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Study of Earth global rheological properties through VLBI observation

Résumé

Depuis le début du vingtième siècle, l'observation des variations de rotation de la Terre par les techniques astro-géodésiques permet de dévoiler les propriétés rhéologiques globales de la Terre. En particulier, les paramètres des modes d'oscillation libre de l'axe de rotation, qui sont aussi des paramètres de résonance -reflètent les défauts d'élasticité de la Terre solide, la réponse de l'océan au forçage externe et les propriétés de la graine fluide, éventuellement du noyau solide. On peut obtenir de meilleures contraintes sur ces paramètres de résonance en confrontant le mouvement terrestre du pôle de rotation observé (mouvement du pôle) -et aussi la nutation en tant que mouvement du pôle en rétrograde diurne -à l'excitation modélisée qui le produit.

Les propriétés rhéologiques de la Terre sont d'autant mieux déterminées que le mouvement du pôle (y compris dans la bande diurne) est observé précisément et l'excitation modélisée correctement. A l'heure actuelle, si la précision du mouvement du pôle est légèrement meilleure au delà de 2 jours, la meilleure reconstitution du forçage concerne la bande de nutation (la bande rétrograde diurne), car il est procède alors des marées gravimétriques luni-solaires, lesquelles sont modélisées avec une grande précision). C'est pourquoi notre travail est d'abord consacré à l'ajustement direct des composantes luni-solaires périodiques de la nutation à partir des retards du VLBI, puis à l'estimation des paramètres de résonances dans la fonction de transfert entre ces termes de nutation observés et ceux modélisés pour une terre rigide, lesquels reflètent le forçage luni-solaire. Les résultats obtenus confirme notamment le raccourcissement d'environ 40-50 jours de la période de résonance du mouvement du pôle dans la bande rétrograde diurne.

Nous montrons comment cette diminution s'explique par la réponse dynamique des océans à la marée du pôle, laquelle est étudiée à l'aune des modèles de marées océaniques diurnes .

Nous prédisons également un changement des paramètres de résonance du mouvement du pôle iii Introduction Polar motion and nutation: a sensor of Earth rheology. The observation of Earth rotation variation started more than two thousands years ago. Hipparchus observed a motion of the stars with respect to the autumnal equinox at the rate of about 50 arcsecond per year. This phenomenon, called precession, corresponds to a conical motion of the Earth rotation axis around the polar axis of the ecliptic. Thousands of years later, the emergence of the telescopic era allowed an English astronomer, James Bradley, to discover a superimposed oscillation of the rotation axis with a 18.6-year period called nutation.

Until the 19th century, the only known motion of the rotation axis was the precessionnutation. This motion has an astronomical cause: the lunisolar tidal torque on the equatorial bulge of the Earth. Meanwhile, in the middle of the 18th century, Euler predicted the existence of a motion of a rotation pole with respect to the crust due to the Earth flattening, especially a free wobble at the period of 304 days. This terrestrial wobble of the rotation pole, called polar motion, was observed at the eve of the 20th century. It is mostly composed of a wobble in 430 day, called Chandler Wobble (CW), and an annual term. Whereas the annual term unveils the seasonal mass redistribution within the atmosphere and the oceans, the CW is interpreted as the Euler free mode modified by the Earth non-rigidity, and forced as well by the mass redistribution in the hydro-atmosphere. Therefore, the polar motion provided a new kind of data for investigating the Earth's global rheological properties, including the response of the ocean to an external forcing. At the same epoch, from the presence of an internal fluid core, Poincaré concluded the existence of a second mode of rotation, called free core nutation (FCN). This mode influences the nutation at the level of 50 milliarcsecond (mas). Detected in the 1970s, it was fully confirmed in the 1980s by Very Long Baseline Interferometry (VLBI) observations. Actually, it can be shown that the nutation in the terrestrial frame can be considered equivalently as a retrograde diurnal polar motion.

The CW and FCN resonances appear theoretically in the angular momentum balance of the Earth composed of a mantle and a fluid core. A three-layered Earth, where the solid inner core is added, leads to two supplementary modes: a prograde diurnal mode of about one day, corresponding to the Free Inner Core Nutation (FICN) in the celestial reference frame with a period of about 500-1000 days, and a terrestrial wobble of 7 years, named Inner Core Wobble or ICW.

Until now, these two modes remain quite speculative and have not been clearly detected. In the framework of a three-layered Earth, the frequency parameters pertaining to CW, FCN, FICN, and ICW are related to several Earth rheological parameters such as the dynamical ellipticity of the Earth layers, mantle inelasticity, and the properties of fluid and solid inner core.

Motivation. Hence, the study of Earth rotation, especially the resonance parameters, allows a link to the Earth rheology and its internal structure. Actually, several authors have estimated the resonance parameters either in the common polar motion band (see, e.g. [START_REF] Furuya | Estimation of period and q of the chandler wobble[END_REF][START_REF] Kuehne | Estimates of the chandler wobble frequency and q[END_REF][START_REF] Nastula | Chandler wobble parameters from slr and grace[END_REF], i.e., from two days to secular time scale, or in the retrograde diurnal band, that is the nutation band (see, e.g. Mathews et al., 1991a[START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF][START_REF] Rosat | Earth's core and inner-core resonances from analysis of vlbi nutation and superconducting gravimeter data[END_REF]. However, until now, there is no study that gives a comprehensive picture of the Earth resonance parameters in both frequency bands. So, we aim at estimating the resonance parameters in the polar motion and nutation band, and even extending it into the prograde diurnal band. These parameters can be determined by comparing observed polar motion or nutation to the modeled excitation producing it.

Contents. This thesis is divided into three parts. In the first part, we deal with the estimation of the resonance parameters in the common polar motion band (from 10 days to 10 years). In the Chapter 1, we recall the polar motion theory for a two-layer Earth model, which forcing is restricted to the internal mass transports. The corresponding polar motion resonance (PMR) parameters are estimated in Chapter 2.

In the second part, we consider the resonance in the diurnal retrograde band, or the nutation band in the celestial frame. Then, the theory has to be extended to a three-layered Earth, as The theoretical development of Earth rotation variations has been done in many ways. However, it may be classified into two major branches, either using the Hamiltonian formalism or the law of angular momentum balance. For studying geophysical effects, the second approach is much more easier to handle and is favoured in this work.

The law of angular momentum balance states that the Earth angular momentum H is related to the external torque Γ acting on it in the terrestrial reference system as follows

dH dt + ω × H = Γ , (1.1) 
where ω is the instantaneous rotation vector of the Earth. The angular momentum is composed of a term related to the Earth moment of inertia matrix I and of the relative angular momentum h:

H = ω • I + h . (1.2)
Here I depends on the Earth mass distribution whereas h is produced by any velocity field appearing in the Earth system, especially the winds and the oceanic currents. The substitution of (1.2) into (1.1) leads to the Liouville equation:

d(ω • I + h) dt + ω × (ω • I + h) = Γ . (1.3)
Since the deviation from uniform rotation is small, the linearization can be applied to (1.3).

First, the rotation vector and moment of inertia are split into their constant and perturbation parts:

ω = ω 0 + ∆ω =                 0 0 Ω                 +                 Ωm 1 Ωm 2 Ωm 3                 =                 Ωm 1 Ωm 2 Ω(1 + m 3 )                 , (1.4) 
and

I = I 0 + ∆I =                 A 0 0 0 B 0 0 0 C                 +                 c 11 c 12 c 13 c 21 c 22 c 23 c 31 c 32 c 33                 , (1.5) 
where Ω = 7.2921150 × 10 -5 rad/s is the reference Earth angular velocity, A and B are the equatorial moments of inertia, C is the axial moment of inertia, and c i j are small increments of inertia due to the mass redistribution. Here m 1 , m 2 , and 1+m 3 correspond to the direction cosines of the Earth instantaneous rotation axis with respect to the terrestrial reference frame. As A ≈ B, we introduce the averaged value of the Earth equatorial moment of inertia Ā = (A + B)/2. In the following, we consider the Earth as a bi-axial body (A = B = Ā).

By substituting the expression (1.4) and (1.5) to (1.3), and by neglecting the second order quantities with respect to m i and c i j , we obtain the linearized Liouville equation, where the equatorial part is given by

m + i σ e ṁ = χ - i Ω χ + i Γ (C -Ā)Ω 2 .
(1.6)

Here m = m 1 + i m 2 is the complex rotation pole coordinate and σ e = eΩ is the Euler angular frequency, where e = (C -Ā)/ Ā ∼ 1/304 is the dynamical ellipticity of the Earth. The quantity χ = χ 1 + iχ 2 is called the angular momentum function and defined as

χ 1 = c 13 C - Ā + h 1 (C -Ā)Ω , χ 2 = c 23 C - Ā + h 2 (C -Ā)Ω
.

(1.7)

Liouville equation of pole coordinates

This function can be divided into the mass term χ ma , which is related to a change in the moment of inertia c = c 13 + i c 23 , and the motion term, which is related to the relative angular momentum h = h 1 + i h 2 :

χ ma = c C - Ā , χ mo = h (C -Ā)Ω
.

(1.8)

Liouville equation of pole coordinates

The variation of Earth rotation axis is monitored through several space geodetic techniques such as VLBI, Global Navigation Satellite System (GNSS), and Satellite Laser Ranging (SLR) (see A.1 for the details of each technique). However, they determine the celestial and terrestrial oscillation of the CIP or Celestial Intermediate Pole (see A.2) which differs from the instantaneous rotational axis up to 20 mas [START_REF] Bizouard | Le mouvement du pole de lheure au siecle : Modelisation geophysique[END_REF]. The position of CIP with respect to the terrestrial frame is called pole coordinates p = xiy. The relation between m and p is given by

m = p - i Ω ṗ . (1.9)
Substituting this expression of m into (1.6), and casting aside the external torque in view of the linearity of the problem, we obtain .10) This equation can be reduced to 1.11) where the left-hand side of (1.11) is named the geodetical excitation since it is estimated through astrogeodetic observation and the right-hand side is called the geophysical excitation since it is reconstructed from a geophysical model, like global atmospheric circulation model. In the frequency domain, the equation (1.11) is written as 1.12) where the transfer function T (σ) is given by

p + i σ e ṗ - i Ω d dt p + i σ e ṗ = χ - i Ω χ . ( 1 
p + i σ e ṗ = χ , ( 
p(σ) = T (σ)χ(σ) , ( 
T (σ) = - σ e σ -σ e .
(1.13)

Influence of the Earth non rigidity

The equation (1.11) is not adequate to describe the polar motion, as it still ignores the Earth non-rigidity, especially it does not account the planetary deformation produced by the variation of centrifugal force accompanying the displacement of the rotation pole. By considering this phenomenon, the dynamical system of (1.11) becomes

p + i ṗ σPMR = χ e f f = χ e f f ma + χ e f f mo , (1.14)
where σPMR is the complex angular frequency of PMR: .15) Here k s = 0.938 is the secular Love number, Ā and A m are the mean equatorial moments of inertia of the whole Earth and of the mantle respectively, k2 and ko are the complex Love number describing the anelastic response for the solid Earth and the ocean response respectively.

σPMR = σ e Ā A m 1 - k2 + ko k s . ( 1 
Here "~" is the symbol of the complex quantity. It has to be noted that the imaginary part of ko is vanished in the common polar motion band since the ocean response is considered at equilibrium.

This resonance has to be distinguished from the observed CW resonance. Indeed, as a resonant process, the CW does not result from a single harmonic excitation at the resonance frequency, but from a broadband process surrounding the resonance frequency. If the spectral content of the excitation dominates at a slightly different frequency, this one will determine the observed CW frequency. In contrast, the PMR frequency σPMR is fixed by the properties of the Earth and does not depend on the forcing.

Meanwhile, the effective angular momentum function χ e f f taking the form

χ e f f ma = 1 + k ′ 2 1 -k2 + ko k s χ ma , χ e f f mo = 1 1 -k2 + ko k s χ mo .
(1.16)

Here χ e f f means an "effective" version of χ accounting for the pole tide deformation by Love number k = k2 + ko and loading deformation through the loading Love number k ′ 2 .

Modelling of the hydro-atmospheric excitation

The complex PMR angular frequency can be written in the form of its period P PMR and quality factor Q PMR as follows

σPMR = σ PMR (1 + i/2Q PMR ) , σ PMR = 2π/P PMR , (1.17) 
where Q PMR is inversely proportional to the damping factor α PMR = σ PMR /(2Q PMR ). Applying a Fourier transform to (1.14), we obtain

p(σ) = - σPMR σ -σPMR χ e f f (σ) . (1.18)
Hence, the transfer function of (1.13) becomes

T (σ) = p(σ) χ e f f (σ) = - σPMR σ -σPMR . (1.19)
The comparison of the transfer function amplitude in (1.19) and (1.13) is shown in Figure 1.1.

The non-rigidity of the Earth has shifted the resonance toward a lower frequency and the dissipation decreases the maximal amplitude from infinite down to 40 for a very strong damping (Q PMR = 20).

Modelling of the hydro-atmospheric excitation

At seasonal time scale, the geophysical excitation χ generally comes from non-tidal transports in the atmosphere, oceans, and land-water layers. Their respective contributions are obtained by the reconstruction of their moment of inertia (matter term) c F and their relative angular momentum (motion term) h F from global circulation models [START_REF] Eubanks | Variations in the orientation of the Earth[END_REF]. As the equatorial momentum of a fluid layers is H F = Ωc F + h f , these data are generally named atmospheric, oceanic, hidrological angular momentum.

In the case of atmospheric angular momentum, there are two types of data for the matter term depending on whether the oceans respond isostatically to overlying barometric loading, like Inverted Barometer (IB), or their surface remains rigid such as Non-Inverted Barometer (NIB). In the IB data, air pressure variations do not impact the ocean bottom, whereas in the NIB data, the atmospheric load simply transmits directly to the ocean bottom. For periods

Chapter 2

Polar motion resonance estimation in seasonal band Before 1990s, in the absence of a precise modeling, the equatorial geophysical excitation was assimilated to a Gaussian white noise (see, e.g. [START_REF] Wilson | Meteorological excitation of the earth's wobble[END_REF][START_REF] Wilson | An analysis of the homogeneous ils polar motion series[END_REF] for undertaking the estimation of PMR parameters. Nowadays, many studies (see, e.g. [START_REF] Brzeziński | Geophysical excitation of the chandler wobble revisited[END_REF] have concluded that the sub-secular part of the polar motion excitation can be well reconstructed from global circulation taking place in the hydro-atmospheric layer, composed of the atmosphere, ocean, and land-water. This information has been considered for adjusting the resonance parameters. The early studies, which considered the atmospheric excitation, have been done, for example, by [START_REF] Furuya | Estimation of period and q of the chandler wobble[END_REF] and [START_REF] Kuehne | Estimates of the chandler wobble frequency and q[END_REF]. The more recent studies (see, e.g. [START_REF] Nastula | Chandler wobble parameters from slr and grace[END_REF] considered a more complete excitation by including ocean and land-water angular momentum. In this study, this issue is revisited by improving the estimation technique reported in [START_REF] Kuehne | Estimates of the chandler wobble frequency and q[END_REF], and considering the full hydro-atmospheric excitation as known today. Hereafter, to avoid any ulterior confusion, we will use the term "Chandler Wobble" or CW for referring to the PMR in the seasonal band.

Data

The geophysical excitation is constituted by the EAAM and EOAM series calculated at Ge-oForschungsZentrum (GFZ). [START_REF] Kalnay | The NCEP/NCAR 40-year Reanalysis Project[END_REF] and EOAM data calculated from the output of the Estimating the Circulation and Climate of the Ocean (ECCO) model [START_REF] Gross | Atmospheric and oceanic excitation of decadal-scale earth orientation variations[END_REF]. NCEP data is sampled at 6 hr interval from 0hUTC, whereas ECCO data is given at 0hUTC and with 10 day steps from 1948 to 1998 and once per day afterward. All these series provide the corresponding matter and motion terms. In the case of EAAM, we select the matter term derived according to the IB approximation, quite well describing the oceanatmospheric coupling in the seasonal band as mentioned in the Chapter 1. The comparison between the EAAM series of ECMWF and NCEP as well as the EOAM series of MPIOM and ECCO are shown in Figure 2.1 and 2.2 respectively. Besides the ocean and atmosphere, landwater has a significant contribution to the geophysical excitation. To quantify the influence of this component, we use the angular momentum function of the land-water (HAM) produced at GFZ from the Land Surface Discharge Model (LSDM) [START_REF] Dobslaw | Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere[END_REF] given at 12hUTC once per day. The time series of EHAM are shown in Figure 2.3.

Meanwhile, pole coordinates come from C04 daily series [START_REF] Bizouard | The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF[END_REF]. They are obtained from the combination of operational Earth Orientation Parameter (EOP) series, including also celestial pole offset and UT1-UTC, derived from the astro-geodetic techniques, namely VLBI, GNSS, SLR, and DORIS. The Table 2.1 summarises the data that we used for this estimation. 

Chandler parameters estimation

The PMR parameters can be roughly estimated by using the spectral approach. In this approach, the geophysical excitation is assumed to be white noise, characterized by a flat power spectrum.

Then, the PMR frequency corresponds to the maximum of the spectral power, and the quality factor is calculated from the full width at half maximum (FWHM) by

Q PMR = σ PMR /FWHM.
For instance, based on the spectral plot of Figure 2.4, we can deduce σ PMR = 0.842 cpy and FWHM = 0.04 cpy, corresponding to P PMR = 433 days and Q PMR = 45. However, this technique has some deficiencies. First, the estimate of Q PMR depends on the spectral resolution. Second, as shown in the log-log plot of Figure 2.5, the spectral power of the excitations are not completely flat, even for the band near CW frequency (0.5 -1.1 cpy), either for NCEP + ECCO series or ECMWF + MPIOM series. Thus, the real geophysical excitation is not perfectly white noise, which contradicts the assumption.

In order to refine the estimation of CW parameters, the information from geophysical excitation model have to be considered. So, the estimation can be done by using equation (1.14).

The L.H.S. of this equation (geodetic excitation), which contains a time derivative of the polar motion, has to be adapted to a discrete polar coordinates. Hence, we adopt the digitization 2.3. Results

Results

We estimate the CW parameters in two ways. First, we consider all of seasonal terms. Second, we eliminate the seasonal components with periods 1/n yr, where n = 1,2,3,4,5,6, by least square adjustment, both for their prograde and retrograde parts. The estimation is performed for three sets of geophysical excitations: NCEP + ECCO, ECMWF + MPIOM and ECMWF + MPIOM + LSDM over the period 1976 -2019. As shown in Table 2.2, the inconsistency of CW period between ECMWF + MPIOM and NCEP + ECCO sets disappeared when we eliminate the seasonal terms, yielding the values of CW period in the range between (431.6, 434.5). Moreover, the exclusion of seasonal terms leads χ 2 slightly getting closer to one. However, the presence of seasonal terms better constraints the range of quality factor (33, 57) versus (41, 109) when the seasonal contribution is suppressed. The addition of land-water (LSDM) to the ECMWF + MPIOM improves the estimation by reducing the χ 2 from 4.70 to 4.36 in the case of when the seasonal terms are present and from 4.13 to 3.85 in the case of when the seasonal terms are excluded. 

= k s 1 - σPMR σ e A m Ā -ko , (2.4) 
where σPMR is given from estimated parameters by (1.17). In the band selected for estimating these parameters, we can assuming an hydrostatic ocean pole tide, described by oceanic Love number k o = 0.0477 [START_REF] Desai | Observing the pole tide with satellite altimetry[END_REF]. Moreover we select the more robust estimates of P CW and Q CW obtained in the case "seasonal terms excluded". As shown in Table 2.4, the estimated k2 lies in the interval (0.305, 0.310) for the real part and (-0.0071, -0.0027) for the imaginary part.

This result matches the k2 value proposed in IERS Convention 2010 [START_REF] Petit | IERS Conventions 2010[END_REF] (0.307i 0.0035). Part II

Results

Table 2.3 -List of the previous results based on

Retrograde diurnal band

Chapter 3

Nutation theory in the frame of three

layers-Earth

The dynamical equation in Chapter 1 is limited to the common polar motion band. For the nutation band, this equation has to be modified: first it has to be extended to a three-layered Earth model (mantle, fluid outer core, and solid inner core) and the excitation process has to be replaced by the lunisolar gravitation torque. By adding the solid inner core, two new resonances appeared: FICN and ICW. The pioneer model developed by [START_REF] Mathews | Forced nutations of the earth: Influence of inner core dynamics: 1. theory[END_REF] was limited in several aspects. [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF] later refined it by notably including the ocean tide effects, mantle anelasticity and electromagnetic couplings at the fluid core boundaries, yielded the actual nutation reference model (IAU2000), adopted by the International Astronomical Union and the International Union of Geodesy and Geophysics.

Analytic formulation for the nutation

According to [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF], the dynamical equation of the retrograde diurnal oscillation forced by the lunisolar tides in frequency domains is written as

M(σ)x(σ) = y(σ) φ(σ) . (3.1)
Here σ is the frequency in the terrestrial frame, x = ( m, mf , ms , ñs ) is a four line matrix containing the mantle, outer core and inner core wobbles, and the inner core tilt, φ is the lunisolar perturbing potential, and M and y are four-by-four and four-line matrixes respectively, whose coefficients depend on the geophysical parameters such as ellipticity, Earth moment of inertia, and nine compliances which describe the response of the whole Earth, the outer core, and the inner core to their own respective wobble. The solution m(σ) is the first component of x(σ)

obtained by inversion of the system (3.1):

m(σ) = [M -1 (σ)y(σ)] 1 φ(σ) . (3.2)
Practically, the tidal potential φ(σ) is determined by the rigid Earth nutation. Such models were done, for example, by Roosbeek and Dehant (1998) (RDAN97) and [START_REF] Souchay | Corrections and new developments in rigid earth nutation theory-iii. final tables" ren-2000" including crossed-nutation and spin-orbit coupling effects[END_REF] (REN2000). More precisely, the dynamical equation of an Earth rigid ("R") model is governed by

m R (σ) = e Ω e Ω -σ φ(σ) . (3.3)
The kinematic relation between m(σ) with its corresponding nutation ζ(σ) described in the terrestrial frame is given by

ζ(σ) = - Ω Ω + σ m(σ) . (3.4)
Following [START_REF] Brzeziński | The use of the precise observations of the celestial ephemeris pole in the analysis of geophysical excitation of earth rotation[END_REF], the nutation as seen from the celestial frame is given by

η(σ ′ ) = ζ(σ)e i Θ(t) , (3.5) 
where σ ′ = σ + Ω is the frequency in cycle per day (cpd) as seen from a celestial frame and Θ(t) is the Earth rotation angle:

Θ(t) = Θ(t 0 ) + Ω(t -t 0 ), (3.6)
where Θ(t 0 ) ≈ -79.53 o is the rotation angle at the reference time t 0 (12h00 of 1 January 2000).

The ratio between the amplitude of a non-rigid Earth and a rigid Earth is the same for m(σ),

ζ(σ), and η(σ ′ ):

T (σ; e) = η(σ ′ ) η R (σ ′ ) = ζ(σ) ζ R (σ) = m(σ) m R (σ) = e Ω -σ e Ω [M -1 (σ)y(σ)] 1 , (3.7)

Dependence on the basic Earth parameters

where ζ R (σ) is the Earth rigid nutation in the celestial frame and T (σ; e) is the transfer function.

Hence, a given nutation term of frequency σ is modelled by

ζ(σ) = T (σ; e)ζ R (σ) . (3.8)
Several approximations are needed to expand the transfer function (3.7). It has to be noted that the matrix M has 4 × 4 size and therefore the analytical expansion will be very complicated and will not be practical. [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF] had made several approximations to reach a simpler form of the expansion in the transfer function in function of the rotation modes:

T (σ; e) = ζ(σ) ζ R (σ) = (e -σ/Ω) (e + 1) 1 + (1 + σ/Ω) -σ1 /e σ -σ1 + Ñ2 Ω σ -σ2 + Ñ3 Ω σ -σ3 .
(3.9)

Here Ω = 1.0027379 cpd, Ñ(2,3) are complex coefficients and σ(1,2,3) are the complex frequencies specifying the resonance modes. These latter ones are put under the form σj = 2 π/P j ( 1

+ n j (i / 2Q j )),
where n j is '+1' for the prograde and '-1' for the retrograde modes respectively, P j and Q j are the corresponding Earth-referred period and quality factor respectively. The indexes 1 until 3 are for representing the resonances associated with PMR, FCN, and FICN respectively. In our study, we ignore the contribution of the ICW since its contribution is negligible to the nutation [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. It should be noted that the PMR parameters are characteristic of the Earth response to the pole tide potential in the retrograde diurnal band, therefore they are not the ones prevailing in the seasonal band of the polar motion, namely the CW parameters. The terrestrial frequencies σj are mapped into celestial frequencies σ′ j = σ j + Ω with corresponding period and quality factor P ′ j and Q ′ j .

Dependence on the basic Earth parameters

Even if (3.9) is an approximate expression of (3.7), it is associated with an analytical (approximate) expressions for all Ñ(2,3) and σ(1,2,3) as a function of the aforementioned geophysical parameters. [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF] provide such expressions for the PMR, FCN and FICN resonance complex frequencies, σ1 , σ2 and σ3 , and complex coefficients, Ñ2 and Ñ3 . Along with the ellipticity e, they have also identified a small set of basic Earth parameters (κ, β, γ, ν, KCMB , KICB , A, A m , A f ) whose combination can be directly related to the previous frequencies and coefficients:

σ1 = A A m (e -κ) , σ2 = - A A m e f -β + KCMB + KICB A s A f -Ω , σ3 = α 2 e s + ν -KICB -Ω , Ñ2 = A f A m 1 - γ e , (3.10) 
where A, A m , A f , and A s are the mean equatorial moments of inertia of the Earth, the mantle, the fluid outer core, and the solid inner core, respectively, KCMB and KICB are the electromagnetic coupling constants at the Core-Mantle Boundary (CMB) and Inner-Core Boundary (ICB), β, κ, ν, γ are the compliance, and α 2 is the coupling constant. The flattenings e f and e s are the dynamical ellipticity of the fluid and solid inner cores. The compliance κ = e k/k s expresses the deformability at the surface under degree 2 tidal forcing. Moreover, the full expression for Ñ3 can be found in, e.g., [START_REF] Dehant | Atmospheric and oceanic excitation of the rotation of a three-layer Earth[END_REF]. When estimating the basic Earth parameters from VLBI observation, they appear to be strongly correlated [START_REF] Rosat | Earth's core and inner-core resonances from analysis of vlbi nutation and superconducting gravimeter data[END_REF], thus it is more robust to consider a restricted number of parameters, namely Ñ2 and σ(1,2,3) .

Chapter 4

Nutation terms adjustment VLBI is the only space geodetic technique that can determine the nutation with a sub milliarcsecond precision. The principle of VLBI is based on the measurement of the time difference between the arrival of a radio signal, emitted by extra-galactic source in our case, at several VLBI stations [START_REF] Dehant | Precession, nutation and wobble of the Earth[END_REF]. 

Indirect versus direct approaches

The nutation offset (dX, dY) is composed by several harmonic terms, reflecting the defects of the modelled lunisolar components. At a given frequency, they can be represented by the sum of a prograde and retrograde uniform circular motions, formulated by

dX + i dY = j A + j e i θ j (t) + A - j e -i θ j (t) + a t + b , (4.2) 
where θ j (t) are the frequency associated with periodical motion of the Moon and the Sun, which is generally given by a linear combination of the five Delaunay arguments: l, l ′ , F, D, and Ω (see

A.
3), and a and b are the complex coefficients of the linear term modelling the defect of the precession model. Here A +/- j = A +/- IP, j + iA +/- OP, j are the nutation components, where IP and OP denote in-phase and out-of-phase respectively.

The common way to estimate the nutation components relies on least square analysis of the nutation offset time series that are produced by the analysis of a complete VLBI observational database (see, e.g., [START_REF] Herring | Modeling of nutation-precession: Very long baseline interferometry results[END_REF][START_REF] Koot | Estimation of earth interior parameters from a bayesian inversion of very long baseline interferometry nutation time series[END_REF][START_REF] Rosat | Free core nutation resonance parameters from vlbi and superconducting gravimeter data[END_REF][START_REF] Rosat | Earth's core and inner-core resonances from analysis of vlbi nutation and superconducting gravimeter data[END_REF]. This approach will be referred as indirect approach in the following since it needs two steps: one global VLBI analysis to produce nutation offset time series plus one specific analysis for estimating the nutation offset terms. Here we aim at evaluating the performance of the direct approach which has been developed by [START_REF] Himwich | Direct estimation of nutation coefficients from vlbi data[END_REF] and [START_REF] Petrov | The empirical earth rotation model from vlbi observations[END_REF].

The nutation components are estimated directly from VLBI delays, short-cutting, therefore, the traditional two-step approach. Also, it allows a rigorous propagation of the delay errors into the estimated parameters and the use of the full covariance information from the nutation components as well as the other parameters.

Data processing

In order to apply the direct approach, we need to express the partial derivatives of the group delay τ in (4.1) with respect to the CPO amplitudes A +/- j . These partial derivatives read

∂τ ∂A +/- j = c -1 • k • ∂M ∂A +/- j • b , (4.3) 

Data processing

where matrix M can be represented as

M = Q(X, Y)R(-Θ)W(x p , y p ) , (4.4) 
with x p and y p are the polar motion, and X and Y are the nutation (i.e., the nutation-precession model plus the CPO). Matrix Q can be decomposed as

Q(X, Y) = dQ(dX, dY).Q(X IAU 2000A , Y IAU 2000A ) , (4.5) 
where

dQ(dX, dY) =                 0 0 dX 0 0 dY -dX -dY 0                
.

The derivation of dQ with respect to the IP and OP components of

A +/- j gives ∂dQ ∂A + IP, j =                 0 0 cos θ j (t) 0 0 sin θ j (t)
cos θ j (t)sin θ j (t) 0

                , ∂dQ ∂A + OP, j =                 0 0 -sin θ j (t) 0 0 cos θ j (t) sin θ j (t) -cos θ j (t) 0                 , and ∂dQ ∂A - IP, j =                 0 0 cos θ j (t) 0 0 -sin θ j (t) -cos θ j (t) sin θ j (t) 0                 , ∂dQ ∂A - OP, j =                 0 0 sin θ j (t) 0 0 cos θ j (t) -sin θ j (t) -cos θ j (t) 0                
.

We applied this modeling to find the corrections of 21 prograde and 21 retrograde nutation terms yielded in [START_REF] Herring | Modeling of nutation-precession: Very long baseline interferometry results[END_REF] and [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. These specific terms are the terms that could be reliably estimated. Even though IAU2000 has 678 lunisolar nutation terms, some components are so close to each others, thus the estimates of all components will not be reliably obtained [START_REF] Herring | Modeling of nutation-precession: Very long baseline interferometry results[END_REF].

The nutation terms are estimated from the data consists of 6246 VLBI sessions between August 1979 to December 2017. This data is taken from the IVS data center. We used the geodetic analysis software Calc/Solve [START_REF] Ma | Radio-source positions from vlbi[END_REF] developed and maintained by the VLBI group at NASA/GFSC1 in a standard configuration. We estimated the station coordinate differences with respect to ITRF2014 [START_REF] Altamimi | Itrf2014: A new release of the international terrestrial reference frame modeling nonlinear station motions[END_REF] as global parameters with no-net rotation and no-net translation conditions applied to the positions and velocities of a group of 38 stations.

All of the a-priori station positions were corrected from tridimensional displacements due to oceanic and atmospheric tidal loading using FES2004 [START_REF] Lyard | Modelling the global ocean tides: modern insights from fes2004[END_REF] no-net rotation condition was applied to the 295 ICRF2 defining sources. Antenna thermal deformations were obtained in [START_REF] Nothnagel | Conventions on thermal expansion modelling of radio telescopes for geodetic and astrometric vlbi[END_REF]. A-priori dry zenith delays were estimated from local pressure values and then mapped to the elevation using the Vienna Mapping Function [START_REF] Böhm | Troposphere mapping functions for gps and very long baseline interferometry from european centre for medium-range weather forecasts operational analysis data[END_REF]. The modeling of intraday variations of the troposphere wet delay, clocks, and troposphere gradients is realized through continuous piecewise linear functions whose coefficients are estimated every 10 min, 30 min, and 6 hours, respectively. A-priori Earth orientation parameters were taken from the IERS EOP 14 C04 data associated with the IAU2000/2006 nutation and precession models [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF][START_REF] Capitaine | Expressions for IAU 2000 precession quantities[END_REF]. Offsets to the polar motion and UT1 a-priori, together with polar motion and UT1 rates, were estimated once per session.

days. This large band contains the periods of the two 'extreme' peaks at -420 days and -460 days showed by Fast Fourier Transform (FFT) spectra realized over different time spans by [START_REF] Chao | The Earth's free core nutation: Formulation of dynamics and estimation of eigenperiod from the very-long-baseline interferometry data[END_REF] and earlier with little differences by [START_REF] Vondrák | Free core nutation: direct observations and resonance effects[END_REF]. Several empirical models of the FCN have been obtained by different methods (least-squares fit over sliding windows, wavelet decomposition, Singular Spectral Analysis) in the recent years, all being generally in good agreement [START_REF] Malkin | Empiric models of the earth's free core nutation[END_REF][START_REF] Krásná | Free core nutation observed by vlbi[END_REF][START_REF] Belda | Testing a new free core nutation empirical model[END_REF]. A direct adjustment of the FCN usually has been made via a sliding window, by selecting a subset of data similarly to what is done in the indirect approach. However, as the window is restricted to some years, the sliding window method introduces correlations with other nutation terms. Here, we propose the adjustment of an empirical harmonic model composed of close frequencies for representing the broad band spectral peak in according to

dX FCN + i dY FCN = j A FCN, j e iσ ′ FCN, j t , (4.6) 
where A FCN, j is the complex amplitude of the jth FCN component, and σ ′ FCN, j is its frequency.

Results and comparison between the direct and indirect approaches

The corresponding estimates of 42 nutation offset terms for both the indirect and the direct approaches are shown in Table 4.2. The largest differences between the two approaches reside in the long period terms (18.6-yr and 9.3-yr) for which the complex amplitude change is larger than 10 µas. The direct approach returned a χ 2 per degree of freedom of 0.94 whereas the indirect approach has χ 2 per degree of freedom 3.99. The direct approach provides formal errors that are smaller than for the indirect approach by a factor of two to three. Here the formal errors are produced from the multiplication of the co-variance matrix's diagonal elements with the root square of χ 2 . The correlations between the various estimated complex amplitudes are reported in Figure (4.6 and 4.7). The direct approach permits to lower the correlations between the 18.6-yr and 9.3-yr terms, and between the 6.86-d and 346.64-d terms by 5% and 10%. For the other terms, there are only marginal changes of correlation between the two approaches. On average, the direct approach permits to lower the correlation by 7%.

The solutions associated with the indirect and direct approaches produced obviously different Earth rotation parameters and radio source positions, raising the question to which extent these differences are significant. The RMS differences in polar motion remain within 0.03 mas.

We reached the same conclusions for UT1 and length-of-day with RMS differences of about 1 ms. The median errors for the polar motion are slightly lower (by 2 µas) in the direct approach with respect to the indirect approach. The celestial reference frames obtained from the two approaches and composed of 4118 radio sources were compared in terms of global rotation and deformations up to degree 2 (see, e.g., [START_REF] Mignard | Analysis of astrometric catalogues with vector spherical harmonics[END_REF]. They only differ by small rotations of less than 3 µas. The modeling of nutation in the direct approach has, therefore, no significant impact on the other EOP and the celestial reference frame.

The robustness of the results are examined by estimating the nutation components from two session lists which have approximately the same number of observations. We divided the session list into two lists by taking the "even" and "odd" sessions of the initial list in chronological order. For the long periods, the nutation amplitudes are not expected to be so sensitive to the

Results and comparison between the direct and indirect approaches

number of observation being divided by two. For short periods (few times the mean sampling rate), one could expect an increased sensitivity due to the rapidly changing network characteristics (size, geometry, data quality) for one session to another. We found that the "even" and "odd" solutions return a χ 2 per degree of freedom which are in a good agreement with the initial session list. Figure (4.8, 4.9, 4.10, 4.11) show the differences between the results from "even"

and "odd" sessions in each nutation component for both the direct and indirect approaches. It

shows that the differences are larger in the indirect approach, with an average value of 3.0 µas, than the direct approach, with an average value of 2.4 µas. The dispersion of the results between the even and odd session can be interpreted as an "empirical error". Such error appear much less homogeneous than the initial standard error when contrasted with the frequency. The less robust nutation are generally short-period nutation (e.g., 13.78 days). But the empirical error does not decrease as the period increases: a possible reason for this is the in-homogeneity of the VLBI data quality and error along the observational period, especially the early data (before 1990) compared with the more recent ones. Chapter 5

Resonances adjustment in retrograde diurnal band

In order to estimate the Earth resonance parameters through VLBI data, in a first approach, we strictly follow the procedure of [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. It is based on a transfer function (3.9) that expresses the ratio between the non-rigid Earth nutation terms and its corresponding rigid Earth nutation. Here, we adopt the value e = 3.2845479 × 10 -3 , as reported in [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. The observed nutation η(σ ′ ) is estimated by adding up the nutation offset terms of Table 4.2 to the corresponding IAU2000 nutation model (see Table 5.1 column 9 and 10).

The rigid Earth nutation is adopted from REN2000 model [START_REF] Souchay | Corrections and new developments in rigid earth nutation theory-iii. final tables" ren-2000" including crossed-nutation and spin-orbit coupling effects[END_REF], as reported in Table 5.1 column 7 and 8.

We estimate the complex parameters σ j and Ñ2 by performing a weighted least square inversion. As Ñ3 is correlated with σ3 , Ñ3 is fixed to its theoretical value (2.95844 × 10 -4 -i9.57705 × 10 -5 ) as given by [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. The weights of the nutation terms itself are deduced from the formal error displayed in Table 4.2. As mentioned by [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF], before the inversion is performed, some corrections have to be applied. First, the nutation terms have to be referred to a dynamical celestial reference frame by removing the geodetic nutation.

Then, non-linear effects are suppressed (see Table 5.2). Finally we eventually get rid of the atmospheric-oceanic contribution, which cannot be related to the rigid Earth nutation caused by lunisolar tides.

Table 5.1 -In-phase and out-phase coefficients of 42 nutation terms for a rigid Earth model REN2000 and a non-rigid three-layered Earth model IAU2000. Here the period is given with respect to the celestial frame. The Units are in day for the periods and mas for the coefficients. 

l l ′ F D Ω REN2000 IAU2000 a 1 a 2 a

Estimating Earth rotation resonances

The resonance parameters are estimated by weighted least squares based on the total nutation terms and their formal errors, as reported in Table 4.2, starting from a-priori values given by [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. The impact of atmospheric-oceanic circulation is investigated by considering three cases: i) no correction at all, ii) correction restricted to the annual prograde term,

iii) correction involving all terms listed in Table 5.4.

The results are displayed in Table 5.5 for the resonance parameters (P,Q) of PMR, FCN, and FICN in the terrestrial frame. For FCN and FICN, we also provide the equivalent parameters (P ′ ,Q ′ ) in the celestial frame. It should be noted that the negative value of Q PMR is associated with the dynamical response of the ocean and therefore does not represents the damping of the resonance itself, as explained in Chapter 6.

Restricting the atmospheric-oceanic correction to the prograde annual term has no significant impact on the resonance parameters. In contrast, some resonance parameters are significantly changed if we consider all terms reported in Table 5.4. Whereas PMR parameters are not modified significantly, the absolute value of the FCN period in celestial frame increases by 0.6 days and the corresponding quality factor in the terrestrial frame by 400. As well, the FICN parameters are affected: the period decreases by 50 days and the terrestrial quality factor by 90. On the other hand, the way used for estimating nutation terms is not crucial: the direct and indirect approaches lead to almost the same results according to Table 5.5.

Figure 5.3, 5.4, and 5.5 show a comparison of the resonance parameters estimates based on no atmospheric-oceanic correction, atmospheric correction only, oceanic correction only, and their combination. The removal of either atmosphere or ocean terms does not have a significant influence to the PMR parameters. For the FCN parameters, the removal of atmospheric terms lengthen the FCN period of about one day, and the quality factor is increased to 17600, whereas the annihilation of oceanic terms does not have a significant contribution. Meanwhile, the removal of atmospheric components shorten the FICN period of about 200 days and the removal of ocean decrease the quality factor of about 90.

Table 5.6 -The period and quality factor of polar motion resonance determined over certain band of frequencies.

Band frequency (cpd) Chapter 6

P PMR Q PMR I (-Ω -1/6.86 ≤ σ ≤ -Ω + 1/6.86) 382.0 ± 1.3 -10.4 ± 0.5 II 1 (-Ω -1/6.86 ≤ σ ≤ -Ω -1/

Geophysical explanation

The estimation of PMR parameters from nutation data has confirmed that the period of PMR decreases by approximately 40 days in the retrograde diurnal band in comparison with its estimation in the seasonal band, and the quality factor becomes negative. This chapter is devoted to a detailed geophysical explanation about this modification. Table 6.1 -The main terms of the ocean's angular momentum. These terms are generated by tesseral diurnal gravitational tides based on the FES 2012 model [START_REF] Carrère | Fes 2012: a new global tidal model taking advantage of nearly 20 years of altimetry[END_REF], as reported in [START_REF] Madzak | Short period ocean tidal variations in Earth rotation[END_REF]. The reported coefficient is equivalent to (6.1). The amplitudes H 1 , H 2 , h 1 , h 2 are in the unit of 10 25 kg m 2 /s and γ = GMS T + π.

Contribution from the ocean

Tidal Argument θ χ H 1 Φ 1 H 2 Φ 2 h 1 φ 1 h 2 φ 2 ( • ) ( • ) ( • ) ( • ) ( • ) Q1 γ -l -2F -2κ - 90 
In the late 1980s, [START_REF] Dickman | The self-consistent dynamic pole tide in non-global oceans[END_REF] studied the dynamical influence of the ocean pole tide on the CW period and concluded that the dynamic effects at seasonal scales lengthen the CW period by one day, corresponding to a rise of about 0.0014 in the oceanic love number. Furthermore, the dynamic process slightly delays the ocean's reaction to the pole tide and thus introduces a tiny imaginary part in the ocean love number ko of about-2 × 10 -4 . This imaginary part is too small to be regarded, so the assumption of a hydrostatic pole tide in the seasonal band stays true.

However, below 10 days, many studies have shown that the oceanic response to an atmospheric pressure variations strongly departs from the equilibrium, so the hydrostatic pole tide is not sound, and ko should change accordingly. In the diurnal band, this issue can be solved in light of the diurnal ocean tides. For, as the pole tide potential has the same form with the lunisolar tesseral potential and is relevant to the same frequency band, the Earth response should be formally the same. It is well known that the diurnal ocean tides are strongly affected by dynamical processes. Currents are generated, and in turn a relative angular momentum. Meanwhile, the observed diurnal ocean tide height is smaller than the theoretical equilibrium tide produced by the tesseral lunisolar potential, and strongly out-of-phased with respect to it. The tidal component at frequency σ causes the equatorial oceanic angular momentum

H(t) = H 1 cos(θ(σ) + χ -Φ 1 ) + i H 2 cos(θ(σ) + χ -Φ 2 ) , h(t) = h 1 cos(θ(σ) + χ -φ 1 ) + i h 2 cos(θ(σ) + χ -φ 2 ) , (6.1) 
where θ(σ) is the tidal argument, H(t) and the coefficients H 1 , H 2 , Φ 1 , Φ 2 correspond to the matter term whereas h(t) and the coefficients h 1 , h 2 , φ 1 , φ 2 correspond to the motion term.

According to the FES 2012 ocean tidal model, the main diurnal constituents are for tesseral tides J1, K1, P1, O1, and Q1. The corresponding coefficients calculated in [START_REF] Madzak | Short period ocean tidal variations in Earth rotation[END_REF] are provided in Table 6.1. An ancient ocean tide model going back to 1996 yielded close estimates, as reported in [START_REF] Chao | Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum[END_REF]. The retrograde part of (6.1) is written as follows

H -(t) = (H -)e -i(θ+χ) , h -(t) = (h -)e -i(θ+χ) , (6.2) 
where

H -= H 1 cos(Φ 1 ) -H 2 sin(Φ 2 ) 2 + i H 1 sin(Φ 1 ) + H 2 cos(Φ 2 ) 2 , h -= h 1 cos(φ 1 ) -h 2 sin(φ 2 ) 2 + i h 1 sin(φ 1 ) + h 2 cos(φ 2 )
2 .

(6.3)

Here '-' corresponds to the retrograde term. From (A.4) and (A.5), the corresponding tesseral

lunisolar potential is -Ω 2 R 2 e /3Re Φ(t)Y -1 2 , with Φ(t) = 3gN 1 2 Ω 2 R 2 e
ξ σ e -i(θ σ -π/2) , (6.4) where g means equatorial Earth gravity, R e is the Earth equatorial radius, ξ σ is the equilibrium tidal height (see Table A .1), and (N 1 2 ) 2 = 5/24π. Accounting for the deformation effect of the tidal loading, the retrograde effective angular momentum function caused by Φ(t) is

χ o (t) = (1 + k ′ 2 )χ ma (t) + χ mo (t) , (6.5) 
where .6) Since the tidal potential Φ(t) is formally equivalent to m(t) (see A.4), so χ o (t) is proportional to Φ(t), as the rotation excitation is proportional to m(t):

χ ma (t) = H -(t) (C -A)Ω ; χ mo (t) = h -(t) (C -A)Ω . ( 6 
χ o = ko k s Φ , (6.7) 
where ko is the oceanic Love number. Then, we obtain

ko = k s H -(t)(1 + k ′ 2 ) + h -(t) (C -A)Ω Φ = -k s H -(1 + k ′ 2 ) + h - C -A ΩR 2 e 3gN 1 2 ξ σ . (6.8)
We can estimate ko for the tidal components here-above by considering the ξ σ values reported in Table A.1. The resonance of the loading love number k ′ 2 at FCN frequency does not impact significantly ko in the retrograde diurnal band. For k ′ 2 = -0.3075, the obtained values are given in Table 6.2 and Figure 6.2. They differ significantly from the oceanic Love number k o = 0.044 estimated for an equilibrium pole tide. These results can be compared with the estimate of [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF] for the K1 tide. In term of compliance, we have are heavily influenced by the FCN. Far from K1, the parameters of resonance rejoin the curve acquired from the anelastic Earth covered by ocean. In the near-FCN resonance, T PMR strongly varies between -10 days to 1000 days, whereas the quality factor is below 0.5, then the resonance at σPMR is heavily mitigated. 

Comparison with observation

Theoretical prediction of polar motion resonance

In the diurnal prograde band the angular momentum oscillations produced by the ocean tides is

given by θ+χ) ,

H(t) = H + e i (
h(t) = h + e i (θ+χ) , (7.1) 
where

H + = H 1 cos(Φ 1 ) + H 2 sin(Φ 2 ) 2 + i -H 1 sin(Φ 1 ) + H 2 cos(Φ 2 ) 2 , h + = h 1 cos(φ 1 ) + h 2 sin(φ 2 ) 2 + i -h 1 sin(φ 1 ) + h 2 cos(φ 2 )
2 .

(7.

2)

The corresponding excitation function is associated with the matter and motion terms. It can be expressed in the frequency domain by

χ ma (σ) = H + (σ) (C -A) , χ mo (σ) = h + (σ) (C -A)Ω . (7.3) 
These lead to the effective angular function: .4) The ko number for prograde diurnal band is given by (6.8), where χ o is replaced by the one in the prograde diurnal band: .5) As shown in Table 7.1 and Figure 7.1, the oceanic love number ko in the prograde diurnal band is much smaller, in comparison with the retrograde diurnal one, notably for the real part, and is closer to the oceanic Love number estimated for an equilibrium pole tide. As shown in where f is in cpd. Then, the theoretical value of PMR in the prograde diurnal band is derived by substituting (6.15) with ko in (7.6). Meanwhile, the solid Earth number k2 (σ) is still given in The polar motion can be represented by the sum of circular uniform motion as follows

χ o (σ) = (1 + k ′ 2 )χ ma (σ) + χ mo (σ) = H + (σ)(1 + k ′ 2 ) + h + (σ) (C -A)Ω . ( 7 
ko (σ) = -k s H + (σ)(1 + k ′ 2 ) + h + (σ) (C -A)Ω ΩR 2 e 3gN 1 2 ξ σ . ( 7 
p = x p -iy p = j A + j e i θ j (t) + A - j e -i θ j (t) , (7.7) 
where A + and A -are the complex amplitude of the prograde and retrograde terms respectively and θ j (t) is the corresponding frequency associated with a linear combination of five Delaunay arguments (see Appendix A.3). In the prograde diurnal band, the complex amplitudes A + j are decomposed into two components:

A + j = A + (IERS ; j) + dA + j , (7.8) 
where A + (IERS ; j) = A + (OT ; j) + A + (LIB; j) are the complex amplitudes of the modeled variation in the pole coordinate, hereafter named IERS model, which can be separated into the ocean tidal terms A + (OT ; j) and the libration terms A + (LIB; j) . Here dA + j = dA + (IP; j) + i dA + (OP; j) are the offsets from the model. We use the sine and cosine coefficients given in Table 8.2a and Table 5.1a in IERS conventions to calculate the a-priori A + (OT ; j) and A + (LIB; j) respectively, whereas dA + j are estimated from the VLBI observation. Table 7.2 -Diurnal prograde terms estimated from VLBI observation over the period 1990 -2020. Here γ = GMS T + π and the unit of components are µas.

Tidal argument θ

Period (days) Actually, the complex amplitudes dA + j are estimated directly from VLBI time delay according to the direct approach as for the nutation terms (see Chapter 4). The partial derivatives of the time delay with respect to dA + j are

A + IP A + OP ± Q 1 γ -l -2F -2κ +1 
∂τ ∂dA + j = c -1 • k • Q(X, Y) • R(-θ) • ∂W(x p , y p ) ∂dA + j • b . (7.9)
The matrix W can be decomposed as 

W(x p , y p ) = W(x C04 , y C04
=                 0 0 dx 0 0 dy -dx -dy 0                 .
Here (dx, dy) are modeled as a harmonic function series:

dxi dy = j dA + j e i θ j (t) + dA - j e -i θ j (t) . (7.11) Therefore, the derivation of dW with respect to the IP and OP components of dA + j gives ∂dW ∂dA

+ IP; j =                 0 0 cos θ j (t) 0 0 -sin θ j (t) -cos θ j (t) sin θ j (t) 0                 , ∂dW ∂dA + OP; j =                 0 0 -sin θ j (t) 0 0 -cos θ j (t) sin θ j (t) cos θ j (t) 0                 .
We implement this partial derivative in Calc/Solve to find the corrections for 5 diurnal prograde polar motion terms: J1, K1, P1, O1, and Q1.

Polar motion resonance estimation

Polar motion resonance estimation

As the FCN and FICN do not play any role, and the ocean tide is a mass transport, we could use the relation in (1.18) to calculate the PMR parameters. It can be rewritten by considering (1.15) and (1.16) as follows .12) In the diurnal prograde band the value of σPMR is much smaller compared to σ. So, the system obtained from different tidal line in this frequency range could be ill conditioned. Hence, in order to have more robust results, we have to modify this equation. As .16) The PMR parameters are estimated from (7.16) by fitting the observed prograde diurnal terms in Table 7.2 and Table 7.3 to the tidal potential Φ(σ). Before the inversion, the "libration" effect, corresponding to the effect of Earth triaxiality from lunisolar tide, has to be eliminated from the observed prograde diurnal terms. We adopt the libration model recommended in IERS conventions (Table 5.1a of IERS Conventions 2010).

p(σ) = eAΩ A m - 1 σ -σPMR (1 + k ′ 2 )χ ma (σ) + χ mo (σ) . ( 7 
χ o (σ) = (1 + k ′ 2 )χ ma (σ) + χ mo (σ), the equation (7.12) becomes p(σ) = eAΩ A m - χ o (σ) σ -σPMR . (7.13) As χ o = ko /k s Φ, we obtain p(σ) = eAΩ A m - ko k s Φ(σ) σ -σPMR . ( 7 
(σ) = - 1 σ -σPMR eAΩ A m 1 - k2 k s -σPMR Φ(σ) . ( 7 
The Table 7.4 displays the results obtained from two different set of data. It shows that the estimated period P PMR is 400 ± 2 days and the quality factor Q PMR is in the interval (-26, -22). This resonance parameters match strikingly the theoretical value of We test the sensitivity of the PMR parameters with respect to each prograde diurnal term by excluding one of them: thus in each estimation, we only consider four terms. The results, displayed in Table 7.5, show that the estimates are slightly sensitive to the removal of the term K1, which is understandable since this term is the most dominant one in the polar motion diurnal band (see Figure 7.4). By neglecting K1, the quality factor becomes (-21, -20). Chapter 8

Conclusions

The main originality of my thesis is to treat three issues that are commonly investigated separately by different specialists: the processing of geodetic observations for estimating EOP, the development of Earth rotation theory, and the conjunction between observation and theory.

We have estimated the Earth resonance parameters in three frequency bands, namely the common polar motion, the retrograde diurnal, and the prograde diurnal band. The polar motion resonance (PMR) parameters in the common polar motion band were estimated by modifying the least squares fit procedure proposed by [START_REF] Kuehne | Estimates of the chandler wobble frequency and q[END_REF] over the period 1976 -2019. All the spectral bands from 10 days to decadal periods were taken into account except the seasonal terms. By considering all fluid layers excitations, we obtained the period 432.4 ± 1 days and the quality factor within the range (41, 74). These results are in agreement with the previous studies, with a tighter quality factor. We calculated the Love number k2 from the estimated PMR parameters and obtained the value in the range of (0.305, 0.310) for the real part and (-0.0071, -0.0027) for the imaginary part.

Second, we performed the adjustment of the main nutation terms and of the forced-free motion associated with the FCN by applying both direct and indirect treatment of VLBI observations. The direct approach, which was never implemented in this context, returned lower formal errors, lower correlations between the estimated nutation amplitudes, and, for some of them, amplitudes differing significantly from those of the indirect approach. The obtained nutation terms were used to determine the resonance frequencies of PMR, FCN, and FICN in the diurnal retrograde band. For the direct approach, we obtained the period P PMR = 382.5±1. 

  (a)[START_REF] Jeffreys | The variation of latitude[END_REF]; (b)[START_REF] Wilson | Meteorological excitation of the earth's wobble[END_REF]; (c)[START_REF] Ooe | An optimal complex ar. ma model of the chandler wobble[END_REF]; (d)[START_REF] Wilson | An analysis of the homogeneous ils polar motion series[END_REF]; (e)[START_REF] Wilson | Maximum likelihood estimates of polar motion parameters[END_REF]; (f)[START_REF] Kuehne | Estimates of the chandler wobble frequency and q[END_REF]; (g)[START_REF] Furuya | Estimation of period and q of the chandler wobble[END_REF]; (h) Gross (2005); (i) Seitz et al. (2012); (j) Nastula and Gross (2015); (k) Mathews et al. (2002); (l) Chen and Shen (2010).

Figure 4 .

 4 1 shows a schematic picture of the VLBI principle. The received signals from several stations are combined by using a so-called correlator. This correlator then produces time delays (τ = t 2t 1 ) as an output. Here τ depends on the length of the distance between the stations b and the position of the observed source k. Mathematically, VLBI time delay is given by τ = -k.M.b c + ∆τ . (4.1) Here (k.b/c) is called geometric delay and becomes the dominant factor for the delay, M is the matrix of transformation from terrestrial to celestial frame, and ∆τ is the sum of all other time delays, which have much smaller magnitude, caused by the troposphere, ionosphere, atomic clocks synchronization, and measurement noise. VLBI can provide the determination of several parameters such as station positions, source positions, EOP, and sub-daily variations of troposphere zenith delay and clock offsets. The parameters can be estimated over all VLBI sessions, namely global parameters, or for each 24-hour, called local parameters, or even estimated over 60 minute time spans, namely segmented parameters. In VLBI, the desired parameter is calculated by comparing the observed time delay with the modeled one.

  and the output from the inverted-barometer version of the Atmospheric Pressure Loading Service (APLO;[START_REF] Petrov | Study of the atmospheric pressure loading signal in very long baseline interferometry observations[END_REF] as well as corrections for the post-seismic relaxation for relevant stations as given in the ITRF2014. Radio source coordinates were estimated as global parameters for most of the sources except a set of 39 particularly active quasars (tagged as special-handling sources in the ICRF2 work,[START_REF] Fey | The second realization of the international celestial reference frame by very long baseline interferometry[END_REF] whose coordinates were estimated once per session. A

Figure 6 .

 6 Figure 6.3 displays the resonance parameter plot generated from (6.11) over the frequency [-1.2 cpd, -0.80 cpd]. It shows that the resonance parameters in the frequency close to K1

Figure 6 .

 6 Figure 6.4 displays the comparison between the theoretical curve with the estimated values from lunisolar nutation terms, as reported in Table5.6. It shows that, in average, the theoretical curve matches the whole band I (P PMR = 382 ± 1 days, Q PMR = -10 ± 1) except in the frequency near the FCN resonance. Meanwhile, the observation also confirms the strong perturbation of FCN resonance to the resonance parameters as well as the influence of ocean dynamics. The estimates of P PMR from band III 2 (P PMR = 487 ± 58 days) confirms the enhancement of the resonance period around ψ1 (theoretical value of 470 days at ψ1). Furthermore, the nutation inversion in the band III 3 fully supports the theoretical decrease around K1 (modeled value

Figure 7 . 1 ,

 71 Figure 7.1, the ko values can be fitted by a degree two polynomial as follows

7. 2 .

 2 Estimation of prograde diurnal terms through VLBI observation 7.2 Estimation of prograde diurnal terms through VLBI observation

  Figure 7.2 (P PMR = [395, 400] days; Q PMR = [-30, -20]).

  5 and the quality factor Q PMR in the interval(-11, -10). Moreover, the estimates of the FCN period and quality factor are P FCN = -429.6 ± 0.2 and Q FCN in the interval(16461, 17379) and the estimates of the FICN parameters are P FICN = 1003 ± 233 and Q FICN in the interval(387, 518).No significant discrepancies have been noticed between the resonance parameters based upon the 'direct' and 'indirect' nutation terms. The inclusion of the complete atmospheric and nontidal ocean corrections has increased the FCN period in the celestial frame by 0.6 day and the corresponding quality factor in the terrestrial frame by 400. Meanwhile, the FICN parameters have decreased the period by 50 days and the quality factor by 90.We have shown that the shorter period of the PMR in the nutation band is mainly caused by the dynamical response of the oceans to the pole tide potential, and the associated negative quality factor reflects the strong phase-shift of this response with respect to the pole tide.The comparison of observed nutation terms to those of a rigid Earth, fit amazingly well to the modeled frequency dependence of PMR parameters derived from the ocean tidal model, and the knowledge of the effect of the free core nutation resonance on k2 . So, the lunisolar nutation determined by VLBI reflects the dynamical behavior of the oceans and the influence of the fluid core on solid Earth deformations in the retrograde diurnal band. A similar analysis is carried out for the prograde diurnal band and it shows that the estimated PMR has a period P PMR = 400 ± 2 days and a quality factor Q PMR in the interval(-26, -22). These results match the results derived from the ocean tidal model.Our study has shown that the determination of the frequency of the Earth's rotational modes is a powerful way for determining the rheological properties of the solid Earth and the ocean response to an external forcing in a wide range of frequency, from one day to several years. So, our work has to be continued by analyzing the resonances in the frequency bands that have not been explored yet. The investigation in the semi diurnal band can be done by considering the excitation from ocean tides. Moreover, it would be crucial to estimate the PMR parameters at the decadal time scale, where the nature of the Earth inelasticity has an important impact on the solid Earth love number k2 . Finally, since this study is restricted to the equatorial changes of Earth rotation, it has to be extended to its axial ones. As length of day depends on the Earth deformation (i.e. k2 ), we foresee the possibility to investigate the frequency dependence of k2 by treating the length of day and polar motion in a combined approach, as well as their corresponding excitation.

Figure A. 1 -

 1 Figure A.1 -The distribution of VLBI station around the world.

  These series are based upon the European Centre for Medium-

	Range Weather Forecasts (ECMWF) and the Max Planck Institute Ocean Model (MPIOM)
	model (Dobslaw et al., 2010), and are available from 1976 with a 3 hr sample interval. As a
	comparison, we also used another data available through the Global Geophysical Fluid Center
	of the International Earth Rotation Service (IERS): EAAM produced by National Center for
	Environmental Prediction (NCEP) reanalysis

Table 2

 2 

	.1 -Synopsis of the geophysical excitation and observed polar motion data.
		model or	version	available data sampling
		series name			interval
	Atmosphere	ECMWF	v1.0	1976 -2019	3 hours
		NCEP	reanalysis 1948 -2019	6 hours
	Ocean	MPIOM	v1.0	1976 -2019	3 hours
		ECCO	50yr	1948 -2002	10 day
		ECCO	kf080i	1998 -2019	1 day
	Land water	LSDM	v1.2	1976 -2019	3 hours
	Polar coordinate	C04	-	1962 -2019	1 day

Table 2 .

 2 

		Periode (days)	Q	χ 2
	with seasonal terms		
	NCEP + ECCO	425.8 ± 0.9	(33, 48) 4.40
	ECMWF + MPIOM	433.9 ± 1.0	(36, 57) 4.70
	ECMWF + MPIOM + LDSM	433.2 ± 0.9	(35, 52) 4.36
	seasonal terms excluded		
	NCEP + ECCO	432.6 ± 1.0	(50, 109) 4.12
	ECMWF + MPIOM	433.5 ± 1.0	(45, 88) 4.13
	ECMWF + MPIOM + LSDM	432.4 ± 1.0	(41, 74) 3.85

2 -The estimated CW parameters from combined atmospheric-oceanic excitation according to several geophysical excitation series. Here we used the data from 1976 to 2019. The uncertainty corresponds to 1σ.

Table 2 in

 2 [START_REF] Nastula | Chandler wobble parameters from slr and grace[END_REF] and our result from ECMWF + MPIOM + LSDM set.

	Period	Q	Data span	Reference*
	(days)		(years)	
		Statistical excitation	
	433.2 ± 2.2	(36,192)	67.6	(a)
	434.0 ± 2.6	(50,400)	70	(b)
	434.8 ± 2.0	(50,300)	76	(c)
	433.3 ± 3.1	(47,1000)	78	(d)
	433.0 ± 1.1	(74,789)	86	(e)
		Atmospheric excitation	
	439.5 ± 2.1	(30,500)	8.6	(f)
	433.7 ± 1.8	(35,100)	10.8	(g)
	430.8	41	10	(h)
		Atmospheric + oceanic excitation	
	429.4	107	10	(h)
	431.9	83	51	(h)
	433.0	97	60	(i)
	430.9 ± 0.7	(56, 255)	25	(j)
		Semianalytic	
	430.3	88.4	20	(k)
	433.03	100.20	20	(l)
		This work	
	432.4 ± 1.0	(41, 74)	43	-

*Reference:
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	Re[ k2 ]	Im[ k2 ]

4 -

The Love number k2 derived from the estimated CW period and quality factor in Table

2

.2 for the case "seasonal terms excluded".

Table 4 .

 4 1 -The FCN complex amplitudes estimated by the direct and indirect approaches. Unit is µas.

			Indirect			Direct	
	Period	IP	OP	±	IP	OP	±
	-408.58 64.2 -24.1 2.7	58.1 -20.7 1.3
	-420.97 -87.5 107.9 3.6	-81.4 102.4 1.8
	-434.12 49.8 -64.1 4.3	44.1 -54.3 2.1
	-448.12 21.6 -60.8 4.6	22.1 -69.1 2.3
	-463.06 -46.2 -29.6 4.5	-43.0 -20.0 2.2
	-479.03	0.5 -10.8 4.1	-8.3 -17.2 2.0
	-496.14 -6.4	6.4 3.5	3.4	6.4 1.7
	-514.51	3.5	-9.9 2.6	-3.5	-6.3 1.3

Table 4 .

 4 2 -In-phase and out-phase coefficients of 42 nutation terms estimated by the indirect and direct approaches. Here the period is given with respect to the celestial frame. Unit is day for periods and µas for the coefficients.

	l l ′ F D Ω	Indirect			Direct
	a 1 a 2 a 3 a 4 a 5	Period	IP	OP	±	IP	OP	±
	0	0	0	0	1 -6798.38 26.2 -15.7 1.7	30.8 -26.9 0.9
	0	0	0	0 -1 6798.38	2.8 -33.2 1.7	15.2 -32.8 0.9
	0	0	0	0	2 -3399.19	7.3 -13.1 1.7	3.0 -10.9 0.9
	0	0	0	0 -2 3399.19 20.2 -17.2 1.7	14.1 -11.5 0.9
	2	0 -2	0 -2 -1615.75	-0.8	-2.2 1.7	-5.3	-5.7 0.8
	-2	0	2	0	2 1615.75	-1.8 -12.8 1.7	2.6	-8.0 0.8
	2	0 -2	0 -1 -1305.48	-0.9 10.0 1.7	-3.6	8.8 0.9
	-2	0	2	0	1 1305.48	-5.2	1.5 1.7	-4.0	3.3 0.8
	2	0 -2	0	0 -1095.18	-3.4	4.8 1.7	1.1	4.1 0.8
	-2	0	2	0	0 1095.18	-4.1	6.1 1.7	-4.1	1.1 0.8
	0 -1	0	0 -1	-386.00	-9.7	1.5 1.9	-9.1	-4.5 0.9
	0	1	0	0	1	386.00	-1.0	-1.2 1.6	0.6	-0.0 0.8
	0 -1	0	0	0	-365.26 35.7	4.5 1.8	33.5	7.6 0.9
	0	1	0	0	0	365.26	-4.1	-0.2 1.7	-9.7	-0.8 0.8
	0 -1	0	0	1	-346.64 -16.2	-2.8 1.8	-13.3	0.8 0.9
	0	1	0	0 -1	346.64	1.3	-0.0 1.7	-0.0	-3.0 0.9
	0	0 -2	2 -2	-182.62 -11.5	5.5 1.5	-12.6	5.9 0.8
	0	0	2 -2	2	182.62	7.8	-5.7 1.5	9.0	-4.3 0.8
	0 -1 -2	2 -2	-121.75	-4.2	4.7 1.5	-1.7	4.4 0.8
	0	1	2 -2	2	121.75	4.6	1.4 1.6	3.8	-1.2 0.8
	1	0	0 -2	0	-31.81	0.8	-3.9 1.5	0.7	-2.8 0.7
	-1	0	0	2	0	31.81	-2.0	2.6 1.5	-3.2	2.8 0.8
	-1	0	0	0	0	-27.55 -17.6	-9.4 1.5	-17.8	-7.6 0.7
	1	0	0	0	0	27.55	1.1	-3.9 1.5	1.0	-2.6 0.8
	-1	0 -2	2 -2	-23.94	-0.6	-1.4 1.5	-0.9	-0.2 0.7
	1	0	2 -2	2	23.94	-0.8	-1.1 1.5	-1.9	-0.7 0.8
	0	0	0 -2	0	-14.77	-3.1	2.2 1.5	-1.9	2.4 0.7
	0	0	0	2	0	14.77	1.0	-0.0 1.5	1.3	-0.9 0.8
	-2	0	0	0	0	-13.78	-2.4	-2.0 1.5	-2.4	-1.4 0.7
	2	0	0	0	0	13.78	1.4	1.1 1.5	0.5	0.4 0.8
	0	0 -2	0 -2	-13.66	-6.7	-7.7 1.5	-8.5	-5.6 0.7
	0	0	2	0	2	13.66	-3.4	9.0 1.5	-5.6	8.6 0.8
	1	0 -2 -2 -2	-9.56	-0.9	-3.7 1.5	-1.7	-1.5 0.7
	-1	0	2	2	2	9.56	3.0	-3.7 1.5	2.0	-1.1 0.8
	-1	0 -2	0 -2	-9.13	-1.2	1.1 1.6	-1.5	1.5 0.7
	1	0	2	0	2	9.13	-1.3	3.8 1.6	-3.3	5.7 0.9
	-1	0 -2	0 -1	-9.12	2.1	4.2 1.6	2.2	3.7 0.7
	1	0	2	0	1	9.12	1.5	-0.9 1.6	1.4	-1.6 0.9
	0	0 -2 -2 -2	-7.10	-3.8	-1.2 1.5	-5.0	0.5 0.7
	0	0	2	2	2	7.10	1.4	1.9 1.7	-1.3	2.3 1.0
	-2	0 -2	0 -2	-6.86	1.3	-0.1 1.6	0.2	-0.6 0.7
	2	0	2	0	2	6.86	-1.3	2.9 1.6	-2.1	6.4 0.9

Table 5 .

 5 3 -Synopsis of geophysical excitation and observed nutation used in this section.

		model or	version	available data sampling
		series name			interval
	Atmosphere	ECMWF	TU Vienna 1980 -2019	6 hours
	Ocean	OMCT	ERA40	1958 -2001	6 hours
		OMCT	opECMWF 2001 -2017	6 hours
	Nutation	VLBI		1979 -2019	varied

Table 5 .

 5 4 -Non-tidal atmospheric and oceanic contribution to the nutation circular terms. Unit is µas. Here the period is given in the celestial frame.

		Atmosphere			Ocean	
	Period (days)	IP	OP	±	IP	OP	±
	-365.26	84.3 -50.6 2.7	-5.5	19.4 3.9
	+365.26	43.4 -59.4 0.3	32.5 -22.2 0.3
	+182.62	9.3 -43.6 0.2	32.8	7.3 0.2
	+121.75	0.8	-3.4 0.2	2.1	-2.5 0.2
	+13.66	3.9	-1.8 0.1	-0.1	-0.3 0.0

  ).W(x IERS , y IERS ).dW(dx, dy) ,(7.10) where (x C04 , y C04 ) are the pole coordinates from C04 series[START_REF] Bizouard | The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF[END_REF] and (x IERS , y IERS ) are the modeled variation of pole coordinate in the sub-diurnal band caused by ocean tides and

librations, and (dx, dy) are the offsets of the pole coordinate. The matrix dW(dx, dy) is given as follows dW(dx, dy)

Table 7 .

 7 4 -Estimates PMR parameters in the prograde diurnal band.

		Period (days)	Q
	This study	398.9 ± 0.4 (-24, -22)
	Sibois et al. (2017) 401.9 ± 0.6 (-26, -23)

Table 7 .

 7 5 -The PMR parameters estimated from Q1, O1, P1, K1, and J1 terms by excluding one of them.

	Ignored tide Period (days)	Q
	Q1	398.8 ± 0.5 (-24, -22)
	O1	398.9 ± 0.3 (-25, -24)
	P1	398.8 ± 0.5 (-24, -22)
	K1	398.8 ± 0.3 (-21, -20)
	J1	398.8 ± 0.5 (-24, -22)

Table A .

 A 1 -Coefficients of the luni-solar tides used in this thesis, as reported inDehant and 

	IB	Inverted Barometer.
	ICB	Inner-Core Boundary.
	ICW	Inner Core Wobble.
	IERS	International Earth Rotation Service.
	IP	In-Phase.
	LSDM	Land Surface Discharge Model.
	mas	Milliarcsecond.
	MPIOM Max Planck Institute Ocean Model.
	NCEP	National Center for Environmental Prediction.
	NIB	Non-Inverted Barometer.
	OP	Out-of-Phase.
	PMR	Polar Motion Resonance.
	Mathews (2015)
	RMS	Root Mean Square.
	SLR	Satellite Laser Ranging.
	VLBI	Very Long Baseline Interferometry.

https://vlbi.gsfc.nasa.gov.

ftp://ftp.iers.org/products/geofluids.

Atmospheric-oceanic contribution

Table 5.2 -Correction to the observed nutation terms, as reported in Table 7 of [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. Here the period is given in days and with respect to the celestial frame. 

Atmospheric-oceanic contribution

The analysis done in [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF] was restricted to the atmospheric effect on the annual prograde nutation. Actually, a more complete treatment of the fluid layer perturbations has to include other nutation components (-365 d, +182.6 d, +121.75 d, +13.66 d) and consider the contribution of the non-tidal circulation in the ocean. The atmospheric and oceanic effects are computed by using the effective angular momentum function as explained in Chapter 2. However, as the nutation is estimated in the celestial reference frame, the straightforward approach is to transform this angular momentum function from terrestrial reference frame to celestial reference frame as follows

where Θ(t) is the rotation angle defined in (3.6). Here we used the NIB version of atmospheric effective angular momentum time series from TU Vienna 1 (based on ECMWF model) [START_REF] Schindelegger | High-resolution atmospheric angular momentum functions related to earth rotation parameters during cont08[END_REF] and oceanic effective angular momentum series from ERA40 and opECMWF [START_REF] Dobslaw | Simulation and observation of global ocean mass anomalies[END_REF] starting from 1984 to 2017. Table 5.3 shows the synopsis of the data used in this Chapter. Following [START_REF] Bizouard | Diurnal atmospheric forcing and temporal variations of the nutation amplitudes[END_REF], we first remove the mean from the effective angular momentum time series. This time series is then transformed Table 5.5 -Resonance parameters associated with PMR, FCN, and FICN in the terrestrial frame (P, Q).

For FICN and FCN, the period is also given in the celestial frame (P ′ ). Periods are given in mean solar days. AO is an abbreviation for atmospheric-oceanic. 7.9 + i 14.6) × 10 -5 in agreement with (-6.9 + i 11.5) × 10 -5 , as estimated in Appendix D of [START_REF] Mathews | Modeling of nutation and precession: New nutation series for nonrigid earth and insights into the earth's interior[END_REF]. As shown in Figure 6.1, the values of ko can be fitted by a degree 2 polynomial of the frequency as follows

where f is in cpd. This expression of ko only holds for the diurnal domain. Then we see that the resonance frequency in (1.15) becomes frequency dependant:

k s , (6.10) here k2 is slightly differs in diurnal band. In this band we have k2 = 0.299i 0.00144, (IERS Conventions 2010: [START_REF] Petit | IERS Conventions 2010[END_REF]). The corresponding period and quality factor is calculated by VLBI. This technique consist of a network of radio telescopes that fulfill certain criteria and make use of the technique called interferometry observing several objects in the sky. The development of VLBI for astronomical purposes begins in late 1960 [START_REF] Broten | Long base line interferometry: a new technique[END_REF][START_REF] Bare | Interferometer experiment with independent local oscillators[END_REF]. VLBI contributed to the observation of the reference frame and the EOP starting in 1979. It contributes to the International Terrestrial Reference Frame by enabling the estimation of its station positions. It is also the only technique that can be used to observe quasars in order to determine the International Celestial Reference Frame. Furthermore, VLBI is the only technique that can determine all of EOP at a regular basis. A VLBI network consists of several radio telescopes distributed all over the world. The principle of VLBI is based on the difference of the arrival time of the signal at the various stations. This information is extracted by using a so-called correlators. Figure A.1 shows the distribution of VLBI station. We clearly see that the station network covers the entire globe, even it is still dominated in the northern hemisphere.

GNSS. The four main systems of GNSS are the American GPS, the Russian GLONASS, the European GALILEO, and the Chinese Beidou. These satellite systems provide an autonomous

A.4 Tesseral tidal potential

The material of this appendix is inspired from [START_REF] Dehant | Precession, nutation and wobble of the Earth[END_REF], Section 5.5. Consider a point of the Earth at distance r from the geocenter of latitude φ and longitude λ. At this place the tesseral part of the tidal potential generated by a celestial body of mass Mlocated in the true equatorial frame by its right ascension α, declination δ, and distance d from the geocenter -is given by

Here the polar motion effect on the tidal potential is neglected: astronomical and geographic latitudes are merged, as well the node of prime meridian with the Terrestrial International Origin [START_REF] Petit | IERS Conventions 2010[END_REF]. Introducing the terrestrial Cartesian coordinates (x, y, z) and (d x , d y , d z )

of the location and of the celestial body respectively, we can easily derive

Then, noting that r 2 Y -1 2 = 3(xziyz), where Y -1 2 = 3 sin θ cos θe -iλ is the complex conjugate of the non-normalized spherical harmonic function of degree 2 and order 1, we obtain

It is useful to put the W into the form of the pole tide potential ∆U

Then, Φ(t) presents the Cartwright-Taylor like expansion

ξ σ e -i(θ σ (t)-π/2) , (A.5)

where θ σ is the tidal argument in the corresponding frequency σ. In Table A 
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