
HAL Id: tel-02880717
https://theses.hal.science/tel-02880717

Submitted on 25 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling and exploiting knowledge of the environment :
A multi-agent approach to multi-goal pathfinding in

ubiquitous environment
Oudom Kem

To cite this version:
Oudom Kem. Modelling and exploiting knowledge of the environment : A multi-agent approach to
multi-goal pathfinding in ubiquitous environment. Other [cs.OH]. Université de Lyon, 2018. English.
�NNT : 2018LYSEM023�. �tel-02880717�

https://theses.hal.science/tel-02880717
https://hal.archives-ouvertes.fr

N°d’ordre NNT : 2018LYSEM023

THESE de DOCTORAT DE L’UNIVERSITE DE LYON

opérée au sein de

l’Ecole des Mines de Saint-Etienne

Ecole Doctorale N° 488

Sciences, Ingénierie, Santé

Spécialité de doctorat : Informatique

Discipline : Intelligence artificielle

Soutenue publiquement le 29/10/2018, par :

Oudom KEM

Modélisation et Exploitation des Connaissances de

l'Environnement :

Une Approche Multi-Agents pour la Recherche

d’Itinéraires Multi-Objectifs dans des

Environnements Ubiquitaires

Devant le jury composé de :

MANDIAU, René

MONTICOLO, Davy
OCCELLO, Michel
HERNANDEZ, Nathalie

BALBO, Flavien
ZIMMERMANN, Antoine

 Directeur de thèse

Président

Examinatrice

Co-encadrant

Rapporteur

Rapporteur

Professeur, Université de Valenciennes et du
Hainaut-Cambrésis

Maître de conférences HDR, Université de Lorraine
Professeur, Université Grenoble Alpes
Maître de conférences, Université de Toulouse

Professeur, École des Mines de Saint-Étienne
Maître Assistant, École des Mines de Saint-Étienne

ABSI Nabil MR Génie industriel CMP

AUGUSTO Vincent CR Image, Vision, Signal CIS

AVRIL Stéphane PR2 Mécanique et ingénierie CIS

BADEL Pierre MA(MDC) Mécanique et ingénierie CIS

BALBO Flavien PR2 Informatique FAYOL

BASSEREAU Jean-François PR Sciences et génie des matériaux SMS

BATTON-HUBERT Mireille PR2 Sciences et génie de l'environnement FAYOL

BEIGBEDER Michel MA(MDC) Informatique FAYOL

BLAYAC Sylvain MA(MDC) Microélectronique CMP

BOISSIER Olivier PR1 Informatique FAYOL

BONNEFOY Olivier MA(MDC) Génie des Procédés SPIN

BORBELY Andras MR(DR2) Sciences et génie des matériaux SMS

BOUCHER Xavier PR2 Génie Industriel FAYOL

BRODHAG Christian DR Sciences et génie de l'environnement FAYOL

BRUCHON Julien MA(MDC) Mécanique et ingénierie SMS

CAMEIRAO Ana MA(MDC) Génie des Procédés SPIN

CHRISTIEN Frédéric PR Science et génie des matériaux SMS

DAUZERE-PERES Stéphane PR1 Génie Industriel CMP

DEBAYLE Johan MR Sciences des Images et des Formes SPIN

DEGEORGE Jean-Michel MA(MDC) Génie industriel Fayol

DELAFOSSE David PR0 Sciences et génie des matériaux SMS

DELORME Xavier MA(MDC) Génie industriel FAYOL

DESRAYAUD Christophe PR1 Mécanique et ingénierie SMS

DJENIZIAN Thierry PR Science et génie des matériaux CMP

DOUCE Sandrine PR2 Sciences de gestion FAYOL

DRAPIER Sylvain PR1 Mécanique et ingénierie SMS

FAUCHEU Jenny MA(MDC) Sciences et génie des matériaux SMS

FAVERGEON Loïc CR Génie des Procédés SPIN

FEILLET Dominique PR1 Génie Industriel CMP

FOREST Valérie MA(MDC) Génie des Procédés CIS

FRACZKIEWICZ Anna DR Sciences et génie des matériaux SMS

GARCIA Daniel MR(DR2) Sciences de la Terre SPIN

GAVET Yann MA(MDC) Sciences des Images et des Formes SPIN

GERINGER Jean MA(MDC) Sciences et génie des matériaux CIS

GOEURIOT Dominique DR Sciences et génie des matériaux SMS

GONDRAN Natacha MA(MDC) Sciences et génie de l'environnement FAYOL

GONZALEZ FELIU Jesus MA(MDC) Sciences économiques FAYOL

GRAILLOT Didier DR Sciences et génie de l'environnement SPIN

GROSSEAU Philippe DR Génie des Procédés SPIN

GRUY Frédéric PR1 Génie des Procédés SPIN

GUY Bernard DR Sciences de la Terre SPIN

HAN Woo-Suck MR Mécanique et ingénierie SMS

HERRI Jean Michel PR1 Génie des Procédés SPIN

KERMOUCHE Guillaume PR2 Mécanique et Ingénierie SMS

KLOCKER Helmut DR Sciences et génie des matériaux SMS

LAFOREST Valérie MR(DR2) Sciences et génie de l'environnement FAYOL

LERICHE Rodolphe CR Mécanique et ingénierie FAYOL

MALLIARAS Georges PR1 Microélectronique CMP

MOLIMARD Jérôme PR2 Mécanique et ingénierie CIS

MOUTTE Jacques CR Génie des Procédés SPIN

NEUBERT Gilles FAYOL

NIKOLOVSKI Jean-Pierre Ingénieur de recherche Mécanique et ingénierie CMP

NORTIER Patrice PR1 Génie des Procédés SPIN

O CONNOR Rodney Philip MA(MDC) Microélectronique CMP

OWENS Rosin MA(MDC) Microélectronique CMP

PERES Véronique MR Génie des Procédés SPIN

PICARD Gauthier MA(MDC) Informatique FAYOL

PIJOLAT Christophe PR0 Génie des Procédés SPIN

PINOLI Jean Charles PR0 Sciences des Images et des Formes SPIN

POURCHEZ Jérémy MR Génie des Procédés CIS

ROUSSY Agnès MA(MDC) Microélectronique CMP

ROUSTANT Olivier MA(MDC) Mathématiques appliquées FAYOL

SANAUR Sébastien MA(MDC) Microélectronique CMP

STOLARZ Jacques CR Sciences et génie des matériaux SMS

TRIA Assia Ingénieur de recherche Microélectronique CMP

VALDIVIESO François PR2 Sciences et génie des matériaux SMS

VIRICELLE Jean Paul DR Génie des Procédés SPIN

WOLSKI Krzystof DR Sciences et génie des matériaux SMS

XIE Xiaolan PR0 Génie industriel CIS

YUGMA Gallian CR Génie industriel CMP

EMSE : Enseignants-chercheurs et chercheurs autorisés à diriger des thèses de doctorat (titulaires d’un doctorat d’État ou d’une HDR)

Spécialités doctorales Responsables :

SCIENCES ET GENIE DES MATERIAUX K. Wolski Directeur de recherche

MECANIQUE ET INGENIERIE S. Drapier, professeur

GENIE DES PROCEDES F. Gruy, Maître de recherche

SCIENCES DE LA TERRE B. Guy, Directeur de recherche

SCIENCES ET GENIE DE L’ENVIRONNEMENT D. Graillot, Directeur de recherche

Spécialités doctorales Responsables

MATHEMATIQUES APPLIQUEES O. Roustant, Maître-assistant

INFORMATIQUE O. Boissier, Professeur

SCIENCES DES IMAGES ET DES FORMES JC. Pinoli, Professeur

GENIE INDUSTRIEL N. Absi, Maitre de recherche

MICROELECTRONIQUE Ph. Lalevée, Professeur

M
is

e
à

jo
u

r
:

0
3

/0
2

/2
0

1
7

Dedicated to my mother and father

Acknowledgments

The last four years have been a challenging, yet rewarding experience. I would like
to take this opportunity to express my gratitude to the people who have supported
me throughout this journey.

I would like to express my sincere and utmost gratitude for my supervisors,
Professor Flavien Balbo and Dr. Antoine Zimmermann, for their unlimited support,
guidance, feedback, and constant trust in all my endeavours.

I wish to thank all my colleagues, Kamal Singh, Khadim Ndiaye, Radha Kr-
ishna Ayyalasomayajula, Omar Qawasmeh, Nicolas Cointe, El-Mehdi Khalfi, Dennis
Diefenbach, José Miguel Giménez Garcia, Amro Najjar, Marie-Line Barneoud, Nilo-
ufare Sadr, Andrei Ciortea, Maxime Lefrançois, Gauthier Picard, Olivier Boissier,
Xavier Serpaggi and everyone in the team for their support and friendship, making
my stay in Saint-Étienne not only pleasant but memorable.

Many thanks go out to my family and friends for their support and understanding
throughout this journey.

Contents

Introduction 1
Ubiquitous environments . 3
Thesis statement and objectives . 5
Contributions . 6
Dissertation structure . 7

I STATE OF THE ART 9

1 Pathfinding and Multi-goal Pathfinding 11
1.1 Pathfinding . 12
1.2 Multi-goal pathfinding . 13
1.3 Basic search algorithms . 14

1.3.1 Uninformed search algorithms 15
1.3.2 Informed search algorithms 16
1.3.3 Analysis of basic search algorithms 18

1.4 Search in dynamic environments . 20
1.4.1 Incremental search . 20
1.4.2 Anytime search . 23
1.4.3 Analysis of search in dynamic environments 24

1.5 Parallel search algorithms . 24
1.6 Conclusion and discussion . 26

2 Application: Intelligent Traveller Information Systems 27
2.1 Outdoor trip planning and navigation 29

2.1.1 Operator-specific traveller information systems 30
2.1.2 Region-specific traveller information systems 30
2.1.3 Independent traveller information systems 31
2.1.4 Discussion . 31

2.2 Indoor trip planning and navigation 31
2.2.1 Trip planning and navigation in transit complexes 32
2.2.2 Trip planning and navigation in cyber-physical environments 32
2.2.3 Multi-goal trip planning . 32
2.2.4 Discussion . 33

2.3 Data management models . 33
2.3.1 Using data from other systems 33
2.3.2 Using pre-collected data . 34
2.3.3 Collaboration-based model . 34
2.3.4 Active approach to data collection 34
2.3.5 Analysis of the approaches to acquiring data 34

2.4 Data models for transport and traveller information 35
2.4.1 Transmodel . 35
2.4.2 Datex II . 35
2.4.3 GTFS . 36
2.4.4 IFOPT . 36
2.4.5 GDF . 36
2.4.6 NeTEx . 36
2.4.7 SIRI . 36
2.4.8 Analysis of the data models 36

2.5 Conclusion . 37

II CONTRIBUTIONS 39

3 Semantic Representation of the Environment 41
3.1 Knowledge Model of the Environment 42
3.2 Ubiquitous Environment Abstraction Ontology 49

3.2.1 Classes and properties . 49
3.2.2 Usage of the ontology . 53
3.2.3 Discussion . 57

3.3 Ontology for smart airports . 58
3.3.1 Smart Airport Activity ontology 58
3.3.2 Demonstration . 59

3.4 Conclusion . 63

4 Collaborative Multi-agent Search Model 65
4.1 Collaborative Search Model . 66

4.1.1 Overview of the model . 66
4.1.2 Agent models . 68
4.1.3 Agent organisation and interactions 70

4.2 Resource agents . 74
4.3 Search agents . 75

4.3.1 Node expansion . 76
4.3.2 Node cost computation . 77
4.3.3 Goal verification procedure 78
4.3.4 Optimality and Termination 80

4.4 Network agents . 80
4.4.1 Routing path information . 81
4.4.2 Separating a search space . 86
4.4.3 Distributing workloads . 87

4.5 Conclusion . 88

5 An Approach to Multi-goal Pathfinding in Ubiquitous Environ-
ments 91
5.1 Overview of the approach . 92
5.2 Generating the description of the environment 95
5.3 Subgraph extraction . 95

5.3.1 Identifying supported activities 95
5.3.2 Extracting locations . 97
5.3.3 Extracting a subgraph . 99

5.4 Goal-space graph generation . 99
5.5 Multi-layered search . 101

5.5.1 Searching on a multi-layered graph 101
5.5.2 Heuristics . 102
5.5.3 Multi-layered A* search . 103

5.6 Handling the dynamics of the environment 106
5.6.1 Dynamic search in the search graph 106
5.6.2 Dynamic search in the goal-space graph 109

5.7 Conclusion . 111

III EVALUATION 113

6 Experimentation and Validation 115
6.1 Validation of the knowledge model and the heuristics 116

6.1.1 Experiment configurations . 116
6.1.2 Experiment 1: Comparing different heuristics 116
6.1.3 Experiment 2: Evaluating the heuristics based on problem types118
6.1.4 Experiment 3: Evaluating the heuristics over different envi-

ronment structures . 119
6.1.5 Discussion . 120

6.2 Evaluation of the collaborative multi-agent search model 121
6.2.1 Experiment configurations . 121
6.2.2 Experiment 1: Evaluating the search model based on problem

types . 122
6.2.3 Experiment 2: Evaluating the search model over different en-

vironment structures . 125
6.2.4 Experiment 3: Evaluating the scalability of the search model 127
6.2.5 Discussion . 127

6.3 Conclusion . 128

IV CONCLUSION AND PERSPECTIVES 129

7 Conclusions and Perspectives 131
7.1 Contributions . 131
7.2 Perspectives . 133

7.2.1 Perspectives in the improvement of the approach 133
7.2.2 Perspectives in the validation of the approach 134
7.2.3 Perspectives in the application of the approach 135

Publications 137

Bibliography 139

List of Figures

3.1 An example of a search graph . 43
3.2 A hierarchy-based organisational structure of an airport 44
3.3 An example of the relations between locations and cyber, physical,

and/or social entities . 45
3.4 Incorporating resources in the model 47
3.5 An example of the conceptual model of an environment 48
3.6 Ubiquitous Environment Abstraction Ontology 51
3.7 A partial view of Smart Airport Activity Ontology 59
3.8 An excerpt of a map of an airport . 60
3.9 Example of an airport modelled using our knowledge model 61

4.1 Agent organisation - addressing latency 71
4.2 Organisation of network agents . 72
4.3 Organisation of network agents and search agents 72
4.4 Interaction between search agents and network agents for routing

path information . 73
4.5 An example of the overall organisation of agents 74
4.6 Goal verification message propagation example 79
4.7 Routing path information – Bootstrapping example 83
4.8 Routing path information – Case 1 example 85
4.9 Routing path information – Case 2 example 86
4.10 Routing path information – Case 3 example 87

5.1 Workflow of the approach . 94
5.2 An example of a goal-space graph . 100
5.3 Hierarchy-based organisation example 103
5.4 Example of a path and a multi-agent infrastructure constructed dur-

ing the search process . 107

6.1 Comparison of expands by A* with heuristics and by uniform-cost . 118
6.2 Runtime of A* using different heuristics and of uniform-cost 119
6.3 Runtime efficiency of A* with h(goal, organisation) compared to

uniform-cost on different problem types 120
6.4 Run time efficiency of A* with h(goal, hierarchy) compared to uniform-

cost over different environment structures 121
6.5 Runtime efficiency of collaborative uniform-cost compared to uniform-

cost based on problem types . 124
6.6 Runtime efficiency of collaborative uniform-cost compared to uniform-

cost over different node distributions 126
6.7 Runtime efficiency of collaborative uniform-cost compared to uniform-

cost over different connectivity . 126

6.8 Runtime over different graph sizes – No latency 127
6.9 Runtime over different graph sizes – 5 ms latency 128

List of Tables

6.1 Environment 1–3 . 117
6.2 Environment 4–10 . 123
6.3 Expands and requests based on problem types 124

Introduction

In this information age, from intelligent artificial personal assistants to smart cities,
we are experiencing the shifting towards Internet of Things (IoT), ubiquitous com-
puting, and artificial intelligence. Cyber-physical entities are embedded in social
environments of various scales from smart homes, to smart airports, to smart cities,
and the list continues. This paradigm shift coupled with ceaseless expansion of the
Web supplies us with tremendous amount of useful information and services, which
creates opportunities for classical problems to be addressed in new, different, and
potentially more efficient manners. Solutions to problems such as pathfinding, the
problem of searching for a path between a start and a destination, and its variant
multi-goal pathfinding in which a set of goals also need to be satisfied along the
path, for instance, can be enriched and personalised by exploiting the available data
and services.

Along with the new possibilities, we are, at the same time, presented with new
constraints, problems, and challenges. Ubiquitous environments, the environments
accommodating cybernetic, physical, and/or social entities such as sensors, con-
nected objects, interactive devices, and people, are inherently dynamic and open.
The state of the entities located in the environments may evolve over time. Some
entities are mobile in the sense that their location may change. Entities may also
dynamically enter or exit the environments. Consequently, the characteristics of
the environments, namely the dynamics, the mobility, and the openness, need to
be handled when solving problems in such environments. In this dissertation, we
address the problem of multi-goal pathfinding in the context of ubiquitous environ-
ments. In this context, changes in the environment may influence the solution. A
proposed path to a given problem may lose its validity when the state of the envi-
ronment changes. In consequence, we address the aforementioned constraints in our
approach to solving the problem.

In the literature, multi-goal pathfinding is commonly associated with the well-
known Travelling Salesman Problem (TSP) whose objective is to determine the order
in which the salesman should travel a set of cities to minimise the cost of travel. For
this dissertation, however, rather than determining the order of places to travel, we
aim at: (1) determining the places where each of the given goals can be satisfied and
(2) finding the optimal path from a starting point to a destination in which all the
goals can be satisfied in an order which we assume is given. The following scenario
describes an example of a multi-goal pathfinding problem: A traveller, named Bob,
arrives at an airport. Bob wants to find the path from his current location, which
is the entrance of the airport, to the departure gate of his flight. Along the way to
the gate, Bob has a set of goals he wants to achieve in the following order: get a
trolley for his luggage, check in, buy a takeout for lunch, and find a waiting seat
near a power socket to charge his laptop while waiting.

2

The characteristics of ubiquitous environments emphasise the need for up-to-
date information. In such dynamic settings, it is impossible to have complete and
accurate knowledge of the environments prior to the problem-solving process. In-
formation about the environments and other knowledge required to solve a given
problem need to be acquired from various sources including the cybernetic, physical,
and/or social entities located in the environments during path computation to guar-
antee its validity. During path execution, more information needs to be retrieved to
detect the changes that affect the current path and to adapt the path accordingly.

Let us refer to the previous example about the traveller Bob to convey the
underlying motivation of using up-to-date information from various sources. Spatial
information about the airport can be used to guide Bob to navigate within the
airport. However, it is insufficient to determine which locations allow Bob to satisfy
each of his goals or to determine the optimal path. Additional information about
locations such as the type and the state of the locations in the airport is also needed.
For instance, with such information, we are able to know that Bob can buy his
take-out in the locations of type restaurant in the airport. Moreover, up-to-date
information from sensors and smart objects is crucial in determining the optimal
path for Bob. As an example, instead of suggesting Bob to go to the area where
trolleys are stored, which is at the opposite direction of his gate, it is possible to
locate an unoccupied trolley nearby that was left by other people thanks to the data
from connected trolleys. We might suggest Bob to take an escalator instead of an
elevator because we know that there are too many people in the queue waiting for
the elevator or that the elevator is out of order, thanks to the feeds from the sensors
of the elevators. In addition, information from the Web can be used to enhance
Bob’s travel experience. For example, reviews by travellers about the quality, the
availability, and the food posted on the website of the restaurants enable us to
choose the locations that are at Bob’s best interests and preferences, rather than
simply listing all the restaurants in the facility using static data.

Many algorithms have been proposed to solve pathfinding. The existing al-
gorithms can be categorised into two groups: uninformed search algorithms and
informed search algorithms. The former solve pathfinding by generating successor
nodes and distinguishing a destination node from a non-destination node without
using any additional knowledge of the search space. The latter exploit the knowledge
of the problem to know if one node is more promising than the others in order to
find solutions more efficiently. Each of these algorithms has its advantages and lim-
itations from memory usage to optimality. Numerous attempts have been made to
adapt the algorithms to address specific constraints such as reducing memory usage,
supporting search in a partially known environment, or improving search efficiency.
Multi-goal pathfinding, however, has been much less studied. Search algorithms
for classical pathfinding find a path between two points, a start and a destination.
They do not take into account the constraints on the points between the start and
the destination. Therefore, they are not sufficient for solving multi-goal pathfinding
problems as the solution to such problems consists of a path not only connecting the
start and the destination, but also optimally passing by all the required points in a

3

given order. Existing approaches to multi-goal pathfinding are significantly limited
in both numbers and efficiency. To the best of our knowledge, none address multi-
goal pathfinding in the context of ubiquitous environments where the constraints
such as dynamics, mobility, and openness need to be taken into account.

Therefore, in this dissertation, we propose an approach to solve multi-goal
pathfinding that is able to handle the constraints of ubiquitous environments. In this
approach, the information required for path computation is acquired from various
resources such as the Web and cybernetic, physical, and/or social entities located in
the environment, during the computation to provide up-to-date solutions. During
path execution, changes in the environment that may influence the current solution
are detected, and necessary actions performed to adapt the solution accordingly. To
have a precise understanding of the context in which we aim at solving multi-goal
pathfinding, in the following section, we provide a concise description of ubiquitous
environments and their constraints.

Ubiquitous environments

Mark Weiser introduced ubiquitous computing as a method of enhancing the use of
computers by rendering them available throughout the physical environment, but
making them effectively invisible to the user [Weiser 1993]. The idea was further
described by Weiser as “a field that speculates on a physical world richly and in-
visibly interwoven with sensors, actuators, displays, and computational elements,
embedded seamlessly in the everyday objects of our lives and connected through
a continuous network” [Weiser 1999]. The concept of ubiquitous environments or
smart environments has evolved from ubiquitous computing. Recent development
and applications of Internet of Things and ubiquitous computing lead to an in-
creasing number of ubiquitous environments. Such environments range from smart
buildings, such as airports and train stations, to smart cities.

In the aim of solving multi-goal pathfinding in ubiquitous environments, we
have identified the aspects of the environments that need to be taken into account
when solving the problem. In the context of this work, we consider a ubiquitous
environment as an environment that accommodates cybernetic, physical and/or
social entities. We define different types of entities as follows:

• A physical entity refers to an entity that occupies a physical space. For in-
stance, in a ubiquitous environment, a room, a restaurant, a shop, or an office
can be considered a physical entity.

• A cyber-physical entity refers to a physical entity that is equipped with a cy-
bernetic attribute. In other words, it is a physical entity that is at the same
time a digital entity, and is connected to another entity or to other entities via
some communication networks. For example, sensors, smart objects, or con-
nected trolleys located in an environment can be considered as cyber-physical
entities.

4

• A social entity refers to an entity that possesses social abilities, which are
the abilities to interact with another entity or other entities. People are an
example of social entities.

• A cyber-social entity refers to an entity that possesses cybernetic and social
abilities, but does not have a physical form. An example of a cyber-social
entity is a social software agent. The agent is able to communicate with other
entities, but it remains a software entity, and thus has no physical form.

• A cyber-physical-social entity refers to a physical entity that possesses both
cybernetic and social capabilities. An example of such an entity is a physical
robot that is capable of communicating with other entities.

We can consider the smart airport mentioned in the previous example as a ubiq-
uitous environment. A smart airport is a ubiquitous space as it accommodates
cybernetic, physical and/or social entities. Cyber-physical entities such as sensors,
information screens, and smart lights are installed. Social entities including trav-
ellers and airport personnel are actively participating in the environment. These
entities are the prosumers (i.e., producer and consumer) of the information in the
environment in the sense that they consume information from other entities, and
also produce information back to the environment. For instance, a traveller, as a
social entity, consumes information from sensors, information screens, and the air-
port personnel in order to facilitate their travel experiences. At the same time, they
produce information back to the environment in terms of reviews on services, which
can be useful for other travellers and the organisers of the airport.

Thus, a ubiquitous environment is a complex socio-technical space that is both
open and dynamic. Cybernetic, physical, and/or social entities in the environment
can be mobile, in the sense that their location may change over time. Moreover, the
state of the entities may also evolve over time. Referring back to the airport exam-
ple, mobile entities such as trolleys and vehicles (e.g., indoor shuttles or cars) can
move from one location to another inside the environment. Entities such as elevators
may change their state from available at time t0 to occupied at time t1. Further-
more, in such an open environment, entities are able to freely enter and exit the
environment. Actions performed by the entities may also influence the state of the
environment. For example, a traveller carrying out an activity to satisfy their goal
of using a check-in machine changes the state of the machine from available to oc-
cupied. Solving multi-goal pathfinding in such a dynamic environment necessitates
up-to-date information, not only about the spatial dimension of the environment,
but also the state of the entities situated in the environment. To solve multi-goal
pathfinding and address the complexity of ubiquitous environments, in this disser-
tation, we propose a solution that responds to the research questions described in
the following section.

5

Thesis statement and objectives

The aim of this dissertation is to propose a multi-agent approach that is capa-
ble of solving multi-goal pathfinding in ubiquitous environments by exploiting the
knowledge from pertinent sources such as the Web and the cybernetic, physical,
and/or social entities located in a given environment. The thesis statement of this
dissertation is as follows:

Given the dynamic, mobile, and open characteristics inherent in ubiquitous en-
vironments as well as the needs for up-to-date information, exploiting information
from pertinent sources such as cybernetic, physical and/or social entities as well as
from the Web to use in solving multi-goal pathfinding can contribute to an improve-
ment in the quality of the solutions in terms of coverage, adaptability and personal-
isation.

In the proposed approach, we address the following research questions:

Research question 1. Obtaining pertinent information: How to acquire the infor-
mation necessary for solving a multi-goal pathfinding problem? Solving a multi-goal
pathfinding problem requires various types of information such as the spatial struc-
ture of the environment and the up-to-date information about the state of the en-
vironment. Furthermore, in a given environment, information can be acquired from
different entities. In the Web, data and services are distributed in various sources.
Identifying the sources of information to use for solving a specific problem is one of
the core challenges in our approach. To address this question, we propose a knowl-
edge model for describing an environment by integrating the spatial dimension and
the cyber-physical-social dimension of the environment with the knowledge regard-
ing the information sources that are relevant to each part of the environment. Such
an abstraction provides the knowledge necessary for solving multi-goal pathfinding
problems, and enables us to determine which information sources should be used to
retrieve the necessary data to solve a problem.

Research question 2. Handling latency: How to address the latency of accessing
data sources and transferring data from the sources? Acquiring up-to-date infor-
mation from relevant sources is essential to our approach due to the dynamics of
the environment. However, accessing resources and transferring data from the re-
sources creates latency that affects the efficiency of the problem-solving process. To
address this overhead, we propose a collaborative multi-agent search model that can
be applied to search algorithms in order to asynchronise the resource-accessing pro-
cess, and thus mitigates the impact of latency on the search process. Furthermore,
the proposed search model exploits the structure of the problem to improve search
performance.

Research question 3. Beyond the classical pathfinding: How to solve multi-goal
pathfinding? Many solutions have been developed to address the classical pathfind-
ing. Pathfinding with an ordered set of goals to satisfy is much less investigated.

6

To address multi-goal pathfinding, we propose an approach that transforms a multi-
goal pathfinding problem into 2 connected pathfinding problems, which creates a
multi-layered search space. Then, a search algorithm is applied on each layer to find
an optimal path that connects the start to the destination and that allows the goals
to be satisfied in the given order.

Research question 4. Dynamics, mobility, and openness: How to address the
dynamic state of the environment during path computation and path execution? The
state of ubiquitous environments may evolve over time. The changes may affect the
solution during path computation as well as during path execution in which the
path is being followed. In addition, the action of satisfying a goal may influence
the state of the environment. Therefore, the approach that attempts at solving
multi-goal pathfinding in such environments needs to be capable of adapting the
initial solution according to the changes. To address the dynamics, our approach
continuously detects the changes in the environment that affect the solutions, and
incrementally update the solutions accordingly.

Relevant issues
In addition to the aforementioned research questions, there are 2 other issues that
need to be addressed. The first issue is concerned with the evolution of the environ-
ment: How to detect the changes in the environment and update the description of
the environment accordingly? The description of the environment is an integral part
of our approach to solving multi-goal pathfinding. Therefore, the description has to
be an up-to-date representation of the environment. In the literature, there is a body
of work that addresses the changes of the environment in the context of Internet
of Things. For instance, in [Ciortea 2015], the authors propose a multi-agent-based
socio-technical network to manage the complexity of cyber-physical-social entities.
Building upon such work, we are able to detect the changes in the environment and
update the description of the environment accordingly.

The second issue is the heterogeneity of data and resources: How to access dif-
ferent types of resources and use data of heterogeneous formats and structures? The
mechanisms to access resources may vary from one resource to another. Data ac-
quired from various resources are of heterogeneous formats and structures. This
problem needs to be addressed for our approach to work. Currently, there is a body
of work that addresses the heterogeneity problem. In our approach, we employ the
existing solutions to abstract away the issue of data heterogeneity and interoper-
ability.

Contributions

Our contributions in addressing multi-goal pathfinding in ubiquitous environments
are as follows:

• We proposed a knowledge model for describing a ubiquitous environment by
integrating its spatial dimension, the cyber-physical-social entities it contains,

7

and the information about the resources relevant to the environment. In ad-
dition, we incorporate the notion of goals in the proposed knowledge model.
Such knowledge enables us to determine at which location a goal can be sat-
isfied. (Research question 1)

• We developed a collaborative multi-agent search model for adapting search
algorithms to asynchronise the process of accessing resources to mitigate the
consequential overheads during path computation and path execution. Fur-
thermore, the search model exploits the knowledge of the search space to
improve the efficiency of the search process. (Research question 2)

• We proposed a multi-agent approach to solve multi-goal pathfinding, especially
in the context of ubiquitous environments. To address the dynamics, mobility,
and openness of ubiquitous environments, we propose a mechanism that con-
tinuously updates the solution according to the changes in the environments.
(Research question 3 & 4)

Dissertation structure

This dissertation is divided into 4 parts:

• In Part I, we investigate the literature to establish the state of the art in multi-
goal pathfinding as well as its application in traveller information systems in
order to identify the gap in the literature and the related work that can be
used or adapted to support our approach.

– In Chapter 1, we study the existing approaches in the literature that
address pathfinding and multi-goal pathfinding.

– In Chapter 2, we investigate our field of application, which is smart mo-
bility and intelligent traveller information systems, particularly in ubiq-
uitous environments.

• In Part II, we present our contributions.

– In Chapter 3, we describe the knowledge model for abstracting a ubiqui-
tous environment to provide the necessary knowledge for solving multi-
goal pathfinding by integrateing the spatial, cybernetic, physical, and
social aspects of the environment with the notion of goals.

– In Chapter 4, we present the collaborative multi-agent search model that
aims at mitigating latency.

– In Chapter 5, we describe our approach to solving multi-goal pathfinding
in ubiquitous environments. Then, we present the mechanism for contin-
uously updating the solution according to the changes in the environment
during path computation and path execution.

• In Part III, we focus on the evaluation of the approach.

8

– In Chapter 6, we show the empirical results of our experiments, and
provide the evaluation of our approach.

• In Part IV, we conclude the dissertation.

– In Chapter 7, we provide the summary of our work and present the
directions for our future work.

Part I

STATE OF THE ART

Chapter 1

Pathfinding and Multi-goal
Pathfinding

Contents
1.1 Pathfinding . 12
1.2 Multi-goal pathfinding . 13
1.3 Basic search algorithms . 14

1.3.1 Uninformed search algorithms 15
1.3.2 Informed search algorithms 16
1.3.3 Analysis of basic search algorithms 18

1.4 Search in dynamic environments 20
1.4.1 Incremental search . 20
1.4.2 Anytime search . 23
1.4.3 Analysis of search in dynamic environments 24

1.5 Parallel search algorithms . 24
1.6 Conclusion and discussion . 26

Multiple variants of pathfinding have been addressed in the literature. Such vari-
ation includes, but not limited to, single-agent pathfinding, multi-agent pathfinding,
pathfinding in dynamic environments, and pathfinding with incomplete information.
A significant number of search algorithms and strategies have been proposed to ad-
dress the constraints specific to each variant. Multi-goal pathfinding, a variant of
pathfinding, goes beyond the classical pathfinding problems to incorporate the con-
straints on goals to satisfy along the path. In this dissertation, we focus on multi-goal
pathfinding, particularly in ubiquitous environments where the constraints including
dynamics, mobility, and openness also need to be taken into account.

The aim of this chapter is to investigate the existing approaches to pathfinding
and multi-goal pathfinding that address the aforementioned constraints. The pur-
pose of such an investigation is to determine the gap in the literature as well as to
identify the work that can be adapted to support our approach to solving multi-goal
pathfinding in ubiquitous environments.

The rest of this chapter is organised as follows. First, we present the problem of
pathfinding and its formalism. Second, we investigate multi-goal pathfinding prob-
lems in the literature. Third, we discuss the classical search algorithms. Fourth, we
analyse the existing search algorithms for dynamic environments. Fifth, we review

12 Chapter 1. Pathfinding and Multi-goal Pathfinding

parallel search algorithms with regard to the latency issue. Finally, we provide an
overall analysis and a conclusion of the chapter.

1.1 Pathfinding

Pathfinding consists in searching through a given space to find a path between a
starting point and a destination. A pathfinding problem can be abstracted as a
search problem. To provide background for the rest of the chapter, we adapt the
formal definitions of the weighted state space search defined in [Ghallab 2016] and
[Fukunaga 2017] to formally describe a pathfinding problem.

Definition 1 (Pathfinding problem) A pathfinding problem or a weighted state
space problem P = (S, so, T, A, w) is defined by a set of states S, an initial state
so ∈ S, a set of goal states T ⊂ S, a finite set of actions A = a1, ..., am where each
ai : S → S transforms a state into another state, and a cost function w : A→ [0,∞).

Although w is called the cost function, its meaning is arbitrary: it may represent
monetary cost, time, or something else that one might want to minimise. The cost
of a path consisting of actions a1, ..., an is defined as

∑n
i=1w(ai).

Definition 2 (Solution) A solution π = (a1, ..., ak) is an ordered sequence of ac-
tions ai ∈ A, i ∈ 1, ..., k that transforms the initial state so into one of the goal
states t ∈ T ; that is, there exists a sequence of states ui ∈ S, i ∈ 0, ..., k with
uo = so, uk = t, and ui is the outcome of applying ai to ui−1, i ∈ 1, ..., k. A solution
from so to a given goal state t is optimal if its weight is minimal among all paths
between so and t.

Definition 3 (Pathfinding problem graph) A problem graph G = (V, E, so, T,
w) for the pathfinding problem P = (S, A, so, T, w) is defined by V = S as the set of
nodes, so ∈ S as the initial node, T as the set of goal nodes, E ⊂ V ×V as the set of
edges that connect nodes to nodes with (u, v) ∈ E if and only if there exists an a ∈ A
with a(u) = v, and w is extended to E → [0,∞). The graph is uniformly weighted
if w(u, v) is constant for all (u, v) ∈ E. The weight or cost of a path π = (vo, ..., vk)

is defined as w(π) =
∑k

i=1w(vi−1, vi).

The integral elements of an approach to solving pathfinding are a graph rep-
resentation of the map or the environment, a search algorithm, and depending on
the algorithm, a heuristic function. The generation of the representative graph of
the environment is generally based on the spatial information of the environment
[Algfoor 2015]. Grid maps are a popular way of discretising a map into a search
graph. In that process, a map is partitioned into atomic square cells, also known as
tiles. Depending on the topology of the map, a tile is marked as either traversable
or blocked. Traversable tiles are nodes in the search graph. Graph edges connect
adjacent traversable tiles. A search algorithm is used to search for the path in the

1.2. Multi-goal pathfinding 13

search graph. Search algorithms can be categorised into uninformed search algo-
rithms and informed search algorithms. Uninformed search algorithms use only the
information provided in the problem definition, while informed search algorithms
employ additional knowledge of the search space to find the path more efficiently.
Generally, an informed search algorithm uses a heuristic function to impart the ad-
ditional knowledge to the search algorithm. In the following section, we investigate
a variant of pathfinding, known as multi-goal pathfinding, which is the main focus
of this dissertation.

1.2 Multi-goal pathfinding

Classical pathfinding consists in finding a path between 2 points, a start and a
destination. Multi-goal pathfinding, however, aims at finding a path between 2
points, the start and the destination, which also connects a set of points along the
path. Those points are the locations at which a given set of goals can be satisfied.
In the literature, there are 2 common variants of multi-goal pathfinding. In the
first variant, given a single start and multiple destinations, multi-goal pathfinding is
defined as a problem of searching for a path between the start and each destination
resulting in multiple paths [Lim 2014]. The second variant of multi-goal pathfinding
is treated as a Travelling Salesman Problem in which the aim is to find a path from a
start to a number of goals before reaching a destination. The multi-goal pathfinding
addressed in this dissertation bares more resemblance to the second variant than
the first in the sense that it has a start and a destination, and thus the solution is
a single path from the start to the destination.

The classical Travelling Salesman Problem can be defined as: Given a set of
cities and the cost of travel between each possible pair, the Travelling Salesman
Problem is to find the best possible way of visiting all the cities and returning to the
starting point that minimises the travel cost [Matai 2010]. Essentially, the objective
of this problem is to determine the order in which the salesman should travel a set
of cities to minimise the cost of travel. The main distinction between our problem
and the classical Travelling Salesman Problem is that, in our problem, a goal may
be satisfied at multiple locations. Rather than determining the order of goals, we
are interested in determining the locations in which each given goal can be satisfied
and finding the optimal path from the start to the destination in which all the given
goals can be satisfied in an order which we assume is given. The other difference
is that the solution to the classical Travelling Salesman Problem eventually leads
the salesman back to the start. In our problem, the solution connects a start to a
destination, which may not necessarily be the same as the start.

In [Werner 2011], the author addresses a variant of Travelling Salesman Problem
in which there is a partial order constraint on the goals. The Partially Ordered
Travelling Salesman Problem, as called by the author, is defined as: Assume we are
given a weighted Graph G and a partially ordered subset P ⊆ V (G) of the vertices
of G. Defining a tour to be given by a total ordering of the vertices in P and the

14 Chapter 1. Pathfinding and Multi-goal Pathfinding

length of such a tour as the sum of the length of the shortest ways interconnecting
the vertices of P in this respective order, find the shortest tour. This problem still
consists in determining the order of the goals that minimises the cost, which is
not the case in our problem. Furthermore, as in the classical Travelling Salesman
Problem, this Partially Ordered Travelling Salesman Problem also aims at finding
a path that returns to the starting point.

The multi-goal pathfinding addressed in this dissertation consists of 2 main prob-
lems: the pathfinding problem and the goal satisfaction problem. Basically, it can
be considered as a pathfinding problem with the addition of goals to be satisfied
in a given order. Moreover, solving multi-goal pathfinding in ubiquitous environ-
ments necessitates an approach that is capable of handling the constraints specific
to such environments, namely dynamics, mobility, and openness. In consequence,
an approach to solving multi-goal pathfinding in ubiquitous environments needs to
be capable of handling these 3 constraints. More precisely, these constraints impose
the following issues:

• The needs for up-to-date information: In ubiquitous environments, the states
of cybernetic, physical, and/or social entities may evolve over time. Such dy-
namics renders it impossible to have complete knowledge of the environment
prior to path computation, and thus requires up-to-date information regard-
ing the current state of the environment during path computation and path
execution.

• The needs to consider the latency of accessing resources: Relevant and up-to-
date information is required to find an optimal path in the current state of the
environment. Such information is obtained from various resources including
the cybernetic, physical, and/or social entities located in the environment.
The process of retrieving information from resources results in latency caused
by resource accesses and data transfers.

The approaches to multi-goal pathfinding in the literature such as [Laporte 1992,
Bektas 2006] focus on finding the optimal order of goals. They are, therefore, not
compatible with our problem in which the order of goals is given and imposed. In
the following sections, we present some of the most widely used search algorithms
as they are fundamental to the more advanced algorithms as well as to the search
algorithms designed to address the constraints such as dynamics and mobility.

1.3 Basic search algorithms

Search algorithms are an essential element in solving pathfinding problems. They
can be categorised into 2 groups: uninformed or blind search algorithms and in-
formed or heuristic search algorithms. Each group consists of a wide range of algo-
rithms and variations. To measure the performance of a search algorithm, 4 criteria
are used [Russell 2016]:

• Completeness: Is the algorithm guaranteed to find a solution if there is one?

1.3. Basic search algorithms 15

• Optimality: Does the algorithm find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed to perform the search?

In this section, we discuss the classical search algorithms of each category and assess
them based on these 4 criteria.

1.3.1 Uninformed search algorithms

Uninformed search algorithms are the most fundamental search algorithms. Since
no additional information about nodes in the search space is known, the algorithms
are not able to determine whether a node is more promising than the others. The
strategy employed in this type of algorithms consists in generating successors of a
node and determining whether a node is a goal node. The key characteristic that
makes an uninformed search algorithm different from the others of the same category
is the order in which nodes are expanded [Russell 2016].

1.3.1.1 Breadth-first search

Breadth-first search starts the search process by expanding the root node. Then,
it expands all the successors of the previously expanded node. Breadth-first search
expands all the nodes at a given depth of the search tree before continuing to the
next level. To achieve this, a simple use of FIFO queue is sufficient. New nodes,
which are deeper, are placed at the back of the queue, while old nodes, which are
shallower, are in the front of the queue. Thus, the shallower nodes get expanded
first. Breadth-first search is complete if the search space is finite. It guarantees that
the goal found is the shallowest goal node, which means that the goal is optimal if
all the step costs are identical. However, space and time complexity of breadth-first
search are exponential, making it unsuitable for solving complex or even normal-
sized problems [Russell 2016].

1.3.1.2 Depth-first search

Depth-first search expands the deepest node in the search tree first. It maintains
a LIFO queue so that the most recently generated node (i.e., the deepest node)
is chosen for expansion. Depth-first search is complete if the search space is finite
and a mechanism to avoid redundant paths and repeated nodes is used so that
the algorithm will expand every node eventually. However, it is not optimal. Its
time complexity is O(bm) where b is the branching factor (i.e., maximum number
of successors of any node) of the search space and m is the maximum depth of the
search tree, which can be much bigger than the depth of the shallowest solution or
infinite. The advantage of depth-first search over breadth-first search is the space
complexity. For a search space with branching factor b and maximum depth m,
depth-first search needs O(bm) [Russell 2016].

16 Chapter 1. Pathfinding and Multi-goal Pathfinding

1.3.1.3 Uniform-cost search

Breadth-first search is optimal only if all the edge costs are equal because it expands
the shallowest unexpanded node. Uniform-cost is optimal with any edge costs. In
uniform-cost search, the order in which nodes are expanded is determined by the
path cost from the starting node to the node being evaluated. The node with the
lowest path cost is selected for expansion. To achieve this, uniform-cost search main-
tains a priority queue ordered by the path cost. When a node is expanded, the goal
test is applied to determine whether the expanded node is the goal node. The pseu-
docode of uniform-cost search adapted from [Russell 2016, Chapter 3, Section 3.4,
p. 84] is shown in Algorithm 1. Uniform-cost search guarantees completeness if the
cost of every step exceeds some positive constant. It is also optimal provided that
step costs are non-negative. The time and space complexity of uniform-cost search
is O(b1+[C∗/c]) where b is the branching factor, C∗ the cost of the optimal path,
and c the minimum cost of any step. Dijkstra’s algorithm can be regarded as a
variant of uniform-cost search. The difference is that Dijkstra’s algorithm searches
for the shortest path from the start node to every other node in a graph, whereas
uniform-cost searches for the shortest path from the start node to only one node,
the goal node.

1.3.2 Informed search algorithms

Contrary to uninformed search algorithms, informed search algorithms employ knowl-
edge specific to the problem in order to find solutions more efficiently. In informed
search algorithms, node expansion is based on an evaluation function, commonly
denoted as f . The evaluation function determines the cost estimate of nodes. The
node with the lowest f is expanded first. The choice of f distinguishes one informed
search algorithm from another. In most cases, the evaluation function incorporates
a heuristic function. The heuristic function estimates the cost of the cheapest path
from a node to the goal node. The additional problem-specific knowledge is com-
monly used in heuristic functions [Russell 2016]. Many informed search algorithms
have been developed such as greedy best-first search, recursive best-first search, and
A* search. A* [Hart 1968] is probably the most widely used heuristic algorithm.
Many variants of A* have been designed to address various aspects of the search
such as improving search efficiency, reducing resource usage, and adapting to dy-
namic environments. Therefore, the rest of this section is dedicated to examining
A* search and its variants.

A* search
A* is a best-first search algorithm that evaluates nodes by combining g(n) value,
the cost of the best known path from the start node s0 to reach the node n, and
h(n) value, the estimated cost from the node n to the closest goal node. Therefore,
the cost function of a node n is defined as f(n) = g(n) + h(n). f(n) estimates the
cost of the cheapest path to the goal node through n. A* maintains an Open list
and a Closed list. The Open list contains the nodes that have been generated, and

1.3. Basic search algorithms 17

Algorithm 1 Uniform-cost search algorithm as described in [Russell 2016, Chap-
ter 3, Section 3.4, p. 84]
1: node ← initial node with path cost g = 0

2: frontier ← a priority queue ordered by g , with node as the only element
3: explored ← ∅ a list of explored nodes
4: while true do
5: if frontier is empty then
6: return failure
7: end if
8: node ← pop(frontier)
9: if node is goal node then

10: return node
11: end if
12: add node to explored
13: successors ← expand(n)
14: for each successor succ in successors do
15: if succ not in explored or frontier then
16: frontier ← insert(succ)
17: else if succ in frontier has a higher cost than the newly found succ then
18: replace the succ in frontier with the newly found succ
19: end if
20: end for
21: end while

18 Chapter 1. Pathfinding and Multi-goal Pathfinding

are waiting to be expanded. The Closed list is a set of expanded nodes. In each
iteration, A* selects a node with the smallest path cost evaluated using f from the
Open list to expand. A pseudocode of A* is illustrated in Algorithm 2.

A* is optimal if the heuristic function h(n) is consistent [Russell 2016]. A heuris-
tic function is consistent (or monotonic) if h(n) ≤ c(n, n′) + h(n′) for all nodes n
and n′ such that n′ is a successor of n, c(n, n′) the cost from n to n′, and h(t) = 0

for all goal nodes t. A* is also complete provided that there is a finite number of
nodes with a cost less than or equal to the cost of the optimal path C∗. Another
positive property of A* is that it is optimally efficient for any given heuristic. A*
expands all the nodes with f(n) < C∗, and none with f(n) > C∗. No other optimal
algorithm is guaranteed to expand fewer nodes than A* as they also have to expand
all the nodes with f(n) < C∗ to avoid the risk of missing the optimal solution.

The main drawback of A* is its space complexity. A* stores all the gener-
ated nodes in memory. Therefore, it is not practical to use A* for large-scale
problems. To overcome the space problem, some variants of A* have been devel-
oped such as iterative-deepening A* [Korf 1985] and simplified memory-bounded A*
[Russell 1992]. Iterative-deepening A* is a variant of iterative-deepening depth-first
search. The difference is that iterative-deepening depth-first search uses depth as
the threshold for each iteration, while iterative-deepening A* uses the cost function
f(n) = g(n) + h(n). In each iteration, the algorithm performs a depth-first search
and cuts off the branch with f(n) > threshold. At the start of the search, the
threshold is cost of the initial node. For each iteration, the threshold is the mini-
mum cost of all the costs exceeding the current threshold. Iterative-deepening A*
combines the benefits of depth-first search and A* search. It uses less memory than
A*, and focuses on exploring the most promising nodes, thanks to the cost function.
Like A*, simplified memory-bounded A* expands the most promising nodes until
the memory is full. In that case, it removes the worst node, which is the highest
f-value node, from the search tree to be able to add a new node to the search tree.
Then, it stores the value of the removed node to its parent. In this way, we know
the quality (i.e., the cost) of the best path in the removed subtree.

1.3.3 Analysis of basic search algorithms

In this section, we have presented different search algorithms, and discussed them
with regard to the 4 criteria, namely completeness, optimality, time complexity, and
space complexity.

Uninformed search algorithms find a solution by blindly searching through the
search space. Some uninformed search algorithms are complete and optimal. How-
ever, their time and memory requirements make them impractical for solving com-
plex and large-scale problems. Informed search algorithms employ a heuristic func-
tion to search more efficiently than uninformed search algorithms. The most widely
known informed search algorithm A* is optimal, complete, and efficiently optimal
given certain conditions. However, its memory requirement renders it impractical
for large problems.

1.3. Basic search algorithms 19

Algorithm 2 Pseudocode of A* as described in [Fukunaga 2017]
1: Openlist ← s0
2: while Openlist 6= ∅ do
3: Get and remove from Openlist a node n with the smallest f(n)
4: Add n to Closedlist
5: if n is a goal node then
6: Return the path from s0 to n as the solution
7: end if
8: for each successor n′ of n do
9: g1 = g(n) + c(n, n′)

10: if n′ ∈ Closedlist then
11: if g1 < g(n′) then
12: Remove n′ from Closedlist and add it to Openlist
13: else
14: Continue
15: end if
16: else
17: if n′ /∈ Openlist then
18: Add n′ to Openlist
19: else if g1 ≥ g(n′) then
20: Continue
21: end if
22: end if
23: Set g(n′) = g1
24: Set f(n′) = g(n′) + h(n′)

25: Set parent(n′) = n

26: end for
27: end while
28: Return failure (no path exists)

20 Chapter 1. Pathfinding and Multi-goal Pathfinding

These algorithms are serial. Each step is executed sequentially as the global
state of the search is required. For example, in each iteration, A* selects a node
with the lowest cost estimate f to expand. Serial search becomes impractical when
the latency of computing edge costs is introduced as the algorithm is blocked while
waiting for required data. Furthermore, with these basic search algorithms, when
there are one or more edge cost changes during or after computation, the solution
needs to be recomputed from scratch. Therefore, they are not applicable for solving
pathfinding problems in ubiquitous environments, which are highly dynamic.

In the following sections, we review more advanced variants of informed search
algorithms. First, we investigate the algorithms that aim at addressing the dynamics
in the search space. Second, we look into the parallel and distributed algorithms for
potential solutions to address the latency issue.

1.4 Search in dynamic environments

Ubiquitous environments are highly dynamic. The state of the environments may
evolve over time. Searching in such dynamic settings needs to take into account
the evolution of the environments during path computation and path execution to
guarantee the validity of the solutions. Changes that may affect the solutions result
from one of the following factors:

• mobility of the cybernetic, physical, and/or social entities located in the envi-
ronment,

• changes of the state of the entities,

• and entries and exits of the entities.

Classical search algorithms are incapable of handling such dynamics. Every time
changes occur, those algorithms need to recompute the solutions from scratch. This
is impractical as the time between changes can be short, so the search may have
to be restarted before it has finished and produced any usable solution. In the
literature, there are incremental search algorithms that have been developed to
handle the changes in dynamic environments. This type of algorithms corrects
previous solutions based on updated information, and reuses data from previous
searches to avoid recomputing from scratch. Another type of search algorithms that
is of relevance to the dynamics is the anytime search algorithms. These algorithms
trade optimality for speed, and can be useful in the context where computation time
is critical. In this section, we discuss some of the most widely used algorithms in
both categories with regard to the dynamics of the environment.

1.4.1 Incremental search

Search is often a repetitive process where one needs to solve a series of similar search
tasks because the actual state is different from initially expected or the state evolves

1.4. Search in dynamic environments 21

over time [Koenig 2002b]. Therefore, the solution needs to be recomputed. The aim
of incremental search techniques is to find solutions to a series of similar tasks faster
than solving each search task independently from scratch. Such techniques are
suitable for handling the dynamics and uncertainty of the environment.

D* algorithm
D* [Stentz 1994] is one of the first search algorithms that addresses pathfinding in
unknown, partially known, and changing environments. It handles the dynamics in
the sense that arc costs may change during the search process. It was named D*
due to its resemblance to A*. Like A*, D* maintains an Open list which contains
the states to be expanded. Each state is tagged with New, Open, or Closed. New
states are the states that have never been on the Open list; Open states are the
states currently on the Open list; Closed states are the states that are no longer on
the Open list. Initially, all states are set to New. The goal state G is placed on the
Open list because, in contrast to A*, D* searches backwards from the goal state.
D* expands the nodes in Open list until the start state X is removed from the Open
list (i.e., path found) or until there is no more state in the Open list (i.e., path not
found).

For each state X, D* maintains an estimated cost from X to the goal state G
determined by the cost function h(G,X). For each state Y in the Open list, the key
function k(G, Y) is the minimum of h(G, Y) since Y was placed on the Open list.
When the path is being followed to reach the goal state, if a change in the arc cost
is detected, the arc cost is updated and the affected states are placed on the Open
list. States are classified either as a Raise state (k(G, Y) < h(G, Y)) or a Lower
state (k(G, Y) = h(G, Y)). D* expands the states on the Open list to propagate
the changes. Each time a state is removed from the Open list to expand, it passes
the cost changes to its neighbours. The neighbours are in turn placed on the Open
list to continue the process. D* is both complete and optimal. The drawback of D*
is that it propagates cost changes through invalidated states without considering
which expansions will benefit the moving subject at its current location.

Focussed D*
Focussed D* algorithm [Stentz 1995] computes an initial path from the goal state
to the start state, and then modifies this path during path execution as arc costs
change. It extends D* algorithm [Stentz 1994] by adding a heuristic focussing func-
tion, which makes it a complete generalisation of A* for dynamic environments.

D* algorithm maintains an estimated cost for each state X to the goal state G
which is computed by a cost function h(X). It propagates all cost changes without
considering the current location of subject. All affected states become invalidated
and are placed in the Open list to propagate the changes. Focussed D* introduces a
focussing heuristic that takes into account the subject’s location. Let the focussing
heuristic g(X,R) be the estimated cost of the path from the subject’s current loca-
tion to X. Focussed D* uses a function f(X,R) = h(X)+ g(X,R) to estimate path
cost and to sort the Open list.

22 Chapter 1. Pathfinding and Multi-goal Pathfinding

Focussed D* focuses the repairs to significantly reduce the total time required for
the initial path computation and subsequent replanning operations. The focussing
heuristic is used to focus the propagation of cost increases and cost reductions in the
Open list. This enables the algorithm to focus on the direction of the moving subject
and to reduce the total number of state expansions. The algorithm enables optimal
path execution in the sense that an optimal path to the goal is followed at every
state in the execution, assuming all known information at each step is accurate.

Lifelong planning A*
Lifelong planning A* (LPA*) [Koenig 2002b] is an incremental variant of A* algo-
rithm. LPA* first searches the same way as A*, but when the arc costs change,
the subsequent searches are much faster than using A* to recompute the path from
scratch as LPA* reuses the parts of the previous search tree that are not affected
by the changes. Like A*, for each state s, LPA* maintains a cost estimate from
the start state g(s). In addition, it also maintains another type of estimate from
the start state rhs(s), which is a one-step look ahead value based on g(s), and thus
makes it potentially more informed than g(s). The two kinds of estimates always
satisfy the following relationship:

rhs(s) =

{
0 if s = sstart
mins′∈Pred(s)(g(s

′) + c(s′, s)) otherwise

A state s is locally consistent iff g(s) = rhs(s). LPA* maintains a priority queue
that always contains the locally inconsistent states, which are the states whose
g value (i.e., cost estimate computed using the g function) needs to be updated
to make them locally consistent. LPA* keeps expanding the states in the priority
queue to update them until the goal state sg is locally consistent and there are no
states in the queue with a lower cost than that of sg.

D*Lite
D*Lite [Koenig 2002a] addresses the problem of robot navigation in a unknown
terrain. It is different from LPA* because D*Lite incrementally plans the shortest
path from a robot’s current position to the goal position as it moves rather than
from a fixed starting point. D*Lite implements the same navigation strategy as
Focussed D*, but it uses a different and simpler algorithm as it is based on LPA*.
D*Lite starts by computing the shortest path from its current position to the goal.
The robot follows this path until it reaches the goal. If some edge costs change
during the path execution, D*Lite recomputes the shortest path from the current
position to the goal. Based on LPA*, the algorithm repeatedly computes the shortest
path as the edge costs change. However, LPA* searches from the start to the goal
position. In D*Lite, the start position changes as the robot moves, so it adapts
LPA* by reversing all edges and exchanging the start and the goal position. D*Lite
is both complete and optimal. Compared to Focussed D*, D*Lite is simpler and
more efficient.

1.4. Search in dynamic environments 23

1.4.2 Anytime search

The principle of anytime search algorithms is to provide an initial suboptimal so-
lution very quickly, and then continuously improve the solution until the time runs
out. This is particularly useful for solving problems in a complex environment where
optimal search algorithms would require too much time to find a solution that they
become impractical. A set of anytime search algorithms have been developed such
as [Zilberstein 1995], [Dean 1988], [Zhou 2002], and [Likhachev 2004]. These algo-
rithms start by computing an initial and potentially highly suboptimal solution, and
then improve the solution as long as time permits. Most anytime algorithms that
are based on A* gain speed-ups by inflating the heuristic values used by A*. How-
ever, they have no control over the suboptimality bound, while the initial solution
is being improved.

Anytime Repairing A*
In [Likhachev 2004], the authors propose an anytime algorithm, entitled Anytime
Repairing A* (ARA*), which provides suboptimality bounds for each successive
search. ARA* exploits the fact that, in many domains, inflating the heuristic values
used by A* tends to provide speed-ups at the cost of optimality. ARA* starts by
performing an A* search with an initial inflation factor ε0 to quickly produce an
ε0-bounded solution. Then, it executes a succession of A* searches, each with a
decreasing inflation factor to improve the solution and reusing information from
previous searches.

An expanded state of a particular search becomes inconsistent if the cost of
one of its neighbouring states changes. The cost of a state may change when the
inflation factor changes. In that case, the expanded state is added to INCONS
list, which contains all inconsistent states. When the current search terminates,
all the states in the INCONS list are inserted into a priority queue with a new
inflation factor to be used in the next search. Considering only the inconsistent
states for the previous search allows much of the information from the previous
search to be reused. Therefore, minor computation is needed to find a new path
when the inflation factor is reduced for each successive search. The limitation of
ARA* is the fact that it is only applicable for static environments as it only takes
into account the changes resulting from decreasing the value of the inflation factor.
The algorithm does not consider any dynamic changes in the environments during
path computation or path execution.

Anytime Dynamic A*
In [Likhachev 2005], the authors combine ARA* with D*Lite [Koenig 2002a] in or-
der to solve search problems in dynamic environments and in an anytime man-
ner. They propose an algorithm named Anytime Dynamic A* (AD*). Like ARA*,
AD* performs a succession of searches with decreasing inflation factors to gen-
erate a series of solutions, each better than the previous one. When changes
occur in the environment, states affected by the changes are inserted into Open
queue. As in D*, the priority of the affected states is the minimum value of

24 Chapter 1. Pathfinding and Multi-goal Pathfinding

their previous key value and their new key value. The key value of a state s is
key(s) = [min(g(s), rhs(s)) + h(sstart, s),min(g(s), rhs(s))] where g(s) is the esti-
mate of the cost from s to the goal, rhs(s) is the one-step lookahead cost (as defined
in LPA*), and h(sstart, s) estimates the cost of the optimal path from sstart to s.
The algorithm keeps expanding the states in the Open queue until the solution has
reached a certain bound of suboptimality.

1.4.3 Analysis of search in dynamic environments

Searching in dynamic environments requires the algorithm to take into account
changes during path computation and path execution as the subject is following the
path. In this section, we have reviewed some of the most well-known and widely used
search algorithms that were developed to handle the dynamics of the environments.

A number of algorithms, under the category of incremental search algorithms,
have been proposed to cope with the dynamics and the uncertainty of the envi-
ronments. These algorithms are efficient in correcting previous solutions based on
updated information by using the efforts from previous searches. Furthermore, they
can guarantee optimality of the solutions. The limitation of those algorithms with
regard to our problem is that, given the latency required to determine the edge
costs, the execution time would make them impractical as each step is performed
sequentially and synchronously. In addition, the mechanism of repeatedly improving
the solutions implies repeated accesses to resources, and thus more latency.

Anytime algorithms aim at reducing search time at the cost of optimality. There
have been attempts to integrate incremental algorithms and anytime algorithms to
address the time constraint as well as the dynamics of the environments, at the
same time. The general drawback of this kind of algorithms is that the solution is
suboptimal. As in the case of incremental algorithms, anytime algorithms would be
rendered impractical when latency is introduced.

1.5 Parallel search algorithms

Most search algorithms were developed for single-agent problem solving. Therefore,
they perform in a serial and sequential manner. Serial search algorithms are not
compatible with our context where edge costs are computed by using information
from resources because each access to a resource creates some latency. Our intuition
is to investigate parallel and distributed search algorithms in which search processes
can be executed in parallel, and thus may mitigate the impact of latency as the
computation of different edge costs can be in parallel. In this section, we discuss
some potential parallel and distributed search algorithms in the literature by keeping
in mind the latency issue.

Generally, effective parallelisation of search algorithms offers two main benefits.
First, it enables speedup on multi-core processors. Second, it offers an increased
aggregate memory when running on a cluster. Best-first search algorithms main-
tain an Open list, which stores the set of states to be expanded. The authors

1.5. Parallel search algorithms 25

of [Kumar 1988] identify two broad approaches to parallelising best-first search al-
gorithms based on how the maintenance of the Open list is parallelised, namely
centralised parallel search and decentralised parallel search.

Centralised parallel search
In centralised parallel search, the Open list is shared among processors. Simple
Parallel A* (SPA*) [IRANI 1986], Parallel K-Best First Search [Vidal 2010], and
PA*SE [Phillips 2014] are instances of centralised parallel search. The advantage
of such algorithms is that each processor expands one of the current best nodes
from the shared Open list and generates its successors, thus computing edge costs
in parallel. The drawback of the centralised parallel search is the synchronisation
overhead which refers to the time wasted when some processors have to wait for the
other processors to reach synchronisation points. For instance, concurrent accesses
to the shared Open list becomes a bottleneck, even if lock-free data structures are
used.

Decentralised parallel search
With the decentralised approach, each processor maintains its own Open list. Ini-
tially, a root processor generates some nodes and distributes them among the proces-
sors. Each processor, then, locally performs the search. This enables parallel node
expansions, thus parallel edge cost computations, and avoids the concurrency over-
head associated with the Open list. However, decentralised parallel search suffers
from the search overhead as it expands more states than its serial counterpart. This
is owing to the fact that the search space is distributed among processors. Hence,
each processor has limited knowledge of the state of the overall search. Another
drawback of this approach is the communication overhead that results from the
exchanges of information among processors. Some examples of decentralised par-
allel search algorithms include HDA* [Kishimoto 2009, Kishimoto 2013] and PRA*
[Evett 1995].

Distributed and parallel search
A parallel search algorithm that is also suitable for distributed search was proposed
in [Nissim 2012]. The algorithm is a multi-agent version of A* that is available in
2 flavours: parallel and distributed. The parallel version of the algorithm, as in
the case of other parallel search algorithms, exploits the parallel hardware to obtain
speed-up. The distributed version of the algorithm was designed to be compati-
ble with the search in a distributed setting by different agents possessing different
search capabilities. The aim is to provide fast and distributed optimal search, while
respecting agent privacy.

Discussion
Parallelisation is a promising way to address latency as it enables parallel compu-
tation of edge costs. However, one has to deal with search, synchronisation, and
communication overheads to achieve good speed-ups in parallel search. Moreover,
existing parallel search algorithms assume the information needed to compute the

26 Chapter 1. Pathfinding and Multi-goal Pathfinding

edge costs is immediately available, so each processor executes a search algorithm
in a serial and synchronous manner. With latency, the efficiency achieved by paral-
lelisation could be reduced significantly.

1.6 Conclusion and discussion

In this chapter, we have presented three main categories of search algorithms, namely
basic search algorithms, search algorithms for dynamic environments, and parallel
search algorithms. Basic search algorithms cannot handle changes in the environ-
ments, so every time a change occurs, a new path needs to be recomputed from
scratch. Furthermore, they execute in a synchronous and serial manner, which is
impractical when dealing with latency. Incremental and anytime search algorithms
address the dynamics of the environments, but cannot handle the latency as they
are serial algorithms. Parallel search algorithms enable parallel computation of edge
costs, but fail to take into account the changes in the search space.

It appears that individually, the existing algorithms are not sufficient to handle
our problem where both dynamics and latency need to be handled. Attempts to
combine different types of algorithms to address multiple constraints can be seen
in Anytime Dynamic A* [Likhachev 2005]. Integrating the algorithms for dynamic
environments with parallel algorithms is a promising way to address our problem,
which we would like to explore.

Chapter 2

Application: Intelligent Traveller
Information Systems

Contents
2.1 Outdoor trip planning and navigation 29

2.1.1 Operator-specific traveller information systems 30

2.1.2 Region-specific traveller information systems 30

2.1.3 Independent traveller information systems 31

2.1.4 Discussion . 31

2.2 Indoor trip planning and navigation 31

2.2.1 Trip planning and navigation in transit complexes 32

2.2.2 Trip planning and navigation in cyber-physical environments 32

2.2.3 Multi-goal trip planning . 32

2.2.4 Discussion . 33

2.3 Data management models . 33

2.3.1 Using data from other systems 33

2.3.2 Using pre-collected data . 34

2.3.3 Collaboration-based model 34

2.3.4 Active approach to data collection 34

2.3.5 Analysis of the approaches to acquiring data 34

2.4 Data models for transport and traveller information 35

2.4.1 Transmodel . 35

2.4.2 Datex II . 35

2.4.3 GTFS . 36

2.4.4 IFOPT . 36

2.4.5 GDF . 36

2.4.6 NeTEx . 36

2.4.7 SIRI . 36

2.4.8 Analysis of the data models 36

2.5 Conclusion . 37

28 Chapter 2. Application: Intelligent Traveller Information Systems

Pathfinding is a problem that is fundamental in numerous fields such as trans-
portation, robotics, and video games. Similarly, multi-goal pathfinding can be seen
in various contexts including, but not limited to, trip planning, robotics and logistics.
The relation between multi-goal pathfinding and trip planning can be evidently seen.
We can refer to our previous example about the traveller named Bob who wants to
plan a trip in an airport, presented in the introduction, as an instance of addressing
multi-goal pathfinding in the context of trip planning. In this dissertation, we aim
at proposing a generic approach to solving multi-goal pathfinding that can function
across different fields. Nevertheless, our field of focus is transportation and smart
mobility, more specifically, solving multi-goal pathfinding in trip planning which is
generally required in traveller information systems.

Efforts have been invested to apply information and communication technolo-
gies in smart mobility such as intelligent transport information systems. The aim
of such systems is to support transportation of humans and goods in order to safely
and efficiently use transportation means and infrastructures [ETSI 2011]. More
specifically, one of the most essential elements of intelligent transport information
systems is the traveller information systems. The attempt to design traveller in-
formation systems dates back to the late 1960s, during which the systems were
employed to merely inform travellers about congestion via one-way communication
means including Variable Message Signs and Highway Advisory Radio [Adler 1998].
Various research and development have been conducted to study and improve trav-
eller information systems. They have evolved into a more mature version, currently
referred to as advanced traveller information systems or even intelligent traveller
information systems. They aim at providing all kinds of travellers with multi-
modal (e.g., cars, train, ferry, bus) trip planning information and assistances before
and during trips, route guidance services and information (e.g., directions, travel
time), and travel-related advices such as incident warnings and parking information
[U.S. Department of Transportation 1998].

In contemporary society where travel plays an important role in our daily lives,
intelligent traveller information systems can be very beneficial. In this respect, trav-
elling with personal vehicle and/or public transportation can be complicated and
stressful, especially to unfamiliar destinations. For instance, in the case of using pub-
lic transportation, choosing an optimised itinerary requires sophisticated knowledge
about public transportation networks [Chiu 2005]. Similarly, travelling on private
vehicles necessitates familiarity with roadways and road conditions. Through intel-
ligent traveller information systems, the provision of useful travel information and
assistances to travellers could lead to diminishing stress related to trip planning
and navigation, more efficient trip choices, reducing travel time [Adler 1998], and
avoiding congestion as well as dangerous driving conditions [Kumar 2003].

Though numerous traveller information systems are in operation, very few at-
tempt to support multiple travel modes on a global geographical coverage. Some
traveller information systems are designed to support only particular modes of trans-

2.1. Outdoor trip planning and navigation 29

portation and geographical areas, while others may be restricted by technical bar-
riers. In addition, only a small number of those systems take travellers’ preferences
into account. Hardly any, or possibly none, dynamically use different sources of
information adapted to travellers’ requests. Owing to the functional and technical
limitations of the existing traveller information systems, travellers are often required
to use multiple systems in combination and to seek for further information from other
sources such as weather applications and websites for traffic information in order to
acquire enough information for their trips.

In this information age, smart and connected buildings and infrastructures pro-
vide a significant amount of information that can be used to make more informed
decisions in travelling. They have redefined the term point-to-point travel guidance,
as such guidance should also assist travellers in indoor navigation of various facilities,
such as train stations, airports, and shopping complexes just to name a few. Most
of the research in the field of indoor navigation concentrates on indoor positioning,
rather than pathfinding. In the past, this made sense as indoor pathfinding could be
simply done by using static information such as a static map of the environments.
With the emergence of ubiquitous environments, such approach to indoor pathfind-
ing can no longer be efficient due to the dynamics of the environments. Constraints
such as dynamics and openness need to be taken into account. Up-to-date informa-
tion of the environment is required during path computation to provide solutions
coherent with the actual state of the environment.

The purpose of this chapter is to investigate our field of application which is the
intelligent traveller information systems. The motivation behind this investigation
is to study the existing systems and to identify their benefits and limitations in
trip planning, both indoor and outdoor. The rest of the chapter is organised as
follows. First, we review the existing systems for outdoor trip planning. Second,
we discuss various solutions used in existing traveller information systems to solve
indoor trip planning. Third, we discuss the data management models employed in
existing traveller information systems. Fourth, we discuss the existing solutions for
modelling transport and traveller information to identify the extent to which they
are able to model different aspects of ubiquitous environments.

2.1 Outdoor trip planning and navigation

Most of the research and development on traveller information systems focus on
outdoor trip planning and navigation. Diverse research has attempted to identify the
important functionalities that should be included in traveller information systems.
According to [U.S. Department of Transportation 1998], the key functionalities that
a traveller information system should provide consist of multi-modal trip planning,
route guidance services, and advisory functions. A common way to classify traveller
information systems is via the transport services for which the systems provide
assistances. In this way, we can categorise them into route guidance systems and
transit information systems.

30 Chapter 2. Application: Intelligent Traveller Information Systems

Route guidance systems assist drivers in making travel decisions by providing
them with travel recommendations and traffic information [Herbert 2008]. The assis-
tance provided by such systems may include decision aids in pre-trip planning, which
involve selecting route and departure time as well as making trip or no-trip deci-
sion, and en-route support for route adaptation [Khanjary 2012]. Examples of route
guidance systems are Centrally Determined Route Guidance [Yamaguchi 1999], Per-
sianGulf [Khanjary 2011], and STRG [Chen 1993]. The features provided by route
guidance systems are limited to private vehicles.

Transit information systems, however, assist public transport passengers in their
trips using public transport services such as buses, railways, subways, and ferries.
Information provided by transit information systems varies significantly. Types of
information offered by such systems may include static information (e.g., transit
routes, service schedules, fares), itinerary planning, and real-time information such
as delays or incidents [Peng 2000]. For example, TCL1 and Tisséo2 provide infor-
mation about public transport services in Lyon and Toulouse, respectively. The
drawback of transit information systems is that they target only public transport.

Up to the present, a significant number of traveller information systems have
been developed. The assistance provided to travellers vary from one system to an-
other. In this section, we present and compare different types of traveller information
systems. To this end, we classify them based on geographical coverage they support
as it allows us to highlight the benefits and limitations of each type of the systems.
Based on geographical coverage, traveller information systems can be classified into
operator-specific, region-specific, and independent systems.

2.1.1 Operator-specific traveller information systems

An operator-specific traveller information system is dedicated to a particular trans-
port operator. Hence, the spatial coverage of such a system is limited to the areas
for which their operator provides the actual transportation services. Many trans-
port operators have developed their own systems to provide information about their
transportation services. RATP3, designed for the public transport operator in Paris,
and VINCI AUTOROUTES 4 for a highway operator in France are examples of
operator-specific traveller information systems. For this type of systems, the spatial
coverage, the travel mode(s), and the supported transportation services are limited
to those of their operators. Travellers may need to use multiple systems of different
operators to get the necessary information and assistance for their trips.

2.1.2 Region-specific traveller information systems

A region-specific traveller information system is designed to provide assistance for a
specific geographical space. Commonly, such a system is a system developed by the

1http://www.tcl.fr/
2http://www.tisseo.fr/
3http://www.ratp.fr/
4http://www.vinci-autoroutes.com/

2.2. Indoor trip planning and navigation 31

authority of a region or an area to serve within that particular region or area. Infor-
mation provided by region-specific traveller information systems are not restricted
to a single transport operator. It could be a combination of transportation services
from different operators serving the region. For example, Moovizy5 is a traveller in-
formation system that provides travel-related information and trip planning feature
for the city of Saint-Étienne. The assistance provided by Moovizy is not limited
to the transport operator of Saint-Étienne, namely STAS6, but also includes other
transport operators that operate in the region of Rhône-Alpes from Saint-Étienne
to Lyon such as TIL coaches and TCL network operating in Lyon. Compared to
operator-specific traveller information systems, region-specific traveller information
systems often support a larger geographical coverage, more travel modes, and wider
choices of transportation services. Nonetheless, they remain limited in terms of
geographical coverage.

2.1.3 Independent traveller information systems

We refer independent traveller information systems to the systems that are inde-
pendent of any specific transport operator or geographical areas. Google Transit7,
iTransports8, and Rome2rio9 are examples of independent traveller information sys-
tems. Currently, iTransports covers only cities in France and certain areas in Europe.
Rome2rio and Google Transit are among the very few that attempt to support a
global geographical coverage. This kind of systems has no restrictions in terms of
transport operators or geographical areas. Their limitations are often the result
of having insufficient data to provide the assistance for some transport services or
geographical areas. The absence of deliberate restriction signifies the possibilities
for further extension and development of the system.

2.1.4 Discussion

Existing traveller information systems for outdoor trip planning provide various
features, types of assistance, and information for assisting travellers plan their trip.
However, the path planning feature available in those systems address mainly the
classical pathfinding problems, and to the best of our knowledge, none addresses
multi-goal pathfinding.

2.2 Indoor trip planning and navigation

Compared to outdoor trip planning, indoor trip planning and navigation have been
much less studied. In the field of indoor mobility, significant efforts have been in-
vested to address indoor positioning rather than planning and navigation. One of

5https://www.reseau-stas.fr/en/moovizy-mobile-app/9
6https://www.reseau-stas.fr/
7http://www.google.com/landing/transit/
8http://www.itransports.fr/
9https://www.rome2rio.com/

32 Chapter 2. Application: Intelligent Traveller Information Systems

the main reasons is that indoor planning requires indoor positioning capability. An-
other plausible reason is that enclosed spaces used to be simple and of small size,
and thus easy to navigate. These days, enclosed spaces have grown considerably in
sizes, complexity, and numbers. Furthermore, the emergence of smart environments
that are highly dynamic such as smart buildings, smart campuses and smart transit
stations emphasises the needs of indoor planning systems. In this section, we inves-
tigate various existing indoor trip planning systems to determine the extent to which
they can be used to address multi-goal pathfinding in ubiquitous environments.

2.2.1 Trip planning and navigation in transit complexes

In [Czogalla 2015a], [Czogalla 2015b], and [Czogalla 2016], the authors present an
approach to address indoor navigation in public transport facilities such as train
stations and airports. In their work, indoor planning and navigation involves 2
steps: building or facility modelling and route search. The model of a facility
incorporates only the spatial information of the facility. A building is considered
multi-level, i.e., having multiple floors. Each individual floor is modelled as a grid.
The entire building is modelled as a graph where each platform represents a node,
and a stair, an escalator, or an elevator connecting between the platforms is an
edge. For pathfinding, they propose an algorithm that combines breadth-first search
with A* algorithm to perform the search within the graph of building. In terms
of positioning, they employ various techniques including Bluetooth and Wifi cell
positioning and QR-Codes.

2.2.2 Trip planning and navigation in cyber-physical environments

The work presented in [Subakti 2016] addresses indoor guidance systems in cyber-
physical environment such as smart campuses. The authors proposed a system
called a marker-based cyber-physical interaction system which collects sensor data
from the physical environment and links them to different sources of information
to provide guidance information to travellers as well as to act on the environment
dynamically as part of the guidance. The example scenario provided in the paper
is to guide a student who has an appointment with a professor from the gate of the
building until the professor’s office. The system detects the position of the student
and calls the elevator automatically for the student. Once the student has arrived
on the right floor, the light above the professor’s office is turned on to allow the
student to find the office easily.

2.2.3 Multi-goal trip planning

Most of the existing indoor trip planning and navigation systems address the clas-
sical pathfinding problem. Hardly any or possibly none addresses multi-goal path-
fiding. The work in [Werner 2011] aims at solving indoor trip planning that has
goals to satisfy, in an airport. The problem addressed in that work is as follows:
“Assume we are given a weighted graph G and a partially ordered subset P ⊆ V (G)

2.3. Data management models 33

of the vertices of G. Defining a tour to be given by a total ordering of the vertices
in P and the length of such a tour as the sum of the length of the shortest ways
interconnecting the vertices of P in this respective order, find the shortest tour.” In
his approach, the author models the environment as a grid to generate the search
graph of the environment. He proposed two algorithms based on exhaustive search
and genetic search to solve or approximate the problem.

The problem addressed in that paper is a Partially Ordered Travelling Salesman
Problem. Even though it imposes some constraints on the goals to satisfy, the
problem is still to find the total order of the goals, which is not the case in our
problem of multi-goal pathfinding where the order of goals to satisfy is given and
imposed.

2.2.4 Discussion

In the literature, there is a body of work that addresses indoor trip planning. Some
work addresses the problem in cyber-physical environments. However, they address
mainly the problem of classical pathfinding, and not multi-goal pathfinding. In
addition, the work in the context of cyber-physical systems focuses on exploiting
the information coming from the environment and acting on the environment, but
does not consider the dynamic changes of the environment, nor the latency that
could result from accessing the information about the environment.

2.3 Data management models

The quality of services provided by traveller information systems relies heavily on
the quality of data that the systems use. For example, to perform multi-modal trip
planning, information related to the trip using private vehicles and public trans-
portation information from different operators is needed to propose travel plans for
travellers. During the trip, information that may influence the travel such as traffic,
road condition, delay and accidents are essential for adapting the trip. Therefore, in
this section, we discuss different models that existing traveller information systems
use to acquire necessary data to support their services.

2.3.1 Using data from other systems

One of the common methods for collecting data is by using the data from other
systems. This approach is commonly implemented in traveller information sys-
tems of the authority owing to it requiring authorised permission to access other
government-possessed systems. As an example, the Beijing traveller information
systems [Hu 2002] collect real-time traffic flow data from many systems such as ur-
ban traffic signal control system for data of traffic lights control intersections, travel
time estimation system for travel time and speed information, traffic monitoring sys-
tem for current traffic condition images, and parking guidance system for parking

34 Chapter 2. Application: Intelligent Traveller Information Systems

space information. Other examples are the traveller information system for Edin-
burgh [Lovicsek 1998], Oklahoma’s ATIS [Campbell 2011], ATIS for the Bay area
[Asad J. Khattak 1994], and ONLYMOOV’ 10 for Grand Lyon region in France.

2.3.2 Using pre-collected data

Another approach consists in pre-collecting data from different sources during the
construction of the system. With this approach, traveller information systems are
built upon data acquired during the development of the systems. For instance, in
the case of ATIS for Hyderabad city [Kumar 2005], geographic data, information of
one-way road segments, speed limits, road names, city bus routes, and time tables
of inter city bus, train and air services were collected to build a database of the
system [Kumar 2003]. Rome2rio constructs a large repository of transportation
data collected from many sources including thousands of transportation operators
and OpenStreetMap for driving and walking direction. This approach is suitable for
systems that use static data.

2.3.3 Collaboration-based model

This model depends on the contribution of various data owners to obtain data. Such
a model is notably adopted by Google Transit. Providing the standard data format
entitled General Transit Feed Specification (GTFS), Google Transit requires trans-
portation operators or data owners to publish their data respecting the standard
and to provide Google the location of the published data so that it can periodically
fetch the data. Considering the influence of Google, such approach appears feasible,
but compared to other approaches, it requires and depends on much more efforts
from data owners.

2.3.4 Active approach to data collection

The active approach to data acquisition has also been employed in various traveller
information systems. In this approach, a set of data sources is actively and periodi-
cally accessed to collect the necessary data and to detect the updates. Examples of
traveler information systems that employ this approach are Multi-modal Intelligent
Route Advisory System (MIRAS) [Chiu 2005] and Intelligent Transportation Web
Services (ITWS) [Wu 2003]. MIRAS uses WebScript Tool [Chiu 2001] to gather
transportation data from web pages of transportation companies. Similarly, ITWS
uses a crawler to collect real time traffic information from the TANFB11 website.

2.3.5 Analysis of the approaches to acquiring data

Each of the models presented has its own benefits, and is more compatible with
certain cases than with the others. The common shortcoming of the discussed

10http://www.onlymoov.com/
11Taiwan Area National Freeway Bureau (http://www.freeway.gov.tw/)

2.4. Data models for transport and traveller information 35

models is in the fact that they are based on a static set of sources. Hence, the data
available in the systems for providing various features remain limited, and may not
be able to provide optimised solutions for travellers, especially in a dynamic setting.
Furthermore, human intervention is often required, at different extents depending
on the approach, for adding and updating data and/or data sources.

2.4 Data models for transport and traveller information

Data is indispensable to traveller information systems as well as to any other
transport-related systems. Therefore, various data models have been proposed to
provide a standard for modelling transport and traveller information such as trans-
portation network, traffic information, and schedules. In this section, we investigate
the existing data models and identify the extent to which they can be used to model
various aspects of travels, especially in ubiquitous environments.

2.4.1 Transmodel

Transmodel12 provides a conceptual data model reference for public transport, tak-
ing into account both multi-operator and multimodal aspects. The rationale behind
the development of this reference is to offer a solution to the interoperability of
the applications, and thus enabling a convenient integration of applications devel-
oped by different suppliers into a single system. This can be done by standardising
the data structures used by different applications allowing the implementation of
integrated information systems [Tra 2012].

2.4.2 Datex II

Datex II13, a European Technical Specification, aims at providing a standard way
for modelling and exchanging traffic data. According to [Group 2012], the notion
of publication is used to exchange the information such as situation publication,
elaborated publication, measured data publication, and traffic view publication.
Supported mechanisms for data exchange include publisher push on occurrence,
publisher push periodic, and client pull. The data modelling approach is based on
UML, and the current implementation uses XML schema. The UML DATEX II
data model is converted into an XML schema by a developed conversion tool. The
resulting XML schema is used for development of real data exchanges by software
developers. The uses of the DATEX II can be seen in the National Traffic Control
Centre in England, French Ministry of Transport, Swedish Road Administration,
Spanish Ministry of Transport, and two traffic centres in Germany (Frankfurt and
Koblenz).

12http://www.billettique.fr/spip.php?article310
13http://www.datex2.eu/

36 Chapter 2. Application: Intelligent Traveller Information Systems

2.4.3 GTFS

Providing a common format for public transport schedules and related geographic
information, GTFS allows public transport agencies to publish their transit data via
GTFS feeds, which can be used interoperably by user applications. A GTFS feed is
a set of text files, with extension ".txt", each of which represents a particular aspect
of transit [GTF 2015].

2.4.4 IFOPT

Identification of Fixed Objects in Public Transport (IFOPT) [transport 2007], a
standard built on Transmodel by extending the concepts of location, defines a model
and identification principles for fixed objects related to public access to public trans-
port such as stop points, stop areas, stations, connection links, and entrances. Based
on the Transmodel, four related sub models are defined: Stop Place Model, Point
of Interest Model, Gazetteer Topographical, and Administrative Model.

2.4.5 GDF

GDF (Geographic Data Files) [GDF 2015] is a standard that provides both a model
and a file interchange format for road network data. The GDF conceptual data
model consists of three entities: levels (level 0 - Geometry , level 1 - Routing, level
2 - Driver instruction/mapping), attributes (e.g., junctions, route elements), and
relationships.

2.4.6 NeTEx

Network Timetable Exchange14 (NeTEx) provides means to exchange between dif-
ferent computer systems the timetable-related data for public transport services
which include network topologies, timetables, data to support real-time operations,
and basic fare data [transport 2009]. NeTEx describes data as XML documents
that can be easily exchanged by many communication protocols.

2.4.7 SIRI

Service Interface for Real Time Information15 (SIRI) is used to exchange information
between servers including the control centres of transport operators and information
systems, which contains real-time public transport vehicle or journey time data.

2.4.8 Analysis of the data models

The discussed models aim at providing a uniform and interoperable way for mod-
elling and exchanging a predefined set of types of transport-related data. However,
they address mainly the aspects related to outdoor navigation with public transport.

14http://www.netex-cen.eu/
15http://www.user47094.vs.easily.co.uk/siri/

2.5. Conclusion 37

To navigate in ubiquitous environments where the state of the environments evolves
over time and where data of different structures are acquired from various sources
that are not completely predefined, these models remain limited. In addition, in
multi-goal pathfinding, by introducing the notion of goals, data of various fields
other than transport-related fields also need to be modelled in an integrated fashion
with the transport data. The previously discussed models are not able to address
this requirement.

2.5 Conclusion

In this chapter, we investigated the existing traveller information systems for both
indoor and outdoor trip planning, the approaches they use to acquire and man-
age data, and the existing data models in the field. The existing systems provide
solutions to the classical pathfinding, and none addresses multi-goal pathfinding.
Furthermore, the existing systems are built upon a static set of data and/or data
sources. This property of the system is not compatible with ubiquitous environ-
ments of which dynamics, mobility, and openness are inherent characteristics. In
such environments, the ability to dynamically use the data sources adapted to the
current state of the environment and to dynamically retrieve up-to-date informa-
tion is necessary. Regarding the data models, many models have been proposed to
capture different transport and travel-related aspects. However, those models are
not extensible to incorporate other types of data which are related to goals when
solving multi-goal pathfinding.

Part II

CONTRIBUTIONS

Chapter 3

Semantic Representation of the
Environment

Contents
3.1 Knowledge Model of the Environment 42
3.2 Ubiquitous Environment Abstraction Ontology 49

3.2.1 Classes and properties . 49
3.2.2 Usage of the ontology . 53
3.2.3 Discussion . 57

3.3 Ontology for smart airports 58
3.3.1 Smart Airport Activity ontology 58
3.3.2 Demonstration . 59

3.4 Conclusion . 63

Common approaches to classical pathfinding generate a search graph as an ab-
straction of the environment by using spatial information of the environment. A
search algorithm is then employed to search for the path in the search graph. How-
ever, such an abstraction is insufficient for solving multi-goal pathfinding, especially
in the context of ubiquitous environments. First, spatial information alone is not
enough. Knowledge about each location in the environment is necessary to deter-
mine at which location a goal can be satisfied. For example, information pertaining
to each restaurant such as the availability or the quality of the restaurant based
on the reviews by other travellers acquired from its website enables us to choose a
restaurant that is best suited for the traveller. Second, in a ubiquitous environment
where the state of the environment evolves over time and the cybernetic, physi-
cal, and/or social entities located in the environment are dynamic and mobile, it is
impossible to generate a static representation of the environment that is accurate
and complete. We need an abstraction that enables dynamic accesses to up-to-date
information about the environment as well as the entities. For instance, to get a
trolley to transport luggage, instead of suggesting travellers to go to a trolley area
that is at the opposite direction of the gate, it is possible to locate an available
trolley nearby that was left by another person, thanks to the data from connected
trolleys.

In this chapter, we present our solution to the environment abstraction problem.
We propose a knowledge model for describing a ubiquitous environment that inte-
grates all the elements necessary for solving multi-goal pathfinding which include

42 Chapter 3. Semantic Representation of the Environment

the spatial dimension of the environment, the entities located in the environment,
the relevant resources that can be accessed to retrieve useful information about the
environment and the entities, and the relationships between the entities and goals
that can be used to determine via which entity a goal can be satisfied. The rest
of the chapter is organised as follows. First, we describe our conceptual knowledge
model for abstracting a ubiquitous environment for multi-goal pathfinding. Second,
we provide an ontology for formalising our knowledge model. Third, we present
the Smart Airport Activity Ontology which is an instance of our model specifically
customised for abstracting a smart airport for multi-goal pathfinding. Finally, we
summarise our proposal and conclude the chapter.

3.1 Knowledge Model of the Environment

Knowledge about the environment is indispensable for solving multi-goal pathfind-
ing problems. In a dynamic setting as a ubiquitous environment, various types of
information is needed. In this section, we present our conceptual knowledge model
designed for describing the aspects of ubiquitous environments that are pertinent
for solving multi-goal pathfinding. It enables us to model the following elements:
the spatial topology of the environment, the organisational structure of the environ-
ment, the cybernetic, physical, and/or social entities located in the environment, the
notion of goals, and the resources providing information related to the environment.

Definition 4 Knowledge model of the environment
Let G be a set of goals and Act a set of activities. Let further K : Act → P(G) be
a function that associates an activity act ∈ Act to a set of goals AG ⊂ P where act
can satisfy any goal g ∈ AG. Then, in our model, we abstract an environment E at
a given time t as a tuple Et = (Lt ,Ct ,OSt ,CPSEt ,Sitt ,Actt ,Rt) where:

• Et is the state of the environment E at time t;

• Lt is a finite set of nodes representing the locations in Et;

• Ct ⊆ Lt × Lt is a set of arcs representing the connections between locations;

• OSt represents the organisational structure of Et;

• CPSEt is a finite set of cybernetic, physical, and/or social entities located in
Et;

• Sitt is a set of relations between CPSEt and Lt. An entity cpset ∈ CPSEt is
situated in a location l ∈ Lt at time t;

• Actt = (An)n∈CPSEt is a finite set of activities that can be carried out through
CPSEt . We say that an entity cpse ∈ CPSEt located in l ∈ Lt satisfies a goal
g if the activity act ∈ Actt required to satisfy the goal g can be carried out
through cpse;

3.1. Knowledge Model of the Environment 43

Figure 3.1: An example of a search graph

• Rt = (Rn)n∈CPSEt∪Ct is a finite set of resources providing information about
a cyber-physical-social entity or giving information on how to move between
locations.

Spatial topology
In this conceptual model, we abstract an environment in function of time as the
state of the environment evolves over time. The spatial topology of an environment
at time t is abstracted as a graph where nodes Lt represent the locations in the
environment. Taking an airport as an example, a location can be a shop, a lounge,
a gate, or a restroom. An arc c ∈ Ct that connects a node l ∈ Lt to another node
l′ ∈ Lt is defined if, in the given environment, the location represented by l′ is
directly accessible from that by l. The arcs are dynamic due to the fact that the
connections between nodes may evolve over time. At time t, it may be possible to
go from l to l′; however, at time t′, the path between l and l′ may be blocked for
some reason (e.g., accidents or congestion), so it is impossible to go to l′ from l.
Figure 3.1 demonstrates an example of a graph representing the spatial topology of
an environment. L1 to L8 are nodes, and the arcs connect the nodes together. This
graph is integral to solving multi-goal pathfinding. It serves as the search graph on
which search algorithms are to be applied to find the path.

Organisational structure
An organisational structure of an environment is a way in which the locations in an
environment are grouped together. The structure can be based on various criteria
depending on the environment and the purpose for which the environment is mod-
elled. For example, based on the types of locations, we can build an organisational
structure by grouping together the locations of the same type. By using distance as
the criterion, we can form groups of locations that are situated close to one another.

A common way to construct an organisational structure is by grouping locations
in a hierarchy. An airport, for instance, may be organised as a hierarchy consisting
of terminals and zones. In such a hierarchy, the locations of the airport are grouped
into zones, and the zones are in turn grouped into terminals. Figure 3.2 illustrates
an organisational structure that is based on the hierarchy of an airport. In this
example, the hierarchy is comprised of Airport, Terminals, and Zones. Locations
(L1, L2, ...) are grouped into Zones (Zone 1, Zone 2, ...). The Zones are grouped into

44 Chapter 3. Semantic Representation of the Environment

Figure 3.2: A hierarchy-based organisational structure of an airport

Terminals (Terminal 1 and Terminal 2). At the top of the hierarchy, the Terminals
are grouped under the Airport. This hierarchy-based organisational structure can
be viewed as a tree whose elements correspond to the hierarchy entities such as
Terminals and Zones. The child relations indicate sub-hierarchy entities (e.g., Zones
within a Terminal). The leafs of the tree are directly connected to the locations.

The search graph describes the connections amongst the locations of an environ-
ment, whereas the organisational structure describes how the locations are related
to one another (e.g., located near one another, having the same type, or in the same
area). The organisational structure is an essential component of our knowledge
model as it allows us to impart the knowledge specific to the environment to our
approach. We use such knowledge to organise the search process (as described in
Chapter 4) and to focus the search process in the form of heuristics (as described
in Section 5.5.2) in order to improve search efficiency.

Cybernetic, physical, and/or social entities
A ubiquitous environment may accommodate various types of entities including
physical entities, cyber-physical entities, social entities, cyber-social entities, and
cyber-physical-social entities. For example, an airport may contain different entities
such as trolleys, ATM, help desks, restaurants, and waiting seats, just to name a
few. It is noteworthy that some entities are mobile in the sense that their positions
may change, and the state of the entities may also change over time. For instance,
a trolley may be moved from one location to another by the traveller; an elevator
may be available at time t, but at time t′, it may become out of order. Therefore,
in our knowledge model, we define the entities in function of time. The relation
between the entities and the locations is that, at a given point in time, an entity is

3.1. Knowledge Model of the Environment 45

Figure 3.3: An example of the relations between locations and cyber, physical,
and/or social entities

located at some location in the environment. Figure 3.3 depicts an example of the
relations between the entities and the locations in an airport at a give time t. In
this example, the entity E1 is located at the location L1, E2 and E3 at L3, E4 at
L4, E5 and E6 at L7, E7 at L6, and E8 at L8.

These entities are included in our knowledge model because they are crucial for
solving multi-goal pathfinding. Through them, travellers are able to satisfy their
goals. A goal is satisfied by carrying out an activity. An activity could be carried out
via a set of entities. As an example, suppose a traveller has a goal to achieve in an
airport, which is to have lunch. Having lunch can be associated with an activity Eat.
The entities such as restaurants and bakeries enable the activity Eat to be carried
out, and thus are able to satisfy the goal have lunch. Furthermore, the relations
between the entities, in this case restaurants and bakeries, and the locations in the
environment allow us to locate those entities by searching through the search graph.

Moreover, to determine if an entity can satisfy a goal, we need to know what are
the activities the entity supports. Therefore, the activities supported by the entities
are incorporated in our model. In this way, we can exploit this knowledge to find
the entities for satisfying the given goals during the problem-solving process. For
example, for each goal to satisfy, we determine the activity that satisfies the goal
via the function K : Act → P(G) as defined in Definition 4. Then, based on the
activity, we are able to find the suitable entities for satisfying the goal.

Resources
Ubiquitous environments are inherently dynamic. Providing a complete and accu-
rate description of the environments is impossible. To adapt to the dynamics of
the environments, we incorporate the notion of resources in our model. In this con-

46 Chapter 3. Semantic Representation of the Environment

text, a resource refers to a source of data from which relevant information can be
retrieved. In this way, instead of including static information in the description of
the environment, relevant resources can be accessed dynamically during the search
to retrieve up-to-date information. The notion of resource in our knowledge model
is conceptual and generic. In a concrete instantiation of the model, resources may
be of various forms such as RESTful interfaces or APIs to different data sources.

We distinguish resources into: connecting resources and entity resources. Con-
necting resources provide information related to the path that connect two locations
together (i.e., the arc between two nodes in the search graph). For instance, the path
cl−l′ between a location l and another location l′ requires travellers to use an esca-
lator and an elevator. Connecting resources for cl−l′ can be an API to retrieve the
information about the escalator and the elevator collected from the sensors installed
on the escalator and in the elevator. Such information is necessary for evaluating
the path, and thus deciding if the travellers should follow the path or choose other
alternatives. Entity resources are the sources of information relevant to the entities.
Through entity resources, information about the quality and the state of the entities
can be acquired. Such information can be used to determine if an entity should be
chosen for carrying out the activities to satisfy a given goal.

As an example, suppose a traveller wants to satisfy his goal which is to have
lunch in an airport. Entity resources of different restaurants in the airport are
accessed to retrieve information about the restaurants such as their availability and
the ratings. The acquired information can be used to choose the restaurant that
suits the condition of the traveller the most. Figure 3.4 shows an example of how
resources are incorporated into our model. The entity resource ER1 is associated
to the entity E1 as it provides information about E1. The same goes for ER2 with
E2, ER3 with E3, and other entity resources with other entities. The connecting
resource CR1 is assigned to the path between the location L1 and L4, which means
that CR1 can be accessed to retrieve the information related to the path. This is also
the case for CR2 with L1 and L2, CR3 with L3 and L4, and the other connecting
resources with the other paths.

Modularity of the knowledge model
A complete example of an abstracted environment is shown in Figure 3.5. It com-
prises the following elements:

• nodes representing the locations in the environment such as L1, L2, L3, L4,
and L5;

• arcs representing the connections between locations such as the arc between
L1 and L2 (L1-L2), L3 and L4 (L3-L4), and L4 and L7 (L4-L7);

• the organisational structure of the environment in this example is a hierarchy
that is comprised of different organisational entities such as Airport, Termi-
nal 1, Terminal 2, and Zone 1;

3.1. Knowledge Model of the Environment 47

Figure 3.4: Incorporating resources in the model

• cybernetic, physical, and/or social entities located in the environment such as
E1, E2, E6, and E8. Activities can be carried out via cybernetic, physical,
and/or social entity which are provided in the description of each entity;

• resources providing information about cyber-physical-social entities such as
ER1, ER2, ER5, and ER8;

• resources giving information on how to move between locations such as CR1
for L1-L4 and CR7 for L5-L6.

Figure 3.5 demonstrates the composition of different layers of the model. The
top layer is the search graph which is the spatial representation of the environment.
The bottom layer represents the resource space which contains the resources relevant
to the environment. Our knowledge model, as shown in the middle layer, connects
the top and the bottom layers together, and integrates them with other components
that are necessary for solving multi-goal pathfinding.

The conceptual model enables environments to be modelled in a modular man-
ner, which allows different subproblems to be solved independently when necessary.
Pathfinding problem is concerned with the search graph in the top layer, while the
problem of determining the entities to satisfy goals is concerned with the resource
space in the bottom layer. Each problem can be addressed independently. Depend-
ing on the available information and the structure of the given environment, various
search algorithms can be employed to solve pathfinding. Different mechanisms can

48 Chapter 3. Semantic Representation of the Environment

Figure 3.5: An example of the conceptual model of an environment

3.2. Ubiquitous Environment Abstraction Ontology 49

be used to access resources to retrieve the necessary information to a solve goal
satisfaction problem. The elements and their relationships modelled in the middle
layer serve as the necessary knowledge that is used to solve both pathfinding and
goal satisfaction problems in an integrated and more efficient manner. For example,
an uninformed search algorithm such as uniform-cost search can be used when only
the information of the search space is available. An informed search algorithm such
as A* search can be employed when additional information of the environment is
available to be used in the heuristic function of the algorithm to improve the search
process.

To formalise our knowledge model, we propose an ontology for describing the
components of the knowledge model and their relationships, which is presented in
the following section.

3.2 Ubiquitous Environment Abstraction Ontology

The knowledge model presented in the previous section is a conceptual model. To
provide a concrete implementation of the model, we employ semantic web princi-
ples and technologies. More precisely, we propose an ontology entitled Ubiquitous
Environment Abstraction Ontology, abbreviated as ueao, to capture the knowl-
edge incorporated in the model. To create this ontology, we use the Web Ontology
Language [Hitzler 2012] (OWL). The ontology is employed to provide a description
of a ubiquitous environment in Resource Description Framework [Cyganiak 2014]
(RDF). Figure 3.61 illustrates the classes and properties defined in the ontology.

3.2.1 Classes and properties

This ontology consists of 11 classes and 14 object properties that capture the aspects
of ubiquitous environments as defined in our knowledge model (Definition 4).

Classes
The classes defined in the ueao ontology are as follows:

• Class ueao:Location represents the locations in an environment (defined as
Lt in Definition 4);

• Class ueao:Connection describes the paths (i.e., the arcs in a search graph)
between locations in an environment at a given point in time (defined as Ct
in Definition 4);

• Class ueao:OrganisationalEntity is defined as the class of the organisa-
tional entities that belong to the organisational structure of an environment
(defined as OSt in Definition 4);

• Class ueao:ConnectingPoint represents the points where the organisational
entities are connected to one another;

1The arrow indicates the direction of the property.

50 Chapter 3. Semantic Representation of the Environment

• Class ueao:CPSEntity is the class of cybernetic, physical, and/or social enti-
ties located in an environment at a given point in time (defined as CPSEt in
Definition 4);

• Class ueao:PhysicalEntity is a subclass of ueao:CPSEntity. It represents
physical entities which are the entities that occupy a physical space;

• Class ueao:CyberPhysicalEntity is a subclass of ueao:CPSEntity and de-
fined as a class of physical entities that are also equipped with cybernetic
abilities;

• Class ueao:SocialEntity is the subclass of ueao:CPSEntity that possesses
social capabilities – the ability to interact with other entities;

• Class ueao:CyberPhysicalSocialEntity, a subclass of ueao:CPSEntity, rep-
resents physical entities that have both cybernetic and social abilities;

• Class ueao:PotentialActivity represents the activities that can be carried
out in an environment at a given point in time (defined as Actt in Definition 4);

• Class ueao:Resource represents the resources that can be accessed to retrieve
information about cybernetic, physical, and/or social entities in an environ-
ment or about the paths between locations in the environment (defined as Rt
in Definition 4).

The concept of Activity is widely used in various domains and fields of research.
Existing activity ontologies such as [Catarci 2006] and [Fox 1993] model activities
for their respective domains, while [Abdalla 2014] attempts to provide a generic on-
tology that captures the common core of activities. The concept PotentialActivity
defined in our ontology does not represent the actual activities as addressed in
[Abdalla 2014], [Catarci 2006] or [Fox 1993]. Potential activities stress on the abil-
ity to be performed, independent of whether they are actually carried out. For
example, an instance of ueao:PotentialActivity is eating a pizza, while the ac-
tual activity would be eating a pizza in a restaurant X at time Y. The relationship
between an actual activity act and its potential activity act′ can be viewed as act
realises act′ at a given point in time.

3.2. Ubiquitous Environment Abstraction Ontology 51

F
ig
ur
e
3.
6:

U
bi
qu

it
ou

s
E
nv

ir
on

m
en
t
A
bs
tr
ac
ti
on

O
nt
ol
og

y

52 Chapter 3. Semantic Representation of the Environment

Properties
In the ueao ontology, we define the following properties:

• Property ueao:hasOrigin describes the relationship between a connection
and a location. A connection represents an arc from a location (the origin
location) to another location (the destination location). This property relates
a connection to a location that is the origin location of the connection;

• Property ueao:hasDestination relates a connection to a location that is the
destination location of the connection;

• Property ueao:hasConnectingResource relates a connection to a resource
that provides information about the path between the origin location and the
destination location of the connection;

• Property ueao:containsLocation: An organisational entity may contain a
set of locations. The property ueao:containsLocation relates an organisa-
tional entity to a location that it contains;

• Property ueao:isUnderOrganisationalEntity relates a location to the or-
ganisational entity that contains the location;

• Property ueao:isParentEntityOf: An organisational entity may contain a
set of other organisational entities (the child organisational entities). We use
the property ueao:isParentEntityOf to relate an organisational entity to a
child organisational entity;

• Property ueao:isChildEntityOf relates an organisational entity to its parent
organisational entity;

• Property ueao:hasConnectingPoint: A connecting point (an instance of the
class ueao:ConnectingPoint) represents a point where 2 organisational en-
tities are connected. It is a unidirectional connection from an organisational
entity (the origin entity) to another organisational entity (the destination en-
tity). The property ueao:hasConnectingPoint relates an origin organisa-
tional entity to a connecting point;

• Property ueao:hasOriginEntity describes the relationship between a con-
necting point to an organisational entity. It relates a connecting point to an
organisational entity that is the origin entity of the connecting point;

• Property ueao:hasDestinationEntity relates a connecting point to an or-
ganisational entity that is the destination entity of the connecting point;

• Property ueao:hasConnection relates a location or a connecting point to a
connection;

3.2. Ubiquitous Environment Abstraction Ontology 53

– If a location l′ ∈ Lt is accessible from another location l ∈ Lt at time
t, we say that there is a connection from l to l′. To capture this type
of relationship, we use the property ueao:hasConnection to relate the
location l to the connection from l to l′ where l is the origin location and
l′ is the destination location of the connection;

– The organisational entities of an organisational structure are connected
though connecting points. In each connecting point, the origin entity oe
is connected to a destination entity de via a connection from a location
l to another location l′ where l is contained in oe and l′ in de. In other
words, l is the exit point of oe, and it is connected to l′ which is the
entry point of de. We use the property ueao:hasConnection to relate a
connecting point to a connection.

• Property ueao:containsEntity: relates a location to a cybernetic, physical,
and/or social entity that it contains;

• Property ueao:supportsActivity: relates a cybernetic, physical, and/or so-
cial entity to a potential activity that it supports;

• Property ueao:hasEntityResource: relates a cybernetic, physical, and/or
social entity to a resource that provides information about the entity.

3.2.2 Usage of the ontology

The classes and properties of this ontology are used to describe the necessary aspects
for addressing multi-goal pathfinding, namely spatial topology, organisational struc-
ture, cybernetic, physical, and/or social entities, goals, and resources. In the rest of
this section, the examples provided for each of the aspects are based on Figure 3.5.
The prefixes used in the examples are:

• @base <http://www.example.org/environment/description/> which is the
base URI for the description of the environment;

• @prefix ueao: <http://www.semanticweb.org/ontologies/2018/1/ueao#>
which is the URI of the ueao ontology.

Spatial topology
To describe the spatial topology of a ubiquitous environment, we use the class
ueao:Location to describe the locations in the environment, and the class ueao:Connection
to describe the connections between the locations.

For example, using the ontology, the connection from location L3 to L2 can described
in RDF as shown in the following description. In this description, the connection
from L3 to L2 is <Connection-L3-L2>. The property ueao:hasOrigin is used to
specify its origin location which is <L3>, and ueao:hasDestination to specify its
destination location <L2>.

54 Chapter 3. Semantic Representation of the Environment

<Connection-L3-L2> a ueao:Connection ;
ueao:hasOrigin <L3> ;
ueao:hasDestination <L2> .

Below is an excerpt of the description of location L2. From location L2 (<L2>), it
is possible to access to L1, L3, L4, and L7. This knowledge is described using the
property ueao:hasConnection, as in the example.

<L2> a ueao:Location ;
ueao:hasConnection <Connection-L2-L1> ;
ueao:hasConnection <Connection-L2-L3> ;
ueao:hasConnection <Connection-L2-L4> ;
ueao:hasConnection <Connection-L2-L7> .

Below is an excerpt of the description of location L3. Location L3 (<L3>) is con-
nected to L2, L1, and L4.

<L3> a ueao:Location ;
ueao:hasConnection <Connection-L3-L2> ;
ueao:hasConnection <Connection-L3-L1> ;
ueao:hasConnection <Connection-L3-L4> .

Organisational structure
An organisational structure of an environment is composed of a set of organisa-
tional entities. We use the class ueao:OrganisationalEntity to represent the
organisational entities and ueao:ConnectingPoint to describe how the entities are
connected to one another. The organisational structure of the example in Figure 3.5
is a hierarchy that has Airport as the root. Airport has 2 direct child organisational
entities, namely Terminal 1 and Terminal 2, which in turn also have child entities
(the Zones).

In the excerpt below, we state that Terminal 1 (<Terminal1>) is an organisational
entity by describing it as an instance of class ueao:OrganisationalEntity. The
property ueao:isChildEntityOf and ueao:isParentEntityOf are used to describe
the parent entity (Airport) and the child entities (Zone 1 and Zone 2) of Termi-
nal 1, respectively. Terminal 1 is connected to Terminal 2 via a connecting point
(<ConnectingPoint-Terminal1-Terminal2>) that is the connection from location
L4 to L5.

3.2. Ubiquitous Environment Abstraction Ontology 55

<Terminal1>
a ueao:OrganisationalEntity ;
ueao:isChildEntityOf <Airport> ;
ueao:isParentEntityOf <Zone1>, <Zone2> ;
ueao:hasConnectingPoint <ConnectingPoint-Terminal1-Terminal2>.

<ConnectingPoint-Terminal1-Terminal2>
a ueao:ConnectingPoint ;
ueao:hasOriginEntity <Terminal1> ;
ueao:hasDestinationEntity <Terminal2> ;
ueao:hasConnection <Connection-L4-L5> .

Zone 1 is at the lowest level of the hierarchy, and thus has no child entity. However,
it directly contains locations (L1 and L3), which is described using the property
ueao:containsLocation.

<Zone1>
a ueao:OrganisationalEntity ;
ueao:isChildEntityOf <Terminal1> ;
ueao:containsLocation <L1>, <L3> ;
ueao:hasConnectingPoint <ConnectingPoint-Zone1-Zone2> .

<ConnectingPoint-Zone1-Zone2>
a ueao:ConnectingPoint ;
ueao:hasOriginEntity <Zone1> ;
ueao:hasDestinationEntity <Zone2> ;
ueao:hasConnection <Connection-L3-L2> .

Cybernetic, physical, and/or social entities
Cybernetic, physical, and/or social entities are represented by the class ueao:CPSEntity.
At a given point in time, each entity is located at a location in the environment. For
example, a lounge in an airport contains some trolley, ATMs, and toilets. To capture
this knowledge, we use the property ueao:containsEntity to relate a location to
an entity.

In the following description, we describe that the entity E1 (<CPSEntity1>) is lo-
cated at location L1 (<L1>) and E2 (<CPSEntity2>) and E3 (<CPSEntity3>) at
location L3 (<L3>), as in Figure 3.5.

<CPSEntity1> a ueao:CPSEntity .
<CPSEntity2> a ueao:CPSEntity .
<CPSEntity3> a ueao:CPSEntity .

<L1> ueao:containsEntity <CPSEntity1> .
<L3> ueao:containsEntity <CPSEntity2>, <CPSEntity3> .

56 Chapter 3. Semantic Representation of the Environment

Goals
A goal is satisfied by carrying out a set of activities. An activity is carried out
through the use of a cybernetic, physical, and/or social entity. Therefore, to deter-
mine which entities allow an activity to be carried out, we describe the relationship
between the entities and the activities. We use the class ueao:PotentialActivity
to describe the activities and the property ueao:supportsActivity to describe the
relationship.

Suppose that, in Figure 3.5, the entity E1 is a restaurant where one can eat, E2 a
help desk where one can inquire for information, and E3 an ATM. We can describe
the activities supported by each entity as follows:

<EatVegetarian> a ueao:PotentialActivity .
<SeekInformation> a ueao:PotentialActivity .
<WithdrawMoney> a ueao:PotentialActivity .

<Veggie-restaurant> ueao:supportsActivity <EatVegetarian> .
<Help-desk> ueao:supportsActivity <SeekInformation> .
<ATM> ueao:supportsActivity <WithdrawMoney> .

In ueao ontology, we describe the generic relationships between cybernetic, phys-
ical, and/or social entities and potential activities. The entities and activities vary
from one environment to another. It is possible to extend the ontology to capture
the activities specific to the environment.

Resources
To incorporate resources into the description of an environment, we use the class
ueao:Resource. We distinguish 2 types of resources: entity resources and connect-
ing resources. An entity resource provides information about a cybernetic, physical,
and/or social entity. For example, a resource relevant to a restaurant can be the
restaurant’s website. A resource of an elevator can be an API to retrieve data from
the sensors installed in the elevator. We use the property ueao:hasEntityResource
to express the relationship between an entity and a resource as shown in the excerpt
of the description below:

<EntityResource1> a ueao:Resource .
<EntityResource2> a ueao:Resource .
<EntityResource3> a ueao:Resource .

<CPSEntity1> ueao:hasEntityResource <EntityResource1> .
<CPSEntity2> ueao:hasEntityResource <EntityResource2> .
<CPSEntity3> ueao:hasEntityResource <EntityResource3> .

A connecting resource provides information related to the path between 2 loca-
tions. Such a path is represented by the class ueao:connection in our ontol-
ogy. To attribute a connecting resource to a connection, we use the property
ueao:hasConnectingResource as shown in the description below:

3.2. Ubiquitous Environment Abstraction Ontology 57

<ConnectingResource1> a ueao:Resource .
<ConnectingResource2> a ueao:Resource .
<ConnectingResource3> a ueao:Resource .

<Connection-L1-L4>
ueao:hasConnectingResource <ConnectingResource1> .

<Connection-L1-L2>
ueao:hasConnectingResource <ConnectingResource2> .

<Connection-L3-L4>
ueao:hasConnectingResource <ConnectingResource3> .

3.2.3 Discussion

The first motivation behind using RDF, ontology, and OWL is the use of HTTP
URIs to identify resources2. An HTTP URI can be dereferenced to access the
representation of the resource identified by the URI. Furthermore, it also enables us
to store an environment description in a distributed manner as each component of
the environment (e.g., locations, organisational entities) is addressed by a URI, and
thus can be looked up using its URI. Needless to say, managing the description in a
centralised fashion is also possible.

The second motivation is the ability to integrate various kinds of information
in an environment description. The schemaless property of RDF makes it possible
to combine data of arbitrary kinds. In this way, different ontologies can be used
to provide additional information about the environment. An environment may ac-
commodate different types of cybernetic, physical, and/or social entities. Depending
on the types of the entities, specific vocabularies can be used to provide more infor-
mation about the entities. In real use-cases, this allows people that are in charge
of each entity (e.g., the owner of a restaurant in an airport) in an environment to
provide a description for their entity. They can incorporate additional knowledge
specific to their entities. Such knowledge allows us to associate entities to more spe-
cific activities. For example, an owner of a restaurant may describe their restaurant,
in addition to supporting eating, as a place that serves vegetarian food. Following
this, it would be possible to address more specific goals such as eating vegetarian
food.

The third motivation is owing to the fact that using ontologies in OWL enables
reasoning. The ability to reason upon the knowledge of the environment is essential.
In practice, we can expect the cases where the description of the environment is
partial or incomplete. In such cases, reasoning upon the existing knowledge of
the environment may discover additional knowledge to complete or improve the
description.

To demonstrate a specialisation of the ueao ontology for a specific environment,
in the following section, we present its adaptation to model a smart airport.

2In an RDF context, a resource can be anything an RDF graph describes. It does not necessarily
refer to the resources defined in our ontology.

58 Chapter 3. Semantic Representation of the Environment

3.3 Ontology for smart airports

Ubiquitous Environment Abstraction Ontology ueao provides generic classes and
properties for describing ubiquitous environments. Each environment may contain
different cybernetic, physical, and/or social entities, and thus supports different
types of activities. To adapt to each environment, ueao ontology can be extended
to capture the knowledge specific to the environment. In this section, we present
an extension of ueao ontology for a smart airport, entitled Smart Airport Activity
ontology and abbreviated to saa.

3.3.1 Smart Airport Activity ontology

The aim of designing saa ontology is to extend ueao ontology to incorporate the
types of cybernetic, physical, and/or social entities that are commonly present in a
smart airport and the common activities supported by a smart airport. To deter-
mine the common activities that are carried out in an airport, we use the analysis
of airport travellers’ activities presented in [Liu 2014]. This analysis provides a
classification of the common activities that travellers do in an airport. Based on
this classification, we determine the cybernetic, physical, and/or social entities that
support each activity.

In saa ontology, we add other classes of entities that were identified based on the
classification of the common activities such as saa:InteractiveHologramGuide,
saa:HelpDeskGuide, saa:Restaurant, and saa:Check-inKiosk. Figure 3.7 illus-
trates an excerpt of the ontology. Since we have the knowledge of which types
of activities are supported by which types of entities, we can make explicit re-
lations between the classes of entities, which are the subclasses of subclasses of
ueao:CPSEntity, and the classes of activities, which are the subclasses of sub-
classes of ueao:PotentialActivity. These relations are captured by using exis-
tential restrictions on the property ueao:supportsActivity. For example, to state
that instances of the class saa:HelpDeskGuide are those that support instances of
saa:SeekInformation, we make use of the following axiom:

HelpDeskGuide ≡ ∃supportsActivity .SeekInformation

These explicit relations facilitate the process of identifying the activities supported
by a given entity, which is crucial for solving the goal satisfaction problem of multi-
goal pathfinding. For instance, given the following description of a kiosk, we are able
to know that check-in can be carried out at the kiosk because the kiosk is an instance
of class saa:Check-inKiosk which supports the activities of type saa:Check-in.

<Kiosk-ID-252> a saa:Check-inKiosk .

It is essential to note that the classes representing cyber-physical-social entities
and activities in this ontology are by no means exhaustive nor compatible with all
kinds of airports. It was, however, defined in a manner such that it can be reused
and extended to capture the specifics of a particular airport as well as the desired
level of granularity of potential activities.

3.3. Ontology for smart airports 59

Figure 3.7: A partial view of Smart Airport Activity Ontology

3.3.2 Demonstration

For the purpose of demonstration, in this section, we use the proposed model and
ontologies to describe partly a terminal of an airport as shown in Figure 3.83.

3Photo credits: http://www.klia2.info/about-klia2/klia2-layout-plan/klia2-departure-hall

60 Chapter 3. Semantic Representation of the Environment

F
ig
ur
e
3.
8:

A
n
ex
ce
rp
t
of

a
m
ap

of
an

ai
rp
or
t

3.3. Ontology for smart airports 61

Figure 3.9: Example of an airport modelled using our knowledge model

First, we abstract the environment using our knowledge model integrating var-
ious aspects of the environment as illustrated in Figure 3.9. Then, we use the
proposed ontologies to provide a description of the abstracted environment. In this
example, we use the following prefixes:

• Base URI:
@base <http://www.example.org/environment/description/>

• URI of the ueao ontology:
@prefix ueao: <http://www.semanticweb.org/ontologies/2018/1/ueao#>

• URI of the saa ontology:
@prefix saa: <http://www.semanticweb.org/ontologies/2018/1/saa#>

• URI of DBpedia resource:
@prefix dbr: <http://dbpedia.org/resource/>

Starbucks coffee
In this example, we describe the location that contains Starbucks coffee and its
connection to the self check-in area.

62 Chapter 3. Semantic Representation of the Environment

<Starbucks-location>
a ueao:Location ;
ueao:containsEntity <Starbucks-coffee> ;
ueao:hasConnection <Connection-Starbucks-SelfCheckinArea> .

<Starbucks-coffee>
a saa:CoffeeShop ;
a dbr:CoffeeHouse ;
ueao:hasEntityResource <https://www.starbucks.com/> .

<Connection-Starbucks-SelfCheckinArea>
a ueao:Connection ;
ueao:hasOrigin <Starbucks-location> ;
ueao:hasDestination <SelfCheckinArea> ;
ueao:hasConnectingResource <PathWay-5-Sensor-Resource> .

Self check-in area
In this example, we describe the location that is the area containing self-checkin
kiosks.

<SelfCheckinArea>
a ueao:Location ;
ueao:containsEntity <Check-inKiosk1>, <Check-inKiosk2>;
ueao:containsEntity <Check-inKiosk3>, <Check-inKiosk4>;
ueao:containsEntity <Check-inKiosk5>, <Check-inKiosk6>.

<Check-inKiosk1>
a saa:Check-inKiosk ;

ueao:hasEntityResource <Checkin-Kiosk-Resource> .
<Check-inKiosk2>

a saa:Check-inKiosk ;
ueao:hasEntityResource <Checkin-Kiosk-Resource> .

<Check-inKiosk3>
a saa:Check-inKiosk ;

ueao:hasEntityResource <Checkin-Kiosk-Resource> .
<Check-inKiosk4>

a saa:Check-inKiosk ;
ueao:hasEntityResource <Checkin-Kiosk-Resource> .

<Check-inKiosk5>
a saa:Check-inKiosk ;

ueao:hasEntityResource <Checkin-Kiosk-Resource> .
<Check-inKiosk6>

a saa:Check-inKiosk ;
ueao:hasEntityResource <Checkin-Kiosk-Resource> .

3.4. Conclusion 63

3.4 Conclusion

In this chapter, we address the Research question 1 which is how to acquire the
information necessary for solving a multi-goal pathfinding problem? To this end,
we described our proposal for modelling and describing ubiquitous environments
for multi-goal pathfinding. Our contributions presented in this chapter are the
followings:

• a conceptual knowledge model for abstracting a ubiquitous environment inte-
grating spatial, cybernetic, physical, and social dimensions with the notions
of activities;

• an ontology for formally describing an environment based on the proposed
knowledge model, which is extensible to support different environments;

• an ontology designed to capture the specifics of a smart airport based on the
ueao ontology.

Solving multi-goal pathfinding in ubiquitous environments necessitates the ac-
cesses to relevant resources to retrieve useful up-to-date information about the en-
vironment. However, accessing various resources results in latency. In the next
chapter, we present our collaborative search model for addressing the latency issue
by collaboratively searching and accessing to resources in an asynchronous manner.

Chapter 4

Collaborative Multi-agent Search
Model

Contents
4.1 Collaborative Search Model 66

4.1.1 Overview of the model . 66

4.1.2 Agent models . 68

4.1.3 Agent organisation and interactions 70

4.2 Resource agents . 74

4.3 Search agents . 75

4.3.1 Node expansion . 76

4.3.2 Node cost computation . 77

4.3.3 Goal verification procedure 78

4.3.4 Optimality and Termination 80

4.4 Network agents . 80

4.4.1 Routing path information . 81

4.4.2 Separating a search space . 86

4.4.3 Distributing workloads . 87

4.5 Conclusion . 88

Generally, during each iteration, a forward-search algorithm selects a node from
the list of candidate nodes Frontier, generates its child nodes, prunes some un-
promising nodes, and updates Frontier to include the remaining children [Ghallab 2016].
In classical search settings, the information required to compute the cost of a node
is provided as a part of the problem. However, in ubiquitous environments where
the state of the environments may evolve over time, it is impossible to provide com-
plete and accurate knowledge of the environments prior to the search process. For
example, suppose that a traveller in an airport wants to go from an entrance to a
gate and that there are two possible paths to go to the gate: one using an elevator
which requires less time to travel and one using the stairs which takes more time.
At the beginning of the search, the elevator functions normally; however, during the
search, the elevator becomes out of order. In such a situation, the path using the
stairs should be the solution. Moreover, a solution to the same problem at time t
may not be valid at time t′ as the state of the environment may evolve and some of

66 Chapter 4. Collaborative Multi-agent Search Model

the changes might have affected the parts of the solution. To be able to take into
account such dynamic changes of the environments, up-to-date information about
the environments is needed to find a solution that is valid with regard to the cur-
rent state of the environments. Such information is retrieved from various sources
such as the cybernetic, physical, and/or social entities located in the environments
as well as the resources on the Web during path computation. In the previous
chapter, we presented a knowledge model for abstracting a ubiquitous environment,
providing the knowledge regarding the sources of information from which up-to-date
information can be retrieved.

Accessing and retrieving data from various sources for up-to-date information
create the overheads that result from the latency of processing and transferring data.
Latency affects the performance of the search, specifically during the generation of
child nodes where the cost of nodes is computed using the information retrieved from
various resources. To address this latency issue, we propose a collaborative search
model that mitigates latency by asynchronising the process of accessing resources
and that is based on the distribution of processes to improve search efficiency. The
aim of this chapter is to present the collaborative search model. The rest of the
chapter is organised as follows. First, we provide an overview of the search model.
Second, we present different types of agents in our search model in details. Finally,
we summarise and conclude the chapter.

4.1 Collaborative Search Model

The collaborative search model is a multi-agent search model that is composed of
multiple agents collaboratively searching on different parts of the search space. The
aims of this search model are: mitigating latency and improving search efficiency. It
addresses the latency issue by asynchronising the process of accessing resources such
that agents are not required to wait for information and that the agents are able to
perform other tasks while the information is being retrieved and transferred to the
agents. Furthermore, it exploits the knowledge of the search space to distribute the
work efficiently amongst the agents to improve search performance.

4.1.1 Overview of the model

This model can be applied to forward-search algorithms such as breadth-first search,
depth-first search, uniform-cost search, and A*. More precisely, to distribute the
workloads, agents explore different parts of the search space in parallel by executing
a search algorithm, thus selecting nodes from their respective part of the search
space. Child generation is modified into an asynchronous and non-blocking process
where agents are able to execute other tasks while the necessary information is being
retrieved from resources. When an agent discovers a path to a node that is not in
its part of the search space, it communicates the information about the path to the
agent that is in charge of the node for pruning and updating its local search process.

4.1. Collaborative Search Model 67

Definition 5 Collaborative multi-agent search model
A collaborative search model is a tuple CSM = (Et , no, nd,SAM ,RAM ,NAM ,CR, f)

where

• Et is the description of the environment at time t as previously defined in
Definition 4;

• no ∈ Lt is a node representing an origin location where Lt ∈ Et is a set of
locations in the environment;

• nd ∈ Lt is a node representing a destination location;

• SAM is the model for search agents executing the search algorithm;

• RAM is the model for resource agents responsible for retrieving information
from a set of resources;

• NAM is the model for network agents in charge of managing the search process
and related communications;

• CR is a set of criteria for path evaluation;

• f is a cost function used to evaluate the path.

A search algorithm adapted using the collaborative search model takes 2 elements
as inputs: the description of the environment (defined in Definition 5 as Et) and
the request containing the origin node (no), the destination node (nd), and a set of
criteria (CR) for path evaluation. The representation of the environment provides
the knowledge necessary for performing the search such as the spatial topology
of the environment represented as a search graph, the organisational structure of
the environment, the information regarding the cybernetic, physical, and/or social
entities located in the environment, and the resources that can be accessed to retrieve
the necessary information for computing path costs. The output of a search process
is the optimal path from no to nd, which is a minimum-cost path evaluated using
the cost function f based on the given set of criteria CR.

The multi-agent model is composed of 3 types of agents: search agents, network
agents, and resource agents. The search agents are the agents in charge of executing
a given search algorithm to find the path. The network agents are responsible for
distributing workloads amongst search agents, and they handle the communications
amongst the search agents. The resource agents serve as the intermediary between
the search agents and the resources. Their main role is to access resources to retrieve
the information requested by the search agents, which abstracts away the complexity
of accessing resources from the search agents.

To describe in a concise manner, the collaboration among the 3 types of agents
to solve a search problem is as follows. At the beginning of a search process, there is
a set of resource agents that are capable of accessing resources and one initial search
agent Sa0 that starts the search process. Sa0 executes the search algorithm. After

68 Chapter 4. Collaborative Multi-agent Search Model

expanding the first node, Sa0 generates the child nodes. Sa0 sends information
about the child nodes that are not under its responsibility (i.e., not in the part of
its search space) to its parent network agent Na0. Na0 communicates with other
network agents to forward the information about the child nodes to the search
agent(s) responsible. Based on various criteria for workload distribution (described
in 4.4.3), Na0 decides which existing search agent should be in charge of the child
nodes, or creates a new search agent to handle the child nodes when necessary.
When assigned to a node, a search agent sends a request to a resource agent to
retrieve the necessary information for computing the cost of the node.

Furthermore, network agents use the organisational structure of the environ-
ment to progressively create a set of network agents to handle the communications
amongst the search agents. In this way, the search agents are not required to have
knowledge of the other search agents. The search process continues until the des-
tination node nd is found by a search agent, in which case the goal verification
procedure (described in 4.3.3) is triggered to validate the optimality of the path.
The search process terminates when the optimal path is found or when the entire
search space has been explored.

4.1.2 Agent models

To enable a collaborative search, each type of agent is assigned with a set of roles
to perform. In addition, they possess the knowledge necessary to perform their
tasks. The knowledge related to the ubiquitous environment in which the problem
is located is available in the abstraction of the environment described using the
knowledge model presented in Chapter 3. In this section, we present the model for
each type of agents involved in the search model.

Resource agent model
Resource agents serve as an intermediary between search agents and resources. They
handle requests for information from search agents. The role of a resource agent is
to access resources to retrieve the requested information. The model of a resource
agent is as follows:

Ra = (IR, Req)

where:

• IR is knowledge on how to access a set of resources;

• Req is a list of requests that the resource agent has received and that need to
be processed.

The knowledge of each resource agent is provided to the agent when it is created.
The motivation behind using resource agents is to separate the search process exe-
cuted by search agents from the process of accessing resources. In this way, search

4.1. Collaborative Search Model 69

agents are dedicated only to finding the solution, and delegate the tasks that have
latency to resource agents.

Search agent model
The role of a search agent is to execute a search algorithm in a part of the search
space for which it is responsible. The collaborative search model is based on the
distribution of search processes. Therefore, search agents explore different parts of
the search space in parallel to find the solution, and at the same time, collaborate
with each other by communicating information deemed pertinent to one another.
To perform its role, a search agent is modelled as follows:

Sa = (S,LSa, IRA, Na)

where:

• S represents a search algorithm to execute;

• LSa ⊆ Lt is a set of nodes in the search space of which it is in charge;

• IRA = ((res,RA)) is the information about resource agents which contains
pairs of resource type res and a set of resource agents RA that are capable of
accessing resources of type res;

• Na is the network agent which is the parent of the search agent.

Network agent model
The roles of a network agent are the followings:

• Coordinate the communications amongst search agents;

• Separate the search space into different parts for search agents and distribute
workloads amongst search agents.

Each network agent is in charge of a part of the search space. It handles the
communications and workload distribution relevant to its part of the search space.
To perform its role, each network agent is equipped with the knowledge as follows:

Na = (OSNa, Nap, SANa, NANa)

70 Chapter 4. Collaborative Multi-agent Search Model

where:

• OSNa ⊆ OSt is a set of organisational entities which represent the part of the
search space of which the network agent is in charge;

• Nap is the its parent network agent;

• SANa is a set of search agents that are under its management;

• NANa is a set of network agents that are under its management.

Using network agents enables us to separate the search process from the com-
munications and workload distribution.

4.1.3 Agent organisation and interactions

The foundation of our search model is the collaboration amongst search agents,
network agents, and resource agents. In this section, we present the organisation
and interactions that enable them to cooperate to realise the objectives of the model,
namely, addressing latency and improving search efficiency.

Addressing latency
During the search process, latency results from the access to resources to retrieve
information for computing the path cost. To handle this issue, in our search model,
we separate the process of accessing resources from the search process by employing
search agents to perform the search and resource agents to retrieve information from
resources.

Figure 4.1 illustrates an example of an organisation of search agents (abbreviated
as SA in the figure) and resource agents (abbreviated as RA in the figure) to address
the latency issue. Each search agent is in charge of a part of the search space. How
a search space is divided amongst search agents is presented in Section 4.4.3. For
simplicity, in this example, we suppose that there is one search agent for each Zone.
The search agent Sa1 is in charge of the part of the search space that contains node
L1 and node L3. Each resource agent is capable of accessing a set of resources. For
instance, the resource agent Ra1 is able to access resource ER1, ER2, CR1, and
CR2. To compute the cost of L1 to L4, Sa1 needs the information from resource
CR1. Therefore, Sa1 sends a request to Ra1 to retrieve the necessary information.

It is essential to note that the interactions between a search agent and a resource
agent to handle a request for information from a resource is asynchronous and non-
blocking. After sending a request to a resource agent, the search agent proceeds with
other tasks, and is not blocked while the resource agent is accessing the resource.
Once the information has been retrieved, the resource agent sends the information
to the search agent.

Improving search efficiency
In this collaborative search model, we combine distribution with parallelism to im-
prove search efficiency. Different parts of the search space are dynamically distributed

4.1. Collaborative Search Model 71

Figure 4.1: Agent organisation - addressing latency

to different search agents that explore their respective part in parallel. Distribution
of the search space allows more parts of the search space to be explored at the
same time. Parallelism of the search process enables faster exploration of the search
space. Such distribution and parallelism are achieved through the organisation of
and interactions between search agents and network agents. Network agents are
responsible for dividing the search space into smaller parts and assigning them to
search agents. The separation of the search space and the assignment are carried
out dynamically during the search process. In this way, only the parts that are
relevant to the current search problem are explored.

A search space is divided based on the organisational structure of its environ-
ment, as described in the previous chapter (Section 3.1). We exploit such a structure
to organise network agents. Each network agent is in charge of a set of organisational
entities, and thus the part of the search space under those entities. Let us consider
an example of the organisation of network agents depicted in Figure 4.2. The or-
ganisational structure of the environment is a hierarchy (Airport - Terminal - Zone),
which contains organisational entities such as Terminal 1, Zone 1, and Zone 2. In
this example, we suppose that the origin node and the destination node are under
Terminal 1, so we only need to create the network agents to manage Terminal 1.
Network agent NaT1 is in charge of Terminal 1, NaT1Z1 of Zone 1, and NaT1Z2
of Zone 2. NaT1 is the parent agent of NaT1Z1 and NaT1Z2. When NaT1Z1 or
NaT1Z2 discovers a path to a node that is out of its responsibility scope (Zone 1 or

72 Chapter 4. Collaborative Multi-agent Search Model

Figure 4.2: Organisation of network agents

Figure 4.3: Organisation of network agents and search agents

Zone 2), it forwards the information to its parent agent to handle. The parent agent
decides which existing agent to whom it should assign the newly discovered node
or creates a new network agent to handle the organisational entity under which the
new node is located.

Distributing workloads to search agents is handled by network agents. The
network agents that are in charge of the organisational entities directly containing
the nodes decide which nodes are to be assigned to which search agents and whether
a new search agent should be created to handle the nodes. For instance, in the
example illustrated in Figure 4.3, network agent NaT1Z1 and NaT1Z2 individually
have a search agent to explore the parts of the search space under the organisational
entities, Zone 1 and Zone 2 respectively, of which they are in charge.

4.1. Collaborative Search Model 73

Figure 4.4: Interaction between search agents and network agents for routing path
information

Addressing consequential issues
One of the most important issues of distributed and parallel search is not knowing
the global state of the search process as each search agent executes the search locally.
This issue commonly results in redundant expansion of nodes and compromising
optimality of the solution. The proposed organisation of the network agents and
search agents allows us to address this issue, in addition to search space separation
and workload distribution.

First, to avoid the same node from being expanded by multiple search agents, a
node should only be expanded by the search agent in charge of the node. Therefore,
if another agent discovers a path to the node, it communicates that information to
the search agent in charge without expanding the node. Figure 4.4 illustrates the
interaction between search agents and network agents for routing the information
about the path to a node to a search agent in charge. When a search agent discovers
a path to a node that is not under its responsibility, it forwards the node to its parent
agent, which is a network agent. The parent agent routes the node via other network
agents (routing protocol described in Section 4.4.1) until the search agent in charge
is found, in which case the information about the node is sent to that search agent.

Second, to determine the optimality of a solution, the global state of the search
is required. In a parallel and distributed search, such information is unavailable
as each search agent performs the search locally. In our model, to guarantee the
optimality of the solution, we employ a goal verification procedure (described in
Section 4.3.3). This organisation of search agents and network agents enables the
communications amongst the search agents that are needed to verify the optimality
of the solution.

74 Chapter 4. Collaborative Multi-agent Search Model

Figure 4.5: An example of the overall organisation of agents

Global view of the organisation
Figure 4.5 demonstrates an example of an organisation of the 3 types of agents.
Each type of agents handles a separate concern, and agents are organised in a way
that their collaboration is independent of the mechanisms they use to handle their
respective concern. For instance, the methods resource agents employ to access
resources have no influence on their collaboration with other types of agents. The
same goes for the mechanisms used by network agents to manage communications
and workload distribution, and for the search algorithm executed by search agents.
In the following sections, we present how each type of agents is modelled.

4.2 Resource agents

The role of resource agents in our collaborative search model is to facilitate the
access to resources to retrieve information. Resource agents can be considered as an
interface to resources as they abstract away the complexity of accessing various types
of resources. Search agents interact with resource agents to request for information
from resources to compute the cost of nodes while executing a search algorithm.
At the beginning of a search process, a set of resource agents that can access the
resources relevant to the search space are created. The information about resource

4.3. Search agents 75

agents is included in the knowledge base of search agents so that they are able to
interact with resource agents.

Algorithm 3 Resource agent life cycle
1: Messages← ∅
2: while true do
3: for each message in Messages do
4: if (message is an information request message) then
5: create a process pr
6: run process-request-information-message(message) on pr
7: else if (message is a termination message) then
8: terminate process
9: end if

10: end for
11: end while

Algorithm 4 process-request-information-message(message)
1: searchAgent← get the search agent who sent the request from message

2: resource← get the resource from message

3: response← access-resource(resource)
4: send response to searchAgent

The execution cycle of a resource agent is illustrated in Algorithm 3. Each re-
source agent maintains a list of messages that it receives. At each cycle of execution,
a resource agent processes all the received messages. When receiving an information
request message, the resource agent creates an independent process to handle the
request. Handling an information request is a time-consuming task as it involves
accessing a resource to retrieve the requested information. Therefore, handling such
a request on a separate process enables the resource agent to proceed with other
tasks. Algorithm 4 shows how a resource agent handles an information request mes-
sage. This algorithm requires the agent to access a resource (Algorithm 4, Line 3).
The mechanisms required to access the resource is incorporated in the knowledge of
the resource agent when it is created.

4.3 Search agents

In our collaborative search model, the main role of search agents is to execute a
search algorithm to find the solution. The execution cycle of a search agent consists
of expanding a node, computing the cost of a child node, and processing received
messages as demonstrated in Algorithm 5. To perform its role, each search agent
maintains the following data:

• a set of nodes ResponsibledNodes (LSa) representing the part of the search
space of which the search agent is in charge,

76 Chapter 4. Collaborative Multi-agent Search Model

• a set of candidate nodes ordered by node cost(Frontier ⊂ ResponsibledNodes)
for expansion,

• a set of expanded nodes (Expanded ⊂ ResponsibledNodes),

• a list of arcs (ArcList) where an arc is a path between two nodes and whose
cost is to be computed,

• a list of arcs whose cost is being computed (PendingArcList),

• a list of received messages to be processed.

Each search agent is responsible for exploring a part of the search space. The
nodes constituting the part of the search space are dynamically and incremen-
tally assigned by the network agent parent of the search agent, and are stored
in ResponsibledNodes. The dynamic assignment and distribution of workloads are
presented in depth in Section 4.4.3.

Algorithm 5 Search agent life cycle (n)

1: ResponsibledNodes← {n}
2: Frontier ← {n}
3: Expanded← ∅
4: ArcList← ∅
5: PendingArcList← ∅
6: Messages← ∅
7: while no termination message received do
8: expand()
9: compute-arc-cost()

10: process-messages()
11: end while

4.3.1 Node expansion

As in a forward-search algorithm, each search agent Sa maintains a set of candidate
nodes to expand Frontier and a set of expanded nodes Expanded. In each iteration,
Sa executes a search algorithm which starts by selecting a node n from Frontier to
expand, as illustrated in Algorithm 6. If n is the destination node, Goal Verification
Procedure is initiated (described in Section 4.3.3) to verify the optimality of the path
to the destination node, and Sa continues its execution until the path is verified or
a better path to the destination node is found. Otherwise, it generates the child
nodes of n. To generate each child node n′, we need to compute its cost, which is
the sum of the cost of n and the cost of the arc from n to n′. The cost of n is known
because before adding a node to Frontier, its cost is computed. However, the cost
of the arc from n to n′, denoted as a(n, n′), is to be computed by sending a request
to a resource agent to acquire the necessary information for the computation.

4.3. Search agents 77

Algorithm 6 expand()

1: n← POP(Frontier)
2: if n is a goal node then
3: initiate Goal Verification Procedure
4: return
5: end if
6: for each child of n do
7: create a(n, child)
8: if child ∈ ResponsibledNodes then
9: add a(n, child) to ArcList

10: else
11: send a(n, child) to parent agent
12: end if
13: end for

If n′ belongs to the part of the search space of which the Sa is in charge (i.e., in
its ResponsibledNodes), Sa stores a(n, n′) in its ArcList to compute the arc cost
later. Otherwise, Sa sends a(n, n′) to the search agent Sa ′ that is responsible for n′

through the parent agent of Sa which is a network agent (refer to Section 4.4.1 for
the description of routing path information). Upon receiving a(n, n′), Sa ′ discards
a(n, n′) if it already knows the path to n′ with a better cost than the path through
n; this prevents Sa ′ from requesting for information to compute the cost of the path
from n to n′, which is clearly in a non-optimal path. Otherwise, Sa ′ adds a(n, n′)
to its ArcList for cost computation later.

For the purpose of demonstration, refer to Figure 4.5. Take the search agent Sa1
as an example. Sa1 is in charge of L1 and L3, so its ResponsibledNodes contains
L1 and L3. When Sa1 expands L1, it discovers a path to L2, L3, and L4. Since L3 is
under its responsibility, Sa1 stores the a(L1, L3) in its ArcList. For L2 and L4, Sa1
sends them to its parent agent to forward them to the search agent(s) responsible.

4.3.2 Node cost computation

After node expansion, the search agent Sa pops one of the arcs in ArcList to
compute its cost as shown in Algorithm 7. The cost of an arc is determined using
the information retrieved from resources associated with the arc. To obtain such
information, Sa sends a request to one or multiple resource agents associated with
the resources using the information about resource agents (IRA). Depending on the
type of resource (e.g., an API, a database), Sa chooses a resource agent to inquire.

Algorithm 7 compute-arc-cost()

1: arc← POP(ArcList)
2: send a request for information about arc to a resource agent
3: add arc to PendingArcList

78 Chapter 4. Collaborative Multi-agent Search Model

While the information is being retrieved, the arc is moved from ArcList to
PendingArcList where all the arcs pending for requested information are stored.
Computing an arc cost is a non-blocking process. After sending the request to a
resource agent, Sa continues its execution. Once the necessary data is acquired,
the resource agent sends it to Sa. Sa uses the information to compute the cost of
the arc and the cost of the child node to which the arc points. This asynchronous
mechanism for retrieving information enables search agents to perform other tasks
while resources are being accessed, thus mitigating the latency.

4.3.3 Goal verification procedure

In this collaborative search model, each search agent does not possess global knowl-
edge of the search state. To guarantee the optimality of the solution, we propose
a goal verification procedure that is used to verify the optimality of the solution.
When a destination node nd is expanded, the expanding search agent Sa initiates
the goal verification procedure. The objective is to determine whether the found
path leading to nd is the minimum-cost path. The verification is conducted in a
distributed manner by each search agent. A path is verified as a minimum-cost path
only if all the search agents involved in the search process reach a consensus about
the validity of the path.

Local verification
A search agent performs location verification of a solution when it receives a goal
verification request message. For each search agent, a path to nd is optimal if there
exists no node n where f(n) < f(nd). To verify this property, each search agent
performs the following verification:

• If there is any node n in Frontier where f(n) < f(nd), the path is not verified;

• If there are arcs in ArcList or PendingArcList, the path is not verified. The
cost of those arcs are still unknown, so it is impossible to determine the cost
of the nodes to which those arcs point.

The procedure
To start this procedure, the initiator search agent Sa sends a goal verification request
message to its parent agent Na. Upon receiving the message, Na executes the
propagation protocol, illustrated in Algorithm 8, to propagate the message to other
agents. Na sends the message to its child agents (both network agents and search
agents) and its parent agent (network agent) that are not the source agent of the
message it has received. Each network agent that receives the message repeats the
propagation process by following the propagation protocol.

Figure 4.6 illustrates an example of the propagation of goal verification messages.
In this example, the search agent Sa1 initiates the Goal Verification Procedure, so it
sends a goal verification request to its parent, the network agent Na1. Na1 follows
the propagation protocol and forwards the message to its child agent Sa2 and its

4.3. Search agents 79

Algorithm 8 propagate(requestMessage)
1: sourceAgent← the agent who sent the request message
2: if (parentAgent != NULL and parentAgent != sourceAgent) then
3: send requestMessage to parentAgent //sourceAgent of this message is the

current agent that sends the message
4: end if
5: for (each childAgent) do
6: if (childAgent != sourceAgent) then
7: send requestMessage to childAgent
8: end if
9: end for

Figure 4.6: Goal verification message propagation example

parent agent Na0. The process continues until all the search agents have received
the request.

Search agents that receive the message perform local verification at every exe-
cution cycle until the path is verified or a better path is found. If the found path is
verified by a search agent, the search agent sends a response message to its parent
agent (network agent). When receiving a response message, network agents exe-
cute the back-propagation protocol, demonstrated in Algorithm 9 to forward the
response message to the source of the request message. Therefore, eventually, the
initiator search agent receives a single response message signifying the validity of
the path directly from its parent agent. If a search agent founds a better path to
the goal during node expansion, it initiates another goal verification procedure to
replace the previous one.

In addition to validating the optimality of a path, the goal verification procedure
enables search agents to filter unpromising nodes and arcs. When the found path is
under local verification by a search agent, the knowledge about the found destination
such as the path cost is used to discard unpromising nodes and arcs from Frontier

and ArcList, respectively. For instance, suppose the path under local verification

80 Chapter 4. Collaborative Multi-agent Search Model

Algorithm 9 back-propagate(responseMessage)
1: sourceAgent← the agent who sent the request message
2: if (for each request message forwarded, a response message has been received)

then
3: send responseMessage to sourceAgent
4: end if

has a cost x. Then, any node in Frontier having a higher cost and any arc inArcList
whose origin node has a higher cost are not optimal and should be discarded.

4.3.4 Optimality and Termination

Goal verification procedure enables us to determine whether a path is a minimum-
cost path. However, whether a path is optimal depends on the actual algorithm
and the cost function that the algorithm uses. For instance, in uniform-cost search,
the cost of a node is the cost from the start node to the node, which guarantees
optimality. In such a case, a path verified by the goal verification procedure is an
optimal path. However, for a greedy algorithm, a path verified by the goal verifica-
tion procedure is a minimum-cost path based on the algorithm’s cost function, but
not necessarily an optimal path based on the set of given criteria. Such flexibility
in terms of search algorithms used is possible thanks to the modularity of the pro-
posed search model where different search algorithms can be used depending on the
problem to solve. In this way, we are able to benefit the properties belonging to
each specific algorithm.

The model terminates by finding a minimum-cost path if one exists, assuming
the following properties:

• The search space is finite;

• The information about the search space is accurate;

• All messages arrive at their destinations;

• For every request to resource agents for information, we get a response.

A search process is terminated when a path verified by the goal verification
procedure is found or when the entire search space has been explored. Naturally,
the end of a search space is reached when all the search agents involved in the
search process have no nodes in Frontiers, no arcs in ArcList and no pending arcs
in PendingArcList.

4.4 Network agents

The role of a network agent is to manage and facilitate the search process of a
part of the search space of which it is in charge. This management entails routing

4.4. Network agents 81

path information to search agents, separating a search space into different parts and
assign them to different network agents, distribute workloads amongst search agents,
and propagate goal verification procedure messages. The execution cycle of a network
agent is shown in Algorithm 10. To perform its roles, each network agent maintains
the following data:

• a set of organisational entities ResponsibledEntities (OSNa ⊂ OSt) of which
it is in charge,

• its parent agent ParentAgent (Nap) which is a network agent that is in charge
of the organisational entity that covers the organisational entity of the agent.
This is not the case when the network agent is at the top of the organisation
(i.e., in charge of the root of the organisational structure);

• a set of network agents ChildNetworkAgents (NANa) that are in charge of
an organisational entity under one of its organisational entities,

• a set of search agents ChildSearchAgents (SANa) that it has created to ex-
plore the space under one of its organisational entities,

• a list of received messages to be processed.

For the purpose of demonstration, refer to Figure 4.5. Take the network agent
NaT1Z1 as an example. NaT1Z1 maintains the following data:

• Zone 1 which is an organisational entity of which it is in charge, stored in
ResponsibledEntities,

• NaT1 as its parent agent because NaT1 is in charge of Terminal 1, which
covers Zone 1,

• Sa1 as its child search agent, stored in ChildSearchAgents.

Initially, there is no network agent, and there is only one search agent, which
is the initial search agent. Other network agents and search agents required to
solve a search problem are not predefined, but are created and configured on-the-fly
during the search process. During the routing, network agents and search agents
are created dynamically to handle various tasks. The protocol for routing path
information, which is the trigger to all the agent creation and task assignment, is
presented in the following section.

4.4.1 Routing path information

Path information routing is a mechanism to allow search agents to collaborate
amongst themselves by sharing path information. This mechanism also contributes
to avoiding inconsistency such as redundant node expansion.

Bootstrapping
At the beginning of the search, there is an initial search agent Sa0 that is responsible

82 Chapter 4. Collaborative Multi-agent Search Model

Algorithm 10 Network agent life cycle ()
1: ParentAgent

2: ResponsibledEntities← ∅
3: ChildNetworkAgents← ∅
4: ChildSearchAgents← ∅
5: Messages← ∅
6: while true do
7: for each message in Messages do
8: if (message is a routing path information message) then
9: path-information-routing-protocol(path information)

10: else if (message is a goal verification request message) then
11: propagate(message)
12: else if (message is a goal verification response message) then
13: back-propagate(message)
14: else if (message is a termination message) then
15: terminate process
16: end if
17: end for
18: end while

for expanding the origin node no. By expanding no, Sa0 discovers a set of paths
that lead to other nodes accessible from no. At this point, Sa0 is only in charge of
no, so each of the discovered paths is to be routed to a search agent in charge. A
path or an arc a(n, n′) where n is the origin node of the arc and n′ is the destination
of the arc is to be sent to the search agent in charge of n′.

Sa0 sends path information to its parent agent to route the information the
search agents in charge. However, at this stage, network agents and other search
agents have not been created yet. Therefore, Sa0 creates the first network agent Na
to route the information about the paths. Na becomes the parent agent of Sa0 , and
it is in charge of the part of the search space under the organisational entity in which
no is directly located. Upon receiving the path information, Na executes the path
information routing protocol, shown in Algorithm 11, to forward the information to
the search agent(s) responsible.

For the purpose of demonstration, refer to Figure 4.7 for an example of the
bootstrapping phase of routing path information. In this example, the origin node
L1 is expanded by the initial search agent Sa0. Sa0 creates a network agent NaT1Z1,
which is its parent agent. NaT1Z1 is in charge of all the nodes under Zone 1 as L1
is located under Zone 1. The information about the organisational structure of the
environment such as Zones and Terminals is incorporated in the description of the
environment following our knowledge model presented in Chapter 3. To route path
information, Sa0 sends the path information to NaT1Z1. NaT1Z1 follows the path
information routing protocol.

4.4. Network agents 83

Figure 4.7: Routing path information – Bootstrapping example

Routing protocol
When a search agent Sa discovers a path from node n to node n′, denoted as a(n, n′),
where n′ is not under its responsibility, Sa sends a(n, n′) to its parent agent Na to
route the path information to the search agent Sa ′ in charge of n′. As mentioned
in Section 4.1.3, network agents are organised using the organisational structure of
the search space. Therefore, we can exploit the organisational structure to guide
the search for Sa ′. Sa ′, if it already exists, is under the management of a network
agent that is in charge of an organisational entity in which n′ is directly located.
The routing protocol used by network agents to route path information is described
in Algorithm 11.

When a network agent receives path information a(n, n′) to route, it retrieves
the organisational information of node n′ (Algorithm 11, Line 1). For example,
suppose that n′ is node L2 in Figure 4.7. Then, the organisational information of
L2 is Zone 2–Terimal 1–Airport, which means that L2 is under the organisational
entity Zone 2, Zone 2 under Terminal 1, and Terminal 1 under Airport. In our
routing protocol, depending the organisational entity in which n′ is located, the
routing process functions differently. There are 3 different cases as follows:

Case 1: Not under any organisational entity of the network agent
In this case, n′ is not a part of Na’s search space (i.e., neither directly nor indirectly
located in any of Na’s organisational entities). If the parent agent of Na already
exists, Na passes the control to its parent agent to execute the routing protocol
by forwarding the path information to the parent agent. Otherwise, Na creates its
parent agent to take charge of an organisational entity in which all the organisational
entities of Na are located. Then, it forwards the path information to the parent
agent. The routing protocol for this case is shown in Algorithm 11 (Line 24 –
Line 31).

Figure 4.8 demonstrates an example of this case. After expanding node L1, Sa0

84 Chapter 4. Collaborative Multi-agent Search Model

Algorithm 11 path-information-routing-protocol(a(n, n′))

1: organisation← get the organisational information of n′

2: if the executing agent Na is in charge of an organisational entity oe in
organisation then

3: if n′ is directly located under oe then
4: if Na has no search agent that is the agent responsible of n′ then
5: if Na has no search agents OR all search agents cannot take more re-

sponsibility then
6: Create a new search agent Sa and send a(n, n′) to Sa

7: Set Na as the parent agent of Sa and Sa as a search agent of Na
8: else
9: Select the search agent with the least responsibility and send it a(n, n′)

10: end if
11: else
12: Send a(n, n′) to the search agent responsible
13: end if
14: else
15: Get oe′ from organisation where oe′ is a direct child organisational entity

of he and n′ is directly or indirectly located under oe′

16: if Na has no child agents OR all child agents cannot take more responsibility
then

17: Create a network agent Na ′ and make Na ′ responsible for oe′

18: Set Na as the parent agent of Na ′ and Na ′ as a child agent of Na
19: else
20: Assign he′ to Na ′ where Na ′ is a child agent of Na with the least respon-

sibility
21: end if
22: Forward a(n, n′) to Na ′

23: end if
24: else
25: if Na’s parent agent does not exist yet then
26: Create a network agent Nap

27: Make Nap responsible for the organisational entity that is the direct parent
of all of Na’s organisational entity(ies)

28: Set Nap as the parent of Na and Na as the child of Nap

29: end if
30: Forward the request a(n, n′) to the parent agent Nap

31: end if

4.4. Network agents 85

Figure 4.8: Routing path information – Case 1 example

discovers a path to L2, a(L1, L2). Suppose that L2 is not under the responsibility of
Sa0, so Sa0 sends the path information a(L1, L2) to its parent agent NaT1Z1. Upon
receiving the routing request, NaT1Z1 executes the routing protocol. However, L2
is not located under any of the organisational entities of which NaT1Z1 is in charge.
Therefore, it forwards the routing request to its parent agent NaT1, which will
execute the routing process.

Case 2: Indirectly under an organisational entity of the network agent
In this case, node n′ is not directly under any organisational entity of the network
agent Na. It is under an organisational entity that is in turn under one of the
organisational entities of Na. This means that the search agent Sa ′ in charge of n′

is under the management of a direct or indirect child agent of Na. To route the
path information, Na forwards the routing request to the child agent Na ′. Na ′ is
a direct child agent of Na. It is responsible for an organisational entity oe that is
a direct sub-organisational entity of one of Na’s organisational entities and under
which n′ is directly or indirectly located. If Na does not exist, oe is assigned to a
child agent with the least responsibility (see 4.4.2 for further details on separating
a search space). If all child agents of Na have reached the responsibility limit, oe is
assigned to a new network agent, and the routing request is forwarded to the new
network agent, which will continue the routing. The routing protocol for this case
is shown in Algorithm 11 (Line 14 – Line 23).

An example of this case is illustrated in Figure 4.9. After expanding L1, Sa0
discovers a path to L4, a(L1, L4). To route that path information to Sa1, it follows
the process indicated earlier in Case 1. When the routing request arrives at NaT1,
the state becomes that of Case 2. L4 is not directly under Terminal 1, but is directly
under Zone 2, which is in turn under Terminal 1. Therefore, L4 is indirectly under
Terminal 1 which is under the responsibility of NaT1. To route this, NaT1 forwards
the request to its child agent NaT1Z2, which then forwards the request to its child

86 Chapter 4. Collaborative Multi-agent Search Model

Figure 4.9: Routing path information – Case 2 example

search agent Sa1.

Case 3: Directly under an organisational entity of the network agent
In this case, node n′ is under an organisational entity that the network agent Na

manages. Amongst all the child search agents of Na, if there is a search agent
Sa ′ responsible for n′, then Na sends the path information a(n, n′) to Sa ′, and the
routing process terminates. If n′ has not been assigned to any search agent (i.e., Sa ′

does not exist), Na chooses a child search agent that has the least responsibility to
take charge of n′. However, when all the child search agents of Na have reached the
responsibility limit, a new child search agent is created to take charge of n′ (see 4.4.3
for details on responsibility limit and search agent creation). The routing protocol
for this case is shown in Algorithm 11 (Line 3 – Line 13).

Consider the example illustrated in Figure 4.10. Suppose that by expanding
node L1, search agent Sa0 discovers a path to L3, a(L1, L3) and that Sa0 is not
in charge of L3. Therefore, Sa0 sends a(L1, L3) to its parent agent NaT1Z1, which
is in charge of Zone 1. Since L3 is directly under Zone 1, NaT1Z1 is able to assign
it to one of its child search agents that has the least responsibility. Suppose that
Sa0 has not reached its responsibility limit, so a(L1, L3) is assigned to Sa0. Upon
receiving the assignment, Sa0 adds L3 to its ResponsibledNodes and a(L1, L3) to
its ArcList to compute its cost later on.

4.4.2 Separating a search space

One of the role of network agents is to divide the search space into different relevant
parts such that search agents can explore them in parallel. The separation of a
search space is done based on the organisational structure of the search space. Each
network agent is responsible for a part of the search space which is composed of
a set of organisational entities. This means that they manage the search process

4.4. Network agents 87

Figure 4.10: Routing path information – Case 3 example

that involves the nodes under the organisational entities of which they are in charge.
There are 2 ways in which an organisational entity is assigned to a network agent:

• The network agent that creates a new network agent can assign an organisa-
tional entity to the newly created agent;

• The parent network agent can assign an organisational entity to its child net-
work agent.

A parent network agent assigns an organisational entity to another network
agent under its management that has the least responsibility. The responsibility
of a network agent is measured by the sum of the number of nodes under the
organisational entities for which it is responsible. We employ such an indicator
because the number of nodes determine the number of potential tasks such as routing
and other communications a network agent has to handle. Each network agent has
a responsibility limit that is the maximum number of nodes it should handle. This
limit is determined by the computational resources available. Setting the limit low
results in having more network agents, but this would avoid problems such as agents
overloaded with tasks to perform. Different limits are experimented, and the results
are discussed in the Chapter 6.

4.4.3 Distributing workloads

A set of search agents are created to explore each part of the search space. Dis-
tributing workloads is a mechanism that balances the search work amongst search
agents. It is one of the roles of network agents to distribute the workloads amongst
their child search agents to explore the part of the search space of which they are
in charge.

When a new node is discovered, a network agent assigns the node to one of its
child search agents that has the least responsibility. To compute the responsibility

88 Chapter 4. Collaborative Multi-agent Search Model

of a search agent, we take into account its current workload, which is the num-
ber of nodes in its Frontier and the number of nodes for which it is responsible
ResponsibledNodes. The process of assigning a new node to a search agent is as
follows:

1. Network agent sends a request for responsibility information to each of its
child search agent;

2. Each child agent replies with the requested information;

3. Based on the received information, the network agent decides to which child
search agent the node should be assigned.

The workload indicates the current tasks that a search agent has to execute,
and the number of nodes in ResponsibledNodes indicates the amount of potential
tasks that it may have to do. The potential tasks include requesting the cost of
arcs or paths, processing update messages, and pruning. Using both criteria to
measure responsibility enables us to assign more work to a search agent that is
more likely to become idle (i.e., having few current tasks), and also preventing
workload assignments to the search agents that might potentially be occupied (i.e.,
responsible for many nodes).

However, if all the child search agents have reached the responsibility limit, a
new search agent is created to take on the new task. The reason for introducing
responsibility limit is to distribute workloads among the search agents exploring
the same part of the search space. This is essential when the part of the search
space of a network agent is large. The responsibility limit is determined according
to two factors: the computational resources available and the search space. If the
computational resources are limited, the responsibility limit should be high to reduce
the number of search agents. This configuration, however, may affect the efficiency
when working with a large graph. Otherwise, the limit should be low, resulting in
more search agents exploring in parallel.

4.5 Conclusion

In this chapter, we address the Research question 2 which is how to address the
latency of accessing resources and transferring data from the resources? To this
end, we presented our collaborative multi-agent search model that aims at mitigating
latency resulting from resource accesses during a search process and at improving
search efficiency. This model is based on multiple agents working collaboratively
towards a shared goal. It can be applied to forward-search algorithms such as
uniform-cost search and A* search.

In the proposed model, the latency issue is handled by asynchronising the process
of accessing resources such that search agents are able to perform other tasks while
the information is being retrieved. Furthermore, the organisation of and interaction
amongst agents employed in the model enable search agents to explore different

4.5. Conclusion 89

parts of the search space in a parallel and distributed manner to reduce the search
time, while still guaranteeing the optimality of the solution.

The collaborative search model described in this chapter can be used to solve
pathfinding problems. However, it does not take into account the notion of goals.
In the following chapter, we present our approach to address multi-goal pathfinding
by formulating it as a multi-layered search problem, and we present how we can
apply the collaborative multi-agent search model on each layer to solving multi-goal
pathfinding as well as to address the latency issue.

Chapter 5

An Approach to Multi-goal
Pathfinding in Ubiquitous

Environments

Contents
5.1 Overview of the approach . 92

5.2 Generating the description of the environment 95

5.3 Subgraph extraction . 95

5.3.1 Identifying supported activities 95

5.3.2 Extracting locations . 97

5.3.3 Extracting a subgraph . 99

5.4 Goal-space graph generation 99

5.5 Multi-layered search . 101

5.5.1 Searching on a multi-layered graph 101

5.5.2 Heuristics . 102

5.5.3 Multi-layered A* search . 103

5.6 Handling the dynamics of the environment 106

5.6.1 Dynamic search in the search graph 106

5.6.2 Dynamic search in the goal-space graph 109

5.7 Conclusion . 111

Multi-goal pathfinding goes beyond the classical pathfinding problems to incor-
porate the constraints of goals to the problems. It consists of two interdependent
problems, namely the pathfinding problem and the goal satisfaction problem. Fur-
thermore, in ubiquitous environments, multi-goal pathfinding is attributed with the
dynamics of the environments, which renders the problem more complex. In the
previous chapters, we presented a semantic model for abstracting a ubiquitous envi-
ronment integrating the aspects needed for solving multi-goal pathfinding. We also
described a collaborative multi-agent search model that is capable of handling the
latency resulting from accessing to resources during a search process, which is cru-
cial when solving multi-goal pathfinding in ubiquitous environments. We can solve
pathfinding problems in a ubiquitous environment by using the semantic model to
abstract the environment as a search graph and employing the collaborative search

92
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

model to perform the search over the search graph. However, to solve multi-goal
pathfinding, we need to address both the pathfinding problem and the goal satisfac-
tion problem. In other words, it is necessary to determine not only the path from
an origin to a destination, but also the locations along the path in which a set of
given goals can be satisfied.

In this chapter, we present our approach to solving multi-goal pathfinding in
ubiquitous environments. In this approach, we formulate a multi-goal pathfinding
problem as a multi-layered search problem, the first layer representing the goal
satisfaction problem and the second layer the pathfinding problem. In this way,
search algorithms can be used to search on each layer to find the locations for
satisfying the goals and the optimal path connecting the locations. To address the
dynamics of the environments, we propose a mechanism that takes into account the
changes in the environment and updates the solution accordingly.

The rest of the chapter is organised as follows. First, we provide an overview
of the approach. Second, we present how the semantic model is used to abstract a
ubiquitous environment in the approach. Third, we describe a method for extract-
ing a pertinent subgraph from the search graph for a given multi-goal pathfinding
problem to reduce the search efforts. Fourth, we present how we generate a search
graph integrating the given goals with the locations in the environment. Fifth, we
demonstrate how search algorithms are employed in our approach to perform the
search over a multi-layered graph to find the solution to a multi-goal pathfinding
problem. Sixth, we present a mechanism that can be used to handle the effects of
the dynamics of the environment on the solution. Finally, we conclude the chapter.

5.1 Overview of the approach

This approach takes a multi-goal pathfinding problem as an input, and generates,
as an output, the solution to the problem. The followings are the definitions that
are used in the rest of the chapter:

Definition 6 Multi-goal pathfinding problem
A multi-goal pathfinding problem is a tuple MGPF = (Et, no, nd, G, CR, f) where:

• Et is the description of the environment at time t as previously defined in
Definition 4;

• no ∈ Lt is a node representing the origin location where Lt is a set of nodes
representing the location in Et as defined in Definition 4;

• nd ∈ Lt is a node representing the destination location;

• G is an ordered list of goals to satisfy;

• CR is a set of criteria for path evaluation;

• f is a cost function used to evaluate the path.

5.1. Overview of the approach 93

The input of this approach is a multi-goal pathfinding problem, defined in Defi-
nition 6, which is composed of 5 elements. The first component is the description of
the environment, Et, in which the multi-goal pathfinding problem to be solved is sit-
uated. This description provides the information regarding different aspects of the
environment needed in the approach to solve the problem such as the spatial topol-
ogy and the cyber-physical-social aspect of the environment. The second component
is the path request which consists of an origin location no and a destination location
nd. The third element is an ordered list of goals G that need to be satisfied along
the path from the origin location to the destination location. The criteria for path
evaluation CR, which is the fourth component, are problem-specific. For instance,
a criterion can be distance, monetary price, duration, or all of them combined. The
last component, the cost function f determines how the criteria are considered when
computing path cost. For example, given 3 different criteria – distance, price, and
time, a given cost function may prioritise a subset of the criteria or compromise all
of them equally.

Definition 7 Multi-goal pathfinding solution
A multi-goal pathfinding problem is solved when an optimal solution is found. A
solution is a path that connects the origin node to a list of nodes, through which all
the goals can be satisfied in the given order, and to the destination node. A solution
is optimal if it has a minimum cost evaluated using the cost function f .

The output of this approach is a solution to the given multi-goal pathfinding
problem. A solution to a multi-goal pathfinding is composed of a path, the locations
in which each goal can be satisfied, and the path cost. A path is an ordered list of
locations that connects the origin location to the destination location. In the path,
the locations to satisfy each goal are included and connected to other locations such
that by following the path, we can reach the destination by also passing by the
locations where the goals can be achieved. The cost of a path is the sum of the cost
of moving between two locations in the path.

Workflow of the approach
This approach consists of 4 steps: (1) generation of the description of the envi-
ronment, (2) subgraph extraction, (3) goal-space graph generation, and (4) multi-
layered search. The first step is problem-independent in the sense that an environ-
ment is described independently of any specific multi-goal pathfinding problem. The
description of an environment can be used to solve different multi-goal pathfinding
problems as long as the problems are located in the environment. The other steps
of the approach are problem-specific. The workflow of the approach is illustrated in
Figure 5.1.

As in the classical approaches to pathfinding, the first step in our approach
is to abstract the environment as a search graph. To this end, we employ our
knowledge model (described in Chapter 3) to describe the environment integrating
the aspects necessary for solving multi-goal pathfinding. Generating the description

94
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

Figure 5.1: Workflow of the approach

of the environment is conducted prior to the problem-solving process. The output
of this step is a description the environment in the form of a search graph.

The second step of the approach is to extract from the search space the infor-
mation that is specific to a given multi-goal pathfinding problem. In this step, we
identify the locations in which the given goals can be satisfied. In addition, we
extract from the search graph the subgraph that contains the locations allowing all
the goals to be satisfied.

The third step takes the information extracted during the second step as an
input, and generates a graph that connects pairs of goal and locations following the
order given in the problem. The generated graph is entitled a goal-space graph,
which is the output of this step.

In the last step, we combine the goal-space graph and the search graph of the
environment to construct a multi-layered graph. The first layer of the graph repre-
sents the locations in which the goals can be satisfied in the given order. The second
layer is the complete search graph representing the environment. Then, we apply a
search algorithm on the first layer to determine which location to satisfy each goal.
On the second layer, we use a search algorithm to find the optimal path to connect
the chosen locations from the first layer.

5.2. Generating the description of the environment 95

5.2 Generating the description of the environment

The objective of this step is to generate a description of a given environment. Such
a description is an abstraction of the real environment that includes the aspects
necessary for solving multi-goal pathfinding such as the spatial topology, the or-
ganisational structure, and the cybernetic, physical, and/or social entities of the
environment. To provide such a description, we model the environment using our
knowledge model, which was presented in Chapter 3. Then, we employ the proposed
ontology, entitled Ubiquitous Environment Abstraction Ontology (described in Sec-
tion 3.2), with extensions if necessary, to generate a description of the environment
in RDF. An example of an environment description is provided in Section 3.3.2.

The knowledge model abstracts an environment as a graph where locations are
nodes and the paths between connected locations are arcs. The knowledge required
to solve multi-goal pathfinding is embedded in the description of the graph. Both
the graph and the embedded knowledge are used in the other steps of the approach.

It is important to recall that ubiquitous environments are inherently dynamic.
Some of the elements included in the environment description such as cybernetic,
physical, and/or social entities and connections between locations are mobile or may
change their state over time. In consequence, the environment description needs to
be updated to take into account the changes in order to provide an accurate represen-
tation of the environment. To this end, we can use a mechanism that continuously
detects the changes in the real environment. When a change is detected, the envi-
ronment description is updated to reflect that change accordingly. The dynamics of
the environment is addressed in Section 5.6.

5.3 Subgraph extraction

In this step, we take as an input a multi-goal pathfinding problem or request which is
composed of an origin location, a destination, an ordered list of goals to satisfy, a set
of criteria for path evaluation, and a cost function. The component of the problem
that is used in this step is the ordered list of goals to satisfy. The objectives of this
step are as follows:

• Identify the locations in the environment where each given goal can be satis-
fied,

• Extract from the graph of the environment a subgraph in which all the goals
in the given list can be satisfied.

In order to identify the locations in which a goal can be satisfied, first, we need
to be able to determine through which entity a goal can be satisfied.

5.3.1 Identifying supported activities

As defined in Definition 4, a goal g is satisfied by carrying out an activity act ∈
Actt. In our approach, we assume that there exists a function that allows us to

96
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

determine the activity that satisfies a given goal. Such a fucntion can be based
on an ontology describing the relations between goals and activities supported in
a given environment. One of the challenges that we address in this step is how to
identify the cybernetic, physical, and/or social entity through which an activity can
be carried out to satisfy a goal. To this end, we propose an algorithm that is able
to identify the activities that can be carried out through an entity.

To determine the activities an entity can support, we use the knowledge in
the description of entity (part of the environment description), as demonstrated in
Algorithm 12. This algorithm takes the URI of the entity as an input. In the case
where the potential activities supported by the entity are explicitly provided in its
description, we can use that knowledge directly to determine the types of activities
(Algorithm 12: line 2-5).

In addition, we also make use of the ontology to identify the types of activities
that the entity supports (Algorithm 12: line 6-12). The associations between sub-
classes of ueao:CPSEntity and subclasses of ueao:PotentialActivity are defined
in the ontology through existential restrictions on the property ueao:supportsActivity.
We exploit such connections to identify the classes of activities cpse supports.

Algorithm 12 getClassesOfSupportedActivities(cpse)
1: retrieve the description of cpse
2: supportedActivities ← get the objects of property ueao:supportsActivity where

the subject is cpse
3: for each activity in supportedActivities do
4: add the class of activity to classesOfSupportedActivities

5: end for
6: cpseClass ← get the class of cpse
7: retrieve the description of cpseClass
8: for each superClass of cpseClass do
9: if superClass is an anonymous class that supports instances of a subclass of

ueao:PotentialActivity then
10: add subclass of ueao:PotentialActivity to classesOfSupportedActivities

11: end if
12: end for
13: return classesOfSupportedActivities

For the purpose of demonstration, suppose that the following is the description
of a physical entity KFC that is located in an airport.

<KFC>
ueao:supportsActivity saa:EatFriedChicken ;
ueao:supportsActivity saa:EatBurger ;
ueao:supportsActivity saa:DrinkSoda ;
ueao:supportsActivity saa:AccessInternet ;
a saa:FastFoodRestaurant ;
ueao:hasEntityResource <https://www.kfc.fr/> .

5.3. Subgraph extraction 97

In the description, it is explicitly stated via the property ueao:supportsActivity
that KFC supports 4 types of activities, namely eat fried chicken, eat a burger, drink
soda, and access to the Internet. In addition, it is also stated that KFC is an in-
stance of the class saa:FastFoodRestaurant. KFC supports any activity that is
supported by a saa:FastFoodRestaurant because it is an instance of that class.
Therefore, we can look up the description of the class a saa:FastFoodRestaurant
to identify the activities supported by that class.

5.3.2 Extracting locations

The first objective of this step of the approach is to identify the locations in which
each goal can be satisfied. To this end, we propose an algorithm for extracting the
locations using the environment description as shown in Algorithm 13. The algo-
rithm consists of 2 main steps. First, given a goal g, we identify the activity act
required to satisfy the goal via a function we assume exist (Algorithm 13 Line 1).
Second, we explore all the locations to determine if it can satisfy the goal (Algo-
rithm 13 Line 4–16). For each location, we examine the cybernetic, physical, and/or
social entities it contains. If one of these entity supports act, then location is added
to the list of locations in which the given goal can be satisfied. To determine if
an entity supports act, we make use of the algorithm entitled getClassesOfSupport-
edActivities() as previously defined in Algorithm 12. At the end of the algorithm, a
set of locations in which the given goal can be satisfied is returned.

Algorithm 13 identify-location(goal)
1: activity ← get the activity required to satisfy goal
2: organisationEntities ← all the organisational entities of the environment
3: locations ← ∅
4: for each organisational entity oe in organisationEntities do
5: access the description of oe
6: for each location l under oe do
7: access the description of l
8: for each entity cpse located in l do
9: activityClasses ← getClassesOfSupportedActivities(cpse)

10: if activity is an instance of one of the classes in activityClasses then
11: add l to locations
12: break
13: end if
14: end for
15: end for
16: end for
17: return locations

98
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

For example, suppose there is a traveller in an airport who has 4 goals to achieve
in the airport, namely check-in, have lunch, use a lavatory, and withdraw some
money. For each of these goals, we use Algorithm 13 to identify the locations where
it can be satisfied. Using the algorithm, we are able to identify the locations for
each goal as below:

Goal 1: Check-in

• The activity associated to goal: check-in activity

• The locations that can satisfy check-in activity: self check-in area in Terminal 1
and self check-in area in Terminal 2

Goal 2: Have lunch

• The activity associated to goal: eat activity

• The locations that can satisfy eat activity: KFC, The Loaf, Starbucks, and
Dunkin Donuts

Goal 3: Use a lavatory

• The activity associated to goal: toilet activity

• The locations that can satisfy toilet activity: west toilet, east toilet, and KFC

Goal 4: Withdraw some money

• The activity associated to goal: withdraw money activity

• The locations that can satisfy withdraw money activity: ATM Maybank loca-
tion and ATM CIMB location

Having identified the locations for each goal, we use that knowledge to make
pairs of goals and their associated locations. In this example, the goal-location
pairs are as follows:

• Check-in: (Check-in, self check-in area in Terminal 1) and (Check-in, self
check-in area in Terminal 2)

• Have lunch: (Have lunch, KFC), (Have lunch, The Loaf), (Have lunch, Star-
bucks), and (Have lunch, Dunkin Donuts)

• Use a lavatory: (Use a lavatory, west toilet), (Use a lavatory, east toilet), (Use
a lavatory, KFC)

• Withdraw some money: (Withdraw some money, ATM Maybank location)
and (Withdraw some money, ATM CIMB location)

These goal-location pairs will be used in the next step of the approach to generate
a goal-space graph.

5.4. Goal-space graph generation 99

5.3.3 Extracting a subgraph

The second objective of this step is to extract a subgraph that contains all the
locations in which all the given goals can be satisfied. The subgraph is a set of
organisational entities that cover all those locations. The algorithm to extract a
subgraph is shown in Algorithm 14. This algorithm takes the locations in which all
the given goals can be satisfied as an input. Then, it returns a set of organisational
entities under which the input locations are situated.

Algorithm 14 extract-relevant-organisational-entities(locations)

1: organisationalEntities ← ∅
2: for each location l in locations do
3: access the description of l
4: oe ← get the organisational entity under which l is located
5: add oe to organisationalEntities
6: end for
7: return organisationalEntities

In the context of the previous example of the traveller with 4 goals to satisfy, the
subgraph extraction algorithm returns 2 organisational entities, namely Terminal 1
and Terminal 2 as the locations where the goals can be satisfied are situated in
both Terminal 1 and Terminal 2. The subgraph will be used as knowledge for the
heuristics of the search algorithm in the last step of the approach.

5.4 Goal-space graph generation

In this step, we know the locations where each goal can be satisfied as this knowledge
is discovered in the previous step. However, it is possible that a goal can be satisfied
in more than one locations. Therefore, the problem is to determine the optimal
location to satisfy each goal. The objective of this step is to construct a graph,
entitled goal-space graph, where nodes are goal-location pairs and arcs represent the
connection between goals in an order given as a part of the multi-goal pathfinding
problem. The goal-space graph represents the search space of the given multi-
goal pathfinding problem as it incorporates both the pathfinding problem and the
problem of selecting nodes amongst the goal-location pairs.

A goal-space graph, denoted by π, is an acyclic graph that can be viewed as a par-
tial plan in which there may be multiple goal-location pairs for each goal. We adapt
the definition of a partial plan in [Ghallab 2016], and define πt = (Lt, GVt, GEt)

where:

• Lt, as previously defined in Definition 4, is a set of locations in a given envi-
ronment at time t;

• GVt is a set of nodes of an acyclic graph. Each node v ∈ GVt contains a goal
g ∈ G and a location l ∈ Lt where g can be satisfied at l;

100
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

Figure 5.2: An example of a goal-space graph

• GEt is the edges of an acyclic graph. They represent ordering constraints on
the goals in GVt. We define v ≺ v′ if v 6= v′ and (GVt, GEt) contains a path
from v to v′.

For an illustration purpose, refer back to the example regarding the goal-location
pairs in Section 5.3.2. Suppose that the traveller wants to go from the main entrance
of Terminal 1 to a gate in Terminal 1. On his way, he wants to achieve the 4 goals as
previously mentioned. With those goal-location pairs, we can generate a goal-space
graph as shown in Figure 5.2.

The output of this step is the goal-space graph. Having generated the graph, the
next step is to choose the optimal location to satisfy each goal and to find the path
that connects between the selected locations, which is presented in the following
section.

5.5. Multi-layered search 101

5.5 Multi-layered search

Having generated a goal-space graph that represents both the environment and the
goals specific to the given multi-goal pathfinding problem, in this step, the objective
is the search within the goal-space graph for the optimal path from the start node to
the destination node.

5.5.1 Searching on a multi-layered graph

In a goal-space graph, nodes integrate 2 aspects of the problem: the goals and the
spatial dimension (locations). Unlike in the search graph of the environment, the
locations of 2 connected nodes in a goal-space graph are not necessarily directly
connected at the spatial level. Computing the cost of an edge between 2 nodes in
a goal-space graph is equivalent to a problem of finding a path between 2 corre-
sponding nodes on the search graph. Therefore, performing a search on a goal-space
graph is actually searching on 2 different graphs, the goal-space graph itself and the
search graph. We consider each graph as a layer, which makes it a multi-layered
graph.

The generic steps required to perform a multi-layered search is shown in Algo-
rithm 15. Various search algorithms can be used to perform the search. However,
the modification required is the computation of the cost of nodes (Algorithm 15
Line 5). Depending on the algorithm, the cost function used to compute the cost of
a node n is either f(n) = g(n) for an uninformed algorithm or f(n) = g(n) + h(n)

for an informed algorithm where g(n) is the real cost between the origin node norigin
and the current node n and h(n) is the cost estimate between n and the destination
node ndestination. Since connected nodes in a goal-space graph are not necessarily
directly connected in the search graph, to compute g(n), we need to perform a search
in the search graph to find the path between norigin and n and its cost.

Algorithm 15 Generic steps for a multi-layered search
1: Frontier ← {norigin}
2: Expanded← ∅
3: while goal not found or not the end of search space do
4: select a node n ∈ Frontier to expand
5: compute the cost of n
6: remove n from Frontier and add it to Expanded
7: goal test
8: pruning
9: end while

It is important to recall the issue of latency that results from resource accesses
to the cost of nodes. The algorithm that is chosen to search on the search graph of
the environment should be able to address this issue.

102
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

5.5.2 Heuristics

Heuristics play an important role in graph search. Good heuristics lead a search
process to find a path quicker and to expand less nodes. In our context, node expan-
sion can be costly. Expanding a node requires the algorithm to compute the cost
function of every reachable neighbour. Considering it needing access to resources to
retrieve information for the computation, the number of node expansions has a sig-
nificant impact on the overall performance of the algorithm. For example, accessing
resources might introduce latency or problems with threshold limits in accessing the
API of resources. Therefore, we propose 3 heuristics that exploit the knowledge of
the search space to improve the search process. A path cost is computed based on
the given criteria such as distance, price, time, or all of them combined. Therefore,
we need some sorts of scaling factors to express the real path cost and the estimated
cost computed using the heuristics in the same unit. These heuristics can be used
in search algorithms to search on a goal-space graph and a search graph. How these
heuristics are used in search algorithms is described in the next section.

Heuristic on the goal-space graph
On the goal-space graph, denoted as π, we design a heuristic hπ for evaluating each
node that is computed based on the number of goals that can be satisfied at the
node’s location and the quality of cybernetic, physical, and/or social entities (CPS
entities) the location contains. To evaluate a CPS entity, we retrieve information
from the resources associated with the entity, as provided in the description of the
entity using the property ueao:hasEntityResource. The rationale behind using
such information is that there may be multiple locations where each goal can be
satisfied. Introducing qualitative information as a part of the cost function allows
us to find a better location for each goal.

Heuristics on the search graph
On the search graph, denoted as CSG , we propose 2 heuristics, namely the goal-
based heuristic and the organisation-based heuristic. Goal-based heuristic hgoal
uses the knowledge extracted during the subgraph extraction step, described in
Section 5.3. This heuristic prioritises nodes that are in the subgraph. Let CSGsub

be a subgraph, Lsub a finite set of locations in CSGsub and OEsub a finite set of
organisational entities in CSGsub. If a node n belongs to Lsub or a direct or indirect
organisational entity of n belongs to OEsub, we prioritise n by assigning its heuristic
cost hgoal(n) = 0. Otherwise, hgoal(n) = 1. The logic behind this heuristic is that
the subgraph contains the locations and organisational entities in which the given
goals can be satisfied. Expanding those nodes may lead to more promising paths as
they are the locations or under the organisational entities where at least one goal
can be satisfied.

Organisation-based heuristic horganisation prioritises the expansion of nodes that
are located under an organisational entity close to that of the destination. Let
ndestination be the destination node and n be the node being evaluated. If the or-
ganisational entity of n is different from that of ndestination, we add a value of 1 to the

5.5. Multi-layered search 103

Figure 5.3: Hierarchy-based organisation example

heuristic cost of n. If the organisational entity has multiple level (e.g., a hierarchy),
for each level of a hierarchy, if the organisational entity of n is different from that of
ndestination, we increase the the heuristic cost by 1. For example, refer to Figure 5.3
and assume that Starbucks is the destination node. The horganisation(Entrance/Exit
T1) = 0 because Entrance/Exit T1 and Starbucks share the same organisational
entity at every level. The horganisation(The Loaf) = 1, The Loaf is under an organ-
isational entity Zone 1, while Starbucks is under Zone 2. The horganisation(Puffy
Buffy) = 2 because there are 2 levels of organisational entities that Puffy Buffy and
Starbucks do not share. The underlying motivation of this heuristic is that moving
between two nodes in the same organisational entity is less costly than between
nodes in different organisational entities.

5.5.3 Multi-layered A* search

To demonstrate how search algorithms can be employed in our approach to perform
the multi-layered search, we present how we adapt the A* algorithm into a multi-
layered A* (MLA*) to handle resource accesses and allow communication between a
goal-space graph π layer and its underlying search graph CSG . We chose A* for this
demonstration because it allows us to use the knowledge-based heuristics we propose
for each layer of a multi-layered graph. The aim of A* is to find a minimum-cost
path. It evaluates nodes by their cost using a cost function f(n) = g(n) + h(n).

Searching in the goal-space graph
In MLA* (Algorithm 16 and Algorithm 17), we combine 2 different versions of A*,
an A∗π for searching on the goal-space graph layer and an A∗CSG for the search graph
layer. A∗π (Algorithm 16) behaves similarly to the classic A* except during node
expansions. When a node n is expanded, a set of nodes reachable from n is found.
However, the location of n and the location of each of its neighbours ln′ might not

104
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

be directly connected in the search graph. To compute the path between n and each
of its neighbours, A∗π instantiates an A∗CSG to search in CSG for a path between ln
and ln′ . To evaluate each node, A∗π uses a cost function fπ = gπ + hπ. The cost of
movement gπ on π layer is obtained from executing an A∗CSG search.

Searching in the search graph
In the search graph, A∗CSG (Algorithm 17) is based on the classic A* with a modifi-
cation to communicate cached results of pathfinding, namely the path and its costs,
to A∗π so that those results can be reused. It is necessary to note that on the CSG

layer, the search space is composed of locations, while organisational entities are
used for computing the heuristics. To evaluate a node, A∗CSG uses a cost function
fCSG = gCSG + hCSG . To compute gCSG , we use information from the resources
provided in the description of the environment. As for the heuristic cost hCSG , we
combine two heuristics, namely hgoal and horganisation.

Algorithm 16 A∗π(π, nstart, ndest, CSG)

1: openList ← [nstart]; closedList ← []; cachedPathCost ← []
2: while openList not empty do
3: n ← pop-min(openList)
4: if n is the destination ndest then
5: return n
6: else
7: generate n’s successors and set their parents to n
8: for all n′ successor of n do
9: g ← cachedPathCost(ln → ln′)

10: if g is null then
11: pathn−n′ ← A∗CSG(CSG , ln, ln′ , cachedPathCost)
12: g ← pathn−n′ .cost
13: end if
14: n′.g ← g + n.g
15: n′.h ← hπ(n

′)

16: n′.f = n′.g + n′.h
17: if n′ not in openList nor closedList then
18: add n′ to openList
19: else if n′ in openList and f(n′) < f(n′openlist) then
20: replace n′openlist by n

′

21: else if n′ in closedList and f(n′) < f(n′closedlist) then
22: remove n′closedlist from closedList
23: add n′ to openList
24: end if
25: end for
26: end if
27: end while

5.5. Multi-layered search 105

Algorithm 17 A∗CSG(CSG , lstart, ldest, cachedPathCost)

1: openList ← [lstart]; closedList ← []
2: while openList not empty do
3: l ← pop-min(openList)
4: if l is the destination ldest then
5: return l
6: else
7: generate l’s successors and set their parents to l
8: for all l′ successor of l do
9: g ← request-resource rl−l′

10: add [(l→ l′), g] to cachedPathCost
11: h ← l′.hgoal + l′.hhierarchy
12: l′.f = l.g + g + h
13: if l′ not in openList nor closedList then
14: add l′ to openList
15: else if l′ in openList and f(l′) < f(l′openlist) then
16: replace l′openlist by l

′

17: else if l′ in closedList and f(l′) < f(l′closedlist) then
18: remove l′closedlist from closedList
19: add l′ to openList
20: end if
21: end for
22: end if
23: end while

106
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

Discussion
The output of this step is a minimum-cost path from the origin location to the
destination that passes through the locations allowing the given goals to be satisfied
in the given order. The path is the solution to the given multi-goal pathfinding
problem. However, in this approach, until now, we have not taken into account the
dynamics of the environment yet. During the search process, it is likely that the
state of the environment evolves, which may influence the solution for which we
are searching. In addition, after a solution has been found and during the time in
which the traveller is following the proposed path, changes that affect the solution
may also occur. These changes may invalidate the current solution. Therefore, both
during the search process and the execution of the path, relevant changes in the
environment need to be considered to adapt the solution accordingly. To this end,
we propose a mechanism for handling such dynamics that is integrated into our
approach, which is presented in the following section.

5.6 Handling the dynamics of the environment

To guarantee the validity of the solution, dynamic changes in the environment need
to be handled during the search process and path execution. Changes in the envi-
ronment result in changes in the cost of the arcs in the search graph, and thus the
goal-space graph. To address the arc cost changes in the search graph, we extend
our collaborative search model, described in Chapter 4, to incorporate the necessary
steps to take into account the changes. For the search in a goal-space graph, we
propose an update mechanism to handle the changes.

5.6.1 Dynamic search in the search graph

To handle the dynamics in the search graph, we extend our collaborative search
model to handle the arc cost changes. The principle steps are as follows:

• Perform the first search using the collaborative search algorithm to find an
optimal path;

• Make use of the multi-agent infrastructure constructed during the first search
to communicate the changes and update the path accordingly, during path
execution.

The first search
In the collaborative search model, when a goal is found, a goal verification procedure
is initiated. If the procedure succeeds, then the path to the found goal is verified
as the optimal path. During the search process, a multi-agent infrastructure that is
composed of search agents, network agents, and resource agents is constructed. An
example of the multi-agent infrastructure is depicted in Figure 5.4.

5.6. Handling the dynamics of the environment 107

Figure 5.4: Example of a path and a multi-agent infrastructure constructed during
the search process

Backtracking – setup for the incremental search
Having found the optimal goal during the first search, the next step is to backtrack
from the goal node to build the path. We exploit the backtracking process to extend
the multi-agent infrastructure to setup for the incremental searches that may follow
when the environment changes. The search agent that found the goal node, named
goal agent, is the agent that performs the backtracking. The steps required to setup
for the incremental searches are as follows:

Step 1: Take charge of all nodes in the path
During the backtracking process, the goal agent takes charge of all the nodes in the
optimal path as the agent will be monitoring and managing changes in the path.
Therefore, for each node in the path, the goal agent takes the information about the
node from the search agent responsible for the node. To complete this transition of
responsibility, the goal agent informs the network agents associated with the nodes
in the path about the changes so that the network agents can route the information
about those nodes to the goal agent instead of the search agents formerly responsible
for those nodes, during the search in the future.

For a demonstration, refer to Figure 5.4. The goal agent SA-Goal executes the
backtracking process. It takes charge of all the nodes in the path such as goal node,
n8, n5, n3, and start node. In addition, SA-Goal informs the network agents NA1
and NA2 to route any information regarding start node, n3, n5, and n8 to itself and
not to SA1, SA2, and SA3.

108
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

Step 2: Subscribe for changes in the path
To be informed about the changes in the current path, the goal agent sends a request
to the resource agents associated with the path to notify it when there are changes.
Let us refer to Figure 5.4. The search agent SA-Goal sends a request to the resource
agent RA2 to keep accessing the resources associated with the arc connecting n8
to Goal to detect changes and to notify it when changes occur. SA-Goal sends the
same type of request to RA1 for the arc between Start and n3 and the arc between
n3 and n5.

Step 3: Subscribe for changes in the successor nodes
In addition to the changes in the current path, changes in other parts of the search
space may also affect the current path. Changes in the arcs leading to the successor
nodes of the nodes in the current path also have to be taken into account as they
may lead to a new optimal path. Let us refer again to Figure 5.4. The nodes n4 and
n2 are not part of the current path, but they are the successors of the node n3 that
is in the current path. During the first search, n5 was selected because the path to
Goal through n5 is less costly than that via n4 and n2. However, the change of the
arc cost between n3 and n4 or n3 and n2 may make the path through n4 or n2 less
costly than via n5. Therefore, we need to monitor the changes to these successor
nodes. To detect changes in the successor nodes, the goal agent requests the search
agents responsible for the successor nodes to notify it when changes occur. The
search agents responsible in turn requests the resource agents to notify them when
there are changes in the arcs to successor nodes. In the infrastructure shown in
Figure 5.4, SA-Goal requests for change notifications of n4 and n2 from SA4. SA4
subscribes to RA1 for change notification of the arc between n3 and n4 and n3 and
n2.

Node selection is based on the cost evaluated by the cost function f(n) = g(n)+

h(n) where g(n) is the path cost from the start node to the node being evaluated n
and h(n) is the estimated cost to go from n to the goal node. The heuristic function
h evaluates a path cost based on some knowledge of the environment, and is not
affected by the dynamic changes. Therefore, only the changes in the cost evaluated
by g is affected by the changes. Provided that h is consistent, which means that it
never overestimates the path cost, then real path cost is bigger or equal to the cost
estimated by h. Therefore, changes in other parts of the search space, other than
the current path and the successor nodes, are not taken into account. The reason is
that when choosing between 2 successors n1 and n2 of a node n0 where n0 and n1
are in the current optimal path, if f(n2) > f(n1), then we can assert that the cost
of any path through n2 is higher than the cost of the current optimal path through
n1. Therefore, only the changes to g(n2) can invalidate the current optimal path.

5.6. Handling the dynamics of the environment 109

Handling changes
After the backtracking, the goal agent waits for notifications from either the resource
agents about the changes in the path or from the search agents of the successor nodes.

Case 1: Handling changes within the current path
When the goal agent receives a notification from a resource agent about the changes
in an arc cost within the current path, it recomputes to cost of the affected node and
decides whether to keep the current path or explore other alternatives. Let n1 be
the affected node and a successor node of n0 where both n0 and n1 are in the current
path. Let n2 be a successor node of n0 where n2 is not in the current path. The goal
agent decides to keep the current path through n1 if f(n1) <= f(n2). Otherwise,
the goal agent explores the path via n2 by expanding n2 and continues the search
until the goal node is found. Then, it performs the backtracking process again with
the new path. During the backtracking, nodes that are not in path anymore are
assigned to their former search agents responsible. The goal agent also unsubscribes
from the network agents and resources agents regarding those nodes.

Case 2: Handling changes outside the current path
When there are changes that affect a successor node, the search agent responsible
recomputes the cost of the affected node and notifies the goal agent. Let n0 be a
node in the current path, n1 a successor of n0 and also in the current node, and n2
a successor of n0 that is affected by the change. If f(n2) >= f(n1), the goal agent
keeps the same path. If f(n2) < f(n1), the goal agent explores the path via n2 by
expanding n2 and continues the search until it finds the goal node.

Discussion
While the goal agent explores other alternative paths, more new updates may occur.
Updates during the search process are not considered immediately. The goal agent
waits until it finishes the current search process, and then it takes into account all
the new updates at once. In addition, as the path changes, more and more arc costs
are known. Therefore, the subsequent search processes may take lesser and lesser
time.

5.6.2 Dynamic search in the goal-space graph

As mentioned in Section 5.5, nodes in a goal-space graph are not necessarily directly
connected at the spatial level. To compute the cost of an arc between 2 nodes, we
need to execute a search in the search graph to find the path between those 2 nodes.
Therefore, changes that affect the search graph may also affect the path on the
goal-space graph. Therefore, it is also necessary to handle the dynamic changes in
the goal-space graph that result from the changes in the search graph. The main
steps required to manage the changes are as follows:

• Perform the first search using a search algorithm to find an initial path;

110
Chapter 5. An Approach to Multi-goal Pathfinding in Ubiquitous

Environments

• Extend the multi-agent infrastructures constructed to search for the paths
between the goal-space graph nodes in the search graph.

The first search
After the goal-space graph is constructed, we can use a search algorithm to find
the path between the start node and the goal node. During the search process,
to compute the cost of each arc between 2 nodes, we perform a search using our
collaborative search model adapted to the dynamics of the graph as presented earlier
in Section 5.6.1. Therefore, after the solution is found we have a set of multi-agent
infrastructures, each of which is responsible for finding the path between 2 nodes
of the goal-space graph. These infrastructures will be used to communicate the
changes from the search graph to the goal-space graph search process.

The multi-agent infrastructures were created to search for different paths. How-
ever, they search in the same search space. To avoid requesting resource agents
for the same information, which creates unnecessary latency, resource agents store
the information requested about the search space so that it can be reused when
requested by agents from multiple infrastructures.

Backtracking – setup for the incremental search
To manage the changes in a goal-space graph, we extend the multi-agent infras-
tructures constructed during the first search. This is done during the backtracking
process. When the search algorithm found the goal, it starts the backtracking pro-
cess to build the path. During the backtracking, we create a search agent Sagsg
to manage the changes in the goal-space graph by interacting with other agents in
the infrastructures. Sagsg sends a request to each goal agent of the infrastructures
for each arc to notify it when the path corresponding to each arc changes. Only
the infrastructures for the arcs in the current path and the arcs connecting to the
successors of the nodes in the current path are kept after the first search. Other
irrelevant infrastructures are terminated.

Handling changes
When a path that corresponds to an arc in the goal-space graph changes, the goal
agent of the corresponding infrastructures informs the search agent of the goal-space
graph Sagsg. If the affected arc leads to a node in the path, Sagsg recomputes the
cost of the affected node n. If the cost is smaller, then the current path remains.
Otherwise, Sagsg compares the cost of n, denoted as f(n) with the cost of its neigh-
bours. If there is a node n1 that is a neighbour node of n where f(n1) < f(n), Sagsg
expands n1 and explores the alternative path via n1.

If the affected arc is an arc to a node that is a successor of a node in the current
path, Sagsg recomputes the cost of the successor and decides whether to keep the
current path or to expand the successor. The decision is made based on the cost of
the successor. Let n0 be a node in the goal-space graph and in the current path,
n1 be a successor of n0 that is also in the current path, and n2 be a successor
of n0 but not in the current path and whose cost, denoted as f(n2), has been

5.7. Conclusion 111

updated. If f(n2) >= f(n1), Sagsg updates its cost and keeps the current path. If
f(n2) < f(n1), Sagsg expands n2 and explores the path via n2 by using the same
search algorithm used in the first search, but starting from n2, to check if there is a
better path via n2.

If a better path is found, Sagsg performs the backtracking process again. During
the backtracking, Sagsg terminates the infrastructures corresponding to the arcs
that are no longer in the path, nor leading to the successors of the nodes in path. It
is important to recall that the node cost computation produces latency. Therefore,
when the traveller is following the proposed path and has reached a location to
satisfy a goal, we terminate, if any, the infrastructures corresponding to the arcs
leading to the locations for achieving that goal.

5.7 Conclusion

In this chapter, we address the Research question 3 which is how to solve multi-goal
pathfinding? and the Research question 4 which is how to address the dynamic state
of the environment during path computation and path execution? We have presented
our approach to multi-goal pathfinding. The way in which our knowledge model is
used to describe a ubiquitous environment was provided. We describe the algorithms
to extract the knowledge specific to a given multi-goal pathfinding problem from the
description of the environment. We presented a method to generate a goal-space
graph based on a given set of goals and a search graph. A goal-space graph is an
abstract graph built on top of a search graph, making it a multi-layered graph.
An adaptation of A* algorithm was made to demonstrate the search over a multi-
layered graph. We proposed different heuristics exploiting the knowledge of the
environment to be used in search algorithms. A multi-agent based mechanism was
proposed to handle the dynamics of the environment to provide valid and update-
to-date solutions.

Part III

EVALUATION

Chapter 6

Experimentation and Validation

Contents
6.1 Validation of the knowledge model and the heuristics . . . 116

6.1.1 Experiment configurations . 116

6.1.2 Experiment 1: Comparing different heuristics 116

6.1.3 Experiment 2: Evaluating the heuristics based on problem types118

6.1.4 Experiment 3: Evaluating the heuristics over different envi-
ronment structures . 119

6.1.5 Discussion . 120

6.2 Evaluation of the collaborative multi-agent search model . 121

6.2.1 Experiment configurations . 121

6.2.2 Experiment 1: Evaluating the search model based on problem
types . 122

6.2.3 Experiment 2: Evaluating the search model over different en-
vironment structures . 125

6.2.4 Experiment 3: Evaluating the scalability of the search model 127

6.2.5 Discussion . 127

6.3 Conclusion . 128

To validate our proposal for solving multi-goal pathfinding problems in ubiqui-
tous environments, we conducted various experiments to evaluate different compo-
nents of our approach. More precisely, we validated our semantic model for describ-
ing ubiquitous environments as well as the proposed heuristics that are based on the
knowledge described using the model. The collaborative multi-agent search model
was evaluated based on different criteria.

The objective of this chapter is to present the experiments that were conducted
for the evaluation of our approach. The rest of the chapter is organised as fol-
lows. First, we present the experiments for validating the knowledge model and the
heuristics. Second, the evaluations of the collaborative multi-agent search model
are provided. For each section, the configurations of the experiments, the empirical
results, and the discussion based on the results are provided. Finally, we conclude
the chapter with an overall discussion of the results.

116 Chapter 6. Experimentation and Validation

6.1 Validation of the knowledge model and the heuristics

In this section, we present the experiments that we conducted to validate the seman-
tic model and the heuristics. The objective of this evaluation is to demonstrate the
validity of the knowledge model in describing ubiquitous environments, especially
for solving multi-goal pathfinding, and of the heuristics that exploit the knowledge
described using the model. This evaluation is based on the experiments to show the
improvements that we can benefit from the heuristics.

6.1.1 Experiment configurations

The experiments were executed on a 2.4GHz Intel Core i7 machine with 16GB of
RAM. For these experiments, we use the semantic model to describe 3 different
environments, namely Environment 1, Environment 2, and Environment 3, whose
properties are described in Table 6.1. The 3 environments are of the same size –
containing 10000 locations. For Environment 1, the organisational structure is a
3-level depth hierarchy that is composed of 1 organisational entity at the first level,
10 at the second, and 100 at the third. For Environment 2 and Environment 3, the
organisational structure is a 4-level depth hierarchy consisting of 1 organisational
entity at the first level, 10 at the second, 100 at the third, and 1000 at the fourth. The
differences between Environment 2 and Environment 3 is that in Environment 2,
one location is connected to only one other location, and one leaf organisational
entity (i.e., the organisational entity at the lowest level directly connected to the
locations) has only one exit point to another leaf organisational entity via a location
under its coverage.

For each experiment, we used 2 types of problems. The problems of type (1)
consist in finding the path between a start and a destination locations that are
under the same leaf organisational entity, while type (2) problems find the path
between 2 locations of different leaf organisational entities. For each problem, we
executed the search algorithm twice, and we took the average of the results. In our
context, node expansion has a significant impact on the time performance of the
algorithm as expanding each node requires an access to a resource for the information
necessary for determining the cost of the path to the node. Therefore, we also
introduced latency in accessing resources during node expansion. The way in which
we simulated the latency is as follows. For the latency of nmilliseconds, we generated
randomly a value between 0 and n for each access to a resource.

6.1.2 Experiment 1: Comparing different heuristics

The objective of this experiment is to compare the efficiency that can be obtained
from the proposed heuristics, namely hgoal and horganisation, as described in Sec-
tion 5.5.2. To this end, we used the classical A* algorithm to solve problems in
Environment 3 using 3 different heuristics, hgoal, horganisation, and h which is a
combination of hgoal and horganisation. Uniform-cost algorithm, which is indepen-
dent of heuristics, was used as the baseline algorithm for the comparison.

6.1. Validation of the knowledge model and the heuristics 117

Environment 1
Environment properties Description
Organisational structure 3-level depth hierarchy
Locations 10000
CPS entities 10000
Accessible locations from a location 1
Exit points from an organisational entity 1

Environment 2
Environment properties Description
Organisational structure 4-level depth hierarchy
Locations 10000
CPS entities 10000
Accessible locations from a location 1
Exit points from an organisational entity 1

Environment 3
Environment properties Description
Organisational structure 4-level depth hierarchy
Locations 10000
CPS entities 10000
Accessible locations from a location 3
Exit points from an organisational entity 2

Table 6.1: Environment 1–3

118 Chapter 6. Experimentation and Validation

Figure 6.1: Comparison of expands by A* with heuristics and by uniform-cost

Figure 6.1 illustrates the number of nodes expanded by A* using different heuris-
tics and by uniform-cost. A* with h expands the least reducing almost 40% of the
expanded nodes compared to uniform-cost, followed by horganisation and then hgoal.
The proposed heuristics direct the search process towards more promising nodes
including the nodes that are in the extracted subgraph and the nodes that are close
to the destination node. This enables the algorithm to explore less irrelevant parts
of the search space.

To see how the heuristics influence the time performance of the algorithm, we
introduced the latency of 1, 3, and 5 milliseconds (ms) during node expansion. The
results are shown in Figure 6.2. With the heuristics, the algorithm expands less
nodes, and thus finds the path faster. However, without latency, the time difference
is minimal. This is due the fact that when using the heuristics, the algorithm is
affected by the time required to compute the heuristics. The time efficiency gained
by using the heuristics rises significantly as we increase the latency.

6.1.3 Experiment 2: Evaluating the heuristics based on problem
types

The aim of the second experiment is to evaluate the heuristics in solving different
types of problems. In this experiment, we used A* algorithm with a heuristic h,
which is a combination of horganisation and hgoal, to solve the 2 types of problem, as
mentioned earlier in the experiment configurations, in Environment 1. We compared
the results of A* with the baseline algorithm uniform-cost.

Figure 6.3 depicts the time efficiency (in percentage) gained by using A* with h
compared to uniform-cost. For problems of type (1), uniform-cost is more efficient
than A*, with or without latency. As shown in Figure 6.3, the efficiency remains

6.1. Validation of the knowledge model and the heuristics 119

Figure 6.2: Runtime of A* using different heuristics and of uniform-cost

negative over various latency values. The main reason for such results is that since
both the origin and the destination nodes are under the same organisational entity,
the heuristic horganisation has no effect. In addition, A* needs more time to compute
the heuristics.

For type (2) problems, the origin and the destination nodes are under different
organisational entities, so the heuristics enable to algorithm to expand less nodes.
However, the time efficiency gained from the reduced expanded nodes cannot com-
pensate the time required to compute the heuristics. This results in uniform-cost
performing better than A* when there is no latency. However, A* starts to outper-
form uniform-cost when approximately 2 ms of latency is introduced.

6.1.4 Experiment 3: Evaluating the heuristics over different envi-
ronment structures

The objective of the third experiment is to determine how the heuristics contribute
to the improvement of search efficiency in different types of environments. In this
experiment, we compared A* algorithm with the heuristic h, a combination of
horganisation and hgoal, to uniform-cost over 3 environments, namely Environment 1,
Environment 2, and Environment 3. The time efficiency obtained by using the
heuristics is illustrated in Figure 6.4.

The heuristics are most efficient in Environment 3 followed by Environment 2
and Environment 1. This is owing to the fact that, in Environment 3, there are

120 Chapter 6. Experimentation and Validation

Figure 6.3: Runtime efficiency of A* with h(goal, organisation) compared to
uniform-cost on different problem types

more connections between nodes and more exits between organisational entities.
With more connections and exits, the heuristics guide the search process to choose
better nodes among the available options. It is noteworthy that, using the heuris-
tics in Environment 3 reduces a substantial number of expanded nodes, sufficient to
compensate for the time required to compute the heuristics and to provide an effi-
ciency roughly 35% over uniform-cost even without latency. In Environment 1 and
2, however, there are not many options. From each node, only one path is available.
Therefore, both heuristics horganisation and hgoal are less effective in comparison.

Environment 1 and 2 are the same in terms of connectivity. The difference is
that nodes are more distributed among the organisational entities in Environment 2.
In Environment 1, each 1000 nodes are grouped under a single organisational entity,
so the heuristic horganisation has a minimal effect. As a result, A* performs better
in Environment 2 than in Environment 1. Uniform-cost outperforms A* when there
is no latency for both Environment 1 and Environment 2 because the number of
reduced expanded nodes cannot compensate for the time A* needs to compute the
heuristics. However, when latency is introduced, the time needed to expand each
node increases, making A* more efficient than uniform-cost.

6.1.5 Discussion

In most cases, the heuristics help the algorithm reduce irrelevant node expansion.
They are more efficient when solving complex problems in well-connected and dis-
tributed environments. However, the time required to compute the heuristic func-

6.2. Evaluation of the collaborative multi-agent search model 121

Figure 6.4: Run time efficiency of A* with h(goal, hierarchy) compared to uniform-
cost over different environment structures

tion is not negligible. According to the experiments, uniform-cost performs better
in most cases when there is no latency as the time obtained from reduced node
expansion cannot compensate the heuristic computation time. A* starts to surpass
uniform-cost when latency, around 1 ms, is introduced. The time efficiency grows
in function of the latency, as shown in Figure 6.4.

6.2 Evaluation of the collaborative multi-agent search
model

In this section, we provide an evaluation of the collaborative multi-agent search
model. The objectives of the proposed search model are to handle latency and to
improve search efficiency. To evaluate the efficiency of the search model in addressing
these 2 aspects, we conducted the experiments to examine the performance of the
search model in different problem types, environment structures, and problem scales.

6.2.1 Experiment configurations

The experiments were conducted on a 1.8GHz Intel Core i7 machine with 8GB of
RAM. We applied our collaborative search model in uniform-cost algorithm, cre-
ating a collaborative uniform-cost algorithm. In our experiments, we compare the
collaborative uniform-cost with the uniform-cost. The choice of uniform-cost for
our experiments was motivated by the fact that uniform-cost is independent of any
domain-specific or case-based heuristics. Consequently, the impacts of the collabo-
rative search model on the performance of uniform-cost can be accurately observed.

122 Chapter 6. Experimentation and Validation

Moreover, in each experiment, we used the search model to solve 2 types of prob-
lems as in the previous evaluation in Section 6.1. We also simulated the latency in
accessing resources between 0 and 5 ms. For these experiments, we use 7 different
environments as described in Table 6.2

6.2.2 Experiment 1: Evaluating the search model based on prob-
lem types

In the first experiment, we used the collaborative uniform-cost search and uniform-
cost search to solve both types of problems in Environment 4. Time efficiency in
(%) gained by using collaborative uniform-cost compared to uniform-cost for each
type of problem is illustrated in Figure 6.5.

The results show that for type (1) problems whose start and goal nodes are
under the same organisational entity, uniform-cost is more efficient when there is
no latency. For this type of problems, both algorithms found the solution quickly.
However, collaborative uniform-cost takes more time because of the overheads result-
ing from the following actions: access to the descriptions of organisational entities
to retrieve the knowledge necessary in the algorithm, creation and management of
agents, communications among agents, and goal verification procedure. However,
these overheads become negligible when latency is present. As shown in Figure 6.5,
collaborative uniform-cost outperforms uniform-cost starting from approximately 1
ms of latency, and the time efficiency continues to rise upto around 65% at 5 ms
latency.

For the type (2) problems in which the start and the goal nodes are located
under different organisational entities, collaborative uniform-cost is also less efficient
without latency due to the overheads. However, collaborative uniform-cost is more
efficient in solving type (2) problems than type (1). The reason is that the proposed
search model is based on collaborative agents exploring different parts of the search
space in parallel, which enables the algorithm to discover the goal node faster. With
latency, collaborative uniform-cost is remarkably more efficient than uniform-cost,
reaching over 90% when 5 ms latency is introduced.

Apart from the runtime, we also evaluated the search model using the number of
expanded nodes and requests to resources for information. Table 6.3 shows a com-
parison of expands and requests between collaborative uniform-cost and uniform-
cost for each of the problem types. For both types of problem, collaborative uniform-
cost expands more nodes than uniform-cost. The reason behind this result is that,
in the collaborative search model, each search agent has only partial knowledge of
the search process, so it selects nodes to be expanded based on its limited knowl-
edge. This leads to the expansion of unpromising nodes. However, collaborative
uniform-cost sends requests to resources substantially less than uniform-cost. The
difference is as much as over 50%. The gain in terms of requests is thanks to the
agent collaboration and the goal verification procedure implemented in the collabo-
rative model. Each request to determine the cost between 2 nodes is forwarded to
the search agent responsible who has the knowledge to determine the relevancy of

6.2. Evaluation of the collaborative multi-agent search model 123

Environment 4
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 10, 100)
Locations 10000
Accessible locations from a location 5
Exit points from an organisational entity 5

Environment 5
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 10, 100)
Locations 10000
Accessible locations from a location 3
Exit points from an organisational entity 3

Environment 6
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 5, 50)
Locations 10000
Accessible locations from a location 3
Exit points from an organisational entity 3

Environment 7
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 2, 10)
Locations 10000
Accessible locations from a location 3
Exit points from an organisational entity 3

Environment 8
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 10, 100)
Locations 10000
Accessible locations from a location 1
Exit points from an organisational entity 1

Environment 9
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 10, 100)
Locations 5000
Accessible locations from a location 3
Exit points from an organisational entity 3

Environment 10
Environment properties Description
Organisational structure 3-level depth hierarchy (1, 10, 100)
Locations 1000
Accessible locations from a location 3
Exit points from an organisational entity 3

Table 6.2: Environment 4–10

124 Chapter 6. Experimentation and Validation

Figure 6.5: Runtime efficiency of collaborative uniform-cost compared to uniform-
cost based on problem types

Problem type
Collaborative uniform-cost Uniform-cost
Expands Requests Expands Requests

Same organisational entity 112 229 95 475
Different organisational entities 6884 12617 5950 30043

Table 6.3: Expands and requests based on problem types

the request, and thus decides whether to send the request to a resource agent or
to drop the request. In addition, collaborative and parallel search leads to a rapid
discovery of the destination, irrespective of its optimality. Once the destination is
found, the goal verification procedure is initiated, informing all search agents about
the destination. While the destination is under local verification, search agents use
the knowledge about the found destination to filter unpromising nodes and requests
such as the nodes having higher cost than the found destination and the requests
whose start node is more expansive than the destination under verification.

With latency, collaborative uniform-cost performs better than uniform-cost even
though collaborative uniform-cost expands more nodes. There are 3 main reasons
behind this result. First, node expansion is executed in parallel by multiple search
agents. Second, node expansion is critical because of the latency resulting from the
requests to resource agents. In collaborative uniform-cost, the handling of requests
to resource agents is done in an asynchronous manner, so agents are not blocked
while waiting for the response. Third, collaborative uniform-cost sends significantly
less requests compared to uniform-cost.

6.2. Evaluation of the collaborative multi-agent search model 125

6.2.3 Experiment 2: Evaluating the search model over different
environment structures

In the second experiment, we compared collaborative uniform-cost with uniform-cost
based on environment structures. We use 2 criteria for differentiating environment
structures, namely node distribution and connectivity. Node distribution is how
nodes are distributed among the organisational entities of an environment. Connec-
tivity refers to the connections between nodes and between organisational entities.

To measure the performance of the search model in function of node distribu-
tion, we experimented collaborative uniform-cost in 3 environments, namely Envi-
ronment 5, 6, and 7. These 3 environments are of the same size, but have different
organisational structures. The organisational structure of Environment 5 is a 3-level
depth hierarchy consisting of 1 organisational entity at the first level, 10 at second,
and 100 at third, while that of Environment 6 and Environment 7 are a 3-level depth
hierarchy consisting of 1 organisational entity at the first level, 5 at second, and 50
at third and a 3-level depth hierarchy consisting of 1 organisational entity at the
first level, 2 at second, and 10 at third, respectively. Nodes are more distributed in
Environment 5 (100 per leaf organisational entity) than in Environment 6 (200 per
leaf organisational entity) and in Environment 7 (1000 per leaf organisational en-
tity). The results, as depicted in Figure 6.6, suggest that collaborative uniform-cost
is most efficient in Environment 5 in which nodes are the most distributed among
the 3 environments. In Environment 7, each 1000 nodes are grouped under the
same organisational entity. Therefore, collaborative uniform-cost can mostly only
distribute the workloads among search agents exploring the search space under the
same organisational entity. The algorithm has to expand many nodes to find an exit
to other parts of the search space allowing the search process to spread. In such a
condensed environment, uniform-cost finds the result quickly as the search is simple
and there are few exits. Collaborative uniform-cost starts to surpass uniform-cost
from 3 ms of latency.

To evaluate the performance of the collaborative search model in terms of con-
nectivity, we experimented collaborative uniform-cost in 3 environments of different
connectivity, namely Environment 4, 5, and 8. Figure 6.7 shows time efficiency
we gain using collaborative uniform-cost compared to uniform-cost. Collaborative
uniform-cost performs best in Environment 4 because there are more connections
among nodes and more exits to other organisational entities. The collaborative
search model does not use a predefined method to separate the search space. It
dynamically and progressively distributes the search space among agents based on
the structure of the environment. More exits allow agents to reach more parts of
the graph faster, and thus finding the destination faster. More connections among
nodes also lead to a more efficient search since more nodes can be explored by par-
allel search agents. Regardless of the connectivity, uniform-cost performs better
than collaborative uniform-cost when there is no latency. However, collaborative
uniform-cost overtakes uniform-cost when latency is introduced.

126 Chapter 6. Experimentation and Validation

Figure 6.6: Runtime efficiency of collaborative uniform-cost compared to uniform-
cost over different node distributions

Figure 6.7: Runtime efficiency of collaborative uniform-cost compared to uniform-
cost over different connectivity

6.2. Evaluation of the collaborative multi-agent search model 127

Figure 6.8: Runtime over different graph sizes – No latency

6.2.4 Experiment 3: Evaluating the scalability of the search model

The objective of the third experiment is to examine the scalability of the collabora-
tive search model in function of environment sizes and latency. In this experiment,
we compared collaborative uniform-cost with uniform-cost in 3 environments of the
same structure but different sizes, namely Environment 5, 9, and 10.

Figure 6.8 shows the order of growth of both algorithms in function of envi-
ronment sizes, without latency. The results suggest that uniform-cost scales better
as the size of the environment grows. As mentioned in previous sections, this is
due to the overheads required in the collaboration among agents in collaborative
uniform-cost. When latency is introduced, collaborative uniform-cost outperforms
uniform-cost in all the environments, as illustrated in Figure 6.9. Remarkably, this
result also shows that collaborative uniform-cost scales much better than uniform-
cost in function of latency.

6.2.5 Discussion

Based on these experiments, uniform-cost performs better than collaborative uniform-
cost in all cases when there is no latency. However, in most cases, collaborative
uniform-cost starts to outperform uniform-cost when a latency of around 2 ms is
present. In addition to latency, problem types and graph structures have a signif-
icant influence on the collaborative search model. As shown in previous sections,
collaborative uniform-cost is more efficient in solving complex problems that involve
various organisational entities in well-connected and more distributed environments.

128 Chapter 6. Experimentation and Validation

Figure 6.9: Runtime over different graph sizes – 5 ms latency

6.3 Conclusion

In this chapter, we have presented the validation of the knowledge model along with
the heuristics and the collaborative multi-agent search model. The results show that
the heuristics are efficient when used to solve complex problems in a well-connected
and distributed environment. The collaborative search model performs better than
the serial counterpart in most cases when latency is present. Furthermore, like
the heuristics, the search model is also more efficient in solving complex problems
in well-connected and distributed environments. We may conclude that both the
heuristics and the collaborative search model are suitable for solving problems in
complex environments where there are numerous options to choose at each step,
especially when there is latency. The factors including the types of problem, the
complexity of the environment, and the latency can be used to decide whether the
heuristics and the collaborative search model are suitable for a given search problem.

Part IV

CONCLUSION AND
PERSPECTIVES

Chapter 7

Conclusions and Perspectives

Contents
7.1 Contributions . 131
7.2 Perspectives . 133

7.2.1 Perspectives in the improvement of the approach 133
7.2.2 Perspectives in the validation of the approach 134
7.2.3 Perspectives in the application of the approach 135

The aim of this dissertation is to address multi-goal pathfinding in ubiquitous en-
vironments. Such environments are dynamic and open. The entities residing within
the environments can be mobile, and their state may be dynamic. Consequently,
the state of the environments may evolve over time. Solving problems in such en-
vironments requires up-to-date information about the environments. To address
multi-goal pathfinding and, at the same time, the complexity of the environments,
we proposed an approach that exploits data from relevant sources such as the Web
and various entities located in the environments to compute the solution and to
adapt the solution according to the evolution of the environments.

The objective of this chapter is to provide a global conclusion of our work pre-
sented in the dissertation. The rest of the chapter is divided into two sections. First,
we summarise our contributions. Second, we present the directions for our future
work to address the limitations of our approach as well as to improve the approach.

7.1 Contributions

To summarise our contributions, we categorise them according to the four research
questions addressed in this dissertation.

Research question 1. Obtaining pertinent information: How to acquire the infor-
mation necessary for solving a multi-goal pathfinding problem?

To answer to this research question, we proposed a conceptual knowledge model
(see Section 3.1) that can be used to provide an abstraction for a ubiquitous envi-
ronment. Via the knowledge model, we can describe an environment in a way that
integrates all the elements necessary for solving multi-goal pathfinding which consist
of the followings:

• the spatial dimension of the environment,

132 Chapter 7. Conclusions and Perspectives

• the cybernetic, physical, and/or social entities located in the environment,

• the relevant resources from which useful information about the environment
and the entities can be retrieved,

• and the relationships between the entities and the goals that can be used to
determine through which entity a goal can be satisfied.

Such an abstraction provides the knowledge necessary for solving multi-goal pathfind-
ing problems. For this first research question in particular, the environment abstrac-
tion enables us to determine which information sources should be used to retrieve
the necessary data to solve a given problem.

To provide a formal and concrete implementation of the knowledge model, we
proposed an ontology, entitled Ubiquitous Environment Abstraction Ontology (see
Section 3.2) and abbreviated as ueao, to represent the knowledge captured in the
model. The ontology ueao provides the generic classes and properties for describing
ubiquitous environments. We extended ueao to design another ontology entitled
Smart Airport Activity Ontology saa (see Section 3.3) to describe a smart airport
by incorporating the types of entities commonly present in a smart airport and the
common activities that can be carried out in the airport. To create these ontologies,
we use the Web Ontology Language (OWL). Basing the knowledge model on RDF,
ontology, and OWL provides us three main advantages (see Section 3.2.3) including
the flexibility in the manner in which the description of the environment is stored,
the ability to integrate various kinds of data in the description, and to ability to
reason upon the knowledge about the environment.

Research question 2. Handling latency: How to address the latency of accessing
data sources and transferring data from the sources?

Using up-to-date information from relevant sources is essential owing to the dy-
namics of the environment. However, accessing and retrieving data from various
sources creates the overheads resulting from the latency of processing and transfer-
ring data. We proposed a collaborative multi-agent search model (see Section 4.1)
that is capable of mitigating latency and improving search efficiency.

The collaborative search model separates the process of accessing to resources
for information from the search process by employing search agents to perform
the search and resource agents to perform the resource-related operations. The
interactions between search agents and resource agents are asynchronous and non-
blocking. This allows the search to proceed while the information is being retrieved,
and thus reduces the impact of latency on the search process.

Furthermore, the proposed search model combines distribution of the search
space with parallelism of the search process to improve search efficiency. Different
parts of the search space are explored in parallel, and useful information is exchanged
among agents. The collaboration among different agents performing distributed
searches in parallel allows the algorithm to find the path more efficiently.

7.2. Perspectives 133

Research question 3. Beyond the classical pathfinding: How to solve multi-goal
pathfinding?

To address this research question, we proposed an approach (see Section 5.1) to
solve multi-goal pathfinding. In this approach, we employ our knowledge model to
describe the environment (see Section 5.2) providing the knowledge necessary for
solving multi-goal pathfinding problems.

Given a multi-goal pathfinding problem, our approach extracts the necessary
knowledge from the description of the environment (see Section 5.3) such as in
which locations a given goal can be satisfied. The extracted knowledge is used to
generate a goal-space graph (see Section 5.4) that represents the relations between
the given goals and the locations where the goals can be carried out in the given
order.

We construct a multi-layered graph by combining the goal-space graph, as the
first layer, with the environment graph, as the second (see Section 5.5). We use a
search algorithm on the first layer to determine at which location each goal should
be satisfied. On the second layer, we employ a search algorithm to find the optimal
path to connect the selected locations from the first layer. The collaborative multi-
agent search model can be applied to the search algorithm used, especially on the
second layer where the graph is large and there are accesses to resources to compute
the path cost in order to address the latency and improve the search process.

Research question 4. Dynamics, mobility, and openness: How to address the
dynamic state of the environment during path computation and path execution?

To adapt the solution according the evolving state of the environment, we pro-
posed a mechanism (see Section 5.6) that continuously detects the changes in the
environment that affect the solution and incrementally updates the solutions ac-
cordingly. The mechanism uses the multi-agent infrastructure constructed during
the initial search using the collaborative multi-agent search model to detect changes
and to update the solution.

7.2 Perspectives

In this section, we present our perspectives to address the limitations of our approach
as well as to improve the approach.

7.2.1 Perspectives in the improvement of the approach

Updating the environment description
In our approach, the description of the environment is indispensable for solving

multi-goal pathfinding problems. It is the representation of the environment and
provides the necessary information required to solve the problems. As the environ-
ment evolves, the description needs to be updated to provide a valid representation
of the environment. Currently, updating the enviroment description has not been

134 Chapter 7. Conclusions and Perspectives

addressed in our approach. It is noteworthy that there is a body of work in the
literature such as [Ciortea 2015] that addresses the changes of the environment in
the context of Internet of Things. Building upon such work, we may be able to de-
tect the changes in the environment and update the description of the environment
accordingly.

Handling the heterogeneity of data and resources
A research challenge that we do not currently address in our approach is how

to handle the heterogeneity of data and resources. The way to access resources
differs from one resource to another. Data retrieved from various resources are of
heterogeneous formats and structures. To be able to access the resources and make
use of the data in our approach, we need a way to address their heterogeneity. This
is an important problem, but it is not the main focus of our approach. Therefore,
our next step is to explore the literature for existing solutions to tackle this issue.

Associating goals to activities
In the proposed knowledge model, among other notions, we capture the concept

of activity to model the relationships between entities and the activities that can
be carried out via the entities (see Section 3.1). However, the notion of goals is not
represented in our model. In the current state of our approach, we assume that
there exits a function that we can use to determine the activity that can satisfy
a given goal. For instance, a straightforward solution would be to store a list of
common goals that can be satisfied in an environment and the activity that should
be carried out to satisfy each goal. In our future work, we would like to explore
various alternatives to handle this issue more efficiently and intelligently such as by
using ontology and reasoning.

Reasoning to enhance the environment description
Currently, our approach functions under the assumption that the provided de-

scription of the environment is complete and accurate. However, in real practice,
we may very well encounter the cases where the environment description is partial
or incomplete or both. In such cases, reasoning upon the existing knowledge may
allow us to discover more knowledge to complete and improve the description. This
is one of the issues that we would also like to address in our future work. It is
also noteworthy that the ability to reason upon the knowledge in the description is
possible thanks to the use of ontology and OWL.

7.2.2 Perspectives in the validation of the approach

In this dissertation, we have provided the validation of different components of the
approach via various experiments. However, due to time constraint, we were not
able to complete our experiments on the mechanism for handling the dynamics of
the environment. To fully validate our approach, we are currently conducting the
experiments on the said mechanism. The next step is to validate the approach as a
whole by integrating all of the components.

7.2. Perspectives 135

Furthermore, the experiments were conducted using randomly generated envi-
ronments. As a part of our future work, we would like to extend the validation of
our approach to real environments in order to observe how the approach functions
when various particularities of the real environments are introduced.

7.2.3 Perspectives in the application of the approach

Multi-goal pathfinding can be found in different fields such as trip planning, robotics,
and logistics. In this dissertation, we proposed an approach to solving multi-goal
problems that is tailored for trip planning. Since our field of focus is smart mobility
and transportation, for our future work, we would like to apply our approach to
develop a trip planner for ubiquitous environments such as smart buildings and
smart transits. Nevertheless, we would also like to explore other fields where our
approach can be applicable, potentially the logistics and robotics.

Publications

O. Kem, F. Balbo and A. Zimmermann. Collaborative Search for Multi-goal Pathfind-
ing in Ubiquitous Environments. In Jan Ole Berndt, Paolo Petta and Rainer Un-
land, editeurs, Multiagent System Technologies, pages 72–88, Cham, 2017. Springer
International Publishing.

O. Kem, F. Balbo, A. Zimmermann and P. Nagellen. Multi-goal Pathfinding in
Cyber-Physical-Social Environments: Multi-layer Search over a Semantic Knowledge
Graph. Procedia Computer Science, vol. 112, pages 741–750, 2017. Knowledge-
Based and Intelligent Information & Engineering Systems: Proceedings of the 21st
International Conference, KES-2017, 6-8 September 2017, Marseille, France.

O. Kem, F. Balbo and A. Zimmermann. Multi-goal Pathfinding in Ubiquitous Envi-
ronments: Modeling and Exploiting Knowledge to Satisfy Goals. In Proceedings of
the International Conference on Web Intelligence, WI ’17, pages 1147–1150. ACM.

O. Kem, F. Balbo and A. Zimmermann. Traveler-Oriented Advanced Traveler In-
formation System based on Dynamic Discovery of Resources: Potentials and Chal-
lenges. Transportation Research Procedia, vol. 22, pages 635–644, 2017. 19th
EURO Working Group on Transportation Meeting, EWGT2016, 5-7 September
2016, Istanbul, Turkey.

O. Kem, F. Balbo and A. Zimmermann. A Distributed Approach to Constructing
Travel Solutions by Exploiting Web Resources. In 2016 IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI), pages 713–716, Oct 2016.

Bibliography

[Abdalla 2014] Amin Abdalla, Yingjie Hu, David Carral, Naicong Li and Krzysztof
Janowicz. An ontology design pattern for activity reasoning. In Proceedings
of the 5th International Conference on Ontology and Semantic Web Patterns-
Volume 1302, pages 78–81. CEUR-WS. org, 2014. (Cited on page 50.)

[Adler 1998] Jeffrey L Adler and Victor J Blue. Toward the design of intelligent
traveler information systems. Transportation Research Part C: Emerging
Technologies, vol. 6, no. 3, pages 157–172, 1998. (Cited on page 28.)

[Algfoor 2015] Zeyad Abd Algfoor, Mohd Shahrizal Sunar and Hoshang Kolivand. A
comprehensive study on pathfinding techniques for robotics and video games.
International Journal of Computer Games Technology, vol. 2015, page 7,
2015. (Cited on page 12.)

[Asad J. Khattak 1994] Haitham M. Al-Deek Asad J. Khattak. Concept of an Ad-
vanced Traveler Information System Testbed for the Bay Area: Research Is-
sues. Journal of Intelligent Transportation Systems, vol. 2, no. 1, pages
45–71, 1994. (Cited on page 34.)

[Bektas 2006] Tolga Bektas. The multiple traveling salesman problem: an overview
of formulations and solution procedures. Omega, vol. 34, no. 3, pages 209–
219, 2006. (Cited on page 14.)

[Campbell 2011] P.A. Campbell, J.R. Junger, J.P. Havlicek, A.R. Stevenson and
R.D. Barnes. Pathfinder: Oklahoma’s advanced traveler information system.
In Intelligent Transportation Systems (ITSC), 2011 14th International IEEE
Conference on, pages 402–407, Oct 2011. (Cited on page 34.)

[Catarci 2006] Tiziana Catarci, Benjamin Habegger and Antonella Poggi. Intelligent
user task oriented systems. Personal Information Management: Now That
We’re Talking, What Are We Learning?, page 20, 2006. (Cited on page 50.)

[Chen 1993] J.-Y. Chen and P. Yang. Shanghai Urban Traffic Route Guidance Sys-
tem. In Vehicle Navigation and Information Systems Conference, 1993., Pro-
ceedings of the IEEE-IEE, pages 217, A8–12, Oct 1993. (Cited on page 30.)

[Chiu 2001] D.K.W. Chiu. A script language for generating Internet-bots. In
Database and Expert Systems Applications, 2001. Proceedings. 12th Inter-
national Workshop on, pages 667–671, 2001. (Cited on page 34.)

[Chiu 2005] D.K.W. Chiu, O.K.F. Lee, Ho fung Leung, E.W.K. Au and M.C.W.
Wong. A Multi-Modal Agent Based Mobile Route Advisory System for Public
Transport Network. In System Sciences, 2005. HICSS ’05. Proceedings of the
38th Annual Hawaii International Conference on, pages 92b–92b, Jan 2005.
(Cited on pages 28 and 34.)

140 Bibliography

[Ciortea 2015] A. Ciortea, A. Zimmermann, O. Boissier and A. M. Florea. Towards
a Social and Ubiquitous Web: A Model for Socio-Technical Networks. In
2015 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), volume 1, pages 461–468, Dec 2015.
(Cited on pages 6 and 134.)

[Cyganiak 2014] Richard Cyganiak, David Wood and Markus Lanthaler. RDF 1.1
Concepts and Abstract Syntax, W3C Recommendation 25 February 2014,
February 25 2014. (Cited on page 49.)

[Czogalla 2015a] Olaf Czogalla. Smart phone based indoor navigation for guidance
in public transport facilities. In Proceedings of the 2nd IFAC Conference on
Embedded Systems, Computer Intelligence and Telematics CESCIT, pages
233–239, 2015. (Cited on page 32.)

[Czogalla 2015b] Olaf Czogalla and Sebastian Naumann. Pedestrian guidance for
public transport users in indoor stations using smartphones. In Intelligent
Transportation Systems (ITSC), 2015 IEEE 18th International Conference
on, pages 2539–2544. IEEE, 2015. (Cited on page 32.)

[Czogalla 2016] Olaf Czogalla and Sebastian Naumann. Pedestrian indoor naviga-
tion for complex public facilities. In Indoor Positioning and Indoor Nav-
igation (IPIN), 2016 International Conference on, pages 1–8. IEEE, 2016.
(Cited on page 32.)

[Dean 1988] Thomas L Dean and Mark S Boddy. An Analysis of Time-Dependent
Planning. In AAAI, volume 88, pages 49–54, 1988. (Cited on page 23.)

[ETSI 2011] ETSI. Intelligent Transport Systems (ITS); Testing; Framework for
conformance and interoperability testing. Rapport technique, ETSI, 2011.
(Cited on page 28.)

[Evett 1995] Matthew Evett, James Hendler, Ambuj Mahanti and Dana Nau.
PRA*: Massively parallel heuristic search. Journal of Parallel and Dis-
tributed Computing, vol. 25, no. 2, pages 133–143, 1995. (Cited on page 25.)

[Fox 1993] Mark S Fox, John F Chionglo and Fadi G Fadel. A common-sense model
of the enterprise. In Proceedings of the 2nd Industrial Engineering Research
Conference, volume 1, pages 425–429, 1993. (Cited on page 50.)

[Fukunaga 2017] Alex Fukunaga, Adi Botea, Yuu Jinnai and Akihiro Kishimoto.
A Survey of Parallel A. arXiv preprint arXiv:1708.05296, 2017. (Cited on
pages 12 and 19.)

[GDF 2015] GDF. http://wiki.openstreetmap.org/wiki/GDF, 2015. Accessed:
2015-02-02. (Cited on page 36.)

Bibliography 141

[Ghallab 2016] Malik Ghallab, Dana Nau and Paolo Traverso. Automated plan-
ning and acting. Cambridge University Press, 2016. (Cited on pages 12, 65
and 99.)

[Group 2012] ESG5 Technical Group. DATEX II V2.1. Rapport technique, Eu-
ropean Commission, Directorate General for Mobility and Transport, May
2012. (Cited on page 35.)

[GTF 2015] General Transit Feed Specification Reference. https://developers.
google.com/transit/gtfs/reference, 2015. Accessed: 2015-02-02. (Cited
on page 36.)

[Hart 1968] P. E. Hart, N. J. Nilsson and B. Raphael. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
Systems Science and Cybernetics, vol. 4, no. 2, pages 100–107, July 1968.
(Cited on page 16.)

[Herbert 2008] W. Herbert and F. Mili. Route guidance: State of the art vs. state
of the practice. In Intelligent Vehicles Symposium, 2008 IEEE, pages 1167–
1174, June 2008. (Cited on page 30.)

[Hitzler 2012] Pascal Hitzler, Markus Krötzsch, Bijan Parsia, Peter F. Patel-
Schneider and Sebastian Rudolph. OWL 2 Web Ontology Language Primer
(Second Edition), W3C Recommendation 11 December 2012, December 11
2012. (Cited on page 49.)

[Hu 2002] Mingwei Hu, Yunfei Wang and Qixin Shi. Developing Beijing traveler in-
formation systems framework. In Intelligent Transportation Systems, 2002.
Proceedings. The IEEE 5th International Conference on, pages 381–386,
2002. (Cited on page 33.)

[IRANI 1986] KEKIB IRANI and YI-FON SHIH. Parallel A-asterisk and AO-
asterisk algorithms- An optimality criterion and performance evaluation. In
1986 International Conference on Parallel Processing, University Park, PA,
pages 274–277, 1986. (Cited on page 25.)

[Khanjary 2011] M. Khanjary, K. Faez, M.R. Meybodi and M. Sabaei. PersianGulf:
An Autonomous Combined Traffic Signal Controller and Route Guidance
System. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, pages
1–6, Sept 2011. (Cited on page 30.)

[Khanjary 2012] M. Khanjary and S.M. Hashemi. Route guidance systems: Review
and classification. In Telematics and Information Systems (EATIS), 2012 6th
Euro American Conference on, pages 1–7, May 2012. (Cited on page 30.)

[Kishimoto 2009] Akihiro Kishimoto, Alex S Fukunaga, Adi Boteaet al. Scalable,
Parallel Best-First Search for Optimal Sequential Planning. In ICAPS, 2009.
(Cited on page 25.)

142 Bibliography

[Kishimoto 2013] Akihiro Kishimoto, Alex Fukunaga and Adi Botea. Evaluation of
a simple, scalable, parallel best-first search strategy. Artificial Intelligence,
vol. 195, pages 222–248, 2013. (Cited on page 25.)

[Koenig 2002a] Sven Koenig and Maxim Likhachev. Improved fast replanning for
robot navigation in unknown terrain. In Robotics and Automation, 2002.
Proceedings. ICRA’02. IEEE International Conference on, volume 1, pages
968–975. IEEE, 2002. (Cited on pages 22 and 23.)

[Koenig 2002b] Sven Koenig and Maxim Likhachev. Incremental a. In Advances
in neural information processing systems, pages 1539–1546, 2002. (Cited on
pages 21 and 22.)

[Korf 1985] Richard E. Korf. Depth-first Iterative-deepening: An Optimal Admissi-
ble Tree Search. Artif. Intell., vol. 27, no. 1, pages 97–109, September 1985.
(Cited on page 18.)

[Kumar 1988] Vipin Kumar, K Ramesh and V Nageshwara Rao. Parallel Best-First
Search of State-Space Graphs: A Summary of Results. In AAAI, volume 88,
pages 122–127, 1988. (Cited on page 25.)

[Kumar 2003] Praveen Kumar, Dhanunjaya Reddy and Varun Singh. Intelligent
transport system using GIS. In 6th Annual International Conference, Map
India, pages 28–30, 2003. (Cited on pages 28 and 34.)

[Kumar 2005] Praveen Kumar, Varun Singh and D. Reddy. Advanced traveler in-
formation system for Hyderabad City. Intelligent Transportation Systems,
IEEE Transactions on, vol. 6, no. 1, pages 26–37, March 2005. (Cited on
page 34.)

[Laporte 1992] Gilbert Laporte. The traveling salesman problem: An overview of ex-
act and approximate algorithms. European Journal of Operational Research,
vol. 59, no. 2, pages 231–247, 1992. (Cited on page 14.)

[Likhachev 2004] Maxim Likhachev, Geoffrey J Gordon and Sebastian Thrun.
ARA*: Anytime A* with provable bounds on sub-optimality. In Advances
in neural information processing systems, pages 767–774, 2004. (Cited on
page 23.)

[Likhachev 2005] Maxim Likhachev, David I Ferguson, Geoffrey J Gordon, Anthony
Stentz and Sebastian Thrun. Anytime dynamic a*: An anytime, replanning
algorithm. In ICAPS, pages 262–271, 2005. (Cited on pages 23 and 26.)

[Lim 2014] K. L. Lim, L. S. Yeong, S. I. Ch’ng, K. P. Seng and L. M. Ang. Unin-
formed multigoal pathfinding on grid maps. In 2014 International Conference
on Information Science, Electronics and Electrical Engineering, volume 3,
pages 1552–1556, April 2014. (Cited on page 13.)

Bibliography 143

[Liu 2014] Xuan Liu, John M Usher and Lesley Strawderman. An analysis of activity
scheduling behavior of airport travelers. Computers & Industrial Engineering,
vol. 74, pages 208–218, 2014. (Cited on page 58.)

[Lovicsek 1998] M. Lovicsek, S. Stewart and B. Delsey. Integrating the collection,
fusion, and dissemination of traveler information in Edinburgh, Scotland.
Mathematical and Computer Modelling, vol. 27, no. 9–11, pages 335–348,
1998. (Cited on page 34.)

[Matai 2010] Rajesh Matai, Surya Prakash Singh and Murari Lal Mittal. Traveling
salesman problem: An overview of applications, formulations, and solution
approaches. Traveling Salesman Problem, Theory and Applications, pages
1–24, 2010. (Cited on page 13.)

[Nissim 2012] Raz Nissim and Ronen I Brafman. Multi-agent A* for parallel and
distributed systems. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems-Volume 3, pages 1265–1266.
International Foundation for Autonomous Agents and Multiagent Systems,
2012. (Cited on page 25.)

[Peng 2000] Zhong-Ren Peng and Ruihong Huang. Design and development of inter-
active trip planning for web-based transit information systems. Transporta-
tion Research Part C: Emerging Technologies, vol. 8, no. 1–6, pages 409–425,
2000. (Cited on page 30.)

[Phillips 2014] Mike Phillips, Maxim Likhachev and Sven Koenig. PA* SE: Parallel
A* for Slow Expansions. In ICAPS, 2014. (Cited on page 25.)

[Russell 1992] Stuart Russell. Efficient Memory-bounded Search Methods. In Pro-
ceedings of the 10th European Conference on Artificial Intelligence, ECAI
’92, pages 1–5, New York, NY, USA, 1992. John Wiley & Sons, Inc. (Cited
on page 18.)

[Russell 2016] S.J. Russell and P. Norvig. Artificial intelligence: A modern ap-
proach. Always learning. Pearson Education, Limited, 2016. (Cited on
pages 14, 15, 16, 17 and 18.)

[Stentz 1994] Anthony Stentz. Optimal and efficient path planning for partially-
known environments. In Robotics and Automation, 1994. Proceedings., 1994
IEEE International Conference on, pages 3310–3317. IEEE, 1994. (Cited on
page 21.)

[Stentz 1995] Anthony Stentzet al. The focussed Dˆ* algorithm for real-time replan-
ning. In IJCAI, volume 95, pages 1652–1659, 1995. (Cited on page 21.)

[Subakti 2016] Hanas Subakti and Jehn-Ruey Jiang. A marker-based cyber-physical
augmented-reality indoor guidance system for smart campuses. In 2016 IEEE

144 Bibliography

18th International Conference on High-Performance Computing and Com-
munications, IEEE 14th International Conference on Smart City, and IEEE
2nd International Conference on Data Science and Systems (HPCC/SmartC-
ity/DSS), pages 1373–1379. IEEE, 2016. (Cited on page 32.)

[Tra 2012] Les développements liés à Transmodel. http://www.billettique.fr/
spip.php?article313, 2012. Accessed: 2015-01-28. (Cited on page 35.)

[transport 2007] Technical Committee CEN/TC 278 "Road transport and traffic
telematics". Road traffic and transport telematics — Public transpot — Iden-
tification of fixed objects in public transport. Rapport technique, CEN/TC
278, December 2007. (Cited on page 36.)

[transport 2009] Technical Committee CEN/TC 278 "Road transport and traffic
telematics". NeTEx — Network and Timetable Exchange — Part 1: Net-
work Topology. Rapport technique, CEN/TC 278, August 2009. (Cited on
page 36.)

[U.S. Department of Transportation 1998] U.S. Department of Transportation. De-
veloping Traveler Information Systems Using the National ITS Architecture.
Rapport technique, Mitretek Systems and TransCore, Inc., August 1998.
(Cited on pages 28 and 29.)

[Vidal 2010] Vincent Vidal, Lucas Bordeaux and Youssef Hamadi. Adaptive k-
parallel best-first search: A simple but efficient algorithm for multi-core
domain-independent planning. In Third Annual Symposium on Combina-
torial Search, 2010. (Cited on page 25.)

[Weiser 1993] Mark Weiser. Some computer science issues in ubiquitous computing.
Communications of the ACM, vol. 36, no. 7, pages 75–84, 1993. (Cited on
page 3.)

[Weiser 1999] M. Weiser, R. Gold and J. S. Brown. The origins of ubiquitous com-
puting research at PARC in the late 1980s. IBM Systems Journal, vol. 38,
no. 4, pages 693–696, 1999. (Cited on page 3.)

[Werner 2011] M. Werner. Selection and Ordering of Points-of-Interest in Large-
Scale Indoor Navigation Systems. In 2011 IEEE 35th Annual Computer
Software and Applications Conference, pages 504–509, July 2011. (Cited on
pages 13 and 32.)

[Wu 2003] Chun-Hsin Wu, Da-Chun Su, Justin Chang, Chia-Chen Wei, Jan-Ming
Ho, Kwei-Jay Lin and D. T. Lee. An advanced traveler information sys-
tem with emerging network technologies. In Proc. 6th Asia-Pacific Conf.
Intelligent Transportation Systems Forum, pages 230–231, 2003. (Cited on
page 34.)

Bibliography 145

[Yamaguchi 1999] M. Yamaguchi, T. Kitamura, S. Jinno and T. Tajima. The in-
teractive CDRG using infrared beacons. In Intelligent Transportation Sys-
tems, 1999. Proceedings. 1999 IEEE/IEEJ/JSAI International Conference
on, pages 278–283, 1999. (Cited on page 30.)

[Zhou 2002] Rong Zhou and Eric A Hansen. Multiple Sequence Alignment Using
Anytime A*. In AAAI/IAAI, pages 975–977, 2002. (Cited on page 23.)

[Zilberstein 1995] Shlomo Zilberstein and Stuart Russell. Approximate reasoning us-
ing anytime algorithms. In Imprecise and Approximate Computation, pages
43–62. Springer, 1995. (Cited on page 23.)

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2018LYSEM023

Oudom KEM

MODELLING AND EXPLOITING KNOWLEDGE OF THE

ENVIRONMENT: A MULTI-AGENT APPROACH TO MULTI-GOAL

PATHFINDING IN UBIQUITOUS ENVIRONMENTS

Speciality: Computer science

Keywords: Search algorithms, Multi-agent systems, Semantic Web, Cyber-physical

systems

Abstract:

From intelligent artificial personal assistants to smart cities, we are experiencing the shifting towards

Internet of Things (IoT), ubiquitous computing, and artificial intelligence. Cyber-physical entities are

embedded in social environments of various scales from smart homes, to smart airports, to smart

cities, and the list continues.

This paradigm shift coupled with ceaseless expansion of the Web supplies us with tremendous

amount of useful information and services, which creates opportunities for classical problems to be

addressed in new, different, and potentially more efficient manners. Along with the new possibilities,

we are, at the same time, presented with new constraints, problems, and challenges.

Multi-goal pathfinding, a variant of the classical pathfinding, is a problem of finding a path between a

start and a destination which also allows a set of goals to be satisfied along the path. The aim of this

dissertation is to propose a solution to solve multi-goal pathfinding in ubiquitous environments such

as smart transits.

In our solution, to provide an abstraction of the environment, we proposed a knowledge model based

on the semantic web technologies to describe a ubiquitous environment integrating its cybernetic,

physical, and social dimensions. To perform the search, we developed a multi-agent algorithm based

on a collaborative and incremental search algorithm that exploits the knowledge of the environment to

find the optimal path. The proposed algorithm continuously adapts the path to take into account the

dynamics of the environment.

École Nationale Supérieure des Mines

de Saint-Étienne

NNT : 2018LYSEM023

Oudom KEM

MODÉLISATION ET EXPLOITATION DES CONNAISSANCES DE

L’ENVIRONNEMENT : UNE APPROCHE MULTI-AGENTS POUR LA

RECHERCHE D’ITINÉRAIRES MULTI-OBJECTIFS DANS DES

ENVIRONNEMENTS UBIQUITAIRES

Spécialité: Informatique

Mots clefs : Algorithmes de recherche, Systèmes multi-agents, Web sémantique, Systèmes

cyber-physiques

Résumé :

L'utilisation des téléphones intelligents, le recours aux assistants personnels intelligents ou encore le

développement des maisons intelligentes sont autant d'exemples illustrant le développement toujours

plus rapide de l'informatique ubiquitaire, de l'Internet des objets et de l'intelligence artificielle. Le

croisement des résultats issus de ces domaines de recherche contribue à changer notre quotidien et

constitue un environnement fertile pour de nouveaux travaux. Ainsi, l’intégration des entités cyber-

physiques dans des environnements sociaux de différentes échelles allant des maisons aux villes

intelligentes amène de très nombreuses perspectives.

Ce changement de paradigme met à notre disposition une énorme quantité d'informations et de

services utiles, offrant ainsi la possibilité de traiter les problèmes classiques de manière nouvelle,

différente et potentiellement plus efficace. Si les solutions à construire bénéficient de ces possibilités,

elles doivent également répondre à de nouvelles contraintes et nouveaux défis.

La recherche d’itinéraires multi-objectifs est un sous-cas du problème classique de recherche d'un

chemin entre un lieu de départ et une destination auquel s'ajoute la contrainte de passage par un

ensemble de lieux permettant de satisfaire un ensemble de buts. L'objectif de cette thèse est de

proposer une solution pour la résolution de la recherche d'itinéraires multi-objectifs appliqués aux

environnements cyber-physiques tels que les Smart Transits.

Dans notre solution, nous avons proposé une méthode fondée sur les technologies du web sémantique

pour modéliser de manière intégrée un environnement cyber-physique dans toutes ses dimensions,

i.e., cybernétiques, physiques et sociales. Pour la recherche de chemin, nous avons proposé une

approche multi-agents, exécutant un algorithme de recherche collaborative et incrémentale, qui utilise

les connaissances de l'environnement pour trouver le chemin optimal. Cet algorithme adapte aussi le

chemin en prenant en compte la dynamique de l'environnement.

