
HAL Id: tel-02879103
https://theses.hal.science/tel-02879103v1

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Machine Learning and Geometric Approaches
for Single RGB Camera Relocalization

Nam-Duong Duong

To cite this version:
Nam-Duong Duong. Hybrid Machine Learning and Geometric Approaches for Single RGB Camera
Relocalization. Computer Vision and Pattern Recognition [cs.CV]. CentraleSupélec, 2019. English.
�NNT : 2019CSUP0008�. �tel-02879103�

https://theses.hal.science/tel-02879103v1
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

CENTRALESUPELEC

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : AST – Signal, Image, Vision

Hybrid Machine Learning and Geometric Approaches for Single RGB
Camera Relocalization

Thèse présentée et soutenue à Cesson-Sévigné, le 10 décembre 2019
Unité de recherche : Équipe FAST - IETR/CentraleSupélec
Thèse N° : 2019CSUP0008

Par

Nam Duong DUONG

Rapporteurs avant soutenance :

Tomas PAJDLA Associate Professor - Université technique de Prague

Vincent LEPETIT Professeur - Université de Bordeaux

Composition du Jury :

Président du jury : Guillaume MOREAU Professeur des Universités, École Centrale de Nantes

Rapporteur : Tomas PAJDLA Associate Professor - Université technique de Prague

Rapporteur : Vincent LEPETIT Professeur - Université de Bordeaux

Directeur de thèse : Pierre-Yves RICHARD Professeur, École CentraleSupélec

Co-encadrant de thèse 1 : Catherine SOLADIÉ Professeure assistante, École CentraleSupélec

Co-encadrant de thèse 2 : Jérôme ROYAN Docteur, IRT b<>com

Acknowledgements

Three years ago, I began a new journey of my life to become a doctor in computer vision.
On my way, I approached and collected new knowledge of the world to broaden my eyes.
More luckily, I also got to know many new friends, companions and mentors. Knowledge
and friendship are the most important things I gained during my PhD in France.

First and foremost, I would like to express my sincere gratitude toward my supervisors
Assoc. Prof. Catherine Soladié, Dr. Jérôme Royan, Prof. Pierre-Yves Richard for their
guidance and support during the past three years. They gave me an opportunity to work on
this interesting project as well as enthusiastically instructed me to efficiently walk on the
path of scientific research.

I would like say thanks to my colleagues at IRT b<>com, especially the ARGO team at
Immersive Iteration laboratory, together with my friends at FAST team in CentraleSupélec. I
have been fortunate to work with all of you in research projects and to learn from you all the
French culture and language. My special thanks to Amine Kacete, Jérémy Lacoche, Lucie
Petta who have been dedicated to supporting me and creating beautiful demonstrations all
together.

Last but not least, I would like to thank my family and my friends in Vietnam for their
love and care. Conversations from thousands of kilometers away have always encouraged
me to overcome difficulties. I am much obliged to my parents who not only gave birth to me
and raised me but also inspired me to start this thesis. And I give special thanks to my wife,
my darling for her patience and endless love, for having her accompanied on every road to
overcome all hardships. I am blessed to have her by my side now when I write the last lines
of my thesis. Finally, I would like to give my doctorate to my family.

Rennes, France, 23 August 2019
Nam Duong DUONG

Abstract

In the last few years, image-based camera relocalization becomes an important issue of
computer vision applied to augmented reality, robotics as well as autonomous vehicles.
Camera relocalization refers to the problematic of the camera pose estimation including both
3D translation and 3D rotation. In localization systems, camera relocalization component is
necessary to retrieve camera pose after tracking lost, rather than restarting the localization
from scratch. However, the classical existing camera relocalization methods store a large
set of keypoints or keyframes to relocalize camera based geometric information. Conse-
quently, memory usage as well as processing time rise with respect to the size of the models.
Accordingly, machine learning approaches have been developed to tackle these constraints.
Nevertheless, the limitations of machine learning approaches lie in their time-consuming
training process, moderate accuracy and lack of confidence score in the estimation of each
pose. Recently, hybrid methods increase considerably the accuracy. Yet, they still take
more time to optimize camera pose from thousands of correspondences. Moreover, all these
machine learning based methods still fail to challenge dynamic scenes with moving objects.

Given those pros and cons, this thesis aims at improving the performance of camera
relocalization in terms of both runtime and accuracy as well as handling challenges of camera
relocalization in dynamic environments. We present camera pose estimation based on com-
bining multi-patch pose regression to overcome the uncertainty of end-to-end deep learning
methods. To balance between accuracy and computational time of camera relocalization
from a single RGB image, we propose a sparse feature hybrid methods. A better prediction
in the machine learning part of our methods leads to a rapid inference of camera pose in the
geometric part. To tackle the challenge of dynamic environments, we propose an adaptive
regression forest algorithm that adapts itself in real time to predictive model. It evolves
by part over time without requirement of re-training the whole model from scratch. When
applying this algorithm to our real-time and accurate camera relocalization, we can cope with
dynamic environments, especially moving objects. The experiments proves the efficiency of
our proposed methods. Our method achieves results as accurate as the best state-of-the-art
methods on the rigid scenes dataset. Moreover, we also obtain high accuracy even on the
dynamic scenes dataset.

Résumé

Au cours des dernières années, la relocalisation de la caméra à base d’images est devenue un
enjeu important de la vision par ordinateur appliquée à la réalité augmentée, à la robotique
ainsi qu’aux véhicules autonomes. La relocalisation de la caméra fait référence à la prob-
lématique de l’estimation de la pose de la caméra incluant à la fois la translation 3D et la
rotation 3D. Dans les systèmes de localisation, le composant de relocalisation de la caméra est
nécessaire pour récupérer la pose de la caméra après le suivi perdu, plutôt que de redémarrer
la localisation à partir de zéro. Cependant, les méthodes classiques de relocalisation de la
caméra existantes stockent un grand nombre de points-clés ou d’images-clés pour relocaliser
basées sur les informations géométriques. Par conséquent, l’utilisation de la mémoire ainsi
que le temps de traitement augmentent par rapport à la taille des modèles. Donc, des ap-
proches d’apprentissage machine ont été développées pour tacler ces contraintes. Néanmoins,
les limites de ces approches résident dans leur long processus d’apprentissage, leur précision
modérée et leur manque de confiance dans l’estimation de chaque pose. Récemment, les
méthodes hybrides augmentent la précision. Pourtant, ils prennent encore plus de temps pour
optimiser la pose de la caméra à partir de milliers de correspondances. De plus, toutes ces
méthodes basées sur l’apprentissage machine ne parviennent toujours pas à défier les scènes
dynamiques avec des objets en mouvement.

Compte tenu de ces avantages et inconvénients, cette thèse vise à améliorer les perfor-
mances de la relocalisation de la caméra en termes de temps d’exécution et de précision ainsi
qu’à relever les défis de la relocalisation des caméras dans des environnements dynamiques.
Nous présentons l’estimation de la pose de la caméra basée sur la combinaison de la régres-
sion de pose multi-patch pour surmonter l’incertitude des méthodes d’apprentissage profond
de bout en bout. Afin d’équilibrer la précision et le temps de calcul de la relocalisation de la
caméra à partir d’une seule image RVB, nous proposons une méthode hybride à caractéris-
tiques éparses. Une meilleure prédiction dans la partie d’apprentissage automatique de nos
méthodes conduit à une inférence rapide de la pose de la caméra dans la partie géométrique.
Pour relever le défi des environnements dynamiques, nous proposons une forêt de régression
adaptative qui s’adapte en temps réel au modèle prédictif. Il évolue en partie au fil du temps
sans qu’il soit nécessaire de ré-entrainer le modèle entier à partir de zéro. En appliquant

vi

cet algorithme à notre relocalisation de la caméra en temps réel et précise, nous pouvons
faire face à des environnements dynamiques, en particulier des objets en mouvement. Les
expériences prouvent l’efficacité des méthodes que nous proposons. Notre méthode permet
d’obtenir des résultats aussi précis que les meilleures méthodes d’état de l’art. De plus, nous
obtenons également une grande précision même sur des scènes dynamiques.

Table of contents

List of figures xi

List of tables xvii

Nomenclature xix

1 Introduction 1
1.1 Context . 1
1.2 Visual Camera relocalization . 5
1.3 Challenges . 7
1.4 Contributions . 10
1.5 Thesis Outline . 12

2 Camera Relocalization - state-of-the-art 13
2.1 Introduction . 14
2.2 Geometric approach . 16

2.2.1 Theory of camera pose estimation 16
2.2.2 Point correspondences matching based methods 22

2.3 Machine learning approach . 28
2.3.1 Machine learning theory for pose estimation 28
2.3.2 Camera pose regression . 33

2.4 Image retrieval approach . 36
2.4.1 Nearest images retrieval . 37
2.4.2 Camera pose estimation . 39

2.5 Hybrid approach . 41
2.5.1 Sparse random forest based methods 42
2.5.2 Dense deep learning based methods 43

2.6 Camera relocalization datasets . 44
2.6.1 Datasets . 44

viii Table of contents

2.6.2 Metrics . 48
2.7 Conclusion . 50

3 Balance between Accuracy and Runtime for Camera Relocalization 53
3.1 Introduction . 54
3.2 Camera pose regression based on local patches 55

3.2.1 Multi-output camera pose regression 55
3.2.2 Experiments . 56

3.3 3D world coordinates learning based on local patches 59
3.3.1 Patch extraction and labelling . 60
3.3.2 xyzNet for 3D world coordinates regression 61
3.3.3 Camera pose calculation . 62
3.3.4 Experiments . 63

3.4 Efficient multi-output world coordinate prediction 73
3.4.1 Accurate sparse feature regression forest learning 74
3.4.2 Hand-crafted descriptor versus learned descriptor 77
3.4.3 Experiments . 79

3.5 Conclusion . 88

4 Camera Relocalization in Dynamic Environment 89
4.1 Introduction . 90
4.2 Adaptive Regression Forest . 92

4.2.1 Regression Forest pipeline . 92
4.2.2 Limitations of Regression Forest 93
4.2.3 Methodology . 93

4.3 ARF applied to camera relocalization in dynamic environments 97
4.3.1 Initial training . 97
4.3.2 Camera pose estimation . 98
4.3.3 Online adaptive regression forest update 98

4.4 Experiments . 101
4.4.1 ARF versus RF . 101
4.4.2 Comparison to state-of-the-art methods 106

4.5 Conclusion . 109

5 Conclusions and Perspectives 111
5.1 Conclusions . 111
5.2 Limitations and future works . 112

Table of contents ix

Résumé en français 115

Publications 125

Appendix A Smart AR Toolbox [Instant LeARning] 127

References 131

List of figures

1.1 Augmented reality for maintenance of a data center at IRT b-com. 2
1.2 Multiple transformation system of AR pipeline, extracted from [152] 3
1.3 A common localization system consists of two components: camera localiza-

tion and camera relocalization. 5
1.4 Camera relocalization methods define individual frames independently based

on prior knowledge of a scene. 6
1.5 Feature matching approaches in the camera pose estimation process. 7
1.6 Dynamic environment challenges for the camera relocalization. a) illumina-

tion change. b) occlusion. c) moving objects. 8

2.1 The pipelines of the state-of-the-art camera relocalization methods: a) Geo-
metric approach; b) Machine learning approach; c) Image retrieval approach;
d) Hybrid approach. 15

2.2 Pinhole camera model. a) In the camera coordinate system, C is the camera
centre and p the principal point which is the projection of the camera centre
on the image plane. The camera centre is here placed at the coordinate origin.
b) Principal point offset in image coordinate, extracted from [61] 16

2.3 The Euclidean transformation between the world and camera coordinate
systems, extracted from [61] . 18

2.4 A 3D points model attached to feature vectors is constructed by SfM from a
set of images. 23

2.5 3D point triangulation from a pair of matching points in two images with
their estimated camera poses. 24

2.6 Camera relocalization from directly defining 2D-3D point correspondences. 25
2.7 Object pose estimation: 6-DoF object pose in the camera coordinate system,

HO
C . Camera relocalization: 6-DoF camera pose in the world coordinate

system, HC
W . 28

xii List of figures

2.8 Decision tree. a) Input data is represented as a collection of points in the
d-dimensional space. b) Testing a decision tree with data v. c) Training a
decision tree involves sending all training data v into the tree. Extracted from
[33]. 29

2.9 Some deep learning applications. 31
2.10 Image retrieval approach. Camera relocalization is handled based on nearest

image retrieval. The camera pose of the query image can be estimated by
two ways: 1) Calculating absolute pose using the geometric approach. 2)
Through defining relative pose between the query image and retrieved images. 36

2.11 Hybrid approach. a) Sparse random forest based methods. b) Dense deep
learning based methods. 41

2.12 7-scenes dataset: from left to right, this dataset consists of chess, fire, heads,
office, pumpkin, red kitchen, stairs. 45

2.13 CoRBS dataset: Human, Desktop, Electrical Cabinet (from left to right). . . 45
2.14 Cambridge Landmark dataset: King’s College, Street, Old Hospital, Shop

Facade, St Mary’s Church (from left to right). 46
2.15 BCOM dataset: including four sequences. 47
2.16 DynaScenes dataset. This is some examples in Dyna-03 scene. 48

3.1 PatchPoseNet pipeline: From a set of relevant patches extracted on a RGB
image, PatchPoseNet predicts multi-output camera poses. The final camera
pose is computed by fusing the camera poses. 55

3.2 Patch extraction. From sampled patches (red patch), we select patches which
have maximum magnitude of image gradient (blue patch). 56

3.3 Camera pose fusion. A set of votes for camera pose: blue points represent
the translation of camera poses. Green point is the ground truth. Red point
and cyan point are mean and mean-shift of camera translations respectively. 57

3.4 xyzNet Camera Relocalization Pipeline: From a set of relevant patches (blue
squares) extracted on each RGB image, xyzNet predicts a set of 3D positions
(blue points) in the world coordinate system. PnP and Ransac algorithms are
then used to filter inliers (green points) and eliminate outliers (red points).
Finally, camera pose is computed by re-running PnP once on all the inliers. 59

3.5 Patch extraction and labelling. 60
3.6 xyzNet: A CNN regression for predicting world coordinates from RGB patches 61
3.7 Detected inliers from patches extraction based grid-points (left) as described

in [20] and key-points (right) on an image of the fire scene. 64

List of figures xiii

3.8 Training performance from patches extracted from keypoints and grid-points
on the chess scene. 65

3.9 Relation between computational time per image and mean accuracy of cam-
era relocalization. It is obtained by changing number of Ransac iteration for
key-point based and grid-point based methods on the chess scene. 65

3.10 xyzNet’s accuracy: From a set of patches (blue squares) extracted around
key-points (2D green points) for which correspond a ground truth (3D green
points) defined in the world coordinates system, xyzNet predicts a set of
world coordinates (3D blue points). 66

3.11 The camera pose error according to number of inliers: For each scene, we
calculate the median of the translation error (in the left) and rotation error
(in the right) on the frames which have at least x inliers. 69

3.12 Our results on the scenes of CoRBS dataset: our results by the red trajectories
and the ground truth in the green . 70

3.13 Comparative result between our method (blue) and PoseNet (red) about
accurate translation. 71

3.14 Capacity of our method to process partial occlusion during a demonstration
of an augmented reality application. 71

3.15 Sparse feature regression forest training. 75
3.16 Example of 3D world coordinates predictions on a repetitive scene (stairs

scene): Multi-output predictions using sparse regression forest (blue points)
versus only one uncertain prediction using xyzNet (red point). 76

3.17 Our accurate and real-time camera relocalization in AR. 77
3.18 Our online training system. Our sparse feature regression forest is learned

by multi-threads in the same time of capturing data. 78
3.19 Our Deep-RF for 2D-3D correspondences. The feature extraction is per-

formed by xyzNet and the multi-output 3D world coordinates regression is
performed by our regression forest. 79

3.20 Some examples of dynamic scene in augmented reality. Our method is robust
to illumination changes and partial occlusion. 85

3.21 Visualization of generalization performance on two sequences T1 and T2 of
the BCOM dataset. 86

4.1 Adaptive regression forest pipeline. The common regression forest method
(red components) is extended with an online update step (blue component).
It refines predictive model in real-time from new computed labels. 92

xiv List of figures

4.2 Adaptive regression forest update process. The predictive models at leaf
nodes evolve by part over time without training from scratch a whole new
model. ARF performs simultaneously two steps: passive leaves detection
and passive leaves update. 94

4.3 DynaLoc: Real-time camera relocalization in dynamic scenes based on the
ARF. We apply the ARF to hybrid camera relocalization: from a set of SURF
feature detected on each RGB image, the ARF predicts a set of 3D positions
in the world coordinate system. They correspond to active leaves (green
and red points) and passive leaves (yellow points). Then PnP and RANSAC
algorithms determine inliers (green points) to estimate camera pose and
reject outliers (red points). Finally, if the camera pose is precisely estimated,
the ARF is updated by estimating new 2D-3D correspondences based on a
triangulation using the estimated camera poses. 97

4.4 An example of ARF update. a) the scene with some movable objects. b) two
objects move and corresponding active leaves are detected and become to
passive, regions with blending red color. c) these passive leaves are updated
to return to active state. The estimation of the camera pose remains accurate,
which is indicated by the unchanged position of the virtual cube. 99

4.5 Fast labelling 2D-3D point correspondences by using triangulation algorithm
without a bundle adjustment optimization resulting in noisy data. 101

4.6 The percentage of active leaves in the whole regression forest at each frame
for the ARF strategy (blue) and a regression forest strategy (green) on the
static sequence 01/01. 102

4.7 Comparison our DynaLoc based on the ARF (blue) to RF approaches using
all leaves (red) and chosen leaves (green) with Tvar = 0.1 on DynaScenes
dataset by measuring the percentage of test images where the pose error is
below 5cm and 5°. 102

4.8 Detail results of our DynaLoc based the ARF (blue) and RF (red) on
DynaScene-03/Seq-02. a), b) translation error in centimeter and rotation
error in degree. c) the percentage of number of inliers at each frame. d)
the percentage of active leaves compared to the number of leaves used at
each frame for predictions. The background color present the percentage of
objects in the scene that have moved since the beginning. 103

4.9 Comparison results between DynaLoc and RF on a dynamic sequence. . . . 104

List of figures xv

4.10 Robustness of our method to different scenarios of dynamic scenes. The
stability of the camera pose estimation is illustrated by a virtual cube whose
position remains fixed during the update process over time. Inliers (blue
points) and outliers (red points) are displayed on objects. 105

A.1 Our demo at the IBC exhibition 2018 . 127
A.2 A data center infrastructure management combining with our AR. 128
A.3 Our AR application for maintaining data center: Training phase based on a

fiducial marker (on the left) and running phase (on the right). 129

List of tables

2.1 Camera relocalization datasets . 44
2.2 DynaScenes dataset. A RGB images dataset is used to evaluate camera

relocalization methods in dynamic scenes. 48

3.1 Median pose errors. Comparison of our methods with the state-of-the-art
methods on Cambridge Landmarks dataset and 7 scenes dataset. 58

3.2 xyzNet’s error: The mean distance error between predictions and ground
truths, on the set of all predictions (ErrP) and on the set of inliers (ErrI). . . 66

3.3 Median pose errors. Comparison of our methods with the machine learning
based state-of-the-art methods on 7 scenes dataset. 67

3.4 Comparison of our methods with the state-of-the-art methods on 7 scenes
dataset by measuring the percentage of test images where the pose error is
below 5cm and 5◦. 67

3.5 Median poses errors of the complete 7 scenes dataset (17000 frames). . . . 68
3.6 Mean of median poses errors on three scenes of CoRBS dataset. 69
3.7 Accuracy of 3D world coordinates prediction. Location error (in centime-

ters) computed by the mean of distance error between ground truths and
predictions on the set of inliers. Comparison between the sparse feature
regression forest using the hand-crafted descriptor (SURF), the learned de-
scriptor (Deep) and xyzNet. 2-elements: use only two elements of feature
vector for the split function. whole: use the whole feature vector. 80

3.8 Inference computational time per frame for each part of our process in
milliseconds (ms). Comparison between the sparse feature regression forest
using the hand-crafted descriptor (SURF), the learned descriptor (Deep) and
xyzNet. 2-elements: use only two elements of feature vector for the split
function. whole: use the whole feature vector. 80

xviii List of tables

3.9 Comparison of our method with geometric approach and deep learning
approach in terms of accuracy and computational time. The accuracy is
measured by averaging all median pose errors over all 7 scenes dataset. . . 82

3.10 Comparison of our method with the hybrid methods in terms of accuracy and
computational time. The accuracy is measured by the median poses error of
the complete 7 scenes dataset (17000 frames). The computational time is
measured for one frame in milliseconds. 82

3.11 Accuracy of camera relocalization. Comparison of our various contributions
with the state-of-the-art methods on 7 scenes dataset by measuring the per-
centage of test images where the pose error is below 5cm and 5◦. xyzNet:
mono output of 3D world coordinates prediction. 83

3.12 Results of transfer learning of xyzNet on 7 scenes dataset. xyzNet feature
extraction is learned from each scene. Then it is used to evaluate on all
scenes (translation error (cm) / rotation error (◦)) 84

3.13 Performance on texture-less dataset. Comparison between our methods and
baseline machine learning methods on CoRBS dataset. The accuracy is
measured by averaging all camera pose errors over all three scenes. 84

3.14 Generalization performance on the different trajectories of the BCOM dataset.
Our sparse feature regression forest is trained on each trajectory, then it is
evaluated on the other trajectories. The results are shown with the following
format: translation error (cm) / rotation error (◦). Gray rows and white rows
are results for Deep-RF and SURF-RF respectively. 86

4.1 Comparison of our method with state-of-the-art methods. The accuracy is
evaluated by median pose errors on 7-scenes dataset. 106

4.2 Comparison of our method with DSAC++ in term of runtime. Training time
per scene and testing time per image. 106

4.3 Comparison of our DynaLoc with our sparse feature regression forest (SURF-
RF). The accuracy is evaluated by median pose errors on DynaScenes dataset.107

5.1 Summary of our methods regarding the camera relocalization challenges.
For runtime and training time, gray color denotes methods using GPU, white
color denotes methods using only CPU. + means good handling and ++
means very good handling. 112

Nomenclature

Acronyms / Abbreviations

AR Augmented Reality

ARF Adaptive Regression Forest

BoW Bag of Words

CNN Convolutional Neural Network

DLT Direct Linear Transformation

DoF Degree of Freedom

F2P Feature-to-Point

FC Fully Connected

FCN Fully Convolutional Network

GMMs Gaussian Mixture Models

HMD Head-Mounted Display

ICP Iterative Closest Point

KF Kalman Filter

LSTM Long Short-Term Memory

MIMO Multiple-Input and Multiple-Output

MLP Multi-Layer Perceptron

MR Mixed Reality

xx Nomenclature

P2F Point-to-Feature

PCA Principal component Analysis

PnP Perspective-n-Point

RANSAC RANdom SAmpling Consensus

RFs Random Forests

RMSD Root Mean Squared Deviation

RNN Recurrent Neural Network

SfM Structure from Motion

SLAM Simultaneously Localization And Mapping

SVD Singular Value Decomposition

SVM Support Vector Machine

SVR Support Vector Regressor

VLAD Vector of Locally Aggregated Descriptors

VR Virtual Reality

Chapter 1

Introduction

Contents
1.1 Context . 1

1.2 Visual Camera relocalization . 5

1.3 Challenges . 7

1.4 Contributions . 10

1.5 Thesis Outline . 12

1.1 Context

In recent years, Virtual/Augmented/Mixed Reality (VR/AR/MR), robotics, autonomous
vehicles (self-driving) have become increasingly trendy in Industry 4.0.

Virtual reality (VR) is an interactive computer-generated experience taking place within
a simulated environment. Unlike traditional user interfaces, VR places the user inside a fully
virtual experience. Instead of viewing a screen in front of them, users are immersed and able
to interact with 3D worlds. Differently from VR, Augmented Reality (AR) does not create
a completely virtual environment. In AR, the real environment is annotated or extended with
virtual objects. To be able to do this seamlessly, the virtual objects must be transformed
according to the point-of-view of the person or objects pose. According to [9], an AR system
must have the following three characteristics: Combines real and virtual; Interactive in real
time; Registered in 3D. Mixed reality (MR) [121], sometimes referred to as hybrid reality,
is the merging of real and virtual worlds to produce new environments and visualizations
where physical and digital objects co-exist and interact in real time.

2 Introduction

Fig. 1.1 Augmented reality for maintenance of a data center at IRT b-com.

In particular, AR is widely used in several sectors and contexts, from consumer applica-
tions to manufacturers. AR technology, including smart glasses, provides employees with a
field access to the digital twin that perfectly matches the real environment. This improves
productivity, quality and safety in the workplace for some tasks as follows. For assisting
workers in complex tasks, the use of AR to overlay instructions onto the workspace has been
proven to reduce error rates in manufacturing assembly and accurately guide the technician
through each step. AR also allows co-workers to communicate easily using real-time data.
AR improves warehousing and logistics for control and pick-and-place tasks by effectively
guiding workers and avoiding mistakes. For training and supervision, AR enables vastly
more effective learning outcomes for workers who need to understand complex equipment or
high-risk environments. Supervisors are also able to mentor and assess a worker’s capability,
resulting in higher quality work with fewer mistakes. Finally, AR is able to monitor work-
places in real-time and significantly reduce the near-miss incidents. Figure 1.1 shows a use
case of AR for repair and maintenance of a data center.

1.1 Context 3

Fig. 1.2 Multiple transformation system of AR pipeline, extracted from [152]

All VR/AR/MR systems require a localization and tracking component. AR uses sensors
and algorithms to determine the camera pose and the pose of objects in the environment,
with high accuracy and in real-time. VR/MR systems need to colocalize the viewpoint on
the virtual contents with the pose of the Head-Mounted Display (HMD). For robotics and
autonomous systems, pose estimation is a key feature for automatically navigating in a 3D
space. Given the significance of camera/object pose estimation in the cutting-edge fields
mentioned above, improvement of their performance becomes more essential.

First of all, we need to distinguish between two concepts: camera pose estimation and
object pose estimation. 6 Degree of Freedom (6-DoF) Camera pose estimation is the problem
of determining the position and orientation of the camera relatively to a world coordinate
system (also called global coordinate system). Object pose estimation, on the other hand,
consists of determining the position and orientation of an object in the coordinate system of
the camera.

Figure 1.2 shows the AR pipeline using camera/object pose estimation. AR needs to
consider multiple transformation systems. The model transformation describes the pose
of moving objects in a static environment. The view transformation describes the pose of
a camera in an environment. The perspective transformation describes the mapping from
eye/camera coordinates to screen coordinates. The moving objects in this pipeline can be
real objects or virtual objects. For virtual objects, they are controlled by the application and
do not require tracking. Thus, camera pose estimation is a very critical part of augmented
reality.

4 Introduction

Most of the existing solutions to camera pose estimation problem are related to employing
multiple sensors because navigation, such as in outdoor environments, may involve compli-
cated scenarios that are hardly handled by just one sensor modality. For multiple sensors
navigational approach, previous works in pose estimation use data from popular sensors such
as camera, GPS, LIDAR and IMU [191, 113, 188, 85, 16]. Not surprisingly, many scientific
work and commercial products using them have obtained considerable positive results e.g.
Tango, Hololens, ARKit, ARCore.

Concerning camera pose estimation from vision-based modality, with the recent rapid
development of computer vision and machine learning coupled with the increasing computing
capacity on mobile or embedded terminals, numerous camera pose estimation methods based
on images have been developed and applied to augmented reality, robotics and autonomous
vehicles. These methods have obtained many promising results. However, achieving high
accuracy in any environment with fast computational time is still a challenge. Besides,
camera pose estimation based on images still faces multiple difficulties such as dynamic
scenes, large scale, fast camera motion, occlusion and variable lighting conditions.

1.2 Visual Camera relocalization 5

1.2 Visual Camera relocalization

The two most common solutions of camera pose estimation for commercial systems are
Structure from Motion (SfM) [161, 162, 186, 75, 122, 184] and Simultaneously Localization
And Mapping (SLAM): direct SLAM [130, 39, 170], indirect SLAM [35, 86, 124].

SfM methods process offline an unordered set of images with no temporal constraint to
estimate camera pose. They uses matching features amongst pairs of images. Thanks to these
matching, they can both reconstruct a 3D scene model and estimate camera pose. However,
these methods are not suitable for real-time systems.

Conversely, SLAM methods can work in real-time on an ordered sequence of images
acquired from a set-up of one or more cameras, potentially associated with an inertial
measurement unit. The majority of SLAM systems are based on camera motion tracking,
using consecutive frames to robustly calculate camera pose. Unfortunately, in the case of
fast camera motion or sudden change of viewpoint such as in a hand-held camera, tracking
failure interrupted camera pose estimation. In addition, the tracking which relies on the
reconstructed map fails every time the camera points outside the restricted maps. This can
frequently happen in AR scenarios in which the user is in full control of a hand-held or
head-mounted camera. For 3D reconstruction task, in order to acquire an accurate map of the
scene, these reconstruction pipelines rely on successfully tracked frames. Tracking failure
can have severe consequences. Integrating measurements with incorrect poses results in
implausible, invalid geometry and might destroy already reconstructed areas in the map.
Such a camera relocalization module allows seamless continuation of mapping. This avoids
the frustrating task of restarting an entire scan from scratch due to tracking failure. Also,
this makes AR applications more robust. Augmentations can be visualized with the correct
transformation immediately after successful recovery of the camera pose.

Camera Tracking
Camera

Relocalization

Lost Tracking

Tracking camera

pose detected

Success

incremental

tracking

Update camera relocalization model

Fig. 1.3 A common localization system consists of two components: camera localization and
camera relocalization.

Figure 1.3 presents a common localization system that combines camera relocalization
and camera tracking to define camera pose. Both camera relocalization and camera tracking
are problematics that consist of estimating camera pose. While camera tracking is an

6 Introduction

6-DoF camera pose

Fig. 1.4 Camera relocalization methods define individual frames independently based on
prior knowledge of a scene.

iterative process in which each current measurement is based on previous knowledge, camera
relocalization is a wholy-new calculation of camera pose.

The camera relocalization is an important component in localization systems. It allows to
define camera pose from individual frames independently based on models built from known
information of a scene, as illustrated in Figure 1.4.

1.3 Challenges 7

1.3 Challenges

(a) Feature matching of consecutive images in a camera localization

(b) Feature matching of a current image and a nearest retrieval image in a camera relocalization

Fig. 1.5 Feature matching approaches in the camera pose estimation process.

We consider the difficulty of the camera relocalization versus the camera tracking. Figure
1.5 illustrates the feature matching in the camera pose estimation process for the camera
tracking and the camera relocalization. The camera tracking uses corresponding features of
consecutive frames. This allows the relative transformation of camera poses to be rapidly de-
termined, but leads to error accumulation. Because there are few changes between successive
frames, a lot of correspondences are detected. On the other hand, the camera relocalization
is based on the prior knowledge of a scene that can be a set of observed images. However,
these observations are achieved at different times. If there are major changes in viewpoints or
environmental conditions, the feature matching between a current frame and a prior frame can
fail, as shown in Figure 1.5-b). Thus, the camera relocalization task is extremely challenging

8 Introduction

a) b) c)

Fig. 1.6 Dynamic environment challenges for the camera relocalization. a) illumination
change. b) occlusion. c) moving objects.

in the computer vision community. A great camera relocalization system has to meet the
following requirements:

• Accuracy

• Computational time

• Robustness to dynamic environments

• Scalability in large-scale scenes

Accuracy is the most important criterion for the camera relocalization methods. When
camera tracking fails, the localization system requires a camera relocalization system. This
system is able to define an accurate camera pose relatively to a 3D representation previously
reconstructed of the real environment instead of restarting from scratch. Indeed, an accurate
camera relocalization will allow 3D reconstruction to be extended in an homogeneous way
without corrupting it. The accuracy is necessary to preserve the location of augmentations
(Virtual objects) that have been setup by users in AR applications. Accuracy and stability of
augmentations registration with real environment can be a key factor in the adoption of aug-
mented reality technologies, especially when intended use case cannot accept any ambiguity
of localization at the risk of severe consequences (e.g. medical surgery, autonomous vehicles,
aeronautics or aerospace).

1.3 Challenges 9

Computational time of the camera relocalization consists of the training time and pro-
cessing time. Concerning processing time of camera relocalization, the real-time systems
such as AR applications need immediate relocalization of the camera after tracking loss.
Otherwise, this leads to an unpleasant seamless of the user’s experience. In terms of training
time, camera relocalization takes time to build a model from the prior knowledge e.g. a set
of images captured from a scene. It can be implemented offline. However, this model is
specific to each scene. Thus, the speed up model building makes the localization systems
more scalable for different scenes.

Robustness to dynamic environments is a common challenge in the computer vision
community, camera relocalization is not an exception. All the localization systems are still
restricted by challenging dynamic scenes such as in factories and outdoor scenes. Figure 1.6
shows some camera relocalization challenges in dynamic environments. The environment
can be considered as dynamic according to various conditions such as illumination changes,
occlusions, moving objects. Because the camera relocalization model is built on a rigid scene,
it cannot perform if the scene encounters a large change.

Scalability in large-scale scenes allows the localization systems to keep the accuracy
when the scene is expanded. The camera relocalization methods need to store a large set of
known information. Consequently, memory usage as well as processing time increase with
respect to the size of the models.

10 Introduction

1.4 Contributions

This thesis focuses on investigating solutions in order to tackle camera relocalization chal-
lenges mentioned above. The contributions of this thesis can be summarized as follows:

• Accurate and real-time 2D-3D point correspondences regression. The main con-
tribution of this research is to address limitations of state-of-the-art methods in terms
of both accuracy and computational time (including both processing time and training
time) in order to achieve a real-time accurate camera relocalization method from a
single RGB image. Our methods are based on the hybrid method pipeline that can be
summarized in three principal steps: feature extraction; estimation of 2D-3D point
correspondences from a regression learned model; camera pose estimation from these
correspondences. We improve both computational time and accuracy of 2D-3D point
correspondences by:

– Deep learning based methods. We use the MIMO strategy (Multiple-Input
and Multiple-Output) to overcome the uncertainty of deep learning models. We
present a light regression convolutional neural network for camera relocalization
from local patches based on key-point detection. Our network performs efficiently
and robustly to predict correspondences between image pixels represented by
RGB patches with fixed size and their 3D positions in world coordinates. We
called this network xyzNet. To accelerate processing as well as improve accuracy,
we only perform on patches defined thanks to a key-point detection in order to
process discriminant information and generate a set of probabilistic predictions.

– Random forest based methods. We propose a new split function at each node of
a regression forest, which takes whole relevant information of feature vectors as
inputs. This split function enables to increase the accuracy of camera relocaliza-
tion. Another originality of our method concerns the feature extraction algorithm
itself: we use a learned feature extraction from our convolutional neural network
xyzNet. Our learned features are more discriminate compared to previous hybrid
methods, that use the intensity of pixels or non-learned feature. Our regression
forest allows us to make an online learning during capturing images. Furthermore,
the regression forest predicts multiple 3D world coordinates output corresponding
to 2D image feature. This allows to deal with ambiguous of scenes containing
repetitive structure.

• Adaptive regression forest for dynamic scenes. Another important contribution of
this thesis is to propose an Adaptive Regression Forest - ARF that has the capacity

1.4 Contributions 11

to update rapidly when environment changes (even for dynamic environment including
moving objects) in order to maintain the accuracy of the learned model. We apply our
adaptive regression forest in a real-time camera relocalization method from only RGB
images in dynamic scenes. Our ARF is performed by two main originalities based on
detection and update of passive leaves.

– Passive leaves detection. The first originality of our ARF is to detect the leaves
which give non relevant information. There are two criteria for a leaf to become
a passive leaf: having a high variance of predictive model; giving repeatedly a
result rather different from the other leaves

– Passive leaves update. The second originality of our ARF is to update in real time
passive leaves of the regression forest model. This is performed by re-modeling
their predictive model from new computed labels. These labels are computed
based on the results given by the other leaves (active leaves). Note that the update
is only performed on passive leaves and not on the whole regression forest model.
We demonstrate the efficiency of this mechanism on some applicative examples
in camera relocalization. The regression results remain constant as long as the
changes do not involve too much data at a time (no accumulation of error).

• Camera relocalization datasets. A last contribution concerns the creation of datasets
to evaluate camera relocalization methods. We make two datasets from indoor scenes.
The first one consists of absolutely different camera trajectories to evaluate generaliza-
tion capability. The second one is the first public database including indoor dynamic
scenes, which is one of the most important challenges for (re)localization methods.

12 Introduction

1.5 Thesis Outline

The following chapters of this thesis are organized as follows.
Chapter 2 firstly gives a survey of existing camera relocalization methods. We classify

methods according to different approaches based on their mathematical models. We provide
the principle algorithms of the approaches prior to analyze their advantages and their limita-
tions. We then present the public datasets for the camera relocalization. We also propose
two datasets of indoor scenes. Each one has a different challenge and aims at evaluating
the strength of the camera relocalization methods in terms of accuracy, computational time,
generalization and robustness to dynamic scenes.

Chapter 3 begins with some proposed improvements for end-to-end machine learning
approaches. Then, we present our hybrid method that balances both accuracy and compu-
tational time of the camera relocalization. Our hybrid method is based on both machine
learning approach and geometric approach and aims at benefiting from each.

Chapter 4 deals with the challenge of dynamic scenes. We propose a completely new
machine learning algorithm based on regression forest process, that adapts itself in real time
to predictive model. It evolves by part over time without having to re-train the whole model
from scratch. We first describe mathematically our Adaptive Regression Forest - ARF with
several concepts used in ARF model. We then apply it to our real-time camera relocalization
approach from only RGB images in dynamic environments.

Chapter 5 concludes with a summary of this thesis and suggests directions for future
research.

Chapter 2

Camera Relocalization - state-of-the-art

Contents
2.1 Introduction . 14

2.2 Geometric approach . 16

2.2.1 Theory of camera pose estimation 16

2.2.2 Point correspondences matching based methods 22

2.3 Machine learning approach . 28

2.3.1 Machine learning theory for pose estimation 28

2.3.2 Camera pose regression . 33

2.4 Image retrieval approach . 36

2.4.1 Nearest images retrieval . 37

2.4.2 Camera pose estimation . 39

2.5 Hybrid approach . 41

2.5.1 Sparse random forest based methods 42

2.5.2 Dense deep learning based methods 43

2.6 Camera relocalization datasets . 44

2.6.1 Datasets . 44

2.6.2 Metrics . 48

2.7 Conclusion . 50

14 Camera Relocalization - state-of-the-art

2.1 Introduction

Camera relocalization is an important module in localization system. It allows an instant
recovery of the camera pose in case of initialization or tracking failures. Camera relocalization
leverages models built from known information of a scene in order to infer camera pose
from each image independently. In this chapter, based on the mechanism for modelling prior
information, we first present the state-of-the-art of camera relocalization methods according
to four different approaches as shown in Figure 2.1. We then introduce databases before
concluding the chapter.

This chapter is organized as follows:

• Section 2.2 starts with a theory of camera pose estimation based on geometric infor-
mation. Then, it presents geometric approach for camera localization. This approach
builds a 3D scene model, which is a 3D point cloud attached to 2D features.

• Section 2.3 begins with a theory of machine learning, especially regression learning
which is applied to pose estimation. We then present end-to-end regression learning
methods which infer camera pose based on a learned model.

• Section 2.4 presents image retrieval approach which constructs an image retrieval
model. Given a query image, it first finds nearest images and provides a coarse pose.
The final camera pose is achieved through either relative pose or absolute pose.

• Section 2.5 introduces hybrid approach. It combines both the machine learning
approach and the geometric approach to estimate camera pose. The machine learning
approach is applied to learn a 3D world coordinate model which predicts 3D position
of each pixel in the world coordinate system. Camera pose is then estimated by using
geometric algorithms.

• Section 2.6 introduces public camera relocalization datasets and metrics used to
evaluate the accuracy of camera relocalization methods.

• Section 2.7 concludes with the advantages as well as the limitations of the state-of-the-
art methods.

2.1 Introduction 15

Frame Frame

Feature Extraction3D Scene Model

Feature Matching

Solver
(e.g. PnP, Kabsch)

Camera Pose Camera Pose

Learned Feature
Extraction

Regression

End-to-End Camera
Pose Model

Correspondences
Geometric Machine Learning

a) b)

Frame

Feature Extraction

Regression

World Coordinates
Model

Correspondences

Solver
(e.g. PnP, Kabsch)

Camera Pose

Geometric

Machine Learning

d)Frame

Image-Level
Feature

Feature Matching

Image Retrieval
Model

Retrieved Images

Relative/Absolute
Pose Estimation

Camera Pose

Camera Pose Estimation

Nearest Images Retrieval

c)

Fig. 2.1 The pipelines of the state-of-the-art camera relocalization methods: a) Geometric
approach; b) Machine learning approach; c) Image retrieval approach; d) Hybrid approach.

16 Camera Relocalization - state-of-the-art

2.2 Geometric approach

The geometric approaches for camera relocalization are methods based on point correspon-
dences between a query image and a 3D point cloud. This point cloud is established from
prior observations of the scene. The common pipeline for geometric based methods consists
of three principal steps as shown in Figure 2.1-a). They begin with a keypoint detection and
feature extraction. Then, the features are matched to 3D scene model, where each 3D point
is attached to a feature vector. Finally, camera pose is estimated by running a solver based on
point correspondences. In this section, we first present theoretical camera pose estimation
based on geometric correspondences. Then, we introduce state-of-the-art geometric based
methods.

2.2.1 Theory of camera pose estimation

Based on [61, 98], we present mathematical camera model and camera pose estimation
methods from geometric correspondences such as 2D-3D point correspondences, 3D-3D
point correspondences, 2D-3D line correspondences.

Camera representation

a) b)

Fig. 2.2 Pinhole camera model. a) In the camera coordinate system, C is the camera centre
and p the principal point which is the projection of the camera centre on the image plane.
The camera centre is here placed at the coordinate origin. b) Principal point offset in image
coordinate, extracted from [61]

A camera model allows to project the 3D world coordinate system onto a 2D image
coordinate system. This paragraph develops several camera models based on matrices with
particular properties that represent the camera projection. We focus on the standard pinhole
camera model. We consider the central projection of points in 3D space onto the image

2.2 Geometric approach 17

plane. Let the centre of the projection be the origin of an Euclidean coordinate system, and
consider the plane Z = f , which is called the image plane or focal plane. Figure 2.2-a) shows
the pinhole camera model. A 3D point in the world coordinate system X = (X ,Y,Z)T is
projected onto the image plane where a line joining the point X to the centre of projection
meets the image plane.

Camera calibration matrix. Based on the intercept theorem, we can quickly computes
that the point X is projected onto the point x = (f X/Z, fY/Z)T on the image plane with
the assumption that the origin of coordinates in the image plane coordinate system is at the
principal point. In practice, this may not be the case, as illustrated in 2.2-b), so that in general,
the projection is defined as follows:

X = (X ,Y,Z)T 7→ x = (f X/Z + px, fY/Z + py)
T (2.1)

This equation may be expressed conveniently with the matrix equation as follows: f X +Zpx

fY +Zpy

Z

=

 f 0 px

0 f py

0 0 1

 X

Y
Z

 (2.2)

Denote:

K =

 f 0 px

0 f py

0 0 1

 (2.3)

The Equation 2.2 has the concise form:

x = KXcam (2.4)

Where (X ,Y,Z)T is written as Xcam to emphasize that the camera is assumed to be located
at the origin of an Euclidean coordinate system and the point Xcam is expressed in this
coordinate system, called the camera coordinate system. The matrix K is called the
camera calibration matrix. It contains the intrinsic camera parameters, also called
internal parameters. In the case of CCD cameras, there is the additional possibility of having
non-square pixels. If image coordinates are measured in pixels, then this has the extra
effect of introducing unequal scale factors in each direction. Thus, the general form of the

18 Camera Relocalization - state-of-the-art

calibration matrix is:

K =

 αx s x0

0 αy y0

0 0 1

 (2.5)

where αx = f mx and αy = f my represent the focal length of the camera defined in pixels
along the x and y axis respectively. mx and my are the number of pixels along the x and y
axis. x0 = [x0,y0]

T represents the image coordinates of the intersection of the optical axis
with the image plane, also called the principal point. s is referred as the skew. It is non-zero
only if the x and y directions are not perpendicular, and is generally considered negligible on
modern cameras. These parameters can be estimated during an offline camera calibration
stage, from the images themselves. Some popular calibration methods [163, 192] rely on a
simple planar pattern seen from several positions. The OpenCV library [24] also provides a
camera calibration tool.

Fig. 2.3 The Euclidean transformation between the world and camera coordinate systems,
extracted from [61]

Camera pose. In general, points in 3D space will be expressed in the world coordinate
system. The camera coordinate system is defined in the world coordinate system by an affine
3D transformation consisting of a 3D translation and a 3D rotation, as shown in Figure 2.3.
X is a 3D point in the world coordinate system, and Xcam represents the same point in the
camera coordinate system. Thus, we have a relative equation Xcam = R(X−C), where C
represents the coordinates of the camera center in the world coordinate system. R is a 3×3
rotation matrix representing the orientation of the camera coordinate system relatively to
the world coordinate system. This equation may be written in homogeneous coordinates as

2.2 Geometric approach 19

follows:

Xcam =

[
R −RC
0 1

]
X
Y
Z
1

 (2.6)

Denote t =−RC, we have a matrix H = [R | t] being the 3×4 extrinsic parameters matrix
that defines the orientation and the position of the camera. It is formed of a R rotation matrix
and a t translation vector. It corresponds to the Euclidean transformation from a world
coordinate system to the camera coordinate system. Thus, we refer to the camera pose T as
the inverse of external parameters matrix H:

T = H−1 = [R−1 | −R−1t] = [RT | −RT t] (2.7)

The camera localization systems usually assume that the calibration matrix K is known in
advance and focus on estimating the camera pose T .

Camera pose estimation

By replacing the Xcam in Equation 2.4 by Equation 2.6, we can define the projection matrix
from each 3D point X defined in the 3D world coordinate system to the point defined in the
2D image coordinate system:

x = K[R | t]X = PX (2.8)

Denote P = K[R | t], it is the 3× 4 perspective projection matrix that is defined up to a
scale factor, and thus depends on 11 parameters. The 11-DoF of the projection matrix P
can be decomposed into the 5-DoF for K, 6-DoF of camera pose including 3-DoF for R,
and 3-DoF for t. This equation allows to estimate the external parameters when the internal
parameters are known is often referred to as the camera pose estimation.

2D-3D point correspondences. We assume here that we have n correspondences between
3D points Xi in the world coordinate system, and their projections xi in the image coordinate
system. We are looking for the perspective projection matrix P of Equation 2.8 that projects
the points Xi on xi. In the computer vision community [41, 61], the Direct Linear Transfor-
mation (DLT) is developed to estimate the whole matrix P by solving a linear system even
when the internal parameters are not known. Each correspondence Xi - xi gives rise to two

20 Camera Relocalization - state-of-the-art

linearly independent equations in the entries Pi j of P:

P11Xi +P12Yi +P13Zi +P14

P31Xi +P32Yi +P33Zi +P34
= xi

P21Xi +P22Yi +P23Zi +P24

P31Xi +P32Yi +P33Zi +P34
= yi

(2.9)

We can write these equations in the form Ap = 0, where p is a vector made of the coefficients
Pi j. Then the correct solution can be found from the Singular Value Decomposition (SVD)
of A. It needs at least 6 correspondences (n ≥ 6) to define a unique excepted when the points
are coplanar and there is no triplets of collinear points, the solution is unique for n ≥ 4.

3D-3D point correspondences. For RGB-D cameras, from 2D-3D point correspondences
with the depth image, we can define 3D-3D correspondences between 3D points Xi in the
world coordinate system, and their projections Xcam in the camera coordinate system. The
problem becomes to define the affine transformation between two paired sets of 3D points.(

Xcam

1

)
=

[
R t
0 1

](
X
1

)
(2.10)

The translation t coincides with the translation of their centroids. The rotation is found
by the Kabsch algorithm [77] or Horn algorithm [66] (it uses unit quaternions to represent
rotations) that minimizes the Root Mean Squared Deviation (RMSD) between 3D-3D point
correspondences.

Line correspondences. It is quite easy to extend DLT algorithm to consider line corre-
spondences. A line in 3D may be represented by two points X0 and X1 through which the
line passes. The plane formed by back-projecting a line l from the image plane is equal to
PT l. The condition that the point X j lies on this plane is then

lT PX j = 0, j = 0,1. (2.11)

Each choice of j gives a single linear equation in the entries of the matrix P. So two equations
are obtained for each 3D to 2D line correspondence. These equations, being linear in the
entries of P, may be added to Equations 2.9 obtained from point correspondences and a
solution to the composite equation set may be computed.

The Perspective-n-Point (PnP) Due to the low adoption of depth cameras in mobile de-
vices (3D-3D point correspondences) and the difficulty in defining good line descriptors

2.2 Geometric approach 21

(2D-3D line correspondences), the 2D-3D point correspondences methods are the most
popular. The DLT method aims at estimating all 11 parameters of the projection matrix.
But it relies on an over-parameterization if the internal parameters are known. This results
in instability requiring more point correspondences than is really necessary. The problem
of recovering the 6-DoF pose of a calibrated camera from n 2D–3D point correspondences
is known as the Perspective-n-Point (PnP) problem. A minimum of three 2D–3D corre-
spondences is necessary for six constraints matching the 6-DoF. With only three points, this
P3P (PnP with n = 3) algorithm delivers up to four ambiguous solutions. A fourth point
correspondence is required to determine the unique solution. Different approaches to the
P3P problem have been proposed within the Computer Vision community [60, 138, 49].
They usually attempt to first estimate the distances xi = ∥CXi∥ between the camera center
C and the 3D points Xi, from constraints given by the triangles CXiX j. Once the xi are
known, the Xi are expressed in the camera system as Xc

i . Then, [R | t] is chosen to be the
displacement that aligns the points Xi on the Xc

i and can be found in closed-form solution
using quaternions [66] or singular value decomposition (SVD) [67]. Solving the xi requires
finding the roots of a fourth degree polynomial. To remove the ambiguity, one additional
correspondence is needed. A simple approach is to solve the P3P problem for subsets of
three of the four points, and retain the common solution. POSIT [36] is another popular way
to solve the pose estimation problem for n ≥ 4. [99] proposes a non-iterative solution to the
PnP whose computational complexity grows linearly with n.

Then, camera pose should be refined by minimizing the sum of the reprojection errors.
When a first estimation of the camera pose is known, we minimize the squared distance
between the projection of the 3D points Xi and their known 2D image coordinates xi:

T ∗ = argmin
T

∑
i
∥KT−1Xi −xi∥

2
2 (2.12)

This kind of quadratic minimization problem is usually solved iteratively [18].

RANSAC PnP problem assumes that correspondences are correct, what is rarely the case
and can result in a wrong convergence on minimization. To filter the good correspondences
of the bad ones and thus minimize the reprojection error in order to obtain an optimal
installation, the random sampling consensus is generally used (RANSAC) [43]. The main
idea of RANSAC is to estimate the model parameters from a randomly chosen subset of
the data points. For camera poses, P3P is often used, since it requires only three 2D–3D
point correspondences. For each of the remaining potentially point correspondences, we
compute the residual error, assuming the camera pose is computed from the three chosen

22 Camera Relocalization - state-of-the-art

points. A data point with a residual smaller than a threshold counts as an inlier. If the ratio of
inliers to outliers is not sufficient, the procedure is repeated. RANSAC terminates either if
enough inliers are found or if a maximum number of iterations is reached. Finally, the model
parameters are re-estimated using all inliers from the iteration with the largest number of
inliers.

2.2.2 Point correspondences matching based methods

The geometric approach for camera relocalization is based on a pre-computed 3D point cloud.
Given a 3D model of the scene, the camera pose can be estimated by directly matching
2D image features from the query image to 3D points in the map to define 2D-3D point
correspondences for RGB images or 3D-3D point correspondences for RGB-D images. Then,
it solves a standard camera absolute pose problem via PnP (2D-3D) or Kabsch (3D-3D)
algorithms. If the matches found are contaminated by some small portion of wrong matches
(outliers), RANSAC is conventionally applied to clean up the matches as well as accelerate
the camera pose computation. See 2.2.1 for further details of PnP, Kabsch and RANSAC
algorithms.

In the following paragraphs, we present the two main steps of the geometric approach
pipeline:

• Build a 3D model of the scene. This model contains a set of 3D points in the world
coordinate system associated with feature vectors.

• Match 2D image features of a query image to the 3D model to define 2D-3D point
correspondences.

3D model construction

A 3D point cloud model is built from a set of images captured by one or more cameras
observing a scene. The 3D model can be a sparse or dense point cloud.

A dense point cloud is generally build from direct SLAM methods [131, 107, 130, 181,
129, 39, 38, 182, 183, 170]. By using a depth sensor, a dense point cloud is created from
depth maps. Camera pose is estimated by tracking points cloud using Iterative Closest
Point (ICP) algorithm [130] and Lucas-Kanade algorithm [134]. However, for the camera
relocalization, due to the restriction of 3D feature matching, a query image cannot match its
features to the dense model. Thus, we utilize a sparse 3D point cloud associated with 2D
features from RGB images, as shown in Figure 2.4. This sparse 3D point cloud is constructed
thanks to offline methods or online methods.

2.2 Geometric approach 23

Fig. 2.4 A 3D points model attached to feature vectors is constructed by SfM from a set of
images.

The offline approach is known as Structure from Motion (SfM) [161, 162, 186, 75, 122,
184, 1, 136, 61]. It allows a complete sequence of images to be analyzed in order to perform
a 3D map reconstruction and a camera trajectory estimation. Firstly, feature extraction
(e.g. SIFT [111], SURF [13], ORB [144], AKAZE [3]) is performed on images. Then,
camera pose is estimated by using features matching amongst pairs of images in the image
connectivity graph. Next, 3D points in the map are computed based on estimated camera
pose and corresponding points in pairs of images by using triangulation algorithm [62]. As
illustrated in Figure 2.5, from each pair of matching keypoints (p1, p2) of two RGB images
for which the pose (T1,T2) is known, a 3D point P is defined by:p1 × (KT−1

1 P) = 0

p2 × (KT−1
2 P) = 0

(2.13)

And each 3D point is represented by a 2D descriptor. It can be the mean of descriptors
obtained from different observations. Finally, an optimization called bundle adjustment [173]
is performed to minimize the re-projection error of points.

24 Camera Relocalization - state-of-the-art

Fig. 2.5 3D point triangulation from a pair of matching points in two images with their
estimated camera poses.

SfM includes two approaches namely incremental SfM and global SfM. Incremental
SfM methods [161, 186, 2] are the standard approach that adds one image at a time to grow
the reconstruction. While this method is robust, it is not scalable because it requires to
repeat expensive operations such as bundle adjustment. On the contrary, global SfM methods
[75, 122, 184] consider the entire view graph altogether, instead of incrementally adding
more and more images to the reconstruction. For this reason, global SfM methods prove
themself to be much faster, with the same or even better accuracy than the incremental SfM
approach. It is also much more readily parallelized. The major limitation of SfM relies on
the fact that it only works on an already collected sequence of images.

The most popular online approach is known as indirect SLAM [35, 86, 124] (Simultane-
ous Localization And Mapping). The majority of visual SLAM systems are based on camera
motion tracking from frame-to-frame through consecutive frames. A tracking system passes
through three steps: initialization, prediction, correction. First a few initial landmarks have to
be given by using a known object [35] (as a A4 sheet of paper or fiducial marker) or by stereo
algorithm [86, 124]. Then the camera pose is predicted and corrected by using Kalman Filter
- KF [35, 86, 124] or a particle filter [137, 92]. Next, the 3D point cloud is updated based on
a triangulation algorithm knowing the pose of the cameras.

Finally, SLAM methods use local bundle adjustment on selected keyframes [86] or fast
global optimization to refine and avoid map duplication (e.g. pose graph) by loop closure as
in [124]. However, in large scenes without loop closure, frame-to-frame tracking accumulates
error causing drifts. This leads to a 3D point cloud that is not built correctly.

2.2 Geometric approach 25

Fig. 2.6 Camera relocalization from directly defining 2D-3D point correspondences.

Direct 2D-3D point correspondences matching

Direct 2D-3D point correspondences matching consists in finding 3D points in the world
coordinate system corresponding to each 2D feature of a set of keypoints detected in the
image coordinate system. This is performed by searching for the nearest neighbors of the
keypoint descriptors in the space containing all the descriptors of the 3D point cloud. Figure
2.6 shows 2D-3D point correspondences (red points) defined by this approach. When the 3D
map is very large, for example, covering a wide geographical area of a city, there may have
millions of 3D points, which raises two major challenges to this approach:

• How to quickly search within a massive database of a very large scene containing
millions of 3D points

• How to accurately find correct 2D-3D matches without suffering from ambiguity.

Classical direct matching approaches use the approximate nearest neighbor search. The
most widely used algorithm for the nearest neighbor search is the kd-tree [44] which works

26 Camera Relocalization - state-of-the-art

well for exacting nearest neighbor in low dimensional data. [14, 8] modify the original
kd-tree algorithm to use it for an approximate strategy with high dimension. [158] proposes
the use of multiple randomized kd-trees as a means to speed up the approximate nearest
neighbor search. On the other hand, [109, 132] use k-means algorithm to compute k-nearest
neighbors. [123] proposes FLANN (Fast Library for Approximate Nearest Neighbors) library
that contains a collection of algorithms optimized for fast nearest neighbor search in large
datasets and for high dimensional features. However, these searching methods become
prohibitively expensive in very large and dense feature collections.

Between methods based on prior information, [7] presents a system that recovers the
pose of a camera by confronting an image to a subset of 3D points that should be visible in
the query. The subset of 3D points is retrieved by using a rough camera pose provided from
an external sensor like GPS.

Without a prior camera pose, the 2D-3D matching becomes much more difficult because
of having millions of 3D points. Given a set of 2D features F in a query image and a set of
features P representing the 3D points in the 3D model, two basic matching strategies are
considered:

• Feature-to-point matching - F2P, where one takes each feature in the query image,
and finds the best matching point in the 3D model.

• Point-to-feature matching - P2F, where one conversely matches points in the 3D
model to 2D features in the query image.

Using tree-based approximate search [123], the computational complexity for matching all
the features against the 3D points is O(|F | log |P|). And the one for matching all points
against the query image requires time O(|P| log |F |). For large-scale scenes, there are
orders of magnitude more points than query features. Thus, P2F matching will only be more
efficient than F2P search if only a small fraction of all points is considered. To accelerate
2D-3D matching for both F2P and P2F strategies, methods attempt to reduce feature search
space by using the prioritized feature search algorithm [106, 149, 151].

[106] proposes a prioritized P2F matching strategy based on co-visibility information.
Starting with a set of seed points selected from all parts of the model, they match points
against the query image in order to descend priorities. Once a new match is found for a point,
P2F increases the priorities of all other points that are visible together with this point in at
least one database image. The search is stopped when a fixed number of points has been
tried. [71] first proposed the F2P method for camera localization based on the SfM scene
representation. To overcome limited viewpoints in the database images, they artificially
synthesized novel view image to augment the database. [149] introduces a Vocabulary-based

2.2 Geometric approach 27

Prioritized Search (VPS) inspired by Bag-of-Words (BoW) matching method. The number of
features stored in a visual word therefore gives a good estimate of the matching cost for this
particular query feature. To speed up feature matching, they process the features in ascending
order of their matching costs, starting with features whose activated visual words contain
only few features. The search stops once large enough correspondences have been found.
[105] show that the class of methods introduced in [71, 106] can deal with large environment.
They augment the P2F matching with hypothesis of co-occurrence of 3D points present in
a close neighbourhood. Based on similar spatial observation, [148, 108] consider visibility
graph to reject wrong matches. [42] proposed to use binary features to speed up the search.
[37] uses the feature redundancy associated to 3D points to train random ferns on the top of
each points. F2P matching time requirement is by the fact greatly reduced. [166] considers
F2P matching as a combinatorial optimization problem and design a fast outliers rejection
scheme. This promising work have been improved through contribution of [190].

Lowe’s ratio test [112] is classically used to reject ambiguous matches. After finding the
two nearest neighbors f1, f2 in the point feature space for a descriptor f of the query image,
a 2D-3D correspondence between the 2D feature f and the 3D point corresponding to f1 is
established only if the ratio test is passed:

∥ f − f1∥2 < τ∥ f − f2∥2 (2.14)

where τ is typically from the range [0.6;0.8]. The effectiveness of the ratio test strongly
differs for the two search strategies. Since F2P search performs matching on a global level,
the second nearest neighbor is also contained in this set, allowing the ratio test to discard
the match. On the contrary, P2F matching obviously resolves this global ambiguity since
it considers each 3D point independently of the others. Thus, it is likely that the ratio test
accepts matches for all 3D points in the set if one of the points passes the test, leading to
a significantly higher false positive matching rate. At the same time, F2P search is more
likely to reject correct matches due to such global ambiguities. For larger models, F2P
matching can therefore reject too many correct matches, leading to a reducing localization
effectiveness.

[150, 151] propose an Active Search mechanism based on both F2P and P2F search.
This allows them to exploit the distinct advantages of both strategies, while avoiding their
weaknesses. This method first considers features more likely to yield F2P matches and to
terminate the correspondence search as soon as enough matches have been found. Matches
initially lost due to the quantization are efficiently recovered by integrating P2F search with
a lower computational complexity.

28 Camera Relocalization - state-of-the-art

2.3 Machine learning approach

The problematic of camera relocalization can be solved by an end-to-end learning approach.
In machine learning, camera relocalization is usually considered as a supervised regression
problem. Methods based on this approach follow the same pipeline as described in Figure
2.1-b): Features are extracted by classical feature descriptors or learned features using the
known network, e.g. AlexNet [89], GoogLeNet [167], VGG [159], ResNet [64], pretrained
on ImageNet dataset [147]. Then, the feature is used to regress the camera pose in the scene.
A regression model is learned from the data of the known scene represented as a set of labeled
images: the images of the scene are captured from different viewpoints and labelled with
theirs camera poses (6-DoF). Machine learning based methods are only capable of performing
on known scenes and each trained model is uniquely used for the corresponding scene. In
this section, we first present machine learning from theory to application and especially
regression learning which is applied to pose estimation. Then we introduce state-of-the-art
camera pose regression based methods.

2.3.1 Machine learning theory for pose estimation

𝑋𝑜

𝑌𝑜

𝑍𝑜

𝑍𝑤

𝑌𝑤

𝑋𝐶

𝑌𝐶𝑍𝐶

𝑋𝑤

𝐻𝑊
𝐶

𝐻𝐶
𝑂

Fig. 2.7 Object pose estimation: 6-DoF object pose in the camera coordinate system, HO
C .

Camera relocalization: 6-DoF camera pose in the world coordinate system, HC
W .

2.3 Machine learning approach 29

Here we present the theory of supervised random forest and deep learning that are widely
used for camera relocalization. For each method, we introduce briefly its mechanism and
its applications from classification to regression. Then, we summarize machine learning
methods for object pose estimation and for camera relocalization, both addressing a 6-DoF
problem, even if camera relocalization generally address a larger scale. Figure 2.7 gives an
example to distinguish these two concepts.

Random Forest

Fig. 2.8 Decision tree. a) Input data is represented as a collection of points in the d-
dimensional space. b) Testing a decision tree with data v. c) Training a decision tree involves
sending all training data v into the tree. Extracted from [33].

Random forests (RFs) are one of the most popular machine learning tools because of their
speed, robustness and generalization [26, 33]. RFs are widely applied in computer vision
tasks such as object detection [46], object pose estimation [21], eye tracking [78], human
pose recognition [157], etc. A random forest is an ensemble of decision trees. A tree is a
collection of nodes and edges organized in a hierarchical structure (Figure 2.8-b,c). Nodes
are divided into internal (or split) nodes and terminal (or leaf) nodes. We focus only on
binary trees where each internal node has exactly two outgoing edges. For each decision tree,
a previously unseen data v is considered starting at the root node and descending to the leaf
node by repeatedly evaluating weak learner at each split node (Figure 2.8-b).

Training a random forest. In a random forest, a fraction of data S is selected to train a
decision tree (Figure 2.8-c). At each split node i, the parameters of a split function θi allow

30 Camera Relocalization - state-of-the-art

to define how the set of feature Si is split into left child node SL
i and right child node SR

i .

h(v,θi) =

0, go to left child node

1, go to right child node
(2.15)

The training entails finding the parameters of split functions stored in the split nodes by
optimizing a specified objective function Ii:

θ
∗
i = argmax Ii(Si)

θ∈Θ

(2.16)

Ii = H(Si)− ∑
j∈{L,R}

|S j
i |

|Si|
H(S j

i) (2.17)

Where Θ represents the space of all split parameters. H(.) is the entropy function. The split
procedure described above proceeds recursively to all the newly constructed nodes and the
training phase continues until a stopping criterion is met. There are various stopping criteria
such as stopping the tree when a maximum number of levels is reached or a node contains
too few training features. In the leaf node, the statistics of labels are stored to predict the
unknown features. The statistic model is a discrete distribution for classification tasks and is
a continuous distribution for regression tasks.

Testing a random forest. In the testing phase, unseen data feature v passes through a
regression forest to obtain a set of predictions: one prediction per a decision tree. Then, the
forest output is usually the average of all predictions:

p(y|v) = 1
T ∑

t∈T
pt(y|v) (2.18)

Deep learning

Deep learning [95, 54] is now widespread in the field of computer vision. As a machine
learning tool, deep neural networks are very effective at understanding high dimensional data,
such as images. They learn representations by encoding the input through a number of non-
linear layers and sub-sampling operations, resulting in powerful image-level understanding
and recognition capabilities. Deep learning models were first used in computer vision for
image recognition tasks [96, 89]. Recently, deep learning has been successfully applied to
different tasks in computer vision since their major success in object detection [51, 141],
semantic segmentation [110]. Figure 2.9 shows some applications of deep learning.

2.3 Machine learning approach 31

Fig. 2.9 Some deep learning applications.

Deep learning models, in simple words, are large and deep artificial neural networks.
Compared to MLP (Multilayer Perceptron), deep neural network has many more layers and
many more nodes in each layer, which results in exponentially many more parameters to tune.
insufficient data will lead to sub-optimal learning. Without powerful computers, learning
would be too slow and insufficient. Convolutional neural networks [96] are a subset of deep
learning which are particularly useful for computer vision because they can share neurals to
reduce processing time and they are spatially invariant.

The first CNNs have been applied to classification tasks. The architecture of a typical
CNN is structured as a series of stages. The first few stages are composed of two types of
layers: convolutional layers and pooling layers. Units in a convolutional layer are organized
in feature maps, within which each unit is connected to local patches in the feature maps
of the previous layer through a set of weights called a filter bank. The result of this local
weighted sum is then passed through a non-linearity such as a ReLU. All units in a feature
map share the same filter bank. Different feature maps in a layer use different filter banks.
The classification happens in the later fully-connected layers which consume the extracted
features and softmax classifier layer which outputs a vector representing the probability
distributions of a list of classes. These models are typically optimized by propagating
a training signal from the output all the way to the input. This is known as end-to-end
learning. Algorithms like stochastic gradient descent [17] and back-propagation [145] can
train networks containing millions of parameters. These networks can be optimized from a
loss function formulated from supervised labelled training data.

For regression tasks in computer vision, deep learning based methods span a large ensem-
ble of applicative scenarios such as: human pose estimation [172], object pose estimation

32 Camera Relocalization - state-of-the-art

[80], camera pose estimation [83], depth estimation [170]. Besides classification, CNN meth-
ods are also used to solve regression problems. In this case, the softmax layer is commonly
replaced with a fully connected regression layer with linear or sigmoid activations. However,
limitations of these methods lie in the lack of probabilistic distribution for output. Recently,
[45] proposes a practical framework for understanding uncertainty with deep learning models.

Object pose regression

Object pose estimation includes two steps: object detection (known as object localization and
recognition) and object pose estimation. In this paragraph, we present object pose estimation
solutions based on machine learning, whether dedicated to classification or regression, from
shallow to deep learning, as well as methods solving both object detection and pose estimation
simultaneously.

From classification to regression Classification strategy is widely used for object pose
estimation. The first application is for estimating head pose in [69, 93, 101]. Each image
in the dataset is labeled with a discrete information (Euler angles: roll, pitch, yaw). Then,
a classification algorithm learns the dataset discriminatively according to these classifiers,
which are discretized poses, by using SVM classifier with various strategies one-vs-one
[93], one-vs-all [69]; adaboost with image RGB-D in [189]; random forest classification
in [68]; and a fine-grained viewpoint classification using CNNs in [164]. This approach is
similar to templates-based methods. But instead of comparing an image to a large set of
individual templates, the image is evaluated by a trained model. This approach modifies
the classification goal to take into account the uncertainty of the annotations and encode
implicitly the topology of the pose space. An advantage of these methods is that each
model is also capable of making the distinction between objects and non-objects. Another
improvement is that, unlike templates-based and geometry-based methods, machine learning
methods can solve appearance variation as well as for high and low-resolution objects.
However, head pose in particular and more generally pose estimation are measured in a
continuous 6-DoF space. The classification methods have binary outputs as coarse pose
estimation. Therefore, these methods cannot exactly calculate object pose. Furthermore, they
face difficulties to train many discrete poses. This approach seems to be suitable only for
tasks that do not require high accuracy such as determining head pose of driver (straight, left,
right, top, bottom) to warn distraction.

With the development of machine learning, the regression approach has been proposed.
Specially, nonlinear regression methods that estimate pose by learning a nonlinear fitting.
The regression methods include support vector regressors (SVRs) [104, 127], multilayer

2.3 Machine learning approach 33

perceptron (MLP) [154], hough forest for regression [40], convolutional neural networks
(CNNs) [185]. The first methods for object pose estimation are proposed in [104, 127, 154].
Each DoF of object pose is trained separately. The trained model of an object are a set of
models. Recently, [19, 21, 90, 120, 88] propose to link conjointly object detection and pose
estimation in unique model based on hough forests [47, 46, 156]. Moreover, [91] uses an
extended particle filter framework to track object pose. It can also handle strong occlusion.
However, these methods can only be applied on RGB-D images [156]. [88] proposes a
method that only requires positive datasets for training.

From shallow to deep In this paragraph, we present machine learning approaches from
shallow to deep related to learned feature (deep learning) or non-learned feature (traditional
machine learning).

The classical pipeline of machine learning consists of two steps: feature extraction
and learning model. In deep learning, feature extraction is learned. The classic machine
learning methods for object pose estimation use the known feature: KPCA [101]; HOG [189].
However, feature extraction aims at changing image space to more discriminate feature space.
In particular, pose estimation is a highly non-linear problem with large result space (6-DoF),
so learned features are more suitable. But deep learning requires a large dataset to efficiently
learn features.

Deep learning methods for object pose estimation can be divided into two approaches
that are whole image based and patch image based. The whole image based methods require
an object localization step [51, 50, 141, 58]. After that, the objects are recognized and their
poses are estimated. [57, 164] separate object recognition and object pose estimation in
two different models. Otherwise, [185, 153, 114] do not require a object recognition step.
They introduce a powerful learning feature on different objects and different view points. In
feature space, images from different objects and different views distinguished into clusters.
That is an important factor to perform both object recognition and object pose estimation in a
common model. These holistic methods perform rapidly. But, the precision drops quickly
when object are occluded. The patch image based methods are effective ways to solve these
problems. [80] demonstrates that neural networks coupled with a local voting-based approach
can be used to perform reliable 3D object detection and pose estimation even with clutter
and occlusion.

2.3.2 Camera pose regression

For machine learning approaches, handling camera relocalization is as a regression problem
solved by a supervised learning. It is performed based on the informations known in advance

34 Camera Relocalization - state-of-the-art

of each scene. The training phase uses labeled images (images and their corresponding
camera poses). The testing phase uses the trained model to relocalize the camera from each
unseen image independently.

[83] first propose to address camera pose estimation with the end-to-end deep learning
strategy. A CNN is learned from whole images labeled with the camera poses. Then, the
trained model is used to directly predict camera pose from every RGB images. [83] presents
the way to adapt the GoogLeNet [167] model from classification to regression by properly
modifying their final layers to regress camera pose: adding a fully connected (FC) layer
before the two affine regressors. They leverage transfer learning from a pre-trained model
of scene recognition by fine-tuning to regress camera pose. The features from the final
convolutional layer are a high-level representation of the whole image, providing robustness
to various lighting conditions, weather and other dynamic changes in the mainly unchanged
scene. Training phase is performed with an objective loss function which is the sum of the
translation error and the rotation error:

L (I) = ∥t − t̂∥2 +β

∥∥∥q− q̂
∥q̂∥

∥∥∥
2

(2.19)

Where (t,q) and (t̂, q̂) are ground truth and estimated translation-orientation pairs respectively
(orientation being represented by a quaternion). β is a scale factor used to keep both error
values to be approximately equal. However, the value of the scale factor is specific to each
scene, which makes it remarkably hard to determine for a new scene.

[81] generates a probabilistic pose estimation by using dropout after every convolutional
layer as a means of sampling the model weights of PoseNet. The dropout layers in PoseNet
do not only play an important role to prevent over-fitting, but also provide an alternative
interpretation for CNNs with dropout as a Bayesian model approximation. Instead of adding
dropout layers, [28] uses Stochastic Variational Inference [65] (SVI) and Gaussian Process
Regression (GPR) [140] as another way to provide the probability distribution for the 6DoF
camera pose with one-time inference.

[177] is an improvement of PoseNet’s architecture with spatial Long Short-Term Memory
(LSTM) added after CNN layers. These features from convolutional layers are considered as
an input sequence to a block of four LSTM units operating along four directions (up, down,
left, and right) independently. On top of that, there is a regression part which encompasses
fully connected layers for predicting the camera pose. [32] also applies LSTMs to predict
camera translation only, but using short videos as an input aims at exploiting the temporal
information to enhance camera pose estimation. Their method is a bidirectional recurrent
neural network (RNN), which captures dependencies between adjacent frames refining

2.3 Machine learning approach 35

accuracy of the global pose. Both of the two architectures lead to an improvement in the
accuracy of 6-DoF camera pose, outperforming PoseNet.

[116] trains an hourglass network, using skip connections between their encoder and
decoder, to directly regress the camera pose. [79] proposes a different method based on a
regression forest with hough voting approach to directly regresses the camera pose but it
uses the same objective function combining translation error and rotational quaternion error.
[128, 187] extend the set of training images with synthetic data.

[82] solves the ambiguity of the scale factor between location error and orientation error
in the loss function of [83] by a novel loss function based on the re-projection error.

Lg(I) = ∑
X∈P ′

∥KT−1X −KT̂−1X∥2 (2.20)

Where P ′ is a subset of all 3D points X in the scene are visible in the image I. K is the
intrinsic calibration matrix of the camera. T and T̂ are ground truth and estimated camera
pose respectively. However, this loss function requires more time to compute and converges
more difficultly.

Rather than using a single image, [175, 139, 100, 25] propose visual odometry methods
based on localizing sequences of images. [175] trains a multi-task network to predict both 6D
global pose and the relative 6D poses between consecutive frames, and report improvements
over earlier neural network-based approaches, although their best results rely on using the
estimated pose from the previous frame. In very recent work, [139] have added semantics to
this approach. [100, 25] are also able to estimate camera pose of a monocular camera and the
depth of its view while preserving the scale thanks to the training phase using stereo image
pairs.

36 Camera Relocalization - state-of-the-art

2.4 Image retrieval approach

Retrieved images

𝑇𝑟𝑇𝑞

𝑇𝑟
𝑞

2) Relative pose

1) Absolute pose

Query image

3D scene

Fig. 2.10 Image retrieval approach. Camera relocalization is handled based on nearest image
retrieval. The camera pose of the query image can be estimated by two ways: 1) Calculating
absolute pose using the geometric approach. 2) Through defining relative pose between the
query image and retrieved images.

The two above approaches directly compute camera pose of a query image based on
geometric information correspondences or regression learning. On the contrary, image
retrieval approach consists of indirect methods, that cast the camera relocalization as an
image retrieval problem and provides a coarse pose about the query image, as illustrated
in Figure 2.10. The final camera pose is obtained either through estimating the relative
pose between the query image and retrieved images, or the absolute pose using a geometric

2.4 Image retrieval approach 37

approach. In this section, we introduce the pipeline of the image retrieval approach, as shown
in Figure 2.1-c), according to two steps: nearest images retrieval and camera pose estimation.

2.4.1 Nearest images retrieval

The aim of the nearest images retrieval methods is to retrieve a set of images that are in the
database and that are similar to an input query image. If the database stores not only a set of
images but also the poses of the cameras that have captured them, the pose of the retrieved
image provides an information on the possible location of the query image. This image
retrieval problem includes two steps: extracting image-level feature for both the query image
and the database; searching nearest images in the database based on a feature similarity.

Image-level feature

Extracting image-level feature aims at producing a compact feature representing each image.
This can be performed by global feature extraction and local feature aggregation.

For global feature extraction, the raw image can serve as a feature, with systematic
resizing [63, 87]. Some methods produce this feature on the whole image by using GIST
descriptors [133] or several random pixels [52]. With the recent emergence of deep learning,
a new class of very efficient global feature have been created [5, 55, 84, 11, 94, 168] based
on deep learning models. Deep learning based methods for camera pose regression need to
be trained for a specific scene. In contrast, they have been used for the image retrieval task
without special training, exploiting inherent domain transfer capability of neural network.
It is also interesting to notice that the most discriminative features are extracted from mid-
level convolutional layers instead of fully connected layers. Many approaches leverage
classification networks [53, 155], and fine tune them with place recognition datasets.

For local feature aggregation methods, from each single image, a large number of local
features are extracted. The feature aggregation is then performed in order to make an efficient
image-level feature while reducing the dimensionality of the feature vectors. The aggregation
process emphasizes specific features that are more relevant for the localization task. Early
feature aggregation techniques for image retrieval rely on BoW representations [160, 132].
It involves counting the number of features associated with each cluster in a large vocabulary
and creating a histogram for each set of features from each image. Thus it represents an
image in a compact vector. A great example of BoW is FAB-MAP [34] which relies on
SURF feature [13]. [48] uses for the first time BoW obtained from BRIEF features [29] along
with the very efficient FAST feature detector [143]. It reduces in more than one order of
magnitude the time needed for feature extraction, compared to SURF feature. Nevertheless

38 Camera Relocalization - state-of-the-art

the use of BRIEF is neither rotation nor scale invariant. DBoW2 [125] extends that work
using ORB feature [144] which is invariant to rotation and scale. Fisher vector (FV) based
methods [135, 73] improve BoW based methods by using Gaussian Mixture Models (GMMs)
to generate a probabilistic visual vocabulary. Another advantage of FV is that it can be
computed from much smaller vocabularies, and therefore leads to a lower computational
cost. Inspired by Fisher Vectors formulation, [72, 6] introduce Vector of Locally Aggregated
Descriptors (VLAD) representation for image-based retrieval. VLAD is an extension of BoW.
The difference between feature and its closest visual word is assigned to the final feature,
instead of the visual word itself. In simpler terms, it first matches a feature to its closest
cluster. Then, each cluster stores the sum of the differences of the features assigned to the
cluster and the centroid of the cluster. The underlying idea behind VLAD representation
have inspired various methods [76, 171]. Another aggregation solution using sum pooling of
deep feature maps is presented in [10].

Compared to local feature aggregation, global features are considered less robust in
viewpoint changes, occlusion and local variations in the image. Global feature extraction
methods using deep learning has been less successful so far in local-level image retrieval. On
most retrieval benchmarks, deep methods perform worse than conventional methods that rely
on local feature aggregation. However, global features are computationally less intensive to
extract and capture a comprehensive feature for each image.

Nearest images search

After extracting image-level feature, each image (query images as well as all the images of the
database) is represented by a feature vector. Now, nearest images search can be processed in
the same way as the feature matching described in Section 2.2.2. Due to the high dimension
of image-level feature, comparison between features (with L2 norm as usually used metric)
requires more time than local feature matching of Section 2.2.2. Thus, when the number
of images in the database is very large, the searching approach of Section 2.2.2 cannot be
immediately considered. Some works suggest to compress the features to improve the storage
requirements and retrieval efficiency. The most common approach is to use unsupervised
compression through Principal Component Analysis (PCA) or product quantization [135, 73].
Supervised dimensionality reduction approaches have also been proposed in [56].

There are some other approaches aiming at accelerating nearest images search. [180]
considers directly the localization problem as a classification task. The database is classified
into discrete camera pose classes. The image feature of the query image passes through the
classification model to obtain a set of retrieved images in the same class. On the other hand,
by leveraging the aggregation process, DBoW2 [48] which is used in ORB-SLAM [124]

2.4 Image retrieval approach 39

builds incrementally a database that contains an invert index. It stores for each visual word
in the vocabulary, the keyframes in which it has been seen, so that querying the database can
be done very efficiently.

2.4.2 Camera pose estimation

Figure 2.10 shows two ways to estimate the camera pose of the query image based on
information of retrieved images. First way, based on the geometric approach, [148, 124, 126]
directly estimate the camera pose by using a part of 3D model of a scene being visible in
retrieved images. [87, 52, 94, 11, 30] present the second way is to define camera pose through
relative pose between the query image and retrieved images. From the known camera pose of
one retrieved image T r and the transformation matrix from the query image to the retrieved
image T q

r , the camera pose of the query image T q is found by:

T q = T q
r T r (2.21)

Absolute camera pose estimation

Assume that a 3D point cloud model has been built from images in the database. [148]
achieves a 3D model by performing SfM algorithm. The one in [124] is obtained in real-time
by mapping frames. Similar to the geometric approach in Section 2.2.2, the 2D-3D point
correspondences are required for the absolute camera pose estimation of the query image in
the world coordinate system.

A set of sparse feature extracted from the query image are matched with keypoints of
retrieved images. Note that only keypoints of retrieved images that are associated with
3D points are nominated for matching. From 2D-2D matches, a set of 2D-3D point cor-
respondences is established. The homography transformation matrix that is calculated by
2D-2D matches can be used to filter these correspondences. The precise camera pose is then
computed from 2D-3D correspondences based PnP and RANSAC algorithms.

[124] attempts to reduce the computational complexity of feature matching by using
DBoW2 [48]. DBoW2 reports an additional benefit of the bags of words representation
for feature matching. To compute the correspondences between two sets of ORB features,
it can constraint the brute force matching only to those features that belong to the same
node in the vocabulary tree at a certain level, speeding up the search. [124] also refines the
correspondences with an orientation consistency test [125] that discards outliers ensuring a
coherent rotation for all correspondences.

40 Camera Relocalization - state-of-the-art

Relative camera pose estimation

The correlation information between the query image and retrieved images allows to estimate
relative camera pose estimation. [87] presents a first solution in order to improve the camera
relocalization in PTAM [86]. They exploit the fact that the SLAM system stores full RGB
keyframes, and the process relocalization directly from these. Instead of extracting some
forms of interest points and features from keyframes and then matching a novel view against
them, they find that keyframes are sufficiently densely distributed so that the full image can be
used as a descriptor: for each keyframe added to the map, generating a sub-sampled 40×30
pixel image, apply a Gaussian blur, and finally subtract the mean image intensity. This
zero-mean heavily blurs image forms the keyframe’s descriptor. When tracking is lost, each
incoming video frame is similarly subsampled, blurred, and mean-normalised. Next, nearest
keyframes are found by using methods presented in Subsection 2.4.1. The camera pose is
then set to the position of the nearest keyframe with the lowest image difference. The rotation
of the camera is estimated by aligning the requested image with the nearest keyframe by
minimizing the square difference of the sum over the whole image. They minimize over the
three-parameter group SE(2) in image (pixel) space, allowing ten iterations for convergence.
Finally, the resulting 3-DoF image-space transformation is converted to a best-fit 3D camera
rotation by considering the motion of a few virtual sample points placed in the image, in a
procedure similar to the unscented transform.

[52] provides a camera relocalization solution for KinectFusion system [130] dedicated
to only depth sensor. While [87] uses an appearance based method, [52] uses 3D point cloud
obtained from depth images to determine the relative transformation between the query image
and the nearest keyframes. This transformation can be for instance computed by employing
a robust version of the Iterative Closest Point (ICP) algorithm [146].

[11] proposes a Siamese network to generate global features using a continuous metric
learning loss based on camera frustum overlap. Given a query image and its nearest retrieved
neighbor, their differential pose is defined based on this Siamese network.

2.5 Hybrid approach 41

2.5 Hybrid approach

b)a)

Fig. 2.11 Hybrid approach. a) Sparse random forest based methods. b) Dense deep learning
based methods.

Figure 2.1-c shows the pipeline of the hybrid methods. Camera pose is estimated by
combining both machine learning approaches and geometric approaches. Machine learning
approaches are applied to learn and predict the 3D position of each pixel in world coordinate
system. From these correspondences, geometric methods infer camera pose. Instead of
directly matching 2D keypoint in a query image to 3D point cloud by feature-based methods
(see details in Section 2.2), a world coordinate regression model defines rapidly and efficiently
2D-3D point correspondences. We present world coordinate regression models according
to two approaches as shown in Figure 2.11: sparse random forest based methods and dense
deep learning based methods.

42 Camera Relocalization - state-of-the-art

2.5.1 Sparse random forest based methods

The methods are known as voting methods, which have been successfully used in [46] for
object detection. Though, in order to obtain a final 6-DoF camera pose (camera translation
and rotation), each pixel does not vote directly for a global quantized 6-DoF because of the
dimensionality of the camera pose estimation manifold space. Each pixel instead makes a
3D continuous prediction about its own 3D position in the world coordinates system or the
camera coordinates system.

The first hybrid method [156] using a random forest proposes predicts directly corre-
sponding 3D points in world space for all pixels in an RGBD image (each pixel in the image
effectively denoting a 3D point in camera space). By generating predictions for thousands of
pixels, their approach avoids the explicit detection, description and matching of keypoints
typically required by traditional 2D-3D correspondences based methods. This makes it
simpler and faster to find larger number of correspondences. Moreover, all features used in
[156] are based on simple pixel comparisons [97] and so are extremely fast to evaluate. At
testing time, a random subset of pixels from RGB-D image pass through the regression forest
to predict 3D world coordinates. The camera pose is then obtained by using Kabsch [77] and
RANSAC [43] algorithms to optimize a geometric energy function:

T ∗ = argmin
T

E(T)

E(T) = ∑
i

ρ

(
min∥p̂i −T−1xi∥2

) (2.22)

Where xi is 3D coordinates of pixel i in the camera coordinate system. p̂i is 3D world
coordinates prediction. ρ is a top-hat error function.

This initial method have been improved in [59], relying on multiple regression forests to
generate a number of camera pose hypotheses. The hypotheses are then clustered, and the
mean pose of the cluster minimizing the reconstruction error is selected as the result. [176]
introduces mixtures of anisotropic 3D Gaussians to represent the uncertainty associated with
the regression forest prediction at leaf nodes and significantly improve the 6-DoF estimation
by embedding this information within the full camera pose regression step. However, the
methods [156, 59, 176] are limited by the use of RGB-D images in both training and testing
phase.

As an extension of [156], [22] uses an auto-context regression forest from only RGB
image patches with lower accuracy. [117] performs RGB relocalization by estimating an
initial camera pose using a regression forest, then queries a nearest neighbor keyframe image
and refines the initial pose by sparse feature matching between the camera input image and

2.5 Hybrid approach 43

the nearest keyframe. [115] maps parameters between regression forests and neural networks
to leverage the performance benefits of neural networks for dense regression while retaining
the efficiency of random forests for evaluation. [118] stores a priority queue of non-visited
branches whilst passing a feature vector down the forest during testing, and then backtracks
to see whether some of those branches might have been better than the one chosen. [119]
makes use of both points and line segments (segment feature being based on the features of
a points sampling) to achieve more robust relocalization in poorly textured areas and/or in
case of motion blur. [31] proposes a new method based on pre-trained regression forest. This
method permits to transfer the pre-trained model to a new scene through online adaptation.

2.5.2 Dense deep learning based methods

On the other hand, various related methods have used deep learning approaches to define
2D-3D correspondences. DSAC [20] is the first method using a VGG style architecture for
scene coordinate regression. It takes an image patch of 42×42 pixels as input and produces
one scene coordinate prediction for the center pixel. This design is not so efficient because
the CNN processes neighboring patches independently without reusing computations. They
sample 40× 40 patches per image instead of making a dense prediction for all possible
patches. [20] also shows how to replace the RANSAC stage of the conventional pipeline
with a probabilistic approach to hypothesis selection that can be differentiated, allowing
end-to-end training of the full system.

[102, 27] use a fully-convolutional encoder decoder network to predict scene coordinates
for the whole image at once, thus taking into account the global context. This prevents patch
sampling in [20], but needs significant data augmentation to avoid overfitting. [23] that is
known as DSAC++ significantly improves the results of [20]. They use a Fully Convolutional
Network (FCN) [110], but without upsampling layers. Their FCN takes a RGB image of
640×480 pixels as input and produces 80×60 scene coordinate predictions. They regress
more scene coordinates in less time than their previous work [20]. Whilst, they also show
how to avoid the need for a 3D model at training time (albeit at a cost in performance). Very
recently, [103] has shown how to use an angle-based reprojection loss to remove [23]’s need
to initialize the scene coordinates with a heuristic when training without a model. However,
despite all of these advances, none of these papers remove the need to train on the scene of
interest in advance in order to generalize the learn model.

44 Camera Relocalization - state-of-the-art

2.6 Camera relocalization datasets

In this section, we first introduce the public datasets that will be used for our experiments in
Chapters 3 and 4. Then we present some metrics that are often used to evaluate the accuracy
of camera relocalization methods.

2.6.1 Datasets

Dataset Scene Train Test Scale
Spatial

Extent (m2)
Data Type GT method

7-Scenes

Chess 4000 2000

Room

6

RGB-D KinectFusion

Fire 2000 2000 3
Heads 1000 1000 2
Office 6000 4000 6

Pumpkin 4000 2000 6
Red Kitchen 7000 5000 12

Stairs 2000 1000 5

CoRBS
Human 1273 1273

Room

10
RGB-D Tracking SystemDesk 1190 1190 9

Electrical Cabinet 950 950 6

Cambridge
Landmarks

King’s College 1220 343

Outdoor

5600

RGB SfM
Street 3015 2923 50000

Old Hospital 895 182 2000
Shop Facade 231 103 1000

St Mary’s Church 1487 530 5000

BCOM
4 sequences

(Train a sequence and
test on 3 remaining ones)

2400 2400 Desktop 5 RGB-D Markers

DynaScenes

Dyna-01 669 1362

Desktop

4

RGB Tracking System
Dyna-02 831 2211 4
Dyna-03 743 1982 4
Dyna-04 958 3504 4

Table 2.1 Camera relocalization datasets

Datasets for visual based camera pose estimation include images and corresponding
annotations (camera pose for each frame: 3D translation and 3D rotation in the world
coordinate system) as well as the intrinsic parameters of the vision sensors. Depending on
the used sensor, images can be RGB or RGB-D. As introduced in Section 1.2, both camera
localization and camera relocalization are to estimate camera pose. While localization
methods require continuous sequences to measure accuracy, the relocalization methods can
evaluate their accuracy for each frame independently. Thus, datasets of unsorted list of
images and sampling images are also used. Table 2.1 shows data information of five datasets
that we use to evaluate our methods and compare with state-of-the-art methods. Each dataset

2.6 Camera relocalization datasets 45

consists of some different sequences captured under different environment conditions. This
is very interesting to consider the ability of camera relocalization methods to handle the
challenges mentioned in Section 1.3.

Fig. 2.12 7-scenes dataset: from left to right, this dataset consists of chess, fire, heads, office,
pumpkin, red kitchen, stairs.

7 scenes dataset is introduced by [156]. This dataset has 17000 images across seven
scenes at room-scale. Each scene includes some sequences which are captured around a
single room and annotated by using KinectFusion [130]. A 3D scene model is also provided
by KinectFusion. The ground truth computed from KinectFusion are not really perfect. By
visualizing the point cloud of each frame to compare with 3D model of the scene, we find
that some frames do not match to the 3D model correctly. This affects the pixel labeling in
our learning database generation phase where we wish patches corresponding to the same
3D location of the scene to have the same label. However, it is enough accurate to evaluate
camera relocalization methods. The data is extremely challenging with pure rotation or
fast movement of camera that creates many textureless images. Figure 2.12 shows some
examples of 7 scenes dataset. One challenge of the office, red kitchen and stairs scenes is
that they have repeated patterns (several similar desks, chairs, stairs).

Fig. 2.13 CoRBS dataset: Human, Desktop, Electrical Cabinet (from left to right).

CoRBS dataset [179] is more accurate than 7-scenes dataset thanks to the use of multiple
sensors. Visual data is captured by using a Kinect v2. The ground truth is obtained by an
external motion capture system providing a tracking based on passive spherical markers

46 Camera Relocalization - state-of-the-art

attached to the Kinect. Each scene contains a dense 3D scene model which is created via
an external 3D scanner. An overview of the three scenes is provided in Figure 2.13. Each
scene contains a main big object on flat surfaces and texture-less background. The Human
scene is a simple wooden manikin whose surface is predominantly convex. The Desk scene
incorporates more complex geometry and includes a slightly reflective screen. The most
challenging scene is that of the electrical cabinet with a dense components in an interior
space.

Fig. 2.14 Cambridge Landmark dataset: King’s College, Street, Old Hospital, Shop Facade,
St Mary’s Church (from left to right).

Cambridge landmarks dataset is an outdoor urban relocalization dataset with five scenes
introduced in Figure 2.14. The dataset was generated using SfM techniques [186] which
is used as ground truth measurements for this paper. A Google LG Nexus 5 smartphone
was used by a pedestrian to take high definition video around each scene. This video was
subsampled in real-time at 2Hz to generate images to input to the SfM pipeline. There is a
baseline of about 1m between each camera position. This dataset covers many challenges such
as blur motion, occlusion, illumination change. However, since SfM is still an approximate
method, obtaining the exact ground truth of outdoor scenes under various conditions is
challenging. Additionally, a SfM model containing both training and testing images is built
and the resulting poses of the query images are used as ground truth. Yet, this approach relies
on local feature matches and can only succeed if the testing images and training images are
sufficiently similar.

BCOM dataset 1 is our dataset captured from one indoor scene. This dataset consists of
four sequences corresponding to four absolutely different trajectories in the same scene with
changing illumination and camera rotation. A kinect v2 is used to capture RGB and depth
images. The ground truth for camera pose is performed by using multiple fiducial markers
on the scene. Marker based methods limit view point of camera because of the appearance of
markers in each frame. However, they allow us to create sequences far away from each other
shown in Figure 2.15. This database aims at evaluating some generalization capabilities of
the methods.

1https://github.com/duongnamduong/bcom-dataset

2.6 Camera relocalization datasets 47

Fig. 2.15 BCOM dataset: including four sequences.

The DynaScenes dataset 2 is a completely new dataset of dynamic scenes that we have
created. The ground truth of camera pose is acquired accurately by using a HTC Vive tracker
rigidly attached on the camera. The camera can move around within a visible area of two
lighthouse base stations. This allows us to continuously track the orientation and trajectory of
the tracker. A rigid transformation matrix between tracker pose and camera pose is estimated
by using the hand-eye calibration method [174]. Camera pose is found based on tracker pose
and this transformation matrix. We perform a synchronization to get image frame and tracker
pose at the same time.

This dataset consists of four scenes in desktop-scale for an area of about 3m2. Each
one contains three absolutely different image sequences of the same scene (one training
sequence and two testing sequences). Each sequence has from 600 to over 2000 RGB images.
The testing sequences are extremely challenging with occlusion, illumination changes and
gradually moving objects. To evaluate precisely camera relocalization methods in dynamic

2https://github.com/duongnamduong/DynaScenes-dataset

48 Camera Relocalization - state-of-the-art

Infos
DynaScene-01 DynaScene-02 DynaScene-03 DynaScene-04

Train Test Train Test Train Test Train Test
Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02

#Frames 669 681 681 831 1136 1075 743 842 1140 958 1395 2109
Occlusion No No No No Yes No No No No No Yes Yes

Illumination change No No No No No No No Yes No No Yes Yes
Moving objects 0% 0% 30% 0% 0% 60% 0% 0% 100% 0% 0% 100%

Table 2.2 DynaScenes dataset. A RGB images dataset is used to evaluate camera relocaliza-
tion methods in dynamic scenes.

Training sequence Testing sequence - 01 Testing sequence - 02

Fig. 2.16 DynaScenes dataset. This is some examples in Dyna-03 scene.

scenes, we setup some movable objects on a black background to eliminate rigid features
from the background. More detail characteristics of this dataset are given in Table 2.2.

2.6.2 Metrics

The accuracy of camera relocalization methods is evaluated by comparing camera pose
estimation and camera pose ground truth for each frame. Let (R, t) and (R̂, t̂) be the ground
truth and the camera pose estimation respectively.

• Translation error. It is the distance between the translations t and t̂. The translation
error is simply measured by the Euclidean distance:

E(t) = ∥t − t̂∥2 (2.23)

• Rotation error. According to [70], the distance between rotations R and R̂ represented
by unit quaternions q and q̂ is the angle of the difference rotation represented by the
unit quaternion ∆q = qq̂∗, q∗ denotes the quaternion conjugate. We can extract the
rotation error from the first component of ∆q by:

E(R) = 2arccos |q1q̂1 +q2q̂2 +q3q̂3 +q4q̂4| (2.24)

2.6 Camera relocalization datasets 49

The rotation error also can be calculated from the difference rotation matrix ∆R = RR̂T :

E(R) = arccos
tr(∆R)−1

2
(2.25)

Where tr(∆R) is the trace of ∆R.

To evaluate camera pose estimation error for a scene, we can compute the mean or the
median of all translation errors and all rotation errors. It provides an overview accuracy of
measurement. [156] reports another metric that consists of the percentage of test frames for
which the inferred camera pose is essentially correct. They employ a fairly strict definition of
correct: the pose must be within 5cm translational error and 5◦ rotation error of the ground
truth. The belief is that correctly localizing the pose under this metric might already be
sufficient for some augmented reality applications.

50 Camera Relocalization - state-of-the-art

2.7 Conclusion

In above sections, we presented the state-of-the-art of camera relocalization methods accord-
ing to four approaches: geometric approach, machine learning approach, image retrieval
approach, hybrid approach. Although these approaches have proven their strengths, they are
still limited by different challenges e.g. accuracy, run-time, training time, scene dynamics,
large scale, to apply to a generic camera relocalization system.

Geometric approach is a basic solution based on 2D-3D point correspondences. Geo-
metric approach is simple, accurate and especially useful when the query image has large
distance to the training images. However, such methods are restricted to a relatively small
scene due to the fact that matching cost, depending on the matching scheme employed, can
grow exponentially with respect to the number of keypoints. Matching of local features can
be noisy and unreliable on scenes with repeated patterns. Besides, to achieve accurate and
effective 3D model, the SfM algorithms take much more time to build and optimize the 3D
model.

Image retrieval approach improves the matching time compared to the geometric approach
by finding coarse pose from nearest retrieved images. Precise camera pose can be obtained
by defining 2D-3D point correspondences between the query image and 3D points seen by
the retrieved images or measuring similarity of images for relative pose estimation. However,
these methods are often not accurate if the query frame is captured from a viewing pose that
is far from those in the database. For localization system, this approach needs to store a large
set of keyframes. Consequently, memory usage as well as processing time increase with
respect to the size of models.

Machine learning approarch has appeared to overcome these limitations (memory usage
for large scale, matching time) of geometric and image retrieval approaches. It provides a
compact end-to-end camera pose estimation solution. Contrary to the geometric approach, it
struggles to generalize beyond their training data. These methods can estimate camera pose
in real-time from each image on a GPU but the training phase takes hours or even days for a
small scene. However, important limitations of these methods lie in their moderate accuracy
and the lack of confidence score for each pose estimation. These methods are significantly
less accurate than geometric based methods as well as image retrieval based methods. This
approach seems more consistent with image retrieval than with camera pose regression.

Hybrid approarch is based on both deep learning approach and geometric approach with
aims at benefiting from each. The machine learning part defines the points correspondences
faster than the geometric based methods. Then geometric part infers camera pose from these
correspondences. Although these methods achieve higher accuracy, they need thousands of

2.7 Conclusion 51

predictions about scene coordinates, so that time increases a lot to infer optimal camera pose
by RANSAC algorithm.

Inspired by hybrid approach, we propose methods to balance computational time and
accuracy. Our methods improve the machine learning part of hybrid approaches aiming
at simultaneously reducing the number of 2D-3D point correspondences and increasing
their accuracy in order to accelerate computation and keep high accuracy of camera pose.
However, in all camera relocalization approaches above, geometrical model or learned model
are built from rigid scenes. And they are not updated in real-time. Therefore, for dynamic
scenes, especially when some objects move, these models are no longer accurate to infer
camera pose. We expand continously our real-time accurate hybrid method based on the
regression forest to our adaptive regression forest method. The adaptive regression forest
model is able to adapt rapidly to real-time changes to tackle camera relocalization in dynamic
scenes. We present our contributions of this thesis in Chapter 3 and 4.

Chapter 3

Balance between Accuracy and Runtime
for Camera Relocalization

Contents
3.1 Introduction . 54

3.2 Camera pose regression based on local patches 55

3.2.1 Multi-output camera pose regression 55

3.2.2 Experiments . 56

3.3 3D world coordinates learning based on local patches 59

3.3.1 Patch extraction and labelling 60

3.3.2 xyzNet for 3D world coordinates regression 61

3.3.3 Camera pose calculation . 62

3.3.4 Experiments . 63

3.4 Efficient multi-output world coordinate prediction 73

3.4.1 Accurate sparse feature regression forest learning 74

3.4.2 Hand-crafted descriptor versus learned descriptor 77

3.4.3 Experiments . 79

3.5 Conclusion . 88

54 Balance between Accuracy and Runtime for Camera Relocalization

3.1 Introduction

The state-of-the-art presented in Chapter 2 has shown accurate methods for camera relocal-
ization. Especially, the hybrid approaches using 3D world coordinate regression currently
achieve a high pose accuracy. However, having a both real-time and accurate method is still
a challenge. In this chapter, we present our hybrid method combining machine learning and
geometric approaches for real-time and accurate camera relocalization from a single RGB
image. The main limitation of the state-of-the-art hybrid methods is due to the computational
time of the geometric part of the process. This computational time is high, due to the exces-
sive number of data with a low accuracy used as inputs of this geometric part. Therefore, our
method focuses on improving the data provided by the machine learning part of the process.
This is performed by two axes: decreasing the number of data handled in each step of the
machine learning part, and increasing their relevancy at the same time.

This chapter is organized as follows:

• Section 3.2 presents our camera relocalization from local patches using machine
learning approaches. We tackle uncertainty of end-to-end camera pose regression by
using multi-output camera pose regression based on local patches of a single RGB
image.

• Section 3.3 presents a light CNN, that we called xyzNet, to efficiently and robustly
regress 3D world coordinate from local patches. Then, the geometric information
about 2D-3D correspondences removes ambiguous predictions and calculates more
accurate camera pose.

• Section 3.4 introduces our sparse feature regression forest to further improve the
machine learning part in hybrid approaches. We propose a novel split function that
uses a whole feature vector instead of classical binary test function to obtain higher
accuracy of 2D-3D point correspondences.

• Section 3.5 gives some conclusions and perspectives.

3.2 Camera pose regression based on local patches 55

3.2 Camera pose regression based on local patches

Patches extraction Multi-output camera pose regression Camera pose

Fig. 3.1 PatchPoseNet pipeline: From a set of relevant patches extracted on a RGB image,
PatchPoseNet predicts multi-output camera poses. The final camera pose is computed by
fusing the camera poses.

We propose a camera pose regression based on the machine learning approach. Instead
of regressing camera pose from a whole RGB image as in [83], we use the MIMO (Multiple-
Input Multiple-Output) strategy to overcome the uncertainty of deep learning by predicting
multi-output camera pose from local patches. The pipeline of our method is summarized in
Figure 3.1. In the following sections, we first present how to generate multi-output camera
pose regression from a single RGB image and combine them to achieve a final camera pose
prediction in Section 3.2.1. Then, Section 3.2.2 shows our experiments and the limitations of
this method.

3.2.1 Multi-output camera pose regression

A problem of end-to-end regression for camera relocalization lies in the lack of confidence
score. Therefore, predictions are uncertain. To solve this problem, [81, 32] create a proba-
bilistic model of results by using dropout layers after every convolutional layer as a means of
sampling the model weights. Our method, instead, uses a set of patches to generate a set of
probabilistic results.

Inspired by the success of deep learning with local patches for object detection and
segmentation [58, 50, 80], we propose a CNN based on VGG style architecture for inferring
camera pose from each local patches. We called it PatchPoseNet. Firstly, we extract local
patches of RGB image which contain significant information. Homogeneous patches, such
as on the sky or on a road, do not provide distinctive information about camera pose in the
scene. The use of these patches produces some noise. That is why we filter them. Indeed, the

56 Balance between Accuracy and Runtime for Camera Relocalization

RGB image Image gradient

Patch sampling

Fig. 3.2 Patch extraction. From sampled patches (red patch), we select patches which have
maximum magnitude of image gradient (blue patch).

patch extraction is processed as described in Figure 3.2. From RGB image input, we first
sample a grid of 50×50 patches with a fixed size of 0.1min(W,H), where W , H are width
and height of image respectively. We then calculate the gradient of the image input. Finally,
we select 500 patches per image. The chosen patches have the greatest magnitude of image
gradient.

CNN training phase: We extract patches from the training images. Each patch is
attached with a label which is the camera pose ground truth of the corresponding image. Our
network is trained by minimizing an Euclidean loss function (Equation 2.19) using stochastic
gradient descent.

CNN testing phase: To estimate camera pose from an unseen RGB image, we extract,
following the same strategy as in training, a set of patches. All patches are passed through
the learned model to give multi-output camera pose. We combine all the predictions to make
a final camera pose prediction by performing a non-parametric clustering mean-shift. This
allows to reduce the effect of noisy predictions and determine more accurate estimation.
Figure 3.3 shows the fusion of camera poses by calculating the mean and mean-shift of votes.
The result of mean-shift is more accurate than the one of the mean of predictions.

3.2.2 Experiments

Comparasion. We evaluate our method, PatchPoseNet, on two datasets: Cambridge
Landmarks and 7 scenes. We compare our method to geometric based method (Active
Search [151]) and to machine learning based methods (PoseNet [83], Bayesian PoseNet [81],

3.2 Camera pose regression based on local patches 57

Fig. 3.3 Camera pose fusion. A set of votes for camera pose: blue points represent the
translation of camera poses. Green point is the ground truth. Red point and cyan point are
mean and mean-shift of camera translations respectively.

PoseNet 2 [82], LSTM-PoseNet [177]). These methods only use RGB image for camera
relocalization.

Table 3.1 reports that our method outperforms PoseNet [83] and Bayesian PoseNet [81]
on all scenes. It proves that our method provides an effective solution in order to address
uncertainty of deep learning regression. However, our results are not as good as PoseNet 2 or
LSTM-PoseNet on all scenes. And the accuracy of our method is far lower than geometric
methods.

Conclusion. We proposed a solution using multi-output predictions from data to tackle
the problem of uncertainty in deep learning regression. We showed results that confirms the
effectiveness of our method compared to end-to-end learning from whole image. However, it
is also significantly less accurate than geometric based methods. Our method is still restricted
to the coefficient weight of the loss function which combines rotation and translation error
by coefficient weight. In addition, the multi-patch extraction from each image makes a huge
training data. This leads to the training phase more difficult to converge. It takes more than a
day on a GPU to train a scene with thousands of images. Moreover, patches extracted from
the same position on the scene with different camera rotations are almost unchanged. This

58 Balance between Accuracy and Runtime for Camera Relocalization

Table 3.1 Median pose errors. Comparison of our methods with the state-of-the-art methods
on Cambridge Landmarks dataset and 7 scenes dataset.

Scene
Active Search

[151]
PoseNet

[83]
Bayesian

PoseNet [81]
PoseNet 2

[82]
LSTM-PoseNet

[177] PatchPoseNet

King’s College 0.42m, 0.55◦ 1.92m, 5.40◦ 1.74m, 4.06◦ 0.88m, 1.04◦ 0.99m, 3.65◦ 1.28m, 4.86◦

Old Hospital 0.44m, 1.01◦ 2.31m, 5.38◦ 2.57m, 5.14◦ 3.20m, 3.29◦ 1.51m, 4.29◦ 2.12m, 5.20◦

Shop Facade 0.12m, 0.40◦ 1.46m, 8.08◦ 1.25m, 7.54◦ 0.88m, 3.78◦ 1.18m, 7.44◦ 1.33m, 6.98◦

St Mary’s Church 0.19m, 0.54◦ 2.65m, 8.48◦ 2.11m, 8.38◦ 1.57m, 3.32◦ 1.52m, 6.68◦ 1.97m, 7.05◦

Street 0.85m, 0.83◦ 3.67m, 6.50◦ 2.14m, 4.96◦ 20.3m, 25.5◦ - 2.12m, 5.84◦

Chess 0.04m, 1.96◦ 0.32m, 8.12◦ 0.37m, 7.24◦ 0.13m, 4.48◦ 0.24m, 5.77◦ 0.23m, 6.81◦

Fire 0.03m, 1.53◦ 0.47m, 14.4◦ 0.43m, 13.7◦ 0.27m, 11.3◦ 0.34m, 11.9◦ 0.40m, 8.32◦

Heads 0.02m, 1.45◦ 0.29m, 12.0◦ 0.31m, 12.0◦ 0.17m, 13.0◦ 0.21m, 13.7◦ 0.24m, 10.8◦

Office 0.09m, 3.61◦ 0.48m, 7.68◦ 0.48m, 8.04◦ 0.19m, 5.55◦ 0.30m, 8.08◦ 0.43m, 6.23◦

Pumpkin 0.08m, 3.10◦ 0.47m, 8.42◦ 0.61m, 7.08◦ 0.26m, 4.75◦ 0.33m, 7.00◦ 0.39m, 6.17◦

Red Kitchen 0.07m, 3.37◦ 0.59m, 8.84◦ 0.58m, 7.54◦ 0.23m, 5.35◦ 0.37m, 8.83◦ 0.50m, 7.65◦

Stairs 0.33m, 2.22◦ 0.47m, 13.8◦ 0.48m, 13.1◦ 0.35m, 12.4◦ 0.40m, 13.7◦ 0.44m, 9.83◦

makes our method reduces the discrimination with rotation. In the next section, we present
our hybrid method to overcome limitations of the end-to-end learning approach.

3.3 3D world coordinates learning based on local patches 59

3.3 3D world coordinates learning based on local patches

Patches extraction 3D location predictions Camera pose calculation

Fig. 3.4 xyzNet Camera Relocalization Pipeline: From a set of relevant patches (blue squares)
extracted on each RGB image, xyzNet predicts a set of 3D positions (blue points) in the
world coordinate system. PnP and Ransac algorithms are then used to filter inliers (green
points) and eliminate outliers (red points). Finally, camera pose is computed by re-running
PnP once on all the inliers.

In this section, we propose a hybrid method based on both machine learning approach
and geometric approach. Figure 3.4 illustrates our pipeline. Our main contribution is that we
propose a real-time camera relocalization method. Inspired by PatchPoseNet in Section 3.2,
we use sparse patches instead of a whole image for camera relocalization. But contrary to
PatchPoseNet, we present a light convolutional neural network for scene coordinate regression
from local patches. We called this network xyzNet. Indeed, the high dimensionality of the
camera pose research space is likely to result in a poor estimation. Thus, instead of end-to-end
camera pose regression, each patch gives a 3D world coordinate prediction. The originality
of our method is to use only patches extracted from the detection of keypoints. The patch
extraction based on keypoints is more discriminative on appearance. Therefore, our network
predicts efficiently and robustly correspondences between 2D image pixels represented by
the centers of RGB patches with fixed size and their 3D positions in the world coordinate
system. This allows our method to have a trade-off between runtime and accuracy for camera
relocalization. Furthermore, thanks to the use of patches instead of a whole image, our
method is robust to occlusion. From 2D-3D point correspondences that are estimated by our
network, we run PnP and RANSAC algorithms in order to estimate camera pose. The final
camera pose is attached with a confidence score based on the number of inliers.

In the following paragraphs, we present our method including three main steps. Firstly, in
Subsection 3.3.1, we express patch extraction based on keypoint detection and 3D world coor-

60 Balance between Accuracy and Runtime for Camera Relocalization

dinate labelling for training. Then, in the Subsection 3.3.2, we introduce xyzNet architecture,
ways to train and predict 3D points in world coordinates system. Camera pose calculation
from 2D-3D point correspondences is given in Subsection 3.3.3. Subsection 3.3.4 shows and
discusses our results on different datasets and provides some conclusions and perspectives.

3.3.1 Patch extraction and labelling

Camera pose

P
at

ch
 e

x
tr

ac
ti

o
n

 b
as

ed
 o

n

S
U

R
F

 k
ey

p
o

in
ts

d
et

ec
ti

o
n

3
D

 c
am

er
a

co
o
rd

in
at

es

3D world coordinates

Camera intrinsic

Fig. 3.5 Patch extraction and labelling.

Figure 3.5 presents the means of extracting patches and labelling them. From each RGB
image, we extract a set of patches. Instead of randomly choosing them, we deliberately
get patches around keypoints to target only regions with a relevant appearance. Thus, each
chosen patch is an image region around a keypoint with a fixed size. We use SURF detector
[12] to detect some sparse points which are scale and rotation invariant points. This enhances
the ability to locate 3D positions from patches. The Hessian minimum threshold is chosen
to ensure detection of hundreds of keypoints even on blurry or texture-less images. So,
from every image, we have a set of patches P = {Pi} centered on the SURF keypoints
p = {pi = (ui,vi)}, where pi defines an image coordinates.

For the training phase of xyzNet, we need to label each training data with the correspond-
ing 3D world coordinates, Pw

i = (Xw
i ,Y

w
i ,Zw

i). Otherwise, we can execute SfM once on all

3.3 3D world coordinates learning based on local patches 61

the training dataset to carry out a mapping between keypoints and point cloud. Fortunately,
we have RGB-D datasets. So we can use RGB-D images from the calibrated camera with
their corresponding camera poses to define labels for the training phase. Note that in the
testing phase, we only use RGB images and we do not need any depth information. From
the position pi = (ui,vi) of each keypoint detected in RGB image and the corresponding
depth value Di in the depth image, a 3D position Pc

i = (Xc
i ,Y

c
i ,Z

c
i) of the keypoint in camera

coordinates system is calculated by using the standard pinhole camera model as follows:

Pc
i = DiK−1

[
pi

1

]
(3.1)

Where K is a matrix of camera intrinsic parameters. The world coordinates Pw
i =(Xw

i ,Y
w
i ,Zw

i)

corresponding pixel pi are defined based on the transformation equation in the homogeneous
coordinates system: [

Pw
i

1

]
=

[
R t
0 1

][
Pc

i

1

]
(3.2)

Where the camera pose T = [R|t] including rotation matrix R and translation vector t for each
frame is supposed to be known in advance.

3.3.2 xyzNet for 3D world coordinates regression

World
coordinates

49 × 49 × 3

Fig. 3.6 xyzNet: A CNN regression for predicting world coordinates from RGB patches

We design a novel regression network to directly predict from 2D pixels the 3D corre-
spondences in the world coordinate system. We called this network xyzNet. It takes RGB
image patches with a fixed size of 49×49 pixels as inputs. The most common networks used
in deep learning are not suitable for processing multiple patches in terms of computational
time. Our xyzNet is a light CNN dedicated to efficient and robust camera relocalization.

62 Balance between Accuracy and Runtime for Camera Relocalization

Indeed, xyzNet consists of five layers that perform convolution of the input with a set of
filters of 3×3 kernels, max-pooling and sub-sampling over a 3×3 area, and a rectified linear
(ReLU) activation function. In the first stage, a local response normalization (LRN) is used
to normalize patches with different illumination conditions. These five layers are followed by
two fully connected layers to regress 3D world coordinates. A dropout layer is added after
every fully connected layer to deal with over-fitting. xyzNet is illustrated in Figure 3.6. The
use of patches based on keypoints instead of random points or grid-points reduces noise of
training data as well as search space. This does not require a complex network and our light
network, xyzNet, can perform efficiently and robustly.

In the training phase, the weights of xyzNet are learned by minimizing an Euclidean
objective loss function with an optimization algorithm that is a stochastic gradient descent.
The loss function is defined as follows:

l(p) = ∑
pi∈p

∥Pw
i − P̂w

i ∥
2
2

Where Pw
i and P̂w

i are respectively ground truth and prediction about the 3D coordinates of
pixel pi in the world coordinate system.

Contrary to [83] that predicts camera pose (6-DoF) from a whole image, in our sys-
tem, each patch predicts a 3D continuous prediction about its own position. This reduces
considerably the complexity of the loss function and produces more efficient optimization.

3.3.3 Camera pose calculation

Here, we will show how to estimate camera pose from predictions of xyzNet based on
the geometric approach. From each RGB image, we extract a set of patches centered on
keypoints. Each patch passes through xyzNet to generate a prediction about the 3D position
in the world coordinates system. When all patches have passed through xyzNet, we obtain a
set of 2D-3D point correspondences. As presented in Section 2.2.1, just three exact 2D-3D
point correspondences are theoretically required to infer the camera pose. Nevertheless, a
well-known computer vision method can solve this problem, namely Perspective-n-Points
(PnP) algorithm. But as xyzNet can make some noisy predictions, we do not consider directly
all 2D-3D point correspondences to calculate the camera pose. Instead, we first use PnP and
Ransac to remove noise (outliers) and keep exact predictions (inliers) as in [99]. RANSAC
generates a set of hypothetical poses T = {Ti} by performing PnP on random subsets of
2D-3D point correspondences. Each hypothetical pose defines a set of inliers based on the
re-projection error. And the best hypothetical pose which provides the highest number of

3.3 3D world coordinates learning based on local patches 63

inliers is defined as follows:
max
∀Ti∈T

∑
p j∈p

ρ(αi j) (3.3)

ρ(αi j) =

1, if αi j < τ

0, otherwise
(3.4)

Where αi j = ∥p j −KT−1
i P̂w

j ∥2 and τ is the maximum threshold of re-projection error that
defines inliers. Then pixel j is considered as an inlier of hypothesis Ti if ρ(αi j) = 1.

Let I be the set of indices of the inliers associated with the best hypothetical pose.
The final camera pose is carried out by running PnP once on all the inliers of the set I to
minimize the re-projection error function:

E(T) = ∑
i∈I

∥pi −KT−1P̂w
i ∥

2 (3.5)

Inferring camera pose from multiple patches with filtering method based on PnP and
RANSAC algorithms allows to eliminate outliers on moving objects in the scene. It is
to address the challenge of scenes with partial occlusion. Moreover, the number of inliers can
be used as a confidence score of the final estimation which is not provided by the previous
deep learning based methods. With this confidence score, we determine which frames can be
used for the augmented reality. Our results are shown in the following paragraph.

3.3.4 Experiments

All experiments are implemented on a NVIDIA GTX 1080 GPU using Caffe framework [74].
For the training phase, we extract up to 500 patches with fixed size from every image. We
experiment many different configurations on a scene of 7 scenes dataset [156] to optimize
parameters that are used for other scenes. Our configuration includes: 500 epochs with a
batch size of 2048; training begins at a learning rate of 10−2; then the learning rate is dropped
by multiplying it with a factor gamma of 0.8 after every 50 epochs; dropout probability is
0.5 for all fully connected layers; xyzNet is trained by using Stochastic Gradient Descent
with a momentum of 0.9 and a weight decay of 10−5.

We evaluate our method on 7 scenes dataset [156] and CoRBS dataset [179], presented
in Section 2.6. Both datasets are indoor scenes. We show results about accuracy as well as
computational time of our method. Our results are compared to state-of-the-art methods.
Each one provides RGB-D images, intrinsic matrix of camera and annotations (camera pose
for every frame).

64 Balance between Accuracy and Runtime for Camera Relocalization

Fig. 3.7 Detected inliers from patches extraction based grid-points (left) as described in [20]
and key-points (right) on an image of the fire scene.

Evaluation of patch extraction based on keypoints

To evaluate benefits of patch extraction based on keypoints, we compare it with a patch
extraction based on a grid-points of size 40×40 as proposed in DSAC [20], illustrated in
Figure 3.7.

Firstly, in the training phase, the use of patch extraction based on a grid of points generates
a lot of training patches that includes much noisy data from homogeneous patches. Therefore,
xyzNet training takes more time and converge with more difficulty. Figure 3.8 shows time
of training convergence. Keypoint based method is two times faster than grid-point based
method.

Secondly, in the testing phase, grid-point based method takes a lot of time to predict
thousands patches including homogeneous patches that does not provide any information
about translation and rotation of camera. So, processing these patches is redundant and
even counterproductive. As shown in Figure 3.7, all patches extracted from wall or floor are
outliers, since these patches do not contain enough individual feature to discriminate against
each other. High accurate predictions (inliers) belong to textured patches.

In addition, when having too many predictions, PnP and Ransac algorithms need more
time to define the best solution for camera pose. Figure 3.9 shows that the same computational
time per image, key-point based is more accurate than grid-point based. Therefore, our
method using patches extraction from keypoints can reduce run-time while achieving higher
accuracy.

3.3 3D world coordinates learning based on local patches 65

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration 10
4

0

0.5

1

1.5

T
ra

in
 l
o
s
s

Grid-point

Key-point

0 0.5 1 1.5 2 2.5 3 3.5 4

Iteration 10
4

0

0.5

1

1.5

T
e
s
t
lo

s
s

Fig. 3.8 Training performance from patches extracted from keypoints and grid-points on the
chess scene.

0 100 200 300 400 500

Time(ms)

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

T
ra

n
s
la

ti
o

n
 E

rr
o

r
(m

)

0 100 200 300 400 500

Time(ms)

3.5

4

4.5

5

5.5

6

6.5

R
o

ta
ti
o

n
 E

rr
o

r
(d

e
g

re
e

)

Grid-point

Key-point

Fig. 3.9 Relation between computational time per image and mean accuracy of camera
relocalization. It is obtained by changing number of Ransac iteration for key-point based and
grid-point based methods on the chess scene.

66 Balance between Accuracy and Runtime for Camera Relocalization

Table 3.2 xyzNet’s error: The mean distance error between predictions and ground truths, on
the set of all predictions (ErrP) and on the set of inliers (ErrI).

Scene Chess Fire Heads Office Pumpkin RedKitchen Stairs Average
ErrP 0.25m 0.19m 0.14m 0.65m 0.27m 0.44m 0.34m 0.28m
ErrI 0.13m 0.11m 0.06m 0.26m 0.11m 0.14m 0.13m 0.12m

Ground truthInliers

Fig. 3.10 xyzNet’s accuracy: From a set of patches (blue squares) extracted around key-points
(2D green points) for which correspond a ground truth (3D green points) defined in the world
coordinates system, xyzNet predicts a set of world coordinates (3D blue points).

xyzNet accuracy

The accuracy of xyzNet prediction is the core of our pipeline and has a powerful influence on
the accuracy of camera pose. We analyze the xyzNet’s accuracy by computing the distance
error between predictions and ground truth.

In table 3.2, we show the average location error on the testing data of 7 scenes dataset.
We calculate two distance errors, one on all predictions and, one on all inliers. The results
are 0.28m and 0.12m respectively. In Figure 3.10, we visualize an example on the desk scene
of the CoRBS dataset concerning the predictions of the set of inliers. The results indicate
that xyzNet provides a higher precision if efficiently filtered with the Ransac and PnP. For the
scenes office, red kitchen, stairs, we did not achieve good results, what could be explained by
the repetitiveness of the scenes. That makes patches extraction on similar object ambiguous.

3.3 3D world coordinates learning based on local patches 67

However, filtering with Ransac and PnP algorithms greatly improves the accuracy of the
estimation by decreasing the ambiguous predictions.

In terms of runtime and accuracy of camera relocalization

Table 3.3 Median pose errors. Comparison of our methods with the machine learning based
state-of-the-art methods on 7 scenes dataset.

Scene
PoseNet

[83]
Bayesian

PoseNet [81]
PoseNet 2

[82]
LSTM-PoseNet

[177] xyzNet

Chess 0.32m, 8.12◦ 0.37m, 7.24◦ 0.13m, 4.48◦ 0.24m, 5.77◦ 0.06m, 2.38◦
Fire 0.47m, 14.4◦ 0.43m, 13.7◦ 0.27m, 11.3◦ 0.34m, 11.9◦ 0.06m, 2.16◦
Heads 0.29m, 12.0◦ 0.31m, 12.0◦ 0.17m, 13.0◦ 0.21m, 13.7◦ 0.08m, 4.75◦
Office 0.48m, 7.68◦ 0.48m, 8.04◦ 0.19m, 5.55◦ 0.30m, 8.08◦ 0.28m, 6.61◦

Pumpkin 0.47m, 8.42◦ 0.61m, 7.08◦ 0.26m, 4.75◦ 0.33m, 7.00◦ 0.06m, 2.00◦
Red Kitchen 0.59m, 8.84◦ 0.58m, 7.54◦ 0.23m, 5.35◦ 0.37m, 8.83◦ 0.06m, 2.25◦
Stairs 0.47m, 13.8◦ 0.48m, 13.1◦ 0.35m, 12.4◦ 0.40m, 13.7◦ 0.20m, 4.42◦
Average 0.44m, 10.4◦ 0.47m, 9.81◦ 0.23m, 8.12◦ 0.31m, 9.85◦ 0.11m, 3.51◦

Table 3.4 Comparison of our methods with the state-of-the-art methods on 7 scenes dataset
by measuring the percentage of test images where the pose error is below 5cm and 5◦.

Name of
scene

Sparse
Features[156]

Brachmann
et al.[22] DSAC[20] xyzNet

Chess 70.7% 94.9% 97.4% 41.8%
Fire 49.9% 73.5% 71.6% 47.5%
Heads 67.6% 48.1% 67.0% 41.6%
Office 36.6% 53.2% 59.4% 15.6%
Pumpkin 21.3% 54.5% 58.3% 40.1%
Red Kitchen 29.8% 42.2% 42.7% 42.9%
Stairs 9.2% 20.1% 13.4% 25.9%
Average 40.7% 55.2% 58.5% 36.5%

In this paragraph, we evaluate our method on the 7 scene dataset to compare it with the
state-of-the-art methods. We consider only RGB image based methods.

Baselines. Several strong methods of the three approaches (geometric, machine learning,
hybrid) are used as the baselines. For machine learning based methods, we use the same
baselines as in Section 3.2 (PoseNet [83], Bayesian PoseNet [81], PoseNet 2 [82], LSTM-
PoseNet [177]). For geometric approach, we compare again to Active Search [151] and a

68 Balance between Accuracy and Runtime for Camera Relocalization

Table 3.5 Median poses errors of the complete 7 scenes dataset (17000 frames).

Method
Translation
Error (cm)

Rotation
Error (◦) Time(ms)

Active Search [151] 4.9 2.46 100
Brachmann et al. [22] 4.5 2.0 1000

DSAC [20] 3.9 1.6 1500
xyzNet 7.7 2.8 60

baseline in [156] that uses ORB feature based methods on only RGB image at test time. For
hybrid approach, we take two recent methods [22, 20].

Computational time. We measure the time processing of our experiment. It takes about
60ms for each frame with 10ms for SURF feature detection, 25ms for world coordinate
prediction of 500 patches on GPU and 25ms for 500 iterations of Ransac and PnP. Runtime
depends on the number of iterations of Ransac to calculate camera pose. However, we fix
the number of iteration at 500 being enough to balance between computational time and
accuracy. The training time for each scene in 7 scenes dataset is about 4 hours.

Accuracy. To compare our method to the machine learning approach, we measure the
median pose errors on 7 scenes dataset. The results are shown in Table 3.3. Our method
clearly outperforms all the machine learning baselines in both translation and rotation error
(except office scene). In Table 3.4, we compare our results on 7 scenes dataset with the
geometric and hybrid methods. We use a metric based on the percentage of test images where
the pose error is below 5cm and 5◦. And we also show the median pose errors of all frames
in the 7 scenes dataset with the runtime per frame in the Table 3.5. Our method is slightly
higher than other methods on two scenes: red kitchen and stairs. For the other scenes, our
method is not as good as the methods in [22], [20]. And the geometric based method in [156]
outperforms our methods for scenes: chess, fire and heads. However, our method is able to
relocalize camera for each frame in 60ms. Whereas, the sparse feature based method takes
approximately 250ms per frame, [22] and [20] require more than a second for each frame,
making difficult to use them for augmented reality systems requiring real-time processing.
We obtain the worst result on office scene. As our analysis above, RANSAC can eliminate
ambiguities on repetitive scenes such as office, red kitchen and stairs. Unfortunately, too
many predictions are considered as outliers on the office scene, what results in too few 2D-3D
inliers to achieve good results by the PnP.

3.3 3D world coordinates learning based on local patches 69

Confidence score

Fig. 3.11 The camera pose error according to number of inliers: For each scene, we calculate
the median of the translation error (in the left) and rotation error (in the right) on the frames
which have at least x inliers.

The confidence score of camera pose is an important issue in camera relocalization as well
as in deep learning regression, which is not provided in the state-of-the-art methods. In our
solution, no confidence score is given from xyzNet. However, we leverage the number of
inliers to quantify the accuracy of our method. The number of inliers is not an absolute
confidence score, but the accuracy is correlated to it. Figure 3.11 shows the increasing
accuracy of our method according to the number of inliers. This allows us to determine
which frames can be used for augmented reality applications.

Table 3.6 Mean of median poses errors on three scenes of CoRBS dataset.

Method Translation Error (cm) Rotation Error (◦)
PoseNet 12.0 4.72

Kacete et al. 4.7 2.46
Ours 3.5 0.97

70 Balance between Accuracy and Runtime for Camera Relocalization

a) Human b) Desk c) Electrical Cabinet

Our result Ground truth

Fig. 3.12 Our results on the scenes of CoRBS dataset: our results by the red trajectories and
the ground truth in the green

Performance on texture-less datasets

In this experiment, we evaluate our method on CoRBS dataset. With respect to the scale, the
scenes in this dataset are simpler than those in 7 scenes dataset. CoRBS dataset contains
scenes in desktop-scale, each of which focuses on a small environment such as around a
desk or a cabinet. However, this dataset is challenging due to the presence of texture-less
and many flat surfaces. We choose three sequences (each scene contains over 2000 images)
corresponding to three scenes of human, desk, electrical cabinet for our experiment as
performed in [79].

Figure 3.12 shows three resulting trajectories for the translation estimation. We evaluate
our method with this dataset in comparison with PoseNet [83] and the method proposed
in [79]. [79] uses a random forest to directly predict camera pose from each image patch,
final pose being defined then by running mean-shift on all pose predictions. Only both two
methods [79, 83] are experimented and achieved on this dataset. Table 3.6 shows that our
method outperforms [83, 79] both on translation and rotation error. Moreover, in Figure 3.13,
we compare the results of our work with those of [83] on electrical cabinet scene. Our results
prove to be more stable.

3.3 3D world coordinates learning based on local patches 71

Posenet

Ground truth

Our method

Fig. 3.13 Comparative result between our method (blue) and PoseNet (red) about accurate
translation.

Robustness to occlusion

a) Frame #005 b) Frame #100

Fig. 3.14 Capacity of our method to process partial occlusion during a demonstration of an
augmented reality application.

72 Balance between Accuracy and Runtime for Camera Relocalization

In this paragraph, we present an interesting advantage of our method that uses patches instead
of a whole image. For camera relocalization, the handling of dynamic scenes is difficult.
When objects move through a scene, it makes partial occlusion on the scene. In our method,
we extract a set of patches to generate a set of predictions for 3D world coordinate, in which
we take even patches of moving objects. For example in Figure 3.14, we extract patches on
the black mask that is moving in the scene. However, the use of Ransac and PnP eliminates
outliers on the moving object and retains correspondences on static objects. So camera
pose is always stably estimated, which allows the method to be applied in the context of
augmented reality as illustrated in Figure 3.14.

Conclusion

In this section, we proposed a hybrid method combining machine learning and geometric
approach for real-time camera relocalization. We presented our light convolutional neural
network to robustly define 2D-3D point correspondences. A set of probabilistic results
is generated to address uncertainty of deep learning regression in camera relocalization.
Simultaneously, we exploit geometric information about 2D-3D point correspondences to
resolve the challenge of partial occlusion and calculate camera pose by using Ransac and
PnP algorithms. Besides, we also consider the number of inliers as a confidence score for
each frame.

Although, we obtain better results on most of the test scenes compared to the state-of-
the-art methods that can process in real-time, our method faces difficulties on repetitive
scenes. Indeed, our method removes almost ambiguity of unimodal prediction achieved by
our network. Thus, we do not obtain enough inliers to compute camera pose. In the next
section, we wish to improve the accuracy of the prediction by using multi-output world
coordinate prediction.

3.4 Efficient multi-output world coordinate prediction 73

3.4 Efficient multi-output world coordinate prediction

Our goal in this section is to propose a both real-time and accurate camera relocalization
method using only RGB images. The main limitation of the state-of-the-art hybrid methods
concerns the computational time of the geometric part of the process. This computational
time is high, due to the excessive number of data used as inputs of this geometric part, and
also their low accuracy. Therefore, we present in this section a data-oriented method, that
focuses on improving the data provided by the machine learning part of the process. Our
contributions consist of decreasing the number of data handled in each step of the machine
learning part, and increasing their relevancy at the same time.

Our work in Section 3.3 improved significantly the accuracy of machine learning part by
using our xyzNet to regress 3D world coordinate based on local patches. It selects patches
based on sparse feature detection (SURF detection) instead of being random [156, 22]. It
drastically decreases the number of data and increases their relevancy. However, each patch
passes through xyzNet to achieve a 3D world coordinate prediction without a confidence
score. Hence, for scenes with numerous repeated patterns, patches extracted from similar
texture give ambiguous predictions. This reduces the accuracy of machine learning part.

To address the limitations of our previous work, we use a regression forest which provides
multi-output probabilistic prediction. Concerning the regression forest, we propose a new
split function used at each internal node of the regression forest, which takes the whole
feature vector as input. This is different from the classical binary test function of the models
in [156, 59, 176, 22]. These methods use features proposed by [97] that are based on the
difference of intensities of two pixels taken in the neighborhood of the keypoint. Even if
those features are fast to compute, they are less robust. Indeed, the intensity of pixel is
powerfully influenced by illumination change. Therefore, with Hough voting, they are very
efficient for some tasks such as object detection, when all patches vote for same objective
and the mean-shift is used to rapidly filter and combine votes. Nevertheless, for camera
relocalization, each patch votes for a 3D world coordinates separately. So it need more
accurate prediction to fast define accurate camera pose from PnP and RANSAC (RANSAC
stop early when it finds enough inliers). Our new split function enables the accuracy of
2D-3D correspondences to be improved, taking into account all the relevant information of
the feature vector.

Another originality of our method concerns the feature extraction algorithm itself. We
experiment two type of features: hand-crafted descriptor (SURF) and a learned descriptor
extracted from xyzNet. Both features provide a discriminate ability. We evaluate and compare
the effectiveness of both features.

74 Balance between Accuracy and Runtime for Camera Relocalization

Combining these originalities, our camera relocalization method allows a trade-off
between computational time and accuracy. We will see in Subsection 3.4.3 that our method
is as accurate as state-of-the-art method, and in addition perform relocalization in real-time.

In Subsection 3.4.1, we first present our learning based on a sparse feature regression
forest and especially our new split function. Subsection 3.4.2 introduces our feature extraction
methods. Subsection 3.4.3 shows our experiments and a conclusion.

3.4.1 Accurate sparse feature regression forest learning

The sparse feature methods in [149, 151] match features extracted from each image to a
3D scene model which includes a set of 3D points in world coordinates system attached
with feature vectors. However, the matching time is expensive and depends on the size
of the scene model. Our method uses a regression forest to robustly define 2D-3D point
correspondences. Regression forest has been successfully achieved for object detection and
object pose estimation [46, 22]. Recently, it has been used for camera relocalization as in
[156, 59, 176, 22]. We propose two novelties in our regression forest implementation to
improve the accuracy of correspondences. Firstly, we propose a novel split function at each
node. This split function takes the whole feature vectors as inputs to optimally separate data.
Secondly, we use only sparse feature extraction to train our regression forest. This reduces
the training space. Hence, our regression forest improves the accuracy of predictions.

As introduced in [26], a regression forest is a set of N decision trees. Each tree consists
of split nodes and leaf nodes. Each split node i is considered as a weak learner parameterized
by θi = {re f i,τi} where re f i is a reference feature and τi is a threshold.

For each decision tree, a feature vector f j is considered as starting from the root node
and descending to the leaf node by repeatedly evaluating weak learner at each node i:

h(f j,θi) =

0, if d(re fi, f j)< τi, go to left child node

1, if d(re fi, f j)⩾ τi, go to right child node
(3.6)

Where d(re fi, f j) = ∥re fi − f j∥2
2 is an euclidean distance function. In the followings, we

introduce how we implement the regression forest training and the regression forest prediction
to estimate camera pose.

Regression forest training

During the training step, a set of feature vectors is extracted from a set of training images.
For each tree, a subset of features S is randomly chosen. The weak learner parameters θi at

3.4 Efficient multi-output world coordinate prediction 75

.

U
p

p
e

r
le

ve
l b

al
an

ce
d

V1 … Vd𝑓1
V1 … Vd𝑓2

V1 … Vd𝑓𝐾

. . . S

Node 𝑖 is presented by a split function with the parameter 𝜃𝑖 = 𝑟𝑒𝑓𝑖 , 𝜏𝑖 |𝑟𝑒𝑓𝑖 ∈ 𝑆

Each 𝑓𝑗 is evaluated by this split function

𝛼 = 𝑓𝑗 − 𝑟𝑒𝑓𝑖 2

2

𝑓𝑗

𝛼 < 𝜏𝑖 𝛼 ≥ 𝜏𝑖

Leaf node stores a Gaussian distribution about 3D world coordinates

𝒩(𝜇;∑)

Fig. 3.15 Sparse feature regression forest training.

each split node i is used to split the set of features Si into left child node SL
i and right child

node SR
i . The weak learner θi is trained to minimize an objective function Q(Si,θi) aiming to

reduce spatial variance as shown in [156]:

Q(Si,θi) = ∑
d∈L ,R

|Sd
i (θi)|
|Si|

V (Sd
i (θi)) (3.7)

with V (S) =
1
|S| ∑

m∈S
∥m−m∥2

2 (3.8)

Where m is world coordinates of each feature, m is the mean of world coordinates in S.
Figure 3.15 illustrates our sparse regression forest training.

However, in case of unbalanced tree, it requires to increase tree depth in order to separate
data into different clusters. That leads to increase testing time. Therefore, to reduce pro-
cessing time for both training and testing as well as improve the accuracy of predictions, we
modify the algorithm in the uppest levels of trees according to [118]: weak learner parameters
are learned so as to equally divide samples Si at node i into its two children by finding a
reference feature re f i and choosing a threshold τi.

θi =
{

re f i,τi

∣∣∣ |SL
i |= |SR

i |
}

(3.9)

The training tree terminates when a maximum depth Dmax is reached or the set Si has a
few data. Each leaf node stores the 3D positions of data, which is presented by a Gaussian
distribution N (m, m̄,Σm) where m is the set of 3D world coordinates corresponding to

76 Balance between Accuracy and Runtime for Camera Relocalization

keypoints. m̄ and Σm are the mean and the covariance of the distribution respectively. Our
regression forest clusters 3D positions of keypoints into a set of leaves.

Regression forest prediction to estimate camera pose

Patches extraction world coordinate predictions
xyzNet Sparse regression forest

Fig. 3.16 Example of 3D world coordinates predictions on a repetitive scene (stairs scene):
Multi-output predictions using sparse regression forest (blue points) versus only one uncertain
prediction using xyzNet (red point).

For scenes containing repetitive patterns, it is difficult to define exactly the world coor-
dinates of patches with similar appearances. Two patches can look very similar, whereas
they come from two different parts of the scene. Our method gives a set of possible 3D
world coordinates for each patch to address this ambiguity. In the testing phase, each feature
extracted from a RGB image passes through a regression forest to obtain a set of predictions
as shown in Figure 3.16. Moreover, the covariance of each leaf provides a confidence score
for each prediction. This parameter helps us to select predictions being more reliable to
compute camera pose. This exploits uncertainty of prediction in the deep learning method
[83].

From each image, a set of features from SURF keypoints detection is extracted. When
all patches have passed through our regression forest, we obtain a set of 2D-3D point
correspondences. Each feature obtains multiple world coordinate predictions (one to many)
instead of only one prediction from xyzNet in Section 3.3 (one to one). A common post-
processing is to combine predictions from the same patch to make a final prediction. We
instead keep all predictions to estimate camera pose. This helps handle the ambiguity of

3.4 Efficient multi-output world coordinate prediction 77

OutliersInliers

Fig. 3.17 Our accurate and real-time camera relocalization in AR.

scenes with repeated patterns. Then, similar to 3.3.3, we use PnP and RANSAC algorithms
to remove noise (outliers) and keep relevant predictions (inliers) to compute camera pose.
Figure 3.17 shows the pipeline of our sparse regression forest for camera relocalization in
AR applications.

3.4.2 Hand-crafted descriptor versus learned descriptor

In this paragraph, we consider two types of descriptors for keypoints extraction from the
SURF detection: hand-crafted descriptor and learned descriptor. And we compare the
accuracy as well as the computational time of our camera relocalization method based on
these descriptors in Subsection 3.4.3.

Hand-crafted descriptor

Known as an efficient and fast hand-crafted descriptor, we select SURF descriptor [12] which
is invariant to scale and rotation. It is extremely interesting because this descriptor has

78 Balance between Accuracy and Runtime for Camera Relocalization

Frame1 Frame2 FrameK

Pose1 Pose2 PoseN

f1 f2 fM

...Tree1

Thread N

TreeN

Read Frame

Camera Pose
Estimation

Feature Extraction
and Labeling

Training

Capturing Time

Thread 0

Thread 1

Fig. 3.18 Our online training system. Our sparse feature regression forest is learned by
multi-threads in the same time of capturing data.

repeatability, stability that enhances the capability of regressing 3D world coordinates. We
take whole SURF descriptors as input of our regression forest. We called SURF-RF.

This descriptor allows us to perform online learning for our sparse regression forest
during images capturing. The online learning is integrated in tracking systems (e.g. SLAM,
marker based,...) which provide camera pose for each frame. To label 3D world coordinates
for detected keypoints, we use a RGB-D camera. From each captured RGB-D frame with
estimated camera pose, we extract a set of SURF descriptors. Each descriptor is labeled
by projecting 2D image coordinates in the world coordinates system. Once our system
reaches sufficient amount of feature, we create a new thread to train a tree of our regression
forest in the same time of capturing image. Our training step finishes when all trees are
learned. Capturing and training phase takes about 2 minutes for a desktop-scale scene with
the configuration of our sparse feature regression forest including: extraction of up to 500
SURF features for each image; 4 trees in the forest; 16 depth of each tree. Figure 3.18 shows
the online learning of our system.

Learned descriptor

We use a learned descriptor from our dedicated convolutional neural network, xyzNet. Our
learned descirptor is more robust to viewpoint change compared to hand-crafted descriptor.
This improves the accuracy of locating 3D world coordinates from different view points.
And it allows our method to address generalization challenge in camera relocalization.

3.4 Efficient multi-output world coordinate prediction 79

Feature Extractor

49 × 49 × 3

Tree 1 Tree N

Multi-output of world coordinates

Regressor

Fig. 3.19 Our Deep-RF for 2D-3D correspondences. The feature extraction is performed by
xyzNet and the multi-output 3D world coordinates regression is performed by our regression
forest.

Our learned descriptor is performed based on xyzNet which is described in Subsection
3.3.2. From each detected SURF keypoint, it takes RGB image patches with a fixed size of
49×49 pixels as inputs. We adapt xyzNet model without its fully connected layers. Thus
the descriptor is provided as the output of the final convolution layer. Note that the two final
fully connected layers are just used to train the xyzNet. But only feature descriptor layers are
used in our sparse feature regression forest.

Then, we combine xyzNet and our regression forest to efficiently predict multi-output 3D
world coordinates from each patch. That exploits uncertainty of deep learning regression.
This combination, illustrated in Figure 3.19, is the heart of our method, that we called
Deep-RF.

3.4.3 Experiments

Our method is implemented on an Intel Core i7 @2.9GHz, except for xyzNet feature
descriptor, which is calculated on a NVIDIA GTX 1080 GPU. The configuration of our
sparse feature regression forest includes: extraction of up to 500 SURF features for each
image; 8 trees in the forest; the depth of each tree is 15 with balance samples for the 8 uppest
level of each tree; 105 training features per tree; minimum 10 features at each node. For the
testing, the maximum number of iterations of PnP-RANSAC is 500, and it stops as soon as
50% of correspondences are considered as inliers. The training parameters of xyzNet are
setup as in Subsection 3.3.4. We evaluate our method on 7 scenes dataset, CoRBS dataset and
BCOM dataset presented in Section 2.6. All datasets are indoor scenes. Each one provides
thousands of RGB-D images, intrinsic matrix of camera and annotations (camera pose for
each frame).

80 Balance between Accuracy and Runtime for Camera Relocalization

Accuracy of 3D world coordinates regression

Table 3.7 Accuracy of 3D world coordinates prediction. Location error (in centimeters)
computed by the mean of distance error between ground truths and predictions on the set
of inliers. Comparison between the sparse feature regression forest using the hand-crafted
descriptor (SURF), the learned descriptor (Deep) and xyzNet. 2-elements: use only two
elements of feature vector for the split function. whole: use the whole feature vector.

Scene Chess Fire Heads Office Pumpkin Kitchen Stairs Average
xyzNet 13.4 10.8 6.2 25.6 11.2 13.7 13.3 13.4

SURF
2-elements 13.7 15.7 10.2 19.6 14.3 17.7 17.4 15.7

whole 5.8 8.3 4.3 15.2 6.5 11.5 11.2 9.0

Deep
2-elements 10.8 10.2 6.8 18.6 14.2 14.9 12.3 12.5

whole 5.5 7.3 3.6 14.6 6.1 9.7 10.4 8.2

Table 3.8 Inference computational time per frame for each part of our process in milliseconds
(ms). Comparison between the sparse feature regression forest using the hand-crafted
descriptor (SURF), the learned descriptor (Deep) and xyzNet. 2-elements: use only two
elements of feature vector for the split function. whole: use the whole feature vector.

Computational
Time

Keypoint
Detection

Feature
Extraction

Regression
Forest Geometric Total

xyzNet 10 20 0 30 60

SURF 2-elements 10 5 5 30 50
whole 10 5 15 20 50

Deep 2-elements 10 20 5 30 65
whole 10 20 20 20 70

We evaluate the accuracy of 2D-3D point correspondences by computing the distance
error between 3D position predictions and ground truth on the set of inliers.

In Table 3.7, we show an average of location error on the testing data of 7 scenes dataset.
We compare the accuracy of prediction performed by our sparse feature regression forest
using hand-crafted descriptor and learned descriptor by two different strategies. The first
one is xyzNet prediction (xyzNet). And The second one is a modification of our method
using the substraction of two elements of the feature vector which is used in [156] (2-
elements). The results indicate that our method improves significantly the accuracy of 3D
world coordinate regression compared to xyzNet. Our split function using a whole feature
vector is more accurate for the 3D world coordinate regression task than the split function
using only two elements of the feature vector. Our method based on the learned feature
(Deep) is slightly better than the one based on the SURF feature. The office, red kitchen,
stairs scenes are extremely challenging because they contain repeated patterns and similar

3.4 Efficient multi-output world coordinate prediction 81

structures. Nevertheless, our results on these scenes remain relatively correct and much more
accurate compared to xyzNet. This can be explained by our regression forest which predicts
multi-output possibilities about 3D world coordinates of repetitive pattern as illustrated in
Figure 3.16. From geometric knowledge, RANSAC and PnP algorithms then filter outliers
and retain inliers to calculate camera pose.

Regarding computational time, our split function takes more time to predict 3D world
coordinates as it computes the distance on the whole feature. Table 3.8 shows that our
method (whole) requires more time for random forest regression than 2-element. However,
the computational time related to the regression forest is low compared to the overall process.
Besides, our method provides more accurate predictions, which makes the computational time
of geometric part decreases (it can stop earlier when enough inliers have been obtained). Our
method based the SURF feature is faster than the other methods and does not require a training
step. Therefore, this allows us to perform an online learning for camera relocalization.

To summarize, our regression forest achieves fast 3D points location with high accuracy.
It allows our method to process in real-time. In the next paragraph, we compare our method
to the state-of-the-art methods in terms of accuracy and computational time of camera
relocalization.

Accuracy and computational time of camera relocalization

In this paragraph, we present and discuss the results of our method on the 7 scenes dataset.
We compare it with the state-of-the-art methods and our previous work xyzNet.

Baselines. We compare our method to all four approaches (geometric, machine learning,
hybrid, image retrieval) for camera relocalization. Geometric method baselines are [151]
(Active search) and a baseline in [156]. We also compare with an end-to-end camera pose
regression PoseNet 2 [82] and accurate hybrid methods [22, 20]. Please refer to Subsection
3.3.4 for more details of these above. The last is Bag of words (BoW) relocalization belonging
to the image retrieval approach. This method is a relocalization component in ORB-SLAM
method [124]. A bag of words (BoW) is used to find keyframes that are most consistent with
the current frame. After that, camera pose is defined by matching features of the current
frame to the nearest keyframes. We perform ORB-SLAM relocalization by considering all
training data as keyframes and using the pre-trained BoW of ORB features in [124].

Accuracy and computational time. To compare our method to the recent machine learn-
ing [82] and geometric [151] methods, we measure the average of all median pose errors
on 7 scenes dataset. Table 3.9 shows that both our methods clearly outperforms all two

82 Balance between Accuracy and Runtime for Camera Relocalization

Table 3.9 Comparison of our method with geometric approach and deep learning approach
in terms of accuracy and computational time. The accuracy is measured by averaging all
median pose errors over all 7 scenes dataset.

Method
Translation
Error (cm)

Rotation
Error (◦) Time(ms)

Active search [151] 4.9 2.46 100
PoseNet 2 [82] 23.1 8.12 5
SURF-RF 4.2 1.7 50
Deep-RF 3.8 1.51 70

Table 3.10 Comparison of our method with the hybrid methods in terms of accuracy and
computational time. The accuracy is measured by the median poses error of the complete
7 scenes dataset (17000 frames). The computational time is measured for one frame in
milliseconds.

Method
Translation
Error (cm)

Rotation
Error (◦) Time(ms)

Brachmann et al. [22] 4.5 2.0 1000
DSAC [20] 3.9 1.6 1500
SURF-RF 3.9 1.7 50
Deep-RF 3.5 1.4 70

baselines in both translation and rotation error. Regarding the two types of descriptors for
our regression forest, the learned descriptor (Deep-RF) is slightly more accurate than the
hand-crafted descriptor (SURF-RF). On the contrary, in terms of runtime, SURF-RF is faster
than Deep-RF. The sparse feature method [151] using SIFT feature is less efficient than our
methods in terms of both accuracy and computational time. This method requires over 100ms
per frame and the computational time increases with the scene size. Although PoseNet 2
[82] is very fast to relocalize camera with 5ms in the testing, its results are still moderately
accurate. Indeed, our methods are six times more accurate than theirs. Regarding the testing
time, our methods still perform in real-time, even if it is more time-consuming than PoseNet
2 [82]. Note also that the training of our sparse feature regression forest is faster than PoseNet
2 [82]: SURF-RF takes less than two minutes for training one tree on a CPU; Deep-RF
requires about four hours on a GPU; the training of PoseNet 2 [82] takes from four hours to
a day on a GPU Titan X.

In Table 3.10, we also compare our method on 7 scenes datasets to the hybrid methods [22,
20] which currently obtain high accuracy for camera relocalization from RGB images. Table
3.10 shows that our method (Deep-RF) is slightly more accurate than [22, 20]. Moreover, our
methods greatly improves the hybrid approaches in terms of computational time. Our method

3.4 Efficient multi-output world coordinate prediction 83

Table 3.11 Accuracy of camera relocalization. Comparison of our various contributions with
the state-of-the-art methods on 7 scenes dataset by measuring the percentage of test images
where the pose error is below 5cm and 5◦. xyzNet: mono output of 3D world coordinates
prediction.

Scene [156] [22] DSAC[20] BOW [124] xyzNet SURF-RF Deep-RF
Chess 70.7% 94.9% 97.4% 60.0% 41.8% 73.1% 72.5%
Fire 49.9% 73.5% 71.6% 40.8% 47.5% 79.5% 82.0%
Heads 67.6% 48.1% 67.0% 56.0% 41.6% 80.1% 71.6%
Office 36.6% 53.2% 59.4% 45.8% 15.6% 54.5% 59.5%
Pumpkin 21.3% 54.5% 58.3% 32.3% 40.1% 55.1% 51.6%
Red Kitchen 29.8% 42.2% 42.7% 35.1% 42.9% 52.2% 75.2%
Stairs 9.2% 20.1% 13.4% 35.9% 25.9% 41.0% 45.3%
Average 40.7% 55.2% 58.5% 43.7% 36.5% 62.2% 65.4%

is able to relocalize camera for each frame at 50− 70ms, whereas [22] and [20] require
more than a second per frame, because the camera pose optimization requires much time to
process thousands input data. Unlike [22, 20], our method allows a real-time relocation that
is generally necessary for augmented reality applications.

Table 3.11 shows the results of our methods, hybrid methods [22, 20], the sparse feature
baseline in [156], BoW relocalization and the our previous work xyzNet in Section 3.3.
The results are evaluated by using another metric: the percentage of test images where the
pose error is below 5cm and 5◦. This metric is suitable for evaluating camera relocalization
methods addressing augmented reality systems. Regarding the result on each scene, our
method performs better on five scenes: Fire, Heads, Office, Red Kitchen and Stairs. Table 3.11
also indicates that our method which gives multi-output predictions improves considerably
the accuracy of mono prediction of xyzNet. Especially, we achieve approximately two times
as accuracy as xyzNet on the scenes with repeated patterns such as Office, Red kitchen and
Stairs.

Transfer learning

SURF-RF allows us to obtain a real-time camera relocalization for both training and testing,
whereas, Deep-RF is not real-time for training. Because it consists of two training phases:
xyzNet and the regression forest. Our regression forest can be fastly learned in less than
1 minute per tree on a CPU, whereas our xyzNet takes about four hours on a GPU. To
reduce the training time of our deep-forest, we perform transfer learning as follows. First, we
pre-train our xyzNet on each scene of 7 scenes. Next, we use this xyzNet model to extract
descriptors on the other scenes and we just re-train our regression forest. Table 3.12 shows

84 Balance between Accuracy and Runtime for Camera Relocalization

Table 3.12 Results of transfer learning of xyzNet on 7 scenes dataset. xyzNet feature
extraction is learned from each scene. Then it is used to evaluate on all scenes (translation
error (cm) / rotation error (◦))

Scene Scene for xyzNet model learning
Chess Fire Heads Office Pumpkin Kitchen Stairs

Chess 3 / 1.40 4 / 1.67 4 / 1.69 5 / 1.98 4 / 1.75 4 / 1.64 7 / 2.84
Fire 6 / 1.61 2 / 1.16 4 / 1.61 5 / 1.62 4 / 1.84 5 / 1.73 8 / 2.13
Heads 5 / 2.72 5 / 2.60 3 / 1.79 6 / 2.39 5 / 2.12 6 / 2.71 7 / 3.12
Office 11 / 3.37 11 / 2.87 9 / 2.97 5 / 1.96 8 / 2.87 12 / 3.47 18 / 4.55
Pumpkin 7 / 1.95 7 / 1.92 6 / 2.05 7 / 2.06 5 / 1.60 6 / 1.97 9 / 2.15
Kitchen 7 / 2.47 7 / 2.34 8 / 2.53 8 / 2.59 6 / 2.26 3 / 1.15 9 / 2.91
Stairs 11 / 3.18 8 / 2.51 7 / 1.69 9 / 2.00 7 / 2.11 11 / 3.40 6 / 1.48

that our results are still accurate even if the xyzNet model is learned on texture-less scene
such as stairs.

Performance on texture-less dataset

Table 3.13 Performance on texture-less dataset. Comparison between our methods and base-
line machine learning methods on CoRBS dataset. The accuracy is measured by averaging
all camera pose errors over all three scenes.

Method Translation Error (cm) Rotation Error (◦)
PoseNet [83] 12.0 4.72
Kacete et al. [79] 4.7 2.46
xyzNet 3.5 0.97
SURF-RF 1.9 0.65
Deep-RF 1.3 0.56

In this paragraph, we evaluate our methods on CoRBS dataset [179] which is challenging
due to the presence of texture-less and flat surfaces. We compare our method to baselines
[79, 83] presented in Subsection 3.3.4 and to our previous work xyzNet (Section 3.3). Table
3.13 shows the average of all camera poses errors over all three scenes. Both our methods
outperform [83, 79] and xyzNet by a large margin whether on translation or rotation error for
all three scenes.

Robustness to dynamic scenes

The dynamic environments are still challenges to camera relocalization. To evaluate the
robustness of our method to dynamic scenes with partial occlusion and illumination changes,

3.4 Efficient multi-output world coordinate prediction 85

(a) Illumination changes

(b) Partial occlusion

Fig. 3.20 Some examples of dynamic scene in augmented reality. Our method is robust to
illumination changes and partial occlusion.

we randomly synthesize illumination changes (Figure 3.20-a) and a partial occlusion covering
about 25% surface of each image (Figure 3.20-b) on CoRBS dataset. The mean of our results
for the two challenges are respectively 3.8cm,0.84◦ and 4.0cm,0.87◦. Our methods are able
to address illumination changes thanks to the invariant SURF feature. For partial occlusion
challenge, our method uses of a set of sparse feature instead of a whole image in order
to generate a set of 3D world coordinates. We take even key-points of moving objects (a
textured mask in Figure 3.20-b). However, Ransac and PnP algorithms eliminate outliers
(red points) on the moving object and retains inliers (blue points) on rigid objects. So camera
pose is always stably estimated, which allows the method to be applied in the context of
augmented reality as illustrated in Figure 3.20.

86 Balance between Accuracy and Runtime for Camera Relocalization

Viewpoint generalization performance

Table 3.14 Generalization performance on the different trajectories of the BCOM dataset.
Our sparse feature regression forest is trained on each trajectory, then it is evaluated on
the other trajectories. The results are shown with the following format: translation error
(cm) / rotation error (◦). Gray rows and white rows are results for Deep-RF and SURF-RF
respectively.

Test
Train

T1 T2 T3 T4

T1
2.3 / 1.61 3.6 / 1.70 3.1 / 1.79 2.7 / 1.92
3.1 / 1.72 3.5 / 1.92 4.8 / 2.75 3.4 / 3.41

T2
2.1 / 1.47 1.8 / 1.12 2.5 / 1.46 2.9 / 2.00
4.4 / 2.35 2.6 / 1.63 3.5 / 2.36 4.1 / 3.05

T3
2.9 / 1.85 3.1 / 1.52 1.4 / 1.12 3.2 / 1.41
3.8 / 2.80 4.2 / 3.84 2.7 / 1.86 4.4 / 2.96

T4
3.4 / 1.75 2.6 / 1.34 2.7 / 1.48 1.5 / 0.97
4.5 / 3.65 4.9 / 4.68 5.2 / 3.62 2.5 / 2.38

Estimation trajectoryGround-truths trajectoryTraining trajectory

Fig. 3.21 Visualization of generalization performance on two sequences T1 and T2 of the
BCOM dataset.

We evaluate generalization capability of our method on BCOM dataset, which contains
four absolutely different trajectories. The trajectories are shown in figure 2.15. We choose
respectively each trajectory to learn our sparse feature regression forest model and we
then use this model to estimate camera pose for each frame of the other three trajectories.
Obviously, Table 3.14 shows that the best results are obtained when the testing trajectory is
the same as the learning trajectory. On the other trajectories, the results are slightly worse but
remain correct (lower 5cm/5◦), which shows the generalization performance of our method.

3.4 Efficient multi-output world coordinate prediction 87

Table 3.14 also indicates that Deep-RF is more accurate than SURF-RF on all sequences.
Although SURF feature is invariant to scale and rotation, our learned feature has higher
accuracy for viewpoint changes. Figure 3.21 visualizes the generalization performance of
our methods for camera relocalization on different trajectories.

Conclusion

In this section, we have presented a novel hybrid method merging machine learning approach
and geometric approach for accurate and real-time camera relocalization from a single RGB
image. We proposed a new split function using whole feature extraction at each node of
the regression forest to efficiently define 2D-3D point correspondences. We compared two
different feature types in our regression forest: hand-crafted feature and learned feature.
Moreover, we show the favorable results of our method in comparison with the state-of-the-
art methods. Finally, we demonstrate that our method is able to address dynamic scenes as
well as viewpoint generalization.

88 Balance between Accuracy and Runtime for Camera Relocalization

3.5 Conclusion

In this chapter, we have proposed methods in order to address limitations of state-of-the-art
methods addressing camera relocalization from a single RGB image both in terms of accuracy
and computational time (including processing time and training time).

We first proposed the MIMO strategy based local patches to overcome the uncertainty of
end-to-end machine learning camera regression. Then, we present the evolution of our hybrid
methods that balances both accuracy and computational time of the camera relocalization.
Our hybrid method is based on both machine learning approach and geometric approach and
aims at benefiting from each. We present our xyzNet and our sparse feature regression forest
that focus on improving both runtime and accuracy by inferring 2D-3D point correspondences.
Our methods show high accuracy for camera relocalization. The last method based on a
sparse feature regression forest addresses some challenges of camera relocalization: accuracy,
computational time (both training time and runtime), dynamic scenes with partial occlusion,
illumination change.

However, all our methods presented in this chapter learn a regression model from a static
scene where the 3D physical model is always preserved without moving objects. Thus, when
some objects move, the learned model is no longer accurate, and the camera relocalization
can no longer be successfully performed. In the next chapter, we present a novel adaptive
machine learning to tackle this challenge.

Chapter 4

Camera Relocalization in Dynamic
Environment

Contents
4.1 Introduction . 90

4.2 Adaptive Regression Forest . 92

4.2.1 Regression Forest pipeline . 92

4.2.2 Limitations of Regression Forest 93

4.2.3 Methodology . 93

4.3 ARF applied to camera relocalization in dynamic environments . . . 97

4.3.1 Initial training . 97

4.3.2 Camera pose estimation . 98

4.3.3 Online adaptive regression forest update 98

4.4 Experiments . 101

4.4.1 ARF versus RF . 101

4.4.2 Comparison to state-of-the-art methods 106

4.5 Conclusion . 109

90 Camera Relocalization in Dynamic Environment

4.1 Introduction

Our methods presented in Chapter 3 handled dynamic scenes with occlusion and illumination
changes. In this chapter, we focus more particularly on the complicated challenge of
dynamic scenes when individual objects move over time. Because our previous works use the
regression model that is learned on a rigid scene, it cannot perform if a large part or whole
scene changes.

Dynamic data is a common challenge for machine learning not only for camera relo-
calization. In machine learning, a model is learned from a set of training data. If data is
changing and the learned model is not able to update itself, this model is no longer accurate.
So these methods require an adaptive learning model which has the capacity to update rapidly
to changes of data in order to maintain the accuracy of the learned model.

In camera localization community, dynamic environment with moving objects is always
known as a difficult challenge. This challenge appears in real scenarios as augmented reality
based maintenance, assembly and quality control tasks for Manufacturing and Construction
application where: devices are equipped with a single RGB camera, scenes are changing
gradually over time, tasks requires workbench scale 3D registration. The most typical
methods to address this challenge are RANSAC algorithms. RANSAC considers data on
moving objects as outliers in order to eliminate them in camera pose estimation process.
However, if a large number of objects moves, the number of outliers will be superior to
the number of inliers. In this case, RANSAC algorithm processes incorrectly. In recent
years, several SLAM methods focus on this specific issue of dynamic scenes. Most works
perform detection and segmentation of moving objects in each frame. This is to avoid their
influence on the camera pose estimation. [178, 142, 15, 193] detect and track the known
dynamic objects or movable objects e.g. people, vehicles. [165, 4] detect moving objects by
using optical flow between consecutive frames. Nevertheless, these methods try to remove
moving objects to compute camera pose. So they cannot process in scenes where the whole
scene changes gradually. To overcome this, [129] proposed a real-time dense dynamic scene
reconstruction and tracking based on depth images. It uses a single rigid volumetric TSDF
(Truncated Signed Distance Function). However, this method requires a RGB-D camera.
[169] proposes another SLAM approach that can detect any changes by projecting the map
feature into the current frame. In real-time, it can update the 3D points cloud and keyframes
stored in a memory to add new elements or remove those which do not exist anymore.
This allows to address the challenge of whole scene changing gradually. However, it has
the limitations due to the fact that matching cost increases with respect to the number of
keypoints. Moreover, matching local features is noisy and unreliable on scenes with repeated
patterns.

4.1 Introduction 91

Our main contribution is to propose a machine learning algorithm based on a regression
forest process, that adapts itself in real time to a predictive model. It evolves by part over
time without having to re-train the whole model from scratch.

The process is based on a regression forest ; and we call it Adaptive Regression Forest
- ARF. The main idea is that the Adaptive Regression Forest updates in real time a subset of
leaves which gives uncertain predictions. It is performed by two main originalities based on
detection and update of passive leaves.

The first originality of our ARF is to detect the leaves giving poor information. There are
two criteria for a leaf to become a passive leaf: having a high variance of predictive model;
giving repeatedly a result rather different from the other leaves.

The second originality of our ARF is to update in real time passive leaves of the regression
forest model. This is performed by re-modeling their predictive model from new computed
labels. These labels are computed based on the results given by the other leaves (actives
leaves). Note that the update is only performed on passive leaves and not on the whole
regression forest model.

The second contribution is to present our DynaLoc. It is a real time camera relocalization
in dynamic scenes based on the ARF. For this application, the ARF predicts 3D points in
the world coordinates system which correspond to 2D points in the image. The originality is
to keep the structure of the forest (trees and nodes) by using invariant SURF feature at split
nodes as proposed in Section 3.4. Indeed, when objects move, the descriptors of detected
keypoints are almost unchanged. Only their label, namely the 3D position in the world
coordinates system corresponding to keypoints, changes.

This chapter is organized as follows:

• Section 4.2 presents our Adaptive Regression Forest - ARF including two main steps:
passive leaves detection and passive leaves update.

• Section 4.3 presents our DynaLoc that is a real-time and accurate camera relocalization
from only RGB images in dynamic scenes based on the adaptive regression forest.

• Section 4.4 shows and discusses our results on rigid scenes dataset and on our dynamic
scenes dataset.

• Section 4.5 gives some conclusions and perspectives.

92 Camera Relocalization in Dynamic Environment

4.2 Adaptive Regression Forest

RF Train
Training data with

labels {ϕ(𝑑𝑖), 𝑚𝑖}
RF Model

𝜃𝑠𝑝𝑙𝑖𝑡, 𝜽𝒑𝒓𝒆𝒅, 𝜽𝒖𝒑𝒅𝒂𝒕𝒆

Testing data

{ϕ(𝑑𝑖)}
RF Test

Leaves

predictions {𝑙𝑗
𝑖}

𝑓𝑝𝑜𝑠𝑡
Result Ω with

score 𝑠𝑐𝑜𝑛𝑓

RF update

Regression Forest

Pipeline

Our contribution

Fig. 4.1 Adaptive regression forest pipeline. The common regression forest method (red
components) is extended with an online update step (blue component). It refines predictive
model in real-time from new computed labels.

In this section, we first introduce the common regression forest pipeline which our method
is based on. Then, we explain the limitations of this pipeline and how we overcome them by
using our ARF method. Finally, we detail our ARF methodology including: definition ARF
parameters, passive leaves detection and passive leaves update.

4.2.1 Regression Forest pipeline

Figure 4.1 presents the common regression forest pipeline (components in red) including
two phases: training and testing. A regression forest is a set of N decision trees F =

{T j}. Each tree T j = {θ split ,θ pred} consists of split functions θ split at internal nodes and
predictive models θ pred at leaf nodes. These parameters are learned from a set of labeled
data {φ(di),mi}, where φ(di) is the feature vector extracted from data di with the label mi.
The split function θ split is a weak learner. It is used to split a subset of data into left child
node and right child node. The weak learner is trained to maximize an objective function
aiming at reducing the variance. The training terminates when the tree reaches a maximum
depth or when a node has few data. The predictive model at each leaf node is represented by
a distribution θ pred = N (m, m̄,Σm). It is computed from a set of labels m of data reaching
this leaf. m and Σm are respectively the mean and the covariance of the Gaussian distribution.

For the testing phase, each testing data that is represented by a set of features {φ(di)}
passes through the regression forest model to obtain multiple leaves predictions {li

j}, in which
li

j is a prediction of the decision tree j for the feature φ(di). All predictions are combined to

4.2 Adaptive Regression Forest 93

compute the final output result Ω with a confidence score scon f by using a post-processing
function f post .

4.2.2 Limitations of Regression Forest

In the regression forest, leaves with a high variance are not informative. They make noisy
predictions. Thus, all leaves whose variance is greater than a threshold Tvar are discarded to
eliminate noise and improve accuracy. This leads to the fact that a subset of leaves are stored
in the regression forest, but they are never used.

Another challenge of regression forest and of machine learning methods in general is
facing dynamic data. Because a regression model is learned from static data, the pretrained
regression model will be no longer accurate if some data changes. In this case, it requires
re-training from scratch a whole model with a redefinition of data labels (new ground truth).

To overcome the limitations of the regression forest, we propose an adaptive regression
forest. It is an extension of the common regression forest pipeline by adding an update step,
as shown in Figure 4.1 (in blue). At the beginning, we assume that a regression forest is
learned from initial training data. Then, in runtime, their labels change. We place our method
in the case of features which are extracted from this data are almost unchanged. Hence,
the split nodes of ARF keep accurate. The update step of our ARF improves consecutively
accuracy of the regression forest model. It adapts robustly to dynamic data as well as refines
unused leaves. This is performed by updating leaf nodes based on input data {di}, predictions
{li

j} and final output result Ω. Subsection 4.2.3 details our algorithm.

4.2.3 Methodology

In this paragraph, we first give the definitions of our ARF parameters. Then, we describe the
two main steps of our update process: passive leaves detection and passive leaves update.
This ARF update is detailed in Figure 4.2.

Definitions of ARF parameters

Several concepts are used in our ARF: active/passive leaf, good/bad prediction, validation
function, confidence score. We present them in this subsection.

The parameters of each tree of a regression forest is extended to the ARF model:

T = {θ
split ,θ pred,θ update}

94 Camera Relocalization in Dynamic Environment

Label data arriving at

passive leaves
Update

𝑨𝑹𝑭𝒕−𝟏 𝑨𝑹𝑭𝒕

a) Passive leaves detection

b) Passive leaves update

Testing

data at

time t

Result Ω𝑡

Leaves

Predictions

{𝑙𝑗
𝑖}𝑡

ARF Update

: Internal node : Active/passive leaves

Blue and Red: predicted active leaves and passive leaves

A
c
tiv

e
 le

a
v
e
s

P
a
s
s
iv

e
 le

a
v
e
s

D
e

te
c
te

d
 p

a
s
s
iv

e
 le

a
v
e

s

A
c
tiv

a
te

d
 p

a
s
s
iv

e
 le

a
v
e
s

with 𝑠𝑐𝑜𝑛𝑓
𝑡

{𝜙(𝑑𝑖)}
𝑡

Define good/bad

predictions at active leaves
Detect

Fig. 4.2 Adaptive regression forest update process. The predictive models at leaf nodes
evolve by part over time without training from scratch a whole new model. ARF performs
simultaneously two steps: passive leaves detection and passive leaves update.

Where θ update = {s,n f alse,Sdata} are the parameters used in the update process. s denotes
the status of a leaf: s ∈ {0 : passive,1 : active}. A passive leaf is a leaf whose prediction is
not accurate, and is detailed in the next paragraph. We call it passive because those leaves
are not used during the final process that use the random forest prediction. In contrary,
predictions which come from active leaves are used to estimate final result. Therefore, the
post-processing function in our ARF is defined as follows:

Ω = f post({di, li
j|si

j = 1}) (4.1)

Where si
j is the status of the leaf of the tree j corresponding to the feature vector φ(di).

n f alse denotes the number of consecutive times an active leaf gives a bad prediction. Sdata

is a stack of data that stores the data di and the final result Ω at each passive leaf. We need it
for passive leaves update.

4.2 Adaptive Regression Forest 95

We introduce a validation function f val to define good and bad predictions.

f val(f err(Ω,di, li
j)) =

1, f err(.)< Tval, good

0, otherwise, bad
(4.2)

Where f err(Ω,di, li
j) denotes an error function of each leaf prediction li

j based on the output
Ω and input data di. Tval is an error threshold in order to determine good/bad predictions.

After the validation step, we obtain ngood and nbad predictions. A score scon f is calculated
to evaluate the confidence score of final result:

scon f =
ngood

ngood +nbad
(4.3)

If this confidence score is greater than Tcon f , the update of ARF will be proceeded based on
the output result Ω. Tcon f is a confidence threshold to ensure that the output result is reliable.
It aims at limiting accumulation of errors during the update process.

Passive leaves detection

Passive leaves detection aims at detecting leaves being no longer relevant and change their
status to passive. After initial training phase, the status of each leaf is defined by:

s =

1,active, tr(Σm)< Tvar

0, passive, otherwise
(4.4)

In the testing phase, an active leaf becomes a passive leaf, when it gives consecutively
uncertain results. Figure 4.2-a) illustrates the passive leaves detection. We first define
good/bad predictions from a set of active leaves predictions based on the validation function
4.2. We then use n f alse to count the number of consecutive times an active leaf is considered
as a bad prediction. Finally, if n f alse > Tf alse, this active leaf becomes a passive leaf and
its status is assigned to 0 (passive). Tf alse is a detection threshold to ensure that this leaf
is really an uncertain leaf. n f alse is reassigned to 0 as soon as the active leaf gives a good
prediction once. This aims at avoiding mistakes of determining good/bad prediction from the
error function in 4.2 due to noisy data.

96 Camera Relocalization in Dynamic Environment

Passive leaves update

The passive leaves update aims at remodeling the predictive models of passive leaves from
new estimated labels. These new labels are calculated based on the estimated result Ω and
input data {di}. Figure 4.2-b) show the passive leaves update step. It only processes at
predicted passive leaves. When a feature φ(di) passes through our forest, if it terminates in a
passive leaf. Firstly, we collect the corresponding input data di and the result Ω in a stack of
data Sdata associated to this passive leaf. These elements stored in the stack of data allow to
compute new labels of data. When the number of data in the stack at a passive leaf is large
enough |Sdata|> Tdata (Tdata is a threshold to ensure that the number of data is sufficient to
learn a new distribution), we calculate labels mi of di by using a labeling function:

mi = f label(Sdata) (4.5)

And then a gaussian distribution of this leaf is modeled from these labels {mi}. Finally, the
status of this leaf is defined by the function 4.4. The stack of data Sdata is reset. The passive
leaves update and passive leaves detection are performed at the same time to accelerate ARF
system.

4.3 ARF applied to camera relocalization in dynamic environments 97

4.3 ARF applied to camera relocalization in dynamic envi-
ronments

𝒇𝒑𝒐𝒔𝒕 based on PnP

RANSAC

Passive leaves

detection and update

ARF model

Adaptive

Regression Forest

Camera Pose with Inliers/OutliersSURF Feature Extraction

3D Scene Coordinates

Fig. 4.3 DynaLoc: Real-time camera relocalization in dynamic scenes based on the ARF.
We apply the ARF to hybrid camera relocalization: from a set of SURF feature detected on
each RGB image, the ARF predicts a set of 3D positions in the world coordinate system.
They correspond to active leaves (green and red points) and passive leaves (yellow points).
Then PnP and RANSAC algorithms determine inliers (green points) to estimate camera pose
and reject outliers (red points). Finally, if the camera pose is precisely estimated, the ARF
is updated by estimating new 2D-3D correspondences based on a triangulation using the
estimated camera poses.

In this section, we introduce our DynaLoc, a real-time camera relocalization method
from only RGB images in dynamic scenes. Inspired by our sparse feature regression forest
(see Section 3.4), we propose a hybrid method merging our ARF (described in Subsection
4.2.3) and geometric methods. Our ARF is applied to learn and predict 2D-3D point
correspondences. The geometric part uses PnP and RANSAC algorithms in order to compute
camera pose from these correspondences. Figure 4.3 illustrates our DynaLoc pipeline. Our
method is summarized in three principal steps. Firstly, we present how to initially train the
ARF from RGB images. Then, camera pose estimation is performed based on the ARF
and geometric algorithms. Finally, we detail the online ARF update process for camera
relocalization.

4.3.1 Initial training

The ARF is initialized according to the training step detailed in Section 3.4. An ARF is
learned from a set of labeled feature vectors {φ(di),mi} which are extracted from a set
of RGB training images. φ(di) is a SURF feature vector extracted around a 2D keypoint
position di. mi is the 3D point in the world coordinates system of di. In this chapter, our
method uses only RGB images for both training and testing phases. Thus, the label mi is

98 Camera Relocalization in Dynamic Environment

defined by running triangulation algorithm [61] for each pair of matching keypoints (dk,dl)

of two RGB images, whose poses (Ωk,Ωl) are supposed to be known in advance by using a
localization system (marker based, 3D model based, SLAM, tracking, etc.):dk × (KΩ

−1
k mi) = 0

dl × (KΩ
−1
l mi) = 0

(4.6)

Where K is the matrix of the camera intrinsic parameters.
Each tree of ARF is initially trained by a random subset of data to determine the split

functions. We use whole SURF feature vector as proposed in Section 3.4 and adaptive leaf
nodes {θ split ,θ pred,θ update} (see 4.2.3). Each leaf node stores the 3D positions of data
which is represented by a Gaussian distribution N (m,m,Σm). The status s of each leaf
of ARF is defined by the status definition function 4.4. n f alse is assigned to 0 and Sdata is
initialized by empty set.

4.3.2 Camera pose estimation

Firstly, a set of SURF keypoints and features {di,φ(di)} is extracted from each RGB input
image. They pass through the ARF {T j} to achieve a set of predictions {li

j} that contains 3D
world coordinates predictions {m̂i} corresponding to 2D SURF keypoints {di}. All 2D-3D
correspondences coming from active leaves are used to estimate camera pose based on the
post-processing function 4.1. In camera relocalization, f post function of ARF is defined by
PnP and RANSAC functions in order to remove bad predictions (outliers) and keep good
predictions (inliers). RANSAC generates a set of hypothetical poses {Ωi} by performing
PnP on random subsets of 2D-3D point correspondences. The best inliers are defined by
maximizing the number of inliers corresponding to each hypothesis. This is performed based
on the validation function 4.2, in which the error function f err(.) is defined as a re-projection
error function:

f err(Ω,di, li
j) = ∥di −KΩ

−1
i m̂i∥2 (4.7)

The final camera pose Ω is carried out by running PnP once on all inliers to minimize the
sum of re-projection error.

4.3.3 Online adaptive regression forest update

The ARF in our DynaLoc is continuously updated to adapt to changes in dynamic scenes.
This keeps predictions about 2D-3D correspondences being still accurate even if the scenes
have changed. By using invariant SURF feature, when objects move, features which are

4.3 ARF applied to camera relocalization in dynamic environments 99

extracted from these objects are almost unchanged. So the relevancy of the split functions of
ARF is maintained. Therefore, the ARF only updates predictive models at leaf nodes based
on two main steps: passive leaves detection and update, as described in Subsection 4.2.3.

The camera pose estimation (see 4.3.2) defines inliers and outliers that correspond to
good and bad predictions respectively. A confidence score is computed by function 4.3 to
limit accumulation error during the ARF update. The inliers and the outliers are used to
detect passive leaves. Simultaneously, the passive leaves update step is performed as in
4.2.3. Each passive leaf collects constantly 2D positions of SURF keypoints and camera
poses (di,Ωi) in a stack Sdata. When passive leaves have a large number of data in the
stack |Sdata|> Tdata, we calculate 3D position labels {mi} based on the labelling function
4.5 defined by a triangulation algorithm [61]. From a pair of data in the stack (dk,Ωk) and
(dl,Ωl), the label mi is defined based on the triangulation function 4.6. Thus, a set of Tdata

data at each passive leaf defines a set {mi} of Tdata·(Tdata−1)
2 3D points. A new Gaussian

distribution N (m, m̄,Σm) is modeled based on 3D points. The function 4.4 validates the
status of new leaf model. According to this update process, even if incorrect estimated

a) At beginning b) Moving objects c) Updating ARF

Fig. 4.4 An example of ARF update. a) the scene with some movable objects. b) two objects
move and corresponding active leaves are detected and become to passive, regions with
blending red color. c) these passive leaves are updated to return to active state. The estimation
of the camera pose remains accurate, which is indicated by the unchanged position of the
virtual cube.

camera poses are taken into account, they do not affect too much the update. Indeed, if the
camera pose estimation is incorrect, triangulation will fail and make false 3D points. Then a
new predictive model which is computed from these 3D points will have very high variance.
The function 4.4 will eliminate the new model and the data buffer will be reseted.

Figure 4.4 shows an example of camera relocalization in a dynamic scene. When some
objects are moving, active leaves attached to these objects are detected and become passive
leaves (red blending regions in Figure 4.4-b). After a few moments, almost all these passive
leaves are updated to return to an active state as shown in Figure 4.4-c. The stability of the

100 Camera Relocalization in Dynamic Environment

camera pose estimation is illustrated by a virtual cube whose position remains fixed during
the update process.

4.4 Experiments 101

4.4 Experiments

Our method is implemented on a single CPU Intel Core i7 @2.9GHz. We extract up to 600
SURF features for each image. We train the ARF of 4 trees, the depth of each tree is 16. The
threshold values Tvar, Tval , Tcon f , Tf alse, Tdata are the same for all the experiments. Although
the parameters have an influence on the accuracy, they do not highly depend on scenes or
datasets. Indeed, we found a set of parameters to achieve the best results on a scene. And
they work well with the other scenes. Our computational time for full process (including
camera pose estimation and ARF update) is approximately 55ms.

In the following paragraphs, we demonstrate the usefulness of our ARF on both static
and dynamic scenes by comparing it with a regression forest (RF). Finally, we compare our
DynaLoc with state-of-the-art methods.

4.4.1 ARF versus RF

Ground truth camera poseFeature extraction on training images

Fig. 4.5 Fast labelling 2D-3D point correspondences by using triangulation algorithm without
a bundle adjustment optimization resulting in noisy data.

Fine-tune predictive model on static scenes. Supervised machine learning algorithms
require high accurate ground truth to learn precisely a predictive model. But the ground
truth is difficult to acquire in machine learning regression. Our ARF training only requires
RGB images and their corresponding camera pose. The labelling of 2D-3D point correspon-
dences is rapidly performed by using triangulation algorithm without a bundle adjustment
optimization. Therefore, it makes some noisy correspondences data, as illustrated in Figure
4.5. However, our ARF can address this problem by fine-tuning predictive model from online

102 Camera Relocalization in Dynamic Environment

data. Firstly, we discard the uncertain predictive models given by passive leaves. Then these
predictive models are recalculated based on active leaves update.

0 100 200 300 400 500 600

Frames

60

70

80

90

100
Percentage of active leaves

ARF

RF

Fig. 4.6 The percentage of active leaves in the whole regression forest at each frame for the
ARF strategy (blue) and a regression forest strategy (green) on the static sequence 01/01.

01/01 02/01 03/01 04/01 01/02 02/02 03/02 04/02
Scenes

0

20

40

60

80

100
RF-all leaves RF-chosen leaves ARF

b) scenes with moving objectsa) scenes without moving objects

Fig. 4.7 Comparison our DynaLoc based on the ARF (blue) to RF approaches using all leaves
(red) and chosen leaves (green) with Tvar = 0.1 on DynaScenes dataset by measuring the
percentage of test images where the pose error is below 5cm and 5°.

Figure 4.6 shows the percentage of active leaves in the forest on the static sequence
DynaScene-01/Seq-01 with a variance threshold Tvar = 0.1. Our ARF update increases
the number of active leaves. The corresponding accuracy of camera relocalization on this
sequence is shown in Figure 4.7-a). We compare our ARF with two other approaches based

4.4 Experiments 103

on the random forest: the first one uses all the leaves of the forest (RF-all leaves) and the
second one only uses leaves having a variance less than a threshold Tvar = 0.1 (RF-chosen
leaves). The results demonstrate that the removal of uncertain leaves significantly improve
accuracy (RF chosen leaves gives better result than RF all leaves). And the ARF update
increases accuracy further than the static strategy (RF).

0 200 400 600 800 1000
0

20

40
a) Translation error (cm)

0 200 400 600 800 1000
0

10

20
b) Rotation error (degree)

0 200 400 600 800 1000
0

50

100
c) Percentage of inliers

0 200 400 600 800 1000
0

50

100
d) Percentage of active leaves

0 20 40 60 80 100

Percentage of moving objects ARF

RF

Fig. 4.8 Detail results of our DynaLoc based the ARF (blue) and RF (red) on DynaScene-
03/Seq-02. a), b) translation error in centimeter and rotation error in degree. c) the percentage
of number of inliers at each frame. d) the percentage of active leaves compared to the number
of leaves used at each frame for predictions. The background color present the percentage of
objects in the scene that have moved since the beginning.

104 Camera Relocalization in Dynamic Environment

Ground-truth RFDynaLoc

Fig. 4.9 Comparison results between DynaLoc and RF on a dynamic sequence.

ARF update performance on dynamic scenes. Figure 4.8 shows the performance of
our ARF compared to a regression forest with chosen leaves (RF) on a dynamic sequence
which contains objects moving gradually. The results demonstrate that when objects are
static, both approaches achieve high accurate localization as shown at beginning of Figure
4.8-a,b). As soon as more than 30% of objects move, the RF approach has large error because
the number of inliers reduces rapidly. On the other hand, the accuracy of the DynaLoc is
maintained thanks to the update process.

Figure 4.8-d) gives the evolution of the number of active leaves over time. When some
objects move, the corresponding active leaves are defined as passive leaves and the percentage
of active leaves drops. When these objects return to a static state, this percentage increases
again thanks to the passive leaves update step. That is why the inliers percentage remains
sufficiently high, as shown in Figure 4.8-c).

Furthermore, although the ARF update is proceeded based on estimated results, the error
accumulation is very small. The rotation and translation errors before and after movements
are approximately equal as shown in Figure 4.8-a,b). Therefore, our DynaLoc can handle a
whole scene with gradual changes. In Figure 4.7-b), we compare the results of our DynaLoc
with the RF (with or without chosen leaves) on dynamic scenes. We report that the accuracy
of RF (with or without chosen leaves) drops drastically when the scene changes, whereas our
DynaLoc has high accuracy on these scenes. Figure 4.9 also shows results on a part of the

4.4 Experiments 105

sequence Dyna-03/Seq-02. For this example, when some objects move gradually, the result
of our DynaLoc remains stable. Conversely, the RF approach fails completely.

a) Move objects by the hand

b) Remove objects

c) Add new objects

c) Move objects outside observations

Fig. 4.10 Robustness of our method to different scenarios of dynamic scenes. The stability of
the camera pose estimation is illustrated by a virtual cube whose position remains fixed during
the update process over time. Inliers (blue points) and outliers (red points) are displayed on
objects.

Figure 4.10 show some scenarios of dynamic scenes such as moving objects by the hand,
removing objects, adding new objects or moving objects outside observations. Our method
handles instant moving objects. We detect passive leaves corresponding to moving objects
and the passive leaves update successes immediately when these objects are stationary. Our

106 Camera Relocalization in Dynamic Environment

method does not require any motion tracking of the objects. Technically, if moving objects
or new objects are observed, corresponding features will be considered as outliers, and the
rest of the scene will be used to estimate the camera pose. When object becomes static again,
they will be updated to the model and their features will be considered as inliers. Thus, our
method achieves high accuracy for these scenarios as well.

4.4.2 Comparison to state-of-the-art methods

Baselines. We compare our method to three different approaches: geometric based [151],
machine learning based [82] and hybrid based [23] methods. We also compare our DynaLoc
to our hybrid method based on static regression forest (SURF-RF) presented in Subsection
3.4.

Table 4.1 Comparison of our method with state-of-the-art methods. The accuracy is evaluated
by median pose errors on 7-scenes dataset.

Scene
Active Search

[151]
PoseNet2

[82]
DSAC++

[23] SURF-RF DynaLoc-1 DynaLoc-2

Chess 0.04m,2.0° 0.13m,4.5° 0.02m,0.5° 0.034m,1.45° 0.031m,1.31° 0.029m,1.27°
Fire 0.03m,1.5° 0.27m,11.3° 0.02m,0.9° 0.029m,1.34° 0.024m,1.27° 0.021m,1.15°

Heads 0.02m,1.5° 0.17m,13.0° 0.01m,0.8° 0.020m,1.32° 0.019m,1.30° 0.016m,1.21°
Office 0.09m,3.6° 0.19m,5.6° 0.03m,0.7° 0.045m,1.70° 0.043m,1.52° 0.037m,1.37°

Pumpkin 0.08m,3.1° 0.26m,4.8° 0.04m,1.1° 0.046m,1.70° 0.045m,1.57° 0.042m,1.42°
kitchen 0.07m,3.4° 0.23m,5.4° 0.04m,1.1° 0.047m,1.97° 0.042m,1.73° 0.038m,1.60°
Stairs 0.03m,2.2° 0.35m,12.4° 0.09m,2.6° 0.074m,2.05° 0.068m,1.87° 0.065m,1.75°

Average 0.05m,2.5° 0.23m,8.1° 0.04m,1.1° 0.042m,1.65° 0.039m,1.51° 0.035m,1.40°

Table 4.2 Comparison of our method with DSAC++ in term of runtime. Training time per
scene and testing time per image.

DSAC++ [23] DynaLoc

Configuration
GPU Tesla K80 Intel Core i7-7820HK

Intel Xeon E5-2680
Training time 1-2 days 5-10 minutes
Testing time 220ms 55ms (5ms for ARF update)

7 scenes dataset. For this experiment, all methods use RGB-D training images and RGB
testing images. To evaluate the performance of our DynaLoc on these static scenes, we run

4.4 Experiments 107

DynaLoc on a testing sequence to have the first result DynaLoc-1 in Table 4.1 and the refined
model. We repeat once again the evaluation on testing sequences with the refined model to
obtain the second result DynaLoc-2. It can be noted that the refined model only uses RGB
testing images without ground truth labels. In Table 4.1, both our results clearly outperform
PoseNet2 [82] and our real-time hybrid method (SURF-RF) on all scenes. And they are
slightly better than Active Search [151] on this dataset except the translation estimation error
on the stairs scene. The results also shows that the accuracy of our method is approximately
equal to DSAC++ [23]. In term of the runtime, our method is much faster than DSAC++ for
both training and testing, as shown in Table 4.2. When we compare Dynaloc-1 and DynaLoc-
2, we notice that the refinement over time of ARF from real data improves significantly the
accuracy of the model as well as the results.

Table 4.3 Comparison of our DynaLoc with our sparse feature regression forest (SURF-RF).
The accuracy is evaluated by median pose errors on DynaScenes dataset.

Sequence SURF-RF DynaLoc
Dyna-01/Seq-01 2.9cm, 1.9° 2.6cm, 1.7°
Dyna-02/Seq-01 3.2cm, 2.6° 3.0cm, 2.5°
Dyna-03/Seq-01 1.9cm, 1.4° 1.4cm, 1.2°
Dyna-04/Seq-01 4.3cm, 3.8° 3.3cm, 1.9°
Dyna-01/Seq-02 4.7cm, 2.9° 2.2cm, 1.6°
Dyna-02/Seq-02 7.2cm, 5.1° 3.5cm, 2.7°
Dyna-03/Seq-02 19.8cm, 14.3° 2.2cm, 1.5°
Dyna-04/Seq-02 25.6cm, 20.6° 3.2cm, 1.7°

Average 8.7cm, 6.6° 2.7cm, 1.9°

DynaScenes dataset. It is a completely new dataset of dynamic scenes that we created and
presented in Section 2.6. Table 4.3 compares median camera pose errors of our DynaLoc
and of our previous work, SURF-RF, on the DynaScenes dataset. The results of DynaLoc are
moderately better than SURF-RF on the sequences Dyna-{01,02,03,04}/Seq-01 where there
are challenging partial occlusion, illumination changes without moving objects. Both two
methods achieve high accuracy thanks to the use of SURF features and RANSAC algorithm.
However, on the remaining sequences, SURF-RF only obtains moderate accuracy for two
scenes Dyna-{01,02}/Seq-02 that contain respectively 30% and 60% moving objects. For
the scenes Dyna-{03,04}/Seq-02 where all the objects move gradually, the accuracy of
SURF-RF drops significantly because RANSAC cannot eliminate a lot of outliers on moving

108 Camera Relocalization in Dynamic Environment

objects. Inversely, our method still estimates precisely thanks to passive leaves detection and
update.

4.5 Conclusion 109

4.5 Conclusion

In this chapter, we proposed an adaptive regression forest that can update itself during
runtime with current observations to tackle the challenge of dynamic data. This is performed
by detecting and updating passive leaves of a regression forest. We applied our adaptive
regression forest to our DynaLoc, a real-time and accurate RGB camera relocalization for
dynamic scenes with moving objects. The results of camera relocalization in dynamic scenes
show that our method is able to address a large number of gradually moving objects. Our
method achieves results as accurate as the best state-of-the-art methods on static scenes
dataset but performs more quickly for both training and testing time. Our DynaLoc is robust
to occlusion and illumination changes. Moreover, we also obtain high accuracy even on our
dynamic scenes dataset.

Chapter 5

Conclusions and Perspectives

Contents
5.1 Conclusions . 111

5.2 Limitations and future works . 112

5.1 Conclusions

In this thesis, we investigated camera relocalization based on RGB images. Image-based
camera relocalization has recently been applied in many areas, such as augmented/virtual/mixed
reality, robotics and autonomous vehicles, but many limitations prevent its use for many use
cases.

We started by presenting theory of computer vision and deep learning for camera relocal-
ization. We also summarized state-of-the-art methods of camera relocalization according
to different approaches. We then introduced camera relocalization datasets and metrics to
evaluate methods in terms of accuracy, computational time, generalization, robustness to
dynamic scenes (occlusion, illumination changes, moving objects).

The goals of this thesis were to propose a real-time and accurate camera relocalization
from RGB images in dynamic environments. We first presented our PatchPoseNet, which
uses MIMO strategy based on local patches to overcome the uncertainty of end-to-end
machine learning camera regression. Afterward, we presented the evolution of our hybrid
method that balances between accuracy and computational time. Our hybrid methods are
based on both machine learning approach and geometric approach and aim at benefiting from
both. We proposed our xyzNet and our sparse feature regression forest (including SURF-RF
and Deep-RF) that focus on improving both computational time and accuracy for camera

112 Conclusions and Perspectives

relocalization while, at the same time, addressing challenges of occlusion and illumination
changes. Our latest method ARF is considered as the most important one of this thesis.
Based on regression forest process, it adapts itself in real-time to predictive model. We
applied it to the camera relocalization. The resulting hybrid method, DynaLoc, is a real-time
and accurate camera relocalization from only RGB images in dynamic environments. Based
on DynaLoc, we also developed a *Smart AR Toolbox* [Instant LeARning] in IRT b-com.
The results of our various contributions are summarized and illustrated in Table 5.1.

Table 5.1 Summary of our methods regarding the camera relocalization challenges. For
runtime and training time, gray color denotes methods using GPU, white color denotes
methods using only CPU. + means good handling and ++ means very good handling.

Methods Accuracy Runtime Training time
Dynamic Scene

Occlusion Illumination Moving objects
PatchPoseNet ++ + +

xyzNet + ++ + ++ +
Deep-RF ++ ++ + ++ ++
SURF-RF ++ ++ ++ ++ ++
DynaLoc ++ ++ ++ ++ ++ ++

5.2 Limitations and future works

Although our work provides a real-time and accurate camera relocalization component for
localization system, it still encounters challenges of texture-less scenes and large-scale scenes.
Therefore, in this section, we discuss the remaining problems of our proposed methods and
suggests further research directions.

• Camera relocalization in texture-less scenes. Our sparse feature based methods
allow us to have a trade-off between runtime and accuracy for camera relocalization.
They can also perform in texture-less scenes. However, in the computer vision, texture-
less is still known as one of the main problem of sparse feature approaches. It is
due to the fact that it is difficult to detect stable keypoints and their feature is less
discriminative. Therefore, this takes more time to learn regression models and it
reduces the accuracy of 2D-3D point correspondences. To handle this challenge, a well-
known approach is based on both points and lines in texture-less scenes. Nevertheless,
line-based feature is still less efficient. It is more efficient for tracking than recognition.
So we expect to formulate hand-crafted or learned line-based feature to improve the
accuracy of camera relocalization in texture-less scenes.

5.2 Limitations and future works 113

• Camera relocalization in large-scale scenes. Scalability in large-scale scenes allows
the localization systems to keep the accuracy when the scene is expanded. This leads
to the storage of huge set of known information. Consequently, memory usage as well
as processing time increase with respect to the size of the models. For extremely large-
scale scenes, although our learned models only require a fixed memory and processing
time to relocalize each frame, prediction accuracy of our light model may decrease
as the scale of the scene expands. We can address large-scale scenes by learning a
network with more neurons and more layers network or deeper trees in regression
forest. But doing so needs more time for both training and testing. Thus, we suggest
a future approach using multi-model learning for camera localization in large-scale
scenes. Instead of learning a big model for the whole scene, we can rapidly learn
multiple models corresponding to each part of the scene based on our online regression
forest learning. It also allows to develop a collaborative multi-agent (re)localization
system.

• Improving camera relocalization by fusing world coordinate regression and ob-
ject detection. Recently, multi-task learning has been widely adopted in many com-
puter vision tasks to enhance overall computation efficiency or boost the performance
of individual tasks, with the assumption that those tasks are correlated and comple-
mentary to each other. Our current work, presented in this thesis, employed machine
learning for regressing camera pose or regressing 3D world coordinate. However, the
appearance of each frame also provides semantic information of scenes. Methods such
as objects detection or segmentation can help to rapidly remove outliers of 2D-3D
point correspondences. Such methods could speed up and increase accuracy of PnP
and RANSAC algorithms. We thus suggest an improvement of camera relocalization
based on multi-task learning.

Résumé en français

Introduction

Ces dernières années, la Réalité Virtuelle/Augmentée/Mixte (RV/RA/RM), la robotique,
les véhicules autonomes sont devenus de plus en plus à la mode dans l’Industrie 4.0. Tous
les systèmes de RV/RA/RM nécessitent un composant de localisation. La RA utilise des
capteurs et des algorithmes pour déterminer la pose de la caméra et la pose des objets dans
l’environnement, avec une grande précision et en temps réel. La RV/RM doit définir la pose
du casque HMD (Head-Mounted Display) dans l’environnement simulé. Pour la robotique
et les systèmes autonomes, l’estimation de la pose est un élément clé pour la navigation
automatique dans un espace 3D. Compte tenu de la criticité de l’estimation de la pose de
caméra dans les domaines mentionnés ci-dessus, l’amélioration de ses performances est
vraiment essentielle.

L’estimation de la pose de caméra consiste à définir la pose de caméra qui comporte six
degrés de liberté (6-DoF) exprimés dans le système de coordonnées du monde. La plupart
des solutions existantes pour l’estimation de la pose de caméra sont liées à l’utilisation de
plusieurs capteurs tels que caméra, GPS, LIDAR et IMU. Parce que la navigation dans les
environnements extérieurs peut impliquer des scénarios compliqués qui sont difficilement
gérés par une seule modalité de capteur.

Récemment, avec le développement rapide de la vision par ordinateur et de l’apprentissage
automatique, de nombreuses méthodes basées sur des images ont été développées. Parmi
elles, les deux solutions les plus courantes d’estimation de pose de caméra pour les systèmes
commerciaux sont SfM (Structure from Motion) et SLAM (Simultaneously Localization
And Mapping). Les méthodes SfM traitent hors ligne un ensemble d’images non ordonnées
sans contrainte temporelle pour estimer la pose de caméra en utilisant des caractéristiques
correspondantes parmi des paires d’images. Grâce à ces appariements, ils peuvent à la fois
reconstruire un modèle de scène 3D et estimer la pose de caméra. Inversement, les méthodes
SLAM peuvent fonctionner en temps réel sur une séquence ordonnée d’images acquises à
partir de caméra, potentiellement associées à une unité de mesure inertielle. La majorité des

116 Conclusions and Perspectives

systèmes SLAM sont basés sur le suivi du mouvement de la caméra, en utilisant des trames
consécutives pour calculer robustement la pose de caméra. Malheureusement, dans le cas
d’un mouvement de caméra rapide ou d’un changement de point de vue soudain, l’échec du
suivi interrompt l’estimation de la pose de caméra. Lorsque cela se produit, la relocalisation
de caméra est nécessaire pour récupérer la pose de caméra, plutôt que de redémarrer la
localisation à partir de zéro.

La relocalisation de caméra est un élément important des systèmes de localisation. Il
permet de définir la pose de caméra à partir d’images individuelles sans contrainte temporelle
sur la base de modèles construits à partir de l’information connue d’une scène. Cependant, il
est encore difficile d’avoir une méthode précise, temps réel et robuste aux environnements
dynamiques. Par conséquent, cette thèse se concentre sur la recherche de solutions afin de
relever les défis de relocalisation de caméra mentionnés ci-dessus.

État de l’Art

Sur la base du mécanisme de modélisation des informations préalables, nous présentons des
méthodes de relocalisation de caméra selon quatre approches différentes : des approches
géométriques ; des approches d’apprentissage automatique ; des approches hybrides ; des
approches de récupération d’images.

Approches géométriques

Les approches géométriques pour la relocalisation de caméra sont basées sur un nuage de
points 3D pré-calculé. Ces approches associent d’abord directement les caractéristiques
2D (telles que SIFT, SURF, ORB) de l’image de requête aux points 3D dans la carte pour
définir les correspondances de points 2D-3D pour les images RVB ou les correspondances de
points 3D-3D pour les images RVB-D. La pose de caméra est ensuite estimée en résolvant un
problème de pose absolue de caméra via des algorithmes PnP (2D-3D) ou Kabsch (3D-3D).
En présence de fausses correspondances (outliers), l’algorithme RANSAC est appliqué pour
les éliminer et accélérer le calcul.

Les deux étapes les plus importantes de cette approche consistent:

• À créer un modèle 3D de la scène contenant un ensemble de points 3D dans le système
de coordonnées de la scène associé à des vecteurs des caractéristiques.

• À faire correspondre les caractéristiques 2D d’une image de requête au modèle 3D
pour définir les correspondances de points 2D-3D.

5.2 Limitations and future works 117

Un modèle de scène 3D est construit à partir d’un ensemble d’images observées autour
d’une scène. Ceci est effectué par des méthodes hors ligne (SfM) ou en ligne (SLAM). La
correspondance directe de points 2D-3D est ensuite effectuée selon deux stratégies:

• F2P (Feature-to-Point), consistant à prendre chaque caractéristique dans l’image de la
requête, et chercher le meilleur point correspondant dans le modèle 3D.

• P2F (Point-to-Feature), consistant inversement à faire correspondre les points du
modèle 3D aux caractéristiques 2D de l’image de requête.

L’algorithme le plus largement utilisé pour la recherche du voisin le plus proche est kd-tree
[158], k-means [132].

Récemment, [149, 151] ont utilisé un vocabulaire visuel pour réaliser une correspondance
2D-3D efficace. Les approches géométriques sont simples, précises et particulièrement utiles
lorsque les images de requête sont trop éloignées des images d’apprentissage. Toutefois, ces
méthodes sont limitées à des scènes relativement petites en raison du coût d’appariement
qui, selon le schéma d’appariement utilisé, peut croître de façon exponentielle en fonction
du nombre de points-clés. La mise en correspondance des caractéristiques locales peut être
bruitée et peu fiable dans les scènes comportant des motifs répétés. En outre, pour obtenir
un modèle 3D précis et efficace, la construction et l’optimisation du modèle 3D prennent
beaucoup de temps.

Approches d’apprentissage automatique

Pour les approches d’apprentissage automatique, la relocalisation de caméra est un problème
de régression résolu par un apprentissage supervisé. Elle est réalisée à partir des informations
connues à l’avance de chaque scène. La phase d’apprentissage utilise des images étiquetées
(les images et leurs poses correspondantes). La phase de test utilise ce modèle appris pour
relocaliser caméra à partir de chaque image.

[83, 81] ont été les premiers à proposer l’utilisation de l’apprentissage en profondeur
comme approche d’estimation de pose de caméra de bout en bout. Dans leurs méthodes,
un modèle de réseau de neurones convolutif (CNN) est appris à partir d’images entières
labellisées à l’aide des poses de la caméra.

Ensuite, le modèle entraîné prédit directement la pose de la caméra à partir de chaque
image RVB. [83] présente la façon d’adapter le modèle de GoogleNet de la classification
à la régression en modifiant ses couches finales afin de régresser la pose de la caméra. La
phase d’entrainement est réalisée avec une fonction de perte qui est la somme de l’erreur de
localisation et de l’erreur d’orientation. Un facteur d’échelle est utilisé pour maintenir les

118 Conclusions and Perspectives

deux valeurs d’erreur à peu près égales. Cependant, la valeur du facteur d’échelle dépend de
chaque scène, ce qui rend les paramètres d’une nouvelle scène difficiles à configurer. [81]
donne un moyen de générer une estimation de pose probabiliste en utilisant le dropout après
chaque couche de convolution comme moyen d’échantillonnage des poids du modèle. [82]
résout une ambiguïté du facteur d’échelle entre erreur de localisation et erreur d’orientation
dans la fonction de perte de [83] par une nouvelle fonction de perte basée sur une erreur de
reprojection. [32] exploite l’information temporelle en utilisant plusieurs images pour la
prédiction de pose. Un LSTM (Long Short Term Memory) qui est l’extension du réseau de
neurones récurrent (RNN) est utilisé pour prédire la pose de caméra pour chaque image de la
séquence à partir du vecteur de caractéristiques du CNN.

L’apprentissage automatique (machine learning) est apparu comme un moyen de sur-
monter certaines limitations des approches géométriques (utilisation de la mémoire à grande
échelle, temps d’appariement). Il fournit une solution compacte d’estimation de la pose de
caméra de bout en bout. Mais la phase d’entraînement prend des heures, même des jours
pour une petite scène. Cependant, les limites les plus importantes de ces méthodes résident
dans leur précision modérée et l’absence de score de confiance pour chaque estimation de
pose. Ces méthodes sont nettement moins précises que les méthodes basées sur la géométrie.
Elles semblent plus compatibles avec la récupération d’image qu’avec la régression de pose
de caméra.

Approches de récupération d’images

Tandis que les deux approches ci-dessus estiment directement la pose de caméra à partir de
correspondances géométriques ou d’un apprentissage de régression, à l’inverse, l’approche
de récupération d’image regroupe des méthodes indirectes qui transforment la relocalisation
de caméra en problème de récupération d’image et fournissent une pose grossière relative à
l’image de la requête.

Le but des méthodes de récupération d’images les plus proches est de récupérer un
ensemble d’images présentes dans la base de données et similaires à l’image de requête
d’entrée. Les images récupérées fournissent des informations sur l’emplacement possible de
l’image de requête. Ce problème de récupération d’images comprend deux étapes: extraction
d’une caractéristique de niveau image (en utilisant BoW [48] ou caractéristiques apprises
[5]) pour l’image de requête et la base de données et recherche de la récupération d’images
la plus proche dans la base de données. Ensuite, la pose finale de l’image de la requête est
calculée à partir des images récupérées. Il est possible d’utiliser une partie du modèle 3D
d’une scène visible dans les images récupérées pour définir directement la pose de caméra
en utilisant les approches géométriques [148, 124, 126]. La pose précise de caméra peut

5.2 Limitations and future works 119

également être obtenue en utilisant des correspondances de caractéristiques entre l’image de
requête et les images récupérées pour estimer une pose relative [87, 52, 94].

L’approche de récupération d’image améliore le temps d’appariement dans l’approche
géométrique en proposant une pose grossière à partir des images récupérées les plus proches.
Toutefois, ces méthodes sont souvent imprécises si l’image de requête est capturée à partir
d’une pose très éloignée de celle de la base de données. Pour le système de localisation, cette
approche doit stocker un grand nombre d’images clés. Par conséquent, l’utilisation de la
mémoire et le temps de traitement augmentent en fonction de la taille des modèles.

Approches hybrides

Les approches hybrides estiment la pose de caméra en combinant les approches d’apprentissage
automatique et les approches géométriques. La partie d’apprentissage automatique est ap-
pliquée pour apprendre et prédire une position 3D de chaque pixel en coordonnées du monde
au lieu d’une pose de caméra 6-DoF directement fournie dans les approches d’apprentissage
automatique ci-dessus. En effet, la dimension élevée (6-DoF) de l’espace de recherche risque
d’aboutir à une mauvaise estimation. De plus, la partie apprentissage machine définit les
correspondances de points plus rapidement que les approches géométriques. Puis la partie
géométrique déduit la pose de caméra à partir de ces correspondances.

Les méthodes présentées dans le présent paragraphe apprennent et prédisent la position
3D de chaque pixel d’une image. Dans [156, 59, 176], chaque pixel effectue une prédiction
continue de sa propre position 3D dans le système de coordonnées du monde. Ensuite, la pose
de la caméra est calculée en utilisant l’algorithme de Kabsch sur les correspondances de points
3D-3D, à savoir la prédiction 3D en coordonnées du monde avec le point 3D correspondant
dans les coordonnées de la caméra déduites de l’image de profondeur. [170] propose une
méthode CNN-SLAM, où un CNN est intégré pour prédire une carte de profondeur à partir
d’une seule image RVB. Cependant, la prédiction par CNN de la carte de profondeur est très
consommatrice de temps. Ce travail est donc effectué uniquement sur les images clés et les
poses de caméra pour les images intermédiaires sont estimées en fonction de l’image-clé la
plus proche.

Bien que ces méthodes atteignent une plus grande précision, elles nécessitent des milliers
de prédictions sur les coordonnées du monde, de sorte que le temps de calcul nécessaire pour
déduire la pose optimale de caméra par l’algorithme RANSAC augmente beaucoup.

120 Conclusions and Perspectives

Contributions

Régression de la pose de caméra basée sur des patchs locaux

L’un des problèmes posés par la régression de bout en bout pour relocaliser une caméra
réside dans le manque d’un score de confiance attaché à la pose fournie. Afin de résoudre
ce problème, [81, 32] créent un modèle probabiliste des résultats en utilisant des couches
de dropout après chaque couche de convolution pour échantillonner les poids du modèle.
Notre méthode utilise à la place un ensemble de patchs pour générer un ensemble de résultats
probabilistes à partir des données.

Nous proposons un CNN basé sur une architecture de style VGG permettant de déduire
la pose de caméra à partir de chaque patch local, appelé PatchPoseNet. Nous extrayons
au préalable des patchs locaux d’images RVB contenant des informations importantes
(amplitude maximale du gradient de l’image). Pour la phase d’entraînement, chaque patch
extrait est associé à une étiquette qui représente la vérité terrain de l’image correspondante.
Notre réseau est formé en minimisant une fonction de perte similaire à celle utilisée dans
[83]. Pour la phase de test, tous les patchs d’une image testée sont passés à travers le modèle
appris pour donner une pose de caméra multi-sorties. Le regroupement non paramétrique par
l’algorithme mean-shift est utilisé pour combiner les votes de la pose de caméra. Cela peut
réduire l’effet de la prédiction bruitée sur l’estimation finale.

Notre méthode PatchPoseNet s’attaque efficacement au problème de l’incertitude dans
l’apprentissage en profondeur par régression. Cependant, il est également nettement moins
précis que les méthodes géométriques. Notre méthode est toujours limitée à la fonction
de perte combinant rotation et erreur de translation par coefficient de poids. En outre,
l’extraction de multiples patchs dans chaque image augmente drastiquement le volume des
données d’entraînement. Cela rend la convergence de cette phase d’entraînement difficile
à assurer. De plus, en cas de rotation, les patchs extraits de la même position sont presque
inchangés. Cela réduit le pouvoir discriminant de la méthode.

Régression des coordonnées 3D du monde basée sur des patchs locaux

Nous proposons ensuite une méthode hybride mélangeant à la fois l’approche de l’apprentissage
automatique et l’approche géométrique. Notre principale contribution est de proposer une
méthode de relocalisation de caméras en temps réel.

Inspiré par PatchPoseNet, nous présentons un réseau de neurones convolutif (CNN) léger,
appelé xyzNet pour calculer robustement par régression les coordonnées 3D dans le repère du
monde des points réels associés aux pixels d’une image, et ainsi s’affranchir d’une dimension

5.2 Limitations and future works 121

excessive de l’espace de recherche, susceptible de fausser l’estimation. Ainsi, au lieu d’une
régression de bout en bout de la pose de caméra, chaque patch donne une prédiction des
coordonnées 3D de son centre dans le référentiel de la scène. L’originalité de notre méthode
réside dans le choix délibéré de patchs centrés autour de points-clés (de préférence à un tirage
au sort) pour cibler uniquement les régions géométriquement pertinentes. Ainsi, chaque
patch retenu est une portion d’image de taille fixe autour d’un point-clé. Nous utilisons le
détecteur SURF pour détecter automatiquement des points dispersés invariants au facteur
d’échelle et à la rotation, en tant que représentants répétitifs dans une scène. Cela améliore
la capacité à localiser les positions 3D à partir des patchs. Pour la phase d’entraînement de
xyzNet, nous devons labelliser les données d’entraînement avec les coordonnées du monde
3D correspondantes. À cette fin, nous pouvons exécuter l’algorithme SfM une fois sur
tous les ensembles de données d’apprentissage ou utiliser les images RVB-D de caméra
calibrée avec leurs poses de caméra correspondantes pour effectuer une cartographie entre
les points-clés et le nuage de points. Enfin, à partir des correspondances de points 2D-3D
établies par notre réseau, nous implémentons des algorithmes PnP et RANSAC afin d’estimer
la pose de caméra. La pose finale de caméra est attachée à un score de confiance qui est
défini comme le nombre d’inliers.

Notre méthode hybride xyzNet rend possible une relocalisation de caméra en temps réel.
De plus, grâce à l’utilisation de patchs au lieu d’une image complète, elle se révèle robuste à
l’occlusion. Bien que nous obtenions sur la plupart des scènes de meilleurs résultats que les
méthodes de l’état de l’art aptes au temps réel, notre méthode rencontre des difficultés sur
des scènes répétitives où nous n’obtenons pas assez d’inliers après élimination de l’ambiguïté
de prédiction uni-modale de notre réseau.

Régression des coordonnées 3D du monde de multi-sorties efficace

Notre objectif dans ce paragraphe est de proposer une méthode de relocalisation temps réel
et précise en utilisant uniquement des images RVB. La limitation principale des méthodes
hybrides de l’état de l’art concerne le temps de calcul de la partie géométrique du processus.
Ce temps du calcul est élevé, en raison du nombre excessif de données utilisées comme
entrées de cette partie géométrique, et aussi de leur faible précision. Par conséquent, nous
présentons une méthode hybride, qui se concentre sur l’amélioration des données fournies
par la partie apprentissage automatique du processus.

Nos contributions visent à diminuer le nombre de prédictions des correspondances 2D-
3D traitées à chaque étape de la partie d’apprentissage automatique, et à augmenter leur
pertinence dans le même temps. Nous proposons une forêt de régression efficace à sorties
multiples basée sur une détection de caractéristiques éparses. Nous définissons une nouvelle

122 Conclusions and Perspectives

fonction de répartition à chaque nœud de la forêt de régression, qui prend des vecteurs de
caractéristiques entiers comme entrées. Cette fonction de répartition permet d’améliorer
la précision des correspondances de points 2D-3D grâce à la prise en compte de toutes
les informations pertinentes du vecteur de caractéristiques. En particulier, la régression
à coordonnées multiples de notre forêt permet de faire face à des structures répétitives
ambiguës. En outre, notre méthode est robuste pour les changements d’éclairage ainsi que les
changements d’échelle et de rotation, car nous utilisons des caractéristiques SURF ou apprises.
De plus, nous abordons le défi de l’occlusion partielle en utilisant des caractéristiques éparses
(sparse feature) au lieu d’une image entière.

Notre méthode s’avère aussi précise que les méthodes de l’état de l’art. Mais en plus, elle
permet d’effectuer une relocalisation de caméra en temps réel.

Relocalization de caméra dans des environnements dynamiques

Les données dynamiques représentent un défi commun pour l’apprentissage automatique
ainsi que pour la relocalisation de caméra. Dans ce paragraphe, nous nous concentrons plus
particulièrement sur le défi complexe de scènes dynamiques lorsque des objets individuels se
déplacent au fil du temps.

Notre principale contribution est de proposer un tout nouvel algorithme d’apprentissage
automatique basé sur le principe d’une forêt de régression, qui s’adapte en temps réel au
modèle prédictif. Il évolue partiellement au fil du temps sans avoir à se reformer intégralement
à partir de zéro. Le processus est basé sur une forêt de régression et nous l’appelons ARF
(Adaptive Regression Forest). L’idée principale est que l’ARF met à jour en temps réel un
sous-ensemble de feuilles qui donne des prédictions incertaines. Il est effectué selon deux
originalités principales basées sur la détection et la mise à jour des feuilles passives. La
première originalité de notre ARF est de détecter les feuilles, qui fournissent des informations
non pertinentes. Une feuille doit devenir une feuille passive selon deux critères: avoir une
variance élevée du modèle prédictif; donner à plusieurs reprises un résultat assez différent
des autres feuilles. La deuxième originalité de notre ARF est de mettre à jour en temps réel
des feuilles passives du modèle de forêt de régression. Ceci est effectué en remodelant leur
modèle prédictif à partir de nouvelles étiquettes calculées. Ces étiquettes sont calculées à
partir de résultats donnés par les autres feuilles (feuilles actives). Notez que la mise à jour
est effectuée uniquement sur les feuilles passives et non sur le modèle entier de forêt de
régression. Nous illustrons l’efficacité de ce mécanisme sur certains exemples d’application
de la relocalisation de caméra.

Ensuite, nous appliquons notre ARF à la relocalisation de caméra en temps réel dans
des scènes dynamiques, où certaines parties de la scène bougent ou dans lesquelles la

5.2 Limitations and future works 123

scène entière change progressivement. Pour cette application, l’ARF prédit des points
3D dans le système de coordonnées de la scène, qui correspondent à des points 2D dans
l’image. L’originalité est de conserver la structure de la forêt (arbres et nœuds) en utilisant
la caractéristique SURF invariante aux nœuds internes, comme proposé dans nos travaux
précédents. En effet, lorsque des objets se déplacent, les descripteurs des points clés détectés
restent presque inchangés. Seule leur étiquette, à savoir la position 3D des points clés dans le
système de coordonnées de la scène varie.

Des expériences montrent que notre méthode permet d’obtenir des résultats aussi précis
que les meilleures méthodes de l’état de l’art sur des ensembles de données de scènes statiques,
mais qu’elle est plus rapide à la fois en termes d’entraînement et de test. Notre DynaLoc est
robuste aux changements d’occlusion et d’éclairage. De plus, nous obtenons également des
résultats plus précis même sur notre ensemble de données de scènes dynamiques en évitant
l’accumulation d’erreurs.

Conclusions

Dans cette thèse, nous avons étudié les méthodes de relocalisation de caméra basées sur
des images. Tout d’abord, nous avons commencé par présenter la théorie de la vision par
ordinateur et l’apprentissage en profondeur pour la relocalisation de caméra. Nous avons
également décrit des méthodes de l’état de l’art en relocalisation de caméras par différentes
approches. Nous avons ensuite introduit des ensembles de données de relocalisation de
caméras.

Les objectifs de cette thèse étaient de proposer une relocalisation de caméra précise et
en temps réel à partir d’images RVB dans des environnements dynamiques. L’évolution de
notre contribution est résumée dans le Tableau 5.1. À partir de notre dernière contribution
DynaLoc, nous avons développé un *Smart AR Toolbox* [Instant LeARning] à IRT b-com,
voir plus de détails en Annexe A.

Bien que nos travaux fournissent un composant de relocalisation de caméra précis et en
temps réel pour les systèmes de localisation, ils rencontrent encore des problèmes face aux
scènes sans texture et à grande échelle. Cela suggère des pistes de recherche pour l’avenir
afin d’améliorer encore la relocalisation de caméra.

Publications

International Journal Papers

• Nam-Duong Duong, Catherine Soladie, Amine Kacete, Pierre-Yves Richard, Jérôme
Royan, Efficient multi-output scene coordinate prediction for fast and accurate camera
relocalization from a single RGB image, Computer Vision and Image Understanding,
2019.

International Conference Papers

• Nam-Duong Duong, Amine Kacete, Catherine Soladie, Pierre-Yves Richard, Jérôme
Royan, DynaLoc: Real-Time Camera Relocalization from a Single RGB Image in
Dynamic Scenes based on an Adaptive Regression Forest, 15th International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Appli-
cations, VISIGRAPP 2020.

• Nam-Duong Duong, Amine Kacete, Catherine Sodalie, Pierre-Yves Richard, Jérôme
Royan, xyzNet: Towards Machine Learning Camera Relocalization by Using a Scene
Coordinate Prediction Network, In IEEE International Symposium on Mixed and
Augmented Reality Adjunct (ISMAR-Adjunct), pp. 258-263, Munich, Germany, 2018.

• Nam-Duong Duong, Amine Kacete, Catherine Soladie, Pierre-Yves Richard, Jérôme
Royan, Accurate Sparse Feature Regression Forest Learning for Real-Time Camera
Relocalization, In IEEE International Conference on 3D Vision (3DV), pp. 643-652,
Verona, Italy, 2018.

Demonstration Papers

• Nam-Duong Duong, Amine Kacete, Catherine Soladie, Pierre-Yves Richard, Jérôme
Royan, Online Sparse Scene Coordinates Learning for Real-Time Camera Relocaliza-
tion, In IEEE International Conference on 3D Vision (3DV), Verona, Italy, 2018.

126 Conclusions and Perspectives

National Communications

• Nam-Duong Duong, Catherine Soladie, Amine Kacete, Pierre-Yves Richard, Jérôme
Royan, Forêt de Régression Précise basée sur des Caractéristiques Éparses pour la
Relocalisation de Caméra en Temps-Réel, GRETSI, Lille, France, 2019.

• Nam-Duong Duong, Amine Kacete, Catherine Soladie, Pierre-Yves Richard, Jérôme
Royan, Relocalisation Robuste de Caméra en Temps Réel pour la Réalité Augmentée
par une Approche Hybride combinant Réseaux de Neurones et Méthodes Géométriques,
Dans le congrès Reconnaissance des Formes, Image, Apprentissage et Perception
(RFIAP), Marne-la-Vallée, France, 2018.

Patents

• Nam-Duong Duong, Amine Kacete, Catherine Soladie. Method for Estimating The
Installation of a Camera in The Reference Frame of a Three-Dimensional Scene, Device,
Augmented Reality System and Associated Computer Program. Patent WO2019091787.
May 16, 2019.

• Nam-Duong Duong, Amine Kacete, Catherine Soladie. Procédé de prédiction
d’une représentation en trois dimensions (3D), Dispositif, Système et Programme
d’ordinateur correspondant. Patent FR1873626.

Appendix A

Smart AR Toolbox [Instant LeARning]

Fig. A.1 Our demo at the IBC exhibition 2018

The work of this thesis has been put up to use in Smart AR Toolbox, which is a
toolbox of AR computer vision developed in the Institute of Research and Technology b-com.
The Instant LeARning component is based on our DynaLoc algorithm. In order to help
understanding the value of this component, we use it to develop an application to display
a problem on a data center, as shown in Figure A.1. This demo showcases how our AR
core technology is solving critical problems whenever AR has to be used for maintenance
applications, considering conditions of real operation and not those of lab environments.

128 Smart AR Toolbox [Instant LeARning]

Fig. A.2 A data center infrastructure management combining with our AR.

The broadcast industry, as this is the case for other industries, is significantly migrating
from specialized equipment towards more IP and IT based infrastructures or data center and
inevitably more software. While those infrastructures rely on commodities equipment, the
detection and resolution of problems become more complex. Typically a functional service
view in relationship to appliances and wiring views becomes less obvious. AR can definitely
help improve this. A study from Ponemon Institute about data center outages shows that:

• The average cost of a data center outage rose to $750k in 2016, up 38% since 2010.

• Cost per minute rose to $9k, it was $5k in 2010, $7k in 2015.

• Downtime costs for the most data center dependent businesses are rising faster than
average.

Data Center Infrastructure Management (DCIM) applications aim at helping maintenance
team concretely dealing with outages and troubleshooting but under stress conditions. Figure
A.2 shows the DCIM system with our Smart AR Toolbox [Instant LeARning] which offers
a kind of digital twin of infrastructure. When a data center has an issue, this issue is notified
on the DCIM. With our AR toolbox, contextual DCIM information can be displayed on a
rack allowing the operator to immediately identify what needs to be done to maintain the
data center.

Our application is a real-time and accurate camera relocalization in dynamic environments
using only RGB images for both training and testing. It is developed by Unity3D and is
easy to use by an interactive interface, as shown in Figure A.3 (on right side of the right
image), including six buttons: training, stop, relocalization, inliers display, outliers display,
quit. At beginning, our application requires a training step which is performed based on
fiducial marker as shown in Figure A.3 (the left image): First, place the marker in a position

129

Fig. A.3 Our AR application for maintaining data center: Training phase based on a fiducial
marker (on the left) and running phase (on the right).

marked on the data center. Then, move the camera to capture different view points around
the fiducial marker. Finally, the learning process automatically stops when it obtains enough
information about the data center. This step takes about two minutes. Now we can use the
learned model in the running phase to determine the location of issues, as illustrated in Figure
A.3 (the right image).

References

[1] Agarwal, S., Furukawa, Y., Snavely, N., Curless, B., Seitz, S. M., and Szeliski, R. (2010).
Reconstructing rome. Computer, 43(6):40–47.

[2] Agarwal, S., Snavely, N., Simon, I., Seitz, S. M., and Szeliski, R. (2009). Building rome
in a day. In 2009 IEEE 12th international conference on computer vision, pages 72–79.
IEEE.

[3] Alcantarilla, P. F., Bartoli, A., and Davison, A. J. (2012a). Kaze features. In European
Conference on Computer Vision, pages 214–227. Springer.

[4] Alcantarilla, P. F., Yebes, J. J., Almazán, J., and Bergasa, L. M. (2012b). On combining
visual slam and dense scene flow to increase the robustness of localization and mapping
in dynamic environments. In Robotics and Automation (ICRA), 2012 IEEE International
Conference on, pages 1290–1297. IEEE.

[5] Arandjelovic, R., Gronat, P., Torii, A., Pajdla, T., and Sivic, J. (2016). Netvlad: Cnn archi-
tecture for weakly supervised place recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5297–5307.

[6] Arandjelovic, R. and Zisserman, A. (2013). All about vlad. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recognition, pages 1578–1585.

[7] Arth, C., Wagner, D., Klopschitz, M., Irschara, A., and Schmalstieg, D. (2009). Wide
area localization on mobile phones. In 2009 8th ieee international symposium on mixed
and augmented reality, pages 73–82. IEEE.

[8] Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R., and Wu, A. Y. (1998). An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal
of the ACM (JACM), 45(6):891–923.

[9] Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual
Environments, 6(4):355–385.

[10] Babenko, A. and Lempitsky, V. (2015). Aggregating local deep features for image
retrieval. In The IEEE International Conference on Computer Vision (ICCV).

[11] Balntas, V., Li, S., and Prisacariu, V. (2018). Relocnet: Continuous metric learning
relocalisation using neural nets. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 751–767.

[12] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). Speeded-up robust features
(surf). Computer vision and image understanding, 110(3):346–359.

132 References

[13] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). Surf: Speeded up robust features. In
European conference on computer vision, pages 404–417. Springer.

[14] Beis, J. S. and Lowe, D. G. (1997). Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In cvpr, volume 97, page 1000. Citeseer.

[15] Bescos, B., Facil, J. M., Civera, J., and Neira, J. (2018). Dynaslam: Tracking, mapping,
and inpainting in dynamic scenes. IEEE Robotics and Automation Letters, 3(4):4076—-
4083.

[16] Bleser, G. and Stricker, D. (2009). Advanced tracking through efficient image process-
ing and visual–inertial sensor fusion. Computers & Graphics, 33(1):59–72.

[17] Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent.
Springer.

[18] Boyd, S. and Vandenberghe, L. (2004). Convex optimization. Cambridge university
press.

[19] Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., and Rother, C. (2014).
Learning 6d object pose estimation using 3d object coordinates. In European Conference
on Computer Vision, pages 536–551. Springer.

[20] Brachmann, E., Krull, A., Nowozin, S., Shotton, J., Michel, F., Gumhold, S., and
Rother, C. (2017). Dsac - differentiable ransac for camera localization. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[21] Brachmann, E., Michel, F., Krull, A., Yang, M. Y., Gumhold, S., and Rother, C. (2016a).
Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image. In
Conference on Computer Vision and Pattern Recognition.

[22] Brachmann, E., Michel, F., Krull, A., Ying Yang, M., Gumhold, S., et al. (2016b).
Uncertainty-driven 6d pose estimation of objects and scenes from a single rgb image. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3364–3372.

[23] Brachmann, E. and Rother, C. (2018). Learning less is more-6d camera localization via
3d surface regression. In Proc. CVPR, volume 8.

[24] Bradski, G. (2000). The opencv library. Dr Dobb’s J. Software Tools, 25:120–125.

[25] Brahmbhatt, S., Gu, J., Kim, K., Hays, J., and Kautz, J. (2018). Geometry-aware
learning of maps for camera localization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2616–2625.

[26] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.

[27] Bui, M., Albarqouni, S., Ilic, S., and Navab, N. (2018). Scene coordinate and corre-
spondence learning for image-based localization. In BMVC, page 3.

[28] Cai, M., Shen, C., and Reid, I. D. (2018). A hybrid probabilistic model for camera
relocalization. In BMVC.

References 133

[29] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). Brief: Binary robust
independent elementary features. In European conference on computer vision, pages
778–792. Springer.

[30] Camposeco, F., Cohen, A., Pollefeys, M., and Sattler, T. (2018). Hybrid camera pose
estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 136–144.

[31] Cavallari, T., Golodetz, S., Lord, N. A., Valentin, J., Di Stefano, L., and Torr, P. H. S.
(2017). On-the-fly adaptation of regression forests for online camera relocalisation. In
The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32] Clark, R., Wang, S., Markham, A., Trigoni, N., and Wen, H. (2017). Vidloc: A deep
spatio-temporal model for 6-dof video-clip relocalization. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[33] Criminisi, A. and Shotton, J. (2013). Decision forests for computer vision and medical
image analysis. Springer Science & Business Media.

[34] Cummins, M. and Newman, P. (2011). Appearance-only slam at large scale with
fab-map 2.0. The International Journal of Robotics Research, 30(9):1100–1123.

[35] Davison, A. J., Reid, I. D., Molton, N. D., and Stasse, O. (2007). Monoslam: Real-time
single camera slam. IEEE transactions on pattern analysis and machine intelligence,
29(6):1052–1067.

[36] Dementhon, D. F. and Davis, L. S. (1995). Model-based object pose in 25 lines of code.
International journal of computer vision, 15(1-2):123–141.

[37] Donoser, M. and Schmalstieg, D. (2014). Discriminative feature-to-point matching in
image-based localization. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 516–523.

[38] Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse odometry. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

[39] Engel, J., Schöps, T., and Cremers, D. (2014). Lsd-slam: Large-scale direct monocular
slam. In European Conference on Computer Vision, pages 834–849. Springer.

[40] Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time head pose estimation with
random regression forests. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference on, pages 617–624. IEEE.

[41] Faugeras, O. and FAUGERAS, O. A. (1993). Three-dimensional computer vision: a
geometric viewpoint. MIT press.

[42] Feng, Y., Fan, L., and Wu, Y. (2016). Fast localization in large-scale environments
using supervised indexing of binary features. IEEE Transactions on Image Processing,
25(1):343–358.

[43] Fischler, M. A. and Bolles, R. C. (1981). Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography. Communi-
cations of the ACM, 24(6):381–395.

134 References

[44] Friedman, J. H., Bentley, J. L., and Finkel, R. A. (1977). An algorithm for finding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3(3):209–226.

[45] Gal, Y. (2016). Uncertainty in deep learning. PhD thesis, PhD thesis, University of
Cambridge.

[46] Gall, J. and Lempitsky, V. (2013). Class-specific hough forests for object detection.
In Decision forests for computer vision and medical image analysis, pages 143–157.
Springer.

[47] Gall, J., Yao, A., Razavi, N., Van Gool, L., and Lempitsky, V. (2011). Hough forests for
object detection, tracking, and action recognition. IEEE transactions on pattern analysis
and machine intelligence, 33(11):2188–2202.

[48] Gálvez-López, D. and Tardós, J. D. (2012). Bags of binary words for fast place
recognition in image sequences. IEEE Transactions on Robotics, 28(5):1188–1197.

[49] Gao, X.-S., Hou, X.-R., Tang, J., and Cheng, H.-F. (2003). Complete solution classifi-
cation for the perspective-three-point problem. IEEE transactions on pattern analysis and
machine intelligence, 25(8):930–943.

[50] Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1440–1448.

[51] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). Rich feature hierarchies
for accurate object detection and semantic segmentation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 580–587.

[52] Glocker, B., Shotton, J., Criminisi, A., and Izadi, S. (2015). Real-time rgb-d cam-
era relocalization via randomized ferns for keyframe encoding. IEEE transactions on
visualization and computer graphics, 21(5):571–583.

[53] Gong, Y., Wang, L., Guo, R., and Lazebnik, S. (2014). Multi-scale orderless pooling of
deep convolutional activation features. In European conference on computer vision, pages
392–407. Springer.

[54] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

[55] Gordo, A., Almazan, J., Revaud, J., and Larlus, D. (2017). End-to-end learning of
deep visual representations for image retrieval. International Journal of Computer Vision,
124(2):237–254.

[56] Gordoa, A., Rodríguez-Serrano, J. A., Perronnin, F., and Valveny, E. (2012). Leveraging
category-level labels for instance-level image retrieval. In 2012 IEEE Conference on
Computer Vision and Pattern Recognition, pages 3045–3052. IEEE.

[57] Gupta, S., Arbeláez, P., Girshick, R., and Malik, J. (2015). Aligning 3d models to rgb-d
images of cluttered scenes. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4731–4740.

[58] Gupta, S., Girshick, R., Arbeláez, P., and Malik, J. (2014). Learning rich features
from rgb-d images for object detection and segmentation. In European Conference on
Computer Vision, pages 345–360. Springer.

References 135

[59] Guzman-Rivera, A., Kohli, P., Glocker, B., Shotton, J., Sharp, T., Fitzgibbon, A., and
Izadi, S. (2014). Multi-output learning for camera relocalization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 1114–1121.

[60] Haralick, R. M., Lee, D., Ottenburg, K., and Nolle, M. (1991). Analysis and solutions of
the three point perspective pose estimation problem. In Proceedings. 1991 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, pages 592–598. IEEE.

[61] Hartley, R. and Zisserman, A. (2005). Multiple view geometry in computer vision.
Robotica, 23(2):271–271.

[62] Hartley, R. I. and Sturm, P. (1997). Triangulation. Computer vision and image
understanding, 68(2):146–157.

[63] Hays, J. and Efros, A. A. (2008). Im2gps: estimating geographic information from a
single image. In 2008 ieee conference on computer vision and pattern recognition, pages
1–8. IEEE.

[64] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778.

[65] Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data.
In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence,
UAI’13, pages 282–290. AUAI Press.

[66] Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions.
Josa a, 4(4):629–642.

[67] Horn, B. K., Hilden, H. M., and Negahdaripour, S. (1988). Closed-form solution of
absolute orientation using orthonormal matrices. JOSA A, 5(7):1127–1135.

[68] Huang, C., Ding, X., and Fang, C. (2010). Head pose estimation based on random forests
for multiclass classification. In Pattern Recognition (ICPR), 2010 20th International
Conference on, pages 934–937. IEEE.

[69] Huang, J., Shao, X., and Wechsler, H. (1998). Face pose discrimination using sup-
port vector machines (svm). In Pattern Recognition, 1998. Proceedings. Fourteenth
International Conference on, volume 1, pages 154–156. IEEE.

[70] Huynh, D. Q. (2009). Metrics for 3d rotations: Comparison and analysis. Journal of
Mathematical Imaging and Vision, 35(2):155–164.

[71] Irschara, A., Zach, C., Frahm, J.-M., and Bischof, H. (2009). From structure-from-
motion point clouds to fast location recognition. In Computer Vision and Pattern Recogni-
tion, 2009. CVPR 2009. IEEE Conference on, pages 2599–2606. IEEE.

[72] Jégou, H., Douze, M., Schmid, C., and Pérez, P. (2010). Aggregating local descriptors
into a compact image representation. In CVPR 2010-23rd IEEE Conference on Computer
Vision & Pattern Recognition, pages 3304–3311. IEEE Computer Society.

136 References

[73] Jegou, H., Perronnin, F., Douze, M., Sánchez, J., Perez, P., and Schmid, C. (2012).
Aggregating local image descriptors into compact codes. IEEE transactions on pattern
analysis and machine intelligence, 34(9):1704–1716.

[74] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama,
S., and Darrell, T. (2014). Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093.

[75] Jiang, N., Cui, Z., and Tan, P. (2013). A global linear method for camera pose
registration. In Proceedings of the IEEE International Conference on Computer Vision,
pages 481–488.

[76] Jin Kim, H., Dunn, E., and Frahm, J.-M. (2015). Predicting good features for image geo-
localization using per-bundle vlad. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1170–1178.

[77] Kabsch, W. (1976). A solution for the best rotation to relate two sets of vectors.
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General
Crystallography, 32(5):922–923.

[78] Kacete, A., Royan, J., Seguier, R., Collobert, M., and Soladie, C. (2016). Real-time
eye pupil localization using hough regression forest. In Applications of Computer Vision
(WACV), 2016 IEEE Winter Conference on, pages 1–8. IEEE.

[79] Kacete, A., Wentz, T., and Royan, J. (2017). [poster] decision forest for efficient and
robust camera relocalization. In Mixed and Augmented Reality (ISMAR-Adjunct), 2017
IEEE International Symposium on, pages 20–24. IEEE.

[80] Kehl, W., Milletari, F., Tombari, F., Ilic, S., and Navab, N. (2016). Deep learning
of local rgb-d patches for 3d object detection and 6d pose estimation. In European
Conference on Computer Vision, pages 205–220. Springer.

[81] Kendall, A. and Cipolla, R. (2016). Modelling uncertainty in deep learning for camera
relocalization. Proceedings of the International Conference on Robotics and Automation
(ICRA).

[82] Kendall, A. and Cipolla, R. (2017). Geometric loss functions for camera pose regression
with deep learning. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition.

[83] Kendall, A., Grimes, M., and Cipolla, R. (2015). Posenet: A convolutional network
for real-time 6-dof camera relocalization. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2938–2946.

[84] Kim, H. J., Dunn, E., and Frahm, J.-M. (2017). Learned contextual feature reweighting
for image geo-localization. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3251–3260. IEEE.

[85] Klein, G. and Drummond, T. (2004). Sensor fusion and occlusion refinement for
tablet-based ar. In Proceedings of the 3rd IEEE/ACM International Symposium on Mixed
and Augmented Reality, pages 38–47. IEEE Computer Society.

References 137

[86] Klein, G. and Murray, D. (2007). Parallel tracking and mapping for small ar workspaces.
In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International
Symposium on, pages 225–234. IEEE.

[87] Klein, G. and Murray, D. (2008). Improving the agility of keyframe-based slam. In
European Conference on Computer Vision, pages 802–815. Springer.

[88] Kouskouridas, R., Tejani, A., Doumanoglou, A., Tang, D., and Kim, T.-K.
(2016). Latent-class hough forests for 6 dof object pose estimation. arXiv preprint
arXiv:1602.01464.

[89] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing systems,
pages 1097–1105.

[90] Krull, A., Brachmann, E., Michel, F., Ying Yang, M., Gumhold, S., and Rother, C.
(2015). Learning analysis-by-synthesis for 6d pose estimation in rgb-d images. In
Proceedings of the IEEE International Conference on Computer Vision, pages 954–962.

[91] Krull, A., Michel, F., Brachmann, E., Gumhold, S., Ihrke, S., and Rother, C. (2014).
6-dof model based tracking via object coordinate regression. In Asian Conference on
Computer Vision, pages 384–399. Springer.

[92] Kwon, J. and Lee, K. M. (2010). Monocular slam with locally planar landmarks via
geometric rao-blackwellized particle filtering on lie groups. In Computer Vision and
Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 1522–1529. IEEE.

[93] Kwong, J. N. S. and Gong, S. (1999). Learning support vector machines for a multi-view
face model. In BMVC, pages 1–10. Citeseer.

[94] Laskar, Z., Melekhov, I., Kalia, S., and Kannala, J. (2017). Camera relocalization by
computing pairwise relative poses using convolutional neural network. In Proceedings of
the IEEE International Conference on Computer Vision, pages 929–938.

[95] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature, 521(7553):436.

[96] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

[97] Lepetit, V. and Fua, P. (2006). Keypoint recognition using randomized trees. IEEE
transactions on pattern analysis and machine intelligence, 28(9):1465–1479.

[98] Lepetit, V., Fua, P., et al. (2005). Monocular model-based 3d tracking of rigid objects:
A survey. Foundations and Trends® in Computer Graphics and Vision, 1(1):1–89.

[99] Lepetit, V., Moreno-Noguer, F., and Fua, P. (2009). Epnp: An accurate o (n) solution to
the pnp problem. International journal of computer vision, 81(2):155.

[100] Li, R., Wang, S., Long, Z., and Gu, D. (2018a). Undeepvo: Monocular visual odometry
through unsupervised deep learning. In 2018 IEEE International Conference on Robotics
and Automation (ICRA), pages 7286–7291. IEEE.

138 References

[101] Li, S. Z., Fu, Q., Gu, L., Scholkopf, B., Cheng, Y., and Zhang, H. (2001). Kernel
machine based learning for multi-view face detection and pose estimation. In Computer Vi-
sion, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, volume 2,
pages 674–679. IEEE.

[102] Li, X., Ylioinas, J., and Kannala, J. (2018b). Full-frame scene coordinate regression
for image-based localization. In RSS.

[103] Li, X., Ylioinas, J., Verbeek, J., and Kannala, J. (2018c). Scene coordinate regression
with angle-based reprojection loss for camera relocalization. In Proceedings of the
European Conference on Computer Vision (ECCV), pages 0–0.

[104] Li, Y., Gong, S., Sherrah, J., and Liddell, H. (2004). Support vector machine based
multi-view face detection and recognition. Image and Vision Computing, 22(5):413–427.

[105] Li, Y., Snavely, N., Huttenlocher, D., and Fua, P. (2012). Worldwide pose estimation
using 3d point clouds. In European conference on computer vision, pages 15–29. Springer.

[106] Li, Y., Snavely, N., and Huttenlocher, D. P. (2010). Location recognition using
prioritized feature matching. In European Conference on Computer Vision, pages 791–
804. Springer.

[107] Lieberknecht, S., Huber, A., Ilic, S., and Benhimane, S. (2011). Rgb-d camera-based
parallel tracking and meshing. In Mixed and Augmented Reality (ISMAR), 2011 10th
IEEE International Symposium on, pages 147–155. IEEE.

[108] Liu, L., Li, H., and Dai, Y. (2017). Efficient global 2d-3d matching for camera
localization in a large-scale 3d map. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2372–2381.

[109] Liu, T., Moore, A. W., Yang, K., and Gray, A. G. (2005). An investigation of practical
approximate nearest neighbor algorithms. In Advances in neural information processing
systems, pages 825–832.

[110] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolutional networks for
semantic segmentation. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 3431–3440.

[111] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Computer vision, 1999. The proceedings of the seventh IEEE international conference on,
volume 2, pages 1150–1157. Ieee.

[112] Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. Inter-
national journal of computer vision, 60(2):91–110.

[113] Malyavej, V., Torteeka, P., Wongkharn, S., and Wiangtong, T. (2009). Pose estimation
of unmanned ground vehicle based on dead-reckoning/gps sensor fusion by unscented
kalman filter. In Electrical Engineering/Electronics, Computer, Telecommunications
and Information Technology, 2009. ECTI-CON 2009. 6th International Conference on,
volume 1, pages 395–398. IEEE.

References 139

[114] Massa, F., Marlet, R., and Aubry, M. (2016). Crafting a multi-task cnn for viewpoint
estimation. BMVC.

[115] Massiceti, D., Krull, A., Brachmann, E., Rother, C., and Torr, P. H. (2017). Random
forests versus neural networks—what’s best for camera localization? In Robotics and
Automation (ICRA), 2017 IEEE International Conference on, pages 5118–5125. IEEE.

[116] Melekhov, I., Ylioinas, J., Kannala, J., and Rahtu, E. (2017). Image-based localization
using hourglass networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 879–886.

[117] Meng, L., Chen, J., Tung, F., Little, J. J., and de Silva, C. W. (2016). Exploiting
random rgb and sparse features for camera pose estimation. In BMVC.

[118] Meng, L., Chen, J., Tung, F., Little J., J., Valentin, J., and Silva, C. (2017). Back-
tracking regression forests for accurate camera relocalization. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2017).

[119] Meng, L., Tung, F., Little, J. J., Valentin, J., and de Silva, C. W. (2018). Exploiting
points and lines in regression forests for rgb-d camera relocalization. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 6827–6834.
IEEE.

[120] Michel, F., Krull, A., Brachmann, E., Yang, M. Y., Gumhold, S., and Rother, C. (2015).
Pose estimation of kinematic chain instances via object coordinate regression. In Proc.
British Machine Vision Conf, pages 181–1.

[121] Milgram, P., Takemura, H., Utsumi, A., and Kishino, F. (1995). Augmented reality:
A class of displays on the reality-virtuality continuum. In Telemanipulator and telepres-
ence technologies, volume 2351, pages 282–293. International Society for Optics and
Photonics.

[122] Moulon, P., Monasse, P., and Marlet, R. (2013). Global fusion of relative motions
for robust, accurate and scalable structure from motion. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3248–3255.

[123] Muja, M. and Lowe, D. G. (2009). Fast approximate nearest neighbors with automatic
algorithm configuration. VISAPP (1), 2(331-340):2.

[124] Mur-Artal, R., Montiel, J. M. M., and Tardos, J. D. (2015). Orb-slam: a versatile and
accurate monocular slam system. IEEE Transactions on Robotics, 31(5):1147–1163.

[125] Mur-Artal, R. and Tardós, J. D. (2014). Fast relocalisation and loop closing in
keyframe-based slam. In 2014 IEEE International Conference on Robotics and Automation
(ICRA), pages 846–853. IEEE.

[126] Mur-Artal, R. and Tardós, J. D. (2017). Orb-slam2: An open-source slam system for
monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5):1255–1262.

[127] Murphy-Chutorian, E., Doshi, A., and Trivedi, M. M. (2007). Head pose estimation for
driver assistance systems: A robust algorithm and experimental evaluation. In Intelligent
Transportation Systems Conference, 2007. ITSC 2007. IEEE, pages 709–714. IEEE.

140 References

[128] Naseer, T. and Burgard, W. (2017). Deep regression for monocular camera-based 6-dof
global localization in outdoor environments. In 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 1525–1530. IEEE.

[129] Newcombe, R. A., Fox, D., and Seitz, S. M. (2015). Dynamicfusion: Reconstruction
and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 343–352.

[130] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A. J.,
Kohi, P., Shotton, J., Hodges, S., and Fitzgibbon, A. (2011a). Kinectfusion: Real-time
dense surface mapping and tracking. In Mixed and augmented reality (ISMAR), 2011 10th
IEEE international symposium on, pages 127–136. IEEE.

[131] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. (2011b). Dtam: Dense tracking
and mapping in real-time. In 2011 international conference on computer vision, pages
2320–2327. IEEE.

[132] Nister, D. and Stewenius, H. (2006). Scalable recognition with a vocabulary tree. In
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’06), volume 2, pages 2161–2168. Ieee.

[133] Oliva, A. and Torralba, A. (2001). Modeling the shape of the scene: A holistic
representation of the spatial envelope. International journal of computer vision, 42(3):145–
175.

[134] Peasley, B. and Birchfield, S. (2015). Rgbd point cloud alignment using lucas–kanade
data association and automatic error metric selection. IEEE Transactions on Robotics,
31(6):1548–1554.

[135] Perronnin, F., Liu, Y., Sánchez, J., and Poirier, H. (2010). Large-scale image retrieval
with compressed fisher vectors. In 2010 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 3384–3391. IEEE.

[136] Pollefeys, M., Van Gool, L., Vergauwen, M., Verbiest, F., Cornelis, K., Tops, J., and
Koch, R. (2004). Visual modeling with a hand-held camera. International Journal of
Computer Vision, 59(3):207–232.

[137] Pupilli, M. and Calway, A. (2005). Real-time camera tracking using a particle filter.
In BMVC.

[138] Quan, L. and Lan, Z. (1999). Linear n-point camera pose determination. IEEE
Transactions on pattern analysis and machine intelligence, 21(8):774–780.

[139] Radwan, N., Valada, A., and Burgard, W. (2018). Vlocnet++: Deep multitask learning
for semantic visual localization and odometry. IEEE Robotics and Automation Letters,
3(4):4407–4414.

[140] Rasmussen, C. E. (2003). Gaussian processes in machine learning. In Summer School
on Machine Learning, pages 63–71. Springer.

References 141

[141] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: Towards real-time
object detection with region proposal networks. In Advances in neural information
processing systems, pages 91–99.

[142] Riazuelo, L., Montano, L., and Montiel, J. (2017). Semantic visual slam in populated
environments. In 2017 European Conference on Mobile Robots (ECMR), pages 1–7.
IEEE.

[143] Rosten, E. and Drummond, T. (2006). Machine learning for high-speed corner
detection. In European conference on computer vision, pages 430–443. Springer.

[144] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. R. (2011). Orb: An efficient
alternative to sift or surf. In ICCV, page 2. Citeseer.

[145] Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations
by back-propagating errors. Cognitive modeling, 5(3):1.

[146] Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the icp algorithm. In
3dim, volume 1, pages 145–152.

[147] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z.,
Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet large scale visual
recognition challenge. International journal of computer vision, 115(3):211–252.

[148] Sattler, T., Havlena, M., Radenovic, F., Schindler, K., and Pollefeys, M. (2015).
Hyperpoints and fine vocabularies for large-scale location recognition. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2102–2110.

[149] Sattler, T., Leibe, B., and Kobbelt, L. (2011). Fast image-based localization using
direct 2d-to-3d matching. In 2011 International Conference on Computer Vision, pages
667–674. IEEE.

[150] Sattler, T., Leibe, B., and Kobbelt, L. (2012). Improving image-based localization
by active correspondence search. In European conference on computer vision, pages
752–765. Springer.

[151] Sattler, T., Leibe, B., and Kobbelt, L. (2017). Efficient & effective prioritized matching
for large-scale image-based localization. IEEE transactions on pattern analysis and
machine intelligence, 39(9):1744–1756.

[152] Schmalstieg, D. and Hollerer, T. (2016). Augmented reality: principles and practice.
Addison-Wesley Professional.

[153] Schwarz, M., Schulz, H., and Behnke, S. (2015). Rgb-d object recognition and pose
estimation based on pre-trained convolutional neural network features. In Robotics and
Automation (ICRA), 2015 IEEE International Conference on, pages 1329–1335. IEEE.

[154] Seemann, E., Nickel, K., and Stiefelhagen, R. (2004). Head pose estimation using
stereo vision for human-robot interaction. In Automatic Face and Gesture Recognition,
2004. Proceedings. Sixth IEEE International Conference on, pages 626–631. IEEE.

142 References

[155] Sharif Razavian, A., Sullivan, J., Maki, A., and Carlsson, S. (2015). A baseline for
visual instance retrieval with deep convolutional networks. In International Conference
on Learning Representations, May 7-9, 2015, San Diego, CA. ICLR.

[156] Shotton, J., Glocker, B., Zach, C., Izadi, S., Criminisi, A., and Fitzgibbon, A. (2013a).
Scene coordinate regression forests for camera relocalization in rgb-d images. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2930–2937.

[157] Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook,
M., and Moore, R. (2013b). Real-time human pose recognition in parts from single depth
images. Communications of the ACM, 56(1):116–124.

[158] Silpa-Anan, C. and Hartley, R. (2008). Optimised kd-trees for fast image descriptor
matching. In 2008 IEEE Conference on Computer Vision and Pattern Recognition, pages
1–8. IEEE.

[159] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for
large-scale image recognition. In International Conference on Learning Representations.

[160] Sivic, J. and Zisserman, A. (2003). Video google: A text retrieval approach to object
matching in videos. In null, page 1470. IEEE.

[161] Snavely, N., Seitz, S. M., and Szeliski, R. (2006). Photo tourism: exploring photo
collections in 3d. In ACM transactions on graphics (TOG), volume 25, pages 835–846.
ACM.

[162] Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Modeling the world from internet
photo collections. International Journal of Computer Vision, 80(2):189–210.

[163] Sturm, P. F. and Maybank, S. J. (1999). On plane-based camera calibration: A general
algorithm, singularities, applications. In Proceedings. 1999 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), volume 1,
pages 432–437. IEEE.

[164] Su, H., Qi, C. R., Li, Y., and Guibas, L. J. (2015). Render for cnn: Viewpoint
estimation in images using cnns trained with rendered 3d model views. In Proceedings of
the IEEE International Conference on Computer Vision, pages 2686–2694.

[165] Sun, Y., Liu, M., and Meng, M. Q.-H. (2017). Improving rgb-d slam in dynamic
environments: A motion removal approach. Robotics and Autonomous Systems, 89:110–
122.

[166] Svärm, L., Enqvist, O., Kahl, F., and Oskarsson, M. (2017). City-scale localization
for cameras with known vertical direction. IEEE transactions on pattern analysis and
machine intelligence, 39(7):1455–1461.

[167] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1–9.

References 143

[168] Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., and
Torii, A. (2018). Inloc: Indoor visual localization with dense matching and view synthesis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 7199–7209.

[169] Tan, W., Liu, H., Dong, Z., Zhang, G., and Bao, H. (2013). Robust monocular
slam in dynamic environments. In Mixed and Augmented Reality (ISMAR), 2013 IEEE
International Symposium on, pages 209–218. IEEE.

[170] Tateno, K., Tombari, F., Laina, I., and Navab, N. (2017). Cnn-slam: Real-time dense
monocular slam with learned depth prediction. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[171] Torii, A., Arandjelovic, R., Sivic, J., Okutomi, M., and Pajdla, T. (2015). 24/7 place
recognition by view synthesis. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1808–1817.

[172] Toshev, A. and Szegedy, C. (2014). Deeppose: Human pose estimation via deep
neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 1653–1660.

[173] Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon, A. W. (1999). Bundle
adjustment—a modern synthesis. In International workshop on vision algorithms, pages
298–372. Springer.

[174] Tsai, R. Y. and Lenz, R. K. (1988). Real time versatile robotics hand/eye calibration
using 3d machine vision. In Robotics and Automation, 1988. Proceedings., 1988 IEEE
International Conference on, pages 554–561. IEEE.

[175] Valada, A., Radwan, N., and Burgard, W. (2018). Deep auxiliary learning for visual
localization and odometry. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6939–6946. IEEE.

[176] Valentin, J., Nießner, M., Shotton, J., Fitzgibbon, A., Izadi, S., and Torr, P. H. (2015).
Exploiting uncertainty in regression forests for accurate camera relocalization. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
4400–4408.

[177] Walch, F., Hazirbas, C., Leal-Taixe, L., Sattler, T., Hilsenbeck, S., and Cremers, D.
(2017). Image-based localization using lstms for structured feature correlation. In The
IEEE International Conference on Computer Vision (ICCV).

[178] Wangsiripitak, S. and Murray, D. W. (2009). Avoiding moving outliers in visual slam
by tracking moving objects. In ICRA, volume 2, page 7.

[179] Wasenmüller, O., Meyer, M., and Stricker, D. (2016). Corbs: Comprehensive rgb-d
benchmark for slam using kinect v2. In Applications of Computer Vision (WACV), 2016
IEEE Winter Conference on, pages 1–7. IEEE.

[180] Weyand, T., Kostrikov, I., and Philbin, J. (2016). Planet-photo geolocation with
convolutional neural networks. In European Conference on Computer Vision, pages
37–55. Springer.

144 References

[181] Whelan, K. F., Kaess, M., Fallon, M. F., Johannsson, H., Leonard, J. J., and McDonald,
J. (2012). Kintinuous: Spatially extended kinectfusion. In AAAI 2012.

[182] Whelan, T., Leutenegger, S., Salas-Moreno, R. F., Glocker, B., and Davison, A. J.
(2015). Elasticfusion: Dense slam without a pose graph. In Robotics: science and systems,
volume 11.

[183] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J., and Leutenegger, S.
(2016). Elasticfusion: Real-time dense slam and light source estimation. The International
Journal of Robotics Research, page 0278364916669237.

[184] Wilson, K. and Snavely, N. (2014). Robust global translations with 1dsfm. In European
Conference on Computer Vision, pages 61–75. Springer.

[185] Wohlhart, P. and Lepetit, V. (2015). Learning descriptors for object recognition and 3d
pose estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 3109–3118.

[186] Wu, C. (2013). Towards linear-time incremental structure from motion. In 3DTV-
Conference, 2013 International Conference on, pages 127–134. IEEE.

[187] Wu, J., Ma, L., and Hu, X. (2017). Delving deeper into convolutional neural networks
for camera relocalization. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 5644–5651. IEEE.

[188] You, S. and Neumann, U. (2001). Fusion of vision and gyro tracking for robust
augmented reality registration. In Proceedings IEEE Virtual Reality 2001, pages 71–78.
IEEE.

[189] Yun, Y., Changrampadi, M. H., and Gu, I. Y. (2014). Head pose classification by
multi-class adaboost with fusion of rgb and depth images. In Signal Processing and
Integrated Networks (SPIN), 2014 International Conference on, pages 174–177. IEEE.

[190] Zeisl, B., Sattler, T., and Pollefeys, M. (2015). Camera pose voting for large-scale
image-based localization. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2704–2712.

[191] Zhang, P., Gu, J., Milios, E. E., and Huynh, P. (2005). Navigation with imu/gps/digital
compass with unscented kalman filter. In Mechatronics and Automation, 2005 IEEE
International Conference, volume 3, pages 1497–1502. IEEE.

[192] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions
on pattern analysis and machine intelligence, 22.

[193] Zhou, G., Bescos, B., Dymczyk, M., Pfeiffer, M., Neira, J., and Siegwart, R. (2018).
Dynamic objects segmentation for visual localization in urban environments. arXiv
preprint arXiv:1807.02996.

References 145

Title : Hybrid Machine Learning and Geometric Approaches for Single RGB Camera Relocalization

Keywords: Camera relocalization; Deep learning; Random forest; Hybrid method; Scene coordinate.

Abstract:
In the last few years, image-based camera
relocalization becomes an important issue of
computer vision applied to augmented reality, robotics
as well as autonomous vehicles.
Camera relocalization refers to the problematic of the
camera pose estimation including both 3D translation
and 3D rotation.
In localization systems, camera relocalization
component is necessary to retrieve camera pose after
tracking lost, rather than restarting the localization
from scratch. However, the classical existing camera
relocalization methods store a large set of keypoints
or keyframes to relocalize camera based geometric
information. Consequently, memory usage as well as
processing time rise with respect to the size of the
models. Accordingly, machine learning approaches
have been developed to tackle these constraints.
Nevertheless, the limitations of machine learning
approaches lie in their time-consuming training
process, moderate accuracy and lack of confidence
score in the estimation of each pose. Recently, hybrid
methods increase considerably the accuracy. Yet,
they still take more time to optimize camera pose from
thousands of correspondences. Moreover, all these
machine learning based methods still fail to challenge
dynamic scenes with moving objects.

Given those pros and cons, this thesis aims at
improving the performance of camera relocalization
in terms of both runtime and accuracy as well as
handling challenges of camera relocalization in
dynamic environments.
We present camera pose estimation based on
combining multi-patch pose regression to overcome
the uncertainty of end-to-end deep learning methods.
To balance between accuracy and computational
time of camera relocalization from a single RGB
image, we propose a sparse feature hybrid methods.
A better prediction in the machine learning part of
our methods leads to a rapid inference of camera
pose in the geometric part.
To tackle the challenge of dynamic environments, we
propose an adaptive regression forest algorithm that
adapts itself in real time to predictive model. It
evolves by part over time without requirement of re-
training the whole model from scratch. When
applying this algorithm to our real-time and accurate
camera relocalization, we can cope with dynamic
environments, especially moving objects.
The experiments proves the efficiency of our
proposed methods. Our method achieves results as
accurate as the best state-of-the-art methods on the
rigid scenes dataset. Moreover, we also obtain high
accuracy even on the dynamic scenes dataset.

	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Context
	1.2 Visual Camera relocalization
	1.3 Challenges
	1.4 Contributions
	1.5 Thesis Outline

	2 Camera Relocalization - state-of-the-art
	2.1 Introduction
	2.2 Geometric approach
	2.2.1 Theory of camera pose estimation
	2.2.2 Point correspondences matching based methods

	2.3 Machine learning approach
	2.3.1 Machine learning theory for pose estimation
	2.3.2 Camera pose regression

	2.4 Image retrieval approach
	2.4.1 Nearest images retrieval
	2.4.2 Camera pose estimation

	2.5 Hybrid approach
	2.5.1 Sparse random forest based methods
	2.5.2 Dense deep learning based methods

	2.6 Camera relocalization datasets
	2.6.1 Datasets
	2.6.2 Metrics

	2.7 Conclusion

	3 Balance between Accuracy and Runtime for Camera Relocalization
	3.1 Introduction
	3.2 Camera pose regression based on local patches
	3.2.1 Multi-output camera pose regression
	3.2.2 Experiments

	3.3 3D world coordinates learning based on local patches
	3.3.1 Patch extraction and labelling
	3.3.2 xyzNet for 3D world coordinates regression
	3.3.3 Camera pose calculation
	3.3.4 Experiments

	3.4 Efficient multi-output world coordinate prediction
	3.4.1 Accurate sparse feature regression forest learning
	3.4.2 Hand-crafted descriptor versus learned descriptor
	3.4.3 Experiments

	3.5 Conclusion

	4 Camera Relocalization in Dynamic Environment
	4.1 Introduction
	4.2 Adaptive Regression Forest
	4.2.1 Regression Forest pipeline
	4.2.2 Limitations of Regression Forest
	4.2.3 Methodology

	4.3 ARF applied to camera relocalization in dynamic environments
	4.3.1 Initial training
	4.3.2 Camera pose estimation
	4.3.3 Online adaptive regression forest update

	4.4 Experiments
	4.4.1 ARF versus RF
	4.4.2 Comparison to state-of-the-art methods

	4.5 Conclusion

	5 Conclusions and Perspectives
	5.1 Conclusions
	5.2 Limitations and future works

	Résumé en français
	Publications
	Appendix A Smart AR Toolbox [Instant LeARning]
	References

