] Barrau | Relativité générale[END_REF][START_REF] Weinberg | Gravitation and Cosmology[END_REF][START_REF] Husa | Gravitational waves. Volume 1: Theory and experiments[END_REF][START_REF] Ludvigsen | La relativité générale : une approche géométrique[END_REF][START_REF] Gourgoulhon | Relativité restreinte : des particules à l'astrophysique[END_REF][START_REF] Bernardeau | Cosmologie : des fondements théoriques aux observations[END_REF][START_REF] Was | Searching for gravitational waves associated with gamma-ray bursts int 2009-2010 ligo-virgo data[END_REF]. In contrast to Galilean mechanics, General Relativity claims that time and space are interwoven into a single continuum known as "space-time". A "point-event" is a point in space, given by its three coordinates at an instant t in time. In this description time and space variables must be expressed in the same unity. It is therefore necessary to introduce a conversion factor that has the dimension of a speed: it is the constant c, the speed of light. Throughout the speed of light will be set to c = 1. A point in space-time is then described by a four component vector,

x =      x 0 x 1 x 2 x 3      =      t x y z     
.

(

It will be convenient to use a different notation, and write this vector as x µ , where µ is an index running from 0 to 3. The geometry of space is described by the metric, which defines the concept of distance between two points. In Euclidean geometry where the metric is given by the scalar product defined as positive, the square of the distance dl between two infinitesimally close points can be written

dl 2 = g ij dx i dx j , ( 1.2) 
where the Einstein summation convention is used, and g ij is the metric given by

g ij = diag(1, 1 , 1), (1.3) 
of signature (+, +, +). In a similar way, the space-time interval in General Relativity geometry is given by

ds 2 = g αβ dx α dx β , (1.4)
where the metric g = g αβ ( e α , e b ), in a given basis ( e 0 , e 1 , e 2 , e 3 ), is a bilinear form, symmetrical and not degenerated. We choose to work with the signature (-, +, +, +). These properties of the metric allow to define the inverse metric as,

g ασ g σβ = δ α β , (1.5)
where δ α β is the Kronecker delta relating to the indices α and β: δ α β = 1 if α = β and 0 if not. The metric for an infinite empty space without gravitation is the flat Minkowski metric η αβ whose expression in the usual time-space (t, x, y, z) is given by the matrix:

η αβ = η αβ =      -1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1      (1.6)
The scalar product of a 4-vector with itself can a priori have any sign, unlike the classical scalar product in the Euclidean space. A 4-vector x is said to be light-like if g( x, x) = 0, time-like if g( x, x) < 0 and space-like if g( x, x) > 0. The curves describing the photons must be of the light type (ds 2 = 0), this is the generalization of the invariance of light-speed in special relativity. A material point (particle) in classical mechanics becomes a curve in relativistic space-time, corresponding to all "successive positions" occupied by the material point. The curve representing a point material or worldline must be of time type, i.e. such that any vector tangent to the curve is timelike (this property reflects the impossibility for particles to travel faster than light). The figure 1.1 allows to visualize the difference between these type of 4-vector. Lastly, we define the proper time interval ∆τ between two events along a that allows us to construct the 4-velocity which is the tangent 4-vector of a time-like world line. In terms of components in respect of a coordinate system the 4-velocity is given by:

u α = dx α dτ with g αβ u α u β = -1.
(1.8)

The Einstein equations

The properties of the gravitational field are encoded in the metric. More precisely, the Einstein equations are the fundamental equations in General Relativity, which determine the metric in function of the stress-energy distribution in space-time, being given by

G αβ = κT αβ , (1.9)
where G αβ is called the Einstein tensor, κ is the Einstein's gravitational constant and T αβ is the stress-energy tensor. In order to understand the first term we need to introduce a mathematical tool, the affine connection. In the Euclidean space, differentiation of vector fields is obtained by derivating the coordinates functions, since one has a constant basis. This is no longer true in space-time. The affine connection is a geometric object which connects nearby tangent spaces, and so allows tangent vector fields to be differentiated. For a given metric g αβ , one can show that the affine connexion is fixed, having for coefficient the Christoffel symbols of the metric,

Γ α µν = 1 2 g ασ ∂g σν ∂x µ + ∂g µσ ∂x ν - ∂g µν ∂x σ . (1.10)
From that, it is straightforward to calculate the variation of a vector field between two points, even if in general the result depends on the choice of path, or in other words on the curvature of the affine connexion, see Figure 1.2. The curvature of Figure 1.2: Transport of a vector (yellow) from A to B parallel to itself following two different paths on the surface of a sphere: A → B or A → M and M → B. The vector at the arrival point depends on the path followed. This is due to the curvature of the sphere.

space-time is then expressed trough derivatives of Christoffel symbols, but in a much more "pleasant" form of a tensor called the Riemann tensor, .11) From this definition it comes two useful quantities that play an essential role in the formulation of the Einstein's equations, the Ricci tensor R αβ defines as:

R α βµν = ∂Γ α βν ∂x µ - ∂Γ α βµ ∂x ν + Γ α σµ Γ σ βν -Γ α σν Γ σ βµ . ( 1 
R αβ = R σ ασβ , (1.12)
and the trace of the Ricci tensor, also called the Ricci scalar R: R = g αβ R αβ .

(1.13) By using these definitions, the Einstein tensor is given by:

G αβ = R αβ - 1 2 Rg αβ , ( 1.14) 
we understand now that the left side of the Einstein equations decsribe the geometry of space-time.

In General Relativity, it is the matter that curves space-time, we deduce then that the right side of the Einstein equations should describe the content in matter of space-time. The stress-energy tensor, T αβ , is a symmetrical tensor which contains the informations about the content in mass-energy and momentum density in spacetime. For example, in the case of a perfect fluid in thermodynamic equilibrium, the stress-energy tensor takes on a particularly form:

T αβ = (ρ + p) u α u β + pg αβ , (1.15) 
where ρ is the energy density, p the hydrostatic pressure and u α the 4-velocity of the fluid. The divergence of the stress-energy tensor vanish:

∇ β T αβ ≡ η αβ ∂T αβ ∂x α + Γ α σβ T σβ + Γ β σβ T ασ = 0, (1.16)
which is translated into conservation laws: energy, momentum, angular momentum, etc.

There is still a term which need to be clarified in the Einstein equations: the κ quantity. Being General Relativity an extension of Newtonian gravity, the Einstein equations should in a classical system reduce to Newton's equations of gravity. When we look in classical theory, the distribution of matter of density ρ gives rise to a gravitational potential Φ which satisfies Poisson's equation:

∇ 2 Φ = 4πGρ, (1.17)
where G is Newton's constant. For a perfect fluid of density ρ at rest with nul pressure, we can show that the stress-energy tensor would have only one non-zero component T 00 = ρ and that Einstein's equations reduce to

2∇ 2 Φ = κρ. (1.18)
By identifying Eq.1.18 with Eq.1.17 we set κ = 8πG, (1.19) and find that General Relativity thus passes an important test, in agreeing with Newtonian gravity, in the classical limit. The Einstein equations become:

G αβ = 8πGT αβ . (1.20)
Later, in 1917 Einstein introduced the cosmological constant Λ in order to allow a consistent model of a universe that was assumed to be static:

G αβ + Λg αβ = 8πGT αβ .
(1.21)

If Λ = 0, then an absence of matter (T αβ = 0) leads to an absence of spacetime curvature, but if Λ = 0 we have gravity associated with the vacuum. Today the cosmological constant is a key part of the standard cosmological model. The meaning of this constant will be detailled in the third chapter.

Linearized General Relativity

The Einstein equations are non linear which make them difficult to solve exactly.

It is natural to consider the conditions and approximations where these equations become linear. This is the case in the weak-field limit, which is only valid far away from the source. From now we will consider a near-flat-space metric:

g αβ = η αβ + h αβ with h αβ 1, (1.22)
which is the sum of the Minkowski metric η αβ and a perturbation h αβ from flat space-time. By replacing the new metric in the Einstein equations and ignoring all terms of order higher than one in the perturbation we get the general form of the Einstein linearized equations:

hαβ + η αβ ∂ ρ ∂ σ hρσ -∂ β ∂ ρ hρ α -∂ α ∂ ρ hρ β = -16πGT αβ , (1.23) 
where we have defined the trace-reversed perturbation metric h as

hαβ = h αβ - 1 2 hη αβ , (1.24)
which has a trace h = -h, with h ≡ η αβ h αβ the trace of the pertubation metric.

We can continue to simplify the Einstein equations. At this point it is useful to choose a specific gauge, or in other words to choose a new coordinate system. In order to do so we consider an infinetesimal coordinates tranformation,

x α = x α + ξ α with ξ α 1. (1.25)
In terms of the new coordinates, the perturbation metric transforms at the first order in ξ α and h αβ as,

h αβ = h αβ -∂ β ξ α -∂ α ξ β . (1.26)
It is always possible to choose the ξ α in a way that

∂ α hα β = 0, (1.27) 
one say that the trace-reversed perturbation metric satisfy to the Lorenz gauge. Finally, the linearized Einstein equations take the elegant form of a wave equation for the perturbation h αβ with a source term: .28) this is the theoretical prediction of wave solutions to the Einstein equations or simply gravitational waves.

hαβ = -16πGT αβ . ( 1 

Gravitational waves in vacuum 1.3.1 Generalities

In the vacuum, the stress-energy tensor is zero and then the wave equation becomes

hαβ = 0. (1.29)
The general solution of this equation can be written as a superposition of monochromatic progressive plane waves,

hαβ (x µ ) = A αβ × exp(ik µ x µ ), (1.30) 
where A αβ represents the amplitude wave, a constant and symmetrical matrix of dimension 4 × 4, k µ = (-ω, k x , k y , k z ) represents the wavevector and ω is the angular frequency. Note that the amplitude matrix contains only 10 independant components, due to the symmetrical properties. The wavevector determines the propagation direction of the wave and its frequency. This two quantities cannot be chosen arbitrarily as they must satisfy some conditions. By using the weak-field Einstein's equations in vacuum (see Eq.1.29) one obtain a first condition,

k α k α = 0 ⇔ -ω 2 + k 2 = 0 (1.31)
this relation is called dispersion relation. It indicates that gravitational waves in vacuum move at the speed of light, as we remember that c = 1. The second condition is given by the Lorenz gauge Eq.1.27, .32) This condition reveals that the effect of a gravitational wave is orthogonal to its direction of propagation. It can be written as four equations that impose four conditions on the components of the amplitude matrix A αβ . Instead of having 10 independent components, the amplitude matrix has only 6 independent ones. Due to the gauge freedom, an appropriate choice of gauge can reduce the number of independant components of A αβ even more. Indeed, one can also find a choice of a system of infinitesimal coordinates which satisfies the Lorenz gauge (see Eq.1.27) and cancel some components of the amplitude matrix A αβ . This choice is commonly known as the transverse-traceless gauge or TT gauge,

k α A αβ = 0. ( 1 
h0α = 0 ⇒ transverse h = 0 ⇒ traceless (1.33)
and since we have seen before that the trace of hαβ and the trace of h αβ are linked by the relation h = -h, we have h = 0. Thus the TT gauge equations can be rewritten by replacing h by h. Using the Eq.1.30, we can also write these equations as

A 0α = 0 ⇒ transverse A α α = 0 ⇒ traceless (1.34)
which consequently add 4 constraints on the amplitude components, 1 from the traceless condition and only 3 from the transverse condition, since there is a redundancy with one of the constraints from the Lorenz gauge condition (see Eq. 1.27). We have now reduced the independent degrees of freedom of the amplitude matrix A αβ to only 2.

Example

In order to make it more clear, we provide an example here. We consider a gravitational wave with angular frequency ω that propagates along the z-axis. The wavevector is given by k β = (-ω, 0, 0, +ω). (1.35) To impose constraints on the amplitude matrix A αβ we use the gauge equations. The Lorenz gauge (see Eq. 1.27) implies that

ω(A α0 -A αz ) = 0, (1.36) 
and the transverse condition in the TT gauge fixes

A α0 = 0. (1.37)
Since the amplitude matrix is symmetrical, the only non-zero terms for A αβ are: A xx , A xy = -A yx and A yy . In addition, the traceless condition of the TT gauge gives us an other constraint,

A xx + A yy = 0. (1.38)
This results in a wave amplitude matrix with only two independent components:

A αβ =      0 0 0 0 0 A xx A xy 0 0 A xy -A xx 0 0 0 0 0.      (1.39)
The wave is a linear combination of two independant types of waves, called polarizations of the gravitational wave. We introduce the notation

A xx = A + A xy = A × , ( 1.40) 
the wave amplitude matrix is rewritten as a sum of two matrices

A αβ = A +      0 0 0 0 0 1 0 0 0 0 -1 0 0 0 0 0      + A ×      0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0      (1.41)
where the polarization states are commonly refered to as "plus" and "cross" polarization. In that example, the solution to the Einstein equations in the weak-field approximation and in the absence of matter (vacuum) is written:

h αβ =      0 0 0 0 0 h + h × 0 0 h × -h + 0 0 0 0 0      (1.42) with h + = A + exp[iω(t -z)] h × = A × exp[iω(t -z)].
(1.43)

Gravitational-wave effects on matter

After peeking at how gravitational waves are generated the next question to answer is what are their effects on an observer located on Earth. The simplest physical system we may consider is two test masses A and B, moving freely, which is to say they are not subject to any forces (except gravity), and a gravitational wave that propagates along the z-axis. We use the perturbation metric which satisfies the traceless-transverse gauge condition. The distance between the two test masses is given by:

ds 2 = g αβ dx α dx β = -dt 2 + (δ ij + h ij )dx i dx j , (1.44)
where the δ ij represents the Kronecker symbol. If we consider a coordinate system where the mass A is at the initial position (t, 0, 0, 0) and the masse B is at the position (t, x B , y B , z B ) and L 0 the initial distance between A and B, then the distance L, at any time, between the two masses is:

L 2 = (δ ij + h ij )x i B x j B , (1.45)
we introduce n a unitary spatial vector that joins A to B and therefore

x i B = L 0 n i , L 2 0 = δ ij x i B x j B ,
(1.46) using these definitions and the unitary property, we rewrite L under the form, .47) which becomes at first order in h:

L = L 0 [1 + h ij n i n j ] 1/2 . ( 1 
L = L 0 [1 + 1 2 h ij n i n j ]. (1.48)
Thus, the relative variation of the distance L to the passage of a gravitational wave is given at the first order by

δL L = 1 2 h ij n i n j , (1.49)
which shows that the relative change in distance is proportional to the amplitude of the wave h, also called strain amplitude. To visualize this effect we choose a new coordinate system defined by the transformation,

x0 = x 0 xi (t) = x i + 1 2 h ij (t, 0)x j .
(1.50)

where h ij (t, 0) represents the value of the field at x α = (t, 0, 0, 0). For a gravitational wave that propagates along the z-axis we gave the h ij components in Eq. 1.42 and we have

x(t) = x 0 + 1 2 [A + x 0 + A × y 0 ]e iωt , ŷ(t) = y 0 + 1 2 [A × x 0 -A + y 0 ]e iωt , ẑ(t) = z 0 .
(1.51)

We represent the deformation of a ring of test masses in the plan z = 0 for both polarizations in Fig. 1.3. Qualitatively, a gravitational wave that is propagating perpendicularly to the plane of a ring of test particles will cause the ring to deform into an ellipse, first along one axis and then along the other, oscillating between these two configurations as a function of time.

Gravitational-wave generation

To study the generation of gravitational waves, it is necessary to return to the linearized Einstein equations with source. When the gravitational field is strong there are a number of nonlinear effects that influence the generation and propagation of gravitational waves. The analytic description of such a dynamically changing in spacetime is complicated. However under some assumptions that simplify the equation of gravitational waves in presence of a source, it is possible to understand the generation of gravitational waves by a source. We focus on (i) the gravitational field produced by a "weak" localized source of characteristic size R, that is, a source where the energy content is small enough to In addition we assume that (ii) the observer is located at a great distance from the source, i.e. r | y| and we consider that (iii) the region where the source is confined of radisu R, is much smaller than the wavelength of the emitted gravitational waves, which gives the condition v = Rω c, (1.53) this approximation is often called the slow motion approximation. The general solution of the linearized Einstein is closely analogous to the classical retarded potential solution seen in electromagnetism (in the multipole radiation expansion):

hαβ (t, x) = 4G c 4 T αβ (t -1 c | x -y| , y) | x -y| d 3 y 4G c 4 r T αβ t - r c + n • y c , y d 3 y 4G c 4 r T αβ t - r c , y d 3 y, (1.54)
Figure 1.4: Source confined within a radius R, centered at the origin and y is a vector pointing to a particular point of the source. The observer is localized at a large distance from the source by x.

to pass from the first equation to the second we use the assumption that the observer is at a large distance from the source (ii), which leads to

| x -y| r 1 - n • y r (1.55)
and we neglect the term n • y in front of r, to obtain the last equation.

In the slow motion approximation, the stress-energy tensor, T µν , varies slowly (the motion of the source is dominated by non-gravitational forces). Thus the conservation of the energy given (Eq. 1.16) becomes η µν ∂ ν T αµ = 0. And the time-time component of the stress-energy tensor is dominated by the rest mass density T 00 ρc 2 . From that one can show that the integral term in Eq. 1.54 is given by:

2 T ij t - r c , y d 3 y = Ïij (t - r c ), (1.56) 
where I ij is the mass quadrupole moment of the source defined as

I ij (t) = source ρ(t, y)y i y j d 3 y, (1.57) which gives: hαβ (t, x) = 2G c 4 r Ïij (t - r c
).

(1.58)

We observe that even if the motion of the source is dominated by non-gravitational forces, the results depends only on the source motion. To obtain the metric perturbation in the transverse-traceless gauge, we take the transverse and without trace part of this result. To do this we introduce two quantities, the reduced quadrupolar mass moment of the source Q ij given by

Q ij (t) = source ρ(t, y)(y i y j - 1 3 y • yδ ij )d 3 y, (1.59)
which is the traceless part of the quadrupolar mass moment I ij . And we define the transverse projection operator

Π ij ( x) = δ ij -ni nj (1.60)
where ni = x i /r is the unit vector normal to the wavefront. This operator projects a vector onto the plane orthogonal to the direction of ni . The metric perturbation in the transverse-traceless gauge is then given by the quadrupole formula:

h T T ij (t, x) = Π k i Π j - 1 2 Π ij Π k Qij (t - r c
).

(1.61)

In electromagnetism, the monopole radiation is zero, because the electromagnetic monopole moment is proportional to the total charge, which does not change with time (it is a conserved quantity for an isolated charge). Therefore the electromagnetic radiation consists of firstly the electric dipole radiation. Then comes the magnetic dipole. Similarly, the gravitational monopole produced by a source is proportional to the total mass, which does not change with time (it is a conserved quantity for an isolated source). Also, the rate of change of the mass dipole moment is proportional to the momentum of the system, which is a conserved quantity, and therefore there cannot be any gravitational dipole radiation. Indeed, by analogy with the dipole moment of accelerated charges particles, we define for an isolated system of masses a gravitational dipole moment d = i m i r i which satisfiesthe conservation law of the total momentum:

˙ d = i p i and ¨ d = 0. (1.62)
The next term of the gravitational radiation multipole is proportional to the angular momentum of the system, which is also conserved for an isolated source. It follows that gravitational radiations are of quadrupolar nature. Finally, for a spherical or axisymmetric distribution of matter the quadrupole moment Eq. 1.59 is a constant. Thus a spherical or axisymmetric source does not emit gravitational waves.

Considering a metric perturbation, it is interesting to know how much energy it carries, in order to be able to estimate the maximum amplitude that can be generated by a source. Without demonstration, the flux of energy F transported by a gravitational wave and averaged over several wavelengths, is given by [START_REF] Gourgoulhon | Relativité générale[END_REF]:

F = c 3 16πG ḣ2 + + ḣ2 × , (1.63)
where the c factor has been made explicit. For a monochromatic wave of amplitude h and frequency f we can show that:

F = πc 3 4G f 2 h 2 , ( 1.64) 
Let's take f = 10 2 Hz and h = 10 -21 we find F 0.003 W.m -2 , so a gravitational wave of very small amplitude still carries an appreciable amount of energy.

The total amount of energy emitted per unit of time, L, also called luminosity, is [START_REF] Gourgoulhon | Relativité générale[END_REF]:

L = 1 5 G c 5 ... Q ij ... Q ij . (1.65)
In order to estimate an order of magnitude of the luminosity we can perform a dimensional analysis. We consider a source of mass M , confined in a radius R and described by a reduced quadrupolar moment of norm

Q approximated to Q ∼ sM R 2 ,
where s is a mass distribution asymmetry: s = 0 for a for an object with spherical symmetry. In that case, the luminosity is approximated to:

L ∼ G c 5 τ 6 s 2 M 2 R 4 , (1.66)
where τ is a characteristic time scale. By substituting in this equation, the mass of the source in function of its Schwarzschild radius M = c 2 R s /(2G) (R s corresponds to the radius defining the boundary below which events cannot affect any outside observer (event horizon) of a Schwarzschild black hole) and the time scale in function of the characteristic speed of the source v = R/τ we obtain:

L ∼ c 5 G s 2 R s R 2 • v c 6 , (1.67) 
From this equation, we derive the conditions for a source to produce large amounts of gravitational waves (where L ∼ 1)):

• s ∼ 1 a strongly asymmetric source,

• v ∼ c a relativistic motion,

• R ∼ R s a compact source.

Gravitational waves sources

As we have seen, due to the fact that gravitational waves present quadrupolar radiation, the efficiency in converting mechanical energy in a system into gravitational radiation will be very low, making the signal produced by accelerating systems to be very weak. In practical terms, this means that the main sources of gravitational waves that are likely to be detected will be coming from astrophysical objects, as neutron stars or black holes, due to their potentially huge masses accelerating very strongly.

When we look at the spectrum of possible gravitational wave sources in the observable wave band, we see a range spanning over many orders of magnitude in frequency. We are mainly interested in the sources that emit gravitational waves powerful enough to be detected by ground-based interferometric detectors as Advanced LIGO and Advanced Virgo, i.e. aiming to detect signals from sources radiating in the high frequency band between 10 Hz and 10 4 Hz. Besides this constraint in frequency, a good source of gravitational waves is expected to be asymmetric, compact and relativistic. The emitted power of the source is not the only decisive parameter while evaluating possible good sources, two additional aspects have to be taken into account. The first is the distance of the source from the Earth, meaning that as the distance increases, the louder an event needs to be in order to be detected. The second is the rate at which the event occurs, regarding its impact on the detection probability.

Once we have considered these different aspects, we can go all along to consider in more detail the possible sources of gravitational waves in which we shall be interested. These potential sources are usually classified by their signal morphology. The typical categories are the following: continuous-waves signals, which are signals generated by sources that involve periodic motion that hold a roughly constant frequency over a long timescales. Another class of continuous sources is the stochastic background of gravitational waves, that is produced by the incoherent superposition of gravitational waves emitted by countless individual sources. The gravitational-wave burst signals are short duration signal corresponding to particular cataclysmic events. Such signals are divided into signals from sources that can be well modelled by theory or numerical simulations, and those that cannot be modelled. This classification is convenient in that it categorized the sources in the same way as the data analysis method that we use to search for sources.

Continuous waves

Continuous sources of gravitational waves are considered to be constantly emitting quasi-monochromatic gravitational waves. The primary expected sources of continuous gravitational waves in the high-frequency band are rotating neutron stars with an assymetric mass distribution caused for example by stress induced by internal magnetic fields. The gravitational radiation from rotating neutrons stars occurs at a frequency proportional to the frequency of rotation. Pulsars are a particular type of neutron stars, whose magnetic and rotational axis are not aligned. Consequently, the electromagnetic radiation (usually in radio wavelengths) is not symmetric around the rotation axis and the observed electromagnetic flux changes periodically as the star rotates. This allows a precise measurement of the rotation frequency. A typical example is the Crab pulsar and the Vela pulsar, which are young enough to rotate rapidly (without loosing angular momentum due to gravitational radiation). The neutron star maybe be isolated or in binary systems with companions (star, white dwarf, neutron star), and an example is Scorpius X-1 which is a neutron star acreting matter from a donor star. The mechanisms at the origin of the emission of gravitational waves are multiple. If the neutron star is not axisymetric then it will produce gravitational waves at a frequency equal to twice the rotational frequency. If the neutron star is axisymetric, [START_REF] Weisberg | Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16[END_REF]. The point are observation data with measurement error bars (which are too small to be easily see) and the curve is the General Relativity prediction. but the axis of symmetry is different from the rotational axis, it will emit gravitational waves at both the rotational frequency and twice the rotational frequency. Another mechanism for the production of gravitational waves from rotating neutrons star are fluid oscillation modes that may become instable. The search for continuous wave signals from rotating neutron stars is divided into two populations, according to whether the star has already been observed or not. In the targeted searches for known pulsars the gravitational waveform is well modeled since we have access to several informations (frequency of rotation, sky position, ...). However such waves are not expected to be as loud as the gravitational waves generated from more violent events. The pulsar PSR 1913+16 has been discovered by Hulse and Taylor in 1974 and it forms a close binary system with another compact object [START_REF] Hulse | The discovery of the binary pulsar[END_REF]. The orbital period was measured through precise radio observations. Over time a decrease in this period has been observed equal to the one predicted from energy loss by gravitational radiation [START_REF] Weisberg | Timing Measurements of the Relativistic Binary Pulsar PSR B1913+16[END_REF]. The figure 1.5 shows that the shift in periastron time predicted by General Relativity is in perfect agreement with the observed one. This was the first indirect detection of gravitational-waves.

Gravitational wave bursts

This predicted population of signals contains the gravitational waves transients, or bursts, emissions that have only a short duration compared to the observation time. In addition to the amplitude of the burst, the expected rate is also crucial. Compact binary coalescence signals are the primary source target of gravitational wave burst searches for ground-based detectors. These systems are binaries composed of two neutron stars (BNSs), two black holes (BBHs) or a neutron star together with a black hole (NSBH). They represent an ideal source for ground based gravitational wave detectors, as their compactness allows them to have an orbital separation increasingly small until their merge, leading to emission of gravitational waves throughout all the process. The gravitational wave signal will depend on the physical parameters of the binary system: masses, spins and eccentricity, and it presents three main parts, where the first is the inspiral, which increases in frequency and amplitude as the compact objects move closer, together with the energy and angular momentum being carried away in gravitational waves. When the motion is not too relativistic, this phase is described by post-Newtonian theory. The second phase is the the merger phase when the black holes or neutron stars collide, this phase is explored with numerical relativity. The final object produces ringdown radiation. The duration of the gravitational radiation depends on the mass of the objects. The coalescence of black holes produces short gravitational waves on the order of fractions of a second, wheras neutron stars which are less massive then black holes, generate signals several tens of seconds long. The burst search includes transient lasting from seconds to minutes. The gravitational radiation produced during the merger and ringdown phase of black holes allows to observe strong-field effects of gravitation, and to test General Relativity in the strong-field regime. Even if our understanding of binary coalescence is incomplete, the gravitational waveform is well predicted in several cases. However search for signals of unknown form offers an oppurtinity for great discovery. Apart from compact binary coalescence, there are many possible sources of transient gravitational waves. Without being exhaustive, we can also mention some sources usually considered. For example, stars with large masses are believed to produce an iron core during their evolution [START_REF] Woosley | The Supernova Gamma-Ray Burst Connection[END_REF]. When this core collapses with a motion that is not spherically symmetric it can generate large amounts of gravitational radiation. The ejected matter during the core collapse produces an optical brightening called supernova, classified according to their optical spectra (type I, type II). A small fraction of core collapses are associated to emission of powerful and brief flashes of electromagnetic radiation with typical photon energies E ∼ 100 keV called gamma ray burst. Another case, more speculative refer to gravitational-waves emitted by cosmic strings, that is the subject of the third chapter.

Stochastic gravitational wave background

The stochastic background of gravitational waves may be produced by the superposition of weak individually unresolvable cosmological and astrophysical sources. Cosmological sources include quantum vacuum fluctuations during the inflationary epoch of the Universe, electro-weak phase transitions, pre-big bang scenario in the context of string theory and cosmic strings. While astrophysical sources can be compact binary coalescence, supernoave, pulsars and many others. Keeping in line with traditional cosmological definitions, the stochastic gravitational-wave background is described by the gravitational-wave energy density defined as

Ω GW (f ) = f ρ c dρ GW df , ( 1.68) 
where ρ c is the critical energy density of the universe and dρ GW is the gravitationalwave energy density contained in the frequency ranged f to f + df .

Chapter 2

Gravitational Wave Detectors

History

Einstein's theory of General Relativity, published in November 1915, led to the prediction of the existence of gravitational waves. Einstein wondered if they could ever be discovered. As we will see, the interest in the detection of gravitational waves began at a meeting which took place in Chapel Hill, North Carolina in 1957. This meeting would not have been possible without the funding of an eccentric American millionaire named Roger W. Babson. Babson was obsessed with finding a way to control the force of gravity. To that end, he founded first, the Gravity Research Foundation (GRF) which still exists today. A short essay competition on gravitation was organized each year, with an award of $1000 offered to the best essay. It is a work that criticizes the idea that it is possible to control gravity that won the award, in 1953. The author was a young physicist, Bryce DeWitt. Later, Babson decided to create the Institute of Field Physics whose purpose would be pure research about the gravitational fields. Bryce DeWitt led the new institute, whose mainoffice was established in Chapel Hill. In what follows we summarize very briefly the complicated story of gravitational waves, following mainly the work in [START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF] with some input from other sources [START_REF] Rickles | The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference[END_REF][START_REF] Peter | Physics of gravitational wave detection: Resonant and interferometric detectors[END_REF][START_REF] Sauer | Albert Einstein's 1916 review article on general relativity[END_REF]. Note that only a tiny part of the physicists that have contributed to the research of gravitational waves are mentioned here.

The Role of the 1957 Chapel Hill Conference

The Chapel Hill conference in 1957 was of an immense historical signifiance for the study of gravity. It was the first conference of a series of "GR meetings", constituting the principal international meetings for scientists working in all areas of relativity and gravitation. This event provided a much-needed boost to gravitational research at a time when it was at a state of neglect. On January 18-23, 1957, a group of 40 physicists from several countries met at the University of North Carolina to discuss the role of gravitation in physics. The conference was driven by the younger generation of physicists. During six days, discussions focused on various topics: unquantized and quantized General Relativity, its experimental tests, unified field theory , the dynamic of the universe, cosmological questions and gravitational waves. At that time, the debate over the existence and detectability of gravitational waves was still open. Technical discussions were initiated in order to answer the question about the effect a gravitational pulse would have on a particle when passing by. One of the major questions was to understand if a gravitational wave contains energy.

During his presentation, the theoretical physicist Felix Pirani demonstrated that the relative acceleration of particles pairs can be associated to the Riemann tensor. This result was previously published in the article On the physical signifiance of the Riemann tensor [START_REF] Pirani | On the Physical significance of the Riemann tensor[END_REF]. It is a thought experiment from Richard Feynmann, inspired by Pirani's article, that convinced most of the audience that gravitational waves carry energy and that it could be detected. Feynman's reasoning can be described briefly as follows: two rings of beads are placed on a bar and can move freely along it, as presented in the Fig 2 .1. If a gravitational wave propagates perpendiculary to the bar, the wave will generate tidal forces with respect to the midpoint of the bar.

Because the bead rings can slide freely on the bar and in response to the tidal force, the bead rings will move with respect to each other. Hence it rubs the stick, and generates heat. This heating implies clearly that energy was transmitted to the bar by the gravitational wave. Feynman's argument was enough clear and efficient to plant a slightly fantastic idea in the mind of the young engineer Joseph Weber: to design a device that could detect gravitational waves. 

The first gravitational wave detectors: Weber bars

In 1960 Joseph Weber published an article that describes an experiment aiming at detecting gravitational waves. It took his team six years to build the device. In 1966, the first gravitational wave detector is constructed. Weber designed and built an aluminium cylinder about 66 cm in diameter and 153 cm in length, weighing 3 tons. A gravitational wave passing by the Weber's bar would compress and then tend the bar. He chose the size of the bar to reveal a gravitational wave frequency of about 1660 Hz, because at this time it was thought that this frequency is swept through during the emission in a supernova collapse which was one of the main The coincident signal was interpreted by Weber as the result of a gravitational wave [START_REF] Weber | Evidence for discovery of gravitational radiation[END_REF] sources studied at that time. The cylinder was suspended by a steel wire from a support built to isolate vibrations from its environment where the whole was placed inside a vacuum chamber. To complete the instrument, piezoelectric crystals were placed aroung the cylinder, see Fig 2 .2. Piezoelectric crystals turned the mechanical signal into an electric signal. Weber built two similar detectors, one was at the University of Maryland and the other situated 950 km further, in Argonne National Laboratory. The data (radiofrequency output) from both detectors was sent by a telephone line. The idea of having two detectors separated by a large distance allowed Weber to discriminate spurious local signals that could mimic a gravitational wave signal. If a signal was not recorded "simultaneously" in both laboratories, then this signal would be considered as the result of a local disturbance. One of the main difficulties of the experiment was to isolate the detectors from the local sources of disturbances (spurious vibrations, local earthquakes, electromagnetic interferences, etc). In 1969 Weber published his results [START_REF] Weber | Evidence for discovery of gravitational radiation[END_REF] announcing the first detection of gravitational waves, emmaning from the center of our Galaxy. Thereafter Weber reported severals significant gravitational wave detections and showed that these events imply that a lot of stellar mass became energy in the form of gravitational waves. Weber's measurements indicate that ∼ 1000M c 2 in energy per year is being converted into gravitational waves [START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF]. Theoretical discussions began to try to determine what mechanism could make Weber's result possible and it soon became evident that these experimental results were wrong. What is more, the strength and frequency of Weber's gravitational waves signals, if real, would have required the sky to be filled with nearby astrophysical events on the scale of supernovae emitting gravitional waves. In 1972, several similar upgraded detectors were built and operated without Weber's results being confirmed, leading to the invalidation of these results.

Finally some time later, the Russian physicist Vladimir Borisovich Braginsky showed that resonant bar detectors were severely affected by the uncertainty principle [START_REF] Braginsky | QUANTUM NONDE-MOLITION MEASUREMENTS[END_REF], which means that the quantum fluctuations were much larger than gravitational wave signals. By the late 1970s, everyone but Weber agreed that his claimed detections were spurious. Despite the mistake made, Weber has the merit for kick-starting the search for gravitational waves. With almost no funding, Weber continued to work on his devices until he died in 2000 [START_REF] Franklin | Gravity waves and neutrinos: The later work of joseph weber[END_REF].

Interferometric gravitational-wave detectors 2.2.1 Detection principle

In the previous chapter, we have shown that the effect of a passing gravitational wave is a relative change in distance between free-falling masses. At the first order, this relative variation in distance is proportional to the amplitude of the wave (see Eq. 1.49). The Michelson interferometer is the ideal sytem to detect such differential effect. It is a device that produces interference between two beams of light. The basic configuration of a Michelson interferometer is shown in Fig 2 .3. The operation of the interferometer is as follows. Light from a laser source is split into two parts by a beam splitter mirror, which allows half of the radiation to be transmitted to one of the end of arms mirror. The other half of the radiation is reflected at 90 • from the first and is transmitted to the other mirror. Then, both mirrors reflect the beams back toward the beam splitter. The two resulting beams are brought together to interfere. The merged beam is send to a photodetector, a device which measures the brightness of the interference pattern.

From the principle of superposition, when two waves propagate, the resultant electric field at any point in that region is the vector sum of the electric field of each wave. The field at the photodetector is determined by the optical path difference ∆L at the photodetector or by a related quantity, the phase difference:

∆φ = 2π λ ∆L, (2.1) 
with λ being the laser wavelength used as input beam. We can express this formula using Eq. 1.

49 1 : ∆φ = 2π λ [2L 0 h] , (2.2) 
which shows that the phase shift is a fraction h of the total phase progression of the light in the round-trip arm. To understand the principle of detection we choose the coordinates system where the origin is on the beam-splitter and the x and y axes along the two arms. We assume that the beam-splitter and the end mirrors are suspended, only subject to gravity and fixed, this allows us to work in the traceless-transverse gauge (see Eq 1.33). We consider a gravitational wave normaly propagating to the detector's plane (z direction) characterized by a plus polarization. Thus, working with the perturbation metric given by Eq. 1.43, the equations for light propagation are given by: 2 for the arm along the x axis, = -dt 2 + (1 -h + (t))dy 2 for the arm along the y axis.

0 = ds 2 = (η αβ + h αβ )dx α dx β = -dt 2 + (1 + h + (t))dx
(2.3)

where the space-time interval ds between two neighboring points connected by a light ray remains null. We can now integrate these relations over the arm length L 0 , which is assumed to be identical for both arms to not overload the calculations:

L x = dt = L 0 0 1 + h + (t -x)dx L y = dt = L 0 0 1 -h + (t -y)dy (2.4)
with L x and L y the optical path in the arms along the x and y direction respectively, and since we are working in the weak-field limit (h 1) we get:

L x L 0 0 [1 + 1 2 h + (t -x)]dx L y L 0 0 [1 - 1 2 h + (t -y)]dy.
(2.5)

In our case, it can be assumed that the propagation time of the laser beam in the arms of the interferometer (x/c ≤ L 0 /c) is negligible in front of the period of the gravitational wave we are looking for. Or similarly that λ GW L 0 , where λ GW is the wavelength of the gravitational wave, this is the long-wavelength approximation. Hence we make the approximation that h + (t) does not vary during the light travel of the photon: h + (t -x) h + (t). This leads to:

L x L 0 + 1 2 L 0 h + (t) L y L 0 - 1 2 L 0 h + (t).
(2.6)

The phase shift (Eq. 2.

2) induced by a passing gravitational waves is thus approximated by

∆φ(t) = 2π λ (2L x -2L y ) 2π λ (2L 0 h + (t)), (2.7) 
where the factor of 2 takes into account the round trip in the two arms. This shows that a measure of the phase-shift is a direct measure of the gravitational wave strain amplitude. By inverting this equation we define in our particuliar case a gravitational wave signal as

h(t) = h + (t) = λ 4πL 0 ∆φ(t), (2.8) 
For a Michelson interferometer, the power arriving to the detection photodiode, P out , is given by [START_REF] Casanueva | Control of the gravitational wave interferometric detector Advanced Virgo[END_REF]:

P out = 1 2 P in r 2 a + r 2 b 2 [1 + C • cos(α + ∆φ)] ,
(2.9)

with P in the input power and we assume that the interferometer is tuned to constant phase offset between arms given by π + α + ∆φ(t), where α must be choosen, and r a and r b are the amplitude reflectivities of the ends mirrors of the Michelson interferometer. C is the constrast and it is defined as:

C = 2r a r b r 2 a + r 2 b .
(2.10)

For perfectly reflecting mirrors r a = r b = 1. In the current detectors the mirrors are almost perfect and so the output power P out becomes:

P out (t) P in sin 2 α + ∆φ(t) 2 .
(2.11)

The interferences are destructive if α = 0(2π) and it is usually said that the interferometer is "on the dark fringe". For a small shift phase one has:

P out (t) P in sin 2 α 2 + 1 2 ∆φ(t) sin α
where ∆φ 1.

(2.12)

Thus at the output of the interferometer a gravitational wave is detected as a power change, proportional to a variation in the phase-shift ∆φ(t), which gives a direct measure of the the gravitational wave strain amplitude h(t).

Angular response

So far we have only considered the case of a linearly polarized gravitational wave (h = h + and h × = 0) that propagates perpendiculary to the detector plan. We consider now the general case of a gravitational wave with arbitrary direction and polarization, to understand the direction dependence of the response of the interferometer to the gravitational wave. A gravitational wave is coming from a direction given by the usual spherical coordinates (Θ, Φ), relative to the detector's axes. The polarization of the gravitational wave is a combinaison of a plus and cross polarization, that are rotated with an angle ψ in the plan of the sky (the polarization axis are specified by Ψ) . The position of the source relative to the detector, that is in the xy plane with arms along the axes, is shown in be assimilated to an "antenna" (and not a telescope) because its size (L 0 , length of the arms) is small compared to the wavelengths (λ GW ) it is meant to detect. The response of the detector depends on the sky localisation angle of the source and the gravitational wave polarization. By performing different projections [START_REF] Sathyaprakash | Physics, Astrophysics and Cosmology with Gravitational Waves[END_REF], the response of the interferometer (for which the angle between the arms is π/2) can be written as:

h(t) = F + (Θ, Φ, Ψ)h + (t) + F × (Θ, Φ, Ψ)h × (t), (2.13) 
where F + and F × are the antenna pattern functions for the two polarizations. These functions describe the response of the detector to the two gravitational wave polarizations and define the region of space around the earth within which a source ). The interferometer is located at the center of each pattern. The thick black lines indicate the orientation of the interferometer arms. The distance from a point of the plot surface to the center of the pattern is a measure of the gravitational wave "sensitivity" in this direction. The pattern on the left is for plus polarization (+), the middle pattern is for cross polarization (×), and the right-most one is for the root mean square (rms). Figure taken from [START_REF] Abbott | LIGO: The Laser interferometer gravitational-wave observatory[END_REF]. should be detected. Using the geometry in Fig 2 .4 one can show that:

F + (Θ, Φ, Ψ) = 1 2 (1 + cos 2 Θ) cos 2Φ cos 2Ψ -cos Θ sin 2Φ sin 2Ψ F × (Θ, Φ, Ψ) = 1 2
(1 + cos 2 Θ) cos 2Φ sin 2Ψ + cos Θ sin 2Φ cos 2Ψ.

(

The maximum value of both F + and F × is 1. The directional function for unpolarized gravitational waves F un can be found by taking the quadratic sum of antenna pattern functions for the two polarizations:

F un = F 2 + + F 2 × .
(2.15)

Figure 2.5 illustrates the antenna-pattern functions for the plus polarization (+), the cross polarization (×), and for a combination of the polarization (rms). The interferometer is most sensitive to the gravitational propagating in a direction orthogonal (z-direction) to the detector plane with the polarization axes along the two arms. The interferometer does not produce any signal for a gravitational wave along the z-axis with the polarization axes 45 • off the two arms of the interferometer. The beam patterns for the plus and cross polarization are different, that reflects the fact that it is possible to distinguish tensor polarization modes by means of typical two-arms interferometer. We also observe that the angular response for a combination of the two types of polarization is almost uniform for all sky direction, except the bisectors. Figure 2.6 shows that the angular response is nul for sources localized along the bisectors of the arms of the interferometers. That means that an interferometer is "blind" to some sky localisation. Thus we understand one of the interest to use a network of interferometers that fill in each other's directional "holes", increasing the overall detection volume. 

Fundamental noise sources

The detector output s(t) is a single time series which includes the gravitational-wave signal:

s(t) = n(t) + h(t), (2.16) 
where h(t) contains all the gravitational-wave informations and n(t) is the detector noise. Ideally, the noise time series n(t) is well defined by a sum of contribution described by an autocorralated Gaussian process (colored noise). In most cases these contributions can be considered as independent. A good quantity that characterizes the noise of the detector is the single-sided power spectral density P s (f ) defined in Chap. 4. P s (f ) is a measure of the amount of time variation in the time series n(t) that occurs with frequency f . A better quantity to work with is the amplitude spectral density A n (f ) defined as the square root of the power spectral density. The amplitude spectral density A n (f ) is expressed in 1/ √ Hz. The advantage of this object is that it is linear in the amplitude of the noise. As we will see in Chap. 4 a relevant figure of merit in comparing a gravitational-wave signal with noise is the signal to noise ratio (SNR). This quantity is proportional to the strain signal and the SNR is a perfect figure of merit for the signal strength if the detector noise is a Gaussian noise, which is clearly not the case in general.

A Michelson interferometer is designed to detect a phase difference ∆φ. Using Eq. 2.7, we estimate the phase shift produced by a passing gravitational wave to be of order ∆φ ∼ 10 -11 rad of a fringe, for typical wave amplitude of h 10 -21 , a length arms of L 0 = 3 km and a reference laser wavelength of λ = 1064 nm. Thus we understand that the interferometer must be isolated from a host of harmful noise sources that could perturb the measure. In this section, we focus our attention on understanding the principal contributions of the fundamental noise sources to the total noise n(t). These are sources of noise which come from intrinsic limits to the detector. As we shall see, each of these terms dominates at a certain frequency range.

Shot noise

One of the fundamental noise for an interferometric detector is related to the quantum nature of light. It has two faces where either one of may dominate depending on the circumstances. We have seen that gravitational waves induce a phase difference ∆φ between the two interferometer arms. What is measured by the photodector is the output light power P out . So the phase shift can be determined by a careful measurement of the output light power and a first limit comes from the precision with which we can measure this power. To see why, recall that measuring P out is equivalent to determing the number of photons of a certain energy arriving during a measurement interval. We model the light flux at the photodetector as a set of discrete photons whose arrival times at the photodetector are statistically independent. Each photon carries an energy:

E γ = 2π c λ (2.17)
where is the reduced Planck constant. The mean number of photons N arriving during a time τ is given by:

N = P 0 τ λ 2π c . ( 2.18) 
with P out ≡ P 0 . The mean number of photons N is described by a Poisson distribution, which implies the uncertainty σ N = N . Thus the power measured is a random variable described by its mean P = P 0 and by its standard deviation:

σ P = P 0 σ N N = P 0 2π c τ λ . (2.19)
we can interpret such statistical power fluctuations as equivalent to phase shift fluctuations:

σ φ = σ P P in × 1 2 sin α = 1 cos( α 2 ) 2π c τ λP in , ( 2.20) 
where we used Eq. 2.11 in case of no gravitational waves are present (∆φ = 0). The fluctuations on the phase shift is inversely proportional to cos( α 2 ), one of the first interesting results. By choosing α = 0, we minimize the phase fluctuations. It is then more convenient to work on the dark fringe. In terms of the strain sensitivity h the photon shot noise is described by an amplitude spectral density of magnitude, see [START_REF] Peter R Saulson | Fundamentals of interferometric gravitational wave detectors[END_REF]:

h shot = 1 L 0 c λ 4πP in 1/ √ Hz. (2.21)
For a L 0 = 3 km kilometer long Michelson interferometer with a laser input power P in = 50 W and a laser wavelength λ = 1064 nm, the order of magnitude of the strain amplitude is

h shot 6 × 10 -21 1/ √ Hz, (2.22)
which is of the same order of magnitude of the amplitude expected for a gravitational wave.

Then if we want to be able to confidently detect and study a gravitational wave signal we need to decrease the shot noise. There are three parameters on which we could play. The photon shot noise depends on the length of the arm L 0 , the input light power P int and the laser frequency f = c/λ. As a matter of common sense, we realize that the length of the arms cannot extend for hundreds of kilometres. However it is possible to increase the photon path if they take many trips back and forth before reaching the photodetector. This is done by using Fabry-Perot cavities in the arms. The basic idea consists in adding two input mirrors and forming Fabry-Perot cavities with the end mirrors of the Michelson, where the light travels between parallel mirrors. To increase the light power, another mirror is added between the laser source and the beam splitter. This is the power recycling mirror which "recycles" the light in the interferometer. Since the interferometer is working on a dark fringe, that means that the two ouput beams that recombine at the beam splitter are in destructive interference. Thus no light should arrive to the detection photodiode, the power ends up coming back towards the laser. By adding this mirror the light power is thus recycled in order to be used. The shot noise is the dominant contribution to the noise detector at high frequency 2 .

Radiation pressure noise

We have treated so far the limit that a quantized world set on the precision of a measurement. We continue with a discussion on how the measurement process disturbs the system under measurement. Radiation pressure occurs in interferometers because photons transfer momentum to the end of arms mirrors when they are reflected. The difference between the radiation pressure in the two arms can cause a change in phase, which can mimic a gravitational-wave signal. If we consider the simplest Michelson interferometer and we assume that the beam splitter mirror is much more massive than the two end of arms mirrors (test masses), it can be shown in expressing the momentum imparted to a single test mass and by using the Eq. 2.18, 2 Considering a more realistic case, the expression of h shot is modified. A Fabry-Perot cavity acts as a low-pass filter of high frequency cut-off fc. The expression of h shot is multiplied by a factor 1 + f GW fc 2 [START_REF] Was | Searching for gravitational waves associated with gamma-ray bursts int 2009-2010 ligo-virgo data[END_REF] to take into account this effect.

that the radiation pressure noise is given by [START_REF] Peter R Saulson | Fundamentals of interferometric gravitational wave detectors[END_REF]:

h rp (f ) = 1 mf 2 L 0 P in 2π 3 cλ , (2.23)
where m is the mass of the end of arms mirrors. This noise is reduced by increasing the mass of the mirrors. The radiation pressure noise dominates at low frequencies.

There is a counterplay between these two sources of noise associated with the quantum nature of light. Indeed the radiation pressure noise has opposite scaling with the shot noise with the light power. There is an optimal power laser which minimizes the total quantum noise at a particular frequency. Using this optimal power results in the minimum achievable quantum noise for an interferometer, called the "standard quantum limit". This quantum limit can be sidestep by the use of squeezed states of light that can show sub-Poissonian counting statistic. Indeed, for squeezed states of light the probability of detecting a photon decreases with the more photons that are already detected in the same time interval. Thus the photons do not individually appear randomly upon detection. There are quantum correlations between the photons.

Seismic noise

Seismic noise is generated by large-scale motion of the Earth from seismic waves, earthquakes, ocean waves on continental coastlines, and human activity 3 . This noise causes motion on the test masses, and is managed through the use of pendulum.

To isolate a mass we can suspend it by mean of spring. From the point of view of its mechanical response the system acts as an harmonic oscillator with a resonant frequency f 0 . If we consider a mass m attached with a spring of constant k to the ground, and look at the one dimensional problem, with x g the position of the ground and x the position of the mass, the equation of motion is:

m d 2 x dt = -k(x -x g ), (2.24) 
where we have neglected the fluid friction or the damping from internal friction in order to not complicate the calculations unnecessarily 4 In the frequency domain the transfer function is given by:

x x g = f 2 0 f 2 0 -f 2 , (2.25)
at low frequency, the spring is rigid x/x g 1. In the high frequency limit we get:

x x g f 2 0 f 2 , (2.26)
thus, at large frequencies compared to f 0 the motion in response to the spring is negligeable, causing the mass to be isolated from the outside world. The ground motion is finally concentrated around the resonant frequency f 0 . The vibration isolation system of the pendulum that suspends the mass is suspended again by a chain of many pendulums. Since a set of many oscillators, all with resonant frequency f 0 , gives an identical function that can be approximated in the high frequency domain to:

x x g f 2 0 f 2 N , ( 2.27) 
in order to filter the ground motion by repeatedly applying this factor to all degree of freedom. We will see later how this principle is used in practice in current detectors.

Thermal noise

Dissipation which produces random displacements in mechanical systems, called thermal noise. It has different origins. The first one is due to dissipation in the wires used to suspend the test masses; this is called the suspension thermal noise. The second one is due to dissipation processes inside the test masses themselves which leads to a deformation of the mirror surface, this is the mirror thermal noise. These noises dominate in the mid frequency range. The fluctuations are well described by modeling the system as an ideal oscillator and using the fluctuation-disspation theorem. It has been shown that they can be minimized by using mirrors of large mass and working at low temperature. Moreover the mirrors are characterized by a mechanical factor of quality, the Q-factor, which measures the internal losses in a system or how long it takes a resonator to decay in amplitude. The higher the Q-factor the lower the internal dissipations. We understand now the interest to find and use high-Q materials (fused silica, sapphire or silicon) that offer the opportunity to reduce the thermal noise within the detection band.

Current ground-based detectors network 2.4.1 Virgo and Advanced Virgo

The construction of the Virgo gravitational wave detector was decided in 1993-1994 by France and Italy and was finished building in 2003. It is located in Cascina, near Pisa in Italy. Virgo gets its name from the Virgo galaxy cluster for which the detector was supposed to be sensitive enough to detect a signal. ). In addition, a polishing is applied in order to reduce to a minimum the roughnesses present on the surface of the mirrors (below the angstrom). One of the advantage is to minimize the laser power losses. Two input mirrors (WI and NI) form Fabry-Perot cavities of 3 km long with the end mirrors, whose role is to increase the optical path. The finesse of the cavities which is a quantity that depends on the reflectivities of the mirrors was F = 50 [START_REF] Accadia | Calibration and sensitivity of the Virgo detector during its second science run[END_REF]. The beam makes an average of 2F/π ≈ 30 [START_REF] Casanueva | Control of the gravitational wave interferometric detector Advanced Virgo[END_REF] round trips in Virgo's cavities, which amplifies the phase-shift (see Eq. 2.7) to:

∆φ(t) = 4π λ L 0 h(t) • 2F π .
(2.28)

The laser operates so that the light that recombines at the beam splitter (BS) returns to the laser, yielding to a dark fringe. An other mirror that is partially reflective, called power recycling mirror (PR), is added between the laser source and the beam splitter (BS). This ensures that that the light returning from the interferometer and reflected by this mirror is in phase with the incident light. This is made to enhance the circulating power inside the interferometer. Between the laser and the PR mirror, the emerging beam is filtered thanks to three mirrors which form a triangular cavity, called the Input Mode Cleaner (IMC). The main purpose of the input mode cleaner is to stabilize the frequency of the laser. The Output Mode Cleaner (OMC) is another cavity used to reject unwanted spatial and frequency components of the light, before the signal is detected by the main photodetector. We have seen that one of the fundamental noise is seismic noise, consequently to achieve a good sensitivity it becomes necessary to provide both vertical and horizontal isolation from seismic noise to the mirrors of the interferometer. This need is met in Virgo by a vibration isolation stack. The Virgo Super-Attenuator was built to provide a nearly isotropic isolation. It is composed by an inverted pendulum that consists of a three 6m-long aluminium legs each fixed to the ground, and a series of wires and mechanical filters attached to the top of the inverted pendulum. Moreover, since near the resonant frequency, the seismic noise is amplified by the resonance modes of the isolation stages, an active control of the super-attenuator is needed. This is done by the use of actuators 5 . The net effect of this mechanic is to reduce the ground motion by 14 orders of magnitude in the sensitive band at a frequency f > 10 Hz. The final suspension stage at the test masses uses low-dissipation suspension components to minimize the thermal noise. Finally, to limit fluctuations in the air index that result in fluctuations in laser power, the whole interferometer is located in ultra-high vacuum. Moreover, the vacuum isolates the test masses from external acoustic noise and temperature fluctuations. The pressure is of order 10 -7 mbar, which makes Virgo the largest ultra-high vacuum installation in Europe.

Between 2003 and 2007, Virgo went through a commissioning phase to reach the design sensitivity of 10 -21 / √ Hz with a frequency band that extends from 10 Hz to 10 kHz. Virgo started science runs in May 2007 and no gravitational wave signal was detected. Virgo continued commissioning through late 2011.

Advanced Virgo [START_REF] Acernese | Advanced Virgo: a second-generation interferometric gravitational wave detector[END_REF] is an upgrade of the Virgo detector. It was designed to have a sensitivity an order of magnitude better than that of initial Virgo, which translates in three orders of magnitude in terms of volume of observable Universe. For this reason it is called second generation detector. The installation of the Avanced Virgo equipment started in mid 2012 and was completed in 2016. Most of the sub-systems was improved. The finesse of the arm cavities increased a lot, up to F 450. Advanced Virgo use the Virgo laser, capable of providing up to 60 W. However, for technical reason less than 20 W was really used. As seen before, a gain in power leads to an increase of the radiation pressure noise. To counterbalance this effect heavier mirrors (m 42 kg) have been installed, this also has the advantage to reduce further the thermal noise. The mirrors have been also better polished to reach a better flatness in the central area of the test masses, in order to decrease the scattering of light. A new coating of mirrors is used to limit as far as possible the mechanical losses that limit the sensitivity of the detector due to the associated mirror thermal noise. On the other hand, this allows to reduce again the absorption of light in the coating that induces a limit in the amount of laser power that can be stored in the detector. In order to limit phase noise caused by part of the light being back-scattered into the interferometer, baffles designed to absorb this light are suspended around the mirrors. The laser beam was also increased on the test masses. In order to accomodate this larger beam the vacuum pipes had to be replaced with larger ones. The Super-Attenuators have been also modified to include a better active control in high seismicity conditions. Four magnets, controlled by coils, are attached to each mirrors, then the position of the mirrors is controled by acting on the current sent to the coils. Most of the efforts in bringing an interferometer to best sensitivity is dealing with the reduction of noise sources that are not fundamental. Advanced Virgo is continuously monitored by several sensors placed in key points around the detectors, e.g. seismometers, magnetometers monitoring the magnetic field, acoustic probes used to measure a pressure change in the acoustic frequency band, thermometers, pressure and humidity probes or lightning detectors to detect radiofrequency disturbances caused by close storms. Then data collected by the monitoring system are recorded together with the interferometer output and studying in order to try to discriminate noise from gravitational-wave signal. In parallel, a commissioning activity is required and of paramount importance to understand the observed noise in Advanced Virgo. Noise sources can be classified according to their origin, there are three main categories of noise in addition to the fundamental noises.

Technical noises

Those noises are coming from the actual implementation of the detector. We give two examples of the most critical noise sources. Very small imperfections arising in the production and polishing of the mirrors can produce scattered light inside the interferometer. There are several scattered light sources. It is generated from scattering of the light beam by molecules or from diffraction from the edges of some optics. This light can redirect a small fraction of the laser light towards the walls or other components of the instruments. If this light recombines with the main beam it will generate a spurious signal in the readout photodetectors. The solution adopted is to operate the long arms at ultra high vacuum, and to place baffles and diaphragms inside the vacuum chamber [START_REF] Acernese | Advanced Virgo: a second-generation interferometric gravitational wave detector[END_REF]. Another typical technical noise is produced by fluctuations in the intensity and frequency of the laser, which can result from some imperfections in the optics, for example the mirrors reflectivity. To reduce this noise, a control system is implemented [START_REF] Abbott | Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF].

Environmental noises

Environmental noise is as its name suggests, an external noise to the detector. Theses noises are multiple and they are often difficult to predict and to model. Even if the detector is well isolated from the environment (suspended mirrors and optical benches seismic, in-vacuum beams, etc) it is not enough. Acoustic noise produced by planes or thunder are part of the environmental noises. Magnetic noise also belongs to this category. The external magnetic field interfers with some part of the detector, for instance the mirrors through the magnets attached on their surface which are part of the actuator system used to exert control forces on the test masses. The current detectors are continuously monitored by several environmental sensors placed in key points around the detectors. We will see later how these probes are used to discriminate a real gravitational wave signal from a noise.

Control noises

The different subsystems of Advanced Virgo are constantly controlled in order to maintain a correct operating point of the detector needed to reach the best sensitivity. Noises can be introduced in the subsystems or amplified by this control, for example by the actuators used to control the position of the mirrors. Another example is given by noises present in the error signals used to calculate the correction that should be provided to the optics to bring them to their operating point. Finally to understand the noise in Advanced Virgo, we should consider all the noises described above to estimate the total detector noise n(t). This is done by modelling or measuring each contribution to the detector noise with an auxiliary sensor. By combining all the noise level estimations we derive an expected noise budget for Advanced Virgo. That is the decomposition of the amplitude spectral density of the total detector noise n(t) into different contributions. Figure 2.9 presents the noise budget for Advanced Virgo in August 2017. At high frequency, above 200 Hz it is the computed shot noise that dominates (magenta and blue curve) through the photodiodes that monitor the interferometer 6 7 . In addition, the photodiode electronic noise contributes also (yellow and dark green). We notice the pollution produced by scattered light inside the interferometer by the presence of large number of bumps and lines at high frequency (brown curve). We also observe the presence of large bumps originating from the laser frequency noise (purple curve). In the middle frequency range between 30 Hz and 600 Hz several features are the results of unstable pointing performance of the input laser (black curve), The thermal noise of the steel wires used to suspend the optics dominate between 25 Hz and 100 Hz (red curve). Finally, one of the control noise is the largest contribution below 25 Hz (cyan curve). The seismic noise contribution is negligible at the considered frequencies, it is why it is not presented on this figure.

LIGO and Advanced LIGO

From 2002 to 2007, the Laser Interferometer Gravitational-wave Observatory (LIGO) operated kilometer-scale Michelson interferometers [START_REF] Abbott | LIGO: The Laser interferometer gravitational-wave observatory[END_REF]: one 4-km interferometer (H1) and one 2-km interferometer (H2) in Hanford (Washington) and another 4-km interferometer (L1) in Livingston (Louisiana). The two interferometers at Hanford was in the same vacuum chamber which was a considerable source of noise, for this reason H2 has been removed. Another major difference with Virgo is the seismic isolation of the lightest end of arms mirrors (m 10 kg) which used a four stage single pendulum. From 2010 to 2015, the LIGO detectors collected no data, instead undergoing a series of upgrades to become Advanced LIGO.

The Advanced LIGO detectors [START_REF] Aasi | Advanced LIGO[END_REF] have undergone several changes, and were designed to be 10 times more sensitive than initial LIGO, and promised to increase the volume of the observable universe by a factor of 10 3 . By comparison with Advanced Virgo (during O2), a signal recycling mirror was added between the beam splitter mirror and the photodetector. This has the advantage to influence the detector bandwidth in order to optimize its response to expected astrophysical signals 8 , while the position of this mirror changes the frequency of the maximal sensitivity. The seismic isolation of the test masses became a quadruple pendulum system [START_REF] Robertson | Quadruple suspension design for Advanced LIGO[END_REF]. In each suspension system there are two chains (each chains contains four masses) of suspended masses: the main chain and the reaction chain, this last chain is used to apply forces onto the optics . To reduce the thermal noise, fused silica is used to suspend the lower two stages of the isolation system, since its level of internal friction is roughly about 10 3 times lower than steelwires used in initial LIGO. The laser is capable of producing up to 180 W (much more than the laser used in Advance Virgo), but only 22 W [START_REF] Abbott | Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF] were used in the first observing run, then it increases up to 30 W [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF], during the second observing run. Finally, to reduce the quantum noise squeezed states of light was introduced [START_REF] Aasi | Enhancing the sensitivity of the LIGO gravitational wave detector by using squeezed states of light[END_REF][START_REF] Abadie | A Gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application[END_REF][START_REF] Grote | First Long-Term Application of Squeezed States of Light in a Gravitational-Wave Observatory[END_REF]. The Advanced LIGO detectors started their first data taking in September 2015.

Observing Runs

During an observing run the detector is in optimal conditions to take data useful for physics analyses. However keeping the detectors in optimal conditions is complex and a variety of disturbances interfere with this process, for example seismic difficulties such as earthquakes, or high-speed winds. A useful quantity to define the sensitivity of a detector is given by the binary-neutron-star (BNS) inspiral horizon. It gives the distance at which a single detector could observe a pair of 1.4M neutron stars optimally oriented, with a SNR of 8. The BNS range is the average horizon for Table 2.2: Observation runs for Virgo and Advanced Virgo. We give the maximum average BNS range value reached during the run. The data are taken from [43] [42] an uniform distribution of source in the sky with an averaged orientation. The horizon is about ∼ 2.6 the BNS range. During an observing run the range of each detector varies significantly on hourly time-scales, sometimes by few percent. This is mainly due to the noise variations. This gain in sensitivity improved significantly the observable volume of space that can be observed by a factor roughly 70 for L1 and 40 for H1. This enabled Advanced LIGO to detect for the first time a gravitational wave signal. The second observing run (O2) started on November 30, 2016 to August 25, 2017. For technical reasons, 8 more months was needed by Advanced Virgo to reach a sufficient sensitivity and to join the Advanced LIGO detectors. The monolithic suspensions broke which resulted in a considerable delay. After months of investigation, the cause of this accident was finally understood: the silica fibers of the suspension have been weakened by grains of dust, causing kinds of fractures. The best solution was to fall back to steel wires. In addition, Advanced Virgo had an intense period of commissioning where noise investigation was crucial to gain in sensitivity. Finally, Advanced Virgo officially joined the O2 data taking period on August 1st, 2017 at 10:00 UTC. The average duty cycle was about 85%, which was higher than for Advanced LIGO detectors. It is due in part to the fact that Advanced Virgo was taking data during the summer where the environmental conditions are optimal. We often find in the winter months the duty cycle of the detectors to be less compared to the summer months. Indeed bad weather conditions (storms, strong winds, rough seas ...) can significantly prevent the detector from operating properly. This is what happened in Virgo, in August 11 and 12 where strong microseismic activity was present due to bad weather. The evolution of the BNS range achieved by Advanced Virgo during the O2 data taking period is shown in Fig 2 .12. We notice that the BNS range is stable over time with an average of 26 Mpc. In Advanced LIGO, the L1 Figure 2.12: Evolution of the Advanced Virgo detector BNS range during O2 data taking period, including the engineering run 12 which started on July 28 detector starts O2 observing around a BNS range of 85 Mpc, and becomes steadly more sensitive as O2 progresses, reaching 100 Mpc at the end of the run. The H1 detector's sensitivity is around 75 Mpc at the start of the observing run, but the sensitivity was highly affected by a sudden drop in sensitivity in July 2017 after an earthquake in Montana, finishing the run around 65 Mpc. Figure 2.13 shows the representative amplitude spectral density of the strain noise for each detector and the BNS range during O2. Table 2.14 summarizes the duty cycle of each of the detectors during O2, in addition we give the coincident duty cycle in both Advanced LIGO detectors and in the configuration with three detectors. Between O1 and O2 

Detections

As we have seen, major upgrades to first generation detectors have resulted in increased sensitivity. This gain in sensitivity allowed the first direct detection of a gravitational-wave signal from a stellar-mass binary black hole (BBH) during the first observation run (O1) in 2015: GW150914 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. During this run Advanced LIGO made a total of 3 detections all from BBH [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]. During the second observing run, for the first time Advanced Virgo made its first detection of a BBH merger: GW170814 [START_REF] Abbott | 170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence[END_REF]. Virgo's contribution has made it possible to greatly improve the sky localization of the source. Shortly after, for the first time, a gravitational-wave signal from a binary neutron star inspiral was observed: GW170817 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF]. In addition during O2 there were a total of 7 detections from BBH [START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]. Here we only summarize the two historical detections.

GW150914

On September 14, 2015 at 09:50:45 UTC just before the start of the O1 run, the Advanced LIGO detectors made the first direct detection of a gravitational-wave signal, called GW150914 [START_REF] Abbott | Observation of Gravitational Waves from a Binary Black Hole Merger[END_REF]. The signal was produced by the inspiral, merger, and ringdown of a black hole binary system with masses respectively of 36 +5 -4 M and 29 +4 -4 M . The mass of the final black hole was 62 +4 -4 M and so a colossal amount of total energy of 3.0 +0. 5 -0.5 M c 2 was emitted in gravitational waves. The signal lasted for a few tens of milliseconds and has a typical chirp waveform, which increases in frequency from 35-250 Hz and reaches a maximum strain amplitude of 1.0 × 10 -21 . The predictions of General Relativity are in agreement with the measurements made in the data of Advanced LIGO. Figure 2.15 shows the signal observed and the reconstructed waveform. Additional tests of General Relativity were performed and no evidence for breach of General Relativity were found [START_REF] Abbott | Tests of general relativity with GW150914[END_REF]. The overall binary black hole merger rate was estimated to be between 2-600 Gpc -3 yr -1 [START_REF] Abbott | Astrophysical Implications of the Binary Black-Hole Merger GW150914[END_REF]. The astrophysical implications of the detection of GW150914 and its estimated parameters have been discussed in [START_REF] Abbott | The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914[END_REF], in particular the binary mechanisms of black hole formation.

GW170817

The blossoming field of joint gravitational-wave and electromagnetic astronomy began on August 17th. At 12:41:04 UTC an event is identified by a low-latency compact binary search in the Advanced LIGO-Hanford detector. However nothing is seen in Advanced LIGO-Livingston, which was not expected because its sensitivity was better than that of other detectors at the time of the detection. It is a visual inspection of the data at the time of the event that reveals a typical long-duration chirp signal in the data of the Advanced LIGO-Livingston detector. A glitch with a high SNR, which subsequently will be subtracted from the data, disrupted the search algorithms in Advanced LIGO-Livingston. The event is seen in time coincidence in Advanced LIGO-Livingston detector with a SNR = 26.4 with Advanced LIGO-Figure 2.15: GW150914, as detected by the H1 (left column) and the L1 (right column) Advanced LIGO detectors. Times shown are relative to 09:50:45 UTC on September 14,2015. Top row: detector whitened strain time-series. Middle row: computed waveforms, using numerical relativity (in red). In addition, a sine-Gaussian wavelet reconstruction is also plotted (light grey), and a black hole binary template (grey). Just below this row is presented the residual difference between the computed signal and the reconstructed signal. Bottom row: time-frequency plots of the strain data which clearly illustrates the "chirp" signature of the waveform.

Hanford detector (SNR = 18.8). This detection corresponds to a low mass binary system with component mass very close to neutron star [START_REF] Abbott | Observation of Gravitational Waves from a Binary Neutron Star Inspiral[END_REF]. This event was not detected in Advanced Virgo data, the low value of the reconstructed SNR = 2.0 indicates that the position of the source is located near a blind point of the detector. At almost the same time, The Fermi-GBM telescope detects an electromagnetic event (short gamma-ray burst GRB 170817A) 1.7s after the gravitational-wave merger [START_REF] Abbott | Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817[END_REF]. This is the first confirmation of binary neutron star merger being the progenitor of an electromagnetic event [51]. The Advanced LIGO detectors localize the source in a sky region of 190deg 2 . As the source was situated near one of the blind spots of the Advanced Virgo detector, the source was localized much more accurately than with only two detectors, in a region of 31deg 2 , see Fig 2 .16. Realizing the importance of the discovery, within 30 minutes after the detection an alert is sent to find an electromagnetic counterpart and a complete observation campaign is launched on the whole electromagnetic spectrum [START_REF] Abbott | Multi-messenger Observations of a Binary Neutron Star Merger[END_REF]. Thanks to a three-detector source localization, few hours later a first electromagnetic emission was found in the direction of the galaxy NGC4993 (at ∼ 40 Mpc) situated in the Hydra constellation. In addition, the follow-up of this signal made it possible to find an emission signal characteristic of a kilonova9 (also called macronova) emission [START_REF] Soares-Santos | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera[END_REF][START_REF] Cowperthwaite | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Nearinfrared Light Curves and Comparison to Kilonova Models[END_REF][START_REF] Nicholl | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. III. Optical and UV Spectra of a Blue Kilonova From Fast Polar Ejecta[END_REF][START_REF] Chornock | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South[END_REF][START_REF] Margutti | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. V. Rising X-ray Emission from an Off-Axis Jet[END_REF][START_REF] Alexander | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-Time Emission from the Kilonova Ejecta[END_REF][START_REF] Blanchard | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VII. Properties of the Host Galaxy and Constraints on the Merger Timescale[END_REF][START_REF] Fong | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-ray Bursts[END_REF][START_REF] Abbott | Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817[END_REF]. This detection had an impact on several additional fundamental topics. GW170817 provides a new way to study the extreme state of nuclear matter inside a star. The determination of the position of the source is used to measure the Hubble constant H 0 , the expansion rate of the universe. This is done independently of the measurement made with CMB Planck [START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF] and the supernovae type Ia [START_REF] Riess | A 2.4% Determination of the Local Value of the Hubble Constant[END_REF]. The combination of informations from electromagnetic observations and the gravitational wave provides an estimate of H 0 = 70 +12 -8 kms -1 [64] [65]. This value is consistent with the other experiments mentioned above.

Data Quality

Detecting a signal in the presence of noise is subject to several difficulties. In many cases the detector noise is described by a stationary and Gaussian contribution to which is added a large number of non-Gaussian transient noises. The data of gravitational-wave interferometers is contaminated by these transient noises, often called glitches. The presence of glitches degrade the sensitivity of searches for gravitational-wave signals in the strain data, specially burst searches (see Sec. 1.5) because of the similarity between glitches and a generic burst signal. That is why it becomes necessary to describe, to understand and if possible to mitigate glitches.

Glitches

A glitch can be as short as 1 ms or last for several seconds, it can be well localized in frequency or wide band. Transient noises can originate from a lot of sources as detector malfunctions, technical or environmental sources. Understanding glitches relies on a complete monitoring of the instrument and its environment. For that purpose, the detector is monitored by a thousand of probes as thermometers, microphones, seismometers, magnometers and many more. These probes collect data that are measurements of the detector's environment. Each probe is associated with an auxiliary channel. An auxiliary channel is any channel except the gravitational-wave channel often called strain channel. To supplement it, other auxiliary channels are used to sense and control the detector, for instances some record the signal of photodiodes used to control the state of the interferometer. It is the study of the relation between a glitch and the auxiliary channels that usually gives a hint about the origin. The glitch investigation may requires months of hunting, it takes a lot of patience, regularity and strong understanding of how the whole detector works. Many efforts are done permanently by the noise hunting teams to improve the quality of the data. Sometimes depending on the characteristics of the glitches (amplitude, duration, frequency, shape ...) they can be classified in families. In particular, transient events must be searched for in thousands of channels data in order to identify correlations with the detector's output data and understand coupling mechanisms leading to glitches. The ultimate goal is to be able to correct the cause that generates this kind of noise or in a less optimistic case to find a criteria to apply to the data in order to remove these glitches.

The primary focus of the investigation is the identification and classification of glitches. For this purpose, the main tool used is a search algorithm called Omicron [START_REF] Robinet | Omicron: an algorithm to detect and characterize transient events in gravitational-wave detectors[END_REF] which is able to detect and characterize detector glitches with a very good efficiency and accuracy in all auxiliary data of gravitational-wave detectors. Omicron was designed to process hundreds of auxiliary channels required to study coupling in the detectors. The data is processed using a particular transform which consists of decomposing the signal time serie x(t) onto a generic basis of complex-valued sinusoidal Gaussian functions centered on time τ and frequency φ:

X(τ, φ, Q) = +∞ -∞ x(t) √ 4πφW Q exp -2πφ (t -τ ) Q 2 e -2iπφt dt, (2.29)
such that the time-frequency plane is covered by tiles (time-frequency regions) of constant quality factor Q. The noise of the input signal is whitened, i.e. normalized by the local noise power spectrum density. This is done by the normalization factor W which includes an estimate of the local stationary noise. The parameter space (τ , φ, Q) is tiled in a set of time-frequency planes with a fixed Q value called Q plane. Then whitened data are projected onto tiling structure. This procedure allows to express the signal-to-noise-ratio (SNR). For whitened data it can be shown that SNR 2 = |X| 2 -2. Finally a glitch in the data is detected by Omicron as a collection of tiles with a SNR value above a given treshold. Omicron offers a two-dimensional representation in the frequency-time plane. The SNR distribution of tiles is plotted on this represensation in one or several Q planes. Figure 2.17 displays a representation of a typical glitch measured by Omicron. ). The distribution of anthropogenic glitches is not homogeneous over a week, for example on August 15 there is much less glitches, it is because this day is a holiday in Italy. In Advanced Virgo, short duration glitches with high SNR, called control glitches are produced with a high rate, see Fig 2 .19. These are localized between 60 Hz and 100 Hz. They are associated to missing samples in the signal used to control the mirrors. These glitches are removed when reconstructing the gravitational-wave strain signal h(t). However some of these glitches are still present in the analyzed data. In Advanced LIGO, the worst contributors to the background of transient gravitational-wave searches are blip glitches. These are very short duration transients, with a large frequency band [START_REF] Cabero | Blip glitches in Advanced LIGO data[END_REF]. It is not evident to identify clearly blip glitches and to separate them into sub-families. However, the current classification [START_REF] George | Glitch Classification and Clustering for LIGO with Deep Transfer Learning[END_REF] is based on four differents categories of blip glitches: blip, repeated blips, tomte10 and koi fish 11 

Vetoes

Several factors can affect the quality of the data to make it unsuitable for data analysis. For instance the strain channel, h(t), is too much glitchy, or data are corrupted due to a severe problem that occurs while the detector is taking data. Time stretches in which the data quality is too low, can be flagged and eliminated from the analysis. For instance periods of time where h(t) is too glitchy or h(t) is few order of magnitudes larger than the usual values, are flagged. Once the source of the problem is well established and understood, a data quality (DQ) flag is developed. A DQ flag is a list of time segments where the data is qualified as noisy. The DQ flags are classified in categories [START_REF] Aasi | Characterization of the LIGO detectors during their sixth science run[END_REF] that inform on the severity of the problem and provide a prescription on how to use the flags in the analyses. For that purpose flags are organized into four categories (CAT). Table 2 ) after applying a list of DQ flags. We observe that the DQ flags removed most of the glitches with a high SNR. The DQ flag used was built following a noise investigation which is a long process. In particular it requires a lot of expertise from the people involved in the detector characterization group (DetChar) of Advanced Virgo. The study of the correlation between a glitch and the auxiliary channels is used to generate vetoes which remove triggers that occur at the time of the glitch. For this purpose, a systematic study of time coincidences between events in the strain channel and all the auxiliary channels is performed, in order to identify which auxiliary channels have a statisticaly significant correlation with the strain channel. It is also important to note that the work of characterizing the noise of a detector is a continuous work. Indeed the noise in the detector is changing all the time, therefore a veto is valid only for a limited time. Finally, once the segment list of a veto is generated, its performance need to be studied. This is discussed at the end of Sec. 2.5.3.

Data quality tools

Many tools were developped in order to track the noise in the detector and to understand the coupling with the gravitational-wave channel. We introduce briefly the main tools used for the work of this thesis. 

UPV algorithm

UPV [START_REF] Isogai | Used percentage veto for LIGO and virgo binary inspiral searches[END_REF] is an algorithm standing for used-percentage veto. UPV is used to find statistical correlations between transient noise in the gravitational-wave channel and in auxiliary channels. The code finds time-coincident events between the gravitational wave channel and the auxiliary channels. A use-percentage value is used to characterize the coupling between these two channels, defined as:

use percentage ≡ N aux coinc N aux total , ( 2.30) 
where N aux coinc is the number of the auxiliary channel events coincident with the gravitational-wave channel and N aux total is the total number of events present in the auxiliary channel. Typically, if the use-percentage is higher than 50%, the coupling is said to be real, by opposition to accidental coincidence. If this requirement is fulfilled the channel is selected to produce a veto for a category of glitches. Such a channel selection insures that the coupling between the auxiliary channels and the strain channel in founded. The use-percentage is computed as an increasing function of the SNR. Moreover a glitch family is often characterized by a given frequency. It is why in addition the use-percentage is computed in bins of frequency of the auxiliary channel. If the use-percentage is found to be above a given threshold (e.g. 50%), a SNR threshold for the set of events seen in the auxiliary channel is defined. Since the use-percentage is computed for multiple frequency bins, the SNR threshold is a function of the frequency. This threshold is used to define a veto. Any events from an auxiliary channel with a SNR above the threshold is considered to be coupled to the gravitational-wave channel. The final SNR threshold is set when the use-percentage is above 50% (green region). Some frequency bins are excluded even when the use-percentage is measured to be above 50%. This is because there is not enough statistic in these bins. In this example only events between 10 Hz and 20 Hz are involved in the coupling, and so the coupling between the auxiliary channel and the gravitational wave channel is weak.

VetoPerf

Vetoperf is an algorithm that applies a veto on a set of triggers and measures its performance. The veto performance is characterized by several quantities:

• the dead-time (d), defined as the fraction of time rejected by the veto.

• the efficiency ( ) which is the fraction of triggers that are vetoed. Usually the efficiency is estimated as a function of SNR.

Vetoperf measures the numbers presented above. It also generates plots with trigger distributions, before and after applying the veto. This tool is very useful for data analysis because it provides the quantities used to estimate the quality of a veto. Indeed, it is important to check that the vetoes do not discard good quality data periods because they could contain a genuine signal. A good veto should have a large use percentage, however this criteria is not sufficient, for example the use percentage can be high only because the dead time is large. It needs to be completed by another quantity: the ratio efficiency over dead-time ( /d). Its value gives us the fraction of triggers vetoed over the fraction of time vetoed. If /d = 1 the flagging is random while /d > 1 means that the flaggings starts to be effective and if /d 1 the veto can be considered as "excellent". By using a veto there is always a risk to remove a real gravitational wave trigger and so its use must be well justified.

Several other tools exist, such as the Virgo Interferometer Monitor (VIM) [START_REF] Hemming | Virgo interferometer monitoring[END_REF] which provides informations on each sub-system of Advanced Virgo. Periodically various plots are generated and archived on a daily basis. These plots inform about the state of each sub-sytem, the online processings and the online DetChar analyses. The whole information is displayed in a well structured page. An other example is the DataDisplay which is an interactive tool that allows also to visualize the data, but in a more flexible way. These tools will be used during the cosmic burst analysis, presented in Chap. 4.

Chapter 3

Cosmic Strings

The basic ingredients in cosmology are General Relativity and the choice of a metric. The Friedmann-Lemaitre-Robertson-Walker (FLRW) model, known as the hot Big Bang model is a homogeneous and isotropic solution of Einstein's equations (Sec. 3.1). However this model has several outstanding enigmas. Cosmic strings have been introduced to explain a variety of these enigmas. These are linear topological defects that are expected to be form during some phase transitions in the Universe (Sec. 3.2). Cosmic strings have several astrophysical signatures (Sec. 3.4.1), in particular they can emit gravitational waves (Sec. 3.3).

The standard cosmological model

The cosmological principle

The cosmological principle is the notion that the Universe is spatially homogeneous and spatially isotropic when viewed on a large enough scale. While these two properties appear similar, they describe very different features of the Universe. Figure 3.1 illustrates the difference between these two terms. The Universe is isotropic if we see no difference in the structure of the Universe as we look in different directions. Homogeneity implies that the average density of matter is about the same in all places in the Universe. This means there is no preferred observing position in the Universe. Notice that this is clearly true for the Universe only on very large scales, of ten millions of light-years in size.

The FLRW metric

It can be shown [START_REF] Gourgoulhon | Relativité générale[END_REF] that a space-time spatially homogeneous and isotropic is described by the Friedmann-Lemaitre-Roberston-Walker (FLRW) metric:

ds 2 = g αβ dx α dx β = -dt 2 + a 2 (t) dr 2 1 -kr 2 + r 2 (dθ 2 + sin 2 θdφ 2 ) (3.1)
Figure 3.1: Illustration of how homogeneity and isotropy are not equivalent. On the left, a unique direction is picked out, but translation invariance is maintened. On the right, all direction are the same (rotation invariance) but a radial gradient exists.

where (r, θ, φ) are the spherical coordinates, this choice is used to make the symmetry of space manifest. The quantity a(t) > 0 is called the scale factor which has the dimension of a length. It can be noted that the metric remains unchanged if we rescale simultaneously a(t), r and k. This freedom is used to set the scale factor to unity today a 0 ≡ a(t 0 ) ≡ 1. The parameter k is the spatial curvature and it can only takes three values:

k =        0 flat space 1 elliptical space -1 hyperbolic space (3.2)
We note that there is no cross terms between time and space coordinates in the metric, so that there is no privileged direction: the FLRW metric describes well an isotropic Universe. It also describes a homogeneous Universe because of the hyperspherical 1 symmetry. In the following, the time dependence will be implicit such as a(t) ≡ a.

The Friedmann equations

To derive the general dynamic equations of a homogeneous and isotropic Universe we need to specify the stress-energy tensor. A perfect fluid is general enough to describe a wide variety of cosmological fluids. The stress-energy tensor T αβ of a perfect fluid given by Eq. 1.15, can be written in a matrix form:

T αβ =      ρ 0 0 0 0 P 0 0 0 0 P 0 0 0 0 P      (3.3)
1 Generalization of the ordinary sphere to spaces of arbitrary dimension.

where ρ and P are respectively the energy density and pressure in the rest-frame of the fluid. The Einstein equations given by Eq. 1.9 reduce to the form:

       ȧ a 2 + k a 2 = 8πG 3 ρ + Λ 3 ä a = -4πG 3 (ρ + 3P ) + Λ 3 .
(3.4)

These are known as the Friedmann equations. Usually the first one is simply called "the Friedmann equation", while the second is explicitly referred to as the "the second Friedmann equation"2 . These are a system of two differential equations for the functions of time: a(t), ρ(t) and P (t). To have a closed system, these equations have to be complemented with an equation of state, which relates P and ρ. We use the equation of state of a barotropic fluid, which is a fluid whose density is a function of pressure only:

P = wρ, (3.5)
where the value of w depends a priori on the age of the Universe. By differentiating the (first) Friedmann equation and using this equation of state we obtain an evolution equation for the density ρ. By integrating this equation for w = cte, we get:

ρ(t) = ρ 0 a 0 a(t) 3(1+w) , ( 3.6) 
where we use subscripts "0" to denote quantities evaluated today, at t = t 0 . Since the Universe is filled with a mixture of different matter components, we classify the different sources by their contribution to the pressure:

• Matter. The term "matter" used here is large. It refers to all forms of matter for which the pressure is much smaller than the energy density P ρ (gas of non-relativistic particles). Setting P = 0 ( and so w = 0), the equation of the evolution of the density gives

ρ m (t) ∝ a -3 (t), (3.7) 
where the dilution of the energy density reflects the expansion of the volume of the Universe V ∝ a 3 . Most of the matter in the Universe is in the form of invisible dark matter. The rest is ordinary matter, often called baryonic matter.

• Radiation. The radiation term denotes anything for which the pressure is about a third of the energy density, P = ρ/3 (gas of relativistic particles). The density dilution is then given by ρ r (t) ∝ a -4 (t).

(3.8)

For example the early Universe was dominated by photons. Being massless, they are always relativistic. Moreover for most of the history of the Universe, neutrinos behaved like radiation. It is only recently that their small masses have become relevant and they have begun to behave like matter.

• Dark Energy. the Universe today seems to be dominated by a mysterious negative pressure component P = -ρ, the dark energy. The density of the dark energy does not evolve, ρ Λ (t) ∝ cst.

(3.9)

It is convenient to rewrite the Friedmann equation in another form, for that purpose we introduce the Hubble function defined as:

H(t) ≡ ȧ a , ( 3.10) 
which has the dimension of the inverse of a time. Today, in case of flat space (k = 0) with Λ = 0, Eq 3.4 becomes:

H 2 0 = 8πG 3 ρ, ( 3.11) 
and by inverting this equation we obtain the critical energy

ρ c = 3H 2 0 8πG . (3.12)
It is the density which makes the Universe flat. The critical density allows us to define the dimensionless density energy parameters:

Ω i = ρ i ρ c . (3.13)
Finally, by using these notations we rewrite the Friedmann equation under the form

H 2 (a) = H 2 0 Ω r,0 a 0 a 4 + Ω m,0 a 0 a 3 + Ω k,0 a 0 a 2 + Ω Λ,0 , (3.14) 
where we have defined a "curvature" density parameter Ω k,0 ≡ -k (a 0 H 0 ) 2 , with H 0 the Hubble constant which is the Hubble parameter measured today at t = t 0 . Usually the subscript "0" is dropped such that the equation is much "prettier" and since we have choosen the scalor factor to be a(t 0 ) ≡ a 0 = 1 today we get: where

H 2 (a) = H 2 Ω r a -4 + Ω m a -3 + Ω k a -2 + Ω Λ . ( 3 
Ω tot ≡ Ω r + Ω m + Ω Λ 1, (3.18) 
indicating that it is consistent with a flat Universe.

The FLRW space have a particle horizon; it is only possible at at time t to have received light signals from particles lying within a radial distance:

d H = a(t) t 0 dt a(t ) , ( 3.19) 
this quantity is often called the horizon distance. In the radiation dominated era for a flat Universe, the horizon size is d H = 2t, while in the matter dominated era d H = 3t.

The main characteristic of the FLRW model is the non-stationarity of the Universe introduced through the scale factor. One of the consequences is the expansion of the Universe. This was observed first by Hubble [START_REF] Hubble | A relation between distance and radial velocity among extragalactic nebulae[END_REF] with the displacement of the spectrum of astronomical objects toward longer (red) wavelengths called redshift. Indeed we show [START_REF] Weinberg | Gravitation and Cosmology[END_REF] that the metric in Eq. 3.1 introduces a Doppler effect in the propagation of light by means of the scale factor a(t). The redshift is then defined as:

z ≡ λ obsv λ em -1 = a(t obs ) a(t em ) -1, (3.20) 
where the photon is emitted at a time t em with a wavelength λ em and is received by an observer at a time t obs with a different wavelength λ obs . In the FLRW metric, the redshift of cosmological objects is explained by the expansion of the Universe: the scale factor is an increasing function of time.

In the following we express the Hubble rate at redshift z by:

H(z) = H 0 H(z) with H(z) = Ω Λ + Ω M (1 + z) 3 + Ω R G(z)(1 + z) 4 . (3.21)
In the standard model, entropy is assumed to be conserved and it is shared approximately among each of the relativistic species present. The higher the temperature, the greater the number of species present. As the Universe cools down, species become non-relativistic and release their entropy to the relativistic species that are still in thermal equilibrium. In the radiation era, this is described by the function G(z) defined as [START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF]:

G(z) ≡ g * (z)g 4/3 S (0) g * (0)g 4/3 S (z) =       
1 for z < 10 9 0.83 for 10 9 < z < 2 × 10 12 0.39 for z > 2 × 10 12 , (3.22) where g * (z) is the total effective number of degrees of freedom of all relativistic particle in thermal equilibrium at redshift z and g S (z) is the effective number of entropic degrees of freedom. The two breaks above correspond to the quark-hadron phase transition (T 200 Mev) and to the electron-positron annihilation (T 200 kev). The cosmic time is expressed using the interpolation function ϕ t (z):

t(z) = ϕ t (z) H 0 with ϕ t (z) = +∞ z dz H(z)(1 + z) . ( 3 

.23)

The proper distance r(z) at redshift z is expressed as:

r(z) = ϕ r (z) H 0 with ϕ r (z) ≡ z 0 dz H(z) , ( 3.24) 
and the proper volume element dV (z) is:

dV (z) = ϕ V (z) H 3 0 dz with ϕ V (z) = 4πϕ 2 r (z) (1 + z) 3 H(z) . ( 3.25) 
The analytical calculation gives an asymptotic approximation for ϕ t (z):

   ϕ t (z) ≈ 0.9566 for z 1 ϕ t (z) ≈ 1 2z 2 √ Ω R G(z) for z 1, (3.26) 
and for ϕ r (z):

ϕ r (z) ≈ z for z 1 ϕ r (z) ≈ 3.2086 for z 1. (3.27)
The interpolation functions are computed using numerical calculations where 5 × 10 6 points are distributed logarithmically between z = 10 -10 and z = 10 30 . Figure . 3.2 shows the results. 

A brief history of the Universe

Let us close this section with a very brief history of our Universe, as inferred in the ΛCDM framework. First of all, following the dynamics given by the Friedmann equations backwards in time shows that a singularity, namely a = 0, occurs in a finite-time past. This is the so-called Big Bang singularity which is taken as the origin of cosmic time and then today corresponds to t 0 = 13.81 Gyr. At the time of the Big Bang, the Universe was a very hot and dense particle soup in thermal equilibrium. Thanks to this assumption, the description of the Universe depends only on the temperature T . At the Planck epoch t ∼ 10 -35 s the temperature was about T ∼ 10 19 Gev4 . This refers to the period in the history of the Universe during which the four fundamental interactions (electromagnetism, weak interaction, strong interaction and gravitation) were unified. Because of expansion the Universe is diluted and therefore cools down. Particle species lose their energy and "freeze-out", i.e. decouple from thermal equilibrium. This decoupling occurs when a particle's interaction rate Γ becomes comparable to the rate of expansion Γ ≈ H. As the Universe cooled down it went through at least three phase-transitions:

• At T ∼ 10 15 Gev: the Grand unification transition occurs between t = 10 -37 s and t = 10 -35 s after the Big Bang. The Grand Unification Theories (GUTs) predict that at very high-energy scales the electroweak-nuclear and strongnuclear forces are unified into one force, but gravity has become distinct. It is when the symmetry of these forces is broken that a phase transition takes place. The strong force separates from the other fundamental forces.

• At T ∼ 100 Gev: the electroweak transition occurs around t = 10 -11 s after the Big Bang and causes the electroweak symmetry breaking. The electroweak symmetry unified electromagnetism and the weak interaction.

• At T ∼ 200 Mev: the quark-hadron transition at t = 10 -6 s after the Big Bang causes the plasma of free quarks and gluons to convert into hadrons (baryons and mesons).

Around t ∼ 3 min and T ∼ 150 MeV to 50 keV, the quarks combine into baryons (protons, neutrons) and mesons (pions), followed by light atomic nuclei formation (essentially deuterium, helium and lithium). This process is called the Big Bang nucleosynthesis (BBN). At the end of this period, the expansion dynamics is still dominated by radiation. However, as seen in Tab 3.1, the energy density of radiation decreases faster than the one of nonrelativistic matter, and both contributions become comparable Ω r ∼ Ω m for:

z eq = Ω m,0 Ω r,0 ≈ 3400. (3.28) 
Later, neutral hydrogen forms through the reaction e -+ p + → H + γ this is the recombinaison period. Before recombination the strongest coupling between the photons and the rest of the plasma is through Thomson scattering, e -+ γ → e -+ γ.

The drop in the free electron density after recombination implies that this reaction becomes inefficient and the photons decouple from matter. Photons are spreading freely for the first time in the history of the Universe. The photon last scattering occurred at temperature and redshift:

T rec 3000K z rec 1090 (3.29)
when the age of the Universe was about 380000 years. It was at this point that the Universe went from being totally opaque, to transparent. This is the earliest possible light that we can observe. This light is the so-called cosmic microwave background or CMB, a nearly-uniform and isotropic radiation. The frequency spectrum of the CMB radiation was measured to high accuracy in the early ninetees and it was shown that it is that of a perfect black-body spectrum at a temperature of 2.72K. After recombination, the Universe remains neutral for a few hundreds of millions of years (the dark ages), during which structures form via gravitational accretion. On small scales, some matter clumps collapse and get hot enough to activate the fusion of hydrogen into helium, giving birth to the first stars. The next billions of years are then characterised by the formation and evolution of galaxies on small scales; and by the apparition of a large-scale cosmic web where voids are separated by walls and filaments.

Cosmic strings

The standard model of cosmology successfully explains the cosmological redshift, the origin of the cosmic background radiation, and the synthesis of light elements. However, there are questions, which mainly concern the initial conditions, to which the hot Big Bang model is unable to provide an answer. We can mention for example, the flatness problem. The density of our Universe is Ω tot ∼ 1 for a critical energy ρ c . However the critical density is a point of unstable equilibrium, and deviations from its value grow in time. If Ω tot in the early Universe was slightly different from 1 we would not observe our Universe. Numerically it means that Ω tot at the Planck time had to be fine-tuned to within an incredible accuracy. Another example is given by the horizon problem. This problem stems from the large-scale homogeneity and istropy of the Universe, and in particular, for the CMB. The CMB is uniform at T ∼ 10 -5 K, in standard cosmology a mecanism to establish this uniformity would need to transmit energy and information much faster than the speed of light. A last notable example includes the structure formation. The presence of galaxies and cluster of galaxies is interpreted as the result of gravitational instabilities (Jeans instabilities) from small density fluctuations in the early Universe. To address the question of the origin of the initial density inhomogeneities, one needs to add more ingredients to the cosmological model. To deal with these issues, inflation was proposed [START_REF] Guth | The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems[END_REF][START_REF] Linde | A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems[END_REF]. Inflation essentially consists of a phase of accelerated expansion, corresponding to repulsive gravity characterized by a negative pressure. Although several of inflationary models have been proposed and tested against observations, the most popular ones involve a single scalar field (the inflaton), whose slight inhomogeneities, due to quantum fluctuations, have been the seeds of the structures that we observe today. For almost two decades, cosmic strings have been also considered for describing the formation of large-scale structure in the Universe [START_REF] Sakellariadou | Cosmic Strings and Cosmic Superstrings[END_REF]. However the characteristics of the CMB anisotropies and the statistical properties of the CMB have made it possible to discriminate among models. Today, cosmic strings are ruled out as the unique source of the structure formation by the CMB measurements. However, many particle physics models admit solutions which correspond to cosmic strings and cosmic strings can be included as a sub-dominant partner of inflation. Thus, the effort to detect cosmic strings is still ongoing.

In this section we will review the properties of cosmic strings. We first discuss the formation of cosmic strings using simple models, then we introduce the framework to describe kinematics of cosmic strings. Next, we present the Kibble mechanism of cosmic string formation. We also introduce two basic structures which arise on cosmic strings due to their dynamic behaviour: cusps and kinks.

Spontaneous symmetry breaking

The Universe has steadily cooled down since the Planck time, leading to a series of phase transitions. Topological defects can occur when the field symmetries are broken. This means that the ground state of the theory does not exhibit the same symmetry as the full theory. The symmetry is then said to be spontaneously broken.

As a consequence, energy can get trapped in specific regions of space and it is the topological structure of this trapped energy which determines the nature of the defect. A line-like structure is called a cosmic string. In this section we present two models to illustrate the formation of cosmic strings. The general material below follows the presentation of [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Bohé | Production d'ondes gravitationnelles par les cordes cosmique avec jonctions[END_REF], with input from other sources [START_REF] Ringeval | Étude des courants fermioniques sur les objets étendus[END_REF][START_REF] Vachaspati | Cosmic Strings[END_REF][START_REF] Sakellariadou | Cosmic Strings and Cosmic Superstrings[END_REF][START_REF] Hindmarsh | Cosmic strings[END_REF].

Goldstone model

The simplest model that can be studied to understand the concept of spontaneous symmetry breaking is the Goldstone model defined by the classical Lagrangian density:

L = ∂ µ φ * ∂ µ φ -V (φ), (3.30) 
where φ is a complex scalar field sometimes called a Higgs field and V (φ) a potential given by:

V (φ) = 1 4 λ(φ * φ -η 2 ) 2 . (3.31)
The self-interaction term is denoted by λ, it states how strongly two scalar particles interact and η is the mass term. These two terms are real positive constants. This potential is the Mexican-hat potential illustrated in where α is a real constant. The term "global" refers to the fact that the symmetry transformation involves rotating every point in the field by the same constant.

We want to show that the fundamental state of the theory, i.e. the minimum energy configuration, does not exhibit the full symmetry of the Hamiltonian defined by:

H = d 3 xH (3.33)
where the Hamiltonian density H is given by the Legendre transformation of the Goldstone Lagrangian:

H = π∂ 0 φ + π * ∂ 0 φ * -L (3.34) with π ≡ δL δ(∂ 0 φ) = ∂ 0 φ * . (3.35)
By injecting the expression of π in the Halmitonian density we get:

H = |∂ 0 φ| 2 + 3 i=1 |∂ i φ 2 | + V (φ), (3.36) 
we deduce that the ground state of the theory or the vacuum state corresponds to a constant scalar field which minimizes the potential V (φ). The vacuum state of the theory is characterised by a nonzero expectation value given by:

φ = ηe iθ , ( 3.37) 
where θ can take arbitrary values: there is thus an infinity of solutions. Any phase of the field describes a vacuum state. The vacuum state is not invariant under the phase transformation given by Eq. 3.32, while the theory is invariant under this transformation. When the system goes to one of those vacuum solutions, the symmetry is said to be spontaneously broken.

We want now to describe the properties of the vacuum state. To do this, we consider small fluctuations around the ground state. Since each vacuum state is equivalent we can choose a particular value, for example θ = 0. The scalar field can be rewritten as:

φ = η + (φ 1 + iφ 2 ) √ 2 (3.38)
where φ 1 and φ 2 are real scalar field such that φ 1 η and φ 2 η. By substituing this expression into the Goldstone Lagrangian (Eq. 3.30) we obtain:

L = 1 2 (∂ µ φ * 1 ∂ µ φ 1 ) + 1 2 (∂ µ φ * 2 ∂ µ φ 2 ) - 1 2 λη 2 φ 2 1 + L int . (3.39)
The last term, L int , is an interaction term which includes cubic and higher order terms in the real scalar fields φ 1 and φ 2 . The scalar field φ 1 corresponds to a scalar massive particle with mass √ λη. The scalar field φ 2 corresponds to a scalar massless particle called the Goldstone boson.

The abelian-Higgs model

For the moment we have only considered the case of a global symmetry. We are now interested by a local transformation which allows the scalar field in each point to vary by a different angle. A theory that is invariant under local transformation, is referred to as a Gauge theory. This symmetry is present in the abelian-Higgs model described by its Lagrangian density:

L = (D µ φ) * (D µ φ) - 1 4 F µν F µν -V (φ). (3. 40 
)
where φ is complex scalar field and V (φ) is the potential expressed by Eq. 3.31. The covariant derivative D µ is given by:

D µ = ∂ µ -ieA µ , ( 3.41) 
with A µ a gauge vector field and e the gauge coupling. The term F µν represents the electromagnetic tensor:

F µν = ∂ µ A ν -∂ ν A µ . (3.42)
The abelian-Higgs Lagragian density is invariant under the U(1) group of local transformations:

φ(x) → e iα(x) φ(x) A µ (x) → A µ (x) + 1 2 ∂ µ α(x). (3.43) 
where α(x) is a real single-valued function which depends now on the position in space-time x. By analogy with what was done previously, the Hamiltonian density can be calculated using Eq. 3.34 and we show that the vacuum state corresponds to:

A µ (x) = 0 φ(x) = ηe iθ . (3.44)
Once again the vacuum state is no longer invariant under the U(1) gauge transformations and the field acquires a non-zero vacuum expectation value η. Consequently, the symmetry is spontaneously broken by choosing a value of the phase θ.

To study the properties of the vacuum state for the abelian-Higgs model we choose to represent the field φ by:

φ(x) = η + ρ(x) √ 2 exp iψ(x) η . ( 3.45) 
Since all vacuum states are equivalent, we choose to work once again in the particular case where the scalar field φ(x) is real:

φ(x) = η + ρ(x) √ 2 . (3.46)
We consider small fluctuations around φ(x) = η such that ρ(x) η. Then in these conditions, the Lagrangian density given by Eq. 3.40 is written:

L = 1 2 (∂ µ ρ) 2 - 1 2 λη 2 ρ 2 - 1 4 F µν F µν + 1 2 ( √ 2eη) 2 A µ A µ + L int . (3.47)
The scalar field ρ corresponds to a scalar massive particle with mass m h = √ λη. The vector field (gauge boson) A µ has gained a mass m b = eη after the symmetry breaking that is proportional to η, the vacuum expectation value of the Higgs scalar field. These two models containing the symmetry of the U(1) group are sufficient to illustrate the general mechanism of cosmic string formation. However, it is possible to construct models incorporating the spontaneous breaking of much more complex symmetry groups [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Allys | Au-delà des modèles standards en cosmologie[END_REF].

The Nielsen-Olesen string formation

In this section we consider the case of linear topological defects, generally called cosmic strings. We take the example of the formation of such defects during the spontaneous symmetry breaking of the abelian-Higgs model.

The vacuum manifold M is formed by the fundamental states accessible to the Higgs field φ. In the abelian-Higgs model, the vacuum expectation values of the theory lie on a circle of fixed radius |φ| = η. The vacuum variety can be written as:

M = φ | φ = ηe iθ , θ ∈ [0, 2π] , (3.48) 
which is isomorphe to the circle. Going around an oriented closed path Γ that wraps around this circle, the phase θ varies by a factor of 2π for each round. For n rounds the phase varies by a factor of 2nπ and so n represents the winding number. This quantity is more rigorously defined as:

n(Γ) = 1 2π Γ ∇θ • d l. (3.49)
The phase being a continuous function, n(Γ) characterizes the algebric number of rotations that θ does on the oriented curve Γ before returning to its initial value. It is therefore an integer: n(Γ) ∈ Z. If we assume n = 0, then by continuity the Higgs field φ must necessarily pass through zero at least once inside the closed path Γ. In this point, the field is at the local maximum of the potential. Figure 3.4 illustrates this formation mechanism. By translation in the transverse direction to the plan that contains Γ, the field can be cancelled many times and thus forming a linear structure where its value is φ = 0 along this direction. This linear structure is a one dimensional topological defect called cosmic string. A string must be either a closed loop or an infinitely long string, since otherwise one could deform the closed path Γ and avoid to cross a string.

We consider the abelian-Higgs Lagrangian given in Eq. 3.40. To solve the equations of motion we look for a static solution with cylindrical symmetry, which corresponds to strings along the z-axis. The position of the center of the string, i.e. all the points where the Higgs field cancels out, is then identified by r = 0. The solution is invariant by translation on the z-axis. In that case the Higgs scalar field and the gauge field reduce to the form:

φ(r, θ) = ϕ(r)e inθ , A θ = A θ (r), A 0 = A r = A z = 0, (3.50) 
where we used the gauge freedom to choose A 0 = 0. This solution is known as the Nielsen-Olesen strings (1973) [START_REF] Bech Nielsen | Vortex Line Models for Dual Strings[END_REF]. For convenience we work with the quantities defined as [START_REF] Ringeval | Étude des courants fermioniques sur les objets étendus[END_REF]:

X ≡ ϕ η , Q ≡ n + eA θ , ρ ≡ m h r, ( 3.51) 
with m h = √ λη the Higgs boson mass determined in Sec. 3.2.1. The equations of motion are then expressed in the form of a differential equation system [START_REF] Ringeval | Étude des courants fermioniques sur les objets étendus[END_REF]:

d 2 X dρ 2 + 1 ρ dX dρ = XQ 2 ρ 2 + 1 2 X(X 2 -1) d 2 Q dρ 2 - 1 ρ dQ dρ = m 2 b m 2 h X 2 Q, ( 3.52) 
with m b = eη the gauge boson mass. Although no analytical solution to these equations is known, it is possible to determine them numerically for different values of the winding number n [START_REF] Hindmarsh | Cosmic strings[END_REF][START_REF] Peter | Superconducting cosmic string: Equation of state for space -like and time -like current in the neutral limit[END_REF]. The solution associated with a cosmic string corresponds to the boundary conditions:

   lim r→0 X(r) = 0 lim r→0 Q(r) = n and    lim r→∞ X(r) = 1 lim r→∞ Q(r) = 0. (3.53)
The Higgs field vanishes in the center of the string identified by r = 0, whereas far from the string the field returns to its average value in the vacuum |ϕ| = η. The solution far from the string minimizes the energy, and this is verified if the spatial part of the covariant derivative D µ φ ∝ Q(r)φ is cancelled [START_REF] Allys | Au-delà des modèles standards en cosmologie[END_REF].

The physical width of the string δ is determined by the distance scale over which the fields (φ, A θ ) tend to their limit far from the string (r → ∞). The study of the asymptotic behavior of the Nielsen-Olesen string solutions show that two regimes exist depending on the value of the factor [START_REF] Perivolaropoulos | Asymptotics of Nielsen-Olesen vortices[END_REF]:

β ≡ λ e 2 = m 2 b m 2 h , ( 3.54) 
which measures the mass ratio of the Higgs field and the gauge field. In this case the typical diameter of the string is given by:

δ ∼ 1 m b for β > 4 δ ∼ 1 m h for β ≤ 4. (3.55)
Therefore the typical diameter of the string is roughly given by the largest Compton wavelength of the Higgs and gauge bosons.

One of the most important parameters for describing a cosmic string is the energy per unit length µ. The numerical resolution of the equations of motion shows that [START_REF] Bogomolny | Stability of Strings in Gauge Abelian Theory[END_REF]:

µ = 2πf (β) × η 2 , ( 3.56) 
for the lowest energy string configuration where the winding number is unity (n = ±1).

The function f varies rather slowly growing as log(β) for β > 1 [START_REF] Jacobs | Interaction energy of superconducting vortices[END_REF][START_REF] Hill | Bosonic Superconducting Cosmic Strings[END_REF][START_REF] Hindmarsh | Cosmic strings[END_REF] and is of the order of the unit for f (1) = 1 [START_REF] Bogomolny | Stability of Strings in Gauge Abelian Theory[END_REF]. In the following we will keep in mind the relation between the energy per unit length and the vacuum expectation value of the Higgs field:

µ ∼ η 2 . (3.57)
This result can also be obtained analytically by making some approximations [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Bohé | Production d'ondes gravitationnelles par les cordes cosmique avec jonctions[END_REF]. We will see in the next section that this energy is determined by the energy scale of the symmetry breaking.

We end this section by presenting an argument to justify the stability of such strings and thus to clarify their potential existence. The local string contains a tube of magnetic flux through a horizontal surface to the z-direction. We may write the general cylindrically symmetric solution for the gauge field as:

A θ = - n e g(r) r with    lim r→0 g(r) = 0 so that A θ does not diverge in 0 lim r→∞ g(r) = 1. (3.58)
The magnetic flux through a horizontal surface that rests on a closed contour of infinite radius centered on the string is given by the Kelvin-Stokes theorem:

F ≡ B • d S = A • d l. (3.59)
We deduce that:

F = A • d l = 2π 0 - n e 1 r rdθ = n 2π e with n ∈ Z, (3.60) 
the magnetic field is then quantized. This is a consequence of the quantization of the winding number n. Because the phase of φ must change by an integer multiple of 2π, the flux is quantized. We have seen that the description of cosmic strings in the abelian-Higgs model revealed a single parameter β on which the structure of the strings depends. We distinguish 3 cases depending on the winding number value:

       β < 1 and n ∈ Z stable -type I β > 1 and |n| > 1 unstable β > 1 and |n| = 1 stable -type II. (3.61) 
For the type I regime, a string with a winding number n is more stable than n strings with a winding number 1, and the stability of the strings increases with their number of windings [START_REF] Bogomolny | Stability of Strings in Gauge Abelian Theory[END_REF][START_REF] Jacobs | Interaction energy of superconducting vortices[END_REF]. For the second case, the magnetic flux is F = 2πn/e with n > 1 and this configuration is unstable because it can be divided into n strings carrying the elementary unit of flux 2π/e [START_REF] Hindmarsh | Cosmic strings[END_REF]. Finally, in general when discussing the cosmological properties of cosmic strings, the strings being considered are those of the type II regime. In this regime, local strings are stable [START_REF] Shellard | Cosmic String Interactions[END_REF]. The result of the interaction of such strings will be discussed later in this chapter.

Phase transition

We are now focusing on the formation of cosmic strings during the evolution of the Universe. As the Universe cools down, it passes through a sucession of at least three phase transitions as we have seen in Sec. 3.1.4. All these phase transitions occurred at a given temperature T c . The main idea is that at very high temperature, symmetry breaking is not present and only occurs during these phase transitions. To connect the whole description of spontaneous symmetry breaking with cosmology, we need then to include the temperature in the abelian-Higgs Lagrangian. The main effect of adding the temperature is to change the expression of the potential [START_REF] Weinberg | Gauge and global symmetries at high temperature[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF].

In particular we add thermal corrections to the Mexican-hat potential V (φ). The effective potential can be writen as:

V ef f (φ, T ) = V (φ) + ∆V (φ, T ). (3.62)
The evolution of the effective potential as a function of the temperature T will govern the phase transition.

We consider the abelian-Higgs model with the following expression for the effective potential at high temperature [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]:

V ef f (φ, T ) = V (φ) + λ + 3e 2 12 T 2 |φ| 2 - 2π 2 45 T 4 . (3.63)
For clarity's sake, we set e = 0 which is equivalent to considering the Goldstone model [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. This potential can then be written as:

V ef f (φ, T ) = m 2 (T )|φ| 2 + λ 4 |φ| 4 with m 2 (T ) = λ 12 (T 2 -6η 2 ), (3.64) 
where m(T ) is the effective mass of the Higgs field in the symetric state |φ| = 0. The effective mass-squared vanishes at the critical temperature:

T c ≡ √ 6η. (3.65)
In the high temperature regime T > T c , the effective square mass is positive, the minimum of V ef f is at φ = 0: the theory is symmetric. Figure 3.5 illustrates the shape of V ef f . When the temperature drops below the critical temperature T < T c , Figure 3.5: The temperature-dependant effective potential V ef f (φ, T ) for a second order phase transition near the critical temperature T c for φ ∈ R.

the effective square mass becomes negative and the symmetric state becomes unstable, i.e. maximazing V ef f . In addition, the potential develops a new minimum given by:

|φ| = (T 2 c -T 2 ) 6 , ( 3.66) 
and so the Higgs field acquires a non-zero expectation value: the symmetry is broken. There were a phase transition. This transition is called second-order because the value of φ varies continuously with the temperature T . The general behaviour is the same if we consider the abelian-Higgs effective potential. The relationship between the phase transition temperature T c and the symmetry breaking energy scale η obtained with the Goldstone model is typical of second-order phase transitions:

η ∼ T c . (3.67)
Thus we can estimate the string energy per unit length µ using Eq. 3.57:

µ ∼ T 2 c . (3.68)
For GUT scale strings with η ∼ 10 15 Gev, this corresponds to a string energy per unit length of µ ∼ 10 22 kg/m located in a diameter smaller than that of the hydrogen atom5 

To conclude this section, it is important to mention some of the implications of symmetry breaking at a cosmological phase transition. It was first studied by Kibble in 1976 [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Kibble | Some Implications of a Cosmological Phase Transition[END_REF]. The non-zero expectation value of the Higgs field in Eq. 3.66 has a fixed norm while the choice of the phase θ remains free. This choice will depend on random fluctuation in θ which can be expected to differ in different region of space [START_REF] Kirzhnits | Macroscopic consequences of the Weinberg model[END_REF]. This statement is based on the argument that distant regions in space may not communicate with each other. This is a consequence of the fact that correlations cannot be established faster than the speed of light. The typical scale beyond which fluctuations in θ are uncorrelated is set by the correlation length ξ(t) and an upper limit is given by the causal horizon d H :

ξ(t) < d H . (3.69)
Above the correlation length ξ(t), the vacuum expectation values of the field φ(t) at two points of the Universe are uncorrelated. The correlation length ξ(t) is well described by the Zurek-Kibble mecanism that takes into account the duration of the phase transition named quench timescale and the time of relaxation, which is the time it takes correlations to establish on the length scale ξ(t) [START_REF] Zurek | Cosmic strings in laboratory superfluids and the topological remnants of other phase transitions[END_REF]. Near the transition it was shown that ξ(t) diverges, in the Zurrek-Kibble mechanism it is counterbalanced by the fact that the relaxation timescale also diverges.

The Nambu-Goto action

The Nielson-Olesen strings considered until now are straight and static. We want now to study a more realistic case of a moving and curved string. The equations of motion presented in Eq. 3.52 are complicated to solve analytically, and so to give a description of these objects we have to simplify the study. We consider the string as a one-dimensional object, i.e. an infinitely thin string. This means that the radius of curvature of the string R is much greater than the string diameter δ. When t varies, the movement of the string sweeps out a two-dimensional surface often called the worldsheet. On a curved worldsheet each point of the string is parameterized by:

x µ (ζ µ ) = x µ (ζ 0 , ζ 1 ), (3.70) 
where the worldsheet coordinate ζ 0 is chosen to be timelike, while the other, ζ 1 is spacelike. From the action of the abelian-Higgs model in a general spacetime we want to construct an appropriate local string action called the Nambu Goto action.

The action for the abelian-Higgs model in a general spacetime described by a metric g µν is:

S = d 4 y √ -g × L H (3.71)
where we define g to be the determinant of the metric and L H the abelian-Higgs Lagrangian density given by Eq. 3.40. In this way, the spacetime interval between two nearby points on the worldsheet is:

ds 2 ≡ g µν dx µ dx ν = g µν x µ ,a x ν ,b dζ a dζ b with x µ ,a ≡ ∂x µ ∂ζ a , ( 3.72) 
where at each point of the worldsheet, there are two tangent vectors x µ ,a with a = 0 or 1. Hence the two-dimensional induced metric on the worldsheet is given by:

γ ab = g µν x µ ,a x ν ,b . (3.73)
Since an infinitely thin string is invariant with respect to a Lorentz boost, one has to consider only transverse motions of the string. We can construct an approximate solution around each point x µ (ζ µ ) using the Nielsen-Olesen ansatz (Eq. 3.50). From our first assumption, within the limit R δ we can show that an integration over the transverse coordinates of the abelian-Higgs Lagrangian reduced to the energy per unit length µ [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Another way to find this result is to use a more qualitative argument. As there is no long-range interaction between different string segments, it is possible to derive the equations of motion of the string from a local action S. Taking the general form of a local action:

S = L d 2 ζ √ -γ. (3.74)
we have to find a Lagrangian which is invariant under general spacetime transformations δx µ and under arbitrary reparametrizations of the worldsheet δξ a . Moreover, a dimensional analysis reveals that this Lagrangian should have the dimension of a square mass. Thus, there are only two quantities left that meet these conditions: the energy per unit length µ and geometric quantities [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Finally, the local action which describes the motion of a curved and dynamic string is the action of Nambu Goto [START_REF] Nambu | Strings, Monopoles and Gauge Fields[END_REF][START_REF] Gotō | Relativistic Quantum Mechanics of One-Dimensional Mechanical Continuum and Subsidiary Condition of Dual Resonance Model[END_REF]:

S N G = -µ d 2 ζ √ -γ. (3.75)
This quantity is proportional to the area of the worldsheet which the string traces as it travels through spacetime.

Lastly, we have seen that the general Lagrangian L in Eq. 3.74 may also depend on geometric quantities, such as the the tensor curvature of the string denoted by κ ab ∝ 1 R 2 6 . In this way we can write at the first order:

L = -µ + ακ. (3.76)
Since the string diameter is δ ∼ 1 m h (Eq. 3.55) with m h = 1 √ λη and the energy per unit length is µ ∼ η 2 , the string thickness is approximated by δ 1 √ µ . Recalling our first assumption that can be rewritten as R δ, we find that the curvature term κ can be neglected in front of the energy per unit length κ µ. Thus the general local action in Eq. 3.74 is well reduced to the action of Nambu-Goto in the case of an infinitely thin string. If the string curvature is small but not negligible, one may consider an expansion in powers of the curvature to correct the Nambu-Goto action [START_REF] Sakellariadou | Cosmic strings[END_REF].

String dynamic

We are interested here in studying the dynamics of strings. In the previous part, a process of dimensional reduction led to Nambu Goto's action S N G . In a general spacetime described by a metric g µν , the equations of motion can be derived by varying this action S N G with respect to the x µ (ζ a ):

1 √ -γ ∂ a √ -γγ ab x µ ,b + Γ µ νσ γ ab x ν ,a x σ ,b = 0, (3.77) 
where we recall that γ is the determinant of the worldsheet metric and Γ µ νσ represents the Christoffel symbols corresponding to the metric g µν expressed in Eq. 1.10. For the purpose of this thesis, it is sufficient to discuss the case of a flat space. On Minkowski spacetime in the standard coordinates, the Christoffel symbols are all zero and the equations of motion reduced to:

∂ a √ -γγ ab x µ ,b = 0. (3.78)
We saw two transformations that leave the Nambu-Goto action invariant: general spacetime coordinate transformation and arbitrary reparametrizations of the worldsheet. It is useful to choose a specific gauge where the equations of motion get simplified. One way to fix the gauge in our case is to fix the two-dimensional metric γ. A common choice of gauge is to require that the 2 × 2 metric matrix γ is diagonal and traceless: γ 01 = 0 and γ 00 + γ 11 = 0.

(3.79) This is the conformal gauge. This transformation preserves the form of an object but not its size, it is why we call it "conformal", indeed this metric is derived from the Minkowski's metric by multiplying by a simple factor:

γ ab = √ -γη ab . (3.80)
Given the expression of the metric in Eq. 3.73, these conditions are rewritten as:

ẋµ • x µ = 0 ( ẋµ ) 2 + (x µ ) 2 = 0, (3.81) 
where the dots and primes stand for derivatives with respect to ζ 0 (time) and ζ 1 (space) respectively. The point "•" represents here the scalar product defined by the flat spacetime metric η µν . The equations of motion in Eq. 3.78 take the form of a 2 dimensional wave equation: ẍµ -x µ = 0.

(3.82)

The gauge is not yet completely fixed. We can use the freedom given by the invariance under reparametrizations of the worldsheet to choose:

ζ 0 = x 0 ≡ t, (3.83) 
which verifies the wave equation. In such a gauge, the string trajectory is described by a 3-vector with x(ζ, t) where ζ ≡ ζ 1 , the spacelike component. Thus the conditions of conformal gauge in Eq. 3.81 are written in the form:

ẋ • x = 0 ẋ2 + x 2 = 1. (3.84)
The first condition tells us that the string moves perpendiculary to itself since the velocity of the string ẋ is perpendicular to the string. Thus, the gauge in Eq. 3.83 is called transverse gauge. By inverting the second condition it comes dζ = (1 -ẋ2 ) -1/2 dl with dl ≡ |dx|. The energy of the string is thus:

E ≡ µ (1 -ẋ2 ) -1/2 |dx| = µ dζ. (3.85)
Thus, this last condition is a choice of normalization which fixes the curvilinear abcissa ζ as proportional to the energy of the string. Finally, with these conditions the wave equation Eq 3.82 is: ẍx = 0.

(3.86)

The first term ẍ represents the acceleration of a string element. To understand the meaning of the second term we can use an example. We consider an arc defined by a function f . For a straight arc, the tangent vector at each point is the same and f = 0, while for an arc with a non-zero curvature we notice that the tangent vector at all points varies. Intuitively, we see that the more curved the arc is, the faster the derivative varies. We can thus link the curvature to the variation of the derivative f , and therefore to the second derivative f . We deduce then that the term x is directly linked to the local curvature radius R. We can rewrite it as d 2 x/dζ 2 ∝ R -1 . Therefore, the wave equation tell us that the acceleration of a string element in its local rest frame ( ẋ = 0 transverse velocity) is inversely proportional to the local curvature radius R. The direction of ẍ is such that the curved strings tends to straighten. The string begins to oscillate at each point around the equilibrium position where the string is straight. The general solution of the wave equation is a superposition of two waves traveling at the speed of light in opposite directions:

x(t, ζ) = 1 2 [a(ζ -t) + b(ζ + t)] . (3.87)
where a(ζ -t) and b(ζ + t) are two continuous arbitrary functions. However, the conformal jauge conditions in Eq. 3.84 require that:

a 2 = b 2 = 1. (3.88)
We will see later that when strings interact with each other they form loops. Thus it is interesting to describe the dynamics of such a closed loop. We can use the results obtained just above for an infinite string because the Nambu-Goto action from which we derived the equations of motion is a local action. In that case ζ varies in a closed interval:

0 ≤ ζ < L, (3.89)
where L is the invariant length of the loop defined as:

L ≡ E µ , ( 3.90) 
with E the energy of the string and µ the energy per unit length. For the loop to be close, the propagation of a perturbation must be periodic

x(ζ + L, t) = x(ζ, t) , ∀t. (3.91) 
We want to show that a and b are two periodic functions. By injecting this condition into the general solution, given by Eq. 3.87 we get:

b(ζ + t + L) -b(ζ + t) = -a(ζ -t + L) + a(ζ -t) ≡ ∆, (3.92) 
where the vector ∆ must be a constant and so it should not depend on the value of ζ. The string momentum is defined by [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]:

P = µ dζ ẋ(ζ, t), ( 3.93) 
that can be written using Eq. 3.87 as:

P = µ 2 L 0 dζ(b -a ) = µ 2 × 2∆, (3.94) 
where primes stand for derivatives with respect to ζ. In the centre-of-mass frame the momentum is zero thus ∆ = 0. Therefore a and b are periodic functions:

a(ζ + L) = a(ζ) b(ζ + L) = b(ζ). (3.95)
Using the spatial periodicity of the perturbation we show that the closed loop oscillates in time with a period of L/2:

x(ζ + L 2 , t + L 2 ) = 1 2 a(ζ + L 2 -t - L 2 ) + b(ζ + L 2 + t + L 2 ) = 1 2 [a(ζ -t) + b(ζ + L + t)] = 1 2 [a(ζ -t) + b(ζ + t)] = x(ζ, t).
(3.96)

The fact that the timescale of the oscillations is comparable to the loop length L indicates then that the motion of the loop is relativistic [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Indeed, the quadratic velocity over a loop period is given by

v 2 = T 0 dt T L 0 dζ L ẋ2 , (3.97) 
and we can show using the previous results that:

v 2 = 1 2 . (3.98)
Finally, the internal structure of the string is meaningless when we deal with scales much larger than the string width. We can show [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] for a straight string lying along the z-axis, that the effective energy-momentum tensor is:

T µ ν (x, y) = µδ(x)δ(y) × diag(1, 0, 0 , 1). (3.99) 
The tension for a Nambu-Goto string is huge, equal to its energy per unity length µ and forces any cosmic string which is not completely straigth to move relativistically. It is very usual in literature to refer to the dimensionless quantity Gµ/c 2 as the string tension.

Intercommutation

To understand the mechanism of loop formation, it is necessary to describe the interaction between strings. We consider strings formed in Abelian models. When two strings intersect there are two possible issues: either the strings simply pass through each other or they intercommute i.e. they exchange partner [START_REF] Bohé | Production d'ondes gravitationnelles par les cordes cosmique avec jonctions[END_REF]. The probability of intercommutation p is an important parameter to describe the cosmological evolution of a string network. Numerical simulations performed to solve the field equations given in Eq. 3.52 indicated that a string invariably "exchange partner" when it interacts with itself or with another string. The probability of intercommutation for Nielsen-Olesen strings found by the simulations is [START_REF] Matzner | PROBABILITY OF INTERCONNEC-TION OF COSMIC STRINGS[END_REF] Higgs model for type I strings briefly described in Sec. 3.2.2. In this regime the strings are always stable, regardless of the winding number n and the stability increases with n. For n = 1 and under certain conditions it is shown that two strings tend to form junctions instead of merging to form a string with n = 2 [START_REF] Bettencourt | Nonintercommuting configurations in the collisions of type I U(1) cosmic strings[END_REF]. Junctions can also occur in more complicated models in which non-abelian symmetries are broken [START_REF] Mark | Quantum field theory of nonAbelian strings and vortices[END_REF][START_REF] Mcgraw | Evolution of a nonAbelian cosmic string network[END_REF].

Development in String Theory suggest that fundamental strings may be stretched to macroscopic sizes and play the cosmological role of cosmic superstrings. There are important differences between cosmic superstrings and topological strings. When superstrings meet they reconnect with probability p that can be less than unity. This is partly due to the fact that fundamental strings of String Theory interact probabilistically. Furthermore, these models have extra spatial dimensions so that even though two strings may meet in 3 dimensions, they miss each other in the extra dimensions. These two effects result in values of p in the range 10 -3 p 1 [START_REF] Mark | Collisions of cosmic F and D-strings[END_REF].

Cusps and Kinks

As we will see later, the long strings lose energy into loop production, and the loops decay by emission of gravitational waves. Two objects propagating on cosmic string loops are expected to emit bursts of gravitational waves: cusps and kinks. Thus, for the rest of this thesis it is relevant to introduce the formation of such objects.

Cusps

A cusp is a point on the worldsheet where the string moves at the speed of light: From the condition in Eq. 3.88 it follows that the vector functions a (ζ a ) and -b (ζ b ) describe curves on a unit sphere8 as ζ runs from 0 to 1. In addition, the periodicity of these functions requires that:

L 0 a dζ = L 0 b dζ = 0, (3.104) 
but are otherwise arbitrary, thus these curves may intersect since nothing prevent them to lie in one hemisphere of the unit sphere. These points of intersection wich reach the velocity of light are called cusps. Figure 3.8 illustrates the cusp formation.

We are now interested in the shape of the string in the vicinity of a cusp. It is convenient to choose the parametrization of the string such that the cusp occurs at 

a(ζ) a 0 ζ + 1 2 a 0 ζ 2 + 1 6 a 0 ζ 3 b(ζ) b 0 ζ + 1 2 b 0 ζ 2 + 1 6 b 0 ζ 3 (3.105)
where the subscript 0 denotes quantities at the cusp. From Eq. 3.103 at a cusp a 0 = -b 0 and so the shape of the string at t=0 is given by:

x(ζ, t = 0) = 1 2 [a(ζ, t = 0) + b(ζ, t = 0)] 1 2 a 0 ζ + b 0 ζ + 1 2 a 0 ζ 2 + 1 2 b 0 ζ 2 + 1 6 a 0 ζ 3 + 1 6 b 0 ζ 3 1 4 (a 0 + b 0 )ζ 2 + 1 12 (a 0 + b 0 )ζ 3 , ( 3.106) 
which can be rewritten as:

x(ζ, t = 0) x 0 ζ 2 2 + x 0 ζ 3 6 , ( 3.107) 
so if x 0 = 0 the string momentarily develops a cusp and x 0 ≡ a 0 + b 0 gives the direction of the cusp. Moreover from Eq. 3.88 it follows:

(i) |a 0 | = |b 0 | = 1 (ii) a 0 • a 0 = b 0 • b 0 = 0, (3.108) 
where (i) implies that the cusp velocity is:

ẋ(ζ = 0, t = 0) ≡ ẋ0 = 1 2 (a 0 + b 0 ) = a 0 = -b 0 . (3.109)
Therefore, it follows from (ii) that the the direction of the cusp x 0 ≡ a 0 + b 0 is orthogonal to that of the cusp velocity ẋ0 . The shape of the string near a cusp is shown in Fig 3 .9.

Figure 3.9: Generic shape of a string segment when a cusp forms. The cusp moves at the speed of light in the direction ẋ0 ,the direction of the string near the cusp is given by x 0 and the spreading of the strings is in the direction x 0

Kinks

Another type of discontinuity appears when strings intercommute. The string newlyconnected points in different directions and moves with different velocities. The conservation of momentum imposes that at the moment of the intercommutation t 0 and around the point of intersection, the velocity ẋ(ζ, t 0 ) and the shape x (ζ, t 0 ) of the new string must change very quickly. For Nambu-Goto strings these functions are considered as discontinuous. These discontinuities, which ressembles a "corner" on the string loop are the kinks. Since the motion of the string at each point is described by the superposition of two perturbations that propagate in opposite direction a (ζ -t) and b (ζ + t), we deduce that at least one of these functions is discontinuous at a kink. If both, a and b are discontinuous then we can interpret this as two kinks running along the string at the speed of light in opposite directions [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Therefore, because kinks are formed during strings intersection, they are created in pairs and each "kinky" loop is expected to have an equal number of left-and right-moving kinks at formation.

Simulations show that loops just formed from a long string network have many kinks [START_REF] Jose | Cosmic string loop shapes[END_REF]. Kinks may affect the form of the loop by giving it a wiggly shape. On the other hand, as we will see later, kinks are expected to emit bursts of gravitational waves and a significant fraction of the loop length is lost in this process. This may have the effect to smooth the loop, i.e reducing the number of kinks on the loop [START_REF] Wachter | Gravitational smoothing of kinks on cosmic string loops[END_REF]. Moreover, we have seen that the perturbation functions can be considered as paths on the Kibble-Turok sphere of unit vectors. In general, these paths intersect and the point of intersection is called a cusp. However, loops which have kinks are more likely to avoid cusps, since there are gaps (discontinuities) in the two curves on the unit sphere, see Fig 3 .8. Therefore, kinks render the appearance of cusps less likely [108].

Gravitational waves emitted by cosmic strings

In the previous part we saw that the interaction between cosmic strings leads to the formation of loops. The mechanism involved is called intercommutation. Two features can then be produced on the oscillating loops. Cusps where the string instantaneously reaches the speed of light and kinks considered as discontinuities on the tangent vector of a string. In this section we present the results obtained by [START_REF] Damour | Gravitational wave bursts from cusps and kinks on cosmic strings[END_REF] [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF][START_REF] Damour | Gravitational wave bursts from cusps and kinks on cosmic strings[END_REF] concerning the emission of gravitational wave bursts by cusps and kinks. The calculation of the waveform is quite technical, so we refer the reader back to the original paper which will find a clear demonstration. However, all the knowledge needed to calculate the waveform has been presented earlier in this chapter and in Chap. 1. First, we present the results obtained for an asymptocally flat space. Then we will see how these results are modified to take into account the effect of the propagation of the gravitational waves in a curved FLRW Universe.

Waveform from cusps and kinks

Before introducing the results of Damour and Vilenkin [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF][START_REF] Damour | Gravitational wave bursts from cusps and kinks on cosmic strings[END_REF], we clarify the underlying assumptions that are considered in the calculations. We focus on the gravitational-wave bursts emitted by a cusp or a kink as seen by an observer located at a distance r from the source in the "local wave zone", i.e. at a distance large compared to the gravitational wavelength but small compared to the cosmological scale. This condition is then written:

r λ GW and r 1 H 0 , ( 3.110) 
with λ GW the gravitational-wave wavelength and 1/H 0 the Hubble radius. For this purpose, we work in a near-flat-space which is characterized by its local metric g µν = η µν + h µν , with η µν the Minkowski metric and h µν 1 the metric perturbation generated by the source, see Sec. 1.2. In this case, we have shown that the loop dynamic is governed by the Nambu-Goto action. The closed loop oscillates in time with a fundamental period T = /2, where is the invariant loop length. The frequency of the harmonics of the fundamental mode is denoted by:

w m ≡ m 2π T = m 4π with m ∈ Z * (3.111)
and we consider only the asymptotic behavior when m → ∞, i.e. a frequency domain much larger than the frequency of the fundamental mode of the string. Cusps and kinks are expected to contribute to the harmonic m 1 of the loop oscillations. Under these conditions, it is shown that the frequency-domain waveform is:

h( , f ) = A q ( )f -q Θ(f h -f )Θ(f -f )
where q = 4/3 for cusps q = 5/3 for kinks. (3.112) In addition, it is also proven that the gravitational-wave waveform is linearly polarized. The signal amplitude A q produced by a cusp/kink propagating on a loop of size is given by:

A q = g 1 Gµ 2-q r , ( 3.113) 
where r denotes the distance to the source. Here g 1 is an ignorance factor that absorbs different uncertainties which enter into the calculation of the cusp and kink waveform [START_REF] Siemens | Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints[END_REF]. If loops are not too wiggly, this factor is expected to be of O( 1), the analytically calculated values [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF] are given in Tab. 3.2. The amplitude of the signal emitted by a cusp is higher than that emitted by a kink. [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF] depending on the feature considered.

q
The emission direction of the gravitational wave is identified by the vector n. We note n c the direction of the cusp which is given by the intersection of the curves a (ζ a ) = -b (ζ b ). The cusp waveform is only valid in the case where the angle between the line of sight and the cusp is small, i.e. θ ≡ arccos(n • n c ) satisfies:

θ θ m 1 with θ m ≡ 1 (g 2 f ) 1/3 . (3.114)
Here θ m is the maximal gravitational-wave beam opening angle. The second inequality comes from the fact that the waveform has been derived in the high frequency regime: f = 2m 1 (see Eq. 3.111). Thus a loop with a cusp emits a gravitational wave burst in a cone of solid angle dΩ ∼ πθ 2 m around the exact direction of the cusp. The same validity condition is imposed for the kinks waveform, by replacing n c by n k : the direction of the kink. The gravitational-wave burst is emitted in a fan-shaped set of directions by the moving kink, contained within an angle dΩ ∼ 2πθ m . Here g 2 = 1/2.31 is a constant factor which once again absorbs several uncertainties in the derivation of the waveform. [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF].

Finally, let us justify the presence of the step functions (1 if x > 0; 0 if x < 0). Because of the condition in Eq. 3.114, there is a maximum observable frequency f h . The value of f h is obtained by inverting the expression of the beaming angle θ m . The lowest frequency we can observe f is in practice given by the lower end of the gravitational-wave detector's sensitive band as we will see in Chap. 4.

Another source of gravitational-wave emission corresponds to the collision of two kinks moving in opposite directions. The gravitational-wave emission at a kink-kink collision is isotropic, see Tab. 3.2.

Propagation in an expanding space

Here we present how the waveform in Eq. 3.112 is modified by taking into account the expansion of the Universe. We consider the case of a spatially flat FLRW Universe, the cosmology used is developed in Sec. 3.1. There are two terms to correct in the waveform. We have the usual frequency redshifting:

f → f (1 + z), ( 3.115) 
with z the cosmological redshift. A gravitational-wave burst emitted at redshift z travels over a physical distance r(z), and so it is also necessary to replace the distance r that appears in the amplitude expression by the proper distance:

r → r(z) ≡ ϕ r (z) H 0 with ϕ r (z) ≡ z 0 dz H(z) . ( 3.116) 
The frequency waveform is thus rewritten in the form:

h( , z, f ) = A q ( )f -q Θ(f h -f )Θ(f -f ) with A q ( , z) = g 1 Gµ 2-q (1 + z) q-1 r(z) ,
(3.117) where the angle between the direction of emission and the cusp/kink satisfies:

θ θ m ≡ (g 2 (1 + z)f ) -1/3 .
(3.118)

Radiation power from a loop

In this section, we estimate the energy loss of a loop in the form of gravitational waves.

In the hypothesis where gravitational radiation is the main energy-loss mecanism for local U(1) strings, the radiated power is the quantity which determines the lifetime of non-intersecting loop. For smooth loops, i. e. without structures on length scales smaller than the size of the loops , we show that the power can be expressed as P = ΓGµ 2 where Γ is a numerical constant [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF].

The total energy radiated in the form of gravitational waves per unit of time can be roughly estimated using Eq. 1.65. We neglect the tensor structure of the quadrupole moment Q and we use simple dimensional considerations as in Eq. 1.66 to write:

Ė ≡ P ∼ G d 3 Q dt 3 2 with Q ∼ M 2 , ( 3.119) 
with M = µ the total mass of the string. The factor ∝ t 6 is substituted by the only quantity that has the dimension of a time: the fundamental period of oscillation of the loop T = /2 ∝ . Thus we obtain:

P ∼ Gµ 2 , ( 3.120) 
that we rewrite:

P = ΓGµ 2 , (3.121)
where Γ is a constant that absorbs all numerical factors missing from previous estimates. This quantity is the radiative efficiency coefficient, a dimensionless quantity which defines how effective the gravitational-wave emission mecanism is.

As we see from Eq. 3.121 the more massive the string is, the faster it decays through gravitational-wave emission. Clearly, Γ does not depend on the size of the loops. But as the quadrupolar moment is obtained by integration on the source and depends on the motion of the source (see Eq. 1.58 and Eq. 1.59), we will assume that Γ depends on the shape (more or less smooth, i.e. with more or less kinks) and the trajectory of the loop. The lifetime of the loop is then:

τ ∼ M Ė ∼ ΓGµ , ( 3.122) 
in the following we will note:

γ d ≡ ΓGµ. (3.123)
The quadrupole formula is derived in the slow motion approximation, i.e. v c, with v the velocity of the source, see Sec. 1.4. However, we have shown that strings move at relativistic velocities, in particular in the vicinity of cusps. Therefore, the validity of the estimations made by using the quadrupole formula can be doubted, and it is necessary to go through a more rigorous calculation.

A full relativistic formalism was developed using the power P in gravitational radiation from an isolated and periodic source given by the Weinberg formula (cf Chap.10 from [START_REF] Weinberg | Gravitation and Cosmology[END_REF], or [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]). For some families of loop trajectories, the expression of P can be derived analytically [START_REF] Burden | Gravitational Radiation From a Particular Class of Cosmic Strings[END_REF]. Other methods are also used [START_REF] Allen | A Closed form expression for the gravitational radiation rate from cosmic strings[END_REF] and the result is that the power in gravitational radiation for quite smooth loops is still given by Eq. 3.121. Calculations were numerically performed for different classes of cosmic string loops (e.g. without kinks or with kinks [START_REF] Garfinkle | Radiation From Kinky, Cuspless Cosmic Loops[END_REF]) to determine the value of Γ. The different works [START_REF] Vachaspati | Gravitational Radiation from Cosmic Strings[END_REF][START_REF] Durrer | Gravitational Angular Momentum Radiation of Cosmic Strings[END_REF][START_REF] Allen | Gravitational radiation from cosmic strings[END_REF][START_REF] Casper | Gravitational radiation from realistic cosmic string loops[END_REF] produce quite similar results with an average value: Γ ∼ 50.

(3.124)

Other observational signatures of cosmic strings

Cosmic strings are linked with a variety of other different observational signatures.

In this section we will briefly describe two of the most important.

Gravitational properties of cosmic strings

The gravitational properties of cosmic strings are radically different from those of non-relativistic matter. This can be seen by adopting two major simplifications to describe a graviting string. First we continue to consider a string in the zerowidth approximation. Second the gravitational field of the string is assumed to be sufficiently weak, i.e. Gµ 1, to linearize the Einstein Equations. We can quickly justify this last hypothesis, by remembering the planck mass definition m p = c/G with = c = 1 we get:

G ∼ 1 m 2 p , ( 3.125) 
from Eq. 3.57 we estimate the magnitude of Gµ to be:

Gµ ∼ η m p 2 . ( 3.126) 
So for strings with η m p , which is verified for strings that have formed in most phase transitions, linearized gravity is applicable almost everywhere except in small regions affected by cusps or kinks.

In such conditions we show that a cosmic string will produce no gravitational force on surrounding matter, despite its huge mass. The line element around a static straight string lying along the z-axis can be written in cylindrical coordinates as [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]:

ds 2 = dt 2 -dz 2 -dr 2 -r 2 dθ 2 with 0 ≤ θ < 2π × (1 -4Gµ), (3.127) 
this is the Minkowskian metric of flat spacetime, but with the angular coordinate not allowed to vary up to 2π. Therefore, the spacetime around a straight cosmic string is locally flat, but globally conical in shape, with a wedge removed from the θ-plane. The flat solution implies no gravitational force due to cosmic strings. Indeed in General Relativity tension is a negative source of gravity and, since tension equals energy per unit length for the strings of infinite thickness, their effects cancel. The angular dimension of the wedge removed from the θ-plane is called the deficit angle ∆ = 8πGµ, (3.128) implying that the surface of constant t and z has the geometry of a cone rather than that of a plane. The effect of such a geometry is given by the trajectories of two test particles moving in pararallel toward a cosmic string which is perpendicular to their motion plane as shown in Fig 3 .10. Before reaching the cosmic string, nothing changes in their trajectories since the cosmic string does not gravitate. When they pass it however, they follow the geodesics of the conical spacetime around the string and converge, acquiring an extra velocity component. A more realistic model needs to take into account a wiggly structure for the cosmic string, i.e. strings with cusps and kinks. In that case the deficit angle is larger [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. The gravitational properties of cosmic strings are responsible for two of their observational signatures, gravitational lensing and CMB anisotropies, to which we dedicate the two following sections. 

Gravitational lensing

The form of the metric around a cosmic string can result in characteristic lensing patterns of distant light sources [START_REF] Vilenkin | Gravitational Field of Vacuum Domain Walls and Strings[END_REF]. As seen before, near the string the space is 

α = D d + sin θ, (3.129)
where the string is assumed to be at rest with respect to the source. The lensing effects of cosmic strings is particular because they do not cause any deformation of the original image, while usual lensing sources (e.g. galaxies) produce inhomogeneous gravitational fields which always distort the multiple images [START_REF] Sazhin | Gravitational lensing by cosmic strings: What we learn from the CSL-1 case[END_REF]. We have seen that generally the strings are not either straight or static, and several effects may complicate this picture. For example this formula can be generalized for a moving string since we know now that strings are expected to move at relativistic speeds. In addition the presence of cusps or kinks will also change the result by changing the value of the deficit angle predicted in Eq 3.128.

We can mention that in 2003 the discovery of the gravitational lensing object CSL-1 [START_REF] Sazhin | CSL-1: A chance projection effect or serendipitous discovery of a gravitational lens induced by a cosmic string?[END_REF] was considered as a good candidate for cosmic string, since it exhibited exactly the properties expected: two undistorted identical image of a galaxy. Unfortunately, it was realized that the event was a rare close pair of two very similar and isolated giant elliptical galaxies. Since other searches for gravitational lensing events by cosmic strings were performed with no detection.

CMB anisotropies

Spatial variations in the CMB temperature at recombination are seen as temperature anisotropy by the observer today. The first detection of the anisotropies of the CMB was done in 1992 by the COBE instrument [START_REF] Smoot | Structure in the COBE differential microwave radiometer first year maps[END_REF]. These corresponded to variations of order ∆T /T 10 -5 in the sky. If we consider a statistically isotropic and Gaussian random temperature, the description in Fourier space is more efficient. The CMB anisotropies can be expanded in a series of spherical harmonic Y m (θ, ϕ). The spherical harmonic expansion of the CMB temperature anisotropies, as a function of angular position n ≡ (θ, ϕ) , is given by:

Θ(n) = max =2 m= m=- a m Y m (n) (3.130)
where a m represents the expansion coefficients. The sum in equation 3.130 start at = 2 and go to a given max which is dictated by the resolution of the data obtained by an experiment. The monopole ( = 0) is excluded because it is the average temperature T 0 2.725K over the whole sky and it does not provide informations about the fluctuations. The dipole term ( = 1) is affected by our own motion accross space, but it is always possible to find a frame where the CMB dipole would be zero, thus this term is also removed. For statistically isotropic fluctuations, the ensemble average of the temperature fluctuations are described by the angular power spectrum:

C = 1 2 + 1 m=- |a m | 2 . (3.131)
In addition to the temperature fluctuations of the CMB, it appears that the CMB is also polarized. The formation of CMB anisotropies by a network of cosmic strings is known as Figure 3.12: CMB power spectrum from WMAP including 7 years of data represented by the black crosses. The power spectrum predicted by the theory with the only source of cosmic strings is represented by the pink curve. Figure taken from [START_REF] Guth | Inflationary cosmology: Exploring the Universe from the smallest to the largest scales[END_REF].

the Kaiser-Stebbins effect [START_REF] Stebbins | Cosmic Strings and the Microwave Sky. 1. Anisotropy from Moving Strings[END_REF]. We have seen that the peculiar shape of a cosmic string at rest induces lensing. If now the string is moving with a velocity v in a direction transverse to the direction of the string, then photons passing on different sides of the string are measured with a different frequency, due to Doppler effect. This frequency change is discontinuous because of the negligible width of the string. If a network of cosmic strings exists, then we should expect that such effects must be observable in the CMB, manifesting as discontinuous temperature changes of linear shape. The temperature fluctuations can be calculated directly from the Doppler formula and are given by [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]:

∆T T = 8πGγ L n • (v × ŝ), (3.132) 
where n is the unit vector along the line of sight, ŝ a unit vector tangential to the cosmic string and γ L = (1 -v 2 ) -1/2 is the Lorentz factor with v the cosmic string velocity.

The possibility of cosmic strings being the dominant contribution in the CMB anisotropies was ruled out since the first CMB measurements, see Fig 3 .12. However, cosmic strings are still considered as possible source for CMB anisotropies with few percent (< 10%) contribution [START_REF] Battye | Updated constraints on the cosmic string tension[END_REF]. In addition to this, cosmic strings are also expected to induce B-mode polarisation signatures in the CMB, providing an additional method for their detection [START_REF] Ade | Planck 2013 results. XVI. Cosmological parameters[END_REF].

Besides the observational signatures discussed above, cosmic strings are connected with a variety of others. For example, cosmic strings are expected to create anisotropies in the 21-cm power spectrum just as in the CMB [START_REF] Robert | Searching for Cosmic Strings in New Observational Windows[END_REF][START_REF] Pagano | The 21cm Signature of a Cosmic String Loop[END_REF]. In addition there are several other types of strings that have not been introduced here. The global strings resulting from the breaking of a U(1) global symmetry which decay through radiating Nambu-Goldstone bosons. Also, cosmic strings which carry electric currents called superconducting strings can form, leading to interesting astrophysical signatures in the cosmological context. These are expected to be source of high energy gamma ray bursts, cosmic rays, neutrino emission. And many others types of strings can form depending on the topology and coupling to other fields.

Chapter 4 Cosmic String analysis for O1/O2

The goal of an analysis is to isolate a characteristic gravitational waveform h(t) burried in a noisy signal n(t). The output signal s(t) of the detector is given by:

s(t) = n(t) + h(t). (4.1)
If we consider that the detector noise is a random process, the problem of extracting the signal from the noise is a statistical one. The presence of a signal h(t) changes the statistical characteristics of the data s(t) and the analysis technique used depends on the signal h(t) you are looking for. In Chap 3, we have seen that gravitational-wave bursts are emitted by cusps and kinks on cosmic string loops and the frequencydomain waveform is:

h( , z, f ) = A q ( , z)f -q Θ(f h -f )Θ(f -f l ), (4.2) 
where q = 4/3 for cusps, q = 5/3 for kinks, and A q (l, z) is the signal amplitude produced by a cusp/kink propagating on a loop of size at redshift z. This waveform is linearily polarized and is only valid if the beaming angle is:

θ m ( , z, f ) = (g 2 f (1 + z)l) -1/3 < 1. (4.
3)

The waveforms are cut off at low and high frequencies. To be able to detect a signal, the angle between the direction of observation and the cusp/kink must be smaller than θ m . This condition determines the high-frequency cutoff f h . The low-frequency cutoff f l is determined in practice by the lower end of the gravitational-wave's detector sensitive band1 . The gravitational-wave signal produced by cosmic string features is then well modeled.

The cosmic string burst pipeline2 is based on an analysis technique utilized in the case of a known signal waveform called matched-filter analysis described in Sec. 4.2. It uses a discrete waveform template banks to cover the targeted parameter space, see Sec. 4.4. Candidate events are then extracted separately from each detector, cf. Sec. 4.5. To remove transients noise that can mimic a cosmic string signal we require a simultaneous detection between single-detector events from each detector, cf. Sec. 4.6. In addition, a likelihood ratio Λ is constructed which increases monotonically with signal probability, cf. Sec. 4.7. This function is used to rank the coincident events. To estimate the background of coincident events of the search we perform a time-shifted analysis using single-detector events, see Sec. 4.6. All such random coincidences are recorded and assigned a ranking statistic value Λ. An event is considered to be a gravitational wave signal if it differs significantly from the noise distribution. In the absence of detection, the search sensitivity is determined by injecting a population of cosmic string waveform in the data, cf. Sec. 4.7. Schematically, the pipeline used look like Fig 4 .1. We present the results from the cosmic string burst analysis using O13 and O24 data respectively in Sec. 4.9 and in Sec. 4.10.

O1 and O2 data set

The second generation of Advanced LIGO detectors [START_REF] Fritschel | Second generation instruments for the Laser Interferometer Gravitational Wave Observatory (LIGO)[END_REF] consist of two 4-km-long interferometers: H1 in Hanford, Washington and L1 in Livingston, Louisiana. The first observing run of Advanced LIGO, called O1, started on September 12, 2015 and finished on January 19, 2016. At this time, Advanced Virgo was not operating yet. We searched the Advanced LIGO O1 data for individual bursts of gravitational waves from cusps and kinks. The O1 run of Advanced LIGO was described in more detail in Chap. 2. The pipeline uses the last version of calibrated data5 [START_REF] Acernese | Calibration of Advanced Virgo and Reconstruction of the Gravitational Wave Signal h(t) during the Observing Run O2[END_REF][START_REF] Abbott | Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914[END_REF] h(t) from both detectors called C02. The O1 data are divided in two time chunks to perform the analysis. The chunk boundary is positioned at a significant maintenance break of the detectors. Performing the analysis in chunks allows to take into account fluctuating noise levels of the detectors over the duration of the observing run. Time segments flagged by CAT1 and CAT4 data quality flags are excluded, due to respectively the malfunctions of the detector (data missing, calibration failure, interferometer loosing control, ...) and hardware injections performed, see Sec. 2.5.2 for more details. The total coincident time of observation where Advanced LIGO detectors are operating simultaneously is about 49 days, cf. Tab. [START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF] The O2 period spanned approximately 268 calendar days. The Advanced LIGO detectors participated in the observing run over this entire period from November 30, 2016 to August 25, 2017. The Advanced Virgo detector joined the LIGO detectors during this period and began its first observing run on August 1, 2017. Advanced Virgo joining for the last 25 days with a BNS range around 30 Mpc. There were two breaks during this period, at the end of 2016 and a few weeks in May 2017, which permitted improvements to be made to each of the LIGO detectors. The Livingston detector starts O2 observing around 85 Mpc, and becomes more sensitive at the end of the run, reaching 100 Mpc. The Hanford detector's sensitivity is around 75 Mpc at the beginning of the observing run and finished the run with a lower sensitivity, around 65 Mpc due to an earthquake. The coincident duty cycle is about 44% for H1L1 and about 63% for H1L1V1, the difference is explained by the large duty cycle of Advanced Virgo (85%).

Chunks numerotation

Start time

End The data are divided into 6 time chunks to perform the analysis, see Tab. 4.2. The boundaries are positioned in a way that takes into account the period of commissioning or the large environmental disturbances. Figure 4.2 shows the chunk division of the O2 period analyzed depending on the evolution of the BNS range and the scheduled breaks. A preliminary analysis was performed with the first calibrated strain data h(t) (C00) of Advanced LIGO detectors. For the first time in Advanced LIGO, methods to substract some well identified sources of noise from the data are used. Thanks to that, Hanford's sensitivity increased by 10%. The final analysis is conducted with these cleaned final calibrated data (C02). The first analysis conducted with Advanced Virgo data use the online reconstructed strain data h(t). The final analysis use the second reconstruction process to reprocess the data (V1O2Repro2A). Time segments flagged by category 1 and category 4 DQ flags were excluded, see Sec. 2.5.2. Thereafter, we illustrate the burst analysis using O1 data.

Detecting gravitational-wave with matched filter

The problem of detecting a cosmic string signal h(t) in noise n(t) can be set as a statistical hypothesis testing problem. There are two hypothesis [START_REF] Schutz | Gravitational-Wave Data Analysis[END_REF]:

• H N : s(t) = n(t) (the strain data s(t) do not contain signal h(t));

• H S : s(t) = n(t) + h(t).

A hypothesis test is used to make a decision between these two hypotheses. There are two kinds of errors that we can make: • type I error: choosing hypothesis H S when H N is true;

• type II error: choosing hypothesis H N when H S is true.

The probability of type I error is called false alarm probability (FAP) and is denoted by α R . The type II error is called false dismissal probability. The detection probability is denoted by β R = 1-false dismissal probability. We wish to find an optimal test to distinguish between these two hypothesis. There are several approaches to find such a test. In the cases of a gravitational-wave detection, we need a test that does not depend on making assumptions about the a priori probability of each hypothesis. The Neyman-Pearson criterion says that we should construct our test to have maximum probability of detection β R while not allowing the probability of FAP to exceed a certain value α R . In this framework there is just one subjective parameter α R . Suppose one is performing a hypothesis test using the likelihood ratio test with threshold k α which reject H N in favor of H S at a significance level α R : [START_REF] Schutz | Gravitational-Wave Data Analysis[END_REF]. Since the exact form of a cosmic string signal is known and assuming that the statistical properties of the noise are also known, we will construct from Λ(H S |s(t)) an optimal detection statistic called the matched filter. This quantity expresses the value of the probability that the data contain a cosmic string signal. The calculations are derived from different references [START_REF] Schutz | Gravitational-Wave Data Analysis[END_REF][START_REF] Anderson Jolien | Gravitational-Wave Physics and Astronomy[END_REF][START_REF] Jaranowski | Gravitational-Wave Data Analysis. Formalism and Sample Applications: The Gaussian Case[END_REF][START_REF] Siemens | Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints[END_REF].

p[Λ(H S |s(t)) ≥ k α )] = α R , ( 4 
In the following we define the Fourier transform of a time serie signal x(t) by:

x(f ) = +∞ -∞ x(t)e -i2πf t dt, (4.6)
with the identity relation given by

+∞ -∞ e i2πf (t-t ) df = δ(t -t ). (4.7)
The auto-correlation function of the noise signal n(t) with itself is defined as:

(n n)(τ ) = +∞ -∞ n(t)n(t + τ )dt. (4.8)
For instance, the autocorrelation of a periodic function will have maxima at multiples of the period. In Chap 2 we introduced one definition of the power spectral density of the noise time serie n(t). To obtain the expression of the matched-filter, we will use two other equivalent definitions. The noise power spectral density can also be interpreted as the Fourier transform of the autocorrelation function of the noise time serie:

P s (f ) ≡ +∞ -∞ (n n)(t)e -i2πf t dt (4.9)
It is usual in experiment to work with the single-sided power spectral density of the noise only defined in term of positive frequencies

S n (f ) ≡ 2P s (f ) if f ≥ 0 0 else. (4.10)
We can also define the single-sided noise power spectral density by considering the expectation value of the frequency component ñ(f ):

E[ñ(f )ñ * (f )] ≡ +∞ -∞ n(t)e -i2πf t dt +∞ -∞ n(t )e i2πf t dt = 1 2 δ(f -f )S n (f ), (4.11)
where we perform the change of variable t = t + τ and we used the equivalent of Eq. (4.7) reexpressed in the frequency domain to pass from the first line to the second. We consider that the noise detector n(t) is a continuous function of time described by a Gaussian process (which is also stationary) with a zero-mean. Using the general discrete probability density of a Gaussian process and Eq. (4.11), the continuum probability density of the noise is expressed by:

p n [n(t)] ∝ exp - 1 2 * 2 * 2 +∞ 0 df |ñ(f )| 2 S n (f ) , (4.12)
this formula holds for a white noise (S n (f ) does not depend on the frequency) and a coloured noise (S n (f ) depends on the frequency). We can reexpress this equation in a more condensed form by introducing a "noise-weighted" scalar product of two time series:

(x|y) ≡ 4 +∞ 0 x(f )ỹ * (f ) S n (f ) df = 2 +∞ -∞ x(f )ỹ * (f ) S n (|f |) df = +∞ -∞ x(f )ỹ * (f ) + x * (f )ỹ(f ) S n (|f |) df, (4.13)
where the reality of x(t) implies x(-f ) = x * (f ), similarly with y. With this scalar product the probability density for a stationary Gaussian noise process takes the form of:

p n [n(t)] ∝ e -(n|n)/2 . (4.14)
We compute the probability densities under the hypothesis H N (n(t) = s(t)) and the hypothesis H S (n(t) = s(t) -h(t)) to express the numerator and denominator of the likelihood ratio in Eq.( 4.5):

p(s|H N ) = p n [s(t)] ∝ e -(s|s)/2 p(s|H S ) = p n [s(t) -h(t)] ∝ e -(s-h|s-h)/2 , (4.15)
and so the likelihood ratio is now written (assuming that the factors are the same in front of the exponentials):

Λ(H S |s(t)) = e -(s-h|s-h)/2 e -(s|s)/2 = e (s|h) e -(h|h)/2 , (4.16)

where we used the last relation given by Eq (4.13) to obtain the second equality. The likelihood ratio Λ(H S |s(t)) is a monotonically increasing function of the scalar product (s|h), which is the only term that depends on the data s(t). Thus any choice of a threshold6 on the likelihood ratio for accepting the hypothesis H N can be translated to a threshold on the value of (s|h). Therefore we can use as optimal detection statistic7 the scalar product:

(s|h) ≡ 4 +∞ 0 s(f ) h * (f ) S n (f ) df, (4.17)
which is called "matched-filter" because it is a noise-weighted correlation of the expected signal h(t) with the data s(t). The matched filter is the optimal filter for detecting a known waveform in stationary Gaussian noise.

Power spectral density estimation

We have seen that matched filter involves weighting the data by the detector's noise one sided power spectral density. An incorrect estimate of the power spectral density can attenuate a signal or amplify a noise, degrading the sensitivity of the analysis. The difficulty, in the case of interferometric detectors, is due to the non-Gaussian and non-stationary nature of the data. In the cosmic string pipeline the power spectral density of the data is estimated with the median-mean average method. The median is more robust then the mean because it is less sensible to the extreme values of the detector data due to glitches. The detector data s(t) are sampled at some sampling frequency f s8 :

s[j] = s(j/f s ). (4.18)
In the analysis the data are sampled at a lower rate (downsampled) of 8192 Hz and high-passed above 16 Hz, since frequencies below this value are not of big interest as the sensitivity at low frequencies in the detector is poor. The segment list of data is broken into smaller segments to estimate the power spectral density in order to take into account the non-stationarities of the data. The power spectral density is then estimated for each chunk of duration T. Moreover T must be large enough to have sufficient statistics to estimate a reliable noise power spectral density. The first and last quarters of each chunk, called "pad", is thrown out. This ensures that the whole time window is covered with contiguous inner parts of blocks that do not overlap. Each segment is divided into N9 overlapping sub-segments as shown in the figure 4.3

with an example. The data of each sub-segment are multiplied by a Hann window. This allows to reduce spectral leakage10 due to data sampling. The sub-segments are overlapped by 50% in order to avoid loosing data when windowing. The total length of a segment is T + 2pad divided in short sub-segments of total length t. The analyzed segment is covered with 336 s blocks, starting pad = 4 s before the start of the time window, overlapped by 8 s and ending at least 4 s after the end of the time window. Note that:

N t 2 = (T + 2pad) - t 2 . (4.19)
Each segment is searched for bursts from cosmic string cusp and kink features.

Searching for cosmic strings with templates 4.4.1 Search with one template

In the frequency domain, the waveforms for bursts of gravitational radiation from cosmic strings are given by Eq. 4.2. Since we search for signals of known form we use the matched-filter technique. The waveform in the time domain is put on the form:

h(t) = Aτ (t), (4.20) 
where A is the unknown amplitude of the signal. The function τ (t) which is proportional to the anticipated signal is known as a filter template. We define the scalar product x ≡ (s|τ ) which is proportional to the matched-filter (s|h), given in Eq. 4.17.

If no signal is present in the strain data so that s(t) = n(t) is purely noise, which we assume has zero mean, x = 0, then

Var(x) ≡ x 2 -x 2 = 2 +∞ -∞ ñ(f )τ * (f ) S n (|f |) df 2 +∞ -∞ ñ * (f )τ (f ) S n (|f |) df = 4 +∞ -∞ df +∞ -∞ df ñ * (f )ñ(f ) τ * (f )τ (f ) S n (|f |)S n (|f |) = (τ |τ ) (4.21)
the last equality is derived by using the equation Eq. 4.11. Therefore, the variance σ 2 ≡ Var(x) of the matched filter is σ 2 = (τ |τ ). So when no signal is present, the matched filter is a zero-mean Gaussian random variable with variance σ 2 = (τ |τ ). The signal-to-noise ratio (SNR) is defined as a normalized matched filter: since

ρ ≡ (s|τ ) σ = (s|τ ), (4.
Var(ρ) ≡ ρ 2 -ρ 2 = (s|τ ) 2 σ 2 - (s|τ ) σ 2 = 1 σ 2 [ [(n|τ ) + (h|τ )] 2 -(n|τ ) + (h|τ ) 2 ] = 1 σ 2 [σ 2 + 2 × 0 + A 2 σ 4 -0 -A 2 σ 4 ] = 1.
(4.26)

The measured SNR increases linearly with the amplitude of the signal:

ρ = Aσ ± 1. (4.27)
The measured amplitude à that we asign the event depends on the template normalization

à = A ± 1 σ . ( 4 

.28)

It implies that in the presence of Gaussian noise, the relative difference ∆A between the "real" amplitude A and the measured amplitude à is proportional to the inverse of the SNR:

∆A A = ± 1 ρ . (4.29)
Consequently, if a SNR threshold ρ min is chosen for the search, on average only events with amplitude A min :

A min ≥ ρ min σ , ( 4.30) 
will be detected. Therefore the quantity σ set a scale for the sensitivity search.

The cosmic string waveforms have 3 unknown parameters: the amplitude A, the high frequency cutoff f h and the signal time arrival. The amplitude simply sets a scale for the matched filter output and is unimportant for a template. To be clear we consider a fixed high frequency cutoff f h for the moment. To take in account the arrival time at the detector, t 0 , we modify Eq. 4.20:

h(t) = Aτ (t -t 0 ). (4.31)
The matched filter becomes by using Eq 4.17:

x(t 0 ) ≡ 4 +∞ 0 s(f )τ * (f ) S n (f ) e i2πf t 0 df, (4.32)
a time serie that represents the application of the matched filter at different possible arrival time t 0 . The SNR time serie for a template with a fixed high frequency cutoff f h is:

ρ f h = x(t) σ . (4.33)

Search with a set of templates

If the form of the template is identical to that of the signal, the signal-to-noise ratio ρ is the highest possible. In practice, however, the template waveforms will differ somewhat from the signals. In order to minimize SNR losses it is necessary to cover the parameter space with several templates. In the cosmic string search only one parameter is necessary to construct a set of matched-filter templates. This parameter is the high frequency cutoff f h . The set of templates used is often called a template bank.

The minimum high frequency cutoff used in the analysis is f h,min = 30 Hz. The high frequency cutoff can take in principle arbitrary large value, but as we have seen in Sec. 4.1 the data are sampled at 8192 Hz. The largest distinguishable high frequency cutoff is equal to the Nyquist frequency F N11 which is half the sampling frequency f h,max = 4096 Hz. We introduce an index i = 1, 2, ...N , labeling the particular waveform template τ i (f ) in the bank of N waveform templates specified by a collection of high frequency cutoff {f h,i }. The template bank is iteratively constructed. If we choose to ordering the template so that f h,i > f h,i+1 , the first template τ 1 is normalized (using Eq. 4.13) such that:

σ 2 1 = (τ 1 |τ 1 ) = 4 F N f l df |τ (f )| 2 S n (f ) . (4.34)
where we recall that f l is the low frequency cutoff which must be higher than the frequency at which the sensitivity of the detector is cut off. In practice we choose f l = 16 Hz. This template is the one with the largest σ, and thus the largest possible mean SNR value ρ at fixed amplitude. The high frequency cutoff f h describing the search templates vary continuously, however the set of templates is discrete. Therefore even if a gravitational wave signal were to lie within the template space it would not correspond to any template. The maximum mismatch between a template and the signal is the central quantity which governs template spacing. It informs about the maximum fractional SNR loss we choose to tolerate, due to mismatch between a template and the signal. The fitting factor between two adjacents templates τ i and τ i+1 specified by high frequency cutoff f i and f i+1 is:

F ≡ (τ i |τ i+1 ) (τ i |τ i )(τ i+1 |τ i+1 ) = 1 -. (4.35)
It describes quantitatively the "closeness" of the template in term of the reduction of the SNR. All the template have the same lower frequency f l and so:

(τ i |τ i+1 ) = (τ i+1 |τ i+1 ), (4.36)
the maximal mismatch is then obtained from Eq. 4.35:

= 1 - (τ i+1 |τ i+1 ) (τ i |τ i ) = 1 - σ i+1 σ i . (4.37)
In the analysis the maximal mismatch between two consecutive templates is = 0.1%, we will see later the interest in choosing such a low value. From this equation we notice that the high frequency cutoff f h,i+1 is iteratively determined using f h,i .

The template bank contains 31 templates, spanning over the high frequency cutoff f h . We use the same template bank in the matched-filter for both Advanced LIGO detectors. The reason is given below in the chapter. We have seen that the matched filter depends on the estimation of the one-sided power spectral density S n (f ) and that this quantity evolves over time. As a result, the template bank should also change over time. However we use a fixed template bank. The figure 4.4 presents the distribution of the mismatch between two consecutive templates for H1 and L1 data during the first chunk of O1 data. It allows us to check that the mean mismatch is well 0.1%, despite the evolution of S n (f ). We also note that the spacing between the cut-off frequencies increases with the frequency. This is because the SNR losses decreases with the frequency (see Eq. 4.29).

χ 2 consistency test

As we have seen, the matched filter is the optimal filter for detecting a known waveform in stationary Gaussian noise. In reality, many glitches, which are neither Gaussian nor stationary, are observed. Using the method in [START_REF] Allen | χ 2 time-frequency discriminator for gravitational wave detection[END_REF] a χ 2 parameter is computed to characterize the match between the event and the signal waveform in the time domain. This test is used to distinguish a real signal from a glitch. The basic idea of the test is to "break" the detector's bandwidth in several smaller bands, and to see if the response in each band is consistent with what might be expected of the supposed signal. This method can only be used to discriminate signals for which the waveform is known, which is the case in our search. A large χ 2 means that a signal is probably the result of a transient noise. 

Trigger selection

After we apply the matched filter for each template, The SNR threshold is the first parameter in identifying candidate events or triggers. The choice of the threshold depends on two effects. It is necessary to maximize the threshold in order to reduce the number of triggers that are produced by noise artifacts. However, we will see later that the search is optimized for signals with low SNR and therefore the threshold must also maximize the sensitivity of the research. In the analysis an event is identified with SNR > 3.75. A signal with a high SNR may crossed for several data samples. Rather than record triggers for all samples, we cluster together triggers that lie in a time T c . This time must be larger than the typical duration of a signal. If a trigger is within a time window T c after an earlier trigger with a larger value of SNR, this trigger is discarded. Whereas if this trigger is within a time window T c after an earlier trigger with a smaller SNR, the earlier trigger is discarded. The result is a set of remaining triggers that are separated by a time of at least T c . In the analysis events are clustered over T c = 0.1 s timescale. Only the template with the largest SNR is kept when several templates are triggered at the same time. Finally a trigger is definitely described by a set of variables: The figure 4.5 shows that the SNR distribution is clearly not Gaussian: a large

Trigger parameters Definition ρ j

The maximum SNR of the cluster for the j-th template retained.

A max

The amplitude of the trigger given by Eq. 4.

t peak

The location in time of the maximum SNR.

f h
The high frequency cutoff of the template retained.

t start
The start time of the trigger, which is the time of the first trigger with SNR value above threshold in the cluster. ∆t

The duration of the trigger, which is the length of the cluster. χ 2

Statistical test used to discriminate true signals from transient noises. number of transient noise (glitches) excursions are present in the data. These glitches mimic the signal produced by a cosmic string and some of them are characterized by a very high SNR 10 2 . Thus, as mentioned in section 4.2, the matched-filter is not an optimal technique in the case where the noise of the detector is not Gaussian. We also observe that the SNR is higher in H1 detector than in L1 detector, which is in agreement with the fact that the H1 detector was noiser than L1 detector [START_REF] Abbott | Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF] during this period. In figure 4.6, the SNR over time distribution presents period with distribution indexed by the high cutoff frequency. The excess of triggers observed in the first template is the result of all the low-frequency noises. The shape of the distribution is explained by the mismatch between templates in Fig. 4.4. The distribution is not flat across the bank of template. For example the mismatch is smaller at high frequencies ( ∼ 3.5 • 10 -4 ) than at low frequencies ( ∼ 1.25 • 10 -3 ), this is why high-frequency cutoff templates trigger more often. We choose to show only the parameter distribution for the single-detector events from the first chunk of O1. The same characteristics were observed in the second chunk of data. Whenever the distribution exhibits a particular behaviour that is not expected, we try to understand how these triggers are correlated in order to identify events with similar properties or families. Then, the idea is to find a way to remove these events from the list of single-detector triggers. A meticulous and often repetitive study is then undertaken, which will be illustrated later in the chapter.

Time coincidence between triggers 4.6.1 The zero-lag

Until now, our focus has been on the derivation of the matched filter under the assumption that the detector noise is stationary and Gaussian. In chapter 2 we have seen that the detector noise has often a non-Gaussian component of transient noise artefacts, often called glitches. These glitches can mimic a gravitational signal produced by cosmic strings. Consequently, the detection statistic used can misidentify glitches as gravitational wave events. This is exactly what we observed in the previous section: the distribution of the SNR of single-detector triggers presents a tail characterized by very high SNR value and these events are typically glitches. Therefore we must improve the detection statistic to reject spurious glitches that mock a gravitational event, while retaining true signals. In practice a network of gravitational wave detectors is operated and combining data from across a network of detectors allows good rejection of noise glitches. The basic principle is that a gravitational-wave signal is correlated in time across a network of detector, while noise is uncorrelated. In order to supress transient noise we require temporal coincidence of detected burst events in at least a pair of detectors. Since a gravitational wave propagates at the "finite" speed of light in vacuum, it takes a given time to reach the different detectors. Thus a time delay appears between the signal received by one detector and another. The table 4.4 provides light distance between all possible pairs of current detectors. The non-shifted data set of coincident events is called zero-lag data set. Suppose a pair of detectors, the coincidence window must be sufficiently large to take

Pair of detectors Light distance between detectors [ms] H1L1

±10.00 H1V1 ±27.20 L1V1 ±26.39 into account the maximum travel time of the gravitational wave between detectors, the signal duration, and the timing uncertainty. Several types of uncertainties contribute to temporal uncertainty. For example, the reconstructed peak time (corresponding to the matched filter) have an uncertainty due to the sampling of the data. The timing errror is given by the accuracy of the synchronization of the system that is used to record the signal in the detectors and a GPS clock [START_REF] Aso | Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors[END_REF]. The intrinsic time delay within the instrument has to be accounted for by the phase calibration of the detector [START_REF] Aso | Accurate measurement of the time delay in the response of the LIGO gravitational wave detectors[END_REF] (computer processing delay in the length-control loop, delay to drive the magnets and electrical coils, ...). We need also to set a global false alarm rate (FAR) when searching for coincidences.

If we denote by R 1 and R 2 the rate of glitches respectively in a first detector and second detector, and by ∆t 12 the time coincidence window considered, in a Poisson process the coincidence rate is expressed as:

R = R 1 R 2 ∆t 12 . ( 4.38) 
For example for R 1 = R 2 = 1/ per hour and ∆t 12 = 20 ms then the approximate rate of accidental coincidence is R 5.5 • 10 -6 h -1 or about once every 21 years. We conclude that coincidence between detectors considerably reduces the false alarm rate.

In the analysis, the central time of the single-detector events must lie within a time window δt = 18 ms, which is sufficiently large to take into account the maximum light travel time between detectors, the signal duration, and the timing uncertainty. We parametrize a coincident-event by a vector x characterized by a set of variables:

• ∆t H1L1 = t L1 -t H1 , the arrival time difference between detectors.

• A H1 /A L1 , the ratio of the amplitude between detectors.

• ∆f h,H1H2 = (f h,H1 -f h,L1 )/ 1 2 (f h,H1 + f h,L1 ), the frequency cutoff asymmetry between detectors.

• ρ H1 and ρ L1 , the single-detector SNR.

• χ 2 H1 and χ 2 L1 , the single-detector χ 2 .

These events constitue the zero-lag data set of the cosmic string search. It is of interest to note that the assumption that the noise is not correlated between detectors is assumed to hold when detectors are far enough apart on the Earth's surface. Indeed, in this limit it seems reasonable that there are no common environmental disturbances consistent with the light-travel-time between the detector. This is not totally true since there are for example common known sources of noise between the LIGO Hanford and Livingston detectors. For example, a distant lightning would affects the electronics or magnets of both interferometers. On an even larger scale, another source of correlated noise arises from the electromagnetic fields on the Earth [START_REF] Thrane | Correlated magnetic noise in global networks of gravitational-wave interferometers: observations and implications[END_REF][START_REF] Himemoto | Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model[END_REF]. This is known as Schumann resonances [139], which produce a noise corrrelation through the coupling with the magnets used in the interferometer system. In this case, correlations with magnetometers monitoring the detector environment are used to generate vetoes that can be used in searches to eliminate these noise events.

Background estimation

To estimate the significance of a gravitational-wave candidate, we need to characterize the statistical distribution of the accidental coincidences. To create this distribution, we apply unphysical delays between the detector data stream of the network, in order to remove all the possibly true cosmic string signals. For example, if we consider a pair-wise detector (d 1 , d 2 ) we time shift the trigger sets relative to one another and we look for "fortuitous" coincidence events. Figure 4.9 shows a shema of this technique. This method is called time slide background estimation. The triggers generated with On the other hand, the gravitational-wave signal is no longer in coincidence in this new data set. By applying this technique again and again, we build a set of events that is "pure" noise: the background.

timeshifted data behave like an independent realization of the background called a lag or a timeslide [START_REF] Was | Searching for gravitational waves associated with gamma-ray bursts int 2009-2010 ligo-virgo data[END_REF]. The distribution of time shifted coincidence events or often called time-lag coincidence events should follow a Poisson distribution. Despite the fact that our dataset is limited, it is possible to increase its size, also called livetime by doing several time shifts on the data. Even if the background estimation accuracy cannot be increased indefinitely by performing more timeshifts [START_REF] Was | Searching for gravitational waves associated with gamma-ray bursts int 2009-2010 ligo-virgo data[END_REF], the gain in effective livetime can be considerable. Again we assumed that there is no correlations between noise in the detector network.

If the detectors are too close the assumption that noise between detectors is not correlated is no longer valid, the background estimation could be underestimated, therefore the timeslide method can not be used. The time shift must satisfy two conditions. First, it should be larger than the maximum duration of the signal model we consider and the maximum light travel time between detectors, to avoid correlated events (which will not obey Poisson satistic). And the time shift should be shorter than the typical time scale over which the single detector rate varies significantly. This ensures that the number of events for different times shifts will follow a Poisson distribution for a quasi stationnary process, and thus minimize dependence on any non-stationnarity in the background event rate. The time shift process is repeated in order to gain a more acurate estimation of the background estimation. In a network of 3 detectors we have to be careful not to repeat the lags, since the set of triggers of two detectors are shifted with respect to the last one, a way to avoid this is to shift in opposite directions. The principal source of systematics errors in the background estimate is a bad choice of time-lag that could introduce a time dependency of the background rate.

In the analysis, the background sample was obtained by artificially time shifting the single-detector triggers from L1 with respect to H1. In a first analysis we performed 300 time shifts. This analysis is used for noise investigation. However, since the first detection of gravitational waves, we must consider the case where there would be a detection of cosmic string signal. Consequently we must estimate the most precisely the background of our search. For the final analysis we have increased the number of time slides to 6000. Another reason which justify the choice of repeating the analysis several times with different noise estimates is given later in the chapter. The reason is related to the choice of the statistical quantity used to rank candidates and its behavior when the number of time slide evolves. The double coincidence time offered by each background data set for the cusps and kinks search is given in the Tab. 4.5.

Finally, it should be noticed that another implicit assumption is made in this method.

Number of time slides Time shift [s]

Total livetime [years] 300 3.54 39 6000 0.19 791 Table 4.5: This table shows the number of time slides used to estimate the background with the associated time shift for the O1 cusp/kink analysis. In addition we provide the total livetime rounded to the year.

True gravitational wave signals are considered so rare that their contribution to the background estimate through random coincidences is neglected. In fact a loud gravitational wave signal in one detector can appear in time shifted coincidence with a glitch in the other detector, as we have seen for GW150914. Hence the distribution of the estimated background can be relatively distorted, leading to a truly rare occurrence being ranked as only moderately rare. A solution to this problem of a loud signal contaminating its own background estimation is to exclude single-interferometer "foreground" triggers of a given zero-lag candidate from the set of shifted triggers used to estimate its own background. This solution have the problem that such exclusion could itself lead to a bias that overestimates the importance of a coincident candidate.

Ranking Statistic

Bayesian coincidence test

We have seen that the standard technique used to reject noise is to discard triggers that are not in coincidence in at least two detectors. We summarize here, an alternative coincidence test based on Bayesian statistical inference [START_REF] Cannon | A Bayesian coincidence test for noise rejection in a gravitational-wave burst search[END_REF] used in the cosmic string analysis. It uses a set of simulated gravitational wave events S and a set of noise events N to statistically infer the probability for a coincident-event to be signal or noise. This technique is proven to be significantly more effective then the standard one, when the number of parameters n used to characterize an event is large (n > 10). We consider a tupple of events in coincidence in a network of detectors. An event is described by a vector x in the n-dimensional parameter space:

x = (x 1 , x 2 , ..., x n ) . ( 4.39) 
We denote by T this tuple of events, by N a tuple of noise events and by S a tuple of gravitational-wave events. We have already discussed one of the techniques used to produce a "pure" noise data set. We will see later in this section how to produce a signal sample. The Bayes's theorem [START_REF] Silvia | Data Analysis a Bayesian Tutorial[END_REF] states that:

P (T ∈ S | x) = P ( x | T ∈ S)P (T ∈ S) P ( x) , (4.40) 
and we want to know the probability that the tuple of events T described by the parameter x is the result of a gravitational wave, ie the quantity P (T ∈ S | x). So that there is no ambiguity, it should be remembered that on the right-hand side, in the numerator, we have the probability of observing the parameter x in a tuple of events T known to be the result of a gravitational wave multiplying the probability that any tuple is a gravitational wave and in the denominator, we have the probability of observing the parameter x in any kind of events. Because each tuple of events is either the result of noise or of a gravitational wave we have:

P (T ∈ N ) = 1 -P (T ∈ S). ( 4.41) 
The probability of observing the parameter x is given by:

P ( x) = P ( x | T ∈ S)P (T ∈ S) + P ( x | T ∈ N )P (T ∈ N ) = P ( x | T ∈ N ) + [P ( x | T ∈ S) -P ( x | T ∈ N )] P (T ∈ S) = P ( x | T ∈ N ) + P ( x | T ∈ N ) P ( x | T ∈ S) P ( x | T ∈ N ) -1 P (T ∈ S), (4.42) 
where we used Eq. 4.41 to pass from the first line to the second, and the Baye's theorem expressed in Eq. 4.40 to deduce the last line. By replacing P ( x) by its expression from the Baye's theorem we obtain:

P (T | S ∈ x) = P ( x | T ∈ S)P (T ∈ S) P ( x | T ∈ N ) + [P ( x | T ∈ S) -P ( x | T ∈ N )] P (T ∈ S)
. (4.43) From this last relation we define the likelihood ratio as:

Λ( x) = P ( x | T ∈ S) P ( x|T ∈ N ) . ( 4.44) 
Equation 4.43 can be expressed as:

P (T ∈ S | x) = Λ( x)P (T ∈ S) 1 + [Λ( x) -1]P (T ∈ S) , ( 4.45) 
and by differentiating this expression with respect to Λ( x) we show that the derivative is always positive. Thus P (T ∈ S | x) is a monotonically increasing function of the likelihood ratio. If the likelihood ratio is zero Λ( x) = 0, the event described by x is noise, whereas if Λ( x) 1 the event is most likely the result of a gravitational wave. We then use the likelihood ratio Λ( x) to rank the events.

In the analysis, to discriminate true signals from background events, we apply this Bayesian technique. Given a set of parameters x describing an event, the computed likelihood ratio is given by: Λ( x)

P S (∆t H1L1 ) P N (∆t H1L1 ) × P S (A H1 /A L1 ) P N (A H1 /A L1 ) × P S (∆f h,H1L1 ) P N (∆f h,H1L1 ) × P S (χ 2 H1 ,ρ H1 ) P N (χ 2 L1 ,ρ L1 ) × P S (χ 2 H1 ,ρ H1 ) P N (χ 2 L1 ,ρ L1 ) (4.46) 
where P S (x i ) represents the probability of observing the parameter x i in a tuple of events known to be the result of a gravitational wave (S) and P N (x i ) is the probability of observing the parameter x i in a noise tuple (N). The majority of parameters used to characterize a coincident event are nearly uncorrelated. And we assume in addition that there are independent 13 . This allows us to compute the likelihood ratio one variable at a time. However, we do not perform any factorization for SNR and χ 2 parameters because of the strong correlation between these two variables.

Signal sample

To construct the ranking statistic cosmic string simulated signals are injected into the data. The simulated signals (S) are randomly generated and injections are performed each 83.7 s. The choice of this value is influenced by several factors, to have sufficient statistics it is necessary to increase the number of injections, but at the same time it is important to have a reasonable spacing between injections to avoid two injections overlapping. The analysis is run 10 times to obtain more statistic and about 515 × 10 3 signals are injected in the O1 analysis. These injections are done on a time-shifted data set. Indeed, the probability densities associated with injections show statistical fluctuations that could not estimate the likelihood with enough accuracy. This avoids constructing the likelihood on the same data set on which it is Cusp Search Kink Search Time step 83.7 s 83.7 s High frequency cutoff f

-5/3 h f -4/3 h
Amplitude min 1 × 10 -22 s -1/3 5 × 10 -22 s -2/3 Amplitude max 1 × 10 -18 s -1/3 applied. The injections accounts for the physical properties of the population. These are uniformly distributed in volume and the distribution of frequency cutoffs f h for cusp is dN ∝ f -5/3 df between 40 Hz and 8192 Hz. The amplitude are distributed logarithmically between 1.0 × 10 -22 s -1/3 and 1.0 × 10 -18 s -1/3 spanning the range of detectability . We use astrophysically radial distribution and reweight the injection by a factor A -3 . The effect of doing so is to construct the ranking statistic on a weighted set of injections to favor low amplitude signals, which are more likely to be real. We can not allow weight assigned to arbitrarily low-amplitude injections to grow without bound. Therefore we crop the weight assigned to injections above 8 × 10 -22 s -1/3 . Table 4.6 summarizes the injection parameters used in O1 search.

The waveform used to compute the injections has an exponential cutoff at the high frequency cutoff:

h(l, z, f ) = A q (l, z)f -q Θ(f -f l ) × 1 if f ≤ f h e 1-f /f h if f > f h . ( 4.47) 
An injection is found if its peak time lies between the start time and end time of a coincident event.

Probability density functions

To construct the likelihood ratio on the background and injection sample we use the probability density functions expressed in Eq. 4.46. The figure. 4.10 shows that the simulated events with SNR≥ 10 are well differentiated from the noise. The figure. 4.11 shows that the χ 2 variable can discriminate the signal and the background for high SNR value (∼ SNR ≥ 30) in both detectors. The other probability distributions used to compute the likelihood ratio are presented in Fig. 4.12. The first point is that the background and injection distributions for each of parameter are different: these parameters are good quantities to discriminate signal from noise. But if for one parameter, the distribution density for the noise and injection sample would have been more similar to one another than they are for others distributions it would not harm the search. Indeed, in the worst case where noise and injection distributions are identical this parameter will contribute by a factor of 1 to the total likelihood ratio. The training samples S and B are generated for each chunk of O1 data to account for the noise nonstationarities and the evolution of the detector sensitivities.

Figure 4.10: SNR distribution for the background coincident-events (black) and for the simulated signal coincident-events (green) in the first data chunk of O1. The simulated coincident-events are properly distinguished from the noise in the SNR distribution for a value of SN R ≥ 10. Since both detectors have a similar sensitivity, we expect to measure roughly the same SNR for a gravitational-wave signal. This is not the case for noise. Moreover, when there is a glitch with high SNR in a detector, it is more likely that this one "triggers" with a low SNR glitch in the other detector. This justify the L-shaped shape of the noise distribution. for the background coincidentevents (black) and for the simulated signal coincident-events (green) in the first data chunk of O1. These two variables are strongly correlated, therefore we use the joint distribution probability to compute the ranking statistic Λ( x). Signal events with a SNR ≥ 30 are well separated in this plane from background events. In theory one interferometer could be used to detect a sharp gravitational-wave signal. Figure 4.12: The black curves show the distribution densities as observed in noise, and the red show them as observed in software injections. In all plots the vertical axis is the probability density. The symbols have the following meanings: t is the peak time of arrival, f cut is the high frequency cutoff and A is the amplitude. The distribution densities for the noise and injection set are not similar to one another: these parameters are good to discriminate noise from injections. We note that there is no volumes of the parameter space in which injections can be found but no noise at all.

Data quality

A crucial part of the analysis is to understand the background of accidental triggers due to detector noise; this is important for preventing false identifications of noise triggers as cosmic string candidates and for improving the overall sensitivity of the search. To each coincident background event is assigned a value of the ranking statistic Λ( x). Figure. 4.13 shows the combined cumulative background event rate as a function of the likelihood ratio Λ( x). The event rate is normalized by the background observation time given in Tab. 4.5. In presence of a Gaussian noise in the detector we expect a Gaussian distribution, this is clearly not the case. The purpose of data quality work is to understand the tail of the distribution and find a way to remove these events. In this section we present efforts made to improve the background distribution of the search. 

The impact of data quality flags

As we have seen in chapter 2, data from the Advanced LIGO detector typically contain many non-Gaussian transient noises (glitches) due to instrumental and environmental conditions. These glitches are problematic for the search as they can mask or mimic a cosmic string signal. To minimize the contamination of the data with glitches, data quality (DQ) flags are created. A DQ flag consists of a list of time segments where the data is qualified as noisy. In general, it is built by the information provided by one or several of the auxiliary channels monitoring the detector. DQ flags from category 2 (CAT2) flag noisy periods where the coupling between the noise source and the gravitational-channel h(t) is well established. The first step to improve the background distribution is to evaluate the impact of these vetoes to remove the highest ranked coincident events. As seen in section. 4.6.2, the background is estimated initially with 300 time slides. We tested the impact of all the DQ flags on the background single detector triggers and we found two flags which improve the search, these are given in Tab. 4.7. In the final analysis we estimated the background using 6000 time slides. The likelihood functions are modified between these two analyses and so the ranking of the background events changed. As a result, we identified two additional DQ flags presented in Tab. between these glitches and the behavior of the 45 MHz electro-optic modulator driver system used to generate optical cavity control feedback signals [START_REF] Abbott | Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914[END_REF]. The principal channel which best correlates with these glitches, monitors the part of the detector which deals with alignment sensing and mirror control. A DQ flag associated to this channel is applied as a category 1 to the search. However a part of these glitches is also observed in the 36 MHz driver system channel also, and the best channel correlated to these glitches is the H1_DCH-ASC_AS_B_RF36_GLITCHING channel. We checked that the amount of data removed by a flag (deadtime) is reasonable i.e. that applying this flag as vetoes would not make us lose too much data. Most burst searches today use the same list of CAT2 flags 16 . We choose to not use this list, in order to not remove period of time from the zero-lag data without having demonstrated advantageous effects on the background search. This has the advantage to minimize the risk of losing a cosmic string event. The vetoes applied to the search removed about 3.43% of the total of the zero-lag data. By comparison, the total period of time removed from the zero-lag using the general burst list of CAT2 flags would have been off ∼ 4.9%. The vetoes applied to the search are included in the general burst list of CAT2 flags. We have set a threshold on the efficiency/dead-time ratio of 2 to keep a DQ flag. Other factors influence the choice of vetoes. For example, a DQ flags with an efficiency/dead-time ratio of less than 2 remains interesting if it removes events characterized by a high likelihood. We also verified that each veto used does not remove the same events. None of the vetoes produced by HVeto and UPV had a significant impact on the search.

The figure 4.14 shows the limited impact of the two first flags presented in table 4.7 16 Burst category definer file. 

Background event identification

Here we summarize efforts made to understand the origin of noise in the cosmic string cusp search. A typical method to visualize the data from a transient search perspective is by representing each detector's data using Omicron. It identifies excess power transient at a given central time, duration, bandwith, SNR and Q-value. We used Omicron to build glitch families by grouping events according to their frequency, bandwith, shape, arrival time and the period with which it arrive. For that we used a list of the ∼ 200 highest ranked background triggers in H1 and the ∼ 200 in L1, after applying the category 2 flags. We have produced the spectogram for each of these events and we have grouped together glitches with similar shape, frequency, and bandwith. The table 4.8 allows to visualize the typical shape of a glitch and its characteristics. The same work was done for L1 triggers and we did not find any families. These families may be two sub-families of blip glitches (tomte, and koi fish ), characterized by a very short duration, ∼ 10 ms with a large frequency bandwidth, ∼ 100 Hz. These glitches resemble the gravitational-wave signature of cosmic strings cusps or kinks. Hence, the sensitivity of the search is highly degraded by the presence of these blip glitches. The occurrences of blip glitches in the data are not easily identifiable, but even if we couldn't build subfamilies with the list of L1 loudest triggers, the vast majority of the most significant events seen in L1 are blip glitches.

In addition, we tried to see if there were any time coincidences between these events and events seen in all the auxiliary channels. For that, we compared the spectrogramm obtained for each event from the list (200 in H1, 200 in L1) with the spectrogramm produced for all the auxiliary channels at the time of the event. We found no significant correlations with any safe auxiliary channel that could reveal the source of the noise.

UPV

In order to study possible sources of these noise transients called blip glitches we used UPV to repeat the previous work on a larger set of cosmic string triggers. UPV is utilized to find statistical correlations between transient noises in the gravitationalwave channel and in the auxiliary channels, cf Sec. 2.5.3. We utilized the hierarchical mode of UPV working with the full list of safe channels on Omicron h(t) triggers for H1 and L1. In the hierarchical mode, the most effective channel is determined after each round and all the triggers vetoed by this channel are removed from the initial list of triggers. This provides the advantage to not take in account the channels which vetoe the same triggers. Some channels provided a list of good vetoes with a high efficiency/dead-time ratio, see for example Fig. 4.16 However these vetoes have flagged very few events in the list of cosmic string triggers and so we can not prove that the coincidences we observe are not accidental.

Among the list of the highest ranked events in L1, we were able to identify 4 events in time coincidence with different magnetic channels. In addition, the detector and characterization group of Advanced LIGO had a clue about some blips correlated with magnetic channels. We run UPV on Omicron h(t) triggers for L1, using all the magnetic auxiliary channels to check if good vetoes are created. Instead of using the reference value of the user-percentage of 0.5, we utilized different number between 0.1 and 0.5 to find the optimal value to work with. Indeed, in general if the use-percentage is higher than 0.5, the coupling between the gravitational wave channel and an auxiliary channel is said to be real, by opposition to accidental coincidence. Reducing the threshold allows to be less strict and to find meaningful correlations with auxiliary channels that could provide either a way of vetoing those glitches. Their were no major findings in such investigations and the vetoes produced did not have a significant impact on research. given channel. Sources in the frequency range [START_REF] Deruelle | Introduction aux équations d'einstein de la relativité générale[END_REF][START_REF] Fong | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-ray Bursts[END_REF] Hz are coupled to this channel (outside this frequency range the threshold is infinite and there is no real coupling). In addition the UPV report provides the ratio efficiency/dead-time ∼ 29 of the veto produced which tell us that this veto can be considered as good (see Chap. 2). (b) The SNR distribution for the 2 × 10 3 highest ranked background events in H1, before (red) and after applying the veto (blue) produced by the hierarchical mode of UPV. The distribution is identical before and after we apply the veto: this veto is thus not effective to improve the search.

Highest ranked background events

The final analysis is done using only the vetoes presented in Tab. 4.7. We investigate the five loudest events of the background distribution more rigorously to make sure they are not in coincidence with any of the auxiliary channels. The first highest ranked background event of the O1 cusp analysis is characterized by Λ ∼ 1.06 × 10 5 with a SNR H1 = 6.6 and SNR L1 = 8.5. The figure 4.17 gives the time-frequency representation of the first highest ranked events found in H1 and L1. We do not provide a scan of the first two events, because the SNR in H1 is too low to get a proper view at the event on the spectrogram. The characteristics of these coincident-events (frequency, bandwith, duration, shape ...) in each detector reveals without surprise that both events are to be blip glitches.

The highest ranked background events found in the kink analysis are also identified as blip glitches. The templates used in cusp search are enough robust to be used in kink search [START_REF] Hello | Robustness of templates for detecting gravitational wave bursts from cosmic strings cusps and kinks[END_REF], and so we deduce that the background events (which results from the matched-filer) have the same characteristics in both searches. From that, we can legitimately applied the same vetoes found in the cusp analysis to the kink analysis. 

O1 results

Here we report on the results obtained to specifically search for gravitational-wave bursts from cosmic string cusps and kinks [START_REF] Abbott | Constraints on cosmic strings using data from the first Advanced LIGO observing run[END_REF].

Cusp and kink search

Once the work of data quality on the background distribution is completed we then "open the box", which means look at the real candidate of the search (the zero-lag).

For both cusp and kink search, we compare the candidate ranking values with the expected background distribution. Figure 4.18 shows the cumulative event rate for the candidate events (zero-lag) as a function of the ranking statistic Λ( x) , as well as the average rate of events found in the time shifted data (background). The shaded region corresponds to a 1 σ uncertainty computed from the variations in the number of events found in the time shifted data. For both searches there are no candidate events which deviate significantly from the background distribution. The highest-ranked event is measured with Λ h 232 for cusp search and Λ h 611 for kink search, associated to a false alarm rate FAR O1 = 1/T obs = 2.40 × 10 -7 Hz, with T obs the livetime of the zero-lag data. An investigation of these events shows that they seems to belong to the blip glitch family. 

Search sensitivity

To measure the cusp or kink search sensitivity we injected over a total of 515 × 10 3 simulated signals of known amplitude into a time-shifted data set and then we performed a search identical to the one described above. To avoid self-selection issues, we use a set of injections that is independent from the S sample used to construct the ranking statistic. The search sensitivity q is then defined as the fraction of simulated signals recovered with Λ > Λ h where Λ h is the highest-ranked candidate of the search.

Figure. 4.19a shows the detection efficiency e q as a function of the injected cusp signal amplitude A q . The amplitude at which we recover half of our injections is A 50% = 4.03 × 10 -21 s -1/3 . The uncertainties associated with the efficiency curve include three different effects. The first one is associated to binomial counting fluctuations since at each point the value of the efficiency is measured by counting a finite number of injections. There is an additional uncertainty in the amplitude to which a measurement of the efficiency should be assigned. Finally the last uncertainty is related to the calibration: the injections from which the efficiency is measured are performed at amplitudes different from what was planned. We also compare the cusp sensitivity curve to the one obtained in the previous analysis during the S5/S6 runs (2005-2010) for a same false alarm rate, see Fig. 

O2 analysis

This section describes the burst cosmic string analysis conducted with the data from the second observing run (O2). We used the same pipeline as described for O1 and the same input parameters. But there are some differences with the O1 analysis. The period of time analyzed is longer. Indeed the amount of coincident data analyzed between the two Advanced LIGO detectors is approximately ∼ 115.9 days. The LSC Algorithm Library Suite [START_REF]LIGO Algorithm Library -LALSuite. free software[END_REF] (LALSuite) containing the pipeline has undergone several changes, therefore, the pipeline used during the O1 had to be restored in a way that was compatible with the new LALSuite. Two analyses were run in parallel, one with the pipeline used for the O1 analysis (IN2P3 computing centre, Lyon) and the other with the restored pipeline (LSC grid centre, Caltech). This work, which will not be discussed in this thesis, has considerably eased the review of the restored pipeline. For practical reasons we only conducted a search for cusps. In addition, we also performed a three-detector search using the data collected by Advanced Virgo in August 2017 to conclude that the sensitivity of the Advanced Virgo detector was not sufficient to improve the detection efficiency of cosmic string signals.

Results

Here, we report on the search for signals from cosmic string cusps in LIGO data. We kept the configuration used for the final O1 analysis (template bank, SNR threshold, number of time slides, injections ...). The distribution for the mismatch between templates is verified. For each chunk of data, we studied the single-detector parameter distributions. We observed an excess of triggers in H1 at the end of the analyzed period (chunk4), which is explained by a drop in sensitivity in July, 2017 after an earthquake in Montana. We have not found any other particular behaviour that could be studied more precisely her. In a similar way we also studied the parameter distributions used to compute the ranking statistic, and we have not identified any particular behaviour.

The background is estimated using 6000 time slides, see Tab. 4.5. We have considered all DQ flags and vetoes produced by UPV and Hveto. For each chunk of data, we look at the effectiveness of a veto which is defined to be the ratio of the fraction of glitches removed to the fraction of analyzable livetime removed by the veto. We select those for which that ratio is greater than 2. The selection of vetoes used for the final analysis is presented in Tab. 4.9. These vetoes removed about respectively a total of 2.4% in L1 and 1.8% in H1 of the zero-lag livetime. As in the O1 analysis, we found that the background highest ranked events are consistent with blip glitches. The detector and characterization group of LIGO found several origins to a few percent of blip during O2 [START_REF] Cabero | Blip glitches in Advanced LIGO data[END_REF]. The vetoes produced are not effective on the search. The blip glitches have several origins and therefore we are not sensitive to the particular blips for which a veto exists.

The cumulative event rate as a function of the ranking statistic Λ is displayed in the upper plot of Fig. 4.20. The highest-ranked event measured with log(Λ) = 9.1 17is consistent with the background distribution. Therefore we cannot argue this event to be the result of a gravitational-wave signal produced by cosmic string cusp. We examined this event and concluded that it belong to the category of blip glitch noises. We also give the sensitivity curve combining O1 and O2 data, since the sensitivity of the O2 LIGO cusp search is comparable to the O1 LIGO one. Table 4.9: The deadtime (% of total coincidence time in the zero-lag) introduced by each veto in the O2 cusps analysis and the associated efficiency.

IFOs

Search using Advanced Virgo data

We also conducted a three-detector search using the data collected by Advanced Virgo in August 2017, corresponding to ∼ 17 days of data. By analogy with the two-detector search an event is represented by a total of 18+1 variables, see Eq. 4.46. Indeed an additional parameter is considered to account for the different sensitivity: the number of detectors involved in the event. The background is now estimated by shifting the data from L1 and from V1 by the same amount but in opposite direction with respect to H1 data. This ensures that all the lags are independant. Moreover, simulated signals are injected onto a lag of Virgo data to construct the signal sample. these glitches, however these are not the ones that limit the search in Virgo. We isolated another family of blip glitches called "photodiode glitches" see Fig. 4.23. These glitches are found in one of the photodiode that measures the dark fringe signal and the origin is not well understood. In addition we found two others vetoes that slightly improves the search.

Figure . 4.24 presents the sensitivity curve obtained by using or not Virgo data. We note that the search efficiency is slightly improved for the large amplitudes when applying the vetoes selected. However at low amplitudes the search efficiency is better when using only LIGO detectors. We conclude that Virgo has a limited impact and seems to slightly degrade the search sensitivity. This is due to the low sensitivity of Virgo compared to the one of LIGO detectors. Chapter 5

Upper limits on cosmic string parameters

We have seen that a network of cosmic strings formed in the early Universe is firstly characterized by the dimensionless string tension Gµ. In addition, for topological strings we often assumes that when strings collide, they always intercommute, i.e. they always "exchange partners" and reconnect after a collision. This is not longer true for superstrings, i.e. fundamental strings of String Theory stretched at cosmological scale. Thus, an other parameter is the intercommutation probability (with p < 1). In the absence of detection, we can use the results of Sec. 4.9 and Sec. 4.10 to constrain the parameter space (Gµ, p). To do so, we need to derive the expression for the cosmological rate as a function of the strain amplitude, which is needed to evaluate the upper limits (Sec. 5.2). This rate is directly proportional to the number density of loops at all times, so we first review the three expressions for the loop number density which have been used in this work (Sec. 5.1). Furthemore, the incoherent superposition of many bursts from cusps and kinks1 generates a gravitational-wave stochastic background which is searched for in Advanced LIGO-Virgo data (Sec. 5.3). We present the results obtained using the O1 and O2 data from Advanced LIGO-Virgo detector, published in [START_REF] Abbott | Constraints on cosmic strings using data from the first Advanced LIGO observing run[END_REF][START_REF] Abbott | All-sky search for short gravitational-wave bursts in the second Advanced LIGO and Advanced Virgo run[END_REF][START_REF] Abbott | A search for the isotropic stochastic background using data from Advanced LIGO's second observing run[END_REF] (Sec. 5.4.2). Finally, the last section of this chapter is dedicated to the continuation of the previous work, this time by looking at the contribution of a new type of burst. Indeed, when there is at least two kinks on a loop, they can meet and produce a gravitational-wave burst.

Loop distribution models

The purpose of this section is to briefly present the configuration of a cosmic string network at the time of its formation and how it evolves. Then we compare three loop distribution models used to constrain the cosmic string parameters.

String network in a FLRW Universe

As mentioned in Sec. 3.2.3 the mechanism of cosmic string formation was first pointed out by Kibble [START_REF] Kibble | Topology of Cosmic Domains and Strings[END_REF][START_REF] Kibble | Some Implications of a Cosmological Phase Transition[END_REF] (1976). According to the Kibble's mechanism, when the temperature of the Universe drops below a critical temperature T c , the Higgs field φ develops, at each point, a non-zero expectation value corresponding to some point in the manifold M of the minima of the potential. If two points are separated by a distance greater than the correlation length ξ(t), they can take different expectation values. The magnitude of ξ(t) depends on the phase transition considered. Then depending on the topological properties of the manifold M, a network of cosmic strings will forms with a characteristic length scale comparable to ξ(t). Since correlations between different regions of space can not be established at speeds greater than the speed of light, ξ(t) can not exceed the causal horizon ξ ≤ d h (t) ∼ t.

To determine the cosmological evolution of a cosmic string network in an expanding FLRW Universe, it is necessary to determine the initial characteristics of the network. For a second order transition, once the temperature is sufficiently low (T T c ), the Higgs field φ can no longer change its value and the cosmic strings are "frozen" , cf. Sec. 3.2.3. The initial string distribution can be obtained by examining the statistical properties of the Higgs field values just after the phase transition responsible for string formation [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF][START_REF] Hindmarsh | Phase transition dynamics in the hot Abelian Higgs model[END_REF], over distances greater than the correlation length ξ(t). Numerical simulations to determine the initial configuration of a cosmic string network were conducted for the first time by Vachaspati and Vilenkin [START_REF] Vachaspati | Formation and Evolution of Cosmic Strings[END_REF]. It is shown that the network preferably contains long strings at its formation (80%) with a lower proportion of strings in the form of loops (20 %).

From the initial string distribution, the evolution of the network will depend on the dynamics of each string. As in a flat space, the Nambu-Goto action allows to derive the equations of motion (cf. Eq. 3.77) applied to a FLRW space. From that, we can show that the total energy variation of a string is [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]:

Ė = ȧ a (1 -v 2 )E, (5.1) 
where the dots stand for derivatives with respect to the conformal time τ defined by dτ = dt/a(t) and v 2 is the average string velocity squared 2 . We see that the total energy E of the string increases proportionally to the scale factor a(t), as we could have expected intuitively. Thus, in an expanding Universe, the string gains energy by stretching. However, the term v 2 aims to reduce this energy gain. So there are two contrasting effects, and the equations of motion show that there are two possible evolutions. For super-horizon strings (L > d H with L a characteristic length which measures the average distance between strings), often called long strings 3 , the Universe expansion aims to damp the oscillations of the strings and therefore to reduce v 2 : stretching dominates. In contrast, for smaller length scales the "damping" term in the equations of motion becomes progressively negligible. In particular for a subhorizon ( d h , with the loop size) cosmic string loop, v 2 = 1/2, and the energy of the loop remains conserved. In comparison with the result obtained in Sec. 3.2.5, we conclude that the evolution of sub-horizon cosmic string loop in a FLRW space is therefore reduced to that in a flat space.

In addition, it is also necessary to take into account the interactions between strings within the network. We have seen in Sec. 3.2.6 that in the simplest case of Nambu-Goto strings, when two strings interact they always intercommute, i.e. they exchanges partners. This mechanism leads to the continuous formation of cosmic string loops. These loops oscillates and dissipates their energy in the form of gravitational waves until they disappear4 . Thus, the determination of the loop distribution at a time t is a major challenge in determining the network's evolution. To summarize, the investigation of the evolution of a network of cosmic strings requires at least to solve the equation of motion for each string and to take into account intercommutation. This complex problem is solved by means of numerical simulations (cf [START_REF] Ringeval | Étude des courants fermioniques sur les objets étendus[END_REF] and section 9.4 in [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF] for an introduction). The earliest simulations were produced around 1985 [START_REF] Albrecht | Evolution of Cosmic Strings[END_REF][START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Allen | Cosmic string evolution: a numerical simulation[END_REF]. The simulations of the evolution of the cosmic string network throughout the history of the Universe involve very large scales, ranging for example, from the distance between kinks to the horizon size. This is a technical challenge due to the limits on numerical resolution and computation times. Significant progress has been made in this area, however this is not enough and therefore there are still several questions about the evolution of a string network that remain open.

In particular, one of the characteristic behaviors of a cosmic string network is the existence of a scaling regime. The "scale-invariant" network evolution is the results of two competitive effects: the expansion of the Universe that stretches the strings is compensated by the dissipation of energy through the loop formation and the emission of gravitational waves. In this regime, the typical length scale of long strings is proportional to the horizon distance L(t) ∼ d H ∼ t. The scaling nature of long strings is supported by subsequent simulations [START_REF] Albrecht | Evolution of Cosmic Strings[END_REF][START_REF] Bennett | Evidence for a Scaling Solution in Cosmic String Evolution[END_REF][START_REF] Allen | Cosmic string evolution: a numerical simulation[END_REF]. In this case, the long string energy density remains a fixed fraction of the Universe energy density, this ensures that long strings never dominate the energy density of the Universe and remain compatible with cosmological observations [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. The expected cosmological distribution of loops has been subject to debate since the development of the first analytical model [START_REF] Kibble | Evolution of a system of cosmic strings[END_REF]. Loops reach a scaling regime over a long time scale and therefore it is only recently that simulations have become enough robust to show the existence of a population of scaling loops [START_REF] Ringeval | Cosmological evolution of cosmic string loops[END_REF][START_REF] Jose | The number of cosmic string loops[END_REF]. In the following sections we present the three models used in the work of this thesis. These models use an analytical approach supplemented by Nambu-Goto simulations. Indeed, in Nambu-Goto simulations, the effect of gravitational-wave emission and the backreaction of gravitational waves onto the string are ignored. We define more precisely the loop distribution n( , t)d as the number of cosmic string loops per unit volume with invariant length between and + d at cosmic time t. The three models differ in the loop distribution, and to determine the consequence of these differences on their gravitational wave signal, it is more convenient to work in unit of cosmic time. For this purpose, let us define a new dimensionless variable γ, the relative loop size, and a new dimensionless function F, that we will refer as the loop distribution: γ( , t) ≡ t and F(γ, t) ≡ n( , t) × t 4 .

(5.2) Superstrings may have an intercommutation probability p significantly smallest than unity. The effect of a reduced intercommutation probability on the loop distribution is still a matter of debate [START_REF] Avgoustidis | Effect of reconnection probability on cosmic (super)string network density[END_REF][START_REF] Sakellariadou | A Note on the evolution of cosmic string/superstring networks[END_REF]. Therefore we restrict ourselves to study the generally expected behaviour F p<1 = F/p [START_REF] Sakellariadou | A Note on the evolution of cosmic string/superstring networks[END_REF], leading to an enhancement of the loop density. Note that here, we neglect differents aspects of a realistic cosmic superstring network as the creation of junctions, see Sec. 3.2.6.

Model 1

The first analytical model we consider is often referred as the one-scale model, was initially developed by Kibble [START_REF] Kibble | Evolution of a system of cosmic strings[END_REF][START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. Despite its simplicity, it catches various properties of the network evolution. In this model, the network is described using a unique scale, i.e. the typical distance between the strings L(t) ∼ t, in scaling regime.

Here, all loops chopped off in the infinite string network are formed with the same relative size α at a fixed fraction of the horizon, = αt , at formation. (

These loops can self-intersect and fragment further but ultimately this process ceases and a non-intersecting population of loops remains [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. We assume then that loops do not self-intersect once formed. Initially, it was considered that the size of loops is given by gravitational back-reaction [START_REF] Siemens | Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints[END_REF]. The gravitational field produced by a moving loop acts back on the string and ones expect that the small-scale structure on the loop are cut off by this back-reaction. It was then assumed that the typical size of loops (t) is set by the scale of the smallest wiggles, which is in turn determined by damping due to gravitational emission and thus α ∼ ΓGµ. Since the last few years, simulations suggest that loops are produced in a wide range of sizes, unrelated to the gravitational back-reaction scale [START_REF] Vanchurin | Scaling of cosmic string loops[END_REF][START_REF] Martins | Fractal properties and small-scale structure of cosmic string networks[END_REF][START_REF] Ringeval | Cosmological evolution of cosmic string loops[END_REF]. The results indicate that most of the string length is going into relatively large loops of size comparable to the inter-string distance with α ΓGµ [START_REF] Vanchurin | Scaling of cosmic string loops[END_REF]. In this work we assume that: α 0.1.

(5.4) Moreover to take into account the decay by gravitational-wave emission, we consider from section. 3.3.3 that loops formed at a time t i with a size i = αt i shrink such that:

(t) = i -γ d (t -t i ) with γ d ≡ ΓGµ , Γ 50.

(5.5)

Then the loops decay at a time

t f = α γ d + 1 t i . ( 5.6) 
Loops are long-lived when t f t i , i.e. when α γ d .

Under these assumptions, the scaling loop distribution in the radiation era is given by:

F (1) rad (γ) = C rad (γ + γ d ) 5/2 Θ(α -γ) , C rad 1.6, (5.7) 
where the superscript (1) stands for model M=1. The constant C rad is fixed with numerical simulations of Nambu-Goto strings. The Heavside function Θ ensures that no loops are formed with sizes larger than αt. In the matter era, the scaling loop distribution has two components. On one hand, there are loops formed in the radiation era which survive into the matter era:

F (1),a mat (γ, t) = C rad (γ + γ d ) 5/2 t eq t 1/2 Θ(-γ + β(t)). (5.8)
Here, β(t) is determined using Eq. 5.6 by considering that the largest loops are formed in the radiation era with a length = αt eq , but have since shrunk due to gravitational wave emission:

β(t) = α t eq t -γ d 1 - t eq t .
(5.9)

Loops formed in the matter era have lengths distributed according to

F (1) mat,b (γ, t) = C mat (γ + γ d ) 2 Θ(α -γ)Θ(γ -β) , C mat 0.48.
(5.10)

The total loop distribution in the matter era is then given by the sum of both contributions.

Figure 5.1 shows the loop distribution for different redshift values and fixing Gµ. We observe that the largest contribution is given by smallest loops. At fixed redshift, the shape of the distribution is explained by the behaviour of γ with respect to ΓGµ, see Fig. 5.2. For Gµ = 10 -8 the distribution of loops is constant as long as γ γ d 5 × 10 -7 . During the radiation-to-matter transition, the distribution depends on the redshift as observed (green curves). A discontinuity, visible for low redshift values, results from the radiation-matter transition which is modeled by Heavside functions. 

Model 2

This loop distribution, taken from [START_REF] Jose | The number of cosmic string loops[END_REF], is based on analytical modelling and numerical simulations [START_REF] Jose | Large parallel cosmic string simulations: New results on loop production[END_REF][START_REF] Jose | A new parallel simulation technique[END_REF]. We focus on describing the significant differences with the first model. Here, we no longer consider that all loops are created with a length equal to a fixed fraction of the horizon, α. The loop production is given by simulations. This function depends on the time of loop production t, the loop size and the loop momentum p. In addition to the energy loss of the loops by gravitational wave emissions, the small loops lose energy by redshifting. Indeed, it can be shown that the loop momentum is redshifted like the momentum of a point particle in an expanding universe and decays as p ∝ a -1 [START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF]. However, in this model, the momentum dependence of the loop production function is considered weak and thus this function is integrated over p, to obtain the scaling number density distribution. In the radiation era the scaling distribution is:

F (2) rad (γ) = C (2) rad (γ + γ d ) 5/2 Θ(α -γ) , C (2) 
rad 0.18, α = 0.1 (5.11) where the superscript (2) stands for model M=2. The constant C

(2) rad is fixed by numerical simulations, with a cutoff at maximum size of a loop α. In the matter era we have again two contributions, relic loops from the radiation era give:

F (2),a mat (γ, t) = C (2) rad (γ + γ d ) 5/2 t eq t 1/2 Θ(-γ + β(t)), (5.12) 
this is time-dependant, since it is not a scaling population. Loops produced during the matter era:

F (2),b mat (γ) = C (2) mat (γ + γ d ) 2 Θ(α -γ)Θ(γ -β(t)) , C (2) 
mat 0.27 -0.45γ 0.31 , α = 0.18, (5.13) for γ < 0.18. The loop distribution is plotted in Fig. 5.3. In the radiation era, the loop distribution takes the same power-law behaviour as for model 1, Eq. 5.7. However, this loop distribution is significantly reduced compared to model 1 due to the normalization factors where C

(1) rad /C

(2) rad 10. The functional form is different for the distribution of loops formed in the matter era in model 1. In the case t, the second term in the numerator can be ignored and the functional form agree with Eq. 5.10, with a reduction ∼ 2. The authors of [START_REF] Jose | The number of cosmic string loops[END_REF] attribute this reduction in the number of loops to two effects. First, only about only 10% of the power is radiated into large loops [START_REF] Dubath | Cosmic String Loops, Large and Small[END_REF] and most of the energy leaving the long string goes into smaller loops. This energy is lost to redshifting.

Model 3

This analytical model is presented in [START_REF] Lorenz | Cosmic string loop distribution on all length scales and at any redshift[END_REF] and is based in part on different numerical simulations [START_REF] Ringeval | Cosmological evolution of cosmic string loops[END_REF] from model M=2. Furthermore, as opposed to model M=2, the loop production function is not the quantity inferred from the simulations: rather, authors of [START_REF] Lorenz | Cosmic string loop distribution on all length scales and at any redshift[END_REF] extract directly the distribution of scaling loops from their simulations. Here again, the model is not fully described but only the main differences with previous [START_REF] Polchinski | Analytic study of small scale structure on cosmic strings[END_REF] which itself is theoritically derived. This loop production function is very different from the Dirac loop production function assumed in the one-scale model, where all loops are formed with the same size ( = αt). This is then adjusted to fit Nambu-Goto numerical simulations. In addition to the scale of gravitational decay γ d , a new scale is introduced here. As seen before, the gravitational-wave emission back-reacts on the loops. This has the effect to render the string smoother and smoother on the smallest length scales (in particular for any kinks). Therefore loops cannot produce infinitely small loops: gravitational backreaction cuts off loop production below a certain scale γ c such that5 .:

γ c γ d . ( 5.14) 
The scale characteristic of gravitational backreaction was estimated [START_REF] Polchinski | Cosmic string structure at the gravitational radiation scale[END_REF] to be given by:

γ c = Υ(Gµ) 1+2χ with Υ ∼ 10 χ = 1 -P 2 > 0.
(5.15)

where P is given by numerical simulations [START_REF] Ringeval | Cosmological evolution of cosmic string loops[END_REF] in radiation and matter era, see Tab. 5.1. We note that very small scales on a string network can potentially be dependent on the value of χ which is studied in [START_REF] Auclair | Cosmic string loop production functions[END_REF]. In addition, we see that γ c changes between radiation and matter era. The loop distribution is defined on three different domains:

       (i) γ ≤ γ c (ii) γ c ≤ γ ≤ γ d (iii) γ d ≤ γ ≤ γ max .
(5.16)

For convenience, the distance to the horizon in term of cosmic time is expressed as:

d h (t) = t 1 -ν , ( 5.17) 
where the scale factor is a(t) ∝ t ν with ν = 1/2 in the radiation era and ν = 2/3 in the matter era. The current approach does not describe the superhorizon loop sizes which are not discernible from long strings. Hence, an upper bound on the accessible range of γ appears. Fron Eq. 5.17 we have:

γ max = 1 1 -ν . ( 5.18) 
The exact distribution is given in [START_REF] Lorenz | Cosmic string loop distribution on all length scales and at any redshift[END_REF]. However, we haved worked with the analytic asymptotic loop distribution in the different regimes of loops length assuming the scaling regime is well established. For loops with length scale smaller than the gravitational back-reaction length scale γ c :

F (3) (γ γ c γ d ) C(3ν -2χ -1) 2 -2χ 1 γ d 1 γ P c , ( 5.19) 
which is independent of γ. For loops with length scale in the middle range:

F (3) (γ c < γ γ d ) C(3ν -2χ -1) 2 -2χ 1 γ d 1 γ P . (5.20)
And, for loop with length scale large compared to the scale of gravitational decay γ d :

F (3) (γ d γ < γ max ) C (γ + γ d ) P +1 .
(5.21)

Here C is given by: C = C 0 (1 -ν) 3-P .

(5.22) Table 5.1 gives the numerical values of C 0 and C for loops produced in radiation and matter era.

The loop distribution is plotted on Fig. 5.4, where we can distinguish the three regimes. We can distinguish the distribution in the matter era and radiation era. For γ < γ c the loop distribution is flat in each era, which reveals that the details on how backreaction smooths the strings is not relevant for the number of loops [START_REF] Lorenz | Cosmic string loop distribution on all length scales and at any redshift[END_REF]. By comparison with the other two previous models, the most significant difference is in the very small loop regime (γ γ c ). This model contains many more small loops, due to the inverse power of the gravitational-wave backreaction scale γ c , which is itself very small. The distributions of the three models can be compared in this regime. We compare the Eq. 5.19 in radiation era with Eq. 5.7 for model 1 and Eq. 5.11 for model 2, in the limit γ γ c γ d . The distribution ratio is then given by: 1) .

F (3) F (i) i=1,2 γ γc ∼ k (3,i) ×(Gµ) -0.74 with k (3,1) ≈ 2.2 × 10 -2 k (3,2) ≈ 2.0 × 10 -1 ≈ 10 × k (3,
(5.23)

For example, if we take Gµ = 10 -8 , there are ∼ 2 × 10 4 more very small loops in the radiation era for model M=3 than in model M=1. The number of very small loops increases even more when Gµ drops. For Gµ = 10 -13 , there are ∼ 10 8 more very small loops in the radiation era for model M=3 than in model M=1. In the next section, we will see that such a high number of small loops in model M=3 will have important consequences in the rate of gravitational-wave events we can detect and on the amplitude of the stochastic gravitational wave background.

The rate of bursts

In this section we derive the expression for the cosmological rate of burst events generated by a cosmic string network [START_REF] Siemens | Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints[END_REF]. The detection of gravitational waves from cosmic strings is conditioned by this rate, in addition it is also needed to evaluate the upper limits. In the O1 analysis, we set constraints on the string tension Gµ and the probability of intercommutation p, since as distinct from the topological strings, when superstrings meet they reconnect with probability p < 1. However, the dependence on p of the models is poorly known, so in the O2 analysis we only set upper limits on the string tension.

The rate of gravitational-wave events we expect to detect from a proper volume dV (z) at redshift z in an interval of amplitude dA q is:

d 2 R (M) q dV (z)dA q (A q , z, f ) = 1 1 + z ν (M) q (A q , z)∆ q (A q , z, f ), (5.24) 
where ν (M) q (A q , z) represents the number of cusp/kink features per unit space-time volume which produce gravitational waves with amplitudes between A q and A q + dA q at redshift z. The function ∆ q (A q , z, f ) is the fraction of gravitational-wave events of amplitude A q that are geometrically observable at frequency f and redshift z. We have seen that geometricaly the radiation from cusps will be in a conic region with half opening angle θ m . The corresponding solid angle is Ω πθ 2 m . Thus the probability that the line of sight is within this solid angle is Ω/4π θ 2 m /4. In contrast, kinks radiate continuously, as kinks travel on a string loop they radiate in a fan-like pattern, therefore Ω 2πθ m , and the probability of observing a radiation from a kink is then Ω/4π θ m /2. We then combine the cutoff of large angles and beaming effects to express the fraction of gravitational-wave events that are observable as:

∆ q ( , z, f ) ∼ θ m ( , z, f ) 2 3(2-q) × Θ(1 -θ m (z, , f )). ( 5.25) 
The factor of (1 + z) -1 translates the fact that burst coming from large redshift are spaced further apart in time.

We have seen in Sec. 3.2.5, that the fundamental period of oscillation of a loop of length is T = /2. We can write the number of cusp/kink features per unit space-time volume on loops with lengths in the interval d at a redshift z as:

ν (M) q ( , z)d = 2 N q n (M) ( , t(z))d , ( 5.26) 
where the superscript (M) stands for the loop distribution model M = {1, 2, 3} described above and we denote by N q the number of cusp/kink features per oscillation. We would like to express this quantity in terms of the amplitude A q . From the definition of the amplitude in Eq. 3.117, the change of variables from to A q gives:

(A q , z) = A q ( , z)(1 + z) q-1 r(z) g 1 Gµ 1/2-q
and d dA q = (2 -q)A q .

(5.27)

Then we rewrite:

ν (M) q (A q , z)dA q = ν (M) q ( (A q , z), z) d dA q dA q = ν (M) q ( (A q , z), z) (A q , z) (2 -q)A q dA q .
(5.28)

Finally, the rate given in Eq. 5.24 is reexpressed as:

d 2 R (M) q dzdA q (A q , z, f ) = 2N q H -3 0 ϕ V (z) (2 -q)(1 + z)A q t 4 (z) × F (M) (A q , z) t(z) , t(z) × ∆ q (A q , z, f ),
(5.29) where we injected the loop distribution F (M) . The proper volume is expressed as a function of the the interpolating function dV (z) = ϕ V × H -3 0 dz given in Eq. 3.25. Since the gravitational-wave detectors are sensible to the strain amplitude using the frequency-domain waveform in Eq. 3.117, the rate can also be written as:

d 2 R (M) q dzdh (h, z, f ) = 2N q H -3 0 ϕ V (z) (2 -q)(1 + z)ht 4 (z)
× F (M) (hf q , z) t(z) , t(z) × ∆ q (hf q , z, f ).

(5.30) The rate of gravitational waves produced by cusps or kinks given in Eq. 5.30 is marginalized over the strain amplitude and the redshift. Therefore, we consider a wide enough (z, h) parameter space to to ensure a full integration. We consider a range from z min = 10 -12 to z max = 10 32 , at which we reach the Planck scale. The gravitational-wave rate is limited by two physical conditions, which set the integration limits. The gravitational waves emitted by cusp/kink features are beamed and the maximal gravitational-wave beam opening angle must satisfy: θ m < 1, see Sec. 3.3. In addition, the relative size of cosmic string loops can not exceed a maximal value given for each loop distribution model: γ < γ max . By using Eq. 3.117 and Eq. 3.118 we turn these two constraints into conditions on the strain amplitude:

         θ m < 1 ⇒ h(z) > h min (z) ≡ g 1 (g 2 ) 2-q GµH 0 f 2 (1+z)ϕr(z) γ < γ max ⇒ h(z) < h max (z) ≡ g 1 Gµ(γmaxϕt(z)) 2-q f q (1+z) q-1 ϕr(z)H q+1 0 .
(5.31) Given these conditions, we perform the strain amplitude integration before the redshift integration:

R M q = zmax z min dz hmax(z) h min (z) dh d 2 R M q dzdh (h, z, f ).
(5.32) Since each integral cover a wide range of redshift and strain amplitude, we perform a logarithmic integral using 500 bins for each variable. 

(h) = ∆ h (h) zmax z min dz d 2 R M cusps dzdh (h, z, f = 100 Hz), (5.34) 
with ∆ h (h) is the strain amplitude bin width at strain amplitude h.

We separate the contribution from loops in the matter era (blue) and in the radiation era (red/yellow). First observation, all models present the same general bahaviour on redshift and strain amplitude. Gravitational waves with high amplitude are produced in the matter era with a low rate, while gravitational waves with low amplitude are produced in the radiation era with a high rate. The redshift cannot be arbitrarily large, and the strain amplitude arbitrarily small because the loop size is limited: γ < γ max . We also note the discontinuities due to the Heavside functions in the loop distributions for model 1 and 2. At f = 100 Hz ground-based gravitational wave detectors are typically sensitive to strain amplitude h ∼ 10 -23 , where we see that the burst search is expected to be sensitive to loops in matter era but produced in radiation era. Indeed, the size of loops produced in the radiation era decreases over time and for small loops the beaming angle is larger, thus the probability detection increases. We can compare the rate given by Eq. 5.33 by fixing the strain amplitude: (2) rad ≈ 10. While for model 3, the rate at this strain amplitude is dominated by small loops which are much more abundant than in the other two models. The gravitational-wave rate in Eq. 5.30 depends implicitly of the string tension in the loop distribution function F and in the integration limits given by Eq. 5.31. Figure 5.7 shows the dependence on Gµ for the gravitational-wave rate for cusps for models M=3. 

Stochastic gravitational-wave background

A stochastic background of gravitational waves is a gravitational-wave signal produced by a large number of weak, independent, and unresolved sources, see Sec. 1.5. Cosmic strings produce a stochastic background of gravitational waves, whose spectrum is usually defined by the dimensionless quantity:

Ω GW (t 0 , f ) = f ρ c dρ GW df (t 0 , f ). (5.36)
Here, dρ GW is the energy density of gravitational waves in the frequency range f to f + df observed today at t = t 0 , and ρ c is the critical energy density of the Universe, i.e. the energy required for a spatially flat Universe. From [START_REF] Siemens | Gravitational wave stochastic background from cosmic (super)strings[END_REF][START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF], the gravitational wave energy density is given by .37) where it is computed for a specific choice of free parameters Gµ and p. The stochastic background generated by a network of cosmic strings includes powerful events which occur infrequently, sometimes referred to as "popcorn-like" [START_REF] Regimbau | The stochastic background from cosmic (super)strings: popcorn and (Gaussian) continuous regimes[END_REF]. These events are characterized by a rate of occurence that is lower than the signal frequency. Since these events are observed as individually separable bursts they should not be counted within the computation of Ω GW (f ) [START_REF] Damour | Gravitational wave bursts from cosmic strings[END_REF]. Therefore, following [START_REF] Olmez | Gravitational-Wave Stochastic Background from Kinks and Cusps on Cosmic Strings[END_REF], this condition on the rate can be implemented by a cutoff on the strain amplitude h * , defined as:

Ω GW (f ; Gµ, p) = 4π 2 3H 2 0 f 3 h * 0 h 2 dh × +∞ 0 dz d 2 R (M) dzdh (h, z, f ; Gµ, p). ( 5 
∞ h * dh +∞ 0 dz d 2 R M dzdh (h, z, f ) = f. (5.38)
This equation is solved for h * and used to exclude rare events using the integration in Eq. 5.37. This procedure removes large amplitude events (those with strain h > h * ) that occur at a rate smaller than f . we found that removing the rare burst has no significant effect on the predicted gravitational-wave energy density Ω (M ) GW (f ) and so the integration could also be done with h * → +∞. The total stochastic gravitational wave spectrum is given by the superposition of unresolved signals from cusps and kinks, and so the total energy density is given by adding both contributions Figure 5.10 compares the spectrum for the three models, adding both the kink and the cusp contribution for Gµ = 10 -8 . At very high fre- quency, the gravitational wave energy density spectrum Ω (M ) GW (f ) is flat, i.e. frequency independant for each models. For model M=1 and M=2 the value of the plateau only depends on two quantity the string tension Gµ and the radiative efficiency coefficient Γ [START_REF] Auclair | Probing the gravitational wave background from cosmic strings with LISA[END_REF]. The bump in the spectrum is dominated by matter era loops, for the string tension considered Gµ = 10 -86 . Another feature observable here, is the the variation in the number of relativistic degrees of freedom described by the function G(z) (see Sec. 3.3) in the radiation era, which produce smooth variations in the spectrum at high frequency [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF][START_REF] Auclair | Probing the gravitational wave background from cosmic strings with LISA[END_REF]. The spectrum predicted by the model M=3 has a different shape than those of models M=1 and M=2. The spectrum Ω

(3) GW (f ) exhibits a knee followed by a maximum. These two features in the spectrum are shown to correspond to the change of behaviour of the loop distribution at γ = γ d (knee) and γ = γ c (peak) [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF].

Comparing models M=1 and M=2, we note that the spectrum predicted by model M=2 is about 10 times weaker than that predicted by model M=1. Figure 5.11 presents the different contribution to the gravitational wave energy density spectrum Ω (M ) GW (f ) predicted by model M=1. The distribution is clearly dominated by the contribution of loops in the radiation era for most of the frequency range. Therefore, the difference can be attributed to the ratio of the normalization factors C . The contributions from loops in the radiation (z > 3366) and matter (z < 3366) eras are separated. In addition, we also show for loop in the matter era, the effect of loops produced in the matter era and the ones produced in the radiation era.

The spectrum predicted by model M=3 is larger than those of models M=1 and M=2. Figure 5.12 shows the contribution of the different loop length regime to the energy density Ω (M ) GW (f ) in the radiation era and in the matter era, given by model M=3. In both cosmological epoch, the very small loops contribute significantly to the spectrum. This explains why this model predict the largest gravitational-wave energy density Ω (M ) GW (f ).

Burst and stochastic searches are sensitive to different types of loops. Stochastic search is sensitive to loops formed in the radiation era, while burst search is sensitive to loops formed in the material era. Thus these two searches are complementary, in the sense that they probe different parts of the redshift distribution. We will see in the next section, how these differences are reflected on the constraints of the parameter space. 

Results

No gravitational waves produced by cosmic strings was identified in the LIGO-Virgo O1/O2 burst search. However, we can use the detection efficiency estimation to constrain the string tension Gµ for topological strings, and the intercommutation probability (p < 1) for superstrings. The general idea is to scan the two-dimensional parameter space for a given loop distribution model M, of the dimensionless string tension Gµ (10 -12 < Gµ < 10 -6 ), and the intercommutation probability p (10 -3 < p < 1 ). For each point in this parameter space, we compute the effective rate R (M) eff,q . It represents the rate of detectable events in the burst search, which is obtained by convolving the detection efficiency curve with the cosmic string rate given by Eq. 5.29. Then the parameter space is ruled out at 95% level when the effective rate exceeds the expected rate from a Poisson process over an observation time T obs . In parallel, for each point in this parameter space, we calculate the predicted gravitational-wave energy density Ω (M) GW and compare it to the stochastic gravitational-wave spectrum predicted by the different and complementary observations: LIGO-Virgo stochastic search, pulsar timing arrays (PTA), big bang nucleosynthesis (BBN), and cosmic microwave background (CMB).

Constraints

LIGO-Virgo measurements

The effective detection rate defined for a loop distribution model M is given by: R (M) eff,q (Gµ, p) = +∞ 0 dA q e q (A q ) × +∞ 0 dz d 2 R (M) q dzdA q (A q , z, f * ; Gµ, p).

(5.39)

Here e q (A q ) is the detection efficiency to cusp/kink gravitational wave events, which is estimated by injecting simulated signals of known amplitude A q in the data, as described in Sec. 4.7.2. The detection efficiency is measured as the fraction of simulated signals recovered with Λ > Λ h , where Λ h is the ranking statistic value associated to the loudest event of the search, see Sec. 4.9 and Sec. 4.10. The predicted detection rate is given by Eq. 5.29. The frequency f * = 30 Hz, is the lowest highfrequency cutoff used in the search template bank, see Sec. 4.4.2. This frequency provides the maximum angle between the line of sight and the cusp/kink on the loop, as shown in Sec. 3.3. We can compute upper limits based on the loudest observed event following the method described in [START_REF] Biswas | The Loudest event statistic: General formulation, properties and applications[END_REF]. If we assume that the cosmic string burst events are Poisson distributed, the probability that no events have been detected by the burst pipeline with a ranking statistic Λ > Λ h , in an observation time T obs is [START_REF] Siemens | Gravitational wave bursts from cosmic (super)strings: Quantitative analysis and constraints[END_REF]:

P = exp -T obs × R (M)
eff,q .

(5.40)

Therefore, the probability η that at least one event with Λ > Λ h shows up is η = 1-P .

Then if η = 0.95, 95% of the time we would have expected to detect an event with Λ > Λ h . The rate expected from a random Poisson process with η = 0.95 over an observation time T obs is:

R (M) eff | 95%
2.996 T obs .

(5.41)

We scan the parameter space of model M of the dimensionless string tension Gµ (10 -12 < Gµ < 10 -6 ), and the intercommutation probability p (10 -3 < p < 1 ), and we say that the parameter space is excluded at 95% confidence level when the effective detection rate R (M) eff,q exceeds R (M) eff | 95% . For example, if we take the observation time of O1 run, 1/T obs,O1 = 2.40 × 10 -7 Hz, our upper limit statement becomes R (M) eff,q (Gµ, p) > 7.2 × 10 -7 Hz.

Similarly for the stochastic search, the cosmic string parameter space (Gµ,p) is scanned and for each point in this parameter space, the gravitational wave energy density Ω (M) GW (f i ; Gµ, p), in the frequency bin f i , is computed for a loop distribution model M. Frequency-dependent upper limits on the energy density Ω GW (f ) are given by the stochastic gravitational-wave background search using the data of the initial LIGO and Virgo detectors [START_REF] Aasi | Improved Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO and Virgo Data[END_REF] (science run S6), the first observing run O1 [START_REF] Abbott | Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run[END_REF] and the second observing run O2 [START_REF] Abbott | A search for the isotropic stochastic background using data from Advanced LIGO's second observing run[END_REF] of the Advanced LIGO and Advanced Virgo detectors. To interpret these limits into constraints on cosmic string parameters, we use a likelihood function defined as:

ln L(Gµ, p) ∝ i -Y (f i ) -Ω (M) GW (f i ; Gµ, p) 2 σ 2 (f i )
.

(5.42)

Here, Y (f i ) represents the expectation value of the cross-correlated detector data in each frequency bin, i.e. the measurement of the gravitational-wave energy density (cf. Sec. 1.5) and σ(f i ) is the standard deviation, i.e. the associated uncertainty. The likelihood function is the probability of the measurement of the gravitational-wave energy density Y (f i ), given the the gravitational wave energy density predicted by the model. This function is evaluated at each point of the parameter space, and a 95% confidence contours is computed by maximizing ln L(Gµ, p). In addition, it is also possible to compute the upper limit on Ω GW (f ) at design sensitivity for the Advanced LIGO and Advanced Virgo detectors.

Other experiments

The stochastic background of gravitational waves is expected to imprint on the arrival time of pulses from the most stable millisecond pulsars. The basic idea behind Pulsar Timing Arrays (PTAs) is that, when a gravitational wave travels through space between the source and the observer it creates space-time perturbations that manifest as anomalies in the observed periodicity of the source. This principle can be used to search for gravitational-waves of large period. Here again, the bounds on the energy density apply in a specific frequency band at nanohertz frequencies. We use the results from the Parkes Pulsar Timing Array (PPTA) measurements [START_REF] Lasky | Gravitational-wave cosmology across 29 decades in frequency[END_REF][START_REF] Shannon | Gravitational waves from binary supermassive black holes missing in pulsar observations[END_REF]:

Ω PTA GW (f = 2.8 × 10 -9 Hz) < 2.3 × 10 -10 (5.43)

The spectra predicted by the three loop distributions Ω (M) GW (f ; Gµ, p) models is compared to this bound, to obtain constraints on the cosmic string parameter space.

In addition, two others limits on the total energy density of gravitational waves Ω GW (f ) are derived with the Big-Bang Nucleosynthesis (BBN) and the Cosmic Microwave Background (CMB) observations. These bounds are said indirect, because they are upper limits for the integral of Ω GW (f ). The abundances of the lightest nuclei can be used to set constraints on the expansion rate of the Universe. This is done by constraining the effective number of degrees of freedom N eff at the time of the BBN. Under the assumption that only photons and neutrinos contribute to the radiation energy density, N eff is equal to the effective number of neutrino species during nucleosynthesis, corrected by a residual heating of the neutrino fluid due to electron-positron annihilation: N eff 3.046 [START_REF] Mangano | Relic neutrino decoupling including flavor oscillations[END_REF]. Any deviation from this value can be attributed to an additional relativistic radiation, e.g. gravitational waves produced by cosmic string cusps or kinks generated before the BBN. The Big Bang nucleosynthesis constraints provide an upper limit on the energy density of gravitational-wave given by: Ω BBN GW (Gµ, p) = Here, the lower bound on the integrated frequency region is determined by the size of the horizon at the time of the BBN [START_REF] Binetruy | Cosmological Backgrounds of Gravitational Waves and eLISA/NGO: Phase Transitions, Cosmic Strings and Other Sources[END_REF]. The range of the redshift in Eq. 5.37 must be chosen properly for each measurement. For BBN bounds, the integration is performed for z > z BBN = 5.5 × 10 9 , since we consider kinks and cusps generated before BBN. The presence of gravitational waves at the time of photon decoupling could alter the observed CMB. Similarly to the BBN bounds, the total energy density of gravitational waves at the time of the decoupling is [START_REF] Pagano | New constraints on primordial gravitational waves from Planck 2015[END_REF]:

Ω CMB GW (Gµ, p) = Once again, the lower bound on the integrated frequency region is determined by the size of the horizon at the time of decoupling. The integration of Eq. 5.37 is performed for z > z CMB = 1089.

O1/O2 results

Here we first present the constraints on the dimensionless string tension Gµ and the intercommutation probability p for the three cosmic string loop distribution models under consideration, using the data from the first observing run of Advanced LIGO detectors. The three models were developed for p = 1, for smaller intercommutation probability p we use a dependence 1/p for the loop distributions presented in Sec. 5.1. Table 5.2 summarizes the different observations included in this work and specifies their frequency band and the type of loops to which they are sensitive. Figure 5.13 shows the excluded regions in the parameter space for M = {1, 2, 3}, based on the O1 LIGO burst and stochastic observational constraints. In addition to LIGO results, we also present the limits from PTA measurements and indirect limits from BBN and CMB.

Experiment

Frequency band Type of loops LIGO-Virgo burst 10-10 Table 5.2: Experiments used to derive the constraints on Gµ and p presented in. [START_REF] Abbott | Constraints on cosmic strings using data from the first Advanced LIGO observing run[END_REF] for the three loop distribution models considered M = {1, 2, 3}. In addition the frequency range of each experiment is given which informs us of the type of loops these experiences are likely to constrain.

For model M=1, the O1 LIGO burst search can not access to topological strings, i.e. strings with a probability of intercommutation p = 1. However, for superstrings p < 1, the loop distribution is larger and therefore the rate predicted by this model increases. Thus, the burst search is able to constrain this class of strings. Tighter constraints are obtained when probing the stochastic background of gravitational waves produced by cosmic strings. For this model, the topological strings are constrained by Gµ < 5 × 10 -8 by the O1 LIGO stochastic analysis. Indeed, we have seen that the LIGO stochastic search is sensitive to loops created in the radiation era for which the rate is much higher, than the loops present in the matter era, to which the burst search is sensitive. The indirect limits from CMB measurements are more restrictive than the one produced by the BBN measurements. This difference can be associated to the range of the redshift integral in Eq. 5.37: the integral is performed over a smaller interval in the case of BBN. Constraints from the pulsar timing array are the most competitive. For topological strings we get, the PTA bounds provide Gµ < 3.8 × 10 -12 . At nanohertz frequency, the PTA experiments are sensitive to loops produced in the matter where the gravitational wave energy density Ω (1) GW (f ), reaches its maximum, cf. Fig. 5.11. The different experiment are complementary as they probe different regions of the loop distributions. For model M=2, the cosmic string loop distribution model predicts a smaller density of loops and the LIGO constraints are therefore less strict. Thus, the O1 LIGO burst is still not able to put constraints on the string tension Gµ for topological strings. Assuming p = 1, the constraints is Gµ < 7 × 10 -7 for the indirect CMB bound, and Gµ < 1.5 × 10 -11 for the PTA measurements. The last model, M=3, is the one that predicts the largest loop distribution for very small loops. As we have seen, for small loops the gravitational-wave detection rate for cusps and kinks is higher since the angle subtented by the line of sight and the cusp/kink is larger. Consequently, the parameter space studied here is almost entirely excluded by the LIGO stochastic O1 analysis. The PTA bounds also almost exclude all the region of the parameter space studied here, with Gµ < 5.7 × 10 -12 for topological strings. The O1 LIGO burst constraint, althought weaker, complements that result since the burst analysis is sensitive to gravitational waves produced in the matter era (z<3300). These gravitational wave bursts originate from small loops which used to be large when formed in radiation era. For this model and p = 1, the burst search constraints is Gµ < 8.5 × 10 -10 at 95% confidence level.

In O2 analysis, the sensitivity of this run being slightly better than that of O1 we combine the burst detection efficiencies, see Sec. 4.10. This time we consider only topological strings, because the dependence of models with the intercommutation probability is poorly known. In addition, similarly with O2 LIGO stochastic search, burst search consider only models M=2 and M=3, since model M=1 presented here, makes too simple assumptions to describe in a realistic way the loop distribution. As in O1, the burst search is not able to set constraints for M=2 since the predicted rate is too low at LIGO-Virgo frequencies. However, we update the upper limit on the string tension for model M=3 with Gµ < 4.2 × 10 -10 [146]. This O1+O2 upper limit has improved by a factor ∼ 2 with respect to the previous limit obtained with O1 data alone. Concurrently, the LIGO stochastic O2 analysis constrains these models with Gµ < 1.1 × 10 -6 and Gµ < 2.1 × 10 -14 , respectively for model M=2 and M=3 [START_REF] Abbott | A search for the isotropic stochastic background using data from Advanced LIGO's second observing run[END_REF]. The O1+O2 LIGO stochastic limit obtained for model M=3 is stronger than that derived with PTA measurements.

The constraints on the cosmic string tension are tightening to very low Gµ values. In the near future, even if the next round of pulsar timing observations could improve the constraints on Gµ, it is not expected to be the most competitive bounds. Indeed, at lower Gµ values the gravitational-wave energy density peak shifts to high frequencies as observed on Fig. 5.16, which are out of reach of PTA experiments [START_REF] Auclair | Probing the gravitational wave background from cosmic strings with LISA[END_REF]. Furthemore, the indirect limits from BBN and CMB data wil also be limited by the precision on the N eff parameter which can be achieved. However the sensitivity of Advanced LIGO and Advanced Virgo will improve in the coming years. Figure 5.13 also shows the upper limits the stochastic search would achieve with an Advanced LIGO-Virgo detector network working at design sensitivity. This bound is expected to surpass all the current bounds used in this work.

Searching for kink-kink collisions

In this section we present a preliminary work. When the number of kinks on a loop increases, two kinks can meet and produce a gravitational-wave burst. We study the impact of this new waveform on the burst and stochastic search. In the future, it can be used to set constraints on a new parameter space (Gµ, N k ), where N k is the number of kinks on a loop.

Burst search

So far we have only considered gravitational-wave bursts generated by single cusp/kink features. We have seen in Sec 3.2.6, that kinks can be created during string intercommutation by pairs. So, when the number of kinks per loop oscillation is N k ≥ 2, two kinks can meet, producing a gravitational-wave burst. In addition, other mechanisms may lead to the proliferation of kinks on a loop, for example the existence of junctions between strings [START_REF] Binetruy | Gravitational Wave Bursts from Cosmic Superstrings with Y-junctions[END_REF][START_REF] Binetruy | Proliferation of sharp kinks on cosmic (super-)string loops with junctions[END_REF][START_REF] Binetruy | Gravitational wave signatures from kink proliferation on cosmic (super-) strings[END_REF] (cf. Sec 3.2.6). The waveform from this type of burst was given in Sec 3.3:

h( , z, f ) = A(z) q=2 f -q Θ(f h -f )Θ(f -f ), (5.46) 
where in particular, we note that the amplitude of such a burst is independant of the loop size :

A(z) q=2 = g 1 Gµ (1 + z)r(z) .

(5.47)

The dependency in , the loop size, has disappeared in comparison with the predicted gravitational-wave amplitude produced by a cusp/kink. As mentioned above, cusps and kinks emit beamed gravitational-wave meaning, that the waveform is only valid for directions near the cusp or kink direction, and is cutoff for angle larger than the maximal gravitational-wave beam opening angle θ m . In contrast the emission at a kink-kink collision is isotropic.

This waveform has been added to the burst pipeline described in Sec 4. We then conducted an analysis using the data from the first and second observing run of Advanced LIGO and Advanced Virgo. We only analyzed the shifted data (close box analysis), since the purpose of this work, is simply to estimate the search efficiency curve as a function of the kink-kink collision signal amplitude, necessary to compute the constraints. There are one major difference with the previous analyses. We have seen that only one parameter is used to construct the set of matched-filter templates, the high frequency cutoff f h . The previous analysis used 31 templates, spanning the range of frequency from f h,min = 30 Hz to f h,max = 4096 Hz. However, since kink-kink bursts are emitted in all direction, we only need one template characterized by the largest high frequency cutoff f h,max , given the Nyquist frequencys. We applied the same list of vetoes used in O1 and O2 analysis. 

Constraints

In Sec 5.2 we derived the expression for the cosmological rate of burst events produced at cusp/kink features. Since the amplitude does not depend on the loop size , we can not use the expression given by Eq. 5.29 which diverge at q = 2. Indeed, the change of variable used in Eq. 5.27 to pass from to A q is no longer valid. In this case instead of using the set of variables (A q ,z), we work with (γ,z), where we recall that γ is the relative loop size γ ≡ /t. From Eq. 5.24 we get:

d 2 R (M) q dzdγ (γ, z, f ) = 2N q H -3 0 ϕ V (z) (1 + z)γt 4 (z)
× F (M) (γ, t(z)) × ∆ q (γ, z, f ).

(5.48)

Here, we recall that N q is the average number of features producing gravitational waves per loop oscillation, namely the number of cusps N c , the number of kinks N k or the number of kink-kink collisions N kk . We focus on the kink-kink collision case. The fraction ∆ kk (γ, z, f ) of observable bursts is well given by Eq. 5.25, for an isotropic gravitational-wave emission. The gravitational-wave rate is then integrated over the redshift z and the relative loop size γ. The variables (γ, z) define an integration domain that physically still depends on two conditions:γ < γ max and θ m < 1. This last condition imposes a lower cut-off in the size of loops:

θ m < 1 ⇒ γ > γ min (f, z) = 1 g 2 f t(z)(1 + z) .
(5.49)

The gravitational-wave energy density is now given by: with z * , the maximal redshift for which the bursts can be separated. . The spectrum has the same shape for each type of bursts. In addition, for both model we observe that the cusp case dominates over the kink case by roughly an order of magnitude, which dominates by the same order the collision case, which seems to be in agreement with the results obtained for model M=3 in [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF]. If we consider that there are an even number N k of kinks on a loop, there is N kk = N 2 k /4 collisions. Therefore, the number of collisions on a loop evolves as the square of the number of kinks, and consequently may be the major contribution to the stochastic gravitational-wave background produced by cosmic strings.

Ω GW (f ; Gµ) = 4π 2 3H 2 0 f 3 ∞ z *
The number of cusps, kinks and collisions per loop oscillations is a non-trivial parameter to derive, and is the subject of ongoing work. Following [START_REF] Jose | Cosmic string loop shapes[END_REF], it is reasonable to consider that the number of cusps on a loop is N c = O(1). In particular, as already mentioned, simulations shows that the presence of kinks render the appearance of cusps less likely. In addition, the smoothing of the loops through gravitational-wave backreaction effect, almost always introduces two cusps on each loop. On the other hand, the number of kinks can increase "freely", so there is no real reason to consider that this number is N k = O(1). Following the method described in Sec 5.4, we want to use the burst detection efficiency curve to constrain the parameter space (Gµ,N k ). For simplicity, we consider loops without cusps. Thus, the gravitational-wave emission of these loops is dominated by bursts produced by kinks and collisions. We assume also that kinks are created in pairs, as it is observed in Nambu-Goto simulations such that the number of collisions is given by N kk = N 2 k /4. In addition, as discussed in [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF] the number of cusp/kink/collision features per loop oscillation cannot take arbitrarily large values. It is limited by the power lost into gravitational waves P GW = ΓGµ 2 , see Sec. 3.3.3. In this work, we consider the limits determined in [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF] with Γ = 50 7 : N k ≤ 257, N kk ≤ 4459.

(5.52)

These values depend on other parameters, and may underestimate the maximum number of kink or kink-kink collision events on a loop [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF].

For each point in the parameter space (Gµ, N k ), we compute the effective rate R M eff,q , given by Eq. 5.39, namely the rate of detectable events by the burst search. We consider the contributions from gravitational waves produced by kinks and kink-kink collisions. We scan the parameter space of model M of the dimensionless string tension Gµ (10 -14 < Gµ < 10 -6 ), and the number of kinks N k , and we say that the parameter space is excluded at 95% confidence level when:

R M eff,kink × N k + R M eff,collision × N 2 k 4 > 2.
996 T obs .

(5.53)

Figure 5.17 shows the excluded regions in the parameter space (Gµ, N k ) for M=2,3, using the O1+O2 LIGO burst observations. We observe that for model M=2, the For model M=3, this transition is smooth. The constraint on the number of kinks is high in comparison with theoretical predictions. This suggests that the burst search is not sensitive enough to gravitational-waves produced by kinks in the context of model M=2. We conclude that the burst search cannot constrain the number of kinks N k for this model. The model M=3, predicts a larger gravitational-wave rate for very small loops. The constraint on the number of kinks is stronger but remains orders of magnitudes above theoritical expectations8 . The burst search cannot constrain this model either. However, in [START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF] it is shown that the Advanced LIGO and Advanced Virgo stochastic search is able to severely constrain the number of kinks for this model, with Gµ < 8.8 × 10 -14 for a high number of kinks (20 < N k < 133). In summary, these results will be used for the O3 analysis. For O3 data, instead of targeting competitive upper limits, the burst search will be tuned to maximize the detection of individual bursts from cusps, kinks and, for the first time, kink-kink collisions. On the other hand, it is the LIGO-Virgo stochastic search that is expected to strongly constrain the parameters of the cosmic strings.

Conclusion and prospects

The second generation of ground-based interferometric gravitational-wave detectors has incorporated several upgrades compared to the first generation. These developments have led to a significant increase in sensitivity, even if the detectors are not yet operating at design sensitivity. The first observing run (O1) began in september 2015, where Advanced LIGO collected data until January 2016. This run has culminated in the first direct detection of gravitational waves from a black hole coalescence, GW150914. The second observing run (O2) started on November 30, 2016 to August 25, 2017. Advanced Virgo joined the Advanced LIGO detectors, from the 1st of August until the 25th of August 2017. The addition of Advanced Virgo to the network of detectors played a crucial role on the source localization, in particular, for the case of the first detection of gravitational waves from a neutron star coalescence, GW170817. In this context, we carefully characterized the transient noise around the time of the gravitational-wave detections. These investigations were used to ensure that these transient noise did not affect the source localization and the event parameter estimation.

In addition to binary systems, there are various interesting gravitational-wave sources that could be detected in the future by current ground-based interferometric detectors. Cosmic strings are one-dimensional topological defects that can form during phase transitions in the early Universe. They are good candidates to bridge between cosmology and high energy physics. They may also form in string theory and are referred to as cosmic super-strings. The most potent gravitational-wave bursts are produced at regions of cosmic string loops called cusps and kinks, which aquire large Lorentz boost. We have performed a search for gravitational wave bursts produced by cusps and kinks in the data from the first and the second observing run of Advanced LIGO and Advanced Virgo.

A significant part of the O1 analysis was dedicated to understand the background of accidental triggers due to detector noise. The result of this work led to the application of DQ flags which improved the cosmic string search sensitivity. However, short transient noise events, that resemble the gravitational-wave signature of cosmic string cusps or kinks, significantly reduce the sensitivity of the search. These are known as blip glitches. We investigated carefully these transient noise events, and we did not identify any particular subset of blip glitches correlated with a detector auxiliary or environmental sensor channels. In the future, it will become even more essential to mitigate these glitches from the data. In the absence of a detection, the sensitivity of the search to cusp and kink signals was estimated. This was used to set contraints on the parameters which characterize a network of Nambu-Goto cosmic strings and super-strings, namely the dimensionless string tension Gµ/c 2 and the probability of intercommutation p. To do this, we examined three models that predict the loop distribution, from which the detection rate was derived. We subsequently compared the burst constraints with those derived from other experiments, in particular from search for the stochastic gravitationalwave background with the LIGO-Virgo observations. Similarly, we analyzed the data from the second observing run of Advanced LIGO. We also conducted a three-detector search using the data collected by Advanced Virgo in August 2017. We maximized the search sensitivity by performing specific data quality studies to reject part of glitches that mimic the waveform from cosmic string cusps/kinks. In particular, we showed that we have well understood the origin of the blip glitches in Virgo. However, the sensitivity of Virgo was not sufficient to perform a three-detector search. Finally, we used the O1 and O2 combined detection efficiencies to update constraints on the string tension for topological strings (p=1).

The Advanced LIGO and Advanced Virgo have started their third observing run (O3) on April 1, 2019. The average BNS range increased for both detectors up to roughly 50 Mpc for Virgo, 110 Mpc for LIGO Hanford and 130 Mpc for LIGO Livingston. Thanks to the large gain in sensibility in Virgo, the O3 cosmic string burst analysis will be a full three-detector search. Since the first direct detection of gravitational waves, it became necessary to be able to claim a cosmic string detection at a 5σ confidence level. The current pipeline cannot achieve such a high confidence level. To that purpose, a pipeline is in development which uses a new ranking statistic. It includes a model for the noise population without using the time slides method of background estimation [START_REF] Cannon | Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation[END_REF]. In addition, a new type of gravitational-wave emission was studied. Indeed, when there is more than one kink per loop oscillation, kinks can meet and produce a gravitational-wave burst. While the bursts emitted at cusp/kink features are strongly beamed, the gravitational-wave emission at a kink-kink collision is isotropic. We included the new waveform in the pipeline and conducted the first search for bursts produced by the collision of two kinks. The number of kinks per loop oscillation is currently unknown and constitutes the main source of theoretical uncertainties on the predicted cosmological rate. Moreover, the new waveform amplitude does not depend on the loop size anymore. We then derived the new predicted rate by the models, to set constraints on the number of kinks per loop oscillation for different values of the string tension. This work will be used for the O3 LIGO-Virgo analysis.

In the more long-term, detectors will join to the ground-based interferometric gravitational-wave detectors: Kamioka gravitational-wave detector (KAGRA) in Japan, and LIGO India. This will provide various advantages, for example for the estimation of the parameters which is the next step after a cosmic string detection. Finally, it is expected that the Laser Inter-ferometer Space Antenna (LISA) will be able to probe cosmic strings by measuring the gravitational-wave background and improve even more the constraints on the cosmic string parameters [START_REF] Auclair | Probing the gravitational wave background from cosmic strings with LISA[END_REF], in case of non-detection.
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 1 Figure 1: Distribution statistique du SNR pour les triggers dans H1 pendant O1.
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 23 Figure 2: En rouge, la distribution cumulative du nombre d'évènements en fonction de la statistique Λ pour l'analyse des (a) cusps (b) kinks (O1). L'estimation du bruit de fond est représentée par la courbe noire, avec une erreur de 1σ illustrée par la zone hachurée.
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 4 Figure 4: (a) En rouge, la distribution cumulative du nombre d'évènements en fonction de la statistique Λ pour l'analyse des cusps (O2). L'estimation du bruit de fond est représentée par la courbe noire, avec une erreur de 1σ illustrée par la zone hachurée. (b) Sensibilité de la recherche en fonction du l'amplitude du signal pour les cusps.

Figure 1 . 1 :

 11 Figure 1.1: Light cone in 2D space plus a time dimension centered at each event in Minkowski Spacetime. It separates time-like vectors from space-like vectors: the former are located inside the cone, the latter outside.
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 13 Figure 1.3: Effect of a passing gravitational wave propagating in the z=0 plan, with plus polarization (top) and cross polarization (bottom) on a ring of freely-falling particles.
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 15 Figure 1.5: Plot of cumulative shift of the periastron time from 1975-2007 [18]. The point are observation data with measurement error bars (which are too small to be easily see) and the curve is the General Relativity prediction.
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 21 Figure 2.1: Sketch of the "Feynman's sticky bead argument"
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 22 Figure 2.2: (a) Sketch of Weber's bar cylinder and (b) Argonne National Laboratory and University of Maryland detector coincidence. The coincident signal was interpreted by Weber as the result of a gravitational wave[START_REF] Weber | Evidence for discovery of gravitational radiation[END_REF] 
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 23 Figure 2.3: Scheme of a basic Michelson Interferometer. In purple the arm end mirrors, in blue the beam splitter mirror and in red the laser beam.
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 2424 Figure 2.4: Detector frame (x,y,z) and Source frame (x ,y ,z ) representations. The angle Θ and Φ are the usual polar coordinates of the wave's direction of travel as measured in the detector's frame. The angle Ψ is a measure of the polarization angle of the wave and represents a rotation about the z axis. Figure taken from [29].
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 25 Figure 2.5: Antenna response pattern for a Michelson interferometer in the longwavelength approximation (λ GW L 0). The interferometer is located at the center of each pattern. The thick black lines indicate the orientation of the interferometer arms. The distance from a point of the plot surface to the center of the pattern is a measure of the gravitational wave "sensitivity" in this direction. The pattern on the left is for plus polarization (+), the middle pattern is for cross polarization (×), and the right-most one is for the root mean square (rms). Figure taken from[START_REF] Abbott | LIGO: The Laser interferometer gravitational-wave observatory[END_REF].
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 26 Figure 2.6: L-shape detector angle-average sky maps (Advanced Virgo interferometer). The color scale shows the distribution of the root mean square of the antenna pattern volume-averaged over the polarization (Ψ) and the sky localisation angles (Θ, Φ).Figure taken from [32].
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 2727 Figure 2.7: (a) Aerial view of the gravitational wave detector Virgo. (b) Optical scheme of Virgo during the second science run (VSR2), figure taken from [33].
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 2 [START_REF] Kokkotas | Gravitational waves physics[END_REF] shows the gain in sensitivity between Virgo and Advanced Virgo.
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 28 Figure 2.8: Best Advanced Virgo sensitivity in 2017 (O2) compared to the best Virgo sensitivity in 2011 (VSR4).
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 29 Figure 2.9: Summary of Advanced Virgo noise budget during O2. The measured sensitivity is shown in blue, and the sum of all the understood noise sources is shown in light green. Only the main contribution to the noise are shown. The difference between the measured sensitivity and the sum of known noises shows that most of the noise detector is understood and well modeled .

Figure 2 . 10 :

 210 Figure 2.10: The strain sensitivity for the LIGO Livingston detector (L1) and the LIGO Hanford detector (H1) during O1. Also shown is the noise level for the Advanced LIGO design (gray curve) and the sensitivity during the final run in 2010 (S6) of the initial LIGO detectors. Figure taken from [35].
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 211 Figure 2.11: Time evolution of Advanced LIGO detectors BNS range over the O1 run. The sensitivity drop in the L1 interferometer at the end of the run was caused by electronics noise at one of the end stations. Figure taken from [35].
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 2214 Figure 2.13: (a) BNS range for each detectors during O2. The holes in the BNS range of Advanced LIGO detectors are due to two scheduled breaks. At week 31, we observe a drop in the H1 sensitivity due to the Montana earthquake. (b)Amplitude spectral density of the total strain noise of each detectors. Figure taken from [38].
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 2 Figure 2.16: Skymap reconstructed for GW170817 from a Hanford-Livingston (light green contours) and Hanford-Livingston-Virgo (dark green contours) analysis. The LIGO only skymap is reduced from 190deg 2 to 31deg 2 when Advanced Virgo data are used. The insets show the location of the apparent host galaxy NGC4993 seen by Swope telescope 10.9 hours after GW170817 and an image of the same sky region taken by DLT40 20.5 days before. Figure taken from [52].
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 2 Figure 2.17: Time-frequency representation of a glitch detected by Omicron. The color scale indicates the SNR of the glitch. The shape is characteristic of a glitch resulting from light scattered by optics, justfying its name: scattered-light glitch.
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 2 Figure 2.18: Time-frequency distribution of transient noise events (represented by coloured dots) detected by Omicron in Advanced Virgo strain data between August 14 and August 21, 2017.

  . A time-frequency representation of typical blip glitches is shown in Fig 2.20. Investigations have shown that there are several sources of blip glitches. For example, it has been observed that the blip glitches rate increases when the relative humidity falls below a reference value in the Advanced LIGO detectors localized in Hanford (H1). The cause of this behaviour is still being investigated. Other correlations have been found and are still not well understood today. Despite the efforts made, less than 10% of blip glitches have shown a correlation with one of the thousands of auxiliary channels that constantly monitor the Advanced LIGO detectors. By comparison, in Advanced Virgo, there are much less blip glitches and those were quite well understood during O2. For example the photodiode glitches and control glitches are included in the category of blip glitches.

  (a) Blip.
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 220 Figure 2.20: Current classification of blip glitches. Figure taken from [67] and [68].
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 221 Figure 2.21: Distribution of glitches seen in Fig 2.18 after applying a list of DQ flags designed to reject glitches resulting from a noise coupling which is understood. Most of the glitches with a high SNR are vetoed by the list of DQ flags.

  Figure 2.22 shows an example of histogramm produced by UPV.
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 222 Figure 2.22: UPV tuning histogram for an auxiliary channel. The use-percentage is represented by the color scale. We observe that the use-percentage increases with the SNR, which is expected. The threshold is indicated by the thick black line. When the black line is at the very top of the plot, the threshold is considered as infinite.The final SNR threshold is set when the use-percentage is above 50% (green region). Some frequency bins are excluded even when the use-percentage is measured to be above 50%. This is because there is not enough statistic in these bins. In this example only events between 10 Hz and 20 Hz are involved in the coupling, and so the coupling between the auxiliary channel and the gravitational wave channel is weak.
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 32 Figure 3.2: Interpolating functions ϕ t (z) and ϕ r (z)..
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 33333 Figure 3.3: The Mexican-hat potential for a broken U(1) symmetry showing a circle of minima. The vacuum state |φ| = η is represented in red and some of the possible choices of the phase are in blue. The state of unbroken symmetry with |φ| = 0 corresponds to a maximum of V (φ).Figure taken from [79].
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 34 Figure 3.4: Configuration for the Higgs field φ for n = 1. The field φ is described by the arrows: the direction represents the phase of the field and the length indicates the norm. On the external contour (green circle): |φ| = η and the phase θ of the field varies from 0 to 2π. By continuity, the Higgs field φ must necessarily pass through zero at least once inside the closed path. This is represented by the center of the drawing. Figure adapted from [78].
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 3637 Figure 3.6: Cosmic string loop formation. A loop forms when two strings interact in two separates points or when a string cross itself.

ẋ = 1 . ( 3 . 102 )

 13102 From the conditions of conformal gauge in Eq. 3.84 this implies that the string tangent vector vanishes: x (ζ, t) = 0. Thus, there should be a couple of point (ζ a , ζ b ) such that: a (ζ a ) = -b (ζ b ). (3.103)
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 38 Figure 3.8: A cusp is produced if the closed curves described by the functions a and b intersect on the unit sphere. In this picture shows two cusps (black points).
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 310 Figure 3.10: Spacetime around a straight cosmic string with ηm p with the cosmic string's axis passing through the tip of the cone. A cosmic string changes the geometry of spacetime around it globally, giving it a conical shape. This is visualised by a circular surface from which a wedge is removed and the two sides are identified. Spacetime geometry however remains locally flat. The trajectories of two set of particles as they move perpendicular to the cosmic strng are also shown. Figure taken from[START_REF] Vilenkin | Cosmic Strings and Other Topological Defects[END_REF].
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 311 Figure 3.11: Gravitational lensing by a cosmic string, a double images of sources (s and s ) is created behind the string (blue point).
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 41 Figure 4.1: Cosmic Strings pipeline workflow.
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 42 Figure 4.2: BNS range for each detector during O2. The holes in the BNS range of Advanced LIGO detectors are due to two scheduled breaks. At week 31, we observe a drop in the H1 sensitivity due to the Montana earthquake. The orange blocks represent the analyzed data chunk.
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 43 Figure 4.3: Illustration of the segmentation used by the pipeline. In this example the inner chunk have a total length of T + 2pad. It is divided into N=6 short segments of length t wich overlap by 50%.

  alone is present, the SNR is a normally distributed random variable with zero mean and unit variance: ρ = 0 and Var(ρ) = 1. (4.24) When a signal h(t) is present in the data: ρ = Aσ and Var(ρ) = 1, (4.25)
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 44 Figure 4.4: Distribution of the mismatch computed for every template with respect to the previous template as a function of the template high frequency cutoff f h . In red the distribution for the single detector events in H1 and in blue the distribution in L1, for the first chunk of O1 data.
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 45 Figure 4.5: SNR distribution for the single-detector triggers in H1 and in L1 in the first chunk of O1 data.

Figure 4 . 6 :

 46 Figure 4.6: SNR over time distribution for the cosmic string single-detector triggers in H1 (top left) compared to the same distribution for the Omicron triggers (bottom left). SNR over time distribution for the cosmic string single-detector triggers in L1 (top right) compared to the same distribution for the Omicron triggers (bottom right). Results for the first chunk of O1 data.
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 48 Figure 4.8: Template distribution indexed by the high frequency cutoff for the cosmic string single-detector triggers in H1 (left) and in L1 (right). Results for the first chunk of O1 data.
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 44 Maximum travel time between the current terrestrial interferometer: LIGO Hanford (H1), LIGO Livingston (L1) and Virgo (V1).
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 49 Figure 4.9: Time slide background estimation with a pair of detectors d1 and d2. At the top: the single detector's triggers are represented by circles. The coincident events in a time window (represented by the box width) form the zero-lag of the search. The zero-lag data set contains a gravitational-wave signal, represented by the red box.In addition, it includes fortuitous coincident events, represented by the orange box. At the bottom: the set of triggers found in the d2 detector is time shifted from δt with respect to d1. Fortuitous coincidences represented by the black box are created. On the other hand, the gravitational-wave signal is no longer in coincidence in this new data set. By applying this technique again and again, we build a set of events that is "pure" noise: the background.

(a) χ 2

 2 versus SNR distributions in H1. (b) χ 2 versus SNR distributions in L1.

Figure 4 .

 4 Figure 4.11: (a) and (b): distribution of SNR and χ 2for the background coincidentevents (black) and for the simulated signal coincident-events (green) in the first data chunk of O1. These two variables are strongly correlated, therefore we use the joint distribution probability to compute the ranking statistic Λ( x). Signal events with a SNR ≥ 30 are well separated in this plane from background events. In theory one interferometer could be used to detect a sharp gravitational-wave signal.

  (a) Arrival peak time distribution. (b) Amplitude ratio distribution. (c) High frequency cutoff asymmetry distribution.

Figure 4 . 13 :

 413 Figure 4.13: The blue line shows the expected background estimated with 300 time slides for the O1 cusp search for each chunk of data. The dashed hatched area corresponds to the 1σ statistical error.

139 onFigure 4 . 14 :

 139414 Figure 4.14: The blue lines show the expected background distribution estimated with 300 time slides before applying vetoes and the red lines show the background after applying the two first DQ flags given in Tab. 4.7.

Figure 4 . 15 :

 415 Figure 4.15: Expected background estimated with 6000 time slides for the O1 cusps analysis after applying the first vetoes (blue) and after the second vetoes (red).
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Figure 4 .

 4 Figure 4.16: (a) UPV histogram for a given channel. Sources in the frequency range[START_REF] Deruelle | Introduction aux équations d'einstein de la relativité générale[END_REF][START_REF] Fong | The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/VIRGO GW170817. VIII. A Comparison to Cosmological Short-duration Gamma-ray Bursts[END_REF] Hz are coupled to this channel (outside this frequency range the threshold is infinite and there is no real coupling). In addition the UPV report provides the ratio efficiency/dead-time ∼ 29 of the veto produced which tell us that this veto can be considered as good (see Chap. 2). (b) The SNR distribution for the 2 × 10 3 highest ranked background events in H1, before (red) and after applying the veto (blue) produced by the hierarchical mode of UPV. The distribution is identical before and after we apply the veto: this veto is thus not effective to improve the search.

  (a) H1, 3rd event: SNR = 6.6 (b) L1, 1rd event: SNR = 8.5 (c) H1, 4th event: SNR = 13.6 (d) L1, 4th event: SNR = 15.7 (e) H1, 5th event: SNR = 9.0 (f) L1, 5th event: SNR = 9.3

Figure 4 .

 4 Figure 4.17: Time-frequency representation of the first the background highest ranked events found in the O1 cusp analysis.

Figure 4 . 18 :

 418 Figure 4.18: The red points show the measured cumulative (a) cusp and (b) kink gravitational-wave burst rate as a function of the likelihood ratio Λ. The black line shows the expected background of the search with the 1σ statistical error represented by the hatched area.

4

 4 Figure.4.19a shows the detection efficiency e q as a function of the injected cusp signal amplitude A q . The amplitude at which we recover half of our injections is A 50% = 4.03 × 10 -21 s -1/3 . The uncertainties associated with the efficiency curve include three different effects. The first one is associated to binomial counting fluctuations since at each point the value of the efficiency is measured by counting a finite number of injections. There is an additional uncertainty in the amplitude to which a measurement of the efficiency should be assigned. Finally the last uncertainty is related to the calibration: the injections from which the efficiency is measured are performed at amplitudes different from what was planned. We also compare the cusp sensitivity curve to the one obtained in the previous analysis during the S5/S6 runs (2005-2010) for a same false alarm rate, see Fig.4.19. The sensitivity to cosmic string signals is improved by a factor 10. This gain is explained by the significant sensitivity improvement at low frequencies of Advanced detectors.

  Figure.4.19a shows the detection efficiency e q as a function of the injected cusp signal amplitude A q . The amplitude at which we recover half of our injections is A 50% = 4.03 × 10 -21 s -1/3 . The uncertainties associated with the efficiency curve include three different effects. The first one is associated to binomial counting fluctuations since at each point the value of the efficiency is measured by counting a finite number of injections. There is an additional uncertainty in the amplitude to which a measurement of the efficiency should be assigned. Finally the last uncertainty is related to the calibration: the injections from which the efficiency is measured are performed at amplitudes different from what was planned. We also compare the cusp sensitivity curve to the one obtained in the previous analysis during the S5/S6 runs (2005-2010) for a same false alarm rate, see Fig.4.19. The sensitivity to cosmic string signals is improved by a factor 10. This gain is explained by the significant sensitivity improvement at low frequencies of Advanced detectors.

19 .

 19 Figure.4.19a shows the detection efficiency e q as a function of the injected cusp signal amplitude A q . The amplitude at which we recover half of our injections is A 50% = 4.03 × 10 -21 s -1/3 . The uncertainties associated with the efficiency curve include three different effects. The first one is associated to binomial counting fluctuations since at each point the value of the efficiency is measured by counting a finite number of injections. There is an additional uncertainty in the amplitude to which a measurement of the efficiency should be assigned. Finally the last uncertainty is related to the calibration: the injections from which the efficiency is measured are performed at amplitudes different from what was planned. We also compare the cusp sensitivity curve to the one obtained in the previous analysis during the S5/S6 runs (2005-2010) for a same false alarm rate, see Fig.4.19. The sensitivity to cosmic string signals is improved by a factor 10. This gain is explained by the significant sensitivity improvement at low frequencies of Advanced detectors.

Figure 4 . 19 :

 419 Figure 4.19: The sensitivity of the search as a function of the cusp/kink signal amplitude. The uncertainties associated with the efficiency curve include binomial counting fluctuations, calibration uncertainties, and an amplitude binning uncertainty.

Figure. 4 .

 4 Figure.[START_REF] Cervantes-Cota | A Brief History of Gravitational Waves[END_REF].[START_REF] Rickles | The Role of Gravitation in Physics: Report from the 1957 Chapel Hill Conference[END_REF] shows the combined cumulative background event rate as a function of the likelihood ratio Λ( x) without Virgo and with Virgo. We note the presence of

Figure 4 . 21 :

 421 Figure 4.21: Background event rate for the last chunk of O2 data analyzed: (a) without Virgo and (b) with Virgo.

Figure 4 .

 4 Figure 4.22: (a) χ 2 versus SNR distribution in V1.In black are represented the background coincident-events and in purple the simulated signal coincident-events. We note a well localized population in the background which is very close to the injection. This population belongs to a known category of transient noises called "control glitches". (b) Time-frequency representation of a typical control glitch. These glitches appear to be of short duration and cover a large band of frequencies. They look similar to the cosmic string signal, this is why they are not well discriminated from the injections. A category 2 DQ flags (V1:DQ_ACL_ELAPSED_TIME) was created to remove a large part of these glitches. (c) The SNR distribution of the background coincident-events before (black) and after (blue) applying the veto. The veto removed the high SNR events. (d) The likelihood distribution of the background coincidentevents before (black) and after (blue) applying the veto. This veto has no impact on the tail of the distribution.

Figure 4 .

 4 Figure 4.23: (a)Time-frequency representation of a typical photodiode glitch vetoed by a DQ flag (V1:DQ_B1_PD1_PD2_RATIO2). (b) The SNR distribution of the background coincident-events before (black) and after (blue) applying the veto. The veto removed the high SNR events.

Figure 4 . 24 :

 424 Figure 4.24: The sensitivity of the search (close-box) as a function of the cusp signal amplitude for a 3-detectors search before (blue) and after (red) data quality study. It is compared to the search sensitivity curve (black) obtained by using only LIGO detectors. The efficiency is measured at same false alarm rate 10 -8 Hz.
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 51 Figure 5.1: Loop size distributions predicted by model M=1. The loop distribution F(γ, t(z)), is plotted for different redshift values and fixing Gµ = 10 -8 .

Figure 5 . 2 :

 52 Figure 5.2: Loop size distributions predicted by model M=1. The loop distribution F(γ, t(z)), is plotted for different values of Gµ and fixing the redshift z = 10 2 .

Figure 5 . 3 :

 53 Figure 5.3: Loop size distributions predicted by model M=2. The loop distribution F(γ, t(z)), is plotted for different redshift values and fixing Gµ = 10 -8 .

Figure 5 . 4 :

 54 Figure 5.4: Loop size distributions predicted by model M=3. The loop distribution F(γ, t(z)), is plotted for different redshift values and fixing Gµ = 10 -8 .

Figure 5 . 5 :

 55 Figure 5.5: Gravitational-wave event rate from cusps R (M) cusps as a function of the redshift z given by Eq. 5.30, predicted by models M = 1 (top row), M = 2 (middle row) and M = 3 (bottom row) for Gµ = 10 -8 and f = 100 Hz. For each model we show the contribution from loops in the radiation era and in the matter era. We separate the two contributions for loops in matter era for model M = 1 and M = 2: relics of loops produced in radiation era and loops produced in matter era. The effect of the three loop size regimes presented in section. 5.1.4 are also separated, for model M=3. Figure taken from [144].

Figure 5 . 6 :

 56 Figure 5.6: Gravitational-wave event rate from cusps R (M) cusps as a function of the strain amplitude h predicted by models M = 1 (top row), M = 2 (middle row) and M = 3 (bottom row) for Gµ = 10 -8 and f = 100 Hz. For each model we show the contribution from loops in the radiation era and in the matter era. We separate the two contributions for loops in matter era for model M = 1 and M = 2: relics of loops produced in radiation era and loops produced in matter era. The effect of the three loop size regimes presented in section. 5.1.4 are also separated, for model M=3.Figure taken from [144].

  Figure taken from [144].

Figure 5 .

 5 Figure 5.5 shows the gravitational-wave rate produced by one cusp (N cusp = 1), predicted for a loop distribution model M = {1, 2, 3}, marginalized over the strain amplitude h, in a ring of width ∆ z (z) at redshift z (the redshift bin width) at a typical LIGO-Virgo frequency f = 100 Hz, and fixing Gµ = 10 -8 :

1 ×

 1 10 -9 ≈ 10 3 . (5.35) For model 1 and model 2 the difference in the rate verifies the ratio between the normalization factors C

Figure 5 . 7 :

 57 Figure 5.7: Gravitational-wave event rate predicted by models M =3 for f = 100 Hz.

Figure 5 .Figure 5 . 8 :

 558 Figure 5.8 shows h * as a function the frequency, for the different loop distribution models considered. At a typical LIGO-Virgo frequency f = 100 Hz, the spectrum originates from gravitational-waves with strain amplitude below h * ∼ 10 -28 . In the

Figure 5 . 9 :

 59 Figure 5.9: Maximum strain amplitude h * used to compute the gravitational wave energy density Ω (M ) GW (f ) for model M=3 and for different values of Gµ.

Figure 5 . 10 :

 510 Figure 5.10: Gravitational wave energy density Ω (M ) GW (f ) from cusps and kinks predicted by the three loop distribution models for Gµ = 10 -8 .

  in Sec. 5.1.3.

Figure 5 . 11 :

 511 Figure 5.11: Gravitational wave energy density Ω (M )GW (f ) from cusps predicted by the loop distribution model M=1 for Gµ = 10 -8 . The contributions from loops in the radiation (z > 3366) and matter (z < 3366) eras are separated. In addition, we also show for loop in the matter era, the effect of loops produced in the matter era and the ones produced in the radiation era.

Figure 5 . 12 :

 512 Figure 5.12: Gravitational wave energy density Ω (M ) GW (f ) from cusps predicted by the loop distribution model M=3 for Gµ = 10 -8 . The contributions from loops in the radiation (z > 3366) and matter (z < 3366) eras are separated.

  Gµ, p) < 1.75 × 10 -5 .(5.44) 

  GW (f ; Gµ, p) < 3.7 × 10 -6 .(5.45)

Figure 5 .

 5 Figure 5.13: 95% confidence exclusion regions are shown for the three loop distribution models: M=1 (top-left), M=2 (top-right) and M=3 (bottom-left). The regions excluded by the O1 LIGO burst and stochastic measurements are represented by shaded regions. To compare, the bounds from the previous LIGO-Virgo stochastic measurements (S6 science run) are also shown (solid black line). In addition, the bounds excepted with an Advanced LIGO-Virgo detector network at design sensitivity are reported (solid grey line). Limits obtained directly with PTA measurements and indirectly with BBN and CMB measurements are represented by dotted line. The excluded regions are below the respective curves.Figure taken from. [144].

  Figure 5.13: 95% confidence exclusion regions are shown for the three loop distribution models: M=1 (top-left), M=2 (top-right) and M=3 (bottom-left). The regions excluded by the O1 LIGO burst and stochastic measurements are represented by shaded regions. To compare, the bounds from the previous LIGO-Virgo stochastic measurements (S6 science run) are also shown (solid black line). In addition, the bounds excepted with an Advanced LIGO-Virgo detector network at design sensitivity are reported (solid grey line). Limits obtained directly with PTA measurements and indirectly with BBN and CMB measurements are represented by dotted line. The excluded regions are below the respective curves.Figure taken from. [144].

Figure 5 . 14 :

 514 Figure 5.14: Gravitational wave energy density Ω (M ) GW (f ) from cusps predicted by the loop distribution model M=2 and M=3 for different values of Gµ.

Figure 5 .

 5 [START_REF] Gourgoulhon | Relativité restreinte : des particules à l'astrophysique[END_REF] shows the detection efficiency e q=2 as a function of the injected kink-kink collision signal amplitude A q=2 .

Figure 5 . 15 :

 515 Figure 5.15: The sensitivity of the burst search as a function of the kink-kink collision signal amplitude. The uncertainties associated with the efficiency curve include binomial counting fluctuations, calibration uncertainties, and an amplitude binning uncertainty.

h 2 dh × γmax γ min dz d 2 Rd 2 R

 22 (M) dzdγ (γ, z, f ; Gµ),(5.50) Once again, this computation should not include powerful and rare bursts. The condition on the rate in Eq. 5.38, which tells us that bursts are resolvable when their rate of occurence is lower than the frequency, is now implemented by a cutoff on the redshift: (M) dzdγ (z, γ, f ) = f, (5.51)

Figure 5 . 16 :

 516 Figure 5.16: Gravitational-wave energy density Ω (M ) GW (f ) from one cusp/kink/kinkkink collision feature, predicted by the loop distribution models M=2, M=3 for Gµ = 10 -8 .

Figure 5 .

 5 Figure 5.16 compares the gravitational-wave energy density Ω (M ) GW (f ) for one cusp, one kink and one collision, at fixed Gµ = 10 -8 and f = 100 Hz, for the loop

Figure 5 . 17 :

 517 Figure 5.17: 95% confidence exclusion regions are shown for the loop distribution models: M=2 (at the top), M=3(at the bottom). Shaded regions are excluded by the latest (O1+O2) Advanced LIGO burst measurements.

  

  

  

  

Table 2 .

 2 

	Run	Start time	End time	BNS range (Mpc)
	VSR1	May, 2007	October, 2007	4
	VSR2	July, 2009	January, 2010	9.5
	VSR3	August, 2010	October, 2010	7.3
	VSR4	June, 2011	August, 2011	11
	O2	August 01, 2017	August 26, 2017	28

1: Observation runs for LIGO and Advanced LIGO. We give the maximum average BNS range value reached during the run. The data are taken from

[START_REF] Abadie | Sensitivity Achieved by the LIGO and Virgo Gravitational Wave Detectors during LIGO's Sixth and Virgo's Second and Third Science Runs[END_REF] 

[35]

[START_REF] Abbott | GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs[END_REF]

.

Table 2

 2 .1 and Tab 2.2 summarize the observation run periods for Virgo/Advanced Virgo and LIGO/Advanced LIGO, in addition the corresponding BNS range is indicated for each detector. We focus on the first two run of Advanced LIGO and Advanced Virgo. The first observing run of Advanced LIGO is called O1. It started on September 12, 2015 and finished on January 19, 2016[START_REF] Abbott | Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy[END_REF]. The duty cycle of each detector defines the amount of science quality data taken over a period of observing time. The average duty cycle for H1 and L1 was respectively of 59% and 51%. The total coincident analysis time is 51.5 days. It is only a fraction of the total run duration

and it is explained by the fact that data are analyzed only when both detectors are operating in their nominal state. Even if not yet operating at design sensitivity,

  .3 provides a definition for each category. To give an example of the significance of the impact of DQ flags on

	Categories	Definition
	CAT1	Indicate that the data have been severely impacted by noise and
		should not be analyzed at any stage of a gravitational-wave search.
	CAT2	Indicate time that demonstrates excess noise and should be treated
		with caution. Triggers should be removed if flagged by a CAT2.

CAT3

Indicate time where the noisy period is not well understood. This category should be applied with an extrem caution.

CAT4

Indicate time where simulated gravitational-wave signals are injected in the detector (hardware injection). CAT4 time periods should be removed for any search analysis. Table 2.3: Definition of the categories used to classify the DQ flags. data quality, Fig 2.21 shows the same distribution of glitches found in Advanced Virgo strain data (see Fig 2.18

Table 3 .

 3 .[START_REF] Gourgoulhon | Relativité restreinte : des particules à l'astrophysique[END_REF] For a flat, single-component Universe, by integrating this last equation, we obtain the time dependence of the scale factor a(t). This is summarized in Tab. 3.1. Since radiation density decreases the fastest with time it must increase fastest on going back in time and so radiation must dominate early in the Universe. The radiationdominated era is followed by the matter-dominated era. Finally, as the density of other forms of matter drops with time, the dark energy ultimately dominates the energy density of the Universe. Currently, the simplest cosmological model that fits the experimental observations is called the Lambda cold dark matter model or ΛCDM model. The cosmological parameters of our Universe, whose geometry is assumed 1: FLRW solutions for a flat single-component Universe. to be well modelled by the FLRW metric, have been measured with an increasing precision over the last decades. We use Planck-2015 fiducial parameters[START_REF] Ade | Planck 2015 results. XIII. Cosmological parameters[END_REF]:H 0 = 67.74 ± 0.46 km/s/Mpc 3 , (3.16)with the concordance set of cosmological parameters:Ω r,0 = 9.1476 × 10 -5 Ω m,0 = 0.308 ± 0.0062 Ω Λ = 0.6911 ± 0.0062, (3.17)

		w	ρ(a)	a(t)
	Radiation domination	1/3	a -4	t 1/2
	Matter domination	0	a -3	t 2/3
	Λ domination	-1	cst	e Ht

Table 3 .

 3 

	g 1	g 2

2: Numerical factors taken from

Table 4 .

 4 .1.

		Start time	End time	H1L1 [days]
	chunk 1	Sep 12, 2015	Nov 17, 2015	26
	chunk 2	Nov 17, 2015	Jan 19, 2016	23

1: The O1 data are divived in two chunks. The coincident livetime is provided after applying the DQ flags CAT1 and CAT4. It is defined as the livetime where the Advanced LIGO Hanford (H1) detector and the Advanced LIGO Livingston (L1) are operating simultaneously in stable conditions.

Table 4 .

 4 

	time	H1L1 [days]	H1L1V1 [days]

2: O2 data division for the cusp analysis. The two last columns provide the coincident livetime between detectors.

Table 4 .

 4 3: Single-detector trigger parameter in the Cosmic String analysis.

Table 4 .

 4 6: Injection parameters in the analysis of O1 data for the search for gravitational wave signals produced by cusps or kinks.

  4.7. A quick definition of the channels is given. For example, a period with significantly elevated transient noise rate in the gravitational-channel h(t) is observed in H1. A correlation is found

	IFOs	Name	Definition	deadtime	efficiency
				(%)	(%)
	H1	DCH-ASC_AS_B_RF36_GLITCHING	Severe glitching in DARM, which	0.39	1.60
			looks like RF45 noise.		
	H1	DCH-OMC_DCPD_A_SATURATION	Loud glitches can cause OMC	0.45	1.70
			DCPD 14 saturations which push		
			the instrument into a non-nominal		
			operating condition.		
	H1	ODC-IMC_WFS_DOF4_PIT_HIGH	Flags indicating when angular align-	2.5	4.72
			ment of IMC 15 mirrors was fluctu-		
			ating more than desired.		
	H1	ASC-AS_A_RF45_Q_PIT_OUT_DQ	Severe glitching due to the 45 MHz	0.09	0.15
			electro-optic modulator driver.		

Table 4 .

 4 7:The deadtime introduced by each veto in the O1 cusps analysis and the effiency associated.

Table 4 . 8 :

 48 Classes of glitches in the investigation of ∼ 200 loudest triggers in H1 after applying category 2 flags. For each family, the spectrogram of a typical glitch is given, the central frequency, the number percentage contained in the list and some remarks.

	Omicron spectrogram	Frequency [Hz]	Number in %	Remarks
		45	26 %	1st, 2nd and 4th loud-est events.
		37	14%	
				larger bandwith than
		severals	16%	the two previous
				glitches.

see Fig 2.

Table 5 .

 5 1: P , C 0 and C factors for M=3, in the radiation and matter dominated epochs.

		Radiation	Matter
	P	1.6 +0.21 -0.15	1.41 +0.08 -0.07
	C 0	0.21 -0.12 +0.13	0.09 -0.03 +0.03
	C	∼ 0.08	∼ 0.016

We are still in the long-wavelength approximation, i.e.the gravitational wave wavelength is much larger than the the arm length L0 of the interferometer.

Also called anthropogenic noise.

The purpose of this section being simply to clarify the reader's understanding of the physical principle behind a complex isolation system.

An actuator is a component of a machine that is responsible for moving and controlling a mechanism or system.

photodiode B1: power at the detection port, that measures directly the gravitational wave signal.

photodiode B4: power reflected in the power recycling cavity, that is used as an error signal for frequency stabilization.

Today signal recycling allows the resonance of the interferometer as a whole to be altered to boost signals from coalescing black hole and neutron star systems.

A transient event that emits short gamma-ray bursts and strong electromagnetic radiation. It is a source for nucleosynthesis of heavy elements.

This name is given in reference to the conical hat worn by a tomte, a mythological creature of Nordic folklore not more than 90 cm high.

A fish from the carp family. The koi fish is a symbol of luck in Japan.

This equation is also called the acceleration equation.

Often written as H0 = h × 100 km/s/Mpc with h = 0.6774.

The orders of magnitude listed here are provided just to give an idea of the energy scales involved. Values often vary in the literature.

It corresponds to Gµ/c 2 = 10 -6 .

The world sheet is two-dimensional, hence the square.

This result is no longer valid at very high incoming velocities between strings[START_REF] Achucarro | Effective non-intercommutation of local cosmic strings at high collision speeds[END_REF][START_REF] Achucarro | Higher order intercommutations in Cosmic String Collisions[END_REF] 

Often called the Kibble-Turok sphere[START_REF] Kibble | Self-intersection of cosmic strings[END_REF].

The sensitivity curve of current detectors is cutoff at 10 Hz and so f l must be higher. The value used in the analyses is f l = 16 Hz.

A data analysis pipeline is a sequence of operations/instructions used to process the data.

First observing run of Advanced LIGO

Second observing run of Advanced LIGO and Advanced Virgo.

The main purpose of the calibration is to allow to reconstruct the amplitude h(t) of the gravitational wave strain from the interferometer data.

kα in Eq.( 4.4) 

Which is the optimal test found to distinguish the hypothesis HN and HN .

The sampling frequency is fs = 16384 Hz for Advanced LIGO and fs = 20 kHz for Advanced Virgo

N is an even integer.

For example the sampling of a periodic signal may add new frequency components when the signal is Fourier transformed. This effect is referred as to spectral leakage.

The Nyquist frequency is the maximum frequency that a signal must contain to allow its unambiguous description while it is sampled at regular intervals.

The vetoes are associated with OMC-PZT channel. OMC for ouput mode cleaner, an optical resonator which consist in four mirrors in Advanced LIGO. PZT for piezoelectric actuator used to change the position of the OMC mirrors

This is not systematicaly true, the only general case when lack of correlation implies independence is when the xi are Gaussian.

This event is found with a SNR=9.4 in L1 and a SNR=3.8 in L1.

And from kink-kink collisions, however this is not included in this work.

For a closed loop of size the average is made over a period of oscillation T = /2.

Or infinite strings.

The main energy dissipation mechanism for other classes of strings may be different (superconducting strings[START_REF] Witten | Superconducting Strings[END_REF], global strings[START_REF] Lynn | Goldstone Bosons in String Models of Galaxy Formation[END_REF]).

The consequence of this process for the network and the loops are not well understood and are still being studied[START_REF] Wachter | Gravitational backreaction on piecewise linear cosmic string loops[END_REF] 

This is no longer true when considering too small values of Gµ[START_REF] Ringeval | Stochastic gravitational waves from cosmic string loops in scaling[END_REF].

The idea at the time of the redaction, is to consider Γ as a free parameter as well. This is not included in this work.

For the moment, we found no clear reason which could explain the change of behaviour in the shape of the derived curve. There is no peak in the burst rate as in the stochastic spectrum, which could move away from the observable frequency window with Gµ. However, we observed that the rate is not monotone with Gµ.

Remerciements

events characterized by a higher likelihood ranking value using Virgo's data. These events are double coincident events HV or LV identified with a small SNR < 4 in Virgo with a blip glitch in LIGO detector.

We performed data quality studies on Virgo data to reject glitches that may mimic the waveform from cosmic string cusps. We selected 4 data quality flags found to slightly improved the search. Blip glitches are well understood in Virgo as discussed in Sec. 2.5. Figure 4.22 shows the χ 2 versus SNR distribution used to compute the ranking statistic. We note the presence of a population of transient noises that is not easily distinguished from injections. These are known as control glitches and are part of blip glitch family in Virgo. A good veto exists to reject Abstract : This thesis shows the results of the search for gravitational-wave signals produced by cosmic strings using the data from the first two observation runs of the second generation detectors Advanced LIGO and Advanced Virgo. Cosmic strings are one-dimensional topological defects created in the primordial Universe. These objects are predicted by many models of very high energy physics. The gravitationalwave signal emitted by cosmic strings is predicted by theory. A matched-filter analysis is used to search for the presence of a signal in Advanced LIGO and Advanced Virgo data. This technique is optimal if the detector noise is Gaussian and stationary, which is not the case. An essential part of the thesis work was to understand and reduce the background noise analysis.

This work on data quality has increased the sensitivity of the search. Furthermore, we have shown that the search for transient signals of gravitational waves produced by cosmic strings is limited by the presence of a particular family of noises that mimic the predicted signal for cosmic strings. In the absence of detection, we have placed constraints on the parameters which characterize a cosmic string network for different theoretical models, in order to specify the conditions of their existence.