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Chapter 1 Introduction

This chapter provides a general introduction of this thesis and starts by explaining the problem background and motivations in Section 1.1. The underlying problem is stated in Section 1.2. Section 1.3 describes the research methodology and objectives following by the expected results.

Background and Motivation

Nowadays, high-tech production systems become more and more complicated, and data are generated and collected faster than data processing. Continuous data collection requires data analyzing with efficient novelty and effectiveness. Semiconductor industry with the improved Integrated Circuit (IC) design and manufacturing technology has collected varied data sources for mining operational knowledge. To obtain this knowledge, the manufacturer should analyze the received data quickly and efficiently to operate the equipment at high utilization and obtain high production yield.

Low tool utilization and inferior production yield are mainly due to production deficiencies such as process variations and unexpected tool breakdowns. In the semiconductor industry, unexpected failures have more consequences that are serious and tremendously increase investment and operation cost. The typical value of 300 mm fab for monthly production of 25,000 wafers exceeds US$ 2.0-3.0 billion. Such colossal investment urgently necessitates the improvement of operational effectiveness. Among various sorts of costs, equipment cost usually contributes the most significant part of the capital investment. This contribution is expected to take up to 75% of total investment in a typical 300 mm fab [START_REF] Chen | Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration[END_REF]. Accordingly, high tool utilization and top equipment effectiveness have become extremely necessary requisitions for semiconductor industries with intensive capital investment in equipment. However, the complex manufacturing environment has raised production deficiencies such as process variations and unexpected tool breakdowns and has made the evolution of machine conditions more and more difficult.

The earliest and most traditional strategy to prevent such violations into in-situ control at semiconductor production has been corrective strategies such as "fix it when it CHAPTER 1. INTRODUCTION breaks." [START_REF] Kothamasu | System health monitoring and prognostics a review of current paradigms and practices[END_REF]. The problems with this strategy are various as the occurrence of unexpected breakdowns at inconvenient periods of production. This phenomenon leads to uncommitted friction and wears in production schedules that directly results in market profit loss and customer dissatisfaction. Instead, Condition-Based Monitoring (CBM) as a paradigm in Advanced Process Control (APC) theory infers equipment condition and alarms required action based on the runtime data analysis [START_REF] Ahmad | An overview of time-based and condition-based maintenance in industrial application[END_REF]. For this purpose, CBM requires a prognostic module that represents the healthy state of the equipments behavior, enables a manufacturer to avoid equipment breakdown and unnecessary maintenance, and a diagnostic module to identify the causes of the equipment failures.

These two prognostic and diagnostic modules help to develop an advanced equipment deterioration modeling and monitoring that not only results in efficient equipment condition monitoring but also helps to diagnose any failure cause. Such model in the shortest possible time is critical for minimizing scrap wafers, reducing unscheduled equipment breakdowns, minimizing unqualified periods of the equipment and consequently maintaining high process yields, which has motivated this research. Briefly speaking, the primary motivations of prognostic and diagnostic equipment deterioration modeling and monitoring are: (1) minimizing repair and maintenance costs and associated operational breakdowns, and (2) maximizing tool utilization and production yield. Figure 1.1 shows the application of the prognostic and diagnostic results in the industry that takes place well in the current Advanced Process Control (APC) system in semiconductor manufacturing.

Prognostics/Diagnostics

Analysis of Equipment Signals (FDC) Based on Figure 1.1, the prognostic and diagnostic findings of this thesis can be efficiently applied in the industry from different perspectives as 1) Process perspective, 2) Equipment perspective, and 3) Product perspective.

From the process perspective, equipment deterioration modeling provides knowledge about the qualification level of equipment. This knowledge determines which set of equipment are qualified to undertake production activities and which set of equipment are less qualified to do operations. Accordingly, the manufacturer can develop an efficient and proactive production scheduling and dispatch. With the 1.2. PROBLEM STATEMENT aid of this model, such dynamic dispatching and scheduling will play an important role to minimize variability in almost all automated and sophisticated manufacturing factories, particularly semiconductor industry. From the equipment perspective, equipment deterioration modeling provides a diagnostic and prognostic maintenance plan to have a minimal maintenance cost and the minimum probability of unexpected equipment breakdown. Having fewer equipment downtime increases equipment utilization and production yield directly. From the product perspective, equipment deterioration modeling reports the health of equipment and recommends to readjust or re-set process settings though Runto-Run system to avoid product defects. This feedback mechanism not only significantly minimizes the product waste and overall production cost, but also enhances the customer satisfaction and market share indirectly. This research is a part of an international project named IMAGINE (Integrated MAnufacturing Decisions for Next GeneratIoN FactoriEs) between Ecole des Mines de Saint-Etienne in France and National Taiwan University in Taiwan. The French part has been financed by the French National Research Agency (ANR-15-CE10-0003). It is worthy to mention that all the developed methodologies in this thesis have been tested and validated through the practical case studies with the local partners (STMicroelectronics in France).

Problem Statement

In this thesis, we model the equipment deterioration in Batch Manufacturing Processes that are pervasive modes in todays semiconductor fab. Semiconductor manufacturer has been taking the advantage of the rapid IT evolution, which enables more efficient analyses in equipment deterioration modeling. We benefit from such a booming growth of data as an important key for APC solutions to prognose equipment deterioration and diagnose failure causes. The batch manufacturing processes include an extensive data collection with three-dimensions (product × sensor × observation). In semiconductor manufacturing, the batch process data obtained from the equipment are usually referred to be the Fault Detection and Classification (FDC) data.

The first issue in equipment deterioration modeling of FDC data is the health index (HI) extraction from a large and heterogeneous data size, which has been focused unevenly in the literature. The second issue is multiple recipe contexts in semiconductor productions thereby particular process dynamics happen. For instance, in semiconductor manufacturing processes, almost all processes (e.g., etching and deposition) are carried out with different process recipes. Therefore, the normal changes in sensor readings between two different recipes must not be declared as equipment deterioration or fault.

Therefore, the underlying problem is to extract the knowledge (if any) regarding the FDCs behavioral variations and develop an efficient equipment deterioration model. This model is then used to prognose the equipment condition and remaining useful life as well as to diagnose the failure causes.

Research Methodology and Objectives

From a methodological point of view, there exist typically three approaches for equipment deterioration modeling and monitoring such as Physical model-based, Knowledgebased, and Data-driven prognostic approaches [START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF][START_REF] Lee | Prognostics and health management design for rotary machinery systemsReviews, methodology and applications[END_REF][START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Physical model-based, accurately and analytically quantify the characteristics of a failure mode using physical rules regarding mathematical formulations. This interpretation requires a deep understanding of the equipment behavior and detail information of each failure mode [START_REF] Vachtsevanos | Fault Prognosis. Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF]. Not surprisingly, physical models are mathematically complex particularly for multiplex manufacturing systems like semiconductor that contains hundreds or even thousand convoluted failure modes. Knowledge-based approaches assess the match between an observed condition and a databank of historical situations. This assessment is then used to monitor the equipment condition or even to predict and interpret the Remaining Useful Life (RUL) of the equipment [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Knowledge-based approaches such as expert systems contains an accumulated subject matter experience from experts and a set of precise IF-THEN rules. The accuracy and applicability of the knowledge-based approaches are limited due to the humane comprehension uncertainty about the current equipment behavior and its future evolution [START_REF] Lien Nguyen | Fault prognosis for batch production based on percentile measure and gamma process: Application to semiconductor manufacturing[END_REF].

Thanks to the advancement of data collection technologies in semiconductor industry, data-driven approaches have become efficient methods to learn the system behavior through large volume of historical data of equipment conditions. Data-driven approaches are increasingly used for the equipment behavior modeling and monitoring [START_REF] Xi | A Copula-based sampling method for data-driven prognostics and health management[END_REF][START_REF] Le Son | Remaining useful life estimation based on stochastic deterioration models: A comparative study[END_REF][START_REF] Li | Reconstruction based fault prognosis for continuous processes[END_REF] as well as the equipment failure diagnostic [START_REF] Dou | Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery[END_REF][START_REF] Yu | Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes[END_REF].

Accordingly, this thesis aim at developing an efficient and novel data-driven approach that takes FDC data to prognose the equipment deterioration as well as diagnose failure causes. Figure 1.2 illustrates the major steps of the proposed data-driven research methodology, wherein 1) Data Pretreatment is a set of activities to purify and prepare the data for further analysis. Some of these activities are eliminating/replacing the missing data, eliminating redundant variables etc., 2) Data Processing is to do a set of pre-processes such as integration, unfolding and decomposition of signals to make the data more informative and ready for building the model, 3) Feature Selection and Extraction is to transform the data into a set of features that efficiently represent the equipment condition, 4) Equipment behavior Modeling and Controlling is the main body of this methodology to model the equipment behavior based on the condition data, and finally 5) Behavior Prognosis and Failure Diagnosis are performed based on the equipment model and extracted features. The result of the Behavior Prognosis step is a trend that shows the condition of the equipment through the time. In addition, the result of the Failure Diagnosis is characterizing the equipment failures with corresponding fault roots.

Therefore, the objectives of solving the underlying problem using the proposed datadriven approach are: Extracting valuable knowledge from the FDC data regarding the equipment health condition and the equipment failure causes, Developing an efficient and novel data-driven approach to model and monitor the equipment deterioration and Employing the proposed approach to diagnose the equipment failure causes in terms of fault signatures with corresponding roots. In the following, Figure 1.3 illustrates the transformation of the FDC data into prognostic and diagnostic results using the proposed data-driven approach. The prognostic results contain the equipment deterioration model that quantify the equipment health as an index (Health Index) over the time. This model can be used further to CHAPTER 1. INTRODUCTION monitor the equipment behavior. On the other hand, diagnostic results include finding different fault signatures and their corresponding roots that have created equipment's health degradation.

RESEARCH METHODOLOGY AND OBJECTIVES

Chapter 2

Literature Review

In this chapter, the relevant scientific efforts are reviewed to position our work in the literature regarding its originality and contributions. Firstly, a comprehensive terminology of equipment behavior modeling, monitoring, and different prognostic and diagnostic methods are discussed in Section 2.1 to Section 2.3. In Section 2.4, Advance Process Control (APC) in the semiconductor industry is briefly presented. Relevant papers studying equipment behavior prognosis and equipment failure diagnosis are reviewed in Section 2.5, respectively, followed by an analysis performed to find out the literature gap as well as to position this research in the literature. Finally, the research methodology in this thesis and its contributions are explained in Section 2. [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

The modern industries with advanced technologies increasingly require to work at high availability, low environmental risks, and to keep the machine at high utilization level. Technological development has resulted in unexpected violations that have more consequences which are severe and exponentially increase investment and operation cost. It becomes difficult or almost impossible to identify and predict condition variations promptly.

The economic consequences from an unexpected one-month stoppage in the industry may become as high as up to US$ 2.0-3.0 billion [START_REF] Chen | Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration[END_REF]. With such an enormous investment cost, the operational effectiveness of industrial equipment and production processes has a significant impact on the profitability and competitiveness of manufacturing industries. The efficient availability emphasizes the increasing importance of effective monitoring strategies of the equipment and production processes in industry.

Traditional strategies to cope with production variations and equipment breakdown have been Corrective Maintenance (CM) or Preventive Maintenance (PM) strategies [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF], [START_REF] Kothamasu | System health monitoring and prognostics a review of current paradigms and practices[END_REF]. CM takes place when the equipment has failed, and PM takes place periodically to prevent unexpected breakdowns regardless of the equipment's health condition [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. If equipment fails and PM is performed unnecessarily, these strategies result in uncommitted friction and wear in production schedules that impose enormous costs to the industry. Instead, Condition-Based Monitoring (CBM), as a type of predictive maintenance, involves using sensors to measure the condition of the equipment over time while they are operating and alarms required action based on the runtime data analysis [START_REF] Ahmad | An overview of time-based and condition-based maintenance in industrial application[END_REF]. With CBM, maintenance only takes place when the data reveals performance CHAPTER 2. LITERATURE REVIEW deterioration or failure that is likely to occur.

CBM aims at avoiding unnecessary breakdowns by alarming the requirement of preventive actions (e.g., re-adjustment, repairs or replacements) only when there is enough evidence of deterioration in the equipment health condition. A properly established and effectively implemented CBM program can signicantly cut down maintenance costs by reducing the number of unnecessary scheduled PMs. Two wings enforcing CBM to reach such success are prognostic and diagnostic modules, whereby CBM monitors and assesses equipment health based on condition measurements that do not interrupt normal equipment operations [START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF]. By this assessment, CBM determines whether the equipment is necessitated doing maintenance or not; and if it is necessary, predicts when any action needs to be performed. Moreover, the prognosis aspect of CBM models the equipment health monitoring through the time and notifies engineers whenever equipment health deteriorates to an alarm level. This capability will provide adequate time for the engineers to take diagnostic actions to detect a fault(s), identify fault fingerprint(s) and extract fault root(s) [START_REF] Rostami | Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data[END_REF].

Condition-Based Monitoring

Condition-Based Monitoring (CBM) is a strategy that estimates and monitors the condition of the equipment to decide whether any preventive action is required. Unlike scheduled preventive actions, maintenance and Out-of-Control Action Plan (OCAP) should only be conducted if enough symptoms appear, such the decreasing performance, and/or specific indicators signify the deterioration for imminent failure.

In CBM, the equipment health is measured based on various monitoring indicators, such as vibration, temperature, contaminants, and noise levels in mechanical equipment or projected gas volume, temperature and radio frequency in semiconductor industry [START_REF] Rostami | Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data[END_REF]. The motivation of CBM is that 99% of equipment failures are preceded by specific signs or indications that alarm failure is going to occur [START_REF] Bloch | Machinery Failure Analysis and Troubleshooting: Practical Machinery Management for Process Plants[END_REF]. Therefore, CBM is vital for managing equipment utilization, reducing life-cycle cost, avoiding unexpected equipment breakdown, etc.

The principal of CBM is, therefore, equipment behavior modeling built over signals which are continuously monitored by using a set of sensors installed inside or on the equipment [START_REF] Campos | Development in the application of ICT in condition monitoring and maintenance[END_REF]. Based on the equipment behavior model, the necessity of the preventive actions (e.g., re-adjustments, repairs or replacements) is alarmed only when required or when equipment health degrades to an emergency level. This emergency level is established by expert engineers and differs from one equipment to another. An essential capability for any condition modeling and monitoring process is that alarms should be triggered within an extended enough period before the failure. Required actions can be taken before the equipment breaks down or deteriorates to the unacceptable condition.

Two modules of condition modeling and monitoring to reach the above-mentioned advantageous are equipment prognosis and diagnosis. The prognostic module develops an equipment deterioration model whereby future condition can be prognosed. The diagnostic module implements an equipment behavior model for detecting the faults and identifying the causes. These two modules are often employed integrally as the field of Prognostic and Health Management (PHM). As a prognostic discipline, PHM aims at providing an overview of the equipment health including early failure detection and Remaining Useful Life (RUL) prediction. Diagnostics is also integrated into PHM to identify and determine the relationship between cause and effect in the equipment and consequently isolate faults and identify failure causes. Conventionally, the modeling approaches for equipment prognosis and the failure diagnosis problem can be categorized into three main categories: Physical model-based, Knowledge-based, and Data-driven prognostic approaches [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF][START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF][START_REF] Lee | Prognostics and health management design for rotary machinery systemsReviews, methodology and applications[END_REF][START_REF] Miljkovi | Fault detection methods: A literature survey[END_REF][START_REF]Condition monitoring and diagnostics of machines -Prognostics -Part 1: General guidelines[END_REF].

Physical Model-based Approaches

Physical model-based approaches accurately and analytically quantify the behavioral characteristics of the equipment's physics through mathematical formulations. These approaches require a deep understanding of the equipment behavior in response to both internal and external abnormalities [START_REF] Vachtsevanos | Fault Prognosis. Intelligent Fault Diagnosis and Prognosis for Engineering Systems[END_REF]. Once a physical model is derived, the actual condition of the equipment regarding sensor measurements are compared with outputs of the model. Substantial differences between actual condition and the model production are indicated as an abnormality (i.e., deterioration or failure) while small and acceptable differences occur under normal conditions [START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF]. The physical-model based approaches apply analytical models to evaluate the consistency of substantial differences. These analytical models could be physical specific or explicit mathematical model. These approaches become efficient if a correct and accurate model is built. However, they are not only mathematically complex but also they must be resolvable into individual failure modes. Accordingly, physical-model based approaches may not be feasible for complex systems (e.g., semiconductor industry) because of hundred or even thousand failure modes that are majorly convoluted.

Knowledge-based Approaches

Knowledge-based approaches are usually extracted by an engineer or some empirical knowledge which are later transferred to the rules and assess the similarity between an observed condition and a databank of previously dened situations [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

An expert system as a sub-category of the knowledge-based approaches includes a set of programs that simulate the performance of human experts in a particular eld [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Such a knowledge-based system contains an accumulated subject matter experience from experts and a set of precise IF-THEN rules for using that knowledge to specific problems. One or more experts construct the rules over some years and, for being useful, the rules must be as complete and precise as possible [START_REF] Biagetti | Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[END_REF]. Despite the physical modelbased approaches, knowledge-based approaches are particularly efficient for real nonlinear systems that are extremely difficult to be modeled and the linear approximation of the model results in significant errors. Also, knowledge-based diagnostic approaches are more flexible, easy to understand and follow.

Although the output of the knowledge-based approaches is understandable and reasonable, they are as good as the expert's knowledge. Also, they are disabled to predict continuous variable such as RUL since the outputs are determined by a discrete set of rules [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Furthermore, to perform equipment failure diagnosis, a deep understanding of the physical properties of the equipment is either unavailable or too costly to obtain.

Data-driven Approaches

The manufacturers have been taking advantage of the rapid IT evolution, which enables efficient analyses in equipment condition prognosis and diagnosis. In the high-tech manufacturing industries such as the semiconductor industry, the booming growth of data is an essential key for APC solutions to monitor, prognosis, and diagnose at better levels. While the move to big data solutions for APC systems is critical and necessary, manufacturers build data-driven approaches to learn the system behavior through a large volume of historical data of equipment conditions. Data-driven approaches are increasingly used for the equipment behavior modeling and monitoring [START_REF] Xi | A Copula-based sampling method for data-driven prognostics and health management[END_REF][START_REF] Le Son | Remaining useful life estimation based on stochastic deterioration models: A comparative study[END_REF][START_REF] Li | Reconstruction based fault prognosis for continuous processes[END_REF] as well as the equipment failure diagnostic [START_REF] Dou | Comparison of four direct classification methods for intelligent fault diagnosis of rotating machinery[END_REF][START_REF] Yu | Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes[END_REF]. They perform prognosis and diagnosis by training a set of run-to-failure units to build a model for the system deterioration, which in the deterioration features are extracted from raw signals [START_REF] Xi | A Copula-based sampling method for data-driven prognostics and health management[END_REF]. It is worth mentioning that any non-perfect data-driven approach might be enhanced by the appropriate application of Subject Matter Expertise (SME) as a complementary capability. This expertise can be adapted from the knowledge-based approaches (e.g., to determine warning levels in a failure prognosis scheme, expert opinion can be elicited and employed in this regard).

Data-driven approaches can signicantly reduce the number of unexpected equipment downtime resulting in minimal maintenance costs if properly designed and effectively implemented for prognostic and diagnostic modeling. In this approach, any prognostic and diagnostic program consists of three essential steps [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]:

1. Data collection step, to obtain data relevant to the equipment condition; 2. Data processing step, to prepare, handle and manipulate the data for better understanding and interpretation of the equipment condition; 3. Feature extraction step, to summarize prepared data into features that well represent the equipment condition.

Data collection

Data collection is a process of collecting and storing useful data from targeted physical assets for prognostic and diagnostic purposes. This process is a vital step in implementing a CBM program for equipment behavior prognosis or equipment failure diagnosis. Effective CBM helps to establish the asset for parameter operating and to position the sensors correctly to collect the data. CBM data can be identified from different points of view such as the data value or the data application. Formerly, the data value is grouped into nominal (discrete or continuous), categorical or ordinal data. Nominal data have meaning as a measurement like a number of faulty products (discrete) or temperature sensor reading (continuous). Categorical data represent characteristics such as the type of products (e.g., type "A", "B" etc.). Finally, the mix of both numerical and categorical data makes ordinal data such as quality of products that can belong to categories and have nominal value in each category. From the application point of view, two main types of collected data in a CBM program are event data and condition monitoring data [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Event data include the information about what has happened to the equipment (e.g., breakdowns, downtime, failure causes) and/or what has been done for these events (e.g., repair, preventive maintenance, piece exchange, parameter readjustment, etc.). Condition monitoring data are the measured information related to the equipment health condition/state and are very versatile based on the equipment mechanism (e.g., mechanical, electrical and chemical mechanisms).

Data processing

As the first sub-step of data processing, data cleaning is an essential step since data, particularly manually entered event data, always contains errors (noises). With data cleaning, it is assured as high as possible that further equipment behavior modeling is performed on clean (error-free) data. Without the data cleaning step, equipment behavior modeling may lead to confusing or even wrong results (i.e., increase in errors type I and type II).

The second sub-step of data processing is data manipulation. Data manipulation is the process of changing data to make it more informative to be analyzed. A variety of models, algorithms, and tools are available in the literature to manipulate data for a better understanding and interpretation of data. The models, algorithms, and tools used for data manipulation directly depend on the way, sampling frequency and dimension of the data. Condition monitoring data can be collected in three ways: 1) Data are obtained as a single value at a specific period for a condition monitoring variable such as temperature and pressure of the equipment. These data are also called as value type data; 2) Data are collected as time series at a specific time period for a condition monitoring variable such as vibration of mechanical equipment; 3) Data are collected in two dimensions (images) at a particular period of time for a condition monitoring variable such as the images of the product surface quality. These data are also called multi-dimensional data.

Accordingly, based on the type and the form of collection, data processing methods, and algorithms differ from multivariate analysis (e.g., Principle Component analysis PCA [START_REF] Rostami | Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data[END_REF]) to decomposition technique (e.g., Wavelet Decomposition [START_REF] Rostami | Equipment health modeling for deterioration prognosis and fault signatures diagnosis[END_REF]).

Feature extraction

Feature extraction step is the transformation of input data into a set of features, which are distinctive properties of input patterns and help in differentiating between the categories of input patterns. This step has become one of the main principles of CBM to identify a set of equipment behavior indicative features within the equipment sensor readings and to utilize these features with an appropriate approach to prognose the CHAPTER 2. LITERATURE REVIEW equipment health and diagnose the equipment failures. Various studies have focused on this problem and addressed the importance of extracting the underlying features by equipment behavior. The primary challenge in feature extraction is deciding which feature types represent the equipment behavior since the sensitivity of various features may differ from one working condition to another. The variety of features and the way of extracting them depends on the data type as well as the method of processing the data and building the equipment condition model [START_REF] Yu | Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes[END_REF][START_REF] Seera | Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model[END_REF][START_REF] Li | Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network[END_REF][START_REF] Chen | A neural-network approach to recognize defect spatial pattern in semiconductor fabrication[END_REF][START_REF] Peng | Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[END_REF].

Equipment Behavior Prognosis

Prognostic has been defined in different wordings as some of them quoted in Table 2.1. The primary foundation of these definitions is a) prognostic involves predicting the time progression of a specic failure mode from its incipience to the time of component failure, b) a prediction of future component status is required, and c) prognostic and diagnostic are interconnected, but they are not the same [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF].

Based on the definition presented by ISO13381-1, prognostic modeling is an estimation of time to failure and risk for one or more existing and future failure modes [START_REF]Condition monitoring and diagnostics of machines -Prognostics -Part 1: General guidelines[END_REF]. This definition states that equipment behavior prognostic is interested in both predicting the effects of known failure modes on the equipment health as well as how these may initiate other failure modes.

Hence, an efficient prognostic model should be able to answer most of the following questions [START_REF] Lee | Prognostics and health management design for rotary machinery systemsReviews, methodology and applications[END_REF], [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]:

(a) How is the machine operating now? (b) How severe is the deterioration? (c) How quickly is the machine expected to deteriorate from its current state to functional failure? (d) When will the machine fail with what likelihood? i.e., what is the RUL with what range? (e) What will be the primary faults that cause the deterioration? (f) Why does the fault occur?

Based on the denition proposed in Table 2.1, questions (e) and (f) can be considered as diagnostic questions, while the first four are thereby the realm of pure prognostic. Ongoing diagnostics through the prognosis process is also necessary to detect underlying fault modes that cause equipment deterioration so that required maintenance actions will be appropriately proposed.

Instead of building a sophisticated equipment behavioral model to include all possible factors, it is more practical to develop a prognostic model to take only the deteriorationrelated factors into account. The objectives of a prognostic model are twofold: 1) developing equipment health model (i.e., questions (a)-(c)) and 2) predicting RUL (i.e., question (d) with a certain likelihood and range). Ref. An estimation of time to failure and risk for one or more existing and future failure modes [START_REF]Condition monitoring and diagnostics of machines -Prognostics -Part 1: General guidelines[END_REF] The capability to provide early detecting of the precursor and/or incipient fault condition of a component, and to have the technology and means to manage and predict the progression of this fault condition to component failure [START_REF] Engel | Prognostics, the real issues involved with predicting life remaining[END_REF] Predictive diagnostics, which includes determining the remaining life or time span of proper operation of a component [START_REF] Hess | Challenges, issues, and lessons learned chasing the "Big P". Real predictive prognostics[END_REF] Failure prognosis involves forecasting of system degradation based on observed system condition [START_REF] Jianhui Luo | Model-based prognostic techniques [maintenance applications[END_REF] The ability to assess the current health of a part for a xed time horizon or predict the time to failure [START_REF] Brotherton | A testbed for data fusion for engine diagnostics and prognostics[END_REF] Prognostic builds upon the diagnostic assessment and are dened as the capability to predict the progression of this fault condition to component failure and estimate the RUL [START_REF] Baruah | HMMs for diagnostics and prognostics in machining processes[END_REF] Prediction of when a failure may occur. To calculate the remaining useful life on an asset [START_REF] Lewis | Smart sensors and system health management tools for avionics and mechanical systems[END_REF] The process of health assessment and prediction, which includes detecting the incipient failure and predicting RUL [START_REF] Lee | Prognostics and health management design for rotary machinery systemsReviews, methodology and applications[END_REF] As the essential prognostic task, equipment behavior modeling aims at analyzing real-time data to observe, evaluate and quantify the equipment health. For this task, all condition monitoring information are merged into a single value as the Health Index (HI). Equipment HI provides a real-time manifestation of the constant condition and can trigger an alarm before functional failure occurs. Conceptually, the equipment health cycle can be divided into three main zones: normal, deteriorating and unacceptable zones as shown in Figure 2.1, wherein a situation with only one component failure and failure mode is consider. It is noted that in more complex equipment with multiple components and failure modes, the equipment health cycle can be drawn by merging the health cycle of different components that requires more sophisticated approaches. In the normal zone, equipment is operating normally without any evidence of health deterioration. After normal operation for a specific period, the equipment enters the deterioration phase, and the equipment health starts degrading. From the entrance point of equipment to the deterioration zone until a point (i.e., prediction point) where there are enough evidence and enough information about health deterioration, equipment health model is built.

With a truthful equipment behavioral model, the RUL to the unacceptable zone can be predicted. The prediction should be made long enough before the functional failure to trigger a preventative maintenance action. RUL, also called remaining service life, CHAPTER 2. LITERATURE REVIEW residual life or remnant life refers to the time left before observing a functional failure [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. It is worth mentioning here that proper design of equipment health model is very crucial to predicting the RUL correctly.

As elaborated in Section 2.1, three main categories of modeling approach in condition monitoring are physical model-based, knowledge-based and data-driven approaches. In the following, the aim is to explain some of the most relevant methods of each category applied in equipment behavior modeling. 

Physical Model-based Prognostic Approaches

Physical model-based prognostic approaches can be analytically designed to minimize the effect of unknown failures and perform the consistent sensitivity analysis. These approaches consider that an accurate mathematical model can be constructed from first principles. Physical models solve a deterministic equation or set of equations derived from empirical data to predict the equipment RUL. Accordingly, they require specific failure mechanism knowledge and theory relevant to the monitored equipment. Knowing the failure mechanism helps to derive the explicit relationship between the condition revealing features and the lifetimes [START_REF] Dragomir | Review of prognostic problem in condition-based maintenance[END_REF]. These physical model-based methods often use residuals as features, where the residuals are the difference between the sensed measurements of the real system and the outputs of the mathematical model. The convention is that more and more the system deteriorates, the residuals become larger and larger and small/acceptable residuals may happen in the presence of normal variations, noise and modeling errors. The acceptance threshold is defined using statistical techniques to prognose the failures. In addition, the magnitude of the residuals can be modeled as the severe of the deterioration or failure. In some cases, detailed simulation is applied to model the physics of the equipment [START_REF] Jianhui Luo | Model-based prognostic techniques [maintenance applications[END_REF], [START_REF] Roemer | Advanced diagnostics and prognostics for gas turbine engine risk assessment[END_REF], [START_REF] Sankavaram | Model-based and data-driven prognosis of automotive and electronic systems[END_REF]. In [START_REF] Sankavaram | Model-based and data-driven prognosis of automotive and electronic systems[END_REF], the authors developed a physical model-based approach by simulating the physics of an automotive component.

The main advantage of physical model-based approaches relies on their ability to incorporate a physical understanding of the monitored equipment. This understanding helps to explain accurately the behavior of the equipment and engineers can easily take appropriate actions. Moreover, if the understanding of the equipment deterioration improves, the model can be modified to increase its accuracy. On the other hand, this strong relationship with a mathematical model may become the Achilles heel of these approaches since it can be difficult, if not impossible, to catch or define the system's behavior, particularly in complex systems like semiconductor manufacturing. Furthermore, some authors believe that the condition monitoring approaches must evolve as the equipment does.

Knowledge-based Prognostic Approaches

It is usually difficult to build an accurate mathematical model based on the physics of the equipment. Accordingly, knowledge-based approaches which require no physical model are being utilized. Therefore, the knowledge-based prognostic approaches are used when there is a lot of experience but not enough details to develop accurate quantitative models. One well-known example of knowledge-based approaches is expert systems.

Expert systems are suitable for prognostic problems that can be solved by human experts. This system is usually considered as a computer system that is programmed to exhibit specialist knowledge [START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF]. The performance of these systems is based on the combination of computers power with the laws of reasoning. In an expert system, the expert's knowledge is stored into computers in the form of rules (rules are expressed in the form: IF condition, THEN consequence) and the system simulates the human's way of thinking and inferencing. Afterward, the created rules are used to generate solutions. Any expert system is built through four steps as knowledge acquisition, rules generation, rules verification and validation of models [START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF].

Among the prognostic tasks, expert systems have been mostly used for deterioration interpretation and maintenance action propositions and not for deterioration modeling. On the other hand, they are potent approaches in equipment failure diagnosis.

The main drawbacks of the expert systems are the difficulty in acquiring knowledge and generate the rules as well as handling new situations that are not covered explicitly in the current rules bank. Also, the behavior of the complicated and convoluted manufacturing systems requires a considerable number of rules to be described, and when the number of rules increases dramatically, the prognostic system becomes computationally inefficient.

As an example, the authors of [START_REF] Jianhui Luo | Model-based prognostic techniques [maintenance applications[END_REF] proposed an intelligent knowledge-based diagnostic and prognostic process. The process employs graph-based dependency models for fault diagnosis and analytical models for test design and fault detection. The proposed method contains four significant steps such as modeling, inferring, adaptive learning and predicting.
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Data-driven Prognostic Approaches

Data-driven prognostic approaches are the most employed methods in the literature and cover a vast variety of methods varying from simple univariate regression models or multivariate statistical methods to sophisticated Artificial Neural Networks (ANNs). Data-driven prognostic approaches are usually developed from collected input/output data. These approaches can process a wide variety of data types and exploit the nuances in the data that cannot be described by physical models or be discovered by rule-based systems. Comparing to physical model-and knowledge-based approaches, data-driven approaches are considered as good compromises between the accuracy and the applicability.

Data-driven approaches to prognose the equipment RUL typically follow one of two strategies. The first strategy is a two-stage approach as 1) deterioration modeling then 2) RUL estimation. In the deterioration modeling, appropriate data processing (e.g., dimension reduction, data transformation, etc.), feature extraction, or pattern matching techniques are employed to map the equipment signals or features onto a single dimension degradation or health index [START_REF] Butler | Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation[END_REF]. At the end of this stage, usually, a (linear/nonlinear) deterioration trend is obtained. Technically, this first stage has the overlap with the realm of failure diagnostics since it is concerned with posterior event analysis (i.e., deterioration causes identification). In the RUL estimation stage, the deterioration model/trend is then extrapolated into the future until a predefined critical threshold limit is exceeded. The first-strategy approaches are normally built using multivariate statistical and regressive methods [START_REF] Sankavaram | Model-based and data-driven prognosis of automotive and electronic systems[END_REF][START_REF] Peng | Current status of machine prognostics in condition-based maintenance: a review[END_REF][START_REF] Butler | Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation[END_REF][START_REF] Rostami | Equipment Deterioration Prognosis and Fault Diagnosis in Semiconductor Manufacturing[END_REF]. The second strategy is a single-stage approach wherein the equipment RUL is directly estimated from the monitored signals or features. In this situation, the remaining life of the system is the output generated by the models. The second-strategy approach typically uses ANN methods [START_REF] Butler | Prognostic Algorithms for Condition Monitoring and Remaining Useful Life Estimation[END_REF]. ANNs can model complex non-linear systems and can generalize and adapt solutions from a limited data set [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF]. Despite these advantages, ANNs are called as black box approaches because the mechanism that transforms the input into the output is obfuscated by a figurative box that is difficult if not impossible to interpret. Accordingly, it becomes often impossible to do cause-effect analysis in ANN-based equipment behavior prognosis approaches.

In the following, the regression method is explained as an example of the data-driven prognostic approaches.

Regression models estimate the failure initiation and progression based on historical inspection observations on similar equipment. Prognosis of future deterioration is performed by comparing these observations with models representing healthy behavior. Regression models use temporal data such as condition or process monitoring outputs.

Among the most well-known regression methods, trend extrapolation is one of the most straightforward and understandable forms of data-driven prognostic approach for engineers. This approach is based on simple trend analysis of a single monotonic parameter correlated with equipment health. This parameter may have originated from a single sensor or some sensors aggregated into a single variable. The aggregated variable is then plotted as a function of time representing the equipment health over the time.

Afterward, this trend is formulated using standard regression methods to predict the equipment RUL. An alarm threshold can be established, and the end of the equipment life is the time when trend reaches the threshold. More than one alarm level can also be determined for early warning and nal failure, as shown in When new data arrives, it is assumed that behavior ts the known trend and so RUL merely is determined as the time between data arrival and the time at which the trend exceeds the alarm limit(s). Although representing equipment health and predicting equipment RUL using trend extrapolation is probably the most desired implemented approach within the industry, there are few published examples in refereed literature.

Equipment Failure Diagnosis

Equipment failure diagnosis, in contrast to the less well-understood prognosis, has been the subject of numerous investigations over the past decades. Equipment failure diagnosis approaches are to detect failures or anomaly conditions, isolate which component of the equipment is faulty, extract that failure modes exist and decide on the potential impact of a failing or failed component on the equipment health. The terms fault detection, isolation, and identication are typically used to convey the following meaning, [START_REF] Gary | PCA-based fault isolation and prognosis with application to pump[END_REF][START_REF] Simani | Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques[END_REF]: Fault detection: a task to indicate whether something is going wrong in the monitored system; Fault isolation: is a task to determines the location and the type of faults; and Fault identification: is a task to determine the nature (root) of the fault when it is detected.

In the following, three main equipment failure diagnosis approaches are explained in more details.

Physical Model-based Diagnostic Approaches

Physical model-based failure diagnostics can be structured as the detection, isolation, and identification of faults on the equipment by means of mathematical/analytical methods to extract the features from the equipment signals and diagnose the equipment faults. In these approaches, a fixed or variable threshold are set on residual signals calculated from the difference between the measurements of the real system and those of the physical model. Different residuals can be also generated where each is sensitive to a particular failure mode. Once the threshold is exceeded, the analysis of each residual leads to fault isolation and identification.

Any physical model-based failure diagnosis approach typically contains two blocks of residual generation and residual evaluation [START_REF] Simani | Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques[END_REF]. The residual generation block uses available input and output information from the monitored equipment to generate the residual signals based on analytical models. The analytical models could be physical specific or explicit mathematical model, e.g., parity equations and state observers, of the monitored equipment. Based on these models, residuals are generated using methods such as Kalman filter, system identification, and parity relations. The residual signals also called as fault symptoms indicate any fault occurrence where zero or close to zero values indicate no fault detection and significant magnitude of residuals indicates that fault has occurred. In the residual evaluation block, residuals are examined for the likelihood of faults to determine if any fault has occurred. This block may do a simple threshold test on the instantaneous or moving the average value of residuals; or more advanced threshold testing build by other statistical methods [START_REF] Basseville | Detecting changes in signals and systemsA survey[END_REF][START_REF] Isermann | Supervision, fault-detection and fault-diagnosis methods An introduction[END_REF].

Knowledge-based Diagnostic Approaches

Knowledge-based diagnostic approaches perform equipment failure diagnosis by evaluating on-line monitored data according to a rule set determined by expert knowledge [START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF]. This knowledge consists of the locations of input and output process variables, characteristics of abnormal conditions, failure modes, etc. On the other hand, the operators'and engineers'intelligence related to the equipment can be implemented into this approach. This knowledge aids to diagnose the equipment failures based on previous experiences.

Rule-based expert systems are the well-employed knowledge-based diagnostic approaches [START_REF] Miljkovi | Fault detection methods: A literature survey[END_REF]. These systems are widely utilized for diagnostic purposes where experience and expertise are available, but a correct understanding of the equipment physics is either unavailable or too costly to obtain. The rule-based expert systems represent the knowledge in the form of production rules, wherein a rule explains the required action once a fault symptom appears. The main characteristic of these systems is the empirical association between causes and effects based on the expert's knowledge. This cause-effect association determines logical event chains that are used to describe the occurrence of the faults [START_REF] Krishnamurthi | An expert system framework for machine fault diagnosis[END_REF].

In addition to proper representation rules-based knowledge, an appropriate interface for the human-computer dialogue is also required. Afterward, the appeared fault's symptoms are presented to the user in a screen where the user can click the specific symptom to start a searching process for the cause of the failure [START_REF] Li | Fault diagnosis expert system of semiconductor manufacturing equipment using a Bayesian network[END_REF][START_REF] Venkatasubramanian | A review of process fault detection and diagnosis: Part II: Qualitative models and search strategies[END_REF]. Finally, a decision tree can be used to define the various logical paths that the expert must follow to reach conclusions.

There is the main difference between knowledge-based approaches in the equipment failure diagnosis and equipment behavior prognosis. In the behavior prognosis, no fault may have occurred, and the expert system is mostly used to interpret the deterioration causes and maintenance action proposition, while in failure diagnosis the expert system alarms the fault occurrence (fault has already occurred) as well as the fault causes.

Data-driven Diagnostic Approaches

Data-driven diagnostic approaches are popular methods of fault diagnostics to detect whether a specic fault exists or not based on the available condition monitoring information without intrusive inspection of the equipment [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. The fault detection problem can be formulated as a hypothesis test problem with null hypothesis H 0 : Fault A is present, against alternative hypothesis H 1 : Fault A is not present. In actual fault diagnostic problems, hypotheses H 0 and H 1 are interpreted into an expression using specic distributions, or the parameters of a specic distribution. Test statistics are then constructed to summarize the condition monitoring information to decide whether to accept H 0 or reject it [START_REF] Sohn | Statistical Damage Classification Under Changing Environmental and Operational Conditions[END_REF]. Interested readers are invited to study a recently proposed framework for fault diagnosis, called structured hypothesis tests, for handling complicated multiple faults of different types [START_REF] Nyberg | A General Framework for Fault Diagnosis Based on Statistical Hypothesis Testing[END_REF].

As a common data-driven diagnostic approach, Statistical Process Control (SPC) method has been well developed and widely used. The SPC principle is to quantify the drift of the current signal from a reference signal representing the normal condition to see whether the current signal is within the control limits or not [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. Furthermore, clustering techniques (e.g., K -means clustering [START_REF] Tew | A systematic approach towards manufacturing health management[END_REF]), as multivariate statistical diagnostic approaches group signals into different fault classes based upon the similarity of the characteristics or features they possess. These approaches minimize intra-group and maximize inter-group variance [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF].

Equipment failure diagnosis has been recently a very popular topic for industrial processes since they are free of the equipment physics and are capable of handling a large number of variables (hundreds). These approaches use techniques such as Principal Component Analysis (PCA) [START_REF] Blue | Run-to-run Sensor Variation Monitoring for Process Fault Diagnosis in Semiconductor Manufacturing[END_REF] or Partial Least Squares (PLS) [START_REF] Li | Total PLS Based Contribution Plots for Fault Diagnosis[END_REF]. PCA is widely used for dimension reduction, fault detection, and isolation [START_REF] Gary | PCA-based fault isolation and prognosis with application to pump[END_REF] by constructing a model from the eigenvalues and eigenvectors of the covariance matrix of the data. Dimension reduction is performed by deleting the eigenvectors, or PCs, associated with sufficiently small eigenvalues. The equipment failure diagnosis comes from observing the interrelation between the variables and monitoring any drift in these relationships due to the fault occurrence in the equipment. Two fundamental statistical assumptions for the application of PCA are 1) variables are independent and identically follows the normal distribution, and 2) variables are uncorrelated in time (not auto-correlated) [START_REF] Gary | PCA-based fault isolation and prognosis with application to pump[END_REF].

As other sets of data-driven diagnostic approaches, pattern recognition and deep learning approaches have been widely applied. In these approaches, the process is map-CHAPTER 2. LITERATURE REVIEW ping the information obtained from the measurement and/or feature space to the equipment fault space [START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF][START_REF] Zhao | Deep learning and its applications to machine health monitoring[END_REF][START_REF] Lee | A Deep Learning Model for Robust Wafer Fault Monitoring With Sensor Measurement Noise[END_REF]. Most of the pattern recognition approaches use ANN methods; however, it is not easy to apply ANN methods due to the lack of appropriate training data and specic knowledge to train the models. Accordingly, most of the existing researchers used experimental data for training the model.

Table 2.2 describes the advantages and disadvantages of different prognostic and diagnostic approaches in the literature. Also, Table 2.3 explains where to use and where not to use particular prognostic and diagnostic approaches. -The main aim is fault detection and classification -There is enough information about outputs -It is not possible to determine physical and statistical models -There is enough data for training -Input data are not classifiable, and they can be projected into a higher dimensional space by kernel functions -No cause-effect analysis is required -The main aim is equipment behavior modeling -There is no information about outputs -No cause-effect analysis is needed -There is not enough data for training

Advanced Process Control in Semiconductor

Semiconductor manufacturing also referred to as microelectronics manufacturing, processes semiconductor wafers in a fabrication facility or fab through hundreds of steps. These steps focus on features definition in repeated patterns on the wafer which called die [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF]. Wafers move through the fab in lots, often of a constant size due to standard containers. The production of wafers is achieved in a multi-step process involving a variety of complex chemical processes such as deposition, photolithography, etching, ion implantation, and photoresist strip [START_REF] Charles | Optimization of preventive maintenance strategies in a multipurpose batch plant: application to semiconductor manufacturing[END_REF]. These front-end processes are revisited so that multiple layers are constructed. Once front-end processing is completed, back-end processing uses assembly, test and packaging capabilities to complete the process of converting individual die to chips [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF]. The front-end equipment is highly sophisticated with each machine costing ≥ $1M (USD) and containing hundreds of components and thousands of failure points at a minimum [START_REF] May | Introduction to Semiconductor Manufacturing[END_REF].

Advanced process control (APC) has become an essential framework in the semiconductor fabrication to keep the product quality and the yield (e.g., ≥ 90%) at high level and remain protable in a competitive global environment. Generally, APC enables cost reduction in manufacturing by accelerating the process development, reducing the monitor wafers, decreasing the process variation, increasing the yield, shortening the control loops in case of failures, ensuring product reliability and increasing the equipment utilization. Accordingly, the principal motivation for implementing APC is to improve equipment yield by controlling processes and equipment to reduce process variability and to increase equipment efficiency [START_REF] Yugma | Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook[END_REF]. For improvement achievement, a wide variety of modeling approaches (i.e., physical model-based, knowledge-based and data-driven) have been developed and used. To maintain the processes at their specification levels and to monitor equipment for existing possible failures, APC makes it possible by preventing unexpected process downtime, increasing tool utilization, and reducing variability [START_REF] Yugma | Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook[END_REF].

APC can encompass all kinds of equipment and process control systems in semiconductor manufacturing such as Run-to-Run (R2R) control, Virtual Metrology (VM), SPC, and Fault Detection and Classification (FDC) systems [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF]. These APC solutions (please see Figure 1.1 in Chapter 1) have become indispensable in all front-end semiconductor manufacturing. R2R is the technique of modifying recipe parameters between production runs to improve processing performance. A run can be a batch, lot, or an individual wafer. In serial processing, this method can just be applied between two measurements. On the other hand, VM is the technique of deriving wafer parameters or product parameters from existing manufacturing parameters or upstream metrology (e.g., process state, additional sensors, temperature, pressure, gas flow, etc.) by using physical models.

As the APC framework has been widely implemented in this industry, the impact of equipment health on the product quality is usually compensated by the R2R regulator. The product quality, namely the metrology, can be maintained at the acceptable level even the equipment gradually deteriorates. To associate equipment health with metrology, R2R regularization will be considered to recover the truthful process drift regarding CHAPTER 2. LITERATURE REVIEW fine-tuning the recipes.

These challenges have existed in the industry for decades and are not specific to semiconductor industry; however, they are somewhat unique to semiconductor manufacturing and therefore key in implementing the APC solutions in the semiconductor industry [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF], [START_REF] Yugma | Integration of scheduling and advanced process control in semiconductor manufacturing: review and outlook[END_REF]. The first challenge is the equipment and process complexity. As noted earlier, each semiconductor front-end machine is costly and contains hundreds of components and thousands of possible failure points. This complexity makes it impossible to concisely define and model the component interactions as well as the detailed process events. Accordingly, vast data archives are required to cover and characterize all forms of events and interactions.

The second challenge is the process dynamics. The majority of the semiconductor processes are influenced by significant process dynamics that result in drift or shift of process operation [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF]. Internal process/equipment factors creating the dynamics could be chamber seasoning over time; for example, a deposition process requires heating the chamber to a temperature high enough to ensure that the reaction can be triggered. If the temperature sensor readings are collected and reviewed after the process, a nonstationary profile can be seen in three steps: warming-up, main deposition, and cooling down. This non-stationarity shown in the temporal sensor readings does not come from the seasonality, periodicity or abnormal drifts. Instead, it is a normal phenomenon encoded in the recipe about the chemical and physical laws. There are also external factors that change the context of operation such as maintenance events and frequent changes in products. The third challenge is data quality. Data quality encompasses diverse issues such as accuracy, completeness, context richness, availability, and archival length [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF] where the industry needs to improve data quality to support the APC solutions performance.

As mentioned earlier in Section 2.1.3, with the advancement of IT devices and the possibility of collecting a significant volume of data, data-driven approaches have received the highest attention. On the other hand, these challenges remark that the modeling approaches for the semiconductor manufacturing cannot be limited to datadriven; however data-driven approached are still the most efficient techniques to cope with APC challenges. Therefore, in the following sections, the three fundamental aspects of data-driven approaches: data collection, data processing, and feature extraction, will be linked to the aforementioned APC challenges. For example, data collection relates to data quality challenge and contains which data to be collected. In addition, data processing and feature extraction correspond to the complexity and process dynamics challenges, wherein the ways to process the data and to select correct features significantly impact the data-driven approaches performance.

Data Collection

As explained in Section 2.1.3, CBM data can be identified based on their statistical value (i.e., nominal, categorical and ordinal) or their application (i.e., event or condition monitoring data). In this section, we focus on condition monitoring data that are the core of data collection for APC solutions [START_REF]Condition monitoring and diagnostics of machines -Prognostics -Part 1: General guidelines[END_REF][START_REF] Caesarendra | A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[END_REF]. Condition monitoring data can be collected from the product (so-called metrology data such as wafer thickness, surface quality, etc.), from the process (e.g., pressure, temperature, radio frequency, etc.) or the equipment (e.g., vibration, acoustic, etc.). Increasingly in the industry and recently in semiconductor manufacturing, condition monitoring data are easily collected thanks to the rapid development of computer and advanced sensor technologies [START_REF] Moyne | Big Data Analytics for Smart Manufacturing: Case Studies in Semiconductor Manufacturing[END_REF].

As mentioned in Section 2.1.3, two main types of collected data in a CBM program are event data and condition monitoring data. Also, two primary sources for collecting condition monitoring data are R2R and FDC systems [START_REF] Vijayaraghavan | Fault detection and classification in etch tools[END_REF]. Run-to-Run (R2R) system is a form of discrete process and equipment control in which the product recipe concerning a particular equipment process is modified at each run for minimizing process drift, shift, and variability [START_REF] Vijayaraghavan | Fault detection and classification in etch tools[END_REF]. Practically speaking, the inputs and outputs of each process run are compared by the R2R controllers at the end of each run. By this comparison, the controller adjusts the process variables (e.g., temperature, pressure, etc.) to avoid nonconformists in the product at the end of the next run. By repeating this process in between each run, one can minimize process drift immediately and prevent nonconformity propagation through the overall process.

On the other hand, the FDC system monitors the real-time performance of a tool to ensure that its performance does not result in mis-processing. Incorporating FDC into the production system improves overall equipment efficiency by monitoring equipment health and detecting emerging faults. Despite R2R control systems that actively control process variables at the end of each run, an FDC system monitors variables during the operation of a process to ensure that its performance is as expected. Such monitoring enables detection of operational faults in real time and facilitates interruption of the process before the equipment fails. In the semiconductor industry, the equipment determines the availability of the necessary status variables called the SVIDs (Status Variable IDentification). These SVIDs are required to collect the data related to the process such as the pressure, temperature, gas flow and radio frequency information during the processing of a wafer lot. Accordingly, the collected FDC data is expressed as a data cube in three dimensions: wafer, SVIDs and Process observations. Figure 2.3 depicts the FDC collection system for an etching process in the semiconductor industry.

Data Pre-processing

As mentioned in Section 2.1.3, two sub-sets of data processing are data cleaning and data manipulation. Although data cleaning is critical and it is one of the significant challenges in APC (i.e., data quality challenge), it is beyond the scope of this thesis and will not be discussed in detail here. It was elaborated so that condition monitoring data can differ from value type data, time series data and multi-dimensional data. This section only deals with value type and time series'condition monitoring data. A major challenge in data processing is to select the best way of treating and manipulating that provide the data with adequate information. Afterward, manipulated data with an appropriate approach make it possible to extract features and build effective prognostic and diagnostic models correctly. One issue in value type data is the complex correlation structure when the number of variables is enormous. For coping with this issue and preparing data for feature extraction, multivariate analysis techniques such as PCA and Independent Component Analysis (ICA) have been widely utilizing to handle data with complex correlation structure. These approaches are highly used to reduce the dimension of data when the number of variables is enormous. An example of applying dimension reduction techniques in equipment failure diagnostics is given in [START_REF] Rostami | Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data[END_REF].

Data analyses can be directly conducted on the original temporal data (raw data) without any manipulation and transformation, or the data can be first decomposed based on different frequencies then the analyses are performed on the new components. The first analyses can be called as original-domain analysis, and the latter exists as time-frequency analysis.

In the original-domain analysis, the data value is known for all real numbers, for the case of continuous time, or at various separate instants in the case of discrete time. It is noteworthy that original-domain techniques such as multivariate analyses are appropriate only for stationary data and not for the data which have process dynamics and non-stationary profiles. Another way of analyzing the stationary data can be transforming the original temporal data into frequency domain then extracting required features from frequency components of the signal. Its advantage over original-domain analysis is the ability to identify and isolate specific frequency components of interest [START_REF] Simani | Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques[END_REF]. The most known technique for this transformation is Fast Fourier Transform (FFT). The main idea of FFT is to either look at the whole spectrum or look closely at specific frequency components of the signal and thus extract features from the frequency component [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. The drawbacks of these analyses are their inability to handle non-stationary signals, which are very common when equipment failures occur, particularly in semiconductor manufacturing.

For processing the non-stationary temporal data, in addition to exploring the original domain, there also exist the time-frequency analyses, which are also known as signal processing. Signal processing techniques are employed to prepare the data for better analysis and interpretation. Thus, time-frequency analysis, which investigates waveform signals in both time and frequency domain, has been developed for non-stationary waveform signals. Two primary and well-known techniques for transferring the temporal signals into the time-frequency domain are Short-Time Fourier Transform (STFT) and wavelet transformation. The idea of STFT is to decompose the waveform signal into segments with short-time window and then apply Fourier transform to each segment.

Wavelet transformation has been rapidly developed in the past decade and has broad application. Unlike STFT, which provides a time-frequency representation of a signal, wavelet transform provides a time-scale representation of a signal [START_REF] Simani | Model-based Fault Diagnosis in Dynamic Systems Using Identification Techniques[END_REF]. Wavelet transformation decomposes the signal into a series of oscillatory functions with different frequencies at a different time. The wavelet transformation can produce a high time resolution at low frequencies and a high time resolution at high frequencies. It can also be utilized for de-noising of raw signals.

Semiconductor data are among the most complete and complicated data that contains product mixes, process dynamics, convoluted failure modes and highly correlated signals. Accordingly, processing semiconductor data requires appropriate and effective analyzing techniques.

Feature Extraction

The principles of condition monitoring in any area are 1) the identication of a set of features within the equipment sensor readings that are indicative of the equipment behavior and 2) the utilization of those features with an appropriate approach to prognose the equipment health and diagnose the equipment failures. Feature extraction methods vary based on the data type (e.g., continuous, discrete, nominal, and categorical) and generate different results according to the data mining techniques. In this section, we investigate the features extraction based on the type of data processing as original-domain features, frequency-domain features, and time-frequency domain features.

Different types of the original-domain feature can be directly extracted from the data such as statistical features, upper and lower bound of the signal, autoregressive coefcients, etc. These features can be extracted only for one-dimensional signals. In the following, only statistical features are explained since they are more common in the semiconductor industry. Other techniques are used more over vibration signals of mechanical equipment.

Statistical features from the original temporal data mostly include mean, root mean square (RMS), standard deviation and variance that have usually been used in past studies to identify the differences between signals from different working periods of the equipment. Such simple features are more suitable for stationary signals. For nonstationary signals, more advanced statistical features such as skewness and kurtosis can be applied. Skewness is used to measure whether the signal is negatively or positively skewed, while kurtosis measures the taillessness of the Probability Distribution Function (PDF) of a real-valued random variable. In a similar way to the concept of skewness, kurtosis is a descriptor of the shape of a probability distribution and indicates if the signal is an impulse in nature.

Accordingly, for a signal with a normal distribution, signal has a skewness value of zero. Statistical features supervise the PDF of the signal [START_REF] Caesarendra | A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[END_REF]. It is a well-known fact that any change of the equipment behavior implicitly affects the PDF of the corresponding signals. Besides those mentioned statistical features on the original temporal data, shape factor is a non-dimensional feature that is affected by an object's shape but is independent of its dimensions [START_REF] Caesarendra | A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[END_REF]. This feature is affected by the change in the mean and RMS. Table 2.4 summarizes the most common statistical features for the original temporal signals. In Table 2.4, variance, skewness, and kurtosis have become dimensionless features after being divided by a power of standard deviation (σ).

Frequency-domain feature extraction requires the transformation of the temporal signals initially into frequency-domain signals using FFT. Although FFT works well for stationary periodic signals, it is less useful for non-stationary signals that arise from timedependent events. It is a fact that any fault and abnormal behavior in the equipment contribute to the normal signal as a component with the new frequency. Accordingly, distinguishing newly created frequencies in the signal and their progression through the time may help to prognose equipment behavior or diagnose equipment failures. Frequencydomain features can be extracted in different ways, and the most common features are statistical features e.g., Frequency Center (FC), Root Mean Square Frequency (RMSF) and Root Variance Frequency (RVF) [START_REF] Caesarendra | A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[END_REF]. The main fact in these features is when equipment behavior changes or when equipment fails, the frequency element changes, and the values of the FC, RMSF, and RVF also change.

Furthermore, Spectral Skewness (SS), Spectral Kurtosis (SK), spectral entropy and Shannon entropy are other advanced statistical measures applied to the magnitude spectrum [START_REF] Caesarendra | A review of feature extraction methods in vibration-based condition monitoring and its application for degradation trend estimation of low-speed slew bearing[END_REF]. The SS measures the symmetry of the distribution of the spectral magnitude values around its mean, while the SK measures the distribution of the spectral magnitude values and compare to a Gaussian distribution. Finally, FC, RVF, SS, and SK can be dened as the rst-order to fourth-order moments of the Fourier spectrum, respectively [START_REF] Rangaraj | Biomedical Signal Analysis: A Case-Study Approach[END_REF]. Table 2.5 summarizes the statistical frequency-domain features.

The most well-known methods to transform original temporal signals into timefrequency domain are short-time Fourier transform (STFT) and wavelet transformation that implement a mapping of one-dimensional temporal signals to a two-dimensional function of time and frequency. These methods are commonly used for the non-stationary signal. The problem with STFT is that it provides constant resolution for all frequencies since it uses the same window for the analysis of the entire signal. Accordingly, STFT is not suitable for non-stationary signals. Despite STFT, the wavelet transformation method employs wavelet function as the basis function [START_REF] Peng | Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[END_REF]. Accordingly, wavelet transformation can provide an excellent energy concentration properties and can decompose the signal with a certain number of coefcients. These coefficients, Approximation coefcient and Detail coefficient, are considered as new signals, and different features can be extracted for each of them. They are obtained by passing the original temporal signal through the low-pass and high-pass filters, respectively. Finally, all the features of Table 2.4 can also be extracted from both Approximation and Detail signals.

Table 2.4: Statistical original-domain features. x i : i = 1, ..., N is a point of the signal.

Feature Description Formulation

Peak value (P ) Peak value shows the maximum normal value of the signal max i=1,...,N

x i

Mean (µ)

Mean is the expected value of a signal to measure the central tendency either of a probability distribution or the random variable characterized by that distribution

i x i N Variance (Var )
Variance measures the dispersion of a signal around their reference mean value

i (x i -µ) 2 (N -1)σ 2

RMS

RMS starts to be increased as abnormality initiated in the signal and its value increases gradually as the fault is developing

i x 2 i N Skewness (Sk )
Skewness is used to measure the asymmetry behavior of a signal through its PDF

i (x i -µ) 3 (N -1)σ 3 Kurtosis (Ku)
Kurtosis quanties the peak value of the PDF

i (x i -µ) 4 (N -1)σ 4

Crest indicator (CI )

It is defined as the ratio of the maximum positive peak value of the signal

P RM S Autocorrelation (r k )
Measures the correlation (r k ) between x i and x i+k , where k = 0, ..., N is the time lag

N -k i=1 (x i -µ)(x i+k -µ) N σ 2
Linear correlation (Corr ) Measures the strength of a linear association between two signals x and y.

i (x i -µ x )(y i -µ y ) i (x i -µ x ) 2 i (y i -µ y ) 2
Table 2.5: Statistical frequency-domain features. x i : i = 1, ..., N is a point of the signal.

Feature Description Formulation

Frequency Center (FC ) FC is the expected value of frequency elements to measure the position changes of main frequencies (

x i = x i+1 -x i ) N i=2 x i x i 2π N i=1 x 2 i Root Mean Square Frequency (RMSF )
RMSF starts to be increased as abnormality initiated in the signal.

It is to measure the position changes of main frequencies

N i=2 (x i ) 2 4π 2 N i=1 x 2 i Root Variance Frequency (RVF )
RVF shows the convergence of the power spectrum

N i=2 (x i ) 2 4π 2 N i=1 x 2 i -F C 2
Spectral Skewness (SS(n)) SS measures the symmetry of the distribution of the nth spectral magnitude values around its mean 2

N/2-1 i=0 (|X(i, n)| -µ |X| ) 3 N σ 3 |X| Spectral Kurtosis (SK(n))
SK measures the distribution of the spectral magnitude values and compares to a Gaussian distribution.

X(i, n) is the i th point of the nth spectrum 2 N/2-1 i=0 (|X(i, n)| -µ |X| ) 4 N σ 4 |X| - 3 
Spectral entropy (S(E)) Spectral Entropy describes the complexity of a system. p i is the probability of point i appearing in the spectrum

- N i=1 p i ln p i

Shannon entropy (H(A))

Spectral Entropy describes the complexity of a system -

N i=1 p i log 2 p i CHAPTER 2. LITERATURE REVIEW

Literature Review

This section reviews the relevant literature by dividing the papers into two main categories as equipment behavior prognosis and equipment failure diagnosis. This section discusses the researches done in the semiconductor industry (since it is the case study of this thesis) alongside the chemical industry since they share the same FDC data structure and production features. A few papers might also be reviewed from other industry with different data if they provide relevant insight into equipment behavior prognosis and equipment failure diagnosis.

Literature Review: Equipment Behavior Prognosis

This section surveys the papers studied in the semiconductor and chemical industries that have researched on equipment behavior prognosis. Chen et al. [START_REF] Chen | Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration[END_REF] developed a data-driven approach by using the multivariate process capability index to integrate the equipment multiple parameters into an overall equipment health index. To do that, they first applied some multivariate statistical methods, e.g., PCA and time series analysis to do original-domain data preprocessing. They proposed then a Machine Capability Index (MCI) using preprocessed equipment data based on the idea of multivariate process capability Indices (PCIs), which was manipulated for equipment capability evaluation. This index considered the covariance and mean matrix of observation vectors as well as the incorporation of subject matter expertise to define machine condition. Afterward, they established a prognosis model based on an aging Markovian deterioration model to describe the wave-moving probability distribution of machine condition. The authors supposed that the machine likely enters into less healthy states as it grows older. Despite the semi-Markovian model in the literature, they introduced an aging factor that discounted the transitions'probabilities to more robust states while increasing the transitions'probabilities to less healthy states. Finally, dynamic PM policy under Markovian aging deterioration which was rooted in a stochastic health model was developed. Chao et al. [START_REF] Chao | Systematic applications of multivariate analysis to monitoring of equipment health in semiconductor manufacturing[END_REF] proposed a data-driven model for batch process monitoring in the semiconductor industry. The initial idea came from Multi-way Principal Component Analysis (MPCA) knowing that it is often impossible to take benefit from pure MPCA due to the increase in the number of variables. They introduced a set of step-trend variables such that the mean shifts of each sensor variables from the reference profile are calculated in each step. The reason is in the semiconductor industry the processes often consist of ramp up-down steps that result in variables with sharp and significant changes. The considerable variation can be observed during the initial periods of the process. On the other hand, the steady difference states between batches impose another interpretation challenge. Afterward, they calculate the score of a first principal component obtained from MPCA to monitor equipment deterioration. Eventually, they estimated the Hotelling T 2 to detect the batch faults. Finally, they concluded that weighted PCA of step-trend variables could be used to monitor equipment behavior, and Hotelling T 2 and the cumulative probability of the residual variables to detect potential defective batch.

Tew et al. [START_REF] Tew | A systematic approach towards manufacturing health management[END_REF] proposed an original-domain based analysis to fault diagnostics and prognostics that aims to facilitate equipment health management in a manufacturing environment. The data set is vibration data collected for each bearing type and machine operating speed. Each dataset is sub-divided into the training set, containing 80% of the samples, and the testing set, which includes the remaining 20% of the samples. The extracted features were the peak value; root means square value, standard deviation and kurtosis value of the vibration signal. Afterward, they combined the extracted originaldomain features into a feature set associated with each segment of the vibration data using the ColumnModifier module which is functions to obtain and merge columns from dierent files/databases. Therefore four extracted features combined into a single data table in which each row contained the four features computed from the corresponding segment of the vibration signal. Then, they applied three classifiers as Multi-Layer Perceptrons (MLP), k -Nearest Neighbors (k NN) and SVM, wherein the bearings with inner race fault, outer race fault, ball fault, and combination fault are grouped into one superset of faulty bearings. The Class Labeler modules assigned a "0" label onto each feature set for good bearing data, and a "1" label onto each feature set for the faulty bearing data. The authors finally captured the characteristics of the machine states with several data-driven approaches such as SVM and MLP which outperformed k NN classifier. It is worthy to mention that their data set was purely high qualified under controlled manufacturing environment, so it would be a challenge to apply this model on the data set contains noises, missing or even non-meaningful values.

In another paper [START_REF] Lee | Monitoring Batch Processes with Multiple OnOff Steps in Semiconductor Manufacturing[END_REF], the central assumption and explanation are based on the various variations at different sensor profile which are mainly due to on-off recipe actions at specific points. The authors proposed a PCA-based data-driven method to address the long-term and short-term effects of tool aging and first-wafer in a lot cycle, respectively. To do that, they firstly determined a fixed-reference original-domain profile for each sensor variable to describe the on-off actions and a general similarity in the patterns due to recipe actions. They then established the level shifts of these patterns in each step to capture and to remove natural within-profile variations due to long-term aging trends and the short-term first-wafer effects. Despite the recipe dependency of this model, the detection of real faults is facilitated by these systematic normal phase separation. In the end, they formulated the residuals of this model to have a health index for each wafer by using standard multivariate statistical analysis. Krueger et al. [START_REF] Krueger | Application of Generalized Linear Models to Predict Semiconductor Yield Using Defect Metrology Data[END_REF] proposed semi-physical model-based and knowledge-based methodologies about data collection, integration, and aggregation which is used in a proposed generalized linear model to predict semiconductor yield based on original-domain defect metrology data. They applied this technique to both die and wafer levels, and compared the prediction errors and significant process improvement factor, with existing models in the literature. They discussed the nested or hierarchical structure to identify the primary outlier sources, which means in multi-factor experiments, the levels of one factor are similar but not identical for different levels of another factor. They concluded that the nested structure could not be used at the wafer level due to equipment and process monitoring time consuming, while it can be used at die-level technique and provided more detailed information about significant predictors, including specific wafers and die. For complementary, they proposed the nested die-level logistic regression models to show the predictive power at both the die and wafer levels. Thieullen et al. [START_REF] Thieullen | A Survey of Health Indicators and Data-Driven Prognosis in Semiconductor Manufacturing Process[END_REF] surveyed several papers up to 2011 that study data-driven approaches for two issues of Prognostic and Health Management (PHM) methodologies with applications focused on semiconductor manufacturing process: the development of indicators for health assessment, and prognostic purposes.

As another data-driven approach using original temporal data, Yang and Lee [START_REF] Yang | Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems[END_REF] proposed Bayesian Belief Network (BBN) application on Chemical Vapor Deposition (CVD) tool to investigate the causal relationship among process variables on the semiconductor tools and to evaluate their influence on the wafer quality. The goal was fault diagnosis and prognosis in semiconductor manufacturing. By statistical inference on BBN models at different periods of the process, this relation and their influence on wafer indicated by the network structure and by the conditional probabilities in the model. They suggested by this model that one can diagnose causes when the bad wafer is produced or can predict the wafer quality when abnormal is observed during the process. In this study, the two main challenges which should be mentioned are first to have a normal process drift or shift model as a baseline and secondly to evaluate all the obtained interactions between the sensors. Accordingly, a process engineer expertise is required.

Bleakie et al. [START_REF] Bleakie | Feature extraction, condition monitoring, and fault modeling in semiconductor manufacturing systems[END_REF] presented a data-driven integrated feature extraction, equipment monitoring, and fault modeling approach applied to temporal sensor data from Plasma Enhanced Chemical Vapor Deposition (PECVD) tool. Firstly they extracted forty features from multiple sensor readings, including dynamic features like rise-time, overshoot, and steady-state values, along with statistical features, such as mean value, variance, and range. Afterward, they standardized features to eliminate the physical units and make them dimensionally homogeneous. To standardize, they subtracted feature mean and divided it by its standard deviation, where the mean and standard deviation were calculated from the normal data set. Then they analyzed the sensitivity of the feature to various equipment conditions from normal to faulty situations. For this aim, they applied Linear Discriminant Analysis (LDA) for finding the most sensitive features between two classes of data. They quantified the changes in the most sensitive features by tracking the overlap volume between probability density function (PDF) of the normal feature and current system behavior one. The feature PDFs were approximated using GMMs.

Nguyen et al. [START_REF] Nguyen | Fault Prognosis with Stochastic Modelling on Critical Points of Discrete Processes[END_REF][START_REF] Lien Nguyen | Fault prognosis for batch production based on percentile measure and gamma process: Application to semiconductor manufacturing[END_REF] presented a data-driven approach to health index extraction for discrete manufacturing processes tools based on the deterioration reconstruction. They used the temporal FDC data and monitored the trend of significant SVIDs which carry the equipment deterioration information. Afterward, the authors identified the critical points of degraded SVIDs based on an optimization algorithm with variance maximization objective. The crucial aspect of a degraded sensor is the observation interval at which the variance is maximum. They used then Hybrid-wise Multiway PCA (E-HMPCA) and the index of Squared Prediction Error (SPE) to perform deterioration detection and diagnosis for the batch process machine. The process was considered reliable if SPE is under its upper control limit. Then, they modeled the HI with a Gamma process. For the online supervision, they also estimated the probability density function of RUL for each inspection time which was supported by an off-line analysis. An application of the proposed method in a real industrial case showed a small error of RUL estimation for the online supervision. A further improvement of the proposed method is necessary to overcome the influences of local fluctuations of the HI in some particular situations.

Yu et al. [START_REF] Yu | Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing[END_REF] proposed a data-driven approach based on hierarchical indices for real-time equipment monitoring using the relative importance of the SVIDs, steps, and observation. They started by data preparation in original-domain and to tackle with missing data, observations were considered individually, and the results were then combined to develop the equipment indices. Instead of using p-values as equipment indices, they thought "1" and "0" to represent the changing/unchanging of an observation trend, respectively. For defined outlier zone, authors approximated it by the Gaussian distribution assumption. Afterward, they developed hierarchical indices using the weighted sums in which the weights, were provided by engineers, show the relative importance of each observation. They finally located the causes when equipment indices decreased.

In a similar work, Nguyen et al. [START_REF] Nguyen | Health Index Extraction Methods for Batch Processes in Semiconductor Manufacturing[END_REF] presented three data-driven methods for equipment behavior prognosis by extracting the HI of Plasma Enhanced Chemical Vapor Deposition (PECVD) equipment. The first method is Degradation Reconstruction Combined with PCA (DR-PCA), the second method is Degradation Reconstruction Combined with EWMA-Hybridwise Multiway PCA (DR-E-HMPCA), and the last one is Significant Points Combined PCA (SP-PCA). After applying on the simulated and real FDC data, they concluded the SP-PCA method gives the most reliable Health Index, though it is time-consuming. In the real time since the process condition is changing, one should consider updating this methodology to online prognosis.

As an extension of [START_REF] Nguyen | Health Index Extraction Methods for Batch Processes in Semiconductor Manufacturing[END_REF], Nguyen et al. [START_REF] Lien Nguyen | Fault prognosis for batch production based on percentile measure and gamma process: Application to semiconductor manufacturing[END_REF] studied the equipment behavior prognosis in batch manufacturing processes (BMP) that plays a vital role in many production industries, such as in semiconductor, electronic and pharmaceutical industries. They exhibit some batch-to-batch or unit-to-unit variations due to many reasons such as variations in impurities and deviations of the process variables from their trajectories. The authors proposed a data-driven prognostic approach for the batch process on chemical vapor deposition machine. For this aim, they firstly reduced the data size to extract a raw health index which represents the operating state of the system. Next, they calculated the first principle component of the data set by PCA and later identified the sensorobservation points which mean the feature that carries the deterioration information based on the correlation value between the first principle component and each column of data set matrix. Finally, they modeled the deterioration by gamma process and then extracted remaining useful life estimation with using probability density function with a confidence interval. The proposed method was applied to semiconductor manufacturing equipment with two industrial data sets provided by STMicroelectronics.

Wang et al. [START_REF] Wang | A novel Bayesian network-based fault prognostic method for semiconductor manufacturing process[END_REF] proposed a data-driven fault prognostic method on a simulated fabrication data set in semiconductor industry based on Bayesian networks to represent the relationships between the current process status and the ongoing process fault for both continuous and discrete temporal process variables. In this modified Bayesian network for each fabrication process, continuous variables are for process monitoring, and the discrete variables illustrate where there is a fault in the process or not. This paper used the joint probability distribution property of Bayesian network which is represented by the product of all variables'conditional probability distributions, to predict whether there will be a fault in the next step. To specify which sensor caused the defect, they calculated the divergence of the sensor value from the normal mean value. In the end, they stacked up to the network of each process together, to have a complete model for whole fabrication processes.

Rostami et al. [START_REF] Rostami | Equipment Deterioration Prognosis and Fault Diagnosis in Semiconductor Manufacturing[END_REF][START_REF] Rostami | Equipment Health Diagnosis and Prognosis using a Wavelet-based Windowing Approach in Semiconductor Manufacturing[END_REF] proposed a data-driven approach employing time-frequency analysis. Their approach develops a healthy state model for equipment deterioration monitoring using Wavelet Packet Decomposition (WPD) concept on FDC data in semiconductor manufacturing. They decomposed the SVID readings into approximation and detail components obtained from WPD and calculated the energies of each component at a given level decomposition. They introduced then these energies as features which show the equipment deterioration trend. To track the energy change over process run, they proposed to track their PDF. Accordingly, they used GMM to construct the PDFs and followed the evolution of feature distributions. It should be mentioned that they defined a normal GMM baseline which is constructed upon normal wafers or post-PM wafers. To quantify differences between normal GMM and current GMMs, they calculated the distance between their PDFs, iteratively, by Hellinger distance which was modified and relaxed by the authors. The challenge is how to set the size of normal GMM to compare fairly with current GMMs since the size of the normal baseline is the function of the data set size.

In a similar work, Rostami et al. [START_REF] Rostami | Equipment Health Diagnosis and Prognosis using a Wavelet-based Windowing Approach in Semiconductor Manufacturing[END_REF] modeled the equipment deterioration with the complex FDC data in semiconductor manufacturing. They proposed applying WPD to decompose the temporal SVID readings into the Approximation and the Detail signals over the time-frequency domain. They explained that since faults contribute to the sensor readings with high-frequency signals and affect the energy of the signals, sensor decomposition help to extract the deterioration-related features. Then they calculated the energy values of the decomposed signals as deterioration-related features. They emphasized that the Approximation and Detail features carry information regarding the long-term patterns, e.g., process dynamics, and short-term changes, e.g., sudden ups and downs, respectively. To prognose equipment deterioration and to diagnose the potential failures, they tracked the PDF of the features over time. To reach this goal, they developed an iterative windowing approach to monitoring the evolution of the PDF over different sets of wafers for the energies of Approximation signals and the energies of Detail signals, separately. Afterward, they again used GMM to estimate the PDF of the energy features. The drift of GMM from normal basis window to the current window was characterized by calculating the Hellinger distance, which is an f-divergence-based function. Finally, they concluded that the Approximation and Detail signals could be used separately for failure diagnosis and deterioration prognosis, respectively. Jia et al. [START_REF] Jia | A deviation based assessment methodology for multiple machine health patterns classification and fault detection[END_REF] proposed a data-driven Diffusion Map based methodology for an online machine deterioration assessment, abnormality detection, and diagnosis. The deterioration assessment uses a baseline, which represents the healthy run, and the deviation from this baseline is measured as deterioration. They also proposed a difference based methodology for nonlinear dimension reduction. The authors selected diffusion map because of its better performance and more robust result on the real-world data set. They elaborated the proposed method on etching process fault detection. Finally, the comparison of the proposed method's result with PCA-based methods for data reduction and with a SOM-based method for equipment health monitoring illustrated the outperforming of the proposed approach. Although this methodology has been proposed for machine health monitoring, fault prognosis as a critical part of this domain is missed.

As a novel data-driven approach, Rostami et al. [START_REF] Rostami | FDC-based Equipment Deterioration Modeling and the Root Cause Identification in Semiconductor Industry[END_REF] utilized FDC data to develop an equipment deterioration model over the time and to identify the caused SVIDs. They depicted that deterioration touches the sensor readings in two ways: long-term level changes and short-term fluctuations which former appears in the signal as low-frequency components while later contributes to the signal as high-frequency components. They distinguished these impacts using WPD and decomposed signals into low frequency (Approximation) and high frequency (Detail) components. They calculated then the determinant of the correlation between Approximation signals in each wafer and repeated it for all wafers, to show long-term level changes causes into deterioration pattern. They afterward, identified contributing SVIDs on deterioration causes, because the long-term level change appeared only in some of SVIDs, and not between all SVIDs. For this aim, they proposed a greedy algorithm to pick out a group of SVIDs expected to be the deterioration causes. Table 2.6 summarizes the literature review on equipment behavior prognostic papers. 2.6 and visually show how equipment behavior prognosis problems have been studied in each of semiconductor and chemical industries. Figure 2.4a illustrates that the equipment behavior prognosis has received more attention in the semiconductor industry comparing to the chemical industry. Figure 2.4b shows that the majority of the studies have applied data-driven approaches to prognose the equipment behavior; while the knowledge-based approaches have the least contribution. Such a minimum percentage for knowledge-based techniques reveals that semiconductor/chemical industries are complicated and experts cannot provide enough knowledge to prognose the equipment behavior. The popularity of the data-driven approaches lies in their efficiency and applicability comparing to the other modeling approaches. Figure 2.4c illustrates that the majority of the reviewed papers have used FDC data for equipment behavior prognosis. Finally, it can be observed in Figure 2.4d that most of the existing approaches in the equipment behavior prognosis have processed the data in the original domain and a few papers also in the time-frequency domain. 2007 [START_REF] Chao | Systematic applications of multivariate analysis to monitoring of equipment health in semiconductor manufacturing[END_REF] 2008 [START_REF] Tew | A systematic approach towards manufacturing health management[END_REF] 2011 [START_REF] Lee | Monitoring Batch Processes with Multiple OnOff Steps in Semiconductor Manufacturing[END_REF] 2011 [START_REF] Krueger | Application of Generalized Linear Models to Predict Semiconductor Yield Using Defect Metrology Data[END_REF] 2011 [START_REF] Sikorska | Prognostic modelling options for remaining useful life estimation by industry[END_REF] 2011 [START_REF] Yang | Bayesian Belief Network-based approach for diagnostics and prognostics of semiconductor manufacturing systems[END_REF] 2012 [START_REF] Bleakie | Feature extraction, condition monitoring, and fault modeling in semiconductor manufacturing systems[END_REF] 2013 [START_REF] Farouk Bouaziz | Towards Bayesian network methodology for predicting the equipment health factor of complex semiconductor systems[END_REF] 2013 [START_REF] Yu | Hierarchical indices to detect equipment condition changes with high dimensional data for semiconductor manufacturing[END_REF] 2014 [START_REF] Nguyen | Health Index Extraction Methods for Batch Processes in Semiconductor Manufacturing[END_REF] 2015 [START_REF] Lien Nguyen | Fault prognosis for batch production based on percentile measure and gamma process: Application to semiconductor manufacturing[END_REF] 2016 [START_REF] Wang | A novel Bayesian network-based fault prognostic method for semiconductor manufacturing process[END_REF] 2017 [START_REF] Rostami | Equipment Deterioration Prognosis and Fault Diagnosis in Semiconductor Manufacturing[END_REF] 2017 [START_REF] Rostami | Equipment Health Diagnosis and Prognosis using a Wavelet-based Windowing Approach in Semiconductor Manufacturing[END_REF] 2017 [START_REF] Rostami | FDC-based Equipment Deterioration Modeling and the Root Cause Identification in Semiconductor Industry[END_REF] 2018 [START_REF] Jia | A deviation based assessment methodology for multiple machine health patterns classification and fault detection[END_REF] 2018 Total Papers 17 1 2 3 16 16 3 0 15 3
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Literature Review: Equipment Failure Diagnosis

This section surveys the relevant papers studied in the semiconductor and chemical industries that have researched on equipment failure diagnosis. Chen and Liu [START_REF] Chen | A neural-network approach to recognize defect spatial pattern in semiconductor fabrication[END_REF] intended to develop a data-driven approach based on a neural network architecture named Adaptive Resonance Theory Network 1 (ART1), which recognizes spatial defect patterns to aid in the diagnosis of failure causes. The authors conducted the proposed methods on original temporal data obtained from a semiconductor manufacturing company in Taiwan and to evaluate the training performance of the ART1 network; it was compared with SOM. By the result, they showed that for the new patterns, ART1 converged much faster than SOM regarding data training. They also concluded that thought this approach provided the automated classification of known patterns and detection of new unknown patterns as well; it could not classify the patterns of defects. Furthermore, due to limited capability for die-level in ART1 network, it could organize the pattern of the defective die. Yue et al. [START_REF] Yue | Fault detection of plasma etchers using optical emission spectra[END_REF] introduced the batch process monitoring to semiconductor fabrication for plasma etchers by using emission spectra and the data-driven Multi-way PCA (MPCA) method to analyze multiple scan sensitivity within a wafer for several typical faults. They tested two MPCA schemes for fault detection and wavelength selection. The proposed method selected critical wavelengths to detect the failure. However, due to the chosen wavelength constraint and ignorance in the normal drifts, the proposed method is not guaranteed to be robust.

Su et al. [START_REF] Chao-Ton | A neural-network approach for semiconductor wafer postsawing inspection[END_REF] proposed a data-driven neural network approach for semiconductor wafer post-sawing inspection by introducing three types of neural networks as backpropagation, Radial Basis Function (RBF) network, and learning vector quantization. Regarding the final result, they compared the proposed approach with two other inspection methods, visual inspection, and feature extraction inspection. Finally, it was illustrated that the inspection time by the proposed approach is less than one second per die.

Spitzlsperger et al. [START_REF] Spitzlsperger | Fault detection for a via etch process using adaptive multivariate methods[END_REF] presented a data-driven adaptive Hoteling's T 2 control chart for the semiconductor etching process. In this paper, the authors emphasized the insufficiency of Hotelling process control charts for monitoring the status of the oxide etching process due to the Hotelling statistic movement since it is unstable for the period after the maintenance. The proposed method updates only the univariate that is given to drift, but the problem has not been completely resolved.

Gondra [START_REF] Gondra | Applying machine learning to software fault-proneness prediction[END_REF] developed a variety of data-driven prognostic models based on machine learning techniques such as ANN and SVM to observe the correlation between process metrics and fault-proneness to estimate the process faults. The author performed a comparative experimental study of the effectiveness of ANN and SVM when applied to the problem of classifying modules as faulty or fault-free on a data set obtained from NASA Metrics Data Program data repository. The experimental results confirmed the superior performance of SVMs over ANNs when viewing fault-proneness prediction as a binary classification task.

Chen et al. [START_REF] Chen | Recipe-Independent Indicator for Tool Health Diagnosis and Predictive Maintenance[END_REF] proposed a data-driven approach that determines a recipe-independent health indicator based on the Generalized Moving Variance (GMV) by consolidating the large number of SVIDs into a single tool health indicator. To do, they observed the distribution of the tool parameters readings. They proposed then using moving variance/covariance, which was calculated by a small number of consecutive observations in a moving time window. Generalized variance, the determinant of the covariance matrix, is in effect proportional to the volume of data distributed in the multidimensional variable space. They assumed that there should be a regular size of data distribution under a normal process run and therefore the distribution of SVIDs is a function of tool's health. The proposed estimation was model-freed. With this tool health indicator, they employed the exponentially weighted moving average (EWMA) control scheme to detect abnormal health. After that, they developed a two-step diagnosis method to find the causes of the health abnormalities. The first step included the decomposition of the generalized variance into the variance and the covariance. The second step involved the detection of the anomalies of the SVID variability and/or relationships. They tested the method with actual plasma-enhanced chemical vapor deposition (PECVD) and physical vapor deposition (PVD) production data.

Li et al. [START_REF] Li | Total PLS Based Contribution Plots for Fault Diagnosis[END_REF] developed a new data-driven fault diagnosis approach based on Total Projection to Latent Structures (T-PLS). They used four kinds of monitoring statistics in T-PLS and offered a new definition of variable contributions of the T 2 statistics in PLS. Finally, the authors derived the variable contributions of all statistics to identify the faults.

Yu [START_REF] Yu | Fault Detection Using Principal Components-Based Gaussian Mixture Model for Semiconductor Manufacturing Processes[END_REF] proposed Principal Components (PCs)-based GMM in semiconductor manufacturing to detect the faults. The author used PCs generated by PCA as inputs of GMM to estimate the PDF of semiconductor manufacturing process observations, which can handle complex data with nonlinearity or multi-modal features. The author also proposed two quantification indexes, i.e., negative Log likelihood probability and Mahalanobis distance for assessing process states and then used a Bayesian inference-based calculation method to provide the process failure probability.

Hung et Chen [START_REF] Hung | Test of covariance changes without a large sample and its application to fault detection and classification[END_REF] proposed data-driven inference procedures to detect and classify the faults by monitoring the change of the covariance matrix of FDC temporal data in semiconductor manufacturing. They applied Bartlett and Cholesky decomposition theories to test the evolution of the covariance matrix pattern. These theories aimed to overcome the type-I error challenges. They, therefore, offered two test methods with specific null distributions that overcome the substantial sample requirement difficulties in conventional covariance tests. They compared the proposed method with conventional univariate SPC method and proof its outperforming. It is noteworthy that their proposed classification rules can be combined with other fault detection methods like likelihood ratio test (LRT), in which once the faults are detected, the proposed classification can be applied to identify the sources of the failure.

Chien et al. [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF] combined data-driven approaches such as MPCA and SOM to construct the model to detect faults and to derive the rules for fault classification. In their method, the 3-dimensional data was unfolded and projected onto the score and residual spaces to reduce the high data dimension to a few PCs. While D (Hotelling's T 2 ) and Q (residual) statistics were used for abnormal events detection, different types of process defects were detected based on the extracted control limits. It is noteworthy that using the statistical control charts on the historical data cannot grantee that the faults are distinguished correctly as the detected drifts might be from the normal variation, such as the process change. They then clustered the Out-Of-Control (OOC) observations using the SOM algorithm. However, clustering the observations based on their coordinates may lead to incorrect fault classification. Furthermore, their approach cannot distinguish the normal variation from the recipe changes, and these variations might be misunderstood as the fault when clustering the observations based on their coordinates. Blue et al. [START_REF] Blue | Tool Condition Diagnosis With a Recipe-Independent Hierarchical Monitoring Scheme[END_REF][START_REF] Blue | FDC R2r variation monitoring for sensor level diagnosis in tool condition hierarchy[END_REF] developed a data-driven tool condition hierarchy monitoring approach based on general moving variance and multivariate methodologies to detect the tool faults in semiconductor manufacturing. Firstly, they classified the SVIDs into similar variations groups. In this way, they calculated the Coefficients of Variation (CV) for all the process steps through all SVIDs. Afterward, they stacked up to the CV matrices for each level and got an overall matrix. In the hierarchical agglomerative clustering method, they calculated the absolute value of the correlation coefficient between two SVIDs from whole CV matrix. This value resulted in the correlation-based similarity matrix. The agglomerative procedure was continued to generate potential SVID grouping schemes regarding a dendrogram. They then applied the idea of generalized moving variance on each SVID group to depict the group condition of the tool. To develop the tool condition monitoring, they took the first principal component of PCA applied on moving covariance matrix of each group and got the matrix of 1 st PCs. Then to generate an overall tool condition monitoring they again applied generalized moving variance on the matrix of 1 st PCs. Since they consolidated the massive amount of tool sensors data into one single indicator, they claimed that this overall indicator was recipe-independent. By this overall tool condition, they detected the abnormal tool conditions and explained them by the causal sensor groups.

By integrating the Reconstruction-Based Multivariate Contribution Analysis (RBMCA) with Fuzzy-Signed Directed Graph (SDG), He et al. [START_REF] He | Root cause analysis in multivariate statistical process monitoring: Integrating reconstruction-based multivariate contribution analysis with fuzzy-signed directed graphs[END_REF] developed a hybrid data-driven and knowledge-based fault diagnosis method to identify the cause of the detected fault. First, the authors proposed an RBMCA based fuzzy logic to represent the signs of the CHAPTER 2. LITERATURE REVIEW process variables. The fuzzy logic was then extended to examine the potential relationship between causes to effects regarding the Degree of Truth (DoT).

Rato et al. [START_REF] Rato | Translation-Invariant Multiscale Energy-Based PCA for Monitoring Batch Processes in Semiconductor Manufacturing[END_REF] proposed a data-driven approach for process monitoring in semiconductor manufacturing on the FDC temporal data collected from the etching process. Since in a chamber, mainly the gas flows, pressure, temperature, and power module are controlled to reach the desired quality targets on the wafer surface, the collected variables by sensors are temperature, gas flow, radio frequency power, and pressure readings. The proposed approach was based on monitoring of a particular type of features, i.e., the energies. These energies were computed from the application of a translation-invariant wavelet decomposition along the time series profile of each variable in one batch. They defined the vector of wavelet energies at each scale. Each entry of the vector of wavelet energies carried information about the dynamic activity of a given variable in the frequency-band corresponding at given scale. Then they monitored the energies vector by applying a latent variable process-monitoring framework, namely MSPC-PCA (Multivariate Statistical Process Control-PCA). Therefore their proposed methodology was composed two significant stages, firstly a signal decomposition stage, where a translation-invariant wavelet transform was applied to each variable and secondly a bilinear PCA modeling stage, performed over the wavelet coefficients'energy. To diagnose the faults, the authors calculated contribution plot of the proposed approach to investigate the origin of the failure.

Anand et al. [START_REF] Anand | A Method for Reducing Noise and Complexity in Yield Analysis for Manufacturing Process Workflows[END_REF] presented a statistical-data-driven approach using Bayesian analysis to diagnose and isolate the source(s) of yield loss of a given process workflow for the semiconductor manufacturing. The problem was a discrepancy observed between the Forecasted wafer sort yield and the Calculated wafer sort yield for a manufacturing process due to a mismatch between any subset of preceding process steps and their corresponding forecast models. By comparing these two sorts of yield, they proposed a cycle of graph-based or network-based representations of manufacturing processes to isolate the steps responsible for an observed discrepancy.

Li et Zhang [START_REF] Li | Diffusion maps based k-nearest-neighbor rule technique for semiconductor manufacturing process fault detection[END_REF] developed data-driven diffusion maps based on k NN rule technique for fault detection in the semiconductor industry. This proposed method used the correlation dimension estimator to assess the dimension of the original data set. Then, it reduced the size of a data set while persevering the information by using a diffusion map. Afterward, the adapted k NN rule has been applied to detect the faults.

Rostami et al. [START_REF] Rostami | Equipment anomaly detection and automatic fault fingerprint extraction in semiconductor manufacturing[END_REF] applied several data-driven approaches for equipment failure diagnosis. The authors first proposed the SVM classifier to detect the abnormal observations in semiconductor FDC data. Then tey analyzed the normal process dynamics by SOM and kept them in different clusters. These clusters were further modeled by PCA and represented a specific dynamic behavior. Fault fingerprints were then extracted by projecting the abnormal data into the PCA models and illustrated a different type of fault that may exist in the data set.

As an extended study of [START_REF] Rostami | Equipment anomaly detection and automatic fault fingerprint extraction in semiconductor manufacturing[END_REF], Rostami et al. [START_REF] Rostami | Automatic equipment fault fingerprint extraction for the fault diagnostic on the batch process data[END_REF] developed an equipment condition diagnosis model in semiconductor manufacturing. For this aim, they trained SVM on the FDC temporal data to distinguish normal data from abnormal ones. Then they clustered the normal wafers into several consecutive clusters by K -means clustering, to differentiate normal process from faulty-related variations. They after applied PCA onto these clusters to modularize the process dynamics and construct the normal models. They projected abnormal data to the normal models and calculated D (Hotelings T 2 ) and Q (residual) statistics, representing the consistency in the score and residual spaces, respectively. They estimated the control limits for the process variables. In the next stage, they computed the contribution value of variables for each Out-Of-Control observation and applied again k -mean on the contributions to extract the highest possible number of fault fingerprints. They explained that since all faulty data must share the same faulty variables, the contribution value of a variable indicates that how much that variable creates abnormality deviation. Finally, they summarized the contribution value to provide unique contribution plot. They developed the control limits for contribution values to find the process variables that are different in the abnormal data compared to the normal models. They interpreted the variables as the fault roots if their summarized contribution values exceeded the corresponding control limits.

Table 2.7 summarizes the literature review on equipment behavior prognostic papers. 2.5b shows that the majority of the studies have applied data-driven approaches to diagnose the equipment failure; while the knowledge-based approaches have the least contribution. Such a minimum percentage for knowledge-based techniques reveals that semiconductor/chemical industries are convoluted processes and experts cannot provide enough knowledge to characterize the equipment failures. Similar to prognostic approaches, the data-driven approaches have also received the highest popularity comparing to the other modeling approaches. Figure 2.5c illustrates that the majority of the reviewed papers have used FDC data for equipment failure diagnosis and few papers have employed metrology and R2R data. Finally, it can be observed in Figure 2.5d that most of the approaches in the equipment failure diagnosis have processed the data in the original domain and no paper in the time-frequency domain. 

CHAPTER 2. LITERATURE REVIEW

Thesis Framework

Based on what has been reviewed, this research develops efficient approaches to mine and analyze FDC data from etching equipment (Figure 2.3) in the semiconductor industry. Different methods are proposed for both prognostic and diagnostic purposes.

From the prognostic point of view, a data-driven approach is developed to prognose the etching equipment behavior with corresponding root causes. Regarding the diagnostic aspect, another data-driven approach is proposed to diagnose the etching equipment failure with corresponding fault fingerprints and fault root causes. These purposes are explained more in Sections 2.6.1 and Sections 2.6.2, respectively.

Methodology for Equipment Behavior Prognosis

As in the digital universe, semiconductor manufacturer has been taking advantage of big data evolution, which leveraging it into fault detection improvement and predictive maintenance support. In the semiconductor industry, the booming growth of data is 2.6. THESIS FRAMEWORK 53 an essential key for APC solutions to monitor, prognose, and diagnose at better levels.

While the move to big data solutions for APC systems is critical and immigrates the benefits [START_REF] Moyne | Big Data Capabilities Applied to Semiconductor Manufacturing Advanced Process Control[END_REF], a semiconductor manufacturer can build prognostic approaches that learn the system behavior through large volumes of historical equipment conditions data. This definition is termed the data-driven approaches, also known as data mining or machine learning approaches [START_REF] Van Den Kerkhof | Analysis of smearing-out in contribution plot based fault isolation for Statistical Process Control[END_REF]. With a variety of process types and tens or even hundreds of sensors to collect data in semiconductor manufacturing, data-driven approach represents a platform where big data solutions are introducing notable benefits [START_REF] Xi | A Copula-based sampling method for data-driven prognostics and health management[END_REF][START_REF] Le Son | Remaining useful life estimation based on stochastic deterioration models: A comparative study[END_REF][START_REF] Li | Reconstruction based fault prognosis for continuous processes[END_REF].

In the following, we generally explain the equipment behavior prognosis and its details are provided in Chapter 3. Since the main prognostic purpose is to avoid upcoming failures, the equipment behavior prognosis is built over normal Batch Manufacturing Process (BMP) data called FDC; however, most of the current prognostic models have been applied to continuous processes and rotatory equipment rather than to BMP data. The FDC data are pervasive types of data in today fab which include an extensive data collection with three-dimensions (wafer × SVID × observation).

The first issue in equipment behavior prognosis of FDC data is the health index (HI) extraction from a large and heterogeneous data size, which has been focused unevenly in the literature. The second issue is multiple recipe contexts in semiconductor productions thereby particular process dynamics (normal ups and downs) happen. For instance, in semiconductor manufacturing processes, etching and deposition processes are carried out over time with different process recipes. Herein, the normal changes in sensor readings must not be declared as equipment deterioration.

To the best of our knowledge, two main types of variations exist among normal wafers in FDC data: 1) recipe-related variation and 2) fault-related variation. In another point of view, recipe-related variation can be replaced by a more general category as contextrelated variation that includes recipe-related variation as well as PMs and consumable changes that might be normal changes. But, this thesis focuses on in-between period of two PMs and mostly concentrates on the recipe changes which are more visible and challenging in the semiconductor industry. Therefore, we continue with the word reciperelated variation in the manuscript. Recipe-related variation included all normal changes in the signal that come from the recipe settings, and they are a part of production process. The recipe-related variation is also called as process dynamics. Fault-related variations imply all unexpected and abnormal changes that may propagate in the signal and result in the equipment failure. An indispensable capability of any prognostic approach should be to distinguish these two types of variations and not to produce false alarms in case of normal process dynamics. Therefore, the proposed equipment behavior prognosis must be recipe independent, and consequently, the approach is only sensitive to fault-related variation.

The third issue is that faults contribute to the signal with different frequencies in the timescale and most commonly used approaches based on the original temporal data are unable to discover these abnormalities correctly as well as to differentiate reciperelated variations from fault-related variations. The original-domain analysis is unable to capture all information from raw signals, while deterioration and abnormal events contribute to the signal with new and unexpected frequencies. On the other hand, frequency-based approaches like Fast Fourier Transform (FFT) are suitable only for stationary signals; however, non-stationarity such as process dynamic is a standard feature of batch processes, particularly in the semiconductor industry. Accordingly, the time-frequency analysis is required to process and analyze the data in both time and frequency scales. Approximation and Detail components of a signal (generated by time-frequency analysis) provide us the data analysis at different time and frequency scales. The fourth issue is that almost all prognostic models only deal with quantifying and monitoring the equipment deterioration but not the reason(s) of this deterioration.

Consequently, we get a step toward introducing a predictive approach to overcome these four issues. Accordingly, this thesis develops a data-driven approach in the timefrequency domain for batch processes with two goals: 1) prognosis the equipment behavior to reveal and monitor the equipment deterioration and 2) diagnose the causes of this deterioration.

Methodology for Equipment Failure Diagnosis

Conventional equipment failure diagnosis approaches are usually performed in two steps [START_REF] Seera | Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model[END_REF] (i) fault detection to determine whether a fault has occurred and (ii) fault classification to categorize the cause of the observed out-of-control status. Automated and efficient equipment failure diagnosis approaches can overcome the wastage and barriers caused by the poorly maintained, degraded, and/or improperly controlled equipment [START_REF] Seera | Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model[END_REF].

Similar to equipment behavior prognosis, equipment failure diagnosis should be capable of distinguishing recipe-related from fault-related variations. Classical FDC methods are unable to differentiate the process dynamics from the fault symptoms. Accordingly, besides to fault detection and fault classification steps, a third step is proposed in this thesis called process dynamic decomposition. The process dynamic decomposition clusters the non-stationary sensor readings into stationary partitions.

A majority of equipment failure diagnosis approaches in the literature lack a mechanism to extract the fault root causes. The three steps mentioned above in the equipment failure diagnosis approach become more usable if the approach can extract the root cause for each class of faults. Therefore, a fourth step is also proposed in this thesis as Fault root extraction that comes to practice once the failure is detected and classified to extract the faulty variables to diagnose the causes of the fault.

For the equipment failure diagnosis approach, a novel data-driven method is proposed for combining these four steps to efficient and effective detection, classification and root extraction of specific faults in the semiconductor manufacturing process.

Chapter 3 Equipment Failure Diagnosis

In this chapter, a new approach to equipment failure diagnosis is proposed, especially, for the semiconductor industry. After providing a general introduction of the problem and corresponding motivation and challenges, Section 3.1, describes the proposed datadriven equipment failure diagnosis approach in detail.

Semiconductor manufacturing consists of highly complex and lengthy wafer fabrication processes with at least 300 process steps and a large number of interrelated variables. The complicated setting in the manufacturing environment further increases the difficulty of process stability maintenance and quality control. CBM and product quality analysis are vital for detecting critical abnormal events in wafer fabrication for optimal tool utilization and high production yield [START_REF] Chen | Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration[END_REF]. As a consequence, the equipment failure diagnosis approach shall be implemented and executed in the most precise manner because an oversight in fault detection or classification will then cause cascading product loss in the production line.

One of the most significant challenges of equipment failure diagnosis in semiconductor manufacturing is to cope with different types of variations in the FDC data. To the best of our knowledge, two main types of variations among wafers in the FDC data are recipe-related variations and fault-related variations. The recipe-related variations are normal changes in the variables and consists of intra-recipe and inter-recipe variations. The intra-recipe variation, considered as the normal process dynamics, is induced from the settings of a single recipe and can be observed as normal ups and downs, i.e., the recipe pattern, during one wafer process run. The inter-recipe variation comes from the product change, i.e., the shift from one recipe to another in the consecutive process runs.

As explained in Section 2.4, one of the challenges in the semiconductor data is the ability to distinguish the normal non-stationarity (i.e., recipe-related variations) appeared in the temporal sensor readings from the abnormal drifts (i.e., fault-related variations). The normal non-stationeries are encoded in the recipe and lie in the chemical and physical laws of the process. This type of non-stationarity is regarded as the process dynamics. On the other hand, the fault-related variation results from any abnormal changes and unexpected behavior that propagate in the signal, and results in the equipment failure. The fault-related variation can be further categorized in two types of events: unexpected failure and gradual deterioration. The unexpected failure occurred to the production machines leads to disqualified products, i.e., abnormal wafers. The sensor readings typically contain observable drifts in comparison with the normal profiles. The gradual deterioration happens to the equipment from one wafer process run to another, and should be captured and analyzed as the equipment deterioration models. Among the fault-related variations, unexpected failure usually dominates the gradual deterioration. It was highlighted in Section 2.6.2 that two conventional steps in most of the classical failure diagnosis approaches are fault detection and fault classification [START_REF] Seera | Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model[END_REF]. These steps are typically to detect and classify any drift and abnormality occurred in the data comparing to the normal situation under a single recipe or a group of similar recipes. In this thesis, this step is called process dynamic decomposition to cluster the non-stationary sensor readings into stationary partitions. It is worth mentioning that the process dynamic decomposition is employed over the data of Normal Operation Condition (NOC) from a single recipe. Afterward, each stationary partition is utilized for further comparisons to detect faults/abnormalities.

After detecting the faults, it is even more critical to extract the fault roots of each faulty class(s) in the semiconductor industry in order to moderate the loss. Therefore, a Fault root extraction step is proposed in this thesis. Once the faults classes are classified, this step looks for the faults root(s) for each class. These fault roots are expected to be different since different classes of faults have been identified. To integrate all these steps, we propose a data-driven equipment failure diagnosis approach for efficient and effective detection, classification and root extraction of specific faults in the semiconductor manufacturing process.

Equipment Failure Diagnosis Approach

Before entering to the detail, you are provided with the general framework of the proposed data-driven approach as Figure 3.2. This framework illustrates and explains what we are looking for and expect from the data-driven equipment diagnosis approach. Each block in the framework corresponds to a main step/purpose in the equipment failure diagnosis. Next to each block, the goal, tools to implement and the expected results of that step have been explained. It is noteworthy that depending on the data and the proposed method, this structure might be changed but still the most of the blocks should be incorporated in any advanced failure diagnosis approach. This framework is further explained and showed in detail and is decomposed into its sub-blocks/sub-steps in The first stage relates to the Anomaly Detection block and is to detect and classify the anomaly, and to retain the NOC data, which are then fed into the second stage that consists of four sub-stages: Process Dynamic Decomposition (relates to Normal Model Creation block), Abnormal Data Categorization (relates to Normal Model Creation and Abnormal Data Analysis blocks), Fault Fingerprint extraction (relates to Fault Root Isolation block), and Fault Root Summarization (relates to Fault Root Isolation block). These sub-stages are to decompose the process dynamic and to create normal models. The normal models are then utilized to categorize the abnormal data to find the fault fingerprints and their corresponding fault roots. Different and the most efficient machine learning techniques are employed in each stage such as Principal Component Analysis (PCA) [START_REF] Chen | Real-time health prognosis and dynamic preventive maintenance policy for equipment under aging Markovian deterioration[END_REF], Support Vector Machine (SVM) [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF], and K -means clustering algorithms [START_REF] Adriane | Combining K-Means and K-Harmonic with Fish School Search Algorithm for data clustering task on graphics processing units[END_REF]. As explained in Chapter 2, the batch process data collected from the semiconductor equipment are usually called the FDC data that contain the sensor readings, also known as Status Variable IDentification (SVID). In the following sections, the structure of the FDC data is introduced, and the necessary notations throughout this chapter are provided. The proposed equipment failure diagnosis approach is then explained step by step.

Anomaly Detection

Goal:

Detecting normality from an abnormality in the dataset for further analysis (Each class of data carries particular information)

Tool:

Depending on the data and the label of the data, supervised classification or unsupervised clustering methods should be used

Result: Two classes/clusters of data, one for normal data and another for abnormal data



Normal Model Creation

Goal:

Creating a normal basis model of the equipment for further analysis of the hidden information in the abnormal data

Tool:

Approaches, which are able to model the distinguishing information of the normal data, should be used. For example, the Eigenvectors of the PCA method could be used as the basis of normal models

Result: One or several normal basis models to evaluate the abnormal data in the next block



Abnormal Data Analysis

Goal:

Analyzing the abnormal data using the created normal models to discover clues and information about the abnormality

Tool:

Any tool that compares the abnormal data with the normal ones to discover differences. These tools may differ from visualization tools to more sophisticated statistical tools. For example, projecting the abnormal data to the normal models created by PCA can extract valuable information from normal-abnormal differences

Result: Any kinds of information that represent the differences between normal and abnormal data 



Fault Root Isolation

Fault Detection and Classification (FDC) data

To characterize the equipment in the semiconductor manufacturing environment, the FDC data are collected via the embedded sensors of the machine wherein a wafer is being processed. Traditionally, fault detection and classification systems transform sensor data into summary statistics, which are then monitored to capture process excursions. The monitoring scheme is always intervened with domain experts and is nonsystematic. As shown in Figure 3.5, the FDC data is depicted as a data cube in three dimensions: wafer (k ) × SVID (j ) × temporal observations (n k ) where the third dimension n k is usually inconsistent from one wafer (batch) to another. It is because the process time varies from one wafer to another, given different process physics. For instance, the etching process stops only when the stop layer is reached and detected. This event causes the difference of the process time from one wafer to another and, consequently, alters the length of FDC data collected [START_REF] Blue | Run-to-run Sensor Variation Monitoring for Process Fault Diagnosis in Semiconductor Manufacturing[END_REF]. Assuming there are J sensors installed in the equipment and thus J SVIDs, v 1 , v 2 , ..., v J , will be collected when one wafer is being processed. Each SVID is collected as a temporal profile, i.e., time series, and the FDC data for wafer k(k = 1, ..., K) are defined as W (k) in (3.1)
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where v k i,j denotes the collected FDC observation of j th SVID at i th time stamp for wafer k ; n k is the number of observations of each SVID for wafer k and as explained is usually not the same from one wafer to another.

V (k) j = [v (k) 1,j , v (k) 2,j , ..., v (k)
n k ,J ] T is the signal of the j th SVID with a length of n k of the k th wafer. To deal with the irregular data cube, conventional unfolding techniques are usually employed [START_REF] He | Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes[END_REF]. In this research, the FDC data are unfolded by stacking the wafers and the long data table is denoted as:

X =       W (1) W (2)
. . .

W (K)       N ×J , (3.2) 
where N = K n=1 n k . The FDC system collects a significant amount of data in real-time and sometimes has problems assembling the data properly in the databases. This leads to out-of-range values, infeasible data combinations, missing values, non-informative variables, etc. [START_REF] Pearson | Mining Imperfect Data. Other Titles in Applied Mathematics[END_REF]. Analyzing data that has not been carefully prepared for diagnostic approaches lead to misleading results. Thus, the pretreatment of the FDC data is of the first priority before running an analysis.

In the FDC data, common problems are wafers with exceptionally few or large observations compared to the normal runs. These wafers are eliminated from the FDC data-set in this thesis. Missing values are also interpolated as the mean values of two neighbor observations of the corresponding SVIDs. Finally, non-informative SVIDs, such as those with one consistent value all the time, are eliminated from the data set.

Without loss of generality, each SVID is normalized to zero mean and unit variance. The purpose of normalization is to avoid particular variables dominating the model results due to the value scales.

Data Pretreatment

Before starting to develop the equipment failure diagnosis model, the collected FDC data of Section 3.1.1 should be prepared for further utilizations. The critical concern of the FDC data is the data collection quality, which is evaluated by the Data Collection Quality Value (DCQV) [START_REF] He | Statistics pattern analysis: A new process monitoring framework and its application to semiconductor batch processes[END_REF]. DCQV is the ratio of the collected number of observations over the theoretical number of observations. Due to the IT interfacing issues between the database servers and the production machine, there exist missing times tamps and the corresponding sensor readings from batch to batch, i.e., wafer. Therefore, the wafer with DCQV lower than 95% will be firstly filtered out. Furthermore, the FDC data of one wafer that contains zero variation for all the SVID, i.e., readings of each SVID are constant, will be deleted from the data set. Finally, non-informative SVIDs are eliminated from the data set based on the domain knowledge of engineers.

Notations

Necessary notations utilized in the proposed data-driven failure diagnosis approach are listed in Table 3.1.

Stage 1: Equipment Anomaly Detection

The first stage of the proposed method (see Figure 3.3 and Figure 3.4) utilizes a binary Support Vector Machine (SVM) as a state-of-the-art classifier to detect if an observation is normal or abnormal in the FDC data [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF]. The SVM classifier is trained with known labels, denoted as a N × 1 vector with binary values: "+1" and "-1", indicating if the corresponding observation is normal or abnormal, respectively. Abnormal condition indicates there are faulty signals during the corresponding process periods. The N G,c × J matrix of centered normal data in the c th cluster

T G,c
The N G,c × R c score matrix of normal observations in the PCA model of the c th cluster P c

The J × R c loading matrix in the PCA model for the c th cluster

E G,c
The N G,c × J residual matrix of the normal data in the PCA model of the c th cluster X B

The N B × J matrix of total centered abnormal data

T B,c
The N B × R c score matrix of abnormal data projected into the PCA model of the c th cluster

E B,c
The N B × J residual matrix of the abnormal data projected into the PCA model of the c th cluster

D l,c D statistics of l th out-of-control (OOC) observation for the c th cluster (l ∈ OOC D c ) Q l,c
Q statistics of l th OOC observation for the c th cluster (l

∈ OOC Q c ) CL D c Control limits of D statistics for the c th cluster CL Q c Control limits of Q statistics for the c th cluster F D jlc
The contribution of SVID j in l th OOC observation on D statistics for the c th cluster (l ∈ OOC D c )

F Q jlc
The contribution of SVID j in l th OOC observation on Q statistics for the c th cluster (l

∈ OOC Q c )
It is noteworthy that the FDC data of the semiconductor industry are complex and not linearly separable, and the optimal classification is obtained only by curved (nonlinear) hyper-planes. In this regard, the SVM can also be used in nonlinear classification via properly selected kernel functions [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF]. By using the nonlinear mapping kernel functions, the original data are mapped into a high-dimensional feature space, where the linear classification is then possible. Among a long list of kernel functions [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF], four mostly utilized functions are "Linear", "Polynomial", "RBF", and "Sigmoid" functions as shown in Table 3.2. The performance of the SVM classifier technique is improved once the kernel parameters are adjusted carefully in advance. These parameters consist of first regularization parameter (or misclassification penalty) C, that determines the tradeoff cost between minimizing the training error and minimizing the complexity of the model; and second parameters σ, a, and the polynomial degree, d, of the kernel functions which define the non-linear mapping from the input space to other spaces, and third the constant parameter b. Among the different kernel functions, the one with the highest accuracy will be found and set in the proposed method. The accuracy is simply calculated as dividing the number of corrected classified observation by the total number of observation.

The performance of the SVM algorithm highly depends on the level of its parameters. The optimum tuning of the parameters allows to have the lowest errors type I and II. Since the detected observations by the SVM will be fed to the following stages of the algorithm for creating the normal model and even characterizing the abnormal ones, it is necessary to find the optimum level of the parameters. In order to adjust the SVM parameters to achieve the highest accuracy, different evolutionary algorithms have been utilized to optimize the SVM settings, such as Genetic Algorithm (GA) [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF][START_REF] Chou | Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system[END_REF], particle swarm optimization (PSO) [START_REF] Lin | Particle swarm optimization for parameter determination and feature selection of support vector machines[END_REF], artificial bee colony algorithm [START_REF] Yang | Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm[END_REF] and Grid algorithm [START_REF] Avci | Selecting of the optimal feature subset and kernel parameters in digital modulation classification by using hybrid genetic algorithmsupport vector machines: HGASVM[END_REF]. Among them, GA has been widely and successfully employed in various optimization problems [START_REF] Chou | Integrating support vector machine and genetic algorithm to implement dynamic wafer quality prediction system[END_REF][START_REF] Goldberg | Genetic Algorithms and Machine Learning[END_REF][START_REF] Mohammadi | Mathematical modelling of a robust inspection process plan: Taguchi and Monte Carlo methods[END_REF] and applied in modeling problems with varying resolutions and structures. The GA can thoroughly explore and exploit nonlinear solution spaces without requiring gradient information or a priori knowledge about the problem characteristics [START_REF] Wu | A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy[END_REF]. One of the main reasons that we selected GA among others is its power in escaping from local optima due to its exploitation and exploration in solution space using both crossover and mutation operators. While PSO and Bee algorithms easily fall into local optimum in high-dimensional space and have a low convergence rate in the iterative process. On the other hand, the Grid algorithm is time-consuming and does not perform well. Based on the Darwinian principle of survival of the fittest, the GA as a particular class of evolutionary algorithms is time-efficient and has well heuristic search method that can obtain the optimal solution. Accordingly, a GA similar to [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF] is tailored and used to find the optimal value of the SVM parameters.

Stage 2: Automatic Fault Fingerprint Extraction

In As the abnormal data shall contain faulty signals, differentiating the process dynamics is not meaningful. The K -means clustering algorithm is employed with the correlation between observations as the similarity measure. To better decompose the process dynamics, a dummy time-stamps variable is added to the data with the size equal to the number of observations in wafer k. Therefore, the FDC data W (k) in (3.1) is augmented to become W * (k) of (3.3). By this new dummy variable, if two observations, say i 1 and i 2 have similar SVID values (at y axis) but are located at the very different time-stamps (at x axis), ex: 1 < i 2 i 2 < n k , they shall not be grouped into the same cluster as 

W * (k) =       v (k) 1,1 v (k) 1,2 • • • v (k) 1,J 1 v (k) 2,1 v (k) 2,2 • • • v (k) 2,J 2 . . . . . . . . . . . . . . . v (k) n k ,1 v (k) n k ,2 • • • v (k) n k ,J n k       n k ×(J+1) , (3.3) 
At the end of this stage, we have several cluster of normal observations (where each cluster corresponds to a part of the process dynamic) which are used to build normal basis models. The normal models are utilized to categorize the abnormal observations.

Stage 2-2: Abnormal Data Categorization

As the process dynamics are decomposed and the clusters of the normal observations are obtained, the abnormal data should be analyzed accordingly to find the fault patterns. In this regard, each cluster of the normal observations is used to create a normal model specific to that corresponding part of the process dynamic. Accordingly, PCA is firstly applied to summarize each cluster into a normal baseline model. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called principal components.

Abnormal data are then projected into each model to measure the divergence of the abnormal data from the normal models. Hereafter, the notations are based on Table 3.1. For creating the normal baseline models, PCA decomposes the c th matrix of centered normal data X G,c (obtained from Stage 2-1), into uncorrelated score matrix T G,c by an orthogonal loading matrix, P c and the unexplained variation of X G,c , that is, residual matrix E G,c [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF]:

X G,c = T G,c P c + E G,c , ∀c (3.4) 
Most variations in the c th cluster can be explained by the first R c PCs of the matrix T G,c P c . Given the abnormal data X B , abnormal score and residual matrices are calculated as (3.5) and (3.6), respectively.

T B,c = X B P c , ∀c (3.5) 
E B,c = X B (I -P c P c ), ∀c (3.6) 
where I is the identity matrix.

For fault detection, the normal PCA models developed based on normal observations are then used to check new measurement data. The differences between the new measurement data and their projections to the built normal model, the residuals, are then subjected to some sort of statistical test to determine if they are significant. Usually the Q statistic, also called squared prediction error (SPE), and the Hotelling's (T 2 ) statistic, 66 CHAPTER 3. EQUIPMENT FAILURE DIAGNOSIS also called as D statistic, are used to represent the variability in the residual subspace and principal component subspace.

After building the normal baseline PCA models and projecting abnormal data into each model, faulty observations can be detected by the score space (T B,c ) and the residual space (E B,c ). Within the c th cluster, the D lc statistic and Q lc statistic are calculated as (3.7) and (3.8), respectively, to measure the divergence of abnormal observations. The D lc statistic monitors systematic variation in the score space, while the Q lc statistic monitors variation which is not explained by the selected PCs [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF].

D lc = T B,lc S -1 c T B,lc ∼ R c (df 2 -1) df (df -R c ) F α (R c , df -R c ), ∀c, l (3.7 
)

Q lc = E B,lc E B,lc = X B,l (I -P c P c )X B,l ∼ χ 2 (h) , ∀c, l (3.8) 
where S -1 c is the diagonal matrix containing the inverse eigenvalues associated with the R c eigenvectors in the c th normal cluster. In addition, df is the degree of freedom that can be the number of observation in the c th normal cluster.

In formulation (3.7), the D lc statistic provides an indication of unusual variability within the normal subspace. The value of D lc for an abnormal observation is equal to the sum of squares of the adjusted (unit variance) scores on each of the principal components in the normal model. Furthermore in formulation (3.8), the Q lc statistic shows how well an abnormal observation fits into the PCA model built on the normal data. It is a measure of the difference (residual) between the abnormal observation and its projection onto the principal components retained in the normal model.

The normal observations determine the control limits for the D lc and the Q lc statistics under normal conditions. The D lc represents the squared length of the projection of the abnormal observation into the space spanned by the normal PCA models. It is an indication of how far the PCA estimate of the abnormal observation is from multivariate mean of the data (i.e., the intersection of the principal components). Therefore, if sample has an abnormal value of D lc but Q lc value below the limit, it is not necessarily a fault (it can also be a change of the operating region). The statistical control limit for the values of D lc , i.e., CL D c , can be calculated according to statistical F-distribution as (3.9) [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF].

The normal observations determine the control limits for the D lc and Q lc statistics under normal conditions. The control limit for the D lc statistic, i.e., CL D c , is calculated by (3.9) [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF].

CL D c = R c (df 2 -1) df (df -R c ) F α (R c , df -R c ), ∀c, l (3.9) 
where F α (R c , df -R c ) is the upper 100 α% critical point of the F -distribution with R c and df -R c as the degree of freedom [START_REF] Macgregor | Statistical process control of multivariate processes[END_REF] and df is the number of observations in the data set used in the calculation of the PCA model in the corresponding normal cluster.

The control limit CL D c defines an ellipse on the plane within the data are assumed to be normal.
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To calculate the control limit for the Q lc statistic, let

θ c 1 = trace(V c ), θ c 2 = trace(V c ) 2 , θ c 3 = trace(V c ) 3
, where V c is the covariance matrix of normal residual. Also let

h 0,c = 1 - (2θ c 1 θ c 3 ) (3θ c 2 )
. Then,

( Q lc θ c 1 ) h 0,c ∼ N [1 + θ c 2 h 0,c (h 0,c -1) (θ c 1 ) 2 , 2θ c 2 h 2 0,c (θ c 1 ) 2 ], ∀l, c (3.10) 
This means that the probability distribution for Q lc can be approximated as (3.11). To calculate the control limit for the Q lc statistic, firstly the probability distribution for Q lc can be approximated as (3.11) [START_REF] Jackson | Control Procedures for Residuals Associated With Principal Component Analysis[END_REF] 

Q lc 0 f (q)dq ≈ z -∞ g(x)dx, (3.11) 
where g(x) is the normal density function and z is defined as (3.12):

z = θ c 1 [( Q lc θ c 1 ) h 0,c -1 -θ c 2 h 0,c (h 0,c -1)/(θ c 1 ) 2 ] 2θ c 2 h 2 0,c , (3.12) 
Conversely, for a fixed type I error α, the upper control limit for the Q lc statistic, CL Q c , can be approximated as 3.13, provided that all the eigenvalues of the covariance matrix are known.

CL Q c = θ c 1 [ z α 2θ c 2 h 2 0,c θ c 1 + 1 + θ c 2 h 0,c (h 0,c -1) (θ c 1 ) 2 ] 1 h 0,c , ∀c (3.13) 
where z α is the standardized normal variable with (1-α) confidence limit, having the same sign as h 0,c . By comparing the D lc and the Q lc statistics with their corresponding control limits i.e., CL D c and CL Q c , the Out-Of-Control (OOC) observations can be identified. Hereafter, the OOC observations based on D and Q statistics for the c th cluster are denoted as OOC D c and OOC Q c , respectively. Accordingly, observation l is considered as an OOC based on D lc and Q lc statistics if D lc > CL D c and Q lc > CL Q c , respectively. In the c th cluster, the sets of OOC observations due to D lc violation (OOC D c ) and due to Q lc violation (OOC Q c ) are archived. It is noteworthy that the archived OOC observations carry important information regarding fault fingerprints.

Stage 2-3: Fault Fingerprint Extraction

As the OOC observations are identified and collected, different fault fingerprints should be extracted to explain the root causes of the fault events better. Chien et al. [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF] clustered the OOC observations using a (Self-Organizing Map) SOM network. However, clustering the points based on their coordinates may lead to incorrect information. One way to cope with this issue is to calculate the contribution of the variables (SVIDs) for each OOC observation based on the D lc and the Q lc statistics, and then cluster the OOC observations in terms of their contribution values.

Another reason to examine the contribution values instead of the observations coordinates is that in the case of a process perturbation, one of the D lc and the Q lc statistics or even both might fall out of their control limits. If only the D lc statistic exceeds the control limit, i.e., D lc > CL D c , the model of the process is still valid, but the distance between the batch and the center of the model is too large. In this case, contributions of each SVID to the D lc statistic should be examined. If the Q lc statistic exceeds the control limit, i.e., Q lc > CL Q c , a new event, that cannot be described by the process model, has happened in the data. In that case, the contributions of each process variable to the Q lc statistic should be examined as well. To further consolidate the contribution values, clustering is applied to extract the common faulty patterns.

Nomikos [START_REF] Nomikos | Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis World Batch Forum[END_REF] provided approximated formulations to calculate the contribution values which can be valid for principal component decompositions. In another approach, [START_REF] Westerhuis | Generalized contribution plots in multivariate statistical process monitoring[END_REF] generalized the formulations proposed by [START_REF] Nomikos | Detection and diagnosis of abnormal batch operations based on multi-way principal component analysis World Batch Forum[END_REF], while the new formulations can be also used for nonorthogonal scores and loadings as (3.14). For calculating the contribution of each variable to the D lc statistic, (3.7) is decomposed into more details as (3.14).

D lc = T B,lc S -1 c T B,lc = T B,lc S -1 c [X B,l P (P P ) -1 ] = T B,lc S -1 c J j=1
[X B,l,j P j (P P )

-1 ] ∀c, l ∈ OOC D c = J j=1 T B,lc S -1 c [X B,l,j P j (P P ) -1 ] = J j=1 F D jlc , (3.14) 
Thus, the contribution of the variable j to the D lc statistic, F D jlc , is obtained as (3.15):

F D jlc = T B,lc S -1 c [X B,l,j P j (P P ) -1 ] ∀j, l ∈ OOC D c , c, (3.15) 
where T B,lc is the l th row of the matrix T B,lc , X B,jl is the array of the l th row and j th column of the matrix X B,jl , and P j is the corresponding loading element. The summation of residuals of each variable j helps to figure out in which time-stamp the disturbance happened. Consequently, the contribution of the variable j to the Q lc statistic, F Q jlc , can be obtained as:

Q lc = J j=1 F Q jlc = J j=1 (E B,jlc ) 2 ∀l ∈ OOC Q c , c, and (3.16) 
F Q jlc = (E B,jlc ) 2 ∀j, l ∈ OOC Q c , c, (3.17) 
where E B,jlc is the array of the l th row and j th column of the matrix E B,c . Hereafter, the vectors of contribution values of l th OOC observation on D lc (V I D c,l ) and Q lc (V I Q c,l ) statistics are gathered into the unique matrices denoted as (3.18) and (3.19), respectively.

V I D =          V I D c,1 . . . V I D c,l . . . V I D c,N B          , V I D c,l = [F D 1lc , ..., F D jlc , ..., F D Jlc ], (3.18) 
V I Q =          V I Q c,1 . . . V I Q c,l . . . V I Q c,N B          , V I Q c,l = [F Q 1lc , ..., F Q jlc , ..., F Q Jlc ], (3.19) 
Finally, the K -means clustering algorithm with correlation similarity function is separately applied on V I D and V I Q in order to extract the potential fault fingerprints.

Stage 2-4: Fault Root Summarization

The last step of the proposed method is to find out the root causes in each created cluster, i.e., the fault fingerprints, from V I D and V I Q . For this aim, this section proposes a new way of calculating the control limits for the contribution values of D lc and Q lc statistics. These control limits help to find the process variables that are different in the abnormal data compared to the normal models. If one process variable has high contribution value in the normal model, it can also be expected to have high contribution value in the abnormal data. However, if a process variable has high contribution value in the abnormal data but low contribution value in the normal model, this probably is due to a special event in the abnormal data.

It must be noticed that the control limits of the contribution values are calculated from the normal observations. The control limit of the j th variable in the c th cluster for the D lc statistic, CV L D jc , is calculated as (3.20). An underlying assumption for CV L D jc is that the set of F D jlc : l ∈ IC c follows normal distribution.

CV L D jc = mean{F D jlc } l∈ICc + 3std{F D jlc } l∈ICc ∀j, c, (3.20) 
where IC c is the set of In-Control observations constructing the c th cluster. The control limit of the j th variable in the c th cluster for the Q lc statistic, CV L Q jc , is calculated as (3.21). To the best of our knowledge and despite of [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF] for proposing a constant value CHAPTER 3. EQUIPMENT FAILURE DIAGNOSIS for all SVIDs, we propose the control limit (3.21) for each SVID since the contribution of variables are different and independent.

CV L Q jc = θ c 1,j [ z α 2θ c 2,j h 2 0,jc θ c 1,j + 1 + θ c 2,j h 0,jc (h 0,jc -1) (θ 1,jc ) 2 ] 1 h 0,jc , ∀j, c, (3.21) 
where

h 0,jc = 1 -((2θ c 1,j θ c 3,j )/((3θ c 2,j ) 2 )), θ c 1,j = (V c ) jj , θ c 2,j = (V c ) 2 jj , θ c 3,j = (V c ) 3 jj , V c
is the covariance matrix of normal residual, and z is the standardized normal variable with (1 -α) confidence limit, having the same sign as h 0,jc .

To compare the contribution values with the calculated control limits, we need to summarize the set of contribution vectors belonging to each fault fingerprint. Accordingly, the contribution vectors, related to the D lc statistic (i.e., V I D c,l , l ∈ OOC D c ), are summarized into an unique vector by calculating the µ + 3σ for each SVID. Thus, the contribution vectors, related to Q lc statistic (i.e., V I Q c,l , l ∈ OOC Q c ), are summarized into a unique vector by making average of the contribution values corresponding to each SVID. Finally, the summarized contribution values are compared with their corresponding control limits and the set of SVIDs that exceed the control limit is considered as the fault roots.

As a summary, this chapter developed a data-driven approach for the equipment failure diagnosis using the FDC data in the semiconductor industry. The proposed data-driven equipment failure diagnosis approach terminates by fault root summarization, and the extracted non-identical fault fingerprints and their corresponding roots become valuable information for practitioners. Engineers can then check the highlighted SVIDs, i.e. sensors, of the machine according to the fingerprint and decide if a corrective maintenance shall be performed.

It is worth mentioning that using fault fingerprints/roots to monitor the equipment condition and prognose the behavior is a difficult task, particularly in the semiconductor industry, wherein faults are numerous and highly confounded. Moreover, monitoring the fault fingerprints/roots do not necessarily provide a prognostic mechanism to model the equipment deterioration, and the fault roots should be different from the deterioration roots. The equipment deterioration might relate to particular process variables (SVIDs) while the fault symptoms appear in a different set of process variables. This issue necessitates developing a prognostic approach not only to find the deterioration cause roots but also to avoid the equipment failure.

Another characteristic of the proposed data-driven equipment failure diagnosis approach is that this approach treats each observation of the FDC data as an individual sample . Accordingly, the proposed approach can be considered as an observation-based approach. Most approaches in the literature summarize the observations of a wafer into a single data point and are considered as wafer-based approaches. Depending on the data collection system, each of observation-based or wafer-based mechanisms can be adapted to build diagnostic and prognostic approaches. In Chapter 4, an equipment behavior prognosis approach is developed by summarizing the observations of each wafer into individual features for deterioration modeling.

Chapter 4 Equipment Behavior Prognosis

Keeping the machine at a high utilization level is critical for manufacturing industries, in particular, the semiconductor fabrication, moving towards advanced technologies. Production deficiencies such as process variations and unexpected machine breakdowns have caused low-grade product yield and decreased the machine utilization significantly. Conventionally, regular machine maintenance would help to revive the machine condition for the better production efficiency. However, the maintenance schedule is usually settled by fixing either the time interval or the number of products processed between two maintenances CBM serves as a new control scheme to characterize the equipment behavior and triggers the corresponding control actions whenever required. In the prognostic perspective, equipment deterioration is modeled and monitored. An effective deterioration model, in the shortest reaction time, is critical for minimizing scrap wafers, reducing unscheduled machine breakdowns, increasing equipment utilization, and maintaining high production yields.

This chapter develops an efficient equipment behavior approach for modeling and monitoring the equipment deterioration using the batch process data of the semiconductor industry (please refer to Section 3.1.1). In this regard, several challenges make it difficult to employ classical techniques and methods in the literature to efficiently and effectively model and monitor the equipment deterioration.

The first challenge is that most of the current prognostic models have been applied to one-dimensional data, e.g., vibration signals, rather than to batch manufacturing processes, i.e., FDC data. Depending on the process characteristics, the length of observations of one product may differ from another. Therefore, it takes more preprocessing steps to extract the equipment Health Index (HI). Accordingly, a proper data treatment with tolerable information loss alongside an efficient analyzing approach is required for modeling and monitoring the equipment deterioration effectively. It is also critical to deal with the fact that the process recipes of a single machine are frequently changed in the semiconductor manufacturing environment. Different recipes lead to dissimilar sensors profiles from one batch to another and should be carefully grouped and analyzed according to their natures. For example, a normal change between two different recipes must not be detected as the equipment deterioration or a fault. The second challenge is that current prognostic models only deal with quantifying and monitoring the equipment deterioration, and the root cause to the deterioration is not investigated [START_REF] Kothamasu | System health monitoring and prognostics a review of current paradigms and practices[END_REF][START_REF] Van | Machine Fault Diagnosis and Prognosis: The State of The Art[END_REF][START_REF] Lee | Prognostics and health management design for rotary machinery systemsReviews, methodology and applications[END_REF][START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. The third challenge comes from the presence of different types of variations in the FDC data of the semiconductor equipment. As explained in Chapter 3, two main types of variations among wafers in the FDC data are recipe-related variations and fault-related variation, which leads to unexpected failures and the gradual equipment deterioration. Chapter 3 dealt with the fault diagnosis when an unexpected failure occurs and this chapter works on characterizing the deterioration.

In this thesis, the deterioration is assumed to be caused by the macro-and micro-level variations of the signals. Macro-level variation corresponds to all significant shifts of the mean level of the signal. Similar to the equipment failure diagnosis in Chapter 3, the proposed equipment behavior prognosis approach here should be able to distinguish different types of variations among the normal wafers and, in particular, be capable of differentiating the macro-level variations from the micro-level variations. To overcome the issues above, the data-driven equipment behavior prognosis approach for analyzing the batch process data is proposed with two goals: 1) exploiting the temporal data of batch processes to characterize the equipment behavior, and 2) identifying the deterioration trend with the most likely causes.

Like almost all data-driven approaches, this section proposes an equipment behavior prognosis approach through four main consecutive stages: 1) data pretreatment, 2) data processing, 3) feature extraction, and 4) deterioration modeling. data-driven equipment behavior prognosis. Each block in the framework corresponds to a main step/purpose in the equipment behavior prognosis. Next to each block, the goal, tools to implement and the expected results of that step have been explained. A detailed schematic of the general framework will be provided in Figure 4.8. The Data Pretreatment block is performed as explained in Section 3.1.2.To construct the equipment behavior model, the batch process data, i.e., the FDC data, described in Section 3.1.1 and Figure 3.4, should be pre-treated to extract significant features, which will be then used as the input of the model.

Data Processing: Discrete Wavelet Transformation

As elaborated above, a significant challenge is to select the most appropriate data analysis approach to provide and process the data with adequate and correct information. The active approach should manipulate and prepare the data for further feature extraction and equipment deterioration modeling and monitoring. It was previously revealed that different types of variations, in particular, the macro-level and micro-level variations are confounded in the FDC data and should be differentiated. For this aim, Discrete Wavelet Transformation (DWT), a signal processing technique to decompose a temporal signal into different frequency domains, is adopted in this section. DWT has been widely used in the past decade in different filed such as equipment condition monitoring [START_REF] Peng | Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography[END_REF], fault diagnosis [START_REF] Chen | Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review[END_REF], data and image compression [START_REF] Boix | Wavelet Transform application to the compression of images[END_REF], partial differential equation solving [START_REF] Oleg | Second-Generation Wavelet Collocation Method for the Solution of Partial Differential Equations[END_REF], texture analysis [START_REF] Arivazhagan | Texture classification using wavelet transform[END_REF] and noise/trend reduction [START_REF] Zhang | Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction[END_REF]. It is worth to mention that in semiconductor manufacturing data, the variation is exposed across time and space (i.e., temporal and spatial variation respectfully) with a number of different scales [START_REF] Boning | Statistical metrology: Understanding spatial variation in semiconductor manufacturing[END_REF]. For example, the sensor data are collected along time dimension in a wafer processing and include the temporal variation. This variation is being tracked via some measures from one to the next wafer in the meantime of equipment deterioration.

Data Pretreatment

Goal:

Purifying and preparing the data using a set of activities for further analysis. Aim would be to eliminate what makes inconsistency or noises in the further analyses

Tool:

Activities like eliminating/replacing the missing data, eliminating redundant variables as well as folding/unfolding techniques for high-dimensional data

Result:

Pure data that are prepared for further analyses



Data Processing

Goal:

Manipulating and preparing the data for further feature extraction and equipment deterioration modeling. Depending on the industry and the data, decomposing the data into its components for different analysis or even filtering out some information-less components

Tool:

Transformation techniques can be used to decompose the data into its components with different characteristics and may each component carry different promising information

Result:

Several components of the data and each for a specific analyzing purposes



Feature Extraction

Goal:

Extracting features from the processed data in the previous block. These features should represent the behavior/health of the equipment and should incorporate as much as possible the physical and statistical behaviors of the equipment

Tool:

Statistical techniques can be used to extract the features from the data

Result:

Single or multiple-dimensional statistical features to be used for creating the deterioration model in the next block



Equipment Behavior Modeling

Goal:

Modeling the equipment behavior in terms of equipment health or even equipment deterioration using the extracted features of the previous block. This model is employed to illustrate the condition of the equipment and can be used for further condition monitoring purposes

Tool:

Approaches/algorithms that use the extracted features and illustrate or model the equipment health/deterioration

Result:

Trends that illustrate the equipment health/condition that may deteriorates through the time



Equipment Behavior Monitoring

Goal:

Monitoring the equipment health/condition and warning engineers if any out-of-control situation happens

Tool:

Statistical process control charts can be employed for this purpose

Result:

Control charts that monitor the equipment health/condition through the time The temporal variation of a non-stationary profile in semiconductor data-set consists of systematic and random parts, which must be distinguished from one another before equipment deterioration studies. Accordingly, each signal is decomposed into a series of oscillatory functions with different frequencies at a different time. The idea of DWT is rooted in the traditional Fourier Transform (FT) [START_REF] Chien | Semiconductor fault detection and classification for yield enhancement and manufacturing intelligence[END_REF] but has developed many unique properties. It starts by iteratively sweeping the signal using a succession of different scale sizes. Smaller scale size is used to analyze the high-frequency components of the signal, and the larger one is used to catch the low-frequency components. As a result, each signal is then decomposed into the high-frequency and low-frequency components. From DWT, the systematic and random parts are captured by low-frequency components and high-frequency one, respectively.

The DWT comprises both wavelet decomposition and wavelet reconstruction, and these transformations are performed through two primary functions: the scale function (Φ, father wavelet) and the detail function (Ψ, mother wavelet).

Φ l,p (i) = 2 1 2 Φ(2 l i -p), Φ(i)di = 1, Ψ l,p (i) = 2 1 2 Ψ(2 l i -p), Ψ(i)di = 1, (4.1)
where l ∈ {0, ..., L} is the decomposition-level (dilation) index, and p is the translation index. Once l increases, the width of the wavelet decreases, and the height of the wavelet increases (see Figure 4.4). Also, p has the effect of sliding the function along the x -axis. The raw signal V j n k (i) (i.e., i th observation of j th SVID with length of n k of k th wafer) is represented by the linear combination of essential functions in L 2 (R), as described in (4.2).

V j n k (i) = 1 √ M p A j,k L,p Φ L,p (i) + 1 √ M L l=1 p D j,k l,p Ψ l,p (i) ∀j, k, (4.2) 
where A j,k L,p and D j,k l,p are, respectively, approximation and detail coefficients corresponding to the j th SVID with length of n k of the k th wafer. L and M correspond to the final decomposition level and the length of the components, respectively. Because the sets {Φ L,p (i)} p∈Z and {Ψ l,p (i)} (l,p)∈Z 2 are orthogonal to each other, we can simply take the inner product to obtain the wavelet coefficients as (4.3) and (4.4). For starting a DWT analysis, the first step is to find a best-fit wavelet. The raw signal decomposition continues until a given number of levels. This iterative decomposition usually is stopped at a given number of levels or with acceptable reconstruction error. Since we run decomposition for one level, it is essential to feed a proper wavelet into the model. If the wavelet is a poor match for the signal, we may not get meaningful information, at least not within the few calculation levels. It is therefore essential to use the most appropriate wavelet for the decomposition [START_REF] Rostami | Equipment Deterioration Prognosis and Fault Diagnosis in Semiconductor Manufacturing[END_REF].

A j,k L,p = 1 √ M i V j n k (i)Φ L,p (i) ∀p, (4.3) 
D j,k l,p = 1 √ M i V j n k (i)Ψ l,p (i) ∀l, p, (4.4) 
Several types of mother wavelets can be used for signal transformation. In fact, for the same signal, different mother wavelets leads to different decomposition results. Wavelets are characterized by a set of properties such as orthogonality, compact support, symmetry and vanishing moment [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]. This section aims at finding the best mother wavelet to capture as many information as possible from the raw signal. It happens if there exists the highest similarity between the selected mother wavelet and the raw signal. Several approaches have been employed to determine the similarity between the signal and the mother wavelet regarding qualitative and quantitative criteria [START_REF] Rostami | Equipment Deterioration Prognosis and Fault Diagnosis in Semiconductor Manufacturing[END_REF][START_REF] Kramer | Autoassociative neural networks[END_REF][START_REF] Wang | Control design for diagnostic and prognostic of hardware systems[END_REF]. Shape matching by visual inspection to select the best mother wavelet is one of the qualitative approaches. On the other hand, the core of quantitative approaches is quantifying the similarity between signal and mother wavelet methods. The example of these approaches are the Minimum Description Length (MDL) measurement [START_REF] Hamid | Wavelet-based data compression of power system disturbances using the minimum description length criterion[END_REF], maximum cross-correlation coefficient criterion between the raw signal and the mother wavelet [START_REF] Wang | Control design for diagnostic and prognostic of hardware systems[END_REF], and the maximum correlation coefficient between the raw signal and the reconstructed approximation components in different decomposition levels. In this thesis, the best mother wavelet is the one that provides the highest correlation coefficient between the raw signal and the reconstructed approximation components in different decomposition levels. The examined wavelets in this section come from different families as Haar, Daubechies, Symlets, Coiflets, Biorthogonal, Reverse biorthogonal and Meyer [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF].
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In Table 4.1, orthogonal filters lead to orthogonal wavelet basis functions, and the resulting wavelet transform is hence energy preserving. This property implies that the mean square error (MSE) introduced during the quantification of the DWT coefficients is equal to the MSE in the reconstructed signal.

However, in the case of biorthogonal wavelets, the basis functions are not orthogonal and thus not energy preserving. Also, symmetric wavelets are important when the aim is to build bases of regular wavelets over an interval, rather than the real axis [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF]. Interested readers are referred to [START_REF] Daubechies | Orthonormal bases of compactly supported wavelets[END_REF] for mathematical and statistical properties of wavelets. The detail list of wavelets examined in this section is in Table 4.1. After finding the best mother wavelet for each SVID, the FDC data of each wafer k, W(k), presented as (3.1) in Chapter 3, is decomposed into approximation and detail components as A(k) and D(k), respectively.

Feature Extraction for Equipment Behavior

The principles of equipment behavior prognosis in any area are 1) to identify a set of features within the equipment sensor readings that indicate equipment behavior and 2) to prognose the equipment health deterioration and diagnose the causes of this deterioration.

Since we aim to study the macro-and micro-level variations, the variance/covariance matrix for the both of approximation and detail signals in each wafer is calculated to prevent from the recipe-related changes as well as to avoid the impact of different scales from one SVID to another. In this regard, we not only take the variation of each single signal into account, but we also consider the co-variation between signals.

In this section, we use the Pearson correlation coefficient between SVIDs as the feature indicating equipment behavior. From a physical point of view, when equipment is gradually degraded, the recipe set points are not achieved, and the controllers cannot realize this deterioration. Hence, the process compensates this deterioration by changing the level of specific SVIDs (either less or more than set value). Accordingly, the correlation between these SVIDs changes (either stronger or weaker). From a statistical point of view, the collected data from sensors are often cross-correlated. Consequently, one should consider not only the variation of every variable but also the co-variation among variables [START_REF] Kothamasu | System health monitoring and prognostics a review of current paradigms and practices[END_REF].

Based on this idea, the macro-level and micro-level variations are investigated by following the behavior of correlation matrix on approximation (i.e., A(k)) and detail (i.e., D(k)) components, respectively. Therefore, the correlation matrix of approximation and detail components of wafer k is represented as ρ A (k) and ρ D (k).

A(k) =       a (k) 1,1 a (k) 1,2 • • • a (k) 1,J a (k) 2,1 a (k) 2,2 • • • a (k) 2,J . . . . . . . . . . . . . . . a (k) n k ,1 a (k) n k ,2 • • • a (k) n k ,J       n k ×J , and 
D(k) =       d (k) 1,1 d (k) 1,2 • • • d (k) 1,J d (k) 2,1 d (k) 2,2 • • • d (k) 2,J . . . . . . . . . . . . . . . d (k) n k ,1 d (k) n k ,2 • • • d (k) n k ,J       n k ×J , ∀k (4.5) 
ρ A (k) =       ra (k) 1,1 ra (k) 1,2 • • • ra (k) 1,J ra (k) 2,1 ra (k) 2,2 • • • ra (k) 2,J . . . . . . . . . . . . . . . ra (k) J,1 ra (k) J,2 • • • ra (k) J,J       J×J , and 
ρ D (k) =       rd (k) 1,1 rd (k) 1,2 • • • rd (k) 1,J rd (k) 2,1 rd (k) 2,2 • • • rd (k) 2,J . . . . . . . . . . . . . . . rd (k) J,1 rd (k) J,2 • • • rd (k) J,J       J×J , ∀k (4.6) 
where ra (k) j,j and rd (k) j,j are the correlation coefficient between SVIDs j and j (j, j = 1, ..., J), respectively in approximation and detail components.

The approximation and detail correlation matrices are calculated for each wafer through the FDC data-set. Finally, the determinant value is calculated to transform the correlation matrices into single values. Consequently, the determinants of the approximation and detail correlation matrices are considered as the macro-level health index (i.e., HI (k) A ) and micro-level health index (i.e., HI (k) D ) per wafer k.

HI (k) A = det( ρ A (k)), ∀k (4.7 
)

HI (k) D = det( ρ D (k)). ∀k (4.8)
By drawing these determinant values, we expect to find the equipment behavior pattern, which could be decreasing or increasing. In case of decreasing (increasing) trend, the determinant values start from 1(0) when equipment usually is working, and they end 0(1) when equipment is completely deteriorated. It is worth mentioning that this index is mainly used to represent the behavior and the condition of the equipment. From an engineering point of view, when the equipment functions normally, the correlation between SVIDs should be stable without unexpected excursions. These indices effectively helps to model and monitor the behavioral changes in the relationship between SVIDs. Accordingly, a high index value does not imply the equipment is healthier and the lower index value does not necessarily indicate the equipment is complete deteriorated or illfunctioned. These index indicates when the equipment health might be jeopardized in case of unexpected faults or gradual deterioration.

Equipment Deterioration Identification

After extracting HI for each wafer, the next step is to model the deterioration over the time regarding HI with deterioration-related SVIDs. Since macro-level and micro-level variations happen only in certain SVIDs, following the determinant of correlation matrices using all the SVIDs would easily cancel out the deterioration effect. Therefore, a searching algorithm is developed to identify the contributing SVIDs to the expected deterioration trend. These SVIDs are finally classified as the deterioration causes. The progression of macro-level and micro-level variations through the wafers can be considered as the deterioration of the equipment. These progressions can be observed as the change of the correlation between contributing SVIDs (i.e., deterioration causes). Since correlation and determinant have inverse relation (det = 1 -Corr 2 ), when correlation becomes stronger (weaker), the determinant value must decrease (increase) gradually. Therefore, the equipment health curve indicates the deterioration if it has a significantly negative or positive slope. The proposed searching algorithm should look for those SVIDs that create a significant deterioration trend regarding two characteristics: I) slope significance and II) Goodness-of-Fit (GoF). For evaluating the two properties of a deterioration trend, the ordinary regression analysis is employed to estimate the deterioration over time. As shown in (4.9) and (4.10), the coefficients, α A and α D , are used to evaluate the slope significance of the deterioration trends, and β A and β D are the intercepts for the regression lines over the approximation and detail signals, respectively. The adjusted R 2 s of the regression model are used to evaluate the GoF of a deterioration trend and expressed as R 2

A and R 2 D .

y A = α A k + β A , (4.9 
)

y D = α D k + β D . (4.10)
For optimizing the two characteristics at the same time, the integrated objectives for evaluating the deterioration trends modeled in (4.9) and (4.10) are defined as: It is worth mentioning that the objective functions (4.11) and (4.12) work correctly for both decreasing and increasing trends. It means that minimizing the objective functions aims at finding the significant decreasing trend and the significant increasing ones simultaneously. To cope with this issue and not confounding the increasing and decreasing trends, the simplest way is penalizing the increasing trends (i.e., multiplying the objectives with a significant positive value if α A , α D > 0) when looking for the decreasing trends and vice versa, penalizing the decreasing trends (i.e., multiplying the objectives with a big positive value if α A , α D < 0) when looking for the increasing trends. A ) and (1 -R 2 D ) leads to higher GoF at both increasing and decreasing trends. Therefore, deterioration trends with the minimal values of F (S A ) and F (S D ) are the ones we are looking for.

F (S A ) = | log α A | × (1 -R 2 A ), (4.11) 
F (S D ) = | log α D | × (1 -R 2 D ). ( 4 
In summary, the sets of SVIDs (i.e., S A and S D ) which minimizes (4.11) and (4.12) should be searched systematically. One way might be to enumerate all the combinations over the J SVIDs and identify the set of SVIDs with the minimum objective value. However, the complete enumeration is computationally expensive (if not impossible). To cope with this issue, a Stepwise Deterioration Searching Algorithm (SDSA) is developed as a constructive iterative algorithm that starts with an empty set of SVIDs. Each iteration of the SDSA contains two operators as forward-selection and backwardelimination. Forward-selection happens when a SVID is decided to be added to the set, and backward-elimination is for eliminating a SVID from the selection set. These operators are triggered if and only if adding or removing a SVID will make the deterioration trend more significant, i.e., make the objective values smaller. The SDSA terminates if none of forward-selection and backward-elimination can happen. In summary, we investigate three possibilities when a SVID candidate is being evaluated: Extension: the forward-selection happens and the SVID candidate is added to the selection list, and the list is extended, Substitution: both forward-selection and backward-elimination happen simultaneously, and the candidate SVID is substituted by one of the current SVIDs in the list, No-change: If none of extension and substitution happens. In this case, the current list of SVIDs does not change.

Let S J denotes the set of all SVIDs and redefine S A and S D as the set of contributing SVIDs to the deterioration trend over the approximation signals, and the set of contributing SVIDs to the deterioration trend over the detail signals. These sets are defined as (4.13)-(4.15), respectively. S J = {j|j = 1, ..., J}, (4.13)

S A = {j|j ∈ S J , F (S A ) = min S J F }, (4.14) 
S D = {j|j ∈ S J , F (S D ) = min S J F }, (4.15) 
The SDSA starts from the first SVID (i.e., SVID1) in S j . For all the pairs of SVID1 and any other SVID in S j (where j = 1), the HIs based on two SVIDs are calculated, the deterioration trend is fitted and the corresponding objective values are estimated. Then, the pair with the minimum objective value is formed and, the added SVID is removed from S j . Now, the algorithm looks for the third SVID to add to the list. Whenever an SVID is tested, all extension and substitution operations are performed and the best combination is formed. This iterative mechanism continues until the current SVID list remains unchanged (i.e., No-change happens). Finally, the current list is archived as the list started from SVID1. Afterward, the algorithm restarts from second SVID and so on. This restart repeats J times (total number of SVIDs is equal to J ) and the created lists are archived. Finally, the list with the minimum objective value is returned as the final contributing SVIDs. Finally, after finding the contributing SVIDs to the deterioration trend over the approximation and the detail components of the signal, the final deterioration trends can be extracted and utilized for further monitoring. In this regard, once a new wafer is produced in the equipment, the FDC data of the contributing SVIDs are first decomposed into two components, which are then summarized into health indices. The deterioration trends are updated by the new calculated HIs.

As a summary, a data-driven approach for the equipment behavior prognosis using the FDC data in the semiconductor industry is developed. The proposed method aims at modeling the equipment deterioration. An essential result is finding and reporting the contributing SVIDs to the equipment deterioration, which are called as deterioration roots. It is worthy to mention that the deterioration causes are not necessarily equivalent to the extracted fault roots identified in Chapter 3. Accordingly, the deterioration symptoms might differ from the failure symptoms, and this difference necessitates the development of an independent prognostic approach. An important application of the proposed deterioration models is to utilize these trends to monitor the equipment condition and trigger an alarm whenever an unexpected excursion is detected. The monitoring mechanism based on properties of the extracted deterioration models will be discussed in Chapter 6 as one of the future research directions. 

F C = G; // F C : Current objective value, G 0 // S A = S A ∪ j;
for j ∈ S J : j = j do calculate HI A and fit y A calculate F (j, j ) for SVID pair (j, j ) Chapter 5

if α A , α D > 0 then // α A , α D < 0 if INCREASING // 10 F (j, j ) = F (j, j ) × G; //

Computational Results

In this chapter, the proposed equipment diagnosis and prognosis approaches are validated with the practical data-set from the local semiconductor manufacturer. The proposed algorithms are compiled in MATLAB software and the experiments are executed on a computer of 3.4 GHz quad core CPU with 4 GB memory. The FDC data from an etching tool are explained in Section 5.1. The results of the proposed Equipment Failure Diagnosis and Equipment Deterioration Modeling are discussed in Section 5.2 and Section 5.3, respectively.

FDC Data Brief

Starting with a uniformly doped silicon wafer, it requires hundreds of sequential process operations to fabricate an IC chip. The most important process operations in the semiconductor fabrication are shown in Figure 5.1 [START_REF] Moyne | Run-to-Run Control in Semiconductor Manufacturing[END_REF]. In deposition, a thin film layer that will form the wiring, transistors and other components is deposited on the wafer. The thin film is then coated with the photoresist. The circuit pattern of the photomask (reticle) is then projected onto the photoresist using photolithography technology. The developed photoresist is used as a mask and the etching process can remove the unwanted areas.

The FDC data used to validate the proposed approaches comes from an etching process in the semiconductor fabrication. Figure 5.2 depicts the FDC system for an etching process [157]. The etch system shapes the thin film into the desired patterns using liquid chemicals, reaction gases or ion chemical reaction. It is frequently used in the IC production lines. Etching as a front-end process occurs after a photoresist film is patterned onto the wafer. To keep the pattern on the wafer surface, unwanted areas are removed by the etching process. Within an etch chamber, highly reactive plasma gasses react with the wafer to remove the film where the pattern leaves its expos. Once complete, the wafer has a dielectric film with a pattern ready to receive tungsten or copper, which serves as an interconnection to the next layer. It is vital that the etching process is correctly performed because it is difficult to restore the etched areas. As a result, improperly etched wafers are most likely scrapped, and a high waste cost is induced. Accordingly, monitoring the behavior of the etch equipment and preventing it from any failure are required since they significantly affect the product quality and production yield. In the FDC data, there are 760 wafers (264,340 observations in total) processed under eight different recipes. Indeed, these eight recipes belong to a product family that utilize common equipment and do not differ too much in term of processing characteristics. There are some differences in the level of parameters that need to be considered. Thirtyone sensor readings, i.e., SVIDs, were collected simultaneously to keep track of the equipment signals and process states during the process. The SVIDs are listed in Table 5.1 with basic descriptions. Due to the confidentiality, the full SVID names cannot be disclosed. It is known in advance that an unexpected Corrective Maintenance (CM) event was performed after the 480 th wafer to fix a process drift. Unfortunately, the fault
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was not completely resolved, and the process remained unstable until the end of the data-set where a periodic Preventative Maintenance (PM) was executed. Accordingly, the first 479 wafers are normal wafers, and the rest 281 wafers are faulty (abnormal) wafers as the priori information. It is worth mentioning that the proposed equipment failure diagnosis approach works on the whole data-set while the equipment behavior prognosis approach is conducted only on normal wafers. 

Results of the Diagnosis Approach

The above FDC data collected are used to test of the proposed data-driven equipment failure diagnosis. The results are discussed in the following subsections. Without loss of generality, all data were firstly standardized with zero mean and unit variance for further implementation.

Stage 1: Equipment Anomaly Detection

This stage was developed as an early step to detect if there is any abnormality in the data using the supervised SVM method. To start training the SVM model, the first 479 wafers (167,522 observations) are labeled as normal while the rest are marked as abnormal.

It is obvious that higher performance for Stage 1 can be obtained by better tuning of its parameters. These parameters are categorized into SVM parameters and GA parameters. As mentioned in Section 3.2, four kernel functions Linear, Polynomial, RBF, and Sigmoid, have been tried and their parameters are listed in Table 5.2. The level of these parameters depends on the data-set and differs from a data-set to another. Accordingly, determining the ranges of parameters is a trial and error process. It is worth mentioning that the range of parameters must be neither very tight that may prevent us from optimality, nor very vast that makes GA very time-consuming to find the optimal values.

GA parameters include population size (NPop), maximum iterations (Itr max ), crossover rate (C Rate ), and mutation rate (M Rate ). These parameters must be tuned to reach the CHAPTER 5. COMPUTATIONAL RESULTS highest performance of GA. These parameters are tuned using the full factorial approach [START_REF] Montgomery | Design and Analysis of Experiments[END_REF]. Such an experiment allows us to study the effect of each parameter on the response variable (i.e., the fitness value in GA), as well as the effects of interactions between parameters on the response variable. Considering different levels for each GA parameters and applying a full factorial design, the levels 100, 100, 75%, and 30% are tuned for NPop, Itr max , C Rate , and M Rate parameters, respectively. Considering the different subsets of the data and applying 3-fold cross-validation [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF] in the SVM algorithm (same results were obtained for 5, 7 and 10 number of folds), the optimal parameters obtained by GA and the accuracy of different kernels are summarized in Table 5.3. It can be seen that the RBF kernel provides the highest accuracy equal to 97.31%. The FDC data passed through the trained SVM model are then separated into two classes: normal and abnormal observations.

Linear x T y + b -Penalty C ∈ [1, 128] -Constant b ∈ [-30, 30] Polynomial (ax T y + b) d -Penalty C ∈ [1, 128] -Constant a ∈ [0, 15] -Constant b ∈ [-30, 30] -Constant d ∈ [2, 10] RBF exp(- x -y 2 2σ 2 ) -Penalty C ∈ [1, 128] -Constant σ ∈ [1, 20] Sigmoid tanh(ax T y + b) -Penalty C ∈ [1, 128] -Constant a ∈ [0, 15] -Constant b ∈ [-30, 30]

Stage 2: Automatic Fault Fingerprint Extraction

As the faults can be identified in the aforementioned SVM classifier, the root causes to the faults shall be extracted for further actions. The four steps to extract the fault fingerprints described in Section 3.3 are performed over the data and the results are discussed in the following paragraphs.

(a) Process Dynamic Decomposition
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This stage was to cluster the hundred or even thousands of normal observations (detected by Stage 1) into a smaller number of clusters to decompose the process dynamics and not to detect them as a fault. For this purpose, two well-known unsupervised clustering algorithms are employed as Self-Organizing Map (SOM) [START_REF] Kohonen | Self-organizing maps of symbol strings[END_REF] and K -means algorithms.

Accordingly, the SOM and K -means algorithms are employed on the collected normal observations from the Stage 1 with different number of clusters to decompose the process dynamics into a number of clusters. In order to determine the number of clusters in the clustering algorithms (i.e., number of clusters), two most-utilized approaches in the literature are employed as Elbow method and Internal Evaluation [START_REF] Gobinda | Introduction to Modern Information Retrieval[END_REF]. Most generally, the Elbow method is more to identify the optimum number of clusters in a clustering algorithm while Internal Evaluation method can be applied also to compare the performance of different clustering algorithms.

Elbow Method

The Elbow method is to interpret and validate the consistency within the cluster analysis designed to find the appropriate number of clusters in a data-set. This method looks at the percentage of variance explained as a function of the number of clusters. Therefore, the optimum number is a number of clusters so that adding another cluster does not give much better modeling of the data. The Elbow method is performed for different numbers of clusters (i.e., K = 2, ..., Σ c N G,c ) for both Kmeans and SOM clustering algorithms. For the K -means clustering, the Euclidian Distance and the Correlation between the data points have been considered as the criteria for clustering the data. Since having more than 12 clusters does not explain more variance percentage in the both algorithms, Figure 5.3 only shows the results for 2 to 12 number of clusters. It is evident that having 8 numbers of clusters does not add more explanation for the variance of the data in the both algorithms. Therefore, 7 numbers of clusters provide enough explanation of the variance. In addition, it can be condensed that K -means with correlation as the similarity function provides better variance explanations comparing to the K -means with Euclidian distance as the similarity function.

Internal Evaluation

In the Internal Evaluation, clustering algorithms are performed with different number of clusters and their performance is evaluated based on the input data that they have clustered. The best score is assigned to the algorithm that produces clusters with high similarity within a cluster and low similarity between clusters. The DaviesBouldin (DB) [START_REF] Davies | A Cluster Separation Measure[END_REF] and the Dunn (DN) [START_REF] Dunn | A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[END_REF] indices are the two main indices for internal evaluation. The DB and DN indices are presented as Equations (5.1) and (5.2) to evaluate the performance of the clustering algorithms. These indices are called internal criteria since they are calculated based on the same input data that the clustering algorithms have been performed on it. From Equation (5.1), it can be seen that the DB index works with the average distance and there is not enough information about the variance of the data in each cluster. As a complementary approach, the DN index can evaluate the clustering result by taking the variance of the points into account [START_REF] Dunn | A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters[END_REF]. In Figure 5.3, it was concluded that considering more than 11 clusters does not give much better modeling of the data. Therefore, the Internal Evaluation method is performed on the K -means and the SOM clustering algorithms with 5 to 11 number of clusters. In addition, K -means clustering algorithm is run by the correlation as the similarity function.

DB = 1 N C N C ω=1 max ω =ω α ω + α ω d(C ω , C ω ) , (5.1) 
where NC is the number of clusters, C ω is the centroid of cluster ω, α ω is the average distance of all elements in cluster ω to centroid C ω , and d(C ω , C ω ) is the distance between centroid C ω and C ω . The algorithm that produces clusters with low intra-cluster distances (high intra-cluster similarity) and high inter-cluster distances (low inter-cluster similarity) will have a low DB index. Therefore, the smaller DB index leads to be better clustering result.

The DN index of Equation (5.2) aims at identifying the dense and well-separated clusters. It is defined as the ratio of the minimum inter-cluster distance (highest intra-cluster similarity) to the maximum intra-cluster distance (lowest inter-cluster similarity).

DN = min 1≤ω ≤ω ≤K d(ω, ω ) max 1≤ω ≤K d (ω ) , (5.2) 
where d(ω, ω ) represents the distance between clusters ω and ω , and d (ω ) measures the intra-cluster distance of cluster ω . The inter-cluster distance d(ω, ω ) between two clusters may be any number of distance measures, such as the distance between the centroid of the clusters. Similarly, the intra-cluster distance d (ω ) may be measured in a variety ways, such as the maximal distance between any pair of points in cluster ω . Since the internal criterion seeks the clusters with high intra-cluster similarity and low inter-cluster similarity, the algorithms that produce clusters with high DN index are more desirable.

For the SOM clustering algorithm, the Euclidian distance is considered as the dissimilarity metric, and for the K -means clustering algorithm, both Euclidian distance and (1-Correlation) are considered as the dissimilarity measures. Table 5.4 shows the DB and DN indices under different numbers of clusters. It can be seen that employing the K -means clustering algorithm with the correlation similarity function in all the numbers of clusters provides better clustering comparing to the K -means and the SOM clustering algorithm with Euclidian distance as the dissimilarity function. Based on Table 5.4, considering 7 numbers of clusters provides lower and higher values of DB and DN indices, respectively. This result supports the results of the Elbow method in Figure 5.4. On the other hand, by comparing the DB and DN values for the SOM and the K -means algorithms, it can be concluded that not only the K -means outperforms the SOM utilizing the Euclidian distance, but also K -means with correlation function provides better clustering comparing to the K -means with Euclidian distance function. Therefore, the superiority of the K -means algorithm is proved in comparison to the SOM algorithm. In addition, utilizing the correlation as the similarity function provides better process dynamic decomposition.

By decomposing the dynamics of a single wafer process run, i.e., a batch of 350 observations in average, into 10 sequential deciles, Figure 5.4 shows that observations from the ramp-up and the ramp-down steps of the wafer process have been grouped into mainly two clusters (i.e., clusters 1 and 4). While the middle of the process containing the main etching steps (i.e., deciles 3 to 8), is distributed dispersedly in different clusters, it can be learned intuitively that the main etching steps are very non-stationary and compose of interchanging upward and downward trends with different distributions. Based on Figure 5.4, Figure 5.5 further illustrates the inter-cluster borders across the wafer processing time.

(b) Abnormal Data Categorization

The process dynamic in each cluster, which contains only normal observations, is then summarized by a reduced PCA model. Each abnormal observation, filtered out from the first stage, is then projected into all the PCA models and classified as Out-Of-Control (OOC) by checking if its D and Q statistics exceed the corresponding control limits. .9 shows the control charts of the D and Q statistics after projecting all the abnormal observations into the PCA models built based on the clusters 1, 6, 3, and 4 (i.e., the clusters from the beginning, the middle and the end of the process to cover the duration of the whole process). The red line indicates the control limit in all control charts. From Figure 5.6 to Figure 5.9, it can be interpreted that the middle of the wafer process (i.e., clusters 6 and 3) consists of a higher number of OOC observations in comparison with the beginning (i.e., cluster 1) and the end (i.e., cluster 4) of the wafer process. By the other words, the main etching steps produce more abnormality comparing to ramp-up and ramp-down steps. 
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(c) Fault Fingerprint Extraction

Given that observation is classified as OOC from one PCA model, the contribution values from all the SVIDs can be obtained by calculating Equations (3.15) and (3.17) for the D and Q statistics, respectively. Figure 5.10 shows the contribution plots for two samples of OOC. The main idea of the Stage 2-3 is to cluster these contribution plots to find the specific patterns. These contributions thus form a specific pattern and can be interpreted as one fault type. All the OOC observations after projecting the abnormal data into all PCA models are collected, and their contribution values are calculated. The K -means clustering algorithm is then applied again to group these contribution values into different patterns. To find the main fault patterns from the contribution values, the K -means algorithm with the correlation between points as the similarity function was performed with different number of clusters, K = 1, ..., No. of OOCs. By applying the Elbow method, it was shown that 3 numbers of clusters provide better variance explanation of the OOC contribution plots. Besides to Elbow method, the DB and DN indices were also calculated to identify the number of clusters ranging from 2 to 5. In addition, the K -means is separately conducted on the OOC observation sets from D and Q statistics. Similar to Table 5.4, Table 5.5 presents the DB and DN indices for different numbers of clusters for the K -means algorithm, separately for D and Q statistics. It can be shown that, for each of D and Q statistics, three fault fingerprints can be found from the contribution values of the OOC observations. contribution values of each fault fingerprint extracted from D and Q statistics, respectively. Accordingly, we first need to provide a unique contribution plot for each fault fingerprint. For this aim, the contribution vectors, relating to D statistic (i.e., V I D c,l , l ∈ OOC D c ), are summarized into a unique vector by calculating the µ + 3α for each SVID. Thus, the contribution vectors, relating to Q statistic (i.e., V I Q c,l , l ∈ OOC Q c ), are summarized into a unique vector by making average of the contribution values corresponding to each SVID. For this summarization, we need to first investigate that the contributions values of each SVID follow the normal distribution.

RESULTS OF THE DIAGNOSIS APPROACH

Different statistical tests such as Kolmogorov-Smirnov (KS ) and Lilliefors (LF ) tests [START_REF] Lilliefors | On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown[END_REF] are conducted to investigate whether the contribution values of each SVID follow normal distributions. It is worth mentioning that the Lilliefors test is based on the Kolmogorov-Smirnov test by considering unknown values for the mean and the variance of the data. Table 5.6 shows the results of these tests for a set of SVIDs in each fault fingerprint. The values of tests equal to 0 for KS and LF tests in Table 5.6 show the normal distribution for the corresponding SVID. The normality for all SVIDs has been checked and almost all of them follow normal distribution. Table 5.6 shows the result only for eight sample SVIDs. As a summary, the proposed data-driven equipment failure diagnosis approach works directly based on the observations of the FDC data-set. This approach detected the normal from abnormal observations with a 98% accuracy. The normal observations were used to decompose the process dynamics into seven groups. It was observed the middle of the wafers process contains higher dynamics and, consequently, is decomposed into several stationary clusters. The stationarity of these clusters were proved through different statistical tests. The variance structure of these clusters were captured in the normal models based on PCA. Projecting the abnormal observations to these models helped to find out their deviations from the normal basis. The divergence of each abnormal observation was transformed to the contribution values, which were further clustered into three meaningful fault fingerprints. In each fault fingerprint, the corresponding fault roots were identified by the control limits. It was observed that the gas flow SVIDs are classified as the fault roots mostly in the D statistics. From the perspective of the Q statistics, pressure SVIDs are also among the fault roots. 

Results of the Prognosis Approach

The equipment deterioration modeling approach proposed in Chapter 4 is validated in this section. The same FDC data-set is utilized knowing that seven out of eight recipes are labeled as normal process runs. Therefore the proposed prognosis approach is conducted on the first 479 normal wafers. The data-set is divided into two overlapped sets. The first set, labeled as 3 Recipes,consists of only three recipes out of the seven recipes and contains 392 wafers. The second set, labeled as 7 Recipes, is the whole data-set, i.e., 479 wafers. The set of 3 Recipes accounts for the 82% of the wafers in the FDC data. Although all the seven recipes are from the same family of products, these three recipes have the highest similarity comparing to the others. There are still visible differences between these three recipes and other four recipes. Consequently, the 3 Recipes set has the lowest inter-recipe variations when comparing to the 7 Recipes set.

The 

Best Mother Wavelet Selection

Before starting to decompose the SVID signals and model the equipment behavior based on the approximation and the detail components, the first step was to find the most suitable mother wavelet for each SVID. Hence, a library of 49 orthogonal wavelets was used based on Table 4.1, and for each SVID a wavelet is selected that provides the highest correlation coefficient between raw signal and approximated signal in the first level of decomposition. Table 5.8 shows the best mother wavelet chosen for each SVID, and the selected mother wavelet differs from one SVID to another. Accordingly, different mother wavelets for different SVIDs discover the necessity of selecting the best mother wavelet for each SVID. The results of Table 5.8 is valid for all scenarios.

One may argue that why not considering a unique common mother wavelet such as Haar for decomposing all SVIDs. Even though unique mother wavelet leads to satisfactory results in particular cases, but it is evident that the form and characteristics might be significantly different from one SVID to another. In a more general view, when new data-set arrives or even the behavior of new and different equipment is going to be modeled, the unique mother wavelet disables to catch the highest possible information from the signals. Accordingly, an automatic procedure is required as what is explained in the best mother wavelet selection. Furthermore, adding this step does not impose any computational complexity on the approach, and it is performed in some seconds. 

Micro-level Variation Imposition for Wavelet Decomposition

In the proposed data-driven approach, only the first-level decomposition was considered because it was observed that the approximation and detail signals at the first-level are very representative. Drilling down to higher levels does not exhibit more insights.

Each SVID is decomposed into approximation and detail components using the best mother wavelets shown in Table 5.8. The goal of this step is to distinguish the macrolevel variation from the micro-level one. Despite the hidden existence of macro-level variation in the FDC data, very significant micro-level variation in the signals was not observed. Accordingly, these variations are imposed into the data-set, and then the distinguishing capability of the proposed approach can be validated regarding variation differentiation and finding corresponding causes. As a matter of fact, the introduced variations represent an adjustment not destroying the data-set, as the profile behavior stays unchanged. For this aim, SVIDs of pressures and gas flows are selected that are more likely to get micro-level variation. In reality, when equipment is deteriorating, the variation magnitude is likely to enhance through the gas-or pressure-related sensors. Therefore a source of correlated noises is introduced to these SVIDs, and when the equipment deteriorates gradually, these noises become more correlated. Therefore, the only decreasing trend will be extracted from the detail signals. Hence, two 3D↑ and 7D↑ will not be studied in this chapter since no significant trend neither exists nor introduced to their corresponding data-sets. Consequently, the scenarios are reduced to totally ten cases (i.e., 3R↑, 3R↓, 7R↑, 7R↓, 3A↑, 3A↓, 7A↑, 7A↓, 3D↓, and 7D↓).

Two ways of introducing micro-level variation are adding zero-mean (i.e., µ = 0) noises to the signals then either increasing the standard deviation of the noises or increasing the correlation between signals through the wafers. As mentioned in Chapter 4, as the equipment deterioration occurs, the correlation between signals is increased. Therefore, increasing the standard variation of the noises through the wafers does not necessarily leads to the correlation increase between detail signals. Accordingly, the second way is adapted and the correlation between the random noises is increased directly. For this aim, the zero-mean (i.e., µ = 0) noises with small standard deviations (i.e., σ) are introduced to SVIDs of pressures and gas flows, wherein the correlation between CHAPTER 5. COMPUTATIONAL RESULTS noises increases gradually through the wafers.

Minimum and maximum correlation values are considered as ρ min = 0 and ρ max = 1, respectively. Afterward, the correlation of introduced noises into wafer k is calculated as ρ k = ρ min +d(k-1), where d = (ρ max -ρ min )/K is the increasing step of correlation from wafer to wafer. Finally, the noises are generated randomly following normal multivariate distribution N (µ, Σ k ) for each wafer k, where Σ k is the covariance matrix calculated from σ and ρ k . SVID numbers 16 (Gas flow 05), 21 (Gas flow 10), 26 (Pressure 03) and 27 (Pressure 04) have been selected to introduce micro-level variation. The same procedure is employed for both 3 Recipes and 7 Recipes sets.

It is expected that wavelet decomposition not only keeps macro-level variation in the approximation signals but also transfers the micro-level variation into the detail signals.

The ideal case is that the total introduced micro-level variation go to the detail component. It guarantees that macro-level and micro-level variations will be distinguished and they can be analyzed independently.

Table 5.9 shows that wavelet decomposition can transfer the majority of the microlevel variation to the detail component signal. As a result, the performance of wavelet decomposition in distinguishing macro-level and micro-level variations is validated. 

Equipment Deterioration Model using SDSA

For finding the most significant decreasing/increasing deterioration trends, the proposed SDSA algorithm is applied to all ten scenarios. The performance of the proposed SDSA is compared with a simple greedy algorithm and Genetic Algorithm (GA) [START_REF] Rostami | Review of data mining applications for quality assessment in manufacturing industry: support vector machines[END_REF].

A greedy algorithm is a constructive iterative algorithm that starts with an empty set of SVIDs. Unlike SDSA, each iteration of the greedy algorithm contains only forwardselection, and once an SVID enters the list, it never exists the list. Therefore, whenever a redundant SVID enters, that list has a lower chance to reach to the optimum list. In GA, each solution is represented as a 1 × J matrix of binary values, wherein value 1 in the j th bit shows that j th SVID is in the list and value 0 indicates that j th SVID is not in the list. A fixed number of paired individuals (i.e., crossover rate, C Rate ) are crossed using one-point or two-point crossover operators. In addition, a fixed number of individuals (i.e., mutation rate, M Rate ) are mutated in order to escape from local optima. GA parameters are fixed as N P op = 100, C Rate = 80%, M Rate = 20%. A maximum computational time is considered as the stopping criterion for the GA. The GA is performed for the approximation and the detail signals separately.

Tables 5.10 to 5.12 compare the performance of all three algorithms (i.e., SDSA, greedy algorithm and GA) and report the contributing SVIDs in each scenario. In these tables, S R stands for the set of contributing SVIDs to the most significant trends based on the raw signals. In addition, α R and R 2 R are the slope and the GoF of the deterioration trend obtained from S R . Table 5.10 compares the performance of the three algorithms in obtaining the most significant DECREASING trend for the approximation and the raw signals (i.e., scenarios 3A↓, 3R↓, 7A↓ and 7R↓). Table 5.11 shows the results for obtaining the most significant INCREASING trend for the approximation and the raw signals (i.e., scenarios 3A↑, 3R↑, 7A↑ and 7R↑). Finally, Table 5.12 reports the results for obtaining the most significant DECREASING trend for the detail signals (i.e., scenarios 3D↓ and 7D↓). In Tables 5.10 to 5.12, third to fifth columns (in the heading) provide the characteristics of the deterioration trend created by corresponding contributing SVIDs in the sixth column. The reported time in the last column measures the amount of time the CPU spent running the algorithms. This does not count any other programs that might be running, and also does not count CPU time spent in the kernel (such as for file I/O). The stopping criterion for GA is fixed on 3600 seconds (more than SDSA and Greedy algorithm). This value is big enough and gives enough chance to GA for finding better solutions than SDSA and Greedy algorithm.

After having a quick look on the results, it can be seen that both SDSA and greedy algorithms provide the same trend significance and they obtain a remarkably better solution with lower values of the objective function comparing to the GA in almost all cases except 7R↓. The only drawback of the SDSA compared to the greedy algorithm is its computational time. However, this small difference can be neglected from an industrial point of view. The superiority of the SDSA is further elaborated in comparison with the greedy algorithm.

It is also observed from Table 5.10 that the SVIDs contributing to the decreasing deterioration trends are mostly different from those of contributing to the increasing trends of Table 5.11. It reveals that the equipment deterioration with macro-level variations might appear with different symptoms in the signals and each symptom impacts a particular set of SVIDs. A common finding in Tables 5.10 and 5.11 is that the gas flow SVIDs contribute to both decreasing and increasing trends with macro-level variations. Accordingly, the gas flows number 01, 02, 03 and 04 are the ones which are representatives of the equipment health in case of macro-level variations.

Another results learning from Tables 5.10 to 5.12 is that the GA reports somehow different contributing SVIDs comparing to the SDSA and the greedy algorithm. It may be because the SDSA and the greedy algorithm directly construct the contributing SVID set based on the correlation between SVIDs while the GA evolves the SVIDs set based on random operators (i.e., crossover and mutation). Accordingly, it seems that the GA will lead to less correct (if not incorrect) results and set of contributing SVIDs. Furthermore, the contributing SVIDs based on the raw signals are different from those of obtained from the approximation signals, S A . Regarding S R sets, some SVIDs do not lead to a significant deterioration trend. This issue will be further illustrated by comparing the trends obtained from S A and S R . Finally, knowing the GA as one of the most potent searching algorithms, Tables 5.10 to 5.12 reveal that not only both SDSA and greedy algorithm provide solutions as good as (even better than) the GA, but also they are significantly more time-efficient.

Looking at Table 5.12, it is observed that the proposed SDSA and the greedy algorithm both completely find out those SVIDs (i.e., 16, 21, 26 and 27) that received noises in Section 5.3.2. It validates the performance of the proposed equipment behavior prognosis approach in extracting the deterioration trend from the micro-level variations in the signals. However, the deterioration trend is expected to be decreasing in the long-term to show the equipment health is going worse and worse over time. For instance, the wafers number 300 and 350 are respectively the turning points in Figures 5.24 and 5.26 from a downward phase to the upward phase. The upward trend signifies an improvement in the equipment health. This issue and this improvement could be due to the automatic Runto-Run regulation of the etching system, but further investigation with the engineers is required.

Figures 5.25 and 5.27 depict the deterioration trends of the scenarios 3R↓ and 7R↓ wherein the wavelet decomposition step has been skipped, and the proposed feature extraction approach and SDSA are performed directly on the raw signals to find the most significant equipment deterioration trend. Comparing to Figures 5.24 and 5.26, it can be seen that no significant trend is observed but the downward spike. This result validates the necessity of the wavelet decomposition for distinguishing the macro-level variation from the micro-level one. Actually, without signal decomposition, these two variations are convoluted, and no significant deterioration trend can be in the 3R↓ and 7R↓ scenarios. The deterioration trends of Figures 5.24 and 5.26 contain two spikes, one at the beginning and one in the upward phases. Precisely in Figure 5.24, two sudden shifts were observed in the original data-set as Figure 5.28 which result in upward and downward spikes. It is worth mentioning that the proposed approach alarms not only sudden macro-level changes in the contributing SVIDs but also prognoses the long-term deterioration trend over the whole wafers. Although the proposed prognostic approach is sensitive to sudden variations, these changes do not impact the ongoing deterioration trend of the equipment. As can be seen, the downward shift is more severe, and consequently, its spike (around wafer 350) is more significant. In the following, the increasing trends in the scenarios 3A↑, 3R↑, 7A↑, and 7R↑ are illustrated and evaluated. These trends are respectively depicted in Figures 5.31 to 5.34. Since the increasing trends are not as significant and clear as the decreasing trends, it is concluded that the deterioration of the process/equipment can happen only when the correlations between SVIDs are gradually increased, which implies the process is gradually regulated to push the physical/chemical reactions.

Another insight learning from Figures 5.31 to 5.34 is that despite the results of Table 5.10 the raw signals (i.e., cases 3R↑ and 7R↑) provide the increasing trends as significant as the approximation signals (i.e., cases 3A↑ and 7A↑). This event is because no decrease of correlation was expected to appear among micro-level variation and consequently no increasing trend from the detail signals. Hence, there is no convolution between macro-level and micro-level variations regarding increasing trend. Consequently, the wavelet decomposition step might be skipped for obtaining the increasing trend in this particular FDC data but the proposed prognostic approach is an automotive approach that guarantees no convolution of variations happens in the signals, and the most significant trend (if any) will be surely found.

Performance Comparison between SDSA and Greedy Algorithm

Although it was observed (in Section 5.3.4) that the most significant deterioration trend obtained by the greedy algorithm is the same as the SDSA, this section provides more analyses on the performance of the proposed SDSA. The analyses are about testing its ability to escape from the local optimum and if it can find out other deterioration trends with different sets of contributing SVIDs apart of the most significant one. As mentioned in Chapter 4, the proposed SDSA and the greedy algorithm both are iterative algorithms, and they create the list of contributing SVIDs by starting from each SVID. Therefore, each algorithm leads to J number of SVID sets, where J is the number of all SVIDs in the FDC data-set. This section does a detailed analysis of these sets of SVIDs. Tables 5.13 to 5.24, report the results of the scenarios 3A↓, 7A↓, 3A↑, 7A↑, 3D↓ and, 7D↓ for the SDSA and the greedy algorithm. In Tables 5.13 to 5.24, the first column represents the starting SVID; the second to the forth columns provide the characteristics of the most significant trend corresponding by starting from the particular SVID of the first column. The fifth column shows the final list of the contributing SVIDs when starting from each SVID. In the last column, different groups of contributing SVIDs obtained by the corresponding algorithm are numerated. In this column, a lower number of different groups shows the higher performance of the algorithm to converge to the same solutions.

Table 5.13 and Table 5.14 show the results of the case 3A↓ for the SDSA and the greedy algorithm, respectively. By looking at the second column of Table 5.13 and Table 5.14, it is observed that by starting from the same SVID, in the majority of cases, SDSA provides a better solution in term of lower objective value. It can be easily counted that the SDSA reaches to better solutions in 28 cases (out of total 31) comparing to the greedy algorithm in the 3A↓ case.

In addition, the last column of Table 5.13 indicates that totally 4 different sets of contributing SVIDs that create significant trend have been found while this value for the greedy algorithm is 25, and the most of the contributing sets of Table 5.14 contain irrelevant SVIDs. This issue is because the greedy algorithm gets trapped in local optimum and starting from an SVID often leads to a different final set of contributing SVIDs. Hence, the SDSA algorithm is well converged to the most significant trends. Furthermore, we know that the best solution found by both algorithms is the same as {6, 8, 12, 15, 18}. This solution has been bolded in Table 5.13 and Table 5.14, wherein it can be seen that the proposed SDSA obtains the set {6, 8, 12, 15, 18} three times while the greedy algorithm reaches to this solution only once. On the other hand, the SDSA obtains another solution {12, 6, 8, 31, 29} nine times that is a good alternative for the optimal solution {6, 8, 12, 15, 18} (i.e., both slope and R 2 values are quite close). Therefore, the SDSA is highly effective in producing optimal and near-optimal solutions.

Another observation is that in the contributing sets of SVIDs obtained by the greedy algorithm (in the fifth column of Table 5.14), the starting SVID always belong to the set and this is because no backward-elimination operator is employed in the greedy algorithm. So, the redundant entered SVIDs will no exit the list and make the local optimum issues. Furthermore, the final set of contributing SVIDs strongly depends on the starting SVID. This issue leads to a higher variety in the contributing sets of SVIDs and less reliability for determining the main cause roots of the equipment deterioration.

Table 5.15 and Table 5. [START_REF] Bloch | Machinery Failure Analysis and Troubleshooting: Practical Machinery Management for Process Plants[END_REF] show the detail results of the case 7A↓ for the SDSA and the greedy algorithm, respectively. Comparing the objective function in these tables discovers that independent from the starting SVIDs, the SDSA leads to better solutions with lower values of objective functions comparing to the greedy algorithm. Furthermore, the SDSA algorithm often converges to the same solutions, and totally seven different sets (out of 31) of contributing SVIDs are found. These sets can be good alternatives since their objective function values are close. On the other hand, the greedy algorithm rarely converges to the same solution and leads to different 26 (out of 31) sets of contributing SVIDs.

Table 5.17 and Table 5.18 show the detail results of the case 3A↑ for the SDSA and the greedy algorithm, respectively. In the 3A↑ case, in a majority of starting SVIDs (i.e., 30 cases out of total 31), the proposed SDSA finds more significant trends comparing to the greedy algorithm. Based on the last column of Table 5.17, the proposed SDSA remarkably leads to less different sets of contributing SVIDs (totally 4 different sets) in comparison with the greedy algorithm (totally 23 different sets) and the most of the contributing sets of Table 5.18 contain unjustifiable SVIDs. Furthermore, the SDSA and the greedy algorithm have reached out ten times and twice the best solution (i.e., contributing set {1, 5, 21}), respectively. On the other hand, the best alternative contributing set {6, 15} has been found ten times by the proposed SDSA; however, the alternative solution can be identified twice in the results of the greedy algorithm.

Table 5.19 and Table 5.20 show the detail results of the case 7A↑ for the SDSA and the greedy algorithm, respectively. Similar to the case 3A↑, the SDSA results in better solutions regarding lower objective function values and entirely converge to only seven (out of 31) different sets of contributing SVIDs. The greedy algorithm cannot converge to the same solutions and produces twenty-four (out of 31) different and nonalternative sets of contributing SVIDs. Also, the SDSA finds the combination {1,5} as the contributing SVIDs with the minimum objective value (best solution) eleven times (out of 31) while the greedy algorithm finds it only twice (out of 31). Therefore, the SDSA is more powerful and reliable to find the best solution.

Table 5.21 and Table 5.22 show the detail results of the case 3D↓ for the SDSA and the greedy algorithm, respectively. Similar to the 3A↓ and 3A↑ cases, it is observed that by starting from the same SVID in the 3D↓ case, the SDSA reaches to better solutions in all 31 cases comparing to the greedy algorithm. In addition, the last column of Table 5.21 indicates that totally 3 different sets of contributing SVIDs that create significant trend have been found while this value for the greedy algorithm is 26, and even the most of the contributing sets of Table 5.22 have (received) no micro-level variations.

The best solution found by both algorithms (Table 5.21 and Table 5.22) is the same as {16, 26, 27, 21, 5, 3} and this solution has been obtained sixteen and only four times by the SDSA and the greedy algorithm, respectively. The best alternative obtained by the SDSA is the contributing set {5, 16, 27, 26, 17, 3, 21} which has been found twelve times by this algorithm. The best solution and the alternative one are completely similar except in the SVID number 17. Hence, it can be considered that the SDSA has been converged to the same solution in 28 times (i.e., sixteen times for the best solution and twelve times for the alternative solution). Finally, Table 5.23 and Table 5.24 show the detail results of the case 7D↓ for the SDSA and the greedy algorithm, respectively. Almost the same interpretations can be provided for this case, and it is evident that the SDSA correctly pick out the same SVIDs that receive intentional micro-level variation. Finally, these explanations demonstrate the outperformance of the proposed SDSA in extracting the both decreasing and increasing deterioration trend from the approximation and the detail signals.

Discussion on the Deterioration Trends

By looking at Table 5.13, it is observed that Gas flow 02, 03, 04, and 07 alongside pressure 01 have been diagnosed as the main representatives of the etching equipment deterioration. There exist also another set of SVIDs (i.e., {12, 6, 8, 31, 29}) which is a good alternative for the best set and generates the most significant deterioration trend. All of these sets share the common identification of equipment deterioration over the Gas flow SVIDs. It is worth mentioning that reporting these SVIDs and explaining the deterioration symptoms (i.e., macro-or micro-level variations) give enough clues to the engineers to distinguish the deterioration and take necessary preventive actions. Some hints brought to mind from these results are discussed hereafter.

In current practice, clean room enhancement and the increasing utilization of the automated equipment enable reducing the contamination caused by particles or films. Although, contaminants from external sources have been diminished but contaminating particles are still generated inside the process chamber during the processing of semiconductor wafers. Some identified sources of contamination include the process gases and liquids, the interior walls of the process chambers and the mechanical wear of the wafer handling equipment [START_REF] Lu | Method for preventing contamination in a plasma process chamber[END_REF]. Silicon-based ceramics have been widely used in semiconductor plasma processing equipment as a shield to protect the ceramic parts inside etchers or chemical vapor deposition reactor chambers from corrosion caused by fluorocarbon corrosive gases [165]. These materials interact with plasma and are eroded, resulting in the generation of contaminant particles on the wafer. These particles are combined and charged negatively which may ultimately contaminate a substrate that is being processed in the chamber.

From the physical point of view, two possible events may happen to incur the equipment deterioration in an etching process. The first event relates to contamination coated on the chamber and the second event represent the interfering of the contamination particles in the plasma bombarding process.

In the first case, when etching equipment is gradually deteriorated, e.g., when the etching tool is contaminated, particles are coated on the chamber walls during the plasma process. Consequently, recipe set points (i.e., temperature targets, gas flow levels, etc.) are not achieved. R2R controller intends to regulate more gas into the chamber or to increase the temperature of the chuck to reach to the targeting set point. With the contamination of coated chamber wall, the chamber space becomes smaller, and the level of specific SVIDs increases in the long term. Therefore, the correlation between these SVIDs become stronger, and these SVIDs are those who signify the contamination.

In the second case, during a plasma etching, the high-energy reactive plasma ions can be easily combined with any available chemical elements in the chamber to generate contaminating particles. Accordingly, when the radio frequency (RF) power is turned on, the generated contaminating particles float or suspend in the chamber due to the interaction with high energy plasma ion particles [START_REF] Lu | Method for preventing contamination in a plasma process chamber[END_REF]. Hence, floating particles interact with plasma ions and interfere with the plasma bombarding to the wafer surface [START_REF] Ukai | Dry Etching (Part 1): Particulate Contamination Due to Dry Etching[END_REF]. This malfunctioning results in the reaction of controllers in putting more gas into the chamber. Therefore, the level of certain SVIDs increases. After the etching process of each wafer is conducted, the RF power and the heating lamps are switched off. It leads to the sudden loss of energy in the suspended contaminating particles and causing them to be quickly deposited on the chamber walls, an upper electrode, and the wafer. This event happens to each wafer, and the process regulator correspondingly increases the level of certain gas flows at each etching operation. The more the contamination stuck to the chamber walls, the more difficult it can be removed. This is why the level of gas flow SVIDs gradually increases, and the correlation between these SVIDs become strong. 120 CHAPTER 5. COMPUTATIONAL RESULTS 

Chapters Summary

In Chapter 1, a general introduction to this thesis starts by explaining the problem background and motivations is provided. The underlying problem is stated, and a general research methodology is described in this chapter. In Chapter 2, the relevant scientific studies to position this work in the literature regarding originality and contributions are reviewed. A comprehensive terminology of the equipment behavior modeling, monitoring, and different prognostic and diagnostic methods is provided. The Advanced Process Control (APC) in the semiconductor industry, and corresponding challenges are elaborated. The relevant papers studying equipment behavior prognosis and equipment failure diagnosis are reviewed. Based on the conducted review, the gaps between the literature and this research are analyzed and expected to close by the proposed approaches. Finally, the detail research methodology in this thesis and its contributions are explained. In Chapter 3, a data-driven equipment failure diagnosis approach that uses the Fault Detection and Classification (FDC) data from the semiconductor industry is developed to find out fault fingerprints with their corresponding fault roots. The wellknown supervised and unsupervised techniques, such as principal component analysis (PCA), support vector machine (SVM) and K -means algorithm, are employed to build a novel equipment failure diagnosis approach. In Chapter 4, an efficient equipment behavior prognosis approach for modeling and monitoring the equipment deterioration using the same FDC data is proposed. The approach is explained step by step from FDC data decomposition to deterioration trends extraction. A new searching mechanism is developed in this chapter to find out the roots of equipment deterioration. In Chapter 5, comprehensive experimental results for both of the proposed equipment failure di-agnosis and the equipment behavior prognosis are presented. The results are analyzed, and numerous engineering insights are extracted and validated.

Proposed Equipment Failure Diagnosis Approach

The first proposed approach in this thesis was a data-driven equipment failure diagnosis to analyze the semiconductor equipment data that may contain different types of recipe-related or fault-related variations. The proposed approach distinguished the normal recipe-related variations (e.g., process dynamics) from the fault-related variations.

The proposed data-driven approach contained two main stages as Equipment Anomaly Detection and Automatic Fault Fingerprint Extraction. These stages were performed by employing the conventional soft computing algorithms such as Support Vector Machine (SVM), K -Means clustering algorithm, and Principal Component Analysis (PCA). In the proposed two-stage methodology, Stage 1 detects the normal from the abnormal conditions using SVM, while Stage 2 projects the abnormal data into different PCA models which are built to preserve the process dynamics. By summarizing the variable contributions to the Out-of-Control (OOC) observations, fault fingerprints and their corresponding cause roots were automatically extracted using the K -means algorithm.

Different statistical tests were conducted to justify the use of the soft computing algorithms in the proposed approach. These tests showed the superiority of the proposed algorithms with specific settings in comparison to other well-known algorithms. To validate the proposed approach, the FDC data of 760 wafers (264,340 observations in total) provided by a local IC maker were analyzed. The data cover eight different recipes in an etching process, wherein 31 sensor readings were collected simultaneously during a process run, i.e., a wafer.

As the prior information, it was known that there exists a severe process drift followed by a Corrective Maintenance (CM) within the data duration. Through the case study, different fault fingerprints were extracted with their corresponding root causes. The results of the case study show convincing practicability of the proposed equipment failure diagnosis approach. In particular, the three fault fingerprints, which were extracted automatically, presented consistent causes with the known faults to the process drift in the FDC data.

In the proposed methodology, the FDC data are labeled as normal and abnormal, which can be further simplified to be only one normal class for training a one-class SVM model.

Nevertheless, the normal wafers and their FDC data must be carefully filtered and selected to ensure that the SVM model can learn and remember the normal process dynamics, including different standard recipe bodies and the tolerable natural noises of the sensor readings. Since the data-driven SVM model is subject to the data complexity and resolution, as long as the normal condition may be changed, e.g., performing the corrective/preventive maintenances (CM/PM), recovering from machine breakdown, or processing a new recipe/product, the SVM model shall be refreshed or rebuilt to cover as much (normal) information as possible. By this, the normal condition and the characteristics of normal wafer are well defined and readily available based on the recipes. Modeling the faulty situations depends on whether enough information about the fault(s) characteristics are available or not. In case of having enough information about the failures, they can be easily modeled by two (multiple)-class SVM. If not, a One-class SVM is employed wherein any record that does not meet the normal condition is considered as abnormal record. Therefore, we emphasize that knowing the normal condition well is sufficient to employ SVM.

Contributions

The main contributions of the proposed equipment failure diagnosis approach have been:

Differentiating two kinds of variations in the FDC data. The proposed approach deals with two types of variations in the data as normal recipe-related variation (i.e., process dynamics) and fault-related variations. These two variations must not be confounded. Regarding this issue, the dynamics of a single wafer process run from the data-set were decomposed into 10 sequential deciles and it was observed that observations from the ramp-up and the ramp-down steps of the wafer process were grouped into mainly two clusters while the middle of the process containing the main etching steps is distributed dispersedly in different clusters. It was then learned intuitively that the main etching steps are decidedly non-stationary and compose of interchanging upward and downward trends with different distributions. Accordingly, coping with process dynamic is an essential task in most of fault diagnosis approaches, particularly in the semiconductor industry. Extracting the fault fingerprints with their corresponding cause roots. The proposed approach clusters the contribution plots of the out-of-control observations and obtains the highest possible number of fault fingerprints and finally identified their corresponding cause roots. The contribution values and their control limits presented in this approach are capable of capturing the fault fingerprints corresponding to the abnormal process events. By looking into the fault fingerprints, the process variables to be responsible for the anomaly can be easily identified. The proposed approach extracts the unknown fault fingerprints despite the literature that in most of the studies, the faulty profiles are usually given. Proposing a control limit for identifying the fault cause roots. Most of the existing studies in the literature consider the SVIDs with the higher contribution value as the fault roots, while a higher value of contribution values does not necessarily mean the fault causes. Hence, although the contribution values of some SVIDs are high, they must not be considered as the fault roots because they do not pass their control limit. This approach proposes a control limit for the contribution value of each SVID based on the normal observations and those SVIDs are identified as the fault roots if they pass the proposed control limits.

Future Research Direction

One of the major future research directions for the equipment failure diagnosis approach is dealing with multiple recipes which are remarkably different in profiles. Actually, the recipes in this study belonged to a family of product; therefore, there was no need to build different normal baselines for different recipes. Accordingly, coping with different recipes from different product families could be a challenging issue that requires to be investigated.

Another possible research direction could be summarized the observation cubes into wafer-based features, whereby the proposed methodology might become simpler. For example, process dynamic decomposition can be eliminated since process dynamic is incorporated in wafer-based features.

Proposed Equipment Behavior Prognosis Approach

The second proposed approach in this thesis was a data-driven equipment behavior prognosis for modeling and monitoring the equipment deterioration in a semiconductor industry using the batch process data. The proposed approach has two aims as 1) exploiting the temporal data of batch processes to characterize the equipment behavior, and 2) identifying the deterioration trend with the most likely causes. In this regard, several challenges appeared in this study that have made it difficult in employing classical techniques and methods in the literature to efficiently and effectively model and monitor the equipment deterioration.

This proposed prognostic approach included four main consecutive stages as 1) Data pretreatment, 2) Data processing, 3) Feature extraction, and 4) Deterioration modeling. The data pretreatment stage prepared the FDC data by deleting the constant and noninformative SVIDs based on the domain knowledge of engineers. Similar to the equipment failure diagnosis problem, one of the challenges in front of the proposed prognostic approach was to distinguish different types of variations in the FDC data-set. The proposed approach encountered two macro-level and micro-level variations with a different domain of frequencies; the former were low-frequency variations, and the latter one was high-frequency variations. Accordingly, in the data processing stage, the discrete wavelet transformation (DWT) technique was employed to distinguish the macro-level variation from the micro-level ones in each SVID using the most appropriate selected mother wavelets. After decomposing the SVIDs and capturing the macro-level and micro-level variation, respectively in the approximation and the detail signals, equipment deterioration features were calculated in the feature extraction stage. By knowing some physical meanings behind the semiconductor etching process, the determinant of correlation between decomposed SVIDs was considered as deterioration features. Finally, a stepwise searching mechanism was developed to find out the most significant deterioration trends from the approximation the detail signals with the contributing SVIDs to these trends.

The normal wafers of the same FDC data in the first proposed approach (i.e., equipment failure diagnosis) was used to validate the proposed equipment deterioration mod-eling and monitoring approach. The most increasing and decreasing deterioration trends were illustrated with corresponding contributing SVIDs, and it was observed that the gas flow SVIDs are mostly the representatives of the equipment deterioration.

The proposed stepwise searching algorithm was benchmarked with a greedy algorithm and the well-known genetic algorithm and its performance regarding solution quality, convergence rate and computational time was verified through a comprehensive set of experiments. The proposed approach can automatically adapt to the new data-set and can extract increasing/decreasing deterioration trends from different macro-level and micro-level variations.

Contributions

The main contributions of the proposed equipment behavior prognosis approach have been:

Differentiating different types of variations in the FDC data. An important challenge in the proposed approach was the presence of different kinds of variations in the FDC data of the semiconductor equipment. The existing prognostic approaches only consider one type of variation while equipment deterioration may appear in both macro-level and micro-level variations in the data. Accordingly, the proposed approach decomposed the signals into approximation (high-frequency) and detail (low-frequency) signals and extracted independent deterioration trend from these signals. The experimental results were also demonstrated that confounded variations in the signals might lead to less accurate trends if any trend can be extracted. Each extracted trend can be independently followed to monitor the equipment behavior. Combining the discrete wavelet transformation with correlation determinant. This combination provides an efficient approach to account for both variation and covariation of the signals in two macro and micro levels of variations. The wavelet transformation avoids the convolution of faulty-related variations and the correlation determinant attempts to the co-variation between the signals. Each of the deterioration models obtained from the approximation signals (macro level) and the detail signals (micro level) can be utilized to monitor and prognose the equipment behavior since they independently alarm particular cause roots. Based on the provided cause roots, engineers can select and adapt further precautions. Proposing an efficient and effective stepwise searching algorithm. It has been the fact that deterioration usually appears in only certain SVIDs and involving all SVIDs to build the deterioration model may not lead to any significant trend. This issue was also demonstrated through the experimental results. Therefore, the proposed stepwise algorithm looks for the contributing SVIDs in a greedy manner where two forward-selection and backward-elimination operators are combined to escape from the local optimum. Proposing a simple and practical deterioration modeling and monitoring approach. Despite the most existing researches in the literature, the proposed approach is not only novel regarding academic aspects, but also effective and easy to understand from the practical point of view.

Future Research Directions

In this section, two main future research directions are proposed as 1) Monitoring the equipment health/condition using the proposed equipment behavior prognosis approach and 2) Overcoming the overfitting problem (if any) of the proposed SDSA searching algorithm.

Equipment health/condition monitoring

To make the proposed equipment behavior prognosis approach practical for the industry, the deterioration models should be integrated into the monitoring scheme of the equipment condition. The monitoring mechanism can be utilized to optimize the production control, such as the job scheduling and maintenance planning.

A conventional way of monitoring the process/equipment condition is to use the statistical process control (SPC) charts to determine if a quality/behavior related feature is no longer under control. In the aspect of equipment failure diagnosis, the SPC chart could be used to judge the equipment stability. Furthermore, the SPC chart is expected to detect the unexpected anomalies (i.e., sudden drift or deterioration) in the equipment behavior prognosis. Control limits are usually determined based on the 3-sigma criterion given the assumption that the monitored statistics are following a normal distribution, wherein 99.73% of the data should fall into the range of µ ± 3σ accompanied with the type I error of 0.27%.

To apply the common monitoring scheme of x control chart, the underlying distribution for the proposed equipment health index (HI) in equation (4.7) should be studied. Per our investigation, the determinant of a correlation matrix can approximately follow a normal distribution. Due to the lack of theoretical proof, a simulation study is conducted to learn the approximating behavior of the determinants, i.e., the HI.

In this regard, a large number of realistic correlation matrices are generated for each wafer and then these correlations matrices are transformed into determinant values. Having enough determinant values (e.g., 10000 samples) for each wafer makes it possible to test if the determinant follows a normal distribution. For generating numerous realistic correlation matrices, firstly the contributing SVIDs S A in each wafer are normalized. By this normalization, the covariance and correlation matrices become identical. By putting the correlation matrix in the Wishart distribution [START_REF] Wishart | The Generalised Product Moment Distribution in Samples from a Normal Multivariate Population[END_REF] with a degree of freedom equal to the number of observations in wafer k, it is possible to generate the random realistic correlation matrices. Afterward, the generated correlation matrices are transformed to determinant values. As an initial evaluation, it was observed that the determinant values follow the Gaussian distribution. For supporting the results of the simulation, different statistical tests such as Kolmogorov-Smirnov and Chi-square goodness of fit tests [START_REF] Lilliefors | On the Kolmogorov-Smirnov Test for the Exponential Distribution with Mean Unknown[END_REF] were conducted to investigate whether the simulated determinant values of each wafer follow a normal distribution. These tests were performed for numerous wafers and the results for almost all wafers showed that the determinant values follow a normal distribution at 5% significance level. Now, the control charts µ ± 3σ can be directly applied on the deterioration trends obtained from approximation (i.e., HI A ) and detail (i.e., HI D ) signals. First, we draw these control limits over HI D . For this aim, we calculate HI D without imposing the micro-level variations into the SVIDs. Since the detail signals are not originally correlated, the HI D trend becomes quiet stable. The µ ± 3σ control charts cannot be directly implemented over the determinant values of the approximation signals since the HI A are non-stationary. For this aim, the values of µ should be estimated for the HI A trend. In the following, the idea of the Exponentially Weighted Moving Average (EWMA) method is adapted to estimated µ for each wafers.

Let HI A (k) be the health indicator based on the approximation signals, i.e., the determinant of correlation between the contributing SVIDs S A for wafer k. The EWMA statistic Z k of the health indicator for wafer is calculated as follows:

Z k = λHI A (k) + (1 -λ)Z k-1 (6.1)
where λ is the smoothing constant. A starting value z 0 also should be defined before the first sample is taken. If a target value µ is specified, then z 0 =µ. Otherwise, it is typical to use the average of some preliminary data points (i.e., z 0 =x). In this section, the average of the first five samples are considered. The weighting constant λ indicates how much previous observations influence the current EWMA Z k . Values of λ near to 1 put almost all weight on the current observation. On the other hand, for values of λ near 0, a small weight is applied to almost all of the past observations, and consequently the, EWMA statistics become smoother. It is worth mentioning that since the EWMA is a weighted average of the current and all past observations, it is generally insensitive to the normality assumption. Therefore, it can be a useful controlling chart procedure to use with individual observations. Based on equation (6.1), the proposed upper and lower control limits of wafer k, U CL (k) and LCL (k) , are provided as equations (6.2) and (6.3), respectively.

U CL (k) = Z (k) + 3σ (k) ∀k (6.2)

LCL (k) = Z (k) -3σ (k) ∀k (6.3) 
where Z (k) is the EWMA statistic for the determinant value of wafer k and σ (k) is the standard deviation of the determinant values of the generated correlation matrices. For validating the proposed control limits (6.2) and (6.3), the FDC data containing 760 wafers (479 normal wafers + 281 abnormal wafers) is utilized. As mentioned in Section 5.1, an unexpected Corrective Maintenance (CM) event was performed after the 480 th wafer to fix a process drift. Unfortunately, the fault was not completely resolved, and the process remained unstable until the end of the data-set where a periodic Preventative Maintenance (PM) was executed. Figure 6.3 shows the HI A for all 760 wafers and the control limits for each wafer. The λ is considered equal to 0.01 for calculating the EWMA statistics. As it can be seen, a sudden and harsh drift has happened after 480 th wafer, and this jump continues until 505 th wafer once the CM is performed and the determinant values go down but still not into the expected range as wafers 1 to 479. In addition, the equipment behavior between wafers 400 to 480 has been zoomed in and it can be seen that the determinant value of several wafers has been out of the control limits. If this behavior is repeated unexpectedly, require actions should be taken. One way of utilizing this control chart is raising an alarm once the determinant value jumps out of the control charts like those of wafers 480 to 505. This alarm is to notify the engineers for taking required actions to stop producing abnormal wafers. An important issue is resetting the EWMA statistics after the CM performed, i.e., wafer 505. This resetting is necessary to avoid the accumulation of the faults (of wafers 480 to 505) into the EWMA statistics of wafers 506 to 760. Therefore, the new control limits are calculated for post-CM. Using the proposed control limits, the determinant of correlation between the contributing SVIDs should stay in-control to be sure that the equipment is working normally. Approaching the lower or upper bounds indicates underlying behavioral changes in the SVIDs that could be either due to equipment deterioration or failure propagation in the signals. Using this control limits, it is possible also to detect the sudden drifts due to unexpected severe failures. Finally, the EWMA statistics alongside the control limits can be utilized to predict the future condition of the equipment. If this condition can be well associated with the health of the equipment, the proposed deterioration model of Chapter 4 with the control limits (6.2) and (6.3) can be employed to estimate the remaining useful life (RUL) of the equipment.

Overfitting of the SDSA

In this part of the future research direction, we briefly study the problem of overfitting in the proposed SDSA algorithm. As explained in Chapter 4 (Section 4.3), the SDSA is a constructive iterative stepwise searching algorithm that employs two forwardselection and backward-elimination operators. Forward and backward stepwise selection are not guaranteed to give us the best set of contributing SVIDs but that is the price to pay in order to avoid overfitting. Even if the number of all SVIDs is small (i.e., less than 30), looking at all possible combination of SVIDs may not be the best research to do. It is not convincing that if the best set of SVIDs leads to the most significant deterioration trend on the training data, this set is really going to be the best overall set in the context of test data or new coming data, which is what we definitely care about. Also, forward-selection and backward-elimination somehow overcome overfitting issue comparing to the complete search, but still there are some issues to solve in this CHAPTER 6. CONCLUSION AND FUTURE RESEARCH DIRECTION regard. Overfitting occurs when a model begins to memorize training data rather than learning to generalize from the trend. In the other word, overfitting generally occurs when a model is excessively complex, such as having too many parameters to be selected (i.e., 31 SVIDs in this thesis) relative to the number of observations (i.e., 479 normal wafers in this thesis). In order to avoid overfitting in an algorithm, it is necessary to use additional techniques such as the early stopping of the algorithm [START_REF] Girosi | Regularization Theory and Neural Networks Architectures[END_REF][START_REF] Yao | On Early Stopping in Gradient Descent Learning[END_REF] or restricted forward-selection [START_REF] Loughrey | Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse it Gets[END_REF]. Early stopping rules provide guidance as to how many iterations can be run before the learner begins to over-fit [START_REF] Yao | On Early Stopping in Gradient Descent Learning[END_REF]. These techniques can be applied to the proposed SDSA to observe how the performance of the SDSA changes.

In order to apply early stopping in the proposed SDSA, the data-set of the normal wafers should be divided into training and validation sets. For this aim, a significant volume of data should be provided; however, this thesis suffered from lack of big data. The idea of dividing the data-set is to obtain the contributing SVIDs from the training set then to verify if this set gives again the most significant trend for the validation test. The idea of implementing early stopping in the proposed SDSA is easy to implement. Accordingly, the SDSA iterative training process is stopped once the generalization accuracy starts to drop. This generalization performance is obtained by withholding a sample of the data (the validation set) [START_REF] Loughrey | Overfitting in Wrapper-Based Feature Subset Selection: The Harder You Try the Worse it Gets[END_REF]. Actually, the iterative process starts once the objective function on the validation set starts to worsen. At this point, the training process can be stopped and the contributing set of SVIDs is reported. Another way of overcoming the overfitting issue in the proposed SDSA is using the restricted forwardselection technique [START_REF] Deng | On Greediness of Feature Selection Algorithms[END_REF]. In this technique, the idea is to ignore extra searches of SVIDs which are not really relevant and do not significantly improve the objective function. This technique can be implemented as follows:

1. Starting from each SVID, create all pairs of SVIDs and calculate the objective function of each pair (we have totally J -1 number of pairs at each start of the algorithm, where J is the number of all SVIDs). Then, sort the pairs of SVIDs in terms of objective function from the most important pair P 1 to the least important pairs P J-1 (i.e., P 1 < P 2 < • • • < P J-1 in terms of objective function); 2. Select the SVID to enter that make the pair P 1 with the starting SVID (the best pair in terms of objective function). 3. Add the next SVID from either P 2 or P 3 , or any other one until P (J-1)/2 . There are ((J -1)/2) -1 of these pairs. The winner of this round will be the third SVID to be added to the list; 4. Add the next SVID from either P 2 or P 3 , or any other one until P (J-1)/3 . There are ((J -1)/3) -1 of these pairs. The winner of this round will be the forth SVID to be added to the list; 5. Continue this procedure, until no improvement in the objective function is found by adding a new SVID to the list.
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 11 Figure 1.1: Application of the prognostic and diagnostic results in the industry.
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 12 Figure 1.2: Research methodology of the proposed data-driven approach is illustrated.
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 13 Figure 1.3: Equipment behavior modeling and controlling obtains expected prognostic and diagnostic results from FDC data.
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 222 Figure 2.2: Statistical trend extrapolation with two alarms.
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 23 Figure 2.3: Research methodology of the proposed data-driven approach is illustrated.
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 2 4a to Figure 2.4d are depicted based on Table
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 24 Figure 2.4: Literature analysis: Equipment Behavior Prognosis.
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 2 5a to Figure 2.5d are depicted based on Table 2.7 and visually show how equipment failure diagnosis problems have been studied in each of semiconductor and chemical industries. Despite the equipment behavior prognosis, Figure 2.5a illustrates that the equipment failure diagnosis has received equal attention in the semiconductor and chemical industries.
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 25 Figure 2.5: Literature analysis: Equipment Behavior Prognosis.
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 31 illustrates the four types of variations in the FDC data as intra-recipe variation (up-left), inter-recipe variation (up-right), gradual deterioration (down-left) and unexpected failure (down-right).
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 31 Figure 3.1: Illustration of the recipe-related variations and the events associated with fault-related variations.

Figure 3 . 3 and

 33 Figure 3.4. The proposed data-driven approach, illustrated in the main framework of Figure 3.2, is adjusted into two main steps as Equipment Anomaly Detection and Automatic Fault Fingerprint Extraction to address the underlying diagnosis problem in this thesis.

Figure 3 . 3 and

 33 Figure 3.4 illustrate the flowchart of the proposed data-driven equipment failure diagnosis approach and the schematic view of the procedure, respectively. These stages are explained in detail in the further sections.
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 32 Figure 3.2: General flowchart of the proposed equipment failure diagnosis approach.
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 33 Figure 3.3: Detailed flowchart of the proposed data-driven failure diagnosis approach.
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 34 Figure 3.4: Schematic view of the proposed data-driven failure diagnosis approach.
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 35 Figure 3.5: Irregular FDC data cube is illustrated and unfolded to become a data table.

Notation Definition k = 1 ,

 1 ..., K Wafer k among K wafers j = 1, ..., J SVID j among J SVIDs i = 1, ..., n k i th observation of n k time-stamps for wafer k c = 1, ..., M c th cluster among the M clusters built only based on the normal observations r c = 1, ..., R c r th c principal component (PC) out of R c PCs in the PCA model for cluster c. R c ≤ J ∀c = 1, ..., M N Total number of observations in the unfolded FDC data N G,c Total number of normal (Good) observations in the c th cluster N B Total number of abnormal (Bad) observations ( c N G,c + N B = N ) l = 1, ..., N B l th observation in the collection of all abnormal data X G,c

Figure 3 . 3 ,)

 33 and Figure 3.4, Stage 2 consists of four sub-stages: process dynamics decomposition (Stage 2-1), abnormal data categorization (Stage 2-2), fault fingerprint extraction (Stage 2-3), and fault root summarization (Stage 2-4), which are explained in details in the following sub-sections. Table 3.2: Kernel functions utilized in Stage 1: Equipment Anomaly Detection. tanh(ax T y + b) 3.3.1 Stage 2-1: Process Dynamics Decomposition After distinguishing the normal observations from the abnormal ones in Stage 1, Stage 2-1 is to cluster the hundred or even millions of normal observations into a smaller number of clusters to decompose the process dynamics and not to detect them as a fault. As an example in Figure 3.6, the SVID temporal profile shows a non-stationary pattern induced from the recipe setting and jeopardizes all the algorithms with the stationarity assumption. For this aim, Stage 2-1 provides several normal process clusters, where intra-cluster observations can be treated as stationary. It must be noticed that Stage 2-1 is conducted only on the normal data classified from Stage 1.
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 36 Figure 3.6: The non-stationary temporal profile of an SVID for one wafer is illustrated.
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 3 STAGE 2: AUTOMATIC FAULT FINGERPRINT EXTRACTION 65 they belong to different part of the process dynamics.

Figure 4 . 1

 41 illustrates an example of the macro-level variation of an SVID as the temporal profiles of consecutive wafers progressively shift. Micro-level variation corresponds to the implicit changes over the main pattern of an SVID. The SVID variation can be amplified as the equipment deteriorates while the mean level remains the same.
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 42 illustrates the micro-level variation in a wafer.

Figure 4 . 1 :

 41 Figure 4.1: The macro-level variation of an SVID across different wafers is illustrative. The main pattern of the SVID is gradually shifted through the wafers. The red line indicates the profile of the final normal wafer.

Figure 4 . 3

 43 depicts the general framework of what we are doing and we expect in this thesis from the

Figure 4 . 2 :

 42 Figure 4.2: The micro-level variation of the signal is observed while the main pattern remains the same.

Figure 4 . 3 :

 43 Figure 4.3: General flowchart of the proposed equipment behavior prognosis approach.

Figure 4 . 4

 44 Figure 4.4 illustrates an example of DWT with three levels of decomposition (L = 3). The decomposed components of the signal with different frequency domains are selected and analyzed according to characteristics of the signal. The DWT shown in Figure 4.4 uses a pair of the low pass (solid arrows) and high pass filters (dashed arrows) to decompose the signal into an approximated low-frequency component (solid circles) and a detailed high-frequency one (shaded circles). Conventionally, they are also referred to Approximation and Detail components, respectively.
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 454445 Figure 4.5 depicts the decomposition of a raw signal into the approximation (left branch) and the detail (right branch) components. It can be seen that the approximation component carries the information of the systematic pattern while detail component reveals the evidence of random noise out of the raw signal. Via the wavelet decomposition, the macro-level and micro-level variations in the raw signal can be found and analyzed separately to model the equipment deterioration.

Figure 4 . 6

 46 depicts a sample wavelet from each wavelet family.

Figure 4 . 6 :

 46 Figure 4.6: The sample wavelet functions which used for signals decomposition.

. 12 )

 12 where F (S A ) and F (S D ) are the objective values for macro-level driven set of SVIDs, S A , and micro-level driven set of SVIDs, S D . | log α A | and | log α D | are used to indicate whether the slope is significant in terms of downward/upward deterioration trends. As explained earlier, when equipment is gradually deteriorated, the correlation between these SVIDs become stronger or weaker. Actually, becoming stronger or weaker are considered in terms of any increase or decrease in the value of the correlation and no matter how much these changes are. These two cases are separately defined as follows:StrongerCorrelation. Any increase in the correlation matrices ρ A and ρ D leads to decrease in the value of both macro-level HI, HI A , and micro-level HI, HI D . Accordingly, the final deterioration trend becomes decreasing and consequently the slope values α A and α D become negative. In conclusion, the more the negative values of α A and α D , the minimum the values of | log α A | and | log α D |. Weaker Correlation. Any decrease in the correlation matrices ρ A and ρ D leads to an increase in the value of both macro-level HI, HI A , and micro-level HI, HI D . Accordingly, the final deterioration trend becomes increasing and consequently the slope values α A and α D become positive. In conclusion, the more the positive values of α A and α D , the minimum the values of | log α A | and | log α D |.

  Hence, the more the smaller values of | log α A | and | log α D |, the more significant the deterioration trends. In the same direction as | log α A | and | log α D |, minimizing the terms (1 -R 2

Figure 4 . 7 and

 47 Figure 4.8 depict the Pseudo code and the detailed flowchart of the proposed statistical data-driven equipment deterioration modeling and monitoring, respectively. The notations in Figure 4.7 are for finding the decreasing trend from the approximation signals. The settings can be easily changed for other types of trends (i.e., from detail signals or increasing trends).

  input : FDC Data output: Deterioration Trend TrendType = DECREASING // Can be also INCREASING // for j ∈ S J do // Algorithm starts from each SVID // S A = {};

4 . 7 :

 47 Penalty of INCREASING // end archive F end S A = S A ∪ j |F (j, j ) = min j F (j, j ) ; save current objective function for j ∈ S J : j ∈ S A do do Extension: add j to the list and calculate F (S A ∪ j ) archive F (S A ∪ j ) end Extension do Substitution N times (N = |S A |): replace j with j (j ∈ S A ) and calculate HI A and fit y A for S A -j ∪ j calculate F (S A -j ∪ j ) archive F (S A -j ∪ j ) end Substitution end if F (Best Combination)| j < F C then F C = F (Best Combination); S A = S A ∪ j ; else terminate the algorithm and return S A for SVID j // No-change in the list // end archive S A and F C for starting SVID j end return an SVID list with the minimum objective value Figure This figure shows the pseudo code of the proposed equipment deterioration modeling approach from the approximation signal.
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 5152 Figure 5.1: Main operations in the semiconductor manufacturing.
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 53 Figure 5.3 shows the scree plot of the percentage of variance explained as a function of the number of clusters for both K -means and SOM clustering algorithms. Since having more than 12 clusters does not explain more variance percentage in the both algorithms, Figure5.3 only shows the results for 2 to 12 number of clusters. It is evident that having 8 numbers of clusters does not add more explanation for the variance of the data in the both algorithms. Therefore, 7 numbers of clusters provide enough explanation of the variance. In addition, it can be condensed that K -means with correlation as the similarity function provides better variance explanations comparing to the K -means with Euclidian distance as the similarity function.
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 53 Figure 5.3: Percentage of variance explained given different numbers of clusters.
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 55 Figure 5.5: The cluster distribution within a wafer process run.

Figure 5 . 6 to

 56 Figure 5.6 to Figure 5.9 shows the control charts of the D and Q statistics after projecting all the abnormal observations into the PCA models built based on the clusters 1, 6, 3, and 4 (i.e., the clusters from the beginning, the middle and the end of the process to cover the duration of the whole process). The red line indicates the control limit in all control charts. From Figure5.6 to Figure5.9, it can be interpreted that the middle of the wafer process (i.e., clusters 6 and 3) consists of a higher number of OOC observations in comparison with the beginning (i.e., cluster

Figure 5 . 6 :

 56 Figure 5.6: Control charts of the D and Q statistics for cluster 1.
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 57965 Figure 5.7: Control charts of the D and Q statistics for cluster 6.
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 58 Figure 5.8: Control charts of the D and Q statistics for cluster 3.
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 59 Figure 5.9: Control charts of the D and Q statistics for cluster 4.
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 510 Figure 5.10: Contribution plots for two samples of OOCs.

( d )

 d Fault Root SummarizationAfter clustering the OOC contribution values for each of D and Q control charts and creating fault fingerprints, the final step of the proposed method is to extract the fault roots of each fault fingerprints. As explained in Section 3.3.4, the proposed control limits Equations (3.20) and (3.21) are calculated for the CHAPTER 5. COMPUTATIONAL RESULTS

  = 0 KS, LF = 0 KS, LF = 0 KS, LF = 0 * FF: Fault Fingerprint; Stat: Statistics After testing the normality of all the contribution values corresponding to each SVID in each fault fingerprint, Figure 5.11 to Figure 5.13 show the fault fingerprint 1 to 3 for the D statistic and Figure 5.14 to Figure 5.16 show the fault fingerprint 1 to 3 for the Q statistic, respectively. The SVIDs are interpreted as the fault roots if their summarized contribution values exceed the corresponding control limits. Considering the D statistics, Figure 5.11 to Figure 5.13 illustrate that the fault roots are {Gas flow 01, Gas flow 02, Gas flow 03, Gas flow 04 }, {RF 03, RF 07, RF 08, RF 09, RF 10, Pressure 04 }, and {RF 04, Gas flow 02, Gas flow 12, RF 09, Temperature 01, Pressure 01 } for fault fingerprints 1 to 3, respectively. Considering the Q statistics, Figure 5.14 to Figure 5.16 illustrate that the fault roots are {RF 02, RF 06, RF 09, Gas flow 02, Temperature 01, Pressure 02, Pressure 03, Pressure 04 }, {RF 04, RF 07, RF 08, Pressure 01, Gas flow 12 }, and {RF 06, Gas flow 07, Gas flow 10, Gas flow 13 } for fault fingerprints 1 to 3, respectively. It can be concluded from Figure 5.11 to Figure 5.16 that the main fault root is due to the malfunctioning Gas flows.
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 5111005512 Figure 5.11: Fault roots of the fault fingerprint 1 coming from the D statistic.
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 513 Figure 5.13: Fault roots of the fault fingerprint 3 coming from the D statistic.
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 514515516 Figure 5.14: Fault roots of the fault fingerprint 1 coming from the Q statistic
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 517 Figure 5.17: Variation is introduced to the raw signal, and the majority of this variation is captured by the Detail component. Here, 75% of the added variance is transferred to the Detail component, and 25% stays in the Approximation component.
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 518 Figure 5.18: Equipment HI based on approximation with all SVIDs in 3 Recipes data-set.
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 519 Figure 5.19: Equipment HI based on detail with all SVIDs in 3 Recipes data-set.

Figure 5 . 20 : 107 Figure 5 . 21 :

 520107521 Figure 5.20: Equipment HI based on raw signals with all SVIDs in 3 Recipes data-set.
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 522 Figure 5.22: Equipment HI based on detail with all SVIDs in 7 Recipes data-set.
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 523 Figure 5.23: Equipment HI based on raw signals with all SVIDs in 7 Recipes data-set.
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 5 Figures 5.24 to 5.27 depict the decreasing deterioration trends of Table5.10. The first observation is decreasing trend of scenarios 3A↓, and 7A↓ in Figures 5.24 and 5.26 wherein the equipment behavior contain two phases as downward and upward and contain the fitted linear regression (dashed line).
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 524 Figure 5.24: Deterioration trend of the scenario 3A↓ obtained by SDSA.
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 525 Figure 5.25: Deterioration trend of the scenario 3R↓ obtained by SDSA.
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 5 30 can be monitored when using the 7 Recipes data-set.

Figure 5 . 26 :

 526 Figure 5.26: Deterioration trend of the scenario 7A↓ obtained by SDSA.
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 527528 Figure 5.27: Deterioration trend of the scenario 7R↓ obtained by SDSA.

Figure 5 . 29 :

 529 Figure 5.29: Deterioration trend of the scenario 3D↓ obtained by SDSA shows a significant deterioration tendency.

Figure 5 . 30 :

 530 Figure 5.30: Deterioration trend of the scenario 7D↓ obtained by SDSA shows a significant deterioration tendency.

Figure 5 . 31 :

 531 Figure 5.31: Deterioration trend of the scenario 3A↑ obtained by SDSA.

Figure 5 . 32 :

 532 Figure 5.32: Deterioration trend of the scenario 3R↑ obtained by SDSA.
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 533 Figure 5.33: Deterioration trend of the scenario 7A↑ obtained by SDSA.
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 534 Figure 5.34: Deterioration trend of the scenario 7R↑ obtained by SDSA.

Figure 6 . 1

 61 shows the histogram of determinant values of thousand generated correlation matrices from a sample wafer.

Figure 6 . 2

 62 shows the control charts over the HI D values.
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 61 Figure 6.1: Histogram chart for a sample wafer shows the Gaussian distribution of determinant values of the generated correlation matrices.
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 62 Figure 6.2: Control charts are built over the determinant values of the detail signals.
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 63 Figure 6.3: Determinant values are monitored using the control charts to alarm the unexpected and harsh behavioral changes.
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 2 1: Prognostic's definition.

	Prognostic is ... (direct quote)

Table 2 .

 2 2: Advantages and disadvantages of prognostic and diagnostic approaches.

	Approach	Method		Advantages	Disadvantages
		Parity	equa-	-Provide most accurate and precise	-All failure modes should be precisely dened
	Physical model-based	tions		models	-The accuracy and robustness are subject to the
		State observers	-Condence limits provided	experimental conditions under which models
				-Outputs can be easily understood	are developed
				-High accuracy in RUL prediction	-Complicated or impossible in non-linear sys-
					tems
					-Impossible if having numerous failure modes
	Knowledge-based	Expert systems	-Simple but time-consuming to develop	-Relies entirely on knowledge of subject matter
				-Easy to understand	experts
				-Rules can be added or removed easily	-Lack of generality
				-Explanation of the reasoning process,	-Poor handling of novel situations
				induction and deduction process is easy	-A signicant number of rules required
					-Precise inputs required
					-Inability to learn from their errors
					-No condence limits supplied
					-Not feasible to provide exact RUL prediction
					-Failure to represent time-varying phenomena
					-Development and maintenance is costly
	Knowledge-based	Fuzzy logic sys-	-Helpful in developing uncertain models	-Not feasible in the situation that membership
		tems		of data	functions are complicated to be determined
				-More compatible with human reason-	-Lack of generality
				ing process than traditional symbolic	-Developing rules requires high expertise
				approach	-Development and maintenance is costly
				-Fewer rules required comparing to ex-	-Linguistic terms may decrease the accuracy of
				pert systems	the model
				-Inputs can be imprecise, noisy or in-
				complete
				-Failure severity can be reported
				-Condence limits can be provided on the
				output with some types of models
	Data-Driven	Aggregate	-Simple to be understood by engineers	-Lack of generality for other equipment
		reliability		-Theoretically can be performed for all	-It requires a statistically signicant sample size
		functions		components of the equipment, if a	for each failure mode
				small number of failure modes exist	-Lack of accuracy in RUL prediction when lack
				-Condence limits are available for RUL	of data
				prediction of models	-No alarm before the failure occurs, Requires
					high data quality (accuracy, archival length,
					context, no missing data, etc.)
					Continued on next page
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 22 Advantages and disadvantages of prognostic and diagnostic approaches (continued).

	Approach	Method	Advantages	Disadvantages
	Data-Driven	Bayesian Net-	-Handle model multivariate, dynamic	-They are useful only when a priori knowledge
		works	processes	is available
			-Accommodate incomplete and noisy	-Unpredictable failure roots cannot be modeled
			measurements	-Exploring unknown networks are computa-
			-Manage incomplete data sets	tional difcult
			-Useful for learning the causal relation-	-Modeling experts are required
			ship	-They require measurement data
			-Expert knowledge can be integrated	-Avoiding degeneracy requires a large number
			-Over tting of data can be edited by	of samples
			available algorithms	
			-Variants available for non-linear pro-	
			cesses	
			-Other advantages depend on the un-	
			derlying Bayesian technique	
	Data-Driven	Markov Model	-Able to model numerous equipment	-They require a large volume of data for training
			and failure modes	-They assume only single monotonic and non-
			-Specic knowledge of failure progression	temporal failure deterioration
			is not Required	-They are unable to model previously unantici-
			-They can manage incomplete data sets	pated failure roots
			-They can model spatial and temporal	
			data	
			-Computationally efcient once devel-	
			oped	
	Data-Driven	Principal Com-	-It reduces multi-dimensional data sets	-Its performance varies for different applications
		ponent Analy-	to lower dimensional ones	-It is unable to model non-linear systems (Lin-
		sis (PCA)		ear transformation)
				-They are enabled to model the distribution of
				convoluted failure modes
	Data-Driven	Trend Extrap-	-They are simple to be applied	-The monotonic and single-parameter trend can
		olations	-They are independent of process dy-	present few failures
			namic (normal ups and downs required	-The trend may be affected by measurement
			by process recipes)	noises
			-They are clear to be explain	
			-They easily provide alarms	
			-They do not require advanced software	
			tools	
				Continued on next page
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 22 Advantages and disadvantages of prognostic and diagnostic approaches (continued).

	Approach	Method	Advantages		Disadvantages
	Data-Driven	Gaussian Mix-	-They can model non-stationary data	-The optimization parameters are sensitive to
		ture	Models	containing several distributions	the initialization methods
		(GMM)	-They can model arbitrary distribution	-Determining the number of mixture models is
				functions as a mixture of Gaussians	not easy
				-Following mixture models over the	-They are enabled to model the distribution of
				time provide good equipment condition	convoluted failure modes
				trend	
				-Distribution of different failure modes
				can be separately followed-up
	Data-Driven	Self-		-They do not need prior output (Unsu-	-Lack of standard algorithm to determine the
		Organizing	pervised learning methods)	structure and shape of the map
		Maps (SOM)	-They provide excellent visualization	-They suffer from block-box processing
				-They can efficiently cluster different
				failure modes
				-They	efficiently	transfer	high-
				dimensional	data	into	a	two-
				dimensional map
	Data-Driven	Artificial Neu-	-They can model complex, multi-	-They require a signicant amount of data for
		ral	Networks	dimensional and non-linear equipment	training
		(ANNs)	-They do not require a physical under-	-They do mostly trial and error for determining
				standing of the equipment and failure	the most appropriate model
				modes		-They are not timely-efficient
				-They are available with a large variety	-They need data enough clean
				for different purposes	-The high number of input variables makes
				-They can be applied to different types	them highly complex
				of data		-They are black-box processing, and they do not
						provide cause-effect analyses
						-Outputs need to mapped to a physical repre-
						sentation
	Data-Driven	Support Vec-	-It achieves better decision accuracy in	-Several parameters that need to be tuned ac-
		tor	Machine	particular cases because of the maxi-	curately
		(SVM)	mized decision boundary	-They cannot provide deterioration trends
				-It is efficient for non-linear data thanks	-They need prior output (Supervised learning
				to kernel functions	methods)
				-It is competent enough for the large
				dataset and real-time analysis
				-It can cluster different failure modes ef-
				ficiently	

Table 2 .

 2 3: Where (not) to use prognostic and diagnostic approaches.

	Approach	Method		WHEN TO BE APPLIED? IF ...	WHEN NOT TO BE APPLIED? IF ...
		Parity	equa-	-Failure modes are easy to be under-	-A physical model is not available
	Physical model-based	tions		stood, and they are well dened through	-Failure modes are numerous and convoluted
		State observers	mathematical formulations	-Failure modes are convoluted
				-A physical model for each failure mode	-Equipment condition is complicated to be de-
				is available	scribed
				-Equipment conditions can be repre-
				sented statistically
				-Appropriate data for modeling is avail-
				able
				-High accuracy of equipment behavior
				modeling and monitoring is required
				-High accuracy of RUL prediction is re-
				quired
	Knowledge-based	Expert systems	-There is equipment that is simple and	-Equipment condition is complex to be de-
				well understood	scribed
				-Human experts are available to define	-Human experts are not available to dene
				the knowledge rules	knowledge rules
				-Equipment conditions are explainable	-Failure modes are numerous and convoluted
				and predictable	-Highly accuracy is required for equipment be-
				-Failure modes are well understood and	havior modeling as well as RUL prediction
				can be characterized simply
	Data-driven	Fuzzy logic sys-	-Equipment is complicated, and operat-	-No human experts are available to dene fuzzy
		tems		ing conditions are uncertain	rules
				-Precise input is not available	-Input data is discrete and limited to a small
				-Data is highly noisy and uncertain	number of options
				-One or more variables are continuous	-Failure modes are numerous and convoluted
				-There is no mathematical model avail-	-Highly accuracy is required for equipment be-
				able to be implemented	havior modeling as well as RUL prediction
	Data-driven	Aggregate	-Dataset is statistically large	-There is no possibility to differentiate the sig-
		reliability		-Few numbers of failure modes exist	nicant number of possible failure modes
		functions		-There is no condition monitoring data	-Past operating conditions of the equipment are
				of the equipment	not representative of its actual condition
				-RUL is used for maintenance planning
	Data-driven	Bayesian Net-	-There is incomplete data	-Failure causes are unknown
		works		-There is multivariate data	-Modeling experts are not available
				-Failure causes are known	-Lack of training data
				-Modeling experts are available	-There are linear and Gaussian noises
				-Accurate prediction of RUL is required	-There are multiplicative noises
				-There are non-linear and non-Gaussian
				noises
					Continued on next page

Table 2 .

 2 6: Literature: Equipment Behavior Prognosis

	Reference No.	Data	Industry Semiconductor Chemical	Modeling Physical model-based Knowledge-based	Data-driven	Data FDC	Metrology	R2R	Processing Original Domain Time-Frequency Domain
	[71]	2004							
	[1]								

Table 2 .

 2 7: Literature: Equipment Failure Diagnosis

	Reference No.	Data	Industry Semiconductor Chemical	Modeling Physical model-based Knowledge-based	Data-driven	Data FDC	Metrology	R2R	Processing Original Domain Time-Frequency Domain
	[88]								
	[89]								
	[90]								
	[91]								
	[73]								
	[92]								
	[24]								
	[93]								
	[94]								
	[95]								
	[96]								
	[97]								
	[98]								
	[99]								
	[100]								
	[101]								
	[102]								
	[103]								
	[104]								
	[105]								
	[106]								
	[75]								
	[107]								
	[108]								
	[109]								
	[110]								
	[111]								
	[112]								
	[113]								
	[114]								
	[115]								
	[116]								
	[117]								
	[118]								
	[119]								
	[48]								
	[120]								
	[121]								
	[122]								
	[77]								
	[123]								
	[124]								
								Continued on next page
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 27 Literature: Equipment Failure Diagnosis (continued).

	Reference No.	Data	Industry Semiconductor Chemical	Modeling Physical model-based Knowledge-based	Data-driven	Data FDC	Metrology	R2R	Processing Original Domain Time-Frequency Domain
	[81]									
	[125]									
	[80]									
	[23]									
	[83]									
	[126]									
	[82]									
	[127]									
	[128]									
	[129]									
	[47]									
	[55]									
	Total Papers 27	27	3	3	50	49	4	4	53	0

Table 3 .

 3 1: The notation definition.

Table 4 .

 4 1: The wavelet library includes the most popular wavelet families, which are examined for selecting the best mother wavelet.

	Family	Wavelet Symbols	Properties
	Haar	haar	-Asymmetric -Orthogonal
			-Biorthogonal
			-Asymmetric
	Daubechies	db2, db3, db4, db5, db6, db7, db8	-Orthogonal
			-Biorthogonal
			-Near symmetric
	Symlets	sym2, sym3, sym4, sym5, sym6, sym7, sym8	-Orthogonal
			-Biorthogonal
			-Near symmetric
	Coiflets	coif1, coif2, coif3, coif4, coif5	-Orthogonal
			-Biorthogonal
		bior1.1, bior1.3, bior1.5, bior2.4, bior2.6, bior2.8,	-Symmetric
	Biorthogonal	bior3.3, bior3.5, bior3.7, bior3.9, bior4.4, bior5.5,	-Not orthogonal
	Reverse biorthogo-nal	bior6.8 rbio1.1, rbio1.3, rbio1.5, rbio2.4, rbio2.6, rbio2.8, rbio3.3, rbio3.5, rbio3.7, rbio3.9, rbio4.4, rbio5.5, rbio6.8	-Biorthogonal -Symmetric -Not orthogonal -Biorthogonal -Symmetric
	Meyer	dmey	-Orthogonal
			-Biorthogonal

Table 5 .

 5 1: The 31 SVIDs with basic descriptions.

	SVID	Description	SVID	Description	SVID	Description
	V 1	RF 01	V 12	RF 08	V 22	Gas flow 11
	V 2	RF 02	V 13	RF 09	V 23	Gas flow 12
	V 3	RF 03	V 14	Temperature 01	V 24	Gas flow 13
	V 4	RF 04	V 15	Pressure 01	V 25	Pressure 02
	V 5	Gas flow 01	V 16	Gas flow 05	V 26	Pressure 03
	V 6	Gas flow 02	V 17	Gas flow 06	V 27	Pressure 04
	V 7	Gas flow 03	V 18	Gas flow 07	V 28	RF 10
	V 8	Gas flow 04	V 19	Gas flow 08	V 29	RF 11
	V 9	RF 05	V 20	Gas flow 09	V 30	Temperature 02
	V 10	RF 06	V 21	Gas flow 10	V 31	Temperature 03
	V 11	RF 07				

Table 5 .

 5 2: Kernel functions.

	Kernel	Formulation	Parameters & tuning range

Table 5 .

 5 3: Kernels accuracy and parameters

	Kernel	Accuracy(%)	Error * (%)	Parameters
	Linear	62.00%	38.00%	C = 51, b = 1
	Polynomial	57.26%	42.74%	C = 86, a = 4.74, b = 1, d = 7
	RBF	97.31%	02.69%	C = 17, σ = 13.7
	Sigmoid	86.73%	15.27%	C = 103, a = 1.5, b = -25
				

* Error = 1 -Accuracy

Table 5 .

 5 4: DB and DN indices for evaluating the SOM and K -means.Figure 5.4: Division of the wafer process in 10 consecutive deciles and the distribution of the 7 clusters.

	Algorithm		Index	Number of Clusters	
				5		6		7		8	9	10	11
	SOM		DB	0.64	0.77	0.62	0.79	0.81	0.86	0.88
			DN	0.46	0.62	0.76	0.79	0.67	0.70	0.65
	K -means (Corr.)		DB	0.79	0.74	0.55	0.62	0.74	0.89	0.87
			DN	0.67	0.75	0.82	0.79	0.72	0.63	0.64
	K -means (Euclidian)	DB	0.69	0.73	0.61	0.77	0.82	0.81	0.87
			DN	0.51	0.66	0.78	0.64	0.71	0.66	0.53
		100%								
	(%)	90%									Cluster 7
	Contributions Observations	10% 20% 30% 40% 50% 60% 70% 80%									Cluster 6 Cluster 5 Cluster 4 Cluster 3 Cluster 2 Cluster 1
		0%								
		1	2	3	4	5 Deciles	6	7	8	9	10
						Wafer Process			
	Cluster 1	Cluster 2	Cluster 7	Cluster 6	Cluster 3	Cluster 5	Cluster 4
	0%	20%	35%		50%	60%	70%	82.5%	100%

Table 5 .

 5 5: DB and DN indices for evaluating the K-means clustering on the extraction of fault fingerprints.

	Index	Control Chart	Number of Clusters		
			2	3	4	5
	BD	D	0.72	0.51	0.63	0.84
		Q	0.82	0.63	0.77	0.79
	DN	D	0.75	0.92	0.82	0.64
		Q	0.64	0.86	0.71	0.73

Table 5 .

 5 6: Normality tests for the contribution values of the D and Q statistics.

Table 5 .

 5 Discrete Wavelet Transformation decomposes the raw signals into approximation and detail components. Consequently, each of the two sets can be viewed and analyzed in terms of three aspects: Raw, Approximation, and Detail. On the other hand, as explained in Section 4.3, two types of INCREASING and DECREASING deterioration trends are investigated on the signals of each data subset. In the DECREASING trend, the correlation between SVIDs become stronger, and the determinant of correlation is decreasing, while in the INCREASING trend it is vice versa. As a result, 12 possible scenarios (2 sets × 3 aspects × 2 trends) should be investigated. The 12 scenarios are summarized in Table5.7, and each scenario is identified with a particular symbol. For instance, 3A↑ represents a scenario that takes the approximation component of the 3 Recipes set and looks for an increasing deterioration trend while 7R↓ indicates a scenario that takes the raw signals of the 7 Recipes set and looks for a decreasing deterioration trend. 7: Different twelve possible scenarios with particular symbols.

	Dataset	Deterioration Trend	Signal		
			Raw	Approximation	Detail
	3 Recipes	INCREASING	3R↑	3A↑	3D↑
		DECREASING	3R↓	3A↓	3D↓
	7 Recipes	INCREASING	7R↑	7A↑	7D↑
		DECREASING	7R↓	7A↓	7D↓

Table 5 .

 5 8: Best mother wavelet was selected for each SVID.

	SVID j	Wavelet	SVID j	Wavelet	SVID j	Wavelet
	1	bior2.4	12	sym5	22	haar
	2	rbio3.3	13	rbio5.5	23	dmey
	3	rbio3.3	14	sym7	24	rbio3.3
	4	db3	15	rbio1.3	25	sym5
	5	db3	16	bior3.9	26	rbio1.3
	6	coif1	17	haar	27	haar
	7	db3	18	rbio3.5	28	coif3
	8	db2	19	haar	29	rbio1.5
	9	sym5	20	haar	30	sym5
	10	bior5.5	21	rbio3.3	31	sym5
	11	sym5				

Table 5 .

 5 9: Percentage of total introduced micro-level variation transferred to each component.This section examines if any trend can be extracted in the approximation, in the detail or directly by the raw signals of the 3 Recipes and 7 Recipes data-sets without applying the proposed SDSA algorithm. For this aim, the HI A , HI D , and HI R trends are depicted directly in Figures 5.[START_REF] Miljkovi | Fault detection methods: A literature survey[END_REF] to 5.23. The HI R stands for the determinant of correlation (health index) over the raw signals. Figures 5.18 to 5.20 illustrate respectively the equipment HI based on the approximation, the detail and the raw signals in the 3 Recipes set when all SVIDs are incorporated. Figures 5.21 to 5.23 show the same results for the 7 Recipes set.As can be seen, the equipment HI through the wafers based on approximation, detail and raw signals, respectively, demonstrate no gradual decreasing or increasing trend. Actually, when all SVIDs are considered in calculating the determinant of correlation, some redundant SVIDs destroy the hidden underlying deterioration trends. These results validate the necessity of the proposed SDSA.

	Component	SVIDs			
		16	21	26	27
	Approximation	25%	07%	14%	07%
	Detail	75%	93%	86%	93%
	5.3.3 Equipment Deterioration Model Considering All SVIDs

Table 5 .

 5 10: The most significant DECREASING trend obtained from the raw and the approximation signals.

	Sc.	Alg.	Obj. Value	Slope (×10 -4 )	GoF	Contributing SVIDs	Time (s)
		SDSA	4.8960		-8.71		0.3668	{6, 18, 8, 12, 15}	1200
	3A↓	Greedy F (S A ) 4.8960	α A	-8.71	R 2 A	0.3668 S A	{18, 6, 8, 12, 15}	500
		GA	4.9492		-8.52		0.3578	{5, 7, 11, 15, 30}	3600
		SDSA	5.0761		-7.94		0.3491	{28, 5, 30}	1400
	3R↓	Greedy F (S R ) 5.0761	α R	-7.94	R 2 R	0.3491 S R	{28, 5, 30}	800
		GA	5.2906		-8.02		0.3208	{5, 7, 11, 13, 14, 15, 30}	3600
		SDSA	5.9891		-4.84		0.2745	{6, 7, 5, 19, 10, 29}	1426
	7A↓	Greedy F (S A ) 5.9891	α A	-4.84	R 2 A	0.2745 S A	{7, 6, 5, 19, 10, 29}	500
		GA	6.0204		-4.76		0.2720	{5, 6, 7, 10, 14, 19, 29}	3600
		SDSA	6.7480		-3.03		0.2242	{6, 16, 8, 27, 12, 13}	1500
	7R↓	Greedy F (S R ) 6.3107	α R	-5.60	R 2 R	0.2227 S R	{7, 8, 23, 27, 16, 20, 26, 9, 19, 13}	520
		GA	5.6088		-6.19		0.3012	{7, 8, 15, 16, 18, 19, 20, 22, 23, 25, 26, 30}	3600
	Sc.: Scenario; Alg.: Algorithm; Obj.: Objective			

Table 5 .

 5 11: The most significant INCREASING trend obtained from the raw and the approximation signals.

	Sc.	Alg.	Obj. Value	Slope (×10 -4 )	GoF		Contributing SVIDs	Time (s)
		SDSA	5.1993		8.70		0.2613		{1, 5, 21}	800
	3A↑	Greedy F (S A ) 5.1993	α A	8.70	R 2 A	0.2613	S A	{1, 5, 21}	800
		GA	5.2374		8.60		0.2571		{1, 6, 21, 25}	3600
		SDSA	5.2125		8.91		0.2574		{1, 5, 21}	880
	3R↑	Greedy F (S R ) 5.2125	α R	8.91	R 2 R	0.2574	S R	{1, 5, 21}	390
		GA	6.3416		6.30		0.1392		{1, 6, 13, 21, 25}	3600
		SDSA	6.1468		5.10		0.1890		{1, 5}	1800
	7A↑	Greedy F (S A ) 6.1468	α A	5.10	R 2 A	0.1890	S A	{1, 5}	470
		GA	6.2797		4.90		0.1744		{1, 6, 10, 13, 14, 16, 21, 25, 31}	3600
		SDSA	6.1453		5.09		0.1895		{1, 5}	1600
	7R↑	Greedy F (S R ) 6.1453	α R	5.09	R 2 R	0.1895	S R	{1, 5}	470
		GA	6.3041		5.06		0.1691		{1, 6, 10, 16, 21, 25, 31}	3600
	Sc.: Scenario; Alg.: Algorithm; Obj.: Objective				

Table 5 .

 5 12: The most significant DECREASING trend obtained from the detail signals.

	Sc.	Alg.	Obj. Value	Slope (×10 -4 )	GoF		Contributing SVIDs	Time (s)
		SDSA	1.8946		-16.1		0.7353		{27, 16, 26, 21, 5, 3}	1500
	3D↓	Greedy F (S D ) 1.8946	α D	-16.1	R 2 D	0.7353	S A	{16, 26, 27, 21, 5, 3}	1000
		GA	1.9217		-16.0		0.7317		{5, 16, 17, 21, 26, 27}	3600
		SDSA	1.0489		-1.40		0.8557		{21, 11, 16, 26}	2300
	7D↓	Greedy F (S D ) 1.0489	α D	-1.40	R 2 D	0.8557	S R	{16, 21, 26, 11}	510
		GA	1.0513		-1.40		0.8554		{11, 16, 21, 26, 31}	3600
	Sc.: Scenario; Alg.: Algorithm; Obj.: Objective				

  5.29 and 5.30 illustrate the deterioration trend of the scenarios 3D↓ and 7D↓ of Table 5.11 It is observed that the proposed equipment behavior prognosis approach can remarkably distinguish the micro-level variation and keep it in the detail signals. Considering the 3 Recipes data-set, both trends of Figures 5.24 and 5.29 can be adapted to monitor the equipment deterioration. In addition, the trends of Figures 5.26

Table 5 .

 5 [START_REF] Yu | Nonlinear Gaussian Belief Network based fault diagnosis for industrial processes[END_REF]: Results of SDSA on the scenario 3A↓.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	7.568	-4.7	0.0855	{1, 19, 11}	
	2	5.016	-7.8	0.3577	{5, 30, 3}	
	3	5.016	-7.8	0.3577	{3, 5, 30}	
	4	5.016	-7.8	0.3577	{30, 5, 3}	
	5	5.016	-7.8	0.3577	{5, 30, 3}	
	6	4.915	-8.7	0.3623	{6, 8, 12, 31, 29}	
	7	5.016	-7.8	0.3577	{30, 5, 3}	
	8	4.915	-8.7	0.3623	{8, 6, 12, 31, 29}	
	9	5.016	-7.8	0.3577	{30, 5, 3}	
	10	5.016	-7.8	0.3577	{30, 5, 3}	
	11	4.915	-8.7	0.3623	{8, 6, 12, 31, 29}	
	12	4.915	-8.7	0.3623	{12, 6, 8, 31, 29}	
	13	7.568	-4.7	0.0855	{1, 19, 11}	
	14	4.915	-8.7	0.3623	{6, 8, 12, 31, 29}	
	15	4.896	-8.5	0.3668	{15,6,12,8,18}	
	16	5.016	-7.8	0.3577	{30, 5, 3}	
	17	4.896	-8.5	0.3668	{6,15,12,8,18}	
	18	4.896	-8.5	0.3668	{18,6,8,12,15}	
	19	7.568	-4.7	0.0855	{19, 1, 11}	
	20	5.016	-7.8	0.3577	{5, 30, 3}	
	21	5.016	-7.8	0.3577	{3, 5, 30}	
	22	7.568	-4.7	0.0855	{11, 19, 1}	
	23	5.016	-7.8	0.3577	{5, 30, 3}	
	24	4.915	-8.7	0.3623	{6, 8, 12, 31, 29}	
	25	4.915	-8.7	0.3623	{6, 8, 12, 31, 29}	
	26	4.915	-8.7	0.3623	{6, 8, 12, 31, 29}	
	27	5.016	-7.8	0.3577	{30, 5, 3}	
	28	5.016	-7.8	0.3577	{3, 5, 30}	
	29	4.915	-8.7	0.3623	{29, 6, 8, 12, 31}	
	30	5.016	-7.8	0.3577	{30, 5, 3}	
	31	5.016	-7.8	0.3577	{30, 5, 3}	

Table 5 .

 5 [START_REF] Andrew | A review on machinery diagnostics and prognostics implementing condition-based maintenance[END_REF]: Results of greedy algorithm on the scenario 3A↓.

	Starting SVID	F (S A ) α A × 10 -4 R 2 A	S A	Group
	1	7.568	-4.7	0.0855 {1, 19, 11}
	2	6.871	-6.3	0.1425 {2, 4, 15, 16, 27, 30, 18, 12, 8, 7, 5, 29}
	3	5.016	-7.8	0.3577 {3, 5, 30}
	4	6.871	-6.3	0.1425 {4, 2, 15, 16, 27, 30, 18, 12, 8, 7, 5, 29}
	5	5.304	-7.8	0.3214 {5, 9, 28}
	6	4.916	-8.7	0.3623 {6, 8, 12, 31, 29}
	7	4.949	-8.6	0.3578 {7, 5, 15, 11, 30}
	8	4.916	-8.7	0.3623 {8, 6, 12, 31, 29}
	9	5.304	-7.8	0.3214 {9, 5, 28}
	10	5.432	-7.7	0.3058 {10, 5, 28}
	11	6.176	-7.2	0.2174 {11, 24, 8, 6, 10, 5, 7, 9, 14, 13}
	12	6.331	-6.5	0.2075 {12, 24, 8, 6, 10, 13, 15, 18}
	13	5.255	-7.8	0.3274 {13, 19, 11, 25, 9, 8, 6}
	14	5.032	-8.1	0.3536 {14, 8, 6, 12, 31}
	15	5.256	-8.2	0.3240 {15, 18, 5, 7, 11}
	16	5.176	-9.1	0.3255 {16, 5, 7, 12, 26, 10, 14}
	17	10.32	-5.3	0.0004 {17, 15}
	18	4.896	-8.5	0.3668 {18,6,8,12,15}
	19	7.568	-4.7	0.0855 {19, 1, 11}
	20	5.381	-7.4	0.3153 {20, 7, 5, 6, 12, 29, 19}
	21	5.931	-7.6	0.2431 {21, 11, 31, 8, 7, 5, 19, 13}
	22	6.057	-7.0	0.2341 {22, 19, 1, 11, 8, 6, 5, 7, 30, 29}
	23	5.706	-8.5	0.2624 {23, 7, 8, 5, 6, 12, 10, 13, 29}
	24	5.710	-7.4	0.2736 {24, 8, 7, 5, 10, 15}
	25	5.000	-8.4	0.3547 {25, 8, 6, 10, 31}
	26	5.196	-8.1	0.3326 {26, 8, 6, 12, 18}
	27	5.016	-8.7	0.3495 {27, 5, 7, 15, 11, 14}
	28	5.031	-7.8	0.3563 {28, 5, 30}
	29	4.916	-8.7	0.3623 {29, 6, 8, 12, 31}
	30	5.016	-7.8	0.3577 {30, 5, 3}
	31	5.532	-7.1	0.3002 {31, 5, 28}

Table 5 .

 5 15: Results of SDSA on the scenario 7A↓.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
		5.99	-4.84	0.27	{ 6, 7, 5, 19, 10, 29} 1
		9.49	-1.20	0.01	{2, 4, 18, 17, 14}	2
		6.37	-3.26	0.26	{5, 10, 6}	3
		9.69	-1.03	0.00	{4, 29}	4
		6.37	-3.26	0.26	{5, 6, 10}	3
		6.37	-3.26	0.26	{6, 5, 10}	3
		5.99	-4.84	0.27	{7, 6, 5, 19, 10, 29}	1
		6.41	-2.94	0.26	{8, 6, 12, 31}	5
		6.37	-3.26	0.26	{10, 5, 6}	3
		7.98	-3.50	0.07	{10, 24, 22}	6
		8.94	-1.87	0.02	{12, 19}	7
		8.94	-1.87	0.02	{12, 19}	7
		8.94	-1.87	0.02	{12, 19}	7
		7.98	-3.50	0.07	{22, 10, 24}	6
	15	8.47	-2.60	0.04	{15, 21, 19, 13}	8
		6.37	-3.26	0.26	{6, 5, 10}	3
		6.41	-2.94	0.26	{8, 6, 12, 31}	5
		6.41	-2.94	0.26	{8, 6, 12, 31}	5
		8.94	-1.87	0.02	{19, 12}	7
		8.94	-1.87	0.02	{19, 12}	7
		6.37	-3.26	0.26	{5, 6, 10}	3
		6.41	-2.94	0.26	{6, 8, 12, 31}	5
		6.41	-2.94	0.26	{12, 6, 8, 31}	5
		7.98	-3.50	0.07	{24, 10, 22}	6
		6.41	-2.94	0.26	{6, 8, 12, 31}	5
		6.37	-3.26	0.26	{10, 6, 5}	3
		6.41	-2.94	0.26	{6, 8, 12, 31}	5
		6.37	-3.26	0.26	{6, 5, 10}	3
		9.69	-1.03	0.00	{29, 4}	4
		6.37	-3.26	0.26	{10, 5, 6}	3
		6.37	-3.26	0.26	{10, 5, 6}	3

Table 5 .

 5 [START_REF] Bloch | Machinery Failure Analysis and Troubleshooting: Practical Machinery Management for Process Plants[END_REF]: Results of greedy algorithm on the scenario 7A↓.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	6.80	-4.66	0.18	{1, 7, 6, 8, 5, 15, 14, 29}	
	2	9.49	-1.20	0.01	{2, 4, 18, 17, 14}	
	3	6.93	-4.00	0.18	{3, 31, 5, 6, 8, 29}	
	4	9.69	-1.03	0.00	{4, 29}	
	5	6.37	-3.26	0.26	{5, 6, 10}	
	6	6.37	-3.26	0.26	{6, 5, 10}	
	7	5.99	-4.84	0.27	{7,6,5,19,10,29}	
	8	6.41	-2.94	0.26	{8, 6, 12, 31}	
	9	6.34	-4.21	0.24	{9, 5, 6, 14, 31}	
	10	7.98	-3.50	0.07	{10, 24, 22}	
	11	9.04	-1.69	0.02	{11, 19}	
	12	8.94	-1.87	0.02	{12, 19}	
	13	6.00	-4.93	0.27	{13, 19, 10, 5, 6, 7, 29}	
	14	8.10	-3.13	0.06	{14, 10, 24, 16}	
	15	8.47	-2.60	0.04	{15, 21, 19, 13}	
	16	6.03	-4.52	0.28	{16, 5, 6, 7, 10, 29}	
	17	9.56	-1.13	0.01	{17, 22, 13}	
	18	7.37	-3.62	0.13	{18, 27, 3, 5, 8, 6, 10}	
	19	8.94	-1.87	0.02	{19, 12}	
	20	9.64	-1.04	0.01	{20, 11}	
	21	8.76	-2.00	0.03	{21, 16, 26, 13}	
	22	6.59	-4.76	0.20	{22, 8, 6, 5, 15, 7, 14, 30}	
	23	7.04	-3.78	0.17	{23, 7, 8, 6, 10, 16, 29}	
	24	7.98	-3.50	0.07	{24, 10, 22}	
	25	6.06	-3.22	0.30	{25, 8, 6, 12, 9, 18, 29}	
	26	6.16	-4.36	0.26	{26, 16, 5, 6, 7, 29}	
	27	6.56	-3.06	0.24	{27, 8, 6, 12, 16}	
	28	6.77	-3.93	0.20	{28, 5, 6, 8, 20, 25}	
	29	9.69	-1.03	0.00	{29, 4}	
	30	6.48	-3.71	0.24	{30, 5, 6, 14}	
	31	6.34	-4.21	0.24	{31, 5, 6, 9, 14}	

Table 5 .

 5 17: Results of SDSA on the scenario 3A↑.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	5.199	8.77	0.2613	{1, 5, 21}	
	2	6.052	5.62	0.2613	{5, 19, 20}	
	3	5.240	7.61	0.2613	{6, 15}	
	4	5.240	7.61	0.2613	{6, 15}	
	5	5.199	8.77	0.2613	{5, 1, 21}	
	6	5.240	7.61	0.2613	{6, 15}	
	7	5.199	8.77	0.2613	{5, 1, 21}	
	8	6.196	6.57	0.2613	{8, 23}	
	9	5.199	8.77	0.2613	{1, 21, 5}	
	10	6.196	6.57	0.2613	{8, 23}	
	11	5.199	8.77	0.2613	{1, 5, 21}	
	12	5.199	8.77	0.2613	{1, 5, 21}	
	13	5.199	8.77	0.2613	{5, 1, 21}	
	14	5.199	8.77	0.2613	{1, 5, 21}	
	15	5.240	7.61	0.2613	{15, 6}	
	16	5.199	8.77	0.2613	{1, 5, 21}	
	17	6.052	5.62	0.2613	{5, 20, 19}	
	18	6.196	6.57	0.2613	{23, 8}	
	19	6.052	5.62	0.2613	{19, 5, 20}	
	20	6.052	5.62	0.2613	{20, 5, 19}	
	21	5.240	7.61	0.2613	{15, 6}	
	22	5.240	7.61	0.2613	{6, 15}	
	23	6.196	6.57	0.2613	{23, 8}	
	24	5.240	7.61	0.2613	{15, 6}	
	25	5.240	7.61	0.2613	{15, 6}	
	26	5.240	7.61	0.2613	{15, 6}	
	27	5.240	7.61	0.2613	{6, 15}	
	28	6.052	5.62	0.2613	{5, 19, 20}	
	29	5.199	8.77	0.2613	{5, 1, 21}	
	30	5.240	7.61	0.2613	{15, 6}	
	31	6.196	6.57	0.2613	{23, 8}	

Table 5 .

 5 [START_REF] Miljkovi | Fault detection methods: A literature survey[END_REF]: Results of greedy algorithm on the scenario 3A↑.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	5.1993	8.77	0.2613	{1, 5, 21}	
	2	7.0419	4.61	0.0834	{2, 19, 5, 21}	
	3	6.4787	5.71	0.1326	{3, 30, 24, 6, 9, 25, 29}	
	4	8.0013	2.62	0.0296	{4, 30, 10}	
	5	5.1993	8.77	0.2613	{5, 1, 21}	
	6	5.2400	7.61	0.2703	{6, 15}	
	7	7.1412	4.39	0.0763	{7, 14, 15}	
	8	6.1960	6.57	0.1544	{8, 23}	
	9	5.7385	6.74	0.2142	{9, 21, 6, 1}	
	10	6.7059	5.07	0.1162	{10, 23}	
	11	6.2932	5.61	0.1593	{11, 5, 22, 20, 24}	
	12	6.4285	5.41	0.1454	{12, 5, 22, 20, 24}	
	13	5.3501	7.70	0.2538	{13, 1, 21, 6, 25}	
	14	7.1412	4.39	0.0763	{14, 7, 15}	
	15	5.2400	7.61	0.2703	{15, 6}	
	16	6.7486	5.13	0.1092	{16, 7, 11, 22}	
	17	6.9520	3.92	0.1137	{17, 20, 13, 21, 6, 3, 1, 11}	
	18	7.1670	4.69	0.0650	{18, 10}	
	19	6.0521	5.62	0.1913	{19, 5, 20}	
	20	6.0521	5.62	0.1913	{20, 5, 19}	
	21	5.2319	8.58	0.2590	{21, 6, 1, 25}	
	22	6.6568	5.20	0.1197	{22, 24, 1, 6, 25}	
	23	6.1960	6.57	0.1544	{23, 8}	
	24	5.7799	7.17	0.2017	{24, 6, 1, 25, 30}	
	25	5.6727	7.22	0.2157	{25, 6, 30, 1, 21}	
	26	5.3814	8.18	0.2430	{26, 6, 21, 1}	
	27	6.1612	6.30	0.1640	{27, 21, 1, 6, 25}	
	28	6.3301	5.82	0.1503	{28, 19, 6, 21, 26, 1}	
	29	6.2191	5.49	0.1716	{29, 1, 5, 21, 19}	
	30	5.6727	7.22	0.2157	{30, 6, 25, 1, 21}	
	31	8.1786	2.41	0.0182	{31, 10, 2, 19}	

Table 5 .

 5 [START_REF]Condition monitoring and diagnostics of machines -Prognostics -Part 1: General guidelines[END_REF]: Results of SDSA on the scenario 7A↑.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	6.15	5.11	0.19	{1, 5}	
	2	8.64	1.44	0.02	{2, 16}	
	3	6.60	5.55	0.12	{6, 30}	
	4	6.60	5.55	0.12	{30, 6}	
	5	6.15	5.11	0.19	{5, 1}	
	6	6.60	5.55	0.12	{6, 30}	
	7	6.84	3.11	0.15	{15, 14, 23, 10}	
	8	6.15	5.11	0.19	{5, 1}	
	9	6.66	3.80	0.15	{23, 10}	
	10	6.66	3.80	0.15	{10, 23}	
	11	6.86	3.81	0.13	{14, 23, 6, 21, 26, 29, 13, 1}	
	12	6.86	3.81	0.13	{23, 14, 6, 21, 26, 29, 13, 1}	
	13	6.15	5.11	0.19	{5, 1}	
	14	6.84	3.11	0.15	{14, 15, 23, 10}	
	15	6.66	3.80	0.15	{10, 23}	
	16	8.64	1.44	0.02	{16, 2}	
	17	6.15	5.11	0.19	{5, 1}	
	18	6.66	3.80	0.15	{23, 10}	
	19	6.60	5.55	0.12	{30, 6}	
	20	6.15	5.11	0.19	{1, 5}	
	21	6.15	5.11	0.19	{5, 1}	
	22	6.66	3.80	0.15	{23, 10}	
	23	6.66	3.80	0.15	{23, 10}	
	24	6.15	5.11	0.19	{5, 1}	
	25	6.60	5.55	0.12	{30, 6}	
	26	6.60	5.55	0.12	{30, 6}	
	27	6.15	5.11	0.19	{1, 5}	
	28	6.15	5.11	0.19	{5, 1}	
	29	6.15	5.11	0.19	{5, 1}	
	30	6.60	5.55	0.12	{30, 6}	
	31	8.64	1.44	0.02	{16, 2}	

Table 5 .

 5 [START_REF] Biagetti | Automatic diagnostics and prognostics of energy conversion processes via knowledge-based systems[END_REF]: Results of greedy algorithm on the scenario 7A↑.

	Starting SVID	F (S A )	α A × 10 -4	R 2 A	S A	Group
	1	6.15	5.11	0.19	{1, 5}	
	2	8.64	1.44	0.02	{2, 16}	
	3	8.62	1.66	0.01	{3, 30, 2, 26}	
	4	7.85	2.51	0.05	{4, 6, 24, 3, 13, 26, 10, 31, 16}	
	5	6.15	5.11	0.19	{5, 1}	
	6	6.60	5.55	0.12	{6, 30}	
	7	9.03	0.94	0.03	{7, 14}	
	8	7.87	2.41	0.06	{8, 1}	
	9	7.58	3.40	0.05	{9, 10118}	
	10	6.66	3.80	0.15	{10, 23}	
	11	8.60	1.68	0.01	{11, 12, 5, 22, 20, 4, 13, 1}	
	12	8.60	1.68	0.01	{12, 11, 5, 22, 20, 4, 13, 1}	
	13	7.99	2.24	0.05	{13, 1, 5}	
	14	6.84	3.11	0.15	{14, 15, 23, 10}	
	15	6.84	3.11	0.15	{15, 23, 10, 14}	
	16	8.64	1.44	0.02	{16, 2}	
	17	8.69	1.57	0.01	{17, 20, 2, 16}	
	18	8.34	2.02	0.02	{18, 10}	
	19	7.11	3.72	0.10	{19, 6, 23, 30, 25, 10}	
	20	6.65	4.57	0.14	{20, 5}	
	21	6.34	5.15	0.16	{21, 1, 6, 26, 23, 13}	
	22	8.35	1.39	0.06	{22, 10, 23}	
	23	6.66	3.80	0.15	{23, 10}	
	24	7.72	3.26	0.04	{24, 1}	
	25	6.25	4.56	0.19	{25, 6, 30, 1}	
	26	6.60	4.16	0.15	{26, 6, 30, 1}	
	27	7.91	2.50	0.05	{27, 24, 6, 23, 3, 26}	
	28	8.17	2.12	0.03	{28, 1, 25, 13}	
	29	8.02	2.41	0.04	{29, 1}	
	30	6.60	5.55	0.12	{30, 6}	
	31	8.53	1.78	0.01	{31, 2, 28, 26}	

Table 5 .

 5 21: Results of SDSA on the scenario 3D↓.

	Starting SVID	F (S D )	α D × 10 -4	R 2 D	S D	Group
	1	1.895	-16.1	0.7353	{27, 16, 26, 21, 5, 3}	
	2	1.926	-15.7	0.7317	{5, 16, 27, 26, 17, 3, 21}	
	3	1.895	-16.1	0.7353	{16, 27, 26, 21, 5, 3}	
	4	1.895	-16.1	0.7353	{16, 26, 21, 27, 5, 3}	
	5	1.926	-15.7	0.7317	{16, 5, 27, 26, 17, 3, 21}	
	6	1.895	-16.1	0.7353	{26, 16, 21, 27, 5, 3}	
	7	1.926	-15.7	0.7317	{16, 27, 5, 26, 17, 3, 21}	
	8	1.926	-15.7	0.7317	{5, 16, 27, 26, 17, 3, 21}	
	9	1.926	-15.7	0.7317	{16, 5, 27, 26, 17, 3, 21}	
	10	1.926	-15.7	0.7317	{16, 5, 27, 26, 17, 3, 21}	
	11	1.926	-15.7	0.7317	{16, 27, 5, 26, 17, 3, 21}	
	12	1.926	-15.7	0.7317	{16, 27, 5, 26, 17, 3, 21}	
	13	1.926	-15.7	0.7317	{16, 26, 27, 5, 17, 3, 21}	
	14	1.926	-15.7	0.7317	{16, 5, 27, 26, 17, 3, 21}	
	15	8.835	-02.2	0.0161	{15, 18, 17}	
	16	1.895	-16.1	0.7353	{16, 26, 27, 21, 5, 3}	
	17	8.835	-02.2	0.0161	{17, 15, 18}	
	18	8.835	-02.2	0.0161	{18, 15, 17}	
	19	1.895	-16.1	0.7353	{16, 26, 27, 21, 5, 3}	
	20	1.895	-16.1	0.7353	{26, 21, 16, 27, 5, 3}	
	21	1.895	-16.1	0.7353	{21, 26, 16, 27, 5, 3}	
	22	1.895	-16.1	0.7353	{16, 26, 21, 27, 5, 3}	
	23	1.895	-16.1	0.7353	{26, 21, 16, 27, 5, 3}	
	24	1.895	-16.1	0.7353	{26, 21, 16, 27, 5, 3}	
	25	1.895	-16.1	0.7353	{16, 27, 26, 21, 5, 3}	
	26	1.895	-16.1	0.7353	{26, 16, 27, 21, 5, 3}	
	27	1.895	-16.1	0.7353	{27, 16, 26, 21, 5, 3}	
	28	1.895	-16.1	0.7353	{16, 26, 21, 27, 5, 3}	
	29	1.926	-15.7	0.7317	{27, 16, 5, 26, 17, 3, 21}	
	30	1.895	-16.1	0.7353	{26, 21, 16, 27, 5, 3}	
	31	1.926	-15.7	0.7317	{26, 16, 27, 5, 17, 3, 21}	

Table 5 .

 5 [START_REF] Seera | Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model[END_REF]: Results of greedy algorithm on the scenario 3D↓.

	Starting SVID	F (S D )	α D × 10 -4	R 2 D	S D	Group
	1	2.175	-15.5	0.6977	{1, 3, 26, 16, 21, 27, 5}	
	2	3.382	-13.1	0.5396	{2, 9, 8, 29, 27, 16, 26, 21, 19}	
	3	2.175	-15.5	0.6977	{3, 1, 26, 16, 21, 27, 5}	
	4	2.281	-16.1	0.6814	{4, 23, 21, 16, 26, 27, 5, 30}	
	5	4.368	-12.1	0.4110	{5, 8, 15, 27, 26, 16, 21, 23, 14, 19, 4, 31}	
	6	9.073	-01.8	0.0125	{6, 4, 29}	
	7	8.580	-02.3	0.0428	{7, 29}	
	8	3.283	-14.1	0.5488	{8, 9, 29, 28, 30, 20, 21, 16, 26, 27, 19}	
	9	3.283	-14.1	0.5488	{8, 9, 29, 28, 30, 20, 21, 16, 26, 27, 19}	
	10	4.829	-10.9	0.3571	{10, 8, 5, 15, 27, 26, 16, 21, 6, 23, 14, 17}	
	11	8.981	-02.0	0.0118	{11, 29}	
	12	9.206	-01.5	0.0174	{12, 29}	
	13	2.585	-14.1	0.6447	{13, 31, 29, 20, 28, 21, 16, 26, 27, 17}	
	14	3.394	-12.8	0.5391	{14, 8, 9, 28, 22, 30, 21, 16, 26, 27}	
	15	8.835	-02.2	0.0161	{15, 18, 17}	
	16	1.895	-16.1	0.7353	{16, 26, 27, 21, 5, 3}	
	17	8.835	-02.2	0.0161	{17, 15, 18}	
	18	8.835	-02.2	0.0161	{18, 15, 17}	
	19	3.663	-13.3	0.5002	{19, 25, 27, 21, 16, 7, 17, 20, 14, 31}	
	20	1.956	-16.1	0.7268	{20, 21, 16, 26, 27, 7}	
	21	1.895	-16.1	0.7353	{21, 26, 16, 27, 5, 3}	
	22	2.890	-15.7	0.5975	{22, 19, 21, 16, 26, 27, 17, 7, 3}	
	23	2.195	-16.4	0.6927	{23, 21, 16, 26, 27, 5, 30}	
	24	4.857	-12.7	0.3409	{24, 21, 16, 26, 27, 19, 5, 28, 1, 31}	
	25	3.663	-13.3	0.5002	{25, 27, 16, 21, 19, 7, 17, 20, 14, 31}	
	26	1.895	-16.1	0.7353	{26, 16, 27, 21, 5, 3}	
	27	1.895	-16.1	0.7353	{27, 16, 26, 21, 5, 3}	
	28	2.286	-16.0	0.6809	{28, 20, 21, 16, 26, 27, 7}	
	29	3.639	-12.3	0.5081	{29, 5, 8, 28, 20, 21, 16, 26, 27, 19, 17}	
	30	1.925	-16.1	0.7310	{30, 21, 26, 16, 27, 5}	
	31	2.585	-14.1	0.6447	{31, 13, 29, 20, 28, 21, 16, 26, 27, 17}	

Table 5 .

 5 23: Results of SDSA on the scenario 7D↓.

	Starting SVID	F (S D )	α D × 10 -4	R 2 D	S D	Group
	1	1.05	-14.2	0.86	{16, 11, 21, 31, 26}	
	2	1.09	-15.8	0.85	{17, 26, 21, 16, 27}	
	3	1.05	-14.2	0.86	{21, 11, 16, 26}	
	4	1.09	-15.8	0.85	{26, 17, 21, 16, 27}	
	5	8.68	-2.12	0.04	{7, 29}	
	6	8.92	-2.04	0.02	{6, 15, 17, 29, 31, 14, 4, 22}	
	7	8.68	-2.12	0.04	{7, 29}	
	8	1.05	-14.2	0.86	{16, 21, 11, 26}	
	9	1.05	-14.2	0.86	{21, 16, 11, 26}	
	10	1.05	-14.2	0.86	{26, 11, 16, 21}	
	11	8.68	-2.12	0.04	{7, 29}	
	12	9.14	-1.68	0.01	{12, 13, 29}	
	13	9.14	-1.68	0.01	{13, 12, 29}	
	14	8.68	-2.12	0.04	{7, 29}	
	15	1.05	-14.2	0.86	{11, 26, 16, 21}	
	16	1.05	-14.2	0.86	{16, 21, 26, 11}	
	17	1.05	-14.2	0.86	{16, 21, 26, 11}	
	18	1.05	-14.2	0.86	{26, 11, 16, 21}	
	19	8.82	-2.24	0.02	{19, 23, 22, 25, 13, 30, 14}	
	20	8.68	-2.12	0.04	{7, 29}	
	21	1.05	-14.2	0.86	{21, 16, 26, 11}	
	22	8.82	-2.24	0.02	{22, 19, 23, 25, 13, 30, 14}	
	23	8.82	-2.24	0.02	{23, 19, 22, 25, 13, 30, 14}	
	24	8.82	-2.24	0.02	{23, 19, 22, 25, 13, 30, 14}	
	25	8.68	-2.12	0.04	{29, 7}	
	26	1.05	-14.2	0.86	{26, 21, 16, 11}	
	27	1.05	-14.2	0.86	{21, 16, 26, 11}	
	28	1.05	-14.2	0.86	{11, 16, 21, 26}	
	29	8.68	-2.12	0.04	{29, 7}	
	30	8.82	-2.24	0.02	{30, 23, 19, 22, 25, 13, 14}	
	31	1.05	-14.2	0.86	{16, 21, 26, 11}	

Table 5 .

 5 [START_REF] Chen | A neural-network approach to recognize defect spatial pattern in semiconductor fabrication[END_REF]: Results of greedy algorithm on the scenario 7D↓.The thesis and future research directions are concluded in this chapter. In Section 6.1, each chapter is summarized. The proposed equipment failure diagnosis and the equipment behavior prognosis are concluded in Sections 6.2 and Sections 6.3, respectively. Especially, initial developments and experiments regarding the future research directions are demonstrated in Section 6.3.

	Starting SVID	F (S D )	α D × 10 -4	R 2 D	S D	Group
	1	2.54	-12.4	0.66	{1, 28, 29, 14, 26, 21, 16, 27, 17, 5}	
	2	8.75	-2.27	0.02	{2, 4, 7, 8, 9, 28, 29, 31, 14}	
	3	8.80	-2.28	0.02	{3, 25, 8, 10, 29, 31}	
	4	8.75	-2.27	0.02	{4, 2, 7, 8, 9, 28, 29, 31, 14}	
	5	8.94	-1.76	0.03	{5, 29}	
	6	9.00	-1.92	0.01	{6, 12, 17, 29, 31, 14, 4, 15}	
	7	8.68	-2.12	0.04	{7, 29}	
	8	1.78	-13.0	0.76	{8, 9, 27, 16, 21, 26, 17}	
	9	1.78	-13.0	0.76	{9, 8, 27, 16, 21, 26, 17}	
	10	1.11	-15.5	0.85	{10, 27, 16, 21, 26, 17}	
	11	9.32	-1.36	0.01	{11, 29, 31}	
	12	9.14	-1.68	0.01	{12, 13, 29}	
	13	9.14	-1.68	0.01	{13, 12, 29}	
	14	2.41	-13.0	0.67	{14, 29, 28, 26, 21, 16, 27, 5}	
	15	2.41	-12.4	0.67	{15, 10, 8, 27, 16, 21, 26, 17}	
	16	1.05	-14.2	0.86	{16, 21, 26, 11}	
	17	1.09	-15.8	0.85	{17, 27, 16, 21, 26}	
	18	8.79	-2.27	0.02	{18, 15, 25, 29, 4, 14, 22, 23, 31}	
	19	8.72	-2.29	0.03	{19, 24, 22, 25, 31, 4, 29, 14}	
	20	2.47	-12.2	0.67	{20, 29, 31, 14, 4, 26, 21, 16, 27}	
	21	1.05	-14.2	0.86	{21, 16, 26, 11}	
	22	8.82	-2.24	0.02	{22, 19, 23, 25, 13, 30, 14}	
	23	8.82	-2.24	0.02	{23, 19, 22, 25, 13, 30, 14}	
	24	8.72	-2.29	0.03	{24, 19, 22, 25, 31, 4, 29, 14}	
	25	8.74	-2.47	0.02	{25, 7, 8, 15, 3, 22, 17, 30}	
	26	1.05	-14.2	0.86	{26, 21, 16, 11}	
	27	1.09	-15.8	0.85	{27, 16, 21, 26, 17}	
	28	2.41	-13.0	0.67	{28, 14, 29, 26, 21, 16, 27, 5}	
	29	8.68	-2.12	0.04	{29, 7}	
	30	8.71	-2.32	0.03	{30, 24, 19, 22, 25, 14, 29, 4}	
	31	1.05	-14.2	0.86	{31, 21, 16, 26, 11}	
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