

THESE DE L'UNIVERSITE DE LYON

Délivrée par

L'UNIVERSITE CLAUDE BERNARD LYON 1 / INSTITUT DES HAUTES ETUDES COMMERCIALES DE CARTHAGE

ECOLE DOCTORALE L'ECOLE DOCTORALE SCIENCES ECONOMIQUES ET DE GESTION DE L'UNIVERSITE DE LYON / ECOLE DOCTORALE EN GESTION DE L'IHEC CARTHAGE

DIPLOME DE DOCTORAT

(arrêté du 7 août 2006) EN SCIENCES DE GESTION

Soutenue publiquement le 23 novembre 2012

par

Mr KEFFALA Mohamed Rochdi

TITRE :

RISK AND PERFORMANCE OF DERIVATIVE USERS: EVIDENCE FROM BANKS IN EMERGING AND RECENTLY DEVELOPED COUNTRIES

Directeur de thèse / Directrice de Thèse : DE PERETTI Christian / BEN OUDA Olfa

JURY : Mr GANNOUN Ali Mme SIANI DE PERETTI Carole Mr VIVIANI Jean Laurent. Mme GANA Marjène

Acknowledgements

My first acknowledgments go to God for blessing me to finish this thesis. My great acknowledgments go to my parents for their sustained supports, encouragements, sacrifices and prayers for me.

My special acknowledgements go to my fiancée Ghada Said for her continuous moral and emotional support particularly during my difficult moments.

"Brother, thank you very much for your encouragement and in particular your financing support".

My thanks go to my sister for being so close to my parents when I was in France.

I would like to thank my first supervisor Olfa Benouda for her scientific and administrative assistance during the course of the thesis and especially before and during the thesis defense.

It is a pleasure to thank very much my second supervisor Christian de Peretti by saying: "Christian, I could not have wished a better supervisor".

I gratefully acknowledge Chia-Ying Chan for providing data to accomplish this thesis.

Ultimately, I would like to express my gratitude for all those who made this thesis possible.

2

RESUME en français

Cette thèse utilise des données trimestrielles et annuelles sur les cours boursiers étalant sur la période 2003-2009, ainsi que des données comptables annuelles couvrant la période 2003-2010 issues des banques de pays émergents et récemment développés. Elle a pour objectif principal d'étudier empiriquement l'effet de l'utilisation des instruments de dérivés (forwards, swaps, options et futures) sur à la fois le risque et la performance bancaires. Les majeurs résultats dévoilent qu'à l'exception des options les autres instruments de dérivés diminuent le risque bancaire. Ainsi, il n'y a pas une preuve qui atteste de l'implication des instruments de dérivés dans la faillite et la détresse des banques. Aussi, les résultats montrent qu'en général l'utilisation des instruments de dérivés réduit la performance bancaire. D'où, la théorie qui défend que l'utilisation des instruments de dérivés est bénéfique pour les banques devrait être révisée. Enfin, les résultats de l'analyse comparative révèlent que l'effet de l'utilisation des dérivés sur le risque et la performance est presque le même que ce soit dans le cas de banques de pays émergents ou récemment développés. En définitive, l'actuelle controverse concernant la responsabilité des instruments de dérivés dans le déclenchement des récentes crises financières devrait être corrigée.

TITRE en anglais

Risk and Performance of Derivatives Users: Evidence from Banks in Emerging and Recently Developed Countries

RESUME en anglais

This thesis uses quarterly and annual data on capital market prices covering the period 2003-2009 additionally to annual accounting data during the period 2003-2010 of banks in both emerging and recently developed countries. The purpose of the thesis is to investigate empirically the effect of using derivative instruments (forwards, swaps, options and futures) on bank risk and performance. Main results reveal that in except to options the other derivative types decrease bank risk. Thus, there is no proof that derivatives can be the cause of bank failure or distress. In addition, results show that using derivatives in the whole diminish bank performance. Indeed, adjudication that derivatives are beneficial is not allowed. Finally, comparing results expose that the effect of derivatives on bank risk and performance is almost the same either in banks from emerging or recently developed countries. Ultimately, the ongoing debate on implication of derivatives in the recent financial crises should be revised.

DISCIPLINE

Sciences de gestion

MOTS-CLES

Produits dérivés, risque bancaire, performance bancaire, pays émergents, pays récemment développés

INTITULE ET ADRESSE DE L'U.F.R. OU DU LABORATOIRE : 50 avenue Tony Garnier, ISFA 69366 Lyon

Table of contents

INTRODUCTION	9
Part I. Derivative Instruments Use and Bank Risk	14
Chapter I.1. Effect of derivative instruments use on capital market risk	15
Section I.1.1. Derivative activities and bank risk: Literature review	15
I.1.1.1. Theoretical literature review and results	15
I.1.1.2. Empirical literature review	17
Section I.1.2. Effect of derivative instruments use on capital market risk: Empiranalysis	
I.1.2.1. Data, sample and methodology	21
I.1.2.1.A. Data	21
I.1.2.1.B. Sample	22
I.1.2.1.B.a. Sample description	22
I.1.2.1.B.b. Sample statistics	25
I.1.2.1.C. Methodology	28
I.1.2.1.C.a. Variables description	28
I.1.2.1.C.b. Testing hypotheses and expected results	30
I.1.2.1.C.c. Empirical model	31
I.1.2.1.C.d. Specification tests	31
I.1.2.2. Empirical results	32
I.1.2.2.A. Descriptive statistics	32
I.1.2.2.B. Regression analysis	32
I.1.2.2.C. Specification tests results	33
I.1.2.3. Summaries and discussions	41
Chapter I.2. Effect of derivative instruments use on accounting risk	44
Section I.2.1. Effect of derivative instruments use on accounting risk: Empirical	
analysis	
I.2.1.1. Data, sample and methodology	
I.2.1.1.A. Data	
I.2.1.1.B. Sample	
I.2.1.1.B.a. Sample description	
I.2.1.1.B.b. Sample statistics	
I.2.1.1.C. Methodology	
I.2.1.1.C.a. Variables description	
I.2.1.1.C.b. Testing hypotheses and expected results	56

I.2.1.1.C.c. Empirical model	
I.2.1.1.C.d. Specification tests	
I.2.1.2. Empirical results	
I.2.1.2.A. Descriptive statistics	57
I.2.1.2.B. Regression analysis	59
I.2.1.2.C. Specification tests results	64
I.2.1.3. Summaries and discussions	70
PART II. DERIVATIVE INSTRUMENTS USE AND BANK PERFORMANC	E74
Chapter II.1. Effect of derivative instruments on stock return performance	75
Section II.1.1. Derivative activities and performance: Literature review	75
II.1.1.1. Theoretical literature review and results	75
II.1.1.2. Empirical literature review	78
Section II.1.2. Effect of derivative instruments use on stock returns: Empirical analysis	80
II.1.2.1. Data, sample and methodology	80
II.1.2.1.A. Data	80
II.1.2.1.B. Sample	80
II.1.2.1.B.a. Sample description	80
II.1.2.1.B.b. Sample statistics	82
II.1.2.1.C. Methodology	84
II.1.2.1.C.a. Variables description	84
II.1.2.1.C.b. Testing hypotheses and expected results	86
II.1.2.1.C.c. Empirical model	87
II.1.2.1.C.d. Specification tests	87
II.1.2.2. Empirical results	88
II.1.2.2.A. Descriptive statistics	88
II.1.2.2.B. Regression analysis	88
II.1.2.2.C. Specification tests results	90
II.1.2.3. Summaries and Discussion	94
Chapter II.2. Effect of derivative instruments use on accounting performance	95
Section II.2.1. Effect of derivative instruments use on accounting performance: Empirical analysis	95
II.2.1.1. Data, sample and methodology	
II.2.1.1.A. Data	
II.2.1.1.B. Sample	95
II.2.1.1.C. Methodology	
II.2.1.1.C.a. Description of variables	95

II.2.1.1.C.b. Testing hypotheses and expected results	98
II.2.1.1.C.c. Empirical model	98
II.2.1.1.C.d. Specification tests	99
II.2.1.2. Empirical results	99
II.2.1.2.A. Descriptive statistics	99
II.2.1.2.B. Regression analysis	101
II.2.1.2.C. Specification tests results	
II.2.1.3. Summaries and Discussion	119
CONCLUSION	126
BIBLIOGRAPHY	132
Appendix I.	135
Appendix II.a.	
Appendix II.b.	
Appendix II.c.	
Appendix III	
Appendix IV.a.	
Appendix IV.b	
Appendix IV.c	
Appendix V. Ramsey-Reset Tests	
Appendix V.a.	
Appendix V.b.	
Appendix V.c.	
Appendix V.d.	
Appendix VI. Hausman Tests	
Appendix VI.a.	
Appendix VI.b	
Appendix VI.c.	
Appendix VI.d.	
rpponent i neuronalitatione internationalitatione internatione interna	
Table 1	22
Table 2	24
Table 3	25
Table 4	
Table 5	
Table 6	
Table 7	
Table 8	
Table 9	
Table 10	
Table 11	

Table 12	 7
Table 13	 8
Table 14	 9
Table 15	 9
Table 16	 0
Table 17	 0
Table 18	 2
Table 19	 5
Table 20	 8
Table 21	 9
Table 22	 0
Table 23	 1
Table 24	 5
Table 25	 8
Table 26	 9
Table 27	 4
Table 28	 6
Table 29	 6
Table 30	 6
Table 31	 7
Table 32	 7
Table 33	 8
Table 34	 8
Table 35	 9
Table 36	 9
Table 37	 1
Table 38	 0
Table 39	 1
Table 40	 2
Table 41	 3
Table 42	 5
Table 43	 8
Table 44	 9
Table 45	 1
Table 47	 3
	 υ

Table 62	
Table 63	
Table 64	
Table 65	
Table 66	
Table 67	
Figure 1	
Figure 2	
Figure 3	
Figure 4	65
Figure 5	
Figure 5 Figure 6	

INTRODUCTION

The recent financial liberalization policies have changed the business environment of the banking industry considerably and thereby increasing the risk they faced. Banks were directly affected because they were direct targets of the liberalization process. This phenomena stressed by globalization have paved the way to banks especially from emerging markets to enter to new profitable markets such as those of derivatives.

Derivatives are financial agreements generally in the form of forwards, swaps, options and futures, whose worth is based on the value of other fundamental financial assets such as stocks, bonds, mortgages, commodities, and foreign exchange.

Banks are motivated to use these innovations in order to protect against risk and uncertainty of the financial market, and also to generate revenue beyond that available from traditional bank operations.

Indeed, such benefits of derivative instruments explain the widespread use and the rapid growth of derivative transactions in the recent decades.

During this last decade, there is a constant increase of futures trading value in <u>Korea</u> <u>Exchange</u>. Futures value has jumped from 766,843.64 in 2000 to 9739285.19 million USD in 2011.

In <u>Turkish Derivatives Exchange</u> futures trading value has grown regularly during the last seven years going from 1,727.08 in 2005 to 248,000.85 million USD in 2011.

During the last five years, the volume of futures (SET 50 Index Futures) in <u>The Stock</u> <u>Exchange of Thailand</u> has augmented from 198,737 in 2006 to 4316,437 in 2011.

The number of daily contracts option traded in <u>Russian Stock Exchange</u> have jumped from 2,260 on 31st of December 2004 to 145,993 contracts on 30th of June 2011.

During the period between 1996 and 2011 there is an increase in the volume of option contracts traded in <u>Tel-Aviv Stock Exchange</u>. TA-25 Options and Dollar Options have increased in volume respectively from 23,537 and 2,299 in 1996 to 357,251 and 43,055 in 2011.

Options contract volume traded on the <u>Hong Kong Exchange</u> has augmented continuously from 295,217 in 1993 to 89,751,477 in 2011.

In another hand, during last decades many financial crises have happened (Mexican crisis 1994, Southeast-Asian crisis 1997, Russian crisis 1998, American subprime crisis 2007-2008) causing failure of banks (Lehman Brothers; Merrill Lynch) and big losses in many banks around the world (Northern Rock, Goldman Sachs, HSBC, Fortis, Société Générale, ...). More specifically, emerging countries are the most affected by the recent financial crisis because of the fragility of their financial system and the higher likelihood of their banks to fail comparing to advanced countries.

At that time, the rapid development and prevalence of derivative markets is happened together with this global instability of financial systems.

This statement has fuelled the ongoing debate about the implication of derivatives in the recent financial crises. Checking this argument is among the purposes of this work.

Regarding literature on derivatives, much has been written on the pricing of financial derivatives (Jarrow and Turnbull, 1995; Duffee, 1996; Pierides, 1997; Houweling and Vorst, 2005), but not that much has been done on the economic reasons, costs, benefits and impact of their use. This is quite surprising given the economic importance of these instruments: the world's aggregate position in derivatives has experienced a significant increase, and its growth does not seem to have stopped yet. It is therefore crucial to analyze and understand the use of derivatives in the economy. This work intends to fill this gap by analyzing the impact of derivative instruments use on bank risk and performance.

Literature on relationship between derivatives and risk is not large. Some papers such as Hirtle (1996) studies the correlation between derivatives use and bank risk. Overall, literature results (Chaudhry et al., 2000; Reichert and Shyu, 2003) show that swaps reduce bank risk, however options increase bank risk, and finally futures and forwards have no effect on bank risk.

On the other hand, little number of papers like Said (2011) examines the association between derivatives use and bank performance. Literature results show on the whole an increase of bank performance by derivatives use. Nonetheless, the review of literature show that the majority of papers studying the effect of derivatives use on bank risk (Hirtle, 1996; Instefjord, 2005) and bank performance (Brewer et al., 2001; Rivas et al., 2006) have not identified types of derivatives (e.g. forwards, options, swaps, futures).

Hence, the current work tries to complete the literature by focusing on instruments of derivatives one by one.

On the other hand, despite the few number of works that examines the effect of derivatives use on bank risk and performance, most of them focuses only on advanced countries (Chaudhry et al., 2000; Reichert and Shyu, 2003; Said 2011). Nevertheless, few papers choose sample from emerging countries (Rivas et al. 2006; Yong et al. 2009).

Thus the thesis tries to fill this gap in the literature by focusing especially on banks from emerging countries.

It should be note also that during few years ago, countries such as Cyprus, Israel, and Taiwan were considered as emerging countries but nowadays they are labeled as developed countries by <u>United Nations Office</u>. However, regarding their actual economic power and standard of living such countries cannot be defined as advanced countries like U.S.A., Western European counties or Japan but still close to emerging countries specifications.

Indeed, it is useful to introduce banks from such countries to especially resolve the problem of the lack of data on banks from emerging countries and then enlarge more the overall sample and also make benchmarking between the two groups of banks.

In the rest of this work these countries are labeled "recently developed countries" in order to distinguish between them and the advanced countries (North American countries; Eastern European countries; Japan).

Hence, this thesis includes also banks from recently developed countries in the sample study which is another contribution compared to the literature.

The thesis is composed of two large parts. The first part studies the relationship between derivatives and bank risk. The second part investigates the relationship between derivatives and bank performance.

The two parts in this thesis try to answer some fundamental questions:

Are banks at risk by using derivative instruments? Are banks increasing their performance by using derivatives? Are there differences in derivatives usage effect on risk and/or performance between banks in emerging countries and those in recently developed countries? Can derivatives be considered as responsible of the last financial crisis?

The two essays contained in this work intend to give answers to these basic questions from different perspectives.

The present work contributes to the literature in several ways – most notably regarding the lack of papers studying empirically the effect of derivatives use on bank risk and performance, this thesis attends to fill this lack in the literature.

On other hand, the thesis tries to complete the literature by studying separately the effect of each derivative type on bank risk and performance.

Lastly, in opposite to the most of the previous studies focusing only on banks from advanced countries and particularly from U.S.A., the current work will be the pioneer to combine and compare banks from both emerging and recently developed countries.

The purpose of the thesis is to explore on the one hand the relationship between derivative instruments use and bank risk defined by both stock market and accounting measures, and on the other hand to investigate the relationship between derivative instruments use and bank performance defined by stock return and accounting measures.

The major goals of the current work is to check whether banks are at risk or not by using derivative instruments, and to verify whether banks increase or decrease their performance by using such innovations.

Therefore, reaching these goals allows checking the argument about implication of derivatives in the last financial crises.

In the first part, two chapters are defined. The first chapter analyzes the impact of the use of derivatives on capital market risk measures which are: total return risk, systematic risk and unsystematic risk. In this chapter we have not separated between banks issuing from emerging countries and those from recently developed countries

because the overall sample is not so large. The final results indicate that despite of options, the other instruments decrease bank risk.

In the second chapter, the effect of derivative instruments use on accounting risk is examined. Accounting risk measures are defined by return on assets ratio, return on equity ratio, non-performing loans ratio, coverage ratio, capital adequacy ratio, efficiency ratio and net interest margin ratio. The final findings show that forwards and swaps decrease accounting risk, options increase accounting risk and futures contribute minimally to accounting risk. Finally, comparing results between the two subsamples reveal a similar effect of forwards and swaps, but also a contradictory effect of options and futures on accounting risks.

The main conclusion in the first part of the thesis shows that banks in the sample do not appear to be at risk by using derivative instruments.

The second part is composed also of two chapters. The first chapter looks into the association between derivatives usage and financial bank performance measured by stock return. The results show that the use of swaps decreases performance while forwards, options and futures have no effect on performance.

In the second chapter the relationship between derivative instruments use and accounting bank performance is investigated. In the whole, findings indicate that generally the four derivative instruments reduce bank performance. Comparing results provide evidence that the use of options decrease performance in the two subsamples.

Deducing results from the second part of the thesis divulge that contrary to the most of previous studies the use of derivatives decreases bank performance.

In summary, main conclusions from the thesis reveal that despite a decrease of performance, banks seem to not increase their risk by using derivatives.

The reminder of the thesis is defined by two parts and conclusion. Each part is composed of two chapters. In turn each chapter is commonly planned as follows: the first section presents a literature review and the second section exposes empirical analysis.

PART I. DERIVATIVE INSTRUMENTS USE AND BANK RISK

The rapid development and increase of derivative instruments use around the world in the two last decades, in addition to the global instability of banks following the recent financial crisis, has fuelled the ongoing debate over the question of risk in terms of derivative instruments. More specifically, the controversy focuses on the question of derivatives either reducing or exacerbating risk in banks and other financial institutions.

An overview of the literature shows that few studies have specifically analysed the effect of derivative instruments use on bank risk. Focusing on banks from developed countries both Chaudhry et al. (2000) and Reichert and Shyu (2003) find that, in general, options increase bank risk while swaps decrease bank risk, and finally forwards and futures have no significant effect on bank risk. Furthermore, samples in the literature are composed essentially of banks from developed countries and especially from U.S.A..

Thus, the purpose of this first part of the thesis is to examine whether the use of derivative instruments affects the risk of banks focusing in particularly of banks from emerging countries.

In order to reach this goal two chapters are conducted. The first chapter examines the relationship between derivative instruments use and capital market risk. The second chapter analyses the association between derivative instruments use and accounting risk.

Chapter I.1. Effect of derivative instruments use on capital market risk

In this chapter the impact of derivative instruments use on capital market risk is explored.

Derivative instruments are defined by forwards, swaps, options and futures. Capital market risk measures are total return risk, systematic risk and unsystematic risk. The major goal is to check if banks in the sample are at risk by using derivative instruments.

To attend this end two sections are carried out. The first section describes an overview of literature. The second section tests empirically the association between derivative instruments and capital market risk.

Section I.1.1. Derivative activities and bank risk: Literature review

I.1.1.1. Theoretical literature review and results

Corporate literature examining the effect of derivatives use on firms risk is defined by limited number of papers.

Bali et al. (2004) find no significant effect of credit derivatives used by Canadian firms on interest rate exposure. In contrast, using large sample of nonfinancial firms from 47 countries Bartram et al. (2006) conclude that the use of credit derivatives decreases both the total risk and the systematic risk of firms. Similarly, te results of Chung (2002) show that the use of derivatives decreases corporate risk. Moreover, comparing to non-users of derivatives Hentschel and Kothari (2001) deduce that derivative users have less risk in US context. Furthermore, the results of Nguyen and Faff (2003) indicate that currency derivatives reduce the exchange risk of Australian firms. Though, more recently Clark and Mefteh (2010) find that the relationship between foreign currency derivatives used by French firms and foreign currency exposure is limited. As in corporate literature, the literature concerning the effects of derivatives on bank risk is also restricted.

This literature can be regrouped in two groups. The first group of studies focuses on derivative instruments one by one.

Shanker (1996) deduce that the use of swaps, futures, and options by US banks reduce interest-rate risk.

Basing on US banks also Choi and Elyasiani (1996) find that options were positively related to both interest-rate and currency risk, and also currency swaps reduced exchange rate risk. Likewise, the results of McAnally (1996) reveal also that the use of interest rate and currency swaps by U.S. holding banks is negatively correlated with market risk.

The study undertaken by Chaudhry et al. (2000) on US commercial banks indicates that the use of options tended to increase all types of bank risk for U.S. banks. However, in contrast, the same study not only find that swaps had a negative effect on bank risk, but also, the effect of forwards on bank risk was insignificant. Furthermore, Reichert and Shyu (2003) conclude that the use of options increased the interest rate beta for all US, European and Japanese banks, while both interest rate and currency swaps generally reduced risk.

The second group of papers has not focused on derivative instruments separately but they studied derivatives in the whole.

Using 99 U.S. bank holding companies Venkatachalam (1996) find that banks, on average, are reducing their risk exposures using derivatives.

In contrast, the findings of Hirtle (1996) show that the use of interest-rate derivatives increases the interest-rate exposure of US bank holding companies.

Comparing to nonusers, Sinkey and Carter (2000) deduce that U.S. bank users of derivatives are associated with riskier capital structure.

Focusing on U.S. banks too, Carter and Sinkey (1998) find that increase in the bank's use of interest-rate derivatives corresponds to greater interest rate risk exposure.

Additionally, the results of Instefjord (2005) expose that credit derivatives increased bank risk in England. Similarly, but in Canadian context, the results of Attig and Dai (2009) indicate that banks increase their risks with trading in derivatives. Finally, Yong et al. (2009) find that the use of derivative activities increased long-

term interest rate exposure and decreased short-term interest rate exposure of Asia-Pacific banks.

I.1.1.2. Empirical literature review

Before presenting the methodology of the study a summary of conceptual framework used by the literature is exposed below.

In the paper of Hirtle (1996) the foundation of the empirical analysis is a series of annual market model regressions relating the return on a bank holding company's common stock to the return on the market and a term designed to capture changes in interest rates.

The data used in these regressions consist of weekly stock return data for 139 BHCs whose stock traded publicly at some point during the period 1986 to 1994.

The market model regressions were estimated annually between 1986 and 1994 for each BHC whose stock traded publicly for at least 30 weeks in a given year.

The main research question of the study of Instefjord (2005) was to know if the development of the market for credit derivative securities a destabilizing effect on the banking sector. He argued that the key finding is that a financial innovation in the credit derivatives market may increase bank risk, particularly those that operate in highly elastic credit market segments. He added that credit derivatives trading is, therefore, a potential threat to bank stability even if banks use these instruments solely to hedge or securitize their credit exposures. He considered a bank with a given capital stock which is employed in a risky credit market. The credit market is modelled as a risky asset whose value evolves according to the geometric Brownian motion. Finally, the credit derivatives market consists of a portfolio of credit derivative securities which satisfies the geometric Brownian motion.

In their analysis Attig and Dai (2009) investigate the impact of the use of derivatives on bank risk. To this end they estimate cross-sectional and time-series model over the period 1997-2007 to regress major Canadian bank's implied volatility of assets on bank's intent of using derivatives both for trading and hedging and on other control variables. All regressions are estimated with standard errors corrected for heteroscedasticity and with year indicator variables. The dependent variable is the extracted risk of bank assets. As for independent variables, Trading Intensity is the notional amount of derivatives used for trading purposes divided by the extracted value of total assets; Hedge Intensity is the notional amount of derivatives used for hedging purposes scaled by total assets; other off-balance sheet items amount divided by total assets; Financial leverage; Net interest margin; Non-interest income and the ratio of market to book value.

In investigating the effect of derivative activities on banks' interest rate and exchange rate exposures Yong et al. (2009) involve a two stage regressions. The interest rate and exchange rate exposures of Asia-Pacific banks are estimated in the first stage and are then employed as the dependent variable in the second stage. Like in the study of Reichert and Shyu (2003), in the stage one of regression, the interest rate and exchange rate risk betas are estimated for each sample bank by employing the augmented market model. The second stage of regressions investigate the impact of derivative activities on banks' interest rate and exchange rate exposures, the stage two cross-sectional regression hypothesizes that long-term interest rate, short-term interest rate and exchange rate betas, estimated in the first stage are a function of both offbalance sheet derivative activities and traditional on-balance sheet banking activities. Control variables are introduced in regressions defined by liquidity, size, capital, non-interest income, interest margin, proxies of loan quality and risk and dummy variable defining dealer bank.

Choi and Elyasiani (1996) have estimated the interest rate risk and exchange rate risk betas of 59 large U.S. commercial banks for the period of January 1975 to December 1992 in a multifactor model framework. The estimation procedure uses a modified seemingly unrelated simultaneous method that adjusts for cross-equation dependencies as well as heteroscedasticity and serial correlation. Using this method, the estimation is carried out in two steps. First, the interest rate risk and exchange rate risk betas are estimated for individual banks, and second, the betas are estimated as a function of bank-specific basic and derivative exposure variables. So after estimation of betas (market risk beta and interest risk beta) in the first step, in the second step, the interest rate and exchange rate betas generated in the first stage are regressed against bank-specific on and off-balance sheet exposure variables. This two-step estimation method lets to capture, respectively, the cross-bank dependencies and the joint influences of interest rate and exchange rate exposure variables.

Reychert and Shyu (2003) have employed stock price data to measure several types of capital market risk similar to the approach employed by Chaudhry and Reichert (1999) and Hirtle (1996). They argue that the market-model approach provides a

useful way to analyze the relationship between derivatives and interest rate and exchange rate risk. A two-stage, three-factor CAPM model is developed to identify how the capital markets react to both domestic and international bank derivative activities. In the first stage, market, interest rate, and foreign currency betas are estimated using weekly stock return data over three separate annual periods from 1995 to 1997. In the second stage, cross-sectional regressions are estimated to determine how bank derivative activity affects these three distinct measures of capital market risk. Capital market betas are defined by the market beta on the market index, the interest rate beta on intermediate term government securities, and the foreign exchange beta on a foreign exchange index. Additionally to the level of derivative activity, the cross-sectional regressions include a number of key balance sheet control variables, which are net interest margin, equity, liquidity, a measure of credit risk, and the level of commercial and industrial loans. Thus, market, interest rate, and exchange rate betas are estimated as a function of both traditional on-balance sheet banking activities plus nontraditional off-balance sheet derivative positions. Weekly returns on individual bank stocks and the market index for each country are computed using the following formula [(Pt / Pt-1) / Pt-1], adjusted for dividends. The interest rate index is measured by the weekly change in the 10-year government bond yield for each country in the sample. The following three models are then estimated to examine the relative importance of different derivative instruments with respect to market, interest, and exchange rate risk. Finally, they use a modified VaR approach (EVaR analysis) in order to capture important differences between various types of derivatives in three regions (U.S., Japan and Europe).

Chaudhry et al. (2000) have focused on five different measures of capital market risk by using ordinary least-squares to estimate the following three-index market model for each sample bank: Basing on past studies that argue that a multiple-index model with proxies for interest rate returns, exchange rate changes, and the market return is an appropriate framework to model commercial bank stock return sensitivity. This model yields the following capital market measures of risk for each sample bank: total return risk for bank, unsystematic risk, systematic risk, systematic interest rate risk and systematic foreign-exchange risk. After obtaining the five risk measures for each bank, they estimate three cross-sectional regression models for each risk measure. They choose bank holding company satisfying some criteria such as that the stock was traded on the NYSE or the NASDAQ continuously during the sample period, 1989-1993 and call report data had to be available for the BHC on all variables used in the study. They exclude banks that merged or failed during the sample period. The data for both accounting-based and off-balance sheet variables are obtained from annual call reports and represent year-end values averaged over the five year sample period. Finally, control variables used in their model are defined by proxies of credit risk, capital, size, loan diversification, foreign currency off-balance sheet variables and dummy variables that indicate the level of activity within each type of contingent claim and those identifying the activity of dealer banks.

To summarize the methodology used in the previous papers can be resumed in two main approaches: the two-step ordinary least squares regressions (Yong et al., 2009) and the two-stage market model (Chaudhry et al., 2000, Reychert and Shyu, 2003). In the first procedure i.e. the two-step regressions model the step one regression estimates the user of derivatives. The second step estimates risk variable. This approach is used in order to distinguish user and non user of derivatives. Since, the first step explains derivative user's profile. However, in the last decade the number of banks using derivatives was increasing considerably so interesting in banks using or not derivatives is not up to date. For this reason, two step regression is not retained for our study. In this current study and according to Reychert et Shyu (2003) we use market model in order to measure overall risk, systematic risk and unsystematic risk, and panel regressions to estimate accounting risks later in the thesis. Details on empirical work are presented in the next section.

Section I.1.2. Effect of derivative instruments use on capital market risk: Empirical analysis

This section tends to examine empirically the relationship between derivative instruments use and capital market risk. Therefore, regression analysis on the association between derivative instruments use and capital market risk is tested. In this section, we investigate the use of derivative instruments by banks in both

emerging and recently developed countries in terms of capital market risk.

The rest of the section is prepared as follows. Firstly, both data and sample sets are described, as well as the model, the methodology, and the variables used. Secondly, empirical results are interpreted and analysed. Thirdly summaries and discussions are provided.

I.1.2.1. Data, sample and methodology

I.1.2.1.A. Data

Daily capital market data including stock prices for each bank were obtained from DataStream¹. Market indices for each country were obtained from their corresponding stock exchange websites².

Stock prices were used to determine the volatility of stock returns. Daily returns on individual bank stocks *i*, for each country were computed using the following formula:

$$R_{i,t} = \frac{P_{i,t} - P_{i,t-1}}{P_{i,t-1}} \tag{1}$$

Furthermore, market indices were used to determine the β of each bank *i* following the standard definition of market risk β :

$$\beta_{m,i} = \frac{\text{cov}(R_{i,t}, R_{m,t})}{\text{var}(R_{m,t})}.$$
 (2)

¹ <u>http://thomsonreuters.com/products_services/financial_products/a-z/datastream/</u>

² Santiago Stock Exchange (Bolsa de Santiago);The Zagreb Stock Exchange (Zagrebacka Burza); Prague Stock Exchange; Cyprus Stock Exchange; Tallinn Stock Exchange; Hong Kong Exchanges; Indonesia Stock Exchange; Tel Aviv Stock Exchange (TASE); Bursa Malaysia; The Stock Exchange of Mauritius; Nasdaq OMX Baltic; Philippine Stock Exchange (PSE); Warsaw Stock Exchange; Saudi Stock Exchange (Tadawul); Singapore Exchange (SGX); Johannesburg Stock Exchange (JSE); Korea Exchange (KRX); Taiwan Stock Exchange; The Stock Exchange of Thailand; Istanbul Stock Exchange (ISE)

Finally, and during the period study 2003-2009 annual accounting data drawn from bank websites (see Table 2) were used to calculate control variables.

I.1.2.1.B. Sample

I.1.2.1.B.a. Sample description

Compared to advanced countries in term of economic power and standard of living some countries such as Czech Republic, Estonia and South Korea are more closed to emerging countries than to advanced countries. These countries are called in this current work recently developed countries.

Entering banks from such countries in the study allows enlarging observations and therefore improving regressions.

The latest classification by <u>United Nations Office</u>. based on the Human Development Index³ is used to distinguish between emerging and developed countries.

In the next, the Table 1 presents classification between emerging and recently developed countries.

Emerging countries	Recently developed countries
Chile; Croatia; Indonesia;	
Malaysia; Mauritius; Latvia;	Czech Republic; Cyprus; Estonia;
Lithuania; Philippines; Saudi	Hong Kong; Israel; Poland;
Arabia; South Africa; Thailand;	Singapore; South Korea; Taiwan
Turkey	

Table 1. Countries classification

The main motivations of choosing sample banks can be summarized to the following reasons:

- \checkmark The fragility of the financial system of emerging countries
- \checkmark Lack in the literature of studies focusing on banks from emerging countries

³ From HDI equals to 0.784 countries are classified as developed countries and less this index countries are considered as emerging countries. For more details see the web site http://hdr.undp.org/en/

- ✓ Including banks from countries which were considered few years ago as emerging countries allows getting more observations and improving regressions
- ✓ Recently developed countries have not the same specificities as advanced countries, rather they are closed to emerging countries
- \checkmark No previous study has identified banks from recently developed countries
- ✓ No previous study has combined bank from emerging and recently developed countries

Table 2 exposes the list of banks and their countries (as well as hyperlinks to bank web sites).

Countries and bank names	Countries and bank names
Chile	Poland
1.1 Banco de Chile	14.1 Bank BPH S.A.
Croatia	14.2 Bank Pekao S.A.
2.1 Erste & Steiermärkische Bank D.D	14.3 Bank Zachodni WBK
2.2 Privrednabanka banka Zagreb	14.4 <u>BRE Bank</u>
2.3 Zagrebacka Banka	14.5 Kredyt Bank S.A.
Cyprus	14.6 Nordea Bank Polska S.A.
3.1 Bank of Cyprus	Saudi Arabia
3.2 Hellenic Cyprus Bank	15.1 <u>Arab National Bank</u>
Czech Republic	15.2 Saudi British Bank
4.1 Komerční banka	Singapore
Estonia	16.1 DBS Bank
5.1 <u>Swedbank</u>	16.2 <u>United Overseas Bank</u>
Hong Kong	South Africa
6.1 Bank of East Asia	17.1 <u>ABSA Bank</u>
6.2 <u>Chong Hing Bank</u>	17.2 <u>Capitec Bank</u>
6.3 DAH SING Bank	17.3 <u>FirstRand Ltd.</u>
6.4 <u>Fubon Bank</u>	17.4 <u>Imperial</u>
6.5 <u>Hang Seng Bank</u>	17.5 <u>Sasfin Bank</u>
6.6 Wing Hang Bank	South Korea
Indonesia	18.1 Industrial Bank of Korea
7.1 Bank Danamon	18.2 Korea Exchange Bank
Israel	Taiwan
8.1 <u>FIBI Bank</u>	19.1 Hua Nan Commercial Bank
8.2 <u>Bank Hapoalim</u>	19.2 Mega International Commercial Bank
Malaysia	19.3 <u>Taiwan Business Bank</u>
9.1 <u>CIMB Bank</u>	Thailand
9.2 EON Bank	20.1 <u>Bangkok bank</u>
Latvia	20.2 Bank of Ayudhya
10.1 DNB Nord Banka	20.3 <u>Kasikorn Bank</u>
Lithuania	20.4 <u>Krung Thai Bank</u>
11.1 <u>ŠIAULIU BANKAS</u>	Turkey
11.2 Swedbank	21.1 <u>Akbank</u>
Mauritius	21.2 Anadolubank Anonim Şirketi
12.1 <u>MCB</u>	21.3 <u>Garanti Bankasi</u>
Philippines	21.4 <u>Sekerbank</u>
13.1 Philippine National Bank	

Table 2. Banks and their countries

I.1.2.1.B.b. Sample statistics

In total, there are 52 banks in which twelve are from emerging countries and night from recently developed countries.

Sample banks are spread over five regions. European banks represent 38.461% of the sample, while Asian banks represent 40.384%. However, only two banks from Saudi Arabia and two banks from Israel represent the Persian Gulf region. Furthermore, only one bank, from Chile, represents Latin America. While six banks represent Africa, five of them are from South Africa. Thus, banks from emerging countries represent 61.538% of total sample while 38.462% of total sample characterize banks from recently developed countries. Additionally, the sample also includes eight dealer banks, which represent 15.384% of the total banks⁴.

In terms of the research sample, with the exception of Imperial Bank, each bank made use of forwards. Swaps were the second most used instruments with 49 banks. Moreover, three quarter of banks were involved in using options, while only 44.23% of banks used futures. In general, the two most commonly used instruments were forwards and swaps, which were utilized by 92.31% of all banks, as shown in Table 3 below.

Instruments	Number of banks	Percentage
FWD+SWP+OPT+FUT	23	44.23%
FWD+SWP+OPT	39	75.00%
FWD+SWP+FUT	23	44.23%
FWD+OPT+FUT	23	44.23%
SWP+OPT+FUT	23	44.23%
FWD+SWP	48	92.31%
FWD+OPT	39	75.00%
FWD+FUT	23	44.23%
SWP+OPT	39	75.00%
SWP+FUT	23	44.23%
OPT+FUT	23	44.23%
FWD	51	98.08%
SWP	49	94.23%
OPT	39	75.00%
FUT	23	44.23%

Table 3. Number and percentage of banks per derivative instruments used

⁴ Hellenic Cyprus Bank, Hang Seng Bank, Bank Hapoalim, EON Bank, BRE Bank, FirstRand Ltd., ABSA Bank, Industrial Bank of Korea

The four derivative instruments, forwards, swaps, options, and futures, represent 190.36% of assets, covering the period from 2003 to 2009, with an average bank size of approximately \$10 billion. During the study period, swaps were the most represented instruments, with a notional value equal to USD \$10,836,706 trillion which corresponds to 106.36% of the total assets, while futures represent only 6.37% of total assets.

Moreover, in terms of yearly use, the highest notional value is occurred in 2005 when swaps represent 131.00% of assets. In contrast, the lowest percentage is occurred in 2008 when futures represent only 3.86% of total assets. More details concerning derivative instruments statistics are summarized in the Table 4

Voor		0/ FWD	SWD	0/CW/D	DDT			0/ 111	FWD+SWP	%(FWD+OPT	Total
I Cal				1 11 20/	10	1 100/		10.10/	+OPT+FUT	+SWP+FUT)	assets
2003	409,397	39.67	482,793	46.79	119,096	11.54	116,967	11.33	1,128,253	109.35	1,031,771
2004	499,209	44.79	1,230,617	110.43	133,088	11.94	105,147	9.43	1,968,062	176.60	1,114,360
2005	525,800	42.16	1,633,515	131.00	183,158	14.68	82,888	6.64	2,425,364	194.50	1,246,953
2006	633,066	43.98	1,665,128	115.70	274,342	19.06	117,222	8.14	2,689,759	186.89	1,439,155
2007	1,081,489	66.86	1,992,877	123.21	348,547	21.55	79,838	4.93	3,502,753	216.56	1,617,385
2008	1,557,473	85.16	2,052,719	112.23	382,281	20.90	70,708	3.86	4,063,182	222.16	1,828,878
2009	1,518,484	79.58	1,779,054	93.23	245,780	12.88	76,632	4.01	3,619,951	189.71	1,908,072
Total	6,222,836	61.07	10,836,706	106.35	1,686,294	16.55	649,404	6.37	19,395,241	190.35	10,188,821
* ^	* A month of a little in the second s	11CD 11:00	C \$								

Table 4. Description of derivative notional amounts* per year

* Amounts are in USD millions.

From Table 4 statistics show that the amount of derivative instruments represents 190.35% of total assets covering the period of the study from 2003 to 2009, and with an average bank size of approximately \$10 billion. During the study period swaps are the most represented instruments with notional amount equals to 10,836,706 USD, with a percentage equals to 106.35% of total assets, followed by forwards with percentage equals to 61.07% of total assets options with a percentage equals to 16.55% of total assets, while futures represent only 6.37% of total assets. Statistics per year indicates that the highest notional amount of instruments traded is swaps defined by 123.21% of total assets in 2007. In contrast, the lowest percentage is referred to futures in 2008 by 3.86% of total assets.

27

I.1.2.1.C. Methodology

I.1.2.1.C.a. Variables description

The market model is adopted from the Capital Asset Pricing Model (CAPM):

$$R_{it} = \alpha_{mi} + \beta_{mi} R_{mt} + \varepsilon_{it}, \qquad (3)$$

where R_{it} is the holding period return for the ith bank's stock in a given month *t*, R_{mt} is the holding period return on a weighted portfolio of common stocks, approximated by a stock market index, and ε_{it} is the usual error term. This model is estimated for each bank sample *i* to provide the three different measures of capital market risk. This model yields the following capital market measures of risk for each bank sample *i*:

- standard deviation of R_{it} , σ_{Ri} , measures the total return risk for bank *i*;
- parameter β_{mi} , measures the systematic risk for bank *i*;
- standard deviation of ε_{it} , σ_{ε_i} , measures the unsystematic risk for bank *i*.

Differences in the systematic risk measures across banks reflect differences in the sensitivity of bank stocks to the market return. Differences in total return and unsystematic risk, in turn, reflect aggregate and diversifiable risk. These capital market risk measures are used as dependent variables.

Next, in the table below the dependent variables employed in this study along with their definitions and use in previous studies are presented.

Labels	Description	Proxy for	References
RRISK (σ _{Ri})	The annualized standard deviation of the banks' daily stock returns.	Total return risk	Chaudhry et al. (2000), Agusman et al. (2008), Nguyen and Faff (2003)
BETA (β_{mi})	The beta of the banks' stock returns.	Systematic risk	Chaudhry et al. (2000), Agusman et al. (2008)
SDERROR $(\sigma_{\epsilon i})$	The annualized standard deviation of residual errors from the market model.	Non- systematic risk	Chaudhry et al. (2000), Agusman et al. (2008)

Table 5. Description of dependent variables

These dependent variables are regressed on derivative instruments and control variables.

Control variables are defined by net interest margin, size of the bank, and dummy variables reflecting dealer bank and country. Regarding the heterogeneity of the sample, which is similar to the study of Agusman et al. (2008), country dummy variables are included to control for the differences in the banking structure and regulatory environments, as well as the different economic and political characteristics that may affect the relation between derivatives and capital market measures of risk. Table 6 presents the independent variables employed along with their definitions and use in previous studies.

Labels	Description	Proxy for	Predicted sign	References
Derivative i	nstruments			
FWD	Notional value of forwards divided by total assets	Forwards	NS ⁵	Chaudhry et al. (2000)
SWP	Notional value of swaps divided by total assets	Swaps	-	Chaudhry et al. (2000); Reichert and Shyu (2003)
OPT	Notional value of options divided by total assets	Options	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
FUT	Notional value of futures divided by total assets	Futures	NS	Chaudhry et al. (2000)
Control var	iables	•		·
САР	the ratio of book-value-equity-to- total-assets	Capital	-	Chaudhry et al. (2000); Reichert and Shyu (2003)
LIQ	the ratio of liquid-assets-to-total- assets	Liquidity	-	Chaudhry et al. (2000); Reichert and Shyu (2003)
LOAN	the ratio of gross-loans-to-total-assets	Risky assets	-	Chaudhry et al. (2000)
CR	the ratio of loan-loss-reserves-to- gross-loans	Credit risk	NS	Chaudhry et al. (2000); Reichert and Shyu (2003)
NIM	The difference between total interest income and total interest expense expressed, as a percentage of total assets.	Net interest margin	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
SIZE	Natural log of total assets	Bank size	+	Chaudhry et al. (2000) ; Reichert and Shyu (2003)
Dummies				
DEAL	1 if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise	Dealer	+	Chaudhry et al. (2000);
COUNTRY	Dummy variable equals 1 when bank is issued from, 0 otherwise	Country variable	?	Agusman et al. (2008)

Table 6. Description of independent variables

⁵ NS means not significant

The independent variables in this study can be divided in three groups. The first group are the four derivative instruments, FWD, SWP, OPT and FUT, which define respectively Forwards, Swaps, Options, and Futures. The second group are control variables, defined by CAP, LIQ, LOAN, CR, NIM and SIZE, which define capital, liquidity, gross loan, loan loss reserve, net interest margin, and bank size, respectively. The last group is defined by dummy variables, expressed by DEAL and COUNTRY, which designate the country variable of each bank. The country dummy variable is introduced in order to identify the specificity of each country. The dichotomous variable (DEAL) takes a value one for dealer banks and zero otherwise. DEAL is introduced - as in the study of Chaudhry et al. (2000) - in order to differentiate between the risk exposure of dealer banks and non-dealers.

I.1.2.1.C.b. Testing hypotheses and expected results

According to the results of literature (Shanker, 1996, Choi and Elyasiani, 1996, McAnally, 1996, Chaudhry et al., 2000, and Reichert and Shyu, 2003) the use of swaps affects negatively bank risk. Thus, a negative effect of swaps on capital market risk is expected as first hypothesis.

Exept to the findings of Shanker (1996) the rest of papers found that options increase bank risk. Therefore, a positive effect of options on capital market risk is hypothesized.

The results of Chaudhry et al. (2000) show that the use of futures and forwards does not affect significantly bank risk. Hence, we hypothesize that the effect of futures and forwards on capital market risk is insignificant.

Concerning control variables and according to Chaudhry et al. (2000) and Reichert and Shyu (2003), a negative effect of capital, liquidity and risky assets proxies on capital market risk is predicted.

Moreover, based on Chaudhry et al. (2000) and Reichert and Shyu (2003) a positive effect of bank size and net interest margin on capital market risk on is hypothesized. Furthermore, the results of Chaudhry et al. (2000) show that dealer banks are at risk so we forecast a positive effect of the dummy DEAL on capital market risk. While in the studies of Chaudhry et al. (2000) and Reichert and Shyu (2003) found no consistent effect of the proxy of credit risk on bank risk. Therefore, the sign of the correlation between the proxy of credit risk and capital market risk is unknown.

Finally, since no previous paper has used country variable so the effect of countries on capital market risk is unexpected.

I.1.2.1.C.c. Empirical model

Panel regression models were conducted for each risk measure as follows:

Risk measure_{i,t} =
$$\gamma_0 + \gamma_1 \text{ FWD}_{i,t} + \gamma_2 \text{SWP}_{i,t} + \gamma_3 \text{ OPT}_{i,t} + \gamma_4 \text{ FUT}_{i,t} + \gamma_5 \text{ CAP}_{i,t} + \gamma_6 \text{ LIQ}_{i,t} + \gamma_7 \text{ LOAN}_{i,t} + \gamma_8 \text{ CR}_{i,t} + \gamma_9 \text{ NIM}_{i,t} + \gamma_{10} \text{ SIZE}_{i,t} + \gamma_{11} \text{ DEAL}_{i,t} + \sum_{k=1}^{K} \gamma_{12,k}$$

COUNTRY_{i,t,k} + u_i + e_{i,t}, (4)

Where:

Risk measure is one of σ_{Ri} , β_{mi} or $\sigma_{\epsilon i}$.

 $(u_i + e_{i,t})$ is the composite error term. u_i is the random error in which heterogeneity is specifically to a cross-sectional unit-in this case, bank; and $e_{i,t}$ is the random error in which heterogeneity is specifically to a particular observation.

The aim is to test empirically the relations between capital market risk measures and derivative instruments.

The computer software STATA 10 ® was used to estimate all regressions.

I.1.2.1.C.d. Specification tests

Firstly, the stationarity of all the variables is checked using the Augmented Dickey Fuller Tests. Trying with four lags, then with trend, and finally without constant. The stationarity is also checked using Unit Root tests- Phillips-Perron test and DF-GLS test. The linearity of the model is tested for with Ramsey-Reset Test. A normal hazard of residuals is finally examined with Jacques-Bera Test. Moreover, a matrix of correlations and test for multicollinearity are conducted. The Hausman test is applied to examine the absence of correlation between the independent variables and the error terms. The null hypothesis of the Hausman test argues that there is no difference in coefficients (both the fixed effects and random effects models can be used), otherwise, only the fixed effects model, which is robust, has to be used. Finally, a Breusch and Pagan Lagrangian multiplier test is used to check the robustness of the random effect model.

I.1.2.2. Empirical results

As seen below, an empirical relationship exists between the use of derivative instruments and bank risk.

I.1.2.2.A. Descriptive statistics

Table 7 as follows describes the statistical variables used in the model.

Variable	Mean	Std. Dev.	Min	Max
FWD	0.38	0.95	0	6.93
SWP	1.21	9.82	0	185.03
OPT	0.093	0.23	0	1.71
FUT	0.04	0.13	0	1.20
RRISK (σ_{Ri})	0.02	0.01	0	0.23
BETA (β _{mi})	4.55	10.62	1	166.20
SDERROR ($\sigma_{\epsilon i}$)	2.86	10.38	0.03	137.40
CAP	0.09	0.07	0.02	0.88
LIQ	0.08	0.10	0.00	0.98
LOAN	0.58	0.14	0.03	0.93
CR	0.02	0.02	-0.02	0.19
NIM	0.03	0.07	0.00	0.77
SIZE	9.49	1.48	4.05	12.13

Table 7. Descriptive statistics of variables

Descriptive statistics show unusual scores of the systematic risk and the nonsystematic risk variables. Whilst for the rest of variables the mean is between 0.02 and 9.49. Standard deviation - measuring the spread of individual results around a mean of all the results – has scores from 0.01 to 9.82. Finally, min scores are between 0 and 4.05, and max scores are between 0.19 and 185.03.

I.1.2.2.B. Regression analysis

The parameter estimates from Equation 4 for each of the three risk measures are summarized in the next table. In this table, it should be noted that insignificant independent variables were removed from the models, and the regressions reestimated to get more precise estimates.

	Total return risk	Systematic risk	Non-systematic risk	
	$\sigma_{\rm Ri}$	β _{mi}	σεί	
Constant	0.0306***	1.2110***	2.7181*	
Constant	(0.00268)	(0.0743)	(1.4739)	
	Derivativ	e instruments		
FWD	-0.0024***	NS	NS	
ΓWD	(0.0006)	IND		
SWP	NS	-0.0042**	NS	
5 W1		(0.0018)		
OPT	0.0064*	NS	1.0491*	
OFI	(0.0033)	IND	(0.6320)	
FUT	-0.0131**	NS	NS	
FUI	(0.0054)	INS		
	Contro	ol variables		
CAP	NS NS		NS	
LIQ	NS	NS	NS	
LOAN	NS	NS	NS	
CR	-0.0696**	NS	NS NS	
NIM	(0.0312) NS	NS		
	GPI	-0.2800*		
SIZE	NS	(0.1622)	NS	
	Du	<i>mmies</i>		
		-0.6294*	NS	
DEAL	NS	(0.3243)		
Country	See details of	f the country dummie	es in Appendix I.	
R-squared	0.1292	0.3421	0.2619	
F statistic	4.73***	94.16***	306.25***	
Number of obs.	364	364	364	

*,** and *** indicate statistical significance at the 10%, 5% and 1% level, respectively. The variable that are not significant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables.

() indicate standard deviation of the estimators. NS indicate non-significance of coefficient. Years 2003-2009.

I.1.2.2.C. Specification tests results

The P values of the Augmented Dickey Fuller Tests for all the specifications are closed to 0. We have similar results for the Phillips-Perron test. The DF-GLS test rejects the null hypothesis of unit root at 1% significance level for all the specifications. (The results are available under request to the corresponding author). Stationarity of variables is then detected in all the cases.

In the next, the results of the Ramsey-Reset Test (for more details see Appendix V.a.) are resumed in the Table 9 as follows.

Dependent variable	chi2(3)	Prob > chi2
Total return risk 	28.97	0.0000
Systematic risk β _{mi}	3.60	0.3074
Non-systematic risk $\sigma_{\epsilon i}$	4.48	0.2142

Table 9. Ramsey-Reset Test

When the risk is measured by the total return risk σ Ri, the Ramsey-Reset test rejects the null hypothesis of linearity. Then the relation between the total return risk σ Ri and its predicted value is examined in the Figure 1 below.

Figure 1. Total return risk against its predicted variable

From Figure 1, we can see that there is not a strong nonlinear relation between the independent variables and the dependent variable. Therefore, the linearity of the model can be confirmed. A normal hazard of residuals is finally examined with Jacques-Bera Test in the table below.

Dependent	Skewness		Kurtosis		Jacques-Bera	
variable	Value	P value	Value	P value	P value	
Total return risk σ _{Ri}	7.439	0.000	102.206	0.000	0.000	
Systematic risk 	11.692	0.000	180.857	0.000	0.000	
Non-systematic risk σ _{εi}	12.324	0.000	162.046	0.000	0.000	

Table	10.	Normality	tests
-------	-----	-----------	-------

All the tests reject the normality hypothesis. The probability density functions of the residuals, estimated by kernel estimator, are examined in the Figure 2 as follows.

Figure 2. Probability density functions of the residuals

It should be noted that even if the error terms do not follow a normal distribution the regression estimate remains asymptotically valid. Due to the large number of observations (around 370), the non-normality of the errors terms should not affect the results.

In addition, correlations between variables of the model are presented in the following matrix:

	σri	fwd	swp	opt	fut	loan	cap
σ_{Ri}	1.0000						
fwd	-0.0295	1.0000					
	(0.5748)						
swp	-0.0067	0.0532	1.0000				
	(0.8986)	(0.3117)					
opt	0.0081	0.2461*	0.0810	1.0000			
-	(0.8773)	(0.0000)	(0.1229)				
fut	-0.0695	0.0031	0.0345	0.2081*	1.0000		
	(0.1861)	(0.9535)	(0.5116)	(0.0001)			
loan	0.1579*	0.0031	-0.0673	-0.0775	-0.0625	1.0000	
	(0.0025)	(0.9533)	(0.2001)	(0.1402)	(0.2341)		
cap	0.0181	-0.1140*	-0.0131	-0.0837	-0.0467	-0.2746*	1.0000
-	(0.7311)	(0.0296)	(0.8038)	(0.1107)	(0.3739)	(0.0000)	
liq	0.0001	-0.1092*	-0.0574	0.0141	-0.0599	0.0497	0.3076*
1	(0.9988)	(0.0374)	(0.2747)	(0.7882)	(0.2542)	(0.3444)	(0.0000)
nim	0.0563	-0.0577	-0.0121	-0.0509	-0.0045	-0.2232*	0.8913*
	(0.2842)	(0.2720)	(0.8184)	(0.3331)	(0.9319)	(0.0000)	(0.0000)
size	-0.0796	0.1949*	0.0609	0.1970*	0.1600*	0.0065	-0.5069*
	(0.1297)	(0.0002)	(0.2463)	(0.0002)	(0.0022)	(0.9012)	(0.0000)
cr	-0.0171	-0.0406	-0.0269	-0.0794	-0.0408	-0.3165*	0.1963*
	(0.7447)	(0.4401)	(0.6092)	(0.1307)	(0.4376)	(0.0000)	(0.0002)
	liq_ta	nim_ta	logta	llp_loan			
liq	1.0000						
nim	0.3033*	1.0000					
	(0.0000)						
size	-0.2240*	-0.4339*	1.0000				
	(0.0000)	(0.0000)					
cr	0.0618	0.1965* -	0.1100*	1.0000			
	(0.2399)	(0.0002)	(0.0359)				

 Table 11. Matrix of correlations (total return risk is the dependent variable)

The numbers in brackets correspond to the standard error.

	β _{mi}	fwd	swp	opt	fut	loan	cap
β _{mi}	1.0000						
fwd	-0.0833	1.0000					
	(0.1126)						
swp	-0.0244	0.0532	1.0000				
	(0.6428)	(0.3117)					
opt	-0.0960	0.2461*	0.0810	1.0000			
-	(0.0673)	(0.0000)	(0.1229)				
fut	0.0015	0.0031	0.0345	0.2081*	1.0000		
	(0.9778)	(0.9535)	(0.5116)	(0.0001)			
loan	-0.0442	0.0031	-0.0673	-0.0775	-0.0625	1.0000	
	(0.4004)	(0.9533)	(0.2001)	(0.1402)	(0.2341)		
cap	-0.0070	-0.1140*	-0.0131	-0.0837	-0.0467	-0.2746*	1.0000
	(0.8941)	(0.0296)	(0.8038)	(0.1107)	(0.3739)	(0.0000)	
liq	-0.0610	-0.1092*	-0.0574	0.0141	-0.0599	0.0497	0.3076*
-	(0.2456)	(0.0374)	(0.2747)	(0.7882)	(0.2542)	(0.3444)	(0.0000)
nim	-0.0146	-0.0577	-0.0121	-0.0509	-0.0045	-0.2232*	0.8913*
	(0.7816)	(0.2720)	(0.8184)	(0.3331)	(0.9319)	(0.0000)	(0.0000)
size	-0.0547	0.1949*	0.0609	0.1970*	0.1600*	0.0065	-0.5069*
	(0.2976)	(0.0002)	(0.2463)	(0.0002)	(0.0022)	(0.9012)	(0.0000)
cr	0.0537	-0.0406	-0.0269	-0.0794	-0.0408	-0.3165*	0.1963*
	(0.3066)	(0.4401)	(0.6092)	(0.1307)	(0.4376)	(0.0000)	(0.0002)
	liq	nim	size	cr			
liq	1.0000						
nim	0.3033*	1.0000					
	(0.0000)						
size	-0.2240*	-0.4339*	1.0000				
	(0.0000)	(0.0000)					
cr	0.0618	0.1965* -	0.1100*	1.0000			
	(0.2399)	(0.0002)	(0.0359)				

 Table 12. Matrix of correlations (systematic risk is the dependent variable)

The numbers in brackets correspond to the standard error.

	$\sigma_{\epsilon i}$	fwd	swp	opt	fut	loan	cap
σεί	1.0000						
fwd	-0.0102	1.0000					
	(0.8467)						
swp	0.0107	0.0532	1.0000				
•	(0.8391)	(0.3117)					
opt	0.0079	0.2461*	0.0810	1.0000			
	(0.8810)	(0.0000)	(0.1229)				
fut	-0.0331	0.0031	0.0345	0.2081*	1.0000		
	(0.5293)	(0.9535)	(0.5116)	(0.0001)			
loan	-0.0974	0.0031	-0.0673	-0.0775	-0.0625	1.0000	
	(0.0635)	(0.9533)	(0.2001)	(0.1402)	(0.2341)		
cap	-0.0241	-0.1140*	-0.0131	-0.0837	-0.0467	-0.2746*	1.0000
	(0.6468)	(0.0296)	(0.8038)	(0.1107)	(0.3739)	(0.0000)	
liq	-0.0399	-0.1092*	-0.0574	0.0141	-0.0599	0.0497	0.3076*
-	(0.4475)	(0.0374)	(0.2747)	(0.7882)	(0.2542)	(0.3444)	(0.0000)
nim	-0.0418	-0.0577	-0.0121	-0.0509	-0.0045	-0.2232*	0.8913*
	(0.4260)	(0.2720)	(0.8184)	(0.3331)	(0.9319)	(0.0000)	(0.0000)
size	0.0189	0.1949*	0.0609	0.1970*	0.1600*	0.0065	-0.5069*
	(0.7188)	(0.0002)	(0.2463)	(0.0002)	(0.0022)	(0.9012)	(0.0000)
cr	-0.0047	-0.0406	-0.0269	-0.0794	-0.0408	-0.3165*	0.1963*
	(0.9286)	(0.4401)	(0.6092)	(0.1307)	(0.4376)	(0.0000)	(0.0002)
	liq	nim	size	cr			
liq	1.0000						
nim	0.3033*	1.0000					
	(0.0000)						
size	-0.2240*	-0.4339*	1.0000				
	(0.0000)	(0.0000)					
cr	0.0618	0.1965* -	0.1100*	1.0000			
	(0.2399)	(0.0002)	(0.0359)				

Table 13. Matrix of correlations (non-systematic risk is the dependent variable)

The numbers in brackets correspond to the standard error.

Furthermore, a test for multicollinearity is made. A detection-tolerance or the variance inflation factor (VIF) for multicollinearity can be defined as follows:

 $Tolerance_j = 1-R_j^2$, $VIF_j = 1/Tolerance_j$

where R_j^2 is the coefficient of determination of a regression of explanatory variable *j* on all the other explanatory variables. A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem (see O'Brien 2007). The results as follows conclude an absence of multicollinearity problem:

	VIF	1/VIF
size	17.29	0.057837
loan	14.77	0.067724
cap	11.05	0.090512
nim	5.97	0.167621
liq	1.89	0.529623
opt	1.35	0.740298
cr	1.31	0.764242
fwd	1.29	0.773296
fut	1.18	0.849076
swp	1.03	0.968510
Mean VIF	5.71	

Table 14. Multicollinearity test

Furthermore, the results as shown in the next table about Hausman tests (see Appendix VI.a. for more details) show an absence of correlation between the independent variables and the error terms which confirms the choice of random effect model.

Table 15. Hausman test

Dependent variable	chi2(10)	Prob>chi2
Total return risk σ_{Ri}	18.14	0.0526
Systematic risk β _{mi}	6.76	0.7477
Non-systematic risk $\sigma_{\epsilon i}$	6.86	0.7382

However, the total return risk σ_{Ri} is close to rejection. Consequently, we examine the parameter estimates in the case of the fixed effects model and in the case of random effects model (see the table below).

		case of fora	i i ctui ii i isr	N UIM
	Coeffi	cients	Coefficient	S.E. of the Coefficient
	Fixed-	Random-	Difference	Difference
	effects	effects		
fwd	0001664	0006444	.000478	.0014439
swp	0000346	0000101	0000245	.0000178
opt	.0028549	.0039291	0010742	.0035734
fut	.001243	0066569	.0078998	.005784
cap	0221073	0190414	0030659	.0186944
liq	029528	0163322	0131958	.0055189
loan	.0146007	.0214452	0068445	.0090646
cr	.0034734	.0030761	.0003973	.0035904
nim	.0632955	.0423813	.0209142	.0212707
size	.0070737	0001499	.0072236	.0022651

Table 16. Comparison between the fixed effects and random effects estimates case of Total return risk σRi

Hausman test: Ho: difference in coefficients not systematic

We can see that the Hausman test is close to rejection due to the size variable, which is only a control variable. Consequently, it does not affect the interest variable estimates.

Finally, in order to check between random effect model and simple OLS regression choice, a Breusch and Pagan Lagrangian multiplier test is conducted. The null hypothesis is H0: "Var(ui)=0" against H1: "Var(ui)>0". The results are presented in the table below:

Dep. Variable	sd(Dep.	sd(e _{i,t})	$sd(u_i)$	chi2(1) test	P value
	Variable)			statistic	
Total return risk	0.015546	0.0139762	0.0064325	19.76	0.0000 *
Systematic risk	10.62564	9.336926	5.462163	50.36	0.0000 *
Non-systematic risk	10.3801	9.64046	4.402101	18.80	0.0000 *

 Table 17. Breusch and Pagan Lagrangian multiplier test

From these results on Breusch and Pagan Lagrangian multiplier test the null hypothesis is verified in the all models so that random effect models are the appropriate models.

I.1.2.3. Summaries and discussions

After observing the effects of the four derivative instruments on the three bank measures, it is clear that forwards, futures and swaps have a negative effect on bank risk while options have a positive effect. Moreover, the association between forwards and total return risk indicates a negative relationship at a level of significance equal to 1%.

According to the previous results of literature, this finding corroborates thesis stipulating that using forwards reduces bank risk. This can be explained by the fact that using forwards for speculation allow banks to diversify their risk and also to make profits from speculation which represents a warrant for any risk losses.

In addition, futures negatively affect the total return risk, but at a level of significance equal to 5%. In line with theory the use futures let banks to hedge their risks which explains their negative effect on risks.

However, at the same time, the relationship between options and total return risk is positively significant at a level of 10%. The fact that the coefficient of options was so low confirms the notion that the effect of options on total return risk is weak. However, the positive effect of options on unsystematic risk is stronger at the same level of significance. Also findings regarding options verify the results of literature. The use of options increases bank risk due its risky activities related to speculation.

In regard to systematic risk, the results indicate that swaps also negatively affect beta market risk at a level of significance equal to 5%. Finally, the result of our study is according with expectations stipulating that the use of swaps minimizes bank risk. This finding can be explicated by the fact that swaps are hedging tools which are useful to reduce risks of banks.

Concerning control variables, the proxy of credit risk has a negatively effect on the total return risk at a level of significance equal to 5% which rejects the unpredicted result as hypothesized before.

Another finding was that size has a negative effect on systematic risk at a level of significance equals to 10%, which contradicts the thesis stipulating that bank size increases bank risk. On the other hand, the proxies of capital, liquidity, risky assets and net interest margin seem to have no significant effect on any type of risk measures. Consequently, it appears that the thesis stipulating that capital, liquidity and risky assets have a negative effect on bank risk is rejected.

The dummy variable that defines dealer banks is negatively significant only with systematic risk at a level of significance that is equal to 10%. Moreover, this result negates the argument that dealer banks are at risk and rejects our hypothesis. In regard to the effect of the country variable regressions, only the variables representing banks from Indonesia did not show any significant type of risk measures. As a result, Indonesian banks do not follow the criteria set forth in our hypothesis for country variables.

In summary, the results indicate that forwards have a negative effect on total return risk at 1% level of significance. Futures also negatively affect total return risk, but at a level of significance equal to 5%. In contrast, options have a positive effect on total return risk, at a 10% level of significance. Additionally, swaps have a negative effect on systematic risk, at a level of significance equal to 5%. Finally, options positively affect unsystematic risk at a 5% level of significance.

The next the table represents a summary of the regression results concerning the association between the four derivative instruments and the three capital market risks.

	Forwards	Swaps	Options	Futures
Total return risk	-	NS	+	-
Systematic risk	NS	-	NS	NS
Unsystematic risk	NS	NS	+	NS

Table 18. Summary table of regression coefficient signs

After analysis of the using pooled data from 2003 to 2009, as well as a sample composed of 52 banks from both emerging and recently developed countries, noteworthy conclusions can be drawn from the empirical results. In general, the use of options tends to increase all types of bank risk for banks of any kind. In contrast, swaps, forwards and futures negatively affect capital market risk.

Overall, and in line with theory and confirming our hypotheses swaps reduce bank risk while options increase bank risk. However, and comparing to the literature, the findings of this study show that futures and forwards decrease bank risk.

Thus, overall, and as the results show, forwards, swaps and futures may be used effectively as hedging tools, while options may be viewed in a more speculative fashion.

In sum, the evidence suggests that with exception of options, derivative instruments do not increase risk. Therefore, more control in the use of options should be made by bank managers in order to better manage its effect on risk.

Finally, as the majority of banks generally make use of forwards and swaps, it seems clear that sample banks are not at risk by using derivative instruments.

Chapter I.2. Effect of derivative instruments use on accounting risk

The literature about the effect of derivatives on bank risk is already presented in the previous chapter, for this reason this second chapter focuses to study empirically the relationship between derivative instruments and accounting risk. Hence, the following section analyses empirically the effect of derivative instruments use on accounting risk.

Section I.2.1. Effect of derivative instruments use on accounting risk: Empirical analysis

This section is organised as follows. Firstly, data and sample are described. Then the model, the methodology and the variables used in the study are specified. Lastly, summaries and discussions are presented.

I.2.1.1. Data, sample and methodology

I.2.1.1.A. Data

Accounting and quarterly data obtained from balance sheets and income statements from bank websites (see in the next the table for hyperlinks to bank websites) and covering the period study from 2003 to 2010 are used in this study.

I.2.1.1.B. Sample

Sample is composed of banks from both emerging and recently developed countries.

In addition to the main motivations of this sample choice announced in the first chapter a benchmarking analysis can be carried out between banks in emerging countries and those in recently developed countries

I.2.1.1.B.a. Sample description

The following table exposes the list of banks and their countries (as well as hyperlinks to bank websites).

Table 19. Banks and their countries of overall sample

Countries and bank names	Countries and bank names	Countries and bank names
Argentina	Kuwait	18.1 <u>Muskat Bank</u>
1.1 Bank Hipotecario	11.1 Bank Bahrain Kuwait	Pakistan
1.2 BBVA Banco FRANCÉS S.A.	11.2 <u>Burgan Bank</u>	19.1 United Bank Limited
Brazil	11.3 Gulf Bank Kuwait	Philippine
2.1 Banco ITAÚ S.A.	Latvia	20.1 Philippine National Bank
2.2 Santander Banespa	12.1 Aizkraukles Banka Latvija	Russia
Bulgaria	12.2 <u>AS SEB banka Latvijas</u> <u>Unibanka</u>	21.1 Gazprombank
3.1 Postbank Eurobank EFG	12.3 Baltic International Bank	21.2 TransCreditBank
3.2 Raiffiensen Bank Bulgaria	12.4 DNB Nord Banka	Saudi Arabia
3.3 Unit Credit Bulgaria	12.5 Latvijas Krājbanka	22.1 Arab National Bank
Chile	12.6 Latvijas Biznesa Banka	22.2 Banque Saudi Fransi
4.1 Banco de Chile	12.7 Norvik Banka	22.3 Saudi British Bank
4.2 Banco Santander	12.8 Parex Banka	South Africa
4.3 <u>BCI</u>	12.9 Rietumu Banka	23.1 ABSA Bank
China	12.10 Trasta Komercbanka	23.2 Capitec Bank
5.1 Bank of China Limited	Lebanon	23.3 FirstRand Ltd.
Croatia	13.1 <u>Banque Audi SAL Audi</u> <u>Saradar</u>	23.4 Imperial
6.1 <u>Erste & Steiermärkische Bank</u> <u>D.D</u>	13.2 BLOM Bank SAL	23.5 <u>Sasfin Bank</u>
6.2 <u>HPB</u>	13.3 Libanese Canadian Bank	Thailand
6.3 <u>Hypo Alpe Adria Bank D.D.</u>	Lithuania	24.1 Bangkok bank
6.4 <u>Jadranska Banka Sibenik</u>	14.1 <u>AB Citadele Bankas Parex</u> <u>Bankas</u>	24.2 <u>Bank of Ayudhya</u>
6.5 Privrednabanka banka Zagreb	14.2 DNB Nord Banka	24.3 Kasikorn Bank
6.6 Zagrebacka Banka	14.3 <u>ŠIAULIU BANKAS</u>	24.4 <u>Krung Thai Bank</u>
India	14.4 Swedbank	Turkey
7.1 HDFC Bank	14.5 <u>Ukio Bankas</u>	25.1 <u>Akbank</u>
7.2 <u>ICICI Bank</u>	Malaysia	25.2 Anadolubank Anonim Şirketi
Indonesia	15.1 CIMB Bank	25.3 Garanti Bankasi
8.1 Bank Danamon	15.2 EON Bank	25.4 Sekerbank
Jordan	15.3 OCBC Bank	25.5 Ziraat Bankasi
9.1 Capital Bank	Mauritius	Vietnam
9.2 Jordan Ahli Bank	16.1 <u>MCB</u>	26.1 <u>SacomBank Saigon Thuong</u> <u>Tin Bank</u>
9.3 Jordan Kuwait Bank	Mexico	261.2 ACB Vietnam
Kazakhstan	17.1 HSBC Mexico	
10.1 Halyk Bank	Oman	1

Panel A. Banks of emerging countries

Countries and bank names	Countries and bank names	Countries and bank names
Bahrain	6.2 <u>OTP Bank</u>	11.4 <u>VUB Banka</u>
1.1 Ahli United Bank B.S.C.	6.3 UniCredit Bank Hungary Zrt.	Slovenia
1.2 Arab Banking Corporation	Israel	12.1 Abanka Vipa d.d. Slovenska
1.3 Ithmaar Bank	7.1 BANK LEUMI	12.2 Factor Banka d.d.
1.4 United Gulf Bank	7.2 <u>FIBI Bank</u>	12.3 <u>NLB</u>
Cyprus	7.3 Bank Hapoalim	12.4 SKB banka, d. d.
2.1 Bank of Cyprus	7.3 Bank Hapoalim	12.5 UniCredit Slovenija d.d.
2.2 Hellenic Cyprus Bank	Poland	South Korea
Czech Republic	8.1 Bank BPH S.A.	13.1 Industrial Bank of Korea
3.1 <u>Česká spořitelna</u>	8.2 Bank Pekao S.A.	13.2 Korea Exchange Bank
3.2 <u>CSOB</u>	8.3 BRE Bank	Taiwan
3.3 Komerční banka	8.4 Bank Zachodni WBK	14.1 Bank Sinopac
3.4 Raiffensenbank	8.5 Kredyt Bank S.A.	14.2 <u>CHANG HWA</u> COMMERCIAL BANK
3.5 UniCredit Bank	8.6 Nordea Bank Polska S.A.	14.3 China Trust Commercial Bank
Estonia	8.7 PKO Bank Polski	14.4 <u>E. Sun Bank</u>
4.1 SEB Pank	Qatar	14.5 Hua Nan Commercial Bank
4.2 Swedbank	9.1 Ahli United Qatar	14.6 Landbank
Hong Kong	9.2 Commercial Bank of Qatar	14.7 <u>Mega International</u> <u>Commercial Bank</u>
5.1 Bank of East Asia	9.3 Qatar National Bank	14.8 Taishin International Bank
5.2 Chong Hing Bank	Singapore	14.9 Taiwan Business Bank
5.3 DAH SING Bank	10.1 <u>DBS Bank</u>	14.10 Union Bank of Taiwan
5.4 <u>Fubon Bank</u>	10.2 OCBC Bank	United Arab of Emirates
5.5 Hang Seng Bank	10.3 United Overseas Bank	15.1 <u>First Gulf Bank</u>
5.6 Shangai Commercial Bank	Slovakia	15.2 Machreq Bank
5.7 Wing Hang Bank	11.1 <u>Dexia banka Slovensko a.s</u> <u>Výročná správa</u>	15.3 <u>National Bank of Abu Dhabi</u>
Hungary	11.2 Ludova Banka Volksbank	
6.1 <u>KERESKEDELMI ÉS</u> <u>HITELBANK ZRT.</u>	11.3 <u>Tatra banka</u>	

Panel B. Banks of recently developed countries

I.2.1.1.B.b. Sample statistics

Overall sample is defined by 137 banks from both emerging and recently developed countries. There are 74 banks from emerging countries where banks from recently developed countries are 63.

Banks in emerging countries represent 54.015% of the total banks, while banks in recently developed countries represent 45.985%. The overall sample is spread over five regions. Europe is represented by 54 banks, Asia by 69 banks of which 17 are from the Gulf States and 9 from the Middle-East. Banks from Latin America are

eight. Africa is represented by six banks of which five are from South Africa. Regarding dealer banks, the sample is defined by twelve dealer banks⁶

Regarding the use of derivatives, forwards are the most used instruments by banks in overall sample. Swaps are the second most used instruments with 128 banks. Moreover, 101 banks are involved in using options, while only 70 banks use futures. The two most used instruments are forwards and swaps with a percentage equal to 89.78% of total banks.

Concerning banks in emerging countries, the most used instrument is forwards with a percentage equal to 94.59% of total banks. With a percentage equal to 89.19% of total banks, swaps are the second most used instrument, whereas, percentages of banks using option and futures contracts are respectively 60.81% and 45.95% of total banks. The most used pair is forwards and swaps with a percentage equal to 82.43% of total banks.

As for banks in recently developed countries, all banks use forwards. Except for Arab Banking Corporation Group, all the banks are involved in swap contracts. Moreover, the percentage of banks from Panel B using options represents 90.48% of total banks, while only a percentage equal to 57.14% of banks use futures. Except for Arab Banking Corporation, all the banks in recently developed countries use forwards and swaps.

In the next more statistics on derivative instruments use are detailed in the Table 20.

⁶ Hellenic Cyprus Bank; Hang Seng Bank; Hapoalim ; EON Berhard; OCBC Malaysia; United Bank Limited; BRE Polish; PKO; OCBC Singapore ; First Rand Bank; ABSA; Industrial Bank of Korea

		Number of b	anks		Percentage	
Instruments	Total	Emerging	Recently	Total	Emerging	Recently
			developed			developed
FWD+SWP+OPT+FUT	64	28	36	46.71%	37.84%	57.14%
FWD+SWP+OPT	101	44	57	73.72%	59.46%	90.48%
FWD+SWP+FUT	68	32	36	49.63%	43.24%	57.14%
FWD+OPT+FUT	64	28	36	46.71%	37.84%	57.14%
SWP+OPT+FUT	64	28	36	46.71%	37.84%	57.14%
FWD+SWP	123	61	62	89.78%	82.43%	98.41%
FWD+OPT	101	45	57	73.72%	60.81%	90.48%
FWD+FUT	70	34	36	51.09%	45.95%	57.14%
SWP+OPT	97	42	57	70.80%	56.76%	90.48%
SWP+FUT	69	33	36	50.36%	44.59%	57.14%
OPT+FUT	66	30	36	48.17%	40.54%	57.14%
FWD	133	70	63	97.08%	94.59%	100%
SWP	128	66	62	93.43%	89.19%	98.41%
OPT	101	45	57	73.72%	60.81%	90.48%
FUT	70	34	36	51.09%	45.95%	57.14%

 Table 20. Number and percentage of banks per derivative instruments used

Details in derivative instruments statistics are presented in the next tables.

Table 21. Statistics on derivative notional amounts7 per yearPanel A. Overall sample

	FWD		SWP		OPT		FUT		FWD+SWP+OPT+FUT	PT+FUT	TA
Year	Amount*	%	Amount*	%	Amount*	%	Amount*	%	Amount*	%	Amount*
2003	430,740.20 21.85	21.85	754,883.69	38.30	273,355.94	13.87	492,725.18	25.00	1,951,705.02	99.02	1,970,911.13
2004	528,269.18 24.72	24.72	1,607,371.07 75.22	75.22	367,659.18 17.20	17.20	596,596.66 27.91	27.91	3,099,896.1	145.06	2,136,888.88
2005	517,281.68 20.94	20.94	1,902,523.67 77.04	77.04	453,940.52 18.38	18.38	717,703.19 29.06	29.06	3,591,449.07	145.43	2,469,425.70
2006	642,509.40 22.17	22.17	2,096,940.67	72.35	584,769.86 20.17	20.17	755,465.76 26.06	26.06	4,079,685.70	140.77	2,898,097.65
2007	2007 1,050,916.16 31.14	31.14	2,576,562.61	76.34	620,333.97	18.38	443,328.21 13.13	13.13	4,691,140.96	139.00	3,374,730.20
2008	2008 1,551,341.39 38.03	38.03	2,938,724.00 72.05	72.05	906,817.18 22.23	22.23	434,948.49 10.66	10.66	5,831,831.07	142.98	4,078,739.26
2009	2009 1,435,881.97 34.40	34.40	2,595,909.33 62.27	62.27	618,153.10 14.82	14.82	437,665.32 10.50	10.50	5,087,609.73	122.05	4,168,431.02
2010	2010 1,851,487.45 39.70	39.70	2,814,967.71	60.32	817,277.34 17.51	17.51	485,884.01 10.41	10.41	5,969,616.52	127.92	4,666,389.20
Total	8,015,077.09	31.10	8,015,077.09 31.10 17,312,022.70	67.18	4,643,053.99	18.02	4,364,316.85	16.93	34,334,470.7	133.25	25,766,503.80

⁷ Amounts are in USD millions

	FWD		SWP		OPT		FUT		FWD+SWP+T40+T	PT+FUT	TA
Year	Amount*	%	Amount*	%	Amount*	%	Amount*	%	Amount*	0%	Amount*
2003	119,781.38	16.25	148,469.75	20.15	92,725.392	12.58	419,768.32	56.96	780,744.84	105.94	736,970.85
2004	139,966.18	16.92	172,320.83	20.83	134,311.05	16.24	520,749.93	62.95	967,348.001	116.94	827,208.47
2005	156,204.77 15.70	15.70	301,084.53	30.27	155,252.59	15.61	661,928.99	66.54	1,274,470.89	128.13	994,691.71
2006	2006 236,907.68 18.68 403,495.21	18.68	403,495.21	31.81	192,905.41	15.21	671,503.59	52.94	1,504,811.90	118.63	1,268,453.18
2007	502,842.63 32.99	32.99	639,249.42	41.94	240,374.65 15.77	15.77	398,601.36	26.15	1,781,068.06	116.84	116.84 1,524,316.95
2008	2008 1,055,504.15 51.65	51.65	820,317.66	40.14	576,299.95	28.20	399,138.47	19.53	2,851,260.24	139.53	2,043,502.90
2009	2009 1,082,979.94 52.45	52.45	844,593.28	40.90	343,513.39	16.64	381,799.71	18.49	2,652,886.33	128.49	2,064,725.28
2010	1,485,556.81	65.78	2010 1,485,556.81 65.78 973,676.36	43.11	488,786.49	21.64	394,997.73 17.49	17.49	3,343,017.40	148.03	2,258,376.66
Total	4,779,743.55	40.79	Total 4,779,743.55 40.79 4,303,207.04 36.72		2,224,168.93	18.98	3,848,488.14	32.84	2,224,168.93 18.98 3,848,488.14 32.84 15,155,607.70 129.33 11,718,246.00	129.33	11,718,246.00

Table 22. Statistics on derivative notional amounts8 per yearPanel B. Banks from emerging countries

⁸ Amounts are in USD millions

 Table 23. Statistics on derivative notional amounts9 per year

 Panel C. Banks from recently developed countries

YearAmount*%Amount* <th< th=""><th></th><th>FWD</th><th></th><th>SWP</th><th></th><th>OPT</th><th></th><th>FUT</th><th></th><th>FWD+SWP+OPT+FUT</th><th>PT+FUT</th><th>Υ</th></th<>		FWD		SWP		OPT		FUT		FWD+SWP+OPT+FUT	PT+FUT	Υ
48.05180,840.8114.2273,004.085.741,176,029.3392.50105.67233,582.0917.1775,986.825.582,138,238.77157.15103.67299,339.9219.2455,894.273.592,329,883.42149.7997.65397,048.6222.7484,408.054.832,593,428.88148.5197.65397,048.6222.7484,408.054.832,593,428.88148.5198.68383,719.3519.1844,958.152.242,959,024.91147.9297.76332,673.2415.2835,942.641.652,995,857.43137.5678.99276,728.2212.4056,030.262.512,449,660.95109.8078.99276,728.2212.4056,030.262.512,449,660.95109.8073.21331,591.7613.1191,405.013.612,641,161.98104.47 87.972,435,524.0116.38517,629.2853.4819,283,285.70102.67	Year		%	Amount*	%	Amount*	%	Amount*	%	Amount*	%	Amount*
105.67 233,582.09 17.17 75,986.82 5.58 2,138,238.77 157.15 103.67 299,339.92 19.24 55,894.27 3.59 2,329,883.42 149.79 97.65 397,048.62 22.74 84,408.05 4.83 2,593,428.88 148.51 97.65 397,048.62 22.74 84,408.05 4.83 2,593,428.88 148.51 98.68 383,719.35 19.18 44,958.15 2.24 2,959,024.91 147.92 97.76 332,673.24 15.28 35,942.64 1.65 2,995,857.43 137.56 97.76 332,673.24 15.28 35,942.64 1.65 2,995,857.43 137.56 78.99 276,728.22 12.40 56,030.26 2.51 2,449,660.95 109.80 73.21 331,591.76 13.11 91,405.01 3.61 2,641,161.98 104.47 87.97 2,435,524.01 16.38 517,629.285 3.48 19,283,285.70 104.47	2003	311,206.66	24.47		48.05	180,840.81	14.22	73,004.08	5.74	1,176,029.33	92.50	1,271,501.81
103.67 299,339.92 19.24 55,894.27 3.59 2,329,883.42 149.79 97.65 397,048.62 22.74 84,408.05 4.83 2,593,428.88 148.51 98.68 383,719.35 19.18 44,958.15 2.24 2,959,024.91 147.92 97.76 332,673.24 15.28 35,942.64 1.65 2,995,857.43 137.56 97.76 332,673.24 15.28 35,942.64 1.65 2,995,857.43 137.56 78.99 276,728.22 12.40 56,030.26 2.51 2,449,660.95 109.80 73.21 331,591.76 13.11 91,405.01 3.61 2,641,161.98 104.47 87.97 2,435,524.01 16.38 517,629.285 3.48 19,283,285.70 109.60	2004	390,825.40	28.72	_	105.67	233,582.09	17.17	75,986.82	5.58	2,138,238.77	157.15	1,360,648.84
97.65397,048.6222.7484,408.054.832,593,428.88148.5198.68383,719.3519.1844,958.152.242,959,024.91147.9297.76332,673.2415.2835,942.641.652,995,857.43137.5678.99276,728.2212.4056,030.262.512,449,660.95109.8073.21331,591.7613.1191,405.013.612,641,161.98104.47 87.972,435,524.0116.38517,629.2853.4819,283,285.70129.67	2005	362,151.06	23.28			299,339.92	19.24	55,894.27	3.59		149.79	1,555,386.66
98.68383,719.3519.1844,958.152.242,959,024.91147.9297.76332,673.2415.2835,942.641.652,995,857.43137.5678.99276,728.2212.4056,030.262.512,449,660.95109.8073.21331,591.7613.1191,405.013.612,641,161.98104.47 87.972,435,524.0116.38517,629.2853.4819,283,285.70129.67	2006		23.29		97.65	397,048.62	22.74	84,408.05	4.83	2,593,428.88	148.51	1,746,282.59
97.76332,673.2415.2835,942.641.652,995,857.43137.5678.99276,728.2212.4056,030.262.512,449,660.95109.8073.21331,591.7613.1191,405.013.612,641,161.98104.47 87.972,435,524.0116.38517,629.2853.4819,283,285.70129.67	2007		27.82	_	98.68	383,719.35	19.18	44,958.15	2.24	2,959,024.91	147.92	2,000,343.87
78.99 276,728.22 12.40 56,030.26 2.51 2,449,660.95 109.80 73.21 331,591.76 13.11 91,405.01 3.61 2,641,161.98 104.47 87.97 2,435,524.01 16.38 517,629.285 3.48 19,283,285.70 129.67	2008	498,320.06	22.88		97.76	332,673.24	15.28		1.65	2,995,857.43	137.56	2,177,600.08
73.21 331,591.76 13.11 91,405.01 3.61 2,641,161.98 104.47 87.97 2,435,524.01 16.38 517,629.285 3.48 19,283,285.70 129.67	2009	354,556.01	15.89	1,762,346.45	78.99		12.40	56,030.26	2.51	2,449,660.95	109.80	2,231,064.80
87.97 2,435,524.01 16.38 517,629.285 3.48 19,283,285.70 129.67	2010	367,255.19	14.52	1,850,910.03	73.21	331,591.76	13.11	91,405.01	3.61	2,641,161.98	104.47	2,528,215.58
	Total	3,247,572.74	21.84		87.97	2,435,524.01	16.38	517,629.285	3.48		129.67	14,871,044.20

⁹ Amounts are in USD millions

Concerning the overall sample, the amount of derivative instruments represents 133.25% of total assets covering the period of the study between 2003 and 2010, and with an average bank size of approximately \$26 billion. During the study period swaps are the most represented instruments with notional amount equal to 17,312,022.70 USD, i.e. a percentage of 67.18% of total assets, while futures represent 16.93% of total assets. Statistics per year indicate that the highest notional amount of instruments traded is swaps defined by 77.04% of assets in 2005. In contrast, the lowest percentage refers to futures in 2010 with 10.41% of total assets.

In the sample composed only of banks in emerging countries, the most representative instrument in percentage of total assets is forwards with a percentage in the sample period equal to 40.79%, whereas the percentages of swaps and futures are respectively 36.72% and 32.84%, and finally the percentage of options is the lowest with a percentage equal to 18.98%.

Regarding sample composed only of banks in recently developed countries, the percentage of swaps of total assets is the highest with a percentage during the sample period equal to 87.97%, while futures represent only a percentage of 3.48% of total assets during the sample period.

Compared to banks from recently developed countries, banks from emerging countries use more futures. Furthermore, the use of derivative instruments in banks from emerging countries seems to be more balanced compared to banks in recently developed countries. Furthermore, with the use of derivative instruments, banks from emerging countries seem to be more balanced compared to banks in recently developed countries.

As follows Figure 3 illustrates the evolution of the four derivative instruments from 2003 to 2010.

Figure 3. Evolution of derivative instruments

Year

From Figure 3 Panel A, statistics review reveals that the percentage of swaps in total assets is the highest, followed by forwards. Conversely, the percentages of options and futures are low. From Panel B, statistics on evolution of the four instruments from emerging countries show the net decrease of futures use after the year 2005. Concerning the use of options, there is a little increase during the sample period. However, the use of swaps and especially forwards has jumped continuously. Finally, from Panel C, it can be observed that there has been a decrease in the use of derivative instruments among banks from recently developed countries especially from the year 2004. The percentage of swaps of total assets is the highest compared to the other instruments, while the percentages of futures in total assets are very low.

I.2.1.1.C. Methodology

The variables as well as the model used in the study are presented here.

I.2.1.1.C.a. Variables description

Accounting data are used to find out the volatility of return on assets, leverage risk, credit risk, and liquidity risk. Volatility of return on assets is defined by the standard deviation of return on assets calculated from quarterly income statements. Leverage risk is defined by the annual part of equity in total assets, credit risk is defined by the annual total of gross loans or loan loss reserves on total assets. Liquidity risk is defined by annual total of liquid assets on total assets.

As following the variables employed in the study along with their definitions and use in previous studies are exposed.

Labels	Description	Proxy for	References
Dependent	variables		-
EQTA	the ratio of book-value-equity-to-total- assets	Leverage risk	Agusman et al. (2008)
LIQTA	the ratio of liquid-assets-to-total-assets	Liquidity risk	Agusman et al. (2008)
GLTA	the ratio of gross-loans-to-total-assets	Credit risk	Agusman et al. (2008)
LLRGL	the ratio of loan-loss-reserves-to-gross loan	Credit risk	Agusman et al. (2008)
SDROA	the standard deviation of return before taxes on assets estimated from quarterly income statements	Overall risk	Agusman et al. (2008)
Independen	t variables: derivative instruments		·
FWD	Notional value of forwards divided by total assets	Forwards	Chaudhry et al. (2000)
SWP	Notional value of swaps divided by total assets	Swaps	Chaudhry et al. (2000)
OPT	Notional value of options divided by total assets	Options	Chaudhry et al. (2000)
FUT	Notional value of futures divided by total assets	Futures	Chaudhry et al. (2000)
Independen	t variables: control variables		
NIM	The difference between total interest income and total interest expense expressed, as a percentage of total assets.	Net interest margin	Chaudhry et al. (2000)
SIZE	Natural log of total assets	Bank size	Chaudhry et al. (2000) ; Reichert and Shyu (2003)
DEAL	1 if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise	Dealer	Chaudhry et al. (2000); Reichert and Shyu (2003)
COUNTRY	Dummy variable equals 1 when bank is issued from , 0 otherwise	Country variable	Agusman et al. (2008)

Table 24. Description of variables

The dependent variables are regressed on derivative instruments and control variables. Control variables are defined by net interest margin, size of the bank, and dummy variables reflecting dealer bank and country belonging. Regarding the heterogeneity of the sample, like in the study by Agusman et al. (2008) country dummy variables are included to control for the differences in the banking structure and regulatory environments, and the different economic and political characteristics that may affect the relation between derivative instruments and accounting measures of risk.

The dichotomous variable DEAL takes a value one for dealer banks and zero otherwise. Accordingly to Chaudhry et al. (2000) the dummy variable DEAL is introduced in order to differentiate between the risk exposure of dealer banks and non-dealer banks.

I.2.1.1.C.b. Testing hypotheses and expected results

According to literature (Choi and Elyasiani, 1996, McAnally, 1996, Chaudhry et al., 2000, and Reichert and Shyu, 2003) swaps affect negatively bank risk, while options increase bank risk.

Therefore, hypotheses in the current study are as follows. Firstly, a negative effect of swaps on accounting risk is expected. Secondly, a positive effect of options on accounting risk is anticipated. Finally, and basing on the results of Chaudhry et al. (2000) no effect of futures and forwards use on accounting risk is stipulated.

As regards control variables, a positive effect of net interest margin and bank size on accounting risk is expected accordingly to Chaudhry et al. (2000) and Reichert and Shyu (2003).

Chaudhry et al., 2000 found that dealer banks are riskier than non-dealers so a positive effect of dealer variable on capital market risk is provided.

Finally, because no prior paper has introduced country variable in the conceptual model so the effect of countries on accounting risk is unexpected.

I.2.1.1.C.c. Empirical model

The equation (5) below presents the conceptual model:

 $Risk\ measure_{i,t} = \gamma_0 + \gamma_1\ FWD_{i,t} + \gamma_2 SWP_{i,t} + \gamma_3\ OPT_{i,t} + \gamma_4\ FUT_{i,t} + \gamma_5\ NIMTA_{i,t}$

+
$$\gamma_6 \operatorname{SIZE}_{i,t} + \gamma_7 \operatorname{DEAL}_{i,t} + \sum_{k=1}^{K} \gamma_{8,k} \operatorname{COUNTRY}_{i,t,k} + u_i + e_{i,t},$$
 (5)

Where:

Risk measure is one of EQTA; GLTA, LLRGL, LIQTA, or SDROA.

 $(u_i + e_{i,t})$ is the composite error term. u_i is the random error in which heterogeneity is specifically to a cross-sectional unit-in this case, bank; and $e_{i,t}$ is the random error in which heterogeneity is specifically to a particular observation.

The model seeks to empirically test the relations between accounting risk measures and derivative instruments.

Then, we used panel data methodologies to estimate the parameter values and the computer software STATA 10 ® was used to estimate all regressions.

I.2.1.1.C.d. Specification tests

Firstly, the stationarity of all the variables is checked using the Augmented Dickey Fuller Tests. Trying with four lags, then with trend, and finally without constant. The stationarity is also checked using Unit Root tests- Phillips-Perron test and DF-GLS test. The linearity of the model is tested for with Ramsey-Reset Test. A normal hazard of residuals is finally examined with Jacques-Bera Test. Furthermore, correlations and problem of multicollinearity are checked. The Hausman test is applied to decide between fixed and random effect model. Ultimately, robustness tests of each model are conducted using a Modified Wald test for groupwise heteroskedasticity for fixed effect model and also a Breusch and Pagan Lagrangian multiplier test for random effect model.

I.2.1.2. Empirical results

As seen below, an empirical relationship exists between the use of derivative instruments and bank risk.

I.2.1.2.A. Descriptive statistics

The table below describes statistics of variables used in the model covering the overall sample and the two subsamples.

		0	verall sample		
Variable	Obs	Mean	Std. Dev.	Min	Max
fwd	1096	0.23	0.71	0	11.44
swp	1096	0.43	1.13	0	19.05
opt	1096	0.09	0.26	0	3.17
fut	1096	0.08	0.86	0	16.55
eqta	1096	0.10	0.06	0.00	0.88
glta	1096	0.55	0.16	0.00	1.31
llrgl	1096	0.01	0.01	0.00	0.29
liqta	1096	0.07	0.07	0.00	1.17
sdroa	1096	0.00	0.01	0.00	0.16
nim	1096	0.03	0.04	-0.02	0.77
size	1096	9.11	1.60	3.70	12.85
		Banks from	n emerging cou	Intries	
Variable	Obs	Mean	Std. Dev.	Min	Max
fwd	592	0.21	0.78	0.00	11.44
swp	592	0.34	1.22	0.00	19.05
opt	592	0.08	0.31	0.00	3.17
fut	592	0.14	1.17	0.00	16.55
eqta	592	0.10	0.07	0.00	0.88
glta	592	0.54	0.17	0.05	0.97
llrgl	592	0.02	0.02	0.00	0.29
liqta	592	0.09	0.08	0.00	1.17
sdroa	592	0.00	0.01	0.00	0.13
nim	592	0.03	0.05	0.00	0.77
size	592	8.63	1.72	3.70	12.85
		anks from rec	ently develope	d countries	1
Variable	Obs	Mean	Std. Dev.	Min	Max
fwd	504	0.25	0.61	0.00	6.00
swp	504	0.55	1.01	0.00	7.84
opt	504	0.10	0.19	0.00	1.63
fut	504	0.01	1.31	0.00	16.55
eqta	504	0.09	0.05	0.013	0.57
glta	504	0.56	0.15	0.00	1.31
llrgl	504	0.01	0.01	0.00	0.11
liqta	504	0.05	0.06	0.00	0.32
sdroa	504	0.00	0.00	0.00	0.16
nim	504	0.02	0.00	-0.02	0.04
size	504	9.68	1.22	5.66	12.34

Table 25. Descriptive statistics of variables

Descriptive statistics show usual scores of all variables. For overall sample, the mean is between 0.00 and 9.11 and standard deviation has scores from 0.01 to 1.60. Finally, min scores are between 0.00 and 3.70, and max scores are between 0.16 and 19.05. For banks from emerging countries the mean is going from 0.00 to 8.63, the standard deviation is between 0.01 and 1.72, the min is about 0.00 and 3.70, and lastly the max is between 0.13 and 19.05.

For banks from recently developed countries, the mean is between 0.00 and 9.68, the standard deviation is between 0.00 and 1.31, the min is between 0.00 and 5.66 and finally the max is comprised between 0.04 and 16.55.

I.2.1.2.B. Regression analysis

The parameter estimates from Equation 6 for each of the five risk measures are presented in the following table. In this table, it should be noted that insignificant independent variables were removed from the models, and the regressions reestimated to get more precise estimates.

	P	anel A. For over	all sample		
	EQTA	GLTA	LLRGL	LIQTA	SDROA
	(Leverage risk)	(Credit risk 1)	(Credit risk 2)	(Liquidity risk)	(Total risk)
Constant	0.1551135***	0.5482274***	0.0318569***	0.0718038***	0.0079017***
Collstallt	(0.01315)	(0.0377125)	(0.0013297)	(0.0138603)	(0.0007778)
FWD	-0.005751*** (0.0019697)	NS	NS	-0.0029418* (0.0015855)	NS
SWP	NS	-0.0136368 *** (0.0032783)	-0.0015535*** (0.0002621)	NS	NS
OPT	0.0169053*** (0.0051756)	0.0190371 ** (0.0093309)	NS	NS	-0.0047164* (0.0026211)
FUT	NS	NS	NS	NS	0.0007763* (0.0004512)
NIM	0.797544*** (0.0786721)	-0.4859484 *** (0.0663234)	0.0697491*** (0.0109894)	0.3754465*** (0.0930716)	NS
SIZE	-0.0107483*** (0.0014023)	0.0147786 *** (0.0036482)	NS	-0.009032*** (0.0014829)	NS
DEAL	-0.012498*** (0.0029331)	NS	NS	-0.0247658*** (0.0051801)	NS
COUNTRIES		See details of the	country dummies	in Appendix II.a.	
R-squared	0.5684	0.4591	0.3270	0.4834	0.2984
F statistic	26.57***	67.47***	63.22***	46.33***	24.13***
Number of obs	1096	1096	1096	1096	736

 Table 26. Estimated coefficients

 Panel 4. For overall sample

	EQTA	GLTA	LLRGL	LIQTA	SDROA	
	(Leverage risk)	(Credit risk 1)	(Credit risk 2)	(Liquidity risk)	(Total risk)	
Constant	0.1379832***	0.3608178***	0.0305181***	0.1091668***	0.0073691***	
Collstant	(0.0131371)	(0.0379863)	(0.0014924)	(0.0193169)	(0.0008091)	
FWD	-0.0072193**	NS	NS	-0.0041709*	0.0086751*	
I WD	(0.0032143)	115	115	(0.0021829)	(0.0049607)	
SWP	NS	NS	-0.0012426***	-0.0053625***	NS	
511		115	(0.0002543)	(0.0012004)	115	
OPT	0.023765***	NS	NS	0.0273734**	-0.0101757*	
011	(0.0080161)	115	115	(0.0129902)	(0.0055368)	
FUT	-0.002826*	NS	NS	NS	0.0015838*	
101	(0.0016431)	115	115	115	(0.0009134)	
NIM	0.8118519***	-0.4564403***	0.0653069***	0.3721157***	NS	
1 1 1 1 1 1	(0.0803363)	(0.0605393)	(0.0107152)	(0.0948732)	115	
SIZE	-0.0081553***	0.021895***	NS	-0.0093782***	NS	
SIZE	(0.001383)	(0.0041033)	115	(0.0017837)	115	
DEAL	-0.0288609***	NS	NS	-0.0256994***	NS	
DEAL	(0.0065563)			(0.0095755)	115	
COUNTRIES		See details of the	country dummies i	in Appendix II.b.		
R-squared	0.6129	0.5497	0.2517	0.4617	0.3687	
F statistic	22.12***	112.05***	61.40***	30.56***	26.72***	
Number of obs	592	592	592	592	432	

Panel B. For emerging countries

Panel C. For recently developed countries

	EQTA	GLTA	LLRGL	LIQTA	SDROA	
	(Leverage risk)	(Credit risk 1)	(Credit risk 2)	(Liquidity risk)	(Total risk)	
Constant	0.2786251***	0.5699885***	0.0324165***	0.1784943***	0.0187453***	
Constant	(0.0445082)	(0.0113673)	(0.0053214)	(0.0238287)	(0.0068745)	
FWD	-0.0122533***	NS	NS	NS	NS	
TWD	(0.0028496)	115	115	115	CIT	
SWP	0.0052534**	-0.0273719***	-0.003378***	NS	NS	
SWF	(0.0021781)	(0.0049557)	(0.000882)	IND	IND	
OPT	NS	NS	0.004761*	-0.0182626*	NS	
OPT	IND	IND	(0.0026644)	(0.0097805)	IND	
FUT	0.0721828**	-0.1734052***	NS	NS	0.0188567*	
FUI	(0.0314471)	(0.0557002)	IND	INS	(0.0114387)	
NIM	NS	NS	0.3898091***	0.6609709**	NS	
INIIVI	10.5	103	(0.0742684)	(0.2854685)	1ND	
SIZE	-0.0165964***	0.0232479***	-0.0013331***	-0.0093396***	-0.00132**	
SIZE	(0.0042108)	(0.0048278)	(0.0004836)	(0.0020648)	(0.0005988)	
DEAL	NS	NS	NS	-0.0264916***	NS	
DEAL	INS			(0.0061646)	INS	
COUNTRIES		See details of the	country dummies	in Appendix II.c.		
R-squared	0.5021	0.3331	0.4755	0.4467	0.0837	
F statistic	26.01***	51.81***	30.10***	21.63***	11.02 ***	
Number of obs	504	504	504	504	304	

*, ** and *** respectively indicate statistical significance at the 10%, 5% and 1% levels. The variable that are not significant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables. () indicate standard deviation of the estimators. NS indicate non-significance of coefficient. Years 2003—2010.

From Panel A it is found that the use of forwards negatively affects leverage risk and liquidity risk at levels of significance respectively equal to 1% and 10%.

From these results we deduce that using forwards affects negatively bank risks of the entire sample. This finding confirms that forwards are used essentially for speculation which augments bank risks.

The association between swaps and the two credit risk measures indicates a negative relationship at a level of significance equal to 1%.

Therefore, we can interpret that using swaps is beneficial for banks since they reduce their credit risks by using swaps which confirms the hedging rule that takes swaps in minimizing bank risks.

Options positively affect leverage risk and credit risk 1 at levels of significance respectively equal to 1% and 5%, while the relationship between options and total risk is negatively and weakly significant at a level of significance equal to 10%. These results confirm that the speculation purpose of options tends to increase of bank risks. In addition, we remark that sample banks deal worse with options when they speculate.

As for futures, results indicate that the use of futures positively but weakly affects total risk at a level of significance equal to 10%. This finding explains that there is a little increase of total risk when sample banks use futures. This weakness in significance can be explicated by the little number of banks that are involved in futures activities.

Finally, as regarding the effect of derivative instruments on bank risk we find that in line with past studies only options tends to increase bank risk while the other types of derivatives tends to reduce bank risk.

Net interest margin positively affects leverage risk, credit risk 2 and liquidity risk but it has a negative effect on credit risk 1 at a level of significance equal to 1%.

Results on net interest margin show that overall net interest margin has positive effect on bank risks according to the literature results. Size has a positive effect on leverage risk and liquidity risk but it negatively affects credit risk 1 at a level of 1%. In general, size seems to increase bank risk which verifies the thesis exposed in the literature stipulating that big banks are more risky than small banks.

The dummy variable that defines dealer banks is negatively significant with leverage risk and liquidity risk at a level of significance equal to 1%. This finding rejects expectation according to literature results. In fact, previous studies found that dealer banks are more risky than non-dealer banks because they take much risk when they deal with derivatives. Our results can be explicated by the fact that dealer banks in our sample manage better their risk from derivatives than other dealer banks.

As regards the effect of regressions of country variables, only the variable that defines banks from Indonesia is not significant with any type of risk measures.

From Panel B, results focused on emerging countries expose that forwards negatively affect leverage risk at a level of significance equal to 5% and liquidity risk at a level of significance equal to 10%, and it has a positive effect on total risk at a level of significance equal to 10%. According to literature results we can say that using derivatives reduces bank risk generally. This finding corroborates the idea that forwards are not risky instruments in spite of their use in over the counter markets.

Swaps have negative effect on credit risk 2 and liquidity risk at a level of significance equals to 1%. Similarly to forwards our results verifies the findings of previous studies that swaps minimize bank risk. Using usually as hedging tool especially against credit risks, swaps confirms that are beneficial derivatives that reduce bank risk.

Options have positive effect on leverage risk and liquidity risk at levels of significance respectively equal to 1% and 5%, and negative effect on total risk at a level of significance equal to 10%. We can deduce that in general options tend to increase bank risk as expected. There is a confirmation that options seem to be risky tool because of their speculation purpose.

And finally futures negatively affect leverage risk and positively total risk at a level of significance equal to 10%. Not contrarily to the literature we find that also that futures do not increase bank risk. In our study we can say that using futures decrease minimally bank risk. This weakness in the effect of futures on bank risk can be

explained by the little number of banks that have used this derivative type during our sample period.

As regarding control variables, net interest margin positively affect leverage risk, credit risk 2 and liquidity risk at a level of significance equal to 1%, but has a negative effect on credit risk 1 at the same level of significance. Results on net interest margin are not so concluding to say that it reduces or increases bank risk.

Size has a negative effect on leverage risk and liquidity risk but positively affects credit risk 1 all at a level of significance equal to 1%. Also for size our findings do not allow us to be relevant in the sign of the effect of size on bank risk.

The dummy variable that defines dealer bank negatively affects leverage risk and liquidity risk at a level of significance equal to 1%. Our finding shows that dealer variable has negative effect on bank risk which is contrary with literature results. We can interpret this by the fact that dealer banks in the sample manage better their risks than other dealer in literature sample.

From Panel C, results limited to recently developed countries show that forwards have a negative effect on leverage risk at a level of significance equal to 1%. This result confirms in line with theory that forwards tend to decrease bank risk.

Swaps negatively affect at a level of significance equal to 1% the two credit risk measures, but it has a positive effect on leverage risk at a level of significance equal to 5%. In general, we can say that using swaps tend to reduce bank risk. This finding corroborates the results of past studies.

While options positively affect credit risk 2 and negatively liquidity risk at a level of significance respectively equal to 10%. Findings on options are not concluding so we cannot say if options increase or decrease risk of banks from recently developed countries.

And finally, the use of futures has a positive effect on leverage risk and total risk at a level of significance equal to 10% but negatively affect credit risk 1 at a level of significance equal to 1%. Equally to options our results on futures do not allow us to interpret if futures increase or decrease bank risk.

Regarding control variables, net interest margin positively affects credit risk 2 and liquidity risk at levels of significance respectively equal to 1% and 5%. According to the theory we find that net interest margin tend to increase bank risk. Size has negative effect on leverage risk, credit risk 1 and liquidity risk but positively affects credit risk 1 all at a level of significance equal to 1%. This result about the effect of

the size on bank risk is not concluding which do not confirm or reject literature thesis. As for dummy variables, the variable that defines dealer banks is negatively significant with liquidity risk at a level of significance equal to 1%. This finding rejects expectations stipulating that dealer banks are increasing their risk.

I.2.1.2.C. Specification tests results

The P values of the Augmented Dickey Fuller Tests for all the specifications are closed to 0. We have similar results for the Phillips-Perron test. The DF-GLS test rejects the null hypothesis of unit root at 1% significance level for all the specifications. (The results are available under request to the corresponding author). Stationarity of variables is then detected in all the cases.

As follows the Table 27 summarizes the main results of the Ramsey-Reset Test (for more details see Appendix V.b.).

Dependent variable	chi2(3)	Prob > chi2
Leverage risk EQTA	67.89	0.0000
Liquidity risk LIQTA	36.42	0.0000
Credit risk 1 GLTA	19.19	0.0002
Credit risk 2 LLRGL	0.28	0.9635
Total risk SDROA	4.93	0.1768

 Table 27. Ramsey-Reset Test

In the next, the Figure 4 is checked with the nonlinear relation between independent variables and error terms when the risk is measured by leverage risk, liquidity risk and credit risk 1.

Figure 4.1. Leverage risk measure function of its predicted variable

Figure 4.2. Liquidity risk measure function of its predicted variable

Figure 4.3. Credit risk measure function of its predicted variable

Figure 4. Risk measures against their predicted variables

From Figure 4 above no strong nonlinear relation between the independent variables and the dependent variable is seen. Thus, linearity of the model is almost assured.

Correlations between variables are presented in the following matrices (5% level of significance is retained):

	eqta	fwd	swp	opt	fut	nim	size
eqta	1.0000						
fwd	-0.0795*	1.0000					
	(0.0084)						
swp	-0.0046	0.3875*	1.0000				
-	(0.8781)	(0.0000)					
opt	0.0806*	0.1065*	0.1563*	1.0000			
•	(0.0076)	(0.0004)	(0.0000)				
fut	0.0024	0.0003	0.0182	0.3891*	1.0000		
	(0.9377)	(0.9921)	(0.5469)	(0.0000)			
nim	0.6196*	-0.0219	0.0304	-0.0136	-0.0170	1.0000	
	(0.0000)	(0.4684)	(0.3152)	(0.6536)	(0.5746)		
size	-0.3224*	0.1056*	0.1520*	0.0872*	0.0758*	-0.1983*	1.0000
	(0.0000)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0000)	
-	<u> </u>	1 1 4	1, 1		•••		

Table 28. Matrix of correlations (leverage risk is the dependent variable)

The numbers in brackets correspond to the standard error.

Table 29. Matrix of correlations (liquidity risk is the dependent variable)

	liqta	fwd	swp	opt	fut	nim	size
liqta	1.0000						
fwd	-0.0543	1.0000					
	(0.0725)						
swp	-0.1226*	0.3875*	1.0000				
	(0.0000)	(0.0000)					
opt	-0.0228	0.1065*	0.1563*	1.0000			
	(0.4517)	(0.0004)	(0.0000)				
fut	0.0371	0.0003	0.0182	0.3891*	1.0000		
	(0.2193)	(0.9921)	(0.5469)	(0.0000)			
nim	0.2497*	-0.0219	0.0304	-0.0136	-0.0170	1.0000	
	(0.0000)	(0.4684)	(0.3152)	(0.6536)	(0.5746)		
size	-0.1743*	0.1056*	0.1520*	0.0872*	0.0758*	-0.1983*	1.0000
	(0.0000)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0000)	

The numbers in brackets correspond to the standard error.

Table 30. Matrix of correlations (credit risk 1 is the dependent variable)

	glta	fwd	swp	opt	fut	nim	size
glta	1.0000						
fwd	0.0820*	1.0000					
	(0.0066)						
swp	-0.0137	0.3875*	1.0000				
	(0.6495)	(0.0000)					
opt	-0.0335	0.1065*	0.1563*	1.0000			
	(0.2684)	(0.0004)	(0.0000)				
fut	-0.0310	0.0003	0.0182	0.3891*	1.0000		
	(0.3055)	(0.9921)	(0.5469)	(0.0000)			
nim	-0.0960*	-0.0219	0.0304	-0.0136	-0.0170	1.0000	
	(0.0015)	(0.4684)	(0.3152)	(0.6536)	(0.5746)		
size	0.1167*	0.1056*	0.1520*	0.0872*	0.0758*	-0.1983*	1.0000
	(0.0001)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0000)	

The numbers in brackets correspond to the standard error.

	llrgl	fwd	swp	opt	fut	nim	size
llrgl	1.0000						
fwd	-0.0256	1.0000					
	(0.3964)						
swp	-0.0226	0.3875*	1.0000				
	(0.4550)	(0.0000)					
opt	-0.0278	0.1065*	0.1563*	1.0000			
	(0.3575)	(0.0004)	(0.0000)				
fut	-0.0279	0.0003	0.0182	0.3891*	1.0000		
	(0.3557)	(0.9921)	(0.5469)	(0.0000)			
nim	0.1800*	-0.0219	0.0304	-0.0136	-0.0170	1.0000	
	(0.0000)	(0.4684)	(0.3152)	(0.6536)	(0.5746)		
size	-0.0870*	0.1056*	0.1520*	0.0872*	0.0758*	-0.1983*	1.0000
	(0.0040)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0000)	

 Table 31. Matrix of correlations (credit risk 2 is the dependent variable)

The numbers in brackets correspond to the standard error.

 Table 32. Matrix of correlations (total risk is the dependent variable)

	sdroa	fwd	swp	opt	fut	nim	size
sdroa	1.0000						
fwd	-0.0031	1.0000					
	(0.9176)						
swp	-0.0241	0.3875*	1.0000				
	(0.4250)	(0.0000)					
opt	0.0074	0.1065*	0.1563*	1.0000			
	(0.8074)	(0.0004)	(0.0000)				
fut	-0.0042	0.0003	0.0182	0.3891*	1.0000		
	(0.8897)	(0.9921)	(0.5469)	(0.0000)			
nim	0.0915*	-0.0219	0.0304	-0.0136	-0.0170	1.0000	
	(0.0024)	(0.4684)	(0.3152)	(0.6536)	(0.5746)		
size	-0.0083	0.1056*	0.1520*	0.0872*	0.0758*	-0.1983*	1.0000
	(0.7836)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0000)	

The numbers in brackets correspond to the standard error.

Moreover, a test for multicollinearity is completed. A detection-tolerance or the variance inflation factor (VIF) for multicollinearity can be defined as follows:

Tolerance_j = $1 - R_j^2$, VIF_j = 1/Tolerance_j

where R_j^2 is the coefficient of determination of a regression of explanatory variable *j* on all the other explanatory variables. A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem (see O'Brien 2007). As following the results confirm an absence of multicollinearity problem:

	VIF	1/VIF
Size	1.61	0.622517
Swp	1.39	0.719839
Nim	1.37	0.731653
Fwd	1.32	0.759111
Opt	1.28	0.778838
Fut	1.20	0.834699
Mean VIF	1.36	

Table 33. Multicollinearity test

The Table 34 as follows resumes main results of Hausman test (more results are in the Appendix VI.b.).

Dependent variable	chi2(6)	Prob > chi2	
Leverage risk			
EQTA	7.54	0.2738	
Liquidity risk LIQTA	29.38	0.0001	
Credit risk 1	130.76	0.0000	
GLTA	100000	0.0000	
Credit risk 2			
LLRGL	5.21	0.5171	
Total risk			
SDROA	1.92	0.9271	

Table 34. Hausman Test

As shown above for liquidity risk and credit risk 1 there is correlation between the majority of independent variables and the error terms. However, using fixed effect model dropped all the dummies, so we prefer to choose the random effect model. For the other risk measures results prove the absence of correlation between the independent variables and the error terms which confirms the choice of random effect model. . For fixed effect model a Modified Wald test for groupwise heteroskedasticity is used. The null hypothesis is H0: sigmai2 = sigma2 for all i. The results are presented in the following table:

Dependent variable	chi2(137) test statistic	P value
Leverage risk: EQTA	1.9e+07	0.0000 *
Credit risk 1: GLTA	15277.43	0.0000 *

Table 35. Modified Wald test for groupwise heteroskedasticity

The results above show the null hypothesis of the presence of homoskedasticity (or constant variance) is retained. Therefore, we use the option 'robust' in STATA to control for heteroskedasticiy.

Finally, in order to check between random effect model and simple OLS regression choice, a Breusch and Pagan Lagrangian multiplier test is conducted. The null hypothesis is H₀: "Var(u_i)=0" against H₁: "Var(u_i)>0". The results are presented in Table 36.

Table 36. Breusch and Pagan Lagrangian multiplier test

Dep.	sd(Dep.	$sd(e_{i,t})$	sd(u _i)	chi2(1) test	P value
variable	Variable)			statistic	
sdroa	0.01179	0.008683	0.0080738	781.38	0.0000 *
llrgl	0.0686165	0.061089	0.0295072	122.07	0.0000 *
eqta	0.0638622	0.027084	0.0396406	1690.84	0.0000 *

The results confirm that the random effect has to be used, conversely to the simple OLS regression.

From these results on Breusch and Pagan Lagrangian multiplier test the null hypothesis is verified in the all models so that random effect models are justified.

I.2.1.3. Summaries and discussions

For overall sample, finding that the coefficient of the association between derivative instruments and total risk is so low confirms that the effect of derivative instruments on total risk is weak. Results are not so significant to interpret how the use of derivatives impacts bank risk.

Concerning control variables, the result about bank size rejects the thesis stipulating that size increases bank risk. In contrast, net interest margin affect in general positively risk measures. Consequently, the hypothesis stipulating that net interest margin affects positively bank risk is confirmed. The result about dummy variable that defines dealer banks rejects the thesis stipulating that dealer banks are at risk because of its affects negatively accounting risk. Finally, Appendix II.a. shows that only the country dummy defining Indonesia is not significant with any risk types. Therefore Indonesian banks reject any relationship between country dummy and bank risk.

For emerging countries, the result about the dummy variable that defines dealer bank rejects the thesis stipulating that dealer banks are at risk.

For recently developed countries, the result about the variable that defines dealer banks rejects the thesis stipulating that dealer banks are at risk. Finally, deduced results show no strong significance in the association between derivative instruments and total risk.

To summarize, the overall results indicate that forwards have a negative effect on leverage risk and liquidity risk respectively at 1% and 10% level of significance. Swaps also negatively affect the two credit risk measures at level of significance equal to 1%. In contrast, options have a positive effect on leverage risk and credit risk 1 respectively at 1% and 5% level of significance, and have a negative but weak effect on total risk at 10% level of significance. And finally, futures positively but mildly affect total risk at a level of significance equal to 10%.

In the whole, the use of forwards and swaps contracts reduces risk, options tend to increase risk, and the use of futures contributes minimally to risk. Observing that the majority of banks mainly use forwards and swaps, we deduce that sample banks are not at risk by using derivative instruments.

The following table sums up the main regression results about the association between the four derivative instruments and the four accounting risk measures.

	Forwards	Swaps	Options	Futures
Leverage risk	-	NS	+	NS
Credit risk 1	NS	-	+	NS
Credit risk 2	NS	-	NS	NS
Liquidity risk	-	NS	NS	NS
Total risk	NS	NS	-	+

 Table 37. Summary of regression coefficient signs

 Panel A. For overall sample

Panel B.	For e	emerging	countries

	Forwards	Swaps	Options	Futures
Leverage risk	-	NS	+	-
Credit risk 1	NS	NS	NS	NS
Credit risk 2	NS	-	NS	NS
Liquidity risk	-	-	+	NS
Total risk	+	NS	-	+

Panel C. For recently developed countries

	Forwards	Swaps	Options	Futures
Leverage risk	-	+	NS	+
Credit risk 1	NS	-	NS	-
Credit risk 2	NS	-	+	NS
Liquidity risk	NS	NS	-	NS
Total risk	NS	NS	NS	+

Common results of the two subsamples show that the use of forwards has a negative effect on leverage risk, swaps negatively affect credit risk 2, and the use of futures has a positive and mild effect on total risk.

There is evidence that forwards and swaps are used for hedging purposes both from banks in emerging countries and those in recently developed countries. Furthermore, it appears that banks use less future contracts especially banks from recently developed countries.

Concerning control variables, net interest margin affects positively credit risk 2 and liquidity risk in the two subsamples. This result verifies literature findings and our hypothesis.

In spite of its positive effect on credit risk 1, size affects negatively leverage risk and liquidity risk in the two subsamples. Therefore, the argument stipulating that bank size increases risk is eliminated.

Finally, the dealer variable is negatively associated with liquidity risk in the two subsamples. Indeed, dealer banks in emerging as well in recently developed countries manage in the better way their accounting risks.

Differences between Panel B and Panel C are related to leverage risk and liquidity risk. For banks from recently developed countries, using futures has a positive effect on leverage risk, while it has a negative effect for banks from emerging countries. It appears that banks from emerging countries manage the risk of using futures better than banks from recently developed countries. The use of option contracts by banks from recently developed countries has a negative effect on liquidity risk while it has a positive effect with banks from emerging countries. Indeed, banks from recently developed countries in a better way.

Summarizing, forwards and swaps have the same effect on bank risk whether are used by banks in emerging or recently developed countries. However, comparing results expose that banks in emerging countries deal better with futures than banks in recently developed countries. And finally, banks in recently developed countries manager the risk of options better than banks in emerging countries.

In conclusion, this chapter examines the impact of four derivative instruments (options, swaps, forwards, and futures) on five measures of accounting risk for banks. Bank risk is measured in terms of leverage risk, liquidity risk, credit risk 1, credit risk 2 and total risk. Empirical results using pooled data for 2003-2010 collected from overall sample and two sub-samples. The overall sample is composed of banks from emerging as well as from recently developed countries.

Regarding main results collected from the overall sample and the two sub-samples, in general the use of forwards and swaps decrease bank risk while the use of options positively affects bank risk, and finally the use of futures has a mildly significant effect on bank risk.

Regarding comparing results, banks in recently developed countries manager the risk of options better than banks in emerging countries while banks in emerging countries deal better with futures than banks in recently developed countries. Whereas, forwards and swaps have the negative effect on bank risk in the subsamples.

Or the majority of banks generally make use of forwards and swaps so it seems clear that sample banks are not at risk by using derivative instruments.

Overall, it appears that forwards and swaps are used as a hedging tool while options are viewed as playing a more speculative role.

In definitive, this part of the thesis has the aim to study the effect of derivative instruments use on bank risk. Thus, two chapters have been carried out in order to attain this end. Concluding results of the two chapters show that sample banks are not at risk by using derivative instruments.

Hence, not only should the negative implications attributed to derivatives in the recent financial crisis be reviewed, but also, more importantly, the argument that derivative instruments were the principal cause of the most recent financial crisis should be revised.

PART II. DERIVATIVE INSTRUMENTS USE AND BANK PERFORMANCE

The recent financial liberalization policies have also changed the business environment of the banking industry considerably and thereby increasing the risk they faced. Banks were directly affected because they were direct targets of the liberalization process. This phenomena stressed by globalization have paved the way to banks especially from emerging markets to enter to new profitable markets such as those of derivatives.

Banks are motivated to use these innovations in order to protect against risk and uncertainty of the financial market, and also to generate revenue beyond that available from traditional bank operations.

Indeed, such benefits of derivative instruments explain the widespread use and the rapid growth of derivative transactions in the recent decades.

Benefits of derivatives usage are mentioned widely in literature. Several authors, such as Smith and Stulz (1985), Nance et al. (1993) and Fok et al. (1997) argue that there are three major benefits from using derivatives: reduced taxes under a progressive tax schedule, reduced expected cost of financial distress, and reduced agency cost problems.

However, there is a gap in the literature in studying the effect of derivative usage on bank performance. An overview of the literature shows that in our knowledge there are only two papers focusing in this topic (Said, 2011; Rivas et al. 2006).

The second part of the thesis intends to fill this gap by investigating the effect of derivative instruments use on bank performance.

To this end, this second part is planned as follows. The first chapter explores the effect of derivative instruments use on stock return performance. The second chapter studies the effect of derivative instruments use on accounting performance.

Chapter II.1. Effect of derivative instruments on stock return performance

The current chapter has the purpose to check up if by using derivatives sample banks increase or decrease their stock return performance.

To achieve this aim two sections are performed. The first section summarizes previous papers about the relationship between derivatives and bank performance. The second section is defined by an analysis testing empirically the impact of derivative instruments use on stock return risk.

Section II.1.1. Derivative activities and performance: Literature review

II.1.1.1. Theoretical literature review and results

Before presenting literature about derivatives use and performance, observation show that many papers have demonstrated the benefits of derivatives use.

Brewer et al. (2000) examine the effects of the use of interest-rate derivative products on the commercial and industrial lending activity of US commercial banks. They find that interest-rate derivatives users have greater growth in their commercial and industrial loan portfolios than non-users.

Furthermore, Gunther and Siems (2002) conclude that U.S. medium-sized commercial banks involved in derivatives are financially secure.

Moreover, the findings of Minton et al. (2009) reveal that derivatives can increase the liquidity of the organizations due these tools used to hedges financial cost, agency cost, and improve the efficiency of these organizations.

Literature investigating the relationship between derivatives use and performance can be divided in two groups.

The first group concern non-financial firms i.e. corporate literature.

Allayannis and Weston (2001) have examined the use of foreign currency derivatives (FCDs) in a sample of 720 large U.S. nonfinancial firms between 1990 and 1995 and

its potential impact on firm value. Using Tobin's Q10 as a proxy for firm value, they find a positive relation between firm value and the use of FCDs.

Moreover, the results of Bartram et al. (2006) show that the effect of derivatives use on firms' value is positive.

In his paper Ameer (2010) tests empirically the impact of Malaysian firm specific factors on the use of derivative instruments. He finds that there is a significant relationship between the use of derivatives and foreign sales, liquidity, firm growth, managerial ownership and size.

Contrarily to previous studies the findings of Fauver and Naranjo (2010) reveal a negative association between firm value defined by Tobin's Q and derivatives used in the U.S. context.

In the same way banking literature investigating the effect of derivative use on performance is limited to few papers.

In his study Said (2011) explores how the use of derivatives by US banks have impacted their performance (measured by return on assets ratio, return on equity ratio, efficiency ratio, cost of funding earning assets, and net interest margin). He found a positive correlation between accounting performance measures and usage of derivatives.

Furthermore, investigating whether the use of derivatives by banks in Latin America affect their efficiency (measured by Data Envelopment Analysis), Rivas et al. (2006) conclude that banks efficiency increases with the use of derivatives.

Brewer et al. (2000) study the relationship between lending and derivatives use over the period from the fourth quarter of 1994. They explain how the association between BHC lending and their use of interest rate derivatives can be measured by examining the relationship between the growth in BHC business loans and their involvement in interest rate derivative markets. They find that banks using derivatives increase their business lending faster than banks that do not use derivatives. Moreover, they deduce that large banks are much more likely than small banks to use derivatives. They argue that there is an agreement with the idea that there is a fixed cost associated with initially

¹⁰ Tobin's q was developed by James Tobin (Tobin 1969) as the ratio between the market value (the going price in the market) and replacement value (the price in the market for newly produced commodities) of the same physical asset. Source: Wikipedia

learning learning how to use derivatives and large banks are more willing to incur this fixed cost because they will more likely to use a larger amount of derivatives.

The findings of Brewer et al. (2001) show that U.S. interest-rate derivatives users do not increase significantly their accounting profits defined by return in asset and return on equity ratios in the 1986 to 1994 period.

Finally, and in opposite to previous studies Sinkey and Carter (2000) deduce that U.S. bank users of derivatives have lower net interest margin than non-users.

In comparison to literature, this work is focusing on banks mainly from emerging countries and examining the effect of each derivative instrument on bank performance. This contribution is presented in the next section.

II.1.1.2. Empirical literature review

Investigating the impact of U.S. interest-rate derivatives usage on accounting profits Brewer et al. (2001) have used a widely two-index market model to characterize the return generating process for bank common stocks. This model is an extension of single index market model in which capital market risk sensitivity can be represented by the equity "beta" or the measured sensitivity of the firm's equity return with respect to the return on the market-wide portfolio of risky assets. They examine other determinant of stock return which is unanticipated changes in interest rates during the entire period is from January 1986 to December 1994.

Brewer et al. (2000) study the relationship between lending and derivatives use over the period from the fourth quarter of 1994. To this end, they employ a basic model which relates C&I lending to previous quarter capital to total assets ratio and C&I chargeoffs to total assets. They add to the base model indicators for participation in any type of interest rate derivatives. The derivative-augmented regressions indicate that banks using any type of interest rate derivative, on average experience higher growth in their C&I loan growth. The net impact of derivative usage complements the C&I lending activities of banks.

Studying how the use of derivatives by banks in Latin America affect their efficiency Rivas et al. (2006) have used two-step OLS regressions to study the effect of derivatives use on bank efficiency. In the first stage, the efficiency scores are obtained on a variable representing derivatives usage and control variables that have been documented to affect efficiency scores. In this regression, efficiency measure represents the efficiency scores of Latin American banks obtained from the DEA model of the first stage. They have introduced dummy variable measuring derivatives usage, which take the value of 1 if a bank uses derivatives, 0 otherwise. If Latin American banks are using derivatives to hedge, a positive relation between *derivatives* usage and the efficiency score of Latin American banks is expected, and if the coefficient for derivatives measure is insignificant, it indicates that derivatives usage does not affect the efficiency of Latin American banks. The second stage regress efficiency within control variables. These variables are represented by the loans portfolio of the bank, which is a proxy for asset diversification, plays an important role in determining risk and hence, on average banks with small loan portfolios are required to maintain much higher capital levels. Therefore, they expect a positive relation between the size of the loans portfolio and the efficiency of Latin American banks. As control variable a measure of banks equity ratio adequacy is introduced in the model. They argue that lower equity ratio levels imply a higher risk-taking propensity and greater leverage, which could result in greater borrowing costs. Thus, they expected a positive relation between equity ratio and the efficiency of Latin American banks. They add to the model a proxy of the size. They are based in the theory that predicts that large well-diversified banks will be less likely to fail than small banks. Bank size serves as a proxy for a bank's ability to diversify since large banks have better diversified asset portfolios. Finally, they incorporate in the model as control variable the economic freedom index that the Heritage Foundation calculates on a yearly basis. The index represents an average of 10 individual factors that allows one to classify countries as free, mostly free, mostly unfree, or repressed.3 According to this index, Brazil and Mexico are classified as "mostly unfree" while Chile is classified as "mostly free." They suggest that Thus, economic freedom index defined as a dummy variable takes a value of 1 if the country is "mostly unfree" (Brazil and Mexico) or 0 if it is mostly free (Chile).

In his study Said (2011) looks into the effect of the use of derivatives on U.S. banks performance during the sample period from 2002 to 2009. He has employed a two stages OLS regressions approach to determine the effect of the use of derivatives on US bank performance. They measure bank performance by the ratio of return on assets, the ratio of return on equity, the efficiency ratio, cost of funding earning assets, and net interest margin. While the objective of the second stage to examine the sensitivity of performances ratios within these five banks to the use of derivatives. After calculating the performances ratios for these banks the author uses the regression model to measure the sensitivity of the performances ratios to the usage of derivatives between independent.

According to the most previous papers (Rivas et al., 2006; Said, 2011) that have used ordinary least squares (OLS) regressions model with panel estimation techniques, in this study we use also panel regression model to estimate the effect of using derivatives in bank performance. Much details of the methodology adopted in this present study is developed in the next section.

Section II.1.2. Effect of derivative instruments use on stock returns: Empirical analysis

This section analyses empirically the effect of derivative instruments use on financial performance measured by stock returns.

To reach this goal this section is organised as follows. Firstly, both data and sample sets are described as well as the methodology. Secondly, empirical results are analysed. Thirdly summaries and discussions are presented.

II.1.2.1. Data, sample and methodology

II.1.2.1.A. Data

Daily stock prices from DataStream¹¹ were used to determine daily stock returns (Brown and Warner 1984; Buyusalvarci, 2010) on individual bank using the formula as defined in the equation (1) in the first subsection of the first part. Moreover, yearly accounting data drawn from bank websites (see Table 23) are used to determine control variables. All data cover the period 2003-2009.

II.1.2.1.B. Sample

As in the first part motivations for the sample choice are the same.

II.1.2.1.B.a. Sample description

The Table 38 below presents classification of countries used in this study as defined by the latest classification by the United Nations Office (see the second subsection in the first part for more details).

Emerging countries	Recently developed countries
Kazakhstan, Kuwait, Malaysia; Maur Oman, Latvia; Lebanon, Lithu	rdan, Bahrain, Czech Republic; Cyprus; itius; Estonia; Hong Kong; Israel; Poland; Qatar, Singapore; Slovakia, Slovenia, Saudi South Korea; Taiwan, United Arab of Emirates

Table 38. Countries classification

¹¹ op. cit. page No. 10

In the next, Table 39 exposes the list of banks and their countries (as well as hyperlinks to bank web sites).

Countries and bank names	Countries and bank names		
Bahrain	Pakistan		
1.1 Ahli United Bank B.S.C.	20.1 United Bank Limited		
1.2 United Gulf Bank	Philippines		
Bulgaria	21.1 Philippine National Bank		
2.1 Raiffiensen Bank Bulgaria	Poland		
Chile	22.1 Bank BPH S.A.		
3.1 Banco de Chile	22.2 Bank Pekao S.A.		
Croatia	22.3 PKO Bank Polski		
4.1 Erste & Steiermärkische Bank D.D	22.4 Bank Zachodni WBK		
4.2 Privrednabanka banka Zagreb	22.5 BRE Bank		
4.3 Zagrebacka Banka	22.6 Kredyt Bank S.A.		
Cyprus	22.7 Nordea Bank Polska S.A.		
5.1 Bank of Cyprus	Oatar		
5.2 Hellenic Cyprus Bank	23.1 Commercial Bank of Qatar		
Czech Republic	23.2 Qatar National Bank		
6.1 Komerční banka	Russia		
6.2 Raiffensenbank	24.1 Gazprombank		
Estonia	24.2 TransCreditBank		
7.1 Swedbank	Saudi Arabia		
Hong Kong	25.1 Arab National Bank		
8.1 Bank of East Asia	25.2 Saudi British Bank		
8.2 Chong Hing Bank	Singapore		
8.3 DAH SING Bank	26.1 DBS Bank		
8.4 Fubon Bank	26.2 United Overseas Bank		
8.5 Hang Seng Bank	Slovakia		
8.6 Wing Hang Bank	27.1 Dexia banka Slovensko a.s Výročná správa		
Indonesia	27.2 Tatra banka		
9.1 Bank Danamon	Slovenia		
Israel	28.1 Abanka Vipa d.d. Slovenska		
10.1 FIBI Bank	South Africa		
10.2 Bank Hapoalim	29.1 ABSA Bank		
Jordan	29.2 Capitec Bank		
11.1 Capital Bank	29.3 FirstRand Ltd.		
11.2 Jordan Ahli Bank	29.4 Imperial		
11.3 Jordan Kuwait Bank	29.5 Sasfin Bank		
Kazakhstan	South Korea		
12.1 Halyk Bank	30.1 Industrial Bank of Korea		
Kuwait	31.2 Korea Exchange Bank		
13.1 Burgan Bank	Taiwan		
13.2 Gulf Bank Kuwait	31.1 Hua Nan Commercial Bank		
Latvia	31.2 Mega International Commercial Bank		
14.1 DNB Nord Banka	31.3 Taiwan Business Bank		
Lebanon	31.3 Taiwan Business Bank Thailand		
15.1 BLOM Bank SAL	32.1 Bangkok bank		
Lithuania	32.2 Bank of Ayudhya		
16.1 ŠIAULIU BANKAS	32.3 Kasikorn Bank		
16.2 Swedbank	32.4 Krung Thai Bank		
Malaysia	Turkey		
17.1 CIMB Bank	33.1 Akbank		
17.2 EON Bank	33.2 Anadolubank Anonim Sirketi		
Mauritius	33.3 Garanti Bankasi		
18.1 MCB	33.4 Sekerbank		
Oman	United Arab Emirates		
19.1 Muskat Bank	34.1 National Bank of Abu Dhabi		
1711 I.I.BORW LYNN	o ma mundial Daine of Fron Diluot		

Table 39. Banks and their countries

II.1.2.1.B.b. Sample statistics

In total, the sample analysis is defined by 74 banks, in which 39 banks are from emerging and 35 banks from recently developed countries.

Banks are spread over 34 countries regrouped as emerging and recently developed. There are 20 emerging countries and 14 recently developed countries (see the Table 2 for more details).

Additionally, the sample also includes 10 dealer banks, which represent 13.51% of the total banks¹².

In terms of the research sample, with the exception of Sasfin Bank, each bank made use of forwards. Swaps were the second most used instruments with 68 banks. Moreover, less than three quarter of banks was involved in using options (71.62%), while only 47.30% of banks used futures. In general, the two most commonly used instruments were forwards and swaps, which were utilized simultaneously by 90.54% of all banks, as presented in the Table 40.

Instruments	Number of banks	Percentage
FWD+SWP+OPT+FUT	33	44.59%
FWD+SWP+OPT	53	71.62%
FWD+SWP+FUT	34	45.95%
FWD+OPT+FUT	33	44.59%
SWP+OPT+FUT	33	44.59%
FWD+SWP	67	90.54%
FWD+OPT	53	71.62%
FWD+FUT	35	47.30%
SWP+OPT	53	71.62%
SWP+FUT	34	45.95%
OPT+FUT	33	44.59%
FWD	73	98.65%
SWP	68	91.89%
OPT	53	71.62%
FUT	35	47.30%

Table 40. Number and percentage of banks per derivative instruments used

Details in derivative instruments statistics are presented in the next.

¹² <u>ABSA Bank, Bank Hapoalim; BRE Bank; EON Bank, FirstRand Ltd, Hang Seng Bank, Hellenic</u> Cyprus Bank, Industrial Bank of Korea, PKO Bank Polski; United Bank Limited

r year
* per
nts*
al amour
la
ona
e notiona
vativ
leri
of
ion
ript
esci
Õ
41.
ble
Ta

Voor	EWD	07.FWD	GWD	0, CW/D	TaO	TaO 20		0/ FIT	FWD+SWP	%(FWD+OPT	Total accote
				1 1 1 2 0 1		1 100/		10.10/	+OPT+FUT	+SWP+FUT)	10141 435613
2003	321,596.057	28.01	485,789.696	42.32	150,708.985	13.12	113,856.98	9.91	1,071,951.72	9.33	1,147,832.1
2004	402,721.585	32.24	1,233,533.89	98.75	192,536.499	15.41	107,732.605	8.62	1,936,524.58	155.03	1,249,051.94
2005	424122.799	29.86	1,663,470.47	117.13	240,992.6	16.96	72,757.4519	5.12	2,401,343.32	169.09	1,420,152.8
2006	522,915.275	31.37	1,677,291.04	100.63	377,267.903	22.63	106,546.665	6.39	2,684,020.88	161.03	1,666,774.67
2007	882,704.028	46.44	2,077,909.24	109.32	401,023.298	21.099	68,734.9652	3.61	3,430,371.53	180.48	1,900,630.75
2008	1,275,447.24	58.12	2,216,431.26	101.00	471,583.742	21.49	70,472.3218	3.21	4,033,934.57	183.83	2,194,374.26
2009	1,196,193.43	52.58	2,005,044.63	88.13	273,497.653	12.02	67,191.7023	2.95	3,541,927.42	155.69	2,274,954.45
Total	5,025,700.42	42.39	11,359,470.2	95.830013	2,107,610.68	17.78	607,292.691	5.12	1,9100,074	161.13	11,853,771

* Amounts are in USD millions.

From Table 41 statistics show that the amount of derivative instruments represents 161.13% of total assets covering the period of the study from 2003 to 2009, and with an average bank size of approximately \$12 billion. During the study period swaps are the most represented instruments with notional amount equals to 11359470.2 millions of USD, with a percentage equals to 95.83% of total assets, followed by forwards with percentage equals to 42.39% of total assets, then options with a percentage equals to 17.78% of total assets, and finally futures represent only 5.12% of total assets. Statistics per year indicates that the highest notional amount of instruments traded is swaps defined by 117.13% of total assets in 2005. In contrast, the lowest percentage is referred to futures in 2009 by 2.95% of total assets.

II.1.2.1.C. Methodology

II.1.2.1.C.a. Variables description

In the next, variables employed in this analysis with their labels, definitions, proxies, expected signs and references are described.

Labels	Definition	Proxy for	Expected sign	References
	Depende	nt variable		
SR	Stock returns	Financial performance	+	Brown and Warner (1984); Buyuksalvarci (2010)
	Independe	nt variables	1	
Derivative in				
FWD	Notional value of forwards divided by total assets	Forwards	+	Chaudhry et al. (2000)
SWP	Notional value of swaps divided by total assets	Swaps	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
OPT	Notional value of options divided by total assets	Options	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
FUT	Notional value of futures divided by total assets	Futures	+	Chaudhry et al. (2000)
Control vari	iables			
CAP	the ratio of book-value-equity-to- total-assets	Capital	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
LIQ	the ratio of liquid-assets-to-total- assets	Liquidity	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
LOAN	the ratio of gross-loans-to-total- assets	Risky assets	-	Chaudhry et al. (2000)
CR	the ratio of loan-loss-reserves-to- gross-loans	Credit risk	-	Chaudhry et al. (2000); Reichert and Shyu (2003)
NIM	The difference between total interest income and total interest expense expressed, as a percentage of total assets.	Net interest margin	+	Chaudhry et al. (2000); Reichert and Shyu (2003)
NONIM	Non- interest income	on-balance sheet interest rate risk	+	Fraser et al. (2002)
SIZE	Natural log of total assets	Bank size	+	Chaudhry et al. (2000) ; Reichert and Shyu (2003)
Dummies				
DEAL	1 if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise	Dealer	+	Chaudhry et al. (2000);
COUNTRY	Dummy variable equals 1 when bank is issued from, 0 otherwise	Country variable	?	Agusman et al. (2008)

Table 42. Description of variables

The dependent variable is defined by stock return as measure of financial bank performance.

The independent variables in this study can be divided in three groups. The first group are the four derivative instruments, FWD, SWP, OPT and FUT, which define respectively Forwards, Swaps, Options, and Futures. The second group are control variables, defined by CAP, LIQ, LOAN, CR, NIM, NONIM and SIZE, which define capital, liquidity, gross loan, loan loss reserve, net interest margin, non interest income and bank size, respectively. The last group is defined by dummy variables, expressed by DEAL and COUNTRY, which designate the country variable of each bank. The country dummy variable is introduced in order to identify the specificity of each country. The dichotomous variable (DEAL) takes a value one for dealer banks and zero otherwise. According to Chaudhry et al. (2000) DEAL is introduced in order to more to differentiate between the risk exposure of dealer banks and non-dealer banks

II.1.2.1.C.b. Testing hypotheses and expected results

Literature results (Rivas el al. 2006; Said, 2011) indicate a positive effect of derivative instruments use on bank performance. Hence, our hypothesis stipulates that the use of derivative instruments affects positively performance measure.

Following the thesis stipulating that possessing considerable liquid assets in portfolios means generally that banks are healthy, so we anticipate a positive association between the variable proxy of liquidity and bank performance.

According to Rivas et al. (2006) the variable LOAN which measures the loans portfolio of the bank plays an important role in determining risk and hence, on average banks with small loan portfolios are required to maintain much higher capital levels than banks with large portfolios, and this reduces the banks' ability to perform efficiently. Thus, we expect a positive relation between the size of the loans portfolio (LOAN) and bank performance.

Since it is considered as the proxy of credit risk (CR), we expect a negative effect of credit risk on bank performance.

Theory states that high levels of equity ratio leads to higher efficiency. Casu and Molineux (2003) argue that lower equity ratio levels imply a higher risk-taking propensity and greater leverage, which could result in greater borrowing costs. Thus, a positive relation between the variable measuring equity ratio (CAP) and bank performance is expected (Rivas et al. (2006)). Theory also predicts that large well-diversified banks will be less likely to fail than small banks (Rivas et al. (2006)). Bank size serves as a proxy for a bank's ability to diversify since large banks have better diversified asset portfolios (Shyu and Reichert, 2002; Mester, 1993). Thus, a positive relation between bank stock return and bank size (SIZE) is expected.

Net interest margin (NIM) is used in the study of Said (2011) as a performance measure, so we forecast a positive correlation between net interest margin and performance.

According to Fraser et al. (2002) the proxy of interest rate risk (NONIM) has a positive effect on bank risk, so we by analogy we presume a negative effect of non-interest income on performance.

Ultimately, the sign of the dummies on bank performance is not expected.

II.1.2.1.C.c. *Empirical model*

The empirical model is defined by the equation (6) below:

Performance measure_{i,t} = $\gamma_0 + \gamma_1 FWD_{i,t} + \gamma_2 SWP_{i,t} + \gamma_3 OPT_{i,t} + \gamma_4 FUT_{i,t} + \gamma_5 CAP_{i,t} + \gamma_6$ $LIQ_{i,t} + \gamma_7 LOAN_{i,t} + \gamma_8 CR_{i,t} + \gamma_9 NIM_{i,t} + \gamma_{10} NONIM_{i,t} + \gamma_{11} SIZE_{i,t} + \gamma_{12} DEAL_{i,t} + \sum_{r=1}^{K} \gamma_{13,k}$ (6)

COUNTRY_{i,t,k} + u_i + $e_{i,t}$,

In which:

Performance measure: is determined by daily stock returns of bank i and which indicates for financial performance

 $(u_i + e_{i,t})$: is the composite error term

ui: is the random error in which heterogeneity is specifically to a cross-sectional unit-in this case, bank.

e_{i,t},: is the random error in which heterogeneity is specifically to a particular observation.

The aim is to test empirically the relationship between financial performance and derivative instruments.

Then, panel data methodologies are used to estimate the parameter values. The computer software STATA 10 was used to estimate all regressions.

II.1.2.1.C.d. Specification tests

Firstly, the stationarity of all the variables is checked using the Augmented Dickey Fuller Tests. Trying with four lags, then with trend, and finally without constant. The stationarity is also checked using Unit Root tests- Phillips-Perron test and DF-GLS test. The linearity of the model is tested for with Ramsey-Reset Test. A normal hazard of residuals is finally examined with Jacques-Bera Test. Additionally, correlation matrix and tests for multicollinearity problem are made. Moreover, the Hausman test is applied to examine the absence of correlation between the independent variables and the error terms and to choose between fixed and random effect models. In the end, robustness of the model is checked by a Modified Wald test for groupwise heteroskedasticity for fixed effect model.

II.1.2.2. Empirical results

II.1.2.2.A. Descriptive statistics

Table 43 as follows describes the statistical variables used in the model.

Variable	Mean	Std. Dev.	Min	Max
FWD	0.37	0.90	0.00	7.87
SWP	0.57	1.51	0.00	19.05
OPT	0.09	0.25	0.00	1.87
FUT	0.02	0.11	0.00	1.20
SR	0.00	0.00	0.00	0.02
CAP	0.10	0.07	0.00	0.88
LIQ	0.07	0.08	0.00	1.17
LOAN	0.56	0.15	0.00	0.93
CR	0.04	0.09	0.00	1.76
NIM	0.03	0.06	-0.01	0.77
NONIM	0.01	0.02	-0.13	0.20
SIZE	9.27	1.41	4.05	12.13

Table 43. Descriptive statistics of variables

Descriptive statistics illustrate typical scores of all variables. The mean is between 0.00 and 9.27 and standard deviation has scores from 0.00 to 1.51. In the end, min scores are between 0.00 and 4.05, and max scores are between 0.02 and 19.05.

II.1.2.2.B. Regression analysis

In the following table the parameter estimates from Equation (6) are exposed.

	Stock returns
Constant	0.008176***
Constant	(0.0013631)
FWD	NS
SWP	-0.0001086*
5 W1	(0.0000583)
OPT	NS
FUT	NS
CAP	-0.0083051***
CAP	(0.0027816)
LIQ	NS
LOAN	-0.0051295***
LOAN	(0.0011274)
CR	NS
NIM	0.0054379*
	(0.0029234)
NONIM	NS
SIZE	-0.0003781***
SIZE	(0.0000807)
DEAL	NS
Country	See details of the country dummies in
Country	Appendix III.
R-squared	0.1205
F statistic	5.57***
Number of obs.	518

Table 44. Estimated coefficients, years 2003--2009

*, ** and *** indicate statistical significance at the 10%, 5% and 1% level, respectively.

The variable that are insignificant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables.

() indicates standard deviation of the estimators.

NS indicate non-significance of coefficient.

Years 2003-2009.

From the table above, it is found that the use of swaps negatively affects stock returns at a level of significance equals to 10%, while forwards, options and futures have no significant effect on performance. This finding can be interpreted that sample banks composed of banks from both emerging and recently developed countries use badly swaps to hedge their risks. Moreover, insignificance of the effect of the most derivative instruments on bank performance can be explained by the lack of data on stock return which has minimized the sample size. Therefore, not noteworthy results are made.

As regards control variables, at a level of significance equals to 1%, the variable proxies of risky assets (LOAN), capital (CAP), and bank size (SIZE) affect negatively the performance measure. Thus, contrarily to theory stipulating that the size of banks influences positively bank performance, the size of our sample banks decrease bank performance. This finding suggests that smaller banks have better performance than large banks which is relative to our sample banks. Similarly, and in the opposite of expectations, the book equity ratio measured by the percentage of capital on total assets affects negatively performance. This finding means that our sample banks do not use in the better way their capital to enhance their performance. However, and according to expectations the proxy of risky assets influences negatively performance. In fact, higher level of the risky assets ratio means that performance is badly affected.

In contrast, net interest margin has a positive effect on stock return performance at a level of significance equals to 10%.

II.1.2.2.C. Specification tests results

The results of the Augmented Dickey Fuller Test, Phillips-Perron test, and DF-GLS test rejects the null hypothesis of unit root at 1% significance level for all the specifications which corroborates the stationarity of variables.

Due to the large number of observations (around 520), the non-normality of the errors terms should not affect the results. However, the figure 5 as follows schematizes the probability density of residuals.

Figure 5. Probability density functions of the residuals

In the next Table 45 verifies the linearity of the model basing on Ramsey-Reset Test (see Appendix V.c. for more details).

Table 45. Ramsey-Reset Test

Dependent variable	chi2(1)	Prob > chi2
Stock returns		
SR	2.28	0.32

In the following table a matrix of correlations between variables is represented:

Table 46. Matrix o	of correlations
--------------------	-----------------

	sr	fwd	swp	opt	fut	loan	cap
sr	1.0000						
fwd	0.0318	1.0000					
	(0.4701)						
swp	-0.0207	0.3812*	1.0000				
-	(0.4207)	(0.0000)	(0.0000)				
opt	-0.0355	0.2010*	0.3907*	1.0000			
-	(0.4207)	(0.0000)	(0.0000)				
fut	0.0085	0.0213	0.2985*	0.1921*	1.0000		
	(0.8476)	(0.6293)	(0.0000)	(0.0000)			
loan	-0.0710	0.0685 -	0.0604	0.0418 -	0.0317	1.0000	
	(0.1065)	(0.1194)	(0.1697)	(0.3423)	(0.4722)		
cap	0.0480 -	-0.1256*	0.0274 -	0.0853 -	0.0237 -	0.2957*	1.0000
-	(0.2756)	(0.0042)	(0.5334)	(0.0525)	(0.5901)	(0.0000)	
liq	-0.0072	-0.0739 -	0.1253* -	0.0487 -	0.0521 -	0.2037*	0.3009*
	(0.8699)	(0.0931)	(0.0043)	(0.2689)	(0.2366)	(0.0000)	(0.0000)
size	-0.1230*	0.0829	0.1632*	0.1637*	0.1469*	0.0823 -	0.4378
	(0.0051)	(0.0592)	(0.0002)	(0.0002)	(0.0008)	(0.0613)	(0.0000)
nonim	0.0286 -	0.0206 -	0.0171 -	0.0428 -	0.0780 -	0.1800*	0.1333*
	(0.5167)	(0.6400)	(0.6972)	(0.3313)	(0.0763)	(0.0000)	(0.0024)
cr	0.0117 -	0.0379 -	0.0336 -	0.0717 -	0.0335 -	0.2261*	0.1951*
	(0.7901)	(0.3891)	(0.4451)	(0.1033)	(0.4461)	(0.0000)	(0.0000)
	liq	size	nonim	cr			
liq	1.0000						
size	-0.2394*	1.0000					
	(0.0000)						
nonim	0.0139 -	0.1601*	1.0000				
	(0.7529)	(0.0003)					
cr	0.0410 -	0.1185*	0.0550	1.0000			
	(0.3519)	(0.0069)	(0.2112)				

The numbers in brackets correspond to the standard error.

In addition, a test for multicollinearity is done. A detection-tolerance or the variance inflation factor (VIF) for multicollinearity can be defined as follows:

Tolerance_j =
$$1 - R_j^2$$
, VIF_j = $1/Tolerance_j$

where R_j^2 is the coefficient of determination of a regression of explanatory variable *j* on all the other explanatory variables. A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem (see O'Brien 2007). The results are summarized in the table below:

Variable	VIF	1/VIF
size	15.44	0.064783
loan	13.00	0.076903
cap	3.17	0.315864
liq	1.99	0.502093
swp	1.69	0.590076
nonim	1.45	0.690491
fwd	1.42	0.702949
opt	1.40	0.712053
cr	1.31	0.763757
fut	1.21	0.823285
Mean VIF	4.21	

Table 47. Multicollinearity test

From these results we can deduce an absence of multicollinearity problem.

Table 48 below summarizes Hausman test results (for more details see Appendix VI.c.)

Table 48. Hausman Test

Dependent variable	chi2(1)	Prob > chi2
Stock returns		
SR	67.67	0.0000

From the Table 48 results reject the absence of correlation between the independent variables and the error terms. Therefore, fixed effect model is used in this analysis.

Finally, a modified Wald test for groupwise heteroskedasticity in fixed effect regression model is made:

Table 49. Modified Wald test for groupwise heteroskedasticity

Dependent variable	chi2(137) test statistic	P value
Stock returns	5488.09	0.0000 *

The results above corroborate the null hypothesis of the presence of homoskedasticity (or constant variance). Therefore, we add the option 'robust' (in STATA) in the fixed effect model regression in order to control for heteroskedasticity.

II.1.2.3. Summaries and Discussion

This analysis aims to clarify the effect of derivative instruments on stock return performance. To this end, the main question is as followed: "Do banks increase or decrease their stock return performance by using derivatives?" Thus, the major objective of the paper is to determine the impact of derivative instruments usage on performance of banks from both emerging and recently developed countries.

Findings indicate that the use of swaps decreases financial performance in terms of stock returns, while forwards, options and futures have no significant effect on performance.

As concerning control variables, the proxy of capital decreases financial performance since its negative effect on stock return, which rejects our hypothesis.

In addition, the variable used as proxy of risky assets affects negatively performance given that its negative correlation with stock returns, so that our hypothesis is also rejected.

Furthermore, bank size decreases bank performance because of its negative impact on stock return. This result contradicts the theory that bank size augments financial performance. Finally, and accordingly to expectation net interest margin increases financial performance.

For the other control variables, results show that their impact on financial performance is not comprehensible.

In summary, the main results indicate that swaps decrease financial performance, whereas the other instruments have no significant effect on financial performance.

The evidence deduced from these results is that swaps are used for speculation purpose which explains its negative impact on performance. It appears also that in term of stock return the use of derivatives by sample bank is not favourable.

94

Chapter II.2. Effect of derivative instruments use on accounting performance

In this chapter the impact of derivatives use on accounting performance is investigated.

Or, literature studying the relationship between derivatives and bank performance is already exposed in the first section of the first chapter, for that reason this chapter is focusing on the empirical effect of derivatives use on bank performance. Thus, in the following section empirical analysis is conducted in order to test the association between derivative instruments and accounting performance.

Section II.2.1. Effect of derivative instruments use on accounting performance: Empirical analysis

This section is planned as follows. In the first subsection, data, sample and methodology are illustrated. Empirical results are analysed in the second subsection. Finally, summaries and discussions are exposed in the third subsection.

II.2.1.1. Data, sample and methodology

II.2.1.1.A. Data

As in the second subsection of the first part yearly accounting data are used in this analysis and which were drawn from bank websites (see data used in the second subsection of the first part for more details) covering the period 2003-2010.

II.2.1.1.B. Sample

The sample analysis is composed of 137 banks from both emerging and recently developed countries (for more details see the sample used in the second subsection of the first part). For motivations to choose sample banks see the first part of the thesis.

II.2.1.1.C. Methodology

II.2.1.1.C.a. Description of variables

Five aspects and seven measures of bank performance are used in this work as follows:

- ✓ Profitability: measured by the return on assets (ROA equals to net income to total assets) ratio and the return on equity (ROE equals to net income to equity) ratio. These two measures are considered in the literature as standards of financial performance measures.
- Efficiency: defined by the cost to income ratio calculated by costs to operating income (or calculated also by expense income to operating income)

- ✓ Asset quality: defined by either the ratio of impaired loans to gross loans (that is nonperforming loans ratio or NPL ratio), and the coverage ratio (that is equal to the ratio of loan loss reserve to non-performing loans). Both of these measures describe operating performance.
- ✓ Capital adequacy: defined by the ratio of risky assets (loans) to equity.
- ✓ Net interest margin: measured by the ratio of net interest income divided by total assets.

In the next, the Table 50 explains the sing of each performance measure in case of increase or decrease. For instance, the ratio of return on assets (ROA) increases performance when it has a positive effect on performance. While a decrease of performance is caused by a positive effect of capital adequacy ratio (CAD) on performance.

Ratios	Increase of performance	Decrease of performance
ROA	+	-
ROE	+	-
NPL ratio	-	+
Coverage ratio	+	-
Capital adequacy ratio	-	+
Efficiency ratio	+	-
NIM ratio	+	-

Table 50. Performance measures sign

As follows Table 51 presents the variables employed in the study along with their labels, definitions, expected signs and their use in previous studies.

Labels	Definitions	Proxies	References
	Dependent varia	ables	-
EFF	Cost income defined by total operating expenses divided by total operating incomes	Efficiency	Lin and Zhang (2009)
NPL	Non-performing ratio is defined by non- performing loans divided by gross loan	NPL ratio	Berger et al. (2005); Lin and Zhang (2009)
COV	Coverage ratio is defined by loan loss reserves divided by non-performing loans	Coverage ratio	Liu (2010)
ROA	Return on assets is measured by net income divided by total assets	Profitability	Bonin et al. (2004); Frei et al. (1999); Said (2011)
ROE	Return on equity is measured by net income divided by total equity	Profitability	Bonin et al. (2004); Boubakri et al. (2005); Lin and Zhang (2009); Said (2011)
CAD	The ratio of risky assets (gross loan) divided by total equity	Capital adequacy	Boubakri et al. (2005)
NIM	Net interest income divided by total assets	Net interest margin	Said (2011)
	Independent variables: deriv	ative instruments	
FWD	Notional value of forwards divided by total assets	Forwards	Chaudhry et al. (2000)
SWP	Notional value of swaps divided by total assets	Swaps	Chaudhry et al. (2000)
OPT	Notional value of options divided by total assets	Options	Chaudhry et al. (2000); Reichert and Shyu (2003)
FUT	Notional value of futures divided by total assets	Futures	Chaudhry et al. (2000)
	Independent variables:	control variables	
САР	book value of equity capital divided by total assets	Leverage	Chaudhry et al. (2000); Rivas et al. (2006) ; Yong et al. (2009)
LIQ	the ratio of liquid-assets-to-total-assets	Liquidity	Chaudhry et al. (2000); Reichert and Shyu (2003); Yong et al. (2009)
LOAN	the ratio of gross-loans-to-total-assets	Risky assets	Chaudhry et al. (2000); Rivas et al. (2006) ; Yong et al. (2009)
CR	the ratio of loan-loss-reserves-to-total loans	Credit risk	Chaudhry et al. (2000); Yong et al. (2009)
SIZE	Natural log of total assets	Bank size	Chaudhry et al. (2000) ; Reichert and Shyu (2003); Rivas et al. (2006); Yong et al. (2009)
DEAL	1 if bank is a member of the International Swaps and Derivative Association (ISDA), 0 otherwise	Dealer	Chaudhry et al. (2000); Yong et al. (2009)
COUNTRY	Dummy variable equals 1 when bank is issued from , 0 otherwise	Country variable	Agusman et al. (2008)

Table 51. Variables description

The independent variables in this study can be divided in three groups. The first group are the four derivative instruments, FWD, SWP, OPT and FUT, which define respectively Forwards, Swaps, Options, and Futures. The second group are control variables, defined by CAP, LIQ, LOAN, CR, and SIZE, which define capital, liquidity, gross loan, loan loss reserve, net interest margin, and bank size, respectively. The last group is defined by dummy variables, expressed by DEAL and COUNTRY, which designate respectively dealer bank and the country variable of each bank. The dichotomous variable DEAL takes a value one for dealer banks and zero otherwise. Regarding the heterogeneity of the sample, like in the study by Agusman et al. (2008) country dummy variables are included to control for the differences in the banking structure and regulatory environments, and the different economic and political characteristics that may affect the relation between derivative instruments and accounting measures of performance.

II.2.1.1.C.b. Testing hypotheses and expected results

Hypotheses as well as expected results are the same as exposed in the first subsection of this second part thesis.

II.2.1.1.C.c. Empirical model

Panel regression models were conducted for each performance measure as follows in the equation (7):

Performance measure_{i,t} = $\gamma_0 + \gamma_1 \text{ FWD}_{i,t} + \gamma_2 \text{SWP}_{i,t} + \gamma_3 \text{ OPT}_{i,t} + \gamma_4 \text{ FUT}_{i,t} + \gamma_5 \text{ CAP}_{i,t} + \gamma_6 \text{ LIQ}_{i,t} + \gamma_7 \text{ LOAN}_{i,t} + \gamma_8 \text{ CR}_{i,t} + \gamma_9 \text{ SIZE}_{i,t} + \gamma_{10} \text{DEAL}_{i,t} + \sum_{k=1}^{K} \gamma_{11,k} \text{ COUNTRY}_{i,t,k} + u_i + e_{i,t}, (7)$

With:

Performance measure: is one of the following seven ratios: ROA, ROE, NPL, coverage, efficiency or net interest margin.

 $(u_i + e_{i,t})$: is the composite error term. u_i is the random error in which heterogeneity is specifically to a cross-sectional unit-in this case, bank; and $e_{i,t}$ is the random error in which heterogeneity is specifically to a particular observation.

The purpose is to empirically test the relations between accounting performance measures and derivative instruments use.

Therefore, the computer software STATA 10 ® is used to estimate all regressions.

II.2.1.1.C.d. Specification tests

Firstly, the stationarity of all the variables is checked using the Augmented Dickey Fuller Tests with four lags, then with trend, and finally without constant. Then, the stationarity is also checked using Unit Root tests- Phillips-Perron test and DF-GLS test. Moreover, the linearity of the model is tested for with Ramsey-Reset Test. In addition, a normal hazard of residuals is finally examined with Jacques-Bera Test. Correlations between variables and collinearity are checked by correlation matrix and multicollinearity test. The Hausman test is applied to examine the absence of correlation between the independent variables and the error terms which confirms the choice of random effect model. Lastly, robustness of models used is verified by Modified Wald test for groupwise heteroskedasticity test and Breusch and Pagan Lagrangian multiplier test.

II.2.1.2. Empirical results

II.2.1.2.A. Descriptive statistics

As following statistics of variables used in the model covering the overall sample and the two subsamples are presented.

		0	verall sample		
Variable	Obs	Mean	Std. Dev.	Min	Max
FWD	1096	0.24	0.74	0.00	11.44
SWP	1096	0.44	1.14	0.00	19.05
OPT	1096	0.11	0.50	0.00	11.66
FUT	1096	0.09	0.89	0.00	16.55
CAP	1096	0.10	0.06	0.00	0.88
LOAN	1096	0.55	0.16	0.00	1.31
CR	1096	0.01	0.01	0.00	0.29
LIO	1096	0.07	0.07	0.00	1.17
SIZE	1096	9.11	1.60	3.70	12.95
NIM	1096	0.03	0.04	-0.02	0.77
ROA	1096	0.01	0.01	-0.20	0.12
ROE	1096	0.12	0.21	-4.39	0.59
EFF	1096	-0.64	0.43	-5.77	0.76
CAD	1096	6.83	4.48	0.00	90.77
NPL	544	0.04	0.05	0.00	0.47
COV	544	3.20	46.60	0.00	8.84
	511		m emerging coul		0.01
Variable	Obs	Mean	Std. Dev.	Min	Max
FWD	592	0.24	0.83	0.00	11.44
SWP	592	0.34	1.23	0.00	19.05
OPT	592	0.13	0.66	0.00	11.66
FUT	592	0.16	1.21	0.00	16.55
CAP	592	0.10	0.06	0.00	0.88
LOAN	592	0.54	0.17	0.09	0.97
CR	592	0.02	0.02	0.00	0.29
LIQ	592	0.02	0.02	0.00	1.17
SIZE	592	8.63	1.72	3.70	12.95
NIM	592	0.03	0.05	0.00	0.77
ROA	592	-0.66	0.03	-5.77	0.76
ROE	592	6.24	4.70	0.29	90.77
EFF	592	0.01	0.01	-0.20	0.11
CAD	592	0.01	0.24	-4.39	0.59
NPL	320	0.04	0.05	0.00	0.47
COV	320	4.75	60.75	0.00	8.84
001	520		cently developed		0.04
Variable	Obs	Mean	Std. Dev.	Min	Max
FWD	504	0.25	0.61	0.00	6.00
SWP	504	0.55	1.01	0.00	7.84
OPT	504	0.10	0.19	0.00	1.63
FUT	504	0.01	0.08	0.00	1.00
CAP	504	0.01	0.08	0.00	0.57
LOAN	504	0.56	0.05	0.00	1.31
CR	504	0.01	0.01	0.00	0.11
LIQ	504	0.01	0.01	0.00	0.11
SIZE	504	9.68	1.22	5.66	12.34
NIM	504	0.02	0.00	-0.02	0.04
ROA	504	-0.62	0.37	-2.59	-0.11
ROE	504	7.51	4.10	0.00	30.94
EFF	504	0.01	0.01	-0.06	0.12
CAD	504	0.10	0.16	-2.45	0.58
NPL	224	0.03	0.05	0.00	0.35
COV	224	0.98	0.65	0.01	4.20
-					

Table 52. Descriptive statistics of variables

According to Table 52, except to standard deviation scores of COV variable, the rest variables present common scores. For overall sample, the mean is between 0.00 and 9.11 and standard deviation has scores from 0.01 to 46.60. Finally, min scores are between 0.00 and 5.77, and max scores are between 0.12 and 90.77.

For banks from emerging countries the mean is going from 0.01 to 60.75, the standard deviation is between 0.01 and 60.75, the min is about 0.00 and 5.77, and lastly the max is between 0.11 and 90.77.

For banks from recently developed countries, the mean is between 0.01 and 9.68, the standard deviation is between 0.00 and 4.10, the min is between 0.00 and 5.66 and finally the max is comprised between 0.04 and 30.94.

II.2.1.2.B. Regression analysis

In the next the parameter estimates from Equation (7) for each of the seven performance measures are described.

Table 53. Estimated coefficients **Panel** A. For overall sample

NIM	0.0221248**	(0.0107537)	-0.0023985**	(0.0009445)	NS	-0.0077251*	(0.002213)	NS	NC		0.4611862^{***}	(0.113214)	0.0904254^{*}	(0.0478331)	NIC		NIC		NC			0.5703	17.69^{***}	1096
EFF	-1.396711***	(0.1211655)	SIN	CN	-0.0174882** (0.0080742)	-0.040842^{***}	(0.0116662)	-0.0116284** (0.0047429)	NC		0.5288779***	(0.127852)	NIC	CN	NIC	CNI	0.0907728***	(0.0128243)	NC			0.3197	66.61^{***}	1096
CAD	4.887781***	(0.612808)	SIN	CN	-0.0935899** (0.0377147)	0.2078843*	(0.1148521)	NS	11.09925^{***}	(0.5828956)	-26.1029^{***}	(4.715415)	-1.420615*	(0.8379971)	SIN	CNI	-0.250245***	(0.0512917)	0.8979158^{***}	(0.2738022)	ı Appendix IV.a.	0.5151	195.36^{***}	1096
COV	-1.236312***	(0.3056128)	-0.06015^{***}	(0.0196646)	NS	SN		NS	1.413221^{***}	(0.3935775)	NIC	CNI	2.622662***	(0.5736468)	0.9124639*	(0.5521748)	0.0745078^{***}	(0.0216683)	0.2728882^{**}	(0.12157)	See details of the country dummies in Appendix IV.a	0.4880	17.37^{***}	544
NPL	0.1478271***	(0.0221495)	0.005422***	(0.0018923)	NS	-0.0308568^{***}	(0.0080656)	0.0049674^{***} (0.001543)	-0.1164429***	(0.0194442)	NIC	CNI	VIC	CNI	0.1526804^{*}	(0.0867876)	-0.0055521^{***}	(0.0013957)	NC		See details of the	0.5534	20.33^{***}	544
ROE	0.3384135***	(0.037664)	NIC	CN	NS	SN	2.1	0.0039426* (0.0020723)	-0.2423614***	(0.0618885)	NIC	CNI	MIC	CNI	-7.166067^{***}	(2.155045)	NIC	CNI	NC			0.1042	15.29***	1096
ROA	0.0239441***	(0.006869)	SIN	CN	-0.0010978*** (0.0003804)	SN	211	NS	-0.0238018^{***}	(0.0047775)	0.0663521^{***}	(0.0167742)	NIC	CNI	NIC	CNI	0.0011807^{**}	(0.0004752)	0.0057435***	(0.0015323)		0.3110	20.65^{***}	1096
	Constant	ALL DI LA	EWD	ΓWD	SWP	OPT	1 10	FUT	IOAN	NVOT		CAL	OI I	דול	ac	CN	SIZE	1710	DEAL		COUNTRIES	R-squared	F statistic	Number of obs

*.** and *** respectively indicate statistical significance at the 10%, 5% and 1% levels. The variable that are insignificant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables.
() indicate standard deviation of the estimators. NS indicate non-significance of coefficient. Years 2003—2010.

102

	KUA	ROE	NPL	COV	CAD	HHH	MIN
Constant	0.0455808*** (0.0080397)	0.8180483*** (0.2242174)	0.0453067*** (0.0103936)	-1.815743*** (0 4464146)	2.720284*** (0.563137)	-1.305507*** (0.1411252)	0.0005738
FWD	NSN	NS	NS	-0.0525389** (0.0230134)	-0.2454025** (0.1220808)	NS	NS
SWP	NS	NS	NS	NS	NS	NS	NS
OPT	-0.005198** (0.002245)	-0.0348878** (0.0167404)	0.0111851^{***} (0.0033979°	-0.2717482** (0.1261782)	NS	-0.0407658^{***} (0.0110888)	-0.0098848^{***} (0.002789)
FUT	0.0010888** (0.0004662)	0.0107944^{***} (0.0037232)	NS	NS	NS	-0.0120581^{**} (0.0048409)	NS
)- TOAN	-0.0343422^{***} (0.0085456)	-0.4548128*** (0.1545257)	-0.073215*** (0.01598)	2.719787*** (0.4351267)	10.88888*** (1.015472)	-0.2648994^{***} (0.1003312)	-0.0193861** (0.0081639)
CAP 0	0.0742559*** (0.0164526)	NS	-0.0921569*** (0.0352639)	NS	-27.01694^{***} (5.929274)	0.5539762*** (0.1757254)	0.6341485^{***} (0.0901414)
TIQ (0.0362774** (0.0148672)	NS	NS	2.463702*** (0.6654761)	NS	NS	NS
CR -(-0.2057944*** (0.0570443)	-2.962325** (1.235229)	0.9354284*** (0.1242061)	5.273531*** (1.444563)	14.74724* (7.899821)	-1.592629*** (0.4169518)	0.2029316^{***} (0.0563234)
SIZE	NS	-0.0230308^{**} (0.0097726)	NS	0.0985315^{***} (0.0331751)	NS	0.1003811 *** (0.0190555)	NS
DEAL	0.0089665^{***} (0.0032131)	0.0549488*** (0.0193464)	-0.0169819** (0.0069481)	0.3094281* (0.1826698)	SN	-0.1317581** (0.0533084)	NS
COUNTRIES			See details of the	See details of the country dummies in Appendix IV.b	1 Appendix IV.b.		
R-squared	0.3625	0.3542	0.7241	0.5202	0.4019	0.2265	0.7042
F statistic	10.60^{***}	5.64^{***}	27.52***	18.34^{***}	147.45***	25.37***	8.27***
Number of obs	592	592	320	320	592	592	592

Panel B. Banks from emerging countries

*, ** and *** respectively indicate statistical significance at the 10%, 5% and 1% levels. The variable that are insignificant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables. () indicate standard deviation of the estimators. NS indicate non-significance of coefficient. Years 2003—2010.

	ROA	ROE	NPL	COV	CAD	EFF	MIN
Constant	-0.0089187 (0.007684)	-0.1438615 (0.1251733)	0.2071597^{***} (0.0447899)	0.6833823* (0.3979716)	11.5962^{***} (1.636877)	-1.241727*** (0.117772)	-0.0067288 (0.0059007)
FWD	SN	NS	-0.0533742^{***} (0.0106365)	-0.2411522* (0.1228402)	NS	NS	-0.0030191^{***} (0.0007099)
SWP	-0.0013938*** (0.0005162)	NS	0.0085061 ** (0.0038995)	0.5949596^{**} (0.2890652)	-0.2059243** (0.085488)	-0.0326795*** (0.0123409)	0.0011988*** (0.0004613)
OPT	NS	NS	-0.1078375^{***} (0.0182856)	NS	1.657928** (0.6717204)	-0.1214119* (0.068207)	NS
FUT	NS	-0.0583062* (0.0320081)	NS	NS	NS	NS	0.0061448^{**} (0.0030663)
LOAN	-0.019657*** (0.0058347)	-0.0962838*** (0.0345324)	-0.1100073^{***} (0.0296971)	NS	10.589*** (0.8073303)	NS	0.0070513* (0.0036025)
CAP	0.077812^{***} (0.027972)	0.5353444** (0.2310616)	0.2776484^{***} (0.0604546)	NS	-29.86048*** (5.055394)	0.7894079*** (0.2432088)	NS
LIQ	-0.0240487** (0.0120792)	-0.1282693* (0.0734554)	-0.1159391* (0.0670562)	NS	-5.801947*** (1.238622)	NS	0.0156799** (0.0078146)
CR	SN	NS	0.063321 * * * (0.0151727)	NS	NS	NS	NS
SIZE	NS	0.0231638*** (0.0087367)	-0.014387^{***} (0.0033371)	0.0878849** (0.0368598)	-0.7837781 *** (0.1373093)	0.0704283*** (0.0115747)	0.0011503*** (0.0003895)
DEAL	0.0053448^{***} (0.0014623)	0.0623168^{***} (0.0170018)	-0.0138528* (0.007224)	NS	1.032327*** (0.2422659)	0.0857243** (0.0341649)	NS
COUNTRIES			See details of the	See details of the country dummies in Appendix IV.c	n Appendix IV.c.		
R-squared	0.4920	0.1229	0.7534	0.3845	0.7228	0.5477	0.4207
F statistic	30.28***	8.51***	24.66^{***}	30.75***	102.30^{***}	83.46***	20.13^{***}
Number of obs	504	504	224	224	504	504	504

countries
developed
ks from recently
from
. Banks
Ċ
Panel

*, ** and *** respectively indicate statistical significance at the 10%, 5% and 1% levels. The variable that are insignificant were removed and the model was re-estimated to get more precise results. Consequently, no parameter values are provided for these variables.

() indicate standard deviation of the estimators. NS indicate non-significance of coefficient. Years 2003—2010.

From Panel A, it is found that the use of forwards positively affects NPL ratio at a level of significance equals to 1% and it affects negatively coverage ratio and net interest margin at levels of significance respectively equal to 1% and 5%.

The use of swaps has negative effect on return on assets ratio and efficiency measure respectively at level of significance equal to 1% and 5% but it affects negatively also capital adequacy measure at 5% level of significance.

Options affect negatively NPL ratio at 1% level of significance but has a positive impact on capital adequacy ratio at 10% level of significance, and it has a negative effect on efficiency measure and net interest margin respectively at level of significance equal to 1 % and 10%.

Finally, the use of futures has positive impact on return on equity ratio at a level of significance equals to 10% but it affects NPL ratio positively and efficiency measure negatively respectively at level of significance equal to 1% and 5%.

Regarding control variables, the variable proxy of risky assets (LOAN) affects negatively the two financial performance measures at 1% level of significance, and has a positive effect on capital adequacy ratio at the same level of significance, while it affects negatively NPL ratio and positively coverage ratio always in the same level of significance.

Capital affects positively return on assets ratio, efficiency measure and net interest margin and has a negative effect on capital adequacy at level of significance equals to 1%.

Liquidity has positive impact on coverage ratio and net interest margin respectively at level of significance equal to 1% and 10%, and it affect negatively capital adequacy ratio at 10% level of significance.

At a level of significance equals to 1%, le variable proxy of credit risk (CR) has a negative effect on return on equity ratio but it affects positively NPL ratio and coverage ratio.

Size has a positive impact on return on assets ratio at level of significance equals to 5%, and affects positively coverage ratio and efficiency measure at 1% level of

significance, and finally it has a negative correlation with NPL ratio and capital adequacy measure at a level of significance equals to 1%.

Ultimately, the dummy variable defining dealer bank (DEAL) affects positively return on assets ratio and coverage ratio respectively at level of significance equal to 1% and 5% but it has a positive impact on capital adequacy measure at a level of significance equals to 1%.

From Panel B, results focused on emerging countries expose that the use of forwards negatively affects coverage ratio at level of significance equals to 5% but has also a negative effect on capital adequacy at the same level of significance.

The use of swaps has no significant impact on the seven performance measures.

Options affect negatively return on assets and return on equity ratios at a level of significance equals to 5%, also it has a negative impact on efficiency and net interest margin at 1% level of significance, and has a positive impact on NPL ratio and a negative impact on coverage ratio respectively at level of significance equal to 1% and 5%.

Finally, the use of futures has positive effect on return on equity and return on assets ratios respectively at levels of significance equal to 1% and 5% but it affects negatively efficiency measure at 5% level of significance.

Regarding control variables, at a level of significance equals to 1% the variable proxy of risky assets affects negatively the two financial performance measures, efficiency and net interest margin, and it has a positive impact on capital adequacy, however it affects positively coverage ratio and negatively NPL ratio.

At 1% level of significance, capital has a positive effect on ROA, efficiency and net interest margin, and also affects negatively NPL ratio and capital adequacy measure.

Liquidity affect positively coverage ratio and return on assets ratio at 1% and 5% levels of significance.

The variable proxy of credit risk is correlated negatively with return on assets and return on equity ratios at 1% and 5% levels of significance, and affects negatively efficiency measure at 1% level of significance, additionally it affects positively NPL

and capital adequacy ratios at 1% and 10% levels of significance respectively, whereas it has a positive effect on coverage ratio and net interest margin at a level of significance equals to 1%.

Size has a positive effect on efficiency and coverage ratio at 1% level of significance, while it affects negatively return on equity ratio at 5% level of significance.

Finally, the association between DEAL and the two financial performance ratios is positive at a level of significance equals to 1%, and DEAL affects positively coverage ratio and negatively NPL ratio respectively at 5% and 10% levels of significance, whereas DEAL affect negatively efficiency measure at a level of significance equals to 5%.

From Panel C, results limited to recently developed countries show that the use of forwards negatively affects net interest margin and coverage ratio at level of significance equal to 1% and 10% respectively, however the correlation between forwards and NPL ratio is negative also at level of significance equals to 1%.

The use of swaps has negative effect on efficiency and return on assets ratio at a level of significance equals to 1%, and it has positive impact on NPL ratio at 5% level of significance, while the use of swaps affects positively net interest margin and coverage ratio respectively at level of significance equal to 1% and 5% and finally it affects negatively capital adequacy at a level of significance equals to 5%.

Options affect negatively NPL ratio at a level of significance equals to 1%, but it has a positive effect on capital adequacy at 5% level of significance, and additionally it has a negative correlation with efficiency at a level of significance equals to 10%.

Finally, the use of futures has negative effect on ROE at level of significance equals to 10% while it affects positively net interest margin at a level of significance equals to 5%.

Regarding control variables, the association between the variable proxy of risky assets and the two profitability measures is negative at a level of significance equals to 1%, furthermore LOAN affects positively capital adequacy at a level of significance equals to 1%, whereas it has a positive effect on net interest margin at a level of significance equals to 10% and finally it has a negative effect on NPL ratio at 1% level of significance.

Capital has positive effect on return on assets ratio and return on equity ratio respectively at level of significance equal to 1% and 5%, in addition it affects positively efficiency and negatively capital adequacy at a level of significance equals to 1%, however it has a positive effect on NPL ratio at a level of significance equals to 1%.

Liquidity affect negatively return on assets ratio and return on equity ratio at level of significance equal to 5% and 10% respectively, but it affects positively net interest margin at a level of significance equals to 5% and it affects negatively capital adequacy and NPL ratio respectively at level of significance equal to 1% and 10%

The correlation between the proxy of credit risk and NPL ratio is significantly positive at a level of significance equals to 1%.

Size affects positively return on equity, efficiency and net interest margin at a level of significance equals to 1%, also it has positive effect on coverage ratio positively at a level of significance equals to 5%, and finally it affects negatively NPL ratio and capital adequacy at a level of significance equals to 1%.

Finally, DEAL affects positively the two financial performance measures and efficiency respectively at level of significance equal to 1% and 5%, additionally it affects negatively NPL ratio at a level of significance equals to 10% but it has a positive effect on capital adequacy at a level of significance equals to 1%.

II.2.1.2.C. Specification tests results

The P values of the Augmented Dickey Fuller Tests for all the specifications are closed to 0. We have similar results for the Phillips-Perron test. The DF-GLS test rejects the null hypothesis of unit root at 1% significance level for all the specifications. (The results are available under request to the corresponding author). Stationarity of variables is then detected in all the cases.

The major results of the Ramsey-Reset Test (Appendix V.d. exposes more details) are presented in the Table 54 as follows.

Dependent variable	chi2(3)	Prob > chi2	
Efficiency ratio EFF	21.27	0.0001	
Non-performing loan ratio NPL	279.15	0.0000	
Coverage ratio COV	12.18	0.0068	
Return on assets ratio ROA	211.24	0.0001	
Return on equity ratio ROE	370.39	0.0001	
Capital adequacy ratio CAD	380.26	0.0001	
Net interest margin ratio NIM	812.52	0.0001	

 Table 54. Ramsey-Reset Test

For the seven performance measure the Ramsey-Reset test rejects the null hypothesis of linearity. In this case, there is problem of linearity that we have to check more.

In the next, log regressions are used in order to improve linearity. The results of Ramsey-Reset test are summarized in the following table.

Dependent variable	chi2(3)	Prob > chi2
Efficiency EFF	21.27	0.0383
Non-performing loan NPL	12.59	0.0056
Coverage ratio COV	21.09	0.0001
Return on assets ROA	211.24	0.0000
Return on equity ROE	370.39	0.1878
Capital adequacy CAD	380.26	0.8507
Net interest margin NIM	812.52	0.0010

Table 55. Ramsey-Reset Test of Log regressions

According to the table above of log regressions we deduce that linearity of the most regressions is enhanced. In fact, for efficiency, return on equity and capital adequacy the Ramsey-Reset test show linearity of regressions. However, for non performing loan ratio, coverage ratio, return on assets and net interest margin ratio the Ramsey-Reset test rejects the null hypothesis of linearity despite the use of log regressions. For this reason, the relation between these dependent variables and its predicted values are checked in the Figure 6 as follows.

Figure 6.1. Log NPL function of its predicted variable

Figure 6.2. Log COV function of its predicted variable

Figure 6.3. Log ROA function of its predicted variable

Figure 6.4. Log NIM function of its predicted variable

Figure 6. Performance measures in Log against their predicted variables

From Figure 6, we can see that there is weak nonlinear relation between the independent variables and the dependent variable for the first four pictures. There is weakness of linearity when dependent variables are measured by logarithm of non-performing loan ration (Lnloan), logarithm of coverage ratio (Lncov), logarithm of return on assets (Lnroa) and logarithm of net interest margin (Lnnim). Indeed, in the whole we can say that linearity of the model is verified.

Furthermore, matrices are presented in the next to show correlations between variables:

	npl	fwd	swp	opt	fut	loan	cap
npl	1.0000						
fwd	-0.0192	1.0000					
	(0.6554)						
swp	-0.0945*	0.2545*	1.0000				
	(0.0276)	(0.0000)					
opt	-0.0993*	0.2795*	0.3732*	1.0000			
-	(0.0205)	(0.0000)	(0.0000)				
fut	-0.0399	0.0090	0.0129	0.6962*	1.0000		
	(0.3534)	(0.8334)	(0.7634)	(0.0000)			
loan	-0.1966*	0.2265*	-0.0316	0.0108	-0.0307	1.0000	
	(0.0000)	(0.0000)	(0.4624)	(0.8015)	(0.4750)		
cap	0.1537*	-0.0678	0.0880*	-0.0045	-0.0322	-0.2079*	1.0000
	(0.0003)	(0.1142)	(0.0403)	(0.9174)	(0.4537)	(0.0000)	
liq	0.0731 -	0.0654	-0.1102*	0.0049	0.0720	-0.2523*	0.1658*
-	(0.0883)	(0.1279)	(0.0101)	(0.9094)	(0.0932)	(0.0000)	(0.0001)
size	-0.2153*	0.0663	0.1409*	0.1984*	0.0841*	0.1148*	-0.3125*
	(0.0000)	(0.1224)	(0.0010)	(0.0000)	(0.0499)	(0.0074)	(0.0000)
cr	0.4346* -	0.0285	-0.0284	-0.0562	-0.0366	-0.2624*	0.0806
	(0.0000)	(0.5077)	(0.5079)	(0.1906)	(0.3948)	(0.0000)	(0.0605)
	liq	size	cr				
liq	1.0000						
size	-0.1969*	1.0000					
	(0.0000)						
cr	0.0190	-0.0871*	1.0000				
	(0.6580)	(0.0423)					

 Table 56. Matrix of correlations (NPL ratio is the dependent variable)

The numbers in brackets correspond to the standard error.

	cov	fwd	swp	opt	fut	loan	cap
Cov	1.0000						
Fwd	-0.0490	1.0000					
	0.2536						
swp	0.1469*	0.2545*	1.0000				
	0.0006	0.0000					
opt	-0.0272	0.2795*	0.3732*	1.0000			
	0.5260	0.0000	0.0000				
fut	-0.0660	0.0090	0.0129	0.6962*	1.0000		
	0.1240	0.8334	0.7634	0.0000			
loan	-0.1452*	0.2265*	-0.0316	0.0108	-0.0307	1.0000	
	0.0007	0.0000	0.4624	0.8015	0.4750		
Cap	0.0677	-0.0678	0.0880*	-0.0045	-0.0322	-0.2079*	1.0000
-	0.1147	0.1142	0.0403	0.9174	0.4537	0.0000	
Liq	0.2379*	0.0654	-0.1102*	0.0049	0.0720	-0.2523*	0.1658*
-	0.0000	0.1279	0.0101	0.9094	0.0932	0.0000	0.0001
Size	0.0371	0.0663	0.1409*	0.1984*	0.0841*	0.1148*	-0.3125*
	0.3874	0.1224	0.0010	0.0000	0.0499	0.0074	0.0000
Cr	0.0600	0.0285	-0.0284	-0.0562	-0.0366	-0.2624*	0.0806
	0.1623	0.5077	0.5079	0.1906	0.3948	0.0000	0.0605
	liq	size	cr				
liq							
Size	-0.1969*	1.0000					
	0.0000						
Cr	0.0190	-0.0871*	1.0000				
	0.6580	0.0423					İ

 Table 57. Matrix of correlations (Coverage ratio is the dependent variable)

The numbers in brackets correspond to the standard error.

Table 58. Matrix of correlations (capital adequacy ratio is the dependent variable)

	variabic)								
	cad	fwd	swp	opt	fut	loan	cap		
cad	1.0000								
fwd	0.0828*	1.0000							
	(0.0061)								
swp	-0.0427	0.3875*	1.0000						
	(0.1573)	(0.0000)							
opt	-0.0321	0.1065*	0.1563*	1.0000					
•	(0.2881)	(0.0004)	(0.0000)						
fut	-0.0165	0.0003	0.0182	0.3891*	1.0000				
	(0.5842)	(0.9921)	(0.5469)	(0.0000)					
loan	0.5486*	0.0820*	-0.0137	-0.0335	-0.0310	1.0000			
	(0.0000)	(0.0066)	(0.6495)	(0.2684)	(0.3055)				
cap	-0.4784*	-0.0795*	-0.0046	0.0806*	0.0024	-0.2249*	1.0000		
-	(0.0000)	(0.0084)	(0.8781)	(0.0076)	(0.9377)	(0.0000)			
liq	-0.2151*	-0.0543	-0.1226*	-0.0228	0.0371	-0.1985*	0.2328*		
-	(0.0000)	(0.0725)	(0.0000)	(0.4517)	(0.2193)	(0.0000)	(0.0000)		
size	0.1715*	0.1056*	0.1520*	0.0872*	0.0758*	0.1167*	-0.3224*		
	(0.0000)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0001)	(0.0000)		
cr	-0.1106*	-0.0256	-0.0226	-0.0278	-0.0279	-0.1693*	0.1658*		
	(0.0002)	(0.3964)	(0.4550)	(0.3575)	(0.3557)	(0.0000)	(0.0000)		
	liq	size	cr						
liq									
size	-0.1743*	1.0000							
	(0.0000)								
cr	0.0290	-0.0870*	1.0000						
	(0.3383)	(0.0040)							

The numbers in brackets correspond to the standard error.

	roa	fwd	swp	opt	fut	loan	cap
roa	1.0000						
fwd	-0.0412	1.0000					
	(0.1727)						
swp	-0.0048	0.3875*	1.0000				
-	(0.8743)	(0.0000)					
opt	-0.0227	0.1065*	0.1563*	1.0000			
-	(0.4521)	(0.0004)	(0.0000)				
fut	-0.0032	0.0003	0.0182	0.3891*	1.0000		
	(0.9154)	(0.9921)	(0.5469)	(0.0000)			
loan	-0.1964*	0.0820*	-0.0137	-0.0335	-0.0310	1.0000	
	(0.0000)	(0.0066)	(0.6495)	(0.2684)	(0.3055)		
cap	0.3042*	-0.0795*	-0.0046	0.0806*	0.0024	-0.2249*	1.0000
-	(0.0000)	(0.0084)	(0.8781)	(0.0076)	(0.9377)	(0.0000)	
liq	0.1342*	-0.0543	-0.1226*	-0.0228	0.0371	-0.1985*	0.2328*
	(0.0000)	(0.0725)	(0.0000)	(0.4517)	(0.2193)	(0.0000)	(0.0000)
size	0.0374	0.1056*	0.1520*	0.0872*	0.0758*	0.1167*	-0.3224*
	(0.2166)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0001)	(0.0000)
cr	-0.0760*	-0.0256	-0.0226	-0.0278	-0.0279	-0.1693*	0.1658*
	(0.0118)	(0.3964)	(0.4550)	(0.3575)	(0.3557)	(0.0000)	(0.0000)
	liq	size	cr				
liq							
size	-0.1743*	1.0000					
	(0.0000)						
cr	0.0290	-0.0870*	1.0000				
	(0.3383)	(0.0040)					

 Table 59. Matrix of correlations (ROA is the dependent variable)

The numbers in brackets correspond to the standard error.

Table 60. Matrix of correlations (ROE is the dependent variable)

	roe	fwd	swp	opt	fut	loan	cap
roe	1.0000						
fwd	0.0353	1.0000					
	(0.2431)						
swp	0.0150	0.3875*	1.0000				
	(0.6203)	(0.0000)					
opt	-0.0072	0.1065*	0.1563*	1.0000			
-	(0.8107)	(0.0004)	(0.0000)				
fut	0.0223	0.0003	0.0182	0.3891*	1.0000		
	(0.4612)	(0.9921)	(0.5469)	(0.0000)			
loan	-0.1252*	0.0820*	-0.0137	-0.0335	-0.0310	1.0000	
	(0.0000)	(0.0066)	(0.6495)	(0.2684)	(0.3055)		
cap	0.0723*	-0.0795*	-0.0046	0.0806*	0.0024	-0.2249*	1.0000
	(0.0167)	(0.0084)	(0.8781)	(0.0076)	(0.9377)	(0.0000)	
liq	0.0461	-0.0543	-0.1226*	-0.0228	0.0371	-0.1985*	0.2328*
•	(0.1275)	(0.0725)	(0.0000)	(0.4517)	(0.2193)	(0.0000)	(0.0000)
size	0.0646*	0.1056*	0.1520*	0.0872*	0.0758*	0.1167*	-0.3224*
	(0.0325)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0001)	(0.0000)
cr	-0.1975*	-0.0256	-0.0226	-0.0278	-0.0279	-0.1693*	0.1658*
	(0.0000)	(0.3964)	(0.4550)	(0.3575)	(0.3557)	(0.0000)	(0.0000)
	liq	size	cr	, , ,			
liq							
size	-0.1743*	1.0000					
	(0.0000)		1				
cr	0.0290	-0.0870*	1.0000				
	(0.3383)	(0.0040)	1				

The numbers in brackets correspond to the standard error.

		Tati IX UI C	orrelations	(11111 18 the dependent variable)				
	Nim	fwd	swp	opt	fut	loan	cap	
nim	1.0000							
fwd	-0.0219	1.0000						
	(0.4684)							
swp	0.0304	0.3875*	1.0000					
-	(0.3152)	(0.0000)						
opt	-0.0136	0.1065*	0.1563*	1.0000				
-	(0.6536)	(0.0004)	(0.0000)					
fut	-0.0170	0.0003	0.0182	0.3891*	1.0000			
	(0.5746)	(0.9921)	(0.5469)	(0.0000)				
loan	-0.0960*	0.0820*	-0.0137	-0.0335	-0.0310	1.0000		
	(0.0015)	(0.0066)	(0.6495)	(0.2684)	(0.3055)			
cap	0.6196*	-0.0795*	-0.0046	0.0806*	0.0024	-0.2249*	1.0000	
-	(0.0000)	(0.0084)	(0.8781)	(0.0076)	(0.9377)	(0.0000)		
liq	0.2497*	-0.0543	-0.1226*	-0.0228	0.0371	-0.1985*	0.2328*	
	(0.0000)	(0.0725)	(0.0000)	(0.4517)	(0.2193)	(0.0000)	(0.0000)	
size	-0.1983*	0.1056*	0.1520*	0.0872*	0.0758*	0.1167*	-0.3224*	
	(0.0000)	(0.0005)	(0.0000)	(0.0039)	(0.0120)	(0.0001)	(0.0000)	
cr	0.1800*	-0.0256	-0.0226	-0.0278	-0.0279	-0.1693*	0.1658*	
	(0.0000)	(0.3964)	(0.4550)	(0.3575)	(0.3557)	(0.0000)	(0.0000)	
	liq	size	cr					
liq								
size	-0.1743*	1.0000						
	(0.0000)							
cr	0.0290	-0.0870*	1.0000					
	(0.3383)	(0.0040)						

Table 61. Matrix of correlations (NIM is the dependent variable)

The numbers in brackets correspond to the standard error.

Furthermore, a test for multicollinearity is made. A detection-tolerance or the variance inflation factor (VIF) for multicollinearity can be defined as follows:

 $Tolerance_i = 1-R_i^2$, $VIF_i = 1/Tolerance_i$

where R_j^2 is the coefficient of determination of a regression of explanatory variable *j* on all the other explanatory variables. A tolerance of less than 0.20 or 0.10 and/or a VIF of 5 or 10 and above indicates a multicollinearity problem (see O'Brien 2007).

	VIF	1/VIF
size	16.52	0.060532
loan	13.67	0.073146
cap	4.75	0.210584
liq	3.33	0.300340
swp	2.42	0.413403
cr	1.90	0.526420
fwd	1.60	0.626273
opt	1.36	0.737182
fut	1.28	0.781538
Mean	5.20	
VIF		

Table 62. Multicollinearity test (for NPL and coverage ratios)

Table 63. Multicollinearity test (for the other dependent variables)

	VIF	1/VIF
size	12.74	0.078519
loan	10.54	0.094916
cap	3.39	0.295330
liq	2.06	0.486105
swp	1.42	0.705047
cr	1.37	0.730518
fwd	1.33	0.749972
opt	1.30	0.768396
fut	1.20	0.829965
Mean	3.93	
VIF		

The results above show that there is no problem of multicollinearity.

As follows the Table 64 resumes Hausman test results.

Dependent variable	chi2(9)	Prob > chi2
EFF	12.28	0.1981
NPL	9.94	0.3553
COV	12.25	0.1996
ROA	20.77	0.0137
ROE	61.03	0.0000
CAD	10.09	0.3429
NIM	34.87	0.0001

Table 64. Hausman Test

For the results in which Hausman test show an absence of correlation between the independent variables and the error terms random effect model is retained. When performance is measured by ROE and NIM, the estimate of the random effect model is inconsistent. To avoid this problem, fixed effect model is used instead.

Moreover, tests for robustness are used for all regressions (fixed and random effect models).

For random effect models Breusch and Pagan Lagrangian multiplier test is performed. The null hypothesis stipulates that the random effect model is the appropriate model, otherwise, simple OLS regression should be conducted. The null hypothesis is H_0 : "Var(u_i)=0" against H_1 : "Var(u_i)>0". The results are as follows:

	Tuble oct Dieusen und Fugun Eugi ungfun mutupher test						
Dep.	sd(Dep.	$sd(e_{i,t})$	$sd(u_i)$	chi2(1) test	P value		
variable	Variable)			statistic			
Npl	0.0549582	0.0289006	0.0375704	665.74	0.0000 *		
Cov	1.072926	0.723215	0.7521066	425.29	0.0000 *		
Roa	0.0183679	0.0129591	0.0103871	508.74	0.0000 *		
Eff	0.4335106	0.2975887	0.3090517	946.86	0.0000 *		
Cad	4.482522	2.868206	1.79603	265.90	0.0000		

Table 65. Breusch and Pagan Lagrangian multiplier test

From these results on Breusch and Pagan Lagrangian multiplier test the null hypothesis is verified in the all models so that random effect models are justified.

On the other hand, for fixed effect models a Modified Wald test for groupwise heteroskedasticity is utilised.

Dependent variable	chi2(137) test statistic	P value
ROE	6.7e+05	0.0000 *
NIM	8.2e+05	0.0000 *

 Table 66. Modified Wald test for groupwise heteroskedasticity

The results above show that the null hypothesis of the presence of homoskedasticity (or constant variance) is verified. For this reason, he option 'robust' in STATA is used to control for heteroskedasticity and to improve the robustness of models.

II.2.1.3. Summaries and Discussion

The purpose of this work is to explain the effect of derivative instruments on bank accounting performance. Results found allow making notable conclusions.

For overall sample, the use of forwards decreases performance through its positive impact on NPL ratio and its negative effect on coverage ratio and net interest margin.

Comparing to literature results which show an increase of performance by using derivatives, and knowing that most of past studies are focusing in banks from developed countries, we can say that in our study banks from emerging and recently developed countries manage bad the use of forwards. Knowing also that forwards are exchanged in over the counter market so we can deduce that our sample banks takes more risks from over the counter market than banks from developed countries.

Also, swaps, despite its negative impact on capital adequacy ratio, generally reduce bank performance because it affects negatively profitability and efficiency.

The findings of this study contradict also literature thesis that the use of swaps enhances bank performance. This can be interpreted by the fact that our sample is composed of banks from both emerging and recently developed countries which do not have a long experience in using such instrument comparing to advanced countries. Therefore, using swaps can affect negatively their performance.

In spite of its effect on NPL ratio, the use of options seems to decrease bank performance since its negative association with efficiency and net interest margin, on the one hand, and its positive correlation with capital adequacy, on the other hand. We know that options are used by banks essentially for speculation purpose. Finding that options use has negative impact on performance means that the sample banks does not manage options in the better way. This can be explained by the lack of opportunities due to the small derivative markets in which they deal.

Although a little positive effect on return on equity, it appears that futures tends to decrease bank performance because of its positive correlation with NPL ratio on the one hand, and its negative association with efficiency on the other hand.

Using for hedging fashion the use futures seems to be beneficial for banks. However, nothing ensures that futures increase bank performance. Thus, there is no strong relationship between hedging rule and increasing performance of futures. Therefore, despite their hedging rule futures can decrease performance.

In summarizing results regarding derivative instruments, the common thesis stipulating that derivatives enhance performance is abandoned.

As concerning control variables, findings show that the proxy of capital increases bank performance due its positive impact on return on assets and net interest margin ratios and also through its negative effect on capital adequacy. This result corroborates our hypothesis stipulating a positive correlation between capital and performance.

In addition, the variable used as proxy of liquidity affect positively performance due its positive association with coverage ratio and net interest margin, on the one hand, and its negative correlation with capital adequacy ratio on the other hand. So hypothesis concerning the increase of performance by liquidity is verified.

In addition, the proxy of credit risk has negative effect on financial performance measures and efficiency measure so it decreases bank performance and confirms our hypothesis.

Furthermore, bank size increases bank performance due its positive impact on return on assets ratio, coverage ratio and efficiency on one hand, and its negative effect on NPL ratio and capital adequacy measure. This result supports the theory that large banks have better diversified asset portfolio and economies of scales thus becoming more efficient (Rivas el. 2006, Shyu and Reichert, 2002; Mester, 1993).

For the other control variables, results show that their impact on bank performance is not comprehensible.

For emerging countries, the impact of forwards use on bank performance is ambiguous because of its negative impact on coverage ratio and capital adequacy measure.

Regarding results it appears that swaps has no significant impact on bank performance.

The use of options affects negatively financial performance measures, efficiency, net interest margin and coverage ratio and also it has a positive impact on NPL ratio that is why it seems that options decrease bank performance.

These results suggest that banks from emerging speculate badly with options so that they make losses. This can be explained by the fact that banks in emerging countries have used derivatives recently and that their derivative markets are small so banks do not have many opportunities to diversify their portfolio of speculation.

Concerning futures use, the effect of futures on bank performance is confusing due its positive impact on financial performance measures on one hand and its negative impact on efficiency measure on the other hand.

These findings can be described by the fact that too little number of banks in the sample composed only of emerging countries has used futures in the sample period. Therefore results about the impact of futures use on bank performance are not enough noteworthy.

As regards the effect of derivative instruments on bank performance, these results reject our hypotheses.

Excluding its effect on operational performance we admit that the proxy of risky assets decrease bank performance because particularly of its negative association with the two profitability measures, efficiency and net interest margin and also its positive impact on capital adequacy. In contrast, capital affects positively bank performance due its positive effect on return on assets, efficiency and net interest margin, and also since its negative correlation with NPL ratio and capital adequacy measure. This result proves theory stipulating that capital increase performance.

Likewise, due its positive effect on return on assets and coverage ratio, liquidity affects positively bank performance. So our hypothesis about positive effect of liquidity on performance is corroborated.

For the rest of control variables, it seems that their impact on bank performance is unclear.

For recently developed countries, it appears that forwards use decreases bank performance because of its negative effect on coverage ratio and net interest margin regardless of its negative impact on NPL ratio.

While, the impact of swaps use on bank performance is understandable because it has negative impact on profitability and efficiency on one hand, and it affects positively coverage ratio and net interest margin.

In spite of its negative impact on NPL ratio, it seems that options use reduces bank performance since its negative effect on efficiency measure on one hand, and its positive effect on capital adequacy measure, on the other hand.

Whereas, the impact of futures use on bank performance is not obvious because of its negative correlation with return on equity on one hand and its positive association with net interest margin on the other hand.

From these results, we deduce that thesis about positive impact of derivatives on performance is eliminated. Also from these findings we can realize that derivative instruments used for speculative fashion have negative effect on performance which indicates that banks in recently developed countries lose in your performance when they speculate by using forwards and options.

Concerning control variables, excepting its positive correlation with NPL ratio, we judge that capital augments bank performance given that its positive effect on the two profitability measures and efficiency, and also due its negative effect on capital adequacy. In contrast, the proxy of credit risk affects positively NPL ratio so it has a negative impact on bank performance. This finding supports our hypothesis about negative association between credit risk and performance.

The variable proxy of the bank size enhances performance due its positive effect on return on equity, coverage ratio, efficiency and net interest margin on one hand, and its negative impact on NPL ratio and capital adequacy measure. Since the theory about positive effect of size on performance is confirmed.

Except for its positive impact on capital adequacy, we consider that the dummy defining dealer bank increases bank performance especially due its positive association with the two profitability measures and efficiency on one hand, and its negative impact on NPL ratio on the other hand. Thus, our hypothesis stipulating a positive association between DEAL and performance is retained.

Considering the rest of control variables, we deduce that their impact on bank performance is unclear.

Summarizing results indicate that in the whole the four derivative instruments tend to decrease bank performance. Thus, theory stipulating a positive effect of derivatives usage on bank performance is rejected.

Comparing results show that the use of options by banks in emerging as well in recently developed countries decreases performance. Hence, we deduce that derivatives used by banks in emerging as well in recently developed countries have the same effect on bank performance.

The following table sums up the main regression results about the association between the four derivative instruments and the seven accounting performance measures.

Panel A. For overall sample					
	Forwards	Swaps	Options	Futures	
ROA	NS	-	NS	NS	
ROE	NS	NS	NS	+	
NPL ratio	+	NS	-	+	
Coverage ratio	-	NS	NS	NS	
Efficiency	NS	-	-	-	
Capital adequacy	NS	-	+	NS	
ratio					
NIM	-	NS	-	NS	

 Table 67. Summary table of regression coefficient signs

 Panel A. For overall sample

Panel	B .	For	emerging	countries
-------	------------	-----	----------	-----------

	Forwards	Swaps	Options	Futures
ROA	NS	NS	-	+
ROE	NS	NS	-	+
NPL ratio	NS	NS	+	NS
Coverage ratio	-	NS	-	NS
Efficiency	NS	NS	-	-
Capital adequacy	-	NS	NS	NS
ratio				
NIM	NS	NS	-	NS

Panel C. For recently developed countries

	Forwards	Swaps	Options	Futures
ROA	NS	-	NS	NS
ROE	NS	NS	NS	-
NPL ratio	-	+	-	NS
Coverage ratio	-	+	NS	NS
Efficiency	NS	-	-	NS
Capital adequacy	NS	-	+	NS
ratio				
NIM	-	+	NS	+

Common results of the two subsamples show that the use of options has a negative effect on coverage ratio and efficiency measure. So it appears that the use of options by banks in emerging as well as in recently developed countries has the same negative impact on performance.

The use of forwards has a negative effect on NPL ratio in Panel B as well as in Panel C. Similarly, options used by banks in merging as well in recently developed countries affect negatively efficiency.

As regard swaps and futures, their impact on performance is not obvious in the Panel B as well as in the Panel C.

Finally, concerning control variables, capital affect positively bank performance in the two subsamples.

The impact of forwards use on bank performance is negative in the Panel C while it is ambiguous in the Panel B.

The correlation between futures and return on equity is positive for banks from emerging countries while it is negative for banks from recently developed countries.

It appears that banks from emerging countries increase their financial performance with using futures whereas banks from recently developed countries decrease their financial performance when they use futures. Indeed, banks from emerging countries deal with futures in a better way.

The association between options use and NPL ratio is positive in Panel B while it is negative in Panel C. The evidence is that, in term of operating performance, banks in recently developed countries manage better their options than banks in emerging countries.

In sum, comparing results expose that banks in recently developed countries deal with options better than those in emerging countries, and that futures are used more properly by banks in emerging countries than those in recently developed countries.

Moreover, from comparing results, we deduce that the effect of derivatives use on bank performance is almost the same in the two subsamples. Findings can be explained either that banks in recently developed countries have nearly the same specificities as well as banks in emerging countries or by the small subsamples size.

Overall findings indicate that the four derivative instruments generally reduce bank performance.

Results about banks from emerging countries reveal that the use of options by decreases their performance.

Findings concerning banks from recently developed countries expose that the use of forwards and more clearly of options diminishes their performance.

Main comparing results show that the effect of derivatives use on bank performance is almost the same in the two subsamples.

Ultimately, the major conclusion of this second part is that banks in the whole seem to decrease their performance by using derivative instruments. Indeed, deducing results reject literature findings and the argument stipulating that derivatives use increases bank performance.

CONCLUSION

The thesis has for purpose to study the effect of four derivative instruments (forwards, swaps, options and futures) use on both bank risk and performance.

The thesis has chosen a sample composed of banks from both emerging and recently considered as developed for many reasons such as: the lack of papers focusing on emerging countries context, the big differences between advanced countries and recently developed countries, the lack of data on banks from emerging countries, the absence of papers identifying banks from recently developed countries, and the absence of papers combining and comparing banks from both emerging and recently developed countries.

Using on the one hand annual and quarterly accounting data in the period 2003-2010, and on the other hand basing on annual capital market data during the period 2003-2009 regarding the combined sample banks, this thesis tries to respond to the following main research questions:

Are banks at risk by using derivative instruments?

Are banks increasing their performance by using derivatives?

Are there differences in the effect of derivatives use on risk and/or performance between banks in emerging countries and those in recently developed countries? Can derivatives be responsible for the last financial crisis?

To provide answers two separate parts are defined in each of them reviews of literature were presented and empirical analyses were conducted.

The first part of the thesis examines the impact of derivatives use on bank risk.

Basing on literature results the main hypotheses are as follows. The first hypothesis stipulates a negative effect of swaps on bank risk. Next, a positive effect of options on risk is hypothesized. Lastly, the third hypothesis stipulates that futures and forwards do not affect significantly risk.

In order to check up the plausibility of these hypotheses, two empirical analyses defined in two chapters are performed to this end.

In the first analysis capital market risks are regressed to derivative instruments and control variables. Capital market risks are measured by total return risk, systematic risk and non-systematic risk.

The sample combines 52 banks from both emerging and recently developed countries during the sample period from 2003 to 2009.

Findings show that the use of options tends to increase all types of bank risk. In contrast, swaps, forwards and futures negatively affect capital market risk.

The second analysis is testing the effect of derivative instruments use on accounting risks. Accounting risks are defined by leverage risk, liquidity risk, credit risk and overall risk.

The total sample is defined by 137 banks and divided into two subsamples composed of bank from emerging and recently developed countries, and covering the sample period from 2003 to 2010.

The whole results reveal that in general the use of forwards and swaps decrease bank risk while the use of options positively affects bank risk, and finally the use of futures has a mildly significant effect on bank risk.

Our findings - as regarding swaps and options - are almost similar to those of the literature. Hence, there is an evidence that the use of swaps reduce bank risk while the use of options increase bank risk whether they are used by banks in developed (in the literature) or in emerging and recently developed countries (in the present study).

Deducing results from benchmarking analysis notify that forwards and swaps have negative effect on bank risk whether are used by banks in emerging or in recently developed countries. Whilst, the use of option contracts by banks from recently developed countries has a negative effect on bank risk while it has a positive effect with banks from emerging countries.

The main conclusion from the first part reveals evidence that with exception of options, derivative instruments do not increase risk.

Thus, hypotheses stipulating that swaps decrease bank risk and that options increase bank risk were supported, whereas hypothesis stipulating that forwards have no effect on bank risk was abandoned.

These findings make evidence that options are risky instrument and their use in speculation accentuates the risk of banks. Here banks should deal better with this derivative type when they use it for speculation in order to minimize its risk. On the contrary, the use of swaps reduces bank risk. This result can be explained by the fact that swaps are hedging tools so banks use swaps to cover their risks. For this reason the use of swaps is recommending for banks in order to take advantage of their covering of risks.

Ultimately, according to our sample statistics the majority of banks generally make use of forwards and swaps, therefore it seems clear that sample banks are not at risk by using derivative instruments.

The second part investigates the effect of derivative instruments use on bank performance.

According to the few papers investigating empirically this relationship the major hypothesis stipulates an increase of bank performance by derivative instruments use.

Similarly to the first part two chapters in each of them an analysis was performed in order to verify the plausibility of this hypothesis.

In the first analysis stock returns as measure of financial performance are regressed to derivative instruments and control variables.

The sample is composed of 74 banks spread over 34 countries regrouped as emerging and recently developed countries. The sample period is from 2003 to 2009.

The results divulge that the use of swaps tends to decrease financial performance. However, forwards, options and futures have no significant effect on stock returns.

The second analysis examines the impact of derivative instruments on five aspects and seven measures of accounting performance. Accounting performance is measured by financial performance or profitability (determined by return on assets ratio and return on equity ratio), operating performance or asset quality (the ratio of nonperforming loans and the coverage ratio), efficiency (or cost income ratio), capital adequacy ratio, and the net interest margin ratio.

After analysis of the using pooled data from 2003 to 2010 collected from overall sample and two subsamples (composed of banks from both emerging and recently developed countries) noteworthy conclusions were drawn from the empirical results.

Overall findings indicate that the four derivative instruments generally reduce bank performance.

Results about banks from emerging countries reveal that the use of options decreases their performance.

Findings concerning banks from recently developed countries expose that the use of forwards and more clearly of options diminishes their performance.

The major conclusion is that banks in the whole seem to decrease their performance by using derivative instruments.

Indeed, deducing results of this second part reject literature findings and thesis stipulating that derivatives use enhances bank performance.

These differences between our findings and previous studies results can be because of the specificities of our sample compared to its used in the most of past studies which is composed of banks only from advanced countries. It seems clear that banks in developed or advanced countries manage better their use of derivatives in comparison to banks from both emerging and recently developed countries. It can be interpreted by the fact that banks in both emerging and recently developed are for the most part new users of derivatives so they lack experience in using these instruments. Also their derivatives markets are so small to have many opportunities to take profits of derivatives.

Finally, compared results in the two parts of the thesis find out little differences between banks in emerging countries and those in recently developed countries. These similarities between banks in the two subsamples can be explicated by the fact that specifications in emerging and recently developed countries are so close. Therefore, there are no much differences between the two groups of countries. We suggest that comparison between banks in emerging or/and recently developed countries and developed countries would be more noteworthy.

Important implications can be deduced from this work.

From the first part, it comes out that forwards, swaps and futures may be used effectively as hedging tools, while options may be viewed in a more speculative fashion. Therefore, more control in the use of options should be made by bank managers in order to better control its effect on risk.

Comparing results between banks from emerging countries and those from recently developed countries reveal that forwards and swaps have negative effect on bank risk

whether are used by banks in emerging or recently developed countries. Whilst, banks in emerging countries deal better with futures than banks in recently developed countries. And finally, banks in recently developed countries manager the risk of options better than banks in emerging countries.

From the second part and particularly from the first analysis bank managers ought to give more attention to swap contracts in order to minimize its negative effect on performance.

In the second analysis and uniformly to comparing results in the first part, it seems clear that banks in recently developed countries deal with options better than those in emerging countries, whilst futures are used more properly by banks in emerging countries than those in recently developed countries.

Main results from benchmarking analyses in the two parts show that the effect of derivatives on bank risk and performance is almost the same either in banks from emerging or recently developed countries. Therefore little differences are observed between the two ranges of banks. It can be explained by the fact that banks in recently developed countries have nearly the same specifications as well as banks in emerging countries.

In brief, deducing that by using derivatives banks decrease their performance but also their risk, indeed adjudication that derivatives are beneficial or not is not allowed.

Hence, the common opinion of many authors supporting that derivative instruments are beneficial for banks should be revised.

However, there is no proof that derivatives can be the cause of bank failure or distress. Thus, the ongoing debate that derivative instruments are implicated in the most recent financial crisis should be reviewed.

Many contributions of the thesis can be enumerated. Firstly, in contrary to most previous papers focusing only on banks from advanced countries and principally from U.S., the current work is composed of banks essentially from both emerging countries. Secondly, the thesis includes banks from countries which were considered few years ago as emerging countries which we called recently developed countries.

As a result, this study is the first paper to combine and compare banks from emerging and recently developed countries.

Thirdly, and in opposite to the majority of previous studies - the thesis has analysed instruments of derivatives independently. Indeed, it contributes to the literature by studying the effect of each derivative type on bank risk and performance.

Finally, and regarding the lack of papers studying empirically the effect of derivatives use on bank risk and performance, this thesis has aimed to fill this huge gap in the literature.

Nevertheless, the current work was limited by some constraints such as the lack of derivatives and capital market data especially of banks from emerging countries and also the lack of empirical references.

As proposals, forthcoming studies can:

- enlarge more the period and the sample study,
- > get more data and focus only on emerging countries
- > compare banks from emerging countries to those from developed countries,
- > use other financial innovations such as securitizations,
- > examine the effect of derivative instruments on others bank risk types,
- > separate between bank derivative buyers and bank derivative sellers
- \succ focus on the corporate case.

BIBLIOGRAPHY

[1] Agusman, A., Monroe, G.S., Gasbarro, D., Zumwalt, J.K., 2008. Accounting and capital market measures of risk: Evidence from Asian banks during 1998–2003. Journal of Banking and Finance Vol. 32 Iss. (2008), pp. 480–488.

[2] Ameer, R., 2010. Determinants of corporate hedging practices in Malaysia. International Business Research Vol. 3 Iss. 2; pp. 120-130.

[3] Allayannis, G., Weston, J. P., 2001. The use of foreign currency derivatives and firm market value. Review of Financial Studies Vol. 14 Iss. 1, pp. 243-276.

[4] Attig, N., Dai, J., 2009. Does trading in derivatives affect bank risk? The Canadian evidence. Working paper published in the scientific digital library CiteSeer.

[5] Bali, T.G., Hume, S.R., Martell, T.F., 2004. A new look at hedging with derivatives: Will firms reduce market risk exposure? Journal of Futures Markets Vol. 27 Iss. 11, pp. 1053-1083.

[6] Bartram, S.M., Brown, G.W., Conrad, J., 2006. The Effect of derivatives on firm performance and value. Journal of Financial and Quantitative Analysis Vol. 46, pp. 967-999.

[7] Berger A.N., Clarke, G.R.G, Cull, R., Klapper, L., Udell, G.F. 2005. Corporate governance and bank performance: A joint analysis of the static, selection, and dynamic effects of domestic, foreign, and state ownership. Journal of Banking and Finance Vol. 29 Iss. 8-9, pp. 2179–2221.

[8] Bonin, J.P., Hasan, I., Wachtel, P., 2004. Bank performance, efficiency and ownership in transition countries. Institute for Economies in Transition, BOFIT discussion papers no. 7 (2004), ISBN 051-686-897-5, ISSN 1456-5889.

[9] Boubakri, N., Cosset, J.C., Fischer, K., Guedhami, O., 2005. Privatization and bank performance in developing countries. Journal of Banking and Finance Vol. 29 Iss. (2005), pp. 2015–2041.

[10] Brewer, E., Jackson, W.E., Moser, J.T., 2001. The value of using interest rate derivatives to manage risk at U.S. banking organizations. Economic Perspectives Vol. QIII Iss. (2001), pp. 49-66.

[11] Brewer, E., Minton, B.A., Moser, J.T., 2000. Interest-rate derivatives and bank lending. Journal of Banking and Finance Vol. 24 Iss. 3, pp. 353-379.

[12] Brown, S.J., Warner, J.B., 1984. Using daily stock returns. Journal of Financial Economics Vol. 14, pp. 3-31.

[13] Buyuksalvarci, A., 2010. The effects of macroeconomics variables on stock returns: Evidence from Turkey. European Journal of Social Sciences Vol. 14 Iss. 3, pp. 404-416.

[14] Carter, D.A., Sinkey, Jr.J.F., 1998. The use of interest-rate derivatives by end users: the case of large community banks. Journal of Financial Services Research Vol. 14 Iss. 1, pp. 17-34.

[15] Casu, B., Molyneux, P., 2003. A comparative studies of efficiency in European banking. Applied Ecnomics Vol. 35 Iss. 17, pp. 1865-1876.

[16] Chaudhry, M., Reichert, A., 1999. The impact of off-balance sheet derivatives and interest rate swaps on bank risk. Research in Finance Vol. 17 Iss. (1999), pp. 275-300.

[17] Chaudhry, M.K., Christie-David, R., Koch, T.W., Reichert, A.K., 2000. The risk of foreign currency contingent claims at us commercial banks. Journal of Banking and Finance Vol. 24 Iss. (2000), pp. 1399-1417.

[18] Choi, J., Elyasiani, E., 1997. Derivative exposure and the interest rate and exchange rate risks of U.S. banks. Journal of Financial Services Research Vol. 12 Iss. 2, pp. 267-286.

[19] Clark, E., Mefteh, S., 2010. Foreign currency exposure and derivatives use: Evidence from France from 2002 to 2005. Bankers, Markets and Investors Vol. 104 Iss. (2010), pp. 21-29.

[20] Duffee, G.R., 1996. On measuring credit risks of derivative instruments. Journal of Banking and Finance Vol. 20 Iss. (1996), pp. 805-833.

[21] Fauver, L., Naranjo, A., 2010. Derivative usage and firm value: The influence of agency costs and monitoring problems. Journal of Corporate Finance Vol. 16 Iss. 5, pp. 719–735.

[22] Fok, R.C.W., Carroll, C., Chiou, M.C., 1997. Determinants of corporate hedging and derivatives: a revisit. Journal of Economics and Business Vol. 49 Iss. 6, pp. 569-585.

[23] Fraser, D., Madura, R.J., Weigand, R.A., 2002. Sources of bank interest rate risk. Financial Review Vol. 37 Iss. 3, pp. 351-367.

[24] Frei, F., Kalakota, X., Leone, R.A.J., Marx, L.M., 1999. Process variation as a determinant of bank performance: Evidence from the retail banking study. Management Science Vol. 45 Iss. 9, pp. 1210-1220.

[25] Froot, K.A., Scharfstein, D.S., Stein, J.C., 1993. Risk management: coordinating corporate investment and financing policies. Journal of Finance Vol. 48 Iss. 5, pp. 1629-1658.

[26] Gunther, J.W., Siems, T.F., 2002. The likelihood and extent of bank's involvement with interest rate derivatives as end users. Research in Finance Vol.19 Iss. (2002), pp. 125-142.

[27] Hentschel, L., Kothari, S., 2001. Are corporations reducing or taking risks with derivatives? Journal of Financial and Quantitative Analysis Vol. 36 Iss. 1, pp. 93-118.[28] Hirtle, B., 1997. Derivatives, portfolio composition, and bank holding company

interest rate risk exposure. Journal of Financial Services Research Vol. 12 Iss. 2, pp. 243-266.

[29] Houweling, P., Vorst, T., 2005. Pricing default swaps: Empirical evidence. Journal of International Money and Finance Vol. 24 Iss. 8, pp. 1200–1225

[30] Instefjord, N., 2005. Risk and hedging: Do credit derivatives increase bank risk? Journal of Banking and Finance Vol. 29 Iss. 2, pp. 333-345.

[31] Jarrow; R.A., Turnbull, S.M., 1995. Pricing Derivatives on financial securities subject to credit risk. The Journal of Finance Vol. 50 Iss. 1, pp. 53-85.

[32] Lin, X., Zhang, Y., 2009. Bank ownership reform and bank performance in China. Journal of Banking and Finance Vol. 33 Iss. 1, pp. 20-29.

[33] Liu, T.K., 2010. An empirical study of firms' merger motivations and synergy from Taiwanese banking industry. International Research Journal of Finance and Economics Vol. 38 Iss. (2010), pp. 1450-2887.

[34] Mayers, D., Smith, C.W., 1982. On the corporate demand for insurance. Journal of Business Vol. 55 Iss. 2, pp. 281-296.

[35] Mayers, D., Smith, C.W., 1987. Corporate insurance and the Underinvestment problem. Journal of risk and insurance Vol. 54 Iss. 1, pp. 45-54.

[36] McAnally, M.L., 1996. Banks, risk, and FAS105 disclosures. Journal of Accounting, Auditing & Finance Vol. 11 Iss. 3, pp. 453–490.

[37] Merton, R., 1992. Financial innovation and economic performance. Journal of Applied Corporate Finance Vol. 4 Iss. 4, pp. 12-22.

[38] Merton, R., 1995. Financial innovation and the management and regulation of financial institutions. Journal of Banking and Finance Vol. 19 Iss. 3-4, pp. 461-481.

[39] Mester, L., 1993. Efficiency in the saving and loan industry. Journal of Banking and Finance Vol. 17 Iss. 2-3, pp. 267-286.

[40] Miller, K.D., 1992. A framework for integrated risk management in international business. Journal of International Business Studies Vol. 23 Iss. 2, pp. 311-331.

[41] Minton, B., Stulz, R., Williamson, R., 2009. How much do banks Use credit derivatives to hedge loans? Journal of Financial Services Research Vol. 35 Iss. 1, pp. 1-31.

[42] Nance, D.R., Smith, C.W., and Smithson C.W., 1993. On the determinants of corporate hedging. Journal of Finance Vol. 48 Iss. 1, pp. 267-284.

[43] Nguyen, H., Faff, R., 2003. Can the use of foreign currency derivatives explain variation in foreign exchange exposure? Evidence from Australian companies. Journal of Multinational Financial Management Vol. 13 Iss. (2003), pp. 193-215.

[44] O'Brien, Robert M. 2007. A caution regarding rules of thumb for variance inflation factors. Quality and Quantity 41(5), 673-690.

[45] Pierides, Y.A., 1997. The pricing of credit risk derivatives. Journal of Economic Dynamics and Control Vol. 21 Iss. 10, pp. 1579–1611.

[46] Reichert, A., Shyu, Y.W., 2003. Derivative activities and the risk of international banks: A market index and the VaR approach. International Review of Financial Analysis Vol. 12 Iss. (2003), pp. 489-511.

[47] Rivas A., Ozuna, T., Policastro, F., 2006. Does the use of derivatives increase bank efficiency? Evidence from Latin American banks. International Business and Economics Research Journal Vol. 5 Iss. 11, pp. 47–56.

[48] Said, A. 2011. Does the use of derivatives impact bank performance? A case study of relative performance during 2002-2009. Middle Eastern Finance and Economics Vol. 11 Iss. (2011), pp. 1450-2889.

[49] Shanker, L., 1996. Derivatives use and interest rate risk of large banking firms. The Journal of Futures Markets Vol. 16 Iss. 4, pp. 459-474.

[50] Sinkey, Jr.J.F., Carter, D.A., 2000. Evidence on the financial characteristics of banks that do and do not use derivatives. The Quarterly Review of Economics and Finance Vol. 40 Iss. 4, pp. 431-449.

[51] Smith, C., Stulz, R., 1985. The Determinants of firms' hedging policies. The Journal of Financial and Quantitative Analysis Vol. 20 Iss. 4, pp. 391-405.

[52] Stout, L., 1995. Betting the bank: How derivatives trading under conditions of uncertainty can increase risks and erode returns in financial markets. Journal of Corporation Law Vol. 21 Iss. 1, pp. 53-68.

[53] Tobin, J., 1969. A general equilibrium approach to monetary theory. Journal of Money, Credit and Banking Vol. 1 Iss. 1, pp. 15-29.

[54] Venkatachalam, M., 1996. Value-relevance of bank's derivatives disclosures. Journal of Accounting and Economics Vol. 22 Iss. 1-3, pp 327–355.

[55] Yong, H., Faff, R., Chalmers, K., 2009. The Effect of derivatives activities on Asia-Pacific banks' interest rate and exchange rate exposures. International Financial Markets Institutions and Money Vol. 19 Iss. 1, pp. 16-32.

[56] Zhang, H., 2006. Effect of derivative accounting rules on corporate riskmanagement behavior. Journal of Accounting and Economics Vol. 47 Iss. 3, pp. 244– 264.

Appendix I.

	Total return risk	Systematic risk	Non-systematic risk
	σ _{Ri}	β _{mi}	$\sigma_{\epsilon i}$
	Dummies for e	emerging countries	
Chile	Insignificant	11.7167*** (3.9953)	Insignificant
Croatia	0.0116** (0.0046)	7.8814*** (2.4052)	Insignificant
Cyprus	0.0064** (0.0025)	insignificant	2.2789*** (0.1327)
Indonesia	Insignificant	insignificant	Insignificant
Malaysia	0.0146*** (0.0029)	insignificant	1.0233*** (0.1570)
Mauritius	Insignificant	26.3848*** (7.4031)	Insignificant
Philippines	Insignificant	34.6963* (20.7302)	Insignificant
Poland	Insignificant	insignificant	3.6181*** (0.2106)
Saudi Arabia	0.0057** (0.0027)	-0.1744308** (0.0745211)	26.6053** (12.4175)
South Africa	Insignificant	2.1038*** (0.6925)	Insignificant
Thailand	0.0050** (0.0019)	5.4924*** (0.2820)	Insignificant
Turkey	Insignificant	2.6150*** (0.3053)	Insignificant
	Dummies for recen	tly developed count	ries
Czech Republic	Insignificant	5.1833*** (0.4075)	Insignificant
Estonia	0.0206*** (0.0040)	3.0204* (1.6038)	Insignificant
Hong Kong	0.0087*** (0.0029)	2.8161*** (0.3198)	3.9721*** (0.1229)
Israel	0.0143*** (0.0034)	insignificant	Insignificant
Latvia	Insignificant	-0.1868** (0.0743)	2.4454*** (0.3657)
Lithuania	0.0158*** (0.0038)	-0.2058*** (0.0742)	5.6945*** (0.4191)
Singapore	0.01268*** (0.0024)	insignificant	9.6561*** (0.3977)
South Korea	Insignificant	7.8785*** (1.1246)	1.1904* (0.3967)
Taiwan	0.0071** (0.0029)	insignificant	Insignificant
R-squared	0.1292	0.3421	0.2619
F statistic	4.73***	94.16***	306.25***
Number of obs.	364	364	364 at the 10%, 5% and 1%

Table I. Estimated coefficients of dummy countries

*, ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels. () indicate standard deviation of the estimators.

Appendix II.a.

	Leverage risk	Credit risk 1	Credit risk 2	Liquidity risk	Total risk
	0.1551135***	0.5482274***	0.0318569***	0.0718038***	0.0079017***
Constant	(0.01315)	(0.0377125)	(0.0013297)	(0.0138603)	(0.0007778)
	-0.005751***	(0.0377123)	(0.0013297)	-0.0029418*	(0.0007778)
FWD	(0.0019697)	Insignificant	insignificant	(0.0015855)	insignificant
SWP	insignificant	-0.0136368 *** (0.0032783)	-0.0015535*** (0.0002621)	insignificant	insignificant
OPT	0.0169053*** (0.0051756)	0.0190371 ** (0.0093309)	insignificant	insignificant	-0.0047164* (0.0026211)
FUT	insignificant	Insignificant	insignificant	insignificant	0.0007763* (0.0004512)
NIM	0.797544*** (0.0786721)	-0.4859484 *** (0.0663234)	0.0697491*** (0.0109894)	0.3754465*** (0.0930716)	insignificant
LOG	-0.0107483*** (0.0014023)	0.0147786 *** (0.0036482)	insignificant	-0.009032*** (0.0014829)	insignificant
DEAL	-0.012498*** (0.0029331)	Insignificant	insignificant	-0.0247658*** (0.0051801)	insignificant
Argentina	0.0696391*** (0.0198943)	-0.211748*** (0.0260792)	-0.0159613*** (0.0032072)	0.0806974*** (0.0140726)	insignificant
Brazil	insignificant	-0.4419428*** (0.0343203)	-0.0185841*** (0.0023226)	0.0376956*** (0.0110197)	0.0395416*** (0.0116018)
Bahrain	0.1143362*** (0.0190553)	-0.2959398*** (0.0297273)	-0.0156397*** (0.002316)	0.0520752*** (0.010192)	insignificant
Bulgaria	0.0158552* (0.008423)	-0.0581215** (0.0246933)	-0.0134186*** (0.0025407)	0.0701717*** (0.007036)	insignificant
Chile	-0.0369538*** (0.005115)	0.0402918** (0.0158307)	-0.0205024*** (0.0014238)	0.0801256*** (0.0071016)	-0.0046631*** (0.0009065)
China	insignificant	-0.0237*** (0.0052)	-0.0152271*** (0.0015248)	insignificant	-0.004334*** (0.0008724)
Croatia	0.0231912*** (0.006266)	-0.0617292*** (0.0151491)	insignificant	0.0863455*** (0.0087679)	insignificant
Cyprus	insignificant	-0.1153181*** (0.017972)	insignificant	0.0638292*** (0.0074897)	insignificant
Czech Republic	0.0096343** (0.0039073)	-0.1670715*** (0.0284205)	-0.018917*** (0.0014501)	0.0319995*** (0.0056592)	-0.0030653*** (0.0007916)
Estonia	0.04612*** (0.0071056)	Insignificant	-0.0236617*** (0.0033925)	0.0329897*** (0.006666)	-0.0062446*** (0.0008539)
Hong Kong	0.0269037*** (0.0040746)	-0.2155659*** (0.0141914)	-0.0277293*** (0.001938)	0.1415185*** (0.0141504)	insignificant
Hungary	0.0211612*** (0.0067252)	-0.0969228*** (0.0281117)	-0.0187124*** (0.002012)	0.0560294*** (0.0080973)	insignificant
India	insignificant	-0.0100*** (0.0017)	-0.0283498*** (0.0016069)	0.1295377*** (0.0257392)	-0.0038914*** (0.0010126)
Indonesia	insignificant	Insignificant	insignificant	insignificant	insignificant
Israel	0.0136935*** (0.0043082)	-0.0598289*** (0.0155154)	-0.0292938*** (0.001302)	0.1776901*** (0.0120948)	-0.0049417*** (0.0012005)
Jordan	0.0305367*** (0.0087222)	-0.1580256*** (0.0249036)	-0.0103041*** (0.0038612)	0.1539372*** (0.0157685)	insignificant
Kazakhstan	0.0229092** (0.0094437)	Insignificant	0.0269609** (0.0110825)	0.1240348*** (0.0226604)	insignificant
Kuwait	0.0343644*** (0.007373)	-0.1204964*** (0.0258362)	insignificant	0.1297191*** (0.0110037)	-0.0037954*** (0.0010189)
Latvia	insignificant	-0.1274686*** (0.0262118)	-0.0118919** (0.0046297)	0.0488524*** (0.0066151)	insignificant
Lebanon	insignificant	-0.4745122***	-0.0266508***	0.2648205***	-0.0040912***

Table II.a. Estimated coefficients for overall sample, years 2003-2010

		(0.01632)	(0.0014192)	(0.0192587)	(0.0008365)
Lithuania	insignificant	Insignificant	-0.0160086*** (0.0037154)	0.0570094*** (0.0087389)	-0.0035566*** (0.0009584)
Malaysia	0.0194871*** (0.0038898)	-0.044056** (0.0221632)	-0.012029*** (0.002166)	0.1463103*** (0.0101032)	-0.0044464*** (0.001969)
Mauritius	insignificant	Insignificant	insignificant	0.0500992*** (0.0137702)	0.0339757*** (0.0128994)
Mexico	insignificant	-0.1780016*** (0.0370564)	-0.0069785** (0.0028403)	0.1763195*** (0.0112219)	-0.0050533*** (0.0013135)
Oman	0.0396397*** (0.0092581)	Insignificant	insignificant	0.0582646*** (0.0178827)	-0.0063188*** (0.0008313)
Pakistan	insignificant	-0.1139405*** (0.0208225)	insignificant	0.1086687*** (0.0077868)	-0.0044274*** (0.0008527)
Philippine	0.0311887*** (0.0046924)	-0.3397767*** (0.018075)	0.0297366*** (0.0085547)	0.0187939*** (0.0052583)	-0.0073729*** (0.0007788)
Poland	0.0275051*** (0.005015)	-0.0530884** (0.0230845)	insignificant	0.055468*** (0.0061979)	-0.0041492*** (0.0009092)
Qatar	0.0913808*** (0.0088383)	-0.1132514*** (0.0187956)	-0.0237127*** (0.0019951)	0.0647226*** (0.0119994)	-0.0048944*** (0.0010448)
Russia	insignificant	-0.155738*** (0.0322388)	-0.0094645*** (0.0026311)	0.1858338*** (0.0669509)	insignificant
Saudi Arabia	0.0367631*** (0.0048538)	-0.0903308*** (0.0164904)	-0.0194941*** (0.001849)	0.0983635*** (0.0110218)	insignificant
Singapore	0.0647507*** (0.0048354)	-0.2144101*** (0.0242228)	-0.0156941*** (0.0015886)	0.1018443*** (0.0089836)	-0.0057701*** (0.000893)
Slovakia	insignificant	-0.1079358*** (0.0305096)	-0.0160585*** (0.0025762)	0.040571*** (0.0105824)	insignificant
Slovenia	insignificant	Insignificant	insignificant	0.0226479*** (0.0056229)	-0.0061636*** (0.0007824)
South Africa	0.0338109*** (0.0103942)	0.055458*** (0.0208534)	-0.0151158*** (0.0017633)	0.0917715*** (0.0101473)	-0.0067681*** (0.0008343)
South Korea	0.018304*** (0.0053264)	Insignificant	-0.0210231*** (0.0013769)	0.0796045*** (0.008003)	-0.0054588*** (0.000849)
Taiwan	insignificant	-0.0603936*** (0.0144349)	-0.026307*** (0.0013451)	0.0388832*** (0.0066916)	-0.0063598*** (0.0007979)
Thailand	0.0171506*** (0.0065174)	Insignificant	insignificant	0.0324971*** (0.0058077)	-0.0055125*** (0.0008851)
Turkey	0.0231517*** (0.0062829)	-0.2059404*** (0.0291501)	-0.0211061*** (0.0023688)	0.0569072*** (0.0078067)	insignificant
United Arab of Emirates	0.068559*** (0.0087933)	-0.1156283*** (0.0227667)	-0.0166024*** (0.0019611)	0.1096181*** (0.013405)	insignificant
Vietnam	insignificant	-01783498*** (0.0272118)	-0.0306245*** (0.0013232)	0.0605457*** (0.0085153)	insignificant
R-squared	0.5684	0.4591	0.3270	0.4834	0.2984
F statistic Number of obs	26.57*** 1096	67.47*** 1096	63.22*** 1096	46.33*** 1096	24.13*** 736

*, ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels. () indicate standard deviation of the estimators.

Appendix II.b.

Table II.b. Estimated coefficients for emerging countries, years 2003-2010					
	Leverage risk	Credit risk 1	Credit risk 2	Liquidity risk	Total risk
Constant	0.1458448***	0.7267235***	0.0308693***	0.1214615***	0.0075834***
Constant	(0.0205941)	(0.0091913)	(0.004071)	(0.0226087)	(0.0010643)
FWD	-0.0058097**	0.0148069*	insignificant	-0.0038731*	0.0093869*
1.1.2	(0.002277)	(0.0082986)	-	(0.002182)	(0.005656)
SWP	insignificant	insignificant	-0.000333**	-0.0056277***	insignificant
	0.0284657***	<u> </u>	(0.0001636)	(0.0012588) 0.0284497**	-0.0105712*
OPT	(0.0093993)	insignificant	insignificant	(0.0132858)	(0.0057595)
	-0.0039515**	-		i ` ´ ´ ´	0.0016446*
FUT	(0.0018213)	insignificant	insignificant	insignificant	(0.0009473)
	0.8412569***	-0.6122843***	0.058843***	0.3694749***	
NIM	(0.081442)	(0.036938)	(0.0114226)	(0.0963988)	insignificant
LOC	-0.0065504***		-0.0015232***	-0.0106004***	· · · · · · ·
LOG	(0.002132)	insignificant	(0.0003767)	(0.0021096)	insignificant
DEAL	-0.0301087***	incignificant	insignificant	-0.024055**	insignificant
DEAL	(0.00523)	insignificant	Insignificant	(0.0095601)	insignificant
Argentina	0.0420097**	-0.2721849***	insignificant	0.0463493***	insignificant
Aigentina	(0.0205738)	(0.0269377)	msignificant	(0.0146039)	-
Brazil	-0.0333071**	-0.4383081***	insignificant	insignificant	0.0404938***
Diuzii	(0.0148733)	(0.0324178)	mongmineant	e	(0.0115213)
Bulgaria	insignificant	-0.1169977***	insignificant	0.0334981***	insignificant
0	-0.0338413***	(0.0231873)	-0.0040387***	(0.0081842) 0.047716^{***}	-0.005226***
Chile	-0.0338413^{***}	insignificant			
	(0.0041785) -0.0568718***	-0.2231001***	(0.0012176) -0.0039581**	(0.0057771) -0.0392298***	(0.0011281)
China	(0.0070524)	(0.0148039)	(0.0018266)	(0.0113759)	insignificant
	```´´	-0.1173371***	0.0115362***	0.0498437***	
Croatia	insignificant	(0.0125601)	(0.0017606)	(0.0095347)	insignificant
T 11	-0.0218716***	-0.2128074***	-0.0114839***	0.0725727***	-0.0038746***
India	(0.0076907)	(0.0156692)	(0.0014885)	(0.0222706)	(0.0011899)
Indonesia	-0.0385695***	-0.1634618***			
Indonesia	(0.0110908)	(0.0328114)	insignificant	insignificant	insignificant
Jordan	insignificant	-0.2224872***	insignificant	0.1162821***	insignificant
Jordan	msignmeant	(0.0221705)	-	(0.0163572)	msignificant
Kazakhstan	insignificant	-0.067622***	0.0417157***	0.0884896***	insignificant
Trazannotan	insigniticant	(0.0261284)	(0.0114258)	(0.0232055)	-
Kuwait	insignificant	-0.1601715***	0.0135176**	0.0950527***	-0.0040013***
	-0.0269261***	(0.0259459	(0.0064992)	(0.0107616) 0.2295498***	(0.0011757)
Lebanon	(0.005977)	-0.5168167***	-0.0115838***		-0.0041066*** (0.0010371)
		(0.0150356) -0.0830847***	(0.0013495) 0.0033758*	(0.0188244) 0.1133301***	-0.0044244**
Malaysia	insignificant	(0.0209789)	(0.0019982)	(0.0095732)	(0.0020908)
	-0.0341767***	-0.0500059***	0.0116349***		0.032228***
Mauritius	(0.0092712)	(0.0160644)	(0.0024323)	insignificant	(0.0118463)
Maria	-0.0435881***	-0.2097604***	0.0097614***	0.1443357***	-0.0091371***
Mexico	(0.0072111)	(0.0365452)	(0.0026413)	(0.010586)	(0.0029578)
Oman	insignificant	-0.0390423*	0.0149088***	insignificant	-0.0103035***
Oman		(0.0219939)	(0.0033881)	-	(0.0026092)
Pakistan	-0.0169509**	-0.1612783***	insignificant	0.0717529***	-0.0042145***
1 unibuli	(0.0067352)	(0.0202356)	-	(0.0123474)	(0.0010879)
Philippine	insignificant	-0.389828***	0.0439373***	insignificant	-0.0070982***
	8	(0.0165432)	(0.0085373)	0.149996**	(0.0010541)
Russia	insignificant	-0.195738***	0.0058241**		insignificant
	ŭ	(0.0281596) -0.1257009***	(0.0024663)	(0.0673867) 0.0594207***	
Saudi Arabia	insignificant	(0.0153177)	insignificant	(0.008821)	insignificant
				0.0559076***	-0.0064671***
South Africa	insignificant	insignificant	insignificant	(0.0114892)	(0.001103)
TTL '1 1	-0.0188903***	· · · · · · ·	0.0188405***	· · · · · · · · · · · · · · · · · · ·	-0.0071444***
Thailand	(0.0070269)	insignificant	(0.0027832)	insignificant	(0.0013012)
Tuelcor	-0.0102276*	-0.2392823***	-0.0052156**	0.0227069***	
Turkey	(0.0061525)	(0.0267745)	(0.0022492)	(0.0073626)	insignificant
Vietnam	-0.0330969***	-0.2410145***	-0.0177111***	0.0233418**	insignificant
	(0.0085521)	(0.0241792)	(0.001537)	(0.0097746)	e
R-squared	0.7270	0.7085	0.5039	0.4727 32.70***	0.3881 23.00***
			L L L L L L L L L L L L L L L L L L L	1 7170***	1 72 ()()***
F statistic	21.98***	86.32***	60.93***	32.70***	23.00
F statistic Number of obs	21.98*** 472	472	472	472	328

### Table II.b. Estimated coefficients for emerging countries, years 2003-2010

## **Appendix II.c.**

		2010			
	Leverage risk	Credit risk 1	Credit risk 2	Liquidity risk	Total risk
C	0.2767355***	0.3127947***	0.0183376***	0.2538888***	0.0201107***
Constant	(0.0342121)	(0.0524063)	(0.001471)	(0.0247863)	(0.0076768)
FILID	-0.0068656***		-0.0025527**	-0.0074443**	-0.0002631
FWD	(0.0020134)	Insignificant	(0.0010374)	(0.0032305)	(0.0009608)
	× / /	-0.0324013***	-0.001545***	0.006968***	-0.0004746
SWP	insignificant	(0.0060469)	(0.0005688)	(0.0026689)	(0.0004309)
		0.0332667*		-0.026685**	0.0001535
OPT	insignificant	(0.0184104)	insignificant	(0.0111438)	(0.0019033)
	0.0930402**	-0.249701***			0.0219624*
FUT	(0.0418118)	(0.0756926)	insignificant	insignificant	(0.0132388)
		1.465852*			-0.0329643
NIM	insignificant	(0.8455961)	insignificant	insignificant	(0.0615332)
	-0.0152577***	0.0232479***	_	-0.0078432***	-0.0007804
LOG		(0.0048278)	insignificant		(0.0006373)
	(0.0031678)	(0.0048278)		(0.0018266) -0.0268901***	
DEAL	insignificant	Insignificant	insignificant		0.0048976
	-	e	0	(0.0062476)	(0.0039759)
Bahrain	0.0403489***	-0.1512284***	insignificant	-0.135236***	-0.006115***
	(0.015713)	(0.0237217)	-	(0.016234)	(0.0023356)
Cyprus	-0.0682114***	Insignificant	0.0228405***	-0.1207963***	-0.0011017
	(0.0061898)	morginiteant	(0.0037085)	(0.013255)	(0.0076884)
Czech	-0.0509336***	Insignificant	insignificant	-0.1500134***	-0.006551***
Republic	(0.0061106)	msignmeant	e	(0.0121373)	(0.0014346)
Estonia	insignificant	Insignificant	-0.0087045**	-0.1544008***	-0.0097184***
Estonia	e	e	(0.0034316)	(0.0128418)	(0.0016575)
Hong Kong	-0.0371587***	-0.0926265***	-0.0124381***	-0.0442775***	Not included ¹³
Hong Kong	(0.0063649)	(0.0148251)	(0.0019993)	(0.0168601)	Not included
Uungomi	-0.0314823***	Insignificant	insignificant	-0.1249905***	insignificant
Hungary	(0.0094302)	e	-	(0.0142425)	-
Taura al	-0.0491568***	0.0659049***	-0.0142619***	::£	-0.0126618***
Israel	(0.0047783)	(0.020563)	(0.0014099)	insignificant	(0.0023054)
т., •	-0.0696819***	т ' 'С' ,		-0.1333153***	-0.0075009***
Latvia	(0.0169747)	Insignificant	insignificant	(0.0161592)	(0.002527)
T '.1 '	-0.0766756***	0.1369409***		-0.1269228***	-0.0096696***
Lithuania	(0.0128779)	(0.0297699)	insignificant	(0.0165069)	(0.0027955)
	-0.0301544***	0.0764094***	0.0206999***	-0.1316767***	-0.0087672***
Poland	(0.008065)	(0.0248673)	(0.0041492)	(0.0133753)	(0.0016446)
	0.0276522***	· · · · · · · · · · · · · · · · · · ·	-0.0082433***	-0.1192321***	-0.0100206***
Qatar	(0.0096615)	Insignificant	(0.0021325)	(0.0165724)	(0.0019669)
				-0.0997033***	-0.0119811***
Singapore	insignificant	Insignificant	insignificant	(0.0147296)	(0.0025854)
	-0.0650588***			-0.1373247***	-0.0066661***
Slovakia	(0.0101153)	Insignificant	insignificant	(0.0151835)	(0.0020996)
	-0.0732199***	0.1472716***	0.0122808***	-0.1612694***	-0.0109112***
Slovenia	(0.0098251)	(0.0316754)	(0.0032203)	(0.0142304)	(0.0019214)
	-0.0401928***	0.0999457***	-0.0051935***	-0.1061117***	-0.0090691***
South Korea					
	(0.0060355)	(0.0192242)	(0.0014429)	(0.0121856)	(0.0015891)
Taiwan	-0.064525***	0.0631827***	-0.0115833***	-0.1492456***	-0.0108038***
	(0.005256)	(0.0160603)	(0.0014778)	(0.0127567)	(0.0021411)
United Arab	insignificant	Insignificant	insignificant	-0.0737245***	-0.0068432***
of Emirates	•	•	-	(0.0179006)	(0.0023236)
R-squared	0.3865	0.2949	0.2170	0.4114	0.1143
F statistic	27.05***	40.46***	58.78***	24.08***	8.98***
Number of	624	624	624	624	408
obs		027			00
de de de	1 *** 1. 1. 1. 1. 1			0/ 50/ 110/	

# Table II.c. Estimated coefficients for recently developed countries, years 2003-2010

*, ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels.

() indicate standard deviation of the estimators.

¹³ Banks from Hong Kong are excluded from the sample because of the absence of quarterly reports in their web sites

## Appendix III.

Countries	Stock return
DI :1:	-0.0027105***
Philippine	(0.0008668)
Jordan	-0.0031461***
Jordan	(0.0006482)
Lebanon	-0.0045858***
Lebanon	(0.000905)
Slovakia	-0.0015982***
SIOvakia	(0.0003183)
Slovenia	0.001359*
Slovenia	(0.0007974)
Hang Vang	-0.001413***
Hong Kong	(0.0003836)
Taiwan	-0.0006737*
Taiwan	(0.0003939)
Bahrain	-0.0017465**
Danran	(0.0007718)
R-squared	0.1205
F statistic	5.57***
Number of obs.	518

#### Table III. Estimated coefficients of dummy countries

*, ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels. () indicate standard deviation of the estimators.

IV.a.	
Appendix	

	Table IV.	a. Estimated coe	efficients of coun	try dummies fo	Table IV.a. Estimated coefficients of country dummies for overall sample, years 20032010	, years 200320	
	ROA	ROE	NPL ratio	Coverage ratio	Capital adequacy	Efficiency	NIM
Argentina	-0.0206634**	-0.143127*** (0.0318999)	-0.0200124** (0.0078394)	1.464044*** (0.2462731)	insignificant	insignificant	-0.0538259*** (0.015671)
Brazil	-0.0273272*** (0.0041881)	-0.1121968* (0.0597024)	insignificant	1.215252*** (0.2539269)	0.5035887** (0.2291536)	-0.6266149*** (0.0937464)	insignificant
Bahrain	-0.0221212*** (0.0044664)	$-0.1370322^{***}$ (0.0245473)	$-0.0224975^{***}$ (0.0069207)	1.565271*** (0.2097155)	$1.282532^{***}$ (0.4999661)	insignificant	-0.0994961 *** (0.0167994)
Bulgaria	$-0.0102316^{***}$ (0.0029126)	$-0.0440149^{***}$ (0.014162)	$-0.0214075^{***}$ (0.0054517)	$1.28607^{***}$ (0.2107007)	insignificant	insignificant	$-0.0441952^{***}$ (0.0091825)
Chile	-0.0148597*** (0.0028609)	insignificant	excluded	excluded	$1.652176^{***}$ (0.438381)	-0.2485272*** (0.0823831)	$-0.0258236^{***}$ (0.0069242)
China	$-0.0150354^{***}$ (0.0033062)	-0.077278*** (0.0160959)	insignificant	1.003711*** (0.1932631)	0.8484146* (0.4506997)	$0.2545426^{***}$ (0.0443118)	-0.0298199***(0.006296)
Croatia	-0.0164662*** (0.0027823)	-0.1031379*** (0.0194627)	0.0568997 *** ( $0.0097406$ )	insignificant	insignificant	-0.4770512*** (0.1437279)	-0.0545507*** (0.0089134)
Cyprus	$-0.0229871^{***}$ (0.003458)	-0.1403078*** (0.0340288)	0.0455209*** (0.0097601)	insignificant	1.744868*** (0.3687176)	$-0.1068411^{***}$ (0.0251448)	$-0.0311414^{***}$ (0.0066674)
Czech Republic	$-0.0147415^{***}$ (0.0026013)	$-0.0496895^{***}$ (0.0118161)	-0.0323269*** (0.0060532)	$1.296168^{***}$ (0.1983255)	0.8679267 *** (0.3161568)	-0.0722333** (0.0299911)	-0.0319181 *** (0.0058607)
Estonia	-0.0124956*** (0.0039476)	insignificant	0.0229901 *** (0.006704)	$0.3451891^{**}$ (0.1594735)	insignificant	$-0.2411818^{***}$ (0.0843335)	$-0.0515147^{***}$ (0.0078781)
Hong Kong	-0.0193439*** (0.0026741)	-0.0906162*** (0.0161941)	excluded	excluded	0.392591* (0.2216223)	insignificant	$-0.0565154^{***}$ (0.0090129)
Hungary	-0.0104891*** (0.0027914)	-0.0419733*** (0.0127115)	excluded	excluded	insignificant	$-0.1859501^{***}$ (0.071166)	-0.0423628*** (0.0073753)
India	-0.0166244*** (0.0026827)	-0.0747289*** (0.011906)	insignificant	insignificant	insignificant	$-0.154522^{***}$ (0.0506811)	-0.0378685*** (0.0091398)
Indonesia	insignificant	insignificant	insignificant	2.39528*** (0.4767125)	insignificant	insignificant	insignificant
Israel	-0.0149749** (0.0037903)	-0.1109774*** (0.0156217)	0.1127201 *** (0.0239493)	$-0.5741665^{***}$ (0.1042641)	$\begin{array}{c} 2.410451^{***} \\ (0.4313457) \end{array}$	$-1.270825^{***}$ (0.0582508)	$-0.0493396^{***}$ (0.0093856)
Jordan	-0.0181071*** (0.0034002)	-0.0933722*** (0.0197464)	0.0424577*** (0.0183356)	0.3293329* $(0.1737023)$	insignificant	$0.1668611^{***}$ (0.0480141)	-0.0670414*** (0.0120897)
Kazakhstan	insignificant	insignificant	insignificant	insignificant	-0.7969741 *** (0.2562305)	insignificant	$-0.0466091^{***}$ (0.010865)
Kuwait	$-0.0129676^{***}$ (0.0036985)	$-0.0761825^{***}$ (0.027562)	-0.0106225** (0.0050393)	$2.259496^{***}$ (0.7134112)	insignificant	$0.2293378^{***}$ (0.0240506)	$-0.0602947^{***}$ (0.0099464)
Latvia	-0.0186973*** (0.0048712)	-0.1851649*** (0.0686455)	excluded	excluded	insignificant	insignificant	-0.0473275*** (0.0075868)
Lebanon	-0.0152109** (0.0072423)	$-0.1564846^{***}$ (0.0267625)	-0.03462*** (0.0106344)	1.725298*** (0.6169907)	insignificant	insignificant	$-0.0590046^{***}$ (0.0136717)
Lithuania	-0.0224109***	-0.1642046***	excluded	excluded	insignificant	insignificant	-0.0519735***

overall sample vears 2003--2010 Table IV a Estimated coefficients of country dummies for

141

	(0.0042743)	(0.0305184)					(0.0074646)
Malaysia	-0.0187988*** (0.0029032)	$-0.0977566^{**}$ (0.0178222)	$0.0181791^{***}$ (0.0049883)	insignificant	insignificant	insignificant	$-0.0480724^{***}$ ( $0.0084708$ )
Mauritius	-0.0096351*** (0.0029863)	insignificant	0.047495*** (0.0087068)	$0.2360354^{***}$ (0.0873184)	-1.188572*** (0.2290456)	insignificant	-0.0355512*** (0.0068084)
Mexico	-0.0198553*** (0.0041225)	$-0.0933626^{**}$ (0.0376165)	insignificant	0.8789488*** ( $0.2444179$ )	0.8781445** ( $0.4079707$ )	$-0.622452^{***}$ (0.182369)	-0.0194027* (0.010484)
Oman	$-0.0086524^{***}$ (0.0028117)	insignificant	excluded	excluded	-1.184932*** (0.2329523)	$-0.4925572^{***}$ (0.0415133)	$-0.0479046^{***}$ (0.0098806)
Pakistan	-0.0125173*** (0.0047432)	insignificant	-0.0155977*** (0.0050657)	insignificant	insignificant	insignificant	$-0.0241156^{***}$ (0.0077238)
Philippine	$-0.0305084^{***}$ (0.0030315)	$-0.2329055^{***}$ (0.0195732)	$0.1072961^{***}$ (0.0468017)	1.003559*** (0.2080909)	insignificant	-0.3618099*** (0.0553859)	$-0.0568498^{***}$ (0.0075149)
Poland	$-0.0157631^{***}$ (0.0029036)	$-0.1285854^{***}$ (0.0501193)	0.0349966*** $(0.0082643)$	0.3109353*** (0.1017711)	insignificant	$-0.1795136^{***}$ (0.0488063)	-0.0385602*** (0.0062347)
Qatar	0.0293278*** (0.0042931)	-0.0308955** (0.0125998)	insignificant	0.1924341* ( $0.111766$ )	insignificant	0.1720485*** (0.0210434)	-0.0787265*** (0.0122467)
Russia	$-0.0088286^{*}$ (0.0051987)	insignificant	-0.0340049*** (0.0048003)	3.26463*** (0.2624035)	0.7466798** $(0.2962665)$	insignificant	-0.0550563*** (0.0142837)
Saudi Arabia	insignificant	insignificant	$-0.0141226^{***}$ (0.0029621)	3.43659*** $(0.9065595)$	insignificant	insignificant	-0.0506387*** (0.0080706)
Singapore	-0.0205896*** (0.0025556)		insignificant	$0.5732064^{***}$ (0.1697144)	insignificant	insignificant	-0.0600185*** (0.0073966)
Slovakia	-0.0172125*** (0.0029931)	$-0.1221538^{***}$ (0.0386782)	excluded	excluded	$1.446^{**}$ (0.7129178)	$-0.2411102^{***}$ (0.0697438)	-0.03471*** $(0.0067712)$
Slovenia	-0.0157272*** (0.0029829)	$-0.0908185^{***}$ (0.0143546)	insignificant	1.002456*** (0.1708709)	insignificant	insignificant	-0.041339*** (0.0062042)
South Africa	$-0.011266^{**}$ (0.0042136)	insignificant	insignificant	insignificant	2.926452*** (0.4486233)	-0.1106304 *** (0.0373428)	insignificant
South Korea	-0.0184986*** (0.0033349)	-0.0727839*** (0.0248473)	$0.0172284^{***}$ (0.0044434)	0.593459*** (0.1317288)	2.93033*** $(0.5683008)$	$-0.4254114^{***}$ (0.0742881)	-0.0311813*** ( $0.0067019$ )
Taiwan	-0.0216056*** (0.0028056)	$-0.1446683^{***}$ (0.0169164)	insignificant	$0.1826378^{**}$ (0.0853513)	$4.234684^{***}$ $(0.5750086)$	-0.1467753*** (0.0359983)	-0.0343897***(0.0066665)
Thailand	$-0.0146036^{***}$ (0.0027747)	-0.0402959*** (0.0146272)	0.0689898*** (0.0092482)	insignificant	0.7856837* (0.4136537)	-0.0860839** (0.0336215)	-0.0287596*** (0.0077764)
Turkey	-0.0064594** (0.0028932)	insignificant	-0.0109221 ** (0.0053255)	0.5817819*** (0.1311299)	insignificant	-0.1579793 ***	$-0.0301853^{***}$ (0.0085106)
United Arab Emirates	insignificant	insignificant	excluded	excluded	insignificant	0.1490933*** (0.0258516)	$-0.0711425^{***}$ (0.0109284)
Vietnam	$-0.0110097^{***}$ (0.0030968)	insignificant	-0.0445287*** (0.0065978)	0.696755*** ( $0.1607646$ )	insignificant	insignificant	-0.0432926*** (0.007879)
R-squared	0.3110	0.1042	0.5534	0.4880	0.5151	0.3197	0.5703
F statistic	$20.65^{***}$	$15.29^{***}$	$20.33^{***}$	$17.37^{***}$	$195.36^{***}$	$66.61^{***}$	$17.69^{***}$
Number of obs	1096	1096	544	544	1096	1096	1096
* ** and ***	*, ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels	gnificance respectiv	ely at the 10%, 5% a	nd 1% levels.			

() indicate standard deviation of the estimators.

142

•
P
>
•
-
en
CD -
2

	Table IV.b. ]	Table IV.b. Estimated coefficients of country dummies for emerging countries, years 2003-	cients of country	v dummies for e	merging countri		-2010
	KUA	KUE	NFL/GL	LLKNPL	GLEQ	Cost income	
Argentina	-0.0232605*** (0.0089683)	-0.1951525*** (0.0522721)	insignificant	1.209715*** (0.2462849)	insignificant	insignificant	-0.0529807 *** (0.0178186)
Brazil	-0.0151479*** (0.0038739)	insignificant	-0.0241778*** (0.0072542)	$1.030686^{***}$ (0.2495805)	-1.409409*** (0.4951675)	$-0.6249776^{***}$ (0.1056453)	insignificant
Bulgaria	-0.013207*** (0.0030477)	-0.1121878*** (0.0359717)	insignificant	0.8994551*** (0.2210047)	$-0.9387206^{***}$ (0.3159737)	insignificant	$-0.0311642^{***}$ (0.0069264)
Chile	-0.0168035*** (0.0029847)	insignificant	excluded	excluded	1.181509*** (0.4354396)	-0.2308974 *** (0.0838596)	insignificant
China	$-0.0171629^{***}$ (0.0029498)	-0.188104*** (0.0554924)	insignificant	$0.73765^{***}$ (0.2159329)	$0.9782058^{*}$ (0.5365368)	$0.2863695^{***}$ (0.0529303)	-0.0160771 *** (0.0039663)
Croatia	-0.0153541*** (0.0024497)	$-0.1075606^{***}$ (0.0229297)	$0.0705845^{***}$ (0.0092848)	$-0.4618061^{***}$ (0.1399326)	$-1.132064^{***}$ (0.4185146)	$-0.4067227^{***}$ (0.1472058)	-0.0434678*** (0.0057983)
India	-0.0239083*** (0.0043008)	$-0.1778916^{***}$ (0.0586873)	insignificant	insignificant	insignificant	$-0.1996486^{***}$ (0.0588013)	$-0.0114904^{**}$ (0.0056707)
Indonesia	insignificant	insignificant	-0.0437722* (0.025032)	$2.107211^{***}$ (0.4794485)	insignificant	insignificant	insignificant
Jordan	-0.021038*** (0.0036489)	-0.1259836*** (0.0370273)	$0.0490416^{***}$ (0.011241)	insignificant	$-1.341232^{***}$ (0.3235636)	$0.2213064^{***}$ (0.0468403)	-0.0547834*** (0.0081255)
Kazakhstan	insignificant	insignificant	insignificant	insignificant	insignificant	0.2355987*** ( $0.0548257$ )	-0.0417513*** (0.0104915)
Kuwait	-0.0120731*** (0.0033373)	-0.0632175** (0.0248812)	-0.0285697 ** (0.0142795)	1.637757** (0.6459459)	insignificant	$0.2786033^{***}$ (0.0314128)	-0.0463356***(0.006446)
Latvia	-0.023098*** (0.0047679)	$-0.2853936^{***}$ (0.09503)	excluded	excluded	insignificant	insignificant	-0.0345632*** (0.0052786)
Lebanon	-0.0261527*** (0.0093412)	$-0.2698992^{***}$ (0.0799178)	$-0.0184623^{***}$ (0.0068454)	$1.771547^{***}$ (0.6022915)	$-0.5732156^{**}$ (0.2250465)	insignificant	$-0.0326024^{***}$ (0.0056227)
Lithuania	-0.0271058*** (0.0038881)	-0.2680226*** (0.0514293)	excluded	excluded	insignificant	insignificant	-0.0331934*** (0.0046647)
Malaysia	-0.0233976*** (0.0038647)	-0.1182007*** (0.0239783)	0.0322758*** (0.0074852)	-0.4789092**( $0.2264065$ )	insignificant	$0.1478872^{**}$ (0.0707664)	-0.0234622*** (0.0037209)
Mauritius	-0.0046703* $(0.0028219)$	insignificant	0.0195509*** ( $0.0062597$ )	insignificant	-1.3121 *** (0.3844459)	$0.1896014^{**}$ (0.0791683)	-0.0234919*** (0.0046476)
Mexico	-0.0193362*** (0.0039451)	$-0.063156^{*}$ (0.0381407)	$-0.0192535^{***}$ (0.0068831)	0.4595601* (0.2452243)	insignificant	-0.5883799*** (0.1905431)	insignificant
Oman	-0.0054441*( $0.0031367$ )	insignificant	excluded	excluded	insignificant	-0.4179819*** (0.0450815)	$-0.0403295^{***}$ (0.007385)
Pakistan	$-0.016411^{***}$ (0.0055268)	insignificant	insignificant	insignificant	insignificant	$0.2589128^{***}$ (0.0616381)	insignificant
Philippine	insignificant	insignificant	insignificant	insignificant	-3.221608**	-0.1372299*	-0.0858632***

					(1.357828)	(0.0819128)	(0.0122688)
Russia	-0.0116207** (0.0055378)	insignificant	-0.0341832*** (0.0043261)	$2.982784^{***}$ (0.2596591)	insignificant	insignificant	-0.0349462*** (0.012241)
Saudi Arabia	insignificant	insignificant	-0.0145534*** (0.0051531)	$3.057167^{***}$ (0.9090219)	-0.9479793*** (0.1655104)	insignificant	-0.0334592*** (0.0046181)
South Africa	-0.0123963** (0.0049147)	insignificant	0.034089*** (0.0061525)	$-0.6115864^{***}$ (0.1848547)	$2.989516^{***}$ (0.4492365)	insignificant	insignificant
Thailand	-0.0073557*** (0.0024625)	insignificant	$0.0511908^{***}$ (0.0083333)	-0.7223734*** (0.2125076)	insignificant	insignificant	-0.0175907*** (0.0064059)
Turkey	-0.0085662** (0.0040272)	insignificant	insignificant	0.3214152* (0.1796148)	-0.9867153*** (0.1865428)	$-0.1745671^{***}$ (0.0470341)	-0.0209122 *** (0.0059893)
Vietnam	$-0.0206715^{***}$ (0.0047932)	$-0.1859881^{**}$ (0.0878561)	insignificant	$0.5705372^{***}$ (0.2033696)	insignificant	insignificant	$-0.0214236^{***}$ (0.005889)
R-squared	0.3625	0.3542	0.7241	0.5202	0.4019	0.2265	0.7042
F statistic	$10.60^{***}$	5.64***	27.52***	18.34***	147.45***	25.37***	8.27***
Number of obs	592	265	320	320	592	592	592

* ** and *** indicate statistical significance respectively at the 10%, 5% and 1% levels. () indicate standard deviation of the estimators.

ં
×
Ģ
U
e

	Fable IV.c. Estin ROA	nated coefficient ROE	s of country dui NPL/GL	nmies for recent	<u>tly developed co</u> GLEQ	Table IV.c. Estimated coefficients of country dummies for recently developed countries, years 20032010       ROA     ROE     NPL/GL     LLR/NPL     GLEQ     Cost income     NIM	032010 NIM
Bahrain	insignificant	insignificant	insignificant	insignificant	insignificant	insignificant	0.0056391 * * * (0.0025226)
Cyprus	insignificant	insignificant	$0.0672874^{***}$ (0.0120037)	$-0.8603662^{***}$ (0.0966639)	insignificant	-0.1206933*** (0.0313891)	$0.0138728^{**}$ (0.0016097)
Czech Republic	$0.0068324^{***}$ (0.0012812)	$0.095742^{***}$ (0.0188903)	insignificant	insignificant	insignificant	insignificant	$0.0175277^{***}$ (0.0017003)
Estonia	0.0073077** (0.0032965)	0.056437* (0.0294551)	0.0335009** (0.0152827)	-0.410219*** (0.1543862)	-0.5974293* (0.3175134)	$-0.2052837^{***}$ (0.0873908)	$0.0096566^{***}$ (0.0022216)
Hong Kong	$0.0049074^{***}$ (0.0014518)	$0.0679418^{***}$ (0.0190268)	excluded	excluded	insignificant	insignificant	$0.0085225^{***}$ (0.0014358)
Hungary	$0.011689^{***}$ (0.0018958)	0.0922227*** (0.0179005)	excluded	excluded	-0.8151779*** (0.2485406)	-0.1572365** (0.07263)	$0.0210055^{***}$ (0.0022728)
Israel	0.008288*** (0.003099)	insignificant	$0.1520078^{***}$ (0.0181561)	$-1.4742^{***}$ (0.1158355)	1.989391*** (0.398581)	$-1.213031^{***}$ (0.0598734)	insignificant
Poland	$0.0061909^{***}$ (0.0021578)	insignificant	$0.0661705^{***}$ (0.0096002)	$-0.5473884^{***}$ (0.1207816)	insignificant	$-0.1589447^{***}$ (0.0508593)	$0.0197438^{***}$ (0.0017134)
Qatar	$0.050668^{***}$ (0.0043773)	$0.0711982^{***}$ (0.015137)	insignificant	-0.7859128*** (0.1358008)	-1.252154*** (0.427302)	$0.1758114^{***}$ (0.0238952)	$0.0132583^{***}$ (0.0018301)
Singapore	insignificant	insignificant	$0.0329484^{**}$ (0.0137001)	$-0.5637404^{***}$ (0.1906585)	insignificant	insignificant	insignificant
Slovakia	$0.0059074^{***}$ (0.0019071)	insignificant	excluded	excluded	insignificant	$-0.2259467^{***}$ (0.0684219)	$0.020198^{***}$ (0.0018544)
Slovenia	$0.0067556^{***}$ (0.0018704)	insignificant	insignificant	insignificant	-1.289025*** (0.44779)	insignificant	$0.0122848^{***}$ (0.0019698)
South Korea	insignificant	insignificant	0.0522858*** (0.0109388)	insignificant	$2.925842^{***}$ (0.5308483)	$-0.4009365^{***}$ (0.08)	$0.0122162^{**}$ (0.0015228)
Taiwan	insignificant	insignificant	$0.021286^{***}$ ( $0.0076627$ )	-0.8339097*** (0.0980398)	3.529491*** (0.5007153)	-0.0998717*** (0.0366493)	$0.0054627^{***}$ (0.0016982)
United Arab Emirates	0.0241389*** (0.0058718)	0.104549*** ( $0.0234732$ )	excluded	excluded	$-0.6675956^{**}$ (0.3053736)	$0.1649764^{***}$ (0.0242653)	$0.0128584^{***}$ (0.0016619)
R-squared	0.4920	0.1229	0.7534	0.3845	0.7228	0.5477	0.4207
F statistic	30.28***	8.51***	24.66***	30.75***	102.30***	83.46*** 504	20.13***
Number of obs	204	204	774	774	204	204	204

# Appendix V. Ramsey-Reset Tests

### Appendix V.a.

xtreg rrisk fu	vd swp opt fut	can lig loan cr	nim size re					
	ects GLS regres		11111 5120, 10	Nu	mber of obs	= 364		
Group variab								
R-sq: within			Obs per group: $\min = 7$					
-	= 0.0738		avg = 7.0					
overall =				$\max = 7$				
	cts u $i \sim Gauss$	sian		Wa	ld chi2(10)	= 13.72		
corr(u i, Xb)	_				b > chi2 =			
rrisk	Coef.	Std. Err.	t	P> t	[95% Cont			
fwd	-0.0006444	0.0011207	-0.57	0.565	-0.002841	0.0015522		
swp	-0.0000101	0000796	-0.13	0.899	-0.0001661	0.000146		
opt	0.0039291	0.0042987	0.91	0.361	-0.0044963	0.0123545		
fut	-0.0066569	0.0071132	-0.94	0.349	-0.0205986	0.0072848		
cap	-0.0190414	0.0260149	-0.73	0.464	-0.0700297	0.0319469		
liq	-0.0163322	0.0088679	-1.84	0.066	-0.0337129	0.0010485		
loan	0.0214452	0.0075701	2.83	0.005	0.0066082	0.0362823		
cr	0.0030761	0.0084964	0.36	0.717	-0.0135765	0.0197287		
nim	0.0423813	0.0266367	1.59	0.112	-0.0098257	0.0945883		
size	-0.0001499	0.0008782	-0.17	0.864	-0.0018711	0.0015714		
constant	0.0134222	0.0105099	1.28	0.202	-0.0071769	0.0340213		
sigma u	0.00643253	0.0105077	1.20	0.202	0.0071707	0.0510215		
sigma e	0.00043233							
rho		(fraction of y	ariance due to	n i)				
	o       0.17480063       (fraction of variance due to u_i)         edict rrisk hat, xb							
	-	$aat^2$						
0	generate rrisk_hat2= rrisk_hat^2 generate rrisk_hat3= rrisk_hat^3							
	k_hat4= rrisk_l							
	vd swp opt fut		nim size rrisk	hat? rrisk hat	3 rrisk hat4 r	e		
	ects GLS regres				mber of obs	= 364		
Group variab					mber of groups			
R-sq: within					s per group: m			
-	= 0.2275			0.01		vg = 7.0		
overall =						$\max = 7$		
	cts u i ~ Gauss	sian		Wa	ld chi2(10)	= 43.76		
corr(u i, Xb)	—					0.0000		
rrisk	Coef.	Std. Err.	t	P >  t	r	f. Interval]		
fwd	0.03357	0.0447027	0.75	0.453	-0.0540458	0.1211857		
swp	0.0005127	0.0007061	0.73	0.468	-0.0008712	0.0018965		
opt	-0.2031002	0.2723619	-0.75	0.456	-0.7369198	0.3307194		
fut	0.3485531	0.4601322	0.76	0.449	-0.5532895	1.250396		
cap	1.010423	1.322856	0.76	0.445	-1.582327	3.603173		
liq	0.8532553	1.130596	0.75	0.450 -	1.362673	3.069184		
loan	-1.108522	1.489587	-0.74	0.457	-4.028058	1.811014		
cr	1587477	0.2140251	-0.74	0.458	5782292	0.2607337		
nim	-2.24015	2.941831	-0.76	0.446	-8.006032	3.525733		
		0.0104074	0.74	0.458	-0.0126689	0.0281275		
size	0.0077293		0.71	0.120	0.0120007	0.0401410		
size rrisk hat?	0.0077293		1.03	0 302	-4336.65	13998 14		
rrisk_hat2	4830.743	4677.327	1.03	0.302	-4336.65	13998.14 87378.91		
rrisk_hat2 rrisk_hat3	4830.743 -182786.4	4677.327 137842	-1.33	0.185	-452951.8	87378.91		
rrisk_hat2 rrisk_hat3 rrisk_hat4	4830.743 -182786.4 2450930	4677.327 137842 1499705	-1.33 1.63	0.185 0.102	-452951.8 -488437.2	87378.91 5390297		
rrisk_hat2 rrisk_hat3	4830.743 -182786.4	4677.327 137842	-1.33	0.185	-452951.8	87378.91		

sigma_e	0.0136326	
rho	0.16591094	(fraction of variance due to u_i)

test rrisk_hat2 rrisk_hat3 rrisk_hat4 (1) rrisk_hat2 = 0 (2) rrisk_hat3 = 0 (3) rrisk_hat4 = 0

- chi2(3) = 28.97Prob > chi2 = 0.0000

vtrag bata fu	d swp opt fut	oon lig loon or	nim siza ra				
xtreg beta fwd swp opt fut cap liq loan cr nim size, reNumber of obsRandom-effects GLS regressionNumber of obs						= 364	
Group variat		551011			Number of groups $=$ 52		
R-sq: within					s per group: m		
	= 0.0525			00		r = 7.0	
overall =						$\max = 7$	
	ects u i ~ Gaus	sian		Wa	uld chi2(11)	= 2.84	
corr(u i, Xb)					bb > chi2 =	0.0010	
beta	Coef.	Std. Err.	t	P> t		f. Interval]	
fwd	-0.4911395	0.8071839	-0.61	0.543	-2.073191	1.090912	
swp	-0.0116554	0.0529162	-0.22	0.826	-0.1153693	0.0920584	
opt	-1.522017	2.991909	-0.51	0.611	-7.386051	4.342018	
fut	-0.4923387	4.949726	-0.10	0.921	-10.19362	9.208946	
cap	-10.25938	17.84926	-0.57	0.565	-45.2433	24.72453	
liq	-4.727091	6.061933	-0.78	0.436	-16.60826	7.15408	
loan	-2.586337	5.360617	-0.48	0.629	-13.09295	7.92028	
cr	-2.247955	5.713732	-0.39	0.694	-13.44666	8.950754	
nim	5.489688	18.42996	0.30	0.766	-30.63237	41.61175	
size	-0.5181086	0.6520933	-0.79	0.427	-1.796188	0.7599708	
constant	12.6641	7.554133	1.68	0.094 -	2.141727	27.46993	
sigma u	5.4621631				•		
sigma_e	9.3369255	-					
rho							
predict beta hat, xb generate beta_hat2= beta_hat^2 generate beta_hat3= beta_hat^3							
generate beta_hat3= beta_hat^3							
	a_hat4=beta_ha						
	d swp opt fut o		nim size beta_				
	ects GLS regres	ssion			mber of obs	= 364	
Group variab					mber of group		
R-sq: within				Ob	s per group: m		
	= 0.0776					avg = 7.0	
overall =	= 0.0327 ects u i ~ Gaus	ion		Wa	r ald chi2(10)	max = 7 = 6.43	
corr(u i, Xb)						= 0.43	
beta	Coef.	Std. Err.	t	P> t		f. Interval]	
fwd	0.0536383	1.539943	0.03	0.972	-2.964594	3.071871	
	0.0108769	0.0650558	0.03	0.972	-0.1166301	0.138384	
swp opt	0.3793321	5.161776	0.17	0.807	-9.737562	10.49623	
fut	1.435272	5.194221	0.07	0.782	-8.745214	11.61576	
cap	18.69553	36.19243	0.28	0.605	-52.24033	89.63139	
liq	0.9413291	14.04165	0.02	0.947	-26.57979	28.46245	
loan	2.970412	9.004125	0.33	0.741	-14.67735	20.61817	
cr	0.0382644	8.64853	0.00	0.996	-16.91254	16.98907	
nim	-8.40412	24.45057	-0.34	0.731	-56.32637	39.51813	
size	-0.40412						
	0 893567	1 733488	0.52	0.606	-2 50400X	4/9114/	
-	0.893567	1.733488	0.52	0.606	-2.504008	4.291142	
beta_hat2	-2.250282	2.218034	-1.01	0.310 -	6.597549	2.096985	
beta_hat2 beta_hat3	-2.250282 0.7284982	2.218034 0.5572768	-1.01 1.31	0.310 - 0.191	6.597549 -0.3637443	2.096985 1.82074	
beta_hat2 beta_hat3 beta_hat4	-2.250282 0.7284982 -0.056613	2.218034 0.5572768 0.0418202	-1.01 1.31 -1.35	0.310 - 0.191 0.176	6.597549 -0.3637443 -0.1385791	2.096985 1.82074 0.0253531	
beta_hat2 beta_hat3 beta_hat4 constant	-2.250282 0.7284982 -0.056613 -5.892113	2.218034 0.5572768	-1.01 1.31	0.310 - 0.191	6.597549 -0.3637443	2.096985 1.82074	
beta_hat2 beta_hat3 beta_hat4 constant sigma_u	-2.250282 0.7284982 -0.056613 -5.892113 5.5115177	2.218034 0.5572768 0.0418202	-1.01 1.31 -1.35	0.310 - 0.191 0.176	6.597549 -0.3637443 -0.1385791	2.096985 1.82074 0.0253531	
beta_hat2 beta_hat3 beta_hat4 constant	-2.250282 0.7284982 -0.056613 -5.892113	2.218034 0.5572768 0.0418202 36.98187	-1.01 1.31 -1.35	0.310 - 0.191 0.176 0.873	6.597549 -0.3637443 -0.1385791	2.096985 1.82074 0.0253531	

test beta_hat2 beta_hat3 beta_hat4

(1) beta_hat2 = 0
(2) beta_hat3 = 0
(3) beta_hat4 = 0 chi2(3) = 3.60 Prob > chi2 = 0.3074

xtreg sderror	fwd swp opt fi	it cap liq loan o	er nim size, re				
	Random-effects GLS regression				Number of obs $=$ 364		
Group variab				Number of groups $=$ 52			
R-sq: within				Obs per group: $\min = 7$			
between						vg = 7.0	
overall =						hax = 7	
Random effect	cts u_i ~ Gauss	ian		Wa	ld chi2(11)	= 5.75	
corr(u i, Xb)					b > chi2 =	0.8356	
sderror	Coef.	Std. Err.	t	P >  t	[95% Conf	[. Interval]	
fwd	-0.1655996	0.7599838	-0.22	0.828	-1.65514	1.323941	
swp	-0.0023634	0.0541326	-0.04	0.965	-0.1084614	0.1037346	
opt	1.034661	2.918062	0.35	0.723	-4.684636	6.753958	
fut	-2.353079	4.828575	-0.49	0.626	-11.81691	7.110753	
cap	-9.467693	17.6678	-0.54	0.592	-44.09594	25.16055	
liq	-3.965076	6.023115	-0.66	0.510	-15.77017	7.84001	
loan	-10.25297	5.13613	-2.00	0.046	-20.3196	-0.1863434	
cr	-1.983725	5.773876	-0.34	0.731 -	13.30031	9.332864	
nim	-0.7886463	18.08525	-0.04	0.965 -	36.23508	34.65779	
size	-0.3811875	0.5950369	-0.64	0.522	-1.547438	0.7850633	
constant	13.93284	7.128078	1.95	0.051	-0.0379362	27.90362	
sigma u	4.402101	7.120070	1.75	0.051	-0.0377302	27.90302	
	9.6404603						
rho 0.17253398 (fraction of variance due to u_i)							
generate sder xtreg sderror Random-effe Group variab R-sq: within between	te sderror_hat2= sderror_hat^2 te sderror_hat3= sderror_hat^3 te sderror_hat4= sderror_hat^4 derror fwd swp opt fut cap liq loan cr nim size sderror_hat2 sderror_hat3 sderror_hat4, re m-effects GLS regression variable: ident within = 0.0405 tween = 0.0077 erall = 0.0209 Number of proups = 52 Obs per group: min = 7 avg = 7.0 max = 7					= 364 s = 52 n = 7 vg = 7.0	
	= 0 (assum				ld chi2(10) = b > chi2 = b	0.6689	
sderror	Coef.	Std. Err.	t	P> t	1	f. Interval]	
fwd	0.1534514	0.7917754	0.19	0.846	-1.3984	1.705303	
swp	-0.0035569	0.0540685	-0.07	0.948	-0.1095293	0.1024155	
opt	-1.769193	3.377134	-0.52	0.600	-8.388254	4.849869	
fut	3.035055	5.75061	0.53	0.598	-8.235935	14.30604	
cap	13.04109	23.42757	0.56	0.578	-32.87609	58.95827	
liq	-2.838149	9.100008	-0.31	0.755	-20.67384	14.99754	
loan	16.23481	17.29411	0.94	0.348	-17.66101	50.13064	
cr	2.000556	6.279073	0.32	0.750	-10.3062	14.30731	
nim	3.479269	18.37843	0.19	0.850	-32.54179	39.50033	
size		0.8816096	0.63	0.830	-1.172571	2.283275	
SILC	1 (1) (1) (1) (1)	1 0.0010020	0.05	0.549	-1.1/23/1	2.205215	
-	0.555352	Î	1.6/	0.100	_0 1326235	1 50/666	
sderror_hat2	0.6860212	0.4176836	1.64	0.100	-0.1326235	1.504666	
sderror_hat2 sderror_hat3	0.6860212 0.0609724	0.4176836 0.1525522	0.40	0.689	-0.2380244	0.3599692	
sderror_hat2 sderror_hat3 sderror_hat4	0.6860212 0.0609724 -0.0194303	0.4176836 0.1525522 0.0180476	0.40 -1.08	0.689 0.282	-0.2380244 0054803	0.3599692 0.0159423	
sderror_hat2 sderror_hat3 sderror_hat4 constant	0.6860212 0.0609724 -0.0194303 -19.26995	0.4176836 0.1525522	0.40	0.689	-0.2380244	0.3599692	
sderror_hat2 sderror_hat3 sderror_hat4 constant sigma_u	0.6860212 0.0609724 -0.0194303 -19.26995 4.5972421	0.4176836 0.1525522 0.0180476	0.40 -1.08	0.689 0.282	-0.2380244 0054803	0.3599692 0.0159423	
sderror_hat2 sderror_hat3 sderror_hat4 constant	0.6860212 0.0609724 -0.0194303 -19.26995	0.4176836 0.1525522 0.0180476 21.96828	0.40 -1.08	0.689 0.282 0.380	-0.2380244 0054803	0.3599692 0.0159423	

test sderror_hat2 sderror_hat3 sderror_hat4

(1) sderror_hat2 = 0
(2) sderror_hat3 = 0
(3) sderror_hat4 = 0
chi2(3) = 4.48
Prob > chi2 = 0.2142

### Appendix V.b.

xtreg glta fwd swp opt fut nim size, re

Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.1313$	Obs per group: $min = 8$
between $= 0.0030$	avg = 8.0
overall = 0.0100	$\max = 8$
Random effects u_i ~ Gaussian	Wald $chi2(10) = 106.83$
$corr(u_i, Xb) = 0$ (assumed)	Prob > chi2 = 0.0000

glta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0190659	0.0064842	-2.94	0.003	-0.0317747	-0.0063571
swp	0.005168	0.004485	1.15	0.249	-0.0036224	0.0139584
opt	-0.0103942	0.0182663	-0.57	0.569	-0.0461954	0.0254071
fut	-0.0017349	0.0057113	-0.30	0.761	-0.0129289	0.0094592
nim	-0.2282109	0.1083449	-2.11	0.035	-0.440563	-0.0158588
size	0.0426956	0.0047916	8.91	0.000	0.0333043	0.0520869
constant	0.1739838	0.0460699	3.78	0.000	0.0836885	0.2642792
sigma_u	0.13895608					
sigma_e	0.08143677					
Rho	0.74434242	(fraction of v	ariance due to	u i)		

predict glta hat, xb generate glta_hat2= glta_hat^2 generate glta_hat3= glta_hat^3 generate glta_hat4= glta_hat^4

xtreg glta fwd swp opt fut nim size glta_hat2 glta_hat3 glta_hat4, re

Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.1428$	Obs per group: $min = 8$
between $= 0.0052$	avg = 8.0
overall = 0.0154	$\max = 8$
Random effects $u_i \sim Gaussian$	Wald $chi2(10) = 128.61$
$corr(u_i, Xb) = 0$ (assumed)	Prob > chi2 = 0.0000

glta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0828994	0.1462105	-0.57	0.571	-0.3694667	0.203668
swp	0.0231605	0.0398943	0.58	0.562	-0.0550308	0.1013518
opt	-0.0437124	0.0819726	-0.53	0.594	-0.2043757	0.1169509
fut	-0.0092768	0.0142049	-0.65	0.514	-0.0371178	0.0185643
nim	-0.474224	1.695718	-0.28	0.780	-3.797771	2.849323
size	0.1826538	0.3287228	0.56	0.578	4616311	0.8269387
glta_hat2	-2.494899	26.66757	-0.09	0.925	-54.76238	49.77258
glta_hat3	-1.10853	39.85939	-0.03	0.978	-79.23149	77.01443
glta_hat4	0.5320953	21.63131	0.02	0.980	-41.86449	42.92868
constant	-0.1659851	0.5861663	-0.28	0.777	-1.31485	0.9828798
sigma_u	0.13996243					
sigma_e	0.08093667					
Rho	0.74939983	(fraction of v	ariance due to	u i)		

test glta_hat2 glta_hat3 glta_hat4

(1) glta_hat2 = 0

(2)  $glta_hat3 = 0$ 

(3) glta_hat4 = 0

chi2(3) = 19.19Prob > chi2 = 0.0002 xtreg eqlta fwd swp opt fut nim size, re Random-effects GLS regression Group variable: ident R-sq: within = 0.2383 between = 0.4541 overall = 0.3914 Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed)

Number of obs = 1096Number of groups = 137Obs per group: min = 8avg = 8.0max = 8Wald chi2(10) = 407.50Prob > chi2 = 0.0000

eqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0004265	0.0024974	-0.17	0.864	-0.0053212	0.0044683
swp	0.0000934	0.0017138	0.05	0.957	-0.0032656	0.0034524
opt	0.0071811	0.0071187	1.01	0.313	-0.0067712	0.0211335
fut	-0.0040584	0.0022004	-1.84	0.065	-0.0083711	0.0002544
nim	0.762976	0.0410469	18.59	0.000	0.6825256	0.8434264
size	-0.0061571	0.0016744	-3.68	0.000	-0.0094388	-0.0028754
constant	0.1344944	0.0159185	8.45	0.000	0.1032947	0.1656941
sigma u	0.04031467					
sigma_e	0.03296179					
Rho	0.59934407	(fraction of v	ariance due to	u_i)		

predict eqta hat, xb generate eqta_hat2= eqta_hat^2 generate eqta_hat3= eqta_hat^3 generate eqta_hat4= eqta_hat^4

xtreg eqta fwd swp opt fut nim size eqta_hat2 eqta_hat3 eqta_hat4, re

Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.2873$	Obs per group: $min = 8$
between $= 0.4686$	avg = 8.0
overall = 0.4144	$\max = 8$
Random effects $u_i \sim Gaussian$	Wald $chi2(10) = 496.51$
$corr(u_i, Xb) = 0$ (assumed)	Prob > chi2 = 0.0000

eqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	0.0008855	0.0024506	0.36	0.718	-0.0039175	0.0056886
swp	-0.000276	0.0016739	-0.16	0.869	-0.0035569	0.0030049
opt	-0.018683	0.0087897	-2.13	0.034	-0.0359105	-0.0014555
fut	0.0068568	0.0031735	2.16	0.031	0.0006369	0.0130767
nim	-2.824612	0.6780638	-4.17	0.000	-4.153592	-1.495631
size	0.0169923	0.0051451	3.30	0.001	.006908	0.0270765
eq hat2	26.26662	5.45233	4.82	0.000	15.58025	36.95299
eq_hat3	-56.78522	11.60587	-4.89	0.000	-79.53231	-34.03813
eq hat4	40.68184	7.958975	5.11	0.000	25.08253	56.28114
constant	-0.1883441	0.0718066	-2.62	0.009	-0.3290824	-0.0476057
sigma u	0.04014202					
sigma_e	0.03191853					
Rho	0.612652	(fraction of v	ariance due to	u_i)		

test eqta_hat2 eqta_hat3 eqta_hat4

- (1) eqta_hat2 = 0
- (2) eqta_hat3 = 0

(3) eqta_hat4 = 0

chi2(3) = 67.89Prob > chi2 = 0.0000 xtreg liqlta fwd swp opt fut nim size, re

Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.2383$	Obs per group: $min = 8$
between $= 0.4541$	avg = 8.0
overall = 0.3914	$\max = 8$
Random effects u_i ~ Gaussian	Wald $chi2(10) = 407.50$
$corr(u_i, Xb) = 0$ (assumed)	Prob > chi2 = 0.0000

liqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0029925	0.0037321	-0.80	0.423	-0.0103073	0.0043222
swp	-0.0016862	0.002555	-0.66	0.509	-0.0066939	0.0033214
opt	0.00593	0.0106785	0.56	0.579	-0.0149996	0.0268595
fut	-0.0090124	0.0032896	-2.74	0.006	-0.0154598	-0.002565
nim	0.1864097	0.0610387	3.05	0.002	0.0667759	0.3060434
size	-0.00205	0.0024367	-0.84	0.400	-0.0068257	0.0027258
constant	0.0912208	0.023124	3.94	0.000	0.0458986	0.1365431
sigma u	0.05569703					
sigma_e	0.04932614					
Rho	0.56043932	(fraction of v	variance due to	u_i)		

predict liqta hat, xb

generate liqta_hat2= liqta_hat^2 generate liqta_hat3= liqta_hat^3 generate liqta_hat4= liqta_hat^4

xtreg liqta fwd swp opt fut nim size liqlta hat2 liqlta hat3 liqta hat4, re

Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.0390$	Obs per group: $min = 8$
between $= 0.1702$	avg = 8.0
overall = 0.1102	$\max = 8$
Random effects u $i \sim Gaussian$	Wald $chi2(10) = 57.73$
corr(u i, Xb) = 0 (assumed)	Prob > chi2 = 0.0000

liqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0055908	0.005266	-1.06	0.288	-0.0159119	0.0047303
swp	-0.0022692	0.003666	-0.62	0.536	-0.0094546	0.0049161
opt	0.0133122	0.0141281	0.94	0.346	-0.0143784	0.0410029
fut	0.0010647	0.0045153	0.24	0.814	-0.0077851	0.0099145
nim	0.1080688	0.4000924	0.27	0.787	-0.6760978	0.8922355
size	-0.0020167	0.0042237	-0.48	0.633	-0.0102949	0.0062616
liqta_hat2	-52.76756	14.05764	-3.75	0.000	-80.32002	-25.2151
liqta_hat3	663.3059	124.1736	5.34	0.000	419.9301	906.6818
liqta_hat4	-1934.375	368.5178	-5.25	0.000	-2656.657	-1212.094
constant	0.1693078	0.0893557	1.89	0.058	-0.005826	0.3444417
sigma_u	0.05599639					
sigma_e	0.04876765					
Rho	0.5686732	(fraction of v	ariance due to	u_i)		

test liqta_hat2 liqta_hat3 liqta_hat4

- (1) liqta_hat2 = 0
- (2) liqta_hat3 = 0(3) liqta_hat4 = 0

chi2(3) = 36.42Prob > chi2 = 0.0000

xtreg llrgl fwd swp opt fut nim size, re

Random-effects GLS regression Group variable: ident R-sq: within = 0.0127between = 0.0929overall = 0.0367Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed) Number of obs = 1096Number of groups = 137Obs per group: min = 8avg = 8.0max = 8Wald chi2(10) = 25.89Prob > chi2 = 0.0002

llrgl	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	0.0006262	0.0038064	0.16	0.869	-0.0068343	0.0080866
swp	-0.0028107	0.0025251	-1.11	0.266	-0.0077599	0.0021385
opt	-0.0106285	0.0115963	-0.92	0.359	-0.0333569	0.0120999
fut	0.0002494	0.0034141	0.07	0.942	-0.0064421	0.0069409
nim	0.2477194	0.0582892	4.25	0.000	0.1334748	0.3619641
size	-0.0019747	0.001886	-1.05	0.295	-0.0056712	0.0017217
constant	0.0516718	0.0177285	2.91	0.004	0.0169246	0.086419
sigma_u	0.02924934					
sigma_e	0.06106898					
Rho	0.18659414	(fraction of v	ariance due to	u_i)		

predict llrgl_hat, xb generate llrgl_hat2= llrgl_hat^2 generate llrgl_hat3= llrgl_hat^3 generate llrgl_hat4= llrgl_hat^4

xtreg llrgl fwd swp opt fut nim size llrgl_hat2 llrgl_hat3 llrgl_hat4, re

Random-effects GLS regression Group variable: ident R-sq: within = 0.0134between = 0.0907overall = 0.0365Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed) Number of obs = 1096Number of groups = 137Obs per group: min = 8avg = 8.0max = 8Wald chi2(10) = 25.95Prob > chi2 = 0.0021

llrgl	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	0.0003012	0.0039236	0.08	0.939	-0.0073889	0.0079913
swp	-0.0011833	0.0047867	-0.25	0.805	-0.0105651	0.0081985
opt	-0.0032223	0.0207705	-0.16	0.877	-0.0439318	0.0374871
fut	-0.0000892	0.0035282	-0.03	0.980	-0.0070043	0.0068259
nim	0.0354116	0.5868348	0.06	0.952	-1.114763	1.185587
Size	-0.0001709	0.0047594	-0.04	0.971	-0.0094992	0.0091575
llrgl_hat2	18.10225	40.18295	0.45	0.652	-60.65488	96.85939
llrgl_hat3	-133.1038	265.4719	-0.50	0.616	-653.4192	387.2116
llrgl_hat4	304.8077	582.4161	0.52	0.601	-836.707	1446.322
constant	0.0196216	0.0765864	0.26	0.798	-0.130485	0.1697283
sigma_u	0.02958137					
sigma_e	0.06104936					
Rho	0.19014379	(fraction of v	ariance due to	u_i)		

test llrgl hat2 llrgl hat3 llrgl hat4

- (1)  $llrgl_hat2 = 0$
- (2) llrgl hat 3 = 0
- (3)  $llrgl_hat4 = 0$

chi2(3) = 0.28Prob > chi2 = 0.9635 xtreg sdroa fwd swp opt fut nim size, re

Random-effects GLS regression Group variable: ident R-sq: within = 0.0014between = 0.0172overall = 0.0090Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed) Number of obs = 1096Number of groups = 137Obs per group: min = 8avg = 8.0max = 8Wald chi2(10) = 3.14Prob > chi2 = 0.7910

sdroa	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	0.0002311	0.000631	0.37	0.714	-0.0010055	0.0014678
swp	-0.0003448	0.0004291	-0.80	0.422	-0.0011859	0.0004963
opt	-0.0002101	0.001825	-0.12	0.908	-0.003787	0.0033669
fut	0.0001783	0.0005571	0.32	0.749	-0.0009135	0.0012701
nim	0.0158052	0.0101818	1.55	0.121	-0.0041508	0.0357612
size	0.0000777	0.0003853	0.20	0.840	-0.0006774	0.0008328
constant	0.0043367	0.0036438	1.19	0.234	-0.002805	0.0114784
sigma_u	0.00809135					
sigma_e	0.00869488					
Rho	0.4640928	(fraction of v	ariance due to	u_i)		

predict sdroa_hat, xb

generate sdroa_hat2= sdroa_hat^2 generate sdroa_hat3= sdroa_hat^3 generate sdroa_hat4= sdroa_hat^4

xtreg sdroa fwd swp opt fut nim size sdroa hat2 sdroa hat3 sdroa hat4, re

	_ /
Random-effects GLS regression	Number of obs $=$ 1096
Group variable: ident	Number of groups $=$ 137
R-sq: within $= 0.0660$	Obs per group: $min = 8$
between $= 0.0014$	avg = 8.0
overall = 0.0323	$\max = 8$
Random effects u_i ~ Gaussian	Wald $chi2(10) = 8.30$
$corr(u_i, Xb) = 0$ (assumed)	Prob > chi2 = 0.5039

sdroa	Coef.	Std. Err.	t	P >  t	[95% Con	f. Interval]
fwd	-0.0009743	0.0015031	-0.65	0.517	-0.0039203	0.0019717
swp	0.0013796	0.0019021	0.73	0.468	-0.0023484	0.0051076
opt	0.0009979	0.0022327	0.45	0.655	-0.0033781	0.0053738
fut	-0.0007934	0.001301	-0.61	0.542	-0.0033433	0.0017565
nim	-0.0285623	0.1063484	-0.27	0.788	-0.2370013	0.1798767
size	-0.0003392	0.0006068	-0.56	0.576	-0.0015285	0.0008501
liqta_hat2	1372.959	1276.094	1.08	0.282	-1128.14	3874.057
liqta_hat3	-124900.9	116335.8	-1.07	0.283	-352914.8	103113.1
liqta_hat4	3230467	3616417	0.89	0.372	-3857580	1.03e+07
constant	014129	.0168973	-0.84	0.403	-0.0472471	0.018989
sigma_u	0.00750155					
sigma_e	0.00870458					
Rho	0.42617364	(fraction of v	ariance due to	u_i)		

test sdroa_hat2 sdroa_hat3 sdroa_hat4

- (1)  $sdroa_hat2 = 0$
- (2) sdroa_hat3 = 0
- (3)  $sdroa_hat4 = 0$

chi2(3) = 4.93Prob > chi2 = 0.1768

## Appendix V.c.

xtreg sr fwd	swp opt fut cap	lia loan cr nin	n nonim size r	e		
	ects GLS regres				umber of obs	= 518
Group varia		51011			umber of groups	
R-sq: within					bs per group: m	
between	n = 0.0195					vg = 7.0
	l = 0.0401				n	$\max = 7$
	ects u_i ~ Gauss				ald chi2(10)	= 21.69
corr(u i, Xb			1		<u> </u>	0.0269
sr	Coef.	Std. Err.	t	P> t	[95% Conf	
fwd	-0.0000737	0.0001436	-0.51	0.607	-0.0003551	0.0002076
swp	-0.0000328	0.0000947	-0.35	0.729	-0.0002184	0.0001527
opt	-0.0001705	0.000517	-0.33	0.741	-0.0011838	0.0008427
fut	0.0006778	0.0010976	0.62	0.537	-0.0014734	0.002829
cap	-0.0082174	0.0031481	-2.61	0.009	-0.0143875	-0.0020472
liq	-0.0022986	0.0014697	-1.56	0.118	-0.0051791	0.0005819
loan	-0.0019263	0.0008757	-2.20	0.028	-0.0036425	-0.00021
cr	-0.0008533	0.0013176	-0.65	0.517	-0.0034358	0.0017291
nim	0.0105474	0.0035746	2.95	0.003	0.0035413	0.0175536
nonim	0.0064649	0.004671	1.38	0.166	-0.0026901	0.01562
size	-0.0002501	0.0000972	-2.57	0.010	-0.0004407	-0.0000595
constant	0.0046287	0.001205	3.84	0.000	0.0022669	0.0069905
sigma_u	0.00025769					
sigma e	0.00248754					
Rho	0.01061745	(fraction of v	variance due to	u i)		
predict sr_ha						
	$hat2 = sr_hat^2$					
	hat $3 = sr_hat^3$					
	hat4= sr_hat^4	1:		1 (2 1 (	2 1 4	
xtreg sr two	SWD ODL IUL CAD	na ioan er nin				
Dandom off			II HOIIIIII SIZE SI		3 sr_hat4, re	- 264
	ects GLS regres		n nonnn size si	N	umber of obs	= 364
Group varia	ects GLS regres ble: ident		n nonnn size si		umber of obs umber of groups	s = 74
Group varial R-sq: within	ects GLS regres ble: ident n = 0.0810		n nonnn size si		umber of obs umber of groups bs per group: m	s = 74 in = 7
Group varial R-sq: within between	ects GLS regres ble: ident n = 0.0810 n = 0.0256		n nonnn size si		umber of obs umber of groups bs per group: ma a	s = 74 in = 7 wg = 7.0
Group varial R-sq: within between overal	ects GLS regres ble: ident n = 0.0810 n = 0.0256 1 = 0.0444	sion	n nonnn size si	- Ni Ni Ol	umber of obs umber of groups os per group: m a n	s = 74 in = 7 avg = 7.0 max = 7
Group varial R-sq: within between overal Random effe	ects GLS regres ble: ident n = 0.0810 n = 0.0256 l = 0.0444 ects u_i ~ Gauss	ian	n nonnn size si	Ni Ni Ol	umber of obs umber of groups os per group: m a an rald chi2(10)	s = 74 in = 7 inyg = 7.0 max = 7 = 24.13
Group varial R-sq: within between overal Random effe corr(u_i, Xb	ects GLS regres ble: ident n = 0.0810 n = 0.0256 l = 0.0444 ects u_i ~ Gauss ) = 0 (assume	ian ed)		Ni Ni Ol W Pr	umber of obs umber of groups os per group: m a rald chi2(10) ob > chi2 =	s = 74 in = 7 inyg = 7.0 max = 7 = 24.13 = 0.0299
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr	ects GLS regres ble: ident n = 0.0810 n = 0.0256 ll = 0.0444 ects u_i ~ Gauss ) = 0 (assume Coef.	ian ed) Std. Err.	t	Ni Ni Ol Pr P> t	umber of obs umber of groups bs per group: m a ald chi2(10) ob > chi2 = [95% Con	s = 74 in = 7 inyg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval]
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd	ects GLS regres         ble: ident $n = 0.0810$ $n = 0.0256$ $ll = 0.0444$ ects u_i ~ Gauss         ) = 0 (assume         Coef.         -0.0000566	ian ed) Std. Err. 0.000145	t -0.39	Ni Ni Ol W Pr P> t  0.696	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: minimized} \\ \text{a} \\ \text{bs per group: minimized} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276
Group varial R-sq: within betweer overal Random effe corr(u_i, Xb sr fwd swp	ects GLS regres         ble: ident $n = 0.0810$ $n = 0.0256$ $1 = 0.0444$ ects u_i ~ Gauss         ) = 0 (assume)         Coef.         -0.0000566         -0.0000217	ian ed) Std. Err. 0.000145 0.000097	t -0.39 -0.22	− − Ni Ni Ol Pr P> t  0.696 0.823	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: minimized} \\ \text{a} \\ \text{bs per group: minimized} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	$s = 74 \\ in = 7 \\ ing = 7.0 \\ max = 7 \\ = 24.13 \\ = 0.0299 \\ f. Interval] \\ \hline 0.0002276 \\ 0.0001684 \\ \hline \end{tabular}$
Group varial R-sq: within between overal Random effe corr( <u>u</u> i, Xb sr fwd swp opt	ects GLS regres ble: ident n = 0.0810 n = 0.0256 l = 0.0444 ects u_i ~ Gauss ) = 0 (assume Coef. -0.0000566 -0.0000217 -0.0001808	ian ed) Std. Err. 0.000145 0.000097 0.0005188	t -0.39 -0.22 -0.35	− − Ni Ni Ol W Pr P> t  0.696 0.823 0.728	umber of obsumber of groupsumber of groupsos per group: miafald chi2(10)ob > chi2 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ <	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.0008361
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut	ects GLS regres         ble: ident $n = 0.0810$ $n = 0.0256$ $1 = 0.0444$ ects u_i ~ Gauss         ) = 0 (assumed)         Coef.         -0.0000566         -0.0000217         -0.0001808         0.0003576	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318	t -0.39 -0.22 -0.35 0.32	− − Ni Ni Ol W Pr P> t  0.696 0.823 0.728 0.752	umber of obs         umber of groups         bs per group: minimum         a         main         ald chi2(10)         ob > chi2 $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$ $=$	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.0008361 0.00025758
Group varial R-sq: within betweer overal Random effe corr(u_i, Xb sr fwd swp opt fut cap	ects GLS regres         ble: ident $n = 0.0810$ $n = 0.0256$ $l = 0.0444$ ects u_i ~ Gauss $) = 0$ (assume         Coef. $-0.0000566$ $-0.0001808$ $0.0003576$ $-0.0052777$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494	t -0.39 -0.22 -0.35 0.32 -1.14	- Ni Ni Ol W Pr P> t  0.696 0.823 0.728 0.752 0.256	umber of obs         umber of groups         os per group: mi         a         fald chi2(10)         ob > chi2 $0 > chi2$ $0 > chi2$ $0 > chi2$ $0 > chi2$ $0 = 0.0003409$ $-0.00011976$ $-0.0018607$ $-0.0143903$	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.0008361 0.0025758 0.0038349
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq	ects GLS regres         ble: ident $n = 0.0810$ $n = 0.0256$ $ll = 0.0444$ ects u_i ~ Gauss $) = 0$ (assume         Coef. $-0.0000566$ $-0.0001808$ $0.0003576$ $-0.0025886$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73	- Ni Ni Ol W Pr P> t  0.696 0.823 0.728 0.752 0.256 0.084	umber of obs         umber of groups         bs per group: mi         a         n         ald chi2(10)         ob > chi2 $[95\%$ Con         -0.0003409         -0.0011976         -0.0018607         -0.0143903         -0.0055294	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.00025758 0.0038349 0.0003521
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan	$\begin{array}{r} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline & = 0 \text{ (assume} \\ \hline & & \text{Coef.} \\ \hline & & -0.0000566 \\ \hline & & -0.0000217 \\ \hline & & -0.0001808 \\ \hline & & 0.0003576 \\ \hline & & -0.0025886 \\ \hline & & -0.0013461 \end{array}$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0011156	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21	Ni Ni Ol Pr Ni Ni Ol Pr  Ni Ni Ol Pr  Ni Ni Ol Ol 20 	umber of obs         umber of groups         bs per group: mi         a         n         ald chi2(10)         ob > chi2 $[95\%$ Con         -0.0003409         -0.0011976         -0.0018607         -0.0143903         -0.0055294         -0.0035326	s = 74 in = 7 $wg = 7.0$ max = 7 $= 24.13$ $= 0.0299$ f. Interval] 0.0002276 0.0001684 0.00025758 0.0038349 0.0003521 0.0003521 0.0008404
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr	$\begin{array}{r} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u i} \sim \text{Gauss} \\ \hline & 0 \text{ (assume} \\ \hline & \text{Coef.} \\ \hline & -0.0000566 \\ \hline & -0.0000217 \\ \hline & -0.0001808 \\ \hline & 0.0003576 \\ \hline & -0.0025886 \\ \hline & -0.0013461 \\ \hline & -0.0008213 \end{array}$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0011156 0.0013262	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	umber of obsumber of groupsumber of groupsbs per group: minoranald chi2(10)ob > chi2 $[95\%$ Con-0.0003409-0.0003409-0.0011976-0.0018607-0.0143903-0.0055294-0.0034206	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.00038361 0.00038349 0.0003521 0.0008404 0.0001778
Group varial R-sq: within between overal Random effe corr(u i, Xb sr fwd swp opt fut cap liq loan cr nim	ects GLS regresble: ident $n = 0.0810$ $n = 0.0256$ $l = 0.0444$ ects u_i ~ Gauss) = 0 (assumeCoef0.0000566-0.0000217-0.00018080.0003576-0.0025886-0.0013461-0.00082130.0082997	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0011156 0.0013262 0.0065994	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62 1.26	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: min} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{add chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0003409 \\ -0.0003409 \\ -0.0011976 \\ -0.0011976 \\ -0.00143903 \\ -0.0035326 \\ -0.0034206 \\ -0.004635 \\ \end{array}$	s = 74 in = 7 wg = 7.0 max = 7 = 24.13 = 0.0299 f. Interval] 0.0002276 0.0001684 0.0003521 0.0003521 0.0003521 0.0008404 0.001778 0.0212343
Group varial R-sq: within betweer overal Random effe corr(u i, Xb sr fwd swp opt fut cap liq loan cr nim nonim	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline 0 (\text{assume}) \\ \hline 0 (assum$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0015004 0.0013262 0.0065994 0.005654	$\begin{array}{r} t \\ -0.39 \\ -0.22 \\ -0.35 \\ 0.32 \\ -1.14 \\ -1.73 \\ -1.21 \\ -0.62 \\ 1.26 \\ 0.58 \end{array}$	$\begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: minimized} \\$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within betweer overal Random effe corr(u i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline 0 & \text{(assume)} \hline 0 & \text{(assume)} \\ \hline 0 & \text{(assume)} \hline 0 & \text{(assume)} \\ \hline 0 & \text{(assume)} \hline 0 & \text{(assume)} \hline 0 \\ $	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0013262 0.0065994 0.005654 0.0001312	$\begin{array}{r} t \\ -0.39 \\ -0.22 \\ -0.35 \\ 0.32 \\ -1.14 \\ -1.73 \\ -1.21 \\ -0.62 \\ 1.26 \\ 0.58 \\ -1.20 \end{array}$	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ bs per group: minimized in the second $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within betweer overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline n = 0 (\text{assum}) \\ \hline n = $	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701	$\begin{array}{r} t \\ -0.39 \\ -0.22 \\ -0.35 \\ 0.32 \\ -1.14 \\ -1.73 \\ -1.21 \\ -0.62 \\ 1.26 \\ 0.58 \\ -1.20 \\ 1.40 \end{array}$	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ bs per group: minimized for the second	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within betweer overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline n = 0 (\text{assum}) \\ \hline n = $	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6	$\begin{array}{r} t \\ -0.39 \\ -0.22 \\ -0.35 \\ 0.32 \\ -1.14 \\ -1.73 \\ -1.21 \\ -0.62 \\ 1.26 \\ 0.58 \\ -1.20 \\ 1.40 \\ -1.47 \end{array}$	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ bs per group: minimized in the second $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within betweer overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3 sr hat4	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ ) = 0 (\text{assum} \\ \hline 0.0000566 \\ -0.0000217 \\ -0.0000217 \\ -0.0001808 \\ \hline 0.0003576 \\ -0.0052777 \\ -0.0052777 \\ -0.0025886 \\ -0.0013461 \\ -0.0008213 \\ \hline 0.0082997 \\ \hline 0.0032874 \\ -0.0001578 \\ \hline 575.9407 \\ -168764.7 \\ \hline \text{Dropped beca} \end{array}$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6 use of collinea	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62 1.26 0.58 -1.20 1.40 -1.47 urity	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{a} \\ \text{bs per group: m} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3 sr hat4 constant	$\begin{array}{l} \text{ects GLS regres} \\ \text{ble: ident} \\ n = 0.0810 \\ n = 0.0256 \\ 1 = 0.0444 \\ \text{ects u_i} \sim \text{Gauss} \\ ) = 0 (\text{assum} \\ \hline 0.0000566 \\ -0.0000217 \\ -0.0000217 \\ -0.0001808 \\ \hline 0.0003576 \\ -0.0052777 \\ -0.0025886 \\ -0.0013461 \\ -0.0008213 \\ \hline 0.0082997 \\ \hline 0.0032874 \\ -0.0001578 \\ \hline 575.9407 \\ -168764.7 \\ \hline \text{Dropped beca} \\ \hline 0.0030756 \end{array}$	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6	$\begin{array}{r} t \\ -0.39 \\ -0.22 \\ -0.35 \\ 0.32 \\ -1.14 \\ -1.73 \\ -1.21 \\ -0.62 \\ 1.26 \\ 0.58 \\ -1.20 \\ 1.40 \\ -1.47 \end{array}$	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{c} \text{umber of obs} \\ \text{umber of groups} \\ bs per group: minimized for the second	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3 sr hat4 constant sigm_u	ects GLS regres ble: ident n = 0.0810 n = 0.0256 l = 0.0444 ects u_i ~ Gauss ) = 0 (assume Coef. -0.0000566 -0.0000217 -0.0001808 0.0003576 -0.0052777 -0.0025886 -0.0013461 -0.0008213 0.0082997 0.0032874 -0.0001578 575.9407 -168764.7 Dropped beca 0.0030756 0.00029035	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6 use of collinea	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62 1.26 0.58 -1.20 1.40 -1.47 urity	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{a} \\ \text{bs per group: m} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3 sr hat4 constant sigma_u sigma e	ects GLS regres ble: ident n = 0.0810 n = 0.0256 l = 0.0444 ects u_i ~ Gauss ) = 0 (assume Coef. -0.0000566 -0.0000217 -0.0001808 0.0003576 -0.0013461 -0.0008213 0.0082997 0.0032874 -0.0001578 575.9407 -168764.7 Dropped beca 0.0030756 0.00029035 0.00248862	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6 use of collinea 0.0019452	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62 1.26 0.58 -1.20 1.40 -1.47 arity 1.58	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{r} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{a} \\ \text{bs per group: m} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group varial R-sq: within between overal Random effe corr(u_i, Xb sr fwd swp opt fut cap liq loan cr nim nonim size sr hat2 sr hat3 sr hat4 constant sigm_u	ects GLS regresble: ident $n = 0.0810$ $n = 0.0256$ $l = 0.0444$ ects u_i ~ Gauss) = 0 (assumeCoef0.0000566-0.0000217-0.00018080.0003576-0.0052777-0.0025886-0.0013461-0.00082130.00829970.0032874-0.0001578575.9407-168764.7Dropped beca0.00307560.00290350.002488620.0134296	ian ed) Std. Err. 0.000145 0.000097 0.0005188 0.0011318 0.0046494 0.0015004 0.0013262 0.0065994 0.005654 0.0001312 411.5701 114893.6 use of collinea 0.0019452	t -0.39 -0.22 -0.35 0.32 -1.14 -1.73 -1.21 -0.62 1.26 0.58 -1.20 1.40 -1.47 urity	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \hline & & & &$	$\begin{array}{r} \text{umber of obs} \\ \text{umber of groups} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{bs per group: m} \\ \text{a} \\ \text{a} \\ \text{bs per group: m} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

(1) sr hat2 sr hat3 (1) sr hat2 = 0 (2) sr hat3 = 0 chi2(2) = 2.28Prob > chi2 = 0.3200

## Appendix V.d.

xtreg eff fwo						
	d swp opt fut ca	p liq loan cr si	ze, re			
Random-effe	ects GLS regres	sion		Nu	mber of obs	= 1096
Group varial					mber of groups	
-	n = 0.0.0269			Ob	s per group: mi	in = 8
	n = 0.0361				a	vg = 8.0
	= 0.0319					nax = 8
	ects u_i ~ Gauss				ald chi2(10)	= 31.08
corr(u_i, Xb		/			1	0.0003
eff	Coef.	Std. Err.	t	P> t	[95% Cont	
fwd	-0.0273294	0.0209917	-1.30	0.193	-0.0684725	0.0138136
swp	0.001432	0.0144689	0.10	0.921	-0.0269266	0.0297905
opt	-0.0512779	0.0240085	-2.14	0.033	-0.0983337	-0.004222
fut	-0.0036215	0.0169867	-0.21	0.831	-0.0369149	0.0296719
cap	0.2466432	0.2613055	0.94	0.345	-0.2655062	0.7587927
liq	-0.0248705	0.1786011	-0.14	0.889	-0.3749222	0.3251812
loan	-0.3891019	0.0997686	-3.90	0.000	-0.5846447	-0.1935591
cr	-0.4651	0.1549141	-3.00	0.003	-0.7687259	-0.161474
size	0.0343819	0.0144019	2.39	0.017	0.0061546	0.0626092
constant	-0.7396981	0.14413	-5.13	0.000	-1.022188	-0.4572086
sigma_u	0.30905173					
sigma_e	0.29758866					
Rho	0.51888924	(fraction of v	ariance due to	u i)		
•	t swn ont tut nu			1 . 4		
Group varial R-sq: within between overall	ects GLS regres ble: ident n = 0.0459 n = 0.0529 = 0.0495	sion	2 eff_hat3 eff_	Nu Nu Ob	n	in = 8 $vg = 8.0$ $nax = 8$
Group varial R-sq: within between overall Random effe	ects GLS regres ble: ident n = 0.0459 n = 0.0529 = 0.0495 ects u_i ~ Gauss	sian	2 eff_hat3 eff_	Nu Nu Ob Wa	umber of groups as per group: mi a n ald chi2(10)	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89
Group varial R-sq: within between overall Random effe corr(u_i, Xb	ects GLS regres ble: ident n = 0.0459 n = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum	sian ed)		Nu Nu Ob Wa Pro	wher of groups as per group: mines and chi2(10) bb > chi2 =	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff	ects GLS regres ble: ident h = 0.0459 h = 0.0529 = 0.0495 ects u_i ~ Gauss h = 0 (assum) Coef.	sian ed) Std. Err.		Nu Nu Ob Wa Pro P> t	$\begin{array}{c} \text{mber of groups} \\ \text{s per group: minimum} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline \hline 95\% \text{ Con} \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval]
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd	ects GLS regres         ble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss         ) = 0 (assum)         Coef.         0.8954567	sian ed) Std. Err. 0.5365514	t 1.67	Nu Nu Ob Wa Pro P> t  0.095	$\begin{array}{c} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078
Group varial R-sq: withir between overall Random effe corr(u i, Xb eff fwd swp	ects GLS regress         ble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss         ) = 0 (assum)         Coef.         0.8954567         -0.0462395	sian ed) Std. Err. 0.5365514 0.0305338	t 1.67 -1.51	Nu Nu Ob Wa Pro P> t  0.095 0.130	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: mi} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline 95\% \text{ Con} \\ -0.1561648 \\ \hline -0.1060847 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057
Group varial R-sq: within between overall Random effe corr(u_i, Xb eff fwd swp opt	ects GLS regress         ble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss         ) = 0 (assum)         Coef.         0.8954567         -0.0462395         1.635927	sian ed) Std. Err. 0.5365514 0.0305338 1.004567	t 1.67 -1.51 1.63	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103	$\begin{array}{c} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ \hline \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut	ects GLS regress         ble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss $) = 0$ (assum)         Coef.         0.8954567         -0.0462395         1.635927         0.1307242	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798	t 1.67 -1.51 1.63 1.73	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.084	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539
Group varial R-sq: within between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap	ects GLS regressble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss $) = 0$ (assum)Coef.0.8954567-0.04623951.6359270.1307242-7.977567	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387	t 1.67 -1.51 1.63 1.73 -1.63	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.084 0.103	$\begin{array}{c} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\ \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq	ects GLS regressble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss) = 0 (assum)Coef.0.8954567-0.04623951.6359270.1307242-7.9775670.7933261	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829	$ \begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ \end{array} $	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.127	$\begin{array}{c} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ \hline \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan	ects GLS regressble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0495$ ects u_i ~ Gauss) = 0 (assum)Coef.0.8954567-0.04623951.6359270.1307242-7.9775670.793326112.68743	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288	$ \begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ \end{array} $	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.127 0.099	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: mi} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ -2.385259 \\ \hline \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012
Group varial R-sq: within between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr	ects GLS regressble: ident $h = 0.0459$ $h = 0.0529$ $= 0.0495$ ects u_i ~ Gauss $) = 0$ (assum)Coef.0.8954567-0.04623951.6359270.1307242-7.9775670.793326112.6874314.5115	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188	$ \begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ \end{array} $	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.127 0.099 0.117	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{b} \\ \text{bb} \\ \text{bb} \\ \text{chi2(10)} \\ \text{bb} \\ \text{bb} \\ \text{chi2(10)} \\ \text{bb} \\ \text{chi2(10)} \\ chi2(10)$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size	ects GLS regressble: ident $h = 0.0459$ $h = 0.0529$ $= 0.0495$ ects u_i ~ Gauss $) = 0$ (assum)Coef.0.8954567-0.04623951.6359270.1307242-7.9775670.793326112.6874314.5115-1.123594	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188 0.6799215	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ \end{array}$	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.103 0.127 0.099 0.117 0.098	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ -2.385259 \\ -3.632251 \\ -2.456216 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279
Group varial R-sq: within between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2	ects GLS regressble: ident $n = 0.0459$ $n = 0.0529$ $= 0.0529$ $= 0.0495$ ects u_i ~ Gauss $) = 0$ (assumCoef. $0.8954567$ $-0.0462395$ $1.635927$ $0.1307242$ $-7.977567$ $0.7933261$ $12.68743$ $14.5115$ $-1.123594$ $-56.84485$	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ \end{array}$	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.103 0.127 0.099 0.117 0.098 0.150	$\begin{array}{c} \text{mber of groups} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ -2.262137 \\ -2.385259 \\ -3.632251 \\ -2.456216 \\ -134.2778 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2 eff_hat3	ects GLS regres ble: ident n = 0.0459 n = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum Coef. 0.8954567 -0.0462395 1.635927 0.1307242 -7.977567 0.7933261 12.68743 14.5115 -1.123594 -56.84485 -39.04443	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735 33.92568	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ -1.15\\ \end{array}$	Nu Nu Ob Wa Pro 0.095 0.130 0.103 0.103 0.103 0.103 0.127 0.099 0.117 0.099 0.117 0.098 0.150 0.250	$\begin{array}{c} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ -2.262137 \\ -2.385259 \\ -3.632251 \\ -2.456216 \\ -134.2778 \\ -105.5376 \\ \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813 27.44868
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2 eff_hat3 eff_hat4	ects GLS regress ble: ident n = 0.0459 n = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum) Coef. 0.8954567 -0.0462395 1.635927 0.1307242 -7.977567 0.7933261 12.68743 14.5115 -1.123594 -56.84485 -39.04443 -8.790334	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 0.756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735 33.92568 10.47025	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ -1.15\\ -0.84 \end{array}$	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.127 0.099 0.117 0.099 0.117 0.098 0.150 0.250 0.401	$\begin{array}{r} \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} $	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813 27.44868 11.73099
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2 eff_hat4 constant	ects GLS regres ble: ident h = 0.0459 h = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum Coef. 0.8954567 -0.0462395 1.635927 0.1307242 -7.977567 0.7933261 12.68743 14.5115 -1.123594 -56.84485 -39.04443 -8.790334 17.20144	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735 33.92568	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ -1.15\\ \end{array}$	Nu Nu Ob Wa Pro 0.095 0.130 0.103 0.103 0.103 0.103 0.127 0.099 0.117 0.099 0.117 0.098 0.150 0.250	$\begin{array}{c} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline [95\% \text{ Con} \\ -0.1561648 \\ -0.1060847 \\ -0.3329878 \\ -0.0176056 \\ -17.57235 \\2262137 \\ -2.262137 \\ -2.385259 \\ -3.632251 \\ -2.456216 \\ -134.2778 \\ -105.5376 \\ \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813 27.44868
Group varial R-sq: within between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2 eff_hat3 eff_hat4 constant sigm_u	ects GLS regres ble: ident n = 0.0459 n = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum Coef. 0.8954567 -0.0462395 1.635927 0.1307242 -7.977567 0.7933261 12.68743 14.5115 -1.123594 -56.84485 -39.04443 -8.790334 17.20144 0.30318932	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 0.756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735 33.92568 10.47025	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ -1.15\\ -0.84 \end{array}$	Nu Nu Ob Wa Pro P> t  0.095 0.130 0.103 0.103 0.103 0.127 0.099 0.117 0.099 0.117 0.098 0.150 0.250 0.401	$\begin{array}{r} \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} $	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813 27.44868 11.73099
Group varial R-sq: withir between overall Random effe corr(u_i, Xb eff fwd swp opt fut cap liq loan cr size eff_hat2 eff_hat3 eff_hat4 constant	ects GLS regres ble: ident h = 0.0459 h = 0.0529 = 0.0495 ects u_i ~ Gauss ) = 0 (assum Coef. 0.8954567 -0.0462395 1.635927 0.1307242 -7.977567 0.7933261 12.68743 14.5115 -1.123594 -56.84485 -39.04443 -8.790334 17.20144	sian ed) Std. Err. 0.5365514 0.0305338 1.004567 .0756798 4.895387 0.5201829 7.690288 9.257188 0.6799215 39.50735 33.92568 10.47025 11.04128	$\begin{array}{c} t\\ 1.67\\ -1.51\\ 1.63\\ 1.73\\ -1.63\\ 1.53\\ 1.65\\ 1.57\\ -1.65\\ -1.44\\ -1.15\\ -0.84 \end{array}$	Nu Nu Ob Wa Pro 0.095 0.130 0.103 0.103 0.103 0.103 0.127 0.099 0.117 0.099 0.117 0.098 0.150 0.250 0.401 0.119	$\begin{array}{r} \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{a} \\ \text{a} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} $	s = 137 in = 8 vg = 8.0 nax = 8 = 52.89 0.0000 f. Interval] 1.947078 0.0136057 3.604841 0.2790539 1.617216 1.812866 27.76012 32.65526 .2090279 20.58813 27.44868 11.73099

test eff_hat2 eff_hat3 eff_hat4 (1) eff_hat2 = 0(2) eff_hat3 = 0

(3) eff_hat4 = 0 chi2(3) = 21.27 Prob > chi2 = 0.0001

xtreg cad fwd swp opt fut cap liq loan c Random-effects GLS regression Group variable: ident R-sq: within = 0.1479 between = 0.6476 overall = 0.4363 Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed) cad Coef. Std. Err. fwd 0.0594289 0.1822191 swp -0.1234026 0.1236498 opt 0.0709957 0.2236084 fut 0.0308411 0.147534 cap -27.00417 2.216785 liq -2.67334 1.576606 loan 11.27457 0.8328075 cr 2.444406 1.458129 size -0.1011348 .1053276 constant 4.379263 1.117436 sigma_u 1.7960301 sigma e 2.8682063 Rho 0.28166527 (fraction o predict cad_hat, xb generate cad_hat2= cad_hat^2 generate cad_hat4= cad_hat^4 xtreg cad fwd swp opt fut nim size cad	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nu Ob W Pr P> t  0.744 0.318 0.751 0.834 0.000 0.090 0.090 0.090 0.094 0.337 0.000		in = 8 vg = 8.0 nax = 8 = 403.97 = 0.0000
Group variable: identR-sq: within = 0.1479between = 0.6476overall = 0.4363Random effects u_i ~ Gaussiancorr(u_i, Xb) = 0 (assumed)cadCoef.Std. Err.fwd0.05942890.1822191swp-0.12340260.1236498opt0.07099570.2236084fut0.03084110.147534cap-27.004172.216785liq-2.673341.576606loan11.274570.8328075cr2.4444061.458129size-0.1011348.1053276constant4.3792631.117436sigma_u1.7960301sigma e2.8682063Rho0.28166527(fraction opredict cad_hat, xbgenerate cad_hat2= cad_hat^2generate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Nu Ob W Pr P> t  0.744 0.318 0.751 0.834 0.000 0.090 0.090 0.090 0.094 0.337 0.000	imber of groupsabs per group: miaald chi2(10) $ob > chi2 =$ [95% Con:-0.2977141-0.3657517-0.3672688-0.2583202-31.34899-5.7634319.6423-0.4134744-0.3075731	s = 137 in = 8 vg = 8.0 nax = 8 = 403.97 0.0000 f. Interval] 0.4165718 0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
R-sq: within = $0.1479$ between = $0.6476$ overall = $0.4363$ Random effects u_i ~ Gaussian corr(u_i, Xb) = $0$ (assumed)cadCoef.Std. Err.fwd $0.0594289$ $0.1822191$ swp $-0.1234026$ $0.1236498$ optopt $0.0709957$ $0.2236084$ fut $0.0308411$ $0.147534$ capcap $-27.00417$ $2.216785$ liq $-2.67334$ $1.576606$ loan $11.27457$ $0.8328075$ cr $2.444406$ $1.458129$ size $-0.1011348$ $.1053276$ constant $4.379263$ $1.117436$ sigma_u $1.7960301$ sigma esigma e $2.8682063$ RhoRho $0.28166527$ (fraction opredict cad_hat, xbgenerate cad_hat2= cad_hat^2generate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Of W Pro 0.744 0.318 0.751 0.834 0.000 0.090 0.090 0.090 0.094 0.337 0.000	$\begin{array}{c} \text{a} \\ \text{a} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con:} \\ -0.2977141 \\ -0.3657517 \\ -0.3672688 \\ -0.2583202 \\ -31.34899 \\ -5.763431 \\ 9.6423 \\ -0.4134744 \\ -0.3075731 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
between = $0.6476$ overall = $0.4363$ Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed) cad Coef. Std. Err. fwd 0.0594289 0.1822191 swp -0.1234026 0.1236498 opt 0.0709957 0.2236084 fut 0.0308411 0.147534 cap -27.00417 2.216785 liq -2.67334 1.576606 loan 11.27457 0.8328075 cr 2.444406 1.458129 size -0.1011348 .1053276 constant 4.379263 1.117436 sigma_u 1.7960301 sigma e 2.8682063 Rho 0.28166527 (fraction o predict cad_hat, xb generate cad_hat2= cad_hat^2 generate cad_hat4= cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	W Pr- P> t  0.744 0.318 0.751 0.834 0.000 0.090 0.090 0.090 0.094 0.337 0.000	a ald chi2(10) ob > chi2 = [95% Con: -0.2977141 -0.3657517 -0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	vg = 8.0 nax = 8 = 403.97 0.0000 f. Interval] 0.4165718 0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
overall = 0.4363         Random effects u_i ~ Gaussian            cad       Coef.       Std. Err.         fwd       0.0594289       0.1822191         swp -0.1234026         opt       0.0709957       0.2236084         fut       0.0308411       0.147534         cap       -27.00417       2.216785         liq       -2.67334       1.576606         loan       11.27457       0.8328075         cr       2.444406       1.458129         size       -0.1011348       .1053276         constant       4.379263       1.117436         sigma_u       1.7960301	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pro P> t  0.744 0.318 0.751 0.834 0.000 0.000 0.090 0.000 0.094 0.337 0.000	$\begin{array}{r} & n \\ ald chi2(10) \\ ob > chi2 &= \\ \hline [95\% \ Con: \\ -0.2977141 \\ -0.3657517 \\ -0.3672688 \\ -0.2583202 \\ -31.34899 \\ -5.763431 \\ 9.6423 \\ -0.4134744 \\ -0.3075731 \end{array}$	$\begin{array}{rrrr} nax = & 8 \\ = & 403.97 \\ \hline 0.0000 \\ \hline 0.1189466 \\ \hline 0.5092601 \\ \hline 0.3200024 \\ \hline -22.65935 \\ \hline 0.4167511 \\ \hline 12.90685 \\ \hline 5.302287 \\ \hline 0.1053034 \end{array}$
Random effects u_i ~ Gaussian corr(u_i, Xb) = 0 (assumed)cadCoef.Std. Err.fwd $0.0594289$ $0.1822191$ swp $-0.1234026$ $0.1236498$ opt $0.0709957$ $0.2236084$ fut $0.0308411$ $0.147534$ cap $-27.00417$ $2.216785$ liq $-2.67334$ $1.576606$ loan $11.27457$ $0.8328075$ cr $2.444406$ $1.458129$ size $-0.1011348$ $.1053276$ constant $4.379263$ $1.117436$ sigma_u $1.7960301$ sigma esigma e $2.8682063$ RhoRho $0.28166527$ (fraction of predict cad_hat, xbgenerate cad_hat2=cad_hat^3generate cad_hat3=cad_hat^3generate cad_hat4=cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pro P> t  0.744 0.318 0.751 0.834 0.000 0.000 0.090 0.000 0.094 0.337 0.000	ald chi2(10) ob > chi2 = [95% Con: -0.2977141 -0.3657517 -0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	= 403.97 0.0000 f. Interval] 0.4165718 0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
$corr(u_i, Xb) = 0$ (assumed) $cad$ $Coef.$ Std. Err.fwd $0.0594289$ $0.1822191$ swp $-0.1234026$ $0.1236498$ opt $0.0709957$ $0.2236084$ fut $0.0308411$ $0.147534$ cap $-27.00417$ $2.216785$ liq $-2.67334$ $1.576606$ loan $11.27457$ $0.8328075$ cr $2.444406$ $1.458129$ size $-0.1011348$ $.1053276$ constant $4.379263$ $1.117436$ sigma_u $1.7960301$ sigma esigma e $2.8682063$ RhoRho $0.28166527$ (fraction opredict cad_hat, xbgenerate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pro P> t  0.744 0.318 0.751 0.834 0.000 0.000 0.090 0.000 0.094 0.337 0.000	$\begin{array}{r llllllllllllllllllllllllllllllllllll$	0.0000           f. Interval]           0.4165718           0.1189466           0.5092601           0.3200024           -22.65935           0.4167511           12.90685           5.302287           0.1053034
cadCoef.Std. Err.fwd $0.0594289$ $0.1822191$ swp $-0.1234026$ $0.1236498$ opt $0.0709957$ $0.2236084$ fut $0.0308411$ $0.147534$ cap $-27.00417$ $2.216785$ liq $-2.67334$ $1.576606$ loan $11.27457$ $0.8328075$ cr $2.444406$ $1.458129$ size $-0.1011348$ $.1053276$ constant $4.379263$ $1.117436$ sigma_u $1.7960301$ sigma esigma e $2.8682063$ RhoRho $0.28166527$ (fraction opredict cad_hat, xbgenerate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P> t            0.744           0.318           0.751           0.834           0.000           0.090           0.000           0.094           0.337           0.000	[95% Con -0.2977141 -0.3657517 -0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	f. Interval] 0.4165718 0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
fwd $0.0594289$ $0.1822191$ swp $-0.1234026$ $0.1236498$ opt $0.0709957$ $0.2236084$ fut $0.0308411$ $0.147534$ cap $-27.00417$ $2.216785$ liq $-2.67334$ $1.576606$ loan $11.27457$ $0.8328075$ cr $2.444406$ $1.458129$ size $-0.1011348$ $.1053276$ constant $4.379263$ $1.117436$ sigma_u $1.7960301$ sigma e $2.8682063$ Rho $0.28166527$ (fraction opredict cad_hat, xbgenerate cad_hat2=cad_hat^2generate cad_hat3=cad_hat^3generate cad_hat4=cad_hat^4	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.744 \\ 0.318 \\ 0.751 \\ 0.834 \\ 0.000 \\ 0.090 \\ 0.090 \\ 0.094 \\ 0.337 \\ 0.000 \end{array}$	-0.2977141 -0.3657517 -0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	0.4165718 0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
swp         -0.1234026         0.1236498           opt         0.0709957         0.2236084           fut         0.0308411         0.147534           cap         -27.00417         2.216785           liq         -2.67334         1.576606           loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301         sigma e           sigma e         2.8682063         Rho           Rho         0.28166527         (fraction o)           predict cad_hat, xb         generate cad_hat3= cad_hat^2           generate cad_hat4= cad_hat^4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.318 0.751 0.834 0.000 0.090 0.000 0.094 0.337 0.000	-0.3657517 -0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	0.1189466 0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
opt         0.0709957         0.2236084           fut         0.0308411         0.147534           cap         -27.00417         2.216785           liq         -2.67334         1.576606           loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301	4         0.32           0.21         -12.18           -1.70         -13.54           1.68         -0.96           3.92         3.92	0.751 0.834 0.000 0.090 0.000 0.094 0.337 0.000	-0.3672688 -0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	0.5092601 0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
fut         0.0308411         0.147534           cap         -27.00417         2.216785           liq         -2.67334         1.576606           loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301         .1053276           sigma e         2.8682063         .1117436           Rho         0.28166527         (fraction of predict cad_hat, xb)           generate cad_hat2= cad_hat^2	0.21 -12.18 -1.70 5 13.54 1.68 -0.96 3.92	0.834 0.000 0.090 0.000 0.094 0.337 0.000	-0.2583202 -31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	0.3200024 -22.65935 0.4167511 12.90685 5.302287 0.1053034
cap         -27.00417         2.216785           liq         -2.67334         1.576606           loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301	$\begin{array}{c c} -12.18 \\ \hline -1.70 \\ 5 \\ 13.54 \\ \hline 1.68 \\ \hline -0.96 \\ \hline 3.92 \end{array}$	0.000 0.090 0.000 0.094 0.337 0.000	-31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	-22.65935 0.4167511 12.90685 5.302287 0.1053034
liq         -2.67334         1.576606           loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301	-1.70       5     13.54       0     1.68       -0.96       3.92	0.090 0.000 0.094 0.337 0.000	-5.763431 9.6423 -0.4134744 -0.3075731	0.4167511 12.90685 5.302287 0.1053034
loan         11.27457         0.8328075           cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301	5     13.54       0     1.68       0     -0.96       3.92	0.000 0.094 0.337 0.000	9.6423 -0.4134744 -0.3075731	12.90685 5.302287 0.1053034
cr         2.444406         1.458129           size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301           sigma e         2.8682063           Rho         0.28166527           predict cad_hat, xb           generate cad_hat2=           cad_hat3=           cad_hat^3           generate cad_hat4=	1.68 -0.96 3.92	0.094 0.337 0.000	-0.4134744 -0.3075731	5.302287 0.1053034
size         -0.1011348         .1053276           constant         4.379263         1.117436           sigma_u         1.7960301	-0.96 3.92	0.337	-0.3075731	0.1053034
constant4.3792631.117436sigma_u1.7960301sigma e2.8682063Rho0.28166527predict cad_hat, xbgenerate cad_hat2=cad_hat3=cad_hat3=cad_hat4=cad_hat4=	3.92	0.000	-	
sigma_u1.7960301sigma e2.8682063Rho0.28166527predict cad_hat, xbgenerate cad_hat2= cad_hat^2generate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	·	·	2.169129	0.309397
sigma e2.8682063Rho0.28166527predict cad_hat, xbgenerate cad_hat2= cad_hat^2generate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	<u>f variance due t</u>	to u_i)		
Rho0.28166527(fraction opredict cad_hat, xbgenerate cad_hat2= cad_hat^2generate cad_hat3= cad_hat^3generate cad_hat4= cad_hat^4	f variance due t	to u_i)		
predict cad_hat, xb generate cad_hat2= cad_hat^2 generate cad_hat3= cad_hat^3 generate cad_hat4= cad_hat^4	i variance due t	to u_1)		
generate cad_hat2= cad_hat^2 generate cad_hat3= cad_hat^3 generate cad_hat4= cad_hat^4				
Random-effects GLS regression Group variable: ident R-sq: within = 0.3182	_hat2 cad_hat3 c	- Νι Νι	umber of obs umber of groups os per group: mi	
between = 0.8286				vg = 8.0
overall = 0.6142			n	nax = 8
Random effects u_i ~ Gaussian		W	ald chi2(10)	= 1083.55
$corr(u_i, Xb) = 0$ (assumed)		Pr	ob > chi2 =	0.0000
cad Coef. Std. Err.	t	P> t		f. Interval]
fwd -0.2428732 0.149356	1 -1.63	0.104	-0.5356057	0.0498594
swp 0.1676748 0.1010203	5 1.66	0.097	-0.0303218	0.3656713
opt 0.2099263 0.193211	1 1.09	0.277	-0.1687605	0.5886132
fut -0.1040386 0.1203160	6 -0.86	0.387	-0.3398548	0.1317775
cap -15.24792 2.637403	-5.78	0.000	-20.41713	-10.0787
liq 3.132148 1.341172	2.34	0.020	0.5035001	5.760797
100n Q 161617 1 100511		0.000	-11.22534	-5.703956
loan -8.464647 1.408541	-6.01	0.000	5 750496	-0.6303686
		0.000	-5.750486	
cr -3.190427 1.306176	-2.44	0.015		
cr-3.1904271.306176size0.14068350.0788056	6         -2.44           6         1.79	0.015 0.074	-0.0137726	0.2951396
cr-3.1904271.306176size0.14068350.0788056cad_hat20.12592940.0111068	-2.44           6         1.79           8         11.34	0.015 0.074 0.000	-0.0137726 0.1041604	0.2951396 0.1476984
cr         -3.190427         1.306176           size         0.1406835         0.0788056           cad_hat2         0.1259294         0.0111068           cad_hat3         0.002809         0.0004566	6         -2.44           6         1.79           8         11.34           6         6.15	0.015 0.074 0.000 0.000	-0.0137726 0.1041604 0.0019141	0.2951396 0.1476984 0.0037039
cr         -3.190427         1.306176           size         0.1406835         0.0788056           cad_hat2         0.1259294         0.0111068           cad_hat3         0.002809         0.0004566           cad_hat4         -0.0001795         0.0000488	6         -2.44           6         1.79           8         11.34           6         6.15           3         -3.74	0.015 0.074 0.000 0.000 0.000	-0.0137726 0.1041604	0.2951396 0.1476984 0.0037039 -0.0000854
cr         -3.190427         1.306176           size         0.1406835         0.0788050           cad_hat2         0.1259294         0.0111068           cad_hat3         0.002809         0.0004560           cad_hat4         -0.0001795         0.0000488           constant         4.274159         0.8864212	6         -2.44           6         1.79           8         11.34           6         6.15           3         -3.74	0.015 0.074 0.000 0.000	-0.01377260.10416040.0019141-0.0002735	0.2951396 0.1476984 0.0037039
cr         -3.190427         1.306176           size         0.1406835         0.0788050           cad_hat2         0.1259294         0.0111068           cad_hat3         0.002809         0.0004560           cad_hat4         -0.0001795         0.0000488           constant         4.274159         0.8864212           sigma_u         1.1069151         1.1069151	6         -2.44           6         1.79           8         11.34           6         6.15           3         -3.74	0.015 0.074 0.000 0.000 0.000	-0.01377260.10416040.0019141-0.0002735	0.2951396 0.1476984 0.0037039 -0.0000854
cr         -3.190427         1.306176           size         0.1406835         0.0788056           cad_hat2         0.1259294         0.0111068           cad_hat3         0.002809         0.0004566           cad_hat4         -0.0001795         0.0000488           constant         4.274159         0.8864212           sigma_u         1.1069151         1.1069151           sigma_e         2.5642473         1.1069151	6         -2.44           6         1.79           8         11.34           6         6.15           3         -3.74	0.015 0.074 0.000 0.000 0.000 0.000	-0.01377260.10416040.0019141-0.0002735	0.2951396 0.1476984 0.0037039 -0.0000854

test cad hat2 cad hat3 cad hat4 (1) cad hat2 = 0 (2) cad hat3 = 0 (3) cad hat4 = 0 chi2(3) = 380.26Prob > chi2 = 0.0001

vtrag nim fiv	d swp opt fut c	n lig loon or g	izo ro			
	cts GLS regres		ize, ie	Nu	mber of obs	= 1096
Group variab		51011			mber of groups	
R-sq: within					s per group: m	
	= 0.3937			00		vg = 8.0
overall =						$\max = 8$
	cts u i ~ Gauss	sian		Wa	uld chi2(10)	= 585.02
corr(u i, Xb)						0.0000
nim	Coef.	Std. Err.	t	P> t	1	f. Interval]
fwd	-0.0008489	0.0014388	-0.59	0.555	-0.003669	0.0019711
swp	0.0010147	0.0009995	1.02	0.310	-0.0009443	0.0029737
opt	-0.002262	0.0015932	-1.42	0.156	-0.0053845	0.0008606
fut	0.000861	0.0011656	0.74	0.460	-0.0014235	0.0031455
cap	0.3994678	0.0111030	22.00	0.000	0.3638724	0.4350633
liq	0.037663	0.0101015	3.10	0.000	0.0138262	0.0614998
loan	-0.0153398	0.007022-	2.18	0.002	-0.0291027	-0.0015769
	0.0256189	0.007022-	2.18	0.029	0.0055615	0.0456763
cr						
size	-0.0027882	0.0011116	-2.51	0.012	-0.0049669	-0.0006094
constant	0.0196593	0.0108229	1.82	0.069	-0.0015531	0.0408718
sigma_u	0.02887826					
sigma e	0.01935357			•		
Rho	0.69006519	(fraction of va	ariance due to	u_1)		
predict nim 1	nat, xb					
	_hat2= nim_ha					
	_hat3= nim_ha					
	hat4= nim_ha		···· 1 42 ··· ···	1		
	d swp opt fut si		im_nat3 nim_		mber of obs	= 1096
	cts GLS regres	SION				1090
Group variab R-sq: within					mber of groups s per group: m	
	= 0.81102			00		vg = 8.0
overall =						max = 8
	cts u i ~ Gauss	ian		Wa	uld chi2(10)	= 1901.65
corr(u i, Xb)	_					0.0000
nim	Coef.	Std. Err.	t	P> t	1	f. Interval]
fwd	-0.0011561	0.00112	-1.03	0.302	-0.0033513	0.0010391
swp	0.0020465	0.0007701	2.66	0.008	0.0005372	0.0035559
opt	-0.0029379	0.0013877	-2.12	0.000	-0.0056577	-0.0002181
fut	0.0004374	0.0009169	0.48	0.633	-0.0013596	0.0022345
cap	0.3151183	0.0617552	5.10	0.000	0.1940805	0.4361562
liq	0.0763043	0.0106165	7.19	0.000	0.0554964	0.0971121
	-0.0012869	0.0054941	-0.23			
loan			4.19	0.815	-0.0120552	0.0094814
cr	0.0406092	0.0096862		0.000	0.0216246	0.0595937
size	-0.0028165	0.0007606	-3.70	0.000	-0.0043072	-0.0013257
nim_hat2	-17.12273	2.611085	-6.56	0.000	-22.24036	-12.0051
nim_hat3	123.5616	14.00936	8.82	0.000	96.10373	151.0194
nim_hat4	-193.3897	21.95463	-8.81	0.000	-236.42	-150.3594
constant	.0290685	0.0072025	4.04	0.000	0.0149518	0.0431851
sigma_u	0.01121589					
sigma_e	0.01486353					
Rho	0.36281704		ariance due to	u_i)		
test nim_hat2	$2 \text{ nim}_{hat3} \text{ nim}_{hat3}$	_hat4				
$(1)$ nim_hat	$\angle = 0$					
( /) nim hor	3 = 0					
(2) nim_hat (3) nim_hat	3 = 0 4 = 0					
(3) nim_hat	3 = 0 4 = 0 chi2(3) = > chi2 = 0.0					

$$chi2(3) = 812.52$$
  
Prob > chi2 = 0.0001

vtreg roa fw	d swp opt fut ca	n lia loan cr si	7e re			
	ects GLS regres		20,10	Nu	umber of obs	= 1096
Group variat		551011			mber of groups	
R-sq: within					s per group: mi	
	= 0.1862			00		vg = 8.0
	= 0.1174					$\max = 8$
	ects u i $\sim$ Gauss	sian		W	ald chi2(10)	= 78.28
corr(u i, Xb)	—				abd chi2(10) = bb > chi2 = b	
roa	Coef.	Std. Err.	t	P> t	1	f. Interval]
fwd	-0.000142	0.0009348	-0.15	0.879	-0.0019742	0.0016901
swp	-0.0005362	0.0006322	-0.85	0.396	-0.0017753	0.0007028
opt	0.0010376	0.0027259	0.38	0.703	-0.004305	0.0063802
fut	-0.0001034	0.0008276	-0.12	0.901	-0.0017255	0.0015188
cap	0.0332772	0.0098235	3.39	0.001	0.0140235	0.0525308
liq	0.0113265	0.0075841	1.49	0.135	-0.0035382	0.0261911
loan	-0.0207916	0.0041648	-4.99	0.135	-0.0289545	-0.0126287
cr	-0.0485277	0.0068659	-7.07	0.000	-0.0619846	-0.0350708
size	0.0005534	0.0005576	0.99	0.000	-0.0005394	0.0016462
constant	0.0175034	0.0056691	3.09	0.002	0.0063921	0.0286146
sigma u	0.01055855	0.0050071	5.07	0.002	0.0003721	0.0200140
	0.01033833					
sigma e Rho	0.39969454	(fraction of w	ariance due to	u i)		
Ittio	0.37707131	(indetion of v	diffunce due to	u_1)		
xtreg roa fwo	_hat4= roa_hat d swp opt fut ni		? roa hat3 roa	1 4		
	1 1	III DIZE ICU_IIU	2 10a_11at5 10t	a_nat4, re		
	ects GLS regres		2 10a_11at5 10c	– Nu	umber of obs	= 1096
Group variab	ects GLS regres		2 10a_11at3 10t	– Nu Nu	mber of groups	s = 137
Group variab R-sq: within	ects GLS regres ble: ident n = 0.2262		2 10a_nat5 100	– Nu Nu	mber of groups os per group: mi	s = 137 in = 8
Group variat R-sq: within between	ects GLS regress ble: ident n = 0.2262 n = 0.1584		2 104 <u>1</u> 1415 106	– Nu Nu	mber of groups a per group: mi a	s = 137 in = 8 xyg = 8.0
Group variat R-sq: within between overall	ects GLS regres ble: ident a = 0.2262 = 0.1584 = 0.1893	sion	2 10 <u>4 1</u> 100	Nu Nu Ob	umber of groups os per group: mi a n	s = 137 in = 8 vg = 8.0 max = 8
Group variat R-sq: within between overall Random effe	ects GLS regress ble: ident a = 0.2262 = 0.1584 = 0.1893 ects u_i ~ Gauss	sian	22 10 <b>4</b> _114(3 106	– Nư Nu Ob Wa	umber of groups os per group: mi a n ald chi2(10)	s = 137 in = 8 vg = 8.0 max = 8 = 300.44
Group variat R-sq: within between overall Random effe corr(u_i, Xb)	ects GLS regres ble: ident a = 0.2262 = 0.1584 = 0.1893 ects u_i ~ Gauss )= 0 (assum)	sian ed)	_	- Nu Nu Ob Wa Pro	$\begin{array}{l} \text{mber of groups} \\ \text{s per group: minimum} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000
Group variat R-sq: within between overall Random effe corr(u_i, Xb) roa	ects GLS regress ble: ident a = 0.2262 = 0.1584 = 0.1893 ects u_i ~ Gauss ) = 0 (assum) Coef.	sian ed) Std. Err.	t	- Nu Nu Ob Wa Pro P> t	$\begin{array}{c} \text{mber of groups} \\ \text{os per group: minimum} \\ \text{a} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline \hline 95\% \text{ Con} \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval]
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd	ects GLS regress         ble: ident $n = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assum)         Coef. $-0.0007005$	sian ed) Std. Err. 0.0008677	t -0.81	- Nu Nu Ob Wa Pro P> t  0.419	$\begin{array}{r} \text{mber of groups} \\ \text{os per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con}] \\ \hline -0.0024012 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001
Group variab R-sq: within between overall Random effe corr( <u>u</u> i, Xb) roa fwd swp	ects GLS regression         ble: ident $n = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gaussion $0 (assum)$ Coef. $-0.0007005$ $-0.0029478$	sian ed) Std. Err. 0.0008677 0.0006319	t -0.81 -4.67	− Nu Nu Ob Wa Pro P> t  0.419 0.000	umber of groups         as per group: milling         an         ald chi2(10) $bb > chi2 =$ [95% Con         -0.0024012         -0.0041862	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt	ects GLS regress         ble: ident $n = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assum)         Coef. $-0.0007005$ $-0.0029478$ $0.0059935$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572	t -0.81 -4.67 2.34	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: minimum} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut	ects GLS regress         ble: ident $h = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assum)         Coef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666	t -0.81 -4.67 2.34 -0.73	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ald chi2(10)} \\ \text{ob} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap	ects GLS regression         ble: ident $n = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gaussion $= 0$ (assum)         Coef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534	t -0.81 -4.67 2.34 -0.73 11.86	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000	$\begin{array}{c} \text{mber of groups} \\ \text{sper group: min} \\ \text{a} \\ \text{mald chi2(10)} \\ \text{ob} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \\ \hline 0.1975127 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assum)Coef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228	t -0.81 -4.67 2.34 -0.73 11.86 7.67	Nu           Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.462           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{mald chi2(10)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \\ \hline 0.1975127 \\ \hline 0.0526363 \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan	ects GLS regressble: ident $a = 0.2262$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $= 0$ (assum)Coef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868	t -0.81 -4.67 2.34 -0.73 11.86 7.67 -10.76	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000	$\begin{array}{c} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{ald chi2(10)} \\ \text{bb > chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \\ \hline 0.1975127 \\ \hline 0.0526363 \\ -0.1295566 \\ \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr	ects GLS regressble: ident $h = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assum)Coef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504	t -0.81 -4.67 2.34 -0.73 11.86 7.67 -10.76 -14.08	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{bs per group: min} \\ \text{a} \\ \text{ald chi2(10)} \\ \text{bb} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \\ \hline 0.1975127 \\ \hline 0.0526363 \\ -0.1295566 \\ -0.3408072 \\ \hline \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size	ects GLS regressble: ident $a = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954	t -0.81 -4.67 2.34 -0.73 11.86 7.67 -10.76 -14.08 3.93	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.462           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{c} \text{mber of groups} \\ \text{mber of groups} \\ \text{mald chi2(10)} \\ \text{ob} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0024012 \\ -0.0041862 \\ \hline 0.0009815 \\ -0.0020658 \\ \hline 0.1975127 \\ \hline 0.0526363 \\ -0.1295566 \\ -0.3408072 \\ \hline 0.0011701 \\ \hline \end{array}$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $= 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487	$\begin{array}{r} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ \end{array}$	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{main of groups} \\$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 = 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3	$\begin{array}{l} \text{ects GLS regress}\\ \text{old constraints}\\ \text{old constraints}$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\end{array}$	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{mass per group: min} \\ \text{mass per group (100)} \\ \text$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4	$\begin{array}{l} \text{ects GLS regress}\\ \text{outs GLS regress}\\ \text{outs ident}\\ &= 0.2262\\ &= 0.1584\\ &= 0.1893\\ \text{outs u_i} \sim \text{Gauss}\\ &= 0 \text{ (assum)}\\ \hline & \text{Coef.}\\ &= 0.0007005\\ &= 0.0029478\\ \hline & 0.0059935\\ &= 0.0005634\\ \hline & 0.2366206\\ \hline & 0.0707126\\ &= 0.1095909\\ &= 0.2991572\\ \hline & 0.002337\\ &= -154.2581\\ &= -1603.923\\ \hline & 50866.17\\ \hline \end{array}$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769 10538.64	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\\ 4.83\end{array}$	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{b} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64 71521.53
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4 constant	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $) = 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$ $-1603.923$ $50866.17$ $0.0679629$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\end{array}$	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{a} \\ \text{mass per group: min} \\ \text{mass per group: min} \\ \text{mass per group (100)} \\ \text$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4 constant sigma_u	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $= 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$ $-1603.923$ $50866.17$ $0.0679629$ $0.01072262$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769 10538.64	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\\ 4.83\end{array}$	Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{b} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64 71521.53
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4 constant sigma_e	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $= 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$ $-1603.923$ $50866.17$ $0.0679629$ $0.01072262$ $0.01166512$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769 10538.64 .0077902	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\\ 4.83\\ 8.72 \end{array}$	Nu           Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{b} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64 71521.53
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4 constant sigma_u sigma_e Rho	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $= 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$ $-1603.923$ $50866.17$ $0.0679629$ $0.01072262$ $0.01166512$ $0.45797573$	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769 10538.64 .0077902 (fraction of v	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\\ 4.83\end{array}$	Nu           Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{b} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64 71521.53
Group variab R-sq: within between overall Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size roa_hat2 roa_hat3 roa_hat4 constant sigma_u sigma_e Rho	ects GLS regressble: ident $n = 0.2262$ $= 0.1584$ $= 0.1584$ $= 0.1584$ $= 0.1893$ ects u_i ~ Gauss $i = 0$ (assumCoef. $-0.0007005$ $-0.0029478$ $0.0059935$ $-0.0005634$ $0.2366206$ $0.0707126$ $-0.1095909$ $-0.2991572$ $0.002337$ $-154.2581$ $-1603.923$ $50866.17$ $0.0679629$ $0.01072262$ $0.01166512$ $0.45797573$ roa hat3 roa 1	sian ed) Std. Err. 0.0008677 0.0006319 0.0025572 0.0007666 0.0199534 0.0092228 0.0101868 0.0212504 0.0005954 24.09487 221.5769 10538.64 .0077902 (fraction of v	$\begin{array}{c} t\\ -0.81\\ -4.67\\ 2.34\\ -0.73\\ 11.86\\ 7.67\\ -10.76\\ -14.08\\ 3.93\\ -6.40\\ -7.24\\ 4.83\\ 8.72 \end{array}$	Nu           Nu           Nu           Nu           Ob           Wa           Pro           0.419           0.000           0.019           0.462           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{a} \\ \text{b} \\ \text{a} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{b} \\ \text{c} \\ \text{b} \\ \text{c} \\ \text{c} \\ \text{b} \\ \text{c} \\ c$	s = 137 in = 8 vg = 8.0 nax = 8 = 300.44 0.0000 f. Interval] 0.0010001 -0.0017094 0.0110056 0.0009391 0.2757284 0.0887889 -0.0896252 -0.2575073 0.003504 -107.033 -1169.64 71521.53

(2) roa_hat3 = 0 (3) roa_hat4 = 0 chi2(3) = 211.24Prob > chi2 = 0.0001

	d swn ont fut ce					
		ap liq loan cr s	ize, re			
	ects GLS regres	sion			mber of obs	= 1096
Group varial					mber of groups	
R-sq: withir				Ob	s per group: m	
	1 = 0.0998					vg = 8.0
	= 0.0809					$\max = 8$
	ects u_i ~ Gauss				ld chi $2(10)$	= 92.60
_corr(u_i, Xb	í i literatura de la companya de la				b > chi2 =	0.0000
roe	Coef.	Std. Err.	t	P >  t	[95% Con	
fwd	0.0102284	0.0114202	0.90	0.370	-0.0121549	0.0326116
swp	-0.0043304	0.0075499	-0.57	0.566	-0.0191279	0.0104671
opt	-0.0238614	0.0350653	-0.68	0.496	-0.0925882	0.0448653
fut	0.0076484	0.0102528	0.75	0.456	-0.0124467	0.0277434
cap	0.2176541	0.1197066	1.82	0.069	-0.0169665	0.4522748
liq	0.0657259	0.0946096	0.69	0.487	-0.1197055	0.2511572
loan	-0.2595629	0.0484583	-5.36	0.000	-0.3545393	-0.1645864
cr	-0.7982138	0.0937783	-8.51	0.000	-0.9820159	-0.6144118
size	0.0082148	0.0056561	1.45	0.146	-0.0028711	0.0193006
constant	0.1960896	0.0620715	3.16	0.002	0.0744316	0.3177476
sigma_u	0.08007405					
sigma e	0.1864659					
Rho	0.15569785	(fraction of v	variance due to	u_i)		
generate roe xtreg roe fwo Random-effo Group varial R-sq: withir		^4 im size roe_ha	t2 roe_hat3 roe	Nu	mber of obs mber of groups	= 1096 s = 137
netween				Ob	s per group: m	in = 8
	n = 0.0.3537			Ob	a	in = 8 ivg = 8.0
overall	$a = 0.\ 0.3537$ = 0.3175	sian			a	in = 8
overall Random effe	$u = 0. \ 0.3537$ = 0.3175 ects u_i ~ Gauss			Wa	a	in = 8 avg = 8.0 max = 8 = 497.77
overall	$u = 0. \ 0.3537$ = 0.3175 ects u_i ~ Gauss		t	Wa	a n ld chi2(10) b > chi2 =	in = 8 avg = 8.0 max = 8 = 497.77
overall Random effe corr(u_i, Xb roe	$u = 0. \ 0.3537$ = 0.3175 ects u_i ~ Gauss ) = 0 (assum	ed)	t 4.54	Wa Pro P> t	a ld chi2(10) b > chi2 = [95% Con	in = 8 ivg = 8.0 nax = 8 = 497.77 = 0.0000 f. Interval]
overall Random effe corr(u_i, Xb	a = 0. 0.3537 = 0.3175 ects u_i ~ Gauss ) = 0 (assum) Coef.	ed) Std. Err.		Wa Pro	a ld chi2(10) b > chi2 = [95% Con	in = 8 ivg = 8.0 inax = 8 inax = 497.77 inax = 0.0000
overall Random effe corr(u_i, Xb roe fwd swp	$ = 0. \ 0.3537 \\ = 0.3175 \\ ects \ u_i \sim Gauss \\ ) = 0 \ (assum) \\ \hline Coef. \\ 0.0452945 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ed) Std. Err. 0.0099845	4.54	Wa Pro P> t  0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252	in = 8 ivg = 8.0 inax = 8 = 497.77 = 0.0000 f. Interval] 0.0648639
overall Random effe corr(u_i, Xb roe fwd	$ = 0. \ 0.3537 $ $ = 0.3175 $ $ = 0.3175 $ $ = 0 \ (assum) $ $ = 0 \ (assum) $ $ Coef. $ $ 0.0452945 $ $ = 0.0188859 $	ed) Std. Err. 0.0099845 0.0064824	4.54 -2.91	Wa Pro P> t  0.000 0.004	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807
overall Random effe corr(u_i, Xb roe fwd swp opt fut		ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105	4.54 -2.91 -3.53 4.18	Wa Pro P> t  0.000 0.004 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265	in = 8 ivg = 8.0 nax = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap	$ = 0. \ 0.3537 $ $ = 0.3175 $ $ = 0.3175 $ $ = 0 \ (assum ) $ $ = 0 $	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394	4.54 -2.91 -3.53 4.18 8.35	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105	in = 8 ivg = 8.0 nax = 8 = 497.77 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq	$ = 0. \ 0.3537 $ $ = 0.3175 $ $ = 0.3175 $ $ = 0 \ (assum - Coef $	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935	4.54 -2.91 -3.53 4.18 8.35 3.43	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan	$ = 0. \ 0.3537 $ $ = 0.3175 $ $ = 0.3175 $ $ = 0 \ (assum ) = 0 \ (assum ) $ $ = 0 \ (a$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.001 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632 -0.9759981
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr		ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632 -0.9759981 -2.903359
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size		ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n n n n n n n n n n n n n	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2	$\begin{array}{l} = 0.\ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0 (assum) \\ \hline & Coef. \\ \hline & 0.0452945 \\ \hline & -0.0188859 \\ \hline & -0.1077229 \\ \hline & 0.0380721 \\ \hline & 1.013838 \\ \hline & 0.2807736 \\ \hline & -1.132546 \\ \hline & -3.27506 \\ \hline & 0.0345325 \\ \hline & -20.19476 \\ \end{array}$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129	in = 8 ivg = 8.0 max = 8 = 497.77 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632 -0.9759981 -2.903359 0.044519 -17.41823
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3	$\begin{array}{l} = 0.\ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.038072 \\ \hline 0.0452945 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.0188859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.018859 \\ = -0.01$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26 4.83	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632 -0.9759981 -2.903359 0.044519 -17.41823 29.19303
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3 roe_hat4	$\begin{array}{l} \mathbf{a} = 0. \ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0 \ (assum) \\ \hline coef. \\ 0.0452945 \\ \hline -0.0188859 \\ \hline -0.1077229 \\ 0.0380721 \\ \hline 1.013838 \\ 0.2807736 \\ \hline -1.132546 \\ \hline -3.27506 \\ \hline 0.0345325 \\ \hline -20.19476 \\ \hline 20.76731 \\ \hline 37.98826 \\ \end{array}$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917 4.614513	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26 4.83 8.23	Wa Pro 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159 28.94398	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3 roe_hat4 constant	$\begin{array}{l} \mathbf{a} = 0. \ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0 \ (assum) \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26 4.83	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159	in = 8 ivg = 8.0 max = 8 = 497.77 = 0.0000 f. Interval] 0.0648639 -0.0061807 -0.0479923 0.0559176 1.251766 0.4413632 -0.9759981 -2.903359 0.044519 -17.41823 29.19303
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3 roe_hat4 constant sigma_u	$\begin{array}{l} = 0.\ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ \hline 0.0452945 \\ = -0.0188859 \\ -0.1077229 \\ \hline 0.0380721 \\ 1.013838 \\ \hline 0.2807736 \\ = -1.132546 \\ -3.27506 \\ \hline 0.0345325 \\ -20.19476 \\ \hline 20.76731 \\ \hline 37.98826 \\ \hline 0.7229584 \\ \hline 0.06189224 \\ \end{array}$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917 4.614513	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26 4.83 8.23	Wa Pro 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159 28.94398	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3 roe_hat4 constant sigma_u sigma_e	$\begin{array}{l} = 0.\ 0.3537 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ = 0.3175 \\ \hline 0.0452945 \\ = -0.0188859 \\ -0.1077229 \\ \hline 0.0380721 \\ 1.013838 \\ \hline 0.2807736 \\ = -1.132546 \\ -3.27506 \\ \hline 0.0345325 \\ = -20.19476 \\ \hline 20.76731 \\ \hline 37.98826 \\ \hline 0.7229584 \\ \hline 0.06189224 \\ \hline 0.16099648 \\ \end{array}$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917 4.614513 .0632968	4.54         -2.91         -3.53         4.18         8.35         3.43         -14.18         -17.27         6.78         -14.26         4.83         8.23         11.42	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159 28.94398	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
overall Random effe corr(u_i, Xb roe fwd swp opt fut cap liq loan cr size roe_hat2 roe_hat3 roe_hat4 constant sigma_u sigma_e Rho	= 0. 0.3537 $ = 0.3175 $ $ = 0.3175 $ $ = 0 (assum$	ed) Std. Err. 0.0099845 0.0064824 0.0304754 0.009105 0.121394 0.081935 0.0798731 0.189647 0.0050952 1.416622 4.298917 4.614513 .0632968 (fraction of v	4.54 -2.91 -3.53 4.18 8.35 3.43 -14.18 -17.27 6.78 -14.26 4.83 8.23	Wa Pro P> t  0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	a n ld chi2(10) b > chi2 = [95% Con 0.0257252 -0.0315911 -0.1674535 0.0202265 0.7759105 0.1201839 -1.289095 -3.646762 0.0245461 -22.97129 12.34159 28.94398	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

(2) roe_hat3 = 0 (3) roe_hat4 = 0 chi2(3) = 370.39Prob > chi2 = 0.0001

1.0	1	1. 1 .				
		ap liq loan cr size	e, re	N		- 511
	ects GLS regres	ssion			mber of obs	= 544
Group variab					mber of groups	
R-sq: within				Obs	s per group: mi	
	= 0.1622 = 0.1802					vg = 8.0
		•		<b>W</b> 7-		hax = 8
	$cts u_i \sim Gauss$				$\frac{1}{10} \frac{1}{10} = \frac{1}{10}$	= 144.57
corr(u_i, Xb)	``````````````````````````````````````		4		b > chi2 =	0.000
npl	Coef.	Std. Err.	t	P >  t	[95% Cont	
fwd	0.0036337	0.0026824	1.35	0.176	-0.0016237	0.008891
swp	-0.0013395	0.0017237	-0.78	0.437	-0.0047178	0.0020388
opt	0.0043778	0.0097845	0.45	0.655	-0.0147995	0.0235551
fut	-0.000682	0.002238 -	0.30	0.761	-0.0050684	0.0037043
cap	-0.0835898	0.0540044	-1.55	0.122	-0.1894365	0.0222569
liq	-0.0038479	0.022946	-0.17	0.867	-0.0488213	0.0411254
loan	-0.0540318	0.0177319	-3.05	0.002	-0.0887856	-0.019278
cr	0.1490451	0.0184195	8.09	0.000	0.1129437	0.1851466
size	-0.0105992	0.0023787	-4.46	0.000	-0.0152613	-0.0059371
constant	0.1785238	0.0245252	7.28	0.000	0.1304553	0.2265924
_sigma_u	0.03757043					
sigma_e	0.02890061					
Rho	0.62824829	(fraction of var	riance due to	u_i)		
predict npl h	nat. xb					
	hat2= npl hat	^2				
	hat3= npl hat					
	hat4= npl hat					
xtreg npl fwo	swp opt fut ni	m size npl_hat2	npl hat3 npl	l hat4, re		
Random-effe	ects GLS regres	ssion			mber of obs	= 544
Random-effe Group variab		ssion		– Nu	mber of obs mber of groups	• • •
	ole: ident	ssion		Nu: Nu:		s = 68
Group variab R-sq: within between	ble: ident a = 0.4933 = 0.4277	ssion		Nu: Nu:	mber of groups s per group: mi	s = 68
Group variat R-sq: within between overall	ble: ident a = 0.4933 = 0.4277 = 0.4467			Nu: Nu:	mber of groups s per group: mi a	s = 68 n = 8
Group variat R-sq: within between overall	ble: ident = 0.4933 = 0.4277 = 0.4467 rots u_i ~ Gauss	sian		– Nu: Nu: Ob: Wa	mber of groups s per group: mi a n ld chi2(10)	s = 68 s = 68 s = 8 s = 8 s = 8.0
Group variat R-sq: within between overall	ble: ident a = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss a = 0 (assum	sian ed)		– Nu: Nu: Ob: Wa	mber of groups s per group: mines a ld chi2(10) b > chi2 = b	s = 68 n = 8 vg = 8.0 nax = 8 = 499.10 0.0000
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl	ble: ident = 0.4933 = 0.4277 = 0.4467 rots u_i ~ Gauss	sian	t	– Nu: Nu: Ob: Wa	mber of groups s per group: mi a ld chi2(10) b > chi2 = [95% Con	s = 68 n = 8 vg = 8.0 nax = 8 = 499.10
Group variat R-sq: within between overall Random effe corr(u_i, Xb)	ble: ident a = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss a = 0 (assum	sian ed)		Nu: Nu: Ob: Wa Pro	mber of groups s per group: minute a ld chi2(10) b > chi2 =	s = 68 n = 8 vg = 8.0 nax = 8 = 499.10 0.0000
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef.	sian ed) Std. Err.	t	Nu: Nu: Obs Wa Pro P> t	mber of groups s per group: mi a ld chi2(10) b > chi2 = [95% Con	s = 68 n = 8 vg = 8.0 nax = 8 = 499.10 0.0000 f. Interval]
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd	ble: ident = 0.4933 = 0.4277 = 0.4467 = 0 (assum) = 0 (assum) Coef. 0.0228172	sian ed) Std. Err. 0.0043818	t 5.21	Nu: Nu: Obs Wa Pro P> t  0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291	
Group variab R-sq: within between overall Random effe corr( <u>u</u> i, Xb) <u>npl</u> fwd swp	ble: ident a = 0.4933 = 0.4277 = 0.4467 icts u_i ~ Gauss a = 0 (assum Coef. 0.0228172 -0.0060363	sian ed) Std. Err. 0.0043818 0.0020762	t 5.21 -2.91	Nu: Nu: Ob: Wa Pro P> t  0.000 0.004		
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159	t 5.21 -2.91 2.79	Nu: Nu: Obs Wa Pro P> t  0.000 0.004 0.005	mber of groups s per group: mi a ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901	
Group variab R-sq: within between overall ² Random effe corr(u_i, Xb) npl fwd swp opt fut	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986	t 5.21 -2.91 2.79 -1.72	Nu: Nu: Obs Wa Pro P> t  0.000 0.004 0.005 0.085	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ld chi2(10)} \\ \text{b > chi2} = \\ \hline [95\% \text{ Con} \\ 0.0142291 \\ -0.0101055 \\ \hline 0.0076901 \\ -0.0073591 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group variab R-sq: within between overall ² Random effe corr(u_i, Xb) npl fwd swp opt fut cap	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57	Nu: Nu: Ob: Wa Pro P> t  0.000 0.004 0.005 0.085 0.000 0.117		$\begin{array}{rcrcrc} = & 68 \\ n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 499.10 \\ 0.0000 \\ f. Interval] \\ 0.0314053 \\ -0.0019671 \\ 0.0438157 \\ 0.0004755 \\ -0.2941441 \\ 0.0074389 \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq	ble: ident = 0.4933 = 0.4277 = 0.4467 icts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 -	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40	Nu: Nu: Obs Wa Pro P> t  0.000 0.004 0.005 0.005 0.085 0.000 0.117 0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964	$\begin{array}{rcrcrc} &=& 68\\ n=& 8\\ vg=& 8.0\\ nax=& 8\\ =& 499.10\\ 0.0000\\ f. \ Interval]\\ 0.0314053\\ -0.0019671\\ 0.0438157\\ 0.0004755\\ -0.2941441\\ 0.0074389\\ -0.2026046 \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40 8.54	Nu: Nu: Obs Wa Pro P> t  0.000 0.005 0.005 0.085 0.000 0.117 0.000 0.000	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ld chi2(10)} \\ \text{b > chi2} = \\ \hline [95\% \text{ Con} \\ 0.0142291 \\ -0.0101055 \\ \hline 0.0076901 \\ -0.0073591 \\ -0.6899687 \\ -0.0670763 \\ -0.4334964 \\ \hline 1.061356 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group variab R-sq: within between overall ² Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40 8.54 -5.55	Nu:           Nu:           Ob:           Wa           Pro           0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40 8.54 -5.55 -5.80	Nu:           Nu:           Ob:           Wa           Pro           0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000	$\begin{array}{r} \text{mber of groups} \\ \text{s per group: min} \\ \text{a} \\ \text{n} \\ \text{ld chi2(10)} \\ \text{b} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ 0.0142291 \\ -0.0101055 \\ 0.0076901 \\ -0.0073591 \\ -0.6899687 \\ -0.0670763 \\ -0.4334964 \\ 1.061356 \\0861215 \\ -179.0382 \end{array}$	$\begin{array}{rcrcrc} &=& 68\\ n=& 8\\ vg=& 8.0\\ nax=& 8\\ =& 499.10\\ 0.0000\\ f. \ Interval]\\ 0.0314053\\ -0.0019671\\ 0.0438157\\ 0.0004755\\ -0.2941441\\ 0.0074389\\ -0.2026046\\ 1.693724\\ -0.0411883\\ -88.6199\\ \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat3	ble: ident = 0.4933 = 0.4277 = 0.4467 = 0.4467 = 0 (assum) Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40 8.54 -5.55 -5.80 6.42	Nu:           Nu:           Nu:           Obs           Wa           Pro           0.000           0.004           0.005           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat4	ble: ident = $0.4933$ = $0.4277$ = $0.4467$ cts u_i ~ Gauss = $0$ (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\end{array}$	Nu:           Nu:           Nu:           Obs           Wa           Pro           0.000           0.004           0.005           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$
Group variab R-sq: within between overall ² Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat4 constant	ble: ident = $0.4933$ = $0.4277$ = $0.4467$ cts u_i ~ Gauss = $0$ (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669	t 5.21 -2.91 2.79 -1.72 -4.87 -1.57 5.40 8.54 -5.55 -5.80 6.42	Nu:           Nu:           Nu:           Obs           Wa           Pro           0.000           0.004           0.005           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat3 npl_hat4 constant sigma_u	ble: ident = 0.4933 = 0.4277 = 0.4467 cts u_i ~ Gauss = 0 (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106 0.03151339	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\end{array}$	Nu:           Nu:           Nu:           Obs           Wa           Pro           0.000           0.004           0.005           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) 	ble: ident = 0.4933 = 0.4277 = 0.4467 = 0.4467 = 0 (assum) Coef. = 0 (assum) -0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106 0.02336212	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279 0.1765348	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\\ 5.66\end{array}$	Nu:           Nu:           Nu:           Ob:           Wa           Pro           P> t            0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat3 npl_hat4 constant sigma_e Rho	ble: ident = 0.4933 = 0.4277 = 0.4467 = 0.4467 = 0 (assum) Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106 0.02336212 0.64533432	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279 0.1765348 (fraction of val	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\\ 5.66\end{array}$	Nu:           Nu:           Nu:           Ob:           Wa           Pro           P> t            0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat3 npl_hat4 constant sigma_u sigma_e Rho test npl_hat2	ble: ident = 0.4933 = 0.4277 = 0.4467 = 0.4467 = 0 (assum) Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106 0.03151339 0.02336212 0.64533432 npl hat3 npl l	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279 0.1765348 (fraction of val	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\\ 5.66\end{array}$	Nu:           Nu:           Nu:           Ob:           Wa           Pro           P> t            0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$
Group variab R-sq: within between overall Random effe corr(u_i, Xb) npl fwd swp opt fut cap Liq loan cr size npl_hat2 npl_hat3 npl_hat4 constant sigma_e Rho	ble: ident = $0.4933$ = $0.4277$ = $0.4467$ cts u_i ~ Gauss = $0$ (assum Coef. 0.0228172 -0.0060363 0.0257529 -0.0034418 -0.4920564 -0.0298187 -0.3180505 1.37754 -0.0636549 -133.8291 1172.283 -2562.557 0.9989106 0.03151339 0.02336212 0.64533432 npl_hat3 npl_l = 0	sian ed) Std. Err. 0.0043818 0.0020762 0.0092159 0.0019986 0.1009775 0.0190093 0.058902 - 0.1613212 0.0114627 23.06633 182.669 372.9279 0.1765348 (fraction of val	$\begin{array}{c} t\\ 5.21\\ -2.91\\ 2.79\\ -1.72\\ -4.87\\ -1.57\\ 5.40\\ 8.54\\ -5.55\\ -5.80\\ 6.42\\ -6.87\\ 5.66\end{array}$	Nu:           Nu:           Nu:           Ob:           Wa           Pro           P> t            0.000           0.004           0.005           0.085           0.000           0.117           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000           0.000	mber of groups s per group: mi a n ld chi2(10) b > chi2 = [95% Con 0.0142291 -0.0101055 0.0076901 -0.0073591 -0.6899687 -0.0670763 -0.4334964 1.061356 0861215 -179.0382 814.2583 -3293.482	$\begin{array}{rcrcrc} = & 68\\ n = & 8\\ vg = & 8.0\\ nax = & 8\\ = & 499.10\\ \hline 0.0000\\ f. \ Interval]\\ \hline 0.0314053\\ \hline 0.0019671\\ \hline 0.0438157\\ \hline 0.0004755\\ \hline -0.2941441\\ \hline 0.0074389\\ \hline -0.2026046\\ \hline 1.693724\\ \hline -0.0411883\\ \hline -88.6199\\ \hline 1530.308\\ \hline -1831.631\\ \end{array}$

(2) npl_hat = 0 (3) npl_hat = 0 chi2(3) = 279.15 Prob > chi2 = 0.0000

Alleg COV IW		ap liq loan cr s	170 ro				
	ects GLS regres		120, 10	Number of obs $=$ 544			
Group variab		551011			mber of groups	• • •	
R-sq: within					s per group: mi		
	= 0.1005			000		vg = 8.0	
	= 0.0847					ax = 8	
	ects u i ~ Gauss	sian		Wa	ld chi2(10)	= 38.90	
corr(u i, Xb)					b > chi2 =		
cov	Coef.	Std. Err.	t	P >  t	[95% Cont		
fwd	-0.0651431	0.0645069	-1.01	0.313	-0.1915744	0.0612882	
swp	0.0883657	0.0412329	2.14	0.032	0.0075507	0.1691808	
opt	-0.2474007	0.2373247	-1.04	0.297	-0.7125485	0.2177472	
fut	0.0047522	0.054152	0.09	0.930	-0.1013838	0.1108882	
cap	1.221907	1.271605	0.96	0.337	-1.270394	3.714207	
liq	2.635851	0.557683	4.73	0.000	1.542812	3.72889	
loan	0.0203188	0.4137335	0.05	0.961	-0.790584	0.8312216	
cr	0.7375429	0.4516063	1.63	0.102	-0.1475892	1.622675	
size	0.1539228	0.0529317	2.91	0.004	0.0501787	0.2576669	
constant	-0.6220659	0.5590083	-1.11	0.266	-1.717702	0.4735703	
sigma u	0.75210661						
sigma e	0.72321497						
Rho	0.51957577	(fraction of v	ariance due to	u i)			
generate cov generate cov xtreg cov fw	_hat2= cov_hat _hat3= cov_hat _hat4= cov_hat d swp opt fut n	t^3 t^4 im size cov_ha	ut2 cov_hat3 co				
	ects GLS regres	sion			mber of obs	= 544	
	ple: ident						
Group variable: identNumber of groups =R-sq: within = 0.0859Obs per group: min =							
1	n = 0.0859				s per group: mi	n = 8	
between	n = 0.0859 = 0.1111				s per group: mi a	n = 8 vg = 8.0	
between overall	n = 0.0859 = 0.1111 = 0.1004			Obs	s per group: mi a n	n = 8 vg = 8.0 nax = 8	
between overall Random effe	n = 0.0859 = 0.1111 = 0.1004 ects u_i ~ Gauss			Obs	s per group: mi a n ld chi2(10)	n = 8 vg = 8.0 nax = 8 = 52.07	
between overall Random effe corr(u_i, Xb)	h = 0.0859 = 0.1111 = 0.1004 ects u_i ~ Gauss )= 0 (assum	ed)	Γ	Obs Wa Pro	s per group: mi a ld chi2(10) b > chi2 =	n = 8 vg = 8.0 nax = 8 = 52.07 0.0000	
between overall = Random effe corr(u_i, Xb) cov		ed) Std. Err.	t	Obs Wa Pro P> t	s per group: mi a n ld chi2(10) b > chi2 = [95% Con	n = 8 vg = 8.0 nax = 8 = 52.07 0.0000 f. Interval]	
between overall Random effe corr( <u>u</u> i, Xb) cov fwd		ed) Std. Err. 0.355199	1.90	Ob: Wa Pro P> t  0.057	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185	n = 8 vg = 8.0 nax = 8 = 52.07 0.0000 f. Interval] 1.371036	
between overall Random effe corr(u_i, Xb) cov fwd swp		ed) Std. Err. 0.355199 0.4562017	1.90 -1.89	Ob: Wa Pro P> t  0.057 0.058	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476	n = 8vg = 8.0nax = 8= 52.070.0000f. Interval]1.3710360.0298018	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt		ed) Std. Err. 0.355199 0.4562017 1.295052	1.90 -1.89 1.92	Obs Wa Pro P> t  0.057 0.058 0.055	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202	n = 8vg = 8.0nax = 8= 52.070.0000f. Interval]1.3710360.02980185.02659	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut		ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666	1.90 -1.89 1.92 -1.04	Obs Wa Pro P> t  0.057 0.058 0.055 0.297	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121	n = 8vg = 8.0nax = 8= 52.070.0000f. Interval]1.3710360.02980185.026590.0544005	
between overall = Random effe corr( <u>u</u> i, Xb) cov fwd swp opt fut cap		ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601	1.90 -1.89 1.92 -1.04 -1.89	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412	n = 8vg = 8.0nax = 8= 52.070.0000f. Interval]1.3710360.02980185.026590.05440050.4814397	
between overall Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq		ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375	1.90 -1.89 1.92 -1.04 -1.89 -2.06	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462	n = 8vg = 8.0nax = 8= 52.070.0000f. Interval]1.3710360.02980185.026590.05440050.4814397-1.425333	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan		ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736	1.90 -1.89 1.92 -1.04 -1.89 -2.06 -0.89	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121	n = 8 $vg = 8.0$ $nax = 8$ $= 52.07$ $0.0000$ f. Interval] 1.371036 0.0298018 5.02659 0.0544005 0.4814397 -1.425333 0.4541217	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr	$\begin{array}{l} n = 0.0859 \\ = 0.1111 \\ = 0.1004 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline 0 = 0 \text{ (assum} \\ \hline 0.6748588 \\ -0.8643372 \\ \hline 2.488335 \\ -0.0619558 \\ -12.56134 \\ -29.22498 \\ -0.3744994 \\ -6.579543 \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434	1.90 -1.89 1.92 -1.04 -1.89 -2.06 -0.89 -1.85	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size		ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464	1.90 -1.89 1.92 -1.04 -1.89 -2.06 -0.89 -1.85 -1.95	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ 0.0000 \\ f. Interval] \\ \hline 1.371036 \\ 0.0298018 \\ \hline 5.02659 \\ 0.0544005 \\ \hline 0.4814397 \\ -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2	$\begin{array}{l} = 0.0859 \\ = 0.1111 \\ = 0.1004 \\ \text{ects u}_i \sim \text{Gauss} \\ \hline & 0 \text{ (assum} \\ \hline & \text{Coef.} \\ \hline & 0.6748588 \\ \hline & 0.8643372 \\ \hline & 2.488335 \\ \hline & -0.0619558 \\ \hline & -12.56134 \\ \hline & -29.22498 \\ \hline & -0.3744994 \\ \hline & -6.579543 \\ \hline & -1.606873 \\ \hline & 12.40705 \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607	1.90 -1.89 1.92 -1.04 -1.89 -2.06 -0.89 -1.85 -1.95 2.22	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051 0.027	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3	$\begin{array}{l} = 0.0859 \\ = 0.1111 \\ = 0.1004 \\ \text{ects u}_i \sim \text{Gauss} \\ ) = 0 \text{ (assum} \\ \hline \text{Coef.} \\ 0.6748588 \\ -0.8643372 \\ 2.488335 \\ -0.0619558 \\ -12.56134 \\ -29.22498 \\ -0.3744994 \\ -6.579543 \\ -1.606873 \\ 12.40705 \\ -5.300377 \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158	1.90         -1.89         1.92         -1.04         -1.89         -2.06         -0.89         -1.85         -1.95         2.22         -2.27	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051 0.027 0.023	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3 cov_hat4	$\begin{array}{l} = 0.0859\\ = 0.1111\\ = 0.1004\\ \text{ects u_i} \sim \text{Gauss}\\ ) = 0 \text{ (assum}\\ \hline \text{Coef.}\\ 0.6748588\\ -0.8643372\\ 2.488335\\ -0.0619558\\ -12.56134\\ -29.22498\\ -0.3744994\\ -6.579543\\ -1.606873\\ 12.40705\\ -5.300377\\ 0.7202154\\ \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158 0.3087139	$ \begin{array}{r} 1.90 \\ -1.89 \\ 1.92 \\ -1.04 \\ -1.89 \\ -2.06 \\ -0.89 \\ -1.85 \\ -1.95 \\ 2.22 \\ -2.27 \\ 2.33 \\ \end{array} $	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.064 0.027 0.023 0.020	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323 0.1151474	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \hline 1.325283 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3 cov_hat4 constant	$\begin{array}{l} n = 0.0859 \\ = 0.1111 \\ = 0.1004 \\ \text{ects u_i} \sim \text{Gauss} \\ \hline 0 = 0 \text{ (assum} \\ \hline 0.6748588 \\ -0.8643372 \\ 2.488335 \\ -0.0619558 \\ -12.56134 \\ -29.22498 \\ -0.3744994 \\ -6.579543 \\ -1.606873 \\ 12.40705 \\ -5.300377 \\ \hline 0.7202154 \\ 10.16948 \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158	1.90         -1.89         1.92         -1.04         -1.89         -2.06         -0.89         -1.85         -1.95         2.22         -2.27	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051 0.027 0.023	s per group: mi a n ld chi2(10) b > chi2 = [95% Con -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3 cov_hat4 constant sigma_u	$\begin{array}{l} = 0.0859\\ = 0.1111\\ = 0.1004\\ \text{ects u_i} \sim \text{Gauss}\\ ) = 0 (\text{assum}\\ \hline \text{Coef.}\\ 0.6748588\\ -0.8643372\\ \hline 2.488335\\ -0.0619558\\ -12.56134\\ -29.22498\\ -0.3744994\\ -6.579543\\ -1.606873\\ \hline 12.40705\\ -5.300377\\ \hline 0.7202154\\ \hline 10.16948\\ \hline 0.69816611\\ \hline \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158 0.3087139	$ \begin{array}{r} 1.90 \\ -1.89 \\ 1.92 \\ -1.04 \\ -1.89 \\ -2.06 \\ -0.89 \\ -1.85 \\ -1.95 \\ 2.22 \\ -2.27 \\ 2.33 \\ \end{array} $	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.064 0.027 0.023 0.020	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323 0.1151474	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \hline 1.325283 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3 cov_hat4 constant sigma_u sigma_e	$\begin{array}{l} = 0.0859\\ = 0.1111\\ = 0.1004\\ \text{ects u}_i \sim \text{Gauss}\\ ) = 0 \text{ (assum}\\ \hline \text{Coef.}\\ 0.6748588\\ -0.8643372\\ 2.488335\\ -0.0619558\\ -12.56134\\ -29.22498\\ -0.3744994\\ -6.579543\\ -1.606873\\ 12.40705\\ -5.300377\\ 0.7202154\\ 10.16948\\ 0.69816611\\ 0.71356489 \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158 0.3087139 5.07361	$ \begin{array}{r} 1.90\\ -1.89\\ 1.92\\ -1.04\\ -1.89\\ -2.06\\ -0.89\\ -1.85\\ -1.95\\ 2.22\\ -2.27\\ 2.33\\ 2.00\\ \end{array} $	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051 0.027 0.023 0.020 0.045	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323 0.1151474	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \hline 1.325283 \\ \end{array}$	
between overall = Random effe corr(u_i, Xb) cov fwd swp opt fut cap liq loan cr size cov_hat2 cov_hat3 cov_hat4 constant sigma_e Rho	$\begin{array}{l} = 0.0859\\ = 0.1111\\ = 0.1004\\ \text{ects u_i} \sim \text{Gauss}\\ ) = 0 (\text{assum}\\ \hline \text{Coef.}\\ 0.6748588\\ -0.8643372\\ \hline 2.488335\\ -0.0619558\\ -12.56134\\ -29.22498\\ -0.3744994\\ -6.579543\\ -1.606873\\ \hline 12.40705\\ -5.300377\\ \hline 0.7202154\\ \hline 10.16948\\ \hline 0.69816611\\ \hline \end{array}$	ed) Std. Err. 0.355199 0.4562017 1.295052 0.0593666 6.654601 14.18375 0.4227736 3.553434 0.8250464 5.595607 2.332158 0.3087139 5.07361 (fraction of v	$ \begin{array}{r} 1.90 \\ -1.89 \\ 1.92 \\ -1.04 \\ -1.89 \\ -2.06 \\ -0.89 \\ -1.85 \\ -1.95 \\ 2.22 \\ -2.27 \\ 2.33 \\ \end{array} $	Obs Wa Pro P> t  0.057 0.058 0.055 0.297 0.059 0.039 0.376 0.064 0.051 0.027 0.023 0.020 0.045	s per group: mi a n ld chi2(10) b > chi2 = [95% Com -0.0213185 -1.758476 -0.0499202 -0.1783121 -25.60412 -57.02462 -1.203121 -13.54415 -3.223935 1.439866 -9.871323 0.1151474	$\begin{array}{rrrr} n = & 8 \\ vg = & 8.0 \\ nax = & 8 \\ = & 52.07 \\ \hline 0.0000 \\ f. \ Interval] \\ \hline 1.371036 \\ \hline 0.0298018 \\ \hline 5.02659 \\ \hline 0.0544005 \\ \hline 0.4814397 \\ \hline -1.425333 \\ \hline 0.4541217 \\ \hline 0.3850599 \\ \hline 0.010188 \\ \hline 23.37424 \\ \hline -0.7294307 \\ \hline 1.325283 \\ \end{array}$	

(2)  $cov_hat3 = 0$ (3)  $cov_hat4 = 0$ chi2(3) = 12.18Prob > chi2 = 0.0068

# Appendix VI. Hausman Tests

### Appendix VI.a.

xtreg rrisk fv	vd swp opt fut	cap liq loan cr	nim size, fe				
	s (within) regre		,	Number of obs $=$ 357			
Group varial				Nu	mber of group	s = 7	
R-sq: within	n = 0.0664			Ob	s per group: m	in = 51	
betwe	en = 0.0349				8	vg = 7.0	
overal	l = 0.0006				r	$\max = 7$	
				F(10	),302) =	2.15	
corr(u i, Xb)	) = -0.7849			Pro	b > F =	0.0210	
rrisk	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
fwd	-0.0001664	0.0018278	-0.09	0.928	-0.0037633	0.0034305	
swp	-0.0000346	0.0000816	-0.42	0.672	-0.0001951	0.000126	
opt	0.0028549	0.00559	0.51	0.610	-0.0081454	0.0138553	
fut	0.001243	0.009168	0.14	0.892	-0.0167984	0.0192843	
cap	-0.0221073	0.0320353	-0.69	0.491	-0.0851479	0.0409333	
liq	-0.029528	0.010445	-2.83	0.005	-0.0500822	-0.0089738	
loan	0.0146007	0.0118099	1.24	0.217	-0.0086393	0.0378408	
cr	0.0034734	0.0092239	0.38	0.707	-0.0146777	0.0216246	
nim	0.0632955	0.0340875	1.86	0.064	-0.0037835	0.1303745	
size	0.0070737	0.0024294	2.91	0.004	0.002293	0.0118545	
constant	-0.0508974	0.0222787	-2.28	0.023	-0.0947385	-0.0070563	
sigma u	0.0144661			•	•		
sigma e	0.01397623						
rho fov	0.51721823	(fraction of v	ariance due to	u i)			
F test that all	l u i=0:	F(51, 30	(2) = 2.46	/	Prob > F	= 0.0000	
est store eq1	_						
xtreg rrisk fv	vd swp opt fut	cap liq loan cr	nim size, re				
Random-effe	ects GLS regre	ssion		Nu	mber of obs	= 364	
Group varial	ole: ident			Nu	mber of group	s = 52	
R-sq: within				Obs per group: $\min = 7$			
	= 0.0738			avg = 7.0			
overall =				$\max = 7$			
	ects u_i ~ Gaus			Wald $chi2(11) = 13.72$			
corr(u i, Xb)	<u> </u>	· /	l	Prob > chi2	1		
rrisk	Coef.	Std. Err.	t	P> t	[95% Con		
fwd	-0.0006444	0.0011207	-0.57	0.565	-0.002841	0.0015522	
swp	-0.0000101	0000796	-0.13	0.899	-0.0001661	0.000146	
opt	0.0039291	0.0042987	0.91	0.361	-0.0044963	0123545	
fut	-0.0066569	0.0071132	-0.94	0.349	-0.0205986	0.0072848	
cap	-0.0190414	0.0260149	-0.73	0.464	-0.0700297	0.0319469	
liq	-0.0163322	0.0088679	-1.84	0.066	-0.0337129	0.0010485	
loon	0.0214452	0.0075701	2.83	0.005	0.0066082	0.0362823	
loan			0.36	0.717	-0.0135765	0.0197287	
cr	0.0030761	0.0084964					
cr nim	.0423813	0.0266367	1.59	0.112	-0.0098257	0.0945883	
cr nim size	.0423813 -0.0001499	0.0266367 0.0008782	1.59 -0.17	0.112 0.864	-0.0018711	0.0015714	
cr nim size constant	.0423813 -0.0001499 0.0134222	0.0266367	1.59	0.112	1		
cr nim size constant sigma_u	.0423813 -0.0001499 0.0134222 0.00643253	0.0266367 0.0008782	1.59 -0.17	0.112 0.864	-0.0018711	0.0015714	
cr nim size constant	.0423813 -0.0001499 0.0134222	0.0266367 0.0008782 0.0105099	1.59 -0.17	0.112 0.864 0.202	-0.0018711	0.0015714	

	Coeffi	cients	(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	0001664	0006444	.000478	.0014439
swp	0000346	0000101	0000245	.0000178
opt	.0028549	.0039291	0010742	.0035734
fut	.001243	0066569	.0078998	.005784
cap	0221073	0190414	0030659	.0186944
liq	029528	0163322	0131958	.0055189
loan	.0146007	.0214452	0068445	.0090646
cr	.0034734	.0030761	.0003973	.0035904
nim	.0632955	.0423813	.0209142	.0212707
size	.0070737	0001499	.0072236	.0022651

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $chi2(10) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 18.14

Prob>chi2 = 0.0526

167

Fixed-effects	vu swo obi iui v	cap liq loan cr	nim size. fe			
	s (within) regres		,	Ni	umber of obs	= 357
Group variab				Ni	umber of group	s = 7
R-sq: within	1 = 0.0066			Ol	bs per group: m	in = 51
betwe	en = 0.0001				8	avg = 7.0
overal	l = 0.0013				r	$\max = 7$
					0,302) =	0.20
corr(u_i, Xb)		-			ob > F =	0.9961
beta	Coef.	Std. Err.	t	P> t	[95% Con	-
fwd	0.0558452	1.221088	0.05	0.964	-2.347072	2.458763
swp	-0.007069	8.545117	-0.13	0.897	-0.1143406	0.1002011
opt	-0.161057	3.734456	-0.04	0.966	-7.509907	7.187793
fut	-2.333158	6.124778	-0.38	0.704	-14.3858	9.719487
cap	-15.78557	21.40139	-0.74	0.461	-57.90031	26.32917
liq	-3.175147	6.977858	-0.46	0.649	-16.90653	10.55623
loan	0.8127391	7.889677	0.10	0.918	-14.71296	16.33844
cr	-5.310082	6.162067	-0.86	0.390	-17.43611	6.815942
nim	14.17219	22.77239	0.62	0.534	-30.64046	58.98484
size	-0.8944807	1.622994	-0.55	0.582	-4.08829	2.299329
constant	14.21757	14.88343	0.96	0.340	-15.07078	43.50592
sigma u	6.4820996					
sigma e	9.3369255					
rho fov	0.32522433	(fraction of	variance due t	ou i)		
F test that all	u i=0:	F(51, 30	(2) = 3.07		Prob > F	= 0.0000
est store eq1	—					
xtreg beta fw	d swp opt fut c	ap liq loan cr	nim size, re			
	ects GLS regres	sion		Ni	umber of obs	= 364
Group variab	ole: ident			Ni	umber of group	s = 52
R-sq: within	= 0.0026			01	bs per group: m	·
				O	os per group. m	
	= 0.0525			UI UI		avg = 7.0
overall =	= 0.0181				e t	avg = 7.0 max = 7
overall = Random effe	= 0.0181 ects u_i ~ Gauss			W	ald chi2(11)	avg = 7.0 max = 7 = 2.84
overall = Random effe corr(u_i, Xb)	= 0.0181 ccts u_i ~ Gauss )= 0 (assum	ed)		W Pr	ald chi2(11) ob > chi2 =	avg = 7.0 max = 7 avg = 2.84 avg = 0.9849
overall = Random effe corr(u_i, Xb) beta	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef.	ed) Std. Err.	t	W Pr P> t	ald chi2(11) ob > chi2 = $[95\% \text{ Con}]$	avg = 7.0 max = 7 = 2.84 = 0.9849 f. Interval]
overall = Random effe corr(u_i, Xb)	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395	ed) Std. Err. 0.8071839	-0.61	W Pr P> t  0.543	ald chi2(11) ob > chi2 = [95% Con -2.073191	nvg = 7.0      max = 7      = 2.84      = 0.9849      f. Interval]      1.090912
overall = Random effe corr(u_i, Xb) beta	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554	ed) Std. Err. 0.8071839 0.0529162	-0.61 -0.22	W Pr P> t  0.543 0.826	ald chi2(11) ob > chi2 = [95% Con2.0731911153693	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395	ed) Std. Err. 0.8071839	-0.61 -0.22 -0.51	W Pr 0.543 0.826 0.611	ald chi2(11) ob > chi2 = [95% Con -2.073191	nvg = 7.0      max = 7      = 2.84      = 0.9849      f. Interval]      1.090912
overall = Random effe corr(u_i, Xb) beta fwd swp	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554	ed) Std. Err. 0.8071839 0.0529162	-0.61 -0.22	W Pr P> t  0.543 0.826	ald chi2(11) ob > chi2 = [95% Con2.0731911153693	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017	ed) Std. Err. 0.8071839 0.0529162 2.991909	-0.61 -0.22 -0.51	W Pr 0.543 0.826 0.611 0.921 0.565	$\begin{array}{c} a \\ a \\ cald chi2(11) \\ ob > chi2 \\ = \\ \hline [95\% \ Con] \\ -2.073191 \\1153693 \\ -7.386051 \\ -10.19362 \\ -45.2433 \end{array}$	$\begin{array}{rrrr} xyg = & 7.0 \\ max = & 7 \\ = & 2.84 \\ = & 0.9849 \\ f. \ Interval] \\ \hline 1.090912 \\ \hline 0.0920584 \\ \hline 4.342018 \\ \hline 9.208946 \\ \hline 24.72453 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726	-0.61 -0.22 -0.51 -0.10	W Pr 0.543 0.826 0.611 0.921	$\begin{array}{c} & & & & \\ & & & \\ r \\ ald chi2(11) \\ ob > chi2 & = \\ \hline & [95\% \ Con \\ -2.073191 \\1153693 \\ -7.386051 \\ -10.19362 \end{array}$	$\begin{array}{rrrr} xyg = & 7.0 \\ max = & 7 \\ = & 2.84 \\ = & 0.9849 \\ f. \ Interval] \\ \hline 1.090912 \\ \hline 0.0920584 \\ \hline 4.342018 \\ \hline 9.208946 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926	-0.61 -0.22 -0.51 -0.10 -0.57	W Pr 0.543 0.826 0.611 0.921 0.565	$\begin{array}{c} a \\ a \\ cald chi2(11) \\ ob > chi2 \\ = \\ \hline [95\% \ Con] \\ -2.073191 \\1153693 \\ -7.386051 \\ -10.19362 \\ -45.2433 \end{array}$	$\begin{array}{rrrr} xyg = & 7.0 \\ max = & 7 \\ = & 2.84 \\ = & 0.9849 \\ f. \ Interval] \\ \hline 1.090912 \\ \hline 0.0920584 \\ \hline 4.342018 \\ \hline 9.208946 \\ \hline 24.72453 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78	W Pr P> t  0.543 0.826 0.611 0.921 0.565 0.436	$\begin{array}{r} a \\ a \\ c \\ a \\ c \\ c \\ c \\ c \\ c \\ c \\$	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584\\ \hline 4.342018\\ \hline 9.208946\\ \hline 24.72453\\ \hline 7.15408\\ \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48	W Pr P> t  0.543 0.826 0.611 0.921 0.565 0.436 0.629	$\begin{array}{c} a \\ a \\ c \\$	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584\\ \hline 4.342018\\ \hline 9.208946\\ \hline 24.72453\\ \hline 7.15408\\ \hline 7.92028\\ \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan cr	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337 -2.247955	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617 5.713732	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48 -0.39	W Pr P> t  0.543 0.826 0.611 0.921 0.565 0.436 0.629 0.694	$\begin{array}{c} a \\ a \\ c \\$	avg =       7.0         max =       7         =       2.84         =       0.9849         f. Interval]       1.090912         0.0920584       4.342018         9.208946       24.72453         7.15408       7.92028         8.950754
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan cr nim	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337 -2.247955 5.489688	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617 5.713732 18.42996	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48 -0.39 0.30	$\begin{array}{c} W\\ Pr\\ \hline P> t  \\ 0.543\\ 0.826\\ 0.611\\ 0.921\\ 0.565\\ 0.436\\ 0.629\\ 0.694\\ 0.766\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ r \\ ald chi2(11) \\ ob > chi2 & = \\ \hline & & [95\% \ Cont \\ -2.073191 \\1153693 \\ -7.386051 \\ -10.19362 \\ -45.2433 \\ -16.60826 \\ -13.09295 \\ -13.44666 \\ -30.63237 \end{array}$	$\begin{array}{rrrr} xyg = & 7.0 \\ max = & 7 \\ = & 2.84 \\ = & 0.9849 \\ \hline f. Interval] \\ \hline 1.090912 \\ \hline 0.0920584 \\ \hline 4.342018 \\ \hline 9.208946 \\ \hline 24.72453 \\ \hline 7.15408 \\ \hline 7.92028 \\ \hline 8.950754 \\ \hline 41.61175 \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan cr nim size	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337 -2.247955 5.489688 -0.5181086	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617 5.713732 18.42996 .6520933	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48 -0.39 0.30 -0.79	W Pr P> t  0.543 0.826 0.611 0.921 0.565 0.436 0.629 0.694 0.766 0.427	$\begin{array}{r} a \\ a \\ c \\$	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ \hline f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584\\ \hline 4.342018\\ \hline 9.208946\\ \hline 24.72453\\ \hline 7.15408\\ \hline 7.92028\\ \hline 8.950754\\ \hline 41.61175\\ \hline 0.7599708\\ \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan cr nim size constant	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337 -2.247955 5.489688 -0.5181086 12.6641	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617 5.713732 18.42996 .6520933	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48 -0.39 0.30 -0.79	W Pr P> t  0.543 0.826 0.611 0.921 0.565 0.436 0.629 0.694 0.766 0.427	$\begin{array}{r} a \\ a \\ c \\$	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ \hline f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584\\ \hline 4.342018\\ \hline 9.208946\\ \hline 24.72453\\ \hline 7.15408\\ \hline 7.92028\\ \hline 8.950754\\ \hline 41.61175\\ \hline 0.7599708\\ \end{array}$
overall = Random effe corr(u_i, Xb) beta fwd swp opt fut cap liq loan cr nim size constant sigma u	= 0.0181 ects u_i ~ Gauss ) = 0 (assum Coef. -0.4911395 -0.0116554 -1.522017 -0.4923387 -10.25938 -4.727091 -2.586337 -2.247955 5.489688 -0.5181086 12.6641 5.4621631	ed) Std. Err. 0.8071839 0.0529162 2.991909 4.949726 17.84926 6.061933 5.360617 5.713732 18.42996 .6520933 7.554133	-0.61 -0.22 -0.51 -0.10 -0.57 -0.78 -0.48 -0.39 0.30 -0.79	$\begin{array}{c} W\\ Pr\\ \hline P> t  \\ 0.543\\ 0.826\\ 0.611\\ 0.921\\ 0.565\\ 0.436\\ 0.629\\ 0.694\\ 0.766\\ 0.427\\ 0.094\\ \end{array}$	$\begin{array}{r} a \\ a \\ c \\$	$\begin{array}{rrrr} nvg = & 7.0\\ max = & 7\\ = & 2.84\\ = & 0.9849\\ \hline f. \ Interval]\\ \hline 1.090912\\ \hline 0.0920584\\ \hline 4.342018\\ \hline 9.208946\\ \hline 24.72453\\ \hline 7.15408\\ \hline 7.92028\\ \hline 8.950754\\ \hline 41.61175\\ \hline 0.7599708\\ \end{array}$

#### hausman eq1

	Coeffi	cients	(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	0.0558452	-0.4911395	0.5469848	0.9162472
swp	-0.0070698	-0.0116554	0.0045857	0.0130921
opt	-0.161057	-1.522017	1.36096	2.234869

fut	-2.333158	-0.4923387	-1.840819	3.607369
cap	-15.78557	-10.25938	-5.526185	11.80777
liq	-3.175147	-4.727091	1.551944	3.455932
loan	0.8127391	-2.586337	3.399076	5.78885
cr	14.17219	5.489688	8.682501	13.37603
nim	14.17219	5.489688	8.682501	13.37603
size	-0.8944807	-0.5181086	-0.3763721	1.486232

B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic

 $chi2(10) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 

xtrag adarrar	fwd swp opt f	ist oon lig loon	or nim siza fa			
	s (within) regre		er min size, ie		umber of obs	= 357
Group variat		.551011			imber of group	
R-sq: within					s per group: m	
	en = 0.0054			01		avg = 7.0
	l = 0.0004					$\max = 7$
0,6141	0.0004			F(1)	0,302) =	0.91
corr(u i, Xb)	= -0.5659				ab > F =	0.5264
sderror	Coef.	Std. Err.	t	P> t		f. Interval]
fwd	-0.0154334	1.260784	-0.01	0.990 -	2.496467	2.465601
swp	-0.0029877	0.0562838	-0.05	0.958	-0.1137458	0.1077705
opt	2.17876	3.85586	0.57	0.572	-5.408995	9.766514
fut	-1.756887	6.323888	-0.28	0.781	-14.20135	10.68758
cap	-21.63045	22.09713	-0.98	0.328	-65.1143	21.8534
liq	-6.384797	7.204702	-0.89	0.376	-20.56257	7.792977
loan	-7.588012	8.146163	-0.93	0.352	-23.61844	8.442416
cr	-0.5097157	6.36239	-0.08	0.936	-13.02995	12.01051
nim	4.635179	23.5127	0.20	0.844	-41.63429	50.90464
size	-3.065078	1.675756	-1.83	0.068	-6.362716	0.2325592
constant	38.81013	15.36727	2.53	0.012	8.569641	69.05062
sigma u	6.7407071	10.00727	2.00	0.012	0.0000.11	0,100002
sigma e	9.6404603					
rho fov	0.32836085	(fraction of v	ariance due to	n i)		
F test that all		F(51, 30		u_1)	Prob > F	= 0.0000
est store eq1	<u> </u>	1 (51, 50	(2) 2.19		1100 1	0.0000
	fwd swp opt f	ut cap liq loan	cr nim size, re			
	ects GLS regres		,		umber of obs	= 364
Group variab				Nu	umber of group	s = 52
R-sq: within					os per group: m	
between	= 0.0131				2 2 2	avg = 7.0
overall =	= 0.0142					$\max = 7$
Random effe	cts u_i ~ Gaus	sian		Wa	ald chi2(11)	= 5.75
_corr(u_i, Xb)	= 0 (assum)	ned)		Pro	ab > chi2 =	= 0.8356
sderror	Coef.	Std. Err.	t	P >  t	[95% Con	f. Interval]
fwd	-0.1655996	0.7599838	-0.22	0.828	-1.65514	1.323941
swp	-0.0023634	0.0541326	-0.04	0.965	-0.1084614	0.1037346
opt	1.034661	2.918062	0.35	0.723	-4.684636	6.753958
fut	-2.353079	4.828575	-0.49	0.626	-11.81691	7.110753
cap	-9.467693	17.6678	-0.54	0.592	-44.09594	25.16055
liq	-3.965076	6.023115	-0.66	0.510	-15.77017	7.84001
loan	-10.25297	5.13613	-2.00	0.046	-20.3196	-0.1863434
cr	-1.983725	5.773876	-0.34	0.731	13.30031	9.332864
nim	-0.7886463	18.08525	-0.04	0.965-	36.23508	34.65779
size	-0.3811875	0.5950369	-0.64	0.522	-1.547438	0.7850633
constant	13.93284	7.128078	1.95	0.051	-0.0379362	27.90362
sigma u	4.402101					
sigma_e	9.6404603					
rho	0.17253398	(fraction of v	ariance due to	u i)		
hausman eq1						
		aianta	(h D)		$\alpha(\mathbf{V} \mid \mathbf{h} \mid \mathbf{V} \mid \mathbf{D}))$	

sqrt(diag(V_b-V_B)) S.E. (b-B) ---- Coefficients ----(B) Difference (b) Eq1 -.1655996 0.1501662 1.005983 -0.0154334  $\mathbf{fwd}$ -0.0029877-0.0023634 -0.0006242 0.015412 swp 2.17876 2.52043 1.034661 1.144099 opt

fut	-1.756887	-2.353079	0.5961921	4.083679
cap	-21.63045	-9.467693	-12.16276	13.27149
liq	-6.384797	-3.965076	-2.41972	3.953456
loan	-7.588012	-10.25297	2.664962	6.322984
cr	-0.5097157	-1.983725	1.474009	2.67252
nim	4.635179	-0.7886463	5.423825	15.02567
size	-3.065078	-0.3811875	-2.683891	1.566554

B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic

 $chi2(10) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 

### Appendix VI.b.

xtreg eqta fw	vd swp opt fut i	nim size, fe				
	s (within) regre			١	Number of obs	= 1096
Group varial				٢	Number of group	$s = 13^{2}$
R-sq: within					Obs per group: m	
	en = 0.4327					avg = 8.0
	l = 0.3764					max = 8
Overal	1-0.3704					= 50.11
corr(u i, Xb	) = 0.1173				F(6,953) Prob > F	= 0.0000
eqta	Coef.	Std. Err.	t	P> t		f. Interval]
fwd	0.0010413	0.0026817	0.39	0.698	-0.0042214	0.0063041
swp	-0.0001597	0.001875	-0.09	0.932	-0.0038393	0.0035198
opt	0.0059761	0.0074426	0.80	0.422	-0.0086297	0.0205819
fut	-0.0044597	0.0023679	-1.88	0.060	-0.0091065	0.0001871
nim	0.753973	0.0458848	16.43	0.000	0.6639261	0.8440199
size	-0.0031844	0.0023491	-1.36	0.176	-0.0077944	0.0014256
constant	0.1075852	0.0217824	4.94	0.000	0.0648381	0.1503323
sigma u	0.04280344	0.0217021		0.000	0.0010201	0.120222
sigma e	0.03296179					
rho fov	0.62774128	(fraction of y	variance due to	n i)		
F test that all		· ·	(253) = 12.59	u 1)	Prob > F	= 0.0000
est store eq1	ru_1 0.	1 (150, 5	(55) 12.57		1100 - 1	0.0000
	vd swp opt fut i	im siza ra				
<b>U</b> 1					T1	- 1000
	ects GLS regre	ssion			Sumber of obs	= 1096
Group varial					Number of group	
R-sq: within				C	)bs per group: m	
	= 0.4541					avg = 8.0
	ll = 0.3914					$\max = 7$
	ects u_i ~ Gaus	sian			Vald chi2(11)	= 407.50
_corr(u_i, Xb)					rob > chi2 =	0.0000
eqta	Coef.	Std. Err.	t	P> t		f. Interval]
fwd	-0.0004265	0.0024974	-0.17	0.864	-0.0053212	0.0044683
swp	0.0000934	0.0017138	0.05	0.957	-0.0032656	0.0034524
opt	0.0071811	0.0071187	1.01	0.313	-0.0067712	0.0211335
fut	-0.0040584	0.0022004	-1.84	0.065	-0.0083711	0.0002544
nim	0.762976	0.0410469	18.59	0.000	0.6825256	0.8434264
size	-0.0061571	0.0016744	-3.68	0.000	-0.0094388	-0.0028754
constant	0.1344944	0.0159185	8.45	0.000	0.1032947	0.1656941
sigma u	0.04031467					
sigma e	0.03296179		(0)	o .		
rho	0.59934407		(fraction	of variance	due to u 1)	
hausman eq1	l					
	Coeffi	cients	(b-B)	sqrt(d	iag(V b-V B))	
	(b)	(B)	Difference	Ĩ	S.E.	
	Eq1					
fwd	0.0010413	-0.0004265	0.0014678	(	).0009771	
1						1

	EqI			
fwd	0.0010413	-0.0004265	0.0014678	0.0009771
swp	-0.0001597	0.0000934	-0.0002531	0.0007605
opt	0.0059761	0.0071811	-0.001205	0.0021718
fut	-0.0044597	-0.0040584	-0.0004013	0.0008746
nim	0.753973	0.762976	-0.009003	0.0205078
size	-0.0031844	-0.0061571	0.0029727	0.0016477

b = consistent under Ho and Ha; obtained from xtregB = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

 $chi2(6) = (b-B)'[(V_b-V_B)^{-1}](b-B)$ 

xtreg ligta fy	vd swp opt fut	nim size. fe					
<b>U</b>	s (within) regre			N	umber of obs	=	1096
Group variab		551011			umber of group		137
R-sq: within					bs per group: m		
	en = 0.0041					wg =	
	l = 0.000					nax =	~
					F(6,953)	=	3.06
corr(u i, Xb)	= -0.1924				Prob > F	= (	0.0057
liqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Inte	erval]
fwd	-0.0024545	0.0040131	-0.61	0.541	-0.01033	0.0	005421
swp	0.0007614	0.0028058	0.27	0.786	-0.0047449	0.0	062677
opt	0.0005717	0.0111376	0.05	0.959	-0.0212854		224287
fut	-0.0123686	0.0035434	-3.49	0.001	-0.0193224		054148
nim	0.1147351	0.068665	1.67	0.095	-0.0200169		494871
size	0.0032032	0.0035154	0.91	0.362	-0.0036956		101019
constant	0.045106	0.0325966	1.38	0.167	-0.0188635		090755
sigma u	0.06489531						., .,
sigma e	0.04932614						
rho fov	0.63382052	(fraction of y	variance due to	u i)			
F test that all		F(136, 9		··)	Prob > F	= 0.0	0000
est store eq1	<u> </u>	1 (150, 5	(00) 11.00		1100 1	0.0	,000
	vd swp opt fut	nim size, re					
	ects GLS regre			N	umber of obs	=	1096
Group variab					umber of group	s =	137
R-sq: within					bs per group: m		8
	= 0.0697					vg =	
overa	ll = 0.0474					nax =	_
Random effe	cts u i ~ Gaus	sian		W	ald chi2(11)	=	20.88
corr(u i, Xb)	—				. ,	= 0.	0019
liqta	Coef.	Std. Err.	t	P> t	[95% Con	f. Inte	erval]
fwd	-0.0029925	0.0037321	-0.80	0.423	-0.0103073	0.0	043222
swp	-0.0016862	0.002555	-0.66	0.509	-0.0066939		033214
opt	0.00593	0.0106785	0.56	0.579	-0.0149996		268595
fut	-0.0090124	0.0032896	-2.74	0.006	-0.0154598		002565
nim	0.1864097	0.0610387	3.05	0.002	0.0667759		060434
size	-0.00205	0.0024367	-0.84	0.400	-0.0068257		027258
constant	0.0912208	0.023124	3.94	0.000	0.0458986		365431
sigma u	0.05569703						
sigma e	0.04932614						
rho	0.56043932	(fraction of v	variance due to	u i)			
				/			
hausman eq1	Coeffi	aionta	(h D)	cant ( 1:	a(V h V D))		1
	Coeffi	cients	(b-B)	sqrt(dia	$ug(V_b-V_B))$		

	Coeffi	cients	(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.0024545	-0.0029925	0.000538	0.0014753
swp	0.0007614	-0.0016862	0.0024476	0.0011596
opt	0.0005717	0.00593	-0.0053583	0.0031647
fut	-0.0123686	-0.0090124	-0.0033562	0.001317
nim	0.1147351	0.1864097	-0.0716746	0.0314507
size	0.0032032	-0.00205	0.0052532	0.0025339
1			0.0002000	0.0020000

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic  $chi2(6) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 

xtreg glta fw	d swp opt fut r	im size, fe				
	s (within) regre			Nu	umber of obs	= 1096
Group variab					umber of group	
R-sq: within					os per group: m	
	en = 0.0028					avg = 8.0
	l = 0.0095					$\max = 8$
					F(6,953)	= 24.38
_corr(u_i, Xb)	) = -0.1924				Prob > F	= 0.0000
glta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0243832	0.0066256	-3.68	0.000	-0.0373856	-0.0113809
swp	0.0079365	0.0046324	1.71	0.087	-0.0011543	0.0170274
opt	-0.0129208	0.018388	-0.70	0.482	-0.0490065	0.0231648
fut	0.0010412	0.0058501	0.18	0.859	-0.0104394	0.0125219
nim	-0.1764308	0.1133649	-1.56	0.120	-0.3989044	0.0460428
size	0.0613878	0.0058038	10.58	0.000	0.049998	0.0727775
constant	0.0020743	0.0538166	0.04	0.969	-0.1035384	0.107687
sigma u	0.16932536			ı	•	
sigma e	0.08143677					
rho fov	0.81214225	(fraction of v	ariance due to	u i)		
F test that all			(53) = 24.96	_/	Prob > F	= 0.0000
est store eq1		()-	)			
1	d swp opt fut r	im size, re				
	ects GLS regre			Nu	umber of obs	= 1096
Group variab	•			Nu	umber of group	s = 137
R-sq: within					os per group: m	
	= 0.0030				6	avg = 8.0
overal	ll = 0.0100					$\max = 7$
Random effe	cts u_i ~ Gaus	sian		W	ald chi2(11)	= 106.83
_corr(u_i, Xb)	= 0 (assum)	ied)		Pr	ob > chi2 =	= 0.0000
glta	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0190659	0.0064842	-2.94	0.003	-0.0317747	-0.0063571
swp	0.005168	0.004485	1.15	0.249	-0.0036224	0.0139584
opt	-0.0103942	0.0182663	-0.57	0.569	-0.0461954	0.0254071
fut	-0.0017349	0.0057113	-0.30	0.761	-0.0129289	0.0094592
nim	-0.2282109	0.1083449	-2.11	0.035	-0.440563	-0.0158588
size	0.0426956	0.0047916	8.91	0.000	0.0333043	0.0520869
constant	0.1739838	0.0460699	3.78	0.000	0.0836885	0.2642792
sigma_u	0.13895608					
sigma e	0.08143677					
rho	0.74434242	(fraction of v	ariance due to	u_i)		
hausman eq1						
	Coeffi	cients	(b-B)	sqrt(dia	$g(V_b-V_B))$	

	Coeffi	cients	(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.0243832	-0.0190659	-0.0053174	0.0013613
swp	0.0079365	0.005168	0.0027686	0.0011593
opt	-0.0129208	-0.0103942	-0.0025267	0.0021122
fut	0.0010412	-0.0017349	0.0027761	0.0012668
nim	-0.1764308	-0.2282109	0.0517801	0.0333613
size	0.0613878	0.0426956	0.0186922	0.0032749
opt fut nim	-0.0129208 0.0010412 -0.1764308 0.0613878	-0.0103942 -0.0017349 -0.2282109 0.0426956	-0.0025267 0.0027761 0.0517801	0.0021122 0.0012668 0.0333613

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic  $chi2(6) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 

$$2(6) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$$

xtreg llrgl fw	vd swp opt fut i	nim size fe					
	s (within) regre			Ν	umber of obs	=	1096
Group varial					umber of group	s =	137
R-sq: within					bs per group: m		8
	en = 0.0547					avg =	8.0
	1 = 0.0258					nax =	
					F(6,953)		2.48
corr(u i, Xb)	) = -0.1377				Prob > F		.0219
llrgl	Coef.	Std. Err.	t	P> t	[95% Con	f. Inte	rval]
fwd	0.001663	0.0049685	0.33	0.738	-0.0080874	T	14134
swp	-0.0078505	0.0034738	-2.26	0.024	-0.0146676		010333
opt	-0.0043316	0.0137891	-0.31	0.753	-0.031392	0.02	227288
fut	4.48e-06	0.004387	0.00	0.999	-0.0086048		086137
nim	.2116991	0.0850117	2.49	0.013	0.0448674		785308
size	-0.0042776	0.0043523	-0.98	0.326	-0.0128187		)42635
constant	0.0751262	0.0403568	1.86	0.063	-0.0040721		543246
sigma u	0.03708762	0.0102200	1100	0.005	0.0010721	0.12	/10210
sigma e	0.06106898						
rho fov	0.26944476	(fraction of y	variance due to	n i)			
F test that all		•	(953) = 2.77	<u>u_</u> 1)	Prob > F	= 0.00	000
est store eq1	Iu_I 0.	1 (150, 5	(55) 2.11		1100 - 1	0.00	000
	d swp opt fut n	im size re					
	ects GLS regre			N	umber of obs	=	1096
Group varial	0	551011			umber of group		137
R-sq: within					bs per group: m		8
	= 0.0929			0		avg =	8.0
	ll = 0.0367					max =	_
	ects u i ~ Gaus	sian		W	Vald chi2(11)		25.89
corr(u i, Xb	_						0002
llrgl	Coef.	Std. Err.	t	P> t	[95% Con		
fwd	0.0006262	0.0038064	0.16	0.869	-0.0068343	1	)80866
swp	-0.0028107	0.0025251	-1.11	0.266	-0.0077599		021385
opt	-0.0106285	0.0115963	-0.92	0.359	-0.0333569		20999
fut	0.0002494	0.0034141	0.07	0.942	-0.0064421		)69409
nim	0.2477194	0.0582892	4.25	0.000	0.1334748		519641
size	-0.0019747	0.001886	-1.05	0.295	-0.0056712		017217
constant	0.0516718	0.0177285	2.91	0.004	0.0169246		86419
sigma u	0.02924934	0.0177200	2.71	0.001	0.010)210	0.0	00119
sigma e	0.06106898						
rho	0.18659414	(fraction of x	variance due to	n i)			
hausman eq1				<u>u_1)</u>			
	Coeffi	cients	(b-B)	sart(di	ag(V_b-V_B))		
	(b)	(B)	Difference	squud	S.E.		
	Eq1	(D)	Difference		<b>J</b> . <b>L</b> .		
fwd	0.001663	0.0006262	0.0010368	0	.0031933		
		-0.0028107	-0.0050398		.0023856		
swp		I =0.00∠010/	-0.0030370				
	-0.0078505		0.0062060	0	007/609		
opt	-0.0043316	-0.0106285	0.0062969		.0074608		
opt fut	-0.0043316 4.48e-06	-0.0106285 0.0002494	-0.000245	0	.0027549		
opt fut nim	-0.0043316 4.48e-06 0.2116991	-0.0106285 0.0002494 0.2477194	-0.000245 -0.0360203	0	.0027549 .0618818		
opt fut nim size	-0.0043316 4.48e-06 0.2116991 -0.0042776	-0.0106285 0.0002494 0.2477194 -0.0019747	-0.000245 -0.0360203 -0.0023029	0	.0027549		
opt fut nim size b = consister	-0.0043316 4.48e-06 0.2116991	-0.0106285 0.0002494 0.2477194 -0.0019747 d Ha; obtained	-0.000245 -0.0360203 -0.0023029 from xtreg	0 0 0	.0027549 .0618818		

B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic  $chi2(6) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$ 

$$2(6) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$$

5.21 Prob>chi2 = 0.5171

xtreg stdroa t	fwd swp opt fu	t nim size. fe					
	s (within) regre			Nu	umber of obs	=	1096
Group variab					umber of group	s =	137
R-sq: within					os per group: m		8
	en = 0.0102					vg =	8.0
overall	l = 0.0059					nax =	8
					F(6,953)	=	0.26
corr(u i, Xb)	) = 0.0342				Prob > F	= 0	.9568
stdroa	Coef.	Std. Err.	t	P> t	[95% Con	f. Inte	rval]
fwd	0.0002417	0.0007074	0.34	0.733	-0.0011466	0.00	)16299
swp	-0.0003142	0.0004946	-0.64	0.525	-0.0012848	0.00	06564
opt	-0.0007718	0.0019633	-0.39	0.694	-0.0046246	0.0	03081
fut	0.0003453	0.0006246	0.55	0.581	-0.0008805	0.00	015711
nim	0.0102069	0.0121038	0.84	0.399	-0.0135462	0.03	339601
size	0.00007	0.0006197	0.11	0.910	-0.0011461	0.00	012861
constant	0.0045985	0.0057459	0.80	0.424	-0.0066776	0.01	58746
sigma u	0.00854047		•		•		
sigma e	0.00869488						
rho fov	0.49104169	(fraction of v	variance due to	u i)			
F test that all	u i=0:	F(136, 9	(953) = 7.63		Prob > F	= 0.0	000
est store eq1	—		,				
xtreg stdroa	fwd swp opt fu	t nim size, re					
	ects GLS regres	ssion			umber of obs	=	1096
Group variab					umber of group		137
R-sq: within				Ob	os per group: m		8
hetween							
	= 0.0172					vg =	8.0
overal	11 = 0.0090	sian		W	r	max =	7
overal Random effe	ll = 0.0090 ects u_i ~ Gauss				r ald chi2(11)	$\max = \frac{1}{2}$	7 3.14
overal Random effe corr(u_i, Xb)	ll = 0.0090 ects u_i ~ Gauss ) = 0 (assume)	ied)	t	Pre	r ald chi2(11) ob > chi2 =	$\max = \frac{1}{2}$ $= 0.7$	7 3.14 7910
overal Random effe corr(u_i, Xb) stdroa	ll = 0.0090 ects u_i ~ Gauss ) = 0 (assum Coef.	ned) Std. Err.	t 0.37	Pro P> t	r ald chi2(11) ob > chi2 = [95% Con	max = = 2 = 0.7 f. Inte	7 3.14 7910 rval]
overal Random effe corr(u_i, Xb) stdroa fwd	$\begin{array}{l} u = 0.0090 \\ ccts u_i \sim Gauss \\ 0 = 0 (assum \\ Coef. \\ 0.0002311 \end{array}$	ned) Std. Err. 0.000631	0.37	Pro P> t  0.714	r ald chi2(11) ob > chi2 = [95% Con -0.0010055	max = = 2 = 0.7 f. Inte 0.00	7 3.14 7910 rval] 014678
overal Random effe corr(u_i, Xb) stdroa fwd swp	$\begin{array}{l} ll = 0.0090 \\ ccts u_i \sim Gauss \\ 0 = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \end{array}$	ed) Std. Err. 0.000631 0.0004291	0.37 -0.80	Pro P> t  0.714 0.422	ald chi2(11) ob > chi2 = [95% Con -0.0010055 -0.0011859	max = = 0.7 f. Inte 0.00 0.00	7 3.14 7910 rval] 014678 004963
overal Random effe corr(u_i, Xb) stdroa fwd swp opt	$\begin{array}{l} ll = 0.0090 \\ ccts u_i \sim Gauss \\ o = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \end{array}$	ed) Std. Err. 0.000631 0.0004291 0.001825	0.37 -0.80 -0.12	Pro P> t  0.714 0.422 0.908	ald chi2(11) ob > chi2 = [95% Con -0.0010055 -0.0011859 -0.003787	max = 0.7 = 0.7f. Inte 0.00 0.00 0.00	7 3.14 7910 rval] 014678 004963 033669
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut	$\begin{array}{l} ll = 0.0090 \\ ccts u_i \sim Gauss \\ r \sim Gauss \\ \hline coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571	0.37 -0.80 -0.12 0.32	Pro P> t  0.714 0.422 0.908 0.749	r ald chi2(11) ob > chi2 = [95% Com -0.0010055 -0.0011859 -0.003787 -0.0009135	max =	7 3.14 7910 rval] 014678 004963 033669 012701
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gaus; \\ 0 = 0 (assum) \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ \hline 0.0001783 \\ 0.0158052 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818	0.37 -0.80 -0.12 0.32 1.55	Pro P> t  0.714 0.422 0.908 0.749 0.121	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline [95\% \text{ Com}] \\ \hline -0.0010055 \\ \hline -0.0011859 \\ \hline -0.003787 \\ \hline -0.0009135 \\ \hline -0.0041508 \end{array}$	$\begin{array}{r} \max = & \\ = & 0.7 \\ \text{f. Inte} \\ \hline 0.00 \\ \hline \end{array}$	7 3.14 7910 rval] 014678 004963 033669 012701 357612
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size	$\begin{array}{l} ll = 0.0090 \\ ccts u_i \sim Gauss \\ \hline = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ \hline 0.0001783 \\ \hline 0.0158052 \\ \hline 0.0000777 \\ \hline \end{array}$	ed) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853	0.37 -0.80 -0.12 0.32 1.55 0.20	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.021	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0041508 \\ -0.0006774 \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant	$\begin{array}{l} ll = 0.0090 \\ ccts u_i \sim Gauss \\ = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ \hline 0.0000777 \\ 0.0043367 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818	0.37 -0.80 -0.12 0.32 1.55	Pro P> t  0.714 0.422 0.908 0.749 0.121	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline [95\% \text{ Com}] \\ \hline -0.0010055 \\ \hline -0.0011859 \\ \hline -0.003787 \\ \hline -0.0009135 \\ \hline -0.0041508 \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ = 0 (assum \\ Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \end{array}$	ed) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853	0.37 -0.80 -0.12 0.32 1.55 0.20	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.021	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0041508 \\ -0.0006774 \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ = 0 (assum \\ Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0041508 \\ -0.0006774 \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gause \\ \hline & = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438	0.37 -0.80 -0.12 0.32 1.55 0.20	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0041508 \\ -0.0006774 \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gause \\ \hline & = 0 (assum \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ \hline 0.0000777 \\ 0.0043367 \\ \hline 0.00809135 \\ 0.00869488 \\ \hline 0.4640928 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i)	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline & \\ \hline & \\ \hline & \\ \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ = 0 (assum \\ Coef. \\ 0.0002311 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 variance due to (b-B)	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i)	r ald chi2(11) ob > chi2 = [95% Com -0.0010055 -0.0011859 -0.003787 -0.0009135 -0.0041508 -0.0006774 -0.002805 -0.002805	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ r \sim Gauss \\ \hline 0 = 0 (assum \\ \hline 0.0002311 \\ -0.0002311 \\ -0.0003448 \\ -0.0002101 \\ \hline 0.0001783 \\ \hline 0.0000777 \\ \hline 0.0000777 \\ \hline 0.0043367 \\ \hline 0.00809135 \\ \hline 0.00869488 \\ \hline 0.4640928 \\ \hline \hline Coeffi \\ \hline (b) \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i)	$\begin{array}{c} & & & & \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline & \\ \hline & \\ \hline & \\ \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ r \sim Gauss \\ coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \\ \hline \\ coeffi \\ (b) \\ Eq1 \\ \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B)	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 variance due to (b-B) Difference	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia	$\begin{array}{c} & \text{r} \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} &= \\ \hline [95\% \text{ Com} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gaus; \\ 0 = 0 (assum) \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \hline curred constraints \\ curre$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 variance due to (b-B) Difference 0.0000105	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia	$g(V_b-V_B))$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1 fwd swp	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gause \\ \hline & = 0 (assum \\ \hline & Coef. \\ \hline & 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ \hline & 0.0001783 \\ \hline & 0.0158052 \\ \hline & 0.0000777 \\ \hline & 0.0043367 \\ \hline & 0.00809135 \\ \hline & 0.00869488 \\ \hline & 0.4640928 \\ \hline & \hline & \\ \hline & \\ & chevel{eq:constraint} \\ \hline & \\ & (b) \\ \hline & Eq1 \\ \hline & 0.0002417 \\ -0.0003142 \\ \end{array}$	ed) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311 -0.0003448	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 variance due to (b-B) Difference 0.0000105 0.0000306	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia 0.0	$\begin{array}{c} & \text{if } \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} = \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline & \\ \hline & \\ \hline & \\ \hline & \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ \hline \\ g(003199 \\ 0002459 \\ \hline \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1 fwd swp opt	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gauss \\ = 0 (assum \\ Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \\ \hline \\ currrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	ed) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311 -0.0003448 -0.0002101	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 ariance due to (b-B) Difference 0.0000105 0.0000306 -0.0005618	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia 0.0 0.0	$\begin{array}{c} & \text{id chi2(11)} \\ \text{ob} > \text{chi2} &= \\ \hline & [95\% \text{ Cont} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline & \\ \hline & \\ \hline & \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ g(003199 \\ 0002459 \\ \hline \\ 0007236 \\ \hline \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1 fwd swp opt fut	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gaus; \\ \hline = 0 (assum) \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \\ \hline \\ cumera \\ $	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311 -0.0002101 0.0001783	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 ariance due to (b-B) Difference 0.0000105 0.0000306 -0.0005618 0.000167	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) u_i) sqrt(dia 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} & \text{r} \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline [95\% \text{ Com} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ g(003199 \\ 0002459 \\ \hline \\ 0007236 \\ \hline \\ 0002825 \\ \hline \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1 fwd swp opt fut fut	$\begin{array}{l} l = 0.0090 \\ cts u_i \sim Gaus; \\ = 0 (assum) \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \\ \hline \\ cumple Coeffi \\ (b) \\ Eq1 \\ 0.0002417 \\ -0.0003142 \\ -0.0003142 \\ -0.0003453 \\ 0.0102069 \end{array}$	red) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311 -0.0003448 -0.0002101 0.0001783 0.0158052	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 variance due to (b-B) Difference 0.0000105 0.0000306 -0.0005618 0.000167 -0.0055983	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	r ald chi2(11) ob > chi2 = [95% Com -0.0010055 -0.0011859 -0.003787 -0.0009135 -0.0041508 -0.0006774 -0.002805 -0.002805 -0.0003199 0002459 0007236 0002825 0065447	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328
overal Random effe corr(u_i, Xb) stdroa fwd swp opt fut nim size constant sigma_u sigma_e rho hausman eq1 fwd swp opt fut fut	$\begin{array}{l} ll = 0.0090 \\ cts u_i \sim Gaus; \\ \hline = 0 (assum) \\ \hline Coef. \\ 0.0002311 \\ -0.0003448 \\ -0.0002101 \\ 0.0001783 \\ 0.0158052 \\ 0.0000777 \\ 0.0043367 \\ 0.00809135 \\ 0.00809135 \\ 0.00869488 \\ 0.4640928 \\ \hline \\ \hline \\ cumera \\ $	ed) Std. Err. 0.000631 0.0004291 0.001825 0.0005571 0.0101818 0.0003853 0.0036438 (fraction of v cients (B) 0.0002311 -0.0003448 -0.0002101 0.0001783 0.0158052 0.0000777	0.37 -0.80 -0.12 0.32 1.55 0.20 1.19 	Pro P> t  0.714 0.422 0.908 0.749 0.121 0.840 0.234 u_i) sqrt(dia 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	$\begin{array}{c} & \text{r} \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} & = \\ \hline [95\% \text{ Com} \\ -0.0010055 \\ -0.0011859 \\ -0.003787 \\ -0.0009135 \\ -0.00041508 \\ -0.0006774 \\ -0.002805 \\ \hline \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ g(V_b-V_B)) \\ \text{s.e.} \\ \hline \\ \hline \\ g(003199 \\ 0002459 \\ \hline \\ 0007236 \\ \hline \\ 0002825 \\ \hline \end{array}$	max = -2 = -0.7 f. Inte 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7 3.14 7910 rval] 014678 004963 033669 012701 357612 008328

B = inconsistent under Ha, efficient under Ho; obtained from xtreg Test: Ho: difference in coefficients not systematic  $chi2(6) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$ 1.92

### Appendix VI.c.

1 1						
xtreg sr fwc	l swp opt fut ca	p liq loan cr nir	n nonim size,	fe		
Fixed-effec	ts (within) regre	ession			Number of obs	= 518
Group varia	ble: ident				Number of grou	ps = 74
R-sq: withi	n = 0.1583				Obs per group: n	$\min = 7$
betwee	n = 0.0016					avg = 7.0
overa	all = 0.0192					max = 7
					F(9,950)	= 7.40
_corr(u_i, Xl	(-) = -0.8894				Prob > F	= 0.0000
sr	Coef.	Std. Err.	t	P >  t	[95% Conf	Interval]
fwd	0.0000786	0.0002646	0.30	0.766	-0.0004414	0.0005987
swp	-0.0000408	0.0001567	-0.26	0.795	-0.0003488	0.0002671
opt	-0.000067	0.0007182	-0.09	0.926	-0.0014786	0.0013446
fut	-0.0002004	0.0014641	-0.14	0.891	-0.003078	0.0026772
cap	-0.0046091	0.0049112	-0.94	0.349	-0.0142618	0.0050435
liq	-0.0008416	0.001917	-0.44	0.661	-0.0046093	0.0029262
loan	-0.0054027	0.0017266	-3.13	0.002	-0.0087963	-0.0020091
nim	0.0016082	0.0066282	0.24	0.808	-0.0114192	0.0146355
nonim	0.0028148	0.0067359	0.42	0.676	-0.0104243	0.0160538
cr	-0.0010402	0.0014469	-0.72	0.473	-0.0038841	0.0018037
size	-0.0020309	0.0003047	-6.66	0.000	-0.0026298	-0.001432
constant	0.0229643	0.0028722	8.00	0.000	0.0173191	0.0286096
sigma u	0.00289746					
sigma e	0.00248754					
rho	0.57568326	(fraction of va	riance due to	n i)		
F test that a		· ·	(3) = 1.82	<u> </u>	Prob > 1	F = 0.0002
est store eq	_	1(75,155	, 1.02		1100 - 1	0.0002
1	l swp opt fut ca	n lia loan cr nir	n nonim size.	re		
	fects GLS regre				Number of obs	= 518
Group varia					Number of grou	
R-sq: withi					Obs per group: r	
	n = 0.0195				1 0 1	avg = 7.0
overa	ll = 0.0401					max = 7
Random eff	fects u i ~ Gaus	sian			Wald chi2(11)	= 21.69
corr(u i, Xł	b) $= 0$ (assume	ned)			Prob > chi2	= 0.0269
sr	Coef.	Std. Err.	t	P> t	[95% Co	nf. Interval]
fwd	-0.0000737	0.0001436	-0.51	0.607	-0.0003551	0.0002076
swp	-0.0000328	0.0000947	-0.35	0.729	-0.0002184	0.0001527
opt	-0.0001705	0.000517	-0.33	0.741	-0.0011838	0.0008427
fut	0.0006778	0.0010976	0.62	0.537	-0.0014734	0.002829
cap	-0.0082174	0.0031481	-2.61	0.009		-0.0020472
liq	-0.0022986	0.0014697	-1.56	0.118		0.0005819
loan	-0.0019263	0.0008757	-2.20	0.028		
nim	0.0105474	0.0035746	2.95	0.003		0.0175536
nonim	0.0064649	0.004671	1.38	0.166		0.01562
cr	-0.0008533	0.0013176	-0.65	0.517		
size	-0.0002501	0.0000972	-2.57	0.010		
constant	0.0046287	0.001205	3.84	0.000		0.0069905
sigma u	0.00025769	0.001200	2.01	0.000	0.0022009	0.00000000
sigma e	0.00248754	1				
rho	0.01061745	(fraction of v	ariance due to	on i)		
hausman eq	- 1			<u> </u>		
		icients	(b-B)	cart	(diag(V b-V B))	
	(b)	(B)	Difference	Sqrt	(diag(v_0-v_B)) S.E.	
					1.1.1.7.	

	Eq1			
fwd	0.0000786	-0.0000737	0.0001524	0.0002223
swp	-0.0000408	-0.0000328	-7.99e-06	0.0001248
opt	-0.000067	-0.0001705	0.0001035	0.0004986
fut	-0.0002004	0.0006778	-0.0008782	0.000969
cap	-0.0046091	-0.0082174	0.0036082	0.0037695
liq	-0.0008416	-0.0022986	0.001457	0.0012308
loan	-0.0054027	-0.0019263	-0.0034764	0.0014881
ninim	0.0016082	0.0105474	-0.0089393	0.0055816
nonim	0.0028148	0.0064649	-0.0036502	0.0048532
cr	-0.0010402	-0.0008533	-0.0001868	0.000598
size	-0.0020309	-0.0002501	-0.0017808	0.0002888

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(11) = (b-B)'[(V_b-V_B)^(-1)](b-B) 67.67

## Appendix VI.d.

xtreg eff fwd	l swp opt fut ca	n lig loan er s	ize, fe			
	s (within) regre		120, 10		Number of obs	= 1096
Group variab		551011			Number of group	
R-sq: within					Obs per group: m	
	= 0.0088					avg = 8.0
	ll = 0.0143					$\max = 8$
					F(9,950)	= 3.18
corr(u i, Xb)	= -0.1152				Prob > F	= 0.0003
eff	Coef.	Std. Err.	Т	P> t	[95% Con	f. Interval]
fwd	-0.0398841	0.023235	-1.72	0.086	-0.0854819	0.0057138
swp	0.0009822	0.0163029	0.06	0.952	-0.0310117	0.032976
opt	-0.0439675	0.0247298	-1.78	0.076	-0.0924989	0.0045638
fut	-0.0043258	0.0188914	-0.23	0.819	-0.0413995	0.0327478
cap	0.1213136	0.2995149	0.41	0.686	-0.4664738	0.7091009
liq	0.0831493	0.1952206	0.43	0.670	-0.2999642	0.4662629
loan	-0.4615872	0.1191277	-3.87	0.000	-0.695371	-0.2278034
cr	-0.4829768	0.1580101	-3.06	0.002	-0.7930659	-0.1728877
size	0.0150077	0.0223509	0.67	0.502	-0.0288551	0.0588706
constant	-0.5153803	0.2007031	-2.57	0.010	-0.9092529	-0.1215076
sigma u	0.332524	0.2007001	2.07	01010	010002020	0.1210070
sigma e	0.29758866					
rho	0.5552731	(fraction of y	ariance due to	n i)		
F test that all		F(136, 9		u 1)	Prob > F	= 0.0000
est store eq1	ru_1 0.	1(150, 5	.50)20		1100 / 1	0.0000
xtreg eff fwd	l swp opt fut ca	n lig loan er s	ize re			
Random-effe	ects GLS regres	ssion	120, 10		Number of obs	= 1096
Group variab		551011			Number of group	
R-sq: within					Obs per group: m	$\sin = \frac{19}{8}$
	= 0.0361					avg = 8.0
overal	l = 0.0319					$\max = 8$
	cts u i ~ Gaus	sian			Wald chi2(11)	= 31.08
corr(u i, Xb)	=0 (assum	ned)				0.0002
	) (	icu)			Prob > chi2 =	= 0.0003
eff	Coef.	Std. Err.	t	P> t	$\frac{\text{Prob} > \text{chi}2}{[95\% \text{ Con}]} =$	
			t -1.30			
eff	Coef.	Std. Err.		P> t	[95% Con	f. Interval]
eff fwd swp	Coef. -0.0273294	Std. Err. 0.0209917	-1.30	P> t  0.193	[95% Con -0.0684725	f. Interval] 0.0138136
eff fwd	Coef. -0.0273294 0.001432	Std. Err. 0.0209917 0.0144689	-1.30 0.10	P> t  0.193 0.921	[95% Con -0.0684725 -0.0269266	f. Interval] 0.0138136 0.0297905
eff fwd swp opt fut	Coef. -0.0273294 0.001432 -0.0512779	Std. Err. 0.0209917 0.0144689 0.0240085	-1.30 0.10 -2.14	P> t  0.193 0.921 0.033	[95% Con -0.0684725 -0.0269266 -0.0983337	f. Interval] 0.0138136 0.0297905 -0.004222
eff fwd swp opt fut cap	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055	-1.30 0.10 -2.14 -0.21 0.94	P> t  0.193 0.921 0.033 0.831 0.345	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927
eff fwd swp opt fut	Coef. -0.0273294 -0.0512779 -0.0036215 0.2466432 -0.0248705	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867	-1.30 0.10 -2.14 -0.21 0.94 -0.14	P> t  0.193 0.921 0.033 0.831 0.345 0.889	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719
eff fwd swp opt fut cap liq loan	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591
eff fwd swp opt fut cap liq loan cr	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474
eff fwd swp opt fut cap liq loan	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141           0.0144019	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000           0.003           0.017	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474
eff fwd swp opt fut cap liq loan cr size constant sigma u	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141           0.0144019	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000           0.003           0.017	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141           0.0144019           0.14413	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000           0.003           0.017           0.000	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924	Std. Err.           0.0209917           0.0144689           0.0240085           0.0169867           0.2613055           0.1786011           0.0997686           0.1549141           0.0144019           0.14413	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39	P> t            0.193           0.921           0.033           0.831           0.345           0.889           0.000           0.003           0.017           0.000	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13	P> t          0.193         0.921         0.033         0.831         0.345         0.889         0.000         0.003         0.017         0.000         u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B)	P> t          0.193         0.921         0.033         0.831         0.345         0.889         0.000         0.003         0.017         0.000         u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b)	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13	P> t          0.193         0.921         0.033         0.831         0.345         0.889         0.000         0.003         0.017         0.000         u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 liag(V_b-V_B)) S.E.	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.3891019 -0.34651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 liag(V_b-V_B)) S.E. 0.0099605	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 Jiag(V_b-V_B)) S.E. 0.0099605 0.0075124	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.3891019 -0.343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 Jiag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215         0.2466432	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215         0.2466432         -0.0248705	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap liq loan	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493 -0.4615872	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215         0.2466432         -0.0248705         -0.3891019	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198 -0.0724853	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821 0.0650971	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap liq loan cr	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493 -0.4615872 -0.4829768	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215         0.2466432         -0.0248705         -0.3891019         -0.4651	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198 -0.0724853 -0.0178768	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821 0.0650971 0.0311258	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap liq loan cr	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493 -0.4615872 -0.4829768 0.0150077	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0036215         0.2466432         -0.0248705         -0.3891019         -0.4651         0.0343819	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198 -0.0178768 -0.0193742	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821 0.0650971	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap liq loan cr size	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493 -0.4615872 -0.4829768 0.0150077 t under Ho and	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0248705         -0.3891019         -0.4651         0.0343819	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198 -0.0178768 -0.0193742 from xtreg	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821 0.0650971 0.0311258	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092
eff fwd swp opt fut cap liq loan cr size constant sigma u sigma e rho hausman eq1 fwd swp opt fut cap liq loan cr size	Coef. -0.0273294 0.001432 -0.0512779 -0.0036215 0.2466432 -0.0248705 -0.3891019 -0.4651 0.0343819 -0.7396981 0.30905173 0.29758866 0.51888924 Coeffi (b) Eq1 -0.0398841 0.0009822 -0.0439675 -0.0043258 0.1213136 0.0831493 -0.4615872 -0.4829768 0.0150077	Std. Err.         0.0209917         0.0144689         0.0240085         0.0169867         0.2613055         0.1786011         0.0997686         0.1549141         0.0144019         0.14413         (fraction of v         cients         (B)         -0.0273294         0.001432         -0.0512779         -0.0248705         -0.3891019         -0.4651         0.0343819	-1.30 0.10 -2.14 -0.21 0.94 -0.14 -3.90 -3.00 2.39 -5.13 variance due to (b-B) Difference -0.0125547 -0.0004498 0.0073103 -0.0007043 -0.1253296 0.1080198 -0.0178768 -0.0193742 from xtreg	P> t  0.193 0.921 0.033 0.831 0.345 0.889 0.000 0.003 0.017 0.000 u i)	[95% Con -0.0684725 -0.0269266 -0.0983337 -0.0369149 -0.2655062 -0.3749222 -0.5846447 -0.7687259 0.0061546 -10.022188 diag(V_b-V_B)) S.E. 0.0099605 0.0075124 0.0059292 0.0082665 0.1463852 0.078821 0.0650971 0.0311258	f. Interval] 0.0138136 0.0297905 -0.004222 0.0296719 0.7587927 0.3251812 -0.1935591 -0.161474 0.0626092

Test: Ho: difference in coefficients not systematic  $chi2(9) = (b-B)'[(V \ b-V \ B)^{(-1)}](b-B)$  10.29Prob>chi2 = 0.3274

$$cm2(9) = (0-B)[(V - 0-V)]$$

vtrag nim fu	d swp opt fut c	an lig loon or a	riza fa			
•	s (within) regre	· ·	5120, 10		Number of obs	= 1096
Group variat		331011			Number of group	
R-sq: within					Obs per group: m	
	= 0.3683					avg = 8.0
	ll = 0.3614					$\max = 8$
overa	0.5011				F(9,950)	= 55.69
corr(u i, Xb)	= -0.1133				Prob > F	= 0.0000
nim	Coef.	Std. Err.	t	P> t	[95% Con	
fwd	-0.001481	0.0015111	-0.98	0.327	-0.0044464	0.0014845
swp	0.0008423	0.0010603	0.79	0.427	-0.0012384	0.002923
opt	-0.0017818	0.0016083	-1.11	0.268	-0.004938	0.0013744
fut	0.0007547	0.0012286	0.61	0.539	-0.0016563	0.0031658
cap	0.3957789	0.0194788	20.32	0.000	0.3575523	0.4340054
liq	0.0356904	0.0126961	2.81	0.005	0.0107747	0.060606
loan	-0.0198622	0.0077474	-2.56	0.011	-0.0350663	-0.0046582
cr	0.0226592	0.0102761	2.21	0.028	0.0024926	0.0428257
size	-0.0047409	0.0014536	-3.26	0.001	-0.0075935	-0.0018883
constant	0.0407852	0.0130527	3.12	0.002	0.0151699	0.0664006
sigma u	0.031681	0.0100027	0.112	0.002	0101010))	0.000.000
sigma e	0.01935357					
rho	0.72823391	(fraction of v	ariance due to	u i)		
F test that all		F(136, 9			Prob > F	= 0.0000
est store eq1		1 (100, )	20) 1000		1100 1	0.0000
-	d swp opt fut c	ap lig loan er s	size, re			
	ects GLS regres		,		Number of obs	= 1096
Group variab	•				Number of group	s = 137
R-sq: within					Obs per group: m	
	= 0.3937					wg = 8.0
overal	l = 0.3811					max = 8
Random effe	cts u_i ~ Gaus	sian			Wald chi2(11)	= 585.02
_corr(u_i, Xb)	= 0 (assum)	ied)			Prob > chi2 =	= 0.0003
nim	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.0008489	0.0014388	-0.59	0.555	-0.003669	0.0019711
swp	0.0010147	0.0009995	1.02	0.310	-0.0009443	0.0029737
opt	-0.002262	0.0015932	-1.42	0.156	-0.0053845	0.0008606
fut	0.000861	0.0011656	0.74	0.460	-0.0014235	0.0031455
cap	0.3994678	0.0181613	22.00	0.000	0.3638724	0.4350633
liq	0.037663	0.0121618	3.10	0.002	0.0138262	0.0614998
loan	-0.0153398	0.007022	-2.18	0.029	-0.0291027	-0.0015769
cr	0.0256189	0.0102336	2.50	0.012	0.0055615	0.0456763
size	-0.0027882	0.0011116	-2.51	0.012	-0.0049669	-0.0006094
constant	0.0196593	0.0108229	1.82	0.069	-0.0015531	0.0408718
sigma u	0.02887826					•
sigma e	0.01935357	1				
rho	0.69006519	(fraction of v	variance due to	oui)		
L	•	. `		/		
hausman eq1						
			(1 <b>D</b> )	,		

hausman	eq1	
---------	-----	--

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.001481	-0.0008489	-0.0006321	0.0004617
swp	0.0008423	0.0010147	-0.0001724	0.0003537
opt	-0.0017818	-0.002262	0.0004802	0.0002202
fut	0.0007547	0.000861	-0.0001063	0.0003884
cap	0.3957789	0.3994678	-0.003689	0.0070422

liq	0.0356904	0.037663	-0.0019726	0.0036443
loan	-0.0198622	-0.0153398	-0.0045224	0.0032732
cr	0.0226592	0.0256189	-0.0029598	0.0009343
size	-0.0047409	-0.0027882	-0.0019527	0.0009366

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[ $(V_b-V_B)^{(-1)}$ ](b-B) 32.99

AUCY CAU IW	d swp opt fut c	ap lig loan cr s	ize, fe				
•	s (within) regre		Number of obs $=$ 1096				
Group variab				Number of groups $=$ 137			
R-sq: within $= 0.1518$					os per group: m		
	= 0.5929				vg = 8.0		
overal	ll = 0.4070				r	nax = 8	
					F(9,950)	= 18.90	
_corr(u_i, Xb)	= -0.1389				Prob > F	= 0.0000	
cad	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
fwd	-0.1556598	0.2239426	-0.70	0.487	-0.5951391	0.2838196	
swp	-0.0074394	0.15713	-0.05	0.962	-0.3158013	0.3009226	
opt	0.0589381	0.2383499	0.25	0.805	-0.408815	0.5266913	
fut	0.0300584	0.182078	0.17	0.869	-0.3272631	0.3873799	
cap	-27.1413	2.886772	-9.40	0.000	-32.80648	-21.47611	
liq	-2.246277	1.881567	-1.19	0.233	-5.938786	1.446231	
loan	10.04809	1.148171	8.75	0.000	7.794841	12.30133	
cr	2.649506	1.522926	1.74	0.082	-0.3391812	5.638194	
size	-0.4226575	0.2154217	-1.96	0.050	-0.8454148	0.0000998	
constant	7.965512	1.934408	4.12	0.000	4.169305	11.76172	
sigma u	2.2141905			•	•		
sigma e	2.8682063						
rho	0.37341361	(fraction of v	variance due to	u i)			
F test that all	u i=0:	F(136, 9	(50) = 4.04	/	Prob > F	= 0.0000	
est store eq1	—		,				
xtreg cad fw	d swp opt fut c	ap liq loan cr s	ize, re				
	ects GLS regres			Nı	umber of obs	= 1096	
Group variab	ole: ident			Number of groups $=$ 137			
R-sq: within	n = 0.1479			Obs per group: $\min = 8$			
between	= 0.6476				a	vg = 8.0	
overall	l = 0.4363			$\max = 8$			
	cts u_i ~ Gaus			Wald $chi2(11) = 403.97$			
corr(u_i, Xb)	``````````````````````````````````````	ied)		Prob > chi2 = 0.0003			
cad	Coef.	Std. Err.	t	P> t	[95% Cont		
fwd	0.0594289	0.1822191	0.33	0.744	-0.2977141	0.4165718	
swp	-0.1234026	0.1236498	-1.00	0.318	-0.3657517	0.1189466	
opt	0.0709957	0.2236084	0.32	0.751	-0.3672688	0.5092601	
				0.751			
fut	0.0308411	0.147534	0.21	0.834	-0.2583202	0.3200024	
	0.0308411 -27.00417	0.147534 2.216785	0.21 -12.18		-0.2583202 -31.34899	0.3200024	
fut				0.834			
fut cap	-27.00417	2.216785	-12.18	0.834 0.000	-31.34899	-22.65935	
fut cap liq	-27.00417 -2.67334	2.216785 1.576606	-12.18 -1.70	0.834 0.000 0.090	-31.34899 -5.763431	-22.65935 0.4167511	
fut cap liq loan	-27.00417 -2.67334 11.27457	2.216785 1.576606 0.8328075	-12.18 -1.70 13.54	0.834 0.000 0.090 0.000	-31.34899 -5.763431 9.6423	-22.65935 0.4167511 12.90685	
fut cap liq loan cr	-27.00417 -2.67334 11.27457 2.444406	2.216785 1.576606 0.8328075 1.458129	-12.18 -1.70 13.54 1.68	0.834 0.000 0.090 0.000 0.094	-31.34899 -5.763431 9.6423 -0.4134744	-22.65935 0.4167511 12.90685 5.302287	
fut cap liq loan cr size	-27.00417 -2.67334 11.27457 2.444406 -0.1011348	2.216785 1.576606 0.8328075 1.458129 0.1053276	-12.18 -1.70 13.54 1.68 -0.96	0.834 0.000 0.090 0.000 0.094 0.337	-31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	-22.65935 0.4167511 12.90685 5.302287 0.1053034	
fut cap liq loan cr size constant sigma u	-27.00417 -2.67334 11.27457 2.444406 -0.1011348 4.379263	2.216785 1.576606 0.8328075 1.458129 0.1053276	-12.18 -1.70 13.54 1.68 -0.96	0.834 0.000 0.090 0.000 0.094 0.337	-31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	-22.65935 0.4167511 12.90685 5.302287 0.1053034	
fut cap liq loan cr size constant	-27.00417 -2.67334 11.27457 2.444406 -0.1011348 4.379263 1.7960301	2.216785 1.576606 0.8328075 1.458129 0.1053276 1.117436	-12.18 -1.70 13.54 1.68 -0.96	0.834 0.000 0.090 0.000 0.094 0.337 0.000	-31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	-22.65935 0.4167511 12.90685 5.302287 0.1053034	
fut cap liq loan cr size constant sigma u sigma_e	-27.00417 -2.67334 11.27457 2.444406 -0.1011348 4.379263 1.7960301 2.8682063	2.216785 1.576606 0.8328075 1.458129 0.1053276 1.117436	-12.18 -1.70 13.54 1.68 -0.96 3.92	0.834 0.000 0.090 0.000 0.094 0.337 0.000	-31.34899 -5.763431 9.6423 -0.4134744 -0.3075731	-22.65935 0.4167511 12.90685 5.302287 0.1053034	

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.1556598	0.0594289	-0.2150886	0.1301786
swp	-0.0074394	-0.1234026	0.1159632	0.0969565
opt	0.0589381	0.0709957	-0.0120575	0.0825224
fut	0.0300584	0.0308411	-0.0007827	0.1067057
cap	-27.1413	-27.00417	-0.1371304	1.84914

liq	-2.246277	-2.67334	0.4270626	1.026941
loan	10.04809	11.27457	-1.226487	0.7903979
cr	2.649506	2.444406	0.2051002	0.4395028
size	-0.4226575	-0.1011348	-0.3215226	0.1879165

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) 13.36

xtreg roa fwo	a swp opt tul ca	ap liq loan cr s	ize. fe			
	s (within) regre			Ν	umber of obs	= 1096
Group varial		551011			umber of group	
R-sq: within					bs per group: m	
	= 0.0006			0		avg = 8.0
	ll = 0.0143					$\max = 8$
overa	.0115				F(9,950)	= 6.52
_corr(u_i, Xb)	) = -0.1739				Prob > F	= 0.0000
roa	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.000186	0.0010118	-0.18	0.854	-0.0021716	0.0017996
swp	-0.0005821	0.0007099	-0.82	0.412	-0.0019753	0.0008112
opt	-0.0000612	0.0010769	-0.06	0.955	-0.0021746	0.0020522
fut	-0.0002203	0.0008227	-0.27	0.789	-0.0018348	0.0013941
cap	-0.0061066	0.0130429	-0.47	0.640	-0.0317029	0.0194897
liq	0.0062791	0.0085013	0.74	0.460	-0.0104043	0.0229625
loan	-0.0136115	0.0051876	-2.62	0.009	-0.023792	-0.0034309
cr	-0.0477499	0.0068808	-6.94	0.000	-0.0612533	-0.0342465
size	-0.00159	0.0009733	-1.63	0.103	-0.0035	0.0003201
constant	0.037584	0.00874	4.30	0.000	0.0204321	0.0547359
sigma u	0.0139253	0.0007.		01000	0.020.021	0100 17003
sigma e	0.01295906					
rho	0.53589424	(fraction of y	ariance due to	n i)		
F test that all		F(136, 9		<u>u_1)</u>	Prob > F	= 0.0000
est store eq1	Iu_I 0.	1(150, )	0.50		1100 - 1	0.0000
	d swp opt fut ca	an lia loan cr s	ize re			
•	ects GLS regree		120, 10	Ν	umber of obs	= 1096
Group varial	•	551011			umber of group	
-					bs per group: m	
	n = 0.0439			0		
	n = 0.0439 = 0.2154			0		
between	= 0.2154			0	2 2 2	avg = 8.0
between overal	l = 0.2154 l = 0.1273	sian			1 U 1 1	avg = 8.0 max = 8
between overal Random effe	a = 0.2154 l = 0.1273 ects u_i ~ Gaus			W	vald chi2(11)	avg = 8.0 max = 8 = 76.35
between overal Random effe corr(u_i, Xb)	l = 0.2154 l = 0.1273 ects u_i ~ Gaus ) _ = 0 (assume	ned)	t	W Pi	$V_{ald chi2(11)}$ rob > chi2 =	avg = 8.0 max = 8 = 76.35 = 0.0003
between overal Random effe corr(u_i, Xb) roa	= 0.2154 l = 0.1273 ects u_i ~ Gaus ) = 0 (assum Coef.	ned) Std. Err.	t -0.38	W Pr P> t	7ald chi2(11) $rob > chi2 = [95% Con]$	avg = 8.0 max = 8 = 76.35 = 0.0003 f. Interval]
between overal Random effe corr(u_i, Xb roa fwd	$ = 0.2154  1 = 0.1273  ects u_i ~ Gaus  ) = 0 (assum  Coef.  -0.0003321 $	ned) Std. Err. 0.0008853	-0.38	W Pr P> t  0.708	7ald chi2(11) rob > chi2 = [95% Con -0.0020673]	avg = 8.0      max = 8      = 76.35      = 0.0003      f. Interval]      0.001403
between overal Random effe corr(u_i, Xb) roa fwd swp	$= 0.2154$ $I = 0.1273$ ects u_i ~ Gaus $= 0 (assum)$ Coef. $-0.0003321$ $-0.0003764$	ned) Std. Err. 0.0008853 0.0006056	-0.38 -0.62	W P1 0.708 0.534	7ald chi2(11) rob > chi2 = [95% Con-0.0020673-0.0015634	avg = 8.0      max = 8      = 76.35      = 0.0003      f. Interval]      0.001403      0.0008106
between overal Random effe corr(u_i, Xb) roa fwd swp opt	$= 0.2154$ $I = 0.1273$ sets u_i ~ Gaus $= 0 (assum)$ $= 0 (assum)$ $= 0.0003321$ $= 0.0003764$ $= -0.0005649$	ed) Std. Err. 0.0008853 0.0006056 0.0010463	-0.38 -0.62 -0.54	W P1 0.708 0.534 0.589	a Tald chi2(11) $b > chi2 = 0$ $[95% Con -0.0020673 -0.0015634 -0.0026156]$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline & 0.001403 \\ \hline & 0.0008106 \\ \hline & 0.0014858 \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut	$= 0.2154$ $I = 0.1273$ sets u_i ~ Gaus $= 0 (assum)$ $= 0 (assum)$ $= 0.0003321$ $= -0.0003764$ $= -0.0005649$ $= 0.0000318$	red) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163	-0.38 -0.62 -0.54 0.04	W P1 0.708 0.534 0.589 0.965	$\begin{array}{r} & & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline \\ & & & \\ \hline \\ \hline$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline 0.001403 \\ \hline 0.001403 \\ \hline 0.0014858 \\ \hline 0.0014356 \end{array}$
between overal Random effe corr(u_i, Xb roa fwd swp opt fut cap	= 0.2154 $= 0.1273$ $= 0 (assum)$ $= 0 (assum)$ $= 0 (assum)$ $= 0 (assum)$ $= 0.0003321$ $= -0.0003764$ $= -0.0005649$ $= 0.0000318$ $= 0.0395395$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913	-0.38 -0.62 -0.54 0.04 3.63	W P> t  0.708 0.534 0.589 0.965 0.000	$\begin{array}{c} & & & & \\ & & & \\ & & & \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ \hline \\ \hline$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014356 \\ \hline 0.0014356 \\ \hline 0.060886 \end{array}$
between overal Random effe corr(u_i, Xb roa fwd swp opt fut cap liq	$= 0.2154$ $= 0.1273$ ects u_i ~ Gaus $= 0 \text{ (assum}$ Coef. $= 0.0003321$ $= 0.0003764$ $= 0.0000318$ $= 0.0395395$ $= 0.0110833$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589	-0.38 -0.62 -0.54 0.04 3.63 1.46	W P1 0.708 0.534 0.589 0.965 0.000 0.144	$\begin{array}{r} & & & & \\ & & & \\ & & & \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ -0.0020673 \\ \hline & & & \\ -0.0026156 \\ \hline & & & \\ -0.0013721 \\ \hline & & & \\ 0.0181929 \\ \hline & & & \\ -0.0037908 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014356 \\ \hline 0.0014356 \\ \hline 0.0014356 \\ \hline 0.00259574 \end{array}$
between overal Random effe corr(u_i, Xb roa fwd swp opt fut cap liq loan	$= 0.2154$ $= 0.1273$ ects u_i ~ Gaus $= 0 \text{ (assum}$ $= 0 \text{ (assum}$ $= 0.0003321$ $= 0.0003764$ $= -0.0005649$ $= 0.0000318$ $= 0.0395395$ $= 0.0110833$ $= -0.0190852$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221	-0.38 -0.62 -0.54 0.04 3.63 1.46 -4.63	W P1 0.708 0.534 0.589 0.965 0.000 0.144 0.000	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ rob > chi2 & = \\ & & & & \\ \hline & & & & \\ rob > chi2 & = \\ \hline & & & & \\ \hline & & & & \\ rob > chi2 & = \\ \hline & & & & \\ \hline & & & & \\ rob > chi2 & = \\ \hline & & & & \\ \hline & & & & \\ rob > chi2 & = \\ \hline & & & \\ \hline & & & & \\ rob > chi2 & = \\ \hline & & & \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ \hline & & & \\ rob > chi2 & = \\ rob > c$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline 0.001403 \\ 0.0008106 \\ \hline 0.0014858 \\ 0.0014356 \\ \hline 0.00014356 \\ \hline 0.0014356 \\ \hline 0.0259574 \\ -0.0110061 \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr	$= 0.2154$ $= 0.1273$ sets u_i ~ Gaus $= 0 (assum)$ $= 0 (assum)$ $= 0 (assum)$ $= 0 (assum)$ $= 0.0003321$ $= -0.0003764$ $= -0.0005649$ $= 0.0000318$ $= 0.0395395$ $= 0.0110833$ $= -0.0190852$ $= -0.0451722$	red) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ \hline & & & &$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline 0.001403 \\ \hline 0.001403 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.0013877 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size	$= 0.2154$ $I = 0.1273$ sets u_i ~ Gaus $= 0 (assum Coef0.0003321 -0.0003764 -0.0005649 0.0000318 0.0395395 0.0110833 -0.0190852 -0.0451722 0.0006638$	red) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834 0.0005548	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \\ 1.20 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t  \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ 0.232\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ rob > chi2 & = \\ \hline & & & [95\% \ Con \\ -0.0020673 \\ -0.0015634 \\ -0.0026156 \\ -0.0013721 \\ \hline & & 0.0181929 \\ -0.0037908 \\ -0.0271644 \\ -0.0584675 \\ -0.0004235 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.0014356 \\ \hline 0.00014356 \\ \hline 0.00014356 \\ \hline 0.0259574 \\ \hline -0.0110061 \\ \hline -0.031877 \\ \hline 0.0017511 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size constant	$= 0.2154$ $I = 0.1273$ sets u_i ~ Gaus $= 0 (assum)$ Coef0.0003321 -0.0003764 -0.0005649 0.0000318 0.0395395 0.0110833 -0.0190852 -0.0451722 0.0006638 0.0149721	red) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ \hline & & & &$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ f. \ Interval] \\ \hline 0.001403 \\ \hline 0.001403 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.0013877 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size constant sigma u	$= 0.2154$ $= 0.1273$ ects u_i ~ Gaus $= 0 \text{ (assum}$ $-0.0003321$ $-0.0003764$ $-0.0005649$ $0.0000318$ $0.0395395$ $0.0110833$ $-0.0190852$ $-0.0451722$ $0.0006638$ $0.0149721$ $0.01038712$	red) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834 0.0005548	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \\ 1.20 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t  \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ 0.232\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ rob > chi2 & = \\ \hline & & & [95\% \ Con \\ -0.0020673 \\ -0.0015634 \\ -0.0026156 \\ -0.0013721 \\ \hline & & 0.0181929 \\ -0.0037908 \\ -0.0271644 \\ -0.0584675 \\ -0.0004235 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.0014356 \\ \hline 0.00014356 \\ \hline 0.00014356 \\ \hline 0.0259574 \\ \hline -0.0110061 \\ \hline -0.031877 \\ \hline 0.0017511 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb roa fwd swp opt fut cap liq loan cr size constant sigma u sigma_e	$= 0.2154$ $= 0.1273$ sets u_i ~ Gaus $= 0 \text{ (assum}$ $Coef.$ $= 0.0003321$ $= 0.0003764$ $= 0.0005649$ $= 0.0000318$ $= 0.0395395$ $= 0.0110833$ $= -0.0190852$ $= -0.0451722$ $= 0.0006638$ $= 0.0149721$ $= 0.01295906$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834 0.0005548 0.00057127	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \\ 1.20 \\ 2.62 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ 0.232\\ 0.009\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ rob > chi2 & = \\ \hline & & & [95\% \ Con \\ -0.0020673 \\ -0.0015634 \\ -0.0026156 \\ -0.0013721 \\ \hline & & 0.0181929 \\ -0.0037908 \\ -0.0271644 \\ -0.0584675 \\ -0.0004235 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.00014356 \\ \hline 0.00014356 \\ \hline 0.000886 \\ \hline 0.0259574 \\ \hline -0.0110061 \\ \hline -0.031877 \\ \hline 0.0017511 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb) roa fwd swp opt fut cap liq loan cr size constant sigma u	$= 0.2154$ $= 0.1273$ ects u_i ~ Gaus $= 0 \text{ (assum}$ $-0.0003321$ $-0.0003764$ $-0.0005649$ $0.0000318$ $0.0395395$ $0.0110833$ $-0.0190852$ $-0.0451722$ $0.0006638$ $0.0149721$ $0.01038712$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834 0.0005548 0.00057127	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \\ 1.20 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ 0.232\\ 0.009\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ rob > chi2 & = \\ \hline & & & [95\% \ Con \\ -0.0020673 \\ -0.0015634 \\ -0.0026156 \\ -0.0013721 \\ \hline & & 0.0181929 \\ -0.0037908 \\ -0.0271644 \\ -0.0584675 \\ -0.0004235 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.00014356 \\ \hline 0.00014356 \\ \hline 0.000886 \\ \hline 0.0259574 \\ \hline -0.0110061 \\ \hline -0.031877 \\ \hline 0.0017511 \\ \hline \end{array}$
between overal Random effe corr(u_i, Xb roa fwd swp opt fut cap liq loan cr size constant sigma u sigma_e	$= 0.2154$ $I = 0.1273$ sets u_i ~ Gaus $= 0 (assum Coef0.0003321 -0.0003764 -0.0005649 0.0000318 0.0395395 0.0110833 -0.0190852 -0.0451722 0.0006638 0.0149721 0.01038712 0.01295906 0.39115555$	ed) Std. Err. 0.0008853 0.0006056 0.0010463 0.0007163 0.0108913 0.007589 0.0041221 0.0067834 0.0005548 0.00057127	$\begin{array}{r} -0.38 \\ -0.62 \\ -0.54 \\ 0.04 \\ 3.63 \\ 1.46 \\ -4.63 \\ -6.66 \\ 1.20 \\ 2.62 \end{array}$	$\begin{array}{c} W\\ P1\\ \hline P> t \\ 0.708\\ 0.534\\ 0.589\\ 0.965\\ 0.000\\ 0.144\\ 0.000\\ 0.000\\ 0.232\\ 0.009\\ \end{array}$	$\begin{array}{c} & & & & & \\ & & & & \\ rob > chi2 & = \\ \hline & & & [95\% \ Con \\ -0.0020673 \\ -0.0015634 \\ -0.0026156 \\ -0.0013721 \\ \hline & & 0.0181929 \\ -0.0037908 \\ -0.0271644 \\ -0.0584675 \\ -0.0004235 \end{array}$	$\begin{array}{rrrr} avg = & 8.0 \\ max = & 8 \\ = & 76.35 \\ = & 0.0003 \\ \hline f. Interval] \\ \hline 0.001403 \\ \hline 0.0008106 \\ \hline 0.0014858 \\ \hline 0.0014356 \\ \hline 0.00014356 \\ \hline 0.00014356 \\ \hline 0.000886 \\ \hline 0.0259574 \\ \hline -0.0110061 \\ \hline -0.031877 \\ \hline 0.0017511 \\ \hline \end{array}$

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.000186	-0.0003321	0.0001461	0.0004899
swp	-0.0005821	-0.0003764	-0.0002057	0.0003705
opt	-0.0000612	-0.0005649	0.0005037	0.000255
fut	-0.0002203	0.0000318	-0.0002521	0.0004046
cap	-0.0061066	0.0395395	-0.0456461	0.0071762

liq	0.0062791	0.0110833	-0.0048042	0.0038313
loan	-0.0136115	-0.0190852	0.0054738	0.0031496
cr	-0.0477499	-0.0451722	-0.0025777	0.0011538
size	-0.00159	0.0006638	-0.0022537	0.0007997

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic

chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B) 53.52

xtreg roe fw	d swp opt fut ca	an lia loan cr s	ize fe			
•	s (within) regre				Number of obs	= 1096
Group varial					Number of group	
R-sq: within					Obs per group: m	
-	= 0.0003					avg = 8.0
overa	11 = 0.0234					$\max = 8$
					F(9,950)	= 9.78
corr(u i, Xb	) = -0.4498				Prob > F	= 0.0000
roe	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]
fwd	-0.010874	0.0146045	-0.74	0.457	-0.0395349	0.0177869
swp	-0.0045548	0.0102473	-0.44	0.657	-0.0246648	0.0155552
opt	-0.0133203	0.0155441	-0.86	0.392	-0.0438251	0.0171845
fut	0.0039413	0.0118743	0.33	0.740	-0.0193616	0.0272442
cap	0.1429783	0.1882625	0.76	0.448	-0.2264801	0.5124366
liq	0.1509616	0.1227075	1.23	0.219	-0.0898474	0.3917707
loan	-0.2621777	0.0748786	-3.50	0.000	-0.4091243	-0.115231
cr	-0.8043086	0.0993185	-8.10	0.000	-0.9992176	-0.6093997
size	-0.0327172	0.0140488	-2.33	0.020	-0.0602875	-0.0051468
constant	0.5768894	0.1261535	4.57	0.000	0.3293176	0.8244611
sigma u	0.13060173				•	•
sigma e	0.18705169					
rho	0.32773109	(fraction of v	ariance due to	u i)		
F test that all		F(136, 9		/	Prob > F	= 0.0000
est store eq1	_		1			
-	d swp opt fut ca	ap liq loan cr s	ize, re			
	ects GLS regres				Number of obs	= 1096
Group varial	ole: ident			-	Number of group	s = 137
R-sq: within	n = 0.0721				Obs per group: m	in = 8
between	= 0.1077				6	avg = 8.0
overal	l = 0.0804				1	$\max = 8$
	ects u_i ~ Gaus	sian			Wald chi2(11)	= 89.24
i, Xb		ned)			Prob > chi2 =	= 0.0003
roe	Coef.	Std. Err.	t	P> t		f. Interval]
fwd	0.0078597	0.0107821	0.73	0.466	-0.0132728	0.0289923
swp	-0.0031976	0.00723	-0.44	0.658	-0.0173682	0.010973
opt	-0.0178152	0.0140802	-1.27	0.206	-0.0454119	0.0097816
fut	0.0059506	0.0087574	0.68	0.497	-0.0112136	0.0231147
cap	0.2936455	0.1293074	2.27	0.023	0.0402076	0.5470834
liq	0.0603043	0.0948176	0.64	0.525	-0.1255348	0.2461433
loan	-0.2302551	0.0481493	-4.78	0.000	-0.324626	-0.1358841
cr	-0.7579755	0.0927784	-8.17	0.000	-0.9398179	-0.5761332
size	0.0085472	0.005643	1.51	0.130	-0.0025129	0.0196073
constant	0.1681055	0.0624272	2.69	0.007	. 0.0457505	0.2904605
sigma u	0.08007792					
sigma_e	0.18705169					
rho	0.15488765	(fraction of v	ariance due to	u_i)		
hausman eq1	L					
	~		$(1, \mathbf{D})$	. (	1 - (V + V - D)	1

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b)	(B)	Difference	S.E.
	Eq1			
fwd	-0.010874	0.0078597	-0.0187338	0.0098508
swp	-0.0045548	-0.0031976	-0.0013572	0.0072618
opt	-0.0133203	-0.0178152	0.0044949	0.0065853
fut	0.0039413	0.0059506	-0.0020093	0.0080192
cap	0.1429783	0.2936455	-0.1506673	0.1368296

liq	0.1509616	0.0603043	0.0906574	0.0778893
loan	-0.2621777	-0.2302551	-0.0319226	0.057345
cr	-0.8043086	-0.7579755	-0.0463331	0.0354446
size	-0.0327172	0.0085472	-0.0412643	0.0128657

B = inconsistent under Ha, efficient under Ho; obtained from xtreg

Test: Ho: difference in coefficients not systematic  $chi2(9) = (b-B)'[(V_b-V_B)^{(-1)}](b-B)$ 20.21

xtreg npl fwo Fixed-effects Group variab	s (within) regre		umber of obs umber of group	= 544 s = 68		
R-sq: within		INU	• •	s = 08 group: min =		
8 R-sq. within	1 - 0.2242				Obs per §	group. mm –
between	l = 0.1256 ll = 0.1529					avg = 8.0 max = 8
Overa	II = 0.1329				F(9,950)	= 9.78
corr(u i, Xb	= -0.1030				P(9,950) Prob > F	= 0.0000
npl	Coef.	Std. Err.	t	P> t	1	f. Interval]
fwd	0.0036282	0.0028358	1.28	0.201	-0.0019442	0.0092006
swp	-0.0011932	0.0018432	-0.65	0.518	-0.0048153	0.0024288
opt	0.0077679	0.0101158	0.03	0.443	-0.0121102	0.0276461
fut	-0.0013209	0.0023346	-0.57	0.572	-0.0059086	0.0032667
cap	-0.1179218	0.0613131	-1.92	0.055	-0.2384055	0.0025618
liq	-0.0032204	0.0236675	-0.14	0.892	-0.0497283	0.0432875
loan	-0.0549489	0.0205173	-2.68	0.008	-0.0952665	-0.0146313
cr	0.1367217	0.0186156	7.34	0.000	0.100141	0.1733025
size	-0.0138408	0.0033208	-4.17	0.000	-0.0203663	-0.0073152
constant	0.2135445	0.0310042	6.89	0.000	0.1526195	0.2744694
sigma u	0.04340799	010010012	0.07	0.000	011020170	0.271.031
sigma e	0.02890061					
rho	0.69286789	(fraction of v	ariance due to	u i)		
F test that all			7) = 15.40	)	Prob > F	= 0.0000
est store eq1		- (0, , , 0	,)			
	d swp opt fut c	ap liq loan cr s	ize, re			
	xtreg npl fwd swp opt fut cap liq loan cr size, re Random-effects GLS regression					
Group variable: ident				Nu	umber of obs	= 1096
Group varial	•	551011			umber of obs umber of group	
Group variat R-sq: within	ole: ident	551011		Nu		s = 137
R-sq: within	ole: ident	551011		Nu	umber of group os per group: m	s = 137
R-sq: within between	ble: ident n = 0.2210	551011		Nu	umber of group os per group: m a	s = 137 in = 8
R-sq: within between overal Random effe	ble: ident h = 0.2210 = 0.1622 l = 0.1802 ects u_i ~ Gaus			Nu Ol W	umber of group os per group: m ald chi2(11)	s = 137 in = 8 avg = 8.0
R-sq: within between overal	ble: ident a = 0.2210 a = 0.1622 1 = 0.1802 exts u_i ~ Gaus a = 0 (assum	sian ned)		Nu Oł W Pr	umber of group os per group: m ald chi2(11) ob > chi2 =	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000
R-sq: within between overal Random effe corr(u_i, Xb npl	ble: ident h = 0.2210 = 0.1622 l = 0.1802 ects u_i ~ Gaus	sian ned) Std. Err.	t	Nu Ol W	$\begin{array}{c} \text{umber of group} \\ \text{os per group: m} \\ \text{ald chi2(11)} \\ \text{ob > chi2} = \\ \hline \begin{array}{c} 95\% \text{ Con} \end{array}$	s = 137 in = 8 avg = 8.0 max = 8 = 144.57
R-sq: within between overal Random effe corr(u_i, Xb)	ble: ident n = 0.2210 n = 0.1622 1 = 0.1802 bets u_i ~ Gaus n = 0 (assum) Coef. 0.0036337	sian ned) Std. Err. 0.0026824	1.35	Nu Ot W Pr P> t  0.176	$\begin{array}{c} \text{umber of group: m} \\ \text{os per group: m} \\ \text{ald chi2(11)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con}] \\ -0.0016237 \end{array}$	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891
R-sq: within between overal Random effe corr(u_i, Xb npl	ble: ident h = 0.2210 a = 0.1622 l = 0.1802 bets u_i ~ Gaus a = 0 (assum Coef. 0.0036337 -0.0013395	sian hed) Std. Err. 0.0026824 0.0017237	1.35 -0.78	Nu Ob W Pr P> t  0.176 0.437	umber of group:         ps per group:         n         ald chi2(11)         ob > chi2 $[95\% \text{ Con}]$ -0.0016237         -0.0047178	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388
R-sq: within between overal Random effe corr( <u>u</u> i, Xb <u>npl</u> fwd	ble: ident n = 0.2210 n = 0.1622 1 = 0.1802 bets u_i ~ Gaus n = 0 (assum) Coef. 0.0036337	sian ned) Std. Err. 0.0026824	1.35	Nu Ot W Pr P> t  0.176	$\begin{array}{c} \text{umber of group: m} \\ \text{os per group: m} \\ \text{ald chi2(11)} \\ \text{ob } > \text{chi2} = \\ \hline [95\% \text{ Con}] \\ -0.0016237 \end{array}$	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891
R-sq: within between overal Random effe corr(u_i, Xb) <u>npl</u> fwd swp	ble: ident h = 0.2210 a = 0.1622 l = 0.1802 bets u_i ~ Gaus a = 0 (assum Coef. 0.0036337 -0.0013395	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238	1.35 -0.78 0.45 -0.30	Nu Ot W Pr P> t  0.176 0.437 0.655 0.761	umber of group:         ps per group:         n         ald chi2(11)         ob > chi2 $[95\% \text{ Con}]$ -0.0016237         -0.0047178	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388
R-sq: within between overal Random effe corr(u_i, Xb) npl fwd swp opt fut cap	ble: ident h = 0.2210 a = 0.1622 l = 0.1802 bcts u_i ~ Gaus a = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778	sian ned) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044	1.35 -0.78 0.45	Nu Ob W Pr P> t  0.176 0.437 0.655	umber of group         ps per group:         ald chi2(11)         ob > chi2 $[95\%$ Con         -0.0016237         -0.0047178         -0.0147995	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551
R-sq: within between overal Random effe corr(u_i, Xb) npl fwd swp opt fut	ble: ident n = 0.2210 = 0.1622 l = 0.1802 ects u_i ~ Gaus ) = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946	1.35 -0.78 0.45 -0.30	Nu Ot W Pr P> t  0.176 0.437 0.655 0.761	$\begin{array}{c} \text{umber of group: m} \\ \text{abs per group: m} \\ \text{ald chi2(11)} \\ \text{ob} > \text{chi2} = \\ \hline [95\% \text{ Con} \\ -0.0016237 \\ -0.0047178 \\ -0.0147995 \\ -0.0050684 \\ \end{array}$	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254
R-sq: within between overal Random effe corr(u_i, Xb) npl fwd swp opt fut cap	ble: ident h = 0.2210 i = 0.1622 l = 0.1802 bcts u_i ~ Gaus i = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319	1.35           -0.78           0.45           -0.30           -1.55           -0.17           -3.05	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002	amber of group:a $i$ ald chi2(11) $i$ ob > chi2=[95% Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213-0.0887856	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278
R-sq: withir between overal Random effe corr( <u>u</u> i, Xb <u>npl</u> fwd swp opt fut cap liq	ble: ident h = 0.2210 i = 0.1622 l = 0.1802 bcts u_i ~ Gaus i = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318 0.1490451	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946	1.35 -0.78 0.45 -0.30 -1.55 -0.17	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867	amber of group: maiald chi2(11)iob > chi2= $[95\%$ Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254
R-sq: withir between overal Random effe corr(u_i, Xb npl fwd swp opt fut cap liq loan	ble: ident n = 0.2210 = 0.1622 l = 0.1802 bets u_i ~ Gaus ) = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318 0.1490451 -0.0105992	sian ned) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319 0.0184195 0.0023787	1.35           -0.78           0.45           -0.30           -1.55           -0.17           -3.05           8.09           -4.46	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002 0.000 0.000	amber of group:aaald chi2(11) $ob > chi2 =$ [95% Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213-0.08878560.1129437-0.0152613	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278 0.1851466 -0.0059371
R-sq: withir between overal Random effe corr(u_i, Xb npl fwd swp opt fut cap liq loan cr	ble: ident n = 0.2210 = 0.1622 l = 0.1802 bets u_i ~ Gaus ) = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0038479 -0.0540318 0.1490451 -0.0105992 0.1785238	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319 0.0184195	1.35           -0.78           0.45           -0.30           -1.55           -0.17           -3.05           8.09	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002 0.000	$\begin{array}{c} \text{amber of group: m} \\ amber of grou$	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278 0.1851466
R-sq: within between overal Random effe corr(u_i, Xb) npl fwd swp opt fut cap liq loan cr size	ble: ident h = 0.2210 = 0.1622 l = 0.1802 bcts u_i ~ Gaus ) = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318 0.1490451 -0.0105992 0.1785238 0.03757043	sian ned) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319 0.0184195 0.0023787	1.35           -0.78           0.45           -0.30           -1.55           -0.17           -3.05           8.09           -4.46	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002 0.000 0.000	amber of group:aaald chi2(11) $ob > chi2 =$ [95% Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213-0.08878560.1129437-0.0152613	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278 0.1851466 -0.0059371
R-sq: withir between overal Random effe corr(u_i, Xb npl fwd swp opt fut cap liq loan cr size constant sigma_u sigma_e	ble: ident h = 0.2210 i = 0.1622 l = 0.1802 bcts u_i ~ Gaus i = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318 0.1490451 -0.0105992 0.1785238 0.03757043 0.02890061	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319 0.0184195 0.0023787 0.00245252	$ \begin{array}{r} 1.35 \\ -0.78 \\ 0.45 \\ -0.30 \\ -1.55 \\ -0.17 \\ -3.05 \\ 8.09 \\ -4.46 \\ 7.28 \\ \end{array} $	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002 0.000 0.000 0.000	amber of group:aaald chi2(11) $ob > chi2 =$ [95% Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213-0.08878560.1129437-0.0152613	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278 0.1851466 -0.0059371
R-sq: withir between overal Random effe corr(u_i, Xb ⁰ npl fwd swp opt fut cap liq loan cr size constant sigma_u	ble: ident h = 0.2210 = 0.1622 l = 0.1802 bcts u_i ~ Gaus ) = 0 (assum Coef. 0.0036337 -0.0013395 0.0043778 -0.000682 -0.0835898 -0.0038479 -0.0540318 0.1490451 -0.0105992 0.1785238 0.03757043	sian hed) Std. Err. 0.0026824 0.0017237 0.0097845 0.002238 0.0540044 0.022946 0.0177319 0.0184195 0.0023787 0.00245252	1.35           -0.78           0.45           -0.30           -1.55           -0.17           -3.05           8.09           -4.46	Nu Ob W Pr 0.176 0.437 0.655 0.761 0.122 0.867 0.002 0.000 0.000 0.000	amber of group:aaald chi2(11) $ob > chi2 =$ [95% Con-0.0016237-0.0047178-0.0147995-0.0050684-0.1894365-0.0488213-0.08878560.1129437-0.0152613	s = 137 in = 8 avg = 8.0 max = 8 = 144.57 = 0.0000 f. Interval] 0.008891 0.0020388 0.0235551 0.0037043 0.0222569 0.0411254 -0.019278 0.1851466 -0.0059371

#### hausman eq1

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b) (B)		Difference	S.E.
	Eq1			
fwd	0.0036282	0.0036337	-50.50e-06	0.00092
swp	-0.0011932	-0.0013395	0.0001463	0.000653
opt	0.0077679	0.0043778	0.0033901	0.0025677
fut	-0.0013209	-0.000682	-0.0006389	0.0006648

cap	-0.1179218	-0.0835898	-0.034332	0.0290313
liq	-0.0032204	-0.0038479	0.0006275	0.005799
loan	-0.0549489	-0.0540318	-0.0009171	0.0103218
cr	0.1367217	0.1490451	-0.0123234	0.0026954
size	-0.0138408	-0.0105992	-0.0032416	0.0023172

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtregTest: Ho: difference in coefficients not systematic chi2(9) = (b-B)'[(V_b-V_B)^(-1)](b-B)

xtreg cov fw	xtreg cov fwd swp opt fut cap liq loan cr size, fe						
	s (within) regre	Ν	Number of obs $=$ 544				
Group variab		Ν	Number of groups $=$ 68				
R-sq: within			0 1	group: min =			
8					1 0		
between	= 0.0194				8	avg = 8.0	
overal	ll = 0.0288					$\max = 8$	
					F(9,950)	= 4.03	
_corr(u_i, Xb)					Prob > F	= 0.0001	
cov	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
fwd	-0.0583388	0.0709624	-0.82	0.411	-0.1977839	0.0811064	
swp	0.061238	0.0461254	1.33	0.185	-0.029401	0.151877	
opt	-0.2406397	0.2531399	-0.95	0.342	-0.7380741	0.2567946	
fut	0.0299821	0.058422	0.51	0.608	-0.0848204	0.1447846	
cap	0.3350541	1.534311	0.22	0.827	-2.679954	3.350062	
liq	2.382726	0.5922596	4.02	0.000	1.218902	3.54655	
loan	0.2474071	0.5134287	0.48	0.630	-0.7615093	1.256324	
cr	0.8339636	0.4658412	1.79	0.074	-0.0814409	1.749368	
size	.2962591	0.0831001	3.57	0.000	0.1329626	0.4595556	
constant	-2.006031	0.7758545	-2.59	0.010	-3.53063	-0.4814332	
sigma_u	0.86382835						
sigma e	0.72321497						
rho	0.58791073	(fraction of v	ariance due to	u i)			
F test that all	l u i=0:	F(67,46	7) = 8.81		Prob > F	= 0.0000	
est store eq1	_		,				
xtreg cov fw	d swp opt fut c	ap liq loan cr s	size, re				
	ects GLS regre			Ν	umber of obs	= 1096	
Group variab	ole: ident			Ν	umber of group	s = 137	
R-sq: within	n = 0.0633			Ο	bs per group: m	in = 8	
between	= 0.1005				8	avg = 8.0	
overal	l = 0.0847				1	$\max = 8$	
Random effe	ects u_i ~ Gaus	sian		Wald $chi2(11) = 38.90$			
_corr(u_i, Xb)	) = 0 (assum	ned)		Prob > chi2 = 0.0000			
cov	Coef.	Std. Err.	t	P> t	[95% Con	f. Interval]	
fwd	-0.0651431	0.0645069	-1.01	0.313	-0.1915744	0.0612882	
swp	0.0883657	0.0412329	2.14	0.032	0.0075507	0.1691808	
opt	-0.2474007	0.2373247	-1.04	0.297	-0.7125485	0.2177472	
fut	0.0047522	0.054152	0.09	0.930	-0.1013838	0.1108882	
cap	1.221907	1.271605	0.96	0.337	-1.270394	3.714207	
liq	2.635851	0.557683	4.73	0.000	1.542812	3.72889	
loan	0.0203188	0.4137335	0.05	0.961	-0.790584	0.8312216	
cr	0.7375429	0.4516063	1.63	0.102	-0.1475892	1.622675	
size	0.1539228	0.0529317	2.91	0.004	0.0501787	0.2576669	
constant	-0.6220659	0.5590083	-1.11	0.266	-1.717702	0.4735703	
sigma u	0.75210661						
sigma e	0.72321497						
rho	0.51957577	(fraction of v	ariance due to	u i)			
·	•	• •		_ /			

#### hausman eq1

	Coefficients		(b-B)	sqrt(diag(V_b-V_B))
	(b) (B)		Difference	S.E.
	Eq1			
fwd	-0.0583388	-0.0651431	0.0068043	0.0295723
swp	0.061238	0.0883657	-0.0271277	0.0206736
opt	-0.2406397	-0.2474007	0.0067609	0.0880729
fut	0.0299821	0.0047522	0.0252299	0.0219246

cap	0.3350541	1.221907	-0.8868528	0.8585629
liq	2.382726	2.635851	-0.2531251	0.1994019
loan	0.2474071	0.0203188	0.2270883	0.3040289
cr	0.8339636	0.7375429	0.0964206	0.1142794
size	0.2962591	0.1539228	0.1423363	0.0640615

b = consistent under Ho and Ha; obtained from xtreg B = inconsistent under Ha, efficient under Ho; obtained from xtregTest: Ho: difference in coefficients not systematic  $chi2(9) = (b-B)'[(V_b-V_B)^{-}(-1)](b-B)$  11.05