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Abstract

„ I have passed through fire and deep water, since
we parted. I have forgotten much that I thought
I knew, and learned again much that I had
forgotten. I can see many things far off, but
many things that are close at hand I cannot see.

— Gandalf, to the Three Hunters in Fangorn
(J.R.R. Tolkien, LOTR-The Two Towers)

The locomotion problem in robotics is usually written as a large optimization prob-
lem. However, the full problem is marred by many undesirable properties, such
as high dimensionality, non-linearity, non convex constraints etc., which make it
difficult to find a direct solution. A common approach then is to simplify the nu-
merical optimization by solving for reduced models instead (inverted pendulum,
capture points, centroidal). While these reduced models are simpler to solve than
the full problem, they lack generality, are suboptimal, and hence are difficult to
trust. Nevertheless, a typical approach in robotics relies on a reduced template
model optimization, followed by an instantaneous linearization (such as Inverse
Kinematics/Inverse Dynamics) for the whole-body, with possible variations in both
(Kajita et al., 2003; Herzog et al., 2016a). While some research has been conducted
to solve the full problem in a brute-force way, and without utilizing the structure
of the problem (Heess et al., 2017; Rajeswaran et al., 2017), it is not mature or
applicable on robots.

In this thesis, we explore an approach that tries to solve the general/holistic loco-
motion problem, while exploiting fully the problem structure to obtain an efficient
and realistic solution. We aim to provide the guarantees offered to us by the brute-
force approaches to the full problem, but with an efficient resolution provided by
proper use of the problem structure. We support our proposition by dynamic proof-
of-concept motions, and rely on three core contributions.

The first contribution of this thesis is the introduction of a rigorous mathematical
framework, based on the Alternating Direction Method of Multipliers, to enforce
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the consensus between the centroidal state dynamics at reduced and whole-body
level. We propose an exact splitting of the whole-body optimal control problem
between the centroidal dynamics (under-actuation) and the manipulator dynamics
(full actuation), corresponding to a re-arrangement of the equations already stated
in state-of-the-art. We describe with details how alternating descent is a good solu-
tion to implement an effective locomotion solver.

Such a split between the whole-body and centroidal components of locomotion
puts the onus of producing efficient angular momentum trajectories on the whole-
body solver. The second contribution of this thesis is to introduce a local optimal
control framework, based on popularly known method called Differential Dynamic
Programming, which deals implicitly with the contact constraints of the locomotion
problem. By defining the contact constraints inside the dynamics of the problem,
we are able to exploit fully the sparsity resolution capability of DDP, and optimize
the solution over a horizon. Our efforts with using DDP for contact-constrained
whole-body optimization resulted in the piece of software called “Crocoddyl”. It is
a python-based solver for shooting problems, and under the aegis of this software
we implement our contact-constrained locomotion problem, and the corresponding
DDP resolution. We make a distinction between the structure of the optimization
problem, and its resolution, and use efficient memory allocations in order to speed
up problem resolution in python. Similar effort has been made to unit-test the
software, and to use a clear API for problem description.

One way of managing the constraints between the centroidal and whole-body solvers
is to explicitly learn and pre-code the constraint when solving one problem. With
simple kinematic values such as the “Center of Mass of the system given a foot po-
sition”, such an information can be easily transferred to the centroidal solver by
means of proxy constraints. The third contribution of this thesis is to the centroidal
dynamics optimization problem. We learn the feasibility of the center of mass solu-
tion of the centroidal optimization, with respect to the whole-body kinematics, by
means of an occupancy measure. Maximization of this occupancy measure ensures
that the whole-body solver has a large solution space from which it can track the
centroidal references.
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Résumé

„ Say not, “I have found the truth,” but rather, “I
have found a truth.”. Say not, “I have found the
path of the soul.” Say rather, “I have met the
soul walking upon my path.”. For the soul
walks upon all paths. The soul walks not upon
a line, neither does it grow like a reed. The soul
unfolds itself, like a lotus of countless petals.

— Kahlil Gibran
(The Prophet)

En robotique, un problème de locomotion est généralement transcrit comme un
grand problème d’optimisation. Cependant, le problème complet est caractérisé par
de nombreuses propriétés indésirables, telles qu’une grande dimensionnalité, de la
non-linéarité, des contraintes non convexes, etc., qui rendent difficile la recherche
de solution par une méthode directe. Une approche courante consiste alors à sim-
plifier l’optimisation numérique en résolvant plutôt des modèles réduits (pendule
inversé, points de capture, centroïdale). Bien que ces modèles réduits soient plus
simples à résoudre comparé au problème complet, ils manquent de généralité, sont
sous-optimaux et sont donc peu fiables. Néanmoins, une approche typique en robo-
tique repose sur un modèle réduit d’optimisation, suivie d’une linéarisation instanta-
née du corps-complet (comme l’Inverse Cinématique / l’Inverse Dynamique), avec
de possibles variations dans les deux étapes (Kajita et al., 2003; Herzog et al.,
2016a). Bien que certaines recherches aient été menées pour résoudre le prob-
lème complet en se basant sur la méthode brute-force, sans utiliser la structure du
problème (Heess et al., 2017; Rajeswaran et al., 2017), ces méthodes ne sont pas
matures ou applicables aux robots.

Dans cette thèse, nous explorons une approche qui tente de résoudre le problème
de locomotion général / holistique, tout en exploitant pleinement la structure du
problème pour obtenir une solution efficace et réaliste. Nous visons à offrir les
garanties que nous offrent les approches par brute-force du problème complet, avec
une résolution efficace basé sur une utilisation appropriée de la structure du prob-
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lème. Nous appuyons notre proposition par des preuves de concept de mouvements
dynamiques et proposons trois contributions essentielles.

La première contribution de cette thèse est l’introduction d’une formulation mathé-
matique rigoureuse, basé sur la méthode de direction alternée des multiplicateurs,
afin d’imposer un consensus entre la dynamique de l’état centroïdale au niveau
réduit et au niveau du corps-complet. Nous proposons une division exacte du
problème de contrôle optimal corps-complet entre la dynamique centroïdale (sous-
actionnée) et la dynamique du manipulateur (actionnement complet), correspon-
dant à un réarrangement des équations déjà énoncées dans l’état de l’art. Nous
décrivons en détail comment la descente alternée est une solution appropriée pour
l’implémentation d’un solveur de locomotion efficace.

Une telle division de la locomotion entre les composants: "corps-complet et centroï-
dale" oblige le solveur corps-complet à produire des trajectoires de moment angu-
laire efficaces. La deuxième contribution de cette thèse est l’introduction d’un cadre
de contrôle optimal local, basé sur une méthode connue sous le nom de Program-
mation Dynamique Différentielle (DDP), qui traite implicitement les contraintes
de contact du problème de locomotion. En définissant les contraintes de contact
à l’intérieur de la dynamique du problème, nous sommes en mesure d’exploiter
pleinement la capacité de résolution clairsemée du DDP et d’optimiser la solution
sur un horizon. Nos efforts afin d’utiliser le DDP pour l’optimisation corps-complet
contraint par contact ont abouti à un logiciel nommé "Crocoddyl". C’est un solveur
basé sur python pour des problèmes à tirs multiples, sous l’égide de ce logiciel,
nous implémentons notre problème de locomotion contraint aux contacts, ainsi que
la résolution DDP correspondante. Une distinction entre la structure du problème
d’optimisation et sa résolution est faite, et des allocations de mémoire efficaces sont
utilisés afin d’accélérer la résolution du problème en python. Des efforts similaires
ont été faits pour les tests unitaires du logiciel, ainsi que l’utilisation d’une API claire
pour la description du problème.

Une façon de gérer les contraintes entre les solveurs "centroïdale et corps-complet"
est d’apprendre explicitement et de pré-coder la contrainte lors de la résolution du
problème. Avec des valeurs cinématiques simples telles que le "Centre de masse du
système avec une position du pied", une telle information peut être facilement trans-
férée au solveur centroïdale au moyen de contraintes proxy. La troisième contribu-
tion de cette thèse s’intègre dans la problématique d’optimisation de la dynamique
centroïdale. Nous apprenons la faisabilité de la solution du centre de masse de
l’optimisation centroïdale, par rapport à la cinématique du corps-complet, au moyen
d’une mesure d’occupation. La maximisation de cette mesure d’occupation garan-
tit que le solveur du corps-complet dispose d’un grand espace de solutions à partir
duquel il peut suivre les références centroïdales.
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Preface

„ Whenever we propose a solution to a problem,
we ought to try as hard as we can to overthrow
our solution, rather than defend it. Few of us,
unfortunately, practice this precept; but other
people, fortunately, will supply the criticism for
us if we fail to supply it ourselves.

— Karl Popper
(The Logic of Scientific Discovery)

Robotics has evolved at a much faster pace and orderly manner than biological evo-
lution. Unlike the slow process of natural selection and genetic mutation, roboti-
cists have relied on explicitly defined and continuously improving dynamic models
to make robots walk within a few years of their conception. Moreover, roboticists
require performance guarantees from their models, in order to make sure that the
robots are not damaged. While humans have a general intelligence and evolution-
ary reflexes, robots have relied on control systems that could capture the essence of
the problem at hand and provide the necessary stabilizing actuation.

Thus, there has been a great deal of reliance put on the ability of these dynamic
models to predict and generate the controls required to move the robot. These
models are often guided by the description of the problem at hand, and the re-
sources available for finding a fast solution. For example, the necessary features of
the coplanar locomotion problem are captured inside an inverted pendulum, and
as a result, researchers were able to make their robots walk with such a model.
Even though such an approach was not generic enough to make the robot walk on
the stairs at that time, it achieved the desired objective and was a major scientific
milestone.

Progressively, over the years, researchers have improved their dynamic models, and
tried to capture more and more of the information from the locomotion problem
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inside them. As a result, we have moved from inverted pendulum (Kajita et al.,
2001) to centroidal dynamics (Orin et al., 2013), from Inverse Kinematics (e.g. in
Tevatia and Schaal, 2000) to Inverse Dynamics (e.g. in Khatib et al., 2004) and
then to Trajectory Optimization (e.g. in Kalakrishnan et al., 2011; Koenemann et
al., 2015). Moreover, there are parallel efforts to solve the discrete contact problem
by using either Lagrangian (e.g. in Mombaur et al., 2005a; Posa et al., 2014) or
Momentum dynamics (e.g. in Stewart and Trinkle, 2000; Koolen et al., 2016). All
these efforts have been made for one reason only, in order to provide as much infor-
mation as we can about the locomotion problem inside our models, and still be able
to get a solution without over-burdening the solvers. As time has progressed, our
processors have become faster, and the solutions have become easier. However, the
locomotion problem of going from A to B remains an infinite dimensional problem
and approximations on some level are still necessary when attempting a solution.
The next obvious question would be to decide on which level we should approxi-
mate. The fidelity of our models to the locomotion problem remains paramount in
the attempt to find a solution.

In this thesis, we will argue that while our solvers might not be equipped to handle
the full state yet, we should still be able to approximate at the level of the contact-
constrained dynamics. We explain how a simple scheme can help us capture the
essentials of the problem inside one single model, without losing on the solver ef-
ficiency. This way, our method uses the maximum available information on the
contact-constrained locomotion problem when searching for a solution. In the fol-
lowing chapters, you would read our work in this direction, work I did along with
my supervisors and colleagues. Additional contributions in the topic of contact-
constrained locomotion (in the subspace of the original problem) help to further
address the issue of efficiency.

Someone once told me that doing research is like planting a tree in the Amazon
rain forest. Your contribution may be really small, but the forest still grows. I hope
the tree we plant in this thesis would provide shelter to those who come searching
later in this direction.

Rohan Budhiraja
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1Multi-body Locomotion

„ सत्य कĢ संपूणर्ता देती न िदखलाई िकसी को,
हम Ùजसे हैं देखते, वह सत्य का, बस, एक पहलू है ।
सत्य का पर्ेमी भला तब िकस भरोसे पर कहे यह
मैं सही हĩ ँ और सब जन झूठ हैं ?
(None realizes the completeness of truth,
what we see is but one of its aspects.
So how can a lover of truth say,
that I am right and the world is wrong?)

— Ramdhari Singh ‘Dinkar’
(Naye Subhashit, Gandhi)

Locomotion is defined as the act of moving from one place to another. This thesis
deals with the fundamentals of locomotion by making and breaking contact with
the environment. Some examples of such locomotion are shown in Fig. 1.1.

Multiple approaches have been pursued with that objective, and all approaches
make a compromise between optimality and ease of solution. Numerical optimiza-
tion problems in general love convexity, and smoothness of the objective and con-
straints. The multi-body locomotion problem, when written in Lagrangian form,
introduces a discontinuity in its dynamics every time a new contact is made, or an
old contact is broken. This difficulty has spurred researchers to pursue avenues
which either 1) replace the discontinuous problem with a continuous but more dif-
ficult problem; or, 2) remove the discontinuity from the dynamics and treat the
piece-wise continuous problem instead

In this chapter, we review the main methods of locomotion. We will explore a
simplified and representative history of the locomotion problem. As we will see,
research into locomotion has branched again and again into different areas and
different approaches, always with the aim of improving the solution. In this chapter,
we will try to note all the branches that are around us, and we will try to justify
the branch of research that we have chosen. We will then define mathematically
the locomotion problem upon which we shall build our contributions, and we shall
see and appreciate the full structure of the problem and how to best exploit the
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(a) Micro Frog on a thumb (b) Penguins on a beach (c) Cheetah on a hunt

(d) Orangutan on ropes (e) Michael Jackson dancing

(f) Asimo Robot walking

Fig. 1.1: Multi-body Locomotion. Examples of locomotion by making and breaking con-
tacts. The gaits, kinematics, and the number of contacts differ, but the essential
features of the movement remain the same.

structure of the problem. Finally, we will expose the organizations of this document,
and explain how we deal with the various components of the locomotion problem
in different chapters.

1.1 Contact and Whole-body Optimization

Each contact of a multi-body system with the environment corresponds to a uni-
lateral constraint on the body. Optimizing the locomotion problem along with the
contacts requires handling these unilateral contact constraints, and the discontinu-
ities arising from it. As a result, the contact and whole-body optimization problem
looks like this:

minimize
x,u,λ

Cost(x, u, λ) (1.1a)

subject to Dynamics constraint (1.1b)

Force unilaterality constraint (1.1c)

Force Model is satisfied (1.1d)
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where x is the state trajectory, u is the control trajectory, λ is the contact force
trajectory.

Cost (1.1a)1 is typically defined as a sum of objective functions, which are only
dependent on the current state (x) and control vectors (u,λ). If we define l as the
instantaneous objective function based on some efficiency criteria, this sum could
be defined as a continuous integral

∫ T

0
l(x, u, λ) dt (1.2)

A practical, and commonly used variation is a discretized sum of l calculated at
specific time steps, which can be written as

T∑
n=1

ln(x, u, λ) (1.3)

Dynamics Constraint (1.1b) can again be in continuous or discretized. The contin-
uous dynamics is usually defined as a set of differential equations which show the
evolution of the state with time.

ẋ = f(x, u, λ) (1.4)

The discretized version of the same can be explained as

xt+1 = ft(xt, ut, λt) (1.5)

Force unilaterality constraint (1.1c) ensures no penetration between the contact-
ing bodies. If we define λ⊥ as the component of the force vector which is normal to
the contact surface, the constraint is given by

λ⊥ ≥ 0 (1.6)

Force Model (1.1d) puts constraints on the tangential components of the force. To
ensure no-slippage between the contacting surfaces, a commonly used model is the
friction cone, i.e., the force vector should lie in a cone defined by the maximum
allowed static friction between the surfaces. If we define K as the set of acceptable
force vectors which satisfy the friction cone, the constraint is of the form:

λ ∈ K (1.7)

Throughout this thesis, we will alternatively use the above representations ((1.2)-
(1.7)) to explain the different constraints of (1.1). Also, note that we have not

1What is the exact definition of the cost function is usually not very important in this work. It is
smooth and regular. It is possible for it to be as simple as 1.
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explicitly written constraints such as collision avoidance etc in our optimization
problem. While such constraints are necessary to generate locomotion trajectory,
these are not necessary to explain the structure of the locomotion problem. Thus,
for the sake of simplicity, the optimization problems in this chapter deal only with
the constraints that define the structure of the problem, and other constraints are
omitted (but not forgotten).

Dynamics and unilaterality are difficult constraints to deal with in the optimization
problem (1.1). Moreau, 1988 used the Lagrangian equations of motion as dynamics
constraints (1.1b) on top of the unilateral constraints (1.1c) to get a set of accept-
able velocity solutions. Working on top of their work, Trinkle et al., 1997 used
discrete Linear Complementarity Problem formulation of the unilateral constraint.
Anitescu and Potra, 1997 updated their LCP to provide guarantees of solution exis-
tence for multiple contact condition. Finally, building on top of the previous work,
Stewart and Trinkle, 2000; Stewart, 2000 redefined the locomotion problem (1.1)
as an LCP using the impulse-momentum equations as the dynamics motion equa-
tions (1.1b), and using the complementarity condition d(x)⊥λ⊥ to replace the uni-
laterality constraint. d(x) here denotes the distance between the contacting bodies,
and λ⊥ denotes the normal contact force. This converted the problem into a contin-
uous optimization scheme, since it removed the need to decide contact switching or
moment of impulse. As a result, they were able to remove any discontinuous effect
of the impulsive forces.

These works have been the basis of many further research that came afterwards in
this direction. A review of the complemantarity condition and its use in control of
dynamic systems of the time was provided by Brogliato, 2003. Continuous force
formulation could be modeled in the form of springs and dampers, however in such
cases the optimization problem suffers from high stiffness introduced by the spring
model (Betts, 2010). As a result, even though the complementarity formulation
increases exponentially the search space for the global optimal, LCP formulation
with impulsive collisions remains popular in this domain.

While useful for generalizing, these LCP problems are difficult to solve. As a result,
research in this direction has always grappled with the question of scalability to
the full robot dimensions, with an extremely large number of contact possibilities,
and the efficiency of the solvers to find a solution. Recently, Mordatch et al., 2012b
use a relaxation of complementarity formulation to generate human-like motions,
Mordatch et al., 2012a do similar work with optimization of manipulation by fin-
gers through contacts, and Posa et al., 2014 use tricks proposed by Anitescu, 2005
and Fletcher et al., 2006 to customize SNOPT (Gill et al., 2005) for solving comple-
mentarity problems. SNOPT is a sparse Sequential Quadratic Programming (SQP)
solver. More recently, Deits et al., 2019 tried to use learning to limit the solution
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set to be within the acceptable range, and thus reduce the complexity introduced
by the large solution space. However, scalability remains an issue even after the
learning. As a result, effort has been made by Todorov, 2010; Todorov et al., 2012
to relax the complementarity constraint to make it easier to solve.

Alternatively to the impulse-momentum equations and LCP formulation, others
have used the Lagrangian formulation of dynamics to simplify the problem for the
solver. However, using the lagrangian dynamics necessitates that contact switch-
ing be accounted for. Mombaur et al., 2005b; Schultz and Mombaur, 2010 used a
switching function to change dynamic models depending on contacts and generate
impressive human-like running motions. However, while they don’t use comple-
mentarity and thus simplify their problem, their approach does not consider the
problem of obstacle avoidance when deciding contacts, as the gait is meant to be
cyclic. Approaches like those of Schultz and Mombaur, 2010 do not actively plan for
contacts. They know the exact contact phases, and then use switching conditions
to change contacts explicitly. However, they do that only in sagittal plane.

A different approach which promises the advantages of global optimality without
the burden and complexity of model-based optimization is based on stochastic train-
ing of function approximators. Heess et al., 2017 recently provided an example of
how reinforcement learning can extract walking behaviours from simple task defi-
nitions. Rajeswaran et al., 2017 build upon something similar, empirically proving
that even simple linear representations are able to produce complex walking be-
haviours. They extend their analysis with an effort to increase the robustness of
the output by increasing the variety of the training initial states, eventually learn-
ing stability as well as walking. These methods, however, remain in the simulation
domain. Efforts to move this learning to the real world are underway (Mansard
et al., 2018), but these results still remain in the future. One recent success in this
field has been by Hwangbo et al., 2019, where they control the ANYmal quadruped
by training an end-to-end neural network in simulation, and achieve an improve-
ment in the robot performance as well. Even though the paper only considers a flat
terrain, it is a promising start.

1.2 Decoupled Approach to Motion Generation

While global optimality is theoretically appealing (Todorov, 2004), it still lacks the
practical tools to be transferred completely on robots. Human locomotion, on the
other hand, does not have the concept of global optimality. Two people might take
completely different routes when crossing a room, based on separate logics. Thus,
if such an objective function indeed exists, it is deeply rooted in our general intelli-

1.2 Decoupled Approach to Motion Generation 5



gence and not obvious. What can be observed is that human locomotion relies on
a sense of direction and environment with feedback provided by the proprioceptive
sensors, vestibular sensors and vision (Holmes et al., 2006). Holmes et al., 2006
provide a detailed review of the link between biological walking and robotics, and
show that once the physics of passive walking (e.g. as shown by McGeer, 1990) is
accounted for, the neural centroidal walking pattern generator could be reduced to
a template phase oscillator model. Conversely, Schultz and Mombaur, 2010 showed
that human-like trajectories can be generated by a cyclic contact sequence and a sim-
ple task definition of energy reduction within the local active set. Indeed, Dominici
et al., 2011 studied the locomotion patterns of toddlers and adults, and found that
our patterns match those found in rats, cats, macaque monkeys, and guineafowl.
This suggests that if optimality is the criterion behind our movements, the human
locomotion system is based on a concrete objective which is related to some ances-
tral and neural network carried to us through evolution.

As a result, global optimality can be reconsidered as a goal of locomotion, and a
compromise can be made in favor of efficiency of solution. It is easy to see that if
contacts were to be decided beforehand, the optimization problem (1.1) would be
simplified a great deal. While this would affect global optimality, the result would
be a simpler problem which is tractable by the solvers. For a start, there would not
be the complementarity constraint (1.1c), since exact contact switchings would be
known. Moreover, the combinatorial nature of the optimization would be removed
from the subsequent problem,and the discontinuous effects on the dynamics would
be known beforehand. As a result, contact and path planning, i.e. finding a path
and an associated sequence of contacts that can be feasibly followed by the robot,
provides a significant simplification of the locomotion problem.

Once the contacts are predefined, the locomotion problem loses the complemen-
tarity constraint (1.1c), and the dynamics constraint (1.1b) becomes piece-wise
continuous. Given a predefined sequence of contacts S and contact switching times
ts, the optimization problem (1.1) can be re-written as:

minimize
x,u,λ

S∑
s=1

∫ ts+∆ts

ts

l(x, u, λ|S) dt (1.8a)

subject to ẋ = f(x, u, λ) (1.8b)

λ ∈ K (1.8c)

1.2.1 Contact Planning

There are two main fields of research in contact planning: searching inside a dis-
crete set of precomputed contact positions, or a continuous search on the contact
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positions. Among approaches which use a discrete search method, A* (Hart et al.,
1968) and Rapidly-exploring Random Trees(RRT) (Kuffner and LaValle, 2000) are
classical methods which help exploring trees of possible contact sequences. Similar
approaches with discrete search has been used by Michel et al., 2005, “Footstep
planning among obstacles for biped robots”, Baudouin et al., 2011 etc. Indeed,
methods like A* and RRT (LaValle and Kuffner, 2001; Kuffner et al., 2001) have
been popular in robotics to discretely explore contact placement trees, and LaValle
and Kuffner, 2001 was chosen as the Most Impactful Paper published between 1997
and 2001 during ICRA 2019. On the other side, Deits and Tedrake, 2014 have
used mixed-integer convex optimization to solve the continuous search problem of
contact sequence generation among previously computed convex regions.

From a robotics perspective, pre-defining contact sequences, whether as a result of a
fixed gait cycle like Schultz and Mombaur, 2010 or as a means of obstacle avoidance
(e.g. Fernbach et al., 2018; Tonneau et al., 2018a) makes the problem easier to
solve and generates a local minima which can be applied on the robot in real-time.
Moreover, input needs to be provided to the solver to ensure that a legged robot’s
locomotion looks natural, even if the natural gait may not be globally optimal with
some other objectives. Heess et al., 2017 proved that without any guidance, and
with a simple objective function that does not betray information about the human-
like walk, a humanoid avatar is able to find multiple possible gaits to move from
one point to another while avoiding obstacles.

As a result, pre-defining the contact sequences (with added objective to make the
gait human-like), and following the step plan was the main approach followed by
the teams during the DARPA robotics challenge. Pratt et al., 2012; Johnson et al.,
2015; Johnson et al., 2017 use capturability to determine the future footstep loca-
tions, and an operator to manage the exact foot placement. Similarly, Feng et al.,
2015; Atkeson et al., 2015 used operator inputs to manage the contact positions and
orientations during rough terrains, and used an A* planner to get initial footstep
locations.

In our team, we dealt with the problem of feasibility of trajectory when deciding
contacts in multi-contact scenarios. Tonneau et al., 2018a used point mass based
model to generate quasi-static feasible trajectories of the center of mass. Later,
Fernbach et al., 2018 extend the approach to more general cases. They introduced
the algorithm CROC, which provided convex reformulation of centroidal dynamics
problem in order to ensure that the transition between two contact phases is fea-
sible even for non quasi-static cases. However, they do not consider the angular
momentum variations, which are important for dynamic movements.
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This is the contact planner that we use in our algorithms to provide the footstep
plans, in an efficient and feasible manner, which can be provided to the optimizer
to generate whole-body motions. For solving the locomotion problem (1.1), we
divide the problem into a contact planning problem followed by optimization prob-
lem (1.8).

1.2.2 Reduced Problems

Contact-constrained locomotion problem (1.8) is still hard and challenging. The
main difficulty arises from the non-convex dynamics with numerous Degrees of
Freedom (DoF) which must be solved together to create a feasible and optimal
solution. Such a problem is hardly tractable by modern computers, and particu-
larly the ones embedded in modern legged robots (Koch et al., 2012; Tassa et al.,
2012).

To tackle the above limitations, various strategies have been proposed in the litera-
ture. Most of them are based upon using reduced models: instead of working with
the full dynamics, only a subpart is considered, covering the essential properties of
the whole dynamics. The locomotion is then reduced to the problem of finding a
trajectory for the reduced model which will then drive the whole-body system. Such
an approach is not limited to robotics. Full and Koditschek, 1999 found that by us-
ing simpler models (templates), they could not only simplify the high redundancy
of walking, but also capture the features of locomotion covering multiple species
and multiple gaits. If we consider xc and uc as the reduced state and control, these
reduced models can be written in the following formulation:

minimize
xc(x)

uc(u,λ)

S∑
s=1

∫ ts+∆ts

ts

ℓc(xc, uc|S) dt

subject to ∀t Force model is satisfied (1.9a)

∀t ẋc = fc(xc, uc) (1.9b)

∀t Other Constraints (1.9c)

Note that xc and uc are reduced representations of the full state and control, and
similarly, fc is the reduced dynamics.

In the context of bipedal locomotion in humanoid robots, the most famous reduced
model is the linear inverted pendulum model (LIPM) (Kajita et al., 2001). Multi-
ple variations of the LIPM method have been proposed afterwards. Starting with
Kajita et al., 2003, efforts have been made to either tackle the robustness problem
(Wieber, 2006a), include viability conditions (Sherikov et al., 2014), allow altitude
variations of the center of mass(CoM) (Brasseur et al., 2015), or also include foot
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placements as parameters of the problem (Herdt et al., 2010a). Pratt et al., 2006
used an extension of LIPM with a flywheel to model the angular momentum, and
used this model to demonstrate computation of the capture points (points on the
ground where the humanoid must step in order to stop a fall).

However, LIPM-based methods are restricted to basic environments and cannot
deal with more complex scenarios as non-coplanar contact cases, climbing stairs
using guardrail, etc. Considering non-coplanar contacts breaks the nice lineariza-
tion leading to the LIPM model. A first approach to handle the non-linear dynamics
was proposed in Hirukawa et al., 2006, however requiring technical and dedicated
developments based on a limiting assumption (e.g. prior knowledge of force dis-
tribution). Caron et al., 2017 use LIPM to do multi-contact motion, but don’t take
into account the effect of additional angular momentum generated by movement
of limbs. Thus, they have to use additional constraint in order to ensure the final
motion is stable.

In quite another vein, it has been proposed to simplify the whole-body optimization
problem by, for example, assuming unconstrained torque capabilities (Dai et al.,
2014). Such approaches indeed boil down to optimizing the so-called centroidal
dynamics Orin et al., 2013 as reduced model. Direct resolution of the underlying
optimal control problem based on multiple-shooting approach has been recently
proposed (Kudruss et al., 2015; Carpentier et al., 2016), leading to real-time per-
formances. Other contributions have also been suggested that exhibit approximate
dynamics (with possibly bounded approximations) leading to convex optimization
problems, thus ensuring global optimality (Herzog et al., 2015; Dai and Tedrake,
2016; Brasseur et al., 2015). In most of these cases, the footstep sequence is as-
sumed given, although some solvers are also able to discover it while optimizing
the centroidal dynamics (Mordatch et al., 2012b), at the price of heavier computa-
tional costs.

In recent years, reduced models based on the centroidal dynamics (Orin et al.,
2013) have gained in popularity. Centroidal dynamics is later explained in this
chapter in Eq (1.13). It is easy to understand the reason behind this popularity:
contrary to other approaches, centroidal dynamics is an exact projection of the full
dynamics, which does not rely on any assumptions (like the constant altitude of the
center of mass(CoM) for the table-cart model). This makes it possible for the solver
to consider non-coplanar surfaces, and multi-contact scenarios without making ad-
ditional efforts to fix the formulation.

In summary, the centroidal model has several advantages with respect to other for-
mulations for an acceptable cost. Non-convexity in the centroidal dynamics model
has been empirically validated to be handled by state of the art solvers (even if
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formal proofs are still missing). It is for these reasons that in this thesis, we will use
the centroidal dynamics as the reduced model to create a tracking reference for our
whole-body solver, even though our approach is conceptually valid for any other
reduced model.

1.2.3 Instantaneous tracking of Reduced Patterns

Whole-body motion generation tracks a reduced model locomotion pattern. The
trajectory of this reduced model captures in itself the essence of the difficulties in
locomotion. This reduced model trajectory is then used to generate a whole-body
motion. The reduced trajectory contains important information about the global
structure of the solution, but it lacks information about the multi-body structure of
the dynamics. For example, kinematic limits, torque limits, collision information,
and angular momentum generated by limb motion, all these are constraints that
can only be expressed at the whole-body level. The whole-body solver, on the other
hand, needs to generate a solution that is consistent with the global structure given
by the reduced model. This is referred to as “Dynamic Consistency” between the two
solvers. This dynamic consistency is tricky to obtain, because the whole-body solver
often has to find the sweet spot between blindly following the references provided
by the reduced model, and generating a fully new (and feasible) trajectory while
ignoring the references completely.

Regardless of the “Dynamic Consistency”, the earliest efforts to find the solution
have been through instantaneous linearization of the whole-body problem around
the current time. As a result, the whole-body control is found only based on the
current reduced values. In terms of an optimization problem, this can be written
as:

minimize
x,u,λ

ℓl(x, u, λ)

subject to ẋ = f(x, u) (1.10a)

Force model is satisfied (1.10b)

Other Constraints (1.10c)

Note that here, the optimization is being done only over the current state and con-
trol, and not over the full trajectory.

Early works from the literature included tracking of reduced model and task-space
trajectories with Inverse Kinematics. Kajita et al., 2003 and Wieber, 2006b demon-
strated HRP-2 walking with the table-cart reduced model and inverse kinematics.
Tevatia and Schaal, 2000 try to track end-effector trajectories with IK, and later
D’Souza et al., 2001 used supervised learning of Inverse Kinematics to do the same.
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Asfour and Dillmann, 2003 used redundancy of the kinematics in order to solve
for a humanoid arm. Mistry et al., 2008 used constraints to deal with the under-
actuation of legged robots, and demonstrated IK for task-space full body control of
humanoids.

While IK is useful to generate joint-space trajectories, they still lack information
about the model dynamics. As a result, the IK trajectories lack consideration of
the inertial effects, the centrifugal and coriolis forces, the contact forces etc. These
factors become more and more important as we leave the quasi-static domain and
try to make the robots more and more dynamic. As a result, Inverse Dynamics
control of the robot becomes important.

However, full-body control of floating based systems in the task-space manner is
difficult. The system is highly under-actuated, the contact switchings change the
dynamics of the system, and the contact forces may be unknown. Khatib, 1987
proposed an operational-space formulation using inverse dynamics, and Sentis and
Khatib, 2005; Jaeheung Park and Khatib, 2006 extended it to control floating based
systems like humanoid robots. Later Mistry et al., 2010 used orthogonal decompo-
sition of the rigid-body dynamics in order to separately control the contact forces
and deal with the under-actuation of the system. Stephens and Atkeson, 2010 used
the CoM dynamics model in order to compute the external contact forces, and used
these forces as references inside a full dynamic model of the robot. Such a cascade
computing Inverse dynamics with a reduced model has been used in Carpentier et
al., 2016; Fernbach et al., 2018; Herzog et al., 2015; Winkler et al., 2015 to gen-
erate impressive motions on robots and simulations. Even in the cases where the
contact information is optimized along with the centroidal trajectory, as in Mastalli
et al., 2017; Winkler et al., 2018; Aceituno-Cabezas et al., 2017, this has been
the approach most followed. These solvers usually solve quadratic optimization
problems written with task-space dynamics to generate the full-body motion, for
example as in Saab et al., 2013; Herzog et al., 2016a; Vaillant et al., 2016; Mastalli
et al., 2017.

When dealing with such a separation between a reduced model (e.g. CoM dynamics
model used by Stephens and Atkeson, 2010; Carpentier et al., 2016) and the full-
body model, it becomes important to ensure along with the CoM, the momentum
trajectories are also matched by the full model. It is because the rate of momen-
tum trajectories are directly related to the contact wrench being applied on the
robot. Koyanagi et al., 2008; Koolen et al., 2013 have shown success in control-
ling their humanoid by using momentum control. Dai et al., 2014 used a full-body
kinematics model with the centroidal dynamics, but enforce that the momentum
of the centroidal dynamics is enforced in the full-body model. Herzog et al., 2014
use a momentum based balance controller (similar to the one proposed by Lee
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and Goswami, 2012) with hierarchical inverse dynamics in order to balance torque-
controller robots. Later Herzog et al., 2016a use a similar cascade of tasks along
with momentum tracking in order to do torque control on a robot. Such works
have shown the importance of controlling not only the linear, but also the angular
momentum, in order to maintain balance of the robot. Komura et al., 2005 have
shown that the angular component of the dynamics plays a huge role in maintaining
balance. Moreover, even in humans it has been shown that the angular momentum
is tightly regulated during walking (Popovic et al., 2004).

1.2.4 Whole-body Trajectory Optimization

Whether it is Kajita et al., 2003, Herdt et al., 2010a or Sherikov et al., 2014, re-
searchers have realized that instantaneous control like IK/ID is not enough to deal
with the balance of the biped walking problem. For example, while Kajita et al.,
2003 try to ensure ZMP remains within a support polygon over a horizon, Sherikov
et al., 2014 used MPC on a point mass model along with instantaneous Inverse
Dynamics in order to make sure that the upcoming trajectory keeps satisfying the
friction constraints. Similarly, Herdt et al., 2010a; Herdt et al., 2010b used MPC on
the center of mass trajectory up to the level of acceleration, in order to make sure
that the upcoming trajectory remains smooth. Dai et al., 2014 formulate a similar
problem in order to solve for joint kinematics and centroidal dynamics over a hori-
zon. The common factor in such efforts is that preview control over a horizon has
been understood to be necessary for stability. Indeed, for a system with discontinu-
ous events like making/breaking contact, information about the future is essential
in order to ensure that the robot does not fall. Brockett, 1983 have shown that
instantaneous control is not enough for non-holonomic systems, and free-floating
systems demonstrate non-holonomic behaviour because of the non-integrability of
angular momentum (Nakamura and Mukherjee, 1990; Papadopoulos, 1993).

While using a preview horizon with a simplified model like point-mass (or even
centroidal variables) is faster, information is lost in the simplification. The full
model of the robot has to be considered in order to provide the optimal control
over the horizon.
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Using trajectory optimization to generate motions for legged systems and perform
preview control is not a new concept. The simplified optimization problem is writ-
ten as follows:

minimize
x,u,λ

S∑
s=1

∫ ts+∆ts

ts

ℓl(x, u, λ|S) dt

subject to ∀t Force model is satisfied (1.11a)

∀t ẋ = f(x, u) (1.11b)

∀t Other Constraints (1.11c)

Both direct and indirect approaches have been used in the literature to generate
motions. Among the indirect methods, Pontryagin’s Maximum Principle (PMP) has
been a popular tool for solving two-point boundary value problems. A famous
Russian method, PMP has been especially popular in aerospace applications. It was
used for the Apollo 11 mission to the moon. In robot locomotion, Rostami and
Bessonnet, 2001 used PMP in order to generate swing phase trajectories.

The adjoint equations in indirect methods serve as a built-in accuracy metric, that
leads to precise solutions. However, setting up these equations and their gradients
is difficult to do, and they are difficult to solve. Moreover, constraints are difficult
to handle, and the active-set of constraints has to be pre-defined in the solution.
As a result, direct methods, while less precise than indirect methods, have been
more popular in the field of trajectory optimization for motion generation. One
major advantage of these direct methods is that they are well-suited for inequality
constraints by exploiting the active set changes (Betts, 2010).

In direct methods, Hardt and William, 1999 used an Sequential Quadratic Program-
ming based optimization package for multi-body systems. Roussel et al., 1998 sim-
plified the dynamics and used direct shooting optimization algorithm. Westervelt
and Grizzle, 2002 also used Sequential Quadratic Programming (SQP) in order to
minimize energy consumption with kinematic and dynamic constraints. Similarly,
Djoudi et al., 2005 produced energy-optimal walking motion using polynomial tra-
jectories, by solving for optimal polynomial coefficients. Lengagne et al., 2013 used
a parametrized representation of the trajectories with B-splines. Recently, Posa
and Tedrake, 2013; Hereid et al., 2016; Hereid and Ames, 2017; Talele and Byl,
2018 have used direct collocation in order to generate stable walking motions on
humanoids.

Whole-body trajectory optimization approaches have typically suffered from two
problems that prevented the replacement of IK/ID solvers. Namely, they struggled
to discover a valid motion, in particular the gait and its timings; and they were
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slow to converge. Thus, the bottle-neck in this approach has been both, the com-
putation speed, and the ability of the solvers. For e.g., direct collocation schemes
to solve optimization problems might result in sequence of control and state trajec-
tories that might never converge onto a feasible solution. Works like Zucker et al.,
2013, while popular tools for trajecory optimization with functional gradients to
get around parametrization of trajectories (similarly for Kalakrishnan et al., 2011
in case of stochastic gradients), are difficult to deploy online since they don’t exploit
the sparse structure of the MPC problem.

With current computational capacity, it is now slowly becoming possible to solve for
a large enough horizon even with the full model. A good resolution scheme for the
solver, which allows it to exploit the sparsity of the problem properly, tremendously
helps in making the preview control real-time.

Differential Dynamic Programming (DDP) is one such method which is built to
exploit the sparsity of the structure of the problem. Instead of inverting the full
Hessian of the problem, DDP uses the block diagonal structure of the Hessian to it-
eratively inverts small matrix blocks and find the full inverse of the Hessian. Indeed,
DDP is especially suited to Markovian-type dynamics. Tassa et al., 2014 demon-
strated in simulation that DDP, is able to meet the control-loop timings constraint,
and Koenemann et al., 2015 provided a proof-of-concept. In this thesis, we will
use DDP as the base of our solver, and update the method in order to efficiently
take into account the contact constraints that are provided by the contact planner.
Locomotion movements computed by DDP were never transferred to a real full-size
humanoid before this work. DDP does not need to discover the contact switching
instants, therefore we can use rigid contact dynamics which is faster to compute
and easier to implement.

Other works have shown that DDP is able to discover locomotion gaits applied to a
real quadruped e.g. in Neunert et al., 2018. In Rajamaki et al., 2016, DDP is cou-
pled with Monte Carlo tree search to compute the bipedal locomotion pattern of an
avatar. While not yet demonstrated on a real humanoid, we might wonder whether
this should be pushed further, instead of relying on a decoupling between contact
computation, centroidal and whole-body optimization. We believe that DDP is a
mature solution to replace IK/ID and is very complementary to centroidal optimiza-
tion. Indeed, contact and centroidal problems can be efficiently handled within
a global search thanks to the low dimension, while DDP is efficient to accurately
handle the whole-body dynamics in a large space (but locally).
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1.3 The Locomotion Problem Structure

As seen in the previous section, both the coupled approach, and the decoupled
approach have their merits and demerits. The coupled approach, as discussed
in Sec 1.1, tries to solve the full locomotion problem (1.1) together. On the other
hand, the decoupled approach tries to approximate the problem in a simplified
pipeline, as explained in Sec 1.2). The first approach tries to find the global opti-
mal, but suffers from issues of efficiency and scalability. These issues don’t occur
in the decoupled approach, but we make assumptions when we decouple and this
reduces the search space and thus sacrifices global optimality.

In this thesis, we have chosen to use the decoupled approach in order to best con-
trol our robots in real time. This section explains the structure of the decoupled
approach for multi-body systems.

1.3.1 Natural splitting of the robot dynamics

If we consider a legged robot dotted with n Degrees of Freedom (DoF), its whole-
body dynamics is represented by the Lagrangian equations of motion (Wieber, 2006a):[
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]
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[
bu

ba

]
=

[
gu

ga

]
+

[
06

τ

]
+

K∑
k=1

[
J⊤

k,u

J⊤
k,a

]
λk (1.12)

where M denotes the joint space inertia matrix, b encompasses the nonlinear ef-
fects, g corresponds to the generalized gravity vector, and Jk is the geometric Ja-
cobian for contact k and λk is the vector of contact forces at contact point k. τ is
the vector of joint actuations. This dynamics can be split into two distinct parts:
subscript u denotes the 6 rows that correspond to the under-actuated dynamics;
subscript a denotes the n rows that correspond to the actuated dynamics.

The under-actuated dynamics of (1.12) is also known as the centroidal dynamics of
the robot. It is governed by the Newton-Euler equations of motion which link the
variations of the linear momentum and Angular Momentum (AM) to the contact
forces:

m c̈ =
∑

k λk + m g

L̇ =
∑

k(pk − c)× λk

(1.13)

where pk is the position of the kth contact point, the operator × denotes the cross
product, m is the total mass of the system, c, ċ, c̈ are the center of mass position,
velocity and acceleration vectors and L, L̇ are the AM vector and its time deriva-
tive.

1.3 The Locomotion Problem Structure 15



The centroidal dynamics is a projection of the Lagrangian dynamics onto the Center
of Mass (CoM) of the robot. In doing so, the centroidal dynamics absorbs in itself all
the interactions of the robot with the environment (external contact forces λk). The
actuated dynamics then follows the classic equations of a manipulator actuated by a
pure torque input τ (but constrained by the centroidal dynamics). This separation
of the dynamics into its underactuated and actuated components is indeed one of
the main features of this approach.

Thus, a natural splitting appears between two sets of state and control variables,
namely:

Centroidal set dc with state xc = (c, ċ,L) and control uc = (λ1, . . . , λk)

Lagrangian set dl with state xl = (q, q̇) and control ul = τ
(1.14)

1.3.2 Coupling Constraints

When we divide the robot dynamics into its underactuated and actuated compo-
nents, as in (1.13) and (1.12), the split is not straightforward. The two problems
are connected. Each dynamics is restricted by the need to be feasible by the other.
(1.8) defines the optimization problem for the contact-constrained locomotion. As
a result of the split, there are additional coupling constraints that we need to add
to the contact-constrained optimization problem. These constraints are inherent
to the decoupling approach, and they couple the two dynamics (1.13) and (1.12)
together. Thus, we call them coupling constraints.

∀t c = CoM(q) (1.15a)

∀t
[
mċ
L

]
= Ag (q) q̇ (1.15b)

∀t λ = gλ(q, q̇, τ ) (1.15c)

where Ag is the so-called centroidal momentum matrix Orin et al., 2013, and CoM

maps the current joint configuration q to the center of mass position. gλ is the
mapping between the whole-body dynamics and contact forces, and may be depen-
dent Budhiraja et al., 2018 or independent Neunert et al., 2018 from τ , depending
on the choice of contact model. If we look at these constraints and the sets (1.14),
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we can see that the left hand side only contains quantities from the Centroidal Set,
and the right hand side only contains quantities from the Lagrangian Set.

As a result of these additional constraints, we can find works in the literature that
explicitly or implicitly handle these constraints while splitting the problem into re-
duced and whole-body structures.

1.3.3 Managing the Coupling Constraints

Splitting the locomotion problem into reduced and a whole-body subproblems has
shown great results in the past (for example, Carpentier et al., 2016; Fernbach et al.,
2018; Mastalli et al., 2018). However, the reduced subproblem needs to ensure that
its solution does not violate the feasibility constraints implied by the whole body
(e.g. kinematic or torque limits, footstep lengths etc..) Such constraints cannot be
expressed as solely the function of the reduced model. For example, if we consider
the splitting shown in Sec 1.3.1, the CoM trajectory must be achievable by the
whole-body kinematics. This constraint is expressed as (1.15a). These constraints
have been tackled explicitly in the past, for example by adding the corresponding
whole-body variable in the optimization scheme (Mordatch et al., 2012b; Dai et al.,
2014). In Dai et al., 2014 for example, they optimize the whole-body kinematics
along with the centroidal dynamics, in order to make sure that the centroidal solver
is aware of the kinematics constraints((1.15a) and (1.15b)) of the model. However,
this direct representation is also the most expensive in terms of computation. One
way to handle such constraints has been via proxies, where an equivalent constraint
(which is independent of the whole-body parameters) is added inside the reduced
subproblem. Carpentier et al., 2017a; Carpentier and Mansard, 2018b were the
first to use this, and it was later used in Tonneau et al., 2018c. Herdt et al., 2010a
and Deits and Tedrake, 2014 use similar proxy constraints to encode maximal step
size in biped walking, and Dai and Tedrake, 2016 use proxy constraints to bound
the CoM position inside a geometric shape.

While such schemes are able to handle the CoM variation, handling Angular Mo-
mentum produced by the limb motion is more tricky. This is notable for humanoid
robots which have important masses in the limbs that are put in motion during (for
instance) walking. This effect is neither properly captured by the centroidal model,
nor by the instantaneous time-invariant linearization. In Herzog et al., 2016b, an
alternative scheme aims to compensate the AM variations. Indeed, it properly com-
pensates the momentum changes produced by the flying limbs, however it is not
yet able to trigger additional momentum to enable very dynamic movements. This
would be needed for generating long steps, running, jumping or salto motions (The
necessity of angular-momentum variations is imposed by the motion of the very
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heavy swing leg in humanoids). The approach of Herzog et al., 2016b is further
exploited in Ponton et al., 2016. In their method, CoM and AM trajectories in the
reduced dynamics problem must track the output CoM and AM trajectories resulting
from the whole-body dynamics and vice-versa.

While efforts have been made to handle CoM and AM feasibility in the reduced
subproblem, in order to ensure that the two subproblems do not produce divergent
and incoherent solutions at the global level, the force constraints need to be han-
dled as well. Englsberger et al., 2015 used a heuristic to modify desired forces to
ensure feasibility while tracking for the DCM component of motion. Herzog et al.,
2016a optimize contact forces in order to ensure that the dynamic constraints are
not violated. In the past, these different feasibility constraints have been known,
and starting from the first quasi-static walk, effort has been made to make sure
that they are not violated by the whole-body solver. Brasseur et al., 2015 found
the limits of the dynamic and kinematic feasibility for the LIPM model. Herzog
et al., 2016b and Dai et al., 2014 tried to ensure that the feasibility is maintained
for the centroidal dynamics model. However, before this thesis, the constraints that
bind the centroidal and whole-body models were not explicitly defined and consid-
ered for the decoupled problem. In this thesis, we explicitly express the required
constraints and propose how to deal with them.

1.3.4 The Global Optimal Control Problem for locomotion

Consider the global motion planning Optimal Control Problem (OCP) problem de-
fined between two states of the robot (xinit, xfinal). For the decoupled scenario
explained in Sec 1.2, the set of contact phases S and their corresponding contact
timings ∆ts have already been solved. Then, we split the locomotion problem into
centroidal and whole-body stages. However, to do that we need to assume that the
actuators are capable enough to provide sufficient torque, since the torque limits
are not a part of the constraints (1.15). This is normally true for current generation
of robots. Thus we successively solve for dc and dl, while making sure that the
solution of the first OCP is feasible for the second OCP.

18 Chapter 1 Multi-body Locomotion



Thus, we divide the contact-constrained optimization problem (1.8) into two prob-
lems defined by the sets (1.14). This new motion planning OCP, governed by the
dynamics defined by (1.12) and (1.13) is given by:

minimize
dc:=[c,ċ,L,λ]
dl:=[q,q̇,τ ]

S∑
s=1

∫ ts+∆ts

ts

ℓc(dc|S) dt +
S∑

s=1

∫ ts+∆ts

ts

ℓl(dl|S) dt (1.16a)

subject to ∀t λ ∈ K (1.16b)

∀t gλ(q, q̇, τ ) ∈ K (1.16c)

∀t ẋc = fc(dc) (1.16d)

∀t ẋl = fl(dl) (1.16e)

Coupling Constraints (1.15) are satisfied (1.16f)

xc(0) is given, xc(T ) is viable (1.16g)

xl(0) is given, xl(T ) is viable (1.16h)

where s is the index of the contact phase, ts is the start time of the contact phase
s. The cost function l from (1.8) is divided into its centroidal and whole-body
objective functions. Consequently, ℓc and ℓl are local cost functions related to the
phase. K denotes the admissible set of the friction forces corresponding to zero
slippage. Note that for all variables, underlines denote a trajectory of the variable
over time. Similarly the dependency to the time variable is kept implicit i.e. ∀t c is
preferred to ∀t c(t).

Most of constraints and the two cost terms only depend on one of the two groups
of variables dc, dl: ℓc(dc), (1.16b), (1.16d) and (1.16g) define a problem over the
centroidal dynamics ; ℓc(dl), (1.16c), (1.16e) and (1.16h) define a problem over
the Lagrangian dynamics.

One way to solve the two problems independently is to replace the three coupling
constraints by some proxy constraint, i.e. reformulation which enforces the exis-
tence of a global consensus solution acceptable by both subproblems. In Carpentier
et al., 2017a, we have proposed to learn such a proxy constraints for the centroidal
optimization. While preparing to resolve this problem in Chapter 5, we will use
again this learned proxy in the initial step of our algorithms.

Constraints (1.16b) and (1.16c) are redundant (i.e. (1.16b) and (1.15c) implies
(1.16c)). However, consider that (1.16b) enforces the non-slippage condition on
the contact forces in the centroidal problem, while (1.16c) does that in the whole-
body problem. It is easy to see that (1.16b) and (1.16c) are the definition of the
stability constraint (1.1d) from the global locomotion problem (1.1).
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Fig. 1.2: Overview of our multi-stage locomotion framework Carpentier et al., 2017b.
Given a requested path request between start and goal positions (left image),
P1 is the problem of computing a guide path in the space of equilibrium feasi-
ble root configurations. We achieve this by defining a geometric condition, the
reachability condition (abstracted with the transparent cylinders on the middle
image). P2 is then the problem of extending the path into a discrete sequence of
contact configurations. Finally, P3 creates a whole-body trajectory by solving for
centroidal dynamics trajectories and using them as a reference.

(1.16b) and (1.16d) enforce consistent centroidal dynamics (1.13), while (1.16c)
and (1.16e) enforce consistence of the Lagrangian dynamics (1.12) with respect to
the contact model. We explicitly formulate both constraints to make the split evi-
dent. Similar remark holds for initial and terminal conditions (1.16g) and (1.16h).
As terminal constraints are often difficult to formulate in practice, they should likely
be replaced by stopping motion conditions (e.g. capturability)(Wieber, 2008).

The near-perfect split has already been nicely observed (Herzog et al., 2016a). The
observation was then mostly used to justify the classical approach of separately
solving each subproblem. Here we rather want to insist on the coupling and pave
the way to handle this coupling in Chapter 5.

1.4 The Loco3D Project

In our team, we follow the multi-stage decoupling approach defined in Sec 1.3, i.e.
we break the global problem into various subproblems of smaller dimensions, and
individually solve them in a hierarchical manner. These stages form the individual
blocks of a motion generation pipeline that we call the Loco3D project (Carpentier
et al., 2017b). The Loco3D pipeline is composed of modules that are summarized
below:

• Contact Sequence Planner: The first stage consists in an interactive acyclic con-
tact planner ( Tonneau et al., 2018c) which is able to compute a sequence
of contacts for various scenarios, from a matter of a few hundreds of millisec-
onds up to few seconds depending on the complexity of the environment. This
planner reduces the complexity of the problem by considering only the root
of the robot together with the reachability sets of the end-effectors. More pre-
cisely, it verifies that the root configuration of a robot is close, but not too close
from the obstacles: close to allow contact creation, not too close to avoid col-
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lision. With this approximation of the space of admissible root configurations,
we decompose the hard contact planning problem into simpler sub-problems:
first to plan a guide path for the root without considering the whole-body
configuration; then, to generate a discrete sequence of whole-body configura-
tions in static equilibrium along this path. The complete workflow is depicted
in Fig. 1.2.

• Centroidal Pattern Generator: Carpentier et al., 2016 introduced an optimal
control formulation based on centroidal dynamics and using contact forces
as control inputs. This formulation takes as input the contact sequence (gen-
erated by the previous step) and the initial state of the robot and tries to
minimize a tailored cost function to obtain a smooth control while satisfying
the friction cone constraints. In addition to that, the formulation seeks a final
state that is viable Wieber, 2008. To be effective, this approach is translated
into a multiple-shooting formulation, and is fast enough to be implemented
in a receding horizon way.

• Whole-body Motion Generator: The next step concerns the whole-body motion
generation. More precisely, how to plan the trajectories of swing end-effectors.
We will explain in detail in Chapter 3 and Chapter 4 our DDP solver which
efficiently solves the problem in a receding horizon manner. This approach
computes a whole-body motion while following the centroidal trajectories
computed by the centroidal pattern generator.

• Low-level controller: The above pipeline fuses into a low-level controller on the
robot. The interaction of the robot with its environment requires the control of
the contact forces. While it is possible to use the DDP solver as a controller on
the robot, as shown recently by Grandia et al., 2019, we use inverse dynamics
(similar to the one presented by Del Prete et al., 2016) as a control strategy.
This allows to control the robot with a much higher bandwidth.

The above pipeline is based on a multi-stage strategy that helps us to exploit the
state-of-the-art solutions: interactive computation of contact placements that en-
sure collision avoidance, real-time computation of centroidal trajectories followed
by DDP solver for motion generation and inverse-dynamics based low-level con-
troller.

Our work in this thesis, though self-contained as a research block, lies squarely in
the middle of the Loco3D pipeline. We deal with the “Whole-body Motion Gener-
ation”, and manage the constraints that bind it to the “Centroidal Pattern Genera-
tor”.
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1.5 Thesis Structure

The objective of this thesis is to provide an efficient method to solve the complete
problem (1.16). In the past, it was either proposed to solve this problem exactly
despite the lack of efficiency of the resulting optimization scheme, or to approxi-
mate it using some heuristic models in order to get a quick and practical answer.
We propose to leverage on this near-perfect split to provide an efficient method
which solves the exact problem (1.16), and not an approximation. This split has
already been observed, and in particular has been nicely exhibited and exploited in
Herzog et al., 2016a. Yet despite their understanding of the problem structure the
authors did not come to an exact algorithm that takes the structure into account.
Like Herzog et al., 2016a, our work is in continuation of the past works that com-
bines some kind of reduced template dynamics in practical algorithms and a whole
body motion generation algorithm. Our main contribution is the proposition to for-
malize these intuitions with the model split in order to solve the exact problem. We
propose improvements in the 1) manner in which the problem is broken, and how
the split is handled, 2) manner in which the whole-body solver resolves the contact
constrained problem over a horizon, and 3) manner in which the centroidal solver
deals with the kinematic feasibility. This thesis defines work done in these three
major areas related to the field of multi-contact locomotion.

1.5.1 Chapter Organization

Chapter 2

This chapter details the kinematic constraint (1.15a), and defines the equivalent
constraints which simplify the computation of the kinematic feasibility for the whole-
body solver. Since the constraint is dependent only on the configuration of the kine-
matic tree, we propose a way to encode this constraint inside a proxy constraint
which is simpler to deal with, and helps to provide a good and kinematically feasi-
ble initial solution to our final solver in Chapter 5

Chapter 3

This chapter explains the nitty-gritty of our whole-body solver, which is based on
the recently popular method of Differential Dynamic Programming. We explain
our choices in using this solver, explain its concepts, an propose changes in the
dynamics of the problem in order to deal efficiently with the no-slippage and con-
tact placement constraints. In this chapter, we also see how using DDP effectively
improves the performance for aggressive motions when compared to instantaneous
solvers like Inverse Dynamics.
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Chapter 4

This chapter describes our python-based solver Crocoddyl (Contact Robot Control
by Differential Dynamic Programming Library). We explain the API, the structure
of the package and its features.

Chapter 5

This chapter provides a resolution of the optimization problem (1.16), and nicely
threads the previous chapters together to form one solver scheme. In this chapter
we demonstrate how it is possible to consider the full optimization problem (1.16)
and use it for motion planning, without losing on the advantages of splitting the
problem up.

Chapter 6

This chapter uses an example of a highly dynamic motion to explain how all chap-
ters of this thesis work together to produce a solution to our optimization problem
(1.16). We compare the results obtained by each of our contributions separately,
and finally combine them together to arrive at a solution that works.

Chapter 7

This chapter provides the final summary of the thesis, its various elements, and
proposes a path forward from this work.

1.5.2 Associated Publications

All the chapters in this thesis are in the direction of improving the numerical solu-
tions of the multi-body locomotion optimization problem. Each chapter corresponds
to a publication in an internationally renowned and peer-reviewed conference. Our
interest lies in the efficient resolution of the locomotion problem (1.16). Eventually,
all the chapters tie together towards the same goal. We see that in Chapter 6. All
the published work deals with the locomotion of multi-body systems, at different
levels of the problem.

The following articles were published in peer-reviewed conferences:

• Budhiraja, R., Carpentier, J., & Mansard, N. (2019). Dynamics Consensus be-
tween Centroidal and Whole-Body Models for Locomotion of Legged Robots.
In ICRA 2019 - IEEE International Conference on Robotics and Automation.
Montreal, Canada.
https://hal.laas.fr/hal-01875031
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The work from this publication appears jointly in Chapters 1 and 5

• Budhiraja, R., Carpentier, J., Mastalli, C., & Mansard, N. (2018). Differen-
tial Dynamic Programming for Multi-Phase Rigid Contact Dynamics. In 2018
IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids)
(pp. 19). IEEE.
https://doi.org/10.1109/HUMANOIDS.2018.8624925

The work from this publication appears jointly in Chapters 3 and 4

• Carpentier, J., Budhiraja, R., & Mansard, N. (2017). Learning Feasibility Con-
straints for Multicontact Locomotion of Legged Robots. In Robotics: Science
and Systems XIII. Robotics: Science and Systems Foundation.
https://doi.org/10.15607/RSS.2017.XIII.031

The work from this publication appears in Chapter 2

• Mastalli, C., Budhiraja, R., ... Mansard, N. (2020). Crocoddyl: An Efficient
and Versatile Framework for Multi-Contact Optimal Control. In ICRA 2020 -
IEEE International Conference on Robotics and Automation. Paris, France

The work from this publication appears in Chapters 4

• Stasse, O., Flayols, T., Budhiraja, R., Giraud-Esclasse, K., Carpentier, J., Mirabel,
J., ... Ferro, F. (2017). TALOS: A new humanoid research platform targeted
for industrial applications. In 2017 IEEE-RAS 17th International Conference
on Humanoid Robotics (Humanoids) (pp. 689695). IEEE.
https://doi.org/10.1109/HUMANOIDS.2017.8246947

Part of the work from this publication appears in Chapter 2

• Carpentier, J., Del Prete,A., Tonneau, S., Flayols, T., Forget, F., Mifsud, A.,
Giraud, K., Atchuthan, D., Fernbach, P., Budhiraja, R., Geisert, M., Solà,
J., Stasse, O., & Mansard N. (2017b). Multi-contact Locomotion of Legged
Robots in Complex Environments The Loco3D project. In: RSS Workshop on
Challenges in Dynamic Legged Locomotion. Boston, United States.
https://hal.laas.fr/hal-01543060/

This work is partly described in Chapters 1, 2 and 3
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2Learning Feasibility Constraints
for Multicontact Locomotion of
Legged Robots

„ Le poète ne doit avoir qu’un modèle, la nature ;
qu’un guide, la vérité. Il ne doit pas écrire avec
ce qui a été écrit, mais avec son âme et avec son
cœur.
(The poet must have only one model, the nature;
and only one guide, the truth. He must not
write with what has been written, but with his
soul and with his heart)

— Victor Hugo
(Odes et ballades)

 Carpentier, Justin, Rohan Budhiraja, and
Nicolas Mansard (2017a). Learning Feasibility
Constraints for Multicontact Locomotion of
Legged Robots. In: Robotics: Science and
Systems XIII. Robotics: Science and Systems
Foundation.

2.1 Introduction

From the discussion in Chapter 1 and from the contact-constrained optimization
problem (1.16), we can formulate the reduced problem of finding the centroidal
trajectory by the following:

From a given contact sequence and an initial centroidal state, find a feasible cen-
troidal trajectory, satisfying the Newton-Euler dynamics, respecting the contact
constraints and leading to a viable state.
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This formulation is already present in the decoupling of (1.16). Here, we can ex-
plicitly transcribed it as an optimal control problem of the form:

minimize
dc:=[c,ċ,L,λ]

S∑
s=1

∫ ts+∆ts

ts

ℓc(dc|S) dt

subject to ∀t λ ∈ K (2.1a)

∀t ẋc = fc(dc) (2.1b)

Coupling Constraints (1.15) are satisfied (2.1c)

xc(0) is given, xc(T ) is viable (2.1d)

Constraint (2.1d) constrains the trajectory to start with a given state (typically es-
timated by the sensor of the real robot). Terminal constraint (2.1d) is difficult to
exactly represent (Wieber, 2008) and is replaced in practice by zero terminal move-
ment c̈(T ) = L̇(T ) = 0 and x(T ) = (c∗,0,0). Finally, ℓs is the cost function which
enforces the smoothness of both the state and control trajectories. Various ℓs can
be discussed and implemented. The one used in the experiments requires some
additional definitions and is given in Section 2.3.

Coupling Constraints (1.15) are difficult to represent in this optimization prob-
lem. The coupling constraints depend on q, q̇, τ , none of which are variables of
the above optimization problem. Since the centroidal problem is solved first, the
centroidal solver does not have information on the whole-body variables. Ideally,
the constraints (1.15) would take the following form:

∀t ∃ (q∗, q̇∗, τ ∗) such that: c = CoM(q∗) (2.2a)[
mċ
L

]
= Ag (q∗) q̇∗ (2.2b)

λ = gλ(q∗, q̇∗, τ ∗) (2.2c)

(q∗, q̇∗, τ ∗) = arg min
q,q̇,τ

S∑
s=1

∫ ts+∆ts

ts

ℓl(q, q̇, τ |S) dt

subject to constraints (2.2d)

Thus, the coupling constraints (1.15) can be re-written in the centroidal problem
by two separate sets of equations:
Feasibility constraints: (2.2a), (2.2b) and (2.2c) ensure that the centroidal vari-
ables are feasible with respect to the whole-body problem. Indeed, without this
feasibility, our decoupled approach from Sec 1.2 would struggle to find a proper
solution.
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Whole-body Optimality constraint: (2.2d) ensures that the decoupled approach
indeed matches exactly the solution of the full contact-constrained optimization
problem (1.16). For clarity reasons, we don’t list the constraints to the nested opti-
mization problem (2.2d). Normally, they ensure collision avoidance, non-slippage
and so on. These constraints are listed properly in Chapter 3.

The feasibility constraints (2.2a)-(2.2c) are already difficult to handle in the re-
duced problems. In addition, the Whole-body Optimality Constraint (2.2d) makes
the problem completely intractable.

For now, we choose to let go of the optimality constraint (2.2d). We will try to
handle the Optimality Constraint in Chapter 5, which will (to an extent) make sure
that our centroidal solution ensures optimality of the whole-body problem.

Instead, in this chapter, we propose a systematic approach to handle kinematic feasi-
bility constraint (2.2a) in the context of trajectory optimization for reduced models,
leading to efficient resolution on the real robot. We try to maximize the set of feasi-
ble q values, from which we can try to find q∗ in the whole-body optimization. The
resulting constraint formulation could be employed in most of the optimal control
solvers based on centroidal dynamics (Mordatch et al., 2012b; Deits and Tedrake,
2014; Kudruss et al., 2015; Herzog et al., 2015), although we implement it inside
a multiple-shooting solver (Carpentier et al., 2016).

2.1.1 Kinematic Feasibility as a Proxy Constraint

The coupling constraints (1.15) can be represented at the level of the reduced model
by using so-called proxy constraints (Zaytsev, 2015). Proxy constraints are an old
approach to encode information within a black box which provides some metric as
its output. The idea is simple, the proxy constraints try to encode the feasibility
criterion in a different way, and thus we avoid the requirement to handle the whole-
body variables.

In most of previous works, proxy constraints are defined by some rough approxi-
mations (box constraints, elliptic bounds, etc) leading to a certain conservatism; or
it is simply ignored inside the reduced problem formulation. Footstep limits have
been encoded by hyper-plane based on a dataset of robot success and failure in-
side a dynamic simulator (Perrin et al., 2012). Similar constraints can be obtained
by training a neural network Orthey and Stasse, 2013. In Zaytsev, 2015, similar
bounds are obtained by trial and errors based on stability analysis of the whole-
body system.
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In this chapter, we talk about using proxy constraints in order to encode the CoM
position constraint (1.15a)

Ideally, constraining only the CoM position is not sufficient. It is also necessary
to consider the constraints related to the contact forces Wieber, 2002 which must
lie inside so-called friction cones, the capacity of robot to generate such value of
angular momentum, etc. The main problem lies in the fact that it is hard to find
analytic formulas to represent and express those constraints. The CoM constraint
(1.15a), on the other hand, is static in nature, and thus has the potential to be
encoded.

The central idea behind our approach is to represent proxy constraints by occupancy
measures, whose corresponding cost of transport is optimized in the optimization
problem. In Section 2.3, we propose a complete solution to learn the CoM feasibil-
ity constraint by off-line sampling the robot motion capabilities. The effectiveness
of the approach is highlighted with two real experiments on the HRP-2 robot climb-
ing stairs with or without using guardrail and one in simulation with the TALOS
humanoid robot climbing stairs using guardrail, reported in Section 5.5.

2.1.2 Contact model

The interaction between a robot and the environment is defined through a set of
contact points {pk ∈ R3, k = 1...K}. For instance, for a humanoid robot equipped
with rectangular feet, the contact points correspond to the four vertices of the rect-
angular shape. At each contact point pk is defined a contact force fk. In the case of
unilateral contacts, fk must lie inside a 3-dimensional quadratic friction cone K3

k,
characterized by a positive friction coefficient µk. Fig. 2.1 depicts humanoid robots
making contact with the environment.

We only consider here rigid contact interaction (contacting bodies are fixed) which
is a reasonable assumption for modern legged robots which are mostly equipped
with rigid soles.

A contact phase is defined by a constant set of contact points. In the context of
bipedal walking, two examples of contact phases are the single and double support
phases. As soon as a creation or a rupture of contact point occurs, the contact set
is modified, defining a new contact phase. The concatenation of contact phases
describes what we name a contact sequence, inside which all the contact phases
have their own duration.
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Fig. 2.1: Illustration of HRP-2 robot and TALOS robot making contacts with their environ-
ment. The green “ice-cream” cones are dispatched on the 4 vertices of the feet,
symbolizing the friction cones with friction coefficient of value 0.3.

Computing automatically the contact sequence is a difficult problem (Bretl, 2006),
but efficient contact planners now exist to compute it in a short amount of time
(Escande et al., 2006; Tonneau et al., 2018b).

2.2 Feasibility of the centroidal problem

In this section, we present a mathematical coding of the feasibility constraints as
probability measures. We then discuss the interest of this representation with re-
spect to more-classical set-membership and show how it can be used to efficiently
implement (1.15a) in the OCP. This section introduces the abstract definitions, that
next section section uses to build the complete implementation.
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2.2.1 Mathematical representation of feasibility constraints

Our objective is to efficiently implement the CoM coupling constraint (1.15a) in our
OCP. This constraint explicitly depends on the robot configuration q, which is not
a variable of the centroidal OCP. A straight-forward implementation is to add the
robot configuration in the variables of the OCP (Dai et al., 2014). However, this
would surely lead the OCP to optimize the whole-body trajectory in order to handle
all the robot constraints, which is yet not tractable especially if targeting real-time
performances. We rather believe that it is possible to represent this constraint by an
equivalent “proxy” constraint not dependent on the robot configuration.

Various ways to encode proxy constraints have been proposed in the literature.
Most of them rely on set-membership. Denoting by γ the centroidal projection
function:

γ : (q, q̇, q̈)→ (x, ẋ) = γ(q, q̇, q̈)

the proxy can be written as the constraint to have the state variables in the range
space of γ. Set-membership proxies are used for instance in Herdt et al., 2010a;
Deits and Tedrake, 2014 to encode maximal step size in biped walking, or in Dai and
Tedrake, 2016 to bound the CoM position by simple geometric shape. In all these
cases, the set boundaries are represented by very simple mathematical structures
(typically linear inequalities) in order not to burden the OCP solver. Remarkably,
there are few papers about the automatic synthesis of the set boundaries (Perrin
et al., 2012; Orthey and Stasse, 2013; Zaytsev, 2015).

Despite its popularity, the set-membership representation has important drawbacks.
First, it is often difficult to handle by the OCP solver, in particular when the fea-
sible set is not convex. The boundary, which is a singular mathematical object, is
also complex to describe or numerically approximate. Finally, the OCP solver often
tends to saturate the set boundary, where the inverse kinematics γ−1 is likely to fail.
Consequently, the set is often arbitrarily reduced to improve the robustness of the
whole-body solution.

2.2.2 Proxy as occupancy measure

In this paper, we rather state that the proxy is best represented by the occupancy
measure over x, ẋ.

Consider a trajectory c. With (1.15a), we want to maximize the likelihood that the
inverse-kinematics solver converges on a trajectory q such that c is the image of q
by γ. For that purpose, it is desirable that to any state c corresponds as many robot
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configurations as possible, so that the inverse kinematics is likely to converge to a
solution q meeting continuity constraints.

We define the occupancy measure as the image of the uniform distribution in con-
figuration space through the centroidal projection γ:

µo(c̃) def=
∫
q̃ subject to γ(q̃)=c̃

dq̃ =
∫

Q
1γ(q̃)=c̃dµQ

where c̃ def= (c, ċ), q̃
def= (q, q̇, q̈), Q is the whole-body motion range, 1a is the

indicator function (i.e. 1 when the assertion a is true, 0 otherwise) and µQ is the
uniform distribution on Q.

Measure µo has several properties of the set-membership representation. First, its
support is the feasibility set, which means that µo contains at least as much infor-
mation as the set boundaries. It indeed contains more information, as for example
the level sets of µo can be used as boundaries of the inner of the feasibility set, used
to improve the robustness. We will see in the experimental results that the result-
ing centroidal trajectories correspond to whole-body configurations which remain
feasible with respect to the kinematic limits of the robot.

However, in practice, it is desirable that OCP (2.1) promotes centroidal states c̃
where µo is the highest, not only feasible. First, it makes it easier to then com-
pute a corresponding configuration q̃. Second, the configuration is well inside the
kinematic feasibility set, where redundancy will help the robot to handle distur-
bances.

Finally, the measure also eases the life of the OCP solver, compared to handling
directly the feasibility set membership, as explained next.

2.2.3 Maximizing the occupancy measure

Before deriving an effective solution to represent µo for the specific case of the
kinematic feasibility, we quickly show how µo can be integrated in the OCP (2.1).

In practice, the measure can be normalized and represented by the corresponding
probability density function (PDF), denoted by p(c, ċ). It is then possible to di-
rectly exploit the measure to represent the set-membership constraint (by imposing
the integral of the measure to be positive on any small neighborhood around the
trajectory). In addition, we could use the PDF to directly optimize the robustness,
either by optimizing over a level set of the PDF, or by maximizing the neighborhood
around the trajectory where the measure is nonzero.
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However, adding a PDF as a constraint of an OCP is not straightforward. Therefore,
we propose to remove the hard constraint (1.15a) and penalize the OCP cost with
the log PDF.

In practice, the logarithm prevents the solver from selecting non-feasible c states.
Constraints (1.15a) is always satisfied. It also penalizes non-robust behavior where
no redundancy q is available, and avoids saturation of the hard constraint. Finally,
the OCP solver is gently pushed away from the constraint, instead of searching
for a solution living on the boundaries, which greatly improves its efficiency. Fur-
thermore, it is unlikely that the OCP solver is trapped in local minima of µo, as it
manipulates a full trajectory c and not a single state c. Experimentally, we observed
that our OCP solver robustly computes a good local minimum when optimizing over
a cost penalizing the log-PDF, while it is unlikely to converge to a solution when
optimizing over set-membership.

2.3 Learning the CoM reachability proxy

We now present a complete solution to efficiently approximate the CoM feasibility,
i.e. for any time t, there exists a joint configuration q(t) such that (i) the contact
placements are respected and (ii) the CoM of the poly-articulated system matches
c(t). Handling this sole constraint first is a proper way of validating our approach.
It is also interesting in practice, as the feasibility of the CoM is the most limiting
constraint. Generalization to velocity and acceleration of the CoM with respect to
joint velocity and acceleration limits would be straight-forward. Extension to the
construction of the proxy on the torque limits is left as a perspective.

2.3.1 Probabilistic model

The geometric condition can be stated as the conditional probability of the CoM to
be at the position c given the current set of K contact points {pk ∈ R3, k = 1...K}.
This probability is denoted by p(c|pk, k = 1...K). It lives in the high dimensionality
domain R3(K+1) and it is hard to compute in general.

The probability domain can be exactly reduced by gathering together the contact
points belonging to the same rigid end-effector (e.g., the 4 vertices of the humanoid
foot belongs to the same end-effector). We denote by Mi = (Ri, pi) ∈ SE(3) the
placement (position and orientation) of the contact body i. The conditional proba-
bility is then reduced to p(c|Mi, i = 1...Kc) where Kc is the number of end-effectors
in contact.
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We now assume that variables Mi are all independent. This assumption is clearly
abusive, however is a reasonable approximation under knowledge of c. It is later
discussed. Under this assumption, the conditional probability reads:

p(c|Mi, i = 1...Kc) ∝
Kc∏
i=1

pi(c) (2.3)

where pi(c) stands for p(c|Mi) and∝ stands for “is proportional to”. pi(c) is nothing
more than the probability distribution of the CoM to be at position c w.r.t the frame
defined by Mi.

The assumption of independence of the Mi is commonly employed inside the machine-
learning community as a trick to make the problem numerically tractable. In this
particular case, it simplifies a lot the learning process: instead of working in a high
dimensional space, the problem is restricted to a subset of R3. In addition, the inde-
pendence of end-effector placements plays the role of an upper-bound for the real
probability: if a CoM is not feasible for at least one of the end-effectors (i.e. one of
the pi(c) is equal to 0), then the joint probability is also zero. The converse is not
true. We show in next section that this approximation, although intuitively rough,
is quite reasonable in practice and leads to good experimental results.

2.3.2 Kernel density estimation by CoM sampling

There is in general no closed form to encode pi(c) for a particular legged robot.
Nevertheless, this conditional probability can be easily approximated by extensive
dataset of the CoM position expressed in the end-effector frames.

Computing a dataset of the CoM position expressed in the frame Mi does not raise
particular difficulties. A configuration qa of the actuated joints is randomly sampled
and the corresponding CoM position is computed (expressed in placement frame)
by forward kinematics. The sample is rejected if joint limits or self collision are
violated. Thus, Nsamples successful joint configuration samples correspond to each
of the points inside the CoM dataset.

The probability distribution can be approximation from the cloud of CoM points by
the kernel density estimators (KDE) (Parzen, 1962). KDE are in some sense the
analogues of histograms but for continuous domains: for each point of the data
set, it associates one kernel centered on the point and all kernels share the same
parameters. In the present work, we use isotropic Gaussian kernel.
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2.3.3 Reduction of dimension

One drawback of the KDE representation is its computational complexity: evaluat-
ing the exponential function contained in the Gaussian kernel takes around 10 ns
on modern CPU. So, roughly speaking, evaluating the PDF of the KDE takes ap-
proximately 10.Nsamples ns which becomes rapidly a bottleneck when the number of
points is huge (Nsamples greater than 100 points).

We propose to then approximate the KDE by a Gaussian mixture model (GMM) Bishop,
2006. GMMs are particularly suited to approximate a PDF with only few Gaussians
in the mixture. The GMMs are learned for each end-effector from the corresponding
cloud of samples by means of the expectation-maximization (EM) algorithm Demp-
ster et al., 1977.

The quality of the GMM approximation can be estimated using the Kullback-Leibler
(KL) divergence between the KDE (ground-truth) and the learned GMM (approx-
imation) using the Monte Carlo estimator proposed in Hershey and Olsen, 2007.
Depending on the number of Gaussians in the mixture, the divergence can reveal
under or over fitting effects. The optimal number of Gaussians is easily selected for
each end effector by dichotomy, as exemplified in next section.

2.3.4 Summary of the learning procedure

In summary, for each end effector, Nsamples configurations are sampled and the cor-
responding CoM is computed in the end-effector frame. The resulting KDE is ap-
proximated by fitting a GMM using EM. Finally, the probability of CoM occupancy
is approximated as the product of pi(c), for i the end effectors in contact with the
environment.

2.3.5 Proposed optimal control formulation

We can now express the complete formulation of the cost function ℓs.

ℓc(x,u) = wx∥ẋ∥2 −
Kc∑
i=1

log(pi(c)) (2.4)

where the first term1 enforces a smooth trajectory, the second term is the cost of
transport for the approximate CoM occupancy measure, and wx weights their rela-
tive importance. The first term can similarly be interpreted as a weak formulation

1∥ẋ∥ is a function of x and u through ẋ = f(x,u)
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Y-Z projection X-Z projection X-Y projection

Fig. 2.2: Illustration of the probability density distribution of the CoM w.r.t. the right foot
frame of HRP-2. The PDF are projected along the three axis X,Y,Z and represented
by the means of color map: the low values are closed to the blue colour while the
high values tend to be more red. The first row corresponds to the ground truth
distribution estimated through KDE. The KDE is composed of 20000 points. The
second row is the colour map of the GMM used in the OCP and composed of 7
Gaussian kernels.

of the occupancy measures for the second order terms (ċ and L) and their deriva-
tives, through centred Gaussian measures (i.e. no prior on occupancy distribution).
If the complete occupancy measure µo is available, the first term would become
useless.

2.4 Results

2.4.1 Illustration of the learning procedure

We first illustrate the learning procedure exposed in Sec. 2.3 on the HRP-2 robot.
For that purpose, we only expose for space reasons the learning of the accessibility
space of the CoM w.r.t. the right foot (RF). A similar study can be conducted on the
three other end-effectors.

The learning process is made from a set of 20000 points sampled uniformly in the
configuration space. The KDE of this set is represented on the first row of Fig. 2.2.
The first observation is that the PDF of the RF is not convex and follows a kind of
banana distribution on the X-Z plane. In other words, this means that the distribu-
tion cannot be approximated by a single normal distribution but must be composed
of several ones. The second row of Fig. 2.2 represents the colour map of the GMM
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Fig. 2.3: Evolution of the KL divergence between the KDE distribution and GMMs of differ-
ent sizes for the four end-effectors of the HRP-2 robot.

used inside the OCP. At this stage, it is important to notice that the approximation
with GMMs does not fit perfectly the maximal values of the real distribution. How-
ever, this approximation is conservative with respect to the support and the level
sets of the original distribution.

Fig. 2.3 highlights the experimental procedure suggested in Sec. 2.3.3 and shows
the evolution of the KL-divergence with respect to the size of the GMMs. For the
right and left feet, the KL-divergence stagnates from 7 kernels in the mixture. In
other words, it is sufficient to takes a GMM of size 7 to represent the CoM distribu-
tion in the foot frames. For the right and left grippers, it is a little bit different. The
KL-divergence first decreases and then increases from 14 kernels. This behaviour
can be explained by the fact that the EM algorithm does not optimize the KL diver-
gence but the likelihood of observation (expectation). We chose to represent the
CoM distribution w.r.t. the grippers with a GMM of size 14.

A similar study has been done on the TALOS humanoid robot, which is larger than
HRP-2 and as different leg and arm kinematics. The distributions for the right foot
of TALOS is depicted in Fig. 2.4.

2.4.2 Experiments on HRP-2 and Talos robots

This part reports the experiments achieved on the HRP-2 robot in real conditions,
and Talos in simulation. We show two real experiments of multicontact locomotion
with the HRP-2 robot inside an environment similar to what can be found in the
industry. Simulation on Talos are also done in the same environment.

We use the Loco3D Pipeline, as explained in Sec 1.4, in order to produce both real
and simulated motions on the two different robots. In these experiments, we use a
second order IK solver similar to Saab et al., 2013 to get the whole-body resolution.
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Fig. 2.4: Illustration of the probability density distribution of the CoM w.r.t. the right foot
frame of TALOS robot. The PDF are projected along the three axis X,Y,Z and
represented by the means of color map: the low values are closed to the blue
colour while the high values tend to be more red. The first row corresponds to
the ground truth distribution estimated through KDE. The KDE is composed of
20000 points. The second row is the colour map of the GMM used in the OCP and
composed of 4 Gaussian kernels. The axes have the same scale as in Fig 2.2.

In the following Chapter 3 and Chapter 4, we will develop a whole-body solver
based on the principle of trajectory optimization for multi-contact scenarios.

Experiment 1 - climbing up 10-cm high steps

The experimental setup is an industrial stairs made of six 10-cm high steps. The
steps have a length of 30 cm. The duration of the single and double support phases
are 1.4 s and 0.2 s respectively. The resulting motion is depicted in Fig. 2.6. During
execution, the reference posture is tracked as well as the reference foot forces using
the robot low-level control system (named HRP “stabilizer”).

Computing the 25s of motion takes 42 iterations of the multiple-shooting algorithm,
costing about 8s in total. In average, each iteration takes approximately 0.2s for
25s of motion. About 70% of the computation time is spent solving the underlying
quadratic program of the multiple-shooting algorithm and other 20% are dedicated
to the numerical integration of the dynamics together with the computations of
sensitivities (derivatives).

Fig. 2.5 shows two trajectories of the CoM projected in the right foot frame: the
black curve takes into account the log-pdf term in the cost function, while the green
one does not. The figure also includes the level sets of the GMM of right foot
(depicted in Fig. 2.2). It appears that the OCP tends to maximize the inclination of
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X-Z projection

Fig. 2.5: Projection of the CoM trajectory inside the right foot frame with and without tak-
ing into account the log-pdf term in the cost function. The level set corresponds
to the GMM distribution used in our OCP.

Fig. 2.6: Snapshots of the climbing up 10-cm high steps motion with the HRP-2 robot.

Fig. 2.7: Snapshots of the climbing up 15-cm high steps motion with the HRP-2 using the
guardrail.
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Fig. 2.8: Snapshots of the climbing 15-cm high steps motion with guardrail by the TALOS
robot in simulation.

the CoM to stay in the most feasible region, i.e. closed to the maxima of the PDF. On
the contrary, if we do not add the log-pdf term, the CoM tends to be infeasible.

Experiment 2 - climbing up 15-cm high steps with guardrail
support

The experimental setup is another industrial stairs made of four 15-cm high steps
and equipped with a guardrail. The steps have a length of 30 cm too. The duration
of the double and triple support phases are 1.8 s and 0.4 s respectively. Here, the
double support phases correspond either to the case of two feet on the steps or
one feet plus the right gripper on the handrail. Snapshots of the entire motion are
shown in Fig. 2.7.

2.4.3 Experiments in simulation

We reproduce the climbing stairs with guardrail scenario, but this time with the
TALOS robot in simulation. Compared to HRP-2, TALOS is a 1.78m high humanoid
robot weighting around 100kg. For this experiment, only the end-effector trajecto-
ries and the GMMs are different: the cost function remains the same. The complete
motion is depicted in Fig. 2.8.

2.5 Conclusion and Perspective

In this chapter, we propose a method to solve the first half of our contact-constrained
problem (1.16), i.e., the part on the reduced variables c, ċ, λ that contains informa-
tion on underactuated which is the main difficulty of the locomotion problem.

We introduce a systematic approach to include feasibility constraints inside the op-
timal control formulation as occupancy measure. In particular, we propose an effec-
tive way to learn the Center Of Mass feasibility constraint by learning the probability
density of the Center Of Mass positions with respect to the end-effector locations.
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This allows us to use our centroidal pattern generator to run before the whole-body
optimal control problem, thanks to the encoded proxy constraint.

In this first chapter, we have used a second order IK solver (Saab et al., 2013) for
whole-body resolution, and we demonstrate the validity of the methods with two
real experiments on the HRP-2 which was asked to climb industrial stairs with or
without handrails and one experiment in simulation with the TALOS platform which
was asked to achieve multicontact stairs climbing.

Even though second order IK lack the benefits provided by trajectory optimization,
our experiments show that this approach can be used to generate robust whole-
body trajectories. While the whole-body resolution is limited in its ability (for e.g.
to generate proper angular momentum trajectory), the robust trajectories provided
by the centroidal solver are still able to be applied on the robot.

The methodology requires a systematic learning procedure to be executed off-line
in simulation. On-line, the resulting optimal control is solved in a very efficient
way (with each iteration running about 100 times faster than execution time) and
it leads to smooth centroidal trajectory easily tracked by the robot whole body.

We have defined our proxy to be an occupancy measure over the whole centroidal
state and contact forces, although only the measure over the Center Of Mass was
approximated. If proxy constraints are used in the centroidal problem, it is possible
to completely account for the coupling constraints (1.15) and not have to worry
about the problem of solution feasibility. Introducing the occupancy measure over
all centroidal variables would reduce the centroidal locomotion problem to a sim-
ple optimal control problem composed of a single cost function, with only initial
constraints.

Defining and learning such proxy constraints for angular momentum and contact
forces is not easy because of their dynamic nature, and thus we only learn the Cen-
ter Of Mass kinematic feasibility. However, even with Center Of Mass feasibility, we
have seen good performance of on a real robot. Even though we are not ensuring
that the angular momentum and contact forces constraints are satisfied, maximiza-
tion of the Center Of Mass expectancy gives latitude to the whole-body solver to
find angular momentum trajectories and still be valid.

We will see in Chapter 5, how to consider not just the Center Of Mass, but all the
coupling constraints (1.15) for our solution. But even in that case, we will use
the Center Of Mass proxy that we define in this chapter to provide a robust initial
centroidal trajectory. In this way, we will make sure that our initial guess for the
full solver of Chapter 5 is good and robust.
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3Differential Dynamic
Programming for Multi-Phase
Rigid Contact Dynamics

„ सच ह,ै िवपÙत् जब आती ह,ै
कायर को ही दहलाती ह,ै
सूरमा नही िवचÙलत होते,
क्षण एक नहीं धीरज खोते,
िवघ्नƁ को गले लगाते हैं,
काँटƁ में राह बनाते हैं ।
(It is true, that when obstacles arise, only the
weak falter. The brave embrace the obstacles,
and find a way forward even amongst the
thorns.)

— Ramdhari Singh ‘Dinkar’
(Rashmirathi, Third canto)

 Budhiraja, Rohan, Justin Carpentier, Carlos
Mastalli, and Nicolas Mansard (2018).
Differential Dynamic Programming for
Multi-Phase Rigid Contact Dynamics. In: 2018
IEEE-RAS 18th International Conference on
Humanoid Robots (Humanoids). IEEE, pp. 19.

3.1 Introduction

Let us recall that in Chapter 1, we decoupled our locomotion problem into its re-
duced dynamics (dc), and whole-body dynamics (dl). In Chapter 2, we dealt with
the first half of the problem, and showed how dc can be handled. Let’s now consider
the second half of the problem, the variables dl.
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In this chapter, we propose to combine the advantages of centroidal dynamics op-
timization (to decide the gait, the timings and the main shape of the centroidal
trajectory) with a whole-body trajectory optimizer based on multi-phase rigid con-
tact dynamics.

An acute observer might say that we have already shown in Chapter 2 that whole-
body variables can be decided instantaneously, using inverse kinematics(i.e. a triv-
ialized form of the optimal control problem that we later present in (3.2), and
in which the horizon length has been collapsed to zero). So why should we now
consider the much more complex optimal control problem over a time horizon?
We argue in this chapter that combining the reduced OCP with inverse kinemat-
ics or inverse dynamics is not satisfactory to handle the AM. In what follows, we
first discuss the importance of properly handling the angular momentum during
locomotion, before introducing the DDP method.

3.1.1 On the importance of angular momentum

Consider an astronaut, floating in space, without any external forces. If he/she
mimics the normal human walk, he/she will start spinning in his/her sagittal plane.
The reason for this is simple, the forward gait is not symmetric with the backward
gait. Thus, while the instantaneous angular momentum is conserved, the net veloc-
ity change is not zero. Indeed, as seen in Fig. 3.1, an astronaut is able to re-orient
himself just by utilizing this mismatch between the upper and lower limbs. Cats
are capable of a change of orientation when falling. This is explained more in
Fig. 3.2.

Contact forces are not the only way to change the robot orientation. It is known
from Wieber, 2006a that robot orientation can be controlled without the need of
contact forces (i.e. only with the internal joint actuators). Under the action of only
internal forces, the AM conservation can be seen as a non-holonomic constraint
on the robot orientation. Of course, one can design a control law that counter-
balances the lower-body AM. However this will create tracking errors (and poten-
tially instabilities) without mentioning the cases where the arms need to be used
for multi-contact locomotion. In fact, as shown in Brockett, 1983, a system un-
der non-holonomic constraints cannot be controlled with a time-invariant feedback
law. Thus AM requires a preview control strategy to be correctly regulated or trig-
gered.

1Wieber, 2006a showed to robotics community the work by Frizot, 2001, where he captures the
movement of a cat falling to the ground. In this thesis, we give the same explanation as Wieber,
2006a, but instead we go to contemporary youtube for better camera resolution and lighting :)
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Fig. 3.1: An astronaut rotating himself in the transverse plane. There is a mismatch in the
inertia properties of the upper and the lower limbs. As a result, the astronaut can
create different velocities for the upper and lower limbs, while maintaining the
angular momentum conservation constraint. Eventually, this changes the orienta-
tion of his body. Video thanks to NASA, 1988

Fig. 3.2: A cat falling and correcting its orientation before he lands. The cat is able to
create two distinct groups of motion along its spine. During the first half, it
creates a mismatch between its upper and lower body by closing its arms and
elongating its legs. Then it rotates them in different directions, thus maintaining
the angular momentum constraint (3.1), but changing the orientation of the spine.
It completes its rotation by repeating the same movement, but in the opposite
sense (Video thanks to SmarterEveryDay, 2012)1
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It is often (wrongly) understood that centroidal optimization provides the answer
to this problem. The centroidal optimizer can neither anticipate nor modify the
limb movements in order to change the AM as needed. For instance, the centroidal
optimizer cannot anticipate a high demand of the linear part (CoM) by delaying
the limb movement, or exploit the movement of the arms to compensate for large
forces acting for a short duration. Nonetheless, these methods are still valid since
they provide an efficient way to compute the CoM motion while keeping balance
and avoiding slippage. Indeed, AM of a body is accounted by both, as a result
of the contact forces, and by the limb movement. Consider a floating-base robot.
With no external forces acting on the robot, a constant AM is maintained by the
non-holonomic constraint on the joint velocities (Wieber, 2006a):

nj∑
k=0

mi[rk − r]×ẋk + RkIkωk = Constant, (3.1)

where k denotes the index of a rigid limb and Ik corresponds to its inertia matrix
expressed in the body’s CoM frame. ẋk and ωk are the linear and angular velocities
of the links.

In order to produce a relevant movement of the body, this “gesticulation” of the
limbs needs to be accounted for in the contact forces. This can only be done during
the centroidal optimization (Wieber, 2006a), since contact force optimization is in
the domain of the centroidal optimization. However, joint movement optimization
is in the whole-body domain, and this makes it a difficult problem to solve in real-
time.

In the past, we have assumed that this effect is small Carpentier et al., 2017a, but
yet important to consider, and we track it with a whole-body Model Predictive Con-
trol (MPC). DDP (Mayne, 1973) is a reasonable choice between the two, because it
allows us to generate additional AM using (3.1), while efficiently tracking the ref-
erence trajectories provided by the centroidal solver. DDP has already been shown
(Tassa et al., 2012) to be efficient in solving online Optimal Control (OC) in legged
systems.

3.1.2 Multi-contact Motion Generation

In this chapter, we consider the problem related to the wholebody variables, dl :=
[q, q̇, τ ]. More precisely, we consider that the contact sequence S is already given;
thus we know the surfaces which are in contact with the environment, the order of
the contacts, the timing of each phase of contact etc. We are dealing with the clas-
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sical hypothesis defined by hybrid dynamics, that encompasses gaited/non-gaited
locomotion as long as the contact dynamics, impact dynamics etc are defined.

Instead of relying on instant linearization using Inverse Kinematics (IK)/Inverse
Dynamics (ID), we propose in this chapter to rely on optimal control (Lengagne
et al., 2013; Schultz and Mombaur, 2010). Namely we rely on DDP, to compute
the whole-body motion while tracking the centroidal trajectory.

Generating a whole-body trajectory requires finding a trajectory which is subject
to dynamic-consistency, the friction-cone constraints, the self-collision avoidance
and the joint limits. While dynamic-consistency creates dependence between the
centroidal solver and the whole-body solver, the other constraints are dependent
only on the whole-body state. If we look at the contact-constrained formulation
of our optimization problem (1.16) from Chapter 1, the whole-body part of our
optimization problem is given by:

minimize
dl:=[q,q̇,τ ]

S∑
s=1

∫ ts+∆ts

ts

ℓl(dl|S) dt

subject to ∀t gλ(q, q̇, τ ) ∈ K (3.2a)

∀t q ∈ Q (3.2b)

∀t ẋl = fl(dl) (3.2c)

Coupling Constraints (1.15) are satisfied (3.2d)

xl(0) is given, xl(T ) is viable (3.2e)

Q here denotes the admissible set of non-colliding, joint safe configurations. Note
that while constraint (3.2b) is not mentioned in the optimization problem (1.16)
for the sake of simplicity and clarity, adding it here does not alter in any way our
original explanations of decoupling (Sec 1.2), coupling constraints (Sec 1.3.2), and
how to handle them (Sec 1.3.3).

The rest of the chapter is organized as follows: Sec 3.2 briefly introduces the DDP
algorithm, we then describe our novel DDP formulation for rigid contact dynamics
in Sec 3.3. Then, in Sec 3.4 we show experimental trials and realistic simulation
with the HRP-2 robot and compare them against a whole-body IK solver. Lastly,
Sec 3.5 summarizes the work conclusions.
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3.2 Differential Dynamic Programming

In this section, we give a formal description of the DDP algorithm for completeness.
The reader is referred to Mayne, 1973 for full analysis.

DDP belongs to the family of OC. It is a sparse algorithm, and deals specifically with
sparsity provided by the Markovian structure of our dynamics constraint (3.2c). It
does so by using the Bellman’s principle to convert our optimization problem (3.2)
into a recursive sequence of mini-optimizations. Our interest in DDP lies in its
ability to do highly sparse resolution of our optimization problem.

3.2.1 Relaxation of Constraints

Constrained optimization like (3.2) poses challenges at arriving at fast solutions.
DDP is more suited to problems with only initial value and dynamics constraints. In
order to exploit the true potential of DDP, we’ll try to relax these constraints into
something manageable. We’ll handle the coupling constraints (1.15) as a trajectory
tracking task. This is straightforward, since the whole-body optimization would be
following on the heels of centroidal optimization. In the upcoming Sec 3.3, we’ll
see how to modify our dynamics to track a contact force reference trajectory. Thus,
we’ll remove (3.2a) as well. (3.2b) would be implemented by a penalty cost. (3.2c)
would be handled by our DDP optimization algorithm itself. We replace the viability
constraint on xl(T ) with a penalty on zero terminal velocity. With this adjustment,
we drop the viability constraint from (3.2e).

Moreover, in order to do numerical optimization, we discretize our dynamics (3.2c).
The control trajectory, which is τ , is divided into a grid of T points, and the tra-
jectory between any two consecutive grid points t and t + 1 is taken to be τ (t).
For conformity with state and control descriptions in the literature, we’ll be using
xt := q(t), q̇(t) and ut := Sτ (t) to define the discretized whole-body state and con-
trol variables at time t. S here is the selection matrix that maps to the actuated part
of (1.12). We’ll define ft as the discretized version of our continuous dynamics at a
given grid point t.

Thus our optimization problem takes the following generic form:
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minimize
u

T −1∑
t=0

ℓ(xt, ut) + ℓ(xT )

subject to x0 is given

∀t ∈ {0 . . . T − 1} xt+1 = ft(xt, ut) (3.3a)

(3.3a) defines our discretized dynamics at time t. Notice that there is also change
in the variable of optimization between (3.2) and (3.3). We are only considering
optimization in u. Since the first state x0 is defined, the optimal ut decisions would
result in optimal state values xt by using the discrete dynamics (3.3a). This is why
DDP is called a “shooting” method (we are “shooting” from initial x0).

3.2.2 Understanding Bellman’s Principal of Optimality

Bellman’s principle of optimality states the following:

Principle of Optimality

An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal
policy with regard to the state resulting from the first decision.
(Bellman1962)

Thus, the principle of optimality gives us two tools.

The first tool is that we don’t consider the past when optimizing our problem from
a given state. Consider that we are currently at state xi. Let us take some decisions
ui:T −1, to arrive at the final state. We can thus define a cost-to-go, which is the net
objective cost of (3.3) because of these decisions:

Ji(xi, ui:T −1) =
T −1∑
t=i

ℓ(xt, ut) + ℓ(xT ) (3.4)

This is possible through a forward simulation of the system dynamics (3.3a). Bell-
man’s principle states that the optimal trajectory from state xi only depends on
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finding the optimal ui:T −1. Thus, we can define the value function Vi, which de-
scribes the minimum cost-to-go:

Vi(xi) = min
ui:T −1

Ji(xi, ui:T −1). (3.5)

Another tool is the observation that if we consider the optimal trajectory that starts
at x0 and goes to xT , any sub trajectory xi . . . xT of this optimal trajectory is opti-
mal.

Thus, instead of finding the entire optimal trajectory (3.5), we make recursive deci-
sions:

Vi(xi) = min
ui

[ℓ(xi, ui) + Vi+1(f(xi, ui))], (3.6)

Each feasible state xi corresponds to a Value Vi which is related to the optimization
problem (3.3). We are looking for the Value V0 which is the solution of (3.3) at
state x0.

3.2.3 Backward Pass

DDP searches locally the optimal state and control sequences of the above problem
(3.6). Let Q(δx, δu) be the variation of ℓ(xi, ui)+Vi+1(f(xi, ui)) around the current
state control pair xi, ui. i.e.

Q(δx, δu) = ℓ(xi +δx, ui +δu)−ℓ(xi, ui)+Vi+1(f(xi +δx, ui +δu))−Vi+1(f(xi, ui))
(3.7)

If we take the quadratic approximation of this quantity, and drop the higher order
terms, we get the following relation:

Q(δx, δu) ≈


1

δx
δu


⊤ 

0 Qx
⊤ Qu

⊤

Qx Qxx Qxu

Qu Qux Quu




1
δx
δu

 (3.8)
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where

Qx = ℓx + f⊤
x V′

x,

Qu = ℓu + f⊤
u V′

x,

Qxx = ℓxx + f⊤
x V′

xxfx + V′
xfxx,

Quu = ℓuu + f⊤
u V′

xxfu + V′
xfuu,

Qux = ℓux + f⊤
u V′

xxfx + V′
xfux,

(3.9)

The primes denote the values at the next time-step. The subscripts {}x, {}u, {}ux,
{}uu and {}xx denote the first and second order derivatives with respect to state
and control variables. Note that fux, fuu, fxx are tensors, and thus calculation and
multiplication of these quantities is computationally costly. In practice, we’ll drop
these quantities, and perform what is called a Gauss-Newton step.

The quadratic approximation of Q is quite useful. We can approximate our equation
(3.6) to instead recursively find the optimal δu that optimizes our approximation.
This leads to a recursive solution in the unconstrained setting:

δu∗ = arg min
δu

Q(δx, δu) = k + Kδx, (3.10)

where k = −Q−1
uuQu and K = −Q−1

uuQux are the feed-forward and feedback terms.
Recursive updates of the derivatives of the value function, which we denote by Vx(i)
and Vxx(i), can be done as follows:

Vx(i) = Qx + K⊤Quuk + K⊤Qu + Q⊤
uxk,

Vxx(i) = Qxx + K⊤QuuK + K⊤Qux + Q⊤
uxK.

(3.11)

3.2.4 Forward pass

The forward pass determines the step size along the search direction by adjusting
the line search parameter α. It computes a new trajectory by integrating the dynam-
ics along the computed feed-forward and feedback commands {ki, Ki}:

ûi = ui + αki + Ki(x̂i − xi),

x̂i+1 = f(x̂i, ûi),
(3.12)

in which x̂1 = x1, and {x̂i, ûi} is the new state-control pair. Note that if α = 0,
neither the state nor the control trajectories are modified.
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3.2.5 Line search and regularization

We perform a backtracking line search by trying the full step (α = 1) first. The
choice of α is dual to the choice of regularization terms, and both are updated
between subsequent iterations to ensure a good progress toward the (local) optimal
solution. We use two regularization schemes: the Tikhonov regularization (over
Quu) and its update using the Levenberg-Marquardt algorithm are typically used
(Toussaint, 2017). Tassa et al., 2012 propose a regularization scheme over Vxx,
which is equivalent to adding a penalty in the state changes.

3.2.6 DDP as an evolution of Newton Step

The backward pass of DDP produces the inverted Hessian of the objective function.
DDP uses the Value Function and its derivatives V, Vx, Vxx in order to iteratively
invert the block diagonal components. The Newton descent direction is also char-
acterized by the inverted Hessian of the objective function.

While the Hessian computation by the backward pass is not straightforward as a
simple inverse of the Hessian, both are equivalent. The comparison, as shown by
Dunn and Bertsekas, 1989, becomes much easier to understand when we use an
iterative scheme for the Newton Method as well.

Once the descent direction is calculated, the line-search computes the next best
guess for optimal solution. In a typical Newton line search, the search around the
current solution x, u is done by approximating that the dynamics xt+1 = f(x, u)
is linear. In the case of DDP, we perform the forward pass on the exact non-linear
dynamics, not its linearized version. This ensures that the DDP solution remains
in the feasible domain, unlike in the classical case where the linearized dynamics
would produce discontinuities in the solution. This non-linear roll-out is indeed
the only difference between DDP and the classical Newton step. If the dynamics is
considered to be linear, their difference disappears. DDP solution becomes exactly
the same as that of the Newton Step.

Indeed, the power of DDP comes from its ability to iteratively invert N smaller
dimension matrices in order to find the inverse of a huge N times larger matrix. The
forward pass of the DDP, while it ensures that the solution is feasible, is optional. If
the non-linear rollout of the exact dynamics is not used in DDP, discontinuities in
the state space would appear, and we need to be able to find strategies to account
for these discontinuities in the line search. This grants more power to the solver to
explore the solution space than in the case of the exact dynamics roll-out.
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In this chapter, we deal with the idea of converting the contact-constraints into
holonomic constraints, that can be tracked using DDP. The idea of updating DDP
line search for exploring the non-feasibility space is further explained in Chapter 4,
and discussed in detail in Mastalli et al., 2020; Mansard, 2019

3.3 DDP with Constrained Robot Dynamics

3.3.1 Contact dynamics

Let’s consider the case of rigid contact dynamics with the environment. Given a
predefined contact sequence, rigid contacts can be formulated as holonomic sclero-
nomic constraints to the robot dynamics (i.e. equality-constrained dynamics). The
unconstrained robot dynamics (similar to (1.12)) is typically represented as:

Mq̈free = Sτ − b, (3.13)

Here, q̈free is the unconstrained joint acceleration vector, and S is the selection
matrix of the actuated joint coordinates.

We can account for the rigid contact constraints by applying the Gauss principle of
least constraint (Udwadia and Kalaba, 1992; Wieber, 2006a). Under this principle,
the constrained motion evolves in such a way that it minimizes the deviation in
acceleration from the unconstrained motion q̈free, i.e.:

arg min
q̈

1
2
∥q̈ − q̈free∥M

subject to Jcq̈ + J̇cq̇ = 0
(3.14)

Note that we differentiate twice the holonomic contact constraint ϕ(q) in order to
express it in the acceleration space. In other words, the rigid contact condition is
expressed by the second-order kinematic constraints on the contact surface position.
Jc =

[
Jc1 · · · Jcf

]
∈ Rcp×n is a stack of the f contact Jacobians.

3.3.2 KKT conditions

The Gauss minimization in (3.14) corresponds to an equality-constrained convex
optimization problem2, and it has a unique solution if Jc is full-rank. The primal

2M is a positive-definite matrix.
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and dual optimal solutions (q̈, λ) must satisfy the so-called KKT conditions given
by [

M J⊤
c

Jc 0

] [
q̈
−λ

]
=

[
Sτ − b
−J̇cq̇

]
(3.15)

These dual variables λk ∈ Rp render themselves nicely in mechanics as the exter-
nal forces at the contact level. This relationship allows us to express the contact
forces directly in terms of the robot state and actuation. As compared to previous
approaches which would introduce the contact constraints in the whole-body opti-
mization (Carpentier et al., 2016; Saab et al., 2013), here we solve for the contact
constraints at the level of the dynamics, and not the solver. In other words, this
would free the solver to find an unconstrained solution to the KKT dynamics (3.15),
without worrying about the contact constraint.

We need the derivatives of (3.15) for applying fast iterative Newton and quasi-
Newton methods to achieve real-time performance. Highly efficient implementa-
tion (Carpentier and Mansard, 2018a; Carpentier et al., 2019) of the analytical
derivatives are available for the derivatives of the unconstrained dynamics (3.13)
(Featherstone, 2008). This implementation can easily be extended to compute the
derivatives of the augmented KKT dynamics (3.15).

If we consider the derivative of (3.15) with respect to a variable z, where z could be
defined by q, q̇, or τ , the derivatives of the dynamics defined by (3.15) are given
by:

[
∂q̈
∂z

−∂λ
∂z

]
= −

[
M J⊤

c

Jc 0

]−1 ∂M
∂z q̈ − ∂J⊤

c
∂z λ + ∂b

∂z −
∂τ
∂z

∂Jc
∂z q̈ + ∂(J̇cq̇)

∂z

 (3.16)

The derivative computation in (3.16) contain tensor products, and normally these
would be computationally intensive. However, it is possible to consider these tensor
products as simple kinematic and dynamic quantities, and the whole computation
(3.16) can be done really efficiently without any such computational burden. The
inverse of the augmented mass matrix in (3.16) can be found by a simple schur
complement inverse. The top row on the right hand side, which computes the
derivatives of the dynamics with respect to the state variables (q, q̇) or the control
variable (τ ), is already implemented in the dynamics library Pinocchio (Carpentier
et al., 2019). The bottom row is simply the derivative of the end-effector kinematics,
which is also available in Pinocchio. We can thus use analytical implementation of
the dynamics to improve our efficiency (as we will see later in Chapter 4).
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3.3.3 KKT-based DDP algorithm

From (3.15), we can see the augmented KKT dynamics as a function of the state xi

and the control ui. However, the dynamics is continuous, and the decision variables
(x, u) of continuous dynamics over a time horizon are infinite. We approximate this
problem using a discrete version of it, by following the so-called direct (discretize
first, solve second) approach. We take the control uu as constant over a discrete
interval, and use numerical integration schemes (like n-order Runge-Kutta, or Euler
integration) in order to move from one state to another (Press et al., 2007). Our
continuous dynamics from (3.15) can then be written as:

xi+1 = f(xi, ui),

λi = g(xi, ui),
(3.17)

where the state x = (q, q̇) is represented by the configuration vector and its tangent
velocity, u is the torque-input vector, and g(·) is the dual solution of (3.15). In
case of legged robots, the placement of the free-floating link is described using the
special Euclidean group SE(3).

Given a reference trajectory for the contact forces, the DDP backward-pass cost and
its respective Hessians (see (3.6) and (3.9)) are updated as follows:

Ji(xi, Ui) = lf (xN ) +
N−1∑
k=i

l(xk, uk, λk), (3.18)

where Ui = {ui, ui+1, · · · , uN−1} is the tuple of controls that acts on the system
dynamics at time i, and the Gauss-Newton approximation of the Q coefficients (i.e.
first-order approximation of g(·) and f(·)) are

Qx = lx + g⊤
x lλ + f⊤

x V′
x,

Qu = lu + g⊤
u lλ + f⊤

u V′
x,

Qxx ≈ lxx + g⊤
x lλλgx + f⊤

x V′
xxfx,

Quu ≈ luu + g⊤
u lλλgu + f⊤

u V′
xxfu,

Qux ≈ lux + g⊤
u lλλgx + f⊤

u V′
xxfx.

(3.19)

The set of equations (3.19) takes into account the trajectory of the rigid contact
forces inside the backward-pass. The system evolution needed in the forward-pass
is described by (3.17).
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Fig. 3.3: Evolution of the different cost functions (normalized) with respect to iterations.
DDP reduces the applied torques by recalculating the CoM tracking. It improves
the contact force by taking into account the whole-body angular momentum. The
result is a continuous improvement in the performance as compared to IK. We
stop after 100 iterations. (“FF SO3” refers to the free-flyer orientation cost; CoM
refers to Center of Mass tracking cost, and so on...)
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Fig. 3.4: Comparison between the IK and DDP trajectory for 100 cm stride on the HRP-2
robot. Top: Knee torques generated in the left leg. Bottom: Ground Reaction
Forces (GRFs) generated in the left foot. The DDP formulation allows us to utilize
the angular momentum of the upper body, which reduces the requirement on the
lower body to create a counterbalancing motion. This results in a lower torque in
the lower body, as well as lower GRFs. Around t = 14s we can see high peaks for
the IK and DDP trajectories of 895 N and 755 N, respectively.
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Fig. 3.5: Joint torques for the astronaut maneuver. Our method plans a smart strategy by
kick-starting the rotation, and then tries to maintain the velocity by small bang-
bang control signals. Towards the end, it changes again the velocity of the lower
legs in order to bring the system to a stop.

Fig. 3.6: Snapshots of 100 cm stride on a flat terrain used to evaluate the performance
of our whole-body trajectory optimization method. The DDP trajectory reduces
significantly the normal forces peaks compared with classic whole-body IK.

Fig. 3.7: Attitude adjustment maneuver conducted by the robot in gravity free space. DDP
solver takes into account the non-holonomic angular momentum constraint and
uses internal actuation to rotate 360◦ without the need for contact forces.
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3.4 Results

In this section, we show that our DDP formulation can generate whole-body mo-
tions which require regulation of the angular momentum. The performance of our
algorithm is assessed on realistic simulations and aggressive experimental trials on
the HRP-2 robot. First, we perform very large strides (from 80 to 100 cm) which
require large amount of angular momentum (due to the fast swing of the 6-kg leg)
and reach the HRP-2 limits. This demonstrates the ability of the solver to handle
contact constraints, as well as to generate excessive AM required by the leg motions.
Then, to again emphasize the need for a horizon based optimizer such as DDP, and
the ability of our solver to handle these AM requirements, we regulate the robot
attitude in absence of contact forces and gravitational field. These motions cannot
be generated through a standard time-invariant IK/ID solver, as the system becomes
non-holonomic as shown in (3.1).

All the motions were computed offline. Contact sequence (Tonneau et al., 2018b)
and the centroidal trajectory (Carpentier and Mansard, 2018b) are precomputed
and provided to the solver for the large stride experiments. We used the standard
controller OpenHRP (Kanehiro et al., 2004) for tracking the motions on the real
robot. The large strides produced by DDP are compared with those produced by an
IK solver (Saab et al., 2013), showing the benefit of our approach.

3.4.1 Large stride on a flat ground

In these experiments, we generate a sequence of cyclic contact for 80 cm to 100 cm
stride. These are very big steps for HRP-2 compared to its height (160 cm). For
the contact location, we use the OC solver reported in Carpentier et al., 2016 to
compute the contact timings and the centroidal trajectory. As the centroidal solver
is able to provide feasible contact forces for individual contacts in the phase, we
use a damped cholesky inverse of the KKT matrix to deal with the rank deficient Jc

matrix. Then we use our proposed DDP to generate the full robot motion.

The cost function is composed of the weighted square norm (weighted by Qi) of
various quadratic residues ri (i.e. ∥ri(x, u,λ)∥2Qi

) in order to keep balance and to
increase efficiency and stability: (a) CoM, foot position and orientation and contact
forces tracking of centroidal motion, (b) torque commands minimization and (c)
joint configuration and velocity regularization. The evolution of the different nor-
malized task costs with iterations is shown in Fig. 3.3. Our method adapts the CoM
to create a more efficient torque and contact force trajectory.
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Increasing the upper-body angular momentum helps to counterbalance the swing
leg motion, this in turn reduces ground reaction forces (GRFs) and improves the
locomotion stability. Our experimental results show a reduction on the GRFs peaks
compared to the IK solver. Fig. 3.4 shows the measured normal contact forces and
the knee torques in case of DDP solver and IK solvers. Our DDP reduced the normal
forces peaks of the IK solver from 895 N to 755 N. This represents a significant
improvement, considering that the minimum possible contact forces are 650 N (the
total mass of the HRP-2 robot is 65 kg) and the maximum safe force allowed by the
sensors on the foot is 1000 N. An overview of the motion is shown in Fig. 3.6.

3.4.2 Attitude regulation through joint motion

The angular momentum equation (3.1) shows that it is possible to regulate the
robot attitude without the need of contact forces Wieber, 2006a. It can be seen that
the gravity field does not affect this property. Thus, we analyze how our DDP solver
regulates the attitude in zero-gravity condition, we named this task astronaut reori-
entation. The astronaut reorientation (similar to cat falling) is an interesting motor
task due to fact that it depends on a proper exploitation of the angular momentum
based on the coordination of arms and legs motions. Fig. 3.7 demonstrates the mo-
tion found by the solver to rotate the body 360◦. Unlike an instantaneous tracking
solver like IK, the solver is willing to bend in the opposite direction, in order to
obtain an ability to create sufficient angular momentum by the legs. It is important
here to note that such motion cannot be obtained by a time-invariant control law
which does not take the future control trajectory into account.

The cost matrices for this problem require a barrier function on the robot configura-
tion to avoid self-collision. Final cost on the body orientation provides the goal, and
a running cost on the posture is added for regularization. No warm start is given
to the solver, the initial control trajectory is a set of zero vectors. For the ease of
demonstration, we used only the leg joints in the sagittal plane. Fig. 3.5 shows the
torques produced by the hip and the knee joints. Our method creates a rotation of
the upper body by a quick initial motion in the legs. Then it maintains the angular
velocity by small correctional torque inputs during the rest of the trajectory. At the
end, to bring the rotation to a halt, the same behavior is repeated in the reverse.

3.5 Conclusion and Perspective

Typically, reduced centroidal trajectory optimization does not take into account the
angular momentum produced by the limb motions. Proper regulation of the an-
gular momentum exploits the counterbalancing effect of limb motion in order to
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reduce the contact forces and torque inputs. It also improves the stability during
flight phases where the momentum control can only be done through joint motions.
Excessive angular momentum cannot be produced by a simple IK/ID solver. OC
provides the required tools for solving it. Our proposed solver is an extension of
our previous work (Carpentier et al., 2016).

In this chapter, we have explained our DDP formulation based on the augmented
KKT dynamics (see (3.17)) which is a result of holonomic contact constraints. It rep-
resents the first application of motion generated by DDP solver on a real humanoid
locomotion. Our whole-body motion generation pipeline enables us to potentially
regulate angular momentum dynamics during the whole-body motion in real-time.
We have observed a reduction of the contact forces compared to the IK solver, even
though we had to restrict the angular momentum in the sagittal plane for the stride
on flat ground task due to robot limits. A more revealing experiment, the astronaut
reorientation, demonstrates further the limits of the previous approaches and the ad-
vantages of using DDP. The solver generates the desired motion from scratch in this
case by manipulating joint velocities within the non-holonomic angular momentum
constraints.

Compared to a simple newton step, DDP does line search using the non-linear dy-
namics (f) of the system. While this keeps the solution within the feasible space,
it loses the convergence guarantees (for convex optimization problems) of a linear
newton step. On the other hand, linear newton steps introduce discontinuities in
the solutions, and these need to be taken care of before a feasible solution can be
produced (by a merit function, or other methods). Thus, the choice of line search
with DDP must be made with caution, and this has important consequences on the
convergence properties of the solver. This issue is further discussed in Mansard,
2019.

While the solver is able to generate angular momentum, and track the centroidal
trajectories, the current approach still lacks an assurance that the additional angular
momentum generated by the DDP solver is accounted for in the centroidal optimiza-
tion, and vice versa. In the upcoming Chapter 5, we focus on this guarantee. In
Chapter 5, we ensure that the output from this current chapter is indeed matched
by the centroidal dynamics. However, handling constraints (e.g. the non-slippage
contact constraint), along with generating dynamic movements is difficult in the
whole-body solver. In Chapter 5, we will see how we can use our DDP solver along
with the centroidal solver to divide the jobs of constraint handling and dynamic
motion generation.

This chapter introduced the ideas behind our constrained-dynamics DDP algorithm.
In the next Chapter 4, we will explain how to implement this in an efficient manner
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by using proper computational and mathematical tools and analytical derivatives
(Sohl and Bobrow, 2001; Carpentier and Mansard, 2018a) of the robot dynamics.
Moreover, we will see in Chapter 4 an implementation of DDP which uses the lin-
ear newton step while avoiding the merit-function (Mansard, 2019; Mastalli et al.,
2020), in order to begin its search from the infeasible solution space.
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4Crocoddyl: Contact Robot
Control by Differential Dynamic
Programming Library

„ For our path in life . . . is stony and rugged now,
and it rests with us to smooth it. We must fight
our way onward. We must be brave. There are
obstacles to be met, and we must meet, and
crush them!

— David, to Dora
(Charles Dickens, David Copperfield)

 Mastalli, Carlos, Rohan Budhiraja, Wolfgang
Merkt, Guilhem Saurel, Bilal Hammoud,
Maximilien Naveau, Justin Carpentier, Sethu
Vijayakumar, and Nicolas Mansard (2019).
Crocoddyl: An Efficient and Versatile
Framework for Multi-Contact Optimal Control.
Submitted to IEEE Robotics and Automation
Letters. In: arXiv:1909.04947

Crocoddyl is an optimal control library in python and C++ for robot trajectory
optimization with predefined contact phases. Its solver is based on an efficient
Differential Dynamic Programming (DDP) algorithm (Budhiraja et al., 2018) that
we proposed earlier in Chapter 3.

4.1 Features of Crocoddyl

Over the last decade, robot hardwares have improved their capabilities by leaps
and bounds. From the human-like walking of Honda ASIMO, we have arrived at
the more-than-human backflips of the current ATLAS robot. In order to keep up,
the robot controllers need to be able to find a control policy in a fast and efficient
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manner. Such a control mandates that the controller be based on a strong math-
ematical background, and use algorithms that are able to consider the maximum
amount of model information in order to generate the control policy. In Crocod-
dyl, we try to take into account these requirements in order to increase the control
bandwidth as much as possible. As a result, the following features are central to
Crocoddyl’s design:

• Transcription vs Resolution: In Crocoddyl, problem transcription is sepa-
rately handled from problem resolution. We understand that while the prob-
lem structure remains the same, choice of solvers might differ based on re-
quirements. Thus, any of the solvers in Crocoddyl can be plugged and used
with the same transcription of the problem. This simplifies the API and makes
it intuitive.

• Efficient Rigid Body Algorithms: Crocoddyl is centered around Pinocchio
(Carpentier et al., 2019) as its dynamics engine. Pinocchio implements highly
fast and efficient implementations of the Rigid Body Algorithms (Featherstone,
2008) based on Lie Algebra. Crocoddyl is able to leverage Pinocchio in order
to reduce its own computation time.

• Analytical Derivatives: We use analytical derivatives of the dynamics in or-
der to find the descent direction. This makes the solver much faster when
compared to numerical finite differencing (Carpentier and Mansard, 2018a).

• Multi-threading: In Crocoddyl, we use multi-threading to reduce the compu-
tation time of finding the derivatives. As a result, we can improve multi-fold
our performance, as discussed in Sec 4.4

• Feasibility-prone DDP: We propose a variant of the DDP algorithm that ex-
actly matches the behaviour of direct multiple-shooting methods. It has the
ability to handle infeasible guesses that occur whenever there is a gap be-
tween subsequent nodes in the trajectory. As a result FDDP has the ability to
expand its search and improve its solution.

• Memory Management: Crocoddyl reduces any dynamic allocation of mem-
ory. Moreover, we structure our memory in constant variables descriptions
called Models and problem specific variables called Datas, which helps with
efficient caching of the memory.
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Fig. 4.1: Illustrating the First Order Markov structure which guides our problem. The con-
straints and costs of a node are dependent only on the current state, and the
current state is only dependent on the previous state. (Toussaint, 2017)

The Problem Transcription and Problem Resolution are further discussed in Sec 4.2
and Sec 4.3. The above features, which are either a property of the transcription or
the resolution of a problem, are also explained in these sections.

4.2 Problem Transcription

Easy problem transcription is an essential feature of a solver. In crocoddyl, we
recognize that

• discretized robot dynamics is Markovian in nature;

• robot description and dynamics remains unchanged for a problem.

The 1st order Markovian dynamics is explained further in Fig. 4.1. Each node in
the figure represents a time instant, and only the successive nodes are connected
together to form the entire horizon. The discretized dynamics(fi) moves the state
(xi) from one node to the next (xi+1). The dynamics, the cost function (li), and
the constraints (hi) remain only the property of the node i, and as a result, the
problem has the potential to be separated into N different subproblems, where N

is the number of nodes.

4.2.1 Action Models: Unification of Dynamics, Costs and
Constraints

A look at the structure of the Markovian Dynamics in Fig. 4.1 reveals that dynamics,
cost, and constraints of a system are inter-related. For e.g., consider a typical end-
effector tracking problem. If we try to minimize the error in the position of the end-
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effector while avoiding self-collisions, both the cost and constraints are dependent
on the kinematics and dynamics of the multi-body system.

Thus, it makes sense to store and use the dynamics along with the cost and con-
straints, and reduce any extra and redundant computations resulting from a dis-
parate structure. Once f , l, h are defined in a single Action class, we can simply
define our Markovian problem as a series of Actions that are linked together by the
dynamics of our problem. This makes it easy to identify the constant features inside
a node, and the features which are dependent on the problem.

One of the main features of the crocoddyl structure is this distinction between the in-
variant description of the node (Models), and the problem-specific variables(Datas)
which are a result of the computations and the algorithms.

Action Model: Action Models consist of the invariant parameters, such as the de-
scription of the dynamics (fi), the costs(li), and the constraints (in our case, the
contact constraints) (hi), that define the particular node. The Data classes , on the
other hand, store the values, the derivatives, and other problem dependent quanti-
ties.

Differential Action Model: The continuous robot dynamics is typically specified in
terms of differential equations. The discretization is done at this level, and then an
integration scheme is used that defines the transition from one state to the other.
Taking this into account, we implement the following differential models under the
name of Differential Action Model:

• Full-Body Dynamics;

• Contact-Constrained Full-Body Dynamics (Budhiraja et al., 2018);

Integrated Action Model: Each of these provides the derivative of the state variable
(ẋi). Thus, we need an integration scheme Ii that implements Ii(ẋi, xi)→ xi+1. In
Crocoddyl, there are two separate integration schemes implemented:

• Symplectic Euler (Press et al., 2007);

• Runge-Kutta4 (Press et al., 2007);

As can be seen, the integration scheme Ii along with the DifferentialActionModel
makes up an ActionModel that defines the dynamics of a node. In addition to the
above, Crocoddyl also has implementation of ImpactDynamics which implements
the state transition in case of a sudden impact absorbed in a small amount of time.
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List of Activation Models
Activation Model Name Description
QuadModel a(r) = 0.5rT r
WeightedQuadModel aW (r) = 0.5rT Wr

InequalityModel au
l (r) =


0 if l ≤ r ≤ u
0.5(l − r)T (l − r) if r < l
0.5(r − u)T (r − u) if r > u


SmoothAbsModel a(r) =

√
1 + rT r

Tab. 4.1: Activation Models in Crocoddyl

List of Cost Models
Cost Model Name Description
CostModelFramePlacement Tracking the placement of a frame on the kinematic tree
CostModelCoM Tracking the Center of Mass
CostModelState Tracking the state x
CostModelControl Tracking the control u
CostModelForce Tracking the forces, only for Contact-Constrained dynamics
CostModelZmpBound Soft inequality constraint on the zmp position with respect

to bounds
CostModelMomentum Tracking the centroidal momentum, as described in Orin et

al., 2013
CostModelForceLinearCone Soft inequality constraint on Contact Force Vector, with re-

spect to a linear cone. Only for contact-constrained dynam-
ics

CostModelFrameTranslation Tracking the translation of a frame on the kinematic tree
CostModelFrameVelocity Tracking the velocity of a frame on the kinematic tree
CostModelFrameVelocityLinear Tracking the linear velocity of a frame on the kinematic tree

Tab. 4.2: Cost Models in Crocoddyl

Cost and Activation Model: Along with the dynamics and the contact constraints,
cost terms (li) are also saved inside an ActionModel. In Crocoddyl, we implement
costs in the forms of errors (given by residue r) during tracking of a feature (e.g. the
position of an end-effector with respect to a reference), and the activation model
(a(r)), which defines the effect of the residue on the net cost. The activation models,
implemented in Crocoddyl are described in Table 4.1.

Each of these activation models takes the input (r) from a cost model. The imple-
mented cost models are dependent on the robot dynamic and control parameters,
and thus the DifferentialActionModels. Different cost models are implemented
for the Full-body and Contact-Constrained Full-body dynamics, and are described
in Table 4.2

Calc and Calcdiff Functions: Each of the above classes (DifferentialActionModel,
IntegratedModel, CostModel, ActivationModel) contain a calc and a calcDiff
function. The calc function performs the computations for a given state and con-
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trol, as described above. The calcDiff computes the sensitivities of calc with
respect to the state and the control. As a result, the sensitivities are transmitted to
the ActionModels. Thus, each action model implements

xi+1, li = f(xi, ui) = ActionModel.calc(model, data, xi, ui),

fx, fu, lx, lu, lxx, lxu, luu = ActionModel.calcDiff(model, data, xi, ui),
(4.1)

where xi, ui represent the state and control at interval i. f represents the dynamics,
and l represents the local cost during the interval. All the outputs are stored inside
the data object for future access. No new memory is allocated after initialization.

The robot dynamics and the cost models which are based on this dynamics are
implemented efficiently using the software framework Pinocchio (Carpentier et al.,
2019). Moreover, the sensitivities of the the action models (and all its objects) are
also computed using the same framework (Carpentier and Mansard, 2018a). The
analytical derivation, instead of using finite-differences, makes the solution much
faster to obtain.

4.2.2 Non-Euclidean State Models

The state of a system lies in a manifold X, while its sensitivities are in the tangent
space TxX. For N -dimensional euclidean states, like the joint space of a serial
manipulator, the computation of Tx is straightforward. However, floating based
systems contain the transformation of the floating joint in their state space, and as
a result, the joint space is non-euclidean.

Using Lie Algebra, it is possible to represent the floating joint by an element of SE(3)
Lie group, and thus the tangent space Tx by its associated Lie Algebra. As a result,
we need to be able to accommodate different State Models in order to accurately
represent state in different manifolds and compute their sensitivities. Each manifold
obeys its own algebra, i.e., there are specific rules for the following operations:

x′ = x⊕ δx,

δx = x1 ⊖ x0, (4.2)

where x ∈ X and δx ∈ TxX and can be described by a nx- and ndx-tuples, respec-
tively. These operations are encoded by integrate and difference, respectively.
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Fig. 4.2: Creating a shooting problem using crocoddyl

In addition, we need to implement the sensitivities of the above operations. These
are defined as the left and right jacobians of the above operators, and implemented
as follows:

∂(x⊕ δx)
∂x ,

∂(x⊕ δx)
∂δx = Jintegrate(x, δx),

∂(x1 ⊖ x0)
∂x0

,
∂(x1 ⊖ x0)

∂x1
= Jdifference(x0, x1), (4.3)

4.2.3 Shooting Problem

The global problem is thus described by a stack of Action Models, which are linked
with each other by the dynamics implemented in each of them, along with initial
and final constraints. This is written in the form of a Shooting Problem:

ShootingProblem(x0, [runningModel0...runninModelT −1], terminalModel)

Thus, the input to a shooting problem is the initial state x0, and a list of action mod-
els. This structure is shown in Fig. 4.2. Further API on shooting problem simplifies
the computation of dynamics and derivatives1. This API is shown in Table 4.3.

1Note that for all variables, underlines denote a trajectory of the variable over time. e.g. x =
[x0...xT ]
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Shooting Problem Member Functions
Function Name Description
ShootingProblem.calc(x, u) Compute the dynamics and cost given by

calc(xi,ui) for each action model i in the stack.
ShootingProblem.calcDiff(x, u) Compute the derivatives given by calcDiff(xi,ui)

for each action model i in the stack.
ShootingProblem.rollout(u) Iterative integrate the dynamics from t = 0 to t =

T for each action model in the stack
Tab. 4.3: Shooting Problem API

4.3 Problem Resolution

Once the problem is defined inside ShootingProblem class, different solvers can be
implemented to find the solution. In crocoddyl, all the solvers share the following
features: 1) Multi-threading for derivative computations, and 2) Using Analytical
Derivatives for speed and efficiency.

4.3.1 Multi-threading

For a given state trajectory x and control trajectory u, the ShootingProblem con-
tains ActionModels whose sensitivities can be computed independently from each
other. As a result, ShootingProblem.calcDiff is an embarrassingly parallel for
loop which can be solved in parallel by a pool of threads.

1) Launch TN threads in pool P(N)

2) for mi in ShootingProblem.[runningModels+terminalModel] :

send mi.calcDiff(x,u) asynchronously to P(N)

Since ActionData objects which correspond to the above ActionModel objects are
separate blocks of memory, and there are no memory sharing or return values,
the step (2) in the above pseudo-code is truly independent. The results of multi-
threading are further discussed in Sec 4.4.

4.3.2 Analytical Derivatives

Crocoddyl uses Pinocchio (Carpentier et al., 2019) to efficiently compute analytical
and sparse derivatives (Sohl and Bobrow, 2001; Carpentier and Mansard, 2018a).
Pinocchio has dedicated algorithms to compute analytical derivatives of rigid-body
algorithms (e.g. RNEA and Articulated Body Algorithm (ABA)) using spatial alge-
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Solver Implementations
Solver Description
Contact-Constrained DDP Solver See Chapter 3
KKT based Solver See Mansard, 2019
Feasibility-Prone DDP solver See Mansard, 2019
Control-limited box-DDP solver See Tassa et al., 2014
Box-KKT solver KKT based control-limited resolution

of the full horizon
Tab. 4.4: List of Solvers in Crocoddyl

bra. Crocoddyl employs these routines to derive the analytical derivative of contact
dynamics as described in Chapter 3, as well as the ones of cost functions, e.g., Cen-
ter of Mass (CoM) tracking, frame placement tracking, etc.

4.3.3 Solvers

In Crocoddyl, the central idea is to solve for problems by converting the rigid con-
tact constraints into holonomic constraints (as explained in Chapter 3). Based on
this principle, a number of solvers are available in Crocoddyl. These are listed in
Table 4.4.

Different solvers are homogenized into a single API. The API is meant for shooting-
based solvers, and is independent of the implementation. It is listed in Table 4.5

Contact-Constrained DDP Solver: Implements the DDP Solver with contact con-
straints, as described in Chapter 3.

KKT-based Solver: The Karush-Kuhn-Tucker conditions of optimality (Boyd and
Vandenberghe, 2004) give a set of equations which must be satisfied by the solu-
tion of an optimization problem. Using these principles, and an initial guess x, a
KKT-based solver finds the best ∂x based on a quadratic estimate of the KKT condi-
tions.

The KKT-based solver inverts a giant block-diagonal matrix, and thus is not suitable
for fast and real-time computations. However, KKT-based resolution of the full
problem, while slow in practice, gives the ground truth against which all other
solvers can be tested since the behaviour of the KKT-solver is the same as that of
an SQP. Full details on the implementation of the solver can be found in Mansard,
2019

Feasibility-prone DDP: Multiple-shooting formulation introduces intermediate gaps
as additional decision variables, for which an additional metric needs to be defined
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Shooting Problem Member Functions
Function Name Description
Solver.__init__(*args) Initialize the solver with the shooting problem.
Solver.solve(*args) Solve the shooting problem. The API takes meta-

parameters related to numerical optimization, such as
the maximum number of solver iterations, the warm
start, and regularization.

Solver.computeDirection(*args) Compute the optimal search direction (based on the
sensitivities of the action models), for the current state
and control.

Solver.tryStep(*args) Try a step of a given length in the search direction
provided by computeDirection.

Solver.stoppingCriteria(*args) A set of values that define the optimal point of termi-
nation of the solver, such as the norm of the sensitivi-
ties.

Solver.allocateData(*args) Create the Data elements to all the Model classes in
order to store the variables. This is where all the mem-
ory is allocated in the solver.

Solver.setCandidate(*args) Define the initial warm guess for the state and the con-
trol.

Solver.models(*args) List of all the Action Models inside the shooting prob-
lem.

Solver.datas(*args) List of all the Action Datas inside the shooting prob-
lem.

Solver.setCallbacks(*args) A set of user-defined callback functions for accessing/-
monitoring the solver’s performance.

Tab. 4.5: Solver API in Crocoddyl

(the gaps should be zero for the solution to be feasible). However, such a merit
function can be avoided if the line search in DDP can be used to encode the gaps
in the consecutive states. As a result, FDDP has the ability to start its search from
infeasible space, and slowly converge to the full line search (and thus zero gaps)
as the convergence is achieved. Full details of the implementation can be seen in
Mansard, 2019.

Control-limited Box-DDP solver: DDP Solver doesn’t handle control constraints in
itself. However, in Tassa et al., 2014, a small modification of the DDP algorithm was
proposed, in which (3.10) is solved while keeping in account the contact constraints.
In addition, a minor modification is made in the line search, to ensure that the final
contact solution also does not surpass the control constraints. Please see Tassa et al.,
2014 for full details of the implementation.

Box-KKT solver: Implements the KKT version of the Box-DDP solver described in
Tassa et al., 2014.
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Fig. 4.3: Different legged gaits optimized by our FDDP algorithm. (top) from left to right,
walking and trotting gaits on the ANYmal robot, respectively; (bottom) biped
walking gait using the Talos’ legs. You can run these results in our repository
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Fig. 4.4: Weight values for each cost function used in the generation of the legged gaits.
The cost functions are (a) CoM: CoM tracking of the interpolated postures; (b)
Swing: swing tracking of the reference foot trajectory; (c) footstep deviation
from the predefined placement; (d) state regularization; (e) control regulariza-
tion. Note that the values are in logarithmic scale.

4.4 Results

Crocoddyl library was used to generate gaits for both quadruped and biped robots.
Since FDDP can be used to infeasibly start the DDP solver, we can easily initialize
the problems with infeasible guesses. We analyzed the convergence patterns, and
find the computation times for our Model-based Optimal Control problems over a
horizon.

4.4.1 Simulation Examples

Some of the gaits generated by Crocoddyl are shown in Fig. 4.3. We computed
different gaits walking, trotting, pacing, and bounding with our FDDP algorithm
in the order of milliseconds. All these gaits are a direct outcome of our algorithm,
we only need to predefine the sequence of contacts and the step timings. These
motions are computed in around 12 iterations with the exception of the bounding
gait which takes at least 18 iterations. We used the same weight values and cost
functions for all the quadrupedal gaits, and similar weight values for the bipedal
walking. Indeed, we noticed that these weight values and cost functions might
work out of the box for other legged robots, e.g., the HyQ and the ICub robots. We
report the used values in Fig. 4.4.
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Fig. 4.5: Snapshots of highly-dynamic maneuvers in legged robots using the FDDP algo-
rithm in Crocoddyl. (top) jumping obstacles in a humanoid robot; (middle) front-
flip maneuver in a biped robot; (bottom) jumping obstacles in a quadruped robot.

The cost function is composed of the CoM and the foot placement tracking costs to-
gether with regularization terms for the state and control. We warm-start our solver
using a linear interpolation between the nominal body postures of a sequence of
contact configurations. This provides us a set of body postures together with the
nominal joint postures as state warm-start x0 . Then, the control warm-start u0

is obtained by applying the quasi-static assumption along x0 (i.e., gravity compen-
sating control torque as initial warm-start). During contact switches, we use the
impulse dynamics to ensure that the impulse is minimized. We observed that the
use of impulse models improves the algorithm convergence compared to penalizing
the contact velocity. We used a weighted least-square activation function to regu-
larize the state with respect to the nominal robot posture, and quadratic activation
functions for the tracking costs and control regularization.

In addition to the walking gaits, highly dynamic maneuvers like jumps and flips
were also computed using Crocoddyl and the FDDP solver. These are shown in
Fig. 4.5. One major advantage of FDDP algorithm is clearly evident in the gener-
ation of highly-dynamic maneuvers. As a result of gravity, feasible rollouts might
produce trajectories that are numerically unstable and far from the solution. The
single-shooting nature of the classical DDP means that feasible rollouts in the first
iterations would make the robot fall in the empty space during jumps; it would
struggle to find the appropriate launching and landing in order to solve these kind
of problems. To overcome this limitation in the DDP, a proper warm-start is needed.
This limits our solver to problems for which a suitable warm-start can be provided.
FDDP does not suffer from these limitations.
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4.4.2 Convergence

We analyzed the gaps contraction and convergence rates for all the presented mo-
tions: quadrupedal and bipedal gaits, and highly-dynamic maneuvers. To easily
compare the results, we normalize the gaps and cost values per each iteration as
shown in Fig. 4.6. For the case of the gaps plot Fig. 4.6 (top), we use the L2-norm
of the total gaps. These results show that keeping the gaps open is particularly
important for highly-dynamic maneuvers such as jumping. Indeed, the DDP solver
immediately closes the gaps for all the legged gaits. The reason is that the solver
can apply a full-step in the first iteration with simply using a big initial regulariza-
tion value. A big regularization value changes the search-direction from Newton
to steepest-descent. ANYmal and ICub jumps are computed with a sequence of
Optimal Control problems, where each jump formulates a single problem. Addi-
tionally, we observed in practice super-linear convergence of FDDP algorithm after
closing the gaps. This is expected since FDDP behaves as DDP when the gaps are
closed. Highly-dynamic maneuvers have a lower rate of improvement in the first it-
erations Fig. 4.6 (bottom). The same occurs in the quadrupedal walking case (walk-
4f), in which the four-feet support phases have a very short duration (∆t = 2ms ).

The motions converge within 10 to 34 iterations, with an overall computation time
of less than 0.5s. The numerical integration step size is often δt = 10−2s, with the
exception of the biped walking δt = 5∗10−3s, and the number of nodes are typically
between 60 to 115. Therefore, the optimized trajectories have a horizon of between
0.6-3s.

4.4.3 Computational Benchmarks

Without multi-threading, our efficient implementation of contact dynamics achieves
computation rates up to 859.6Hz for the quadrupedal gaits with 60 nodes (jump-
4f on i9-9900K). We parallelize only the computation of the derivatives. For this
case, roughly speaking, we reduce the computation time in half using four to eight
threads (cf. Fig. 4.7). To understand the performance of Crocoddyl, we have run
5000 trials for each of the motions presented in this chapter on four different Intel
PCs with varying levels of parallelization:
PC1: i7-6700K @ 4.00GHz× 8 with 32 GB 2133MHz RAM,
PC2: i7-7700K @ 4.20GHz× 8 with 16 GB 2666MHz RAM,
PC3: i9-9900K @ 3.60GHz× 16 with 64 GB 3000MHz RAM, and
PC4: i7-9900XE @ 3.00GHz× 36 with 128 GB 2666MHz RAM.

We used the optimal number of threads for each PC as identified in Fig. 4.7. The
computation frequency per one iteration is reported in Fig. 4.8.
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Fig. 4.6: Gaps contraction and convergence rates for different motions. (top) Gaps are
closed in the first iteration for simpler motions such as biped walking and
quadrupedal gaits. Instead, the FDDP solver chooses to keep the gaps open for
the early iterations for highly-dynamic maneuvers. Here we use the L2-norm of
the total gaps, i.e., gaps for all the nodes of the trajectory. (bottom) The required
iterations increases mainly with the dynamics of the gait and numbers of nodes.
For instance, we can see lower rate of improvement in the first nine iterations
in the ANYmal (jump-4f) and ICub jumps (jump-2f). In case of the quadrupedal
walking, we have very short durations in the four-feet support phases, making it
a dynamic walk.
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that the use of hyper-threading decreases the computation frequency for all tested
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Fig. 4.8: Computation frequency per iteration for different motions for different PCs. PC1
has specifications typical for on-board computers found on robots, while PC3 uses
high-performance CPU and RAM. The reported values use the optimal number of
threads as identified in Fig. 4.7.

4.5 Conclusion and Perspective

In this chapter, we have introduced Crocoddyl, a solver meant for multi-body lo-
comotion generation. During the development of Crocoddyl, we have focussed on
reducing the processing time which is usually required for solving large dimension
problems. Our goal with crocoddyl is using trajectory optimization in order to do
MPC on the real robot. All the features presented in this chapter are a step towards
that goal.
1) The contact-constrained DDP solver (introduced in Chapter 3) uses the sparsity
of the optimization problem to find the solution in a recursive manner.
2) The analytical derivatives of the dynamics have a big effect on the computation
time (see benchmarks in Carpentier et al., 2019).
3) The multi-threading on the backward pass uses the best possible speed offered
by processors in order to compute the derivatives.
4) The memory-conscious problem transcription avoids unnecessary memory allo-
cations.
5) FDDP (Mansard, 2019) helps to start the search in the infeasible domain, while
avoiding the merit functions needed to remove infeasibility.

We use DDP as the base algorithm in the solvers of crocoddyl. The reason is simple,
our Hessian matrix is block diagonal, and DDP can invert the Hessian by itera-
tively inverting each block of the block diagonal matrix. Adding control constraints
does not effect this block-diagonal structure. Thus, we were able to introduce the
control-limited formulation proposed by Tassa et al., 2014 as one of the solvers.
However, this block diagonal structure is ruptured when state constraints are added
to DDP. Indeed, DDP has struggled when dealing with state constraints, and active
set methods such as the one proposed by Xie et al., 2017 struggle with regards to
performance. Similar issues can be observed when doing self-collision avoidance on
DDP, as it is completely dependent on the current joint configuration. We convert
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the state dependent constraints such as joint configuration limits to cost terms with
a high weight, and this helps to produce the required motions. But this is not the
best-possible approach to deal with state constraints, and a different approach is
definitely needed for completeness.

A similar limitation of our contact-constrained formulation can be expected when
we aim to do admittance control on the robot with Crocoddyl as the solver. Our
contact-constrained DDP (from Chapter 3) defines the contact forces as a function
of the instantaneous state and the control. While this is good for the computa-
tions, this formulation is ill-equipped to handle the force feedback. In order to
do force-based control with DDP as an MPC controller, contact force needs to be
somehow a part of the state vector, whether explicitly, or implicitly. One such ap-
proach has been used by Neunert et al., 2018, where they use the spring-damper
contact model. Unfortunately, such models introduce an additional stiffness in the
numerical integration schemes (Press et al., 2007). Since DDP is a shooting solver
which integrates the dynamics at each node, this leads to a deterioration in the
performance of the solver. A way forward which does not affect the computational
efficiency while allowing force-control on the robot is another way that crocoddyl
can be improved in the future.
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5Alternating Direction Method of
Multipliers for locomotion

„ Suis-je tellement dépendant du corps et des sens,
que je ne puisse être sans eux?
(Am I so tied to a body and senses that I am
incapable of existing without them?)

— René Descartes, on mind-body dualism
(Méditations métaphysiques)

 Budhiraja, Rohan, Justin Carpentier, and
Nicolas Mansard (2019). Dynamics Consensus
between Centroidal and Whole-Body Models
for Locomotion of Legged Robots. In: ICRA
2019 - IEEE International Conference on
Robotics and Automation. Montreal, Canada

5.1 Introduction

We look at the problem of generating consistent and coherent momentum (CoM
and AM) and forces at both centroidal and whole-body levels. In Chapter 2, we
saw that proxies could be used to deal with the coupling constraints between the
centroidal and whole-body problems. However, due to the dynamic nature of AM
and Contact Forces, it wasn’t possible to use machine learning techniques to learn
these constraints into a proxy. In Chapter 3, we saw how to update the rigid body
dynamics to incorporate the contact constraints within the DDP framework, and
in Chapter 4, we saw our implementation. In Chapter 4, we show that our imple-
mentation is capable of providing real-time control at a high bandwidth. We have
already discussed our centroidal solver in Carpentier and Mansard, 2018b.

In this chapter, we claim that given the efficacy of our solvers, it is possible to
incorporate a feedback from the whole-body dynamics solver towards the centroidal
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problem. This would improve the consistency of the global locomotion solution
within a few iterations. We will use an alternating scheme to ensure that our two
problems don’t diverge.

5.1.1 Why should we alternate?

In a first implementation, it is often proposed to first compute the centroidal pattern
and then track it by solving the Lagrangian dynamics. The whole-body movement
is usually computed with an IK/ID, which are theoretically equivalent to solving
the Lagrangian part of (1.16) but with a void horizon T = 0. With such a simpli-
fication, it is desired that the AM output from the centroidal problem must match
near perfectly to the AM requirement by the Lagrangian part. However, this is not
possible without some form of feedback (in the form of alternation) on the AM
value. While this requirement is known by many teams, we believe that it is not
sufficiently documented and explain why alternating is important.

Momentum variations are caused by the forces exerted by the environment at the
contact level, and they result in the motion of the limbs (also called “gesticulation”
by Wieber, 2006a).

As the centroidal model does not understand gesticulation(which depends on the
kinematic and dynamic structure of the robot), it is not possible to get the correct
momentum estimate when considering only the centroidal quantities. Consider the
example of the biped locomotion gait: an astronaut mimicking walk in deep space
would rotate (pitch rotation) on the spot. We showed a similar rotation, but in
the transverse plane, for an astronaut in Fig. 3.1. However, we don’t have to go to
outer space to find an example. A cat falling on the ground demonstrates the same
principle as our astronauts (see Fig. 3.2).

This is due to the asymmetry in the movements of the limbs during the forward
and backward motions. As we are not rotating during locomotion, we can conclude
that we exert some contact forces to counterbalance this rotation effect. These
extra forces, which are required due to gesticulation, cannot be decided from the
centroidal model alone. Consequently, trying to approximately match the AM com-
puted by the centroidal solver is a bad idea. The same is also true for CoM (linear
momentum) trajectory, which should change to account for the change in forces,
according to (1.13).

A pragmatic solution is to compute the centroidal pattern by trying to match the
AM that the limbs will generate (Herzog et al., 2016b). This implicitly suggests that
we are not expecting to use the AM variations to improve the walk, but we are just
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trying to compensate for it. This is the standard implementation of the table-cart
pattern generator, by adding a second stage of ZMP-CoM computation (Kajita et al.,
2003). It has also been proposed to couple an IK with a centroidal solver (Dai et al.,
2014; Herzog et al., 2015). In both cases, it has been experimentally observed that
alternating twice is enough to obtain a consensus. However, no theoretical basis has
yet been provided. In Sec 5.4, we propose to alternate using an existing theoretical
framework which forces consensus as an output of the optimization.

None of the aforementioned methods ensure convergence of the 2 subproblems
to a common and same solution (a consensus), notably for the angular momentum.
Rather, they rely on the ability of the individual solvers to produce mutually feasible
solutions without properly considering the global structure of the problem. This
forces the solvers to have additional robustness in order to account for the lack of
structure in the simplified subproblems.

5.1.2 Outline of the chapter

Previously, in Sec 1.2, we explained the decoupled approach to solving the loco-
motion problem, and in Sec 1.3 we explained the optimal control problem (OCP)
dedicated for predefined contacts and which exhibit a complete splitting between
centroidal and Lagrangian dynamics. Consequently, in Chapter 2 and Chapter 3,
we made obvious the cost implied by solving both subproblems. However, in the
previous chapters, we solved our problems without maintaining consensus between
the two subproblems.

Our main contribution is to introduce a well-posed mathematical formulation that
properly enforces this consensus. Rather than giving the solution of the whole-body
problem directly to the centroidal optimizer as done by (Herzog et al., 2016b), we
rely on the ADMM technique to handle this feedback communication.

ADMM is an old but well established method for solving convex problems in which
the objective is separable into two mutually exclusive cost functions along a set
of problem variables. While the method has been around for decades, it was re-
cently reintroduced (Boyd et al., 2010) to solve large scale distributed optimization
problems subject to constraints. ADMM provides a feedback to the subproblems
in the form of the sum of the residues on the constraints, and in that fashion, it
behaves similar to an integral controller. For example, the feedback property has
been exploited in (Mordatch et al., 2014) to alternate between trajectory and policy
optimization.
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We find that the robustness and simplicity of this technique makes it an ideal candi-
date for solving the global optimization problem of locomotion as well.

In Section 5.2, we detail how ADMM can be exploited to solve the complete OCP
by alternatively solving the two subproblems. We gather the details of implemen-
tation in Section 5.4, used to obtained experimental results on the HRP-2 robot in
Section 5.5.

5.2 Short overview of ADMM

In this section, we give a short description of the ADMM technique. We then apply
it on the global OCP for locomotion (1.16).

ADMM is a simple optimization technique to solve constrained problems of the
form:

minimize
x,z

l1(x) + l2(z)

subject to Ax + Bz = c
(5.1)

where the cost function is composed of two separable objectives l1(x) and l2(z).
The main idea behind ADMM is to exploit this splitting between cost terms in a
recursive manner, allowing to solve simpler problems than the original one (Boyd
et al., 2010). This precise point can be highlighted by writing the augmented La-
grangian associated with the constrained optimization problem (5.1):

Lρ(x, z,y) = l1(x) + l2(z) + yT (Ax + Bz − c) + ρ

2
∥Ax + Bz − c∥22 (5.2)

where y is the vector of dual variables associated with the constraint Ax + Bz = c

and ρ > 0 is the penalty parameter which penalizes the violations of this constraint.
The solution is then found by the following steps recursions1:

xk+1 = arg min
x

Lρ(x,zk,yk) (5.3a)

zk+1 = arg min
z

Lρ(xk+1,z,yk) (5.3b)

yk+1 = yk + ρ(Ax + Bz − c) (5.3c)

Problem (5.3a) and (5.3b) are minimization over l1 and l2 respectively (with an ad-
ditional quadratic term). It is also worth noticing that the dual variable y, through
the update (5.3c) acts as an integral term by collecting the residues on the consen-
sus between the two subproblems, and forces the residual to converge to 0 along
the iterations.

1Throughout this chapter, superscripts are used to refer to the current iteration of the solver
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5.3 Rational for our alternative scheme

ADMM provides a way for us to exploit the splitting of dynamic variables exposed in
Sec 1.3.4, and defines a mathematical framework to feedback and optimize the AM
variable inside the centroidal OCP. OCP (1.16) does not match exactly the pattern
of (5.1). For convenience, we recall OCP (1.16) here, along with the coupling
constraints (1.15). The structure of the full optimization problem, as explained in
Chapter 1 (Eq 1.16), is thus shown by:

minimize
dc:=[c,ċ,L,λ]
dl:=[q,q̇,τ ]

S∑
s=1

∫ ts+∆ts

ts

ℓc(dc|S) dt +
S∑

s=1

∫ ts+∆ts

ts

ℓl(dl|S) dt (5.4a)

subject to ∀t λ ∈ K (5.4b)

∀t gλ(q, q̇, τ ) ∈ K (5.4c)

∀t ẋc = fc(dc) (5.4d)

∀t ẋl = fl(dl) (5.4e)

∀t c = CoM(q) (5.4f)

∀t
[
mċ
L

]
= Ag (q) q̇ (5.4g)

∀t λ = gλ(q, q̇, τ ) (5.4h)

xc(0) is given, xc(T ) is viable (5.4i)

xl(0) is given, xl(T ) is viable (5.4j)

While (5.1) has a linear coupling constraint, (5.4) has three nonlinear coupling
constraints((5.4f), (5.4g), (5.4h)). In addition, there are decoupled constraints
for the whole-body and the centroidal problems, which must be satisfied by each
problem.

Non-linearity is a theoretical issue and it makes the problem non-convex. Conver-
gence guarantee with ADMM are yet only obtained for convex problems with linear
constraints Eckstein and Bertsekas, 1992. Yet ADMM with non-convex problems
would act as just another local optimizer. With ADMM, we at least know that the
linearization of (5.4) at the current estimate will converge. In practice, ADMM
is often used, with good empirical results, for solving problems with non-convex
objectives (Boyd et al., 2010; Wang et al., 2019), and for non-linear constraints
(Benning et al., 2016).
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In our case, for the 3 semi-infinite (i.e. defined ∀t) coupling constraints, we have to
introduce 3 multipliers functions of time. For the additional decoupled constraints,
we handle them in the solvers of each subproblems. Let us remember that the
partial solutions dc and dl of each subproblems should respect these additional
constraints.

In the next section, we first explain the alternating algorithm with the hypothesis
that some oracles can be called to provide the optimum of the two subproblems.
Then, we describe with more details which centroidal and whole-body solvers we
used for the experiments.

5.4 Application of ADMM for solving the locomotion
problem

Let us associate with each coupling constraint a residual function:

∀t rc(c, q) = c− CoM(q) (5.5a)

∀t rm(ċ,L, q, q̇) =
[
mċ
L

]
−Ag (q) q̇ (5.5b)

∀t rλ(λ, q, q̇, τ ) = λ− gλ(q, q̇, τ ) (5.5c)

Residuals rc, rm, rg respectively corresponds to constraints (1.15a), (1.15b), (1.15c).
We also respectively define y

c
,y

m
,y

g
as the multipliers corresponding to these 3

constraints.

For convenience, let us define r as the augmentation of (1.16) (i.e. sum of linear
and quadratic penalization):

r(dc, dl,y) =
∑

k=m,c,λ

∫ Tf

0
yT

k (t)rk(t) + ρk(t)
2
∥rk(t)∥22 dt (5.6)
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We can now separate the augmented Lagrangian of the global OCP into centroidal
and full body parts:

Lc
ρ(dc, dl,y) =

S∑
s=1

∫ ts+∆ts

ts

ℓc(dc) dt + r

Ll
ρ(dc, dl,y) =

S∑
s=1

∫ ts+∆ts

ts

ℓl(dl) dt + r

(5.7)

where y is the stack of the 3 multipliers. Note that the multipliers are trajectories
of vectors, while ρc, ρm, ρλ are trajectories of scalars.

Using the definition of ADMM from Sec 5.2, the global OCP can thus be solved by
the following iterations:

dk+1
c = arg min

dc

Lc
ρ(dc, dk

l ,yk) subject to (1.16b), (1.16d), (1.16g)

dk+1
l = arg min

dl

Ll
ρ(dk+1

c , dl,y
k) subject to (1.16c), (1.16e), (1.16h)

∀t yk+1
c = yk

c + ρc(ck+1 − CoM(qk+1))

∀t yk+1
m = yk

m + ρm(
[
mċk+1

Lk+1

]
−Ag

(
qk+1

)
q̇k+1)

∀t yk+1
λ = yk

λ + ρλ(λk+1 − gλ(qk+1, q̇k+1, τ k+1))

(5.8)

5.4.1 On the advantages of scaling the dual variables

Scaling the dual variables through z = y
ρ is more convenient to implement as it

combines under a single norm minimization both the linear and quadratic terms in
the augmented Lagrangian (5.7). The subproblems are then reduced to simply min-
imize the residual squared norm of the constraints linking the two problems Boyd
et al., 2010.

5.4.2 The ADMM solver for locomotion

By using z, we can simplify the notation further by collecting the constraints (1.15a),
(1.15b) and (1.15c) into a single quantity. For that aim, let us define Φc to contain
the elements (c, mċ,L and λ). Similarly, let us define Φl to contain the mappings
(CoM(q),Ag (q) q̇ and gλ(q, q̇, τ )). Let us define addition/subtraction operations
on Φ to be the addition/subtraction on its corresponding elements and a function
DMap which maps the centroidal(dc) and whole-body(dl) variables onto these el-
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ements. The iterations (5.8) can be then written equivalently as Algorithm 1. In Al-
gorithm 1, the first input to the solvers is the solution of the previous iteration (as a
warm start), and the second input is the reference to be tracked for the augmented
Lagrangian quadratic costs.

Algorithm 1: ADMM solver for locomotion

Data: d0
c , d0

l

1 dc ← d0
c , dl ← d0

l ;
2 Φc ← DMap(dc), Φl ← DMap(dl);
3 Φd ← Φc − Φl;
4 repeat
5 dc, Φc ← CentroidalSolver(dc, Φl − Φd);
6 dl, Φl ←WholebodySolver(dl, Φc + Φd);
7 Φd ← Φd + Φc − Φl;
8 until convergence;
9 d∗

c ← dc, d∗
l ← dl;

Result: d∗
c , d∗

l

5.4.3 Initializing the dual variables

Many of the currently available centroidal and whole-body dynamics solvers are tai-
lored for producing solutions which are almost always mutually feasible (Herzog et
al., 2016a Budhiraja et al., 2018 Carpentier and Mansard, 2018b). As a result,with
this assumption of feasibility, a simple feedback from the whole-body solver to the
centroidal solver generates acceptable result within the second iteration (Herzog et
al., 2016a). On the other hand, since ADMM transmits the residual of the two sub-
problems and not the output, an uninitialized ADMM solver would overshoot and
only promise convergence from the third iteration, as we later see in Sec 5.5. There
is indeed a minimum number of iterations to synchronize the two subproblems.

However, this extra iteration of the solver could be avoided by setting the dual
after the first iteration as Φ1

d ← Φ1
c . This change makes the feedback from the first

iteration to be equal to the output, and the knowledge of individual solvers can
then be exploited to converge within two iterations. Indeed, the second iteration
of the ADMM solver then becomes equivalent to (Herzog et al., 2016a), and would
provide similar results without affecting convergence. While not used in this paper,
this trick needs to be evaluated further.

5.4.4 Key observations for whole-body solver

During the full-body step of (5.8), the knowledge of λk+1 from the centroidal step
can be exploited to ensure that the Constraint (1.16c) is never violated. In the
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Fig. 5.1: Walking sequence generated for HRP-2 robot using the proposed ADMM solver.

full-body step (by the mapping gλ) λ is dependent on q, q̇, τ . A predefined λk+1
ref

provides a good reference for the contact forces. Moreover, since the λk+1
ref was gen-

erated by the centroidal optimizer, we are sure that this reference always satisfies
the force friction cone constraint.

We can exploit this in the whole-body solver. Since the friction cone constraint
has already been satisfied by the centroidal optimizer, we can avoid this constraint
for the whole-body problem. With a good tracking, Constraint (1.16c) can be re-
laxed.

An implementation of the full-body step with rigid contacts which exploits such a
reference tracking was proposed in Chapter 3. Note that in Chapter 3 c and λ

were being tracked in the full-body OCP, while in the present formulation they are
updated during the dual ascent.

5.5 Experimental results

In this section, we describe the practical details of our implementation, enabling us
to simply add the alternating descent on top of our existing frameworks for solving
centroidal and whole-body dynamics OCP, with only a minor additional cost in
terms of development.

In addition, we validate and highlight the efficiency of the proposed approach in
simulation. For that purpose, we study the convergence properties of our solver on
a simplified version of the humanoid robot HRP-2 only composed of its lower limbs.
We generate a walking motion composed of 3 steps of 40 cm step length, depicted
in Fig. 5.1.

5.5.1 Locomotion Pipeline

Our locomotion framework (Loco3D) was previously explained in Sec 1.4. For these
experiments, and for coupling, we use the following solvers in the pipeline:
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Fig. 5.2: Evolution of the total norm of the constraint residual along the iterations of the
ADMM solver.

The Contact Sequence Generator: We use the randomized motion planner described
in Tonneau et al., 2018b which ensures the feasibility of the sequence at the kine-
matic level, with real-time performances;

The Centroidal Optimizer: As explained in Chapter 2, we solve the trajectory op-
timization problem over the centroidal dynamics using feasibility measures to en-
force the kinematic feasibility of the solution with respect to the whole-body prob-
lems. We use MUSCOD-II (Leineweber et al., 2003), which implements an efficient
multiple-shooting algorithm particularly suited for the multiple contact phases of
the locomotion problem. The output of the solver is the centroidal trajectories
dc;

The Whole-Body Optimizer: We solve the full-body trajectory optimization problem
subject to the dynamics constraints by the DDP algorithm explained in Chapter 3,
which accounts for the contact constraints in the dynamics of the problem. The
output of the solver is the whole-body trajectories dl.

While we use our own solvers in these experiments, it should be noted that the
framework described in chapter is independent of the individual solvers that are
used.
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Fig. 5.3: CoM Trajectory in the XY plane for the first three iterations of the ADMM solver.
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the iterations.

5.5.2 Cost functions

The centroidal cost function

For the first iteration of the centroidal solver, we minimize the log barrier on the
feasibility measure of the CoM (explained in Chapter 2), and we regularize the
CoM velocity (weight: 10) and contact forces (weight:10−4 for linear and 10−2 for
angular) with quadratic costs. For subsequent iterations, we solely minimize the
dual terms with ρc = 1.0, ρm = 10−2 and ρλ = 10−4.

The whole-body cost function

For the whole-body solver, we use only quadratic costs to regularize the posture
(weight: 10−6) and the free-flyer orientation (weight: 20) in addition to the aug-
mented Lagrangian terms.

88 Chapter 5 Alternating Direction Method of Multipliers for locomotion



5.5.3 Convergence analysis

We stopped the alternating resolution after only 10 iterations of the solver described
in Algorithm 1. While 3 iterations were empirically sufficient to compute a feasi-
ble motion in simulation, we show here the continuing convergence. As shown
in Fig. 5.2, the total residuals of the matching constraints decrease rapidly over the
first three iterations and more slowly after. This really means that the two problem
are able to find a consensus in very few iterations. This behavior is also well de-
picted in Fig. 5.3, where one can observe the CoM trajectories of both centroidal
and whole-body subproblems. Already at iteration 3, the two trajectories match
almost perfectly.

The mismatching of CoM and AM quantities is also reflected in Fig. 5.4. The two
first iterations show a large mismatch between the centroidal and the whole-body
problems, but the residual decreases rapidly towards the value 0. This phenomena
can be explained by the delay induced by the ADMM approach: the solver over-
shoots and then builds and maintains a consensus between the two subproblems as
discussed in Sec 5.4.3.

5.6 Conclusion and Future Work

In this chapter, we introduced a systematic approach to build a consensus on the
dynamics constraints between the centroidal and whole-body optimization prob-
lems. Based on previous observation between the nice articulation between under-
actuated and actuated dynamics of legged robots, we have given a mathematical
framework to separate the two problems, and proposed a solution which iterates
between the two subproblems and maintains consensus in the solutions. Finally, we
demonstrate the performance of the solver with a walking sequence on HRP-2, and
with jumping simulations on the Talos robot.

While some heuristics are available allowing similar behaviors, the ADMM solver
encompasses the dynamics constraints within the framework of the solver itself. In
this way, the current method deals with not only individual and separated subprob-
lems, but tackles the global problem defined in (1.16). To the best of our knowledge,
this is the first time that a consensus between centroidal and Lagrangian dynamic
solvers is obtained based on theoretical grounding.

The dual variable in ADMM contains information about the difference in the dy-
namics models of the centroidal and whole-body subproblems, and the optimiza-
tion scheme. For a given robot, the whole-body dynamics remains the same. Thus,
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it is possible that if the centroidal solution is known, and for a given robot, we
can learn the dual variable that corresponds to our optimization problem. This ap-
proach holds potential: The problem of feasibility makes us alternate with the dual.
If the dual optimal is learned , we know the solution of the centroidal problem, and
we know how far this solution is from the feasible reference that should be used
in the whole-body problem. We then just have to solve our whole-body problem
once with the updated centroidal references, and we can be sure that these would
produce a consensus in the first iteration.

Even if our solver currently solves the full-body dynamics problem, it assumes a de-
pendence on the upstream contact planner to provide feasible contact planning. In
order to be fully optimal, we need to ensure a similar consistency between the up-
stream contact planner and the full body optimizer as well. However, this problem
is not straightforward. Contact planning is a combinatorial problem. A change of
contact sequence changes the manifold on which our full-body optimization prob-
lem is solved, and it this change is not easy to encode. This decoupling has not yet
been explicitly explained in literature, and this would be another amazing field of
research for the future.
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6Generation of dynamic motions

„ - Et maintenant, messieurs, dit d’Artagnan sans
se donner la peine d’expliquer sa conduite à
Porthos, tous pour un, un pour tous ; c’est notre
devise, n’est-ce pas ?
(“And now, gentlemen” said D’Artagnan,
without bothering to explain his conduct to
Porthos, all for one, one for all; it’s our motto,
isn’t it?)

— Alexandre Dumas
(Les Trois Mousquetaires)

Each chapter in this thesis deals with a particular aspect of the same problem. We’ve
broken our problem into sub-problems, and then re-connected those subproblems
in the previous Chapter 5. The examples presented in each chapter deal with the
particular sub-problem, and show its features.

In this chapter, we’ll show with an example, what each of our contributions brings
to the table. We’ll be looking at a difficult dynamic problem, and evaluate how each
of our works helps in making the resolution easier. We’ll see how all the chapters
connect together to provide solutions which take into account the full dynamics of
the problem.

6.1 Definition of the Motion Problem

To demonstrate the various components of this thesis, we take the example of our
robot jumping forward. This is a highly dynamic manoeuvre, which first requires
the robot to create enough momentum in order to jump, then asks him to land in
a controlled manner so that the impact of landing remain within limits. We will
assume the contact placements to be pre-decided. Thus the robot is aware of the
landing position. We will concern ourselves with finding the control trajectory that
makes the jump possible. This problem is shown in Fig. 6.1.
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(a) Before jump (b) After jump

Fig. 6.1: Problem Definition: The robot is asked to make a jump forward. The current feet
contacts, and the feet contacts on landing, are provided. The robot has to find
the state and control trajectory of motion that satisfy its kinematic and dynamic
constraints.

6.2 Feasibility constraints for warm-starting
centroidal solver

6.2.1 Centroidal Optimization without feasibility constraint

We consider the associated centroidal problem for jumping. In order to see the
effect of the kinematic feasibility constraint from Chapter 2, we first consider the
optimization problem without these feasibility constraint. Then we’ll see what effect
the feasibility constraints have on the solution. Thus, we look at the problem (2.1),
and implement it as follows:

Discretization: Let K be the set of active contacts. Since the contact positions
(pk, k ∈ K) are defined before, they become a part of the dynamics. First, we
discretize the dynamics the same way we discretized the whole-body dynamics in
Sec 3.2. We consider the control trajectory, which is λ, as the concatenation of
contact forces λk acting on each contact surface. We divide it into a grid of T

points, and take the trajectory between any two consecutive grid points t and t + 1
to be equal to λ(t). We obtain the state at a given node point by integrating the
control trajectory from the previous node point, using the underactuated dynamics
of (1.13) and an integration scheme. Thus, let’s define this discretized centroidal
dynamics by FK , where the dynamics depends on the set of active contacts, the
contact forces, and the current state. Since we are not considering the coupling
constraints for this first example, we drop the coupling constraints (2.1c), and re-
place the viability constraint of the final position with a cost that forces the velocity

92 Chapter 6 Generation of dynamic motions



Fig. 6.2: Solution of the Centroidal Optimization Problem (6.1). The ball shows the tra-
jectory followed by the center of mass, when we obtain the solution of our opti-
mization problem (6.1). Since we did not consider the feasibility constraints, the
solution assumes really long robot legs. This trajectory can be improved by taking
kinematic information in our optimization.
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and angular momentum to be zero. This first optimization problem is defined in
(6.1).

minimize
c,ċ,L,λ

T∑
t=0

wλ ∥λ∥2 + wċ ∥ċ∥2

subject to

∀t ∈ {0 . . . T − 1} λ(t) ∈ K (6.1a)

∀t ∈ {0 . . . T − 1}


c(t + 1)
ċ(t + 1)
L(t + 1)

 = Fk




c(t)
ċ(t)
L(t)

 , λ(t)
∣∣pk

 (6.1b)

c(0), ċ(0),L(0) is given (6.1c)

As shown, the cost is simply a minimization of the weighted square norm of the
center of mass velocity and the contact forces (weighted by wλ, wċ). Both these
objectives enforce a smooth trajectory. The positions of the contacts, and thus the
contact transitions are given, and we don’t need to specify the final position. The
solution of the problem (6.1) finds the final center of mass position where constraint
(6.1a) is satisfied, and the center of mass velocity is zero.

By solving (6.1), we get the solution of our optimization problem. This is shown in
Fig. 6.2. On first glance, Fig. 6.2 seems to be a good centroidal trajectory. However,
we can see that Fig. 6.2 assumes very long legs for the robot, which is not the case.
This is expected, since we do not provide any information about the kinematic limits
of the robot to our optimization problem. The solution in Fig. 6.2 corresponds to a
trajectory that does not respect these kinematic limits.

6.2.2 Learning and optimizing with feasibility constraints

In order to improve this first solution, we look at the formulation defined in Chap-
ter 2. We sample joint configurations, and learn the CoM positions that correspond
to non self-colliding joint configurations. An example of the generated CoM posi-
tions with respect to the Left Foot is shown in Fig. 6.3. Once we’ve encoded these
samples in a Gaussian Mixture Model, we use this learned model inside our opti-
mization problem (6.1). This was discussed in Sec 2.3, and we replicate (2.4) here
for completeness. Thus, we update the objective function of (6.1) by the following:

wλ ∥λ∥2 +wċ ∥ċ∥2−
K∑

p=1
log pi. With the new feasibility constraint in our optimization

problem, we see again the centroidal solution in Fig. 6.4
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Fig. 6.3: Center of Mass points with respect to left foot placement. Joint configurations are
sampled, and for each non self-colliding joint configuration, the center of mass
position is computed and learned with respect to the end-effectors.

6.3 Wholebody optimization using centroidal
trajectories

After obtaining the centroidal trajectories in Sec 6.2, we use our DDP solver Crocod-
dyl to form a wholebody optimization problem. We use the problem formulation
that we defined in (3.3). We use the following costs in our problem: tracking,
regularization, and penalty. The tracking costs track the trajectories given by the
centroidal solver, and the regularization costs are used to remove redundancy from
our problem.

Tracking Costs:

• Center of Mass tracking wc ∥cref − CoM(q)∥2

• Momentum tracking wL ∥Lref −Ag(q, q̇)∥2

• Contact Force tracking wλ ∥λref − g(q, q̇, τ)∥2

Regularization Costs:

• State regularization wx ∥x∥2

• Control regularization wτ ∥τ∥2
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Fig. 6.4: Solution of the Centroidal Optimization Problem (6.1) with feasibility constraints,
as discussed in Sec 2.3. The ball shows the trajectory followed by the center of
mass. We see that the new solution takes into account the kinematic limits of the
robot. Instead of simply ascending, it first descends in order to create space of
motion. After landing, we see similar behaviour, where it descends in order to
distribute the impact to a longer duration.
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Fig. 6.5: Comparison of the Angular Momentum trajectory, after the centroidal (red) and
whole-body(blue) optimization. The angular momentum output from the cen-
troidal optimization is close to zero. However, the angular momentum required
by the whole-body optimization is high, because of the dynamic nature of the
problem. As a result, tracking the centroidal references does not result in a good
whole-body solution.

Fig. 6.6: Comparison of the Center of Mass trajectory, after the centroidal (red) and whole-
body(blue) optimizations. We took the CoM kinematic feasibility into account
in our centroidal problem. However, as a result of the tracking error in angu-
lar momentum, the whole-body solver cannot properly track the center of mass
trajectories.
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In addition to the above, we use high penalty costs that replace our kinematic
and dynamic constraints by high weight penalties. The following penalties are
used to replace inequality conditions that are needed to ensure a smooth take-off
and landing trajectories. Implementation-wise, they are implemented using the
ActivationModelInequalityModel that we defined in Table 4.1.

• Joint torque limits

• Joint configuration limits

• Positive foot velocity at take-off

• Negative foot velocity when landing

• Zero foot velocity for first node of the phase

With the above objective function formulation, we try to solve optimization problem
(3.3). However, we are unable to produce a solution. On inspection, we see that the
centroidal tracking references for the angular momentum cannot be directly used
in our whole-body optimization, as seen in Fig. 6.5. We require highly dynamic
motions, while the reference being produced by the centroidal reference is closer
to zero. As a result of this discrepancy, even our CoM tracking suffers, as seen in
Fig. 6.6.

6.4 Motion generation using ADMM

In order to properly take into account the coupling constraints (1.15) that link
centroidal and whole-body problems together, we solve our two problems iteratively
using the ADMM scheme, as discussed in Sec 5.4. As a result, the dual variable
transmits the discrepancy to each of our problems, and both of them arrive at a
solution that takes care of the dynamics of our robot. Fig. 6.7 shows the resulting
jumping motion that takes into account the kinematic dynamic constraints of the
system.
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Fig. 6.7: Snapshots that show the final jumping motion as a result of ADMM iterations on
our centroidal and whole-body optimization formulation. Our whole-body solver
(DDP) does not take into account the constraints on the contact forces. On the
other hand, our centroidal solver does not take into account the information about
the dynamics of our multi-body robot. However, both these solvers work together
and are able to arrive at the common solution which is both highly dynamic, and
dynamically feasible.
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7Conclusion

„ The only people who see the whole picture, are
the ones who step out of the frame.

— Darius Xerxes Cama, to Methwold
(Salman Rushdie, The Ground Beneath Her

Feet)

In this thesis we have explored the contact-constrained locomotion problem, and
proposed solvers to improve the efficiency and the quality of the solutions. This
thesis centers around the equation (1.16), and contributes four main pieces of pub-
lished works and one piece of software.

7.1 Contributions

7.1.1 Proxy constraint for kinematic feasibility

We deal with the CoM feasibility constraint inside the centroidal problem by learn-
ing the probability density, and maximizing the occupancy measure of the CoM
probability as part of the centroidal problem cost function. As a result, the feasi-
bility of the CoM with respect to the kinematic configuration can be handled easily
inside an optimal control problem, and when we deal with the remaining centroidal
constraints later in Chapter 5, this provides a much better centroidal guess to the
whole-body solver.

7.1.2 Whole-body solver for contact-constrained dynamics

Since centroidal solvers cannot correctly anticipate and generate the AM required
by the motion of the limbs, the whole-body solver needs to be able to fulfill this
requirement. We proposed using DDP as the whole-body solver, and modify the dy-
namics with the KKT constraints in order to handle the contact equality constraint.
We are able to use our solver to perform aggressive motions on the robot HRP-2,
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and to the best of our knowledge, this was the first time that the motions generated
by DDP has been transferred to a bipedal system.

We developed a numerical optimization solver named Crocoddyl, which is dedi-
cated to the Markovian dynamics and the contact-constrained structure of our lo-
comotion problem. We have shown that Crocoddyl, by virtue of its technical fea-
tures, can perform real-time computations. These technical features include analyt-
ical derivatives of the dynamics (Sohl and Bobrow, 2001; Carpentier and Mansard,
2018a), multi-threaded parallel computation of these derivatives, efficient transcrip-
tion that reduces memory allocation and so on.

7.1.3 Alternating to ensure feasibility and consensus

Finally, we (re)introduce to the robotics community ADMM (Alternating Direction
Method of Multipliers), which is a form of penalty method with dual where each
update of the dual variable tries to create a consensus between the centroidal and
the whole-body subproblems. As a result, we are able to also take the centroidal
dynamics into account when solving for the whole-body problem. We use this solver
to create really dynamic motions like jumping and hopping.

7.2 Perspective on Multi-body Locomotion

While the chapters in this thesis connect towards generating trajectories for the
locomotion problem, there are some issues and some features resulting from our
approach, which need to be addressed. These offer potential areas where this ap-
proach can be even further improved.

7.2.1 What about contacts?

Contacts have been assumed to be pre-defined throughout this thesis. While it
is possible to vary the contact timings in our approach, the contact placements
and contact sequences have not been tampered with. This is one drawback of the
decoupling approach: the contact placements cannot be used inside the whole-body
optimization scheme. It would be worthwhile to investigate whether this can be
improved through a similar alternation scheme. However, putting contact planning
in loop with whole-body trajectory generation is not straightforward.

The whole-body motion is a continuous time problem, while contact placement is
a mixed-integer problem. As a result, this discrepancy is difficult to model in a
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way that we modeled the coupling constraints between centroidal and whole-body
dynamics.

Thus, in order for the contact plan to be consistent with the whole-body trajectory
optimization, without any feedback from the whole-body solver, the contact plan-
ner needs to consider two types of constraints:
1) The feasibility constraints, where the contact plan has to be feasible by the whole-
body problem, and
2) the global optimality constraint, where the contact plan has to result in the glob-
ally optimal whole-body trajectory.

Note that the global optimality constraint is not the same as the optimality con-
straint (2.2d) that we defined for the reduced problem. The above two constraints
can be seen this way: The first constraint says that there is at least one solution
that lies on the manifold defined by the contact plan. The second constraint says
that the optimal solution lies on the sequence of manifolds defined by the contact
plan.

The approaches that currently compute contact plans can only model the feasibility
of whole-body constraints in their constraints. And even this feasibility problem is
difficult, and often intractable. Modeling the optimality of the whole-body trajec-
tories as constraints for the contact planner is thus far off in the future. Some of
the recent works, such as Deits and Tedrake, 2014, Mastalli et al., 2017 or Tonneau
et al., 2019 are prime examples that demonstrate this. All of these approaches use
relaxations in order to model the feasibility constraints in a continuous manner, and
this makes the problem tractable enough for the solver. But none of these works
can handle the global optimality constraint.

A possible way forward could be by using machine learning tools. While modeling
these constraints analytically is intractable for the solvers, machine learning tools
can provide an approximation that is simpler for the solver to deal with. These tools,
including neural networks, could thus be used to encode whole-body optimality cri-
terion that are useful when searching for contact plans. We saw something similar
in Chapter 2, when we encoded the kinematic feasibility constraints. However, such
use of proxies for encoding feasible constraints are one small step, and encoding op-
timality properties for the high-dimensional humanoid robots is still far off.

7.2.2 How should we use the duals?

The dual of a constrained optimization problem is an effective way to account for
the behaviour of its constraints. In this thesis, we have seen how the duals can be
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used to maintain consistency within the two subproblems. As a result of this consis-
tency, we can let the centroidal solver take care of the stability criteria, and this sim-
plifies the constraints for the whole-body solver. Thus while the centroidal solver
takes care of the reference generation and the constraint satisfaction, the whole-
body solver finds dynamic motions of the robot. Since the dual update keeps the
solutions consistent with each other, there are possibilities to use the dual update
as an outer loop for the whole-body references. This update of references would
increase the search space for the whole-body solver, and promises an increase in
the quality of solutions. Another avenue which hasn’t been properly investigated is
using machine learning to learn the dual parameters as a function of the problem
and the solutions of the subproblems. Good initialization of the dual parameters
would vastly improve the performance of the ADMM algorithm. Moreover, since
the dual is in the centroidal space, the dimensions would always remain low. Thus,
the learning would be low dimension, and would encode the nested optimality con-
straint that we saw in Eq 2.2d. In such a case, we would not need alternation in
order to maintain consensus.

7.2.3 Could we go faster?

If the sparsity inside the problem structure is exploited properly, there are possibil-
ities of increasing the efficiency of the solution without any limiting assumptions.
With DDP, we have shown how existing methods can be used to inherently deal with
the sparsity within a Markovian structure. There are still further ways in which the
structure can be exploited, as the value functions, cost functions and their deriva-
tives follow a specific pattern. Once these are properly accounted for, we should
see further improvement in the efficiency of the whole-body solver. In our team at
Gepetto, this has been the principle followed in the development of the Pinocchio
dynamic library, and now it is one of the main principles that we followed during
the development of the Crocoddyl solver.
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