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Rsum

L’augmentation des besoins en calcul pour les applications modernes (par

exemple dans le big data) a conduit au dveloppement d’infrastructures de calcul

de moyenne trs grande taille. Dans ce contexte, le cloud est devenu la solution

permettant la mutualisation des ressources. De plus en plus d’entreprises ou

d’institutions scientifiques mettent en place leur propre structure de cloud prive.

Une technologie cl sous-jacente au dveloppement de ces infrastructures est la

virtualisation. Les infrastructures virtualises apportent de nombreux avantages

pour la gestion des ressources, mais l’optimisation de la gestion des ressources

reste un dfi, avec l’objectif d’assurer un taux d’utilisation lev des ressources

matrielles et un faible gaspillage.

La consolidation des serveurs a t introduite dans le but d’optimiser ces

infrastructures. Le principe est de rassembler les machines virtuelles (VMs)

sur un nombre minimal de serveurs, permettant alors de suspendre les serveurs

inutiliss. Cependant, les stratgies de consolidation sont complexes mettre en

oeuvre, car elles doivent prendre en compte diffrents types de ressources (CPU,

mmoire, I/O). De plus, l’utilisation de ces ressources peut varier fortement

au cours du temps et la consolidation repose sur la migration de VM qui est

une opration trs lourde. En consquence, les consolidations sont effectues une

frquence relativement faible.

Dans cette thse, nous proposons la conception d’un systme de gestion

mmoire permettant la mutualisation de la mmoire entre les VMs. Ce systme

est orthogonal et complmentaire la consolidation. La premire contribution

est un systme de surveillance qui permet de mesurer le working-set (WS) de

chaque VM l’excution avec une faible intrusivit. L’tape suivante est de repren-

dre la mmoire inutilise par les VMs ayant un petit WS et de l’allouer aux VMs

ayant un gros WS pour les aider surmonter des surcharges mmoire tempo-

raires. Ainsi, nous proposons un systme de mutualisation mmoire la fois local

et global, permettant la surveillance de la taille du WS de chaque VM et la

mutualisation de la mmoire inutilise, soit localement (avec des VMs sur le mme

serveur) ou globalement (avec des VMs sur des serveurs voisins).

La solution a t value avec des benchmarks du HPC et du traitement de

donnes massives, et galement des applications scientifiques et du big data

(Apache Spark). Les rsultats dmontrent la pertinences des choix effectus.



Abstract

The increasing computation needs of modern applications led to the devel-

opment of medium to large scale computer infrastructures. Cloud computing

became a key solution for resource mutualization. More and more entreprises

and scientific institutions set-up their own private cloud facilities. The key

technology behind the development of these infrastructures is virtualization.

Virtualized infrastructures bring many advantages for resource management,

but resource optimization is still a challenge, for ensuring high hardware uti-

lization and low waste.

Server consolidation was introduced for optimizing such infrastructures. Its

principle is to gather VMs on as less servers as possible, thus allowing unused

servers to be suspended. However, consolidation strategies have to take into

account many types of resource (CPU, memory, I/O) thus inducing a high

complexity. Additionally, these resources may be fluctuating at runtime and

consolidation relies on VM migration which is a heavy operation. Therefore

consolidations are performed infrequently.

In this thesis, we propose the design of a memory management system

which allows mutualizing memory between VMs. This system is orthogonal

and complementary to consolidation. The first issue is to design a monitoring

system that should track the working set of the VMs at runtime with low

intrusiveness. The next important step is to reclaim unused memory from

under-loaded VMs and finally grant it to over-loaded VMs to help them to

overcome temporary memory difficulties. As a result, it is proposed a both

local and global memory mutualization system which allows to monitor the

working set size of each VM and to mutualize unused memory, either locally

(with the VMs located on the same node) or globally (with the VMs located

on neighbor nodes).

The solution has been evaluated with modern HPC, data intensive bench-

marks as well as scientific and Big Data (Apache Spark) applications. The

results demonstrate the effectiveness of our design choices.
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Chapter 1

Introduction

Modern applications have increasing computational needs. They include tradi-

tional applications such as web applications or social networks, but also scien-

tific pillars such as physics, biology or life sciences which require more and more

resources. Moreover, the important development of data processing fields such

as Big Data, Artificial Intelligence or Machine Learning significantly acceler-

ated this tendency. Due to these tremendous resource needs, we observed the

development of datacenters which include the computational infrastructures

(clusters of servers) for hosting these applications.

Due to the cost of creation and maintenance of these infrastrutures, it was

proposed to mutualize them, following the cloud computing principle. With

cloud computing, a provider is maintaining an infrastructure which can be used

on demand by its clients. The main benefit is to cut maintenance costs as they

are shared between clients who don’t have to invest in the management of their

own infrastructure. Another advantage is the high scalability, as clients have

potentially access to an infrastructure that they could not afford individually.

Moreover, the pay-as-you-go pricing made cloud computing even more popular,

allowing to pay only for the amount of resources that were effectively allocated

according to the needs.

The evolution of cloud computing prompted many companies or institutions

to set-up their own cloud computing infrastructures. In this regard, there are

three main types of cloud computing infrastructures:

1. Public cloud infrastructures are owned and maintained by third par-

ties (providers) which deliver their services (computational resources) to

clients via internet. In this case, the infrastructure and the software are

owned by the provider which is in charge of maintenance and providing

high availability.

2. Private cloud infrastructures are owned by a company or scientific or-

ganization for its internal use. A company is owning its hardware and



software infrastructure to satisfy the needs of its own workloads (within

the company). The main motivation for managing a private cloud (com-

pared to relying on a public cloud) is security.

3. Hybrid clouds are the combination of the two previous solutions. This is

applied in the case when an organization manages its own private cloud

but extends it with resources from a public cloud in case of resource

limitation.

In such infrastructures, different types of services may be managed:

1. Infrastructure as a Service (IaaS). This is the lowest level of service. The

cloud provides clients with hardware resources (computing, storage, etc.).

These resources may be real hardware resources or virtualized resources.

2. Platform as a Service (PaaS). This is a higher level service where the cloud

provides its clients with a platform for the development, deployment and

execution of a class of applications.

3. Software as a Service (SaaS). Here, the cloud directly provides the appli-

cations needed by its clients.

In this thesis, we are interested in resource management in computing plat-

forms independently from any application domain, so we mainly consider the

IaaS model.

1.1 Research Domain

With the cloud computing model, the clients benefit from the fact that providers

inherit from the infrastructure management responsibility. The main objective

of the providers is to cut the costs by saving energy and hardware consumption.

Energy consumption is a primary concern for datacenter (DC) manage-

ment. Its cost represents a significant part of the total cost of ownership (about

80% [14]) and it is estimated that in 2020, US DCs will spend about $13 billion

on energy bills [28]. The electricity consumption of computing infrastructures

is already going upwards to 810% of global consumption [39] and the total

global footprint is 2% of global CO2 emissions [33]. This means that beside

money wasting, the environment is directly influenced by the energy spend to

support such infrastructures.

One of the most efficient ways to minimize the energy consumption of com-

putational infrastructures is resource optimization. Resource management is

crucial for every datacenter provider. The aim of resource management is to

provide the same service with less resources and with the same quality (without
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Service Level Agreement (SLA) violation). The main resources of the datacen-

ters are: CPU, Memory, Disk and Network.

1.2 Problem Statement

The previous section described the importance of resource management and

the impact of energy spendings on the world environmental system. Many re-

searchers in the world try to tackle the issue of resource optimization nowadays.

However, it is very complex to target all types of resources at once. Thus, there

are many works in the field on CPU resource optimization, since it was consid-

ered to be the most expensive and main resource in datacenters. However, the

situation has changes during years. Over last years, we have seen the emergence

of new applications with growing memory demands, while hardware platforms’

evolution continued to offer more CPU capacity growth than memory, referred

to as the memory capacity wall [57]. In this PhD, we focus on optimization of

memory resource management and optimization in datacenters.

1.3 Background

1.3.1 Virtualized infrastructures

A majority of datacenters implements the Infrastructure as a Service (IaaS)

model where customers buy (from providers) Virtual Machines (VMs) with a

set of reserved resources. The VMs host general purpose applications (e.g. web

services), as well as High Performance Computing applications. In such IaaS

DCs, virtualization is a fundamental technology which allows optimizing the

infrastructure by colocating several VMs on the same physical server.

Generally, in computer science, the term virtualization is associated with

the creation of a virtual instance of a physical machine called virtual machine.

This is achieved by virtualizing the main resources such as CPU, Memory,

Disk, Network etc. Virtualization adds an abstract layer over the hardware,

which allows to run several VMs on a single physical host. The concept of

VM was introduced by IBM [26, 42] a long time ago, way before this concept

has been widely re-used in cloud computing. Virtualization changed the way

resources are allocated in computing infrastructures. Before, providers were

allocating a physical machine to run each given application. Virtualization

allows to host a set of VMs on a single physical server and therefore to host

several applications on the same server. VMs run isolated on their portion of

hardware with their own operating system (OS). This means that they are fully

protected one from another and totally independent. An abstracted software
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Figure 1.1: Type 1 hypervisor architecture

layer called hypervisor (or virtual machine monitor (VMM)) is in charge of

distributing hardware resources between VMs and managing these VMs. There

are two main types of hypervisors:

1. Type 1 or bare metal hypervisor. This type of hypervisor is installed

directly on top of the hardware and distributes physical resources to VMs.

The VMs (with their own OSs) run on-top of the hypervisor. Thus, the

hypervisor acts as an OS and VMs run one level above it. Figure 1.1

illustrates the architecture of type 1 hypervisors. This architecture allows

to minimize the overhead caused by the virtualization layer, allowing to

perform close to the speed of a native OS. However, as the hypervisor

should be installed in the place of the traditional OS, deployment and

maintenance might be harder.

2. Type 2 or hosted hypervisor. Such an hypervisor runs on-top of an exist-

ing OS. This adds an extra level of virtualization which obviously results

in higher overhead than type 1 hypervisors. However, in this type of hy-

pervisor, deployment and management of the hypervisor are much easier

and flexible. Figure 1.2 illustrates the architecture of hosted hypervisors

and points the extra level added by this type of hypervisor.

There are three main virtualization techniques: paravirtualization, full vir-
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Figure 1.2: Type 2 hypervisor architecture

tualization and Hardware assisted virtualization.

1. In paravirtualization, the OS (called the guest OS) is modified in a way

that it is aware of the virtualization system (the hypervisor) on top of

which it runs. The guest OS is capable to directly initiate direct calls to

the hypervisor called hyper-calls. This is a means to reduce the overhead

caused by virtualization.

2. In full virtualization, the hypervisor emulates the hardware for the guest

OS. So the guest OS does not have to be aware that it runs on a virtualized

hardware. This allows to run an unmodified guest OS in a virtualized

environment. However, emulation has a significant cost.

3. Hardware-assisted virtualization uses specific virtualization support pro-

vided by modern hardware, and it does not require any kind of custom

kernel or patches in the guest OS. Thus, it allows to run unchanged guest

OSes with close to native OS speeds.

Nowadays, almost every modern physical machine supports virtualization.

Virtualization made a step forward and it was even introduced for embedded

devices [40], allowing to run VMs on your smartphones or tablets. The moti-

vations of using virtualization in most of the infrastructure changed. Initially
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the main motivation was the full utilization of a hardware resources. Than,

many started to use it due to its fault tolerance and ease of maintenance. How-

ever, during last years more and more providers adapted it to optimize resource

consumption and minimize the energy consumption of the infrastructures.

1.3.2 Resource Management in Virtual Infrastructures

Virtualization is a key to resource management techniques. It allows to man-

age isolated execution environments (VMs) to which resources are allocated.

Generally there are two approaches of resource allocation:

1. Static: where a VM is created with a given amount of resources and the

resource allocation never changed during the lifetime of the VM.

2. Dynamic: where resources are allocated at creation time but might be

dynamically adapted at runtime according to VM’s needs.

In case of static allocation, the user estimates the resource consumption

and asks for a VM according to the peak workload of the application in order

to avoid VM saturation. Thus the reserved resources may stay underutilized

most of the time. This leads to resource wasting.

Dynamic resource allocation

Dynamic resource allocation [53] allows to change the resource (CPU, memory,

I/O) allocation during the runtime of VMs, according to resource utilization

and therefore to avoid wasting. For CPU and I/O resources, a time-sharing

approach is generally used, where VMs are granted access to the resource for

a given percentage of time. Therefore, dynamically changing the resource allo-

cation is relatively easy. However, regarding memory, things are more tricky.

The reason is the complexity of working set estimation (the amount of memory

effectively used by a VM) and fair memory sharing.

Regardless of this functionality, most of the e-infrastructures use a static

allocation approach.

VM live migration and consolidation

Another powerful resource management technique is VM live migration [24]

which allows to migrate VMs from one physical server to another without

disturbing the applications running inside a VM. This means that applications

do not have to be aware of migrations and users connected to these VMs do

not notice any changes while a VM is migrated to another machine. Dynamic

resource allocation associated with live migration may allow to gather VMs on
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Figure 1.3: How consolidation is achieved via VM migration

a minimal number of physical servers and to power off the idle servers. This

can dramatically reduce the energy consumption of a datacenter. Symetrically,

overloaded VMs may be migrated to a relatively underloaded physical machines

in order to re-allocate additional resources to these VMs and to boost their

performance or avoid Service Level Agreement (SLA) violation.

The density of VMs collocated on a single physical machine is called con-

solidation ratio. VM migration is used to raise the consolidation [25, 77] of

physical machines by hosting as much VMs as possible on each single node.

Consolidation is one of the main techniques used to improve resource utiliza-

tion in datacenters. Specific tools called ”consolidators” are managing clusters

by implementing migration and placement policies in datacenters. A consol-

idator decides where each VM should be placed or migrated in order to achieve

the highest consolidation ratio with the minimal number of active (powered

on) physical machines. Figure 1.3 illustrates how consolidation is achieved via

VM migration.

1.3.3 Memory Management in Virtual Environments

Ideally, consolidation should lead to highly loaded servers. Although consoli-

dation may increase server utilization by about 5-10%, it is difficult to actu-

ally observe server loads greater than 50% for even the most adapted work-

loads [15, 29, 66]. The main reason is that VM collocation is memory bound,

as memory saturates much faster than the CPU[72]. This situation was accen-

tuated over the last several years, as we have seen emerging new applications

with growing memory demands, while physical platforms had an opposite ten-

dency; the augmentation of the CPU capacity was faster than that of physical

memory. Therefore, memory is key to resource management.

As it is extremely complex to tackle the management of all the resources at
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the same time, in this thesis, we focus on memory management.

Optimizing memory management consists in avoiding memory waste. The

general principle is to identify VMs with weakly used memory, then reclaiming

that memory, and finally distributing this memory to VMs which lack memory.

Thefore, such a memory management consists of the following three steps:

1. Monitoring: the most important component of this memory management

system is a monitoring system. The monitoring system should allows to

track the memory consumption of VMs. This will allow to reclaim the

unused pages.

2. Reclaiming: This functionality should allow the memory management

system to reclaim unused memory from under-loaded VMs (regarding

memory).

3. Re-distributing: This technique should allow to redistribute the reclaimed

memory locally (to the VMs on the same node) or globally (to the VMs

on the neighboring nodes).

Monitoring

In a general purpose OS, a process allocates some number of pages in mem-

ory to load necessary data. However, during the run of the process, some of

the allocated pages are accessed more often than others. The pages that are

accessed frequently are called warm pages while less frequently accessed pages

are called cold pages. In case of memory shortage, the system will have to send

some of the allocated pages to swap. Hence, the optimal way is to swap out

cold pages, because swap is much slower than memory and frequent accesses

to pages located in the swap would degrade performance. The working set of

the system is the set of warm pages. Therefore, the system tries to predict its

memory behavior in order to be more efficient. The prediction is based on the

hypothesis that that pages in the working set are more likely to be accessed in

nearest future rather than cold pages that are out of working set.

Monitoring the working set of VMs is a challenge for datacenter providers

as it allows to measure the memory need by VMs and the memory which can be

reclaimed. The reclaimed memory can then be used to satisfy memory needs

of other VMs in order to raise the consolidation ratio.

Reclaiming

Memory ballooning [13, 85] is a memory management technique which allows

memory to be dynamically reclaimed from a VM by the hypervisor. Most of

the modern hypervisors implement this technique in order to reclaim unused
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Figure 1.4: Memory ballooning principles.

memory from VMs, thus avoiding resource waste. In such systems, every VM

is equipped with a balloon driver which can be inflated or deflated (by the

hypervisor/dom0). Fig. 1.4 presents the general functioning of the balloon

driver. Balloon inflation raises memory pressure on the VM, as follows. As

soon as the balloon driver receives a higher balloon target size, it allocates a

portion of memory and pins it, thus ensuring that memory pages cannot be

swapped-out by the VM’s OS. Then, the balloon driver reports the addresses of

the pinned pages to the hypervisor so that they can be used for other purposes

(e.g. assigned to a VM which is lacking memory). In the case of a balloon

deflation, the balloon driver receives the addresses of pages that are freed by

the hypervisor, and deallocates them. Thereby, the pages reenter under the

control of the VM’s OS.

Therefore, ballooning provides the ability to reclaim memory from some

VMs and allocate it to other VMs, the selection of these VMs being based on

the previous working set monitoring tool.

Re-Distributing

Memory reclaimed by the hypervisor on one server can be granted to VM which

lack memory on the same server. However, this reclaimed memory cannot

simply be allocated to remote VMs.

Generally, swapping (on local disk) is considered as an unwanted opera-

tion due to the extremely slow speed. Swapping to local disk is a bottleneck

for every computer system. However, in modern computing infrastructures,

the networking technologies are providing high speed connections to remote

machines, including the connection to the memory of remote machines. More

precisely, networking technologies such as RDMA (Remote Direct Memory Ac-

cess) have been introduced, which allow to access the memory of a remote

machine without interaction with the CPU of the remote machine. This allows
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to consider the use of the memory of remote machines as swap devices. Thus

remote swapping can be used global memory mutualization, i.e. re-distributing

reclaimed memory to remote machines.

1.4 Contributions

1.4.1 Working Set Size Estimation Techniques in Virtu-

alized Environments: Badis

Numerous datacenters are relying on virtualization, as it provides flexible re-

source management means such as virtual machine (VM) checkpoint/restart,

migration and consolidation. However, one of the main hindrances to server

consolidation is physical memory. In nowadays cloud, memory is generally

statically allocated to VMs and wasted if not used. Techniques (such as bal-

looning) were introduced for dynamically reclaiming memory from VMs, such

that only the needed memory is provisioned to each VM. However, the chal-

lenge is to precisely monitor the needed memory, i.e., the working set of each

VM. In this context, we thoroughly reviewed the main techniques that were

proposed for monitoring the working set of VMs. We implemented the main

techniques in the Xen hypervisor and we defined different metrics in order to

evaluate their efficiency. Based on the evaluation results, we proposed Badis, a

system which combines several of the existing solutions, using the right solution

at the right time. We also proposed a consolidation extension which leverages

Badis in order to pack the VMs based on the working set size and not the

booked memory. The implementation of all techniques, our proposed system,

and the benchmarks we have used are publicly available in order to support

further research in this domain.

1.4.2 Local Memory Mutualization Based on Badis

Virtualization allows to run several Virtual Machines (VMs) in parallel and

isolated on a single physical host. In most virtualized environments, memory

is statically allocated to VMs which means it is given to the VM at creation

time and for the VM’s lifetime. Such a memory management policy has one

main drawback: some VMs may be lacking memory while others have unused

memory. Relying on a VM working-set estimation facility that we previously

implemented, we designed a memory management policy which allows reclaim-

ing unused memory from unsaturated VMs and to lend it to saturated VMs.

We implemented this memory management service in the Xen virtualization

environment and evaluated its accuracy with several benchmarking applica-
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tions.

1.4.3 Global Memory Mutualization system for Virtu-

alized Computing Infrastructures

Resource management is a critical issue in today’s virtualized computing in-

frastructures. Consolidation is the main technique used to optimize such in-

frastructures. It allows gathering overloaded and underloaded VMs on the

same server so that resources can be mutualized. However, consolidation is

much complex as it has to manage many different resources at the same time

(CPU, memory, IO, etc.). Moreover, it has to take into account infrastructure

constraints which limit VM migrations making it difficult to optimize resource

management.

In this context, besides consolidation, we propose a service which allows

a global memory mutualization between VMs. It relies on remote memory

sharing for mutualizing memory. We implemented a system which monitors

the working set of virtual machines, reclaims unused memory and makes it

available (as a remote swap device) for virtual machines which need memory.

Our evaluations with HPC and Big Data benchmarks demonstrate the ef-

fectiveness of this approach. We show that remote memory can improve the

performance of a standard Spark benchmark by up the 17% with an average

performance degradation of 1.5% (for the providing application).

1.5 Thesis Statement

The problem During the last years, the number of memory (data) intensive

applications has significantly increased. Many such applications are related

with Artificial Intelligence (AI), Machine Learning (ML) and Big Data (BD).

It is obvious that such applications process huge amount of data and require

large amounts of memory resource for execution. Such applications make more

pressure on the memory resource. The traditional memory management sys-

tems in DCs (which are based on static memory allocation) are not able to

optimize memory management and especially to mutualize memory between

VMs.

Solution We propose to implement a system which allows both local and

global mutualization. Local memory mutualization system should deal with

sharp memory increase of applications’ working set in VMs. Local memory

mutualization should amortize such peaks with unused memory from neigh-

boring VMs located on the same node. If the local memory resources are not
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enough to amortize these peaks, global memory mutualization should try to

satisfy memory needs of the overloaded VMs with unused memory from neigh-

boring nodes. Global memory mutualization is achieved via remote swapping

technique using RDMA technologies which reduces the overhead on neighbor

node CPUs.

Methods While the solution seems to be basic and intuitive, however it

includes several touchy aspects of memory managements such as:

1. Working set estimation which should not be application or VM intrusive,

and should not induce a significant overhead.

2. Local memory mutualization which gathers working set estimations from

VMs and makes decisions based following a policy (from which VM to

reclaim, to which VM to grant extra memory or how much to grant).

3. Global memory mutualization which should be coordinated with local

memory mutualization and should allow the use of remote memory.

In this regards, we propose solutions to all the above issues. Our prototype

was evaluated with modern memory and CPU intensive benchmarks as well as

popular scientific applications.

Novelty Regarding working set estimation, we have evaluated the following

techniques: Self-ballooning [63], Zballoond [22], the VMware technique [85],

Geiger [47], Exclusive Cache [60] and Dynamic Memory Pressure Aware (MPA)

Ballooning [51]. Based on the experimental results, it is possible to conclude

that the method described in chapter 2 (Badis) is performing the best among

the list of working set estimations techniques. Our evaluations were based on

several metrics (such as accuracy, overhead, code base intrusiveness etc.).

This thesis introduces a Local memory mutualization system which is based

on Badis as working set estimation technique and maintains a free memory

reservoir which identifies available resources and distributes them in the most

optimal way based on its local memory distribution policy.

The work is completed with a global memory mutualization system, which

includes above described two contributions and is able to distribute memory

globally, thus providing a complete solution for datacenters to tackle memory

optimization problems. There have been several related works that had the fol-

lowing drawbacks compared to our solution: Ginkgo [45] requires application

profiling, SpongeFiles [32] is targeting only few applications with no virtual-

ization support, while Nswap2L [71] does not support RDMA which is a key

technology in remote swapping.
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Rita Abrahamyan, Zarmandukht Petrosyan, Julien Aligon: Weather Data

Visualization and Analytical Platform - Scalable Computing: Practice

and Experience,Volume 19, Issue 2, Pages 79-86, 2018

1.7 Roadmap

In Chapter 2, we survey the state-of-the-art for working set size estimation

techniques and propose Badis, a system that is able to estimate a VM’s work-

ing set size with high accuracy and no VM codebase intrusiveness. Chapter 3

describes the coordinated memory management system for local memory mu-

tualization which is based on Badis. Chapter 4 presents the global memory

mutualization system based on remote swapping.
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Chapter 2

Studies on Working Set Size

Estimation Techniques in

Virtualized Environments:

Badis

2.1 Introduction

The existing consolidation systems [6, 36] take the CPU as a pivot, i.e. the

central element of the consolidation. The memory is considered constant (i.e.

the initially booked value) all over the VM’s lifetime. Nevertheless, we consider

that the memory should be the consolidation pivot since it is the limiting

resource. In order to reduce the memory pressure, the consolidation should

consider the memory actually consumed (i.e. the VM’s working set size) and

not the booked memory (see Fig. 2.1). Thereby, we need mechanisms to (1)

evaluate the working set size (WSS) of VMs, (2) to anticipate their memory

evolution and (3) to dynamically adjust the VMs’ allocated memory. Numerous

research papers propose algorithms to estimate the WSS of VMs. However,

most of them are able to follow either up-trends (the increase) or down-trends

(the decrease) of WSS. The few of them which are able to follow both trends are

highly intrusive. Moreover, to the best of our knowledge, no previous work has

shown the implications of dynamically adjusting the VM’s allocated memory

according to the WSS estimation. Finally, as far as we know, no previous

consolidation algorithm considers the WSS as a pivot. In this work we address

all the above limitations.
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Figure 2.1: Static provisioning vs on-demand provisioning.

In summary, the contributions of this work are the following:

• We define evaluation metrics that allow to characterize WSS estimation

solutions.

• We evaluate existing WSS techniques on several types of benchmarks.

Each solution was implemented in the Xen virtualization system.

• We propose Badis, a WSS monitoring and estimation system which lever-

ages several of the existing solutions in order to provide high estimation

accuracy with no codebase intrusiveness. Badis is also able to dynami-

cally adjust the VM’s allocated memory based on the WSS estimations.

• We propose a consolidation system extension which leverages Badis for

a better consolidation ratio. Both the source and the data sets used for

our evaluation are publicly available [7], so that our experiments can be

reproduced.

The rest of this work is structured as follows: Section 2.2 covers a quick

background overview. Section 2.3 presents the general functioning of a WSS

estimation solution. Section 2.4 presents the existing WSS estimation tech-

niques that we analyze and evaluate in this article. Section 2.5 reports the

evaluation results for the main studied techniques. Section 2.6.1 exposes the

details of Badis while Section 2.6.2 presents the way we integrated Badis in

an OpenStack cloud. Section 2.6.3 evaluates our solution. After a review of

related works in Section 2.7, we present our conclusions in Section 2.8.

2.2 Background on virtualization: illustration

with Xen

2.2.1 Generalities

The main goal of virtualization is to multiplex hardware resources between

several guest operating systems also called Virtual Machines (VMs). Xen [13]
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is a well-known virtualization system employed by Amazon [1] to virtualize

its DCs. Xen relies on a hypervisor which runs on the bare hardware, and

a particular VM (the dom0) which includes all OS services. The latter are

not included in the hypervisor in order to keep it as lightweight as possible.

The other (general purpose) VMs are called domUs. In the next subsections,

we provide details about memory management and I/O management in Xen,

necessary for understanding the WSS techniques we study in this chapter.

2.2.2 Memory and I/O virtualization

In a fully virtualized system, the VM believes it controls the RAM. However,

the latter is actually under the control of the hypervisor which ensures its mul-

tiplexing between multiple VMs. In this respect, one of the commonly used

techniques is the following. The page frame addresses presented to the VM and

used in its page tables are fictitious addresses (called pseudo-physical). They

do not designate a page frame’s actual location in the physical RAM. The real

addresses (i.e. host-physical) are known only by the hypervisor which main-

tains for each guest page table in the VMs (mapping guest-virtual → pseudo-

physical), an equivalent called shadow page table (mapping guest-virtual →
host-physical). Each shadow page table is synchronized with its equivalent

guest page table. The shadow page tables are the ones used by the MMU1.

The guest page tables play no role in the address translation process. How-

ever, how the hypervisor ensures this synchronization knowing that the VM is

a ”black box”? In this respect, the hypervisor runs each guest kernel at Ring

3 and sets as read-only the address ranges corresponding to guest page tables.

Thereby, any attempt (from the guest kernel) to update a guest page table or

the guest %cr3 traps to the hypervisor. Based on the trap error, the hypervisor

updates the corresponding shadow page table (in the case of a guest page table

write attempt) or switches the execution context (in the case of a guest %cr3

write attempt).

By leveraging this mechanism, a WSS estimation technique can monitor a

VM’s memory activity in a transparent way, in the hypervisor (see Section 2.3).

2.3 On-demand memory allocation

2.3.1 General functioning

As argued in the introduction, the memory is the limiting resource when per-

forming VM collocation. To alleviate this issue, the commonly used approach

1The shadow page table’s address is loaded into %cr3 at context switch. The CR3 register

enables the processor to translate virtual addresses into physical addresses.
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consists of managing the memory in the same way as the processor, by doing

on-demand allocation. Indeed, considering a VM whose booked memory ca-

pacity is mb (representing the SLA that the provider should meet) but which

actively uses mu (mu ≤ mb), the on-demand approach would assign only mu

memory capacity to the VM (instead of mb as in a static strategy); mu is called

the WSS of the VM. This approach requires the implementation of a feedback

loop which operates as follows. The memory activity of each VM is periodi-

cally collected and services as the input of a WSS estimation algorithm. Once

the latter has estimated the WSS (noted wssest), the VM’s memory capacity

is adjusted to wssest. In short, the implementation of the on-demand memory

allocation strategy raises thee main questions:

• (Q1) How to obtain the VM’s memory activity knowing that the VM is

a ”black-box” for the cloud provider?

• (Q2) How to estimate the VM’s WSS from the collected data?

• (Q3) How to update the VM’s memory capacity during its execution?

Regarding Q3, the solution is self-evident. Indeed, it leverages the balloon

driver inside the VM (see the previous section). Furthermore, the hypervisor

provides an API to control the balloon driver’s size. Thus, by inflating or

deflating the balloon, the actual memory capacity of the VM can be updated

at runtime. The rest of the section focuses on Q1 and Q2, which are more

complex.

Answering Q1 raises two challenges. The first one relates to the implemen-

tation of the method used for retrieving the memory activity data. The method

is either active or passive. An active method modifies the execution of the VM

(e.g. deliberately inject page faults) while a passive method does not interfere

in the VM’s execution process. The active method could impact the VM’s

performance. For instance, a naive way for capturing all memory accesses may

be to invalidate all memory pages in the VM’s shadow page table. All subse-

quent accesses would result in page faults which are trapped by the hypervisor.

This solution would be catastrophic for the VM’s performance because of the

page faults’ overhead. The second challenge is related to the level where the

method is implemented. Three locations are possible: exclusively inside the

hypervisor/dom0, exclusively inside the VM, or spread across both. In the last

two locations, the method is said to be intrusive because the ”black-box” na-

ture of the VM is altered. In this situation, the implementation of the method

requires the end-user’s agreement. Otherwise, one could exploit only the mem-

ory activity data available at the hypervisor/dom0 level. Concerning Q2, two

main challenges should be tackled: the accuracy of the estimation technique (a
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wrong estimation will either impact the VM’s performance or lead to resource

waste) and the overhead. In the rest of the document, the expression ”WSS

estimation technique” is used to represent a solution to both Q1 and Q2.

2.3.2 Metrics

With respect to the above presentation, the metrics we propose for characteriz-

ing a WSS estimation technique are the following: the intrusiveness (requires

the modification of the VM), the activeness (alters the VM’s execution flow),

the accuracy, the overhead on the VM (noted vm over), and the overhead

on the hypervisor/dom0 (noted hyper over). Both the intrusiveness and the

activeness are qualitative metrics while the others are quantitative. Among

the qualitative metrics, we consider the intrusiveness as the most important.

We note that the balloon driver alone is not considered an intrusiveness since it

is de facto accepted and integrated in most of the OSs. Concerning the quanti-

tative metrics, the ranking is done as follows. Metrics which are related to the

VM performance (thus the SLA) occupy higher positions since guaranteeing

the SLA is one of the most important provider’s objectives. In this respect, we

propose the following ranking:

1. vm over: it directly impacts the VM performance. It could be affected

by both the intrusiveness and the activeness.

2. accuracy: a wrong estimation leads to either performance degradation

(under-estimation) or resource waste (over-estimation).

3. hyper over: a high overhead could saturate the hypervisor/dom0, which

are shared components. This could lead, in turn, to the degradation of

VMs’ performance (e.g. the I/O intensive VMs). In this work we mainly

focus on the CPU load induced by the technique.

The metrics presented above characterize the WSS estimation techniques.

Apart from these, we also define a metric which characterizes the WSS itself,

namely the volatility. The latter represents the degree/speed of WSS variation

and is very important for the VM consolidation (see Section 2.6.2).

2.4 Studied techniques

This section presents the main WSS estimation techniques proposed by re-

searchers up to the writing time of this document. We have thoroughly studied

them both qualitatively and quantitatively. This section focuses on the former

aspect while Section 2.5 is dedicated to the latter aspect. The presentation
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of each technique is organized as follows. First, we present the technique de-

scription, while highlighting how Q1 and Q2 are answered. Second, we explain

(whenever necessary) the way in which we implement the technique in Xen

(our illustrative virtualization system). Last but not least, we present both the

strengths and the weaknesses of the technique, knowing that they are validated

in Section 2.5.

2.4.1 Self-ballooning

Description. Self-ballooning [63] entirely relies on the VM, especially the na-

tive features of its OS. It considers that the WSS of the VM is given by the

Committed AS [2] kernel statistic (cat /proc/meminfo), computed as follows.

The OS monitors all memory allocation calls (e.g. malloc) - Q1 - and sums

up the virtual memory committed to all processes. The OS decrements the

Committed AS each time the allocated pages are freed. For illustration, let us

consider a process which runs the C program presented in Fig. 2.2. After the

execution of line 2, the value of Committed AS is incremented by 2GB, even

if only one octet is actively used. In summary, the Committed AS statistic

corresponds to the total number of anonymous memory pages allocated by all

processes, but not necessary backed by physical pages.

Implementation. No effort has been required to put in place this technique

since it is the default technique already implemented in Xen. The balloon driver

(which runs inside the VM) periodically adjusts the allocation size according

to the value of the Committed AS.

Comments. As mentioned above, this technique completely depends on the

VM. In addition, the implementation of the feedback loop is shift from the hy-

pervisor/dom0 to the VM, making this technique too intrusive. The heuristic

used for estimating the WSS is not accurate for two reasons. First, Com-

mitted AS does not take into account the page cache, and thus may cause

substantial performance degradation for disk I/O intensive applications [22].

Second, this technique could lead to resource waste since the committed mem-

ory is most of the time greater than the actively used memory. These two

statements are also validated by the evaluation results. The only advantage of

the Committed AS technique is its simplicity.

2.4.2 Zballoond

Description. Zballoond [22] relies on the following observation: when a VM’s

memory size is larger than or equal to its WSS, the number of swap-in and

refault (occurs when a previously evicted page is later accessed) events is close

to zero. The basic idea behind Zballoond consists in gradually decreasing the
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void main(void){

char* tab=(char*)malloc(2*1024*1024*1024);

do{

tab[1]=getchar();

}while(tab[1]!=’a’);

free(tab);

}

Figure 2.2: The Committed AS value increases with the amount of malloc-ed

memory even if it is not backed by physical memory.

VM’s memory size until these counters start to become non-zero (the answer

of Q1). Concerning Q2, the VM’s WSS is the lowest memory size which leads

the VM to zero swap-in and refault events.

Implementation. Zballoond is implemented inside the VM as a kernel module

which loops on the following steps. (1) The VM’s memory size is initialised

to its Committed AS value. (2) Every epoch (e.g. 1 second), the memory is

decreased by a percentage of the Committed AS (e.g. 5%). (3) Whenever the

Committed AS changes, Zballoond considers that the VM’s WSS has changed

significantly. In this case, the algorithm goes to step (1). Our implementation

of Zballoond is about 360 LOCs.

Comments. Like the previous technique, Zballoond is entirely implemented in

the VM’s OS. Furthermore, Zballoond is very active in the sense that it performs

memory pressure on the VM. The overhead introduced by this technique comes

from the fact that it actively forces the VM’s OS to invoke its page reclamation

mechanism (every epoch). Therefore, the overhead depends on both the epoch

length and the pressure put on the VM (how much memory is reclaimed).

2.4.3 The VMware technique

Description. The VMware technique [85] is an improvement of the naive

method presented in Section 2.3. Instead of invalidating all memory pages, it

relies on a sampling approach which works as follows. Let us note mcur the

current VM’s memory size. To answer Q1, the hypervisor periodically and ran-

domly selects n pages from the VM’s memory (e.g. n = 100) and invalidates

them. By so doing, the next access to these pages trap in the hypervisor. The

latter counts the number of pages (noted f) among the selected ones which

were subject to a non present fault during the previous time interval. The

WSS of the VM is f
n
×mcur, thus answering Q2.

Implementation. Two implementations of this technique are possible de-
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pending on the way the memory pages are invalidated. A memory page can be

invalidated by clearing either the present bit or the accessed bit. In the first

implementation the hypervisor counts the number of page faults generated by

the selected pages while in the second, it counts the number of pages being

accessed (the accessed bit is set) during the previous time frame. Notice that

the access bit is automatically set by the hardware each time a page is accessed;

no trap is triggered in the hypervisor. The implementation of the two methods

requires around 160 LOCs.

Comments. This technique is completely non intrusive. The feedback loop is

entirely implemented in the hypervisor/dom0. However, the technique has two

main drawbacks. First, the method used for answering Q1 modifies the exe-

cution flow of the VM, which could lead to different performance degradation

levels depending on the adopted implementation. The first implementation

leads to higher performance degradation comparing to the second implementa-

tion. This is explained by the cost of resolving a non-present page fault which

is higher than the cost of setting the accessed bit (performed in the hardware).

However, the accuracy of the second implementation (the number of accessed

pages) could be biased if the hypervisor/dom0 runs another service which clears

the accessed bit. Such a situation could occur in a KVM environment because

the hypervisor (i.e. Linux) runs services like kswapd (the swap daemon) which

monitors and clears the accessed bit. As a second drawback, this techniques

is unable to estimate WSSs greater than the current allocated memory. In the

best case, the technique will detect that all monitored pages are accessed, thus

estimating the WSS as the current size of the VM.

2.4.4 Geiger

Description. Geiger [47] monitors the evictions and subsequent reloads from

the guest OS buffer cache to the swap device (the answer of Q1). To deal with

Q2, Geiger relies on a technique called the ghost buffer [74]. The latter repre-

sents an imaginary memory buffer which extends the VM’s physical memory

(noted mcur). The size of this buffer (noted mghost) represents the amount of

extra memory which would prevent the VM from swapping-out. Knowing the

ghost buffer size, one can compute the VM’s WSS using the following formula:

WSS = mcur + mghost if mghost > 0.

Implementation. The first challenge was to isolate the swap traffic from the

rest of the disk IO requests. In this respect, we forced the VM to use a dif-

ferent disk backend driver for the swap device (e.g. xen-blkback). This driver

is patched to implement the Geiger monitoring technique as follows. When a

page is evicted from the VM’s memory, a reference to that page is added to a

tail queue in the disk backend driver, located inside the dom0. Later, when a
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page is read from the swap device, Geiger removes its reference from the tail

queue and computes the distance D to the head of the queue. D represents the

number of extra memory pages needed by the guest OS to prevent the swap-

ping out of that page (i.e. the ghost buffer size at that timestamp). However,

to update the VM’s memory size after each reloaded page from swap would

be too frequent. Thereby, we leverage D values to compute the miss ratio

curve [74]. This curve is an array indexed by D which represents how many

times we saw the D distance in the last interval. For example, if the computed

D = 50, we increment array[50] by one. When the timer expires, we iterate

through the array and we sum up its values until we got X% of its total size. In

our implementation, we found out that X = 95 yields good results. The index

corresponding to the position where the iterator stops represents the number of

extra memory pages needed by the VM to preserve 95% of swapped out pages.

Comments. Like the VMware technique, Geiger is also completely transpar-

ent from the VM’s point of view. Thereby it does not require the VM user’s

permission. As stated before, the VM has to be started with a different disk

backend driver for the swap device. However, this is not an issue since the

VMs are created by the cloud provider who is also the one deciding the disk

backend drivers to be used. Additionally, Geiger has an important drawback

which derives from its non-intrusiveness. It is able to estimate the WSS only

when the size of the ghost buffer is greater than zero (the VM is in a swapping

state). Geiger is inefficient if the VM’s WSS is smaller than the current mem-

ory allocation.

2.4.5 Hypervisor Exclusive Cache

Description. The Exclusive Cache technique [60] is fairly similar with Geiger

in the way that both of them rely on the ghost buffer to estimate the WSS.

In the Exclusive Cache, each VM has a small amount of memory called direct

memory, and the rest of the memory is managed by the hypervisor as an ex-

clusive cache. Once the direct memory is full, the VM will send pages to the

hypervisor memory (instead of sending to the swap). Thereby, in the Exclusive

Cache technique, the ghost buffer is materialized by a memory buffer managed

in the hypervisor.

Implementation. In the same way as Geiger, the Exclusive cache technique

is also implemented as an extension to the XEN disk backend driver. In the

vanilla driver, the backend receives the pages to be swapped through a shared

memory between the VM and dom0. Subsequently, the backend creates a block

IO request that is passed further to the block layer. In our implementation,

instead of creating the block IO request, we store the VM’s page content in
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Figure 2.3: The set of synthetic workloads.

a dom0 memory buffer. The latter represents the materialization of the ghost

buffer.

Comments. In comparison with Geiger, this technique is more active since

it may force the VM in eviction state. However, the performance impact of

the Exclusive cache technique is lower since the block layer is bypassed and the

evicted pages are stored in memory.

2.4.6 Dynamic MPA Ballooning

Description. The Dynamic Memory Pressure Aware (MPA) Ballooning [51]

studies the memory management from the perspective of the entire host server.

It introduces an additional set of hypercalls through which all VMs report

the number of their anonymous pages, file pages and inactive pages to the

hypervisor (Q1). Based on this information, the technique defines three possible

memory pressure states: low (the sum of anonymous and file pages for all

VMs is less than the host’s total memory pages), mild (the sum of anonymous

and file pages is greater than the host’s total memory pages) and heavy (the

sum of anonymous pages is greater than the host’s total memory pages); this

answers Q2. Depending on the current memory pressure state, the host server

adopts a different memory policy. In the case of low memory pressure, this

technique divides the hypervisor’s free memory to nbVMs + 2 slices. Each slice

(called cushion) is assigned to a VM as a memory reserve. The two remaining

cushions stay in the control of the hypervisor for a sudden memory demand.

The cushion may be seen as the exclusive cache in the Hypervisor Exclusive

Cache technique. In the mild memory pressure state, the hypervisor reclaims

the inactive pages from all VMs and rebalance them in nbVMs + 1 cushions.

In heavy memory pressure, most of the page cache pages are evicted so the

technique rebalance exclusively the anonymous pages.

Comments. This technique has high intrusiveness since it requires additional

hypercalls in the guest OS. Thereby, it may be effective in the case of a private

data center where the cloud manager has a high degree of control over the guest

OS. Additionally, the new hypercalls export precise and important information

about the VM’s memory layout; this may increase the risk of attacks on VMs.
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2.5 Evaluation of the studied techniques

This section presents the evaluation results for most of the techniques described

above. We do not evaluate the Dynamic MPA Ballooning since is not a WSS es-

timation technique. The memory utilization values are directly communicated

by the VM to the hypervisor.

2.5.1 Experimental environment

The experiments were carried out on a 2-socket DELL server. Each socket

is composed of 12 Intel Xeon E5-2420 processing units (2.20 GHz), linked to

a 8GB NUMA memory node (the machine has a total of 16GB RAM). The

virtualization system on the server is Xen 4.2. Both the dom0 and the VMs run

Ubuntu server 12.04. One socket of the server is dedicated to dom0 in order

to avoid interference with other VMs. Unless otherwise specified each VM is

configured with two vCPUs (pined to two processing units) and 2GB memory

(the maximum memory it can use).

Concerning the applications which run inside VMs, we rely on both micro

and macro benchmarks. The former is an application which performs read and

write operations on the entries of an array whose size could be dynamically ad-

justed in order to mimic a variable workload. Each array entry points to a data

structure whose size is equivalent to a memory page. The micro-benchmark

allows to compare experimental values with the exact theoretical values, nec-

essary for evaluating the accuracy metric. To this end, we build five synthetic

workloads which cover the common memory behaviors of a VM during its life-

time. Fig. 2.3 presents these workloads, noted Wi, 1 ≤ i ≤ 5. Each workload is

implemented in two ways. In the first implementation (noted Wi,s), the array

size is malloced once, at VM start time, to its maximum possible value. In

the second implementation (noted Wi,d), the array’s allocated memory size is

adjusted to each step value.

In addition, we also rely on three macro-benchmarks, namely DaCapo [19],

CloudSuite [37], and LinkBench [12]. DaCapo is a well known open source java

benchmark suite that is widely used by memory management and computer ar-

chitecture communities [93]. We present the results for 5 DaCapo applications

which are the most memory intensive:

• Avrora is a parallel discrete event simulator that performs cycle accurate

simulation of a sensor network.

• Batik produces a number of Scalable Vector Graphics (SVG) images based

on the unit tests in Apache Batik.
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• Eclipse executes some of the (non-gui) jdt performance tests for the

Eclipse IDE.

• H2 executes a JDBC-like in-memory benchmark, executing a number of

transactions against a model of a banking application.

• Jython inteprets the PyBench python benchmark

CloudSuite is a benchmark suite which covers a broad range of application cat-

egories commonly found in today’s datacenters. In our experiments, we rely

on Data Analytics, a map-reduce application using Mahout (a set of machine

learning libraries). LinkBench is a database benchmark developed to evalu-

ate database performance for workloads similar to those at Facebook. The

performance metric of all these applications is the complete execution time.

By choosing these benchmarks, we wanted to cover the most important and

popular applications executed in the cloud nowadays.

2.5.2 Evaluation with synthetic workloads

As stated above, these evaluations focus on the accuracy metric. Fig. 2.4

and Fig. 2.5 present the results for each workload and each WSS estimation

technique. To facilitate the interpretation of the results, each curve shows

both the original workload (noted W o
i ) and the actual estimated WSSs (noted

W e
ij), 1 ≤ i ≤ 5 (represents the workload type) and j=s,d (represents the

implementation type - static or dynamic).

Xen self-ballooning. Fig. 2.4 line 1-2. The accuracy of this technique is

very low for all Wi,s (see line 1) while it is almost perfect for all Wi,d (see

line 2). This is because the technique relies on the value of Committed AS as

the WSS. Thus, it is able to follow all Committed AS changes. The accuracy

of this technique depends on the implementation (i.e. the memory allocation

approach) of applications which run inside the VM.

Zballoond. Fig. 2.4 line 3-4. This technique behaves like self-ballooning on

all Wi,d (see line 4) because it tracks all Committed AS changes. Unlike self-

ballooning, Zballoond is also quite efficient on all Wi,s (see line 3). This is

because Zballoond continuously adjusts the VM’s memory size so that swap-in

or refault events occur, thus avoiding resource waste. However, if the WSS re-

duction is faster than the memory reclaim percentage (i.e. 5%), the estimation

diverges from the real WSS (see line 3, columns 2 and 4). Even if a higher

memory reclaim percentage may solve the problem, this means more memory

pressure on the VM and thereby, it would increase the vm over.
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Self-ballooning Zballoond VMwarepresent

Benchmark and app. vm over hyp over vm over hyp over vm over hyp over

avrora 1 1 1.19 1 2.77 1.06

batik 1 1 1.09 1 15.44 2.0

Dacapo eclipse 1 1 3.67 1 18.79 1.01

h2 1 1 2 1 24.12 2.05

jython 1 1 1.58 1 21.42 1.16

Cloud suite Data Anal. 1 1 1.4 1 45.05 2.06

LinkBench MySQL 1 1 2.92 1 20.17 1

VMwareaccess Geiger Exclusive Cache

Benchmark and app. vm over hyp over vm over hyp over vm over hyp over

avrora 2.14 1.1 1.22 1.2 1 5.06

fop 13.06 2.2 1.41 1.32 1.5 5.6

Dacapo h2 15.63 1 1 1.02 1 5.0

jython 20.51 2 1.12 1.5 1.7 4.9

luindex 18.2 1.5 1.04 1.45 1.08 5.52

Cloud suite Data Anal. 40.22 1.06 1.15 1.22 2.03 6.04

LinkBench MySQL 19.22 2 1.76 1.09 1.80 5.2

Table 2.1: Evaluation results of each technique with macro-benchmarks.

From now on (Fig. 2.5), we only discuss Wi,s results because we observed no

difference with Wi,d regardless the WSS technique. In fact, only Committed AS-

based techniques are sensitive to the way by which the workload is implemented.

VMware. Fig. 2.5 line 1. Without access to the implementation details of

this technique, we considered two versions according to the way the sampled

pages are invalidated: the present bit based version (noted VMwarepresent) and

the access bit based version (noted VMwareaccess). The evaluation results of

these versions show that they have almost the same accuracy. They are only

different from the perspective of other metrics (see the next section). From

Fig. 2.5 line 1, we can see that the VMware technique has a main limitation.

Although it is able to detect WSS when the VM is wasting memory, it is

not able to detect shortage situations. This happens because the percentage

of memory pages (among the sampled ones) which is used for estimating the

WSS is upper bounded by 100%.

Geiger. Fig. 2.5 line 2. Geiger is the opposite of the VMware technique; it is

only able to detect shortage situations. This is because it monitors the swap-in

and refault events, which only occur when the VM is lacking memory. Another

advantage of this technique is its reactivity; it quickly detects WSS changes.

Hypervisor exclusive cache. Fig. 2.5 line 3. This technique behaves like

Geiger in the perspective of the accuracy metric. They are different in terms

of the vm over metric presented in the next section.
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Figure 2.4: Evaluation results of self-ballooning and Zballoond with synthetic

workloads. The original workload is noted W o
i while the actual estimated

WSSs are noted W e
ij. ”j” is s (the static implementation) or d (the dynamic

implementation).

30



0 50 100150
0

200

400

600
V
M

w
a
r
eo ∗

M
em

o
ry

(M
B
)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 200 400
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

0 50 100150
0

200

400

G
ei
g
er

M
em

o
ry

(M
B
)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 100200300
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

0 50 100150
0

200

400

E
x
cl
.
C
a
ch

e

M
em

o
ry

(M
B
)

W o
1

W e
1

0 100200300
0

200

400

600

W o
2

W e
2

0 100200300
0

200

400

600

W o
3

W e
3

0 50 100 150
0

200

400

600

W o
4

W e
4

0 500
0

200

400

600

W o
5

W e
5

Figure 2.5: Evaluation results of VMware2, Geiger, and Exclusive cache with

synthetic workloads.

2.5.3 Evaluation with macro-benchmarks

Table 2.1 presents the evaluation results of each technique with macro-benchmarks.

We only focus on the vm over and the hyper over metrics. The vm over value

represents the normalized runtime performance of each benchmark while the

hyper over represents the normalized CPU utilization by the hypervisor. For

example, vm over = 2 means that the benchmark execution time is twice

longer. The interpretation of Table 2.1 is as follows.

Self-ballooning. It incurs no overhead neither on the hypervisor/dom0 nor

on the benchmark.

Zballoond. Like self-ballooning, it incurs no overhead on the hypervisor/-

dom0. However, the VMs’ performance is impacted (between 1.09x and 3.67x).

VMware. We can see that the two versions we implemented (VMwarepresent
and VMwareaccess) incur a relatively low overhead on the hypervisor/dom0.

However, the two versions severely impact the benchmark performance (up to

45x degradation in the case of the Data Analytics applications). As presented

in the previous section, this is due to the fact that the VMware technique is

2The accuracy of the VMware method is orthogonal to the implementation approach

thereby, it is represented only once.
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not able to detect memory lacking situations. VMwarepresent leads to more

impact on VMs than VMwareaccess (about 3x).

Geiger. Its overhead on either the hypervisor/dom0 or the VM is negligi-

ble (less than 2x). Even if the technique does not entirely address the issue of

WSS estimation, the VM performance is not strongly impacted since Geiger

never leads the VM to a lacking situation like the VMware technique.

Exclusive cache. Its overhead on the hypervisor/dom0 is not negligible

(about 5x). However, its impact on the VM performance is almost nil (swapped-

out pages are store in the main memory).

2.5.4 Synthesis

Table 2.2 summarizes the characteristics of each technique according to both

qualitative and quantitative criteria presented in Section 2.3.2. Besides these

criteria, the evaluation results reveal that not all solutions address the issue of

WSS estimation in its entirety. Indeed, a WSS estimation technique must be

able to work in the following two situations:

• (Smore) the VM is wasting memory,

• (Sless) the VM is lacking memory.

The VMware technique [85] is only appropriate in (Smore) while Geiger and

Hypervisor exclusive cache are effective in (Sless). Only Zballoond and self-

ballooning cover both (Smore) and (Sless). Our study also shows that each

solution comes with its strengths and weaknesses. The next section presents

our solution.

2.6 Badis

2.6.1 Presentation

The previous section shows that the WSS estimation problem is addressed by

a wide range of solutions. However, to the best of our knowledge, none of them

are consistently adopted in the mainstream cloud. We assert that one reason

which leads the cloud customers to the denial of such solutions is their intru-

siveness (both from the codebase and from the performance perspective). This

is confirmed by our cloud partner, Eolas [3]. We claim that a solution easily

adopted in the mainstream cloud should provide (1) no codebase intrusiveness

and (2) low performance impact. In order to reduce the performance impact
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Self-b. Zballoond VMware Geiger Excl. Cache

intrusive yes yes no no no

active no yes yes no yes

addressed all all Smore Sless Sless

situations

Self-b. Zballoond VMware Geiger Excl. Cache

accuracy depends high high in Smore high in Sless high in Sless

on the app. zero in Sless zero in Smore zero in Smore

vm over nil almost nil in Smore almost almost

nil high in Sless nil nil

hyper over nil nil almost almost not negligible

nil nil

Table 2.2: Study synthesis of all WSS estimation techniques according to both

qualitative (left) and quantitative (right) metrics.

the solution should provide high accuracy and thereby, address both (Smore)

and (Sless).

This section presents Badis, a system which smartly combines existing tech-

niques in such a way that both (Smore) and (Sless) are covered with no codebase

intrusiveness. Indeed, we found that even if the VMware and Geiger solutions

have a fairly high performance impact they have no intrusiveness in the VM’s

codebase. The second observation is that these solutions are complementary

(VMware addresses Smore while Geiger addresses Sless). The Hypervisor ex-

clusive cache is also a solution that only addresses (Sless) but it has higher

hyper over. Thereby, a system which is able to combine VMware and Geiger

satisfies all our requirements.

Fig. 2.6 top presents the architecture of our system. The VMware technique

is implemented at the hypervisor level while Geiger as well as the feedback

loop decision module are located inside the dom0. Concerning the VMware

technique, we rely on the accessed bit instead of the present bit for memory

page invalidation. The former introduces less overhead on the VM than the

latter. The decision module is implemented as a kernel module inside the dom0,

thus keeping the hypervisor as lightweight as possible. The communication

between Geiger and the decision module is straightforward since they both run

inside the dom0. Concerning the VMware technique, it communicates with the

decision module via a shared memory established between the dom0 and the

hypervisor. To this end, we extend the native Xen share info data structure,

which implements the shared memory used by the hypervisor to provide the

VM with hardware information necessary at VM boot time (e.g. the memory

size). Having described the mechanisms which allow the global functioning of

our system, let us now present how the two WSS estimation techniques are

leveraged.
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Figure 2.6: (top) The architecture of Badis. (bottom) The finite-state machine

used to track a VM’s WSS in Badis.
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For each VM, the system implements a 3-state finite state machine (FSM),

as shown in Fig. 2.6 bottom. Once setup, the VM enters the V state in which

the WSS is estimated using the VMware technique (Geiger is disabled). In fact,

it is more likely that the memory allocated to the VM at boot time (booked

by its owner) is larger than its WSS. While in the V state, if the estimated

WSS moves closer to the VM’s allocated memory, the FSM transitions to the

V G state in which Geiger is enabled. While in the V G state, the WSS of the

VM is given by the VMware technique if Geiger does not measure any swap

activity. Otherwise, the WSS is given by Geiger. The FSM transitions from

V G to the G state (in which the VMware technique is disabled) when Geiger

reports swap activities during two consecutive rounds. Finally, the transition

from G to V is triggered if Geiger does not observe any swap activity during

two consecutive rounds. One may doubt the need of V G state. However, we

consider it necessary because of a more subtle VMware limitation. As presented

before, VMware chooses a set of sample pages and based on the number of pages

accessed during an observation interval, it computes the WSS as a percentage

of the total memory. For example, if VMware chooses 100 sample pages and 60

of them are accessed, it concludes that the WSS size is 60% of the total VM’s

memory. However, in most of the cases this is wrong and not only because

of the estimation error. The VMware technique considers all pages equal and

swappable. Nevertheless, some of the pages are pinned down by the OS. If they

are not accessed during a VMware observation interval, they are considered out

of the working set. When the memory is adjusted to the WSS the OS cannot

swap out this pinned pages and thereby, it has to chose from the active pages.

This issue is an important source of performance degradation.

Further we will present how Badis cope with this problem. When in V G,

the VM is in a swapping state which means that all of its allocated memory is

necessary. In this state we still continue to read estimations from the VMware

technique which theoretically should be 100% (i.e. all pages are accessed during

a time frame). However, the estimations are generally less than 100% (e.g.

80%) because of the pinned pages which are inactive. The difference to 100%

(e.g. 20%) should also be included in the working set because, even if these

pages are inactive, they cannot be swapped-out. This correctional value is

stored and leveraged later, in the V state, for a conclusive estimation. The

next section presents the way our estimation system is leveraged in a virtualized

cloud.

2.6.2 Badis in a virtualized cloud

In the last section we presented the advantages of Badis over the state-of-the-

art. However, one may ask which are the benefits of WSS estimation in the
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cloud? Clearly, there is no benefit in shrinking a VM’s memory unless there is

some other VM ready to make use of that. Thereby, the WSS estimation should

be integrated in a higher level system that has a wide image on the datacenter’s

compute resources. Such a system is the cloud manager (e.g. OpenStack [5])

which is the one controlling the VM lifecycle and taking consolidation decisions.

Generally, the factor that limits the server consolidation is memory, for two

main reasons. The first one is the the memory capacity wall presented in [57].

Second, in most of the virtualization systems, the booked memory (mb) is en-

tirely allocated when the VM is booted. This quantity should meet the highest

possible memory demands the VM will have during its lifetime. However, most

of the time, the memory demands are lower than mb which implies some degree

of memory waste (see Fig. 2.7). The WSS estimation could help improv-

ing the memory efficiency and thereby, increase the consolidation

ratio. However, in some circumstances, the server consolidation based on the

VMs’ current WSS estimation may do more harm than good. If a recently

consolidated VM requests more memory than available on the hosting server,

it should be migrated back on a server which can provide enough memory. This

excessive VM dynamics may increase the datacenter’s energy consumption [59]

and impact the hosted applications’ performance [84]. Thereby, the research

question is: how to leverage the WSS estimation techniques not only for a bet-

ter but also for a stable consolidation? Further we will present our solution to

this problem.

Our solution is implemented as an extension to a popular consolidation

system, namely OpenStack Neat [6]. The latter takes consolidation decisions

when a server is (1) underloaded or (2) overloaded. In the first case it relocates

all VMs in order to free up the server and switch it to a lower energy state.

In the latter case it migrates one VM, generally the one with the smallest

allocated memory, to reduce the migration time. We mention that Neat places

VMs based on the booked memory and not the WSS estimation. In order to

decide when a server is underloaded or overloaded, Neat has a data collection

module that fetches the CPU utilization of all VMs and stores the data in

both, the local datastores on each physical server and a global datastore for

the entire datacenter. However, since Neat does not overcommit memory, it

does not collect any memory utilization data. The underload and overload

detection algorithms only take into account the CPU. Further we will present

how Badis adjusts a VM’s allocated memory based on its WSS.

First, Badis continuously computes the moving average of the last n WSS

estimation samples (e.g. n = 5). We monitor the moving average of each

WSS using time slices of size s (e.g. s = 1 hour). The allocated memory

of VM id vm is adjusted to the maximum value of the moving average in the
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Figure 2.7: ”Resource utilization over 30 days for a large production cluster at

Twitter managed with Mesos. (a) and (b): utilization vs reservation for the

aggregate CPU and memory capacity of the cluster; (c) CDF of CPU utilization

for individual servers for each week in the 30 day period; (d) ratio of reserved

vs used CPU resources for each of the thousands of workloads that ran on the

cluster during this period.” [29]
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Figure 2.8: The integration of Badis in OpenStack. Badis estimates the WSS

and sets the id vm’s allocated memory to WSSmax avg
id vm . It also transmits

WSSmax avg
id vm values to the local Neat. The latter collects these values along

with the CPU loads and sends them in batches to the global Neat. The local

Neat may also send consolidation requests to the global Neat in the case of

CPU/RAM overload/underload. These consolidation requests are decomposed

into individual VM migrations which are executed by OpenStack Nova.

last time slice, noted WSSmax avg
id vm . The latter value is also transmitted to the

data collection module (see Fig. 2.8). We have modified the Neat’s underload

and overload detection algorithms to also take into account the memory load

and pack the VMs based on WSSmax avg
id vm . Since WSSmax avg

id vm ≤ mb, the VM

packing is tighter. If the allocated resources of all VMs on a server overpasses

the underload or the overload threshold, Neat will trigger a new consolidation

round. However, the volatility of the memory load is generally lower than the

CPU. In our experiments only 3% of the consolidation rounds were triggered

because of the memory load (see Section 2.6.3).

2.6.3 Evaluations

The experimental environment is the same as presented in Section 2.5. We

evaluated our solution with both micro and macro benchmarks.

Micro-benchmark based evaluations. We first validated the effective-

ness of our solution using a synthetic workload, see the dashed blue curve in

Fig. 2.9. This workload includes situations a WSS estimation technique should
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Self-ballooning Zballoond Badis

Benchmark and app. vm over vm over vm over hyper over

avrora 1 1.19 1.26 1.8

batik 1 1.09 1.57 1.05

Dacapo eclipse 1 3.67 1 1.68

h2 1 2 1.16 1.3

jython 1 1.58 1.05 1.15

Cloud suite Data Analytics 1.29 1.4 1.16 1.2

LinkBench MySQL 1.11 2.92 1.09 1

Table 2.3: Evaluation of our solution with macro-benchmarks, and comparison

with two existing solutions.
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Figure 2.9: Badis and Zballoond evaluated with a synthetic workload.

cope with. One can observe that the accuracy of our solution is comparable

with Zballoond but without any VM codebase intrusiveness. In the last part of

Fig. 2.9 we can observe a case where our solution even outperforms Zballoond:

the WSS drops quickly and the inactive pages are still allocated. In this case

Badis is able to quickly track the new WSS while Zballoond slowly decreases

the WSS leading to a lot of resource waste.

Macro-benchmark based evaluations. We also evaluated our solution with

macro-benchmarks, see Table 2.3. The latter focuses on the hyper over and

the vm over metrics since the accuracy metric has been evaluated above. We

compare our solution with the only solutions which address the issue of WSS

estimation in its entirety, namely self-ballooning and Zballoond. We can see

that our solution leads to a negligible overhead on both the VM and the hy-

pervisor/dom0 (less than 2x).

Simulations on traces from a Google datacenter. In the last sections we

have demonstrated the capability of our solution to follow the WS variation

with high precision. This section will show the effect of WSS estimation on

the VM consolidation. In this respect, we leverage traces from a Google dat-

acenter [4]. They represent the execution of thousands of jobs on a cluster of

about 12,5k servers, monitored for about 29 days. Each job can be composed

of several tasks and each task runs inside a container. For each container, the

traces provide data such as the creation time, the destruction time, the amount

of CPU/memory requested at creation time. Moreover the traces provide the
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amount of CPU/memory actually assigned to the container3. By relying on

GloudSim [30] (a cloud simulator with VMs based on Google traces) we have

simulated both, a consolidation based on the booked memory and a consolida-

tion based on the actually assigned memory. In the first case the datacenter

has an average of 9562 active servers while in the second case the average num-

ber of active servers is 4676. These figures prove that the memory is indeed

the resource which limits the VM consolidation. In the second consolidation

type, the packing ratio is more than 2x higher. Regarding the VM dynamics,

there were executed around 2.5M migrations in total. Only 75k migrations

(i.e. 3.17%) were caused by memory overload/underload. These results prove

that the memory volatility is net inferior to the CPU volatility. However, the

paradox is that most of the popular consolidation systems overcommit CPU

but not RAM memory. Our evaluation results are totally reproducible using

the code provided at [7].

2.7 Related work

The reader should refer to Section 2.4 for the presentation of the main WSS

estimation techniques in virtualized environments. In this section we focus on

other studies related to the concept of WSS, memory management and VM

consolidation in a virtualized datacenter.

Working set size estimation. WSS estimation [67] could require large

data collection and complex processing. Weiming Zhao et al. [92] have in-

troduced a working set size estimation system which computes a VM’s WSS

based on its miss-ratio curve (MRC). The latter shows the fraction of the cache

misses that would turn into cache hits if the VM’s allocated memory increases.

Moreover, Weiming Zhao et al. have evaluated the overhead of their solution

by providing the relationship between performance and allocated memory size.

Pin Zhou et al. [94] have proposed two similar methods which dynamically

track the MRC of applications at run time. These techniques represent the

hardware and the software implementations of the Mattsons stack algorithm.

The latter relies on a ”stack” which stores the references to accessed pages (the

most recently used page is on the top of the stack). Similarly to the ghost

buffer, this algorithm computes the miss ratio curve based on the distance to

the top of the stack. Carl Waldspurger et al [86] have proposed an approxi-

mation algorithm that reduces the space and time complexity of reuse-distance

analysis. This algorithm is appropriate for online MRC generation due to its

modest resource requirements.

Memory optimization techniques. Memory deduplication is one of the

3The sampling time interval for this data is around 5 minutes.
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most popular memory optimization techniques. It consists in merging identical

memory pages by keeping only one copy of it. This is mostly useful in case of

read-only pages that stay unchanged during the VM run time. Depending on

the algorithm used to identify similar pages, there are several implementations

of page sharing [20, 69, 86, 44]. These techniques are often combined with mem-

ory compression tools to achieve better optimization rates [81, 75, 91]. Another

memory optimization tool is the transcendent memory [64] which gathers the

VMs’ idle memory and the VMM non-allocated memory to a common pool.

Memory balancing is a memory optimization technique, that tries to adjust

the VM’s allocated memory depending on its necessities. Memory ballooning is

the main concept behind this approach. The balancing techniques typically rely

on working set size estimation techniques to optimize the memory usage [93].

In a latter work, Zhao et al. [87] leverages inexpensive working set tracking

systems to correctly estimate the working set size for the Memory Balancer

(MEB) [93]. Xiaoqiao Meng et al. [68] leverage the concept of statistical re-

source multiplexing between multiple VMs. Specifically, this paper proposes to

form pairs of VMs that have complementary temporal behavior (i.e. the peaks

of one VM coincide with the valleys of the other). Thereby, if consolidated

together, the unused resources from the VM with low demands could be lent to

the VM with high demands. These pairs of VMs are found out by computing

the correlation between all combinations of two VMs in the datacenter. As one

can notice, this approach requires high amount of computation even for small

datacenters.

Improving Memory balancing drawbacks. Memory balancing tech-

niques have several drawbacks. First, in the case where several VMs reach

their respective memory limit simultaneously, they will all generate a high

amount of I/O requests which may saturate the secondary storage. On the

other hand, memory balancing is not aware of the hosted applications. Thus,

memory intensive applications (e.g. database engines) face serious issues be-

cause of memory balancing techniques. To overcome these issues, [78] extends

the VM memory ballooning to user level, for applications that manage their

own memory.

VM consolidation. The VM consolidation is an NP hard problem [50].

Thereby, numerous papers came up with heuristics for this problem [52, 16,

8, 48]. However, few of these projects provide real implementations to the

proposed algorithms [6, 36]. Among the implemented systems, to the best

of our knowledge, no system consistently performs memory overcommitment.

Even if memory is the main consolidation impediment, most of the existing

systems consolidate the VMs based on their booked memory and not on the

actually used memory. In this work, we propose a system that monitors the
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WSS of VMs and takes consolidation decisions based on the observed memory

utilization.

2.8 Conclusion

In this work, we presented a systematic review of the main WSS estimation

techniques, namely Self-ballooning, Zballoond, VMware, Geiger and Hypervisor

exclusive cache. From far of our knowledge, this is the first work which deeply

compares existing WSS techniques. To this end, we propose a set of quali-

tative and quantitative metrics allowing the classification of these techniques

and we evaluate each technique using both micro and macro benchmarks. The

evaluation results reveal the strengths and the weaknesses of each technique.

More important, they show that not all solutions address the issue in its en-

tirety. Unfortunately, those which entirely address the issue are intrusive, thus

requiring the permission of the VM’s owner. This is unacceptable from the

datacenter operator’s point of view. We also propose Badis, a system which

combines several of the existing solutions, using the right solution at the right

time. In addition, we have implemented a consolidation extension which lever-

ages Badis for an improved consolidation ratio. The evaluation results reveal

a 2x better consolidation ratio with only 3% additional VM migrations.
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Chapter 3

Local Memory Mutualization

Based on Badis

3.1 Introduction

This chapter aims to present a cooperative memory management system (CMMS)

that tackles the challenge of dynamic memory allocation. The basic idea

is to reclaim memory from over-provisioned VMS in order to provide it to

under-provisioned VMs. Three scientific applications, with different memory

behaviours, have been studied to evaluate the effect of CMMS on the perfor-

mance of applications.

3.2 Background

Working set estimation is the critical issue for providing dynamic memory

allocation. The working set measures statistically the amount of memory pages

that are currently actively in use. We have used the working set estimation

technique described in chapter 2. We assume here that the amount of memory

equal to the working set size (WSE) should be practically enough for a VM to

run without performance degradation. Dynamic memory adjustment is reached

via the memory ballooning technique. A balloon driver is installed in every VM

and it is allowed to allocate memory pages, so that these pages are reclaimed

from the VM and given to the Virtual Machine Manager (VMM). Then the

VMM can decide how to distribute freed memory pages.

3.3 Motivation

A majority of datacenters relies on static allocation rather than dynamic allo-

cation, which results in a huge amount of memory wasting. Figure 3.1 shows
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Figure 1: Resource utilization over 30 days for a large production cluster at Twitter managed with Mesos. (a) and (b): utilization
vs reservation for the aggregate CPU and memory capacity of the cluster; (c) CDF of CPU utilization for individual servers for
each week in the 30 day period; (d) ratio of reserved vs used CPU resources for each of the thousands of workloads that ran on
the cluster during this period.

Twitter do with Borg and Mesos respectively. Various anal-
yses estimate industry-wide utilization between 6% [15] and
12% [24, 59]. A recent study estimated server utilization on
Amazon EC2 in the 3% to 17% range [38]. Overall, low uti-
lization is a major challenge for cloud facilities. Underuti-
lized servers contribute to capital expenses and, since they
are not energy proportional [36, 42], to operational expenses
as well. Even if a company can afford the cost, low utiliza-
tion is still a scaling limitation. With many cloud DCs con-
suming 10s of megawatts, it is difficult to add more servers
without running into the limits of what the nearby electricity
facility can deliver.

In this work, we increase resource utilization in data-
centers through better cluster management. The manager
is responsible for providing resources to various workloads
in a manner that achieves their performance goals, while
maximizing the utilization of available resources. The man-
ager must make two major decisions; first allocate the right
amount of resources for each workload (resource allocation)
and then select the specific servers that will satisfy a given al-
location (resource assignment). While there has been signifi-
cant progress in cluster management frameworks [21, 32, 54,
63], there are still major challenges that limit their effective-
ness in concurrently meeting application performance and
resource utilization goals. First, it is particularly difficult to
determine the resources needed for each workload. The load
of user-facing services varies widely within a day, while the
load of analytics tasks depends on their complexity and their
dataset size. Most existing cluster managers side-step allo-
cation altogether, requiring users or workloads to express
their requirements in the form of a reservation. Neverthe-
less, the workload developer does not necessarily understand
the physical resource requirements of complex codebases or
the variations in load and dataset size. As shown in Fig-
ure 1.d, only a small fraction of the workloads submitted
to the Twitter cluster provided a right-sized reservation. Un-
dersized reservations lead to poor application performance,
while oversized reservations lead to low resource utilization.

Equally important, resource allocation and resource as-
signment are fundamentally linked. The first reason is het-
erogeneity of resources, which is quite high as servers get
installed and replaced over the typical 15-year lifetime of
a DC [9, 20]. A workload may be able to achieve its cur-
rent performance goals with ten high-end or twenty low-
end servers. Similarly, a workload may be able to use low-
end CPUs if the memory allocation is high or vice versa.
The second reason is interference between co-located work-
loads that can lead to severe performance losses [41, 69].
This is particularly problematic for user-facing services that
must meet strict, tail-latency requirements (e.g., low 99th

percentile latency) under a wide range of traffic scenarios
ranging from low load to unexpected spikes [16]. Naı̈vely
co-locating these services with low-priority, batch tasks that
consume any idling resources can lead to unacceptable la-
tencies, even at low load [41]. This is the reason why cloud
operators deploy low-latency services on dedicated servers
that operate at low utilization most of the time. In facili-
ties that share resources between workloads, users often ex-
aggerate resource reservations to side-step performance un-
predictability due to interference. Finally, most cloud facil-
ities are large and involve thousands of servers and work-
loads, putting tight constraints on the complexity and time
that can be spent making decisions [54]. As new, unknown
workloads are submitted, old workloads get updated, new
datasets arise, and new server configurations are installed, it
is impractical for the cluster manager to analyze all possible
combinations of resource allocations and assignments.

We present Quasar, a cluster manager that maximizes
resource utilization while meeting performance and QoS
constraints for each workload. Quasar includes three key
features. First, it shifts from a reservation-centric to a
performance-centric approach for cluster management. In-
stead of users expressing low-level resource requests to the
manager, Quasar allows users to communicate the perfor-
mance constraints of the application in terms of through-
put and/or latency, depending on the application type. This
high-level specification allows Quasar to determine the least

Figure 3.1: : Memory utilization over 30 days for Twitter datacenter managed

with Mesos

the memory utilization in a Twitter datacenter managed with Mesos. It il-

lustrates that the average memory consumption is at the level of 50%, which

means that almost half of the memory is wasted most of the time. VMs are

over-provisioned because it is anticipated that at some times, applications will

have short memory peaks and memory is allocated to prevent this issue. Stud-

ies [49, 82] shows that such a usage of memory is common to most datacenters

and most of the servers are underutilized. Thus an efficient memory manage-

ment system is required to tackle this issue.

3.4 Contribution

Figure 3.2 illustrates our cooperative memory management system consisting of

three main parts: Working set estimation (WSE) technique which periodically

calculates the working set size of each VM and updates the values. The memory

manager adjusts the memory size of VMs according to the new working set

values. If a VM is over-provisioned, then unused memory (according to the

working set) is reclaimed and sent to the free memory pool. In case of memory

shortage of a VM, the memory needs can be satisfied from the free memory

pool. The system guarantees that at least the VM’s initially allocated memory

size is allocated in case of memory shortage and some extra memory can be

allocated if the free memory pool is not empty.
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Figure 3.2: Memory Management system schematic illustration

The system maintains 2 variables for each VM: initial allocation (Meminit)

and current allocation (Memact). The VMs are distinguished into two groups:

Servers and Clients. Servers are the VMs that gave memory to the pool

(Meminit > Memact) and Clients are the VMs that owe memory to the pool

(Meminit < Memact).

The system is designed to optimize memory consumption of VMs and amor-

tize temporary memory shortage. However, it is not always possible to have

enough memory in the free memory pool and it is anticipated that at some

moments, applications will face memory peaks simultaneously and the system

should somehow choose the best strategy to overcome such situations. Algo-

rithm 1 describes the approach which is used in our solution.
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Data: Working set sizes (WSS) are updated periodically by the

estimator

foreach VM where Memact¿WSS do

Reclaim extra memory and send it to free memory pool (Mpool);

Memact = WSS;

if Memact¡Meminit then
VM = Server;

end

;

let GROWserver be the set of VMs from GROW which are Server;

foreach VM in GROWserver do grant memory up to Meminit to from

pool if possible;

reclaim memory up to Meminit from Clients (following policy);

if (WSS¿Meminit) then
Memact = Meminit;

VM = Client;
else

Memact = = WSS

end

;

let GROW be the set of VMs such that Memact¡WSS;

forall VM in GROW do
let CLIENTMEM be the memory from pool and borrowed by

Client VMs;

distribute memory from CLIENTMEM up to WSS if possible

(following policy);

Memact = Memallocated;
end

Algorithm 1: Memory distribution algorithm
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The system may be used with two different memory distribution policies:

equal and proportional. According to the equal distribution policy, the memory

will be granted or reclaimed equally between VMs. With the proportional dis-

tribution policy, memory reclamation or granting is distributed proportionally

according to VM’s memory usages.

3.5 Related Work

The memory size of a VM is generally assigned at creation time. However, op-

timal memory management requires dynamic memory allocation during VM’s

runtime. Waldspurger introduced a technique called ballooning [85] which has

been widely adopted for VM memory resizing. The balloon is installed into the

guest OS as a kernel space driver; it provides a means to dynamically adjust

the memory size of the VM. From there, many dynamic memory management

policies may be implemented and this is a hot topic. However, there are only

few works addressing this issue citeVMCTune describes a resource balancing

tool based on dynamic resource allocation (for different resource types). It

tracks the live resources consumption (CPU, memory and network) of VMs

and Physical Machines, then uses instant resource reallocation for VMs run-

ning on same PM to achieve local VMs load balancing. Another paper[76]

proposes a reinforcement learning algorithm that facilitates self-adaptive VM

resource provisioning. Ginseng[73] is a market-driven cloud system that collects

client’s bids of a true value for the needed memory, then re-allocates physical

memory to the clients thanks to an efficient memory allocation according to

these bids. XHive[54] and VSWAPPER[9] are cooperative caching systems for

virtual machines that try to reduce the overhead caused by the swap activity

within VMs. The main advantages of our solution is that it uses precise work-

ing set estimation technique (badis presented in chaper 2) to trigger memory

balancing before the swap activity occurs and it maintain a free memory pool

which allows to utilize unused memory for other purposes such as hosting new

VMs to raise consolidation.

3.6 Results and discussions

This section presents the evaluation results of our CMMS system. The evalu-

ation includes two memory distribution algorithms, equal and proportional.

The experiments were carried out on a Dell Precision server (Intel CPU

E5-1603 2.80GHz and 8 Gb of RAM). The virtualization system on the server

is Xen 4.2. Both the host and guest OS are Ubuntu Server 12.04. At creation

time, each VM is allocated 1Gb of memory.
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Figure 3.3: Memory behaviour of VMs

To evaluate the benefits of CMMS, the following scientific applications were

ran in VMs during experiments.

• The Weather Research and Forecasting (WRF) [89] Model is a next-

generation mesoscale numerical weather prediction system designed for

both atmospheric research and operational forecasting applications.

• GRASS GIS [70] commonly referred to as GRASS (Geographic Resources

Analysis Support System) is a free and open source Geographic Informa-

tion System (GIS) software suite used for geospatial data management

and analysis, image processing, graphics and maps production, spatial

modeling, and visualization.

• BLAS (Basic Linear Algebra Subprograms) are routines that provide

standard building blocks for performing basic vector and matrix oper-

ations.

The memory behaviour of WRF does not include significant fluctuations (it is

mainly flat). The memory profile of BLAS and GRASS GIS changes signifi-

cantly during the runtime of the application.

Figure 3.3 reports the memory behaviour of the VMs running the enlisted

applications. Red, Blue and Black lines illustrate the working set of each VM.

The Light blue line indicates the total memory needs of all VMs. The green line

represents the maximum available memory dedicated to all VMs. The running

time of each application is around 30 minutes.

The experiments were carried out with three different settings: (1) with

static allocation (i.e. the memory size of the VM does not change at runtime),

then with CMMS (which adapts VM’s memory allocation according to the

working set), free memory being distributed based on the equal (2) or the

proportional (3) algorithms.
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Table 3.1: Memory distribution in case of equal policy

Min From To Memory Size

8 VM3 VM1, VM2 104, 104

9 VM3 VM1, VM2 105, 105

10 VM3 VM1, VM2 105, 105

- - - -

21 VM1, VM3 VM2 58, 220

22 VM1, VM3 VM2 62, 221

The observations on Figure 3.3 show that VM1(Blass) and VM2(Grass) are

crossing the line of 1GB several times during the running time of the applica-

tions, which is the initially allocated size of the VMs. Thus in case of static

allocation, these VMs are swapping during these periods. However, these peaks

are supposed to be amortised with dynamic allocation. Furthermore, we can

notice that at some points, the total of the memory needs is higher than the

size of the available memory on the physical machine. This means that at these

points, the amount of memory in the pool is 0 and the memory management

system faces a challenge of fair memory distribution when free resources are

not enough. This challenge is tackled by the implementation of equal and pro-

portional memory distribution policies. These peaks occur during minutes 8-11

and 21-22. Table 3.1 and table 3.2 show how the free memory was distributed

when the resources in the pool are not sufficient to satisfy the memory needs

of all VMs.

Figure 3.4 demonstrates that dynamic allocation may significantly reduce

the amount of swapped out memory. The experiments show that by applying

dynamic allocation, we can reduce the amount of swapped out memory by 4.2
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Table 3.2: Memory distribution in case of proportional policy

Time From To Memory Size

8 VM3 VM1, VM2 140, 68

9 VM3 VM1, VM2 96, 115

10 VM3 VM1, VM2 88, 122

- - - -

21 VM1, VM3 VM2 58, 220

22 VM1, VM3 VM2 62, 221
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Figure 3.5: Performance evaluation

times. This leads to a significant speed-up for applications. This is possible

as it is highly probable that all VMs will not reach peaks at the same time.

Thus the over-provisioned memory is transferred to the pool and used to satisfy

memory needs of the VMs that reach peaks. Figure 3.6 show the evolution of

the number of client and server VMs over time. Most of the time, the number

of servers is greater than the number of clients, so there is free memory to

provide to VMs facing memory shortage.

The decrease of swapped memory delivers performance boost in case of

dynamic allocation. Figure 3.5 shows that the proportional distribution policy

provides better speedups than the equal distribution policy.

3.7 Conclusion

Memory management is a complex task, especially in virtualized environments.

We showed that a static allocation policy leads to resource wasting, and that

a dynamic policy allows to amortize load peaks. We implemented a coopera-

tive memory management system which allows to reclaim unused memory from

VMs, and to provision this reclaimed memory to VMs whih need it. Experi-
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Figure 3.6: VMs status change over time

mental results show that our solution is able to decrease the overhead caused

by swap activity for VMs which lack memory, while maintaining a low over-

head for other VMs. On our benchmarks, the amount of swapped-out memory

was reduced by 4.2 times and performance boosts of about 14% and 17% were

detected when testing with two different memory distribution policies.

However, there are several directions to improve our system. First, we are

considering an evaluation in a full scale cluster which includes a consolida-

tion system. Then there might be a need to study more memory distribution

algorithms.
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Chapter 4

Memory Mutualization system

for Virtualized Computing

Infrastructures

4.1 Introduction

An increasing number of applications require huge amounts of computational

and data resources provided by large scale hardware infrastructures, i.e. clus-

ters of servers. As such infrastructures can be mutualized, this contributes to

the development of data centers following the cloud computing model. Such

data centers may target the public market (public clouds) or be operated by

companies for their internal use (private clouds).

A majority of these clusters rely on virtualization for resource manage-

ment simplification [46]. Virtualization allows hosting several virtual machines

(VMs) / operating systems on a single physical machine. Each VM is allocated

a given amount of resources (CPU, memory, networking, storage) and it rep-

resents the unit of allocation in the infrastructure. Thanks to VM migration,

a consolidation policy can potentially be implemented [80], which consists of

packing VMs on as less physical servers as possible.

In this context, two main types of resource intensive applications are gener-

ally exploited: High Performance Computing (HPC) and Big Data (BD). HPC

applications are mainly CPU bound [34] while BD applications are mainly IO

and memory bound [21].

This contribution aims to improve the memory management in such envi-

ronments. The generally adopted approach is to monitor the working set of

each VM and to reclaim weakly used memory (cold pages) without degrading

the VM performance. Then, the reclaimed memory can be given to VMs with

high memory requirements [83]. However, this can only be done on a per server

basis as reclaimed memory on one server can only be given to VMs running



on that server. Therefore, we have to trust the placement and consolidation

systems for gathering on the same server memory providing VMs and memory

consuming VMs.

However, this approach is difficult to implement for two main reasons:

1. Consolidation limitations. Consolidation is known to be a NP hard prob-

lem [50], especially since it has to simultaneously take into account mul-

tiple resource types whose availability is continuously varying. Therefore,

it is a challenge to colocate VMs so that memory can be mutualized.

2. Infrastructure concerns. VMs’ placement may be constrained by rules

linked with the hardware type or with administration policies (e.g. dif-

ferent sub-clusters for HPC or BD applications), thus limiting the use of

VM migration and dynamic consolidation.

Therefore, requiring VM colocation for memory mutualization appears to be

a substantial limitation. The principle followed by the suggested contribution

is to make the reclaimed memory accessible remotely.

In this chapter, we present the implementation of a system which allows to

dynamically monitor the working set of each VM, to aggregate this memory

into a distributed memory reservoir, and to make it available to requiring VMs.

This memory can be used directly by the VM if available locally. It can be

used as a fast remote swap device when available remotely. Our evaluations

with HPC and BD benchmarks demonstrate the effectiveness of this approach.

We show that a remote memory reservoir provided by a HPC cluster through

an Infiniband network can improve the performance of a standard Spark BD

application by up to 17% with an average performance degradation of 1.5%

(for the providing application).

The rest of the chapter is structured as follows. Section 4.2 presents the

motivations and main design choices. Section 4.3 details the designed and

implemented system. Section 4.5 presents the performance evaluation which

demonstrates the effectiveness of the approach. After a review of related works

in Section 4.4, we conclude the article in Section 4.6.

4.2 Motivation and Design Choice

4.2.1 Motivation

An increasing number of applications require huge amounts of resources, es-

pecially HPC (CPU bound) and BD (IO and memory bound) applications.

Consequently, companies are setting up private cloud infrastructures (datacen-

ters) where the resources required by such applications can be mutualized. For
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ease of administration, most of these infrastructures are virtualized. Therefore,

VMs are the unit of resource allocation and placement in the datacenter.

Resource allocation to VMs can be static or dynamic:

1. static allocation: resources are allocated to each VM at creation time and

never reclaimed during the lifetime of the VM. This approach is widely

used due to its ease of use. However, it leads to a waste of resources, since

users estimate and allocate the maximum amount of resources needed for

their applications to prevent performance degradations during the peak

workloads. Thus, when VMs workloads are lower, the allocated resources

stay unutilized.

2. dynamic allocation: even if a VM is configured with a given amount of

resources (a maximum), resources are effectively allocated on demand.

This allows to mutualize the resources within one node and increase re-

source utilization, since resources which are not used by a VM can be

reclaimed and reused for another VM.

Finally, thanks to VM migration, the placement of VMs in the datacenter

can be modified dynamically, following a consolidation strategy. Consolidation

consists in packing VMs on as less physical servers as possible, and aims at

optimizing resource management. Such consolidation can be implemented ei-

ther with static or dynamic resource allocation. Most of the works regarding

consolidation were either based on static allocation or dynamic allocation, but

considering for most of them the CPU resource only. Addressing the consoli-

dation problem with dynamic allocation and multiple fluctuating resources is

a much tricky issue.

In this work, we are interested in improving memory management in such

environments. We assume a dynamic allocation approach where we monitor

the working set of each VM and reclaim weakly used memory (cold pages)

without degrading the VM performance. Then, the reclaimed memory can be

given to VMs with high memory requirements. However, this can only be done

on a per server basis as reclaimed memory on one server can only be given to

VMs running on that server. Therefore, we have to trust the placement and

consolidation systems for gathering on the same server memory providing VMs

and memory consuming VMs.

However, this approach is difficult to implement for three main reasons:

1. Consolidation limitations. As we have seen previously, consolidation with

dynamic allocation and multiple resources is tricky and it is known to be

a NP hard problem [50], especially since it has to simultaneously take

into account multiple resource types whose availability is continuously
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varying. Therefore, many providers renounce using consolidation and

rely on simple predictable policies, thus making it difficult to colocate

VMs so that memory can be mutualized.

2. Infrastructure concerns. VMs’ placement may be constrained by hard-

ware type concerns, e.g. the availability of a specific device like a GPU. Or

sometimes, the hardware may just not enable VM migration, e.g. SR-IOV

network devices [58] significantly reduce the overhead of virtualization,

but forbid migration in major hypervisors.

3. Administration concerns. Different parts of the infrastructures may be

dedicated to different types of application, e.g. different sub-clusters for

HPC or BD applications. Indeed, the infrastructures built to run HPC

and BD applications are quite different from one another. In HPC clus-

ters, there is generally a centralized file system which is shared among all

the (diskless compute) nodes via NFS (or a similar technology). In Big

Data clusters, every node has its own local storage device because every

node accesses its local storage intensively. Moreover, the schedulers used

for distributing jobs in these clusters are different due to the difference in

the type of job they distribute. Consequently, migrations between these

sub-clusters can hardly be operated.

Therefore, relying on consolidation to enforce VM colocation for memory

mutualization appears to be an hazardous strategy. The principle followed by

our contribution is to make the reclaimed memory accessible remotely.

4.2.2 Design Choice

In this work, we present a memory mutualization system which relies on dy-

namic memory allocation. The working set of each VM is monitored and weakly

used memory can be reclaimed. This reclaimed memory can be used to pro-

vision VMs which lack memory on the same server. It can also be used to

provision a memory reservoir which behaves as a remotely accessible fast stor-

age. Modern networking technologies (such as Infiniband) provide low latency

and high bandwidth communication allowing to use this memory as a fast swap

device. Therefore, the free memory reservoir is used as an extension of the local

memory of VMs.

We observed that VMs in HPC clusters are mainly CPU bound and their

memory consumption is quite stable, allowing memory to be reclaimed to pro-

vision the memory reservoir. Most applications in BD clusters are memory and

IO bound and can significantly benefit from extra memory from the memory

reservoir.
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The next sections present the design of our system and its evaluation.

4.3 Contribution

In the presented distributed memory sharing system, memory may be mutual-

ized locally (to a node) or globally (between remote machines). In the case of

local mutualization, unused memory from local VMs can be used to help over-

loaded local VMs. In the case of global mutualization, unused memory from

VMs on one node can be used (as a fast swap) to mitigate memory shortage of

remote VMs.

Physical machines act either as a Client (memory consumer) or a Server

(memory provider). A client machine can benefit from remote memory from

server machines. A machine which does not use all of its memory becomes a

server. A machine which requires more memory (than its capacity) becomes a

client. However, every VM is guaranteed to have at least its initially allocated

memory in case of memory shortage. Thus VMs and client machines can get

their memory back in such cases.

The suggested system is composed of two parts: dynamic memory allocation

within one node (local memory mutualization) and remote memory allocation

from server machines (global memory mutualization).

4.3.1 Design

Overall System architecture

The design of our system relies on two main entities:

• A Local Memory Controller (LMC) is in charge of memory management

within a single node. Every node (client or server) is running an LMC.

The LMC manages a Free Memory Reservoir. This memory may be used

for local or global mutualization.

• A Global Memory Controller (GMC) manages the coordination between

machines (clients and servers). It is connected with all the LMCs. It

implements a Global Memory Reservoir by federating the distributed

free memory reservoirs. It is responsible for remote memory distribu-

tion among clients.

Figure 4.1 illustrates the architecture of the distributed memory sharing

system. Each single machine executes an instance of LMC, which is responsi-

ble for local memory management within the node. The virtualization system
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Figure 4.1: Architecture of the distributed memory sharing system

includes a memory monitoring system which periodically evaluates the work-

ing set size of each VM. The estimations are transmitted to the LMC which is

allowed to reclaim or grant memory from/to VMs depending on their memory

needs and current allocations. The memory reclaimed by the LMC provisions

the Free Memory Reservoir (local to the machine). This memory can be allo-

cated to local VMs. The information on the size of the Free Memory Reservoir

is sent (when modified) to GMC which implements the Global Memory Reser-

voir. This memory can be allocated to client machines (their LMC) and then

be used as a remote swap device by overloaded VMs.

LMCs in all machines keep communication with the GMC for requesting

and releasing remote memory. This communication can rely on different types

of networks. We experimented both with Gb Ethernet and Infiniband. Infini-

band brings the advantage of enabling Remote Direct Memory Access (RDMA).

With Infiniband, the communication framework between LMC and GMC im-

plements the concepts of RPC over RDMA [38, 79]. Communications between

VMs and remote swap devices rely on low-level RDMA primitives which di-

rectly access remote memory.

Monitoring Service

A proper working set estimation facility for the memory management system

should have a very low performance impact on VMs. It should also be accurate

regarding the estimation of the working set size (WSS). For implementing such

a facility, the main issues is to enforce accuracy and low overhead in two states,

when a VM does not use all its memory (Sless) and when it lacks memory

(Smore).

In our system, we rely on badis 2, a WSS monitoring system implemented
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in our research group. Badis combines a statistical working set estimation

method based on page invalidation [85] and a buffer cache monitoring based

method [47].

Badis accurately estimates WSS in both the Sless case (with the page in-

validation method) and the Smore case (with the buffer cache method). Thus,

these solutions complete one another.

Memory Management Controllers

The memory management protocol defines the interactions between controllers

(LMC and GMC) and between LMCs and the virtualization system. The pro-

tocol is composed of two parts:

1. the Local Memory Management Protocol defines the exchanged messages

between the virtualization system and the LMC. It allows the LMC to

obtain the WSS from the virtualization system and to grant or reclaim

memory to/from a VM.

2. the Global Memory Management Protocol defines the exchanged mes-

sages between GMC and LMC. It allows a client LMC to request (to the

GMC) the allocation or the release of extra memory, or it allows a server

LMC to reclaim its memory back. A LMC can also inform the GMC

about the size of the local reservoir. Symetrically, the GMC can request

(to a server LMC) a memory allocation or release, or it can reclaim some

memory back.

The defined protocol is described in Figure 4.1, with one arrow per message

type.

Local Memory Controller behavior The LMC periodically gathers the

WSS from all the VMs running on the machine. The ws update message is

used to receive the WSS information of all VMs. Based on this information,

the LMC decides wether to grant extra memory to VMs or reclaim memory

from VMs. The implementation of vm grant and vm reclaim are based on

memory ballooning [85, 13] (using a balloon driver installed in all the VMs).

These operations naturally force a change of the VM sizes and a change of the

size of the Free Memory Reservoir: a vm reclaim (respectively vm grant) on a

VM increases (respectively decreases) the size of the Free Memory Reservoir.

Later, the memory gathered in the Free Memory Reservoir may be provided as

a remote swap device.
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Global Memory Controller behavior The GMC periodically receives up-

dates on the current size of all the Free Memory Reservoir. The GMC inform

message is used to notify every modification of the size of a Free Memory Reser-

voir. When a machine needs extra memory (a remote swap device) for one of

its VMs, the LMC of the client machine sends a GMC alloc message to the

GMC asking to check if it may provide the needed amount of memory. GMC is

aware of the current state of the Free Memory Reservoirs in all machines, thus

it can decide where it can allocate a remote swap device for a client machine.

Then, it sends an LMC alloc message to the chosen server machine (which can

provide memory to the client machine). The LMC (in the server machine)

allocates the memory and prepares it as a swap device and returns all the

necessary information to the GMC. After a successful allocation on the server

side, the GMC returns to the LMC on the client machine all necessary infor-

mation allowing to mount and use the remote swap device which is physically

located on a server machine. If an LMC of a client machine does not need its

extra memory anymore, it can release it with a GMC release message, which

propagates to the LMC on the server machine with a LMC release message.

In the case where a server machine needs its memory back, its LMC sends a

GMC reclaim message to the GMC. Then, the GMC notifies the client machine

that the remote swap device has to be unmounted (LMC reclaim message) and

then returns to the server machine that the memory is free. To avoid high

latencies that we would have if you were moving the data from the removed

swap device, we asynchronously store the data of a remote swap device on a

local disk (on the client machine). Thus, the local disk can replace a remote

swap device (rapidly and temporarily as the data will potentially be cached in

another remote swap device) in such cases.

Remote Swapping Service

Swapping is a key functionalities provided by Linux OS. It uses swap space to

increase the amount of virtual memory available to a machine. When the OS

faces memory shortage, some pages have to be swapped out to local disk. The

OS invokes the kswapd kernel module which is responsible for paging. It sends

pages to the swap device having the highest priority in the list of devices, which

performs I/O operations that are specific for the given type of device. The

remote swapping service implements a new type of device which operates with

the same logic and gets the highest priority among swap devices. Applications

are not aware of this process. Remote swapping is used to provide the unused

memory collected in the memory reservoir to remote machines.
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4.3.2 Implementation

Implementation Environment

Xen [13] is a popular open-source virtualization system which is widely es-

poused by several cloud providers such as Amazon EC2. Its implementation

follows the para-virtualization [88] model. In the latter, VMs’ OS are modified

to be aware of the fact that they are virtualized, which reduces virtualization

overhead. In this model, a small kernel called the hypervisor runs directly on

top of the hardware, so taking the traditional place of the OS. Thus, it has

all privileges and rights to access the entire hardware and provides the way

to run several OS called Virtual Machines (VMs) concurrently. The host OS

(seen as a special VM) is called the Virtual Machine Monitor (VMM). It has

much more privileges than other VMs since it is responsible for running Xen

management toolstack.

Monitoring Service

As mentioned before for working set monitoring, we rely on Badis, the details

of implementation has been presented in Chapter 2.

Memory reservoir Service

This service is composed of two parts: the LMC and the GMC. The LMC is

implemented as a loadable kernel module installed in the VMM in order to

allow interactions with VMs for monitoring and management. The GMC can

be run in any process on any machine in the cluster.

The LMC implements dynamic memory allocation based on the memory

ballooning technique which is a simple driver located in the VM (guest OS). The

driver communicates with the VMM and may receive two types of command:

inflate and deflate. In case of inflate command, the driver allocates memory in

the VM and gives its control to the VMM (so that the LMC can use it). In case

of deflate command, the VMM releases its control over pages, and the driver

can deallocate these pages (therefore making these pages available in the VM).

This technique is used to implement dynamic memory allocation (to VMs) in

our system.

The GMC is managing its communication via standard network interfaces

such as Ethernet and Infiniband. The communication via Ethernet is imple-

mented by using low level netpoll APIs, which allow to send UDP packets from

the Linux OS Kernel. In case of communication over RDMA (Infiniband), the

standard RDMA SEND/RECV functions from the IBverbs library are used.
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Remote Swapping Service

In the guest OS of a VM, kswapd can use swap devices. Such a swap device is

implemented in the VMM on the local host. Remote swapping is implemented

with two modules, on the client side (memory consumer) and on the server side

(memory provider):

1. The client side module is located in the VMM of the client host and

provides a means for kswapd to swap pages to the swap device.

2. The server side module is located in the VMM of the server host and is

responsible for allowing reads and writes to the memory reservoir from

remote locations.

Figure 4.2 describes the architecture of the remote swapping service. These

two modules can be interconnected via the Infiniband network which makes

possible remote swapping without interaction with the remote CPU. For its

implementation on Infiniband, remote swapping is based on Infiniswap [43]

where RDMA READ and RDMA WRITE requests allow direct addressing of

remote pages.

Figure 4.2: The architecture of remote swapping

4.3.3 Memory Management Policy

The LMC adjusts the memory size of VMs according to the working set values.

If a VM is over-provisioned, then unused memory (according to the working

set) is reclaimed and sent to the Free Memory Reservoir. In case of memory

shortage of a VM, the memory needs can possibly be satisfied from the Glocal

Memory Reservoir, locally or remotely. The system guarantees that at least

the VMs initially allocated memory size is provisioned if its working set grows

up to that size, and some extra memory can be allocated if the Global Memory

Reservoir is not empty.

There are many configurable parameters in our system, which give the op-

portunity to tune the system according to the needs of an administrator. Some
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administrators would give priority to local VMs (satisfy local needs first), others

would give higher priority to a given type of VM (potentially remote).

In our case, we tried to satisfy local needs first and a Free Memory Reservoir

is always used as a remote swap device when all the VMs on that host are

satisfied. In our policy, we also added a configurable limit (per VM) on the

amount of memory that can be provided as a remote swap device.

4.3.4 Memory Allocation for Application

Our distributed memory sharing system allows VMs to obtain extra memory.

This will change the size of the VM dynamically, i.e. the amount of memory

granted to the VM.

We can consider two situations regarding the use of this extra memory by

applications:

• Applications with dynamic memory allocation. These are applications

which dynamically allocate and realease memory. Such application will

naturally benefit from the extra memory granted to the VM.

• Applications with static memory allocation. These are applications which

allocate as much memory as possible at startup and implement their own

memory management internally. The Java virtual machine is an example

of such application. Therefore, such applications will not benefit from

extra memory granted to the VM.

Regarding the second class of application, we use our system in the following

way. First, we monitor the behavior of VM images to determine the type of VM

which needs extra memory (e.g. Big Data VMs). These VMs are configured

with an increased memory size, so that they will use extra memory. We show in

the evaluation that a Big Data VM improves its performance with up to 40% of

extra memory. For such VMs, the extra memory must be available if the VM

uses it, else the VM would swap to disk and it would degrade performance.

Second, the quantity of extra memory which can be allocated is based on

statistics. We monitor the use of memory in the datacenter and therefore have

an estimation of the extra memory which can be allocation without damage.

The question of which VM should receive extra memory (static application

VMs, dynamic application VMs, which VM) is a question of policy.

4.4 Related work

The design of our system was inspired by Global Memory System [35] which

was one of the first attempts to implement such an infrastructure-wide memory
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management service. As a memory management system which aims at memory

mutualization, our contribution can be compared to related works within two

categories:

1. Local Memory Mutualization: where the memory optimization and re-

distribution is done within a single physical node.

2. Global Memory Mutualization: where the memory distribution is imple-

mented datacenter-wide.

Local Memory Mutualization.

Ginkgo [45] is a mutualization system which allows to dynamically adjust

the memory size of a VM. It determines the minimum acceptable amount of

memory that a VM may run with, based on application performance, memory

usage, and submitted load. Then, it relies on ballooning for reclaiming unused

memory. The main drawback of the method is that the user or the provider

should profile the application in advance and inform the system with that

profile.

W. Zhao and Z.Wang [93] have introduced dynamic MEmory Balancer

(MEB) for memory balancing between virtual machines. It estimates the mem-

ory consumption of a VM and periodically re-allocates memory of VMs based

on their needs. In a more recent paper, they upgraded it with a non-intrusive

working set estimation system [87]. This approach is close to our regarding

local mutualization. However, they did not evaluate it with memory intensive

applications such as Big Data applications.

Statistical resource multiplexing strategies have been introduced by Xiao-

qiao Meng et al [68]. They analyze VMs’ memory usage for deducing predic-

tions and they create couples of VMs in such a way that when one reaches its

peak memory consumption the second one is in low point of memory consump-

tion. This forcasting of memory usage is complementary to our and could be

inegrated in our system.

Global Memory Mutualization.

Remote swapping mechanisms [10, 65, 31, 90] were introduced years ago and

deeply evaluated. However, as today’s traditional Ethernet networks are not

fast enough and remote paging causes a significant overhead on remote CPUs,

successors have been implemented [23, 56] relying on low latency networking

infrastructures (mainly Infiniband) enabling the use of RDMA technologies.

Infiniswap [43] enables to create a swap device from the memory of one ma-

chine and to use that swap device from another machine through Infiniband.

Infiniswap implements the fundamental mechanisms that we used to build a

global memory mutualization system.
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SpongeFiles [32] is a remote memory sharing systems for Hadoop. For

large data sets generated by a job, it allows to avoid sending these data to

disk but rather to route them to another node where sufficient memory is

available. SpongeFiles addresses the issue of memory mutualization for Big

Data application but limited to Hadoop applications. Our system addresses

this issue in a virtualized infrastructures with a wider scope of applications.

Nswap2L [71] is a swap device extension for Linux which allows to add

an abstraction level on swapping process. It appears to the OS as a single

swap device partition whose data can be stored to or migrated between various

heterogeneous storages (RAM, SSD, HDD etc.) including the memory of a

remote host. We share many objectives with Nswap2L, but our experiments

target different environments. First, our system address memory mutualization

in virtualized infrastructures. Second, while Nswap2L targets mutualization

for HPC applications, we rather address mutualization between HPC clusters

(with average memory consumption) and Big Data clusters (with high memory

consumption). Finally, Nswap2L does not exploit RDMA based networking

technologies.

4.5 Evaluation

This section presents the details and results of our evaluation. The provided

numbers are the average of ten executions. We do not provide standard devi-

ation as it was not significant.

4.5.1 Methodology

This subsection presents the benchmarks we used and evaluation methodology

we relied on. In our evaluations, we consider the client side where remote mem-

ory may be used, and the server side from where remote memory is provided.

On the client side, we evaluate the performance benefit with memory inten-

sive applications when additional memory is provided. On the server side, we

evaluate the performance degradation since that memory is used remotely. On

the server side, applications are not memory intensive applications, but rather

CPU intensive applications which don’t use all their allocated memory.

On the client side, we chose the following types of application for the eval-

uation of our system:

1. Microbenchmark - a simple application that we implemented, whose

memory behavior is known in advance, thus allowing to precisely evaluate

the contribution.
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2. Memory Intensive benchmarks - standard benchmarks which are

known to stress memory. In this regards, we chose the following bench-

marks: Data Caching from CloudSuite [37], Elasticsearch nightly bench-

marks [17] and BigBench [41].

3. Big Data benchmarks - modern memory intensive benchmarks which

are used in the domain of Big Data computing. The following benchmarks

have been chosen: Spark SQL [11], TestDFSIO [18] and SparkPi from

Spark bench [55].

On the server side, we evaluate the performance degradation using the High

Performance Linpack [62] benchmark which is used to evaluate performance on

Top 500 supercomputers.

4.5.2 Experimental environment

Hardware. We evaluated our contribution on Dell PowerEdge R610 servers

with the following configuration: Intel(R) Xeon E5-2630LV4 CPU, 64 GB of

memory, 4 x 512GB of SSD storage. The servers were used with the following

scenario: one machine hosts the GMC, one machine acts as a Server and one

machine acts as a Client.

Virtualization. The virtualization environment we used is Xen 4.2. All

the VMs are running an Ubuntu Server 12.04 with Linux kernel 3.6. In all

our experiments, the VM configuration that we used is a medium size VM, as

defined by Amazon web Services: 2 VCPU and 4 GB of memory.

Network. Our default implementation relies on the Infiniband network.

Our evaluations were performed with Mellanox ConnectX-3 cards. However,

to evaluate the impact of Infiniband, we also performed an evaluation with

Ethernet networks.

Software. For benchmarks which rely on Java, the Java Virtual Machine

(JVM) configuration (maximum memory allocation) has been changed to make

the JVM aware of extra memory available in the remote memory reservoir.

Some of the testing applications are based on Apache Spark. In this regard,

we evaluated our contribution both with standard apache spark and with an

improved version (presented in Xiaoyi et al. [61]) of Spark with RDMA (Infini-

band) implemented as a plug-in in Spark which overrides the shuffle methods

(this optimized version was implemented at Ohio University, therefore we call

it Ohio Spark). Comparing with this RDMA optimized version of Spark is a

means to know where the benefit comes from.
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4.5.3 Evaluation Results
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Figure 4.3: Latency while accessing pages in different locations

Micro-benchmarks

Micro-benchmark loops and accesses (reads or writes) on every cell of an array

that has a fixed size assigned at creation time. Every cell in the array has the

size of a page (4Kb). The performance metric of this benchmark is the latency.

Fig. 4.3 shows the latency of Micro-benchmark while accessing pages locally

or remotely using several network technologies (1Gbit, 10Gbit, Infiniband with

RDMA 32Gbit). The overhead caused by remote memory location with a small

amount of data is not significant. Logically, when the data size increases, the

latency increases and the overhead caused by network communications becomes

significant. At the level of 1024 pages, using the 1Gb and 10Gb networks makes

the application respectively 17 and 5 times slower compared to local memory.

We can also observe that the Infiniband network with the RDMA technology

can minimize the network overhead down to an acceptable level. During our

experiments, we observed that RDMA is only 50% slower than local memory.
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Memory Intensive Benchmarks
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Figure 4.4: Data Caching benchmark performance boost with memory exten-

sion (local, Infiniband, Ethernet)

We performed experiments with memory intensive benchmarks which are known

to stress memory. The following benchmarks were used:

Data Caching [37] uses the Memcached data caching server to simulate

the behavior of a Twitter caching server using a Twitter dataset.

Elasticsearch nightly benchmarks [17] is a benchmark suite. We only

performed evaluations for the NYC taxi benchmark. The NYC taxi data set

contains the rides that have been performed in yellow taxis in New York in 2015.

This benchmark evaluates the performance of Elasticsearch for structured data.

BigBench [41] includes more than 30 queries. We chose query 23 because

it has the longest execution time.

For each benchmark, we designed 4 types of workloads to investigate the

correlation between performance improvement and swap activity. Each work-

load determines the amount of memory used by the benchmark.

1. zero is a workload where the memory allocated to the VM is enough to

execute the application.

2. light is a workload where the used memory exceeds the memory allocated

to the VM so that up to 10% of its memory goes to swap.

3. medium is a workload where up to 20% of its memory goes to swap.

4. heavy is a workload where up to 30% of its memory goes to swap.

Fig. 4.4 shows the performance improvement obtained with the Data Caching

benchmarks with a heavy workload. The baseline is the execution without

memory extension, so that the required swap is managed on disk. We mea-

sured the improvement when the VM is given its (required) memory extension

(1) with local memory (2) with remote memory (swap) through Infiniband and
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(3) with remote memory (swap) through Ethernet (10Gb). A local memory

extension would bring an improvement of 40%, which is the ideal case and

corresponds to local memory mutualization. We observed that with remote

memory, we still have a significant improvement with Infiniband (17%) and

with Ethernet (8%). It demonstrates the interest to mutualize memory even

remotely.

Fig. 4.5 shows the performance improvement for our 3 selected memory

intensive benchmarks with the different workload sizes, when being provided

memory extension over Infiniband. Naturally, the improvement is proportional

to the memory extension required by the workload. We observe that the im-

provements are significant for all benchmarks.

One important aspect is that the memory reservoir is provisioned by mem-

ory reclaimed on the server side. The reclamation and the remote use of such

memory may have a negative impact on applications running on the server

side. Remind that such applications are not memory intensive applications but

rather CPU intensive applications which do not fully use their memory. We

have used the HPL [62] benchmark to evaluate the performance degradation

on the server side. On Fig. 4.6, we can see that the performance degradation

is in the 1-3% range which is fairly low.
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Figure 4.6: Performance degradation for server side VMs executing the HPL

benchmark.

Spark Benchmarks

We also experimented with modern memory intensive benchmarks which are

used in the domain of Big Data computing. All the benchmarks run on Spark.

We relied on the following benchmarks:

Spark SQL [11] is a Spark extension (as module) that enables to support

relational processing to benefit from the advantages of relational processing

and Spark analytical libraries. As a workload, we have selected JoinPerfor-

mance [27] which compares the performance of joining different table sizes and

shapes with different join types.

TestDFSIO [18] is a benchmark that attempts to measure the capacity of

HDFS for reading and writing bulk data.

SparkBench [55] is a benchmark suit for benchmarking and simulating

Spark jobs. In this contribution, the evaluation has been made with PageRank

benchmark due to its memory intensive behavior. It is based on the algo-

rithm which was used by Google as an initial algorithm for ranking web pages

according their significance and their back-links.

In the case of Spark applications, Spark adapts its memory consumption

according to the memory available in the VM. Therefore, for each of these

benchmarks, we evaluated the impact of providing a memory extension to the

VM. For all experiments, memory was extended by 30% of the original memory

size of the VM, assuming that this memory is statistically available in the

cluster.
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Figure 4.7: Performance evaluation of SparkBench when extending memory

with different types of memory.

Fig. 4.7 presents the performance impact on SparkBench when extending

the memory allocated to the VM with a different type of memory: (1) with local

memory (2) with remote memory (swap) through Infiniband (default Spark)

and (3) with a local disk (swap). Again here, local memory is the ideal case,

but we can see that remote memory on Infiniband also brings a significant

benefit (about 19%). It also confirms that local disk swap is a bad idea, but

it should not happen if the memory extension is allocated based on statistics

about used memory in the cluster (Section 4.3.4).
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Figure 4.8: Performance evaluation with two different implementations of Spark

extended with remote memory

Fig. 4.8 shows the performance improvement for our 3 selected big data

benchmarks when being provided memory extension over Infiniband. The eval-

uation was performed both with the default implementation of Spark (Fig. 4.8
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left) and with the OHIO Spark version (Fig. 4.8 right). We observe that remote

memory extension allows a performance improvement from 10% to 17% with

default Spark, and from 7% to 10% with OHIO Spark. It is worth to mention

that even with an optimized version of Spark which fully takes advantage of

RDMA, remote memory extension still brings a significant benefit.

It is well known that Spark is considered to be much efficient since it does

its computations in memory. In this regard, it is obvious that the most valuable

resource for Spark applications is memory. Thus, we tested several configura-

tions of JVM allowing it to exploit remote memory. Usually, Spark takes all

the memory allocated to the JVM and fills it with data. Thus extra memory,

which is slightly slower than local memory, will boost its performance until a

level. To evaluate that level, we varied the amount of remote memory (up to

70%) in the JVM.
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Figure 4.9: Performance evaluation while increasing the allocated remote mem-

ory.

Figure 4.9 shows the performance improvement while the amount of re-

mote memory allocated to the VM is increasing. The graph shows that for all

benchmarks, the performance is boosted until 40% of memory extension.

4.6 Conclusion

The implemented platform enables to improve the memory management of

HPC and BD infrastructures via dynamically monitoring the working set of

each VM, aggregating this memory into a distributed memory reservoir, and

making it available to requiring VMs. Microbenchmarks, memory intensive

benchmarks and Big Data benchmarks were used to evaluate our contribution.
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The results show that remote memory mutualization can improve the perfor-

mance of a standard Spark benchmark by up 17% with an average performance

degradation of 1.5%.
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Chapter 5

Conclusion

5.1 Conclusion

Recent developments of computing infrastructures encouraged users and com-

panies to externalize their computing resources. This externalization followed

the cloud computing principle which promotes resource mutualization. It is

not possible to imagine modern IT ecosystems without cloud solutions. The

providers started to compete with each other. The main aspects of the compe-

tition are the price for their services and the provided quality of service. Thus,

they all try to optimize resource consumption, cut the costs and provides al-

ways better services. Moreover, raising economical and ecological issues pushed

the development of resource optimization techniques even harder.

This thesis suggests to concentrate on memory resource, which is one of

the most important types of resource used in large scale infrastructures. The

challenge we address is to optimize memory management in a virtualized in-

frastructure. It raises three main issues: monitoring the woking set of VMs,

mutualizing memory between VMs on the same server and mutualizing memory

globally between distributed VMs.

First of all, one of the main issues of every memory management system

is working set monitoring. In this regard, Badis is proposed to evaluate the

amount of effectively used memory of VMs. Badis was favourably compared to

the main working set estimation techniques that are used nowadays. Badis is

based on the combination of two previously proposed techniques and is capable

to use the right method at the right place. In addition to this, it was proposed

a consolidation system based on Badis which allows the consolidator to operate

based on the actual working set size, not the size of allocated memory.

The second addressed issue is to enable memory mutualization within a

node. This type of systems allows to reclaim memory from unused VMs and

provide it to the overloaded VMs to help them amortizing memory shortages.

The local memory mutualization system is based on Badis and a memory man-



ager which makes decisions on memory re-balancing. In this regard, it main-

tains a free memory pool which allows to react rapidly to changes in the memory

state of the system. The experimental results show that the system is capable

to reduce the amount of swapped memory by 4.5 times.

The last addressed issue is to enable global memory mutualization between

distributed VMs. This contribution includes the two previous (Badis and local

memory mutualization), but extends them to enable global mutualization. The

portion of locally unused memory can be used to satisfy global needs (memory

needs from VMs located in remote hosts). The system is very productive in mu-

tualizing memory between HPC clusters (which don’t fully use their memory)

and Big Data clusters (which fully exploit memory), due to specific memory

needs of such applications. The experimental results demonstrate the effective-

ness of the system showing up to 17% performance boost of overloaded VMs,

while only 1.5% degradation on remote hosts.

All the above described solutions have been evaluated with specifically

created microbenchmarks and modern HPC and Big Data application bench-

marks.

5.2 Perspectives

In this section, we present the possible future works that were planned but did

not fit into the 3 year PhD thesis.

The thesis describes a prototype of memory mutualization system. The

prototype is implemented on a specific version of the Xen hypervisor. A first

perspective would be to adapt the solution to make it available on various

hypervisors (such as KVM, VMware etc.). Moreover, the configuration of the

system is hard-coded at the moment and it would be convenient to create

a configuration dashboard where the administrator can define his policies or

configure other parameters. It would be a significant milestone for the project

to introduce it as an opensource project to the community which would be able

to evaluate it more widely and contribute to the future developments of the

system.

Another perspective is to work on properties such as fault tolerance, het-

erogeneity or security. There have been some works done in this area (e.g.

remotely stored data are asynchronously backed up locally for fault tolerance),

but it was not the main concern and these are still issues to be addressed.

These properties have not been evaluated during our experiments and have not

been tested in real life environments. Moreover, in datacenters the solution will

have to deal with the heterogeneity of the networking facilities with different

speeds and typologies. The solution is capable to operate with different types
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of networks, but not with heterogeneous infrastructures.

Finally, it would also be a great achievement to evaluate the solution in

different situations, i.e. when the memory reservoir (of mutualized memory)

is exploited for different purposes. For instance, the memory reservoir can be

used by a consolidator in order to host new VMs, or it can be used to grant

extra memory (a bonus) to client VMs in order to attract clients. The memory

reservoir could also be made accessible at the application level, as there are

many applications that are managing their own memory cache (e.g. the Java

virtual machine or a database server).
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