
HAL Id: tel-02879899
https://theses.hal.science/tel-02879899

Submitted on 24 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cloning beyond source code : a study of the practices in
API documentation and infrastructure as code.

Mohamed Ameziane Oumaziz

To cite this version:
Mohamed Ameziane Oumaziz. Cloning beyond source code : a study of the practices in API docu-
mentation and infrastructure as code.. Software Engineering [cs.SE]. Université de Bordeaux, 2020.
English. �NNT : 2020BORD0007�. �tel-02879899�

https://theses.hal.science/tel-02879899
https://hal.archives-ouvertes.fr

ACADÉMIE DE BORDEAUX

U N I V E R S I T É D E B O R D E A U X
Sciences et Technologies

THÈSE

Présentée au Laboratoire Bordelais de Recherche en Informatique pour
obtenir le grade de Docteur de l’Université de Bordeaux

Spécialité : Informatique
Formation Doctorale : Informatique
École Doctorale : Mathématiques et Informatique

Cloning beyond source code: a study of the practices in API
documentation and infrastructure as code

par

Mohamed Ameziane OUMAZIZ

Soutenue le 27 Janvier 2020, devant le jury composé de :

Président du jury
Jean-Philippe DOMENGER, Professeur. Université de Bordeaux, France

Directeur de thèse
Jean-Rémy FALLERI, Maître de conférences, HDR . Bordeaux INP, France

Co-Directeur de thèse
Xavier BLANC, Professeur . Université de Bordeaux, France

Rapporteurs
Mireille BLAY-FORNARINO, Professeur . Université de Nice, France
Tom MENS, Professeur. Université de Mons, Belgique

Examinateurs
Anne ETIEN, Maître de conférences, HDR. Université Lille 1, France
Tewfik ZIADI, Maître de conférences, HDR. Sorbonne Université, France

Abstract

When developing software, maintenance and evolution represents an important part of the de-
velopment life-cycle, representing up to 80% of the overall cost and effort. During the maintenance
effort, developers sometimes copy and paste source code fragments in order to reuse them. Such
practice, seemingly harmless, is more frequent than we expect. Commonly referred to as “clones”
in the literature, these source code duplicates are a well-known and well studied topic in software
engineering.

In this thesis, we aim at shedding light on copy-paste practices on software artifacts beyond
source code. In particular, we chose to focus our contributions on two specific types of software
artifacts: API documentation and deployment files (i.e. Dockerfiles) as they respectively: help de-
velopers understand how to use and integrate external APIs, and represent the last step between
developers and application users. For each software artifact, we follow a common empirical study
methodology. As a result, we show that API documentations and software deployment files (i.e.
Dockerfiles) contain duplicates and that such duplicates are frequent from 27,69% (API documen-
tation) to nearly 50% (Dockerfiles). We then identify the reasons behind the existence of such du-
plicates. Also, we perform a survey on experimented developers and find that they’re aware of such
duplicates, frequently face them. But still have a mixed opinion regarding them. Finally, we show
that both types of software artifacts are lacking tools with reuse mechanisms to cope with dupli-
cates, and that some developers even resort to ad-hoc tools to manage them.

Keywords: Documentation, duplicates, Dockerfile, Docker, reuse

Résumé

Lors du développement de logiciels, la maintenance et l’évolution constituent une partie im-
portante du cycle de vie du développement représentant 80% du coût et des efforts globaux. Pen-
dant l’effort de maintenance, les développeurs copient et collent parfois des fragments de code
source afin de les réutiliser. Une telle pratique, apparemment inoffensive, est plus fréquente qu’on
ne le pense. Communément appelés “clones” dans la littérature, ces doublons de code source sont
un sujet bien connu et étudié en génie logiciel.

Dans cette thèse, nous visons à mettre en lumière les pratiques du copier-coller sur les arte-
facts logiciels au-delà du code. En particulier, nous avons choisi de concentrer nos contributions
sur deux types d’artefacts logiciels : Documentation d’API et fichiers de déploiement (c.-à-d. Do-
ckerfiles) puisqu’ils respectivement : aident les développeurs à comprendre comment utiliser et
intégrer des API externes, et représentent la dernière étape entre les développeurs et les utilisateurs
d’une application. Pour chaque artefact logiciel, nous suivons une méthodologie d’étude empi-
rique commune. Comme résultats, nous montrons que les documentations d’API et les fichiers de
déploiement de logiciels (c.-à-d. Dockerfiles) sont confrontés aux doublons et que de tels doublons
sont fréquents allant de 27,69% (documentation API) à presque 50% (Dockerfiles). Par la suite, nous
identifions les raisons derrière l’existence de ces doublons. Aussi, nous effectuons une enquête
auprès de développeurs expérimentés et de constatons qu’ils sont conscients de ces doublons, et
qu’ils les rencontrent souvent tout en ayant un avis mitigé sur eux. Enfin, nous montrons que les
deux artefacts logiciels manquent de mécanismes de réutilisation pour faire face aux doublons, et
que certains développeurs ont même recours à des outils ad-hoc pour les gérer.

Mots clés : Documentation, duplication, Dockerfile, Docker, reutilisation

LaBRI — 351, Cours de la Libération — 33400 Talence — France

Contents

1 Introduction 1
1.1 Context . 2
1.2 Problem statement . 3
1.3 Methodology . 5
1.4 Contributions . 6
1.5 Thesis outline . 7

2 Background 9
2.1 Context . 10

2.1.1 Clone definitions . 10
2.1.2 Clone detection approaches . 14

2.2 Empirical research on clones in software artifacts beyond code 21
2.3 Clone management . 28
2.4 Summary . 30

3 Duplicates in API documentation 33
3.1 Introduction . 34
3.2 Background . 35
3.3 Data collection . 37

3.3.1 Repositories . 38
3.3.2 Survey . 39
3.3.3 Duplicates detection tool . 40

3.4 Contributions . 41
3.4.1 RQ1: Do developers often resort to copy-paste documentation tags? 42
3.4.2 RQ2: What are the causes of documentation tags copy-paste? 44

i

ii CONTENTS

3.4.3 RQ3: Could duplicate documentation be avoided by a proper us-
age of documentation tools? . 50

3.5 Threats to validity . 52
3.6 Conclusion . 53

4 Duplicates in Dockerfiles 55
4.1 Introduction . 56
4.2 Background . 57
4.3 Data collection . 60

4.3.1 Repositories . 60
4.3.2 Survey . 61
4.3.3 Duplicates detection tool . 62

4.4 Contributions . 64
4.4.1 RQ1: Do official projects maintain families of Dockerfiles, and why? 64
4.4.2 RQ2: Do duplicates arise in Dockerfiles families and why? 66
4.4.3 RQ3: What are the pros and cons of tools used by experts to man-

age Dockerfiles? . 72
4.5 Threats to validity . 77
4.6 Conclusion . 79

5 Conclusion 81
5.1 Summary of contributions . 81

5.1.1 Duplicates in API documentation . 81
5.1.2 Duplicates in Dockerfiles . 82

5.2 Perspectives and discussion . 83
5.2.1 Duplicates in API documentation . 83
5.2.2 Duplicates in Dockerfiles . 84
5.2.3 Discussion . 84

A Résumé en Français 87

List of Figures 101

List of Tables 103

CHAPTER

1
Introduction

Through this chapter, we introduce the context, motivation and contributions of this
thesis. This thesis aims at empirically studying duplicates among two types of soft-
ware artifacts. We first start by taking a closer look towards duplicates in API docu-
mentation for two programming languages: Java and Ruby. We then tackle another
duplicates issue plaguing Dockerfiles. in this chapter, we describe these two under-
lying challenges and our main contributions.

Contents
1.1 Context . 2

1.2 Problem statement . 3

1.3 Methodology . 5

1.4 Contributions . 6

1.5 Thesis outline . 7

1

2 CHAPTER 1. INTRODUCTION

1.1 Context

When developing a software, maintenance and evolution represents an important part
of the development’s life-cycle, making up to 80% of the overall cost and effort [Alkhatib,
1992]. During the development or maintenance phase, it happens that developers resort
to copying and pasting source code fragments. Commonly referred to as “clones” in the
literature, these source code duplicates are a well-known and deeply studied topic in soft-
ware engineering. Multiple empirical studies [Baker, 1995; Baxter et al., 1998; Rieger et al.,
2004; Zibran et al., 2011] have shown that large softwares can have from 5% up to 20% of
their code base that is cloned.

During the last two decades, many studies have tried to understand the underlying
reasons to resort to code clones [Baxter et al., 1998; Kapser, 2009; Rieger, 2005; Cordy, 2003].
For instance, Cordi [Cordy, 2003] states that in the financial industry, cloning is a common
reuse strategy. He explains that since financial products aren’t that much different from
each others, when a new product has to be developed, developers start by cloning a similar
existing project and then adapt it to produce the new product. Developers have to resort to
such practices because monetary risks are very high in case of errors. Thus, any financial
tool has to be heavily tested (70% of costs in financial softwares are spent on testing [Cordy,
2003]). Therefore, it is cheaper and quicker to simply reuse existing source code by cloning
it. Baxter et al. [Baxter et al., 1998] also writes about what is called accidental clones, that
are produced out of the awareness of the developer. Such clones may happen during the
use of libraries for instance, where developers have to write repetitive boilerplate code such
as a sequence of calls to perform a task.

While some studies discuss the possible positive impact of code clones [Kapser and
Godfrey, 2006], others state that code cloning isn’t inconsequential [Juergens et al., 2009b].
Whether code clones are positive or not, during the maintenance process, if there is a bug
in a cloned code fragment, developers have to propagate a bug-fix across all cloned frag-
ments, this process might increase the maintenance costs. Moreover, developers might not
all be aware that the bug exists somewhere else in his code base. Therefore, developers are
required to know if their code is being cloned, and if so, where the other cloned fragments
are located.

During the last decade, multiple code clone detectors have been released. Clone de-
tectors are used to identify similar or identical code snippets in a code base. Existing clone
detectors use a plethora of techniques such as AST-based (Abstract Syntax Trees) clone de-
tection [Baxter et al., 1998], token-based code clone detection [Kamiya et al., 2002] or even
deep learning techniques [White et al., 2016a].

While the software engineering community was very interested in code clones during
the last two decades, there has been little interest in the existence of clones in software
artifacts beyond source code. During a software system’s development process, several
by-products called software artifacts are also produced. These artifacts can be of different
types: API documentation, design diagrams, requirement specifications, build configura-

1.2. PROBLEM STATEMENT 3

tion files, deployment files, etc. Non-code software artifacts can have a great impact on
the final product and thus, play a key role during the development process. Studies have
shown that it is also common to have clones in non-code software artifacts. For instance,
multiple studies [Liu et al., 2006b; Störrle, 2013] have shown that UML diagrams are also
facing duplicates exactly like source code. Juergens et al. [Juergens et al., 2010; Domann
et al., 2009] show that requirement specifications can also face such duplicates. McIntosh
et al. [McIntosh et al., 2014] show that build configuration files are also facing clone issues.

Among all non-code software artifacts, we chose in this thesis to focus on studying the
existence of clones in: API documentation and deployment files (i.e. Dockerfiles). We
chose these two specific non-code software artifacts as they’re becoming widely available
in open-source projects. Further, the availability of these artifacts in open-source projects
makes them a perfect fit for us to perform our empirical research studies. Finally, to the
best of our knowledge, no research study has studied clones on any of these two types of
artifacts in the past.

In particular, we take a closer look at API documentations since it helps developers
understand how to use and therefore integrate an external API they don’t know into their
code. We think that having clones on an API documentation could lead to inconsistencies
that can mislead developers and maintainers, making them not correctly understand the
behavior of an API, thus extending the cost and effort of software development.

Also, we chose to take a closer look at Dockerfiles which are a proprietary type of de-
ployment files. Dockerfiles are used to package an application with all its dependencies
into a single package that can then be easily released. These packages represent the last
step between developers and application users. Dockerfiles are written as a simple text
file composed of a sequence of instruction written a Domain Specific Language (DSL). We
think that as Dockerfiles are similar to source code, if there is a bug in an a cloned in-
struction, the developer has to propagate a bug-fix across all cloned instructions, making
it necessary for developers to be aware of the existence of clones on the first hand.

Therefore, we believe that the community could benefit from these two empirical re-
search studies given the importance of such artifacts.

1.2 Problem statement

Through this thesis we aim at studying the copy-paste maintenance burden in soft-
ware artifacts beyond code. More precisely, the contributions discussed in this work are
towards two specific types of artifacts: API documentation and Dockerfiles (i.e. a type of
deployment files). Throughout this section, we chose to present only one extract that we
gathered from an API documentation. While we could have indifferently chosen any of the
two types of artifacts we’re studying, we chose to present on only one of them in order to
ease the understanding of our problem statement.

4 CHAPTER 1. INTRODUCTION

Figure 1.1 showcases a real API documentation extract from the Apache Commons Col-
lection project written in Java. Both methods have an API documentation that is written in
a domain-specific language called JavaDoc. In this extract, we do notice that a large part of
both API documentations is duplicated (highlighted in red).

1 /**
2 * @param a the first collection, must not be null
3 * @param b the second collection, must not be null
4 * @return true iff the collections contain the same elements with the

same cardinalities.
5 */
6 public static boolean isEqualCollection(final Collection a,

final Collection b) {
7 ...
8 return true;
9 }

1 /**
2 * @param a the first collection, must not be null
3 * @param b the second collection, must not be null
4 * @param equator the Equator used for testing equality
5 * @return true iff the collections contain the same elements with the

same cardinalities.
6 */
7 public static boolean isEqualCollection(final Collection

a, final Collection b, final Equator equator) {
8 ...
9 return isEqualCollection(collect(a, transformer),

collect(b, transformer));
10 }

Figure 1.1 – Extract of a documentation duplication due to method delegation (in the
Apache Commons Collection project). Duplicated documentation is highlighted in red.

We therefore wonder if we’ve just been lucky encountering it and that such scenarios
are rare or if it’s actually frequent and that developers often resort to perform copy-pastes.
This questioning leads us to the first research question that we investigate in this thesis:

— RQ1: Do developers often resort to copy-pastes?

Then, when looking closer at this extract, we do notice that the bottom method’s re-
turned value is computed by calling the upper method (i.e. delegation). When looking even
closer, we do notice that both methods have common input parameters and return types.

1.3. METHODOLOGY 5

This is because the bottom is passing its input parameters (a and b) to the upper method
and using the returned value from the upper method as its return value. Since both meth-
ods are sharing common input parameters (a and b), this causes them to also share their
corresponding documentation which is therefore duplicated as we can see in Figure 1.1
(highlighted in red). In this scenario, the API documentation is being duplicated because
of a method delegation, we do wonder if there are other underlying reasons that could
cause developers to resort to copy-pasting. This leads us to the second research question
that we investigate in this thesis:

— RQ2: Why do developers resort to perform copy-pastes?

Finally, the JavaDoc tool provides only a single reuse mechanism called @InheritDoc.
This reuse mechanism lets developers reuse documentation across methods, however, this
mechanism is limited to only overriding methods. Since in Figure 1.1 we only have a dele-
gation scenario, the mechanism isn’t applicable. We therefore wonder if there aren’t other
reuse mechanisms provided by other documentation tools, that can help developers avoid
such copy-pastes. This constitutes the reasoning behind the last research question that we
investigate in this thesis:

— RQ3: Could copy-pastes be avoided by a proper usage of state-of-the-art approaches?

Through our three research questions, we aim at making developers and researchers
more aware about the existence of duplicates in their non-code software artifacts. We also
aim at making the research community more aware of the reasons that can lead developers
to resort to copy-pasting. Finally, we want to identify the different types of reuse mecha-
nisms that could help tool providers better serve their community for avoiding duplicates.
Therefore, in this thesis, for both API documentation and Dockerfiles software artifacts, we
answer the three following research questions:

— RQ1: Do developers often resort to copy-pastes?

— RQ2: Why do developers resort to perform copy-pastes?

— RQ3: Could copy-pastes be avoided by a proper usage of state-of-the-art approaches?

1.3 Methodology

In this thesis, we perform two empirical research studies. For each study, we rely on
two sources of knowledge: (1) a set of Github 1 repositories corresponding to open-source
projects that will be analysed in our study, and (2) a set of responses to a survey gather-
ing opinions of experts regarding duplicates in the studied artifact. We manually build the
survey and send it to developer experts that we contact online through e-mails or social

1. https://github.com

https://github.com

6 CHAPTER 1. INTRODUCTION

medias (e.g. LinkedIn, Reddit, Github). Relying on these two sources of knowledge, we
follow a triangulation-based approach to cross-validate our results [Seaman, 1999; Wood
et al., 1999; Miller, 2008; Bratthall and Jørgensen, 2002]. Through this approach, we aim
at increasing our confidence in the gathered results as they’re validated by two different
knowledge sources. This approach also reduces our overall bias as our sources of knowl-
edge have each separate sets of biases which aren’t overlapping.

In order to answer our first research question: RQ1: Do developers often resort to copy-
pastes?, we start by building a tool that automatically parses all github repositories in our
data collection (relying on the Diggit tool 2) and identifies all copy-pastes in the repository’s
artifacts. We then apply our tool and identify all duplicates which are showcased in a web
application to ease their manual analysis. We then cross-validate these results with the
responses we gathered from our survey.

Then, to answer our second research question: RQ2: Why do developers resort to per-
form copy-pastes?, we take a random sample set from all identified duplicates and ask three
experts to manually analyse it using a web application we’ve developed for duplicates anal-
ysis. To perform this analysis we ask our experts to look for the underlying reason explain-
ing why the duplicate actually exists and tag each duplicate accordingly. We do not allow
the experts to discuss between them during the tagging process. Also, if two experts do not
agree on the underlying reason behind a duplicate, the third expert has to decide which
one is the most plausible.

Finally, to answer our final research question: RQ3: Could copy-pastes be avoided by a
proper usage of state-of-the-art approaches?, we start by constructing a list of all available
tools for the type of artifact we’re studying. Then, we manually look at every tool that is
in our list and read all user-guides looking for all reuse mechanisms they provide. Then,
for every underlying reason we’ve identified in RQ2, we look if there is a reuse mechanism
that could be used to avoid it. We then cross-validate these results with the responses we
gathered from our survey.

1.4 Contributions

Through our work, we were aiming on duplicates in artifacts other than the source
code. We chose to focus on two main artifacts: API documentation and Dockerfiles. For
both artifacts, the main contributions can be summed-up as follows:

— We show that API documentations and software build files actually face duplicates
issues and that such duplicates are frequent.

— We identify the reasons behind the existence of such duplicates.

— We find that they’re aware of such duplicates and frequently face them.

2. https://github.com/jrfaller/diggit

https://github.com/jrfaller/diggit

1.5. THESIS OUTLINE 7

— We show that both software artifacts lack reuse mechanisms to cope with duplicates,
and that some developers even resort to ad-hoc tools to manage them.

These contributions led us to the publication of two research papers:

— Documentation Reuse: Hot or Not? An Empirical Study, at the 16th International
Conference on Software Reuse (ICSR 2017) [Oumaziz et al., 2017].

— Handling duplicates in Dockerfiles families: Learning from experts, at the 35th
IEEE International Conference on Software Maintenance and Evolution (ICSME
2019) [Oumaziz et al., 2019].

1.5 Thesis outline

The remainder of this thesis is organized as follows. We first present in Chapter 2 an
overview of the state of the art in the field of duplicates in software engineering. Then,
in Chapter 3, we present an empirical study on duplicates in API documentation for two
programming languages: Java and Ruby. In Chapter 4, we present an empirical study on
duplicates in Dockerfiles. Finally, in Chapter 5, we conclude this document by summariz-
ing the contributions and the main perspectives.

CHAPTER

2
Background

In this chapter, we start by setting some context surrounding this thesis. We first
present the concept of clones and its various definitions in the literature. We then
present a taxonomy of existing clone detection approaches with well-known tools
implementing them. Then, we present the different empirical studies on clones in
all types of artifacts. Finally, we showcase the different techniques that are used to
manage clones in software engineering projects.

Contents
2.1 Context . 10

2.2 Empirical research on clones in software artifacts beyond code 21

2.3 Clone management . 28

2.4 Summary . 30

9

10 CHAPTER 2. BACKGROUND

2.1 Context

In this section, we define the context surrounding this thesis. We present the concept
of clones and their multiple definitions. We then present the different existing approaches
used to detect clones. All definitions and detection approaches discussed in this section
are gathered and summarised from a research work performed by Roy et al. [Roy et al.,
2009].

2.1.1 Clone definitions

When looking at the literature, a large set of studies looked at clones in source code,
however, there’s actually no single definition for code clones. Every new code clone detec-
tion tool article defines what they’ve detected as code clones with their own definitions. In
1998, Baxter et al. [Baxter et al., 1998] consider clones as a group of code fragments that are
almost identical based on a similarity threshold computed upon a group of parameters. In
2002, Kamiya et al. [Kamiya et al., 2002] define code clones as fragments of code that can
be either perfect duplicates (i.e. copy-pastes) or as similar fragments of code. However,
they don’t formally define what they mean by similar clones as done previously by Baxter
et al. [Baxter et al., 1998]. Another vague definition is proposed by Burd et al. [Burd and
Bailey, 2002] who consider a code fragment as being cloned (i.e. a code clone) if there’s at
least another occurrence in the source of the same code fragment even if it has some minor
modifications.

In order to avoid all this vagueness in code clone definitions, some researchers tried
to classify all these code clone definitions in form of taxonomies. Mayrand et al. [Mayrand
et al., 1996] suggested a scale of eight different categories of clones. For instance, a category
called DistinctName was composed of cloned code fragments that had only their identifier
names that were different. However, all the categories that were proposed aren’t sill precise
in their definitions. For instance, the category SimilarExpression was composed of cloned
code fragments that had expressions that were different but still “similar” enough to be
considered as clones. Balazinska et al. [Balazinska et al., 1999], proposed another taxon-
omy composed of 18 different categories. However, it still lacked precision as it has cate-
gories “One long difference”, “Two long differences” and “Several long differences” which
introduces some vagueness in their classification.

All of this showcases how hard it is to formally define what is a code clone. Nowadays,
researchers finally agree upon four types of code clones [Bellon et al., 2007a]. They chose
to define code clones based on four clone categories called types. The first three types
focuses on clones sharing a similarity in their source code. The fourth clone type focuses
on clones sharing a similarity in their functionalities without having a similarity in their
source code. All four clone types are defined as follows:

2.1. CONTEXT 11

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ()) {
3 return player1; // Comment1
4 } else {
5 return player2; // Comment2
6 }
7 }

. .

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ())
3 {
4 return player1; // Comment1 ’
5 }
6 else
7 {
8 return player2; // Comment2 ’
9 }

10 }

Figure 2.1 – Example of a Type-I clone.

Type-I clones

Definition 2.1: Type-I clones

Identical code fragments except for variations in whitespace, layout and comments.

Figure 2.1 showcases un example of a Type-I clone. In this example, the winner method
receives two input parameters which are player1 and player2 and returns as output the
player having the highest score. In case of a draw, player2 is considered as a winner. In this
example, we can see that both fragments have the exact same code, except with regard to
formatting. While the bottom code fragment uses more lines of code, if we remove all the
white-spaces, comments, tabulations and new lines, we can see that both fragments are
identical.

Type-II clones

Definition 2.2: Type-II clones

Syntactically identical fragments except for variations in identifiers, literals, types,
whitespace, layout and comments.

12 CHAPTER 2. BACKGROUND

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ()) {
3 return player1; // Comment1
4 } else {
5 return player2; // Comment2
6 }
7 }

. .

1 public Player winner(Player computer , Player host) {
2 if(computer.score () > host.score ())
3 {
4 return computer; // Comment1 ’
5 }
6 else
7 {
8 return host; // Comment2 ’
9 }

10 }

Figure 2.2 – Example of a Type-II clone.

Figure 2.2 presents an example of a Type-II clone. Apart from the small differences in
their formatting as we’ve previously seen in Figure 2.1 which is a characteristic of Type-I
clones, Type-II clones also have small differences in variable identifiers, types or literals.
These differences can be seen in our example where in the upper fragment, the winner
method has two parameters which are player1 and player2, while the winner method in
the bottom fragment has computer and host as parameters. Still, these two fragments are
considered as a clone as they are syntactically similar.

Type-III clones

Definition 2.3: Type-III clones

Copied fragments with further modifications such as changed, added or removed
statements, in addition to variations in identifiers, literals, types, whitespace, layout
and comments.

Figure 2.3 presents an example of a Type-III clone. In this type of clones, in addition to
the characteristics of type-II clones, new code statements are added, modified or removed.
For instance, in our example, if we look at the bottom fragment, we can see that in addition
to the changes we’ve previously seen, there’s a new code statement. The new code state-

2.1. CONTEXT 13

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ()) {
3 return player1; // Comment1
4 } else {
5 return player2; // Comment2
6 }
7 }

. .

1 public Player winner(Player computer , Player host) {
2 host.setScore(host.score () + DIFFICULTY_POINTS); // Bonus

points
3
4 if(computer.score () > host.score ())
5 {
6 return computer; // Comment1 ’
7 }
8 else
9 {

10 return host; // Comment2 ’
11 }
12 }

Figure 2.3 – Example of a Type-III clone.

ment lets the host have more points with bonus points that are added based on the game’s
difficulty. Both fragments in Figure 2.3 are considered as clones as they’re almost similar.

Type-IV clones

Definition 2.4: Type-IV clones

Two or more code fragments that perform the same computation but are implemented
by different syntactic variants.

Figure 2.4 depicts an example of a Type-IV clone. In this example, we can clearly see
that the two code fragments aren’t syntactically similar with the upper fragment using a
classical if-else block statement for its condition while the bottom fragment uses a ternary
operator (?:) as means to express the same condition as in the upper fragment. However,
while they are written differently, both fragments are performing the same computation,
and thus are considered as a clone.

14 CHAPTER 2. BACKGROUND

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ()) {
3 return player1; // Comment1
4 } else {
5 return player2; // Comment2
6 }
7 }

. .

1 public Player winner(Player computer , Player host) {
2 return (computer.score () > host.score ())?computer:host;
3 }

Figure 2.4 – Example of a Type-IV clone.

Summary

Throughout this section, we’ve seen that there isn’t a clear definition of code clones.
However, a consensus has emerged categorizing clones into four main types: Type-I,
Type-II, Type-III and Type-IV. In this thesis, we chose as an initial step to focus our
research on Type-I duplicates which are Identical code fragments (e.g. copy-pastes)
except for variations in whitespace, layout and comments. We chose this type as a
mean to have a higher trust level regarding our results as shown by Charpentier et
al. [Charpentier et al., 2015].

2.1.2 Clone detection approaches

There are multiple clone detection approaches available in the literature. Roy and
Cordy [Roy and Cordy, 2007] tried to classify these approaches into four main cate-
gories: text-based approaches, lexical-based approaches, syntactic-based approaches and
semantic-based approaches. In the following sub-sections, we present each approach.

Text-based approaches

In this approach, the source code is considered as a sequence of text lines. In order to
compare two code fragments, we simply compare them line by line and identify common
sequences. If a common sequence is identified, the tool implementing this approach will
return it as a clone pair. Figure 2.5 showcases an example of a code clone identified through
the use of a text-based detection technique.

In order to apply a text-based detection technique on source code, one has to first ap-
ply some transformations and normalisations to the source code in order to have better

2.1. CONTEXT 15

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ()) {
3 return player1; // Comment1
4 } else {
5 return player2; // Comment2
6 }
7 }

. .

1 public Player winner(Player player1 , Player player2) {
2 if(player1.score () > player2.score ())
3 {
4 return player1; // Comment1 ’
5 }
6 else
7 {
8 return player2; // Comment2 ’
9 }

10 }

Figure 2.5 – Example of a code clone identified with a Text-based approach.

results. These transformations are necessary as that when performing a line by line com-
parison even a simple double whitespace rather than a single whitespace could mislead
the detection process. Therefore, applied transformations are usually: code comment re-
moval, whitespace normalisation (removing multiple whitespaces, tabs and new lines) and
some normalisation. Figure 2.6 showcases an example of code transformation.

In 1993, Johnson [Johnson, 1993] proposed a redundancy detection mechanism based
on fingerprints corresponding to source code substrings. In this technique, the source
code is split into substrings where each substring has a corresponding signature. These
signatures are computed directly from the substring using Karp-Rabin fingerprinting al-
gorithm [Karp and Rabin, 1987]. The substrings are extracted from the source code, this
extraction starts with substrings from the largest length to the smallest length (i.e. one
character). They then apply this text-based detection tool to the GNU C Compiler project
and identify several large matches (more than 50 lines of code) which are considered as
being the result of copy-paste operations (Type-I clones).

Later, in 1999, Ducasse et al. [Ducasse et al., 1999] developed a language indepen-
dent technique for detecting duplicated code without using any parser through the use
of line-based string matching. They considered the source code a sequence of lines, they
transformed each line by removing whitespaces and comment lines. Based on these trans-
formed lines, they then hashed each line using a hash function in order to speed up the

16 CHAPTER 2. BACKGROUND

1 /**
2 * Some code comments
3 */
4
5 public Player winner(Player player1 , Player player2) {
6 if(player1.score () > player2.score ())
7 {
8 return player1; // Comment1 ’
9 }

10 else
11 {
12 return player2; // Comment2 ’
13 }
14 }

. .

1 public Player winner(Player player1 , Player player2){
2 if(player1.score () > player2.score ()){return

player1;}else{return player2;}
3 }

Figure 2.6 – Example of code transformation.

line by line comparison process. They then used a string-based pattern matching algo-
rithm which outputs the line numbers of clone pairs.

Token-based approaches

Token-based approaches are similar to text-based approaches. While for text-based
approaches we consider the source code as a sequence of text lines, in the Token-based ap-
proaches we consider the source code as a sequence of tokens, where tokens are the result
of the tokenization step at the beginning of a parsing process. Therefore, when applying
a token-based duplicate detection technique, we compare sequences of tokens and not
sentences. However, when a duplicate is identified based on the sequence of tokens, the
returned result is actually the initial sentence. Similarly to text-based approaches, token-
based approaches identifies the same types of clones. However, token-based approaches
are more robust to code changes such as formatting and spacing.

One of the first Token-based detection tools was proposed in 1993 by Baker [Baker,
1993]. His tool called dup represents the code as a sequence of lines in order to detect
clones. Therefore, it uses a lexer and a line-based string matching algorithm on the se-
quence of tokens extracted from each line. Dup also applies normalisations of each token

2.1. CONTEXT 17

(replacing identifies of functions, variables and types with a special parameter) to help
identify Type-II clones and hashes all token sequences to speed up the comparison pro-
cess. The tool then extracts a set of pairs of longest duplicate matches using a suffix tree
algorithm. Dup manages to identify Type-I and Type-2 clones.

CCFinder [Kamiya et al., 2002] is another token-based clone detection tool. Similarly
to the Dup tool, CCFinder starts by splitting each source file into a single large sequence of
tokens through the use of a lexer. In addition to a set of transformations based on specific
rules, the tool replaces identifiers that are related to constants, types and variables with a
special token. Through this process the tool aims at easing the duplicate identification as
after this process fragments having identical code but different variable names can now
be identified. Then, a suffix-tree based sub-string matching algorithm is used to identify
all similar sub-sequences from our transformed large token sequence. As a result, sub-
sequence pairs are returned as code clone pairs. Afterwards, a mapping is applied based
on the cloned sub-sequence in order to find the corresponding original source code.

Another token-based clone detection tool is CP-Miner by Li et al. [Li et al., 2006]. Their
tool uses a frequent sub-sequence mining technique to identify similar sequences of to-
ken statements. CCFinder and dup tools were actually vulnerable to code insertions and
reordering because of their analysis which is sequential. Therefore, token sequences are
broken if a new statement or a reordered statement is added while there could be a po-
tential duplicate in them. CP-Miner overcomes all these limitations through the use of the
frequent subsequence mining technique. The use of an extended version of CloSpan [Yan
et al., 2003] lets CP-Miner tolerate one to two statement insertions, modifications or dele-
tions in duplicate code.

Another well-known token-based clone detection tool is SourcererCC by Sajnani et
al. [Sajnani et al., 2016]. SourcererCC uses an optimized index to scale to hundred of mil-
lions of lines of code. Their tool compares code fragments through the use of a bag-of-
tokens strategy which can be seen as multiple sets of tokens that are extracted from each
compared code fragment. Relying on such strategy makes their tool resilient to Type-III
changes. It also uses some heuristics to speed up the comparison process such as a heuris-
tic that is used to build an inverted index which maps tokens to the blocks of code con-
taining them. They also show that their tool can scale to up to 250MLOC on a standard
workstation.

Hummel et al. [Hummel et al., 2010] proposed a new token-based clone detection tech-
nique that they called index-based code clone detection as their technique also relies on
indexes. Their technique is composed of three main steps. The first step consists of read-
ing the source code and splitting into a set of tokens through the use of a lexer. In this step,
a normalization is also performed on each token in order to remove comment or variable
names. All tokens are then regrouped into statements which are the output of this first
step. Secondly, a clone index is built, which contains information for each sequence such
as: filename, a hash of the sequence and the position of the original code for the state-
ment. Then, each statement is split into chunks of all possible sizes and added to the clone

18 CHAPTER 2. BACKGROUND

index. All chunks’ hashes are then compared to each other starting with the larger chunks
to smaller ones if the largers didn’t match. As a last step, all identified duplicates are then
mapped to their original source code through the use of the clone index and returned as a
result.

Tree-based approaches

In this approach, the source code is converted into a parse tree or an abstract syntax
tree (AST) through the use of a parser that has to be specific to the source code’s language.
Such parse tree or AST contains all required information from the source code. However,
functions, variable names and types extracted from the source code can be discarded in the
tree representation. Such representation also helps to apply more advanced normalisation
techniques that can be specific to either functions, variables or types. After the parse tree
or AST is built and normalised, similar subtrees are then searched in the tree through the
use of tree matching techniques. The initial source code corresponding to the matching
subtrees is then returned as a clone pair.

Baxter et al.’s CloneDR [Baxter et al., 1998] AST-based clone detection tool is one of the
pioneers in the AST-based clone detection approaches. The tool starts by generating an
abstract syntax tree and compares all its sub-trees through a tree matching technique that
uses metrics that are based on a hash function. The hash function helps the tool to de-
tect clones from code fragments which had some of their statements that were reordered.
Then, the source code corresponding to similar sub-trees is returned as clones.

A variant of CloneDR is ccdiml proposed by Bauhaus research project [Raza et al., 2006].
Ccdiml is a bit different as it avoids the use of the similarity metric, sequences handling and
hashing. Also, contrary to CloneDR, ccdiml isn’t able to work concurrently and check for
consistent renaming. Ccdiml also represents the source code as an intermediate language
rather than an AST during the comparison phase as CloneDR does.

Yang [Yang, 1991] proposes an approach to find syntactic differences between two ver-
sions of a same program through the generation of a variant parse tree for both program
versions and then applies dynamic programming to identify similar sub-trees. Wahler et
al. [Wahler et al., 2004] proposes a technique for finding exact and parameterized clones.
To do so, they choose to further abstract the AST by converting it to an XML representation.
They then apply the frequent item-set technique [Han et al., 2011] on the XML representa-
tion to identify clones.

Gitchell and Tran [Gitchell and Tran, 1999] propose a tree-based detection tool using
parse trees. Their tool focuses on clone detection in C programs. It uses a lexical analyser
to convert C source code to parse trees. The tool then views the two parse trees as simple
strings and looks for the maximal common sub-sequence of tokens. The corresponding
source code to the duplicate sub-sequence is then returned as a result.

2.1. CONTEXT 19

Metrics-based approaches

Another approach to detect duplicates in source code is the use of a metric-based ap-
proach. In this approach, detection tools rely on metrics gathered from code fragments
and compare vectors of such metrics rather than comparing the code directly. Several
clone detection tools use this approach. They all start by computing a set of metrics
through the use of fingerprinting functions. These fingerprinting functions are applied
on classes, functions, methods or statements and the resulting vectors of metrics are then
compared to identify clones. Generally, in order to compute the metrics, tools start by first
converting the source code to an abstract syntax tree, and then apply fingerprinting func-
tions on it.

[Mayrand et al., 1996] propose a tool that computes several metrics such as: number of
lines of code, number of function calls, etc. for each function in the analysed program. The
tool used an intermediate representation language to represent the source code. The tool
defines clones as pairs of functions who have their whole body that has similar metrics.

[Kontogiannis et al., 1996] propose two ways to identify code clones. Both methods
rely on an abstract syntax tree constructed from the source code. Once the tree is built,
the tools use it to compute metrics that are later annotated in the AST’s nodes. Then, the
metrics are extracted from the AST to construct a reference table composed of source code
entities sorted by their metrics. This reference is then used to identify clones. In the first
method, metrics generated from blocks of instructions are directly compared to each other.
They use the assumption that two code fragments are similar if their corresponding met-
rics are proximate. In the second method, they use a dynamic programming technique
to compare blocks of instructions in a statement-by-statement basis. They compute the
distance between blocks of instructions as being the smallest sequence of insert, edit and
delete steps required to transform one block to the other one.

[Di Lucca et al., 2001] apply a metrics-based approach to identify similar HTML pages
through the use of a distance function to compare items in web pages. Their tool first starts
by computing a string representation for each HTML web page where each HTML element
was replaced with a symbol taken from a set of alphabets. They then apply the Leven-
shtein distance on pairs of strings to identify similar web pages. [Lanubile and Mallardo,
2003] propose a semi-automated technique to detect function clones in source code. Their
technique was a two-step process where first an automated process is applied to detect
potential function clones. Then a manual visual inspection is applied to classify suspected
clones.

PDG-based approaches

In a Program Dependency Graph based approach, the source code is transformed into
a higher abstraction compared to the previous approaches since this approach takes into
account the semantic information that is available in the source code, since the Program

20 CHAPTER 2. BACKGROUND

Dependency Graph (PDG) contains control flow and data flow information from the source
code. In such a graph, the nodes represent statements while vertices represent the depen-
dencies between the data and control structures. Therefore, such a graph also carries se-
mantic information about the analysed program that can be used to better identify clones.
In this approach, an isomorphic sub-graph matching algorithm is applied to identify sim-
ilar sub-graphs which are return as clones. While PDG-based techniques are robust to re-
ordered statements, insertions and deletions of code they’re however not scalable to large
size programs.

A well known PDG-based clone detection tool is PDG-DUP by Komondoor et
al. [Komondoor and Horwitz, 2001]. Their tool uses a program slicing technique to identify
isomorphic PDG sub-graphs. Krinke [Krinke, 2001] proposes an iterative approach to iden-
tify maximal similar PDG sub-graphs. Another PDG-based tool called GPLAG [Liu et al.,
2006a] was proposed for plagiarism detection. Gabel et al. [Gabel et al., 2008] proposed
a PDG-based clone detection that is scalable. To do so, they propose a technique where
they reduce the difficulty of graph similarity to a tree similarity comparison by mapping
selected PDG sub-graphs to their related structured syntax.

Hybrid-based approaches

In this section, we discuss clone detection approaches that use hybrid approaches
which could be classified in the categories we’ve seen earlier but are different enough to
have their own category.

[Koschke et al., 2006] proposed a technique where the AST nodes are serialized in pre-
order traversal. Then, a suffix tree is created for these serialized AST nodes and their ap-
proach then compares the tokens of the AST nodes using a suffix tree-based algorithm to
identify clones making their approach linear in time and space. Another clone detection
technique was used for Microsoft’s Phoenix Framework using abstract syntax trees and suf-
fix trees that can find exact and parameterized clones [Tairas and Gray, 2006]. AST nodes
were used to generate a suffix tree which can be performed in linear time and space as
we’ve just seen [Koschke et al., 2006].

[Jiang et al., 2007] proposed a clone detection tool called DECKARD that is used to iden-
tify similar trees. They compute characteristic vectors to approximate the structural infor-
mation within ASTs in the Euclidean space. They then apply a locality sensitive hashing
to cluster similar vectors based on their Euclidean distance and therefore identify code
clones.

[Cordy and Roy, 2011] proposed a hybrid scalable clone detection tool called NiCad.
Their tool uses a mix between a string-based and metrics-based approach where their tool
first starts by parsing the source code into a textual form which is then normalized. Later,
they apply a longest common sub-sequence algorithm to compare the source code in a
line-by-line basis and identify code clones.

2.2. EMPIRICAL RESEARCH ON CLONES IN SOFTWARE ARTIFACTS BEYOND CODE 21

Learning-based approaches

In this section, we discuss clone detection approaches that rely on neural networks and
deep learning techniques and cannot be considered as hybrid approaches.

[Davey et al., 1995] proposed a neural network-based clone detection tool. Their tool
started by converting the source code to vectors where two vectors corresponding to very
similar fragments have to have heir distance in the Euclidean space as small as possible.
Then, they provide their input vectors to an unsupervised neural network that is able to
cluster the vectors and therefore determine to which class the pair of vectors belongs to
(i.e. Type-1, Type-II or Type-III).

[White et al., 2016b] used a learning-based detection technique which relies on deep
learning to detect code duplicates. They found that their approach detected duplicates
that where sub-optimally detected by traditional techniques.

[Li et al., 2017a] proposed a token-based detection tool called CCleaner that leverages
deep learning techniques to identify code clones. Their tool receives as input a pair of code
fragments that are then split into token using the ANTLR lexer. Then, the tool computes a
list of token frequency for each token. This frequency list and list of tokens will then be fed
to an already trained deep-learning model to determine whether the two initial fragments
are code clones or not.

Summary

As we’ve seen in this section, there isn’t a single technique to identify code clones. Each
technique has its advantages and drawbacks. Some tools try to mix techniques to have
advantages from both worlds. In this thesis, we use a token-based detection approach
on all discussed studies. This technique fits well with our research as both Javadoc/-
Yard documentation and Dockerfiles are structured in a way that can easily be split
into tokens. In particular, since we only focus on Type-I duplicates (i.e. perfect du-
plicates), we chose to use the index-based clone detection technique [Hummel et al.,
2010] which is a token-based clone detection technique as we’ve described earlier.

2.2 Empirical research on clones in software artifacts
beyond code

In this section, we present different empirical studies and tools regarding the existence
of clones outside the source code, more particularly, clones in non-code software artifacts.
We chose to split this section into four main subsections: requirement specifications, mod-
eling languages, build files and other artifacts.

22 CHAPTER 2. BACKGROUND

Requirement specifications

[Domann et al., 2009] perform an empirical study on requirement specification clones.
In their study, they analysed 11 real-world requirement specifications with more than 2,500
pages. To do so, they chose to rely on an already existing text-based clone detection tool
that they adapted for their needs. Through their study, they aim at answering three main
research questions. First, they wanted to know if real-world requirement specifications are
actually facing clones. After applying their tool they show that indeed requirement specifi-
cations are facing clones, however, projects face it at different degrees. While two projects
didn’t face any clones, other faced up to two thirds of duplicate content. However, they
didn’t find any correlation between the size of the requirement specification file and the
number of clones. Secondly, they wanted to see if the identified clones weren’t false pos-
itives. They therefore manually analyse identified clones and find an average precision of
87%. Finally, they apply a qualitative analysis to understand what kind of information are
cloned in requirement specifications. They manually analyse a sample of detected specifi-
cation clones and classify them. They identify three categories: long clones, clone groups
of high cardinality (high occurrence), and other patterns.

[Juergens et al., 2010] also perform an empirical study on requirement specifications
clones from a quality assurance standpoint. In their study, they analyse 28 requirement
specifications with more than 8,667 pages. They choose to rely on an existing token-based
clone detection tool called CloneDetective based on ConQAT tool [Juergens et al., 2009a]
contrary to [Domann et al., 2009] with their text-based tool. In this study, they aim at an-
swering at four main research questions. First, just as [Domann et al., 2009], they try to
determine how much clones requirement specifications face in real-life. They find that
clones are frequent in their corpus with clone pairs being more frequent than clone groups
(a group of three identical duplicates or more). Secondly, they investigate which kind of
information is cloned in requirement specifications. After a manual analysis, they identify
12 different categories, the most frequent ones being: Detailed steps, Reference, UI and
Domain knowledge. Thirdly, they investigate the consequences for requirement specifica-
tion cloning through three perspectives: (1) specification reading, (2) specification mod-
ification and (3) specification implementation. For instance, in (1) they find that cloning
makes reading harder as the size of the specification file increases. Finally, they investigate
whether clones can be correctly identified with existing clone detection tools. They identify
cases where duplicates are falsely considered as clones and categorize them: Document
meta-data, indexes, page decoration, open issues and specification template information.

Modeling Languages

[Liu et al., 2006b] propose a suffix-tree based approach to detect duplicates in Uni-
fied Modeling Language (UML) sequence diagram. Their tool automatically arranges all
elements of the sequence diagram into an array. They then concatenate all generated

2.2. EMPIRICAL RESEARCH ON CLONES IN SOFTWARE ARTIFACTS BEYOND CODE 23

arrays for every diagram that is analysed into one large array that is turned into a suffix
tree. They then apply an algorithm that detects common prefixes of suffixes to identify
diagram clones. They later apply their approach on two industrial projects and find that
both projects face diagram duplicates. They then provide the identified duplicates to the
maintainers and find out that maintainers also consider them as duplicates and applied
refactoring techniques to remove them.

[Antony et al., 2013; Alalfi et al., 2018] propose another automated approach to identify
duplicates in UML sequence diagrams. To identify duplicates, they chose to use an already
existing tool that we’ve discussed earlier called NiCad developed by [Cordy and Roy, 2011].
As NiCad better identifies duplicates when analysing languages with a nesting structure, in
order to detect duplicates, they had to transform the original representation of sequence
diagrams which is in XMI and didn’t have a nesting structure. Then, as sequence diagrams
can be large, in order to detect smaller clones, they chose to break sequences into smaller
windows to identify smaller clones. They then apply their approach on the problem of
identifying access-control security vulnerability in models of interaction with web appli-
cations. They then compare their tool with state-of-the-art model-checking tools and find
an increased precision and recall.

[Störrle, 2013] also explores duplicates in UML models and implement algorithms and
heuristics for detecting duplicates with the MQlone tool. They first start by proposing a
definition for model clones. They chose a similar categorization to the generally accepted
definition for code clones [Bellon et al., 2007a]. They define four types: Exact model clones
(Type-A), Modifier model clones (Type-B), Renamed model clones (Type-C) and Semantic
model clones (Type-D). Their tool MQlone, relies on a set of heuristics to identify simi-
lar diagrams. They chose to focus on UML nodes as they noticed that UML diagrams are
loosely connected graphs of heavy nodes. They then applied their tool on 7,181 model el-
ements gathered from a sample project. They used different heuristics configurations and
identified the optimized configuration for their tool. They also find that their heuristics are
enough fast to be practical on medium sized models. They later expect to perform more
experiment on larger models to derive reliable conclusions.

[Nejati et al., 2007] proposed an approach for matching and merging UML statecharts
models. Statecharts are a design and implementation language for specifying dynamic be-
havior of software systems. In order to match similar Statecharts, their tool uses a hybrid
approach combining static matching and behavioral matching. For static matching, they
use typographic and linguistic similarities between state names, and similarities between
state depths in the model’s hierarchy tree. For behavioral matching, they compute simi-
larity between states using their behavioral semantics. They then evaluate their tool with
statechart models describing different telecom features at AT&T, and find that their hy-
brid approach produces higher precision than relying only on static or behavioral match-
ing. They however expect to perform more evaluations in the future to validate their tool’s
practicality.

24 CHAPTER 2. BACKGROUND

[Deissenboeck et al., 2008a] propose and automated approach for the detection of
clones in large control system models. Their approach relies on graph theory which makes
it easily applicable to any graph-based models such as graphical data-flow languages such
as in Figure 2.7 presenting an example of a PI-controller model. As the problem of find-
ing the largest clone pair in a graph is NP-complete, their approach relies on a heuristic to
find clones. They then perform a case study on their approach by applying it to models
provided by MAN Nutzfahrzeuge Group. The provided model was composed of more than
20,000 blocks distributed over 71 files. They then identify 166 clones with a clone going up
to having a 101 size (number of nodes).

Figure 2.7 – Example of a PI-controller model gathered from [Deissenboeck et al., 2008a].

Build files

[McIntosh et al., 2014] performed an empirical analysis on 3,872 build systems looking
for clones. They chose to rely on an existing line-based clone detection tool called Con-
QAT [Deissenboeck et al., 2008b]. In this study, they perform a quantitative and qualitative
empirical research. They first quantitatively answer three research questions, and then
qualitatively answer two research questions. First, they investigate if clones in build sys-
tems are common. They find that while identified clones tend to be small, they’re more
frequent in Java build files with nearly 50% being cloned compared to other software ar-
tifacts. Secondly, they investigate if the technology that is used influences clones in build
systems. They find that for Java projects, clones are more frequent if the project uses Maven
rather than Ant. For C/C++ projects, clones are more frequent in build files when using
CMake rather then autotools. Thirdly, they investigate if benchmark-derived thresholds
vary depending on the build technology. They find that thresholds vary more for Java
build systems with low amounts of clones, and Cmake/autotools and Maven/Ant with
high amounts of clones. They then investigate their two qualitative research questions.

2.2. EMPIRICAL RESEARCH ON CLONES IN SOFTWARE ARTIFACTS BEYOND CODE 25

They first start with an investigation regarding the type of information that is cloned in
build systems. They find that configuration details are usually more cloned in Maven and
CMake build technologies. Finally, they investigate how build systems with a low number
of clones manage to do it. They find that Java build clones could by avoided if the underly-
ing XML representation would be exploited. For C/C++ projects, clones could be avoided
by automatically duplicating templates during build.

[Sharma et al., 2016] perform an empirical study on Infrastructure as code (IaC) con-
figuration files and propose 11 implementation and 13 design code smells. In this study,
they analyse 4,621 Puppet projects with more than 142,662 Puppet files and investigate
four research questions. One of the smells they investigate is called Duplicate Block which
corresponds to modules having more than 150 tokens that are duplicated. In order to iden-
tify duplicates in their corpus, they relied on the PMD-CPD 1 token-based clone detection
tool. They find out that up to 25% of their analysed projects have code that is duplicated
and that developers of Puppet projects either don’t duplicate code at all or duplicate it in a
massive scale.

Web services

[Martin and Cordy, 2011] proposed a new method for detecting clones in Web Service
Description Language (WSDL) leveraging existing clone detection tools. In their approach,
they first start by introducing a new idea of contextual clones which are clones which have
their original fragment that’s being analysed augmented with related information to add
context to it. To perform their analysis, they leveraged the hybrid-based clone detection
tool called NiCad. They then applied their tool on more than 700 WSDL descriptions
and found that using contextualized fragments to identify clones reduces the number of
detected clones, but identified clones are less likely to be false-positive. They even no-
ticed that with contextualized fragments, their tool managed to identify clones that weren’t
flagged as clones when not using context information.

[Rajapakse and Jarzabek, 2007] performed an empirical study on clones in web appli-
cations. They chose for their study to focus on a single web application that they built
themselves based on requirements from one of their industry partners. They then perform
three implementation iterations where each time they try to further reduce the number of
clones. They did this in order to quantitatively and qualitatively analyse the trade-offs that
web developers would have to take to reduce the number of clones in their web applica-
tions. Through this process, they managed to reduce the code size of their web application
by 78%. To do so, they used the well-known CCFinder token-based clone detection tool
to identify duplicates in PHP templating scripts. Once clones were identified and selected
for editing, they then applied a combination of strategies to reduce them. They used three
strategies as follows: applying design patterns, applying known refactoring techniques and

1. https://pmd.github.io/latest/pmd_userdocs_cpd.html

https://pmd.github.io/latest/pmd_userdocs_cpd.html

26 CHAPTER 2. BACKGROUND

context-specific restructurings. Through their study, they showed that the trade-offs devel-
opers have to face in order to reduce the number of duplicates actually reduces their ability
to remove duplicates and thus shed some light on why clones persist in software.

[Di Lucca et al., 2001] propose an approach for detecting clones in HTML pages which
relies on existing clone detection approaches. Their tool identifies duplicate HTML frag-
ments by computing a Levenstein distance similarity metric between fragments. They then
perform a case study of their tool on an industry Web application composed of 201 HTML
files and identify 46 couples of perfect clones.

[Charpentier et al., 2016] propose an approach for detecting clones in Cascading Style
Sheets (CSS) files and automatically remove them. Their tool relies on Formal Concept
Analysis techniques to identify duplicate CSS code and extract mixins. They then perform
an experiment on 108 CSS files extracted from real projects and find that their tool has good
performance results. They later perform conduct several case studies and demonstrate
that their tool helped developers identify and avoid duplicates through the automatic use
of mixins.

Other artifacts

In this subsection, we discuss literature research on clones on a larger set of artifacts
related to software such as: cloned bug reports on tracking systems, cloned questions on
developer forums, clones on binary executables and spreadsheets.

[Sun et al., 2011] propose a retrieval function to measure the similarity between bug
reports using all available information in the bug tracking system such as: the summary,
description, product, component, version, etc. To do so, they extend the BM25F similarity
model [Pérez-Agüera et al., 2010] which is known in the information retrieval community
in order to better fit the duplicate bug report detection. They then apply their tool on four
different bug tracking systems and find that their tool is able to better identify duplicate
bug reports than existing tools (i.e. [Sureka and Jalote, 2010; Sun et al., 2010]).

Similar to [Sun et al., 2011] research work, another duplicate bug report approach was
proposed by [Zhou and Zhang, 2012]. In their research, they propose an tool called BugSim
based on learning to rank techniques. They consider existing bug reports as documents to
be searched and new bug reports as a query to search an existing document. They then
rank the query results to identify if the new bug report isn’t actually a duplicate. To do
so, they identify 9 features based on bug summary and bug description just as what we’ve
previously seen. Finally, they evaluate their model on more than 45,000 real bug reports
and show that their tool outperforms previous state-of-the-art approaches including [Sun
et al., 2011] approach.

[Li et al., 2017b] propose a tool to automatically identify similar pull-requests in
Github 2. In their work, they rely on Natural Language Processing (NLP) techniques (i.e.

2. https://github.com/

https://github.com/

2.2. EMPIRICAL RESEARCH ON CLONES IN SOFTWARE ARTIFACTS BEYOND CODE 27

Cosine similarity) to identify textual similarity between two pull-requests. To do so, they
mainly use the information extracted from the pull-request title and description, they
therefore don’t look at the source code attached to the pull-request. They then perform
a case study on three well-known Github projects and find that their technique can find
about 55.3% to 71.0% of the duplicates.

[Ahasanuzzaman et al., 2016] perform an empirical study on duplicate questions in the
popular question and answer site StackOverflow 3. In their study, they aim at applying ma-
chine learning techniques to automate the process of duplicate questions identification.
They investigate three main research questions. First, they investigate why developers re-
sort to ask duplicate questions. To do so, they took a sample of 600 duplicate questions
and manually analysed them. As a result, they found multiple potential reasons being: not
searching on Stackoverflow first, titles do not match, domain differences, difficult to com-
prehend, too concise to understand, lack of knowledge, lack of terminology. Secondly, they
investigate the possibility of building a tool that could automate the detection of duplicate
questions. To do so, they chose to train a logistic regression model on a corpus composed
of 130,000 duplicate questions provided by StackOverflow. For the training, they tried dif-
ferent sets of features and selected the best ones. Finally, they evaluated their tool and
found that their tool outperforms all existing tools.

[Sæbjørnsen et al., 2009] propose an algorithm for binary executables clone detection.
Their tool follows a tree similarity framework, it models the structural information of in-
struction sequences into numerical vectors and groups similar vectors in order to identify
clones. They also perform a large scale study on their tool using the disassembled Windows
XP system executables and libraries and find large numbers of clones.

[Hermans et al., 2013] perform an empirical study on clones in spreadsheets. For their
study they perform a quantitative evaluation in which they analyze the EUSES corpus
and a qualitative evaluation composed of two case studies. For their study, they define
clones as being data clones which are formula results that are copied as data in other parts
of a spreadsheet. They then develop a data clone detection algorithm based on existing
text-based clone detection techniques. They then investigate three research questions.
First, they investigate if data clones are frequent. To do so, they apply their tool on their
corpus and find that data clones are actually common in spreadsheets. Secondly, they
investigate the impact of data clones and learn that clones have impact on the awareness
of users as they don’t necessarily know that that data was actually copied from another
place. Finally, they investigate if their approach helps users and find that their technique
had helped users identify data that was duplicated and they weren’t aware of.

Summary

3. https://stackoverflow.com/

https://stackoverflow.com/

28 CHAPTER 2. BACKGROUND

In this section, we have seen that clones can actually exist outside source code. In
particular, we’ve seen that they are quite frequent in software artifacts such as UML
models, build files and even spreadsheets. In this thesis, we investigate the existence
of duplicates in two types of software artifacts: API documentation and Dockerfiles.
To the best of our knowledge, both of these artifacts weren’t previously studied in the
literature.

2.3 Clone management

In contrast with code clone detection, the field of clone management activities (i.e.
techniques and tools for managing code clones) hasn’t gained as much attention [Roy et al.,
2014]. In this section, we present different approaches that have been undertaken in the
literature to manage clones during their lifetime.

In 1996, Mayrand et al. [Mayrand, 1996; Lague et al., 1997] proposed to split clone man-
agement activities into two main categories: problem mining and preventive control. They
define problem mining as the activity that aims at coping with the existing base of clones
in a software that’s already in service. Through this they aim at always keeping clones with
a common context up-to-date across changes. Also, they define preventive control as the
activity of controlling the introduction of new clones meaning that a new clone would be
introduced in a software system only if good reasons indicate that it’s necessary.

[Giesecke, 2007] suggest a new possibility to integrate clone management into the soft-
ware development process. Based on Mayrand et al.’s work [Mayrand, 1996; Lague et al.,
1997], they propose three new categories similar to Swanson’s [Swanson, 1976] mainte-
nance categories for clone management activities:

— Corrective clone management: activity consisting of removing existing clones from
the source code.

— Preventive clone management: activity consisting of avoiding the introduction of
clones into the source code.

— Compensatory clone management: activity consisting of avoiding negative conse-
quences of existing clones in the source code.

[Zhang et al., 2013] proposed a preventive clone management approach that is con-
textual and on-demand called CCEvents (Code Cloning Events). In their approach, they
propose timely notifications regarding specific code cloning events based on continuous
monitoring of code repositories. In order to provide such notifications, they built a code
cloning domain model capturing the introduction and evolution of code clones. Their do-
main model was also capturing various clone context information such as: the time when
a code clone is introduced or modified, entities in which a code clone resides and the de-
veloper who introduced or modified the code clone. They then defined a domain-specific
language called CCEML allowing users to define their own on-demand clone monitoring

2.3. CLONE MANAGEMENT 29

strategies. They then evaluate their tool and show that such approach is actually effective
for helping ease code clones management.

[Duala-Ekoko and Robillard, 2007, 2008] propose a compensatory clone management
approach through an Eclipse plug-in called CloneTracker that provides developer support
for tracking code clones. Their tool relies on clone region descriptors (CRD) describing
a clone region based on a combination of syntactic, structural and lexical information.
CloneTracker takes as input the output of a traditional code clone detection tool. Based
on that input, the tool automatically generate CRDs for each clone region representing a
clone group. Clones are then automatically tracked, and developers are automatically noti-
fied whenever a clone is facing a code change. The tool also provides mechanisms to apply
simultaneous code changes in cloned regions. CloneTracker even provides developers the
possibility to share their project’s clone model with their collaborators.

[Kawaguchi et al., 2009] proposed a preventive clone management tool for automatic
clone detection and management in the IDE called SHINOBI. They implemented their tool
as an add-on to Microsoft Visual Studio IDE. Contrary to CloneTracker, their tool doesn’t
need to re-run code clone detection to detect newly created code clones. SHINOBI auto-
matically and quickly detect code clones when the source code is being edited. Whenever
a developer makes a code fragment copy, the tool automatically detects the event and no-
tifies the developers of all duplicate code fragments in the source code, making it possible
for developers to handle the clone issues early on during the development process. Also,
whenever the developer applies modifications to a code fragment, the tool automatically
notifies the developers of similar code fragments that should also have the changes applied
on.

[Synytskyy et al., 2003] proposed a corrective clone management technique to auto-
matically identify and reduce the number of clones in HTML pages. Through their ap-
proach, they aim at automatically using existing reuse mechanisms to reduce the num-
ber of existing clones. To do so, after the tool identifies HTML clones, it will automati-
cally choose a reuse technique from four main techniques. The first is server-side includes
which is a functionality provided by the server rather than the HTML language. Such tech-
nique can be used to reduce any detect clone. Another technique is executable sub-routines
which rely on reuse mechanisms provided in the server-side language such as Java. This
technique is similar to the previous one, however, in the first one, clones had to be in a
separate file to be included while with this method they can be in a single file. Another
technique is external script files which relies on the include mechanism existing in the
Javascript language to reuse clones written in Javascript. The last technique they propose
is the use of resolution methods provided by the server-side includes to reduce all clones.

[Jablonski and Hou, 2007] proposed a compensatory clone management tool that
tracks copy-paste clones and automatically infers rules capturing the programmer’s in-
tentions. They proposed their tool called CReN as an Eclipse plug-in working with Java
projects. Using the abstract syntax tree (AST) API provided by Eclipse, the tool automat-
ically starts observing project’s activity. The tool relies on the AST because it allows it to

30 CHAPTER 2. BACKGROUND

automatically establish relationships of the copy-pasted code and infer knowledge for con-
sistent renaming. As CReN automatically tracks new clones when copy-paste operations
are happening the tool doesn’t require to perform any code clone detection. The tool keeps
track of all created clones and whenever a new update on a code clone is performed, the
update can be automatically propagated to all instances of the clone. CReN also uses high-
lights on the user interface to let developers visualize when a code fragment is duplicated
and even provide an interface to manage clones on the IDE.

[Nguyen et al., 2011] proposed a compensatory clone management tool called JSync.
Their tool aims at helping manage code clones for Java projects. It is implemented as an
Eclipse plug-in and it uses an SVN version control repository in order to store its data on
clones and access source code files with their changes. The JSync tool has three purposes:
it helps developers be more aware about the existence of cloned code in their projects, it
prevents defects due to inconsistent changes, and it helps developers propagate changes
across code clones. The tool is divided into two main modules: Clone Relation Manage-
ment (CRM) which is responsible for managing code clones and groups of code clones,
and Clone Consistency Management (CCM) which is responsible for the management of
code clones such as maintaining consistency across groups of clones. JSync just as CReN,
relies on AST to represent the project’s source code. The tool represents code changes
as a sequence of tree edit operations (addition, modification, deletion of a tree node).
They also evaluate their tool on Bellon’s clone benchmark [Bellon et al., 2007b] and several
open-source project and find that their tool is scalable and efficient.

Summary

In this section, we have seen that the clone management research field lacks re-
searcher’s attention compared to the clone detection field. While a number of studies
tried to provide solutions for managing clones in source code, the field lacks research
on clone management for other software artifacts. In this thesis, we chose to investi-
gate the different clone management approaches that exist for two types of software
artifacts: API documentation and Dockerfiles. To the best of our knowledge, both of
these artifacts’ clone management practices weren’t previously studied in the litera-
ture.

2.4 Summary

In this background chapter, we’ve seen that there’s a large set of research studies on
clones in software engineering ranging from clone definitions to clone management. As a
summary, we list the three main lessons we’ve learned from this chapter in order to answer
our research questions:

2.4. SUMMARY 31

— In our first research question, we aim at determining if clones exist in two types of
software artifacts: API documentations and Dockerfiles. We’ve seen in this chapter
that there exists a large number of clone detection approaches. Some approaches
can be tied to the source code language such as tree-based approaches, while others
such as text-based approaches are totally independent from the type of artifact that
is analysed. In this thesis, we chose to rely on a token-based approach to answer our
first research question, as both API documentation and Dockerfiles can be seen as a
set of tokens and token-based detection techniques can easily handle different types
of languages..

— In our second research question, we aim at identifying the different causes for clones
in the software artifacts we’re analysing. We’ve seen in this chapter that there exist a
number of empirical studies on clones on software artifacts such as UML models and
web services. However, to the best of our knowledge no empirical study has tried to
investigate the underlying reasons for clones in API documentation and Dockerfiles.

— In our third research question, we aim at identifying the different approaches that are
used by developers to avoid clones in their software artifacts. We’ve seen in this chap-
ter that clone management activities can be split into three categories: corrective,
preventive and compensatory. While some research work has been done on preven-
tive clone management approaches, to the best of our knowledge, no research study
has been done on preventive clone management approaches for API documentation
and Dockerfiles.

CHAPTER

3
Duplicates in API documentation

Code documentation is a crucial part of software development. However, studies have
shown that such documentation is rarely up-to-date with the code and is perceived
as very expensive to maintain. In this chapter we investigate the issue of duplicates
in API documentation and show that it is actually frequent. We perform a survey of
39 developers and show that they’re aware of these issues and are lacking solutions to
solve them. Finally, we show that out of 19 documentation tools, only one tool could
help at easily solve most duplicate issues that we’ve found in our study.

Contents
3.1 Introduction . 34

3.2 Background . 35

3.3 Data collection . 37

3.4 Contributions . 41

3.5 Threats to validity . 52

3.6 Conclusion . 53

33

34 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

3.1 Introduction

As previously stated in Chapter 1, API documentation plays a crucial role in soft-
ware development as it helps developers understand someone else’s code without reading
it [Lakhotia, 1993; Vanter, 2002]. It is even more critical in the context of APIs, where the
code is developed with the main intent to be used by other developers (the users of the
API), who don’t want to read the code [Parnas, 1972; Kramer, 1999; Monperrus et al., 2012].
In this context, having a high quality reference documentation is critical [Dagenais and
Robillard, 2010].

Further, it has been shown that the documentation has to be close to the correspond-
ing code that it describes [Forward and Lethbridge, 2002; Lethbridge et al., 2003; Fluri et al.,
2007], and that developers prefer to write the documentation directly in comments within
the code files rather than in external artifacts [de Souza et al., 2005]. Popular documenta-
tion tools, such as JavaDoc, Yard or Doxygen, all share the same principle which is to parse
source code files to extract tags from documentation comments and to generate readable
web pages [Pollack, 2000; Van Heesch, 2004].

Writing documentation and code are highly coupled tasks. Ideally, developers should
write and update the documentation together with the code. However, it has been shown
that the documentation is rarely up-to-date with the code [Forward and Lethbridge, 2002;
Lethbridge et al., 2003; Fluri et al., 2007] and is perceived as very expensive to maintain [Da-
genais and Robillard, 2010; Correia et al., 2009].

We think that one possible reason for this maintenance burden is that documentation
tools lack reuse mechanisms whereas there are plenty of such mechanisms in program-
ming languages. Developers that write documentation therefore copy- paste many doc-
umentation fragments, which is suspected to increase the maintenance effort [Juergens
et al., 2009c].

In this chapter, we investigate our hypothesis by answering the following research
questions:

— RQ1: Do developers often resort to copy-paste documentation tags?

— RQ2: What are the causes of documentation tags copy-paste?

— RQ3: Could duplicate documentation be avoided by a proper usage of documenta-
tion tools

This chapter is organized as follows: Section 3.2 presents a background regarding API
documentation. Section 3.3 presents the 100 repositories (50 for the Java language, 50
for the Ruby language) composing our corpus, our survey methodology and duplicates
detection technique. Section 3.4 presents the methodology and results for our three re-
search questions. Section 3.5 presents the threats to validity regarding our experiments.
Finally, Section 3.6 concludes this chapter.

3.2. BACKGROUND 35

3.2 Background

Regardless of the programming language, when writing documentation in the source
code, the documentation is always written as a set of in-line comments (single line) or
blocks (spanning across multiple lines) of comments. Such comments are usually placed
just before the code element they refer to. Listing 3.1 depicts an extract of such block of
comments from the RbNaCL open-source project (A ruby cryptography library). In this
extract, the developer describes the main purpose, inputs and outputs of the method.

LISTING 3.1 – Example of a block of comments describing a method from the Apache Com-
mons IO project.

1 # Use a secret key to create a SimpleBox
2 #
3 # This is a convenience method. It takes a secret key and

instantiates a
4 # SecretBox under the hood , then returns the new SimpleBox.
5 #
6 # @param secret_key [String] The secret key , 32 bytes long.
7 #
8 # @return [SimpleBox] Ready for use
9 def self.from_secret_key(secret_key)

10 new(SecretBox.new(secret_key))
11 end

In order to help developers maintain such documentation, a plethora of documenta-
tion tools such as Javadoc (Java), Yard (Ruby) and Doxygen (C, C++, Python, PHP, Java)
have been built. Such documentation tools are used to automatically parse the source code
looking for documentation comments in order to construct a readable documentation that
will exported as an artefact, such as a PDF or a web-site [Pollack, 2000; Van Heesch, 2004].
For instance, the generated documentation for Listing 3.1 using the Yard documentation
tool is shown in Figure 3.1.

In order to generate a well-formatted API documentation, documentation tools provide
additional constructs that are used in code comments. For instance, they divide the block
of comments into two sections: a main description at the beginning, followed by what is
called a tags section. The main description is used to describe the element that we want
to document (e.g. a method, a class, an attribute). The tags section on the other hand, is
composed of zero to as many tags as we want. Tags are used to enrich the documentation
with specific information, such as a description of each input parameter of a method for
instance. Such description is directly placed after the tag itself. Tags are easily recognizable
as they often start with a @ sign (e.g. @author, @param, @return...). There exist around 20

36 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

Figure 3.1 – The generated documentation by Yard for the from_secret_key method from
the RbNaCL project.

documentation tags for the Javadoc tool 1 for instance. The @param tag for example, lets
the documentation tool know that the following line describes a method’s parameter.

Just as for comments where we can have in-line and block comments, there are two
main types of tags: in-line and block tags. Block tags (such as @param, @return) must al-
ways appear at the beginning of a line. They are always followed by a description sentence
that is used in the documentation. An in-line tag is always enclosed by curly braces (i.e.
{@tag}), contrary to block tags, such tag can appear anywhere in a sentence whether in the
main description or in the description of a block tag (see Listing 3.3).

LISTING 3.2 – Example of a block of comments describing a method from the Apache Com-
mons IO project.

1 /**
2 * Invokes the delegate ’s <code >skip(long)</code > method.
3 *
4 * @param ln the number of bytes to skip
5 * @return the number of bytes to skipped or EOF if the end

of stream
6 * @throws IOException if an I/O error occurs
7 */
8 public long skip(final long ln) throws IOException {
9 try {

10 return in.skip(ln);
11 } catch (final IOException e) {
12 handleIOException(e);
13 return 0;

1. https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

https://docs.oracle.com/javase/8/docs/technotes/tools/windows/javadoc.html

3.3. DATA COLLECTION 37

14 }
15 }

Listing 3.2 is an extract from the Apache commons IO project using the Javadoc docu-
mentation tool. We can see that the method is preceded with a block of comments, which
is divided in two sections: a single sentence as a main description, followed by three tags
in the tags section. The first tag is @param that defines the input parameters of a method.
We can see that it presents two information: the name of the input (i.e. In) and its de-
scription. These two information are separated by a single space, where the first word of
the describing sentence will always be the name of the attribute. The second parameter is
@return, it describes the returned value. As there is only one possible return value in Java,
we don’t need to set a name to the return value as for the @param tag. Finally the @throws
(or @exception) presents two types of information: the exception type (here IOException)
and its description.

LISTING 3.3 – Example of a block of comments using an in-line tag from the AssertJ project.

1 /**
2 * Check that the {@link ZonedDateTime} to compare actual

{@link ZonedDateTime} to is not null , otherwise throws a
{@link IllegalArgumentException} with an explicit message

3 *
4 * @param dateTime the {@link ZonedDateTime} to check
5 * @throws IllegalArgumentException with an explicit message

if the given {@link ZonedDateTime} is null
6 */
7 private static void

assertDateTimeParameterIsNotNull(ZonedDateTime dateTime)
{

8 checkArgument(dateTime != null ,
NULL_DATE_TIME_PARAMETER_MESSAGE);

9 }

Listing 3.3 is an extract from the AssertJ project. We can see that the in-line tag @link
has been used. Such tag is used to automatically insert a link pointing to the right docu-
mentation. For instance, in our extract, the {@link ZonedDateTime} will automatically be
replaced by a link to the class’ documentation when the documentation is generated.

3.3 Data collection

In this section, we present our three main data sources that are used in the remainder
of this study: a list of 100 GitHub repositories, each one corresponding to an open-source
library (50 repositories using the Javadoc tool and 50 using the Yard tool), an on-line survey

38 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

performed on 39 developers who have experience writing code documentation and more
than 41,000 duplicate tags across our repositories.

3.3.1 Repositories

For our study we arbitrarily chose to focus on the API documentation of libraries writ-
ten in two specific programming languages: Java and Ruby. Developers using these two
programming languages usually write their documentation directly in the source code.
They then use documentation tools to generate the corresponding API documentation:
JavaDoc for generating Java documentation and Yard for generating Ruby documentation.

After analysis, we chose to focus only on methods’ documentation, as this is where
there is most of the documentation [Oumaziz et al., 2017]. In the remainder of this study,
we therefore only discuss about the documentation of Java and Ruby methods written in
JavaDoc and Yard. We also just consider the source code used to generate the documenta-
tion displayed on their websites.

For this study, we chose to construct a corpus composed of 100 libraries (50 per pro-
gramming language). We therefore explain the process we followed to select these libraries.
For each language, we go to Github and search for the keyword “library” and specify the
language it is written in as respectively Java and Ruby. We then rank these libraries for
each programming language based on the number of stars they have. Finally, we select the
resulting first 50 libraries as our corpus for each language.

Figure 3.2 depicts the number of classes per project for each programming language
in our corpus. We can see that Java projects are consequently larger compared to ruby
projects with respectively a median at 206 and 29.

Figure 3.3 presents the of the left the number of methods that each project in our corpus
has. It shows how Java projects are larger than Ruby projects. However, while Java projects
happen to be larger, the right figure indicates that they also lack documentation compared
to Ruby projects as more than 75% of Ruby methods have at least 30% of their methods
documented compared to less than 20% of Java methods (we consider a method as be-
ing documented if it has a main description or any documentation tag: @param, @return,
@throws, @raise). We also do note that half of Ruby projects have half of their methods
documented.

Through our analysis, we do notice that out of all existing tags used by documentation
tools, only 4 tags are most frequently used: @description (main drescription of a method),
@param, @return and @throws/@raise for Java and Ruby. Finally, both JavaDoc and Yard
propose a mechanism to reuse a documentation tags across method’s documentations.
For JavaDoc, the in-line tag InheritDoc is used to reuse tags when there is inheritance in
Java. It was used 450 times across 15 projects. On the other hand, Yard proposes a reuse
mechanism “(See #method)” that lets developers reuse any tag from any method’s docu-
mentation existing in the project. This mechanism was used 95 times across 4 projects.

3.3. DATA COLLECTION 39

●

●

0
29

206
250

500

750
800

java ruby

of

 C
la

ss
es

Figure 3.2 – Violin plot for the number of classes of each project in our for corpus (for both
Java and Ruby).

3.3.2 Survey

Our study involves a survey of developers maintaining code documentation to get their
opinions regarding duplicates in code documentation and understand their practices. 2

Therefore, we create a survey composed of two main sections asking questions about 1) du-
plicates and 2) management tools to handle duplicates. We then share this survey across
multiple reddit’s sub-reddit such as: r/ruby, r/learnjava, r/compsci sub-reddits. We also
share this survey across different social medias such as Twitter an LinkedIn. We then man-
age to gather 48 responses for our survey. Out of these 48 responses, 25% (12 out of 48) said
that they always write documentation, 54,2% (26 out of 48) stated that they sometimes
write documentation, while 20,8% (10 out of 48) stated that they never write documenta-
tion. One developer who stated that he never writes documentation, still wanted to con-
tinue the survey, which therefore leaves us with 39 responses for our study. Finally, 56,4%
(22 out of 39) of respondents stated that they use Javadoc as their documentation tool, the
other used documentation tools being: Doxygen, JSDoc and Yard.

2. https://forms.gle/75Z5hpEMb57mNRT59

https://forms.gle/75Z5hpEMb57mNRT59

40 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

●

●

●

●

0

200

400

600

800

java ruby

of

 M
et

ho
ds

●●

0

25

50

75

100

java ruby
%

 o
f d

oc
um

en
te

d
m

et
ho

ds

Figure 3.3 – Left: Violin plot for the number of methods in every project in our corpus.
Right: Violin plot for the percentage of documented methods in every project in our cor-
pus.

3.3.3 Duplicates detection tool

A duplicate documentation tag, is a tag that is duplicated across at least two method’s
documentation as it is the case in Figure 3.4. In this figure, we have an extract from the
Apache Commons IO project, where both methods are sharing a duplicate tag (in red).

We then implement a duplicate tags detector that inputs a set of Java or Ruby reposi-
tories and outputs the so-called duplicate documentation tags. The detector first starts by
parsing all the source files in a repository and identifies all the documentation tags they
contain. If the repository has Java source files, it uses the GumTree tool [Falleri et al., 2014]
to extract all existing documentation tags through the use of the AST (Abstract syntax tree)
generated by gumtree (which let’s us link each tag to its corresponding method). If the
repository has Ruby source files, it uses the Yard library 3 to extract all documentation tags
with their corresponding method. To detect only meaningful duplicates, it only extracts
the most important tags in JavaDoc and Yard (as we’ve seen in Section 3.3.1): @param,
@return, @throws (or @raise for Yard). It also extracts the main description of each method
as if it has a corresponding tag (with an imaginary @description tag). Finally, to avoid miss-
ing duplicates because of meaningless differences in the white-space layout, it cleans the
text contained in the documentation tags by normalizing the white-spaces (replacing tabs

3. https://github.com/lsegal/yard

https://github.com/lsegal/yard

3.4. CONTRIBUTIONS 41

1 /**
2 * Writes a String to the {@link StringBuilder }.
3 *
4 * @param value The value to write
5 */
6 @Override
7 public void write(final String value) {
8 if (value != null) {
9 builder.append(value);

10 }
11 }

1 /**
2 * Writes a portion of a character array to the {@link

StringBuilder }.
3 *
4 * @param value The value to write
5 * @param offset The index of the first character
6 * @param length The number of characters to write
7 */
8 @Override
9 public void write(final char[] value , final int offset ,

final int length) {
10 if (value != null) {
11 builder.append(value , offset , length);
12 }
13 }

Figure 3.4 – Extract of a documentation duplication from the Apache Commons IO project.
The duplicated tag is highlighted in red.

by spaces, removing carriage returns and keeping only one space between two words). For
the same reasons, it also transforms all text contained in documentation tags to lower-case

As a final step, the detector makes comparisons between the hashes of each identified
tags, and checks if they are shared across different methods and returns a list associating
each duplicate tag with the corresponding list of methods owning it. In the remainder of
this study, we call owners the list of methods having an identical tag in common.

3.4 Contributions

In this chapter, we then present the three main contributions of this study:

42 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

3.4.1 RQ1: Do developers often resort to copy-paste documentation
tags?

In this section, we answer our first research question. To investigate if documentation
duplicates are frequent, we simply apply our documentation duplicate detector to our cor-
pus and report statistics about the extracted duplicates.

Methodology

Using the tool we’ve described in Section 3.3.3, we go and look for all duplicated docu-
mentation tags in our repositories (50 per programming language). Using these results, we
then compute several statistics about the characteristics of these identified duplicates and
compare them with the results we gathered from our survey (Section 3.3.2).

Duplicate tags

After applying our detection tool, we’ve found that out of 8,170 tags identified in Ruby
projects, 2,263 of them were duplicates (27,69%). We also found that out of 71,514 tags
identified in Java projects, 33,184 of them were duplicates (46,40%). Figure 3.5 depicts the
percentage of duplicates across each project in our repositories. We notice that more than
75% of Java projects have at least 25% of their documentation that is duplicated, while
75% of Ruby projects have at least 20% of their documentation that is duplicated. This
clearly indicates that independently from the programming language that is used, projects
often face duplicates in their documentation. When asking developers if they have faced
duplicates in the past: 64% (25 out of 39) said that they did, while 23% (9 out of 39) said
they’ve never faced duplicates and 12% (9 out of 39) didn’t know. Also, out of the 25 devel-
opers who have faced duplicates in the past, 16 (64%) stated that they had updated several
identical documentation tags simultaneously to make them co-evolve. They qualify such
co-evolution practices as being mainly annoying and error-prone.

We then take a closer look at the number of owners for a duplicate documentation tag
(i.e. the number of methods sharing a common tag) as depicted in Figure 3.6. We do notice
that both Java and Ruby share a common pattern, for both languages, a large majority of
duplicates has 2 to 4 owners. While duplicates having more than 4 a less frequent, but still
important with 25% of duplicates. This indicates that while tags might be often duplicated,
their spread can be somehow limited. When asking developers: How many times a tag
should be duplicated in order to be detected by a tool?, 84,6% (33 out of 39) said that it
should be the minimum possible number which is 2, 12,8% (5 out of 39) said that it should
be 3 and 2,6% (1 out of 39) said that it should be at least 5 times. These responses match
with our results, with detected duplicates usually spanning across 2 to 4 methods.

We now take a step further and look at how often each kind of tags (@description,
@param, @return, @raise/@throws) is duplicated in every project in our repositories. We

3.4. CONTRIBUTIONS 43

●●

●

●●

●

●0

25

50

75

100

java ruby

%
 o

f d
up

lic
at

ed
 ta

gs
 p

er
 p

ro
je

ct

Figure 3.5 – Violin plot for the percetange of duplicated tags per project (for both Java and
Ruby).

then obtain the results depicted in Figure 3.7. We first notice in the upper-left Violin plot,
representing the percentage of duplicate @description tags, that they’re actually less fre-
quently duplicated compared to the other tags. We also note that the percentage of dupli-
cate @description is quite similar between both Java and Ruby languages, with a mean at
around 6%. Then, in the upper-right figure, we notice that @param are largely duplicated
in Java (mean at nearly 50%) while not so much in Ruby (mean at 0%). The same goes
for the bottom-right figure showing the percentage of duplicate @raise/@throws tags, Java
faces way more duplicates for such tags with a mean at 60%. Next, in the bottom-left figure,
we can see that both Java and Ruby are facing nearly the same duplicates issues with @re-
turn tags, with nearly 50% having more than 40% of their @return tags duplicated. We also
notice that for Java projects, more than 60% of their @throws tags are being duplicated.

Finally, when we ask developers: Would you like your documentation tool to help you
avoid duplicates?, 71,1% (27 out of 38) stated yes, while the 11 developers who responded
no, said so because: they think that such tool isn’t useful, they don’t want another tool, they
don’t use documentation tools.

Summary

Duplicates in documentation are frequent. They usually span across 2 to 4 methods,
but they can also be very large. Developers are frequently facing duplicates in their
documentation. They often have to make them co-evolve, and find such practices as

44 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●

●

●

●

●

●

●●

●

●●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●●●●

●●●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●●

●

●

●

●

●●●●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5

10

15

20

java

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

5

10

15

20

ruby

Figure 3.6 – Left: Violin plot for the number of methods sharing a common tag in Java.
Right: Violin plot for the number of methods sharing a common tag in Ruby.

being annoying and error-prone. Finally, they would love that their documentation
tools can help them avoid such duplicates.

3.4.2 RQ2: What are the causes of documentation tags copy-paste?

In this section, we answer our second research question. We draw at random a subset of
the extracted duplicates and ask two authors to manually determine the underlying reason
for their existence.

Methodology

In order to perform this study, we asked the two authors of this study to manually take
a look at a random sample of 200 duplicates (100 for each programming language). We
chose to limit ourselves to look at only 200 because of time constraints reasons, since for
each duplicate, the authors have to manually inspect the code, identify the purpose of the
method and then determine if the duplicate wasn’t a mistake and if so, what did cause its
existence. As this process is quite long, 200 duplicates seemed to be a reasonable amount.
Also, if the two authors’ duplicate existence reason isn’t the same, a third author has to
decide which one is the most plausible.

Results

Through our manual analysis, we’ve noticed that both programming languages are ac-
tually facing the same source causes for duplicates. During the analysis, the two authors

3.4. CONTRIBUTIONS 45

●

●

●

●

0

25

50

75

java ruby

%
 o

f d
up

lic
at

e
de

sc
rip

tio
n

ta
gs

0

25

50

75

100

java ruby

%
 o

f d
up

lic
at

e
@

re
tu

rn
 ta

gs

0

25

50

75

100

java ruby

%
 o

f d
up

lic
at

e
@

pa
ra

m
 ta

gs

0

25

50

75

100

java ruby

%
 o

f d
up

lic
at

e
@

ra
is

e/
@

th
ro

w
s

ta
gs

Figure 3.7 – Upper-left: Violin plot for the number of duplicate @description tags per
project. Upper-right: Violin plot for the number of duplicate @params tags per project.
Lower-left: Violin plot for the number of duplicate @return tags per project. Lower-right:
Violin plot for the number of duplicate @throws (@raise for ruby) tags per project.

agreed on the underlying reason for all duplicates and identified four main reasons for du-
plicates in API documentation: delegation, sub-typing, code clone, similar intent, similar
use.

A delegation, as shown in Figure 3.8, appears when a method calls another one, and
thus has a part of its documentation coming from the called one. In Figure 3.8 the upper

46 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

1 # Shows objects
2 # @param [String|NilClass] objectish the target object reference (nil

== HEAD)
3 # @param [String|NilClass] path the path of the file to be shown
4 # @return [String] the object information
5 def show(objectish=nil , path=nil)
6 self.lib.show(objectish , path)
7 end

. .

1 # Shows objects
2 # @param [String|NilClass] objectish the target object reference (nil

== HEAD)
3 # @param [String|NilClass] path the path of the file to be shown
4 # @return [String] the object information
5 def show(objectish=nil , path=nil)
6 arr_opts = []
7 arr_opts << (path ? "#{ objectish }:#{ path}" : objectish)
8 command(’show’, arr_opts.compact)
9 end

Figure 3.8 – Extract of duplicate due to a delegation between two methods in the Ruby/Git
library project. Duplicated tags are displayed in red.

show is calling the lower method show and therefore shares the same documentation since
it does only a single task which is calling the lower show method with the right parameters.
We encountered this reason for nearly 46% of Java projects and nearly 47% of Ruby projects.

A similar intent appears when a method performs a computation that is similar to an-
other method, which is why they share some documentation tags. Figure 3.9 shows such
an example. Here the two methods only differ because of the return type (float or int). It is
not a clone because there is no common line between them. Further, a funny thing is that
the developer made a mistake as he clearly copied the documentation of the long method
but didn’t change the documentation of the int and float ones. One could therefore think
about extending existing documentation tools to automatically detect such basic inconsis-
tencies during documentation generation and notify the developer or even automatically
suggest corrections. Most of similar intent cases we observed are due to developers imple-
menting several times a same feature for each primitive type. We encountered this reason
for 24% of Java projects and nearly 10% of Ruby projects.

A sub-typing appears when a method overrides another one that is defined in a same
hierarchy. In this case, it is common that the overriding method’s documentation comes
from the one of the overridden method. Figure 3.10 shows an example of sub-typing

3.4. CONTRIBUTIONS 47

1 /**
2 * Delegates to {@link

EndianUtils#readSwappedInteger(InputStream)}
3 * @return the read long
4 * @throws IOException if an I/O error occurs
5 * @throws EOFException if an end of file is reached unexpectedly
6 */
7 public int readInt () throws IOException , EOFException {
8 return EndianUtils.readSwappedInteger(in);
9 }

. .

1 /**
2 * Delegates to {@link

EndianUtils#readSwappedFloat(InputStream)}
3 * @return the read long
4 * @throws IOException if an I/O error occurs
5 * @throws EOFException if an end of file is reached unexpectedly
6 */
7 public float readFloat () throws IOException , EOFException {
8 return EndianUtils.readSwappedFloat(in);
9 }

Figure 3.9 – Extract of duplicate due to two methods with a similar intent in the Guava
project. Duplicated tags are displayed in red.

where the whole documentation has been copy-pasted. In this example extracted from
the Apache Commons Collections Java project, we have an interface declaring an abstract
method with its documentation (upper example). The lower example corresponds to the
implementation of the method declared in the interface. We do notice that the documen-
tation has actually been duplicated in both methods (in red color). A solution to avoid such
situation is to use reuse mechanisms that are available in the Javadoc tool for instance, we
discuss in more detail in Section 3.4.3. We encountered this reason for nearly 13% of Java
projects and nearly 17% of Ruby projects.

A code clone appears when a method shares similar lines of code with another one,
hence duplicating a part of its body. Figure 3.11 shows an example of code clone from the
Apache Commons IO Java project, where two methods share a nearly identical line of code.
Due to this line of code that requires a value as input for a method call, both write methods
are therefore aslo requiring a value attribute as input which causes a duplicate line in their
documentation. We encountered this reason for nearly 6% of Java projects and nearly 16%
of Ruby projects.

48 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

1 /**
2 * Gets the value from the pair.

3 * @return the value
4 */
5 V getValue ();

1 /**
2 * Gets the value from the pair.

3 * @return the value
4 */
5 public V getValue () {
6 return value;
7 }

Figure 3.10 – Example of duplicate due to sub-typing in the Apache Commons Collections
project. Duplicated tags are displayed in red.

1 /**
2 * Writes a String to the {@link StringBuilder }.
3 *
4 * @param value The value to write
5 */
6 @Override
7 public void write(final String value) {
8 if (value != null) builder.append(value);
9 }

. .

1 /**
2 * Writes a portion of a character array to the {@link

StringBuilder }.
3 *
4 * @param value The value to write
5 * @param offset The index of the first character
6 * @param length The number of characters to write
7 */
8 @Override
9 public void write(final char[] value , final int offset ,

final int length) {
10 if (value != null) builder.append(value , offset , length);
11 }

Figure 3.11 – Example of duplicate due to code clone in the Apache Commons IO project.
Duplicated tags are displayed in red.

3.4. CONTRIBUTIONS 49

1 # Create partitions for a topic.
2 # @param name [String] the name of the topic.
3 # ...
4 def create_partitions_for(name , num_partitions: 1, timeout:

30)
5 @cluster.create_partitions_for(name , num_partitions:

num_partitions , timeout: timeout)
6 end

. .

1 # Alter the configuration of a topic.
2 # ...
3 #@param name [String] the name of the topic.
4 # ...
5 def alter_topic(name , configs = {})
6 @cluster.alter_topic(name , configs)
7 end

Figure 3.12 – Extract of duplicate due to a similar use between two methods in the Ruby/Git
library project. Duplicated tags are displayed in red.

Finally, a similar use happens when two methods or more share a common input pa-
rameter, output or exception but the task that each method has to do is totally different.
Figure 3.12 is an extract from the Kafka library in Ruby. We can see that methods aren’t
performing a similar task, however, they both have to interact with what is called a topic.
In order to interact with such topic, they need to have its name which is duplicated across
the documentation of both methods (highlighted in red), and in such situation, whenever
there’s for example an hypothetical new constraint on the topic parameter, such constraint
has to be propagated to the documentation of any method using that name as an input
parameter. We encountered this reason for nearly 11% of Java projects and nearly 10% of
Ruby projects.

Summary

Both Java and Ruby programming languages are facing the same underlying reasons
for duplicates in their documentation. The two authors identified five main reasons
being: delegation, sub-typing, code clone, similar intent and similar use.

50 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

3.4.3 RQ3: Could duplicate documentation be avoided by a proper
usage of documentation tools?

In this section, we answer our third and final research question. We perform a man-
ual analysis of more than 20 documentation tools seeking for all reuse mechanisms they
provide. We then describe each mechanism with their advantages and limitations.

Methodology

In order to answer our last research question, we first manually look at the different
documentation tools to determine the mechanisms they provide for reusing documenta-
tion. As there are too many documentation tools, and due to time constraints, we choose
to focus on a list of 22 different documentation tools 4. Out of these 22 tools, 3 were paid
tools, we therefore remove them from our list as we didn’t manage to easily have access to
their documentation. We then manually analyse in detail the whole user-guide of all 19
tools in our list to find out all types of reuse mechanisms that they provide, whether they
are compatible with Java and Ruby or not, in order to be sure that there is no mechanism
available for other languages that could avoid duplicates and therefore should be imple-
mented for Java and Ruby.

Results

The results for our manual analysis on the 19 documentation tools are shown in Ta-
ble 3.1.

Through our analysis, we find that there are three main types of reuse mechanisms all
related to the reused documentation’s location and their granularity:

— Override is a reuse mechanism that allows developers to reuse a documentation
only for methods inheriting from the method that has its documentation reused.
Some tools like Javadoc allow to reuse the whole block of documentation (depicted
as Whole in Table 3.1), or even sub-parts of the documentation (depicted as Choice
in Table 3.1), for example, reuse only a specific @param description. To do so, they
simply provide an in-line documentation tag (as described in Section 3.2) called @In-
heritDoc that is used to specify which sub-parts of the documentation they want to
reuse are implicitly used when a method without any documentation is inheriting
from a documented method.

— Anywhere is a reuse mechanism that allows developers to reuse the documentation
of any method from anywhere in the source code. Some tools like Yard allow devel-
opers just as with the Override mechanism, to reuse the whole block of documenta-
tion or sub-parts of the origin method’s documentation. They do so by providing a

4. https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

https://en.wikipedia.org/wiki/Comparison_of_documentation_generators

3.4. CONTRIBUTIONS 51

Table 3.1 – The list of 19 documentation tools analysed in the study.

Override Anywhere

Tool Language Whole Choice Whole Choice Include

Sandcastle .NET X X X
JavaDoc Java X X
YARD Ruby X X
JSDoc JavaScript X X
Doxygen C, C++, Java, C#, VBScript, X

IDL, Fortran, PHP, TCL
Doc++ C, C++, IDL, Java X
Haddock Haskell X
NDoc .NET X
Sphinx Python X
RDoc Ruby X
VSdocman C#, .NET X
PhpDoc PHP X
PerlPod Perl
PyDoc Python
DDoc D
Epydoc Python
ROBODoc C, C++, Fortran, Perl, Shell
HeaderDoc Objective-C, C, C++, Java,

JS, Perl, PHP, Python, Ruby
Natural Docs 20 languages

tag (i.e. (see #method)) that lets developers specify from which method they want to
reuse a documentation whether for the whole bloc or a sub-part.

— Include is a reuse mechanism that allows developers to reuse a documentation that
is written in another file. Therefore, they simply let you import the content of a whole
file directly as a documentation, or even specific parts of documentation written in
external files such as a parameter’s description that we can fetch based on the pa-
rameter name. It is the most frequent reuse mechanism that we’ve seen in the 19
tools that we’ve analysed.

We do notice that there’s actually only one tool (i.e. Yard) that could handle all causes of
duplicates that we’ve identified in Section 3.4.2, as it provides the possibility to reuse any
block or sub-part of documentation from any method’s documentation anywhere in the
source code.

52 CHAPTER 3. DUPLICATES IN API DOCUMENTATION

It is also important to note that 7 documentation tools out of 19 don’t provide any reuse
mechanism at all. When we ask developers: Do you use documentation tools functionali-
ties to avoid duplicates?, 94,9% (37 out of 39) stated they don’t use any reuse mechanisms
provided by documentation tool. When asking them why, they state that’s because their
tools have limited reuse mechanisms, that they don’t want to use multiple tools just to
avoid duplicates and that they don’t know the tools that have such reuse mechanisms.

Summary

We manually analyse 19 documentation tools. Only one tool (i.e. Yard) could handle all
causes of duplicates that we’ve identified. 7 documentation tools out of 19 don’t pro-
vide any reuse mechanism at all. 94,9% of developers don’t use any reuse mechanisms
provided by documentation tool because of limited reuse mechanisms.

3.5 Threats to validity

We discuss here the threats to validity of our study following the guidelines provided by
Wohlin et al. [Wohlin et al., 2012].

Construct validity. In Section 3.3.3, while our tool managed to identify identical dupli-
cates in our corpus, measurement errors could possibly have been introduced by our du-
plicates detection tool. A mitigation to this is the fact that we chose to identify only identi-
cal clones (equivalent to type-I code clones) which are less prone to not be detected.

Internal validity. In Section 3.4.2, while the sample size is consequent (200 duplicates),
it isn’t large enough to be representative of the whole duplicates corpus. Further, dupli-
cates’ reasons tagging is done by the three study’s authors who aren’t experts of the projects
containing the duplicates. While the three authors tried to mitigate the misidentification
threat by concerting each other, performing a inter-rater agreement measurement on ex-
ternal developers should be taken in a future study replication work.

In Section 3.4.3, the identification of reuse mechanisms provided by documentation
tools is performed by only one author who could have missed some information. However,
the reuse mechanisms aren’t that similar, meaning less subjective to identify by a single
person.

External validity. This study focuses only on open-source projects with the largest num-
ber of stars on Github, corresponding to the 100 projects in our repository for two pro-
gramming languages Java and Ruby. This is on purpose, as these projects are considered as
being well-known and largely used by the open-source community. Therefore, the projects

3.6. CONCLUSION 53

may be more documented and maintained than more common projects meaning that the
results we got may not be representative of all projects having a documentation. Also, our
results are limited to two programming languages Java and Ruby which have different lan-
guage constructs that can differ with other languages. It would be better to replicate the
study with other APIs whether open-source or not and implemented in other programming
languages that Java and Ruby.

In Section 3.3.2, the survey gathered 39 responses from developers. Out of our 39 re-
spondents, 22 stated that they use Javadoc as their documentation tool, the other respon-
dents using other documentation tools: Doxygen, JSDoc and Yard. Therefore, our findings
might not be generalizable.

Conclusion validity. A threat to our study concerns the reliability of the metrics com-
puted through our experiments. While we did follow an automated process for all mea-
surements in RQ1 for both programming languages, which makes our results reliable, we
did however follow a manual approach in RQ2 and RQ3.

Another threat to our study is the fact that we didn’t statistically validate our results
through non-parametric statistics (e.g. Mann-Whitney test).

3.6 Conclusion

Code documentation is a crucial part of software development. Like it is the case with
source code, developers should reuse documentation as much as possible to simplify its
maintenance.

Through this study on 100 repositories (50 using Java, 50 using Ruby) maintaining
API documentation, we show that duplicates of documentation tags are unfortunately too
abundant. By analysing these duplicates, we’ve identified that they are caused by five dif-
ferent kinds of relationships in the underlying source code: delegation, sub-typing, code
clone, similar intent and similar use.

We also perform a survey on 39 developers and show that they are frequently facing
duplicates in their documentation. They often have to make them co-evolve, and find such
practices as being annoying and error-prone, and would love that their documentation
tools can help them avoid such duplicates.

Finally, our study pinpoints the fact that it is common for documentation tools to not
provide reuse mechanism to cope with these causes. However, one tool (i.e. Yard) provides
a mechanism that handles all the duplicates causes that we’ve identified in our study.

CHAPTER

4
Duplicates in Dockerfiles

Docker is becoming a popular tool used by developers and end-users to deploy and
run software applications. Dockerfiles are now found alongside projects’ source code.
Several projects are even starting to maintain families of Dockerfiles, like the Python
project that maintains a family of 43 Dockerfiles, each for a specific Python version on
a specific Linux distribution. In some situations, Dockerfiles family maintainers have
to propagate a change to several, if not all, Dockerfiles of the family (for instance a bug-
fix applying on all Dockerfiles targeting Python 2.7). In this chapter, our goal is to pro-
vide practitioners a clear explanation for why Dockerfile duplicates arise in projects,
and what are the different means to handle duplicates with their pros and cons. We
observe the practices of expert Dockerfile maintainers of Official Docker projects. We
show that duplicates in Dockerfiles are frequent in our corpus, that maintainers are
aware of their existence, are frequently facing them and have a mixed opinion regard-
ing them. Finally, we describe and analyse the tools used by maintainers to handle
duplicates.

Contents
4.1 Introduction . 56

4.2 Background . 57

4.3 Data collection . 60

4.4 Contributions . 64

4.5 Threats to validity . 77

4.6 Conclusion . 79

55

56 CHAPTER 4. DUPLICATES IN DOCKERFILES

4.1 Introduction

Docker simplifies the deployment of software applications by enabling developers to
package their applications with all their required dependencies in a single binary unit,
called a Docker image 1. To build an image, developers have to write a Dockerfile, that will
be executed by Docker. Such a Dockerfile is written in a Domain Specific Language (DSL)
that can be compared to a very limited shell scripting language.

Software projects using Docker manage their Dockerfiles in their Software Configura-
tion Management tool (e.g. GitHub), as any other software artifacts. Some projects even
have to manage a family of Dockerfiles, especially when they have to support and main-
tain several versions in parallel with several sets of dependencies. For instance, the Python
project 2 provides a family of 43 Dockerfiles, each one targeting a specific version of Python
(e.g. 2.7, 3.8-rc) with a specific set of distributions (e.g. Debian, Alpine, Windows).

LISTING 4.1 – A bugfix of a same duplicate across the Alpine family of Dockerfiles in the
official Python project.

1 RUN ...
2 && apk add --no-cache --virtual .build -deps \
3 bzip2 -dev \
4 ...
5 && make -j "$(nproc)" EXTRA_CFLAGS="-DTHREAD_STACK_SIZE=0x100000" \
6 ...

Looking at such projects, it appears that sometimes a patch targeting a Dockerfile has
to be propagated to some (if not all) Dockerfiles of the family. As an example, Listing 4.1
shows a patch encountered in the official Python project 3. This patch fixes an unexpected
segmentation fault that appears only on Dockerfiles using the Alpine Linux distribution.
This bug is due to a too small stack size and is resolved by adding a new flag in a make
command as shown in Listing 4.1 (line 5). This bug-fix was propagated to the 7 Dockerfiles
of the family that are based on the Alpine distribution.

The previous example highlights a case of patch propagation among a family of Docker-
files. Such situations arise because the impacted Dockerfiles share duplicated instructions.
In our example, all the Dockerfiles that are based on the Alpine distribution share the same
make command with the same arguments (see Listing 4.1 (line 5)). As a consequence, for a
patch to be safely propagated, all the impacted duplicates have hence to be identified and
then equally modified, which is time consuming and may be error-prone. For example,

1. https://www.docker.com/
2. https://hub.docker.com/_/python/
3. https://github.com/docker-library/python/commit/8717dc2523c8093990cb

https://www.docker.com/
https://hub.docker.com/_/python/
https://github.com/docker-library/python/commit/8717dc2523c8093990cb

4.2. BACKGROUND 57

this patch applied in 2015 4 has required another commit the same day to propagate the
modification to other Dockerfiles 5.

In this chapter, we therefore tackle the question of duplicates in Dockerfiles by answer-
ing the following research questions:

— RQ1: Do Docker official projects maintain families of Dockerfiles, and why?

— RQ2: Do duplicates arise in Dockerfiles families and why?

— RQ3: What are the pros and cons of tools used by experts to manage Dockerfiles?

This chapter is then organized as follows: Section 4.2 presents background regard-
ing Docker. Section 4.3 presents the 99 repositories composing our corpus, our survey
methodology and duplicates detection technique. Section 4.4 presents the methodology
and results for our three research questions. Section 4.5 presents the threats to validity
regarding our experiments. Finally, Section 4.6 concludes this chapter.

4.2 Background

Since its first release in 2013, Docker is now largely adopted by the community of devel-
opers with more than 105 billion container downloads 6. Docker simplifies the deployment
of software applications by enabling developers to package their applications with all their
required dependencies in a single binary unit, called a Docker image 7. Once created, a
Docker image can be downloaded and run on any computer that has Docker installed.
Docker images are frequently used by developers of a same team to locally deploy, run and
test their application in a controlled running environment. Furthermore, images can even
be used as deployment units for end-users that want to run an application without the
burden of following a complex installation process on their computer.

A Docker container is a “lightweight, stand-alone, executable package of a piece of soft-
ware that includes everything needed to run it: code, runtime, system tools, system li-
braries, settings” 8. Docker containers are instantiated from a Docker image. Usually a
Docker image is maintained by project developers or by Docker developers.

To build an image, developers have to write a Dockerfile. A “Dockerfile” is a script that
will be executed by Docker to build an image. Such a script is written in a Domain Spe-
cific Language (DSL) that can be compared to a very limited shell scripting language. The
Dockerfile language is a DSL maintained by Docker. A Dockerfile is composed of a se-
quence of instructions that are executed in order to produce an image. Listing 4.2 shows
a sample Dockerfile that builds an image for a Python application that needs python and

4. https://github.com/docker-library/python/commit/f9739c6da575c450aaed8628c1e0bfa97bf1ba18
5. https://github.com/docker-library/python/commit/00c226b82eee61c6c68adf813d9f7177d2efa52a
6. https://www.docker.com/company
7. https://www.docker.com/
8. https://www.docker.com/what-container

https://github.com/docker-library/python/commit/f9739c6da575c450aaed8628c1e0bfa97bf1ba18
https://github.com/docker-library/python/commit/00c226b82eee61c6c68adf813d9f7177d2efa52a
https://www.docker.com/company
https://www.docker.com/
https://www.docker.com/what-container

58 CHAPTER 4. DUPLICATES IN DOCKERFILES

apache2 in order to run. When interpreted, this Dockerfile performs the following steps:
imports the Python image and uses it as a base, copies the application into the image to
be built, installs all required dependencies, configures Docker to open port 80 and execute
app.py script when launching the image. Docker images are built on top of other images.
Therefore, Dockerfiles start by a mandatory FROM instruction, that takes as input a base
image, which is an image name (python) and tag (2.7-slim).

LISTING 4.2 – A sample Dockerfile for a hypothetical Python application

1 # Use the official python base image
2 FROM python :2.7- slim
3 # Set the working directory to /app
4 WORKDIR /app
5 # Copy current directory content into the container at /app
6 ADD . /app
7 # Install dependencies
8 RUN apt -get update && apt -get install -y apache2 \
9 && rm -rf /var/lib/apt/lists/*

10 # Make port 80 available to the world outside this container
11 EXPOSE 80
12 # Define environment variable
13 ENV NAME Hello World
14 # Run "python app.py" when the container is executed
15 CMD ["python", "app.py"]

Besides FROM, the most common instructions are:

— WORKDIR to move the present working directory of the image,

— COPY and ADD to copy files into the image,

— RUN to perform system commands inside the image,

— EXPOSE to make available port of the image to the outside world,

— ENV to set some environment variables in the image,

— CMD and ENTRYPOINT to provide the start command runned by the image when in-
stantiated as a container.

Due to the way Docker images are built, each Dockerfile instruction creates a layer (per-
sistent state) inside the image. While some instructions do not have any impact in terms of
image size, other instructions such as RUN instructions can have a very large impact in the
final image size. For these reasons, Docker best practices recommend to use as few RUN
instructions as possible. To meet this objective, developers very frequently combine mul-
tiple shell commands inside a single RUN instruction (as depicted in line 8 of Listing 4.2)
using shell delimiters (such as ’&&’ and ’;’). Such example is depicted in Figure 4.1, we can
see that if we follow the recommended best practice, we can save up to 16MB in our yet
very simple Dockerfile (from 231MB to 215MB).

4.2. BACKGROUND 59

WORKDIR /app
0B

ADD . /app
1.14kB

RUN apt-get update && apt-get install -y apache2
&& rm -rf /var/lib/apt/lists/*

94.5MB

EXPOSE 80
0B

ENV NAME Hello World
0B

CMD ["python", "app.py"]
0B

FROM python:2.7-slim
120MB

RUN apt-get update
16.4MB

RUN apt-get install -y apache2
94.5MB

RUN rm -rf /var/lib/apt/lists/*
0B

Total image size
215MB

Total image size
231MB

Figure 4.1 – The stack of layers built from the Dockerfile with the corresponding final image
size.

60 CHAPTER 4. DUPLICATES IN DOCKERFILES

In order to help developers, there exist multiple Dockerfile linters that are open-source
and implement rules for all best practices recommended by Docker and by the community,
such as: fromlatest 9, hadolint 10 and dockerfilelint 11. There exist event tools that let de-
velopers automatically minify their Docker images by statically and dynamically analysing
the Dockerfile and generating a new one that uses less space (i.e. docker-slim 12).

Once a Dockerfile is written, the process to build its corresponding image is straight-
forward. Developers simply have to execute the Dockerfile using a dedicated Docker com-
mand: docker build . -t image_name. This command executes the file named Dockerfile
(and of course written in the Dockerfile language) inside the current shell directory, and
creates an image named image_name. Developers can then share their images to poten-
tial users using a DockerHub repository (or a private Docker registry 13)by performing the
following Docker command: docker push repository/image_name. DockerHub is a central
public DockerHub that stores public images 14. Developers can register to DockerHub and
publish their own images, while users can freely access DockerHub to download and use
any images. Finally, the users use Docker images to create a running container by perform-
ing the following command on their computer: docker run image_name.

4.3 Data collection

In this section, we present our three main data sources that are used in the remainder
of this study: a list of 99 GitHub repositories each corresponding to a project that manages
a Dockerfile family, an on-line survey performed on 25 Dockerfile family maintainers from
our 99 repositories and 877 duplicates among the Dockerfile family of our repositories. All
repositories, survey questions, duplicates are available on-line 15.

4.3.1 Repositories

We choose in this study to only look at official Docker projects. This choice is driven by
the fact that these projects are real-world popular projects that manage medium to large
families of Dockerfiles, but most importantly because as it is written in the Docker docu-
mentation, these projects promote the best practices to maintain Dockerfiles 16 and may

9. https://www.fromlatest.io
10. https://github.com/hadolint/hadolint
11. https://github.com/projectatomic/dockerfile_lint
12. https://dockersl.im
13. https://docs.docker.com/registry
14. https://hub.docker.com/
15. https://se.labri.fr/a/ICSME19-docker-oumaziz
16. https://docs.docker.com/docker-hub/official_images/

https://docs.docker.com/registry
https://hub.docker.com/
https://se.labri.fr/a/ICSME19-docker-oumaziz
https://docs.docker.com/docker-hub/official_images/

4.3. DATA COLLECTION 61

be considered as a reference for any Dockerfile maintainer. The list of these official projects
is available on GitHub, with 138 official projects, as of March 2019. 17

Some of these projects share a same Github repository. For example, InfluxDB and
Chronograf are maintained in the same GitHub repository. We therefore remove these 9
projects from our corpus to preserve a dataset uniformity. We also discard the hello world
project as it is only intended to provide examples for beginners. At this stage, our corpus
includes 128 projects with their associated GitHub repositories.

We then count the number of files named Dockerfile in each of these 128 projects,
as it is the most common name for Dockerfiles (see Section 4.5 for potential threats). We
identify 1300 Dockerfiles. Figure 4.2 depicts the number of Dockerfiles maintained by each
of these 128 projects. We note that half of the projects maintain at least 4 Dockerfiles with
25% maintaining more than 10 Dockerfiles. As we are interested by Dockerfiles families, we
discard 29 projects maintaining a single Dockerfile. Finally, our corpus contains 99 official
Docker projects.

●● ●● ● ●●● ●●●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 2 4 10 20 40 60
of Dockerfiles per project

Figure 4.2 – Boxplot for the number of Dockerfiles maintained by each project.

4.3.2 Survey

Our study involves a survey of official Dockerfile maintainers (Dockerfile family main-
tainers) of projects in our corpus to get their opinions about duplicates and understand
their practices. 18 Therefore, we create a survey composed of two main sections asking
questions about 1) duplicates and 2) management tools to handle duplicates. In order to
retrieve whose contact information, we analysed all commits from all Github repositories
of projects in our corpus and extracted the commit author’s e-mail address. Using this
process, we retrieved about 900 e-mail addresses. Finally, we send a link to our online sur-
vey using these addresses and gathered 29 responses, leading to a response rate of about
3% which may indicate that a large set of emails were actually from no longer active official
Dockerfile family maintainers or considered our e-mail as spam. Out of these 29 responses,

17. https://github.com/docker-library/official-images/tree/master/library
18. https://forms.gle/sDMkcvSQxnMJwXaA6

https://github.com/docker-library/official-images/tree/master/library
https://forms.gle/sDMkcvSQxnMJwXaA6

62 CHAPTER 4. DUPLICATES IN DOCKERFILES

1 RUN apt -get update && apt -get install -y apache2

↓
1 RUN apt -get update
2 RUN apt -get install -y apache2

Figure 4.3 – RUN instruction with multiple shell commands split into two RUN instruc-
tions, one for each shell command.

25 maintainers were actually maintaining more than a single Dockerfile as we address in
our study. The 4 remaining maintainers were ignored in these results (they left the survey
directly after the first question).

4.3.3 Duplicates detection tool

We consider a Dockerfile duplicate as a sequence of instructions that is duplicated
across several Dockerfiles of a same project. We call size the number of instructions con-
tained in the duplicate and owners the number of files containing the sequence. We pro-
vide a tool that inputs a list of git repositories and outputs a list of maximal duplicates
found among each repository’s Dockerfiles.

As a first step, our tool starts by scanning repositories looking for Dockerfiles and parses
them. During the parsing process, we ignore all comments, we identify instructions’ types,
we extract the instructions’ argument’s text and normalize their white-spaces (replacing
tabs by spaces, removing carriage returns and keeping only one space between two words)
to avoid missing duplicates because of indentation differences. As said in Section 4.2, RUN
instructions often have arguments that are composed of many shell commands. There-
fore, to also detect duplicates inside these shell commands, we choose to split these in-
structions, producing one RUN instruction for each contained shell command as seen in
Figure 4.3. Instructions are split using the classical && and ; shell command delimiters and
keep the same appearance order as in the original shell command.

Once all Dockerfiles are parsed, we extract the maximum-sized duplicates among each
project’s Dockerfiles. We use the index-based duplicate detection technique [Hummel et al.,
2010]. First, for each Dockerfile in our corpus, we extract and index the hashes of all pos-
sible chunks of instructions for a given size, as shown in Figure 4.4. The chunks’ size goes
from the maximal number of instructions contained in the Dockerfile to one which is the
smallest granularity: one instruction.

Figure 4.4 shows an example of hashes extracted with the chunk size set at 6. The tuple
(DF, 6, 0, AC4EF..) indicates respectively: the filename, chunk size, chunk’s first instruction
location in the file, the chunk’s hash. After having indexed all hashes, we apply the algo-
rithm described in [Hummel et al., 2010] to extract the maximum-sized duplicated chunks

4.3. DATA COLLECTION 63

FROM python:2.7-slim
WORKDIR /app
ADD . /app
RUN apt-get update
RUN apt-get install -y apache2
EXPOSE 80
ENV NAME Hello World
CMD ["python", "app.py"]

(Df, 6, 0, AC4EF..)

(Df, 6, 1, 0E8FC..)

(Df, 6, 2, AA9DE..)

Figure 4.4 – Dockerfile presenting an example of duplicate index with chunk size set to 6.

1 FROM alpine :3.6
2 ENV _BASH_GPG_KEY 7C0135FB088AAF6 \
3 C66C650B9BB5869F064EA74AB
4 ENV _BASH_VERSION 3.1
5 ENV _BASH_PATCH_LEVEL 0
6 ENV _BASH_LATEST_PATCH 23

Figure 4.5 – Extract of real Dockerfile duplicate from Bash shell v3.1

1 FROM alpine :3.6
2 ENV _BASH_GPG_KEY 7C0135FB088AAF6 \
3 C66C650B9BB5869F064EA74AB
4 ENV _BASH_VERSION 4.0
5 ENV _BASH_PATCH_LEVEL 0
6 ENV _BASH_LATEST_PATCH 44

Figure 4.6 – Extract of real Dockerfile duplicate from Bash shell v4.0

(duplicated chunks that are not contained in another duplicated chunk). Also, contrary to
[Hummel et al., 2010], we don’t apply any code normalisation except what was described
previously.

Figure 4.5 and Figure 4.6 show two extracts of Dockerfiles from our corpus. They are
part of Dockerfiles used to build images for the well-known bash shell (versions 3.1 and
4.0). After applying our technique, we identify two duplicates with two different sizes. The
first duplicate has a size of 3, ranging from line 1 to 3, while the second duplicate has the
smallest possible size which is 1 corresponding to line 5.

Finally, we apply our tool on each repository from our list, and identify a total of 877
duplicates across all projects. These duplicates will constitute our duplicates dataset for
the remainder of this chapter.

64 CHAPTER 4. DUPLICATES IN DOCKERFILES

4.4 Contributions

In this section, we then present the three main contributions of this study:

4.4.1 RQ1: Do official projects maintain families of Dockerfiles, and
why?

Methodology

While looking at Dockerfiles when building our dataset, we note that the location path
of a Dockerfile contains information about its purpose. For instance, the rabbitmq project
has a Dockerfile located in 3.6/alpine/Dockerfile. Based on this path, we can easily un-
derstand that this Dockerfile targets the version 3.6 of rabbitmq and is based upon Alpine
Linux, a lightweight Linux distribution. Therefore, by analysing all Dockerfiles’ paths, we
see that rabbitmq maintains Dockerfiles for various versions and with various base im-
ages.

To perform this analysis on all of our repositories, we follow a semi-automated pro-
cess. First for each project, we retrieve the path of every Dockerfile. Then, we split all
paths using the directory separator symbol. For a given nesting level i in the path, we
establish the list of all values seen at this level. For instance for the following set of
paths: 3.6/alpine/Dockerfile, 3.7/alpine/Dockerfile we extract the following set
of names: Level 1: 3.6, 3.7, Level 2: alpine. For each project, we go through the whole
list of extracted names and, for each of them, either creates a new category and associates
the name to it, or associates the name to a category that was created for a previous name.
Finally, we count the number of elements in each category.

Results

Based on our methodology, we identify four categories. The most represented category
is version that contains several versions of the project, similarly to the rabbitmq exam-
ple. The second category by order of importance is base image that contains the different
base images used to produce the project images (e.g. Alpine Linux and Debian Linux).
The third category is flavour that contains different variants of the project (e.g. normal or
multi-threaded flavour for the Perl project 19). The most seldom category is platform, that
contains the different Docker platforms supported by the project (e.g. ARM, x86).

Figure 4.7 is an UpSet plot [Lex et al., 2014] showing the relationships between versions,
flavours, base images and platforms across the projects in our repositories. We first notice
that the majority of projects (41) are actually maintaining images for multiple base images
and versions at the same time. We also notice that maintaining multiple images only
because of multiple versions is very common with 28 projects doing it, while 13 projects

19. https://github.com/Perl/docker-perl/

https://github.com/Perl/docker-perl/

4.4. CONTRIBUTIONS 65

41

28

13

5
4

3
2 2

1

0

10

20

30

40

In
te

rs
ec

tio
n

S
iz

e

version

base−image

flavor

platform

0255075

Set Size

Figure 4.7 – UpSet plot showing the relationships between versions, flavours, base images
and platforms across our repositories.

66 CHAPTER 4. DUPLICATES IN DOCKERFILES

maintain images for multiple versions and flavours.

Summary

The reasons for maintaining several Dockerfiles are to support multiple versions, base-
images, flavours and platforms. The most common combinations are version/base-
image and version/flavour.

4.4.2 RQ2: Do duplicates arise in Dockerfiles families and why?

To answer RQ2, we report statistics regarding duplicates we’ve identified with our de-
tection tool and confront them to our survey results. We also take a closer look at the main-
tenance surrounding these duplicates through a co-evolution analysis. Finally, we manu-
ally examine a random subset of duplicates and analyse the reasons behind their existence
(Section 4.4.2).

Methodology

As we said in Section 4.3.3, our tool identified 877 duplicates in our repositories. Based
on this, we compute several statistics about the characteristics of these duplicates. We
also take a closer look at the Dockerfile DSL instructions composing duplicates, especially,
which instructions are most commonly concerned by duplicates.

We then evaluate if these duplicates have an impact on Dockerfile family maintenance
by analysing if it’s common practice for Dockerfile family maintainers to perform a same
modification on several Dockerfiles of a same Dockerfile family. To that extent, we look at
every commit of our repositories seeking for commits that had two Dockerfiles or more be-
ing edited with the exact same modifications (a modification being a sequence of removed
code and a sequence of added code, as computed by diff).

Duplicates

Figure 4.8 depicts a violin plot for respectively: the percentage of duplicate instructions
per project (upper-left) and the number of instructions per project (upper-right). We no-
tice that 75% of projects have more than 50 instructions (upper-right) and nearly half of
these instructions that are duplicated (upper-left). Half the projects have more than 83%
of duplicate instructions (half the projects having at least 117 instructions). All of this in-
dicates how frequent duplicates are in Dockerfile family. When asking Dockerfile family
maintainers of our repositories if they have faced duplicates in the past: 68% (17 out of 25)
said that they did, while 20% said they’ve never faced duplicates and 12% didn’t know.

Figure 4.8 (bottom) presents a violin plot for the number of instructions for each iden-
tified duplicate. We notice that duplicates can be quite small, with half of them having less

4.4. CONTRIBUTIONS 67

0

25

4850

75

83

92

100

%
 o

f d
up

lic
at

e
in

st
ru

ct
io

ns
 p

er
 p

ro
je

ct

●

●

●

●

●

●

●

●

●

●

●

050117
300

1000

2000

of

 in
st

ru
ct

io
ns

 p
er

 p
ro

je
ct

●

●●

●

●●●●●●●●
●
●●

●●●

●●●●

●●

●
●●

●

●
●
●
●●

●

0
3
7

22
25

50

75

100

of

 in
st

ru
ct

io
ns

 b
y

du
pl

ic
at

e

Figure 4.8 – Upper-left plot: Violin plot for the percentage of duplicate instructions per
project. Upper-right plot: Violin plot for the number of instructions per project. Bottom
plot: Violin plot for the number of instructions by duplicate.

than 7 instructions. However, we also note that 25% of duplicates we’ve identified have
more than 22 instructions. Finally, we remind that we chose to split RUN instructions as
described in Section 4.3.3, which could artificially increase the number of instructions in
blocks of duplicates. Also, when we ask all Dockerfile family maintainers: What should be

68 CHAPTER 4. DUPLICATES IN DOCKERFILES

●●●● ●●● ●●● ●●●● ●● ●●●● ●● ● ● ●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●● ●● ●●●●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●●●● ●● ●● ● ●●●● ● ●● ●●●●●●● ●● ● ● ●●●●●● ●● ●● ●● ●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●
●

●●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●
●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

2 3 4 5 6 7 8 9 10 11
of owners by duplicate

Figure 4.9 – Stripplot of the number of owners of every duplicate in our corpus.

the minimal size for a duplicate bloc of instructions to be detected?, the majority of Docker-
file family maintainers (15 out of 25) stated it should be between 1 and 5 instructions which
indicates that even duplicates composed of a single instruction shouldn’t be ignored.

Figure 4.9 is a stripplot depicting the number of owners (i.e. the number of files con-
taining the duplicate) of every duplicate in our repositories. We notice that the large ma-
jority of duplicates has around 2 and 4 owners. While duplicates having 5 to 11 owners
are less common. When we ask Dockerfile family maintainers for the minimal number of
files sharing a duplicate (owners) in order for that duplicate to be detected, 13 out of 25
Dockerfile family maintainers stated that it should be 2. These responses confirm that the
minimal thresholds we had set previously in Section 4.3.3 were actually corresponding to
the Dockerfile family maintainers needs.

Also, if we look at the ratio of duplicated instructions over the total number of instruc-
tions for every instruction provided by the Dockerfile DSL, we find that the high majority
of instructions available in our corpus are duplicated (32,269 out of 37,319). The RUN in-
structions being the most frequent instructions in our corpus by far (26,053 instructions)
where 86% of them are duplicated. The second most frequent instructions are ENV in-
structions (3,762 instructions) with more than 78% of them being duplicated. Followed by
FROM instructions (1,372 instructions) with 79% of them being duplicated.

Finally, while our tool identifies 877 duplicates, 64% of all Dockerfile family maintainers
from our survey (16 out of 25) said that they don’t need a tool to detect duplicates. They
state that duplicates are easy to find and that they don’t want to use another tool. Therefore,
the need for a detection tools for Dockerfile duplicates isn’t as important as it’s the case
with duplicates in programming languages [Kamiya et al., 2002; Baxter et al., 1998; Bellon
et al., 2007a], however, 9 maintainers are nonetheless asking for such tools to help them
ease the maintenance process.

4.4. CONTRIBUTIONS 69

Co-evolution

Figure 4.10 depicts a violin plot for the percentage of co-evolving commits per project
in our corpus. We can see that 50% of all projects have 14% of all their commits propagating
a same edit across several Dockerfiles. This number can go up to more than 29% for 25%
of projects in our corpus.

● ●

0 14 25 29 50 75 100
% of co−evolving commits per project

Figure 4.10 – Violin plot for the percentage of co-evolving commits per project.

Also, 94,1% of Dockerfile family maintainers who encountered duplicates (16 out of 17)
stated that they had performed identical changes across multiple Dockerfiles in a single
commit in the past. This confirms that keeping consistency across duplicates is a classi-
cal task performed by maintainers. Half of them (8 out of 16) qualified these consistency
updates as being annoying. 4 out of 16 Dockerfile family maintainers felt that these con-
sistency updates can be error-prone. However, others (6 out of 16) qualified them as being
easy to perform since they can be automated through templates and other techniques as
we’ll see in Section 4.4.3.

Summary

Duplicates in Dockerfile family are frequent. While they’re usually small and span
across only few Dockerfiles, they can also sometimes be large and span across many
Dockerfiles. Dockerfile family maintainers of our corpus frequently have to propagate
identical changes to multiple Dockerfiles. They also have a mixed opinion about these
changes. Dockerfile family maintainers not using any tool find them error-prone and
annoying, while Dockerfile family maintainers using dedicated tools find them easy to
perform.

Reasons for duplicates in Dockerfiles

In this section, we aim at understanding the underlying reasons behind duplicates
we’ve identified earlier.

70 CHAPTER 4. DUPLICATES IN DOCKERFILES

Methodology

For this study, we take a random sample of 50 duplicates from our duplicates corpus.
We limited the size of this random selection to only 50 duplicates, because analysing a
duplicate takes a long time. Three of the authors, external to the Dockerfile family main-
tainers of our corpus, review each duplicate and tag them with what they think is their
corresponding reason (see Section 4.5 for potential threats). Note that a single duplicate
can have multiple underlying reasons.

Results

In the remainder of this section, we describe the main reasons behind duplicates.

Software installation and configuration. The installation process of software can be
identical across multiple images, leading to duplicate instructions. The process can be
composed of different steps going from downloading the software and installing it, to
checking its signature, etc. Once the software is installed, the next step in this process
is to configure the software before running it.

LISTING 4.3 – Duplicate due to identical software installation process

1 ENV XWIKI_VERSION =8.4.5
2 ENV XWIKI_URL_PREFIX "http :// maven.xwiki.org /.../${

XWIKI_VERSION}"
3 ENV XWIKI_DOWNLOAD_SHA256 52 ed122c44984748a729a78 \
4 4c94cb70ccf0d2fa34c2340d0fd45c75deb3b0bc9
5 RUN rm -rf /usr/local/tomcat/webapps /* && \
6 mkdir -p /usr/local/tomcat/temp && \
7 mkdir -p /usr/local/xwiki/data && \
8 curl -fSL "${XWIKI_URL_PREFIX }/xwiki -ent -web -${XWIKI_VERSION

}.war" -o xwiki.war \&& \
9 echo "$XWIKI_DOWNLOAD_SHA256 xwiki.war" | sha256sum -c - &&

\
10 unzip -d /usr/local/tomcat/webapps/ROOT xwiki.war && \
11 rm -f xwiki.war

Listing 4.3 is an extract of a whole duplicate (11 lines) that we manually analysed. This
duplicate involves two files from the XWiki project. It first starts by defining some environ-
ment variables (lines 1 to 4), then cleans a folder, and creates other ones that are mandatory
for running XWiki (5 to 7). It then downloads the software and puts it in the right folder,
validates it, unzip it and deletes the downloaded file. 50% of duplicates we analysed were
due to software installation and configuration.

4.4. CONTRIBUTIONS 71

Dependency management. Dependencies also follow an installation process. Before in-
stalling dependencies, package managers need to be configured. After having installed the
dependencies, it is sometimes necessary to configure them. Finally, the list of dependen-
cies that needs to be installed may vary across images, but most dependencies are identi-
cal.

LISTING 4.4 – Duplicate due to package manager configuration

1 RUN apt -key adv --keyserver pgp.mit.edu \
2 --recv -keys 1614552 E5765227AEC39EFCFA7E00EF33A8F2399
3 RUN echo "deb http :// download.rethinkdb.com/apt xenial main"

\
4 > /etc/apt/sources.list.d/rethinkdb.list

Listing 4.4 is an extract of a duplicate caused by the package manager’s configuration
to be able to download the dependency. It involves three Dockerfiles from the rethinkdb
project 20.

Listing 4.5 shows a duplicate due to the installation of identical dependencies. In this
extract, the package manager starts by updating its list of packages (line 1). Then, it down-
loads a bunch of dependencies, and finally, it cleans the package list it previously down-
loaded in order to reduce the final image size. It involves 2 files of the bonita project 21.

It is common to see the underlying shell commands combined in a single RUN instruc-
tion as we explained in Section 4.2. We encountered this reason for 40% of duplicates we
analysed.

LISTING 4.5 – Duplicate due to dependency manager installation

1 RUN apt -get update
2 RUN apt -get install -y mysql -client -core -5.7 openjdk -8-jre -

headless postgresql -client unzip curl zip
3 RUN rm -rf /var/lib/apt/lists/*

Runtime configuration. These duplicates arise because developers set-up a same way of
running the container in several images. Indeed, while writing the Dockerfile, it’s possi-
ble to configure some parameters for the container runtime. For instance, the instruction
ENTRYPOINT lets developers configure a shell command that will be run inside the image
when instantiated as a container. For example, a bash image when started, will directly run
the bash binary. There are also instructions such as VOLUME for specifying how to mount
a folder from the user computer into the container, instructions for specifying the working
directory, etc..

Listing 4.6 shows a duplicate due to runtime configuration. In this extract, the Docker-
file specifies where a volume should be mounted (line 1), what command will be used as

20. https://github.com/rethinkdb/rethinkdb-Dockerfiles
21. https://github.com/Bonitasoft-Community/docker_bonita

https://github.com/rethinkdb/rethinkdb-Dockerfiles
https://github.com/Bonitasoft-Community/docker_bonita

72 CHAPTER 4. DUPLICATES IN DOCKERFILES

an entrypoint (line 4) and what command should be used (line 5). It involves 2 files from
the spiped 22 project. We encountered this reason in 26% of duplicates we analysed.

LISTING 4.6 – Duplicate due to runtime configuration

1 VOLUME /spiped
2 WORKDIR /spiped
3 COPY *.sh /usr/local/bin/
4 ENTRYPOINT ["docker -entrypoint.sh"]
5 CMD ["spiped"]

Summary

Duplicate instructions are mainly due to software installation and configuration (50%),
dependency management (40%) and runtime configuration (26%).

4.4.3 RQ3: What are the pros and cons of tools used by experts to
manage Dockerfiles?

Methodology

To answer our third and final research question, we manually analyze each repository
in our corpus to determine if what we call a Dockerfile management tool has been used. We
define as Dockerfile management tool any tool that helps the maintenance of Dockerfiles.
To that extent, we manually search in all 99 projects in our corpus looking for scripts or
binaries that could be used as tools to manage Dockerfiles. We then cluster theses scripts
and binaries and identify 3 main Dockerfile management tool categories. We perform a
thorough analysis to describe each one of these categories (Section 4.4.3). We also report
our survey’s answers relative to the use of tools. Finally, we discuss the tools with regard
to their capabilities to handle change propagation, highlighting their advantages and their
limitations (Section 4.4.3).

Dockerfile Management Tools

We find that 66 projects in our repositories use tools to manage their Dockerfile fam-
ily (66% of our corpus) . We notice that there is no on-the-shelf tool for this purpose: all
developers maintain their own tool. However, all management tools have an update script
file (located in the root of the repository) that is usually named update.sh, which is re-
sponsible for updating the whole Dockerfile family. The update script needs some input
parameters to generate the Dockerfiles, such as the version number or the target base im-
age. 75% of them receive the parameters from the command-line while 25% automatically

22. https://github.com/TimWolla/docker-spiped

https://github.com/TimWolla/docker-spiped

4.4. CONTRIBUTIONS 73

fetch parameters from a website. Finally some of the latter projects even automate the ex-
ecution of the update.sh script at regular intervals via a dedicated bot. We notice that 88%
of these scripts are written in Bash, the remaining 12% are written in different languages
such as Go, PHP, Makefile, Python, Perl and Groovy.

Further, when we ask Dockerfile family maintainers in our survey if they use tools to
handle duplicates, 56% (14 out of 25) said they actually don’t, because it is too much time
consuming or difficult to implement. When we ask them: Would you like to have a tool
built to avoid duplicates in Dockerfiles?, about 57% (8 out of 14) said they would like to
have one, which confirms the usefulness for management tools. The remaining ones (6
out of 14) said no because they don’t want to use another tool or don’t see the need.

However, among the remaining 44% (11 out of 25) who are using tools, 9 replied they
were using the tools that we’ll present in this section, and 2 replied that they were using git
branches and multi-stage builds as management tools for their Dockerfiles. 7 out of the 11
Dockerfile family maintainers using tools said that they were satisfied with their tools, the
remaining 4 weren’t satisfied with their tool. However, by analysing the answers, we real-
ized that all maintainers use multiple different tools depending on the project. Therefore,
we could not use the answers of Dockerfile family maintainers to directly pinpoint their
favorite tools.

We now present the main categories of Dockerfiles management tools we encountered.

Template processor. They are the most frequent tools in our corpus (54%) and are used
by 8 out of 11 maintainers in our survey. Template processors use a template, some in-
put data, and a template engine. This kind of tools are also widely used to generate web
pages [Parr, 2004; Tatsubori and Suzumura, 2009]. When invoked, the template engine
injects the input data into the templates to generate the outputs.

The most classical templates used in our corpus are just plain Dockerfiles containing
several placeholders as done in Listing 4.7. This listing presents an extract of the template
used to generate the Dockerfiles of the Python project. We first notice that the base image
is defined by a text replacement and a variable (line 1). The GPG key and Python version
that needs to be installed use the same features (text replacement and a variable (lines 2
and 3)).

LISTING 4.7 – An extract of the Python Dockerfile template

1 FROM debian :%% PLACEHOLDER %%
2 ENV GPG_KEY %% PLACEHOLDER %%
3 ENV PYTHON_VERSION %% PLACEHOLDER %%

Only a few projects use more advanced template technologies supporting advanced
features such as inclusion of sub-templates, loops and conditional statements: only two
projects implement sub-templates, and only one project supports conditional statements.
For instance, the XWiki project uses the most advanced template language we observed.

74 CHAPTER 4. DUPLICATES IN DOCKERFILES

Listing 4.8 shows an extract of this project’s template. Among the list of XWiki’s depen-
dencies, developers must install either mysql or postgres according to the desired image
flavour In the example, we see that a conditional statement is used (coming from Groovy’s
templating language) to handle this case (lines 7 and 8). Regardless of the template lan-
guage, projects using templates all perform the template rendering inside the update.sh
script.

LISTING 4.8 – An extract for the XWiki Dockerfile template

1 RUN apt -get update && \
2 apt -get --no-install -recommends -y install \
3 curl \
4 libreoffice \
5 unzip \
6 procps \
7 <% if (db == ’mysql’) print ’libmysql -java’
8 if (db == ’postgres ’) print ’libpostgresql -jdbc -java’ %> && \
9 rm -rf /var/lib/apt/lists/*

Find and replace. Find and replace tools are also fairly common Dockerfile management
tools, and are used by 36% of the projects in our corpus and by 2 out of 11 maintainers in
our survey. These tools proceed to update all Dockerfiles present in the repository by di-
rectly updating some of their content using the input data. Therefore, previous Dockerfiles
present in the repository are overwritten by the updated ones.

Such Dockerfile management tools mainly use regular expressions or dedicated Unix
tools such as sed, located directly in the update.sh script. For instance, Listing 4.9 de-
picts a real extract from Kibana project’s update script. We see that the values at the right
of KIBANA_MAJOR, KIBANA_VERSION and KIBANA_SHA1 are replaced by the value con-
tained in the variables passed as input parameters to the update script.

LISTING 4.9 – An extract of the Kibana update script

1 sed -ri ’
2 s/^(ENV KIBANA_MAJOR) .*/\1 ’"$version"’/;
3 s/^(ENV KIBANA_VERSION) .*/\1 ’"$fullVersion"’/;
4 s/^(ENV KIBANA_SHA1) .*/\1 ’"$sha1"’/;
5 ’ "$version/Dockerfile"

Generator. Generators are the least frequent Dockerfile management tool, only used by
10% of the projects in our corpus. However, they are used by 8 out of 11 Dockerfile family
maintainers in our survey. They consist of a single update script that generates all Dock-
erfiles with their content using a shell language (bash for 4 out of 5 projects) or a general-
purpose language (perl for one project). These tools leverage on features offered by their

4.4. CONTRIBUTIONS 75

host language and therefore provide many features (variables, loops, conditional evalua-
tion, functions, ...).

Listing 4.10 is an extract from the OpenJDK project’s update script (written in bash).
In this example, we see that a loop is used to generate the Dockerfiles for all versions of
OpenJDK. Additionally, a conditional evaluation is used to add some extra dependencies if
they are available for the target base image. Tools using generators place all the generator’s
code directly in the update.sh script.

LISTING 4.10 – An extract for the OpenJDK Dockerfile generator

1 for version in "${versions[@]}"; do
2 ...
3 if ["$addSuite"]; then
4 cat >> "$version/Dockerfile" <<-EOD
5 RUN echo ’deb http :// deb.debian.org/debian $addSuite main’ >

/etc/apt/sources.list.d/$addSuite.list
6 EOD
7 fi
8 done

Summary

Many projects use tools to handle duplicates. They fall into three categories: find and
replace, template processors and generators. Several Dockerfile family maintainers
stated that such tools can be too much time consuming or difficult to implement, and
thus are not using them. However Dockerfile family maintainers using tools are mostly
satisfied with them.

Discussion

In this section, we review how each kind of Dockerfile management tool enables de-
velopers to handle duplicate code. In order to discuss the pros and cons of each tool, we
start by taking a closer look at why Dockerfile family co-evolve and therefore what types
of changes Dockerfile family maintainers are propagated on Dockerfiles. To do so, we ran-
domly select a sample of 50 commits having several Dockerfiles co-evolving from all co-
evolving commits previously extracted in Section 4.4.2. We then manually look at each
commit and determine the reason behind each co-evolution. As a result, we find two main
types of changes: version update (28 out of 50) that are similar to the change shown in List-
ing 4.11 and other changes (22 out of 50), such as bug-fixes or refactorings, similar to the
change shown in Chapter 1 (Listing 4.1). Version updates are predictable changes regularly
performed at a same location, while the other changes are arbitrary and can span across
multiple lines. We use these two categories of propagated changes to discuss the pros and
cons of each category of tools in the remainder of this section.

76 CHAPTER 4. DUPLICATES IN DOCKERFILES

LISTING 4.11 – An extract of the dicussed version number update across the whole Dock-
erfile family

1 ENV PYTHON_PIP_VERSION 19.0.2 19.0.3

Find and replace. Pros. Find and replace tools handle version update propagation very
well. Since the location of changes is known in advance, it is easy to build a regular ex-
pression or a sed command that automates them. In addition, it is very easy to set-up a
find and replace tool, since it only requires to write a script that does nothing more than
applying the sed command or the regular expression when called.

Cons. On the other hand, find and replace tools are not adapted to other changes than
version updates. Indeed, these changes are usually only applied once on the code base,
therefore there is no use for defining and storing a regular expression or a sed command to
perform it. In case of such changes, developers have to find all Dockerfiles containing the
duplicate sequence of instructions and apply the fix manually.

Template processor. Pros. Template processors are capable of handling the two change
propagation scenarios. For both scenarios, it is sufficient to apply the change on the tem-
plates containing the concerned sequence of instructions, and re-generate the Dockerfiles.
We note that projects using template processors and maintaining Dockerfiles for only one
reason, usually write only one template, thus eliminating all possibles duplicates.

Cons. Projects using template processors and maintaining a Dockerfile family for more
than one reason write multiple templates (only four projects out of 26 in this case man-
aged to write only one template). When we run the detection tool we used previously in
Section 4.3.3 on the templates of projects using multiple templates (23 projects out of 35
projects using templates), we still find 95 duplicates in the templates.

Figure 4.11 presents statistics about these projects. The left figure is a Violin plot show-
ing the percentage of duplicate instructions across Dockerfiles of projects using templates
The right figure shows a Violin plot for the percentage of duplicates reduction in projects
using templates. We can clearly see that the use of templates can help reduce the number
of duplicates that a Dockerfile family maintainers has to manage with a median at 31%
reduction. However, duplicates are still not fully eliminated even when using templates,
therefore Dockerfile family maintainers still have to propagate some changes manually.

Generator. Pros. Similarly to the template tools, generator tools are capable of handling
both change propagation scenarios. Indeed, the five projects using these tools have a single
file in their repository that generates all Dockerfiles, thus eliminating all duplicates. By
looking at the source code of their generator, we found out that the key features were: text
replacement, loops and conditional evaluation (as we can see in Listing 4.10). To propagate
a change, the Dockerfile family maintainers have to locate the concerned location in the
generator’s code, perform the change, and regenerate all Dockerfiles.

4.5. THREATS TO VALIDITY 77

●

0

25

50

75
82
88
93

100

%
 o

f d
up

lic
at

e
in

st
ru

ct
io

ns
 a

cr
os

s
D

oc
ke

rf
ile

s

0

23

31

50
56

75

100

%
 o

f r
ed

uc
tio

n
of

 d
up

lic
at

es

Figure 4.11 – Left plot: Violin plot for the percentage of duplicate instructions in Docker-
files of a project using Templates. Right plot: Violin plot for the percentage of duplicates
reduction in projects using templates.

Cons. The only downside we found with these tools is that the content of the generator
(usually a shell script) is very cumbersome. Indeed, while Dockerfile family maintainers
using templates write and read code that is very similar to a Dockerfile, Dockerfile family
maintainers using generators write Dockerfiles with a totally different language. Addition-
ally, it is far from obvious to understand the content of Dockerfiles that will be generated
from it.

Summary

Find and replace tools handle very well the propagation of version updates but aren’t
adapted for other changes. Template tools are capable of handling the two change
propagation scenarios but still don’t fully eliminate duplicates. Generators are also
capable of handling the two change propagation scenarios, they do fully eliminate du-
plicates but are much less readable than templates.

4.5 Threats to validity

We discuss here the threats to validity of our study following the guidelines provided by
Wohlin et al. [Wohlin et al., 2012].

78 CHAPTER 4. DUPLICATES IN DOCKERFILES

Construct validity. In Section 4.3.3, while our tool managed to identify identical dupli-
cates in our corpus, measurement errors could possibly have been introduced by our du-
plicates detection tool. A mitigation to this is the fact that we chose to identify only identi-
cal clones (equivalent to type-I code clones) which are less prone to not be detected.

Internal validity. In Section 4.3.1, we look for Dockerfiles only based on their filename
while supposing that the name is Dockerfile. We also assumed in Section 4.4.1 that the
reason behind the existence of a Dockerfile is encoded in its path. Of course, it is possible
that some projects use alternative naming and location schemes and this would bias our
results. To ensure the validity of our hypothesis we manually inspect a random subset of
20% of projects and don’t find any counter-example.

In Section 4.4.2, while the sample size is consequent, it isn’t large enough to be repre-
sentative of the whole duplicates corpus. Further, duplicates’ reasons tagging is done by
the study’s authors who aren’t experts of the projects containing the duplicates. Moreover,
the process of tagging a duplicate is very subjective which could bias the tagging results.
Finally, while the three authors tried to mitigate the misidentification threat by concerting
each other, a more formal approach should be taken in a future study replication work.

In Section 4.4.3, Dockerfile management tools are identified by two authors of the
study. While strategies aren’t that similar, meaning less subjective to identify, the two au-
thors concerted each other to mitigate the misidentification threat. We attempt to provide
all the necessary details to replicate our study and analysis. We also provide all data in-
volved in our study to enable replication and scrutiny of our results 23.

External validity. This study focuses only on mature and official projects, correspond-
ing to the 99 projects in our repository. This is on purpose, as these projects are defined
by Docker as implementing all best practices. Therefore, the projects may be more main-
tained and have larger Dockerfiles than more common projects meaning that the results
we got may not be representative of the whole Docker ecosystem but to a rather more ad-
vanced category of projects.

In Section 4.3.2, the survey gathered 25 responses from Dockerfile family maintainers
(3% response rate). While this number isn’t large, the fact that they are experienced Dock-
erfile family maintainers of official Docker repositories means that their answers can be
considered of high-quality. Also, since we are aiming at only official repositories Docker-
file family maintainers, the answers we gathered could be biased towards a more advanced
category of Dockerfile maintainers.

Conclusion validity. A threat to our study concerns the reliability of the metrics com-
puted through our experiments. We did follow a semi-automated process for all measure-
ments in RQ1, however we followed a fully manual approach in RQ2 and RQ3.

23. https://se.labri.fr/a/ICSME19-docker-oumaziz

https://se.labri.fr/a/ICSME19-docker-oumaziz

4.6. CONCLUSION 79

Another threat to our study is the fact that we didn’t statistically validate our results
through non-parametric statistics (e.g. Mann-Whitney test).

4.6 Conclusion

In this chapter, we answered questions regarding duplicates handling in Dockerfiles
families by providing a grounded study based on the analysis of the official Docker projects.
We showed that official Docker projects frequently maintain families of Dockerfiles and
found the underlying reasons: supporting multiple versions/base-images and version-
s/flavours. We then showed that duplicates in Dockerfiles are abundant, and found the
underlying reasons behind them: software installation and configuration, dependency
management and runtime configuration. We also performed a survey on Dockerfile fam-
ily maintainers of official projects and found that they are aware of their existence and are
frequently facing them. However, Dockerfile family maintainers have a mixed opinion re-
garding them. While Dockerfile family maintainers not using tools for handling duplicates
state that their handling may be error-prone, Dockerfile family maintainers using tools
state that they are easy to maintain. We also found that some Dockerfile family maintain-
ers handle duplicates by using ad-hoc tools: template processors, code generators, find
and replace executors. Finally, we showed that projects using template processors and
code generators manage to reduce the amount of duplicates with a median at 30% up to
100% for generators.

CHAPTER

5
Conclusion

Software maintenance and evolution represents an important part of the software’s de-
velopment life-cycle, making up to 80% of the overall cost and effort [Alkhatib, 1992]. Dur-
ing the maintenance effort, it happens that developers have to resort to copying and past-
ing source code fragments in order to reuse them. Such practice, seemingly harmless is
more frequent than we expect. During the last two decades, many studies have tried to un-
derstand the underlying reasons for developers to resort to code clones [Baxter et al., 1998;
Kapser, 2009; Rieger, 2005], and multiple code clone detectors have been released [Baxter
et al., 1998; Kamiya et al., 2002; White et al., 2016a]. Through this thesis, we investigate the
existence of clones beyond source code in two types of software artifacts: API documenta-
tion and deployment files (i.e. Dockerfiles). To do so, we answered the following research
questions:

— RQ1: Do developers often resort to copy-pastes?

— RQ2: Why do developers resort to perform copy-pastes?

— RQ3: Could duplicates be avoided by a proper usage of existing tools?

5.1 Summary of contributions

In this section, we propose a summary of the two contributions discussed in this thesis
regarding two specific types of artifacts: API documentation and Dockerfiles.

5.1.1 Duplicates in API documentation

Our first contribution, presented In Chapter 3, aims at investigating the issue of dupli-
cates in API documentation. In order to perform such investigation, we apply an empiri-

81

82 CHAPTER 5. CONCLUSION

cal research methodology on a corpus composed of 100 open-source project repositories
maintaining API documentation (50 using Java programming language and 50 using Ruby
programming language). We also perform a survey on 39 developers using either Java or
Ruby and gather their opinions regarding duplicates in API documentation.

As a result, we first show that duplicates of documentation tags are abundant. Secondly,
we then manually analyse these duplicates and identify that they are caused by five differ-
ent kinds of relationships in the underlying source code: (1) delegation: when a method
calls another one, (2) sub-typing: when a method performs a computation that is similar
to another method, (3) code clone, (4) similar intent: when a method overrides another
one that is defined in a same hierarchy and (5) similar use: when two methods or more
share a common input parameter, output or exception but each method’s behavior is to-
tally different. Thirdly, we find that developers responding to our survey, often resort to
make API documentation duplicates co-evolve, and find such practices as being annoy-
ing and error-prone. They also ask for documentation tools that can help them avoid such
duplicates. Finally, through our study, we pinpoint the fact that it is common for documen-
tation tools to not provide reuse mechanisms to cope with these causes. However, one tool
(i.e. Yard) provides a mechanism that handles most duplicates causes that we’ve identified
in our study.

This research work was published at the 16th International Conference on Software
Reuse (ICSR 2017) [Oumaziz et al., 2017].

5.1.2 Duplicates in Dockerfiles

Our second contribution, presented In Chapter 4, aims at providing practitioners a
clear explanation for why Dockerfile duplicates arise in projects, and what are the differ-
ent means to handle duplicates with their pros and cons. To do so, we apply a grounded
study based on the analysis of the official Docker projects (99 open-source projects) which
are real-world popular projects that manage medium to large families of Dockerfiles and
which promote the best practices to maintain Dockerfiles. We also perform a survey on
official Docker projects’ maintainers and gather their opinions regarding duplicates on
Dockerfiles.

As a result, we first show that official Docker projects frequently maintain families of
Dockerfiles and find the underlying reasons: supporting multiple versions/base-images
and versions/flavours. Secondly, we then show that duplicates in Dockerfiles are abun-
dant, and find the three underlying reasons behind them: (1) Software installation and
configuration, (2) dependency management and (3) runtime configuration. Thirdly, we
find that official Docker project maintainers are aware of the existence of duplicates in the
Dockerfiles they maintain and are frequently facing them. However, they have a mixed
opinion regarding them. While maintainers not using tools for handling duplicates state
that their handling may be error-prone, maintainers using tools state that they are easy
to maintain. We also find that some maintainers handle duplicates by using ad-hoc tools:

5.2. PERSPECTIVES AND DISCUSSION 83

template processors, code generators, find and replace executors. Finally, we show that
projects using template processors and code generators manage to reduce the amount of
duplicates with a median at 30% up to 100% for generators.

This research work was published at the 35th IEEE International Conference on Software
Maintenance and Evolution (ICSME 2019) [Oumaziz et al., 2019].

5.2 Perspectives and discussion

Software artifacts beyond code contain duplicates just as the source code does. In this
section, we present several perspectives for extending the research work presented in this
thesis, and discuss duplicates in software artifacts a more broader perspective.

5.2.1 Duplicates in API documentation

In our first contribution, presented In Chapter 3, as we’ve stated in our threats to valid-
ity (Section 3.5), we applied an empirical research methodology on a corpus composed
of 100 open-source project repositories maintaining API documentation (50 using Java
programming language and 50 using Ruby programming language). Therefore, our study
focused only on open-source projects with the largest number of stars on Github, corre-
sponding to the 100 projects in our repository meaning that the results we got may not be
representative of all projects having an API documentation. In this sense, it would be in-
teresting to further investigate the existence and underlying causes of clones on projects
which aren’t open-source such as industrial projects and even projects using other pro-
gramming languages to determine if the issues we’ve identified are actually common in
other situations.

Another interesting perspective is to investigate the existence of duplicates on other
types of API documentation. In our work, we focused only on code APIs documentation,
one could take a closer look on Web API documentation, or in this case, specification, such
as OpenAPI specifications for instance. OpenAPI specification is an API description format
for REST APIs. Such specification is written in a JSON or XML file and is used to describe an
entire API such as the different API endpoints, input parameters and output, HTTP method
type, etc. These API descriptions, such as parameter descriptions for instance, can there-
fore be duplicated just as we’ve previously seen with methods having their input parame-
ters being duplicated.

Finally, until now, we’ve only taken a closer look at exact API documentation dupli-
cates, an interesting perspective could be to take a closer look at similar duplicates. What
we mean by similar duplicates are sentences which are considered as duplicates based on
their meaning rather than a textual similarity. One could use more recent Natural Lan-
guage Processing (NLP) approaches relying on deep learning techniques such as word em-
beddings (e.g. Word2Vec) and document embeddings (e.g. Doc2Vec) to better identify sen-

84 CHAPTER 5. CONCLUSION

tence similarity. However, such approach might have to be semi-automated, as identified
duplicates might be false-positives.

5.2.2 Duplicates in Dockerfiles

In our second contribution, presented In Chapter 4, as we’ve stated in our threats to
validity (Section 4.5), we applied a grounded study based on the analysis of the official
Docker projects (99 open-source projects) which are real-world popular projects that man-
age medium to large families of Dockerfiles and which promote the best practices to main-
tain Dockerfiles. Therefore, through our study we might have focused on projects that may
be more maintained and have larger Dockerfiles than more common projects meaning
that the results we got may not be representative of the whole Docker ecosystem but to a
rather more advanced category of projects. Thus, extending our initial study to a broader
set of projects maintaining Dockerfiles can be interesting, as not all projects necessarily
maintain families of Dockerfiles.

Based on the feedback that we’ve gathered from our survey of official Docker project
maintainers, another interesting perspective is to investigate the possibility to have a tool
that could out-of-the-box identify duplicates in a family of Dockerfiles and automatically
provide templates avoiding as much duplicates as possible. The tool could go even further
in its detection technique and also detect some similar sets of Dockerfile instructions such
as detecting for instance: a set of RUN instructions installing a identical but differently or-
dered list of dependencies through a dependency manager. Such a tool could even extend
the existing Dockerfile build engine (through BuildKit) by adding custom reuse mecha-
nisms to Dockerfiles.

5.2.3 Discussion

In this dissertation, we’ve seen that software artifacts beyond code contain many du-
plicates. We think that developers as a broad audience should take a closer attention to it,
just as it is the case with code clones. In his thesis, Alan Charpentier [Charpentier, 2016]
proposed the idea of using more specialised code clone detection tools that could output
more precise results better corresponding the users needs. He states that such specialisa-
tion is the answer to make clone detection tools useful on a daily basis to developers and
maintainers.

While such specialisation is at some point necessary, we think that the community of
software artifact maintainers isn’t there yet. As a first step, it would be more interesting for
the research community to investigate the idea of providing clone detection tools that are
extremely generic, using simple techniques such as a line-based clone detection technique
that could be compatible with a wider range of textual artifacts and therefore, build more
awareness from the community. Such generic tools could be directly integrated with clas-
sical Integrated Development Environments (IDEs) as it’s the case with the IntelliJ IDEA

5.2. PERSPECTIVES AND DISCUSSION 85

IDE that automatically detects cloned code fragments and even proposes to automatically
refactor them when possible.

Finally, as a second step, after having increased people’s awareness, we think that the
research community should also focus on the clone management part, just as we’ve seen
for code clones in Chapter 2. To the best of our knowledge, except our research work
(in Chapter 3 and Chapter 4) no research work has been done regarding how maintainers
manage duplicates in software artifacts. Based on the feedback we’ve gathered from the
surveys we’ve performed on the community of maintainers of Dockerfiles and API docu-
mentation, we do notice that software artifacts actually lack reuse mechanisms while the
community asks for it. We think that the research community should investigate the idea
of initially providing generic reuse mechanisms such as the use of templates for instance,
rather than on a specialised case by case basis. Later, just as previously stated by Alan
Charpentier [Charpentier, 2016], the community could go further and provide specialised
clone detection tools which could be used by specialised linters (integrated in IDEs). These
linters could help educate maintainers on the different existing reuse approaches for re-
moving existing clones (corrective management) or even notify them when new ones are
introduced (preventive management).

APPENDIX

A
Résumé en Français

Lors du développement d’un logiciel, la maintenance et l’évolution représentent une
part importante du cycle de vie du développement, représentant jusqu’à 80% du coût et
de l’effort global [Alkhatib, 1992]. Pendant l’effort de maintenance ou de développement,
il arrive que les développeurs aient à copier et coller des fragments de code source afin de
les réutiliser. Communément appelés “clones” dans la littérature, ces doublons de code
source sont un sujet bien connu et étudié en génie logiciel. De nombreuses études em-
piriques [Baker, 1995; Baxter et al., 1998; Rieger et al., 2004; Zibran et al., 2011] ont montré
que les grands logiciels peuvent avoir entre 5% et 20% de leur base de code qui est clonée.

Au cours des deux dernières décennies, de nombreuses études ont tenté de com-
prendre les raisons sous-jacentes qui poussent les développeurs à recourir aux clones de
code [Baxter et al., 1998; Kapser, 2009; Rieger, 2005]. Par exemple, Cordi [Cordy, 2003] af-
firme que dans le secteur financier, le clonage est une stratégie de réutilisation courante.
Il explique que comme les produits financiers ne sont pas très différents les uns des
autres, lorsqu’un nouveau produit doit être développé, les développeurs commencent
par cloner un projet existant et l’adaptent ensuite pour produire le nouveau produit. Les
développeurs doivent recourir à de telles pratiques car les risques monétaires sont si élevés
en cas d’erreurs, que tout outil financier doit être fortement testé (70% des coûts des logi-
ciels financiers sont consacrés aux tests [Cordy, 2003]). Par conséquent, il est moins cher
et plus rapide de simplement réutiliser le code source existant en le clonant. Baxter et
al. [Baxter et al., 1998] écrit aussi sur ce qu’on appelle les clones accidentels, qui sont
inconsciemment produits par les développeurs. De tels clones peuvent se produire lors
de l’utilisation de bibliothèques par exemple, où les développeurs doivent écrire du code
répétitif tel qu’une séquence d’appels pour exécuter une tâche.

Cependant, le clonage de code n’est pas sans conséquence, Fowler et al. le considèrent
même comme un "bad smell". Par exemple, les clones de code peuvent être dangereux

87

88 APPENDIX A. RÉSUMÉ EN FRANÇAIS

lorsque les développeurs n’en sont pas conscients. Pendant le processus de maintenance,
s’il y a un bogue dans un fragment de code qui est cloné, le développeur doit propager une
correction de bogue à travers tous les fragments clonés et donc augmenter les coûts de
maintenance. Cependant, le développeur peut ne pas savoir que le bogue existe ailleurs
dans sa base de code. De nos jours, comme les développeurs travaillent généralement en
équipe et ne sont pas nécessairement conscients des clones existants, ce type d’erreurs
peut devenir plus fréquent et problématique. Par conséquent, les développeurs et les re-
sponsables sont tenus de savoir si leur code est cloné et, le cas échéant, où se trouvent les
autres fragments clonés.

Néanmoins, certaines études ont également discuté de la possibilité que les clones de
code puissent être utiles [Rieger, 2005].

Au cours de la dernière décennie, de multiples détecteurs de codes clonés ont été
développés. Les détecteurs de clones sont utilisés pour identifier des clones de code sim-
ilaires ou identiques dans une code-base Les détecteurs de clones existants utilisent une
pléthore de techniques telles que la détection de clones basée sur l’AST (Abstract Syntax
Trees) [Baxter et al., 1998], la détection de clones de code par jeton [Kamiya et al., 2002] ou
même les techniques d’apprentissage profond [White et al., 2016a].

Bien que la communauté des ingénieurs logiciels se soit beaucoup intéressée aux
clones de code au cours des deux dernières décennies, il y a eu peu d’intérêt pour
l’existence de clones autres que le code source, comme dans les artefacts logiciels pro-
duits pendant la conception de logiciels. Au cours du processus de développement d’un
logiciel, un ensemble de sous-produits appelés artefacts logiciels sont également produits.
Ces artefacts peuvent être de différents types : Documentation API, diagrammes de con-
ception, spécifications des exigences, fichiers de configuration, fichiers de déploiement,
etc. En raison de leur rôle important dans le processus de développement, les artefacts
logiciels peuvent avoir un impact important sur le produit final et jouer un rôle important
pendant le processus de développement. Cependant, on sait peu de choses sur les clones
dans les artefacts logiciels dans la littérature. Quelques études ont montré qu’il est égale-
ment fréquent d’avoir des doublons dans les artefacts logiciels. Par exemple, de multiples
études [Liu et al., 2006b; Störrle, 2013] ont montré que les diagrammes UML sont égale-
ment confrontés à des problèmes de doublons tout comme le code. Juergens, Domann
et al. [Juergens et al., 2010; Domann et al., 2009] montrent que les spécifications des ex-
igences peuvent également être confrontées à de tels problèmes de doublons. McIntosh
et al. [McIntosh et al., 2014] montrent que les systèmes de compilation sont également
confrontés à des problèmes de doublons.

Parmi tous les différents types d’artefacts que nous avons présentés précédemment,
nous avons choisi dans cette thèse de nous concentrer sur l’existence de clones sur deux
types spécifiques : les Fichiers de documentation d’API et de déploiement (i.e. Docker-
files). À notre connaissance, aucun travail de recherche n’a étudié les clones de ces deux
types d’artefacts par le passé. Nous avons choisi d’examiner de plus près la documenta-
tion d’API car elle aide les développeurs à comprendre comment utiliser et donc intégrer

89

une API externe qu’ils ne connaissent pas dans leur code. Nous pensons que le fait d’avoir
des clones dans la documentation d’une API peut conduire à des incohérences qui peu-
vent amener les développeurs et les responsables à ne pas comprendre le comportement
correct d’une API, augmentant ainsi les coûts et les efforts de développement logiciel.

Ensuite, nous avons également choisi d’examiner de plus près les Dockerfiles qui sont
un type de fichiers de déploiement propriétaire. Les Dockerfiles sont utilisés pour re-
grouper une application avec toutes ses dépendances en un seul paquet qui peut en-
suite être facilement distribué. Ces paquets représentent donc la dernière étape entre les
développeurs et les utilisateurs d’applications. Les fichiers docker sont écrits sous la forme
d’un simple fichier texte composé d’une séquence d’instructions écrites dans un langage
spécifique au domaine (DSL).

Par conséquent, nous croyons que la communauté pourrait bénéficier de ces deux
études empiriques étant donné l’importance de ces artefacts.

Dans cette thèse, nous étudions notre hypothèse sur la duplication dans la documen-
tation d’API et les Dockerfiles, et répondons plus formellement aux trois questions de
recherche suivantes :

— RQ1 : Les développeurs recourent-ils souvent au copier-coller ?

— RQ2 : Pourquoi les développeurs recourent-ils au copier-coller ?

— RQ3 : Peut-on éviter les copier-coller en utilisant correctement les outils existants ?

Notre première contribution, présentée dans In Chapter 3, vise à étudier la question des
doublons dans la documentation d’API. Pour ce faire, nous appliquons une méthodologie
de recherche empirique sur un corpus composé de 100 projets open-source maintenant
une documentation d’API (50 en langage de programmation Java et 50 en langage de pro-
grammation Ruby). Nous effectuons également une enquête auprès de 39 développeurs
utilisant Java ou Ruby et recueillons leurs opinions concernant les doublons dans la docu-
mentation d’API.

Notre première contribution, présentée dans In Chapter 3, vise à étudier la question des
doublons dans la documentation d’API. Pour ce faire, nous appliquons une méthodologie
de recherche empirique sur un corpus composé de 100 projets open-source maintenant
une documentation d’API (50 en langage de programmation Java et 50 en langage de pro-
grammation Ruby). Nous effectuons également une enquête auprès de 39 développeurs
utilisant Java ou Ruby et recueillons leurs opinions concernant les doublons dans la docu-
mentation d’API.

En conséquence, nous montrons d’abord que les doublons de tags de documenta-
tion, indépendamment du langage de programmation utilisé, sont malheureusement trop
nombreux. Ensuite, nous analysons manuellement ces doublons et identifions qu’ils sont
causés par cinq différents types de relations dans le code source sous-jacent : (1) déléga-
tion : lorsqu’une méthode en appelle une autre, (2) sous-typage : lorsqu’une méthode ef-
fectue un calcul similaire à une autre méthode, (3) clonage de code, (4) intention similaire
: lorsqu’une méthode supplante une autre qui est définie dans une même hiérarchie et (5)

90 APPENDIX A. RÉSUMÉ EN FRANÇAIS

utilisation similaire : lorsque deux méthodes ou plus partagent un paramètre commun,
une sortie ou une exception mais la tâche que chaque méthode doit faire est totalement
différente. Troisièmement, nous constatons que les développeurs qui répondent à notre
enquête ont souvent recours à des doublons dans la documentation d’API et trouvent ces
pratiques ennuyeuses et sujettes aux erreurs. Ils aimeraient également disposer d’outils
de documentation qui leur permettraient d’éviter de tels doublons. Enfin, à travers notre
étude, nous soulignons le fait qu’il est courant que les outils de documentation ne four-
nissent pas de mécanismes de réutilisation pour faire face à ces causes. Cependant, un
outil (c.-à-d. Yard) fournit un mécanisme qui traite toutes les causes de double emploi que
nous avons identifiées dans notre étude.

Notre deuxième contribution, présentée dans In Chapter 4, vise à fournir aux praticiens
une explication claire des raisons pour lesquelles les doublons de Dockerfile apparaissent
dans les projets, et quels sont les différents moyens dont ils disposent pour les traiter,
avec leurs avantages et inconvénients. Pour ce faire, nous réalisons une étude basée sur
l’analyse des Official Docker Projects (99 projets open-source) qui sont des projets popu-
laires dans le monde réel qui gèrent des familles de Dockerfiles moyennes à grandes et qui
favorisent les meilleures pratiques pour maintenir les Dockerfiles. Nous effectuons égale-
ment un sondage auprès des mainteneurs officiels des projets Docker et recueillons leurs
opinions concernant les doublons sur les fichiers Dockerfiles.

Par conséquent, nous montrons d’abord que les projets Docker officiels maintiennent
fréquemment des familles de Dockerfiles et identifions les raisons sous-jacentes : sup-
porter plusieurs versions / images de base et versions / approche. Deuxièmement, nous
montrons ensuite que les doublons dans les Dockerfiles sont abondants, et identifions les
trois raisons sous-jacentes qui les expliquent : (1) Installation et configuration de logi-
ciel, (2) gestion des dépendances et (3) configuration du runtime. Troisièmement, nous
constatons que les mainteneurs officiels des projets Docker sont conscients de l’existence
de doublons dans les Dockerfiles qu’ils maintiennent et sont fréquemment confrontés à
ceux-ci. Cependant, ils ont une opinion mitigée à leur sujet. Alors que les mainteneurs qui
n’utilisent pas d’outils pour gérer les doublons déclarent que leur gestion peut être sujette
aux erreurs, les mainteneurs qui utilisent des outils déclarent qu’ils sont faciles à gérer.
Nous constatons également que certains mainteneurs gèrent les doublons en utilisant des
outils ad-hoc : processeurs de templates, générateurs de code, rechercher / remplacer.
Enfin, nous montrons que les projets utilisant des processeurs de templates et des généra-
teurs de code parviennent à réduire le nombre de doublons avec une médiane allant de
30% à 100% pour les générateurs.

Enfin, le Chapter 5 conclut cette thèse en résumant nos contributions, et en présentant
plusieurs perspectives possibles pour étendre notre travail.

Bibliography

Ahasanuzzaman, M., Asaduzzaman, M., Roy, C. K., and Schneider, K. A. (2016). Mining
duplicate questions in stack overflow. In Proceedings of the 13th International Conference
on Mining Software Repositories, pages 402–412. ACM. Cited page 27.

Alalfi, M. H., Antony, E. P., and Cordy, J. R. (2018). An approach to clone detection in se-
quence diagrams and its application to security analysis. Software & Systems Modeling,
17(4):1287–1309. Cited page 23.

Alkhatib, G. (1992). The maintenance problem of application software: An empirical anal-
ysis. Journal of Software Maintenance: Research and Practice, 4(2):83–104. Cited pages
2, 81, and 87.

Antony, E. P., Alalfi, M. H., and Cordy, J. R. (2013). An approach to clone detection in be-
havioural models. In 2013 20th Working Conference on Reverse Engineering (WCRE),
pages 472–476. IEEE. Cited page 23.

Baker, B. S. (1993). A program for identifying duplicated code. Computing Science and
Statistics, pages 49–49. Cited page 16.

Baker, B. S. (1995). On finding duplication and near-duplication in large software systems.
In Proceedings of 2nd Working Conference on Reverse Engineering, pages 86–95. IEEE.
Cited pages 2 and 87.

Balazinska, M., Merlo, E., Dagenais, M., Lague, B., and Kontogiannis, K. (1999). Measuring
clone based reengineering opportunities. In Proceedings Sixth International Software
Metrics Symposium (Cat. No. PR00403), pages 292–303. IEEE. Cited page 10.

91

92 BIBLIOGRAPHY

Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). Clone detection using
abstract syntax trees. In Software Maintenance, 1998. Proceedings., International Con-
ference on, pages 368–377. IEEE. Cited pages 2, 10, 18, 68, 81, 87, and 88.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007a). Comparison and eval-
uation of clone detection tools. Software Engineering, IEEE Transactions on, 33(9):577–
591. Cited pages 10, 23, and 68.

Bellon, S., Koschke, R., Antoniol, G., Krinke, J., and Merlo, E. (2007b). Comparison and eval-
uation of clone detection tools. IEEE Transactions on software engineering, 33(9):577–
591. Cited page 30.

Bratthall, L. and Jørgensen, M. (2002). Can you trust a single data source exploratory soft-
ware engineering case study? Empirical Software Engineering, 7(1):9–26. Cited page
6.

Burd, E. and Bailey, J. (2002). Evaluating clone detection tools for use during preventa-
tive maintenance. In Proceedings. Second IEEE International Workshop on Source Code
Analysis and Manipulation, pages 36–43. IEEE. Cited page 10.

Charpentier, A. (2016). Contributions à l’usage des détecteurs de clones pour des tâches de
maintenance logicielle. PhD thesis. Cited pages 84 and 85.

Charpentier, A., Falleri, J.-R., Lo, D., and Réveillère, L. (2015). An empirical assessment of
bellon’s clone benchmark. In Proceedings of the 19th International Conference on Evalu-
ation and Assessment in Software Engineering, pages 1–10. Cited page 14.

Charpentier, A., Falleri, J.-R., and Réveillère, L. (2016). Automated extraction of mixins in
cascading style sheets. In 2016 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 56–66. IEEE. Cited page 26.

Cordy, J. R. (2003). Comprehending reality-practical barriers to industrial adoption of soft-
ware maintenance automation. In 11th IEEE International Workshop on Program Com-
prehension, 2003., pages 196–205. IEEE. Cited pages 2 and 87.

Cordy, J. R. and Roy, C. K. (2011). The nicad clone detector. In 2011 IEEE 19th International
Conference on Program Comprehension, pages 219–220. IEEE. Cited pages 20 and 23.

Correia, F. F., Aguiar, A., Ferreira, H. S., and Flores, N. (2009). Patterns for consistent soft-
ware documentation. In Proceedings of the 16th Conference on Pattern Languages of
Programs, page 12. ACM. Cited page 34.

Dagenais, B. and Robillard, M. P. (2010). Creating and evolving developer documentation:
understanding the decisions of open source contributors. In Proceedings of the eigh-
teenth ACM SIGSOFT international symposium on Foundations of software engineering,
pages 127–136. ACM. Cited page 34.

BIBLIOGRAPHY 93

Davey, N., Barson, P., Field, S., Frank, R., and Tansley, D. (1995). The development of a
software clone detector. International Journal of Applied Software Technology. Cited
page 21.

de Souza, S. C. B., Anquetil, N., and de Oliveira, K. M. (2005). A Study of the Documenta-
tion Essential to Software Maintenance. In Proceedings of the 23rd Annual International
Conference on Design of Communication: Documenting &Amp; Designing for Pervasive
Information, SIGDOC ’05, pages 68–75, New York, NY, USA. ACM. Cited page 34.

Deissenboeck, F., Hummel, B., Jürgens, E., Schätz, B., Wagner, S., Girard, J.-F., and Teuchert,
S. (2008a). Clone detection in automotive model-based development. In Proceedings of
the 30th international conference on Software engineering, pages 603–612. ACM. Cited
pages 24 and 101.

Deissenboeck, F., Juergens, E., Hummel, B., Wagner, S., y Parareda, B. M., and Pizka, M.
(2008b). Tool support for continuous quality control. IEEE software, 25(5):60–67. Cited
page 24.

Di Lucca, G. A., Di Penta, M., Fasolino, A. R., and Granato, P. (2001). Clone analysis in the
web era: An approach to identify cloned web pages. In Proceedings of the 7th IEEE Work-
shop on Empirical Studies of Software Maintenance (WESS’99), pages 107–113. Cited
pages 19 and 26.

Domann, C., Juergens, E., and Streit, J. (2009). The curse of Copy&Paste cloning in require-
ments specifications. In Proceedings of the 2009 3rd International Symposium on Em-
pirical Software Engineering and Measurement, pages 443–446. IEEE Computer Society.
Cited pages 3, 22, and 88.

Duala-Ekoko, E. and Robillard, M. P. (2007). Tracking code clones in evolving software. In
29th International Conference on Software Engineering (ICSE’07), pages 158–167. IEEE.
Cited page 29.

Duala-Ekoko, E. and Robillard, M. P. (2008). Clonetracker: tool support for code clone
management. In Proceedings of the 30th international conference on Software engineer-
ing, pages 843–846. ACM. Cited page 29.

Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language independent approach for
detecting duplicated code. In Software Maintenance, 1999.(ICSM’99) Proceedings. IEEE
International Conference on, pages 109–118. IEEE. Cited page 15.

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., and Monperrus, M. (2014). Fine-grained
and Accurate Source Code Differencing. In Proceedings of the 29th ACM/IEEE Inter-
national Conference on Automated Software Engineering, ASE ’14, pages 313–324, New
York, NY, USA. ACM. Cited page 40.

94 BIBLIOGRAPHY

Fluri, B., Würsch, M., and Gall, H. C. (2007). Do code and comments co-evolve? on the re-
lation between source code and comment changes. In Reverse Engineering, 2007. WCRE
2007. 14th Working Conference on, pages 70–79. IEEE. Cited page 34.

Forward, A. and Lethbridge, T. C. (2002). The Relevance of Software Documentation, Tools
and Technologies: A Survey. In Proceedings of the 2002 ACM Symposium on Document
Engineering, DocEng ’02, pages 26–33, New York, NY, USA. ACM. Cited page 34.

Gabel, M., Jiang, L., and Su, Z. (2008). Scalable detection of semantic clones. In Proceedings
of the 30th international conference on Software engineering, pages 321–330. ACM. Cited
page 20.

Giesecke, S. (2007). Generic modelling of code clones. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum fr Informatik. Cited page 28.

Gitchell, D. and Tran, N. (1999). Sim: a utility for detecting similarity in computer pro-
grams. In ACM SIGCSE Bulletin, volume 31, pages 266–270. ACM. Cited page 18.

Han, J., Pei, J., and Kamber, M. (2011). Data mining: concepts and techniques. Elsevier.
Cited page 18.

Hermans, F., Sedee, B., Pinzger, M., and van Deursen, A. (2013). Data clone detection and
visualization in spreadsheets. In 2013 35th International Conference on Software Engi-
neering (ICSE), pages 292–301. IEEE. Cited page 27.

Hummel, B., Juergens, E., Heinemann, L., and Conradt, M. (2010). Index-based code clone
detection: incremental, distributed, scalable. In Software Maintenance (ICSM), 2010
IEEE International Conference on, pages 1–9. IEEE. Cited pages 17, 21, 62, and 63.

Jablonski, P. and Hou, D. (2007). Cren: a tool for tracking copy-and-paste code clones and
renaming identifiers consistently in the ide. In Proceedings of the 2007 OOPSLA work-
shop on eclipse technology eXchange, pages 16–20. ACM. Cited page 29.

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). Deckard: Scalable and accurate tree-
based detection of code clones. In Proceedings of the 29th international conference on
Software Engineering, pages 96–105. IEEE Computer Society. Cited page 20.

Johnson, J. H. (1993). Identifying redundancy in source code using fingerprints. In Proceed-
ings of the 1993 conference of the Centre for Advanced Studies on Collaborative research:
software engineering-Volume 1, pages 171–183. IBM Press. Cited page 15.

Juergens, E., Deissenboeck, F., Feilkas, M., Hummel, B., Schaetz, B., Wagner, S., Domann,
C., and Streit, J. (2010). Can clone detection support quality assessments of require-
ments specifications? In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, pages 79–88. ACM. Cited pages 3, 22, and 88.

BIBLIOGRAPHY 95

Juergens, E., Deissenboeck, F., and Hummel, B. (2009a). Clonedetective-a workbench for
clone detection research. In Proceedings of the 31st International Conference on Software
Engineering, pages 603–606. IEEE Computer Society. Cited page 22.

Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. (2009b). Do code clones mat-
ter? In 2009 IEEE 31st International Conference on Software Engineering, pages 485–495.
IEEE. Cited page 2.

Juergens, E., Deissenboeck, F., Hummel, B., and Wagner, S. (2009c). Do Code Clones Mat-
ter? In Proceedings of the 31st International Conference on Software Engineering, ICSE
’09, pages 485–495, Washington, DC, USA. IEEE Computer Society. Cited page 34.

Kamiya, T., Kusumoto, S., and Inoue, K. (2002). CCFinder: a multilinguistic token-based
code clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670. Cited pages 2, 10, 17, 68, 81, and 88.

Kapser, C. (2009). Toward an understanding of software code cloning as a development
practice. Cited pages 2, 81, and 87.

Kapser, C. and Godfrey, M. W. (2006). "Cloning considered harmful" considered harmful.
In Reverse Engineering, 2006. WCRE’06. 13th Working Conference on, pages 19–28. IEEE.
Cited page 2.

Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms.
IBM journal of research and development, 31(2):249–260. Cited page 15.

Kawaguchi, S., Yamashina, T., Uwano, H., Fushida, K., Kamei, Y., Nagura, M., and Iida,
H. (2009). Shinobi: A tool for automatic code clone detection in the ide. In 2009 16th
Working Conference on Reverse Engineering, pages 313–314. IEEE. Cited page 29.

Komondoor, R. and Horwitz, S. (2001). Using slicing to identify duplication in source code.
In International Static Analysis Symposium, pages 40–56. Springer. Cited page 20.

Kontogiannis, K. A., DeMori, R., Merlo, E., Galler, M., and Bernstein, M. (1996). Pattern
matching for clone and concept detection. Automated Software Engineering, 3(1-2):77–
108. Cited page 19.

Koschke, R., Falke, R., and Frenzel, P. (2006). Clone detection using abstract syntax suffix
trees. In 2006 13th Working Conference on Reverse Engineering, pages 253–262. IEEE.
Cited page 20.

Kramer, D. (1999). API documentation from source code comments: a case study of
Javadoc. In Proceedings of the 17th annual international conference on Computer docu-
mentation, pages 147–153. ACM. Cited page 34.

96 BIBLIOGRAPHY

Krinke, J. (2001). Identifying similar code with program dependence graphs. In Proceedings
Eighth Working Conference on Reverse Engineering, pages 301–309. IEEE. Cited page 20.

Lague, B., Proulx, D., Mayrand, J., Merlo, E. M., and Hudepohl, J. (1997). Assessing the ben-
efits of incorporating function clone detection in a development process. In 1997 Pro-
ceedings International Conference on Software Maintenance, pages 314–321. IEEE. Cited
page 28.

Lakhotia, A. (1993). Understanding Someone else’s Code: Analysis of Experiences. J. Syst.
Softw., 23(3):269–275. Cited page 34.

Lanubile, F. and Mallardo, T. (2003). Finding function clones in web applications. In Sev-
enth European Conference onSoftware Maintenance and Reengineering, 2003. Proceed-
ings., pages 379–386. IEEE. Cited page 19.

Lethbridge, T. C., Singer, J., and Forward, A. (2003). How Software Engineers Use Docu-
mentation: The State of the Practice. IEEE Softw., 20(6):35–39. Cited page 34.

Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R., and Pfister, H. (2014). UpSet: visual-
ization of intersecting sets. IEEE transactions on visualization and computer graphics,
20(12):1983–1992. Cited page 64.

Li, L., Feng, H., Zhuang, W., Meng, N., and Ryder, B. (2017a). Cclearner: A deep learning-
based clone detection approach. In 2017 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 249–260. IEEE. Cited page 21.

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006). Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on software Engineering, 32(3):176–
192. Cited page 17.

Li, Z., Yin, G., Yu, Y., Wang, T., and Wang, H. (2017b). Detecting duplicate pull-requests in
github. In Proceedings of the 9th Asia-Pacific Symposium on Internetware, page 20. ACM.
Cited page 26.

Liu, C., Chen, C., Han, J., and Yu, P. S. (2006a). Gplag: detection of software plagiarism by
program dependence graph analysis. In Proceedings of the 12th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 872–881. ACM. Cited
page 20.

Liu, H., Ma, Z., Zhang, L., and Shao, W. (2006b). Detecting duplications in sequence dia-
grams based on suffix trees. In Software Engineering Conference, 2006. APSEC 2006. 13th
Asia Pacific, pages 269–276. IEEE. Cited pages 3, 22, and 88.

BIBLIOGRAPHY 97

Martin, D. and Cordy, J. R. (2011). Analyzing web service similarity using contextual clones.
In Proceedings of the 5th International Workshop on Software Clones, pages 41–46. ACM.
Cited page 25.

Mayrand, J. (1996). Evaluating the benefits of clone detection in the software maintenance
activities in large scale systems. WESS’96. Cited page 28.

Mayrand, J., Leblanc, C., and Merlo, E. (1996). Experiment on the automatic detection of
function clones in a software system using metrics. In icsm, volume 96, page 244. Cited
pages 10 and 19.

McIntosh, S., Poehlmann, M., Juergens, E., Mockus, A., Adams, B., Hassan, A. E., Haupt, B.,
and Wagner, C. (2014). Collecting and leveraging a benchmark of build system clones to
aid in quality assessments. In Companion proceedings of the 36th international confer-
ence on software engineering, pages 145–154. ACM. Cited pages 3, 24, and 88.

Miller, J. (2008). Triangulation as a basis for knowledge discovery in software engineering.
Empirical Software Engineering, 13(2):223–228. Cited page 6.

Monperrus, M., Eichberg, M., Tekes, E., and Mezini, M. (2012). What Should Developers
Be Aware Of? An Empirical Study on the Directives of API Documentation. Empirical
Software Engineering, 17(6):703–737. Cited page 34.

Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., and Zave, P. (2007). Matching and
merging of statecharts specifications. In Proceedings of the 29th international conference
on Software Engineering, pages 54–64. IEEE Computer Society. Cited page 23.

Nguyen, H. A., Nguyen, T. T., Pham, N. H., Al-Kofahi, J., and Nguyen, T. N. (2011).
Clone management for evolving software. IEEE transactions on software engineering,
38(5):1008–1026. Cited page 30.

Oumaziz, M. A., Charpentier, A., Falleri, J.-R., and Blanc, X. (2017). Documentation reuse:
Hot or not? An empirical study. In International Conference on Software Reuse, pages
12–27. Springer. Cited pages 7, 38, and 82.

Oumaziz, M. A., Falleri, J.-R., Blanc, X., Bissyandé, T. F., and Klein, J. (2019). Handling
duplicates in dockerfiles families: Learning from experts. In 2019 IEEE International
Conference on Software Maintenance and Evolution (ICSME), pages 524–535. IEEE. Cited
pages 7 and 83.

Parnas, D. L. (1972). A Technique for Software Module Specification with Examples. Com-
mun. ACM, 15(5):330–336. Cited page 34.

98 BIBLIOGRAPHY

Parr, T. J. (2004). Enforcing Strict Model-view Separation in Template Engines. In Proceed-
ings of the 13th International Conference on World Wide Web, WWW ’04, pages 224–233,
New York, NY, USA. ACM. event-place: New York, NY, USA. Cited page 73.

Pérez-Agüera, J. R., Arroyo, J., Greenberg, J., Iglesias, J. P., and Fresno, V. (2010). Using bm25f
for semantic search. In Proceedings of the 3rd international semantic search workshop,
page 2. ACM. Cited page 26.

Pollack, M. (2000). Code generation using javadoc. JavaWorld, http://www. javaworld.
com/javaworld/jw-08-2000/jw-0818-javadoc. html. Cited pages 34 and 35.

Rajapakse, D. C. and Jarzabek, S. (2007). Using server pages to unify clones in web appli-
cations: A trade-off analysis. In 29th International Conference on Software Engineering
(ICSE’07), pages 116–126. IEEE. Cited page 25.

Raza, A., Vogel, G., and Plödereder, E. (2006). Bauhaus–a tool suite for program analysis
and reverse engineering. In International Conference on Reliable Software Technologies,
pages 71–82. Springer. Cited page 18.

Rieger, M. (2005). Effective clone detection without language barriers. PhD thesis, Verlag
nicht ermittelbar. Cited pages 2, 81, 87, and 88.

Rieger, M., Ducasse, S., and Lanza, M. (2004). Insights into system-wide code duplication.
In 11th Working Conference on Reverse Engineering, pages 100–109. IEEE. Cited pages 2
and 87.

Roy, C. K. and Cordy, J. R. (2007). A survey on software clone detection research. Queen’s
School of Computing TR, 541(115):64–68. Cited page 14.

Roy, C. K., Cordy, J. R., and Koschke, R. (2009). Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of computer program-
ming, 74(7):470–495. Cited page 10.

Roy, C. K., Zibran, M. F., and Koschke, R. (2014). The vision of software clone management:
Past, present, and future (keynote paper). In 2014 Software Evolution Week-IEEE Confer-
ence on Software Maintenance, Reengineering, and Reverse Engineering (CSMR-WCRE),
pages 18–33. IEEE. Cited page 28.

Sæbjørnsen, A., Willcock, J., Panas, T., Quinlan, D., and Su, Z. (2009). Detecting code clones
in binary executables. In Proceedings of the eighteenth international symposium on Soft-
ware testing and analysis, pages 117–128. ACM. Cited page 27.

Sajnani, H., Saini, V., Svajlenko, J., Roy, C. K., and Lopes, C. V. (2016). Sourcerercc: Scaling
code clone detection to big-code. In 2016 IEEE/ACM 38th International Conference on
Software Engineering (ICSE), pages 1157–1168. IEEE. Cited page 17.

BIBLIOGRAPHY 99

Seaman, C. B. (1999). Qualitative methods in empirical studies of software engineering.
IEEE Transactions on software engineering, 25(4):557–572. Cited page 6.

Sharma, T., Fragkoulis, M., and Spinellis, D. (2016). Does your configuration code smell? In
Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference on, pages
189–200. IEEE. Cited page 25.

Störrle, H. (2013). Towards clone detection in UML domain models. Software & Systems
Modeling, 12(2):307–329. Cited pages 3, 23, and 88.

Sun, C., Lo, D., Khoo, S.-C., and Jiang, J. (2011). Towards more accurate retrieval of dupli-
cate bug reports. In Proceedings of the 2011 26th IEEE/ACM International Conference on
Automated Software Engineering, pages 253–262. IEEE Computer Society. Cited page 26.

Sun, C., Lo, D., Wang, X., Jiang, J., and Khoo, S.-C. (2010). A discriminative model approach
for accurate duplicate bug report retrieval. In Proceedings of the 32nd ACM/IEEE Inter-
national Conference on Software Engineering-Volume 1, pages 45–54. ACM. Cited page
26.

Sureka, A. and Jalote, P. (2010). Detecting duplicate bug report using character n-gram-
based features. In 2010 Asia Pacific Software Engineering Conference, pages 366–374.
IEEE. Cited page 26.

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of the 2nd interna-
tional conference on Software engineering, pages 492–497. IEEE Computer Society Press.
Cited page 28.

Synytskyy, N., Cordy, J. R., and Dean, T. (2003). Resolution of static clones in dynamic
web pages. In Fifth IEEE International Workshop on Web Site Evolution, 2003. Theme:
Architecture. Proceedings., pages 49–56. IEEE. Cited page 29.

Tairas, R. and Gray, J. (2006). Phoenix-based clone detection using suffix trees. In Proceed-
ings of the 44th annual Southeast regional conference, pages 679–684. ACM. Cited page
20.

Tatsubori, M. and Suzumura, T. (2009). HTML Templates That Fly: A Template Engine
Approach to Automated Offloading from Server to Client. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, pages 951–960, New York, NY,
USA. ACM. event-place: Madrid, Spain. Cited page 73.

Van Heesch, D. (2004). Doxygen. Cited pages 34 and 35.

Vanter, M. L. V. D. (2002). The documentary structure of source code. Information and
Software Technology, 44(13):767 – 782. Cited page 34.

100 BIBLIOGRAPHY

Wahler, V., Seipel, D., Wolff, J., and Fischer, G. (2004). Clone detection in source code by
frequent itemset techniques. In Source Code Analysis and Manipulation, Fourth IEEE
International Workshop on, pages 128–135. IEEE. Cited page 18.

White, M., Tufano, M., Vendome, C., and Poshyvanyk, D. (2016a). Deep learning code frag-
ments for code clone detection. In Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pages 87–98. ACM. Cited pages 2, 81, and
88.

White, M., Tufano, M., Vendome, C., and Poshyvanyk, D. (2016b). Deep learning code
fragments for code clone detection. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, pages 87–98. ACM. Cited page 21.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and Wesslén, A. (2012). Ex-
perimentation in software engineering. Springer Science & Business Media. Cited pages
52 and 77.

Wood, M., Daly, J., Miller, J., and Roper, M. (1999). Multi-method research: An empirical
investigation of object-oriented technology. Journal of Systems and Software, 48(1):13–
26. Cited page 6.

Yan, X., Han, J., and Afshar, R. (2003). Clospan: Mining: Closed sequential patterns in large
datasets. In Proceedings of the 2003 SIAM international conference on data mining, pages
166–177. SIAM. Cited page 17.

Yang, W. (1991). Identifying syntactic differences between two programs. Software: Practice
and Experience, 21(7):739–755. Cited page 18.

Zhang, G., Peng, X., Xing, Z., Jiang, S., Wang, H., and Zhao, W. (2013). Towards contex-
tual and on-demand code clone management by continuous monitoring. In 2013 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
497–507. IEEE. Cited page 28.

Zhou, J. and Zhang, H. (2012). Learning to rank duplicate bug reports. In Proceedings of the
21st ACM international conference on Information and knowledge management, pages
852–861. ACM. Cited page 26.

Zibran, M. F., Saha, R. K., Asaduzzaman, M., and Roy, C. K. (2011). Analyzing and fore-
casting near-miss clones in evolving software: An empirical study. In 2011 16th IEEE
International Conference on Engineering of Complex Computer Systems, pages 295–304.
IEEE. Cited pages 2 and 87.

List of Figures

1.1 Extract of a documentation duplication due to method delegation (in the
Apache Commons Collection project). Duplicated documentation is high-
lighted in red. 4

2.1 Example of a Type-I clone. 11
2.2 Example of a Type-II clone. 12
2.3 Example of a Type-III clone. 13
2.4 Example of a Type-IV clone. 14
2.5 Example of a code clone identified with a Text-based approach. 15
2.6 Example of code transformation. 16
2.7 Example of a PI-controller model gathered from [Deissenboeck et al., 2008a]. . 24

3.1 The generated documentation by Yard for the from_secret_key method from
the RbNaCL project. 36

3.2 Violin plot for the number of classes of each project in our for corpus (for both
Java and Ruby). 39

3.3 Left: Violin plot for the number of methods in every project in our corpus.
Right: Violin plot for the percentage of documented methods in every project
in our corpus. 40

3.4 Extract of a documentation duplication from the Apache Commons IO
project. The duplicated tag is highlighted in red. 41

3.5 Violin plot for the percetange of duplicated tags per project (for both Java and
Ruby). 43

3.6 Left: Violin plot for the number of methods sharing a common tag in Java.
Right: Violin plot for the number of methods sharing a common tag in Ruby. . 44

101

102 List of Figures

3.7 Upper-left: Violin plot for the number of duplicate @description tags per
project. Upper-right: Violin plot for the number of duplicate @params tags
per project. Lower-left: Violin plot for the number of duplicate @return tags
per project. Lower-right: Violin plot for the number of duplicate @throws
(@raise for ruby) tags per project. 45

3.8 Extract of duplicate due to a delegation between two methods in the Ruby/Git
library project. Duplicated tags are displayed in red. 46

3.9 Extract of duplicate due to two methods with a similar intent in the Guava
project. Duplicated tags are displayed in red. 47

3.10 Example of duplicate due to sub-typing in the Apache Commons Collections
project. Duplicated tags are displayed in red. 48

3.11 Example of duplicate due to code clone in the Apache Commons IO project.
Duplicated tags are displayed in red. 48

3.12 Extract of duplicate due to a similar use between two methods in the Ruby/Git
library project. Duplicated tags are displayed in red. 49

4.1 The stack of layers built from the Dockerfile with the corresponding final im-
age size. 59

4.2 Boxplot for the number of Dockerfiles maintained by each project. 61
4.3 RUN instruction with multiple shell commands split into two RUN instruc-

tions, one for each shell command. 62
4.4 Dockerfile presenting an example of duplicate index with chunk size set to 6. . 63
4.5 Extract of real Dockerfile duplicate from Bash shell v3.1 63
4.6 Extract of real Dockerfile duplicate from Bash shell v4.0 63
4.7 UpSet plot showing the relationships between versions, flavours, base images

and platforms across our repositories. 65
4.8 Upper-left plot: Violin plot for the percentage of duplicate instructions per

project. Upper-right plot: Violin plot for the number of instructions per
project. Bottom plot: Violin plot for the number of instructions by duplicate. . 67

4.9 Stripplot of the number of owners of every duplicate in our corpus. 68
4.10 Violin plot for the percentage of co-evolving commits per project. 69
4.11 Left plot: Violin plot for the percentage of duplicate instructions in Docker-

files of a project using Templates. Right plot: Violin plot for the percentage of
duplicates reduction in projects using templates. 77

List of Tables

3.1 The list of 19 documentation tools analysed in the study. 51

103

	Introduction
	Context
	Problem statement
	Methodology
	Contributions
	Thesis outline

	Background
	Context
	Clone definitions
	Clone detection approaches

	Empirical research on clones in software artifacts beyond code
	Clone management
	Summary

	Duplicates in API documentation
	Introduction
	Background
	Data collection
	Repositories
	Survey
	Duplicates detection tool

	Contributions
	RQ1: Do developers often resort to copy-paste documentation tags?
	RQ2: What are the causes of documentation tags copy-paste?
	RQ3: Could duplicate documentation be avoided by a proper usage of documentation tools?

	Threats to validity
	Conclusion

	Duplicates in Dockerfiles
	Introduction
	Background
	Data collection
	Repositories
	Survey
	Duplicates detection tool

	Contributions
	RQ1: Do official projects maintain families of Dockerfiles, and why?
	RQ2: Do duplicates arise in Dockerfiles families and why?
	RQ3: What are the pros and cons of tools used by experts to manage Dockerfiles?

	Threats to validity
	Conclusion

	Conclusion
	Summary of contributions
	Duplicates in API documentation
	Duplicates in Dockerfiles

	Perspectives and discussion
	Duplicates in API documentation
	Duplicates in Dockerfiles
	Discussion

	Résumé en Français
	List of Figures
	List of Tables

