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Chapter 1 Introduction

The diversity of exoplanetary systems

The question of the organization of the Solar System is one of the oldest of astronomy and celestial mechanics. Indeed, the eight planets of the Solar System orbit around the Sun along near coplanar and near circular orbits. There is also a clear difference between the inner Solar System, composed of four rocky planets and the outer Solar System composed of 4 gaseous planets.

Early in the history of modern astronomy, laws have been proposed to explain the distances of the planets to the Sun. The most famous attempts are Kepler's Platonic solid model (Kepler, 1596, see fig. 1.1) and the Titius-Bode law [START_REF] Titius | Betrachtung Über Die Natur, Vom Herrn Karl Bonnet[END_REF][START_REF] Bode | Anleitung Zur Kentniss Des Gestirnten Himmels[END_REF], see table 1.1). Titius and Bode proposed that the distance of the planet follows an arithmetic-geometric progression. At the time, only 6 planets were known and the subsequent discovery of Uranus and Ceres1 seemed to confirm the law. However, the discovery of Neptune away from the predicted position made astronomers disregard it.

Nevertheless, the current organisation of the Solar System, in particular the orbit properties, is considered as a major clue in the development of any theory of the Solar System formation. Indeed, the Solar System is more ordered than required by the laws of gravitation. The almost coplanar and circular orbits have led the theorists to consider that planet formation takes place in a flat disk around the nascent star. While the details of the planet formation model have evolved since Laplace theories [START_REF] Laplace | Exposition Du Systeme Du Monde[END_REF], the flat disk hypothesis is still at the heart of the modern scenarii.

Planetary systems architecture has regained a lot of interest since the discovery of the first exoplanet [START_REF] Mayor | A Jupiter-Mass Companion to a Solar-Type Star[END_REF]. Indeed, the discovered planet, 51 Pegasi b is a hot Jupiter (i.e. a Jupiter-mass planet orbiting very close to the star in less than a few days) was the first hint of the diversity of existing planetary -22.4 Table 1.1 -Titius-Bode law predicts the semi-major axis of the Solar System planets as an arithmetic-geometric progression a[AU] = 0.4 + 0.3 × 2 n . We give here the actual semi-major axis and the relative errors. Note that n begins at -∞ and n = 3 corresponds to the asteroid belt.

systems.

Since then, we learnt that the Solar system architecture is far from representative of the observed exoplanetary systems. In April 2019, the database The Extrasolar Planets Encyclopaedia2 [START_REF] Schneider | Defining and Cataloging Exoplanets: The Exoplanet[END_REF] counts 4003 planets. Among them, 1647 are in one of the 657 multiplanetary systems. The masses and orbital periods of these planets are shown in figure 1.2. In the past 25 years, exoplanet observations programs has raised and started to answers the main questions about planetary systems and their architecture:

-Are exoplanets common ?

-What are their mass and orbital parameters distributions ?

-What is the multiplicity of multiplanetary systems and their orbital spacing ?

-Are there distinct exoplanet populations ?

In their review about the exoplanetary systems architecture, [START_REF] Winn | The Occurrence and Architecture of Exoplanetary Systems[END_REF] compile the currently known properties of the observed planetary.

Exoplanets appear to be almost ubiquitous. Indeed, the majority of stars host planets. Surveys have shown that about 50% of FGK stars host at least a planet of mass comprised between Earth's and Neptune's with period shorter than a year the two previously mentioned. Besides, the observed host star are often too faint for a follow-up study. Similarly, direct imaging is making stunning progresses and we have even observed multiplanetary systems [START_REF] Marois | Images of a Fourth Planet Orbiting HR 8799[END_REF]. It is however limited to very few large mass and luminous planets orbiting very young stars.

If we try to identify different types of planets in figure 1.2, we can roughly separates them in three categories. The first one is composed of planets with masses greater than 0.1 M J and orbital period shorter than 10 days that are refered as Hot Jupiters. Because transit and RV efficiently detect those, they are over-represented in the sample. When biases are taken into account, the frequency of Hot Jupiters is of about 1% [START_REF] Wright | The Frequency of Hot Jupiters Orbiting Nearby Solar-Type Stars[END_REF][START_REF] Fressin | The False Positive Rate of Kepler and the Occurrence of Planets[END_REF]. Several scenarii have been developed to explain the formation of the Hot Jupiters (see [START_REF] Dawson | Origins of Hot Jupiters[END_REF], for a review). They could form far away from the star and then migrate within the protoplanetary disk or because of tidal dissipation [START_REF] Wu | Secular Chaos and the Production of Hot Jupiters[END_REF]; but the in-situ formation is also consistent [START_REF] Batygin | In Situ Formation and Dynamical Evolution of Hot Jupiter Systems[END_REF]. The other large planets have been commonly named cold Jupiters. Most of them have orbits with period of about 1 to 10 years. RV studies found that around 10% of FGK star host a giant planet with an orbit within 10 years [START_REF] Cumming | The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets[END_REF][START_REF] Mayor | The HARPS Search for Southern Extra-Solar Planets XXXIV. Occurrence, Mass Distribution and Orbital Properties of Super-Earths and Neptune-Mass Planets[END_REF].

The last category of observed exoplanets consists in planets with masses smaller than 0.1 M J and typically periods smaller than 100 days. These planets are commonly refereed as Super-Earth because most of them have a mass comprised between Earth's and Neptune's mass. As already said, about 50% of the stars host at least one Super-Earth. Nevertheless this type of planet is not represented in the Solar System. Super-Earths are particularly interesting because they compose most of the known multiplanetary systems and some of them may be at the right distance from their host star to have liquid water.

Both RV and transit methods give a good estimate of exoplanets period. From there, we can get an estimate of their semi-major axis thanks to Kepler third law and the estimation of the star mass. However, the other available orbital parameters depend on the method. For RV, we have a good estimate of the minimum mass of a planet m sin I that is the planet's mass multiplied by the sine of the inclination of the orbit with respect to the sky plane. The two quantities are degenerated and it is not possible to directly obtain an independent measure of the mass and inclination from the RV signal [START_REF] Cumming | The Lick Planet Search: Detectability and Mass Thresholds[END_REF]. Such a measurement can be made in the case where it is possible to fit the planets mutual perturbations in addition to their Keplerian motion.

When the signal to noise ratio is good enough, RV measurements can provide an estimate of the planet's eccentricity. The range of eccentricities in RV planetary systems goes from almost circular orbits with an upper limit eccentricity of about 10 -3 to giant planets with a measured eccentricity 0.9. In population studies [START_REF] Wright | Ten New and Updated Multiplanet Systems and a Survey of Exoplanetary Systems[END_REF][START_REF] Mayor | The HARPS Search for Southern Extra-Solar Planets XXXIV. Occurrence, Mass Distribution and Orbital Properties of Super-Earths and Neptune-Mass Planets[END_REF], it was remarked that planets in multiplanetary systems tends to be on more circular orbits.

In the case of planets discovered by transit, the mass is not easily measurable. Indeed, the observable quantity is the planet to star radius ratio. While it is in principle possible to compute the mass of transiting planet assuming a bulk density, the mass uncertainty remains very large. Similarly, eccentricity measurement are difficult from transit observations. In cases where RV follow-up can be done, we can obtain information on transiting planets [START_REF] Marcy | Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets[END_REF]. However, the majority of the stars observed by the Kepler mission are too faint for such subsequent studies.

Whenever a system contains multiple planets (co-transiting or not), it is possible to fit the effect of planet interactions on the transit timing. This method, called Transit Timing Variation (TTV; [START_REF] Holman | The Use of Transit Timing to Detect Terrestrial-Mass Extrasolar Planets[END_REF] allows to determine masses and eccentricities of transiting planets (e.g. [START_REF] Lissauer | All Six Planets Known to Orbit Kepler-11 Have Low Densities[END_REF] and even to reveal non transiting planets in the system (e.g. [START_REF] Nesvorný | KOI-142, the King of Transit Variations, Is a Pair of Planets Near the 2:1 Resonance[END_REF]. However, this method is only efficient when plenty of transits have been observed and whenever planet perturbations are the more significant i.e. close to mean motion resonances (MMR).

While constraining individual transiting planet eccentricity is challenging, it has been possible to study the eccentricity distribution of transiting planets as a whole. Indeed, the transit duration T is related to the eccentricity e through

T = R * P πa √ 1 -b 2 √ 1 -e 2
1 + e sin ω , (1.1) where R * is the star radius, P the period, a the semi-major axis, b the impact parameter i.e. the minimum planet to star distance projected in the sky plane and measured in stellar radius and ω the argument of pericenter. b and ω are not known in general, because they depend on the observation direction. Nevertheless, it is possible to make assumptions on this distribution and therefore to constrain the eccentricity distribution from the global transit duration distribution. Such studies [START_REF] Moorhead | The Distribution of Transit Durations for Kepler Planet Candidates and Implications for Their Orbital Eccentricities[END_REF][START_REF] Shabram | The Eccentricity Distribution of Short-Period Planet Candidates Detected by Kepler in Occultation[END_REF][START_REF] Xie | Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis[END_REF] have found that the multiple transiting planets tend to have eccentricity smaller than single transit planets. In particular, [START_REF] Xie | Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis[END_REF] studied a subset of the Kepler planet and found that the single transiting planet cannot be all part of the same population that the multi-transiting planets. The eccentricity distribution is best fitted a two-populations model, one with almost circular orbits ( 0.05) and one with moderate eccentricities (≃ 0.2).

Similar studies are possible on the mutual inclinations in multiple transiting planet systems [START_REF] Fang | Architecture of Planetary Systems Based on Kepler Data: Number of Planets and Coplanarity[END_REF][START_REF] Xie | Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis[END_REF]. They tend to show that multi transiting systems have low mutual inclinations (of a few degrees). The discrepancy between single and multiple transit systems has been called the Kepler dichotomy [START_REF] Johansen | Can Planetary Instability Explain the Kepler Dichotomy[END_REF].

Another important feature in exoplanetary system architecture are the planet period ratios. We plot in figure 1.3, the distribution of the period ratios for the adjacent pairs of planet in the catalogue exoplanet.eu. Additionally we plot the main MMR as dotted lines.

We see that the majority of the period ratios are comprised between 1.5 and 3, which is consistent with the Solar System (1.7 to 2.8). We note also that the distribution is not smooth. In particular we observe deficits at the exact MMR, e.g. around period ratios of 2 or 1.5. On the other hand there is an accumulation of planets just outside of the same MMR. This feature has been interpreted as a signpost of tidal dissipation from systems originally into MMR [START_REF] Terquem | Migration and the Formation of Systems of Hot Super-Earths and Neptunes[END_REF][START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF][START_REF] Batygin | Analytical Treatment of Planetary Resonances[END_REF].

Planet formation theories

The architecture of planetary systems principally depends on the way they form. It appears important to at least make a short introduction to the state of the art in this domain. A complete overview of the field is beyond the scope of this introduction. This section is based on several reviews [START_REF] Morbidelli | Building Terrestrial Planets[END_REF][START_REF] Johansen | Forming Planets via Pebble Accretion[END_REF][START_REF] Chiang | Forming Planetesimals in Solar and Extrasolar Nebulae[END_REF][START_REF] Raymond | Terrestrial Planet Formation at Home and Abroad[END_REF][START_REF] Morbidelli | On Invariant Curves of Area-Preserving Mappings of an Annulus[END_REF].

The clearest influence of the formation on currently observed systems is the low mutual inclination in multiplanetary systems. Indeed, it is now widely accepted that planet formation starts during the host star formation in the protoplanetary disc.

Stars form during the gravitational collapse of a molecular cloud. Initially, the material (composed principally of gas) falling onto the newly formed star has a high angular momentum and tends to regroup into an accretion disk perpendicular to the total angular momentum direction. Due to viscosity [START_REF] Shakura | Black Holes in Binary Systems. Observational Appearance[END_REF], the disk tends to spread and as a result transports angular momentum outward while the star is accreting mass inward.

The gas is mixed with a small proportion of solids, principally ices and silicate dusts. In solar abundances, the ratio of the mass of solid to gas is about 1% [START_REF] Chiang | Forming Planetesimals in Solar and Extrasolar Nebulae[END_REF]. These solids form the building blocks of the future terrestrial planets and giant planet cores. The protoplanetary disk has a lifetime of a few million year before the star completely photoevaporates the gas [START_REF] Hartmann | Accretion and the Evolution of T Tauri Disks[END_REF]. Therefore, the giant planet cores must form within this timescale in order to accrete gas. On the other hand, constraints from cosmochemistry indicates that the Solar System terrestrial planets formed after the dispersion of the disk (Morbidelli et al., 2012, and references therein).

Classical view of planet formation

In the classical theory of planet formation [START_REF] Safronov | Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets[END_REF], the solids within the disk sediment in the horizontal plane and eventually aggregates into a swarm of planetesimals of a few tens to hundred of kilometers. At this point, if the dynamics become dominated by planetesimal interactions, the planetesimals start accreting each other to form planet embryos of about Mars size. The biggest objects tend to grow faster than the smaller one due to gravitational focusing [START_REF] Greenberg | Planetesimals to Planets: Numerical Simulation of Collisional Evolution[END_REF]. This process has been call the runaway growth.

When embryos contains the majority of the solids, they start merging. This process have been extensively modeled [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF][START_REF] Chambers | Making More Terrestrial Planets[END_REF][START_REF] O'brien | Terrestrial Planet Formation with Strong Dynamical Friction[END_REF][START_REF] Raymond | High-Resolution Simulations of the Final Assembly of Earth-Like Planets I[END_REF]. The collisions are most of the time assumed to result in perfect merging, but simulations have also been carried out with other assumptions [START_REF] Kokubo | Formation of Terrestrial Planets from Protoplanets Under a Realistic Accretion Condition[END_REF][START_REF] Mustill | The Dynamical Evolution of Transiting Planetary Systems Including a Realistic Collision Prescription[END_REF]. This phase of so called giant impacts appear to give satisfactory results for the formation of terrestrial planets.

For giant planets, if the planet core mass reaches several Earth masses within the lifetime of the disk, the planet starts accreting an atmosphere. This scenario, called the core accretion model [START_REF] Pollack | Formation of the Giant Planets by Concurrent Accretion of Solids and Gas[END_REF], can lead to the formation of giant planets but requires the initial mass of the disk to be much larger than the commonly used disk model, the minimum mass solar nebula [START_REF] Weidenschilling | The Distribution of Mass in the Planetary System and Solar Nebula[END_REF]. Moreover large cores tend to scatter instead of accreting planetesimal, which make the growth very inefficient [START_REF] Tanaka | Growth of a Migrating Protoplanet[END_REF].

In addition, planet embryos interact with the disk and migrate through it [START_REF] Ward | Density Waves in the Solar Nebula: Diffential Lindblad Torque[END_REF][START_REF] Ward | Survival of Planetary Systems[END_REF]. Indeed, a planet embryo raises waves into the disk that creates a gravitational torque acting on the planet. If the planet is small enough, it will not completely deplete its orbit from the gas. Such a mechanism is called type I migration [START_REF] Goldreich | The Excitation of Density Waves at the Lindblad and Corotation Resonances by an External Potential[END_REF][START_REF] Paardekooper | Halting Type I Planet Migration in Non-Isothermal Disks[END_REF]. Jupiter mass planets tend to open gaps in the disk [START_REF] Lin | On the Tidal Interaction Between Protoplanets and the Protoplanetary Disk. Iii. Orbital Migration of Protoplanets[END_REF]). The migration nature changes and this phenomenon is denominated type II migration. A single embryo generally migrates inward while resonances between embryos can invert the migration [START_REF] Masset | Reversing Type II Migration: Resonance Trapping of a Lighter Giant Protoplanet[END_REF].

Planet migration stops at the inner edge of the disk and when multiple embryos migrate together, they naturally end up in mean motion resonances (e.g. [START_REF] Terquem | Migration and the Formation of Systems of Hot Super-Earths and Neptunes[END_REF][START_REF] Raymond | Observable Consequences of Planet Formation Models in Systems with Close-in Terrestrial Planets[END_REF]. The observation by the Kepler mission of numerous compact systems of super Earth close to their star, with a significant gaseous H/He envelope for many of them, is an observational evidence for their formation within the disk lifetime. During the gas disk phase, the planet eccentricities and inclinations are tidally damped, which help keeping the the planets into resonant chains [START_REF] Papaloizou | On the Orbital Evolution and Growth of Protoplanets Embedded in a Gaseous Disc[END_REF]. However, as the disk dissipates, the system can enter a scattering phase destroying the resonant chain [START_REF] Izidoro | Formation of Planetary Systems by Pebble Accretion and Migration: Hot Super-Earth Systems from Breaking Compact Resonant Chains[END_REF]. Such a scenario have been proposed to explain why most of the Kepler systems were found out of MMRs.

New paradigms

As pointed out in [START_REF] Morbidelli | On Invariant Curves of Area-Preserving Mappings of an Annulus[END_REF], the planet formation models presented above raise many questions. The first one concerns the growth of planetesimal for which the classical theory provides no mechanism. Indeed, due to the pressure gradient, the gas rotates at sub-Keplerian speed while the solids are unaffected. It results that the building blocks of planetesimals feel a headwind that makes them migrate inward very rapidly [START_REF] Weidenschilling | The Distribution of Mass in the Planetary System and Solar Nebula[END_REF]. This effect is maximal for typical size of the order of the meter. Moreover, collisions between bodies of this size are more likely to result in a fragmentation rather than in an accretion [START_REF] Benz | Low Velocity Collisions and the Growth of Planetesimals[END_REF].

A solution to the formation of 100 km size objects has been proposed in the form of streaming instability [START_REF] Youdin | Streaming Instabilities in Protoplanetary Disks[END_REF][START_REF] Johansen | Rapid Planetesimal Formation in Turbulent Circumstellar Disks[END_REF]. In this model, solids stop their migration and concentrate around pressure bumps. The solid to gas density is then further increased by the solids back reaction onto the gas. It results that the solid concentration become large enough to allow the gravitational collapse of the solids directly into 100 km size bodies.

The timescale of formation is observationally well constrained by the lifetime of the disk. However, the classical model forming planets and giant cores by recursive merging is too slow in order to form massive enough cores able to accrete a gaseous envelope in the imparted time. Moreover, the process tend to become inefficient as the core grows due to the planetesimal scattering by the massive cores.

In order to solve these problems, [START_REF] Lambrechts | Rapid Growth of Gas-Giant Cores by Pebble Accretion[END_REF] proposed a new growth mechanism called pebble accretion. Due to the gaseous disk headwind, pebbles of few cm size migrate inward much faster than planet embryos. They show that the embryo efficiently accretes the pebbles crossing its sphere of influence thanks to the gas drag. Since the feeding zone increases with the embryo mass and the pebble reservoir is replenished by material coming from the outer disk, the growth is exponential. This mechanism allows to form a planet core within the disk lifetime and permits the accretion of a massive gaseous envelope.

Furthermore, the pebble are mostly refractory inside the snowline while they are bigger and more ice rich beyond it. As a result, the mechanism could explain the differences of nature between the inner and the outer Solar System [START_REF] Morbidelli | The Great Dichotomy of the Solar System: Small Terrestrial Embryos and Massive Giant Planet Cores[END_REF][START_REF] Morbidelli | On Invariant Curves of Area-Preserving Mappings of an Annulus[END_REF].

The pebble accretion scenario has recently been tested in all aspect of planet formation, with realistic disk prescription and post disk phase evolution in a recent series of papers [START_REF] Lambrechts | Formation of Planetary Systems by Pebble Accretion and Migration: How the Radial Pebble Flux Determines a Terrestrial-Planet or Super-Earth Growth Mode[END_REF][START_REF] Izidoro | Formation of Planetary Systems by Pebble Accretion and Migration: Hot Super-Earth Systems from Breaking Compact Resonant Chains[END_REF][START_REF] Bitsch | Formation of Planetary Systems by Pebble Accretion and Migration: Growth of Gas Giants[END_REF]. It appears that the difference between pebble fluxes plays a significant role in the nature of the formed system. Indeed, similar embryos can either form terrestrial planets or giant core with a difference of less than an order of magnitude in the pebble flux.

To conclude let note that the system architecture that emerges from the disk (or even after the few first 100 Myr) can significantly differ from the observed exoplanet systems architecture. Indeed, orbital rearrangement is at play along the history of a planetary system. In particular, scattering among systems of giant planet can lead to ejections and generate large mutual inclinations and eccentricities among the surviving planet [START_REF] Jurić | Dynamical Origin of Extrasolar Planet Eccentricity Distribution[END_REF]. Similarly, chain of resonant super Earths may break because of stability constraints.

Outside of purely Newtonian dynamics, tidal dissipation can also change the architecture of planetary systems. Indeed, it is thought that Hot Jupiter form by circularization of highly eccentric orbits thanks to tidal damping in the envelope [START_REF] Wu | Secular Chaos and the Production of Hot Jupiters[END_REF]. Another example is the category of ultra short period planets that most likely experience tidal damping as well [START_REF] Pu | Low-Eccentricity Formation of Ultra-Short Period Planets in Multi-Planet Systems[END_REF].

The observed architecture can thus only be understood by considering the whole history of planetary systems. In particular, the orbital rearrangement due to unstable initial conditions.

Stability in planetary systems

Giving a precise definition of a stable planetary system is a difficult task. From a mathematical point of view, a dynamical system is considered stable if two solutions with very close initial condition remain close at all times. This definition is too restrictive for planetary dynamics. Another definition inspired by KAM theory [START_REF] Kolmogorov | On Conservation of Conditionally Periodic Motions for a Small Change in Hamilton's Function[END_REF][START_REF] Arnold | Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics[END_REF]Möser, 1962) is to consider stable quasi-periodic orbits. Once again this definition is too restrictive for a practical point of view.

A more practical definition could be obtained by applying the previous math-ematical definitions on a fixed time interval (longer than the age of the system). However, given the uncertainties on exoplanet orbital elements, we will end up considering every system unstable. In this thesis, I will consider stable a system that will not experience large modifications of its architecture over its expected life time. In other words, I consider unstable system where planets interactions can lead to planet collision or ejections for the lifetime of the host star (typically 10 Gyr for Sun-like stars).

Stability of the Solar System, from Kepler to chaos

Historically, the answer to the question whether the Solar System is stable has changed multiple times. I begin this section by recalling the progresses made over the last four centuries in the understanding of celestial mechanics. Beyond its intrinsic interest, this presentation allows to introduce a lot of theoretical concepts still used in the study of planetary systems evolution. This part will closely follow the presentation made in [START_REF] Laskar | Is the Solar System Stable?[END_REF] that I strongly recommend to the reader interested in a more in-depth presentation of this question.

Before the Copernican revolution, the description of the motion of the planets that prevailed was that the planet were moving along epicycles (a sum of circular motions at different periods) according to the ideas of Ptolemy. Early in the XVII th century, Kepler observed the motion of the planets and based on Copernicus ideas, he proposed that the planets were orbiting the Sun on close elliptical trajectories. In both cases, the Solar System was seen as immutable and perfectly stable.

When Newton proposed the universal law of gravitation in 1687, the interaction between the Sun and the planets explained the phenomenology proposed by Kepler. However, Newton's theory predicts interactions between planets, i.e. the orbits around the Sun can no longer be considered fixed. Since the planet masses are small, on short timescales their effects can be neglected. But in principle, these perturbations could add up on longer time and provoke close encounters or planet collisions. Eventually, he imagined that the intervention of God was necessary to keep the system in order.

Such an unstable behaviour seemed to be confirmed by Halley that compared his observations of Jupiter and Saturn to some transmitted by Ptolemy. He reported that the orbits of Jupiter and Saturn were moving away. In the XVIII th century, observations had become precise enough that it was necessary to introduce empirical secular terms into the ephemeris to accurately predict the planet positions.

The planet motion irregularity was such an important problem, that the European Academies of Sciences proposed several prizes related to it. In order to solve Newton's equations, mathematicians such as Euler formulated the basis of perturbation theory. The continuation of Euler's work by Lagrange and then Laplace led to the first successes of such this approach when Laplace proved the secular invariance of the semi-major axis and then successfully solved the question of the great inequality between Jupiter and Saturn.

At the same time, Lagrange (1774) developed the first secular theory for the motion of the inclination and longitudes of the node. Inspired by Lagrange's memoir, Laplace (1775) quickly published a similar theory on the variation of the eccentricities and precession of the perihelia. Today known as the Lagrange-Laplace theory (see section 2.4.3), these works are the first appearance of the linear differential equations with constant coefficients that represent to the first order the averaged motion of the planetary orbits.

After these works, the stability seemed to be granted. The semi-major axes have only short term variations while the eccentricities and inclinations have a quasi-periodic motion, thus bounded and small enough to forbid collisions. These success led Laplace and the whole scientific community during the XIX th century to believe into a deterministic science. With an accurate enough model, it is in principle possible to reach arbitrary precision on the predictions.

The works of [START_REF] Poincaré | Les Méthodes Nouvelles De La Mécanique Céleste[END_REF] changed our understanding of celestial mechanics. By rewriting in Hamiltonian formalism the problem, he showed that the three-body problem is not integrable and that it is not possible to find an analytical solution representing the planetary motion. Worse, he showed that the series development used by astronomers to go beyond the Lagrange-Laplace theory actually diverges after a certain order. However, the truncated series is still a good approximation for finite times.

The main concept introduced by Poincaré in celestial mechanics is the notion of chaos. Newton's equations admit a unique solution for a given initial condition. However, the difference between two arbitrary close initial conditions will grow exponentially. [START_REF] Laskar | A Numerical Experiment on the Chaotic Behaviour of the Solar System[END_REF] showed that the Lyapunov exponent of the inner Solar System is of about 1/5 Myr -1 . As explained in [START_REF] Laskar | The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones[END_REF], if we assume that two initial conditions are initially separated by a distance d 0 , the separation after a time T is d(T ) = d 0 10 (T /10 Myr) . Typically, an initial error of 15 m (that is of the order of what is possible to measure today) will lead to an error of 1 AU after 100 Myr.

After Poincaré, the instability of the planetary dynamics appeared certain. But in the 50s, the Russian mathematician [START_REF] Kolmogorov | On Conservation of Conditionally Periodic Motions for a Small Change in Hamilton's Function[END_REF] demonstrated that in perturbed integrable systems, some initial quasi-periodic tori were preserved. It means that some initial conditions lead to solutions that are forever stable. This statement does not contradict Poincaré's since such tori are isolated. [START_REF] Arnold | Small Denominators and Problems of Stability of Motion in Classical and Celestial Mechanics[END_REF] demonstrated a similar result for the planar three-body problem. These results are today known as KAM theorems because of the work of Möser (1962) to generalize them. On the vicinity of KAM tori, it was shown that the actions change only on very long timescales [START_REF] Nekhoroshev | An Exponential Estimate of the Time of Stability of Nearly-Integrable Hamiltonian Systems[END_REF][START_REF] Giorgilli | Effective Stability for a Hamiltonian System Near an Elliptic Equilibrium Point, with an Application to the Restricted Three Body Problem[END_REF][START_REF] Morbidelli | Superexponential Stability of KAM Tori[END_REF]. For the Solar System, it is sufficient to prove the stability for the next 5 Gyr, as it is the estimated lifetime of the Sun.

The masses in the Solar System are too large to directly apply the KAM theory. It is however assumed that these mathematical results still apply well beyond the validity of their demonstrations. In particular, it is thought that the outer Solar System is almost quasi-peridodic and stable for the remaining lifetime of the Sun (e.g. [START_REF] Giorgilli | Secular Dynamics of a Planar Model of the Sun-Jupiter-Saturn-Uranus System; Effective Stability in the Light of Kolmogorov and Nekhoroshev Theories[END_REF]. However, these results do not apply to the inner Solar System due to the secular chaos created by secular resonances. 

Current understanding of the Solar System dynamics

In the last 30 years, numerical simulations have given us a very good description of the Solar System future. The numerical integration of the Solar System is very challenging and the progresses that allowed it are both technical and theoretical. Indeed, because of Mercury short period, the time-step in direct integration should be smaller than the day while the simulation must be conducted over billions of years. Besides, because the Solar System is chaotic, several thousands of integrations with slight changes in the initial conditions are necessary to highlight the diversity of the outcomes. Moreover, the numerical method should stay as close as possible to the exact trajectory. The development of symplectic integrators (see chapter 6) and in particular the Keplerian splitting [START_REF] Kinoshita | Symplectic Integrators and Their Application to Dynamical Astronomy[END_REF][START_REF] Wisdom | Symplectic Maps for the N-Body Problem[END_REF] allowed the first integration of the entire Solar System longer 100 Myr [START_REF] Sussman | Chaotic Evolution of the Solar System[END_REF]). An alternative to direct integration consists in integrating the secular system developed at high degree in eccentricities, inclinations and masses. Since secular dynamics are much slower the time-step is of the order of sever centuries. Laskar demonstrated the chaotic nature of the inner Solar System and shown evidence that Mercury could eventually become unstable [START_REF] Laskar | A Numerical Experiment on the Chaotic Behaviour of the Solar System[END_REF][START_REF] Laskar | The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones[END_REF][START_REF] Laskar | Large-Scale Chaos in the Solar System[END_REF][START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF]. On the other hand, the outer System is very stable with an almost quasi-periodic behaviour. In figure 1.4 from [START_REF] Laskar | Large-Scale Chaos in the Solar System[END_REF], we see the fundamental difference of behaviour between the inner and the outer System.

The first direct integrations over the lifetime of the Solar System (Batygin and [START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF]. [START_REF] Batygin | On the Dynamical Stability of the Solar System[END_REF][START_REF] Laskar | Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth[END_REF] confirmed the results of the secular integrations. Moreover, [START_REF] Laskar | Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth[END_REF] estimated the probability of destabilization of the inner Solar System to 1% over 5 Gyr. Interestingly, the same integrations made without the post-Newtonian corrections resulted in a much more unstable system with about half of the realizations becoming unstable within 5 Gyr (see figure 1.5).

The destabilization of the Solar System is mainly due to a resonance between the frequency associated with the precession of Mercury's perihelion g 1 and the frequency associated with Jupiter's g 5 [START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF], see section 2.4.3 for a precise definition of g k ). The destabilization has been studied theoretically on simplified models that reproduce qualitatively the phenomenon [START_REF] Boué | A Simple Model of the Chaotic Eccentricity of Mercury[END_REF][START_REF] Batygin | Chaotic Disintegration of the Inner Solar System[END_REF][START_REF] Woillez | Stochastic Description of Rare Events for Complex Dynamics in the Solar System[END_REF].

Since the Solar System can be considered secular, the planet semi-major axes are constant on average. It remains to describe the evolution of the eccentricities and mutual inclinations on the billion year timescales. [START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF] showed the probability distribution functions (PDFs) of the eccentricities and inclinations computed over 1001 initial conditions by bin of 250 Myr.

The PDFs of eccentricities are reproduced in figure 1.6. For the outer planets, measure of the non-linearity of the system. In particular, the total AMD bounds the eccentricities and inclinations. By assuming that the eccentricities and inclinations of the inner Solar System can take any value compatible with the conservation of the inner Solar System's AMD, [START_REF] Mogavero | Addressing the Statistical Mechanics of Planet Orbits in the Solar System[END_REF] computed the theoretical PDFs of the eccentricities and inclinations.

His results are reproduced in figure 1.7 and compared to [START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF]. We see that, the assumption is very good for the Earth and Venus but not for Mercury and Mars. However, it should be taken into account that the assumption made was very rough. Moreover, for Mars' eccentricity and inclination and Mercury's inclination, it seems that Mogavero's result is the equilibrium PDFs towards which the numerical results seems to tend.

When one assume the conservation of the inner Solar System's AMD, the underlying assumption is that the outer and the inner Solar System are two different AMD reservoirs that do not communicate in general. However, when a transfer from the outer system to the inner system occurs, it results in a quick destabilization [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF]. This phenomenology is confirmed by the numerical simulations.

The example of the Solar System is very rich from a dynamical point of view. Moreover we can see that the difference between the inner and the outer planets is not only a difference in composition and size of the planets. We have seen that the two parts of the Solar System fundamentally differ from a dynamical point of view. It should also be noted that the stability is only marginal. In the future, the inner Solar System could enter into an unstable phase that would lead to a reorganization of the system and even the collision or the ejection of one of the inner planet [START_REF] Laskar | Large-Scale Chaos in the Solar System[END_REF][START_REF] Laskar | Large Scale Chaos and Marginal Stability in the Solar System[END_REF][START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF][START_REF] Laskar | Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth[END_REF].

Challenges in exoplanet stability analysis

It is illusory to make a stability analysis as detailed as that performed for the Solar System for each discovered exoplanet system. Individual stability analysis have been carried out with success on a few iconic system such as HD10180 [START_REF] Lovis | The HARPS Search for Southern Extra-Solar Planets[END_REF] or TRAPPIST-1 [START_REF] Tamayo | Convergent Migration Renders TRAPPIST-1 Long-Lived[END_REF][START_REF] Grimm | The Nature of the Trappist-1 Exoplanets[END_REF]. These studies are particularly interesting because the system are at the limit of being unstable and their existence look like a challenge to celestial mechanics. Most of the time these stability analysis act as an indirect confirmation of the observations. While the numerical simulations provide a lot of information on the systems, they are only based on short integrations compared to the system lifetime (10 Myr in [START_REF] Grimm | The Nature of the Trappist-1 Exoplanets[END_REF], for the TRAPPIST-1 system that orbits a red dwarf). Moreover, unlike in the Solar System where initial conditions are known with extreme precision, it is not the case for exoplanets. It results that numerical simulation must span large part of the phase space to accurately represent all probable states of the systems. Analytical studies provide an alternative to extensive numerical integrations. However, as explained earlier, the typical architecture of exoplanetary systems is very different from the Solar System's. Indeed, in a lot of observed systems, the planets have much more compact orbits that the Solar System's. Moreover, a significant part of the systems seems to be into or close to mean motion resonances (MMR).

Mean motion resonant dynamics are now well understood thanks to the de-velopment of simplified models (e.g., [START_REF] Henrard | A Second Fundamental Model for Resonance[END_REF][START_REF] Ferraz-Mello | Canonical Perturbation Theories[END_REF]. Models have also been developed on the interactions between resonances and dissipative effects [START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF][START_REF] Delisle | Resonance Breaking Due to Dissipation in Planar Planetary Systems[END_REF][START_REF] Batygin | Analytical Treatment of Planetary Resonances[END_REF]. The overlap of MMR may lead to very chaotic dynamics [START_REF] Chirikov | A Universal Instability of Many-Dimensional Oscillator Systems[END_REF]. Stability criteria can be defined based on this condition [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF][START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF]Hadden and Lithwick, 2018, see chapter 4). Similarly the secular chaos has been studied in the context of exoplanetary systems [START_REF] Wu | Secular Chaos and the Production of Hot Jupiters[END_REF].

For closely-packed systems, some empirical criteria have been developed based on numerical simulations [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF][START_REF] Smith | Orbital Stability of Systems of Closely-Spaced Planets[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF][START_REF] Obertas | The Stability of Tightly-Packed, Evenly-Spaced Systems of Earth-Mass Planets Orbiting a Sun-Like Star[END_REF]. These studies consider theoretical systems composed of equal masses planets on evenly spaced circular and coplanar orbits. They show numerically that systems enter an instability phase after a time T ins that depends on the spacing and the Hill radius

log 10 T ins /T orb = b∆ + c, (1.2)
where b and c are numerical constant, T orb is the typical orbital period, ∆ the orbital spacing measured in Hill radii. The Hill radius [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF][START_REF] Petit | Hill Stability in the AMD Framework[END_REF], see chapter 5) can be roughly defined as the distance where a planet has a stronger influence than the star it is orbiting. b and c depend weakly on the planetary masses and the number of planets. For lifetime of the order of 10 9 T orb , a typical separation of 8 to 10 Hill radii seems a good fit. The model has also proven to be robust to some randomization in the initial spacing, masses, and the addition of moderate eccentricity. However, this model still lacks a theoretical understanding even if some attempts have been made [START_REF] Quillen | Three-Body Resonance Overlap in Closely Spaced Multiple-Planet Systems[END_REF]. Another approach to this problem has been proposed by [START_REF] Tamayo | A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems[END_REF] using machine learning to characterize the stability of 3 planet systems.

Organization of the manuscript

In this thesis, I present another approach to the question of planetary systems stability. Based on the study of the Solar System, we see that a simplified dynamical model can constrain the accessible region of the phase space and thus the system organization. In chapter 3, I develop in detail the concept of AMD-stability. Assuming a system can be considered secular, we show that the total AMD determines the accessible orbit configurations, and thus can forbid close encounters and collisions, ensuring long-term stability.

The model developed on chapter 3 is based on the critical hypothesis that the system can be considered secular. In chapters 4 and 5, I complete the concept of AMD-stability by studying how non-secular dynamics can affect a system. To do so I revisit and adapt to the AMD framework, the two main stability criteria for the two planet problem. In chapter 4, I discuss the MMR overlap criterion [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF]. In chapter 5, I improve the notion of Hill stability introduced by [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] and popularized by [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF].

During this thesis, it appeared necessary to study a system at the limit of instability, where collisions eventually happen. In those case, numerical simulations are necessary because of the complexity of the trajectories. However, classical symplectic integrators fail to accurately integrate such systems. Symplectic integrators keep their good geometrical properties only when used with fixed time-step. However, when a system experience a close encounter, it is necessary to reduce the time-step to be able to resolve the encounter. To do so, I developed a new time regularization in order to create a symplectic integrator that can accurately integrate system experiencing close encounters. The development of the integrator and an analysis of its performances are detailed in chapter 6.

The various stability constraints presented above show that stability consideration play a key role in the organization of planetary systems. In chapter 7, I derive the constraints on planetary system architecture that emerge from the AMD-based models. The results are based on [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] but I present some justifications of the assumptions made by Laskar and show that this theoretical model is compatible with results from modern planet formation theories.

The chapter 2 introduces most of the notations and classical results of planet dynamics that will be used in the following chapters.

Chapter 2

Introduction to planetary dynamics

The goal of this chapter is to introduce various classical notations and results from the study of the planet dynamics. I will not make an extensive introduction to Hamiltonian mechanics beyond this first paragraph. For the reader interested in the basis of Hamiltonian dynamics and its application to celestial mechanics, refer to [START_REF] Goldstein | Classical Mechanics[END_REF][START_REF] Arnold | Mathematical Methods of Classical Mechanics[END_REF][START_REF] Morbidelli | Modern Celestial Mechanics: Aspects of Solar System Dynamics[END_REF].

For the practical development of the introduction, let just recall that if a Hamiltonian H(p, q) depends on canonical conjugated variables (p, q), the equations of motion are given by dq dt = ∂H ∂p ,

dp dt = - ∂H ∂q . (2.1)
Additionally, the evolution of any function f (p, q) is determined by the differential

equation df dt = {H, f } = ∂H ∂p • ∂f ∂q - ∂H ∂q • ∂f ∂p , (2.2)
where the operator {•, •} is the Poisson bracket. Two functions f and g are said to be in involution if {f, g} = 0. We also define the Lie derivative associated with H by L H = {H, •}. L H is a linear operator on the Lie algebra of functions of variables (p, q). The formal solution of (2.2) with initial conditions (p 0 , q 0 ) is given by

f (t) = exp(tL H )(f )(p 0 , q 0 ) = +∞ k=0 t k k! L k H (f )(p 0 , q 0 ). (2.3)
The flow of a Hamiltonian preserves the symplectic form dp ∧ dq, thus the diffeomorphism (p, q) → exp(tL H )(p, q) is a canonical transformation.

Two-body problem

Due to the mass ratio between the planets and their host stars, planet dynamics are dominated by the planet-star interaction. In this thesis, I will use extensively the tools developed for the two-body problem. It seems important to start by this problem and its resolution. The solution presented here is inspired by J. Laskar lectures notes. We consider two point-like bodies P 0 , P 1 with masses m 0 , m 1 and O the origin of an inertial frame. Let u k = --→ OP k and ũk = m k uk the conjugated momentum. The Hamiltonian of the system in presence of gravitational interaction is

H 2bp = ũ0 2 2m 0 + ũ1 2 2m 1 - Gm 0 m 1 |u 0 -u 1 | , (2.4)
where G is the constant of gravitation. We first make a change of coordinates to separate the centre of mass motion from the relative motion. We define

r b = m 0 u 0 + m 1 u 1 m 0 + m 1 , r = u 1 -u 0 , rb = ũ0 + ũ1 , r = ũ1 - m 1 m 0 + m 1 rb = m 0 ũ1 -m 1 ũ0 m 0 + m 1 .
(2.5)

The change of coordinates (2.5) is canonical and H 2bp becomes

H 2bp = rb 2 2(m 0 + m 1 ) + r 2 2m - µm r , (2.6)
where m = m 0 m 1 /(m 0 + m 1 ) is the reduced mass and µ = G(m 0 + m 1 ) is the gravitational coupling parameter. In these coordinates, H 2bp does not depends on r b so rb is conserved and the barycentre motion is inertial. Moreover, the barycentre dynamics has no influence on the relative motion described by the variables (r, r). We drop the barycentric kinetic energy and we end up with the Hamiltonian describing the Keplerian motion

K = r 2 2m - µm r , (2.7)
The Hamiltonian (2.7) describes the motion of a body P of mass m around a fixed center O with a gravitational coupling parameter µ. The mass m of the body plays no role in the two-body problem and we could remove it by scaling K and r by m. Nevertheless, I choose to keep it in order to directly use the results of this section for the N -body problem. K is integrable and the trajectory of r follows the Kepler laws:

-The trajectory is a conic section and the centre of force O is one of the foci, -A line segment joining P and O sweeps out equal areas during equal intervals of time,

-If K < 0, the orbit is an ellipse and the period is linked to its semi-major axis 1

a 3 T 2 = µ 4π 2 .
(2.8)

These empirical laws proposed by Kepler in Astronomia Nova (1609) and Harmonices Mundi (1619) were later proved by Newton in its Principia Mathematica (1687). We give here a modern demonstration [START_REF] Laskar | Andoyer Construction for Hill and Delaunay Variables[END_REF] based on a canonical transformation to a set of coordinates adapted to the problem, the Delaunay coordinates [START_REF] Delaunay | Théorie Du Mouvement De La Lune[END_REF].

We first remark that K conserves the angular momentum defined as

G = r × r.
(2.9) Indeed, we have

dG dt = ṙ × r + r × ṙ = r m × r -r × µm r 3 r = 0. (2.10)
Since G is orthogonal to both r and r, the motion takes place in the plane orthogonal to G passing through the origin. Let u = r/r the unit vector in the direction of P . We define the Laplace-Runge vector as

e = r × G µm 2 -u. (2.11)
e is a constant of motion and is within the orbital plane, indeed

de dt = - ∂K ∂r × G µm 2 -u = - µmr r 3 × (r × mr u) µm 2 -u = 0.
(2.12)

We note e the norm of e and v, the angle between e and u. We have

e • u = e cos(v) = r • (r × G) µm 2 r -1 = G 2 µm 2 r -1.
(2.13)

We note p = G 2 µm 2 and from (2.13), we obtain the trajectory as

r = p 1 + e cos(v) , (2.14)
that is the polar equation of a conic. If e < 1, the orbit is an ellipse, if e = 1, a parabola and if e > 1, a branch of hyperbola. The first Kepler law is therefore proved. The direction of e indicates the periapsis of the orbit and v is called the true anomaly. If the orbit is an ellipse 2 , we note a its semi-major axis. Since G is constant of the motion, we can evaluate it at any point of the orbit. At the pericentre, we have r = a(1e) and v = 0. From (2.13), we deduce

G = m µa(1 -e 2 ).
(2.15)

P i k (a)
Reference frame and notation of the angles used in the reduction of the two-body problem. Adapted from [START_REF] Laskar | Andoyer Construction for Hill and Delaunay Variables[END_REF]. Let us note (i, j, k) the frame basis, K = G/G, the direction of angular momentum. The orbital plane is defined by its inclination i with respect to the horizontal plane (i, j) and its longitude of the node Ω that is the angle between i and n, the unit vector along the intersection of the orbital plane and the horizontal plane. We also note w, the angle between n and r. The configuration is illustrated in figure 2.1a. We also define the argument of the periapsis ω as the angle between n and e. Since n, r and e are coplanar, it results that w = v + ω.

The position of P , r, is thus determined by the variables (r, w, i, Ω). As explained in [START_REF] Laskar | Andoyer Construction for Hill and Delaunay Variables[END_REF], the transformation (r; r) → (r, w, i, Ω) can be extended into a canonical change of variables using Andoyer's criterion for canonicity [START_REF] Andoyer | Cours De Mécanique Céleste[END_REF]:

(r; r) → (r, G, G cos i; r, w, Ω), (2.16)

where r = m ṙ is the radial component of the momentum. With these new symplectic coordinates, also known as the Hill variables [START_REF] Hill | Motion of a System of Material Points Under the Action of Gravitation[END_REF], the Hamiltonian becomes

K = 1 2m r2 + G 2 r 2 - µm r .
(2.17)

We note that the Hamiltonian no longer depends on w, G cos i and Ω which means that respectively G, Ω and G cos i are conserved. This result is a consequence of the conservation of G. Written in this new form, K only have one degree of freedom (r; r) and is thus integrable. The motion of w is given by

dw dt = ∂K ∂G = G mr 2 .
(2.18) Equation (2.18) is a reformulation of Kepler's second law. Indeed, the infinitesimal element of area dA swept during an interval dt is a triangle of base r and height rdw, such that

dA = 1 2 r 2 dw ⇔ dA dt = 1 2 r 2 dw dt = G 2m . (2.19)
For now on, we will assume that the orbit is an ellipse. Because the trajectory is closed the motion is periodic. Over a period T , the area spanned will be the total area of the ellipse, from (2.19), we compute

A = πa 2 √ 1 -e 2 = T 0 dA dt dt = GT 2m = µa(1 -e 2 )T 2 .
(2.20)

After simplification, we obtain Kepler's third law (2.8). The mean motion along the orbit is defined as

n = 2π T = µ a 3 .
(2.21)

At the pericenter, the radial velocity and thus r is null, we can therefore evaluate the value of K as a function of the elliptic elements

K = G 2 2ma 2 (1 -e) 2 - µm a(1 -e) = - µm 2a . (2.22)
We remark that the Hamiltonian as well as the mean motion only depend on the semi-major axis of the orbit. As a result, the semi-major axis and the area spanned are natural candidates for the determination of action-angle coordinates to describe the motion along the orbit. We define the mean anomaly M as the angle that is proportional to the area spanned by r starting at the pericentre; by definition, Ṁ = n and A = a 2 √ 1e 2 M/2. We also define the eccentric anomaly, that is the angle OCP ′ , where C is the center of the ellipse and P ′ the inverse image of P by the affinity defining the ellipse from a circle of center C. The different angles are shown on figure 2.1b.

The area enclosed into the arc of circle ACP ′ is a 2 E/2. We can also compute this area by adding the area of the triangle COP ′ and A/ √ 1e 2 = a 2 M/2, the area enclosed between the angle ACP ′ and the circle. After simplification, we obtain the Kepler equation that links M to E M = Ee sin(E).

(2.23)

The Kepler equation is transcendental and cannot be solved analytically. However, it allows to write a transformation between the Hill coordinates and the set of orbital elements (r, G, G cos(i); r, w, Ω) → (a, e, i; M, ω, Ω). While the orbital elements are not canonical variables, one can use the Andoyer's method [START_REF] Andoyer | Cours De Mécanique Céleste[END_REF][START_REF] Laskar | Andoyer Construction for Hill and Delaunay Variables[END_REF] to get a set of canonical variables, the Delaunay coordinates [START_REF] Delaunay | Théorie Du Mouvement De La Lune[END_REF]. These coordinates are defined as

L = m √ µa; M, G = L √ 1 -e 2 ; ω, (2.24) H = G cos(i); Ω,
and the Keplerian Hamiltonian takes the form

K = - µ 2 m 3 2L 2 . (2.25)
L is the only function of a (up to an additive constant) such that

dM dt = n = ∂K ∂L = µ 2 m 3 L 3 .
(2.26)

The coordinates (L, G, H; M, ω, Ω) are called action-angles coordinates because the Hamiltonian only depends on the actions (L, G, H) and is thus trivially integrable. Indeed, the actions are constant and the angle variables evolve at a constant frequency. Besides, the Keplerian Hamiltonian is said to be degenerated because it does not depends on all actions and thus the angles ω and Ω are also constant.

The coordinates (2.24) are ill-defined in the case of a null inclination or circular orbit because we cannot define the angles M, ω and Ω in such a configuration. To solve this issue, we introduce the modified Delaunay coordinates

Λ = L = m √ µa; λ = M + ̟, C = L -G = Λ 1 - √ 1 -e 2 ; -̟ = -ω -Ω, (2.27) D = G -H = G(1 -cos(i)); -Ω.
The advantage is that now, the mean longitude, λ, is always well-defined and the longitude of the perihelion ̟ and the longitude of the node Ω are only-ill defined when respectively C and D are null. As a result, the tuples (C, -̟) and (D, -Ω) constitute polar coordinate systems. The associated canonical cartesian coordinates are called the Poincaré coordinates [START_REF] Poincaré | Les Méthodes Nouvelles De La Mécanique Céleste[END_REF], and are defined by

ξ = √ 2C cos(̟); η = - √ 2C sin(̟), p = √ 2D cos(Ω); q = - √ 2D sin(Ω).
(2.28)

We also introduce the associated canonical complex coordinates that we will call the complex Poincaré coordinates [START_REF] Laskar | Analytical Framework in Poincare Variables for the Motion of the Solar System[END_REF]) (2.29) where ι = √ -1. Note that there is a factor √ 2 between x and ξιη (resp. y and pιq). For small eccentricities and inclinations the Poincaré coordinates are proportional to the complex eccentricity and inclination. Indeed, we have x = Λ 2 ee ι̟ + O(e 3 ) and y = Λ 2 ie ιΩ + O(e 3 , i 3 ).

x = √ Ce ι̟ ; -ιx = -ι √ Ce -ι̟ , y = √ De ιΩ ; -ιȳ = -ι √ De ιΩ ,
(2.30)

Planetary system Hamiltonian

The planetary N +1 body problem consists in studying the motion of N +1 point-like particles P 0 , P 1 , . . . P N of masses m 0 , m 1 , . . . , m N under gravitational interactions.

Here, P 0 represents the star and (P k ) 1≤k≤N the planets, thus the mass m 0 is much larger than any planet mass m k . The dynamics are dominated by the interaction between the star and each of the planets and the planet-planet interactions act as perturbations. The scale of the perturbation is given by the planets-to-star mass ratio. Throughout this manuscript, we will denote ε this parameter with

ε = m 1 + • • • + m N m 0 .
(2.31)

We define O, the origin of an inertial frame and consider (ũ k , u k ) k=0,...,N , the canonical coordinates in this frame. Here, u k = --→ OP k is the position of the k-th body with respect to O and ũk = m k uk is body k linear momentum. Newton's equations of motion form a differential system of order 6(N + 1) and can be written in Hamiltonian form using Hamiltonian

H inert = 1 2 N k=0 ũk 2 m k - 0≤j<k≤N Gm j m k ∆ jk (2.32)
where ∆ jk = u ju k , and G is the constant of gravitation.

The N + 1 body problem is not integrable for N > 1. However, a change of coordinates allows to write H inert as an integrable Hamiltonian composed of a sum of independent Keplerian Hamiltonians (2.7) and a perturbation of relative order ε with respect to H inert . The exact expressions of the integrable part and of the perturbation depends on the particular coordinate transformation that is applied.

Several choices are possible, we here use the canonical heliocentric coordinates (r k , r k ) 1≤k≤N [START_REF] Poincaré | Les Méthodes Nouvelles De La Mécanique Céleste[END_REF] -see also (Laskar, 1990a;[START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] -defined as

r 0 = N k=0 m k m tot u k , r k = u k -u 0 1 ≤ k ≤ N r0 = N k=0 ũk , rk = ũk - m k m tot r0 1 ≤ k ≤ N (2.33)
where m tot = N k=0 m k is the total mass of the system. Note that while the positions are heliocentric, the momenta still derive from the barycentric velocities. Here r 0 represents the position of the barycenter of the system. Using (2.33), the Hamiltonian H inert (2.32) becomes

H helio = r0 2 2m tot Hcm + N k=1 rk 2 2m k - Gm 0 m k r k H 0 + N k=1 rk 2 2m 0 - 1≤j<k≤N Gm j m k ∆ jk εH 1 . (2.34)
Note that the Hamiltonian no longer depends on r 0 so r0 is conserved i.e. the barycentre keeps its inertial motion. Since r0 only appears in the term H cm , the dynamics of the barycentre and the planet dynamics are independent. We can thus take r0 = 0 without loss of generality.

H 0 is a sum of the Hamiltonians of disjoint Kepler problems of a single planet of mass m k around a fixed star of mass m 0 . A set of adapted canonical variables for H 0 will thus be given by the Delaunay coordinates (see section 2.1) associated with the elliptical elements, (a k , e k , i k , λ k , ̟ k , Ω k ), where a k is the semi major axis, e k the eccentricity, i k the inclination, λ k the mean longitude, ̟ k the longitude of the perihelion, and Ω k the longitude of the node. They are defined as the elliptical elements associated with the Hamiltonian

K k = rk 2 2m k - µm k r k = - µm 3 k 2Λ 2 k (2.35) with µ = Gm 0 .
Using this particular splitting of H helio (sometimes called democratic heliocentric), has the advantage that the Keplerian Hamiltonians (2.35) share the same central mass m 0 and the two-body planet masses are the real planet masses. As a consequence they are particularly convenient for an analytical and theoretical work. However, εH 1 does not vanish when considering the problem of a single planet, which means that H 0 does not corresponds to the Keplerian Hamiltonian for a single planet.

It is possible to change definition of H 0 and εH 1 such that H 0 corresponds to the planets motion if there were not interacting. Indeed, one can develop the kinetic term N 1 rk 2 in (2.34) such that we have

H helio = N k=1 rk 2 2β k - µ k β k r k H Classical 0 + 1≤j<k≤N rj • rk m 0 - Gm j m k ∆ jk εH Classical 1 , (2.36)
where It should be noted that in both cases, the perturbation part is not integrable (for N > 1). Another set of coordinates, the Jacobi variables, allows to write the Hamiltonian as sum of independent Keplerian terms and a perturbation that only depends of the positions. Therefore the perturbation term is integrable as well. We give the details of the construction of the Jacobi coordinates in appendix A, see also (Laskar, 1990a).

µ k = G(m 0 + m k ) and β k = m 0 m k /(m 0 + m k ).
We stick with the Delaunay coordinates that result from the democratic heliocentric splitting (2.34). We have 6 coordinates for each planet, using (2.24), we have

Λ k = m k √ µa k ; λ k , C k = Λ k 1 -1 -e 2 k ; -̟ k ,
(2.37)

D k = Λ k 1 -e 2 k (1 -cos(i k )); -Ω k .
We also define the associated complex Poincaré coordinates (x k , y k ; -ιx k , -ιȳ k ) as in (2.29).

There is no analytical expression for the interaction term εH 1 in function of the coordinates (2.37). However, we can develop εH 1 in Fourier series of the mean longitudes λ k and power series of (x k , y k ; -ιx k , -ιȳ k ). The series takes the form (2.38) where k ∈ Z N , l, l, l ′ , l′ ∈ N N , and more generally the bold letters represents vectors of size N . The indices l, l, l ′ , l′ are positive since εH 1 is in general not singular for circular or planar orbits. The expression of the coefficients C k,l, l,l ′ , l′ (Λ) depend on Λ and on the planet masses and can be computed using the method described in [START_REF] Laskar | Analytical Framework in Poincare Variables for the Motion of the Solar System[END_REF][START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF]. Besides, the coefficient C are real and

εH 1 = k,l, l,l ′ , l′ C k,l, l,l ′ , l′ (Λ) N i=1 x l i i xl i i y l ′ i i ȳl′ i i e ιk•λ ,
C k,l, l,l ′ , l′ (Λ) = C -k, l,l, l′ ,l ′ (Λ).
Since all terms in εH 1 only contain contributions from two planets, most of the coefficients in the previous sum are null. Nevertheless, it is convenient to define the more general expression. We can also write the previous development for the modified Delaunay coordinates

εH 1 = k,l, l,l ′ , l′ C k,l, l,l ′ , l′ (Λ) N i=1 C l i + li 2 i D l ′ i + l′ i 2 i e ι(k•λ+(l-l)•̟+(l ′ -l′ )•Ω) ,
(2.39)

Conserved quantities in planet dynamics

Just as in the case of the two-body problem, the total linear momentum and the total angular momentum are conserved in the N + 1 body problem. We already used the conservation of the total linear momentum in the previous section to reduce the problem to heliocentric coordinates and only consider the relative motion of the planets with respect to the star. We now prove the conservation of angular momentum and its implications on the form of the series expansion of εH 1 . The total angular momentum of the system is defined as

G = N k=0 u k × ũk .
(2.40)

A straightforward computation shows that G keeps the same form in canonical heliocentric coordinates (2.41) where the last equality comes from the assumption that we placed ourselves in the barycentric frame. We see that the total angular momentum is the sum of the Keplerian angular momenta

G = r 0 × r0 + N k=1 r k × rk = N k=1 r k × rk ,
G = N k=1 G k K k = N k=1 m k µa k (1 -e 2 k )K k .
(2.42)

From section 2.1, we have {H 0 , G} = 0. Therefore,

dG dt = {εH 1 , G} = 1 m 0 j,k rk × rj - j =k Gm j m k ∆ 3 jk r j × r k = 0. (2.43)
The conservation of G leads to a natural choice for the orientation of the frame because we can always choose our coordinates such that G is along the z-axis. With this choice, the coplanar motion takes place in the horizontal plane i.e. when the orbit inclinations are null. Moreover, the norm of G becomes

G = G • k = N k=1 m k µa k (1 -e 2 k ) cos(i k ) = N k=1 Λ k -C k -D k . (2.44)
With the choice of the vertical axis along G we have not fully exploited the symmetries of the problem. Indeed, the dynamics should be invariant by a rotation along the z-axis of an arbitrary angle. It corresponds to add a constant angle to all angles λ k , ̟ k and Ω k . From equation (2.39) we deduce that the only non-zeros coefficients verifies the relation

N i=1 k i + (l i -li ) + (l ′ i -l′ i ) = 0.
(2.45)

The relation (2.45) is the first d'Alembert rule. Using Noether's theorem, the invariance of H by a rotation along the z-axis is a consequence of the conservation of G • k. Indeed, the computation of the Poisson bracket {εH 1 , G} = 0 in Delaunay coordinates using the expressions (2.39) and (2.44), gives directly the relation (2.45). Additionally, the system is invariant by the reflection along the horizontal plane. In Poincaré coordinates, this transformation corresponds to (y; -ιȳ) → (-y, ιȳ). We deduce that for the non-zeros terms in the formal expansion εH 1 (2.38), the sum N i=0 l ′ i + l′ i should have an even value. In other words, the Hamiltonian is even in the inclinations. This second constraint on the indices is the second d'Alembert rule.

Secular dynamics

Lie series averaging

In Poincaré coordinates, it is obvious that the motion along the orbits is much faster than the evolution of the other variables. Indeed, we have

H helio = H 0 (Λ k ) + εH 1 (Λ k , C k , D k ; λ k , ̟ k , Ω k ),
(2.46) so the variation of the λ k is of the order ε -1 faster than the other variables. A Hamiltonian H(p, q) that takes the form H(p, q) = H 0 (p) + εH 1 (p, q), (2.47) is said to be quasi-integrable. Indeed H 0 is integrable as it only depends on the actions p and at the zeroth order in ε, the motion can be approximated by the flow of H 0 alone and H 1 will be considered as the perturbation of the system. The general theory of quasi-integrable Hamiltonian is beyond the scope of this introduction so I will only focus on the determination of the first order secular Hamiltonian while highlighting the challenges that arise from the N -body problem.

The main idea of the perturbation theory is to search for a canonical change of variables ε-close to the identity (p, q) = (p 1 , q 1 ) + ε(P 1 (p 1 , q 1 ), Q 1 (p 1 , q 1 )),

(2.48) such that when substituting (2.48) into the Hamiltonian (2.47) we have

H 1 (p 1 , q 1 ) = H 0 (p 1 ) + ε H1 (p 1 ) + ε 2 H 2 (p 1 , q 1 ), (2.49)
where H1 and H 2 are function of the same order as H 0 . H1 is integrable and is generally the average of H 1 over the angles q 1 . The dynamics after this regularization is given by q 1 (t) = ∇ 1 p (H 0 + ε H1 )t + q 1 (0) + O(ε 2 ). The motion of the original coordinates (p, q) is then obtained by the relation (2.48). In particular the motion of p presents oscillations of order ε.

If this first step is successful, the perturbation is now of order ε 2 and it is in principle possible to iterate the process in order to approximate the dynamics up to a perturbation of arbitrarily small order ε r+1 . The resulting Hamiltonian is called a Birkhoff normal form of order r. In the case of (2.49), H 1 is a first order normal form. However, in general there exists an optimal order where the process diverges beyond. Just as in the first order case, the original variables dynamics is recovered by composing the successive coordinates transformations from the optimal order approximation.

In the method detailed above, the challenge is in finding a canonical transformation verifying the desired properties. We here illustrate the method of the Lie series [START_REF] Deprit | Canonical Transformations Depending on a Small Parameter[END_REF] on the determination of the first order secular Hamiltonian.

First order secular Hamiltonian

We want to find a transformation of the Delaunay coordinates such that in the new coordinates (Λ 1 , C 1 , D 1 ; λ 1 , -̟ 1 , -Ω 1 ), the Hamiltonian takes the form

H 1 = H 0 (Λ 1 ) + ε H1 (Λ 1 , C 1 , D 1 ; ̟ 1 , Ω 1 ) + ε 2 H 2 (Λ 1 , C 1 , D 1 ; λ 1 , ̟ 1 , Ω 1 ). (2.50)
Note that contrarily to the case (2.49), here H1 is not integrable but no longer depends on the mean longitudes. Indeed, we only aim to get rid of the rapid evolution by averaging it from the perturbation. We look for a transformation of the form

(Λ, λ, C, D, ̟, Ω) = φ 1 εW (Λ 1 , C 1 , D 1 , λ 1 , ̟ 1 , Ω 1 ), (2.51)
where φ 1 εW = exp(L εW ) is the the flow at time 1 of a function εW to be determined. This transformation is canonical because a Hamiltonian flow preserves the symplectic form. We have

H(Λ, C, D, λ, ̟, Ω) = H(φ 1 εW (Λ 1 , C 1 , D 1 , λ 1 , ̟ 1 , Ω 1 )) = H 1 (Λ 1 , C 1 , D 1 , λ 1 , ̟ 1 , Ω 1 ).
(2.52)

The new Hamiltonian H 1 is determined as the evolution of H along the flow of L W

H 1 = exp(L εW )H| (Λ,C,D,λ,̟,Ω)=(Λ 1 ,C 1 ,D 1 ,λ 1 ,̟ 1 ,Ω 1 )) .
(2.53)

Let us expand H 1 at the second order in ε

H 1 = H 0 + εH 1 + ε{W, H 0 } + ε 2 {W, H 1 } + ε 2 2 {W, {W, H 0 }} + O(ε 3 ), (2.54)
where every term is evaluated with the new variables. H 1 is equal to the averaged Hamiltonian at first order in ε if the first terms of (2.50) and (2.54) are equal

ε H1 = εH 1 + ε{W, H 0 }. (2.55)
Equation (2.55) is called the homologic equation. In order to solve it, we develop in Fourier series of the angles λ 1 , the Hamiltonians W and H 1 . We write

W (Λ 1 , λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 ) = k∈Z N w (k) (Λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 )e ιk•λ 1 , (2.56)
and

H 1 (Λ 1 , λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 ) = k∈Z N h (k) 1 (Λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 )e ιk•λ 1 .
(2.57)

Since H1 does not depend on the mean longitudes, for every k ∈ Z N \{0}, the equation (2.55) becomes h

(k) 1 -ι(k • n 1 )w (k) = 0, (2.58)
where n 1 = ∇ Λ 1 H 0 are the mean motion computed in the new coordinates. We therefore obtain the Fourier coefficients of W as

w (k) = h (k) 1 ι(k • n 1 ) . (2.59) If (k • n 1
) > ε, the new variables are ε-close to the original ones and can be computed by the transformation φ 1 εW . At first order in ε, the coordinates (Λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 ) correspond to their average value over the mean longitudes. If we neglect the terms of order ε 2 , the Hamiltonian (2.50) no longer depends on the mean longitudes. Therefore, the Λ 1 k are conserved. This approximation is called the secular approximation and allows to study the long term evolution of the orbit's parameters (C k , D k , ̟ k , Ω k ). In order to avoid complicated notations, I will no longer use explicitly the averaged variables (Λ 1 , C 1 , D 1 , ̟ 1 , Ω 1 ) whenever I study the secular system I will instead simply use the original notation without the superscript 1.

In the term of order ε 2 of (2.50), there are products of W and H 1 . As a result, the development of H 2 contains terms with contributions from up to three planets contrarily to H 1 . However, due to the expression of W , the d'Alembert relations still hold. While at first order in ε, the Lie series method is equivalent to directly using the averaged dynamics, new terms will appear at higher order.

Lagrange-Laplace solution

There is no analytical expression in Poincaré coordinates for the averaged Hamiltonian H1 . However, it is possible to study analytically the truncated expansion in power series of (x k , y k ) of (2.38). The development of the solution of degree two in (x k , y k ) was initially proposed by Lagrange for the development in inclinations and Laplace for the development in eccentricities.

Since the semi-major axes are constant, the Keplerian part can be dropped and the Λ k appear only as parameters. From the second d'Alembert relation, we know that H1 is even in the inclination degrees of freedom in the sense that N i=1 l ′ i -l′ i is an even integer. Because we only consider the secular term, we have k i = 0 in (2.45) so we deduce that the secular Hamiltonian is also even in the eccentricity degrees of freedom since

N i=1 l i -li = -N i=1 l ′ i -l′ i .
The Lagrange-Laplace Hamiltonian can be written as (e.g. [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] 

εH LL = xT • Q x • x + ȳT • Q y • y, (2.60) 
where Q x and Q y are two symmetric matrices that depend on the masses and semi-major axes. The coefficients of Q x and Q y have for expression

Q x k,l =            - Gm k m l a l C 1 (α k,l ) √ Λ k Λ l for k = l j =k - Gm k m j a j C 2 (α k,j ) Λ k for k = l (2.61)
and

Q y k,l =            - Gm k m l a l C 2 (α k,l ) √ Λ k Λ l for k = l j =k Gm k m j a j C 2 (α k,j ) Λ k for k = l , (2.62)
where α k,l = a k /a l and

C 1 (α) = 3 4 αb (0) 3/2 (α) - α 2 + 1 2 b (1) 3/2 , C 2 (α) = 1 4 αb (0) 3/2 (α), (2.63)
where b (k) s (α) are the Laplace coefficients (see chapter 4). It should be noted that C 1,2 (α -1 ) = αC 1,2 (α) so the coefficients in (2.61) and (2.62) are symmetric.

The equations of motion are

dx dt = ι ∂εH LL ∂ x = ιQ x • x, dy dt = ι ∂εH LL ∂ ȳ = ιQ y • y. (2.64)
They are a linear system of ordinary differential equations (ODE). The solution is a sum of periodic terms of frequencies given by the eigenvalues of the two matrices.

The frequencies of the motion of x are usually called g k and those associated with the motion of y are noted s k . Due to the conservation of angular momentum, one of the s k frequency should be zero. In the Solar System this is traditionally s 5 . While at first order, the evolution of the eccentricities and inclination are independent, there exists terms mixing eccentricities and inclinations in the higher order expansion.

Mean motion resonances

When one solves the homologic equation ( 2.55), it can happen that for some k ∈ Z N , k • n < ε. In this case the transformation is not defined. Such a combination of mean motions is called a mean motion resonance (MMR). Resonances and MMR in particular are the main source of chaos and instability in planets dynamics.

When a system is close to a MMR, the transformation W is no longer close to the identity and therefore, the expansion in power of ε is no longer accurate. As a result, it is not possible to average over every mean longitudes. Indeed, if k • n = 0, the mean longitudes are no longer independent. Nevertheless, it is possible to average over the non-resonant angles and obtain a normal form that still depends on the resonant combination of angles. The effect of the MMR on dynamical stability is developed in chapter 4.

The sum k = n i=1 k i is called the order of the resonance. From the d'Alembert rule (2.45) we deduce that the terms associated with a particular resonance k also verifies

k = - N i=1 (l i -li ) + (l ′ i -l′ i ).
(2.65)

In particular, the terms associated with a MMR of order k are at least of degree k in eccentricities and inclinations. In the case of first order MMR, the leading order only depends on eccentricities since the Hamiltonian is even in the inclination variables.

Chapter 3

AMD-stability and the classification of planetary systems

The content of this chapter was initially published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF].

Introduction

The increasing number of known planetary systems has made necessary the search for a possible classification of these planetary systems. Ideally, such classification should not require heavy numerical analysis as it needs to be applied to large sets of systems. Some possible approach can rely on the stability analysis of these systems, as this stability analysis is also part of the process used to consolidate planetary systems discovery. The stability analysis can also be considered as a key part of the understanding of the wider question of the architecture of planetary systems. In fact, the distances between planets and other orbital characteristic distributions is one of the oldest question in celestial mechanics, the most famous attempts to set laws for this distribution of planetary orbits being the so-called Titius-Bode power laws (for a review, see [START_REF] Nieto | The Titius-Bode Law of Planetary Distances: Its History and Theory[END_REF][START_REF] Graner | Titius-Bode Laws in the Solar System. 1: Scale Invariance Explains Everything[END_REF], see also table 1.

1).

The recent research has focused on statistical analysis of observed architecture [START_REF] Fabrycky | Architecture of Kepler's Multi-Transiting Systems. II. New Investigations with Twice as Many Candidates[END_REF][START_REF] Lissauer | Architecture and Dynamics of Kepler 's Candidate Multiple Transiting Planet Systems[END_REF][START_REF] Mayor | The HARPS Search for Southern Extra-Solar Planets XXXIV. Occurrence, Mass Distribution and Orbital Properties of Super-Earths and Neptune-Mass Planets[END_REF], eccentricity distribution [START_REF] Moorhead | The Distribution of Transit Durations for Kepler Planet Candidates and Implications for Their Orbital Eccentricities[END_REF][START_REF] Shabram | The Eccentricity Distribution of Short-Period Planet Candidates Detected by Kepler in Occultation[END_REF][START_REF] Xie | Exoplanet Orbital Eccentricities Derived From LAMOST-Kepler Analysis[END_REF] or inclination distribution [START_REF] Fang | Architecture of Planetary Systems Based on Kepler Data: Number of Planets and Coplanarity[END_REF][START_REF] Figueira | Comparing HARPS and Kepler Surveys[END_REF], see [START_REF] Winn | The Occurrence and Architecture of Exoplanetary Systems[END_REF] for a review.

These observations analysis have been compared with models of systems architecture [START_REF] Fang | Are Planetary Systems Filled to Capacity? A Study Based on Kepler Results[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF][START_REF] Titius | Betrachtung Über Die Natur, Vom Herrn Karl Bonnet[END_REF]. These theoretical works usually used empirical criteria based on Hill separation proposed by [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF] and refined by [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF] and [START_REF] Smith | Orbital Stability of Systems of Closely-Spaced Planets[END_REF] and [START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF]. Those stability criteria usually multiply the Hill radius by a numerical factor ∆ sep empirically evaluated to a value around 10. They are extensions of the analytical results on Hill spheres for the 3-body problem [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF][START_REF] Petit | Hill Stability in the AMD Framework[END_REF], see also chapter 5).

Works on chaotic motion caused by overlap of mean motion resonances (MMR, [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF][START_REF] Ramos | The Resonance Overlap and Hill Stability Criteria Revisited[END_REF][START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF][START_REF] Hadden | A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets[END_REF] could justify the Hill-type criteria, but the results on the overlap of MMR island are valid only for close orbits and for short term stability.

Another approach to stability analysis is to consider the secular approximation of a planetary system. In this framework, the conservation of semi-major axis leads to the conservation of another quantity, the Angular Momentum Deficit (AMD, [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF][START_REF] Laskar | On the Spacing of Planetary Systems[END_REF]. An architecture model can be developed from this consideration [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF]. The AMD can be interpreted as a measure of the orbits' excitation [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF] that limit the planets close encounters and ensure the longterm stability.

Therefore a stability criterion can be derived from the semi-major axis, the masses and the AMD of a system. Besides, it can be demonstrated that the AMD decreases during inelastic collisions (see chapter 7), accounting for the gain of stability of a lower multiplicity system. Here we extend the previous analysis of [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], and derive more precisely the AMD-stability criterion that can be used to establish a classification of the multi-planetary systems.

The main goal of the article [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] was to present the AMDstability and the classification that results from it. However, in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], which was published as a letter, the detailed computations were refereed as a preprint to be published. Although this preprint was in nearly final form for more than a decade, and had even been provided to some researchers (Hernández-Mena and Benet, 2011), it was still unpublished. As a result, the fundamental concepts of AMD, the full description and all proofs for the model that was described in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], and the associated appendices were published altogether in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF]. The article material is thus close to the unpublished preprint.

In this thesis, I chose to separate in two chapters, the definition of the AMDstability and the classification of the planetary systems (this chapter), from the matter related to the planet formation toy-model described in (Laskar, 2000, developed in chapter 7). Moreover, I also added to chapter 7 some unpublished improvements made during my thesis. As such, I believe that the two chapters gain in coherence and readability.

Sections 3.2 and 3.3 are dedicated to the introduction of the AMD and the development of the AMD-stability. In section (section 3.4), we show how the AMDstability criterion can be used to develop a classification of planetary systems. This AMD-stability classification is then applied to a selection of 131 multi-planet systems from the exoplanet.eu database with known eccentricities.

Angular Momentum Deficit (AMD)

We consider the N -planetary system introduced in section 2.2 and we use the heliocentric variables (eq. 2.33) as well as the Delaunay coordinates defined in equation (2.37).

Let G be the total angular momentum. When expressed in heliocentric variables, the angular momentum is thus the sum of the angular momentum of the Keplerian problems of the unperturbed Hamiltonian H 0 (eq. 2.34). In particular, if the angular momentum direction is assumed to be the axis z, the norm of the angular momentum is

G = N k=1 Λ k -C k -D k = N k=1 Λ k 1 -e 2 k cos i k (3.1)
where Λ k = m k √ µ a k . For such a system, the angular momentum deficit (AMD) is defined as the difference between the norm of the angular momentum of a coplanar and circular system with the same semi-major axis values, and the norm of the angular momentum G, i.e. [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF][START_REF] Laskar | On the Spacing of Planetary Systems[END_REF])

C = N k=1 Λ k -G = N k=1 C k + D k = N k=1 Λ k 1 -1 -e 2 k cos i k . (3.2)
In the secular approximation, the Λ k are conserved so the total AMD C is conserved due to the conservation of angular momentum. We show that this quantity is conserved in the secular system at all orders of averaging (see Appendix B.2). For small eccentricities and inclinations, we can write

C = N k=1 Λ k 2 (e 2 k + i 2 k ) + O(|e, i| 4 ). (3.3) 
We see that the AMD acts as a weighted sum of the eccentricities and inclinations of a system. In other words C measures the degree of non linearity of the orbital dynamics and can be considered as a dynamical temperature. Since its definition [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF], the AMD has been used extensively in planet formation in order to measure the excitation of systems created by numerical simulations e.g. [START_REF] Chambers | Making More Terrestrial Planets[END_REF]. Indeed, it simplifies the analysis of planetary systems by replacing the many degree of freedom of eccentricities and inclinations by a single parameter.

In this chapter, we present a classification of exoplanetary systems based on their AMD. Another application of the conservation of AMD is developed in chapter 7 where I present a simplified model of planetary formation as well as consideration on the planetary systems architecture.

AMD-stability

We will say that a planetary system is AMD-stable if the AMD amount in the system is not sufficient to allow for planetary collisions. Since the AMD is conserved in the secular system, we conjecture that in absence of short period resonances, the AMD-stability ensures the practical1 long time stability of the system. Thus for an AMD-stable system, short-time stability will imply long time stability.

The condition of AMD-stability is obtained when the orbits of two planets of semi-major axis a, a ′ cannot intersect under the assumption that the total AMD be greater or smaller than 1 depending of the value of α. We have thus the cases displayed on figure 3.1, (a) : α < 12 ⇐⇒ e 0 > 1 and e ≤ 1, (b) : α > 12 ⇐⇒ e 0 < 1 and e ≤ e 0 (3.9) and the limit case α = 1/2, for which e 0 = 1. In all cases, the Lagrange multipliers condition is written λ∇D(e, e ′ ) = ∇C (e, e ′ ), (3.10) which gives 3.11) This relation allows to eliminate e ′ in the collision condition (3.6), which becomes an equation in the single variable e, and parameters (α, γ).

√ 1 -e ′2 e ′ = √ α γ √ 1 -e 2 e (
F (e, α, γ) = αe + γe α(1 -e 2 ) + γ 2 e 2 -1 + α = 0. (3.12)
F (e, α, γ) is properly defined for (e, α, γ) in the domain D e,α,γ defined by e ∈ [0, 1], α ∈]0, 1] and γ ∈]0, +∞[, as in this domain, 1e 2 + γ 2 e 2 /α > 0. We have also

∂F ∂e (e, α, γ) = α + αγ (α(1 -e 2 ) + γ 2 e 2 ) 3/2 . (3.13)
Thus ∂F ∂e > 0 on the domain D e,α,γ and F (e, α, γ) is strictly increasing with respect to e for e ∈ [0, 1]. Moreover, as 0 < α < 1,

F (0, α, γ) = -1 + α < 0 ; F (1, α, γ) = 2α > 0 ; (3.14) and F (e 0 , α, γ) = γe 0 α (1 -e 2 0 ) + γ 2 e 2 0 > 0. (3.15)
The equation of collision (3.12) has thus always a single solution e c in the interval ]0, min(1, e 0 )[. This ensures that this critical value of e will fulfill the condition (3.8). The corresponding value of the relative AMD C c (α, γ) = C (e c , e ′ c ) is then obtained through (3.7). When α → 0, we see from equation (3.6) that the limit of e ′ is 1. We conclude that lim α→0 C c = 1.

Critical AMD C c (α, γ)

We have thus demonstrated that for a given pair of ratios of semi-major axes α and masses γ, there is always a unique critical value C c (α, γ) of the relative AMD C = C/Λ ′ which defines the AMD-stability. The system of two planets is AMD-stable if and only if

C = C Λ ′ < C c (α, γ) . (3.16) Table 3.1 -Special values of C c (α, γ). The detail of the computations is provided in Annex C. γ α e c (α, γ) e ′ c (α, γ) C c (α, γ) γ → 0 α < 1/2 1 -2 1-α (1-2α) 2 γ 2 1 -2α + 2 α(1-α) (1-2α) 2 γ 2 1 -2 α(1 -α) + √ αγ γ → 0 α = 1/2 1 -(4γ) 2/3 2 1/3 γ 2/3 γ √ 2 γ → 0 α > 1/2 e 0 - e 0 √ α(2α-1) γ √ αe 0 γ √ 2α-1 √ α -2 -1 α γ γ → +∞ 0 < α < 1 1 γ 1-α √ 2-α 1 -α -1 γ α(1-α) √ 2-α 1 -α(2 -α) - √ α(1-α) 2 2-α 1 γ 1 0 ≤ α ≤ 1 1- √ 1-α+α 2 α √ 1 -α + α 2 -α 1 + √ α - √ α-2+2 √ 1-α+α 2 √ α - √ α 1 -2α + 2 √ 1 -α + α 2 √ α 0 ≤ α ≤ 1 1-α 1+α 1-α 1+α (1 - √ α) 2
The value of the critical AMD C c (α, γ) is obtained by computing first the critical eccentricity e c (α, γ) which is the unique solution of the collisional equation ( 3

.12) in the interval [0, 1]. The critical AMD is then C c (α, γ) = C (e c , e ′ c ) (eq. 3.
7) where the critical value e ′ c is obtained from e c through equation (3.6). It is important to note that the critical AMD, and thus the AMD-stability condition depends only on (α, γ).

Behaviour of the critical AMD

We will now analyse the general properties of the critical AMD function C c (α, γ). As ∂F ∂e (e, α, γ) > 0, on the domain D e,α,γ , we can apply the implicit function theorem, which then ensures that the solution of the collision equation (3.12), e c (α, γ), is a continuous function of γ (and even analytic for γ ∈]0, +∞[). Moreover, on D e,α,γ ,

∂F ∂γ (e, α, γ) = αe (1 -e 2 ) (α (1 -e 2 ) + γ 2 e 2 ) 3/2 ≥ 0 .
(3.17)

We have also

∂e c ∂γ (α, γ) = - e c (1 -e 2 c ) (α (1 -e 2 c ) + γ 2 e 2 c ) 3/2 + γ ≤ 0 (3.18)
and e c (α, γ) is a decreasing function of γ. For any given values of the semi-major axes ratio α, and masses, γ, we can thus find the critical value C c (α, γ) which allows for a collision (3.16). For the critical value C c (α, γ), a single solution corresponds to the tangency condition (fig. 

∂C ∂γ = √ α 1 - √ 1 -e 2 + γ √ α e √ 1 -e 2 ∂e ∂γ + e ′ √ 1 -e ′2 ∂e ′ ∂γ . (3.19)
We will call β the AMD-stability coefficient. For pairs of planets, β < 1 means that collisions are not possible. The pair of planets will then be called AMD-stable. We extend naturally this definition to multiple planets systems. A system is AMDstable if every adjacent pair is AMD-stable2 . We can also define an AMD-stability coefficient regarding to the collision with the star. We define β S , the AMD-stability coefficient of the pair formed by the star and the innermost planet. For this pair, we have α = 0 and thus C c = 1. With this simplification β S = C/Λ, where Λ is the circular momentum of the innermost planet.

Sample studied and methods of computation

We have studied the AMD-stability of some systems referenced in the catalogue The Extrasolar Planets Encyclopaedia3 [START_REF] Schneider | Defining and Cataloging Exoplanets: The Exoplanet[END_REF]. From the catalogue, we selected the 131 systems4 that have measured masses, semi-major axis and eccentricities for all their planets. Since the number of systems with known mutual inclinations is too small, we assumed the systems to be almost coplanar. This claim is supported by previous statistical studies that constrain the observed mutual inclinations distribution [START_REF] Fang | Architecture of Planetary Systems Based on Kepler Data: Number of Planets and Coplanarity[END_REF][START_REF] Lissauer | Architecture and Dynamics of Kepler 's Candidate Multiple Transiting Planet Systems[END_REF][START_REF] Fabrycky | Architecture of Kepler's Multi-Transiting Systems. II. New Investigations with Twice as Many Candidates[END_REF][START_REF] Figueira | Comparing HARPS and Kepler Surveys[END_REF]. For some systems where the uncertainties were not provided, we consulted the original papers or the Exoplanet Orbit Database5 [START_REF] Wright | The Exoplanet Orbit Database[END_REF]. On figure 3.3, we compare the cumulative distribution of adjacent planets period ratios of our sample and the one of all the multiplanetary systems of the database exoplanet.eu. The sample is biased toward higher period ratios. Indeed, most of the multiplanetary systems of the database come from the Kepler data. Since these systems are mostly tightly packed ones, their period ratios are rather small. However, the majority of them do not have measured eccentricities and are consequently, excluded from this study. Our sample contains thus mostly systems detected by radial velocities (RV) methods that have on average, higher period ratios.

Since all the AMD computations are done with the relative quantities α and γ, we can use equivalent quantities that are measured more precisely in observations than the masses and semi-major axis. We used the period ratios elevated to the power 3/2 instead of the semi-major axis ratios, and the minimum mass m sin(i) for RV systems. This is not a problem for the computation of γ because if we assume that the systems are close to coplanarity, then

γ = m m ′ = m sin(i) m ′ sin(i) ≃ m sin(i) m ′ sin(i ′ ) . (3.24)
Even though we assume the systems to be coplanar, we want to take into account the contribution of mutual inclinations to the AMD. Since we have only access to the eccentricities, we define the coplanar AMD of a system C p , as the AMD of the 

Propagation of uncertainties

The uncertainties are propagated using Monte Carlo simulations of the distributions.

After determining the distributions from the input quantities (m, a, e), we generate 10,000 values for each of these parameters. We then compute the derived quantities (α, γ, C c , β. . . ) in these 10,000 cases and the associated distributions.

For masses (or m sin(i) if no masses were provided) and periods, we assume a Gaussian uncertainty centered on the value referenced in the database and with standard deviation, the half width of the confidence interval. The distributions are truncated to 0.

For eccentricity distributions, the previous method does not provide satisfying results. Most of the Gaussian distributions constructed with the mean value and confidence interval given in the catalogue make probable negative eccentricities (in the case of almost circular planets with large upper bound on the eccentricity). A solution is to assume that the rectangular eccentricity coordinates (e cos ω, e sin ω) are Gaussian. Since the average value of ω has no importance in the computation of the eccentricity distribution, we assume it to be 0. Therefore, e sin ω has 0 mean. We define the distribution of ẽ = e cos ω as a Gaussian distribution with mean value, the value referenced in the catalogue and standard deviation, the half-width of the confidence interval. If we assume e sin ω has the same standard deviation as e cos ω, we have e sin ω = ẽẽ . The distribution of e is then deduced from the ẽ one using

e = ẽ2 + (ẽ -ẽ ) 2 . (3.27)
Due to the Gaussian assumption, some masses or periods can take values close to 0 with a small probability (less than a few percent). This causes the distributions of α or γ to diverge if it happens that a ′ or m ′ can take values close to 0. To address this issue, a linear expansion around the mean value is used for the quotients, for example for α, .28) with ∆a ′ = a ′a ′ . To consider AMD-stable a pair, we require β < 1 in at least 86 % of the system realizations. This value corresponds to a 1σ uncertainty.

α = a a ′ = a a ′ 1 - ∆a ′ a ′ , ( 3 
datasets. Then, we record the two minimum values (at least distant by more than ∆x) and plot the distribution of these minima on Figure 3.11b. From these simulations, we see that on average, 17.2% of the samples have a minimum as small as R u . However, the presence of a secondary peak as significant as the second one of R u has a probability of 1.3%. Moreover, the R u concentrations are clearly situated around small integer ratios which would not be the case in general for a randomly generated sample.

We thus demonstrated here that the AMD-unstable systems period ratios are significantly more concentrated around small integer ratios than a random sample of the exoplanet.eu database. While we do not prove that the pairs of planets close to these ratios are actually in MMR, this result motivates further investigations toward the behaviour of these pairs in a context of secular chaotic dynamics.

Conclusion

The Angular Momentum Deficit (AMD [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF][START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] is a key parameter for the understanding of the outcome of the formation processes of planetary systems (e.g. [START_REF] Chambers | Making More Terrestrial Planets[END_REF][START_REF] Morbidelli | Building Terrestrial Planets[END_REF][START_REF] Titius | Betrachtung Über Die Natur, Vom Herrn Karl Bonnet[END_REF]. We have shown here how AMD can be used to derive a well defined stability criterion : the AMD-stability. The AMD-stability of a system can be checked by the computation of the critical AMD C c (eq. 3.12) and AMD-stability coefficients β i that depend only on the eccentricities and ratios of semi major axis and masses (eqs. 3.7, 3.12, 3.16, 3.23). This criterion thus does not depend on the degeneracy of the masses coming from radial velocity measures. Moreover, the uncertainty on the mutual inclinations can be compensated by assuming equipartition of the AMD between eccentricities and inclinations. AMD-stability will ensure that in absence of mean motion resonances, the system is long term stable. A rapid estimate of the stability of a system can thus be obtain by a short term integration and the simple computation of the AMD-stability coefficients.

We have also proposed here a classification of the planetary systems based on AMD-stability (Section 3.4). The strong AMD-stable systems are the systems where no planetary collisions are possible, and no collisions of the inner planet with its central star, while the weak AMD-stable systems allow for the collision of the inner planet with the central star. The AMD-unstable systems are the systems for which the AMD-coefficient does not prevent the possibility of collisions. The Solar System is AMD-unstable, but it belongs to the sub category of hierarchical AMD-stable systems that are the systems which are AMD-unstable but which becomes AMDstable when they are split in two parts (giant planets and terrestrial planets for the Solar System) [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF]. Out of the 131 studied systems from exoplanet.eu, we find 48 strong AMD-stable, 22 weak AMD-stable, and 61 AMD-unstable systems, including 5 hierarchical AMD-stable systems.

As for the Solar System, the AMD-unstable systems are not necessarily unstable, but to decide for their stability requires some further dynamical analysis. Several mechanisms can stabilize AMD-unstable systems. The absence of secular chaotic interactions between parts of the systems like in the Solar System case, or the presence of mean motion resonances protecting pairs of planets from collision. In this case, the AMD-stability classification is still useful in order to select the systems that require this more in-depth dynamical analysis. It should also be noticed that the discovery of additional planets in a system will require to revise the computation of the AMD-stability of the system. An additional planet will always increase the total AMD, and thus the maximum AMD-coefficient of the system, decreasing its AMD-stability unless it is split into two subsystems.

In the present work, we have not taken into account mean motion resonances (MMR) and the chaotic behaviour resulting from their overlap. This is the subject of the next chapter whose results have been published in [START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF]. Indeed, criteria on MMR developed by [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF] or more recently [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] help to improve our stability criterion by considering the MMR chaotic zone as a limit for stability instead of the limit considered here that is given by the collisions of the orbits (eqs. 3.12). The drawback is to renounce to the rigorous results that we have established here in section 3.3, and to allow for some more empirical studies. The present work will in any case remain the backbone of the future developments.

Chapter 4 AMD-stability in presence of first order MMR overlap

The content of this chapter was initially published in [START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF].

Introduction

The AMD-stability criterion (see chapter 3 and also ;[START_REF] Laskar | On the Spacing of Planetary Systems[END_REF][START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] allows to discriminate between a-priori stable planetary systems and systems needing an in-depth dynamical analysis to ensure their stability. The AMD-stability is based on the conservation of the angular momentum deficit (AMD, [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF] in the secular system at all orders of averaging (see appendix B.2). Indeed, the conservation of the AMD fixes an upper bound to the eccentricities. Since the semi-major axes are constant in the secular approximation, a low enough AMD forbids collisions between planets. The AMD-stability criterion can be used to classify planetary systems based on the stability of their secular dynamics (section 3.4).

However, while the analytical criterion developed in the previous chapter does not depend on series expansions for small masses or spacing between the orbits, the secular hypothesis does not hold for systems experiencing mean motion resonances (MMR). Although a system with planets in MMR can be dynamically stable, chaotic behavior may result from the overlap of adjacent MMR, leading to a possible increase of the AMD and eventually to close encounters, collisions or ejections.

For systems with small orbital separations, averaging over the mean anomalies is thus impossible due to the contribution of the first-order MMR terms. For example, two planets in circular orbits very close to each other are AMD-stable, however the dynamics of this system cannot be approximated by the secular dynamics. We thus need to modify the notion of AMD-stability in order to take into account those configurations.

In studies of planetary systems architecture, a minimal distance based on the Hill radius [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF], see chapter 5) is often used as a criterion of stability [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF][START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF][START_REF] Smith | Orbital Stability of Systems of Closely-Spaced Planets[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF]. However, [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] suggested that stability criteria based on the MMR overlap are more accurate in characterizing the instability of the three-body planetary problem.

Based on the considerations of [START_REF] Chirikov | A Universal Instability of Many-Dimensional Oscillator Systems[END_REF] for the overlap of resonant islands, [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF] proposed a criterion of stability for the first-order MMR overlap in the context of the restricted circular three-body problem. This stability criterion defines a minimal distance between the orbits such that the first-order MMRs overlap with one another. For orbits closer than this minimal distance, the MMR overlapping induces chaotic behavior eventually leading to the instability of the system.

Wisdom showed that the width of the chaotic region in the circular restricted problem is proportional to the ratio of the planet mass to the star mass to the power 2/7. [START_REF] Duncan | The Long-Term Evolution of Orbits in the Solar System: A Mapping Approach[END_REF] confirmed numerically that orbits closer than the Wisdom's MMR overlap condition were indeed unstable. More recently, another stability criterion was proposed by [START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF] to take into account the planet's eccentricity. [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] improved the two previous criteria by developing the resonant Hamiltonian for two massive, coplanar, low-eccentricity planets and [START_REF] Ramos | The Resonance Overlap and Hill Stability Criteria Revisited[END_REF] proposed a criterion of stability taking into account the second-order MMR in the restricted three-body problem. Since the publication of this work, [START_REF] Hadden | A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets[END_REF] have proposed an overlap criterion taking into account MMR of all order. While this criterion is in better agreement with the chaotic limit for eccentric orbits, it remains inaccurate for circular orbits due to some assumptions.

Deck's criteria are in good agreement with numerical simulations [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] and can be applied to the three-body planetary problem. However, the case of circular orbits is still treated separately from the case of eccentric orbits. Indeed, the minimal distance imposed by the eccentric MMR overlap stability criterion vanishes with eccentricities and therefore cannot be applied to systems with small eccentricities. In this case, [START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF], [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] use the criterion developed for circular orbits. A unified stability criterion for first-order MMR overlap had yet to be proposed.

In this chapter, we propose in section 4.2 a new derivation of the MMR overlap criterion based on the development of the three-body Hamiltonian by [START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF]. We show in section 4.3 how to obtain a unified criterion of stability working for both initially circular and eccentric orbits. In section 4.4, we then use the defined stability criterion to limit the region where the dynamics can be considered to be secular and adapt the notion of AMD-stability thanks to the new limit of the secular dynamics. Finally we study in section 4.5 how the modification of the AMD-stability definition affects the classification proposed in section 3.4.

Resonant Hamiltonian

The problem of two planets close to a first-order MMR on nearly circular and coplanar orbits can be reduced to a one-degree-of-freedom system through a sequence of canonical transformations [START_REF] Wisdom | Canonical Solution of the Two Critical Argument Problem[END_REF][START_REF] Henrard | The Reducing Transformation and Apocentric Librators[END_REF][START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF][START_REF] Delisle | Resonance Breaking Due to Dissipation in Planar Planetary Systems[END_REF]. We follow here the reduction of the Hamiltonian used in [START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF][START_REF] Delisle | Resonance Breaking Due to Dissipation in Planar Planetary Systems[END_REF].

Averaged Hamiltonian in the vicinity of a resonance

Let us consider two planets of masses m 1 and m 2 orbiting a star of mass m 0 in the plane. The motivation to the planar restriction will be justified hereafter. We use the heliocentric coordinates (r i , r i ) defined in the introduction in equation (2.33). For two planets, the Hamiltonian is (2.34)

H = 1 2 2 i=1 ri 2 m i -G m 0 m i r i + 1 2 r1 + r2 2 m 0 -G m 1 m 2 ∆ 12 , (4.1)
where ∆ 12 = r 1r 2 , and G is the constant of gravitation. We denote K the sum of the Keplerian Hamiltonians (2.35) of the planets and ε Ĥ1 the perturbation, where the small parameter ε (2.31) is defined as the ratio of the planet masses over the star mass ε = (m 1 + m 2 )/m 0 . I also recall the definition of the angular momentum (2.44)

G = 2 i=1 r i ∧ ri (4.2)
which is simply the sum of the two planets Keplerian angular momentum. G is a first integral of the system. The Hamiltonian can be expressed in complex Poincaré coordinates (2.29), where the inclination related coordinates are ignored as we only consider the planar case

H = K + εH 1 (Λ i , x i , -ιx i ) = - 2 i=1 µ 2 m 3 i 2Λ 2 i + ε l, l∈N 2 k∈Z 2 C l, l,k (Λ) 2 i=1 x l i i xl i i e ιk i λ i , ( 4.3) 
where µ = Gm 0 and we recall that

Λ i = m i √ µa i , λ i = M i + ̟ i .
(4.4)

x i = C i e ι̟ i , C i = Λ i (1 -1 -e 2 i ). (4.5)
The coefficients C l, l,k depend on Λ and the masses of the bodies. They are linear combinations of Laplace coefficients [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF]. In this problem, the d'Alembert rule (2.45) gives a relation on the indices of the non-zero C l, l,k coefficients

2 i=1 k i + l i -li = 0. (4.6)
We study here a system with periods close to the first-order MMR p : p + 1 with p ∈ N * . For periods close to this configuration, we have -pn 1 + (p + 1)n 2 ≃ 0, where n i = µ 2 m 3 i /Λ 3 i is the Keplerian mean motion of the planet i.

Averaging over non-resonant mean-motions

Due to the p : p + 1 resonance, we cannot average on both mean anomalies independently. Therefore, there is no conservation of Λ i as in the secular problem. However, the partial averaging over one of the mean anomaly gives another first integral. Following [START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF], we make the partial change of angles

σ λ 2 = -p p + 1 0 1 λ 1 λ 2 . (4.7)
The actions associated to these angles are

Γ 1 Γ = -1 p 0 p+1 p 1 Λ 1 Λ 2 = -1 p Λ 1 p+1 p Λ 1 + Λ 2 . (4.8)
We can now average the Hamiltonian over M 2 using a change of variables close to the identity given by the Lie series method (see section 2.4.1). Up to terms of orders ε 2 , we can remove all the terms with indices not of the form C l, l,-jp,j(p+1) . In order to keep the notations light, we do not change the name of the variables after the averaging. We also designate the remaining coefficients C l, l,-jp,j(p+1) by the lighter expression C l, l,j . Since M 2 does not appear explicitly in the remaining terms,

Γ = p + 1 p Λ 1 + Λ 2 (4.9)
is a first integral of the averaged Hamiltonian. The parameter pΓ is often designed as the spacing parameter [START_REF] Michtchenko | Dynamic Portrait of the Planetary 2/1 Mean-Motion Resonance -I. Systems with a More Massive Outer Planet[END_REF] and has been used extensively in the study of the first-order MMR dynamics. Expressed with the variables (Λ, λ, x, x), the Hamiltonian can be written

Ĥav = - 2 i=1 µ 2 m 3 i 2Λ 2 i + ε l, l∈N 2 j∈Z C l, l,j (Λ)x l 1 1 xl 1 1 x l 2 2
xl 2 2 e ιj((p+1)λ 2 -pλ 1 ) , (4.10)

where we dropped the terms of order ε 2 . 

Poincare-like complex coordinates

(θ Γ , θ G , σ 1 , σ 2 ) is defined as      θ Γ θ G σ 1 σ 2      =      p -p 0 0 -p p + 1 0 0 -p p + 1 1 0 -p p + 1 0 1      •      λ 1 λ 2 -̟ 1 -̟ 2      .
(4.11)

The conjugated actions are

     Γ G C 1 C 2      =       p+1 p 1 0 0 1 1 -1 -1 0 0 1 0 0 0 0 1       •      Λ 1 Λ 2 C 1 C 2      . (4.12)
We define X i = √ C i e -ισ i , the complex coordinates associated to (C i , σ i ). Since we have X i = x i e -ιθ G , the terms of the perturbation in (4.10) can be written

2 i=1 x l i i xl i i e ιjθ G = 2 i=1 X l i i Xl i i e ι(-l i + li +j)θ G = 2 i=1 X l i i Xl i i ; (4.13)
the last equality resulting from the d'Alembert rule (4.6). Γ and G are conserved and the averaged Hamiltonian no longer depends on the angles θ Γ and θ G

H av = - 2 i=1 µ 2 m 3 i 2Λ 2 i + ε l, l∈N 2 j∈Z C l, l,j (Λ) 2 i=1 X l i i Xl i i . (4.14)
Λ 1 and Λ 2 can be expressed as functions of the new variables and we have

Λ 1 = -p(C + G -Γ) (4.15) Λ 2 = (p + 1)(C + G) -pΓ, (4.16)
where

C = C 1 + C 2 is the total AMD (3.
2) of the system. Up to the value of the first integrals Γ and G, the system now has two effective degrees of freedom.

Computation of the perturbation coefficients

We now truncate the perturbation, keeping only the leading-order terms. Since we consider the first-order MMR, the Hamiltonian contains some linear terms in X i . Therefore the secular terms are neglected since they are at least quadratic. Moreover, the restriction to the planar problem is justified since the inclination terms are at least of order two. We follow the method described in [START_REF] Laskar | Analytical Framework in Poincare Variables for the Motion of the Solar System[END_REF] and [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] to determine the expression of the perturbation εH 1 . The details of the computation are given in Appendix C.1. Since we compute an expression at first order in eccentricities and ε, the semi major axes and in particular their ratio, α = a 1 /a 2 , are evaluated at the resonance. At the first order, the perturbation term εH 1 has for expression

εH 1 = R 1 (X 1 + X1 ) + R 2 (X 2 + X2 ), (4.17)
where

R 1 = -ε γ 1 + γ µ 2 m 3 2 Λ 2 2 1 2 2 Λ 1 R 1 (α) and R 2 = -ε γ 1 + γ µ 2 m 3 2 Λ 2 2 1 2 2 Λ 2 R 2 (α) (4.18) with γ = m 1 /m 2 , R 1 (α) = - α 4 3b (p) 3/2 (α) -2αb (p+1) 3/2 (α) -b (p+2) 3/2 (α) , (4.19) R 2 (α) = α 4 3b (p-1) 3/2 (α) -2αb (p) 3/2 (α) -b (p+1) 3/2 (α) + 1 2 b (p) 1/2 (α). (4.20)
In the two previous expressions, b (k) s (α) are the Laplace coefficients that can be expressed as

b (k) s (α) = 1 π π -π cos(kφ) (1 -2α cos φ + α 2 ) s dφ (4.21)
for k > 0. For k = 0, a 1/2 factor has to be added in the second-hand member of (4.21).

For p = 1, it should be noted that a contribution from the kinetic part should be added (Appendix C. 1 and Delisle et al., 2012)

εH 1,i = µ 2 m 2 1 m 2 2 2m 0 Λ 1 Λ 2 2 Λ 2 (X 2 + X2 ). (4.22)
Using the expression of α at the resonance p : p + 1,

α 0 = p p + 1 2/3
, we can give the asymptotic development of the coefficients R 1 and R 2 for p → +∞ (see Appendix C.1.1). The equivalent is

-R 1 ∼ R 2 ∼ K 1 (2/3) + 2K 0 (2/3) π (p + 1). (4.23)
where K ν (x) is the modified Bessel function of the second kind. We note R the numerical factor of the equivalent (4.23), we have

R = K 1 (2/3) + 2K 0 (2/3) π = 0.80199. (4.24)
For the resonant coefficients R 1 and R 2 , [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] used the expressions f p+1,27 (α) and f p+1,31 (α) given in (Murray and Dermott, 1999, pp. 539-556). The expressions (4.19) and (4.20) are similar to f p+1,27 (α) and f p+1,31 (α) up to algebraic transformations using the relations between Laplace coefficients [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF]. In their computations, Deck et al. used a numerical fit of the coefficients for p = 2 to 150 and obtained

-f p+1,27 ∼ f p+1,31 ∼ 0.802p. (4.25)
Note that we obtain the same numerical factor R through the analytical development of the functions R 1 and R 2 .

Renormalization

So far, the Hamiltonian has two degrees of freedom (X 1 , -ιX 1 , X 2 , -ιX 2 ) and depends on two parameters G and Γ. As shown in [START_REF] Delisle | Dissipation in Planar Resonant Planetary Systems[END_REF], the constant Γ can be used to scale the actions, the Hamiltonian and the time without modifying the dynamics. We define

Λi = Λ i Γ , Ĝ = G Γ , Ĉi = C i Γ , Xi = X i √ Γ , (4.26) Ĥ = Γ 2 H, t = t Γ 3 .
With this change of variables, the new Hamiltonian Ĥ no longer depends on Γ. The shape of the phase space is now only dependent on the first integral Ĝ. However, Ĝ does not vanish for the configuration around which the Hamiltonian is developed: the case of two resonant planets on circular orbits. To be able to develop the Keplerian part in power of the system's parameter, we define ∆ Ĝ = Ĝ0 -Ĝ, the difference in angular momentum between the circular resonant system and the actual configuration. We have Ĝ0 = Λ1,0 + Λ2,0 , (4.27)

where Λ1,0 and Λ2,0 are the value of Λ1 and Λ2 at resonance the unperturbed resonance. By definition, we have

Λ1,0 Λ2,0 = γ √ α 0 = γ p p + 1 1/3 .
(4.28)

Moreover, we can express Λ1,0 as a function of the ratios α 0 and γ,

Λ1,0 = Λ 1,0 Γ 0 = 1 p+1 p + Λ2,0 Λ1,0 = p p + 1 γ γ + α 0 . (4.29)
Similarly, Λ2,0 can be expressed as

Λ2,0 = α 0 α 0 + γ . (4.30)
Since Ĝ0 is constant, ∆ Ĝ is also a first integral of Ĥ. From now on, we consider ∆ Ĝ as a parameter of the two-degrees-of-freedom (X 1 , X2 ) Hamiltonian Ĥ. The Keplerian part depends on the coordinates Xi through the dependence of Λi in Ĉ.

Λ1 and Λ2 can be expressed as functions of the Hamiltonian coordinates and their value at the resonance,

Λ1 = Λ1,0 -p( Ĉ -∆ Ĝ) Λ2 = Λ2,0 + (p + 1)( Ĉ -∆ Ĝ).
(4.31)

Integrable Hamiltonian

The system can be made integrable by a rotation of the coordinates Xi [START_REF] Sessin | Motion of Two Planets with Periods Commensurable in the Ratio 2:1 Solutions of the Hori Auxiliary System[END_REF][START_REF] Henrard | The Reducing Transformation and Apocentric Librators[END_REF][START_REF] Delisle | Resonance Breaking Due to Dissipation in Planar Planetary Systems[END_REF]. We introduce R and φ such that R1 = R cos(φ) and R2 = R sin(φ), (4.32)

where Ri = Γ -5/2 R i are the renormalized coefficients R i . We have R2 = R2 1 + R2 2 and tan(φ) = R 2 /R 1 . If we note R φ the rotation of angle φ we define y such that X = R φ y. We still have Ĉ = y i ȳi so the only change in the Hamiltonian is the perturbation term

Ĥ = K( Ĉ, ∆ Ĝ) + R(y 1 + ȳ1 ) = K( Ĉ, ∆ Ĝ) + 2 R I 1 cos(θ 1 ), (4.33)
where (I, θ) are the action-angle coordinates associated to y. With these coordinates, I 2 is a first integral. R has for expression

R =   εγ 1 + γ µ 2 m 3 2 Λ2 2,0   R 1 (α 0 ) 2 2 Λ1,0 + R 2 (α 0 ) 2 2 Λ2,0 . (4.34)
We now develop the Keplerian part around the circular resonant configuration in series of ( Ĉ -∆ Ĝ) thanks to the relations (4.31). We develop the Keplerian part to the second order in ( Ĉ -∆ Ĝ) since the first order vanishes (see Appendix C.2). The computation of the second-order coefficient gives

1 2 K 2 = - 3 2 µ 2 m 3 2 (γ + α 0 ) 5 γα 4 0 (p + 1) 2 . (4.35)
We drop the constant part of the Hamiltonian and obtain the following expression

H = K 2 2 (I 1 + I 2 -∆ Ĝ) 2 + 2 R I 1 cos(θ 1 ). (4.36)
We again change the time scale by dividing the Hamiltonian by -K 2 and multiplying the time by this factor. We define

χ = - √ 2 R K 2 (4.37)
and after simplification,

χ = 1 3 ε(γα 0 ) 3/2 (1 + γ)(α 0 + γ) 2 R 2 (α 0 ) (p + 1) 2 f (p) = R 3 
εγ 3/2 (1 + γ) 3 1 p + 1 + O((p + 1) -2 ), (4.38)
where R was defined in (4.24) and f (p

) = 1 + O(p -1 ) is a function of p and γ f (p) = 1 - α 0 α 0 + γ 1 - p + 1 p R 1 R 2 2 . (4.39)
At this point the Hamiltonian can be written

H = - 1 2 (I 1 + I 2 -∆ Ĝ) 2 + χ 2I 1 cos(θ 1 ) (4.40)
and has almost its final form. We divide the actions and the time by χ 2/3 and the Hamiltonian by χ 4/3 and we obtain

H A = - 1 2 (I -I 0 ) 2 + √ 2I cos(θ 1 ), (4.41) 
where

I = χ -2/3 I 1 and I 0 = χ -2/3 (∆ Ĝ -I 2 ). (4.42)
Through numerical simulations, [START_REF] Duncan | The Long-Term Evolution of Orbits in the Solar System: A Mapping Approach[END_REF]) confirmed Wisdom's expression up to the numerical coefficient (1α < 1.5 ε 2/7 ). A similar criterion was then developed by [START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF] for an eccentric planet. They found that for an eccentricity above 0.2 ε 3/7 , the overlap region satisfies the criterion 1-α < 1.8(ε e) 1/5 . [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] adapted those two criteria to the case of two massive planets, finding little difference up to the numerical coefficients. However, [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] treat two different situations; the case of orbits initially circular and the case of two eccentric orbits. As in [START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF], the eccentric criterion proposed in [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] can be used for eccentricities verifying e 1 + e 2 1.33 ε 3/7 . We show here that the two Deck's criteria can be obtained as the limit cases of a general expression.

Width of the libration island

Using the same approach as [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF], we express the width of the resonant island as a function of the orbital parameters and compare it with the distance between the two adjacent centers of MMR.

In the (X, Y ) plane, the center of the resonance is located at the point of coordinates (X 1 , 0). The width of the libration area is defined as the distance between the two separatrices on the Y = 0 axis. It is indeed the direction where the resonant island is the widest.

We note X * 1 , X * 2 the abscissas of the intersections between the separatrices and the Y = 0 axis. Relations between X * 1 , X * 2 , and X 3 can be derived (see Appendix C.3.1) and we obtain the expressions of X * 1 and X * 2 as functions of X 3 [START_REF] Ferraz-Mello | Canonical Perturbation Theories[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF]. We have

X * 1 = -X 3 - 2 √ X 3 , and X * 2 = -X 3 + 2 √ X 3 . (4.49)
The width of the libration zone δX depends solely on the value of X 3 ,

δX = 4 √ X 3 . (4.50)
In order to study the overlap of resonance islands, we need the width of the resonance in terms of α, the semi-major axis ratio. Let us invert the previous change of variables in order to express the variation of α in terms of the variation of X. In this subsection, for any function Q(X), we note

δQ = |Q(X * 1 ) -Q(X * 2 )|. (4.51)
The computation of δI (4.43) is straightforward from the computation of δX

δI = X * 1 2 2 - X * 2 2 2 = 1 2 |X * 2 + X * 1 | |X * 2 -X * 1 | = X 3 δX = 4 X 3 . (4.52)
We then directly deduce δI 1 = χ 2/3 δI from (4.42). Since I 2 and ∆ Ĝ are first integrals, the variation of Λi only depends on δI 1 . And finally, since we have

α = γ -1 Λ 1 Λ 2 2 , (4.53)
α can be developed to the first order in ( Ĉ -∆ Ĝ) thanks to (4.31). This development gives

α = α 0 1 - 2(α 0 + γ) 2 γα 0 (p + 1)(I 1 -χ 2/3 I 0 ) . (4.54)
Using 4.38, the width of the resonance in terms of α is directly related to X 3 through

δα = α 0 8R 2/3 3 2/3 ε 2/3 (p + 1) 1/3 X 3 + o(ε 2/3 (p + 1) 1/3 ). (4.55)
The computation of the width of resonance is thus reduced to the computation of the root X 3 as a function of the parameters. The resonance only exists if X 3 is defined so the expression (4.55) is well defined in all cases. It should also be remarked that at the leading order in p and thus in 1α, the width of resonance does not depend on the mass ratio γ.

Minimal AMD of a resonance

We are now interested in the overlap of adjacent resonant islands. Planets trapped in the chaotic zone created by the overlap will experience variations of their actions eventually leading to collisions. For a configuration close to a given resonance p : p + 1, the AMD can evolve toward higher values if the original value places the system in a configuration above the inner separatrix, eventually leading the planets to collision or chaotic motion in case of MMR overlap. On the other hand, if the initial AMD of the planets forces them to remain in the inner circulation region of the overlapped MMR islands, the system will remain stable in regards to this criterion. Since C = I 1 + I 2 , and I 2 is a first integral, we define the minimal AMD of a resonance1 C min (p) as the minimal value of I 1 to enter the resonant island given ∆ Ĝ -I 2 . Two cases must be discussed:

-The point I 1 = 0 is already in the libration zone and then C min = 0, -The point I 1 = 0 is in the inner circulation zone and then we have

C min = I 1 (X * 2 ) = χ 2/3 2 X 3 - 2 √ X 3 2 . (4.56)
In the second case, we have an implicit expression of X 3 depending on

C min χ -1/3 2C min = X 3 - 2 √ X 3 , (4.57)
where χ was defined in (4.37). In other words, there is a one-to-one correspondence between C min (4.56) and the Hamiltonian parameter I 0 for C min > 0. The shape of the resonance island is completely described by C min .

We can also use the definition of C min to give an expression depending on the system parameters

C min = I 1 = u 1 ū1 = R1 R Λ1,0 2 X 1 + R2 R Λ2,0 2 X 2 2 = R1 R 2 Λ1,0 2 X 1 - R2 R1 Λ2,0 Λ1,0 X 2 2 ≃ α 0 γ 2(α 0 + γ) 2 (c 2 1 + c 2 2 -2c 1 c 2 cos ∆̟), (4.58) 
where

c i = √ 2 1 -1 -e 2 i = |X i |. We note c m = c 2 1 + c 2 2 -2c 1 c 2 cos ∆̟, (4.59) 
the reduced minimal AMD. We can use the expression (4.58) to compute the quantity χ -1/3 √ 2C min appearing in equation (4.57)

χ -1/3 2C min ≃ 3 1/3 R 1/3 (p + 1) 1/3 ε 1/3 √ c m + o(p 1/3
). (4.60)

As an example, we represent in figure 4.3 the resonance 4:3 in a plane (α, √ c m ), for ε = 10 -5 . We plot the position of the center of the resonance as well as the separatrices. We also draw in green the locus of the points that corresponds to a certain I 0 (or equivalently X 3 ). The width of the resonance δα is computed between the two intersections of this curve with the separatrices. The minimum AMD of the resonance corresponds to the AMD at the intersection of the inner separatrix (on the right in figure 4.3) with the curve of constant I 0 . The function C min (X 3 ) defined in (4.56) is plotted in Figure 4.4 with the two approximations used by [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] to obtain the width of the resonance. For C min ≫ χ 2/3 or C min close to zero, the relation can be simplified and we obtain

X 3 ∼ χ -1/3 2C min (4.61) X 3 = 2 2/3 + 2 3 χ -1/3 2C min + O(χ -2/3 C min ). (4.62)
We can use the developments (4.61) and (4.62) in order to compute the width of the resonance in these two cases (see Appendix C.3). It should be noted as well that for C min = 0, we have X 3 = 2 2/3 . As a result the resonance always reaches circular orbits before disappearing since X 3 = 2 2/3 corresponds to a value of

I 0 = 3 × 2 -2/3 ≃ 1.89.
α 0,p = (p/(p + 1)) 2/3 . We develop α 0,p for p ≫ 1

α 0,p = p p + 1 2/3 = 1 - 2 3(p + 1) - 1 9(p + 1) 2 + O((p + 1) -3 ).
(4.64)

Therefore, we have at second order in p ∆α α 0,p = 2 3 1 (p + 1) 2 .

(4.65)

We can use the implicit expression (4.57) of X 3 as a function of √ c m (Eq. 4.59)

in order to derive an overlap criterion independent of approximations on the value of C min . Equating the general width of resonance (4.55) with the distance between to adjacent centers (4.65) and isolating X 3 gives

X 3 = 3 4/3 144R 4/3 ε -4/3 (p + 1) -14/3 .
(4.66)

We can inject this expression of X 3 into (4.57), and using equation (4.60),

√ c m = 1 48Rε(p + 1) 5 -8Rε(p + 1) 2 .
(4.67)

Using the first order expression of (p + 1) as a function of α,

1 p + 1 = 3 2 (1 -α) (4.68)
we obtain an implicit expression of the overlap criterion

√ c m = 3 4 (1 -α) 5 2 9 Rε - 32Rε 9(1 -α) 2 .
(4.69)

Overlap criterion for circular orbits

The implicit expression (4.69) can be used to find the criteria proposed by [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] for circular and eccentric orbits. Let us first obtain the circular criterion by imposing c m = 0 in equation (4.69)

3 6 (1 -α) 7 = 2 14 R 2 ε 2 . (4.70)
We can express 1α as a function of ε and we obtain

1 -α overlap = 4R 2/7 3 6/7 ε 2/7 = 1.46ε 2/7 . (4.71)
The exponent 2/7 was first proposed by [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF] and the numerical factor 1.46 is similar to the one found by [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF].

Overlap criterion for high-eccentricity orbits

For large eccentricity, [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] proposes a criterion based on the development (4.61) of equation (4.57). This criterion is obtained from (4.69) by ignoring the second term of the right-hand side which leads to

2 9 Rε √ c m = 3 4 (1 -α) 5 . (4.72) Isolating 1 -α gives 1 -α = 2 9/5 3 4/5 R 1/5 ε 1/5 c 1/10 m = 1.38ε 1/5 c 1/10 m . (4.73)
This result is also similar to Deck's one. For small c m , the criterion (4.73) is less restrictive than the criterion (4.71) obtained for circular orbits. The comparison of these two overlap criteria provides a minimal value of c m for the validity of the eccentric criterion √ c m = 1.33ε 

Overlap criterion for low-eccentricity orbits

For smaller eccentricities, we can develop the equation (4.69) for small √ c m and α close to α cir = 1 -1.46ε 2/7 , the critical semi major axis ratio for the circular overlap criterion (4.71). We have

3 2 2 9 Rε(1 -α) 2 √ c m = 3 6 (1 -α) 7 -2 14 R 2 ε 2 . (4.75)
We develop the right-hand side at the first order in (α cirα) and evaluate the left-hand side for α = α cir and after some simplifications obtain

α cir -α = 2 9 Rε 7 × 3 4 √ c m (1 -α cir ) 4 . (4.76)
We inject the expression of α cir into this equation and obtain the following development of the overlap criterion for low eccentricity: It is worth noting that the low-eccentricity approximation allows to cover the range of eccentricities where the criterion (4.73) is not applicable, since both boundaries depend on the same power of ε.

α cir -α = 2 √ c m 7 × 3 4/7 r 1/7 ε 1/7 = 0.157 √ c m ε 1/7 . ( 4 

General order MMR overlap criterion

Since the publication of [START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF], another MMR overlap criterion has been proposed by [START_REF] Hadden | A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets[END_REF]. The criterion they proposed takes into account MMR of all orders. There, we present this result and compare it with the first order MMR overlap criterion detailed above. Moreover, I will explain how the criterion of Hadden and Lithwick can be adapted to the AMD framework.

The authors first consider the restricted circular problem. They remark that at first order in 1α, the width in terms of α of all resonances of order k can be expressed as (Hadden and Lithwick, 2018, eq. 5 and7)

δα = α 0 16α 0 εs k (e/e cross ) 3 (4.81)
where we adapted the authors' notations to be consistent to the ones used in this thesis. In (4.81), α is the semi-major axis ratio at the consider resonance p + k:p, i.e. α 0 = (p/(p + k)) 2/3 ; ε = m/m 0 is the planet to star mass ratio; e is the test particle eccentricity, e cross = 1α is the crossing eccentricity developed at first order in 1α. s k is a function defined as an integral where K 0 is a modified Bessel function of the first kind. In particular, for first order MMR (k = 1), they assume the width of the resonance (4.81) to be proportional to √ e and shrink to zero for vanishing eccentricity instead of stopping at a finite value.

s k e e cross = 1 
π 2 2π 0 K 0 2k 3 
They then point out that the resonant structure between two first order mean motion resonances J:J -1 and J +1:J is always the same up to a rescaling. Therefore, they only need to compute the overlap criterion between two adjacent first order MMR to be able to give an expression up to the 2:1 resonance i.e. α = 0.63. The overlap criterion is estimated by considering the "optical depth" of the resonances [START_REF] Quillen | Three-Body Resonance Overlap in Closely Spaced Multiple-Planet Systems[END_REF] between two first order MMR. The "optical depth" τ res is defined by the sum of the width resonances comprised between two first order MMR divided by the distance between those two MMR (equation 4.65). Using the close orbit approximation (first order in 1α) they obtain

τ res = 1 ∆α ∞ k=1 φ(k)δα = 8 3 √ 3 √ αε (1 -α) 2 ∞ k=1 φ(k) s k e e cross 1/2 , (4.83)
where δα is defined in (4.81), ∆α in (4.65) and φ(k), the Euler totient function, counts the number of resonances of order k in the considered interval. The authors assume that the overlap occurs whenever τ res = 1, which is confirmed by numerical simulations. From there, the sum in (4.83) can be computed numerically using the exact expression for s k (4.82). It is also possible to approximate s k and φ for k → +∞ to obtain a functional form for the criterion. Isolating e leads to the overlap criterion (Hadden and Lithwick, 2018, eq. 14) e ≃ 0.72e cross exp -1.4

ε 1/3 (1 -α) 4/3 .
(4.84)

However, this approximate expression is not satisfying for ε → 0. In particular, for two massless planets (ε = 0), e should be equal to e cross . The authors choose to keep the functional form but fit a new numerical coefficient in the exponential e ≃ e cross exp -2.2

ε 1/3 (1 -α) 4/3 .
(4.85)

The authors then generalize their criterion to the two massive planets case by replacing the mass of the single planet by ε = (m 1 + m 2 )/m 0 and the test particle eccentricity by the √ 2 times the norm of the difference of planets' complex eccentricity

Z = 1 √ 2 (e 1 e ι̟ 1 -e 2 e ι̟ 2 ). (4.86)
The justification for this change is motivated by the analysis of the dynamics near resonances and the complete justification will be published in a future paper by Hadden. Although this general work has not been published yet, the dependency in Z rather than another combination of the eccentricities or inclinations has already been observed in the study of low order MMRs such as [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] or this work for first order MMR and [START_REF] Delisle | Resonance Breaking Due to Dissipation in Planar Planetary Systems[END_REF] for second order MMR. It should be remarked that at first order in eccentricity, |Z| corresponds to the eccentricity dependency √ c m (4.59) of the overlap criterion derived in this chapter (4.69). As a result, the conversion to the framework used here is straightforward and Hadden and Lithwick's criterion can be rewritten as

√ c m = 1 -α √ 2 exp -2.2 ε 1/3 (1 -α) 4/3 (4.87)
We add the criterion (4.87) to figure 4.5. We see that their general overlap criterion is always below the collision line. However, for α close to 1, Hadden and Lithwick's critical √ c m does not go to zero at finite 1α as the overlap criterion for first order MMR (4.69). Indeed, they use the same resonance model for first order resonances than for higher order ones. As a result, the width of resonance they compute goes to zero with the eccentricity instead of reaching a finite value as demonstrated in section 4.3.1.

Critical AMD and MMR

Critical AMD in a context of resonance overlap

In chapter 3, we present the AMD-stability criterion based on the conservation of AMD. We assume the system dynamics to be secular chaotic. As a consequence the averaged semi-major axis and the total averaged AMD are conserved. Moreover, in this approximation the dynamics is limited to AMD exchanges between planets with conservation of the total AMD. Based on these assumptions, collisions between planets are possible only if the AMD of the system can be distributed such that the eccentricities of the planets allow for collisions. Particularly, for each pair of adjacent planets, there exists a critical AMD, noted C c (α, γ) (see section 3.3.2), such that for smaller AMD, collisions are forbidden.

The critical AMD was determined thanks to the limit collision condition

α(1 + e 1 ) = 1 -e 2 .
(4.88)

However, in practice, the system may become unstable long before orbit intersections; in particular the secular assumption does not hold if the system experiences chaos induced by MMR overlap. We can, though, consider that if the islands do not overlap, the AMD is, on average, conserved on timescales of order ε -2/3 (i.e., of the order of the libration timescales). Therefore, the conservation, on average, of the AMD is ensured as long as the system adheres to the above criteria for any distribution of the AMD between planets. Based on the model of [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF], we compute a critical AMD associated to the criterion (4.69).

We consider a pair as AMD-stable if no distribution of AMD between the two planets allows the overlap of MMR. A first remark is that no pair can be considered as AMD-stable if α > α cir , because in this case, even the circular orbits lead to MMR overlap. Let us write the criterion (4.69) as a function of α and ε;

√ c m = ̺(α, ε), ( 4.89) 
where

̺(α, ε) = 3 4 (1 -α) 5 2 9 Rε - 32Rε 9(1 -α) 2 , if α < α cir , = 0 if α > α cir . (4.90)
√ c m depends on ∆̟ and has a maximum for ∆̟ = π. Since the variation of ∆̟ does not affect the AMD of the system, we fix ∆̟ = π since it is the least-favorable configuration. Therefore we have

√ c m = c 1 + c 2 . (4.91)
Let express the relative AMD C (eq. 3.7) as a function of the variables c i ,

C = C Λ 2 = 1 2 γ √ αc 2 1 + c 2 2 . (4.92)
The critical AMD C MMR c associated to the overlap criterion (4.69) can be defined as the smallest value of relative AMD such that the conditions 

E (c 1 , c 2 ) = c 1 + c 2 = g(α, ε) C (c 1 , c 2 ) = 1 2 γ √ αc 2 1 + c 2 2 = C MMR c (4.
c c,1 = g(α, ε) 1 + γ √ α c c,2 = γ √ αg(α, ε) 1 + γ √ α . ( 4 
C MMR c (α, γ, ε) = ̺(α, ε) 2 2 γ √ α 1 + γ √ α . (4.96)

Comparison with the collision criterion

C col c = γ 1 + γ (1 -α) 2 2 , C MMR c = γ 1 + γ ̺(α, ε) 2 2 . (4.97)
We observe that for α close to 1, the two terms have the same dependence on γ, therefore, α MMR depends solely on ε.

Simplifying C col c = C MMR c
gives α MMR as a solution of the polynomial equation in (1α);

3 6 (1 -α) 7 -3 2 2 9 Rε(1 -α) 3 -2 14 (Rε) 2 = 0.
(4.98)

While an exact analytical solution cannot be provided, a development in powers of ε gives the following expression

1 -α MMR = 4 3 (2Rε) 1/4 + 1 4 √ 2Rε + O(ε 3/4 ) = 1.50ε 1/4 + 0.316 √ ε + O(ε 3/4 ). (4.99)
It should be remarked that the first term can be directly obtained using Deck's high-eccentricity approximation.

4.5. Effects of the MMR overlap on the AMD-classification of planetary systems 75 its AMD-stability coefficient

β = C Λ ′ C col c < 1, (4.101)
where C is the total AMD of the system, Λ ′ is the circular momentum of the outer planet and C col c is the pair critical AMD derived from the collision condition. A similar AMD-coefficient can be defined using the global critical AMD defined in (4.100) instead of the collisional critical AMD C col c . Let us note β (MMR) , the AMD-stability coefficient associated to the critical AMD (4.96).

We can first observe that β (MMR) is not defined for α > α cir . Indeed, the conservation of the AMD cannot be guaranteed for orbits experiencing short-term chaos. By comparing β (MMR) to the collisional AMD-stability coefficient, we test how including the MMR overlap effects the AMD-classification proposed in chapter 3.

Sample and methodology

Let me first briefly recall the methodology used in section 3.4; to which I refer the reader for full details. We compute the AMD-stability coefficients for the systems taken from the database exoplanet.eu with known periods, planet masses, eccentricities, and stellar mass. For each pair of adjacent planets, ε is computed using the expression

ε = m 1 + m 2 m 0 , ( 4.102) 
where m 1 and m 2 are the two planet masses and m 0 , the star mass. The semi-major axis ratio was derived from the period ratio and Kepler third law in order to reduce the uncertainty.

The systems are assumed coplanar, however in order to take into account the contribution of the real inclinations to the AMD, we define C p , the coplanar AMD of the system, defined as the AMD of the same system if it was coplanar. We can compute coplanar AMD-stability coefficients β (MMR) p and β p using C p instead of C, and we define the total AMD-stability coefficients as β = 2β (MMR) p . Doing so, we assume the equipartition of the AMD between the different degree of freedom of the system.

We assume the uncertainties of the database quantities to be Gaussian. For the eccentricities, we use the same method as in section 3.4. The quantity e cos ̟ is assumed to be Gaussian with the mean, the value of the database and standard deviation, the database uncertainty. The quantity e sin ̟ is assumed to have a Gaussian distribution with zero mean and the same standard deviation. The distribution of eccentricity is then derived from these two distributions.

We then propagate the uncertainties through the computations thanks to Monte-Carlo simulations of the original distributions. For each of the systems, we draw 10,000 values of masses, periods and eccentricities from the computed distributions. We then compute β (MMR) for each of these configurations and compute the 1-σ confidence interval.

In chapter 3, we studied 131 systems but we did not find the stellar mass for 4 of these systems. They were, as a consequence, excluded from this study. Moreover, We identify three systems, HD 200964, HD 204313 and HD 5319, that satisfy the circular overlapping criterion. As already explained in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF], AMD-unstable planetary systems may not be dynamically unstable. However, it should be noted that the period ratios of the AMD-unstable planet pairs are very close to particular MMR. Indeed, we have The AMD-instability of those systems strongly suggests that they are indeed into a resonance which stabilizes their dynamics.

Conclusions

As shown in chapter 3, the notion of AMD-stability is a powerful tool to characterize the stability of planetary systems. In this framework, the dynamics of a system is reduced to the AMD transfers allowed by the secular evolution.

However, we need to ensure that the system dynamics can be averaged over its mean motions. While a system can remain stable and the AMD or semi-major axis can be averaged over timescales longer than the libration period in presence of MMR, the system stability and particularly the conservation of the AMD is no longer guaranteed if the system experiences MMR overlap. In this work, we use the MMR overlap criterion as a condition to delimit the zone of the phase space where the dynamics can be considered as secular.

We refine the criteria proposed by [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF][START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] and demonstrate that it is possible to obtain a global expression (4.69), valid for all cases. The previous circular (4.71) and eccentric (4.73) criteria can then be derived from (4.69) as particular approximations. Moreover, we show that expression (4.69) can be used to directly take into account the first-order MMR in the notion of AMD-stability.

With this work on first-order MMR, we improve the AMD-stability definition by addressing the problem of the minimal distance between close orbits. For semi-major axis ratios α above a given threshold α cir (4.71), that is, α cir < α < 1, the system is considered unstable whichever value the AMD may take given that even two circular orbits satisfy the MMR overlap criterion. At wider separations, circular orbits are stable but as eccentricities increase two outcomes may happen: either the system enters a region of MMR overlap or the collision condition is reached. The system is said to be AMD-unstable as soon as any of these conditions is reached. Above a second threshold, α MMR < α < α cir (eq. 4.99) the AMD-stability is governed by MMR overlap while for wider separations (α < α MMR ) we retrieve the critical AMD defined in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] which only depends on the collision condition.

We show in Section 4.5 that very few systems satisfy the circular MMR overlap criterion. Moreover, the presence of systems satisfying this criterion strongly suggests that they are protected by a particular MMR. In this case, the AMD-instability is a simple tool suggesting unobvious dynamical properties.

In order to improve the AMD-stability definition for the collision region, we could even take into account the non-secular dynamics induced by higher-order MMR [START_REF] Hadden | A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets[END_REF] and close-encounter consequences on the AMD.

For two planet systems, or if the dynamics can be safely simplify by only considering the mutual interactions between only two planets, there exists a strong stability criterion induced by a topological boundary of the three body problem [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF]. This criterion, called Hill stability is the subject of the next chapter.

Chapter 5

Hill stability in the AMD framework

The content of this chapter was initially published in [START_REF] Petit | Hill Stability in the AMD Framework[END_REF].

Introduction

The chaotic nature of planetary dynamics has made the development of stability criteria necessary because the complete study of individual systems for the lifetime of the central star would require very large computational power. Moreover, in the context of exoplanet dynamics, the orbital parameters are often not known with great precision, making it impossible to conduct a precise dynamical study. For multiplanetary systems, the best solutions yet are empirical stability criteria based on minimum spacing between planets obtained from numerical simulations [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF]. For tightly packed systems, [START_REF] Tamayo | A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems[END_REF] have suggested a solution based on short integrations and a machine-learning algorithm.

Another approach consists in the study of the angular momentum deficit (AMD; see chapter 3). The AMD is a weighted sum of the eccentricities and mutual inclinations of planets and can be interpreted as a dynamical temperature of the planetary system. The AMD is conserved at all orders of averaging over the mean motions. In chapter 3, it was shown that if the AMD is small enough, collisions are impossible. We can define a sufficient stability condition from the secular conservation of the AMD, i.e., the AMD stability. Systems that are AMD stable are long-lived, whereas a more in-depth dynamical study is necessary for AMD-unstable systems.

The initial AMD-stability definition is based on the secular approximation. In chapter 4, the criterion was slightly modified to exclude systems experiencing short term chaos due to first order mean motion resonances (MMR) overlap. The MMR overlap is the main source of chaos and instability in planetary dynamics. Based on [START_REF] Chirikov | A Universal Instability of Many-Dimensional Oscillator Systems[END_REF] resonance overlap criterion, [START_REF] Wisdom | The Resonance Overlap Criterion and the Onset of Stochastic Behavior in the Restricted Three-Body Problem[END_REF] has derived an analytical stability criterion for the two-planet systems that has since been widely used. Wisdom's criterion is obtained for circular and coplanar planets. It was improved to take into account moderate eccentricities [START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF][START_REF] Hadden | A Criterion for the Onset of Chaos in Systems of Two Eccentric Planets[END_REF]. We have shown in [START_REF] Petit | AMD-Stability in the Presence of First-Order Mean Motion Resonances[END_REF] that this MMR overlap criterion can be expressed solely as a function of the AMD, semi-major axes, and masses for almost coplanar and low eccentricity systems.

The MMR overlap criterion gives a clear limit between regular and chaotic orbits for small eccentricities. However, this criterion is based on first order expansions in the planet-to-star mass ratio, that is the spacing between planets, eccentricities, and inclinations. As a result, for wider orbit separations, the secular collision criterion from chapter 3 remains a better limit. Moreover, the MMR overlap criterion only takes into account the interaction between a couple of planets, making it really accurate only for two-planet systems.

In the case of two-planet systems, the topology of the phase space gives a far simpler criterion of stability, that is the Hill stability. Based on a work by [START_REF] Sundman | Mémoire Sur Le Problème Des Trois Corps[END_REF] on the moment of inertia in the three-body problem, [START_REF] Marchal | Hill Regions for the General Three-Body Problem[END_REF] noted the existence of forbidden zones in the configuration space. [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] extended the notion of Hill stability to the general three-body problem and showed that some systems can forbid close encounters between the outer body and any of the inner bodies. In particular, the Hill stability ensures that collisions between the outer body and the close binary (in a two-planet system, between the outer planet and the inner planet or the star) are impossible for infinite time.

The results of [START_REF] Marchal | Hill Regions for the General Three-Body Problem[END_REF][START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] have many applications outside of the Hill stability. It is possible to cite a sufficient condition for the ejection of a body from the system (Marchal et al., 1984a;Marchal et al., 1984b) or the determination of the limit of a triple close approach for bounded orbits [START_REF] Laskar | Triple Close Approach in the Three-Body Problem -a Limit for the Bounded Orbits[END_REF]. [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] presented the planetary problem (one body with a much larger mass) as a particular case, but the result was mainly popularized by [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF] who introduced a minimal spacing for initially circular and coplanar systems. Gladman also proposed some criteria for eccentric orbits in some particular configurations of masses. The result by Gladman was refined to cover other situations as, for example, the case of inclined orbits [START_REF] Veras | The Dynamics of Two Massive Planets on Inclined Orbits[END_REF]. [START_REF] Georgakarakos | Stability Criteria for Hierarchical Triple Systems[END_REF] provided a review of stability criteria for hierarchical three-body problems.

The Hill stability is consistent with numerical integrations, where a sharp transition between Hill stable and Hill unstable systems is often observed [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF][START_REF] Barnes | Stability Limits in Extrasolar Planetary Systems[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF]. Moreover, [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] analyzed the differences between the MMR overlap and Hill stability criteria. They remarked that there exists an area where orbits are chaotic because of the overlap of MMR but long-lived owing to Hill stability.

In this chapter, we show that the Hill stability criterion from [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] fits extremely well in the AMD-stability framework. In section 5.2, we derive a criterion for Hill stability solely expressed as a function of the total AMD, semi-major axes, and masses. Our criterion does not need any expansion in the spacing, eccentricities, or inclinations of the orbits and admits all previous Hill criteria as particular approximations.

In order to do so we follow the reasoning proposed by [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF]. We then compare the Hill stability criterion with the AMD-stability criteria proposed in chapter 3 and 4. In the last section, we carry numerical integrations of two-planet systems over a large part of the phase space. We show that the only parameters of importance are the initial AMD and semi-major axis ratio.

Hill stability in the three-body problem

Generalized Hill curves

Let us use the formalism proposed in [START_REF] Marchal | Hill Regions for the General Three-Body Problem[END_REF][START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] for the definition of the Hill regions for the general three-body problem. We mainly consider the planetary case and therefore slightly adapt their notations to this particular problem. Let us consider two planets of masses m 1 , m 2 orbiting a star of mass m 0 . Let G be the constant of gravitation, µ = Gm 0 ,

ε = m 1 + m 2 m 0 , (5.1)
the planet mass to star mass ratio and

γ = m 1 m 2 . (5.2)
As in the previous chapters, we use the heliocentric canonical coordinates (r j , r j ) j=1,2 .

In those coordinates, the Hamiltonian is

H = 2 j=1 1 2 rj 2 m j - µm j r j + 1 2 r1 + r2 2 m 0 - Gm 1 m 2 r 12 , ( 5.3) 
where r 12 = r 1r 2 . We denote G the total angular momentum of the system assumed aligned with the vertical axis and G its norm. We also use the modified Delaunay coordinates (2.37) and in particular Λ j = m j √ µa j , where a j is the semimajor axis of the jth planet. We also note e j , the eccentricity and i j , the inclination of the orbital plane with the horizontal plane. The AMD, C [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF][START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] is expressed

C = 2 j=1 Λ j 1 -1 -e 2 j cos(i j ) .
(5.4)

Following [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF], we define a generalized semi-major axis a = -GM * 2H , (5.5) and a generalized semilatus rectum

p = m 0 (1 + ε) GM * 2 G 2 , (5.6)
where

M * = m 0 m 1 + m 0 m 2 + m 1 m 2 = m 2 0 ε 1 + ε γ (1 + γ) 2 .
(5.7)

The values a and p are the two length units that can be built from the first integrals H and G. We finally define two variable lengths. First, ρ the mean quadratic distance

M * ρ 2 = m 0 m 1 r 2 1 + m 0 m 2 r 2 2 + m 1 m 2 r 2 12 , (5.8)
that is proportional to the moment of inertia I computed in the center of mass frame [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF])

I = 1 2 M * ρ 2 m 0 + m 1 + m 2 .
(5.9)

We introduce ν, the mean harmonic distance

M * ν = m 0 m 1 r 1 + m 0 m 2 r 2 + m 1 m 2 r 12 , (5.10)
which is proportional to the potential energy

U = - GM * ν .
(5.11)

For a system with given H and G, some configurations of the planets are forbidden. Indeed, the value of the ratio ρ/ν is constrained by the inequality [START_REF] Marchal | Hill Regions for the General Three-Body Problem[END_REF])

ρ ν ≥ ρ 2a + p 2ρ ,
(5.12) derived from Sundman's inequality [START_REF] Sundman | Mémoire Sur Le Problème Des Trois Corps[END_REF]. Moreover, if the system has a negative energy, the right-hand side of (eq. 5.12) has a minimum value obtained for ρ = √ ap. We therefore have the inequality [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF])

ρ 2 ν 2 ≥ p a = - 2m 0 (1 + ε) G 2 M * 3 HG 2 .
(5.13)

If p/a is high enough, the inequality (5.13) makes some regions of the phase space inaccessible. In this case, we can ensure that certain initial conditions forbid collisions between the two planets for all times.

Let us study the values of the function (ρ/ν) 2 . Since this ratio only depends on the ratios of mutual distances, we can always place ourselves in the plane generated by the three bodies. We can also choose to place the first planet on the x-axis and normalize the lengths by r 1 . Let us call this plane P and note (x, y) the coordinates of the second planet. In the plane P (see Figure 5.1), the star S is at the origin, the first planet P 1 is situated at the point [START_REF] Grimm | The Nature of the Trappist-1 Exoplanets[END_REF]0). For the planar circular restricted threebody problem, this reduction is equivalent to study the dynamics in the corotating frame. We note

R(x, y) = ρ ν 2 . (5.14) are R(L 1 ) = 1 + 3 4/3 ε 2/3 γ (γ + 1) 2 + O(ε) R(L 2 ) = 1 + 3 4/3 ε 2/3 γ (γ + 1) 2 + O(ε),
(5.16)

R(L 3 ) = 1 + 2ε γ (γ + 1) 2 + O(ε 2 ).
The values R(L 1 ) and R(L 2 ) have the same first order term but differ in the expansion of higher order. Indeed, if m 0 ≥ m 1 ≥ m 2 , we have R(L 1 ) ≥ R(L 2 ) [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF]. From now on, let us assume R(L 1 ) ≥ R(L 2 ) (if not, we can just substitute R(L 2 ) to R(L 1 ) in further equations).

For p/a ≥ R(L 1 ), the accessible domain is split into three parts: the Hill sphere of the star S, which is around the origin; the first planet Hill sphere 1 S H 1 (in green in Figure 5.1); and the outer region. In this case, if the second planet is not initially inside S H 1 , it will never be able to enter this region. However, if P 2 is in the outer region, the Hill stability cannot constrain the possibility of ejection. Similarly, if P 2 is closer to the star (in the inner region), a collision with the star is still possible.

The study of the function R and the inequality (5.13) gives a noncollision criterion for an infinite time. Marchal and Bozis called it the Hill stability.

Proposition 1 [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF]. Let us consider a negative energy threebody problem with a body S of mass m 0 and two others P 1 and P 2 of mass m 1 and m 2 such that m 0 ≥ m 1 ≥ m 2 . We place ourselves in the P plane defined by S, P 1 , and P 2 (Figure 5.1). If P 2 is not initially inside the Hill sphere S H 1 of P 1 , the system is Hill stable if p a > R(L 1 ), (5.17

)
where a is defined in (5.5), p in (5.6) and R in (5.14).

From this inequality, [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF] obtained criteria for initially circular orbits and for two particular cases of eccentric orbits: the case of equal masses and small eccentricities and the case of equal masses and large, but equal eccentricities. While Gladman's Hill stability criterion for initially circular orbits is useful, the eccentric criteria are too particular to be used in the context of a generic system. It is however possible to obtain a very general Hill stability criterion using the AMD to take into account the eccentricities and inclinations of the orbits.

AMD condition for Hill stability

The total energy of the system can be written (5.18) where α = a 1 /a 2 and

H = - m 3 2 µ 2 2Λ 2 2 γ α + 1 + h 1 ,
h 1 = - 2Λ 2 2 m 3 2 µ 2 1 2 r1 + r2 2 m 0 - Gm 1 m 2 r 12 .
(5.19)

1 The Hill region is usually called the Hill sphere although it is not technically a sphere.

From now on, we assume that initially α ≤ 1 (if not we can just renumber the two planets). Similarly the angular momentum can be rewritten (5.20) where

G = Λ 2 γ √ α + 1 -C ,
C = C Λ 2 = γ √ α 1 -1 -e 2 1 cos i 1 + 1 -1 -e 2 2 cos i 2 (5.21)
is the relative AMD already defined in (3.7). Combining (5.13), (5.18) and (5.20), we obtain

p a = (1 + ε) (γ + 1) 3 (1 + εγ/(γ + 1) 2 ) 3 γ α + 1 + h 1 γ √ α + 1 -C 2 .
(5.22)

The Hill stability criterion (5.17) can be rewritten without any approximation as a condition on C and we have the following formulation of the Hill stability.

Proposition 2 (Hill stability). With the hypotheses of the proposition 1, assuming the elliptical elements can be defined ( i.e., both Keplerian energies are negative), a system is Hill stable if

C < C Ex c = γ √ α + 1 -(γ + 1) 3/2 R(L 1 )(1 + εγ/(γ + 1) 2 ) 3 (1 + ε) (γ/α + 1 + h 1 ) , (5.23)
where C is the relative AMD (5.21) and h 1 the normalized perturbation part (5.19).

The inequality (5.23) is equivalent to proposition 1 but we isolated the contribution from the AMD on the left-hand side. Up to the perturbation term h 1 , the right-hand side of (5.23) only depends on the masses and the semi-major axis ratio α. If we only keep the terms of leading order in ε in the square root of the right-hand side of (eq. 5.23), we obtain an expression that depends only on α, ε, and γ. Proposition 3 (Hill stability, planetary case). For small enough ε, a two-planet system is Hill stable if the relative AMD C verifies the inequality

C < γ √ α + 1 -(1 + γ) 3/2 α γ + α 1 + 3 4/3 ε 2/3 γ (1 + γ) 2 + O(ε).
(5.24)

As explained in appendix D.2, h 1 is of smaller order in ε and can be neglected if the criterion is verified. We want to stress that the expression (5.24) is obtained with only an expansion in ε and only depends on α, C , and the masses of the bodies. The term of order ε 2/3 in Eq. 5.24 also depends on γ/(γ + 1) 2 , but we show in appendix D.2 that (5.24) is still valid for γ ≪ 1 or γ ≫ 1.

Close planets approximation

Assuming 1α ≪ 1, and a small AMD value, further approximations can be made. At leading order in C , 1α, and ε, the inequality (5.24) becomes

C < 3γ 8(γ + 1) (1 -α) 2 - 3 4/3 γ 2(γ + 1) ε 2/3 .
(5.25)

We can isolate 1α in this expression to obtain an approximate minimum spacing for Hill stable systems.

Proposition 4 (Hill stability, close planets case). For a close planets system, the minimum spacing criterion for Hill stability is

a 2 -a 1 a 2 = 1 -α > 4 × 3 1/3 ε 2/3 + 8 3 γ + 1 γ C .
(5.26)

Gladman's eccentric criteria can be recovered from (5.26) if the AMD is developed under the assumptions (same planet masses, small or large, and equal eccentricities) made in [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF]. However (5.26) is more general as it takes into account mutual inclinations or uneven mass distribution.

In the case of circular orbits, we also get the well-known formula (Gladman, 1993)

1 -α > 2 √ 3 ε 3 1/3 = 2.40ε 1/3 .
(5.27)

Comparison of the Hill criteria

We can compare the right-hand side of (5.23), (5.24), (5.25) and Gladman's circular approximation (5.27) to test how relevant are the approximations made here. In Figure 5.2, we plot the exact expression C Ex c (eq. 5.23, in green), the expansion in ε (eq. 5.24, in orange), the approximation for close planets (5.25, in red), and the minimum spacing for circular orbits (5.27, in blue). We see that the expansion in ε (5.24) cannot be distinguished from the exact curve (5.23). In order to better quantify this, we plot in Figure 5.3 the maximum difference between the two curves as a function of ε for various values of the mass ratio γ.

We see in figure 5.3 that for the range of ε used in planetary dynamics (typically from 10 -6 to 10 -3 ), the expression (5.24) developed in ε is accurate even for very uneven planet mass distribution. From now, we use (5.24) to define the Hill stability.

Comparison with the AMD-stability

We can use (5.24) to define a critical AMD C H c for the Hill stability

C H c = γ √ α + 1 -(1 + γ) 3/2 α γ + α 1 + 3 4/3 ε 2/3 γ (1 + γ) 2 .
(5.28)

A system is Hill stable if its initial relative AMD is smaller than the initial critical AMD C H c . We see that for two planets, the Hill stability definition fits extremely well in the AMD-stability framework. We can also compare C H c to the previously proposed critical AMD, C c (chapter 3) and C MMR c (chapter 4). The collision critical AMD C c is plotted in Figure 5.2 with two values of C H c for ε = 10 -5 (resp. 10 -3 ). We can see that the Hill stability criterion is stricter (C H c < C c ) than the collision condition for secular dynamics. It can be easily understood since the Hill stability forbids the planets to approach each other. Indeed, let us consider a Hill stable system, i.e., such that C < C H c . As a result the two planets cannot approach each other by less than their mutual Hill radius for any variation of semi-major axes and thus also in the secular system. In particular, a configuration such that the two orbits intersect is impossible. Therefore, the system is AMD stable and C < C c . Since we are not making any additional hypothesis regarding C , we have C H c < C c . The strict inequality comes from the positive minimal distance between the two planets.

As a comparison, we also plot in Figure 5.2 the MMR critical AMD C MMR c . For small relative AMD C , C MMR c , and C H c are almost identical. However, the proximity of two criteria is coincidental. Indeed, they emerge from two different mechanism and it is actually possible to exhibit regimes to highlight the difference as shown in the next section.

Numerical simulations

The Hill criterion proposed by [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF] has already been tested numerically in particular cases [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF][START_REF] Veras | The Dynamics of Two Massive Planets on Inclined Orbits[END_REF][START_REF] Barnes | Stability Limits in Extrasolar Planetary Systems[END_REF]. In their comparison between the Hill and the overlap of MMR criteria, [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] noted a sharp transition in the proportion of chaotic orbits at the Hill limit (p/a) = (p/a)| c . It also appears that for small ε and α close to 1, the overlap of MMR criterion provides a better limit for the chaotic region.

We want to test whether the Hill criterion gives a good limit to the chaotic region for wider separations. Moreover, we want our initial conditions to sample homogeneously the phase space. Indeed, the Hill stability criterion studied in this paper only depends on few quantities, the relative AMD C , and the ratio of semi-major axis and not the angles or the actual distribution of the AMD between the degrees of freedom of eccentricities or inclinations. Choosing an homogeneous sampling of the initial conditions also avoids giving too much importance to regions protected by MMR owing to particular combinations of angles while another choice of angles would have given an unstable orbit.

Numerical setup

We ran numerical simulations using the symplectic scheme ABAH(10, 6, 4) from [START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF]. We chose our initial conditions such that -the outer planet semi-major axis a 2 is fixed at 1 au; -the AMD and inner planet semi-major axis a 1 are chosen such that we have a regular grid in the plane (α, √ C ). Such a scaling in C is chosen to have an approximately uniform distribution in terms of eccentricities and inclination; -the AMD is on average equipartitioned between the eccentricity and inclination degrees of freedom;

-the inclinations are chosen such that the angular momentum is on the z-axis;

-the angles are chosen randomly;

-the star mass is taken as 1M ⊙ and the planets masses do not vary for each grid of initial conditions.

We then integrate each initial condition for 500 kyr using a time-step of 10 -3 yr. The numerical integration is stopped if the planets approach each other by less than a quarter of their mutual Hill radius, if a planet reaches 0.01 AU or 20 AU or if the relative variation of energy is higher than 10 -8 . In order to measure the chaoticity of a system, we use frequency map analysis [START_REF] Laskar | The Chaotic Motion of the Solar System: A Numerical Estimate of the Size of the Chaotic Zones[END_REF][START_REF] Laskar | Frequency Analysis for Multi-Dimensional Systems[END_REF]. Our criterion is based on the relative variation of the main frequencies in the quasiperiodic best fit. More precisely, let n

(i) k (respectively n (f )
k ) be the frequency obtained by frequency analysis for the planet k for the first (resp. last) 100 kyr of integration. We consider an orbit to be chaotic if

δn = max k n (f ) k -n (i) k n (i) k (5.29)
is greater than 10 -4 . The chosen threshold is such that the semi-major axis changes by about 1% in a few Gyr if we assume a constant diffusion process as it would happen for a random walk. Indeed, δn measures the variation of frequency over 500 kyr. If the diffusion rate remains constant, a variation on the order of 1% on average needs a time 10,000 times larger, i.e., 5 Gyr.

If the integration time is shorter due to a collision or ejection, we set δn to 1. Since we randomly draw most of the initial parameters, we bin the results into a two-dimensional grid in (α, √ C ) and average the frequency variation in each bin.

Results

We first integrate 100,000 initial conditions on a uniform grid with α taking values from 0.5 to 1 and C from 0 to 0.1. The masses of the two planets are equal to 0.5 × 10 -5 M ⊙ , such that ε = 10 -5 and γ = 1. In this simulation, 78.4% of the orbits survive up to 500 kyr, 21.1% end up in a collision between the two planets, and 0.5% of the integrations are stopped because of the nonconservation of energy due to an unresolved close encounter.

The results of the frequency analysis are shown in Figure 5.4. We see that the chaotic region is well constrained by the Hill curve C H c . Indeed, very few orbits with C < C H c appear to be chaotic. The region where Hill stable orbits (C < C H c ) are chaotic seems restricted to the region where C MMR c < C < C H c around α ≃ 0.94 and low C , i.e., for orbits experiencing MMR overlap (a zoomed view of Fig. 5.4 is given in Fig. 5.5). The behavior of planets initially in this region was already discussed in [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF]. Orbits that are Hill unstable (C > C H c ) appear to be largely chaotic up to some resonant islands situated at α ≃ 1 (co-orbital resonance) and near the 3:2 and 4:3 resonances (α ≃ 0.76 and 0.82). We also see that for larger separations (α 0.6), orbits are less chaotic. However it is probable that for longer integration times, these orbits would end up unstable.

Conclusions

In a two-planet system, Hill stability is a topological limit that forbids close encounters between the outer planet and the inner planet or the star. If verified, the system remains stable if the outer planet does not escape or if the inner planet does not collide with the star. Moreover, since a minimal distance between planets is imposed, the planet perturbation remains moderate and the system is most likely regular.

We have generalized Gladman's Hill stability criterion and have shown that it is natural to express the Hill criterion in the AMD framework. Indeed, we obtained a simple expression for this criterion (proposition 3) with only an expansion in ε (eq. 5.1). Moreover, it is easy to recover all former published criteria as particular cases of this expression. Because of its formulation as a function of the AMD, the expression (5.24) is valid in the general spatial case for any value of eccentricities and inclinations. Moreover, our Hill criterion is accurate even for very different planet masses. We also highlight that the AMD and the semi-major axis ratio α are the main parameters to consider in a stability study.

We show that the Hill stability allows us to give an accurate stability limit up to large orbital separations. The sharp change of behavior at the Hill stability limit has already been studied in [START_REF] Barnes | Stability Limits in Extrasolar Planetary Systems[END_REF] or in [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF]. Nevertheless, our numerical integrations confirm it for a much larger range of α and AMD with randomized initial conditions for the parameters not taken into account.

Our simulations for large planet masses also show that the expansion in ε is valid even for larger planets and that the Hill stability accurately segregates between regular and short-lived initial conditions. However, it appears that for large mass values, ejections cannot be neglected and a model should be developed to understand this further behavior.

As shown in several works [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF]), Gladman's Hill criterion is no longer adapted in the cases of tightly packed systems . Such a sharp limit between almost eternal and short-lived systems no longer exists. Instead, it appears that there exists a scaling between the initial orbital separation and the time of instability, wider separated orbits becoming unstable after a longer time. In the cited works, the empirical stability criteria give stability spacing as a function of the mutual radius (5.30) where R H = a n+1 (ε/3) 1/3 is the Hill radius. In the context of multiplanetary systems, an analytical work on long-term stability is still necessary.

a n+1 -a n > KR H ,
Chapter 6

High order regularized symplectic integrator for collisional planetary systems

The content of this chapter is submitted to Astronomy and Astrophysics.

During this thesis, it appeared necessary to study in detail the dynamics of planetary systems that end up highly unstable. In particular, such studies are necessary to understand how the AMD evolves due to non secular perturbations. Numerical simulations have the advantage over analytical works that they help to get an intuition on the evolution of particular systems. As a result the numerical and analytical approaches are complementary and simulations can help elaborate an analytical model. The following work is motivated by the research of a high precision symplectic integrator able to integrate systems experiencing close encounters.

Introduction

Precise, long-term integration of planetary systems is still a challenge today. Indeed, the numerical simulations must resolve the motion of the planets along their orbits, however the lifetime of a system is typically of billions of years resulting in computationally expensive simulations. Besides, due to the chaotic nature of planetary dynamics, statistical studies are often necessary, which require to run multiple simulations with close initial conditions [START_REF] Laskar | Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth[END_REF]. This remark is particularly true for unstable systems that can experience strong planet scattering due to close encounters.

There is therefore considerable interest in developing fast and accurate numerical integrators and numerous integrators have been developed over the years to fulfill this task. For long-term integrations, the most commonly used are symplectic integrators. Symplectic schemes incorporate the symmetries of Hamiltonian systems and as a result, usually conserve the energy and angular momentum better than nonsymplectic integrators. In particular, the angular momentum is usually conserved up to roundoff error in symplectic integrators.

Independently, [START_REF] Kinoshita | Symplectic Integrators and Their Application to Dynamical Astronomy[END_REF] and [START_REF] Wisdom | Symplectic Maps for the N-Body Problem[END_REF] developed a class of integrators often called in the literature Mixed Variables Symplectic (MVS) integrators. This method takes advantage in the hierarchy between the Keplerian motion of the planets around the central star and the perturbations induced by planets interactions. It is thus possible to make accurate integrations using relatively large time-steps. The initial implementation of [START_REF] Wisdom | Symplectic Maps for the N-Body Problem[END_REF] is a low order integration scheme, that still necessitates small time-steps to reach machine precision. Improvements to the method has since been implemented.

The first category is symplectic correctors [START_REF] Wisdom | Symplectic Correctors[END_REF][START_REF] Wisdom | Symplectic Correctors for Canonical Heliocentric N-Body Maps[END_REF], they consist in a modification of the initial conditions to improve the scheme accuracy. Since it is only necessary to apply them when an output is desired, they do not affect the performance of the integrator. This approach is for example used in WHFAST [START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF]. The other approach is to consider higher order schemes [START_REF] Mclachlan | Composition Methods in the Presence of Small Parameters[END_REF][START_REF] Laskar | High Order Symplectic Integrators for Perturbed Hamiltonian Systems[END_REF][START_REF] Blanes | New Families of Symplectic Splitting Methods for Numerical Integration in Dynamical Astronomy[END_REF]. High order schemes permit a very good control of the numerical error by fully taking advantage of the hierarchical structure of the problem. It has been used with success to carry high precision long-term integrations of the Solar System [START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF]. The principal limitation of symplectic integrators is that they require the use of a fixed time-step [START_REF] Gladman | Symplectic Integrators for Long-Term Integrations in Celestial Mechanics[END_REF]. If the time-step is modified between each step, the integrator remains symplectic since each step is symplectic. However, the change of time-step introduces a possible secular energy drift that may reduce the interest of the method. As a consequence, classical symplectic integrators are not very adapted to treat the case of systems experiencing occasional close encounters where very small time-step is needed.

To resolve close encounters, [START_REF] Duncan | A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters[END_REF] and [START_REF] Chambers | A Hybrid Symplectic Integrator That Permits Close Encounters between Massive Bodies[END_REF] provide solutions in the form of hybrid symplectic integrators. [START_REF] Duncan | A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters[END_REF] developed a multiple time-step symplectic integrator, SYMBA, where the smallest time-steps are only used whenever a close encounter occurs. The method is however limited to an order two scheme. The hybrid integrator MERCURY [START_REF] Chambers | A Hybrid Symplectic Integrator That Permits Close Encounters between Massive Bodies[END_REF] moves terms from the perturbation step to the Keplerian step whenever an interaction between planets becomes too large. The Keplerian step is no longer integrable but can be solved at numerical precision using a non symplectic scheme such as Burlisch-Stoer or Gauss-Radau. However, the switch of numerical method leads to a linear energy drift [START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF].

Another way to build a symplectic integrator that correctly regularises close encounters is time renormalization. Indeed, up to an extension of the phase space and a modification of the Hamiltonian, it is always possible to modify the time that appears in the equations of motion. As a result, the real time becomes a variable to integrate. Providing some constraints on the renormalization function, it is possible to integrate the motion with a fixed fictitious time-step using an arbitrary splitting scheme. Here we show that with adapted time renormalization, it is possible to resolve accurately close encounters. While time renormalization has not been applied in the context of planet close encounter, it has been successful in the case of perturbed highly eccentric problems [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF][START_REF] Mikkola | Explicit Symplectic Algorithms for Time-Transformed Hamiltonians[END_REF][START_REF] Preto | A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems[END_REF][START_REF] Blanes | Explicit Adaptive Symplectic Integrators for Solving Hamiltonian Systems[END_REF], see [START_REF] Mikkola | A Brief History of Regularisation[END_REF] for a general review. In the present work, we adapt a time renormalization proposed independently by [START_REF] Mikkola | Explicit Symplectic Algorithms for Time-Transformed Hamiltonians[END_REF] and [START_REF] Preto | A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems[END_REF]. We show that it is possible to use the perturbation energy to monitor close encounters in the context of systems of few planets with comparable masses. We are able to define a MVS splitting that can be integrated with any high order scheme.

We start in section 6.2 to briefly recall the basics of the symplectic integrator formalism. In section 6.3, we present the time renormalization that regularises close encounters and then discuss the consequence of the renormalization on the hierarchical structure of the equations (section 6.4). In section 6.5 we numerically demonstrate over short term integrations the behaviour of the integrator at close encounter. We then explain (section 6.6) how our time regularization can be combined with the perihelion regularization proposed by [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF]. Finally we show the results of long-term integration of six planet systems in a context of strong planet scattering (section 6.7) and compare our method to the modern implementation of MERCURY [START_REF] Rein | Hybrid Symplectic Integrators for Planetary Dynamics[END_REF] and to the non symplectic high order integrator IAS15 (section 6.8).

Splitting symplectic integrators

We consider a Hamiltonian H(p, q) that can be written as a sum of two integrable Hamiltonians H(p, q) = H 0 (p, q) + H 1 (p, q). (6.1)

A classical example is given by H 0 = T (p) and H 1 = U (q) where T (p) is the kinetic energy and U (q) the potential energy. In planetary dynamics, we can split the system as H 0 = K(p, q) where K is the sum of the Kepler problems in Jacobi coordinates (e.g. Laskar, 1990a) and H 1 = H inter (q) is the interaction between the planets.

Using the Lie formalism (e.g. [START_REF] Koseleff | Relations among Lie Formal Series and Construction of Symplectic Integrators[END_REF][START_REF] Laskar | High Order Symplectic Integrators for Perturbed Hamiltonian Systems[END_REF], the equation of motion can be written

dz dt = {H, z} = L H z, (6.2)
where z = (p, q), {•, •} is the Poisson bracket 1 and we note L f = {f, •}, the Lie differential operator. The formal solution of (6.2) at time t = τ + t 0 from the initial condition z(t 0 ) is

z(τ + t 0 ) = exp(τ L H )z(t 0 ) = +∞ k=0 τ k k! L k H z(t 0 ). (6.3)
In general the operators L H 0 and L H 1 do not commute so exp(τ L H ) = exp(τ L H 0 ) exp(τ L H 1 ). ( 6.4) However, using Baker-Campbell-Hausdorff(BCH) formula, we can find coefficients a i and b i such that (6.5) where H err = O(τ r ) is an error Hamiltonian depending on H 0 , H 1 , τ and the coefficients a i and b i . Since H 0 and H 1 are integrable, we can explicitly compute the evolution of the coordinates z under the action of the maps exp(τ L H 0 ) and exp(τ L H 1 ). The map S(τ ) is symplectic because it is a composition of symplectic maps. Moreover, S(τ ) integrates exactly the Hamiltonian H + H err .

exp(τ (L H + L Herr )) = S(τ ) = N i=1 exp(a i τ L H 0 ) exp(b i τ L H 1 ),
If there is a hierarchy in the Hamiltonian H in the sense that |H 1 /H 0 | ≃ ε ≪ 1, one can choose the coefficients such that the error Hamiltonian is of order [START_REF] Mclachlan | Composition Methods in the Presence of Small Parameters[END_REF][START_REF] Laskar | High Order Symplectic Integrators for Perturbed Hamiltonian Systems[END_REF][START_REF] Blanes | New Families of Symplectic Splitting Methods for Numerical Integration in Dynamical Astronomy[END_REF][START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF]. For small ε and τ , the solution of H + H err is very close to the solution of H.

n i=1 O(τ r i ε i ), (6.6) (see
In particular, it is thought that the energy error of a symplectic scheme is bounded.

Since H err depends on τ , a composition of steps S(τ ) also has this property if the time-step is kept constant. Otherwise, the exact integrated dynamics changes at each step, leading to secular drift of the energy error.

In planetary dynamics, we can split the Hamiltonian such that H 0 is the sum of the Keplerian motions in Jacobi coordinates and H 1 is the interaction Hamiltonian between planets that only depends on positions and thus is integrable (e.g. Laskar, 1990a). This splitting naturally introduces a scale separation ε given by

ε = N k=1 m k m 0 (6.7)
where N is the number of planets, m k the mass of the k-th planet and m 0 the mass of the star. If the planets remain far from each other, H 1 is always ε small with respect to H 0 . The perturbation term is of order ε/∆ where ∆ is the typical distance between the planets in unit of a typical length of the system. During close encounters, ∆ can become very small, and the step size needs to be adapted to ε/∆ min Here ∆ min is the smallest expected separation between planets normalized by a typical length of the system.

The regularised Hamiltonian

In order to construct an adaptive symplectic scheme which regularises the collisions, we extend the phase space and integrate the system with a fictitious time. Let s be such that dt = g(p, p t , q)ds. (6.8)

where g is a function to be determined and p t is the conjugated momentum to the real time t in the extended phase space. In order to have an invertible function t(s), we require g to be positive. We consider the new Hamiltonian Γ defined as Γ(p, p t , q, t) = g(p, p t , q) (H(p, q) + p t ) . (6.9)

Γ does not depend on t therefore p t is a constant of motion. The equation of motion of this Hamiltonian are dt ds = {Γ, t} = g(p, p t , q) + ∂g ∂p t (p, p t , q) (H(p, q) + p t ) (6.10) and for all function f (z)

df (z) ds = {Γ, f (z)} = g(p, p t , q){H, f } + (H + p t ) {g, f (z)}. (6.11)
In general H is not a constant of motion of Γ. We have dH ds = {Γ, H} = (H + p t ) {g, H}. (6.12)

If we choose initial conditions z 0 such that p t = -H(z 0 ) we have Γ| t=0 = 0. Since Γ is constant and g is positive, we deduce from equation ( 6.3) that we have at all times H + p t = 0. (6.13) Since p t is also a constant of motion, H is constant for all times. We can simplify the equations of motion (6.10) and (6.11) into dt ds = g(p, p t , q) df ds (z) = g(p, p t , q){H, f (z)}. (6.14)

On the manifold p t = -H(t 0 ), the equations (6.14) describe the same motion as equation (6.2). We will call them the regularised equations.

We want now to write Γ as a sum of two integrable Hamiltonians such as in section 6.2. Based on previous works [START_REF] Preto | A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems[END_REF][START_REF] Mikkola | Explicit Symplectic Algorithms for Time-Transformed Hamiltonians[END_REF][START_REF] Blanes | Explicit Adaptive Symplectic Integrators for Solving Hamiltonian Systems[END_REF], we write

H + p t = (H 0 + p t ) -(-H 1 ), (6.15) 
for H = H 0 + H 1 and we define g as

g(p, p t , q) = f (H 0 + p t ) -f (-H 1 ) H 0 + p t + H 1 , (6.16)
where f is a smooth function to be determined. g is the difference quotient of f and is well defined when H 0 + p t + H 1 → 0. We have

g(p, p t , q)| H+pt=0 = f ′ (H 0 + p t ) = f ′ (-H 1 ). (6.17)
With this choice of g, the Hamiltonian Γ becomes (6.18) where we note Γ 0 = f (H 0 + p t ) and Γ 1 = -f (-H 1 ). We remark that Γ 0 (resp. Γ 1 ) is integrable because it is a function of H 0 + p t (resp. H 1 ) which is integrable. Moreover, we have

Γ = f (H 0 + p t ) -f (-H 1 ) = Γ 0 + Γ 1 ,
L Γ 0 = f ′ (H 0 + p t )L H 0 +pt , L Γ 1 = f ′ (-H 1 )L H 1 . (6.19) Since H 0 + p t (resp. H 1 ) is a first integral of Γ 0 (resp. Γ 1 ), we have exp(σL Γ 0 ) = exp(σf ′ (H 0 + p t )L H 0 +pt ) = exp(τ 0 L H 0 +pt ), exp(σL Γ 1 ) = exp(σf ′ (-H 1 )L H 1 ) = exp(τ 1 L H 1 ), (6.20) 
where

τ 0 = σf ′ (H 0 + p t ) and τ 1 = σf ′ (-H 1 ). (6.21)
The operator exp(σL Γ 0 ) (resp. exp(σL Γ 1 )) is equivalent to the regular operator exp(τ 0 L H 0 +pt ) (resp. exp(τ 1 L H 1 )) with a modified time-step. One can approximate the operator exp(σL Γ ) by a composition of operators exp(σL

Γ k ) S Γ (σ) = N i=1 exp(a i σL Γ 0 ) exp(b i σL Γ 1 ). (6.22) 
Using BCH formula S Γ (σ) = exp(σ(L Γ + L Γerr ) where Γ err is an error Hamiltonian that depends on σ. The symplectic map S Γ (σ) integrates exactly the modified Hamiltonian Γ + Γ err . The iteration of S Γ (σ) with fixed σ is a symplectic integrator algorithm for Γ.

If the time scale σ is small enough, H 0 and H 1 do not change significantly between each step of the composition. We have S Γ (σ) ≃ S(τ ) with τ ≃ σf ′ (-H 1 ). In other words, S Γ behaves as S with an adaptive time-step while keeping the bounded energy properties of a fixed time-step integrator.

Choice of the regularization function

We want the step sizes (6.21) to become smaller when planets experience close encounters. These time-steps are determined by the derivative of f . For nearly Keplerian systems, [START_REF] Mikkola | Explicit Symplectic Algorithms for Time-Transformed Hamiltonians[END_REF] and [START_REF] Preto | A Class of Symplectic Integrators with Adaptive Time Step for Separable Hamiltonian Systems[END_REF] studied renormalization functions such that f ′ (x) ∝ x -γ , where γ > 0 (it corresponds to power law functions and the important case of f = ln).

However, these authors consider splitting of the type H 0 = T (p) and H 1 = U (q). As pointed out in [START_REF] Blanes | Explicit Adaptive Symplectic Integrators for Solving Hamiltonian Systems[END_REF], when splitting the Hamiltonian as the Keplerian part plus an integrable perturbation, it appears that both terms K(p, q) + p t and -H 1 can change signs, resulting in large errors in the integration.

We remark that the use of f = ln is giving the best result when two planets are experiencing a close encounter, but it leads to large energy errors far away for collision when H 1 is nearly 0. Based on these considerations, we will require f to verify several properties to successfully regularise the perturbed Keplerian problem in presence of close encounters: For now on, f will always refer to the definition (6.24). With this choice of function f , the Hamiltonian Γ takes the form

Γ = E 1 arcsinh H 0 + p t E 1 + E 1 arcsinh H 1 E 1 , (6.25)
where we used the oddity of f . We need to define more explicitly E 1 . When planets are far from each other, their mutual distance are of the same order as the typical distance between the planets and the star. Using the same idea as in [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF][START_REF] Petit | Hill Stability in the AMD Framework[END_REF], we define a typical length unit of the system based on the initial system energy E 0 . We have

a typical = - GM * 2E 0 , ( 6.26) 
where M * = 0≤i<j m i m j . The typical value for the perturbation Hamiltonian far away from collision can be defined as (6.27) where m * = 1≤i<j m i m j . We note that we have

E 1 = Gm * a typical = 2|E 0 |m * M * ,
E 1 /E 0 = O(ε).
The behaviour of higher order derivative of f is useful for the error analysis and in particular their dependence in ε. The k-th derivative of f has for expression

f (k) (h) = E 1-k 1 arcsinh (k) h E 1 = O(ε 1-k ).
(6.28)

Order of the scheme

As explained in section 6.2, most of the planet dynamics simulations are made with a simple a second order scheme such as the Wisdom-Holman leapfrog integrator [START_REF] Wisdom | Symplectic Maps for the N-Body Problem[END_REF]. Indeed it is possible to take advantage of the hierarchy between H 0 and H 1 . This can be done by the addition of symplectic correctors [START_REF] Wisdom | Symplectic Correctors[END_REF][START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF] or by canceling term of the form ετ k up to a certain order [START_REF] Laskar | High Order Symplectic Integrators for Perturbed Hamiltonian Systems[END_REF]. Hierarchical order schemes such as SABA(10, 6, 4) [START_REF] Blanes | New Families of Symplectic Splitting Methods for Numerical Integration in Dynamical Astronomy[END_REF][START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF] behaves effectively as a tenth order integrator if ε is small enough. Canceling only selected terms reduces the number of necessary steps of the scheme which reduce the numerical error and improve the performances. Unfortunately, this property cannot be used for the regularised Hamiltonian since Γ 0 and Γ 1 are almost equal in magnitude. Nevertheless, it should be noted that the equations of motion (6.14) and the Lie derivatives (6.19) keep their hierarchical structure. The Poisson bracket of Γ 0 and Γ 1 gives

{Γ 0 , Γ 1 } = f ′ (H 0 + p t )f ′ (H 1 ){H 0 , H 1 }.
(6.29) Since f ′ does not depend directly on ε (by choice, f ′ only tracks relative variations of H 1 ), {Γ 0 , Γ 1 } is of order ε. However, for higher order terms in σ in H err , it is not possible to exploit the hierarchical structure in ε. Indeed, let us consider the terms of order σ 2 in the error Hamiltonian for the integration of Γ using the leapfrog scheme. We have (e.g. [START_REF] Laskar | High Order Symplectic Integrators for Perturbed Hamiltonian Systems[END_REF])

Γ err = σ 2 12 {{Γ 0 , Γ 1 }, Γ 0 } + σ 2 24 {{Γ 0 , Γ 1 }, Γ 1 } + O(σ 4 ). (6.30)
In order to see the dependence in ε, we develop the Poisson brackets in (6.30)

Γ err = σ 2 12 f ′ (H 0 + p t ) 2 f ′ (H 1 ){{H 0 , H 1 }, H 0 } - σ 2 12 f ′ (H 0 + p t ) 2 f ′′ (H 1 ) ({H 0 , H 1 }) 2 (6.31) + σ 2 24 f ′ (H 1 ) 2 f ′ (H 0 + p t ){{H 0 , H 1 }, H 1 } + σ 2 24 f ′ (H 1 ) 2 f ′′ (H 0 + p t ) ({H 0 , H 1 }) 2 + O(σ 4 ).
The first and third terms only depend on f ′ and nested Poisson brackets of H 0 and H 1 . Their dependency on ε is thus determined by the Poisson brackets as in the fixed time-step case (McLachlan, 1995a). The first term is of order εσ 2 and the third of order ε 2 σ 2 . On the other hand, the second and last terms introduce the second derivative of f as well as a product of Poisson bracket of H 0 and H 1 . From (6.28), it results that they are of order εσ 2 . In order to cancel every terms of order εσ 2 , it is necessary to cancel both terms in σ 2 in (6.30). Thus, the strategy used in [START_REF] Blanes | New Families of Symplectic Splitting Methods for Numerical Integration in Dynamical Astronomy[END_REF] does not provide a scheme with a hierarchical order since every Poisson bracket contributes with terms of order ε to the error Hamiltonian.

It is easy to extend the previous result to all orders in σ. Indeed, let us consider a generic error term of the form

Γ gen = σ n-1 {{Γ k 0 , Γ k 1 }, . . . , Γ kn }, (6.32) 
where k j is either 0 or 1 and k 0 = 0 and k 1 = 1. The development of Γ gen into Poisson brackets of H 0 and H 1 contains a term that has for expression (6.33) where n j is the number of Γ j in Γ gen , and f ′ 1 = f ′ (H 1 ). Since n = n 0 + n 1 , we deduce from (6.28) that the term (6.33) is of order εσ n-1 . Thus, the effective order of the Hamiltonian will always be εσ r min where r min is the smallest exponent r k in (6.6). Note that the error is still linear in ε. Hence, it is still worth using the Keplerian splitting.

σ n-1 f (n 0 ) (H 0 + p t )f (n 1 ) (H 0 + p t )f ′n 0 1 f ′n 1 0 ({H 0 , H 1 }) n-1 ,
We use schemes that are not dependent on the hierarchy between H 0 and H 1 . McLachlan (1995a) provides an exhaustive list of the optimal methods for 4-th, 6-th and 8-th order integrators. Among the schemes he presents, we select a 6-th order method consisting of a composition of n = 7 leapfrog steps introduced by [START_REF] Yoshida | Construction of Higher Order Symplectic Integrators[END_REF] and an 8-th order method that is a combination of n = 15 leapfrog steps. The coefficients of the schemes are given in Appendix E.2.

In order to solve the Kepler step, we adopt the same approach as [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF][START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF]. The details on this particular solution as well as other technical details are given in appendix E.1.

Non integrable perturbation Hamiltonian

When using the classical splitting of the Hamiltonian written in canonical heliocentric coordinates, H 1 depends on both positions and momenta. We can write H 1 as a sum of two integrable Hamiltonian H 1 = T 1 + U 1 , where T 1 is the indirect part only depending on the momenta and U 1 is the planet interaction potential, only depending on positions [START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF]. We thus approximate the evolution operator (6.20) by exp(σL

Γ 1 ) = exp τ 1 2 L T 1 exp (τ 1 L U 1 ) exp τ 1 2 L T 1 + O(ε 3 τ 3 1 ), (6.34) 
The numerical results suggests that heliocentric coordinates give slightly more accurate results at constant cost. It is possible to define a variant of the heliocentric coordinates often called democratic heliocentric coordinates (Laskar, 1990a;[START_REF] Duncan | A Multiple Time Step Symplectic Algorithm for Integrating Close Encounters[END_REF]. In this set of coordinates, the kinetic and the potential part of the perturbation Hamiltonian commutes. Therefore, the step exp(σL Γ 1 ) is directly integrable using the effective step size τ 1 (6.21). In the following numerical tests, when we refer to heliocentric coordinates, we always use the classical definition.

Error analysis near the close encounter

Time step and scheme comparison

In this section, we test how a single close encounter affects the energy conservation.

To do so, we compare different integration schemes for a two-planet system, initially on circular orbits, during an initial synodic period

T syn = 2π n 1 -n 2 = 2π n 2 (α -3/2 -1) (6.35)
where n i is the mean motion of planet i and α is the ratio of semi-major axis. Since the time-step is renormalized, we need to introduce a cost function that depends on the fictitious time s as well as the number of stages involved in the scheme of the integrator. We define the cost of an integrator as the number of evaluations of exp(aσL Γ 0 ) exp(bσL Γ 1 ) that are required to integrate for a given real time period

T syn C = s syn n T syn σ (6.36)
where s syn is the fictitious time after T syn , σ the fixed fictitious time-step and n the number of stages of the integrator. We also compare the renormalized integrators to the same scheme with fixed time-step. For fixed time-step, the cost function is simply given by C fixed = n/τ , where τ is the time-step [START_REF] Farrés | High Precision Symplectic Integrators for the Solar System[END_REF]. We present different configurations on figures 6.2a, 6.2b and 6.3.

In the two first sets, we integrate the motion of two equal masses planets on circular orbits, starting in opposition with respect to the star. In both simulations, we have ε = (m 1 + m 2 )/m 0 = 10 -5 , the stellar mass is 1 M ⊙ and the outer planet them as

A i = m i a typical N j=1 m j , (6.40)
where a typical , defined in (6.26), is the typical length-scale of the system. The new Hamiltonian Υ, on the extended phase space (q, t, p, p t ) is

Υ = Υ 0 + Υ 1 = g(q)(H 0 + p t ) + g(q)H 1 . (6.41)
As in section 6.3, on the sub-manifold {p t = H(0)}, Υ and H have the same equations of motion up to the time transformation. If H 1 only depend on q (using Jacobi coordinates for instance), Υ 1 is trivially integrable.

Kepler step

It is also possible to integrate Υ 0 as a modified Kepler motion due to the expression of g [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF]. Indeed, let us denote υ 0 = Υ 0 (0) and H0 = g -1 (q)(Υ 0υ 0 ). H0 has the same equations of motion as Υ 0 up to a time transformation d t = g -1 (q)du.

We have

H0 = H 0 + p t -υ 0 N i=1 A i q i = p t + N i=1 p i 2 2m i - µ i m i + υ 0 A i q i = p t + N i=1
Ki , (

where Ki is the Hamiltonian of a Keplerian motion of the planet i with a modified central mass

μi = µ i 1 + υ 0 A i µ i m i = µ i 1 + υ 0 a typical µ i N j=1 m j . (6.43)
However, the time equation must be solved as well. Indeed, we integrate with a fixed fictitious time-step ∆u. The time ∆ t(u) is related to u thanks to the relation ∆u =

∆ t 0 g -1 (q( t))d t = N i=1 A i ∆ t 0 1 r i ( t)) d t (6.44)
where r i ( t) follow a Keplerian motion. We can rewrite equation (6.44) thanks to the Stumpff's formulation of the Kepler equation [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF][START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF], see appendix E.1.1) . Since ∆ t 0 1

r i ( t)) d t = X i , we have ∆u = N i=1 A i X i . (6.45) As a consequence, the N Stumpff-Kepler equations ∆ t = r 0i X i + η 0i G 2 (β 0i , X i ) + ζ 0i G 3 (β 0i , X i ) = κ i (X i ) (6.46)
must be solved simultaneously with equation (6.45). To do so, we use a multidimensional Newton-Raphson method on the system of N + 1 equations consisting of the N Kepler equations (6.46) and equation (6.45) of unknowns Y = (X 1 , . . . , X N , ∆ t). The algorithm is almost as efficient as the fixed time Kepler evolution since it does not add up computation of Stumpff's series. Indeed, at step k, we can obtain Y (k+1) thanks to the equation

Y (k+1) = Y (k) -dF -1 (Y (k) )(F (Y (k) )) (6.47)
where

F =       κ 1 (X 1 ) -∆ t . . . κ N (X N ) -∆ t N i=1 A i X i -∆u       (6.48) and dF =       κ ′ 1 (X 1 ) 0 • • • -1 0 . . . 0 -1 • • • 0 κ ′ N (X N ) -1 A 1 • • • A N 0       (6.49)
with κ ′ i being the derivative with respect to X i of κ i (eq. 6.46). Equation (6.47) can be rewritten as a two-step process where a new estimate for the time ∆ t(k+1) is computed and then used to estimate

X (k+1) i . We have ∆ t(k+1) =   ∆u + N i=1 A i κ i (X (k) i ) -κ ′ i (X (k) i )X (k) i κ ′ i (X (k) i )   N i=1 A i κ ′ i , (6.50) and X (k+1) i = ∆ t(k+1) + κ ′ i (X (k) i )X (k) i -κ i (X (k) i ) κ ′ i (X (k) i ) 
. (6.51)

The case of heliocentric coordinates

In heliocentric coordinates, H H 1 depends on p as well. As a result, gH H 1 is not easily integrable and it is not even possible write it as a sum of integrable Hamiltonians. To circumvent this problem, we can split gH H 1 into gU H 1 and gT H 1 . The potential part gU H 1 is integrable, but a priori gT H 1 is not integrable. One can approximate the integration of gT H 1 using a logarithmic method as proposed in [START_REF] Blanes | Explicit Adaptive Symplectic Integrators for Solving Hamiltonian Systems[END_REF]. Indeed, the evolution of gT H 1 during a step ∆t is the same as the evolution of log gT H 1 = log g + log T H 1 , which is separable, for a step T 1 ∆t where T 1 = gT H 1 | t=0 . Therefore, we can approximate log gT H 1 using a leapfrog scheme and the error is of order ∆u 2 ε 3 as well.

Then, we can approximate the heliocentric step by using the same method as in 6.4.1. It should be noted that in this case, it is necessary to approximate the step even when using democratic heliocentric coordinates since g(q) does not commute with T H 1 .

Combining both regularizations

We have seen that the Hamiltonian Υ is separable into two parts that are integrable (or nearly integrable for heliocentric coordinates). Therefore we can simply regularise the close encounters by integrating the Hamiltonian

Γ = f (Υ 0 + p u ) + f (Υ 1 ) = f (g(q)(H 0 + p t ) + p u ) + f (g(q)H 1 ), (6.52) 
where p u is the momentum associated to the intermediate time u used to integrate Υ alone. The time equation is

dt ds = ∂ Γ ∂p t = f ′ (Υ 0 )g(q). (6.53)
Note that we need to place ourselves on the sub-manifold such that Υ 0 + p u + Υ 1 = 0 and H 0 + p t + H 1 = 0, in order to have the same equations of motion for Γ, Υ and H . Both of these conditions are fulfilled by choosing p t = -E 0 and p u = 0.

Long-term integration performance

So far, we only presented the performance of the algorithm for very short integrations.

In this section, we present the long-term behaviour of the integrator for systems with a very chaotic nature. We consider two different configurations, a system composed of equal planet masses on initially circular, coplanar and equally spaced orbits, used as a test model for stability analysis since the work of [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF] The second is a similar system but with initial moderate eccentricities and inclinations.

Initially circular and coplanar systems

We integrate 100 systems of six initially coplanar and circular planets. The planet masses are taken equal to 10 -5 M ⊕ , the outermost planet semi-major axis is fixed to 1 AU and the adjacent planet semi-major axis ratios are all equal to 0.88. Such a value is chosen to ensure that the system lifetime is of order 300 kyr before the first collision. The fixed fictitious time-step is σ = 10 -2 yr. Due to the renormalization, it corresponds approximately to a fixed time-step of 6.3 × 10 -3 yr in term of computational cost. It should be noted that the initial period of the inner planet is of the order of 0.38 yr, i.e we have an order of 50 steps per orbit. The simulations are stopped whenever two planet centers approach by less than half the planet radii assuming a density of 6 g.cm -3 . This stopping criterion is voluntarily nonphysical as it allows for a longer chaotic phase leading to more close encounters. We also keep track of any encounter with an approach closer than 2 Hill radii at 1 AU (0.054 AU) and record its time, the planets involved and the minimal distance between the two planets. For the majority of the integration, we observe moderate semi-major axis diffusion without close encounters. About 1 kyr before the final collision, the system enters a true scattering phase with numerous close encounters. The integrations last on average 353 kyr, the shortest is 129 kyr long and the longest 824 kyr. On average, we recorded 557 close encounters and 68% happen However, the algorithm is not yet able to spot close encounters between terrestrials planets in a system containing giant planets such as the Solar System. Indeed, in the case of the Solar System, the perturbation energy is dominated by the interaction between Jupiter and Saturn. We plan to address this particular problem in the future.

Chapter 7

Architecture of planetary systems

Some of the content of this chapter was published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF].

However, certain remarks and the simulations are original.

Introduction

As said in the introduction chapter, explaining the architecture of planetary systems is one of the oldest questions in astronomy. Historical attempts such as the Titius-Bode law (see [START_REF] Nieto | The Titius-Bode Law of Planetary Distances: Its History and Theory[END_REF] were based on empirical laws inspired by the particular architecture of the Solar System. The discovery of exoplanet systems has increased the interest in this question and I refer to the introduction for a more complete description of the architecture of the currently known systems. In this section, I intend to give a brief overview on the recent theoretical attempts to explain the planetary systems architecture. Due to the large number of super-Earth systems discovered by Kepler, most of the recent studies have focused on a model often called the "tightly packed systems" [START_REF] Laskar | Large Scale Chaos and Marginal Stability in the Solar System[END_REF][START_REF] Barnes | Predicting Planets in Known Extrasolar Planetary Systems. I. Test Particle Simulations[END_REF][START_REF] Fang | Are Planetary Systems Filled to Capacity? A Study Based on Kepler Results[END_REF]. In this model, the planetary systems are assumed dynamically full (a notion introduced in [START_REF] Laskar | Large Scale Chaos and Marginal Stability in the Solar System[END_REF], in the sense that the addition of another planet between the existing one results in a destabilization. This hypothesis leads to the determination of minimal spacing stability criteria of the form log 10 T ins /T orb = b∆ + c, (7.1)

inspired by the numerical simulations of [START_REF] Chambers | The Stability of Multi-Planet Systems[END_REF]. Various empirical studies have since been carried out and one can cite [START_REF] Smith | Orbital Stability of Systems of Closely-Spaced Planets[END_REF][START_REF] Lissauer | Architecture and Dynamics of Kepler 's Candidate Multiple Transiting Planet Systems[END_REF][START_REF] Pu | Spacing of Kepler Planets: Sculpting by Dynamical Instability[END_REF] and [START_REF] Obertas | The Stability of Tightly-Packed, Evenly-Spaced Systems of Earth-Mass Planets Orbiting a Sun-Like Star[END_REF] as notable examples. [START_REF] Quillen | Three-Body Resonance Overlap in Closely Spaced Multiple-Planet Systems[END_REF] has proposed a theoretical mechanism based on the overlap of three planet resonances.

Using the tools of statistical mechanics and an empirical minimal spacing criterion, Tremaine (2015) proposed a statistical distribution of the orbital elements of planetary systems. Such approach has also been used by [START_REF] Mogavero | Addressing the Statistical Mechanics of Planet Orbits in the Solar System[END_REF] to describe the probability distribution functions of the eccentricities and inclinations in the Solar System based on the numerical simulations of [START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF].

Planetary system population synthesis has also been used to fit the observed distributions. Indeed, it is easier to make statistical analysis on synthesized populations since the planet characteristics are then perfectly known. We refer to the introduction chapter and the recent reviews [START_REF] Morbidelli | Building Terrestrial Planets[END_REF][START_REF] Raymond | Terrestrial Planet Formation at Home and Abroad[END_REF][START_REF] Morbidelli | On Invariant Curves of Area-Preserving Mappings of an Annulus[END_REF][START_REF] Johansen | Forming Planets via Pebble Accretion[END_REF] for more details.

In [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], Laskar introduced an analytical model of planetary formation. The model is based on a modelization of the dynamics by random AMD exchanges between planets under the secular assumption. He showed that under those assumptions, the AMD decreases during perfect merger collisions. This model also allows to obtain analytical expressions for the averaged systems architecture and orbital parameter distribution, depending on the initial mass distribution. Because of its simple formalism, the model can be implemented and is able to synthesize planetary systems at almost no computational cost.

Since [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] was a letter, the proofs of the model were announced to be published in a future paper. Although this preprint was in nearly final form for more than a decade, and had even been provided to some researchers [START_REF] Hernández-Mena | Statistics and Universality in Simplified Models of Planetary Formation[END_REF], it was only published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] along with the classification that is presented in chapter 3. In this manuscript, I decided to split the model of planetary accretion from the definition of AMD-stability.

I thus reproduce the proofs from Laskar's preprint in section 7.2.1 and 7.3. I also prove that the collision assumptions are more general than they seem to be in section 7.2.2. In 7.4, I revisit the numerical implementation of the model and show that it can be adapted to the new paradigms in planet formation. This model is still a good tool to quickly simulate the outcome of giant impacts driven planet formation.

AMD and planet collisions

Collision in the secular case

The instabilities of a planetary system often result in a modification of its architecture. A planet can be ejected from the system or can fall into the star, which in both cases results in a loss of AMD for the system.

The outcome of the AMD after a planetary collision is less trivial and needs to be computed. We reproduce here the proof of the decrease of the AMD during collision announced in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] that was published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF].

Let assume that among N planets, the totally inelastic collision of two bodies of masses m 1 and m 2 , and orbits O 1 , O 2 occurs, forming a new body (m, O). During this collision, we consider that the other bodies are not affected.

Moreover, Laskar assumes that the orbital elements at collision have not been affected by the planet interaction. In other words, the two planets are on intersecting Keplerian orbits and follow an unperturbed motion along them. In particular, the total AMD is constant along the trajectory leading to the collision. While such an assumption appears unrealistic, we will see in section 7.2.2 how the conclusions from this section are still valid in the general case.

Since the collision results in a perfect merging the total mass and momentum are conserved

m = m 1 + m 2 , (7.2) r = r1 + r2 ; (7.3)
On the other hand, at the time of the collision, r = r 1 = r 2 , so the angular momentum is also conserved

r ∧ r = r 1 ∧ r1 + r 2 ∧ r2 (7.4)
Note that the orbit transformation (m 1 , O 1 ) + (m 2 , O 2 ) → (m, O) that results from the collision is perfectly defined by equations (7.2, 7.3). The problem which remains is to compute the evolution of the elliptical elements during the collision.

Energy evolution during collision

Just before the collision, the orbits (m 1 , O 1 ) and (m 2 , O 2 ) are elliptical heliocentric orbits. At the time of the collision, only these two bodies are involved, and the other bodies are not affected. The evolution of the orbits are thus given by the conservation laws (7.2, 7.3). The Keplerian energy of each particle is

h i = 1 2 ri 2 m i - µm i r i = -µ µm i 2a i , ( 7.5) 
where µ = Gm 0 . We use here the orbital elements associated with the democratic heliocentric coordinates (2.37) such that µ is the same for all planets. At collision, we have r 1 = r 2 = r, the potential energy is thus conserved

-µ m r = -µ m 1 + m 2 r = -µ m 1 r 1 -µ m 2 r 2 . (7.6)
The change of Keplerian energy is given by the change of kinetic energy

δh = h -h 1 -h 2 = r 2 2m - r1 2 2m 1 - r2 2 2m 2 (7.7)
that is, with (7.2, 7.3),

δh = r1 + r2 2 2(m 1 + m 2 ) - r1 2 2m 1 - r2 2 2m 2 = - m 1 m 2 2(m 1 + m 2 ) r1 m 1 - r2 m 2 2 = - m 1 m 2 2(m 1 + m 2 ) u1 -u2 2 ≤ 0, (7.8)
where we recall that uk is the barycentric speed of body k (see eq. 2.33). Part of the kinetic energy is dispelled during the collision. Hence, the Keplerian energy of the system decreases during collision. As expected, there is no loss of energy when u1 = u2 . As an immediate consequence of the decrease of energy during the collision, we have 1

a ≥ η a 1 + 1 -η a 2 , ( 7.9) 
where η = m 1 /m.

AMD evolution during collision

Let f (x) = 1/ √ x. Since f ′ (x) < 0 and f ′′ (x) > 0, we note that f is decreasing and convex. Thus applying f to (7.9) yields

f 1 a ≤ f η a 1 + 1 -η a 2 ≤ ηf 1 a 1 + (1 -η)f 1 a 2 (7.10) thus m √ µa ≤ m 1 √ µa 1 + m 2 √ µa 2 (7.11)
During the collision, the angular momentum is conserved (7.4), and so is the conservation of its normal component, that is

m √ µa √ 1 -e 2 cos i = m 1 √ µa 1 1 -e 2 1 cos i 1 + m 2 √ µa 2 1 -e 2
2 cos i 2 . (7.12) Laskar deduces that in all circumstances, there is a decrease of the angular momentum deficit during the collision, that is (7.13) where C k is the AMD of planet k (eq. 2.37) The equality can hold in (7.13) only if m 1 = 0, m 2 = 0, or a 1 = a 2 and u1 = u2 , that is when one of the bodies is massless, or when the two bodies are on the same orbit, at the same position (at the time of the collision, we have also r 1 = r 2 ). The diminution of AMD during collisions acts as a stabilisation of the system. A parallel can be made with thermodynamics, the AMD behaving for the orbits like the kinetic energy for the molecules of a perfect gas. The loss of AMD during collisions can thus be interpreted as a cooling of the system.

C ≤ C 1 + C 2 ,

General collision case

The secular case treated above and in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] is actually a very good approximation. Indeed, while the orbital elements of the planets experiencing a close encounter or a collision vary significantly, we can show that the orbital elements of the resulting planet are not affected by the last close encounter. It is thus correct to compute the outcome of a collision from an unperturbed trajectory. What we call the unperturbed trajectory is the motion of the two planet along their initial Keplerian orbits up to the collision that occurs at the intersection of the two orbits.

Here, we compare the unperturbed motion to the dynamics of two interacting planets on trajectories leading to a collision on their next approach. As in the previous section, we assume the collision to result in a perfect merging. In order to keep the equations light we neglect the other planets interactions but this assumption will also be discussed toward the end of the section.

We recall the Hamiltonian of the two planet problem (2.34) expressed in heliocentric coordinates (2.33) .14) where ∆ 12 = r 1r 2 , µ = Gm 0 and m 0 is the star mass.

H helio = 2 k=1 rk 2 2m k - µm k r k H 0 - Gm 1 m 2 ∆ 12 + r1 + r2 2 2m 0 εH 1 , ( 7 
As explained in the previous section, the orbit that results from the collision can be computed from the conservation of the mass (7.2) and the linear momentum (7.3). Moreover the loss of energy only depends on the relative barycentric velocity (7.8). Based on those considerations, let make the symplectic change of variables (r 1 , r 2 , r1 , r2 ) → (r, ρ, r, ρ)

r = m 1 m r 1 + m 2 m r 2 , r = r1 + r2 , ρ = r 2 -r 1 , ρ = β r2 m 2 - r1 m 1 , (7.15)
where m is the total planet mass (7.2) and β = m 1 m 2 /m is the reduced mass.

The orbital elements of the new planet are completely determined by r and r just before the collision. The change of variables (7.15) is a generalization of the Hill approximation used in [START_REF] Hénon | Series Expansions for Encounter-Type Solutions of Hill's Problem[END_REF] for instance. Therefore, most of the approximations that can be done in the Hill regime remain valid. In the variables (7.15), the Hamiltonian (7.14) takes the form

H = r 2 2m + ρ 2 2β - µm 1 r 1 - µm 2 r 2 U K - εµβ ρ + ε r 2 2m , ( 7.16) 
where r 1 and r 2 are function of r, ρ and the planet masses and ε = (m 1 + m 2 )/m 0 .

There is no general convergent expansion of the Keplerian potential U K in function of ρ/r. Indeed, when the two planets are far away from each other, r and ρ can be of comparable size or ρ can even be larger than r. In the unperturbed system (like in the previous section), the dynamics are reduced to the terms of the zeroth order in ε in the Hamiltonian (7.16).

We can distinguish two regimes depending on the ratio ρ/r. Far away from the collision i.e. when ρ/r ≫ ε 1/3 , where the factor ε 1/3 corresponds to the Hill scaling [START_REF] Hénon | Series Expansions for Encounter-Type Solutions of Hill's Problem[END_REF], the unperturbed and the perturbed motion are similar since the planet-planet interactions are weak. The difference between the two trajectories will be of order ε and the variation of the elliptical variables occurs on a timescale much longer than the one considered here (that is of the order of the synodic period of the two planets).

On the other hand, when the two planets enter their Hill sphere i.e. when ρ/r ε 1/3 , the perturbation is important and cannot be neglected anymore. It is however, possible to develop the Keplerian potential U K in order to study in more details the dynamics of r and r as they will determine the orbit of the resulting planet.

To do so, we first rescale the variable ρ by ε 1/3 in order to develop U K in power of ε rather than solely into power of the ratio ρ/r. This renormalization allows the comparison between the terms from U K and the planet-planet interaction term. In order to keep symplectic variables, we define ρ = ε 1/3 ρ ′ , ρ = ε -1/3 ρ′ .

(7.17)

Since we consider a case where ρ/r ε 1/3 , ρ ′ /r is at most of order unity. The Keplerian potential developed in power of ε 1/3 have for expression (7.18) Note that the main term only depends on r and corresponds to the potential that the planets would have if they were merged into a single body in their center of mass.

U K = - µm r + µε 2/3 β 2 3(ρ ′ • r) 2 r 5 - ρ ′2 r 3 + O   ε ρ ′ r 3   .
The remaining terms are at least of order ε 2/3 and are quadratic in ρ ′ . Because we only focus on the dynamics within the Hill sphere, we can safely drop the terms of order ε into U K . The Hamiltonian has for expression

H Hill = r 2 2m + ρ′ 2 2ε 2/3 β - µm r + µε 2/3 β 2 3(ρ ′ • r) 2 r 5 - ρ ′2 r 3 Hill interaction term - µε 2/3 β ρ ′ + ε r 2 2m . (7.19)
We remark that the variables (ρ ′ , ρ′ ) are coupled to the variables (r, r) only through a term that results from the development of the Keplerian potential. We call this term the Hill interaction term. From expression (7.19), it is clear that the dynamics of r and r are weakly affected by the close encounter. Indeed, the Hill interaction term goes to zero at the collision and is of order ε 2/3 with respect to the main term in r. However, the Hill interaction term cannot be neglected in the dynamics of ρ ′ and ρ′ as it is of dominant order in ε. The kinetic term ε r 2 2m is continuous at the collision and its effect is only significant on longer timescales. We also remark that as ρ ′ /r → 0, the dynamics of (ρ ′ , ρ′ ) is well approximated by the motion of a Keplerian problem of gravitational parameter µ and mass ε 2/3 β.

Energy evolution during collision

We can refine the computation of the energy evolution at collision by considering every term instead of only the Keplerian energy. The energy after collision is given by

h = r 2 2m - µm r + ε r 2 2m = - µm 2a + ε r 2 2m , (7.20)
where a is the semi-major axis of the newly formed planet. It should be noted that since we use the democratic heliocentric splitting of the Hamiltonian (2.34), there remain a kinetic perturbation term in the post-collision energy. Therefore the variation of energy at collision is given by the limit ρ ′ → 0 in the difference of (7.19) and (7.20)

δh = -lim ρ ′ →0 ρ′ 2 2ε 2/3 β - µε 2/3 β ρ ′ + µε 2/3 β 2 3(ρ ′ • r) 2 r 5 - ρ ′2 r 3 . (7.21)
The last term is continuous at the collision and we can neglect it from now. We remark that the remaining terms corresponds to the energy of a Keplerian problem. We deduce that δh has a finite limit. Since the two planets are originally not gravitationally bounded, -δh > 0. Therefore the system loses energy. If we neglect the interaction term, δh can be computed for ρ ′ → +∞. We obtain δh = -ρ0 2 /(2β) where ρ0 is the unperturbed relative linear momentum, i.e δh is similar to the unperturbed case up to terms of order ε 2/3 .

Far away from the collision (for ρ/r ≫ ε 1/3 ), the total energy can be written as

h 0 = - µm 1 2a 1 - µm 2 2a 2 + O(ε). (7.22)
We deduce from (7.22) and (7.20) and the discussion on δh that up to terms of order ε 2/3 , the inequality (7.9) demonstrated in the case of an unperturbed motion remains valid.

In presence of other planets, we have to verify that the interaction terms are also continuous at collision. Before the collision, the term that depend on the planets 1 and 2 in the N -planet Hamiltonian (2.34) have for expression 1

- N k=3 Gm k m 1 ∆ 1k + Gm k m 2 ∆ 2k + r1 + r2 + N k=3 rk 2 2m 0 . (7.23)
After the collision, we shall replace those terms by the interaction of the newly formed planets with the other ones

- N k=3 Gm k (m 1 + m 2 ) ∆ k + r + N k=3 rk 2 2m 0 , ( 7.24) 
where ∆ k = |r k -r|. At the collision, we have r 1 , r 2 → r so the potential term is continuous. Similarly, the total linear momentum r = r1 + r2 is conserved at collision so is the kinetic term.

AMD evolution

In the variables (7.15), the angular momentum conservation at the collision can be written

G = r 1 × r1 + r 2 × r2 = r × r. (7.25)
As in the unperturbed case, the evolution of the AMD comes from the evolution of the energy at the collision. We have also proved that up to term of order ε 2/3 , one can compute the semi-major axis of the new planet from the orbital elements far away from the collision. Thus, the reasoning of the previous section is still valid and the results from the unperturbed case gives a very good approximation of the evolution of the energy and AMD in perfect merging collisions. In figure 7.1, I plot the difference between the semi-major axis computed from the unperturbed case and the result of one of the numerical simulations of collision test from chapter 6. More precisely, we compute the semi-major axis of the new planet using (7.20) in the unperturbed case noted a (0) (i.e. we assume the planets evolve on their initial Keplerian orbits) and the same quantity using the result of the numerical integration noted a. We use the initial condition that led to the 1 If the collision occurs between other planets, the bodies are simply renumbered.

of the total AMD. As shown in section 7.2, during a collision the AMD decreases (eq. 7.13). We assume the collisions to be perfect merging since [START_REF] Kokubo | Formation of Terrestrial Planets from Protoplanets Under a Realistic Accretion Condition[END_REF] and [START_REF] Chambers | Late-Stage Planetary Accretion Including Hit-and-Run Collisions and Fragmentation[END_REF] have shown that the detailed mechanism of collisions such as possibilities of hit-and-run or fragmentation of embryos barely change the final architecture of simulated systems. The total AMD of the system will thus be constant between collisions, and will decrease during collisions. On the other hand, the AMD for a particle is of the order of 1 2 m √ µae 2 . As the mass of the particle increases, its excursion in eccentricity will be more limited, and less collisions will be possible. The collisions will stop when the total AMD of the system will be too small to allow for planetary collisions.

In the accretion process, we consider a planetesimal of semi major axis a, and its immediate neighbour, defined as the planetesimal with semi major axis a ′ such that there are no other planetesimal with semi-major axis between a and a ′ . In this case, we can assume that α is close to 1, and, as explained in Appendix B.3, we will use as an approximation of the critical AMD value C c (α, γ),

C c (α, γ) = k(γ) δ a a 2 (7.26)
where δ a = a ′a and k(γ) = γ 2(γ+1) .

AMD-Stable Planetary distribution

In this section, I recall the demonstrations of [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF][START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] of the laws followed by the planetary distribution of a model formed following the above assumptions. Let start from an arbitrary distribution of mass of planetesimals ρ(a), and let the system evolve under the previous rules. We search for the condition of AMD-stable planetary systems, obtained by random accretion of planetesimals. This condition requires that the final AMD value cannot allow for orbit crossing among the planets. Let note C the value of the AMD at the end of the accretion process. Using (7.26), the mass of the planetesimal of semi-major axis a will continue to increase by accretion with a body of semi major axis a ′ > a, as long as

C = C Λ ′ ≥ C c = k δ a a 2 (7.27)
The initial linear density of mass is ρ(a). As a ′ is the closest neighbour to a, Laskar assumes that all the planetesimal initially between a and a ′ have been absorbed by the two bodies of mass m(a) and m(a ′ ). At first order with respect to δ a /a, the masses are m(a ′ ) ∼ m(a) ∼ ρ(a)δ a (7.28) and from (7.27), we have, at the limiting case,

C δ a ρ(a) √ µa = k δ a a 2 (7.29) One can isolate δ a δ a = C k √ µ 1/3 a 1/2 ρ -1/3
(7.30) and from (7.28), we obtain Using the previous relations, Laskar computes the resulting systems for various initial mass distribution, in particular, for a linear mass density of embryos ρ(a) = ρ 0 (a/a 0 ) p where a 0 is the inner edge of the distribution. From equation (7.31), one obtain for two consecutive planets

m(a) = C k √ µ 1/3 a 1/2 ρ 2/3 . ( 7 
m m ′ = α 1/2 ρ(a) ρ(a ′ ) 2/3 = α 1 2 + 2 3 p (7.32)
and from eq (7.26), as lim α→1 γ = 1 we thus have k(γ) = 1 4 in all cases. The relation (7.30) can be rewritten (7.33) where δn = 1 is the increment from planet a to a ′ . By integration, this difference relation becomes for p = - For p = -3/2, the planet position follows an exponential law similar to Titius-Bode's law for the planetary distribution2 . The different expressions deduced from this model of planetary accretion are summed up in Table 7.1.

δ a a p 3 -1 2 = 4a p 0 C √ µρ 0 1/3 δn ,
To complete the results presented in Laskar's preprint and published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF], let compute the expected number of planets in the final system. Let now assume that the initial embryos distribution has an inner edge a 0 and an Table 7.1 -Planetary distribution corresponding to different initial mass distribution (adapted from [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF].

p a(n) m(a) p = -3/2 a 2p+3 6 n = a 2p+3 6 0 + 2p+3 6 n 4a p 0 C √ µρ 0 1/3 4Cρ 2 0 √ µa 2p 0 1/3 a 4p+3 6 -3 2 ln(a n ) = ln(a 0 ) + n 4C √ µρ 0 a 3/2 0 1/3 4Cρ 2 0 √ µ 1/3 a 0 a -1/2 0 √ a n = √ a 0 + n C 2 √ µρ 0 1/3 4Cρ 2 0 √ µ 1/3 √ a
outer edge a ∞ . We denote m tot the total mass of the system. m tot is related to ρ 0 through the relation

m tot = a∞ a 0 ρ(a)da = ρ 0 a 0 (p + 1) a ∞ a 0 p+1 -1 , if p = -1, (7.36) = ρ 0 a 0 ln a ∞ a 0 , if p = -1.
From equations (7.34) and (7.35), we can deduce the average number of planets N in a system in function of its final AMD, the extent of the initial system and the total mass of the planets. Indeed, for p = -3/2, we can write .37) where ρ 0 should be computed thanks to equation (7.36). Similarly, in the case of p = -3/2, we obtain

N = a ∞ a 0 2p+3 6 -1 6 2p + 3   4C √ µρ 0 a 3/2 0   -1/3 , ( 7 
N = ln a ∞ a 0   4C √ µρ 0 a 3/2 0   -1/3 .
(7.38)

Planetary system population synthesis

While, it is possible to analytically derive the average distribution of the model described above, a numerical simulation has still a lot of interest. Indeed, it allows to compare the model to results from actual N -body population synthesis integrations. Moreover, it allows to build a planetary systems population based on the AMD mixing assumptions instead of just looking at the average outcome. Because we do not model precisely the dynamics but only the random evolution of the orbits, the simulations are computationally cheap.

The previous analytical results were tested on a numerical model of the accretion scheme [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF]. The model was designed to fulfill the conditions (7.2,7.3) of section 7.2. In [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], 5000 simulations were started with a large number of orbits and followed, looking for orbit intersections. When an intersection occurs, the two bodies merge in a new one, which orbital parameters are determined by the collisional equations (7.2,7.3) (see annex B.1). Between collisions, the orbits do not evolve, apart from a diffusion of their eccentricities, which fulfills the condition of conservation of the total AMD. This is roughly what would occur in a chaotic secular motion.

The main parameter of these simulations is the final AMD value, C. As the AMD decreases during collisions, and in order to obtain final systems with a given value C of the AMD, the eccentricities were increased by a small amount in order to raise the AMD to the desired final value. This is justified as close encounters can also increase the AMD value. Comparisons with N -body simulations [START_REF] Chambers | Making More Terrestrial Planets[END_REF][START_REF] Raymond | High-Resolution Simulations of the Final Assembly of Earth-Like Planets I[END_REF] show that after a phase of excitation at the beginning of the simulations, the AMD does decrease and converges to its final value. The orbital motion of the orbits is not integrated. Instead, Laskar looks for collisions of ellipses which fulfill the conservation of mass and of linear momentum. These simulations are thus started with a large number of initial bodies (10 000) and continued until their final evolution.

AMD-driven models in the context of modern planet formation

In this section we revisit Laskar's model. In their study of a similar planet formation toy model, Hernández-Mena and Benet (2011) who had access to Laskar's preprint; discuss several improvements to this simple modeling of planet formation. In particular, they point out that in Laskar's algorithm, the step where eccentricities are raised in order to simulates systems at a certain AMD does not conserve energy nor angular momentum. They therefore implemented the model without any increase of AMD, resulting in systems highly unrealistic with tens of planets on almost circular orbits.

While the goal here is not to accurately reproduce planets dynamics, it appears necessary to at least conserve the basic first integrals of the system during the dynamical evolution. However, we wish to keep the AMD increase step as it is motivated by the excitation induced by close encounters. Moreover, as pointed out in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], the fixed final AMD allow for a better statistical analysis as the final distribution can be compared to the analytic model. I decide to stick with the constraint on the final AMD but I changed its implementation in order to conserve the energy and angular momentum.

Since the last studies on this model, the paradigms of planet formation have dramatically changed. Indeed, the classical in-situ core accretion model is no longer thought realistic [START_REF] Morbidelli | On Invariant Curves of Area-Preserving Mappings of an Annulus[END_REF]. As a result, the giant impact phase [START_REF] Chambers | Making More Terrestrial Planets[END_REF][START_REF] Kokubo | Formation of Terrestrial Planets from Protoplanets. I. Statistics of Basic Dynamical Properties[END_REF], where a swarm of planetesimals collides into each other until they eventually form Earth-like or super-Earth planets is no longer considered prevalent. In modern planet formation models, it is thought that a reduced number of embryos grow from pebble accretion [START_REF] Lambrechts | Rapid Growth of Gas-Giant Cores by Pebble Accretion[END_REF] during the gaseous disk phase. Depending on the intensity of the pebble flux [START_REF] Lambrechts | Formation of Planetary Systems by Pebble Accretion and Migration: How the Radial Pebble Flux Determines a Terrestrial-Planet or Super-Earth Growth Mode[END_REF], the embryos may start a runaway growth and migrates towards the star to form compact super-Earth chains. On the other hand, if the pebble flux is weaker, embryos will only reach Mars size without significant migration. As a result, when the gas disk dissipates, the system may still enter a giant impact phase.

Besides, the embryo distribution is modified by this new paradigm. Indeed, in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] or [START_REF] Hernández-Mena | Statistics and Universality in Simplified Models of Planetary Formation[END_REF], the embryos are assumed to contain the majority of the refractory material and the population synthesis is made assuming a radial distribution of the embryos following a power law of exponent 0 or -1/2. However, in recent model [START_REF] Lambrechts | Formation of Planetary Systems by Pebble Accretion and Migration: How the Radial Pebble Flux Determines a Terrestrial-Planet or Super-Earth Growth Mode[END_REF], the pebble accretion seems to result in a distribution following a much steeper slope with exponent -1.

While the toy-model cannot be used to explain every type of planet formation, we believe that in the right context and with the right initial conditions, its results can still be useful.

Numerical implementation

Initial conditions

We aim to simulate the formation of terrestrial planets that result from a giant impact phase after the gas dissipation. Our goal is to use as initial conditions, systems of Mars-like embryos similar to the ones that emerge from the gaseous disk phase after pebble accretion [START_REF] Lambrechts | Formation of Planetary Systems by Pebble Accretion and Migration: How the Radial Pebble Flux Determines a Terrestrial-Planet or Super-Earth Growth Mode[END_REF]. We consider an initial system of total mass of about 6M ⊕ and composed of N 0 = 30 embryos. If the initial masses are taken equal, the small number of embryos leads to a final distribution of planet masses clustered around integer multiples of the initial mass. To smooth the distribution and consider a more realistic system population, the total mass M , is drawn from a normal distribution centered around 6M ⊕ of standard deviation 1M ⊕ . Each embryos mass is then chosen from a normal distribution centered around the M/N 0 with a standard deviation of 0.1M/N 0 .

The exact number of embryos plays actually little role in the final distribution. Indeed, simulations started with a large number of particles (10,000) result in similar systems up to a smoothed distribution for the mass and semi-major axes. The semi-major axis are drawn randomly from a power law distribution of slope -1 with limits at a 0 = 0.1 AU and a ∞ = 3 AU to match the post gas dissipation distribution from [START_REF] Lambrechts | Formation of Planetary Systems by Pebble Accretion and Migration: How the Radial Pebble Flux Determines a Terrestrial-Planet or Super-Earth Growth Mode[END_REF]. Simulations started with fixed spacing tends to give similar results.

Because we look for exact orbit intersections, we restrain ourselves to the planar case. The orbit's eccentricities are set to 0 initially and as in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], we fix a final AMD C f such that when the total system AMD is smaller, we raise it by a process described below. The final AMD is chosen to be equal to 1% of the total angular momentum of the system. As result, the typical final eccentricity will be of order 0.1. The computation of such a final AMD is voluntarily out of the scope of this study but will be the subject of future work.

Dynamical evolution

Since we work on the plane, each orbit is fully determined by the set of parameters m k , Λ k , C k , ̟ k . At each step, we make the following modifications of the orbits:

-We choose a new set of perihelion longitude from a uniform distribution. This change will have an effect on the loss of AMD at collisions.

-We draw randomly N/2 pairs of planets from the systems (N being the current number of bodies) and make a transfer δC of AMD from one planet to the other. More precisely, let us denote with subscript 1 and 2 the two considered orbits.

We denote 

C min = -min(C 2 , Λ 1 -C 1 ) and C max = min(C 1 , Λ 2 -C 2 ).
= (C max + C min ) + X(C max -C min ) 2 , (7.39)
where X is a random number between -1 and 1, drawn from a truncated normal distribution of standard deviation 0.4. The actual distribution for δC has little to no impact on the results. The boundaries C min and C max ensure that the new orbits are well defined. This step preserves the secular invariant quantities.

-If the total AMD C < C f , we need to raise the AMD. As already pointed out, we want this step to preserve the total Keplerian energy 3 and angular momentum of the system. Ideally, this step should mimic the effect of planet close encounters. To do so, we choose an adjacent pair of planet. In two-planet dynamics, an increase of the AMD translate in an increase in semi-major axis separation as shown by the conservation of p/a (5.22) in chapter 5. We define the AMD increase mechanism by a change on the ratio of semi-major axis α of the considered pair. We choose the new semi-major axis ratio to be α

′ = α 1 -ε 3 1/3
, where ε is the two planet to star mass ratio. In other words, the semi-major axis separation is increased by a Hill radius. The computation of the new orbital elements is straightforward from this single requirement. Indeed, the conservation of energy gives

h = - µm 1 2a 1 - µm 2 2a 2 = - µm 1 2a ′ 1 - µm 2 2a ′ 2 = - µm 2 2a ′ 2 γ α ′ + 1 , (7.40) which gives a ′ 2 = - µm 2 2h γ α ′ + 1 and a ′ 1 = a ′ 2 α ′ . (7.41)
The new total AMD for the two planets is obtained through the conservation of angular momentum

C ′ = Λ ′ 1 + Λ ′ 2 -(G 1 + G 2 ).
(7.42) 3 We neglect the perturbation energy. We then attribute the individual AMD proportionally to the initial one

C ′ 1 = C 1 C 1 + C 2 C ′ and C ′ 2 = C 2 C 1 + C 2 C ′ . (7.43)
-We then look for eventual collisions. As in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF], we look for orbit intersections using the method from [START_REF] Albouy | Lectures on the Two-Body Problem[END_REF], see also appendix B.1) and resolve the collision immediately by assuming it to be a perfect merger.

The new orbital elements are computed thanks to the collisional equations (7.2,7.3).

If the system experiences 10 4 steps without a collision, the system is considered stable and the algorithm stops. Such a value was found empirically and results were almost similar for 10 6 steps without any collision. The simulation are very fast, which allows for large number of computations.

Results

We compare the numerical results to the analytical predictions. Because of the exponent chosen for the linear mass density ρ = ρ 0 (a/a 0 ) -1 , we expect that the average system will follow the distributions described in table 7.1 and equations (7.31), (7.34) and (7.37). In particular, we expect the systems to host on average

N = 6 a ∞ a 0 1/6 -1 4C ln(a ∞ /a 0 ) m tot √ µa 0 -1/3
(7.44) planets. On average, the semi-major axis of the n-th planet should be

a 1/6 n = a 1/6 0 + 1 6 4C ln(a ∞ /a 0 ) √ µm tot 1/3 n. (7.45)
Finally, the average mass at a given semi-major axis a is a power law

m(a) = 4Cm 2 tot √ µ ln(a ∞ /a 0 ) 2 1/3 a -1/6 . (7.46)
We create 10,000 systems in total using the initial conditions described in 7.4.2.1. The distribution of the final number of planets is given in table 7.2. The number of planets in system span from 3 to 7 and the mean value is 4.67 planets. If we Chapter 8

Conclusions

In this thesis I studied the link between planetary systems architecture and their stability, in particular in the context of exoplanet systems. Because of the large uncertainties on the orbital parameters of observed exoplanets and the chaotic nature of n-body dynamics, it is impossible to carry a complete numerical stability analysis for every discovered system. We developed a simplified dynamical framework to have an intuition on the possible outcome for planetary systems evolution. The work presented in chapter 3 (published in [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF]) is based on preliminary works [START_REF] Laskar | Large Scale Chaos and the Spacing of the Inner Planets[END_REF][START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] on the conservation of the Angular Momentum Deficit (AMD) in the secular system. The AMD is a weighted sum of the eccentricities and mutual inclinations. It acts as a dynamical temperature of the system i.e. a high AMD system is more likely to be unstable and the dynamics may lead to planet collisions. On the other hand, in a zero AMD system, the orbits are circular and coplanar and the system is more likely to be stable.

In the secular system, the AMD is conserved and bounds the eccentricities. As a result a system with low enough AMD cannot experience close encounters or collisions. We say that a system is the AMD-stable if its total AMD forbids all collisions in the secular system. A system that is AMD-unstable is not guaranteed to end up in a collision. However, a more detailed stability analysis has to be carried out. The AMD-stability of a pair of planets can be quantified thanks to the AMD-stability coefficient, that is the ratio of the total system's AMD with the minimum AMD such that orbit crossing is possible.

I studied the AMD-stability of selected exoplanet systems for which the orbital elements were sufficiently known. I showed that roughly half of them can be considered AMD-stable. While I did not make a detailed analysis of the AMDunstable systems, I showed that these systems are more clustered around MMR than an average sample from the known exoplanet systems. Such clustering suggests that some AMD-unstable systems may be protected by MMR. Inspired by the Solar System example, we defined hierarchical AMD-stable systems as the systems becoming stable if we assume that there is no AMD exchanges between the inner and the outer part.

The AMD is only conserved if the dynamics can safely be averaged over the mean motions. If the mean motion resonances (MMR) play an important role in the dynamics, the secular hypothesis is no longer valid and the AMD-stability definition needs to be adapted. A pair of planets can be into a MMR and be stable. However, when MMRs start overlapping, a chaotic region appears and the semi-major axes are no longer constant. In chapter 4, I made an in depth analysis of the overlap of first order MMR. I showed that the previously used criteria developed by [START_REF] Wisdom | Canonical Solution of the Two Critical Argument Problem[END_REF][START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF] can be combined into a single expression. I also showed that this criterion fits the AMD framework. Indeed, the overlap of first order MMR allows to discriminate between systems where the secular hypothesis is valid and systems were it is not. I analyzed the effects of this modification of the AMD-stability definition onto the classification proposed in chapter 3. It results, that most systems do not experience MMR overlap.

In the three body problem, there exists a topological boundary that forbids planet close encounters [START_REF] Marchal | Hill Stability and Distance Curves for the General Three-Body Problem[END_REF]. This limit gives an effective long term stability criterion for the two planet problem that has been popularized by [START_REF] Gladman | Dynamics of Systems of Two Close Planets[END_REF] in the case of circular and coplanar orbits. I demonstrate in chapter 5 that the Hill stability can be very naturally expressed in terms of the total system AMD, the planet masses and the semi-major axis ratio. This new Hill stability criterion generalizes previous expressions obtained in particular cases and have an explicit form.

Nevertheless, numerical simulations are still necessary to study chaotic and unstable systems. In particular, it is crucial to understand how the AMD evolves when the secular assumption cannot be applied. In order to study the behaviour of systems where close encounters occur, it is necessary to use numerical methods that stay accurate even if the planets interaction become dominant. However, the classical integrators for planet dynamics, the fixed time step mixed variable symplectic (MVS) integrators are not suitable for such integrations. In a first step towards the study of unstable systems, I developed in chapter 6, a new high order symplectic integrators that uses time regularization to be able to integrate systems experiencing close encounters. This integrator has a comparable speed to classical MVS integrators such as the one developed in [START_REF] Blanes | New Families of Symplectic Splitting Methods for Numerical Integration in Dynamical Astronomy[END_REF] but conserves the energy at machine precision until planet collisions.

Finally, in his original paper on the AMD, [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] introduces a toy-model for planet formation. Laskar showed that the AMD always decreases at collisions (assuming they result in a perfect merger). In his model, he assumed that planet dynamics can be modeled by stochastic AMD exchanges between orbits in a secular model. When two orbits intersect, a collision occurs that reduces the total system AMD. The final system is formed whenever the total AMD is too small to allow for anymore collisions. The final average distribution that results from this model can be computed analytically and gives the average number of planets, the planet spacing law as well as the average mass as a function of the semi-major axis. The final distribution only depends on the initial mass distribution function and the final AMD. It is also possible to numerically synthesize planetary system populations using this model [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] that reproduce the analytical results. In chapter 7, I present again Laskar's model and justify some of the hypotheses. I also adapt the numerical population synthesis algorithm to the new paradigms of planet formation theory. I show that this model is still useful to rapidly model the giant impact phase that happens during the formation of terrestrial planets after the protoplanetary disk dissipation.

I believe that this thesis shows how simple stability considerations can be used in the study of exoplanet architecture and formation. Moreover, the AMD framework developed here has proven to be a useful and powerful tool in the understanding of various aspect of planet dynamics. can be rewritten

H J 1 = N k=1 k-1 j=0 Gm j m k 1 r ′ k - 1 ∆ jk . (A.9)
Among the terms of this sum, only the terms with j = 0 can have a size comparable to H J 0 . We can write for k = 1 . . . N ,

r ′ k = u k -u 0 + u 0 -R k-1 = ∆ 0k - 1 M k-1 k-1 j=1 m j ∆ 0j = ∆ 0k (1 + O(ε)). (A.10)
Therefore, we can develop the terms 1

r ′ k -1 ∆ 0k
for r ′ k close to ∆ 0k and the leading term is of order ε.

Similarly to the heliocentric case, elliptical elements and Delaunay coordinates can be defined based on the Keplerian problems in H J 0 . The perturbation can also be developed in these coordinates. 

B.2 AMD in the averaged equations

In this section, we show that the AMD conserves the same form in the averaged planetary Hamiltonian at all order. More generally, this is true for any integral of H which does not depends on the longitudes λ k . Let

H = H 0 (Λ) + εH 1 (Λ, λ, J, φ) (B.6)
be a perturbed Hamiltonian system, and let K(Λ, J, φ) be a first integral of H(Λ, λ, J, φ) (such that {K, H} = 0, where {•, •} is the usual Poisson bracket), and independent of λ. And let

H ′ = e L S H (B.7)
be a formal averaging of H with respect to λ following the method detailed in 2.4.1.

If S(Λ, λ, J, φ) is a generator defined as below (equations B.9, B.11, B.12), such that

H ′ is independent of λ. Then, K is an integral of H ′ , i.e. {K, H ′ } = 0 (B.8)
The generator S = εS 1 + ε 2 S 2 + ε 3 S 3 + • • • is obtained formally through the identification order by order

H ′ 0 = H 0 H ′ 1 = H 1 + {H 0 , S 1 } H ′ 2 = {H 0 , S 2 } + 1 2 {{H 0 , S 1 }, S 1 } + {H 1 , S 1 } (B.9) . . . For any function G(Λ, λ, J, φ), let G λ = 1 (2π) N Gd N λ (B.10)
be the average of G over all the angles λ k . For each n ≥ 1, the S n are obtained through the resolution of an equation of the form

H ′ n = {H 0 , S n } + R n (B.11)
where R n belongs to L(H 0 , H 1 , S 1 , . . . , S n-1 ), the Lie algebra generated by (H 0 , H 1 , S 1 , . . . , S n-1 ). H ′ n will be the averaged part of R n , R n λ and S n is obtained by solving the homological equation

{H 0 , S n } = R n -R n λ (B.12)
We will show by recurrence that {K, S n } = 0 for all n ≥ 1. First let us notice that as {K, H 0 } = 0, we have also {K,

H 1 } = 0. As K is independent of λ k , we have also for all G {K, G} λ = {K, G λ } (B.13)
This can be seen by formal expansion of G in a Fourier series G = g k e ιk•λ . We have thus G λ = g 0 . Let us assume now that {K, In the same way, as H ′ 1 = H 1 λ , we have {K, H ′ 1 } = {K, H 1 } λ = 0. Thus {K, {H 0 , S 1 }} = 0, by Jacobi identity, {H 0 , {K, S 1 }} = 0, and as previously, {K, S 1 } = 0. Our recurrence is thus complete and it follows immediately that {K, H ′ } = 0.

S k } = 0 for all k ≤ n. As R n+1 ∈ L(H 0 , H 1 , S 1 , . . . , S n ),

B.3 Special values of C c (α, γ)

This annex provides the detailed computations and proofs of the results of section 3.3.2

We have shown that e c (α, γ) is a differentiable function of γ, which is monotonic (3.18) and bounded (e c (a, γ) ∈ [0, 1]). The limit e c (α, 0) = lim γ → 0e c (α, γ) exists for all α ∈]0, 1]. If e c (α, γ) is a solution of equation (3.12), it will also be a solution of the following cubic equation (in e), which is directly obtained from (3.12) by squaring, multiplication, and simplification by α( 1 V is at least of order one in eccentricity. We can therefore develop (C.4) for small V . We only keep the terms of first order in eccentricity,

a 2 ∆ 12 = a 2 r 2 A -1/2 - 1 2 a 2 r 2 V A -3/2 + O(V 2 ). (C.6)
The well-known development of the circular coplanar motion A gives (e.g., [START_REF] Poincaré | Les Méthodes Nouvelles De La Mécanique Céleste[END_REF] A -s = 1 2 k∈Z b (k) s (α)e ιk(λ 1 -λ 2 ) , (C.7)

where b (k) s (α) are the Laplace coefficients (4.21). Because of the averaging over the non-resonant fast angles, the non-vanishing terms have a dependence on λ i of the form j ((p + 1)λ 2pλ 1 ). Since we only keep the terms of first order in eccentricity, the d'Alembert's rule (4.6) imposes j = ±1. Let us compute the first-order development of a 2 /r 2 and V in terms of Poincaré variables and combine these expressions with A -1/2 and A -3/2 in order to select the non-vanishing terms.

Let us denote z i = e ιλ i and z = z 1 z2 = e ι(λ 1 -λ 2 ) . The researched terms are of the form e ι((p+1)λ 2 -pλ 1 ) = z 2 z -p = z 1 z -(p+1) (C.8) e -ι((p+1)λ 2 -pλ 1 ) = z2 z p = z1 z p+1 . (C.9)

Let us denote where X i = X i 2/Λ i = X i e -ι((p+1)λ 2 -pλ 1 ) . For the computation of the second term of (C.6), the only contribution comes from V since a 2 /r 2 ∼ 1. We define

X i = x i 2 Λ i = 2C i Λ i e ι̟ i =
U = X1 z 1 -X2 z 2 = 2C 1 Λ 1 e ι(λ 1 -̟ 1 ) - 2C 2 Λ 2 e ι(λ 2 -̟ 2 ) .
V can be expressed as a function of z, z, U and Ū . Indeed we have where O(e 2 ) corresponds to terms of total degree in eccentricities of at least 2. We deduce from these two last expressions that The kinetic part T 1 has no contribution to the averaged resonant Hamiltonian for p > 1. Indeed, as explained above, due to the d'Alembert rule, the first-order terms must have an angular dependence of the form j(-pλ 1 + (p + 1)λ 2 ). At the first order in ε, such a term can only be present in the development of the inner product r1 • r2 . At the first order in eccentricities, we have [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] r1 • r2 = µ 2 m 2 1 m 2 2 Λ 1 Λ 2 ℜ((e ιw 1 + X 1 )(e -ιw1 2 + X2 )) + O(e 2 ), (C.25) where w j is the true longitude of the planet j. The only term with the good angular dependence comes from ℜe ι(w 1 -w 2 ) since the other first-order terms only depend on one mean longitude. The development of e ι(w 1 -w 2 ) at the first order in eccentricities gives e ι(w 1 -w 2 ) = z + z 1 z X1 -z2 X 1 + z z2 X 2z 1 X2 + O(e 2 ). (C.26)

Thus for p > 1, T1 has no contribution to the averaged Hamiltonian, and for p = 1 we have

H 1,i = 1 2m 0 µm 2 1 Λ 1 µm 2 2 Λ 2 (X 2 + X2 ).
(C.27)

C.1.1 Asymptotic expression of the resonant coefficients

We present the method we used to obtain the analytic development of the coefficients where K ν (x) is the modified Bessel function of the second kind. Similarly, we have R 2 ∼ -R 1 since the additional term is of lower order in p.

We can obtain the constant term of the development by using the second order expression of α 0 and developing the integrand to the next order in (1α). We give here the numerical expressions of the two developments 

C.3 Width of the resonance island

We detail in this appendix the computation of the resonance island's width (see also Ferraz-Mello, 2007, Appendix C).

C.3.3 Width for highly eccentric orbits

If we consider a system with C min ≫ χ 2/3 , our formalism gives us the result first proposed by Mustill and[START_REF] Mustill | Dependence of a Planet's Chaotic Zone on Particle Eccentricity: The Shape of Debris Disc Inner Edges[END_REF]improved by Deck et al., 2013 for eccentric orbits. In this case, we can inject the approximation (4.61) of X 3 in the expression (4.55) of δα and obtain This result is also similar to Deck's one, using √ c m instead of σ (Deck et al., 2013, equation (25)).

C.3.4 Width for low eccentric orbits

For C min ≪ χ 2/3 , we propose here a new expression of the width of resonance thanks to the expression (4.62). This expression is an extension of the circular result presented above (C.49). Let us develop √ X 3 for C min ≪ χ 2/3 which gives the error made when approximating α lim by α MMR . We see that all the curves have the same shape with an amplitude increasing with ε. For high γ, α MMR is very accurate even for the greatest values of ε. Moreover, the error is maximum for very small γ and always within a few percent. The amplitude of the error scales with 1α MMR ∝ ε 1/4 as we can see in the We can then evaluate R (eq. 5.14) at those points and we have at order ε 4/3 , R(L 1 ) = 1 + 3 4/3 ε 2/3 γ (γ + 1) 2 - (D.8)

X 3 = 2 2/3 + 2 3 2/3 R 1/3 (p + 1) 1/3 ε 1/3 √ c m ≃ 2 1/3 1 + 1 6 2/3

D.2 Expansion of C Ex

However, we also need to make sure that h 1 remains small in comparison to this term. Thus, the expansion of F requires an estimate of h 1 with respect to ε and γ. As explained in section 5.2, h 1 is the renormalized perturbation part of the Hamiltonian (5.3) As one can see on figure 5.2, the value of ε is only relevant for small values of the critical AMD C Ex c , i.e., for close planets. Using the expansion in 1α (5.25), we can estimate that we need to compute h 1 for systems such that C is of order ε 2/3 . This corresponds to systems with eccentricities of order ε 1/3 . We can therefore use the circular approximation in our estimation of h 1 . In particular we have r j = a j (1 + O(ε 1/3 )).

h 1 = - 2Λ 2 
We first consider the term coming from the gravitational interaction between the two planets, h P 1 . If the system is Hill stable, the distance r 12 is greater than the radius of the Hill sphere S H 1 r 12 > r 1 max j=1,2 |1x j | = r 1 (ε/3) 1/3 + O(ε 2/3 ) = a 1 (ε/3) 1/3 + O(ε 2/3 ), (D.11) where x j is defined in (D.5). For all times, we therefore have

h P 1 = 2a 2 r 12 εγ γ + 1 ≤ 2 × 3 1/3 α ε 2/3 γ γ + 1 + O(ε). (D.
12)

The gravitational potential term h P 1 is at most of the same order as the leading term in ε of R(L 1 ). However, we can always choose to estimate the energy and actions values when the two planets are far from each other. In this case a 2 /r 12 = O(1) and h P 1 is linear in ε. From now on, we assume that we have (D.13) with p 12 = O(1). Moreover, F is a decreasing function of h 1 , so C Ex c is an increasing function of h 1 . Since h P 1 is positive, neglecting it is equivalent to have a more conservative criterion. Let us now consider the kinetic term h T 1 . We develop (D.10) for almost circular orbits. In this limit, we have ṙj = µ/a j + O(ε 1/3 ). We have

h P 1 = εγ γ + 1 p 12 ,
h T 1 = - ε γ + 1 γ 2 α + 1 + 2γ √ α cos(λ 1 -λ 2 ) + O(ε 4/3 ). (D.14)
Therefore, h T 1 is always linear in ε. Combining the estimations (D.13) and (D.14), we see that h 1 = O(ε).

We can now use the expansions of h 1 , (D.14) and (D.13) to obtain the expansion of F in function of ε and γ. Because of the term 3 4/3 ε 2/3 γ/(γ + 1) 2 from R(L 1 ), we do not keep terms of order O(εγ/(γ + 1) 2 ). We keep all other terms depending on ε up to the order O(ε 4/3 ). We obtain (D.17) of the same order for heliocentric coordinates. It results that the algorithm is less efficient in the detection of an increase of the interaction energy (that monitors the close encounters). To circumvent this problem, we slightly modify the expression (6.21) for Jacobi coordinates. The effective step sizes are computed with τ 0 = σf ′ (H 0 -E 0 + E 1 ) and τ 1 = σf ′ (-(H 1 -E 1 )). (E.8)

It should be noted that the total energy sum is still zero (H 0 -E 0 + E 1 ) + (H 1 -E 1 ) = 0 (E.9) which preserves the equation of motion according to (6.14). With this modification, the results are comparable between Jacobi and heliocentric coordinates.

E.2 MacLachlan high order schemes

In (McLachlan, 1995a), the schemes coefficients w i are the coefficients for a symmetric composition of second order steps. We give in table E.1 the corresponding coefficients a i and b i for the schemes that we used ABA(6 * ) and ABA(8 * ). McLachlan provides 20 significant digits so we made the computation in quadruple precision and truncated to the appropriate precision. 

Figure 1 . 1 -

 11 Figure 1.1 -Kepler's Platonic solid model of the Solar System, from Mysterium Cosmographicum. Each of the six known planet's orbit is contained in a shell that is inscribed and circumscribed by one of the five Platonic solid

Figure 1

 1 Figure 1.4 -Maximum eccentricity by slices of 10 Myr in a secular integration of the Solar System. Outer planets are almost quasi periodic while inner planets have a chaotic motion. Adapted from[START_REF] Laskar | Large-Scale Chaos in the Solar System[END_REF].

Figure 1 .

 1 Figure 1.5 -Mercury eccentricity in direct integrations of the Solar System without (a) and with (b) post-Newtonian corrections and the influence of the Moon. Adapted from[START_REF] Laskar | Existence of Collisional Trajectories of Mercury, Mars and Venus with the Earth[END_REF].

Figure 1 . 6 -

 16 Figure 1.6 -Probability distribution functions of the Solar System planet eccentricities. Each curve represents the evolution along 250 Myr. The average is made over 1001 almost similar initial conditions. The variation of the curves reflects the chaotic diffusion. Adapted from[START_REF] Laskar | Chaotic Diffusion in the Solar System[END_REF].

Figure 2 . 1 -

 21 Figure 2.1 -Frame and notation for the resolution of the two-body problem.

3 . 1 )

 31 , and this solution is obtained at the critical value e c (α, γ) for the eccentricity of the orbit O. The values of the critical relative AMD C c (α, γ) are plotted in figure 3.2 versus α, for different values of γ. Derivating equation (3.7) with respect to γ, one obtains

Delisle

  et al. (2012) used a change of the angular coordinates in order to remove the exponential in the second term of eq. (4.10) and use G and Γ as actions. The new set of angles

  93) are verified by any couple (c 1 , c 2 ).As in section 3.3, the critical AMD is obtained through Lagrange multipliers ∇C ∝ ∇E . The tangency condition gives a relation between c 1 and c 2 , γ √ αc 1 = c 2 . (4.94) Replacing c 2 in relation (4.93) gives the critical expression of c 1 and we immediately obtain the expression of c 2

  .95) The value of C MMR c is obtained by injecting the critical values c c,1 and c c,2 into the expression of C

  It is then natural to compare the critical AMD C MMR c to the critical AMD C c (denoted C col c in this section to avoid ambiguity) derived from the collision condition in section 3.3. If α > α cir , the circular overlap criterion implies that C MMR c = 0 and therefore C MMR c should be preferred to the previous criterion C c . However, C MMR c was obtained thanks to the assumption that α was close to 1. Particularly, it makes no sense to talk about first-order MMR overlap for α < 0.63 which corresponds to the center of the MMR 2:1. Therefore, the collision criterion should be used for α away from 1 i.e. larger orbital separations. We need then to find α MMR such that for α < α MMR , we should use the critical AMD C col c . Since we are close to 1, we use a development of C col c presented in equation (3.22), and similarly, only keep the leading terms in 1α in C MMR c . The two expressions are

3

 3 Scaling laws with initial mass distribution ρ(a) ∝ a p .

Figure B. 1 -

 1 Figure B.1 -Elliptical orbit, as the intersection of the cone r 2 = x 2 + y 2 and the plane P • r + r = p .

  we have also {K, R n+1 } = 0, and from (B.13) {K, R n+1 λ } = 0 and thus, {K, {H 0 , S n+1 }} = 0 (B.14) Using Jacobi identity, as {K, H 0 } = 0, we have {H 0 , {K, S n+1 }} = 0 (B.15) The solution of the homological equation (B.12) is unique up to a term independent of λ. But as {K, S n+1 } λ = 0, then the only possible solution for (B.15) is {K, S n+1 } = 0 . (B.16)

3

 3 + e) K(e, α, γ) = α(γ 2α)e 3 -(2α)(γ 2α)e 2 -(1α 2 )e + (1α) 2 = 0 (B.17) B.3.1 Asymptotic value of C c (α, γ) for γ → 0As e c (α, γ), is a continuous function of γ, when γ → 0, the limits e 0c (α) will satisfy the limit equationK 0 (e, α) = (1ααe) 2 (1e) = 0 (B.18)with solutions e 0 = 1/α -1 and e 1 = 1. Depending on α several cases are treated:α < 1/2 : We have then e 0 > 1, and the only possibility for e c (α, 0) is e 1 = 1 as it is the only root of (B.18) which belongs to [0, γ) = 1 -2α ;lim γ→0 C c (α, γ) = 1 -2 α(1α) ; (B.20)In order to study the behaviour of e c (α, γ) in the vicinity of γ = 0, we can differentiate K(e c (α, γ), γ) = 0 twice, which gives e c (α, γ) is decreasing with respect to γ at γ = 0.The second order development of C c givesC c (α, γ) = 1 -2 α(1a) + γ √ α -Inthis case, e 0 < 1. As e c (α, γ) ∈]0, e 0 [, we have e c (α, 0) ∈ [0, e 0 ], which gives as the unique possibility lim γ→0 e c (α, γ) = e 0 (C c gives C c (α, γ) = γ (B.17) becomes γ 2 2e 2 (3e) = (1e)3 . We obtain thus the asymptotic value for e c (1/2, γ) when γ → 0 the development of C c in γ contains non-polynomial terms in γ givingC c (1/2, γ) = γ √ 2 -2 -1/3 γ 4/3 -2 -4/3 γ 2 + O(γ 8/3 ) (B.30) B.3.2 Asymptotic value of C c (α, γ) for γ → +∞This case is more simple. If e c (α, γ) is a solution of (3.12), then it will also be a solution of eq. (B.17), and thus of e c (α, γ) is monotonic and bounded, it has a limit when γ → +∞, which will verify the limit equation (B.31), when γ → +∞, that isK ∞ (α, e) =e 2 (2ααe) = 0 (B.32) As 0 < α < 1, the only solution is e = 0, and thus lim γ→+∞ e c (α, γ) = 0 (B.33) and lim γ→+∞ e ′ c (α, γ) = 1α ; lim γ→+∞ C c (α, γ) = 1α(2α) Study of C c (α, γ) for γ = 1 and γ = √ α.

For γ = 1

 1 or γ = √ α, we can also obtain simple expressions for C c (α, γ). Indeed, Ifγ = 1, K(e, α, γ) factorises in (1α)(1 + e)(αe 2 -2e + 1α)and we have a single solution for e c in the interval [0, 1],e c (α, 1) = 1 -√ 1α + α 2 α ; e ′ c (α, 1) = √ 1α + α 2α ; (C c (α, γ) for α → 1Let us denote η = 1α. The equation (B.17) can be developed in η, K(e, α, γ) = (γ 2 -1)e 2 (e-1)+ηe (γ 2 -1)(ee 2 ) -2 +η 2 (1-e-e 2 -e 3 ) (B.41) The zeroth and first orders of equation (B.41) implies that e c must go to zero, moreover, it scales with η. We write e c (η, γ) = κ(γ)η+o(η). We inject this expression in (B.41) and keep the second order in η (γ 2 -1)κ 2 + 2κ -1 = 0. (B.42) We keep the solution that is positive and continuous in γ and we have e c (η, γ) = η γ + 1 + o(η). (B.43) If we now compute C c developed for α -→ 1 we have C c (1η, γ) = k(γ)η 2 + O(η 3

  + U (zz) + Ū (zz) + O(e 2 ),(C.14) 

  where Z = α(3z -2αz). With this expression of V , it is easy to gather the corresponding terms and the second term in the development (C.6) gives the contributing term terms (C.12,C.18), we can give the expression of the resonant Hamiltonian H = K + R 1 (X 1 + X1 ) + R 2 (X 2 + X2 )

1

 1 r 1 and r 2 defined in equations (C.23) and (C.24). Using the expression of b(k) s (pφ) -2α cos((p + 1)φ) -cos((p + 2)φ) (1 + α 2 -2α cos φ) φ)α) cos((p + 1)φ) (1 + α 2 -2α cos φ) 3/2 + 2 sin φ sin((p + 1)φ) (1 + α 2 -2α cos φ) 3/2 dφ. (C.29)We make the change of variable φ = (1α)u in the integrals. Factoring (1α)3 , the denominators in the integrals can be developed for α → 1(1+α 2 -2α cos φ) 3/2 = 1 + 2α 1 -cos((1α)u) (1α) 2 3/2 ≃ (1-α) 3 (1+u 2 ) 3/2 . (C.30)Using the relation α 0 = (p/(p + 1)) 2/3 , the numerators can be developedN 1 = (cos((1α)u)α) cos((p + 1)(1α)u) ≃(1 -(2/3) + 2K 0 (2/3) π (p + 1) (C.33) ∼ 0.802(p + 1), (C.34)

R 1 (

 1 α 0 ) = -0.802(p + 1) -0.199 + O(p -1 ), (C.35) R 2 (α 0 ) = 0.802(p + 1) + 0.421 + O(p -1 ).(C.36)C.2 Development of the Keplerian partWe show here that the first order in ( Ĉ -∆ Ĝ) of the Keplerian part vanishes and give the details of the computation for the second order. The Keplerian part can be writtenK = -µ 2 m 3 1 2( Λ1,0p( Ĉ -∆ Ĝ)) 2 -µ 2 m 3 2 2( Λ2,0 + (p + 1)( Ĉ -∆ Ĝ)) 2 . (C.37)Therefore, the first order in Ĉ -∆ Ĝ has for expressionK 1 ( Ĉ -∆ Ĝ) = -

  δα c is the width of the resonance for initially circular orbits defined in (C.49).C.4 Influence of γ on the limit α MMRAs can be seen in Figure4.6a, the solution α MMR of equation (4.98) is not the exact limit where the collision and the MMR criteria are equal. Indeed, equation (4.98) is obtained after the development of C col c and C MMR c for α close to 1. Since at first order, both expressions have the same dependence on γ, α MMR does not depend on γ. In order to study the dependence on γ of the limit α lim where C col c = C MMR c , we plot in Figure (C.1a), for different values of ε, the quantity δα MMR (ε, γ) = α MMR (ε)α lim (ε, γ) 1α MMR (ε) , (C.53)

  Figure C.1b. We plot in this Figure C.1b the quantity δα MMR /ε 1/4 ; we see that the curves are almost similar, particularly for the smaller values of ε.

c and h 1

 1 In section 5.2, the Hill stability criterion (5.24) is obtained by the expansion at the leading order in ε ofF = (γ + 1) 3/2 R(L 1 )(1 + εγ/(γ + 1) 2 ) 3 (1 + ε) (γ/α + 1 + h 1 ) . (D.7)In F , the main term depending on ε comes from the expansion of

  ṙj = rj /m j and simplify the expression (D.9), we obtain h 1 = h T 1

  1) 2 , ε 4/3 = O εγ (γ + 1) 2 + O ε 4/3 .Let us develop D at the same order than F . We have D = 1ε -D has no contribution to F at the considered orders. Therefore, we can writeF = α(γ + 1) 3 γ + α 1 + 3 4/3 ε 2/3 γ (γ + 1) 2 + O εγ (γ + 1) 2 , ε 4/3 .

  Scheme Order Stages a i b i ABA(6 * ) 6 7 a 1 = 0.39225680523877863191 b 1 = 0.78451361047755726382 a 2 = 0.51004341191845769875 b 2 = 0.23557321335935813368 a 3 = -0.471053385409756436635 b 3 = -1.17767998417887100695 a 4 = 0.068753168252520105975 b 4 = 1.3151863206839112189 ABA(8 * ) 8 15 a 1 = 0.370835182175306476725 b 1 = 0.74167036435061295345 a 2 = 0.166284769275290679725 b 2 = -0.409100825800031594 a 3 = -0.109173057751896607025 b 3 = 0.19075471029623837995 a 4 = -0.191553880409921943355 b 4 = -0.57386247111608226666 a 5 = -0.13739914490621317141 b 5 = 0.29906418130365592384 a 6 = 0.31684454977447705381 b 6 = 0.33462491824529818378 a 7 = 0.324959005321032390205 b 7 = 0.31529309239676659663 a 8 = -0.240797423478074878675 b 8 = -0.79688793935291635398

Table 3 .

 3 2 -Result of the analysis split in function of the multiplicity of the system. The column labels are defined in sections3.4.3 and 3.4.4. 

	Multiplicity Strong stable Weak stable Unstable Total
	2	42	21	34	97
	3	4	1	17	22
	4+	2	0	10	12
	Total	48	22	61	131

  .77)This development remains valid for small enough √ c m if α cirα ≪ 1α cir , which

	can be rewritten which leads to	0.157ε -1/7 √ c m ≪ 1.46ε 2/7 , √ c m ≪ 9.30ε 3/7 .	(4.78) (4.79)

  The transfer of AMD is made from planet 1 to planet 2 i.e. we haveC ′ 1 = C 1 -δC and C ′ 2 = C 2 + δCwhere the prime denote the new values and δC

Table 7 .

 7 2 -Distribution of the final number of planet for 10,000 systems simulated. The average number is 4.67 while the theory predicts 6.35.

	Number of planets	3	4	5	6 7
	Number of systems 107 3712 5520 657 4

  e i e ι̟ i + O(e 2

													i ),	(C.10)
	the first term in the development (C.6) gives		
	a 2 r 2	A -1/2 =	1 2	1 +	1 2	X2 z 2 +	1 2	X 2 z2	k∈Z	b	(k) 1/2 (α)z k + O(e 2 2 ).	(C.11)
	The contributing term has for expression		
						1 4	b	(p) 1/2 (α)(X 2 + X2 ),	(C.12)

Table C .

 C 1 -AMD-stability coefficients computed for the systems affected by the MMR overlap criterion Masses are given in terms of nominal terrestrial masses M N E and stellar masses in terms of nominal solar masses M N ⊙ as recommended by the IAU 2015 Resolution B3.

	Planet Period (d) Mass ((GM) N Ep ) Eccentricity	e 2 β	β (MMR)
	HD 128311 Mass: 0.84 ((GM) N ⊙ ) b 454.2	463.14	0.345 0.352 0.312
	c 923.8	1032.46	0.230 0.244 3.200 27.931
	HD 200964 Mass: 1.44 ((GM) N ⊙ ) b 613.8	587.98	0.040 0.067 0.024
	c 825		284.46	0.181 0.184 3.872	+∞
	HD 204313 Mass: 1.045 ((GM) N ⊙ ) c 34.905	17.58	0.155 0.184 16.664
	b 2024.1	1360.31	0.095 0.095 0.110	0.110
	d 2831.6		533.95	0.280 0.308 8.032	+∞
	HD 33844 Mass: 1.75 ((GM) N ⊙ ) b 551.4	622.94	0.150 0.180 0.084
	c 916		556.20	0.130 0.189 2.939 22.676
	HD 45364 Mass: 0.82 ((GM) N ⊙ ) b 226.93		59.50	0.168 0.171 0.070
	c 342.85		209.10	0.097 0.099 1.975 13.700
	HD 47366 Mass: 1.81 ((GM) N ⊙ ) b 363.3	556.20	0.089 0.138 0.146
	c 684.7		591.16	0.278 0.292 2.896	2.896
	HD 5319 Mass: 1.56 ((GM) N ⊙ ) b 675	616.59	0.120 0.162 0.053
	c 886		365.50	0.150 0.171 8.659	+∞
	HD 73526 Mass: 1.08 ((GM) N ⊙ ) b 188.9	715.11	0.290 0.293 0.200
	c 379.1		715.11	0.280 0.289 3.391	9.922
	Note:			

Table E .

 E 1 -Coefficients of the schemes used in this article. The values are computed from (McLachlan, 1995a).

While the combined asteroid belt mass is smaller than any planet mass, its position filled a gap between Mars and Jupiter in Titius-Bode law.

http://www.exoplanet.eu/

The expression of the constant µ 4π

is due to Newton. Kepler only remarked the relation between a and T .2 Actually, the relation (2.15) holds for hyperbolic orbits with -|a| instead of |a|. For parabolic orbits, e = 1 and a is ill-defined so G can only be expressed as a function of the parameter p.

practical stability means here stability over a very long time compared to the expectation life of the central star.

This is equivalent to require that all pairs are AMD-stable.

http://exoplanet.eu/

The systems were selected in November 2016.

http://exoplanets.org/

We summarize the notations of the various AMD expressions used in this paper in Table4.1. 

This exponent corresponds to a surface density proportional to r -5/2 , which is not the one of the Minimum Mass Solar Nebula[START_REF] Weidenschilling | The Distribution of Mass in the Planetary System and Solar Nebula[END_REF], p = -1/2). For the Solar system,[START_REF] Laskar | On the Spacing of Planetary Systems[END_REF] found p = 0 (a surface density proportional to r -1 ) to be best fitting.

[START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] the first-order expression of V is writtenW 1 = (U Z + Ū Z) instead of W 1 = (U Z + Ū Z)/2.This misprint in equation (47) of[START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] is transmitted as well in equation (51). It has no consequences in the results of the paper.

https://rebound.readthedocs.io/en/latest/

Please note that those functions are different from the time renormalization functions used in this article.

Remerciements

Appendix A

Jacobi coordinates

In section 2.2, we introduced the N -planet Hamiltonian (2.32) and the heliocentric coordinates (2.34). The Jacobi coordinates are another set of coordinates that allow to remove the centre of mass dynamics and write the Hamiltonian as a sum of Keplerian Hamiltonians (2.7). Moreover, when expressed with these coordinates, the perturbation only depends on the positions and no longer on the momenta. It is thus integrable, which allow to separate the Hamiltonian into a sum of integrable Hamiltonians.

We recall equation (2.32) that is the Hamiltonian form of the N +1 body problem in an inertial frame. We have

where ∆ jk = u ju k , and G is the constant of gravitation.

For k = 0 . . . N , we define

where M k = k j=0 m k . R k and Rk are respectively the barycenter position of the first k + 1 body and their total linear momentum. The Jacobi coordinates are defined recursively for k = 1 . . . N as

and

In other words, r ′ k is the position of the kth body with respect to the barycenter of the first k -1. To compute the kinetic energy in function of r′ k , we write

The kinetic energy has for expression

Indeed, all cross product terms cancel out. The kinetic energy is decomposed into the barycenter kinetic energy and the kinetic energy of each body with respect to the barycenter of the previous bodies.

For the potential energy, we need the inverse transformation on the position coordinates. We have

While this transformation leads to complicated expressions, it should be remark that the Hamiltonian dependence on positions is through terms of the form ∆ jk that no longer depends on r ′ 0 . This is expected since the barycentre motion should be inertial. As in heliocentric coordinates, we can safely assume r′ 0 = 0 and place the origin at the barycenter i.e. r ′ 0 = 0. In order to write the Hamiltonian as a perturbed sum of Keplerian problems, we rewrite it as

AMD-stability appendices

This appendix regroups the appendices from [START_REF] Laskar | AMD-Stability and the Classification of Planetary Systems[END_REF] that were originally part of the preprint announce in [START_REF] Laskar | On the Spacing of Planetary Systems[END_REF].

B.1 Intersection of planar orbits

In this section, we present an efficient algorithm for the computation of the intersection of two elliptical orbits in the plane, following [START_REF] Albouy | Lectures on the Two-Body Problem[END_REF]. Let us consider an elliptical orbit defined by (µ, r, r) and let G = r × r be the angular momentum.

We recall the definition of the Runge-Laplace vector (2.13)

that is an integral of the motion with coordinates (e cos ω, e sin ω). One has

where p = a(1e 2 ) is the parameter of the ellipse. Let r = (x, y) in the plane. We can consider the ellipse in the 3-dimensional space (x, y, r) (see figure B.1), as the intersection of the cone

with the plane defined by Eq. (B.2), that is

x(e cos ω) + y(e sin ω) + r = p (B.4)

If we consider now two orbits O 1 and O 2 . Their intersection is easily obtained as the intersection of the line of intersection of the two planes

x(e 1 cos ω 1 ) + y(e 1 sin ω 1 ) + r = p 1

x(e 2 cos ω 2 ) + y(e 2 sin ω 2 ) + r = p 2 (B.5) with the cone of equation r 2 = x 2 + y 2 . Depending of the initial conditions, if O 1 and O 2 are distinct, we will get either 0,1, or 2 solutions.

Appendix C Details on the computation of the MMR overlap criterion

C.1 Expression of the first-order resonant Hamiltonian

We use the method proposed in [START_REF] Laskar | Analytical Framework in Poincare Variables for the Motion of the Solar System[END_REF] and [START_REF] Laskar | Stability of the Planetary Three-Body Problem[END_REF] to determine the expression of the planetary perturbation H 1 . H 1 can be decomposed into a part from the gravitational potential between planets U 1 and a kinetic part

The difficulty comes from the development of a 2 /∆ 12 and its expression in terms of Poincaré variables. We note S, the angle between r 1 and r 2 . We have

where we denote

C.3.1 Coefficients-roots relations

We first explain how the width of the resonance can be related to the position of the saddle point on the X-axis. The resonant island has a maximal width on the X-axis. Therefore we need to compute the expression of the intersections of the separatrices with the X-axis.

Let us note H 3 , the energy at the saddle point (X 3 , 0). Since the energy of the separatrices is H 3 as well, the two intersections of the separatrices with the X-axis are the solution of the equation

This equation has three solutions X * 1 , X * 2 , and X 3 which has a multiplicity of 2. We can therefore rewrite the equation as

We detail here the relations between the coefficients and the roots of the polynomial equation (C.42). We have

we can express (X * 1 -X * 2 ) 2 as a function of X 3 thanks to eq. (C.44) and (C.45)

We thus deduce the expressions of X * 1 and X * 2 as functions of X 3

As explained in section 4.3.1, we obtain the width of the resonance in terms of variation of α as a function of X 3 (equation 4.55). We can use this expression to obtain the width of the resonance for particular cases detailed in the following subsections.

C.3.2 Width for initially circular orbits

In the case of initially circular orbits, the minimal AMD to enter the resonance is 0. For C min = 0, the equation (4.57) gives X 3 = 2 2/3 as a solution and we have

We find here the same width of resonance as [START_REF] Deck | First Order Resonance Overlap and the Stability of Close Two Planet Systems[END_REF].

C.4. Influence of γ on the limit α MMR Appendix D

Complements on Hill stability

D.1 Computation of R at the Lagrange points

The function R(x, y) = (ρ/ν) 2 defined in (5.14) admits three saddle points situated on the x axis, which are the Lagrange points L 1 , L 2 , and L 3 . If x j is the abscissa of the point L j on the plane P, we have 0 < x 1 < 1, x 2 > 1 and x 3 < 0. The x j quantities only depends on the mass ratio ε and on

They are the roots of the three different polynomial equations

At up to terms of order ε 4/3 , we have

), (D.5)

As an immediate consequence of (D.17), the expression proposed in (5.24) remains valid in the case of a very uneven mass distribution between the two planets (e.g., for O(ε 1/3 ) < γ < O(ε -1/3 )).

Appendix E Details on the adaptive integrator

E.1 Implementation

We give in this appendix technical details on our implementation choices.

E.1.1 Kepler equation

The key step in any Wisdom-Holman algorithm is the numerical resolution of the Kepler problem

where µ = GM and M is the central mass in the set of coordinates used in the integration. Since this is the most expensive step from a computational point of view, it is particularly important to optimize it. Here, we closely follow the works by [START_REF] Mikkola | Practical Symplectic Methods with Time Transformation for the Few-Body Problem[END_REF][START_REF] Mikkola | Symplectic Tangent Map for Planetary Motions[END_REF] and refer to them for more details. [START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF] present an unbiased numerical implementation that can be found in the package REBOUND 1 .

Let us consider a planet with initial conditions r 0 , and v 0 , the goal is to determine the position of the planet r and its velocity v along the Keplerian orbit after a time t. In order to avoid conversions from Cartesian coordinates to elliptical elements, we use the Gauss f -and g-functions 2 formalism (e.g. [START_REF] Wisdom | Symplectic Maps for the N-Body Problem[END_REF]. We have

where the values of f , g, ġ and ġ depend on t, r 0 , and v 0 and are given in equations (E.7). Whenever two planets encounter, their orbits may become hyperbolic. To be able to resolve such events as well as ejections trajectories, we use a formulation of the Kepler problem allowing hyperbolic orbits. In order to do so, [START_REF] Stumpff | Himmelsmechanik, Band I[END_REF] developed a general formalism that comprehend the hyperbolic and the elliptical case in the same equations. Moreover, this approach avoids the singularity for an eccentricity close to 1. Stumpff introduces special functions

The c-functions allow to compute the so-called G-functions [START_REF] Stiefel | Linear and Regular Celestial Mechanics[END_REF]) defined as

In this formalism, the Kepler equation takes the form [START_REF] Stumpff | Himmelsmechanik, Band I[END_REF])

of unknown X = t 0 dt/r and where

In (E.5), X plays a similar role to the eccentric anomaly in the classical form. Equation (E.5) can be solve by the Newton method [START_REF] Rein | WHFAST: A Fast and Unbiased Implementation of a Symplectic Wisdom-Holman Integrator for Long-Term Gravitational Simulations[END_REF]. The new position and velocity are then obtained with (E.2) and f = 1µ G 2 (β, X) r 0 , ḟ = -µG 1 (β, X) r 0 r , g = t -µG 3 (β, X), ġ = 1µ G 2 (β, X) r , (E.7)

where r = r 0 + η 0 G 1 + ζ 0 G 2 .

E.1.2 Computation of the effective time step

In both the Kepler and the perturbation step, it is important to compute precisely the effective time step (6.21). For the Kepler step in particular, τ 0 depends on the difference H 0 -E 0 with H 0 and E 0 being of comparable size. To avoid numerical errors, we compute the initial energy with compensated summation [START_REF] Kahan | Pracniques: Further Remarks on Reducing Truncation Errors[END_REF]. We save the value and the associated error. We then evaluate the Keplerian energy H 0 using compensated summation and then make the difference. Compensated summation is also used to update the positions, velocities and for the integration of the real time equation.

During the numerical tests, we remarked that in Jacobi coordinates, the perturbation energy H 1 is most of the time smaller by almost an order of magnitude than the typical planet energy interaction E 1 . On the other hand, H 1 and E 1 are roughly