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Abstract

Since the beginning of the 20th century, the observation of the Earth rotation variations through

astro-geodetic techniques enables to investigate the global rheological properties of the Earth,

in particular, the resonance parameters of the free rotation modes reflect the solid Earth anelas-

ticity, the ocean response to an external forcing, and the properties of the fluid inner core, even-

tually of the solid inner core. Better constraints on these resonance parameters can be obtained

by confronting the observed terrestrial motion of the rotation pole (the so-called polar motion)

- including nutation as a retrograde diurnal polar motion - to the modelled excitation producing

it. The more precise the modelled excitation and the observed polar motion are, the better the

Earth rheological properties will be determined. For now, the best precision are reached in the

nutation band. So, our work is first dedicated to a direct adjustment of the nutation components

from VLBI delays, then the adjustment of the resonance parameters in the transfer function

between the observed nutation terms and the corresponding rigid nutation terms that reflects the

luni-solar forcing. The obtained resonance parameters confirms in particular the shortening of

the polar motion resonance period of about 40 - 50 day in the retrograde diurnal band. Then,

we show that the dynamical behaviour of the oceans in the diurnal band is mostly responsible

for that. We also predicted a supplementary change of the resonance parameters in the vicinity

of the free core nutation resonance, as expected from the solid Earth response, and confirmed

by the adjustment of these parameters through the nutation terms. In addition to the nutation

band, we revisit the estimation of the polar motion resonance parameters in the seasonal band,

dominated by the Chandler wobble, in light of the most recent global circulation models of the

hydro-atmospheric layers. Finally, we extend the investigation of polar motion resonance to the

prograde diurnal polar motion, where the excitations mostly result from the ocean tides. We ob-
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tain a resonance period of about 400 days, and confirmed by our prediction based on the ocean

tidal models. These results allow us to impose constraints on the frequency dependence of the

Love number k̃2 and the Love number oceanic k̃o, characterizing respectively the response of

the solid Earth and the oceans to an external potential of degree 2.



Résumé

Depuis le début du vingtième siècle, l’observation des variations de rotation de la Terre par

les techniques astro-géodésiques permet de dévoiler les propriétés rhéologiques globales de la

Terre. En particulier, les paramètres des modes d’oscillation libre de l’axe de rotation, qui sont

aussi des paramètres de résonance - reflètent les défauts d’élasticité de la Terre solide, la réponse

de l’océan au forçage externe et les propriétés de la graine fluide, éventuellement du noyau

solide. On peut obtenir de meilleures contraintes sur ces paramètres de résonance en confrontant

le mouvement terrestre du pôle de rotation observé (mouvement du pôle) – et aussi la nutation

en tant que mouvement du pôle en rétrograde diurne - à l’excitation modélisée qui le produit.

Les propriétés rhéologiques de la Terre sont d’autant mieux déterminées que le mouvement

du pôle (y compris dans la bande diurne) est observé précisément et l’excitation modélisée

correctement. A l’heure actuelle, si la précision du mouvement du pôle est légèrement meilleure

au delà de 2 jours, la meilleure reconstitution du forçage concerne la bande de nutation (la bande

rétrograde diurne), car il est procède alors des marées gravimétriques luni-solaires, lesquelles

sont modélisées avec une grande précision). C’est pourquoi notre travail est d’abord consacré à

l’ajustement direct des composantes luni-solaires périodiques de la nutation à partir des retards

du VLBI, puis à l’estimation des paramètres de résonances dans la fonction de transfert entre

ces termes de nutation observés et ceux modélisés pour une terre rigide, lesquels reflètent le

forçage luni-solaire. Les résultats obtenus confirme notamment le raccourcissement d’environ

40-50 jours de la période de résonance du mouvement du pôle dans la bande rétrograde diurne.

Nous montrons comment cette diminution s’explique par la réponse dynamique des océans à

la marée du pôle, laquelle est étudiée à l’aune des modèles de marées océaniques diurnes .

Nous prédisons également un changement des paramètres de résonance du mouvement du pôle
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à proximité de la fréquence de résonance de la nutation libre du noyau ; cette modification

semble confirmée par la détermination de ces paramètres à partir des termes de nutation. Notre

étude des paramètres de résonance s’étend au delà de la bande de nutation. D’une part, nous

réexaminons l’estimation des paramètres de résonance du mouvement du pôle dans la bande

saisonnière, dominée par l’oscillation de Chandler, en utilisant les derniers modèles hydro-

atmosphériques. D’autre part, nous étudions la résonance du mouvement du pôle à la bande

prograde diurne, où l’excitation est dominée par la marée océanique. Nous obtenons une période

de résonance de l’ordre de 400 jours, corroboré par notre modélisation fondée sur les modèles

de marée océanique. L’ensemble des résultats obtenus permet d’apporter des contraintes sur la

dépendance en fréquence du nombre de Love k̃2 et du nombre de Love océanique caractérisant

respectivement la réponse de la Terre solide et des océans à un potentiel externe de degré 2.
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Introduction

Polar motion and nutation: a sensor of Earth rheology. The observation of Earth rotation

variation started more than two thousands years ago. Hipparchus (190-120 BC) observed a

motion of the stars with respect to the autumnal equinox at the rate of about 50 arcsecond

per year. This phenomenon, called precession, corresponds to a conical motion of the Earth

rotation axis around the polar axis of the ecliptic. Thousands of years later, the emergence of

the telescopic era allowed an English astronomer, James Bradley, to discover a superimposed

oscillation of the rotation axis with a 18.6-year period called nutation.

Until the 19th century, the only known motion of the rotation axis was the precession-

nutation. This motion has an astronomical cause: the lunisolar tidal torque on the equatorial

bulge of the Earth. Meanwhile, in the middle of the 18th century, Euler predicted the existence

of a motion of a rotation pole with respect to the crust due to the Earth flattening, especially a

free wobble at the period of 304 days. This terrestrial wobble of the rotation pole, called polar

motion, was observed at the eve of the 20th century. It is mostly composed of a wobble in

430 day, called Chandler Wobble (CW), and an annual term. Whereas the annual term unveils

the seasonal mass redistribution within the atmosphere and the oceans, the CW is interpreted

as the Euler free mode modified by the Earth non-rigidity, and forced as well by the mass

redistribution in the hydro-atmosphere. Therefore, the polar motion provided a new kind of

data for investigating the Earth’s global rheological properties, including the response of the

ocean to an external forcing. At the same epoch, from the presence of an internal fluid core,

Poincaré concluded the existence of a second mode of rotation, called free core nutation (FCN).

This mode influences the nutation at the level of 50 milliarcsecond (mas). Detected in the 1970s,

it was fully confirmed in the 1980s by Very Long Baseline Interferometry (VLBI) observations.
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Actually, it can be shown that the nutation in the terrestrial frame can be considered equivalently

as a retrograde diurnal polar motion.

The CW and FCN resonances appear theoretically in the angular momentum balance of the

Earth composed of a mantle and a fluid core. A three-layered Earth, where the solid inner core

is added, leads to two supplementary modes: a prograde diurnal mode of about one day, corre-

sponding to the Free Inner Core Nutation (FICN) in the celestial reference frame with a period

of about 500-1000 days, and a terrestrial wobble of 7 years, named Inner Core Wobble or ICW.

Until now, these two modes remain quite speculative and have not been clearly detected. In the

framework of a three-layered Earth, the frequency parameters pertaining to CW, FCN, FICN,

and ICW are related to several Earth rheological parameters such as the dynamical ellipticity of

the Earth layers, mantle inelasticity, and the properties of fluid and solid inner core.

Motivation. Hence, the study of Earth rotation, especially the resonance parameters, allows

a link to the Earth rheology and its internal structure. Actually, several authors have estimated

the resonance parameters either in the common polar motion band (see, e.g. Furuya and Chao,

1996; Kuehne et al., 1996; Nastula and Gross, 2015), i.e., from two days to secular time scale,

or in the retrograde diurnal band, that is the nutation band (see, e.g. Mathews et al., 1991a,

2002; Rosat et al., 2016). However, until now, there is no study that gives a comprehensive

picture of the Earth resonance parameters in both frequency bands. So, we aim at estimating

the resonance parameters in the polar motion and nutation band, and even extending it into

the prograde diurnal band. These parameters can be determined by comparing observed polar

motion or nutation to the modeled excitation producing it.

Contents. This thesis is divided into three parts. In the first part, we deal with the estimation

of the resonance parameters in the common polar motion band (from 10 days to 10 years). In

the Chapter 1, we recall the polar motion theory for a two-layer Earth model, which forcing

is restricted to the internal mass transports. The corresponding polar motion resonance (PMR)

parameters are estimated in Chapter 2.

In the second part, we consider the resonance in the diurnal retrograde band, or the nutation

band in the celestial frame. Then, the theory has to be extended to a three-layered Earth, as
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explained in Chapter 3. For the lunisolar nutation, forced by the gravitational tides, the problem

can be restricted to the transfer function between the observed nutation terms and the corre-

sponding rigid Earth nutation terms, which describe the excitation process. Chapter 4 provides

details about the nutation terms adjustment to VLBI observations. In this Chapter, we intro-

duce a so-called "direct" approach that permits to increase the precision of the determination of

nutation amplitudes. In Chapter 5, the resonance parameters are estimated by using the results

from Chapter 4, the influence of a non-tidal atmospheric and oceanic excitation to the estimated

resonance parameters is also discussed. A geophysical explanation of the results obtained in the

retrograde diurnal band for the PMR parameters is given in Chapter 6.

The third part is an extension to the prograde diurnal band. Both theoretical background and

estimation of the resonance parameters are given in the unique Chapter 7.
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Part I

Common polar motion band
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Chapter 1

Theory: Earth with 2 layers

1.1 Liouville equation

The theoretical development of Earth rotation variations has been done in many ways. However,

it may be classified into two major branches, either using the Hamiltonian formalism or the law

of angular momentum balance. For studying geophysical effects, the second approach is much

more easier to handle and is favoured in this work.

The law of angular momentum balance states that the Earth angular momentum H is related

to the external torque Γ acting on it in the terrestrial reference system as follows

dH

dt
+ ω ×H = Γ , (1.1)

where ω is the instantaneous rotation vector of the Earth. The angular momentum is composed

of a term related to the Earth moment of inertia matrix I and of the relative angular momentum

h:

H = ω · I + h . (1.2)

Here I depends on the Earth mass distribution whereas h is produced by any velocity field

appearing in the Earth system, especially the winds and the oceanic currents. The substitution

of (1.2) into (1.1) leads to the Liouville equation:

d(ω · I + h)

dt
+ ω × (ω · I + h) = Γ . (1.3)
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Since the deviation from uniform rotation is small, the linearization can be applied to (1.3).

First, the rotation vector and moment of inertia are split into their constant and perturbation

parts:

ω = ω0 + ∆ω =
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and

I = I0 + ∆I =
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where Ω = 7.2921150 × 10−5 rad/s is the reference Earth angular velocity, A and B are the

equatorial moments of inertia, C is the axial moment of inertia, and ci j are small increments of

inertia due to the mass redistribution. Here m1, m2, and 1+m3 correspond to the direction cosines

of the Earth instantaneous rotation axis with respect to the terrestrial reference frame. As A ≈ B,

we introduce the averaged value of the Earth equatorial moment of inertia Ā = (A + B)/2. In

the following, we consider the Earth as a bi-axial body (A = B = Ā).

By substituting the expression (1.4) and (1.5) to (1.3), and by neglecting the second order

quantities with respect to mi and ci j, we obtain the linearized Liouville equation, where the

equatorial part is given by

m +
i

σe

ṁ = χ −
i

Ω
χ̇ +

iΓ

(C − Ā)Ω2
. (1.6)

Here m = m1 + i m2 is the complex rotation pole coordinate and σe = eΩ is the Euler angular

frequency, where e = (C − Ā)/Ā ∼ 1/304 is the dynamical ellipticity of the Earth. The quantity

χ = χ1 + iχ2 is called the angular momentum function and defined as

χ1 =
c13

C − Ā
+

h1

(C − Ā)Ω
,

χ2 =
c23

C − Ā
+

h2

(C − Ā)Ω
.

(1.7)
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This function can be divided into the mass term χma, which is related to a change in the moment

of inertia c = c13 + i c23, and the motion term, which is related to the relative angular

momentum h = h1 + i h2:

χma =
c

C − Ā
,

χmo =
h

(C − Ā)Ω
.

(1.8)

1.2 Liouville equation of pole coordinates

The variation of Earth rotation axis is monitored through several space geodetic techniques such

as VLBI, Global Navigation Satellite System (GNSS), and Satellite Laser Ranging (SLR) (see

A.1 for the details of each technique). However, they determine the celestial and terrestrial os-

cillation of the CIP or Celestial Intermediate Pole (see A.2) which differs from the instantaneous

rotational axis up to 20 mas (Bizouard, 2014). The position of CIP with respect to the terrestrial

frame is called pole coordinates p = x − iy. The relation between m and p is given by

m = p −
i

Ω
ṗ . (1.9)

Substituting this expression of m into (1.6), and casting aside the external torque in view of the

linearity of the problem, we obtain

p +
i

σe

ṗ −
i

Ω

d

dt

(

p +
i

σe

ṗ

)

= χ −
i

Ω
χ̇ . (1.10)

This equation can be reduced to

p +
i

σe

ṗ = χ , (1.11)

where the left-hand side of (1.11) is named the geodetical excitation since it is estimated through

astrogeodetic observation and the right-hand side is called the geophysical excitation since it is

reconstructed from a geophysical model, like global atmospheric circulation model. In the

frequency domain, the equation (1.11) is written as

p(σ) = T (σ)χ(σ) , (1.12)

where the transfer function T (σ) is given by

T (σ) = −
σe

σ − σe

. (1.13)
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1.3 Influence of the Earth non rigidity

The equation (1.11) is not adequate to describe the polar motion, as it still ignores the Earth

non-rigidity, especially it does not account the planetary deformation produced by the variation

of centrifugal force accompanying the displacement of the rotation pole. By considering this

phenomenon, the dynamical system of (1.11) becomes

p +
iṗ

σ̃PMR

= χe f f = χe f f
ma + χ

e f f
mo , (1.14)

where σ̃PMR is the complex angular frequency of PMR:

σ̃PMR = σe

Ā

Am

(

1 −
k̃2 + k̃o

ks

)

. (1.15)

Here ks = 0.938 is the secular Love number, Ā and Am are the mean equatorial moments of

inertia of the whole Earth and of the mantle respectively, k̃2 and k̃o are the complex Love num-

ber describing the anelastic response for the solid Earth and the ocean response respectively.

Here "~" is the symbol of the complex quantity. It has to be noted that the imaginary part

of k̃o is vanished in the common polar motion band since the ocean response is considered at

equilibrium.

This resonance has to be distinguished from the observed CW resonance. Indeed, as a

resonant process, the CW does not result from a single harmonic excitation at the resonance

frequency, but from a broadband process surrounding the resonance frequency. If the spectral

content of the excitation dominates at a slightly different frequency, this one will determine the

observed CW frequency. In contrast, the PMR frequency σ̃PMR is fixed by the properties of the

Earth and does not depend on the forcing.

Meanwhile, the effective angular momentum function χe f f taking the form

χe f f
ma =

1 + k
′

2

1 − k̃2+k̃o

ks

χma ,

χe f f
mo =

1

1 − k̃2+k̃o

ks

χmo .

(1.16)

Here χe f f means an "effective" version of χ accounting for the pole tide deformation by Love

number k̃ = k̃2 + k̃o and loading deformation through the loading Love number k
′

2
.
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The complex PMR angular frequency can be written in the form of its period PPMR and

quality factor QPMR as follows

σ̃PMR = σPMR(1 + i/2QPMR) ,

σPMR = 2π/PPMR ,
(1.17)

where QPMR is inversely proportional to the damping factor αPMR = σPMR/(2QPMR). Applying

a Fourier transform to (1.14), we obtain

p(σ) = −
σ̃PMR

σ − σ̃PMR

χe f f (σ) . (1.18)

Hence, the transfer function of (1.13) becomes

T (σ) =
p(σ)

χe f f (σ)
= −

σ̃PMR

σ − σ̃PMR

. (1.19)

The comparison of the transfer function amplitude in (1.19) and (1.13) is shown in Figure 1.1.

The non-rigidity of the Earth has shifted the resonance toward a lower frequency and the dis-

sipation decreases the maximal amplitude from infinite down to 40 for a very strong damping

(QPMR = 20).

1.4 Modelling of the hydro-atmospheric excitation

At seasonal time scale, the geophysical excitation χ generally comes from non-tidal transports

in the atmosphere, oceans, and land-water layers. Their respective contributions are obtained

by the reconstruction of their moment of inertia (matter term) cF and their relative angular

momentum (motion term) hF from global circulation models (Eubanks, 1993). As the equatorial

momentum of a fluid layers is HF = ΩcF + h f , these data are generally named atmospheric,

oceanic, hidrological angular momentum.

In the case of atmospheric angular momentum, there are two types of data for the matter

term depending on whether the oceans respond isostatically to overlying barometric loading,

like Inverted Barometer (IB), or their surface remains rigid such as Non-Inverted Barometer

(NIB). In the IB data, air pressure variations do not impact the ocean bottom, whereas in the

NIB data, the atmospheric load simply transmits directly to the ocean bottom. For periods





Chapter 2

Polar motion resonance estimation in

seasonal band

Before 1990s, in the absence of a precise modeling, the equatorial geophysical excitation was

assimilated to a Gaussian white noise (see, e.g. Wilson and Haubrich, 1976; Wilson and Vicente,

1980) for undertaking the estimation of PMR parameters. Nowadays, many studies (see, e.g.

Brzeziński et al., 2012) have concluded that the sub-secular part of the polar motion excitation

can be well reconstructed from global circulation taking place in the hydro-atmospheric layer,

composed of the atmosphere, ocean, and land-water. This information has been considered for

adjusting the resonance parameters. The early studies, which considered the atmospheric exci-

tation, have been done, for example, by Furuya and Chao (1996) and Kuehne et al. (1996). The

more recent studies (see, e.g. Nastula and Gross, 2015) considered a more complete excitation

by including ocean and land-water angular momentum. In this study, this issue is revisited by

improving the estimation technique reported in Kuehne et al. (1996), and considering the full

hydro-atmospheric excitation as known today. Hereafter, to avoid any ulterior confusion, we

will use the term "Chandler Wobble" or CW for referring to the PMR in the seasonal band.

13
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2.1 Data

The geophysical excitation is constituted by the EAAM and EOAM series calculated at Ge-

oForschungsZentrum (GFZ). These series are based upon the European Centre for Medium-

Range Weather Forecasts (ECMWF) and the Max Planck Institute Ocean Model (MPIOM)

model (Dobslaw et al., 2010), and are available from 1976 with a 3 hr sample interval. As a

comparison, we also used another data available through the Global Geophysical Fluid Center

of the International Earth Rotation Service (IERS): EAAM produced by National Center for

Environmental Prediction (NCEP) reanalysis (Kalnay et al., 1996) and EOAM data calculated

from the output of the Estimating the Circulation and Climate of the Ocean (ECCO) model

(Gross et al., 2005). NCEP data is sampled at 6 hr interval from 0hUTC, whereas ECCO data is

given at 0hUTC and with 10 day steps from 1948 to 1998 and once per day afterward. All these

series provide the corresponding matter and motion terms. In the case of EAAM, we select

the matter term derived according to the IB approximation, quite well describing the ocean-

atmospheric coupling in the seasonal band as mentioned in the Chapter 1. The comparison

between the EAAM series of ECMWF and NCEP as well as the EOAM series of MPIOM and

ECCO are shown in Figure 2.1 and 2.2 respectively. Besides the ocean and atmosphere, land-

water has a significant contribution to the geophysical excitation. To quantify the influence of

this component, we use the angular momentum function of the land-water (HAM) produced at

GFZ from the Land Surface Discharge Model (LSDM) (Dobslaw et al., 2010) given at 12hUTC

once per day. The time series of EHAM are shown in Figure 2.3.

Meanwhile, pole coordinates come from C04 daily series (Bizouard et al., 2018). They

are obtained from the combination of operational Earth Orientation Parameter (EOP) series,

including also celestial pole offset and UT1-UTC, derived from the astro-geodetic techniques,

namely VLBI, GNSS, SLR, and DORIS. The Table 2.1 summarises the data that we used for

this estimation.
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Table 2.1 – Synopsis of the geophysical excitation and observed polar motion data.

model or version available data sampling

series name interval

Atmosphere ECMWF v1.0 1976 - 2019 3 hours

NCEP reanalysis 1948 - 2019 6 hours

Ocean MPIOM v1.0 1976 - 2019 3 hours

ECCO 50yr 1948 - 2002 10 day

ECCO kf080i 1998 - 2019 1 day

Land water LSDM v1.2 1976 - 2019 3 hours

Polar coordinate C04 - 1962 - 2019 1 day

2.2 Chandler parameters estimation

The PMR parameters can be roughly estimated by using the spectral approach. In this approach,

the geophysical excitation is assumed to be white noise, characterized by a flat power spectrum.

Then, the PMR frequency corresponds to the maximum of the spectral power, and the quality

factor is calculated from the full width at half maximum (FWHM) by QPMR = σPMR/FWHM.

For instance, based on the spectral plot of Figure 2.4, we can deduce σPMR = 0.842 cpy and

FWHM= 0.04 cpy, corresponding to PPMR = 433 days and QPMR = 45. However, this technique

has some deficiencies. First, the estimate of QPMR depends on the spectral resolution. Second, as

shown in the log-log plot of Figure 2.5, the spectral power of the excitations are not completely

flat, even for the band near CW frequency (0.5 - 1.1 cpy), either for NCEP + ECCO series or

ECMWF + MPIOM series. Thus, the real geophysical excitation is not perfectly white noise,

which contradicts the assumption.

In order to refine the estimation of CW parameters, the information from geophysical exci-

tation model have to be considered. So, the estimation can be done by using equation (1.14).

The L.H.S. of this equation (geodetic excitation), which contains a time derivative of the po-

lar motion, has to be adapted to a discrete polar coordinates. Hence, we adopt the digitization
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2.3 Results

We estimate the CW parameters in two ways. First, we consider all of seasonal terms. Sec-

ond, we eliminate the seasonal components with periods 1/n yr, where n = 1, 2, 3, 4, 5, 6, by

least square adjustment, both for their prograde and retrograde parts. The estimation is per-

formed for three sets of geophysical excitations: NCEP + ECCO, ECMWF + MPIOM and

ECMWF + MPIOM + LSDM over the period 1976 - 2019. As shown in Table 2.2, the in-

consistency of CW period between ECMWF + MPIOM and NCEP + ECCO sets disappeared

when we eliminate the seasonal terms, yielding the values of CW period in the range between

(431.6, 434.5). Moreover, the exclusion of seasonal terms leads χ2 slightly getting closer to

one. However, the presence of seasonal terms better constraints the range of quality factor (33,

57) versus (41, 109) when the seasonal contribution is suppressed. The addition of land-water

(LSDM) to the ECMWF + MPIOM improves the estimation by reducing the χ2 from 4.70 to

4.36 in the case of when the seasonal terms are present and from 4.13 to 3.85 in the case of

when the seasonal terms are excluded.

Table 2.2 – The estimated CW parameters from combined atmospheric-oceanic excitation ac-

cording to several geophysical excitation series. Here we used the data from 1976 to 2019. The

uncertainty corresponds to 1σ.

Periode (days) Q χ2

with seasonal terms

NCEP + ECCO 425.8 ± 0.9 (33, 48) 4.40

ECMWF +MPIOM 433.9 ± 1.0 (36, 57) 4.70

ECMWF +MPIOM + LDSM 433.2 ± 0.9 (35, 52) 4.36

seasonal terms excluded

NCEP + ECCO 432.6 ± 1.0 (50, 109) 4.12

ECMWF +MPIOM 433.5 ± 1.0 (45, 88) 4.13

ECMWF +MPIOM + LSDM 432.4 ± 1.0 (41, 74) 3.85
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reported in Table 2.2. From (1.15) the expression of k̃2 is

k̃2 = ks

(

1 −
σ̃PMR

σe

Am

Ā

)

− k̃o , (2.4)

where σ̃PMR is given from estimated parameters by (1.17). In the band selected for estimating

these parameters, we can assuming an hydrostatic ocean pole tide, described by oceanic Love

number ko = 0.0477 (Desai, 2002). Moreover we select the more robust estimates of PCW and

QCW obtained in the case "seasonal terms excluded". As shown in Table 2.4, the estimated k̃2

lies in the interval (0.305, 0.310) for the real part and (-0.0071, -0.0027) for the imaginary part.

This result matches the k̃2 value proposed in IERS Convention 2010 (Petit and Luzum, 2010)

(0.307 − i 0.0035).
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Table 2.3 – List of the previous results based on Table 2 in Nastula and Gross (2015) and our

result from ECMWF +MPIOM + LSDM set.

Period Q Data span Reference*

(days) (years)

Statistical excitation

433.2 ± 2.2 (36,192) 67.6 (a)

434.0 ± 2.6 (50,400) 70 (b)

434.8 ± 2.0 (50,300) 76 (c)

433.3 ± 3.1 (47,1000) 78 (d)

433.0 ± 1.1 (74,789) 86 (e)

Atmospheric excitation

439.5 ± 2.1 (30,500) 8.6 (f)

433.7 ± 1.8 (35,100) 10.8 (g)

430.8 41 10 (h)

Atmospheric + oceanic excitation

429.4 107 10 (h)

431.9 83 51 (h)

433.0 97 60 (i)

430.9 ± 0.7 (56, 255) 25 (j)

Semianalytic

430.3 88.4 20 (k)

433.03 100.20 20 (l)

This work

432.4 ± 1.0 (41, 74) 43 -

*Reference: (a) Jeffreys (1968); (b) Wilson and Haubrich (1976); (c) Ooe (1978); (d) Wilson and

Vicente (1980); (e) Wilson and Vicente (1990); (f) Kuehne et al. (1996); (g) Furuya and Chao (1996);

(h) Gross (2005); (i) Seitz et al. (2012); (j) Nastula and Gross (2015); (k) Mathews et al. (2002); (l)

Chen and Shen (2010).
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Table 2.4 – The Love number k̃2 derived from the estimated CW period and quality factor in

Table 2.2 for the case "seasonal terms excluded".

Re[k̃2] Im[k̃2]

NCEP + ECCO (0.306, 0.308) (−0.0058,−0.0027)

ECMWF +MPIOM (0.306, 0.310) (−0.0065,−0.0033)

ECMWF +MPIOM + LSDM (0.305, 0.308) (−0.0071,−0.0039)



Part II

Retrograde diurnal band
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Chapter 3

Nutation theory in the frame of three

layers-Earth

The dynamical equation in Chapter 1 is limited to the common polar motion band. For the

nutation band, this equation has to be modified: first it has to be extended to a three-layered

Earth model (mantle, fluid outer core, and solid inner core) and the excitation process has to be

replaced by the lunisolar gravitation torque. By adding the solid inner core, two new resonances

appeared: FICN and ICW. The pioneer model developed by Mathews et al. (1991b) was limited

in several aspects. Mathews et al. (2002) later refined it by notably including the ocean tide ef-

fects, mantle anelasticity and electromagnetic couplings at the fluid core boundaries, yielded the

actual nutation reference model (IAU2000), adopted by the International Astronomical Union

and the International Union of Geodesy and Geophysics.

3.1 Analytic formulation for the nutation

According to Mathews et al. (2002), the dynamical equation of the retrograde diurnal oscillation

forced by the lunisolar tides in frequency domains is written as

M(σ)x(σ) = y(σ)φ̃(σ) . (3.1)

29
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Here σ is the frequency in the terrestrial frame, x = (m̃, m̃ f , m̃s, ñs) is a four line matrix con-

taining the mantle, outer core and inner core wobbles, and the inner core tilt, φ̃ is the lunisolar

perturbing potential, and M and y are four-by-four and four-line matrixes respectively, whose

coefficients depend on the geophysical parameters such as ellipticity, Earth moment of inertia,

and nine compliances which describe the response of the whole Earth, the outer core, and the

inner core to their own respective wobble. The solution m(σ) is the first component of x(σ)

obtained by inversion of the system (3.1):

m(σ) = [M−1(σ)y(σ)]1φ̃(σ) . (3.2)

Practically, the tidal potential φ̃(σ) is determined by the rigid Earth nutation. Such models

were done, for example, by Roosbeek and Dehant (1998) (RDAN97) and Souchay et al. (1999)

(REN2000). More precisely, the dynamical equation of an Earth rigid ("R") model is governed

by

mR(σ) =
eΩ

eΩ − σ
φ̃(σ) . (3.3)

The kinematic relation between m(σ) with its corresponding nutation ζ(σ) described in the

terrestrial frame is given by

ζ(σ) = −
Ω

Ω + σ
m(σ) . (3.4)

Following Brzeziński and Capitaine (1993), the nutation as seen from the celestial frame is

given by

η(σ′) = ζ(σ)eiΘ(t) , (3.5)

where σ′ = σ + Ω is the frequency in cycle per day (cpd) as seen from a celestial frame and

Θ(t) is the Earth rotation angle:

Θ(t) = Θ(t0) + Ω(t − t0), (3.6)

where Θ(t0) ≈ −79.53o is the rotation angle at the reference time t0 (12h00 of 1 January 2000).

The ratio between the amplitude of a non-rigid Earth and a rigid Earth is the same for m(σ),

ζ(σ), and η(σ′):

T̃ (σ; e) =
η(σ′)

ηR(σ′)
=
ζ(σ)

ζR(σ)
=

m(σ)

mR(σ)
=

eΩ − σ

eΩ
[M−1(σ)y(σ)]1 , (3.7)
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where ζR(σ) is the Earth rigid nutation in the celestial frame and T̃ (σ; e) is the transfer function.

Hence, a given nutation term of frequency σ is modelled by

ζ(σ) = T̃ (σ; e)ζR(σ) . (3.8)

Several approximations are needed to expand the transfer function (3.7). It has to be noted

that the matrix M has 4× 4 size and therefore the analytical expansion will be very complicated

and will not be practical. Mathews et al. (2002) had made several approximations to reach a

simpler form of the expansion in the transfer function in function of the rotation modes:

T̃ (σ; e) =
ζ(σ)

ζR(σ)
=

(e − σ/Ω)

(e + 1)

[

1 + (1 + σ/Ω)

(

−σ̃1/e

σ − σ̃1

+
Ñ2Ω

σ − σ̃2

+
Ñ3Ω

σ − σ̃3

)]

. (3.9)

HereΩ = 1.0027379 cpd, Ñ(2,3) are complex coefficients and σ̃(1,2,3) are the complex frequencies

specifying the resonance modes. These latter ones are put under the form σ̃ j = 2 π/P j ( 1+ n j (i / 2Q j)),

where n j is ’+1’ for the prograde and ’-1’ for the retrograde modes respectively, P j and Q j are

the corresponding Earth-referred period and quality factor respectively. The indexes 1 until 3

are for representing the resonances associated with PMR, FCN, and FICN respectively. In our

study, we ignore the contribution of the ICW since its contribution is negligible to the nutation

(Mathews et al., 2002). It should be noted that the PMR parameters are characteristic of the

Earth response to the pole tide potential in the retrograde diurnal band, therefore they are not

the ones prevailing in the seasonal band of the polar motion, namely the CW parameters. The

terrestrial frequencies σ̃ j are mapped into celestial frequencies σ̃′
j
= σ̃ j+Ω with corresponding

period and quality factor P′
j
and Q′

j
.

3.2 Dependence on the basic Earth parameters

Even if (3.9) is an approximate expression of (3.7), it is associated with an analytical (approx-

imate) expressions for all Ñ(2,3) and σ̃(1,2,3) as a function of the aforementioned geophysical

parameters. Mathews et al. (2002) provide such expressions for the PMR, FCN and FICN res-

onance complex frequencies, σ̃1, σ̃2 and σ̃3, and complex coefficients, Ñ2 and Ñ3. Along with

the ellipticity e, they have also identified a small set of basic Earth parameters (κ̃, β̃, γ̃, ν̃, K̃CMB,
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K̃ ICB, A, Am, A f ) whose combination can be directly related to the previous frequencies and

coefficients:

σ̃1 =
A

Am

(e − κ̃) ,

σ̃2 = −
A

Am

(

e f − β̃ + K̃CMB + K̃ ICB As

A f

)

−Ω ,

σ̃3 =
(

α2es + ν̃ − K̃ ICB
)

−Ω ,

Ñ2 =
A f

Am

(

1 −
γ̃

e

)

,

(3.10)

where A, Am, A f , and As are the mean equatorial moments of inertia of the Earth, the mantle, the

fluid outer core, and the solid inner core, respectively, K̃CMB and K̃ ICB are the electromagnetic

coupling constants at the Core-Mantle Boundary (CMB) and Inner-Core Boundary (ICB), β̃,

κ̃, ν̃, γ̃ are the compliance, and α2 is the coupling constant. The flattenings e f and es are the

dynamical ellipticity of the fluid and solid inner cores. The compliance κ = e k/ks expresses the

deformability at the surface under degree 2 tidal forcing. Moreover, the full expression for Ñ3

can be found in, e.g., Dehant et al. (2005). When estimating the basic Earth parameters from

VLBI observation, they appear to be strongly correlated (Rosat et al., 2016), thus it is more

robust to consider a restricted number of parameters, namely Ñ2 and σ̃(1,2,3).
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Nutation terms adjustment

VLBI is the only space geodetic technique that can determine the nutation with a sub milliarc-

second precision. The principle of VLBI is based on the measurement of the time difference

between the arrival of a radio signal, emitted by extra-galactic source in our case, at several

VLBI stations (Dehant and Mathews, 2015). Figure 4.1 shows a schematic picture of the VLBI

principle. The received signals from several stations are combined by using a so-called cor-

relator. This correlator then produces time delays (τ = t2 − t1) as an output. Here τ depends

on the length of the distance between the stations b and the position of the observed source k.

Mathematically, VLBI time delay is given by

τ = −
k.M.b

c
+ ∆τ . (4.1)

Here (k.b/c) is called geometric delay and becomes the dominant factor for the delay, M is the

matrix of transformation from terrestrial to celestial frame, and ∆τ is the sum of all other time

delays, which have much smaller magnitude, caused by the troposphere, ionosphere, atomic

clocks synchronization, and measurement noise. VLBI can provide the determination of sev-

eral parameters such as station positions, source positions, EOP, and sub-daily variations of

troposphere zenith delay and clock offsets. The parameters can be estimated over all VLBI ses-

sions, namely global parameters, or for each 24-hour, called local parameters, or even estimated

over 60 minute time spans, namely segmented parameters. In VLBI, the desired parameter is

calculated by comparing the observed time delay with the modeled one.

33
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4.1 Indirect versus direct approaches

The nutation offset (dX, dY) is composed by several harmonic terms, reflecting the defects of

the modelled lunisolar components. At a given frequency, they can be represented by the sum

of a prograde and retrograde uniform circular motions, formulated by

dX + i dY =
∑

j

(

A+j ei θ j(t) + A−j e−i θ j(t)
)

+ a t + b , (4.2)

where θ j(t) are the frequency associated with periodical motion of the Moon and the Sun, which

is generally given by a linear combination of the five Delaunay arguments: l, l′, F,D, andΩ (see

A.3), and a and b are the complex coefficients of the linear term modelling the defect of the

precession model. Here A
+/−

j
= A

+/−

IP, j
+ iA

+/−

OP, j
are the nutation components, where IP and OP

denote in-phase and out-of-phase respectively.

The common way to estimate the nutation components relies on least square analysis of the

nutation offset time series that are produced by the analysis of a complete VLBI observational

database (see, e.g., Herring et al., 2002; Koot et al., 2008; Rosat and Lambert, 2009; Rosat et al.,

2016). This approach will be referred as indirect approach in the following since it needs two

steps: one global VLBI analysis to produce nutation offset time series plus one specific analysis

for estimating the nutation offset terms. Here we aim at evaluating the performance of the

direct approach which has been developed by Himwich and Harder (1988) and Petrov (2007).

The nutation components are estimated directly from VLBI delays, short-cutting, therefore,

the traditional two-step approach. Also, it allows a rigorous propagation of the delay errors

into the estimated parameters and the use of the full covariance information from the nutation

components as well as the other parameters.

4.2 Data processing

In order to apply the direct approach, we need to express the partial derivatives of the group

delay τ in (4.1) with respect to the CPO amplitudes A
+/−

j
. These partial derivatives read

∂τ

∂A
+/−

j

= c−1
· k ·

∂M

∂A
+/−

j

· b , (4.3)
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where matrix M can be represented as

M = Q(X,Y)R(−Θ)W(xp, yp) , (4.4)

with xp and yp are the polar motion, and X and Y are the nutation (i.e., the nutation-precession

model plus the CPO). Matrix Q can be decomposed as

Q(X,Y) = dQ(dX, dY).Q(XIAU 2000A,YIAU 2000A) , (4.5)

where

dQ(dX, dY) =






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The derivation of dQ with respect to the IP and OP components of A
+/−

j
gives
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and
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We applied this modeling to find the corrections of 21 prograde and 21 retrograde nutation terms

yielded in Herring et al. (2002) and Mathews et al. (2002). These specific terms are the terms



Chapter 4. Nutation terms adjustment 38

that could be reliably estimated. Even though IAU2000 has 678 lunisolar nutation terms, some

components are so close to each others, thus the estimates of all components will not be reliably

obtained (Herring et al., 2002).

The nutation terms are estimated from the data consists of 6246 VLBI sessions between Au-

gust 1979 to December 2017. This data is taken from the IVS data center. We used the geodetic

analysis software Calc/Solve (Ma et al., 1986) developed and maintained by the VLBI group

at NASA/GFSC1 in a standard configuration. We estimated the station coordinate differences

with respect to ITRF2014 (Altamimi et al., 2016) as global parameters with no-net rotation and

no-net translation conditions applied to the positions and velocities of a group of 38 stations.

All of the a-priori station positions were corrected from tridimensional displacements due to

oceanic and atmospheric tidal loading using FES2004 (Lyard et al., 2006) and the output from

the inverted-barometer version of the Atmospheric Pressure Loading Service (APLO; Petrov

and Boy, 2004) as well as corrections for the post-seismic relaxation for relevant stations as

given in the ITRF2014. Radio source coordinates were estimated as global parameters for most

of the sources except a set of 39 particularly active quasars (tagged as special-handling sources

in the ICRF2 work, Fey et al., 2015) whose coordinates were estimated once per session. A

no-net rotation condition was applied to the 295 ICRF2 defining sources. Antenna thermal de-

formations were obtained in Nothnagel (2009). A-priori dry zenith delays were estimated from

local pressure values and then mapped to the elevation using the Vienna Mapping Function

(Böhm et al., 2006). The modeling of intraday variations of the troposphere wet delay, clocks,

and troposphere gradients is realized through continuous piecewise linear functions whose coef-

ficients are estimated every 10 min, 30 min, and 6 hours, respectively. A-priori Earth orientation

parameters were taken from the IERS EOP 14 C04 data associated with the IAU2000/2006 nu-

tation and precession models (Mathews et al., 2002; Capitaine et al., 2003). Offsets to the polar

motion and UT1 a-priori, together with polar motion and UT1 rates, were estimated once per

session.

1https://vlbi.gsfc.nasa.gov.
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days. This large band contains the periods of the two ’extreme’ peaks at −420 days and −460

days showed by Fast Fourier Transform (FFT) spectra realized over different time spans by

Chao and Hsieh (2015) and earlier with little differences by Vondrák et al. (2005).

Table 4.1 – The FCN complex amplitudes estimated by the direct and indirect approaches. Unit

is µas.

Indirect Direct

Period IP OP ± IP OP ±

-408.58 64.2 -24.1 2.7 58.1 -20.7 1.3

-420.97 -87.5 107.9 3.6 -81.4 102.4 1.8

-434.12 49.8 -64.1 4.3 44.1 -54.3 2.1

-448.12 21.6 -60.8 4.6 22.1 -69.1 2.3

-463.06 -46.2 -29.6 4.5 -43.0 -20.0 2.2

-479.03 0.5 -10.8 4.1 -8.3 -17.2 2.0

-496.14 -6.4 6.4 3.5 3.4 6.4 1.7

-514.51 3.5 -9.9 2.6 -3.5 -6.3 1.3

Several empirical models of the FCN have been obtained by different methods (least-squares

fit over sliding windows, wavelet decomposition, Singular Spectral Analysis) in the recent

years, all being generally in good agreement (Malkin, 2007; Krásná et al., 2013; Belda et al.,

2016). A direct adjustment of the FCN usually has been made via a sliding window, by selecting

a subset of data similarly to what is done in the indirect approach. However, as the window is

restricted to some years, the sliding window method introduces correlations with other nutation

terms. Here, we propose the adjustment of an empirical harmonic model composed of close

frequencies for representing the broad band spectral peak in according to

dXFCN + i dYFCN =
∑

j

AFCN, je
iσ′

FCN, j
t
, (4.6)

where AFCN, j is the complex amplitude of the jth FCN component, and σ′
FCN, j

is its frequency.
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4.4 Results and comparison between the direct and indirect

approaches

The corresponding estimates of 42 nutation offset terms for both the indirect and the direct

approaches are shown in Table 4.2. The largest differences between the two approaches reside

in the long period terms (18.6-yr and 9.3-yr) for which the complex amplitude change is larger

than 10 µas. The direct approach returned a χ2 per degree of freedom of 0.94 whereas the

indirect approach has χ2 per degree of freedom 3.99. The direct approach provides formal

errors that are smaller than for the indirect approach by a factor of two to three. Here the formal

errors are produced from the multiplication of the co-variance matrix’s diagonal elements with

the root square of χ2. The correlations between the various estimated complex amplitudes are

reported in Figure (4.6 and 4.7). The direct approach permits to lower the correlations between

the 18.6-yr and 9.3-yr terms, and between the 6.86-d and 346.64-d terms by 5% and 10%. For

the other terms, there are only marginal changes of correlation between the two approaches. On

average, the direct approach permits to lower the correlation by 7%.

The solutions associated with the indirect and direct approaches produced obviously differ-

ent Earth rotation parameters and radio source positions, raising the question to which extent

these differences are significant. The RMS differences in polar motion remain within 0.03 mas.

We reached the same conclusions for UT1 and length-of-day with RMS differences of about 1

ms. The median errors for the polar motion are slightly lower (by 2 µas) in the direct approach

with respect to the indirect approach. The celestial reference frames obtained from the two

approaches and composed of 4118 radio sources were compared in terms of global rotation and

deformations up to degree 2 (see, e.g., Mignard and Klioner, 2012). They only differ by small

rotations of less than 3 µas. The modeling of nutation in the direct approach has, therefore, no

significant impact on the other EOP and the celestial reference frame.

The robustness of the results are examined by estimating the nutation components from two

session lists which have approximately the same number of observations. We divided the ses-

sion list into two lists by taking the "even" and "odd" sessions of the initial list in chronological

order. For the long periods, the nutation amplitudes are not expected to be so sensitive to the
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number of observation being divided by two. For short periods (few times the mean sampling

rate), one could expect an increased sensitivity due to the rapidly changing network character-

istics (size, geometry, data quality) for one session to another. We found that the "even" and

"odd" solutions return a χ2 per degree of freedom which are in a good agreement with the initial

session list. Figure (4.8, 4.9, 4.10, 4.11) show the differences between the results from "even"

and "odd" sessions in each nutation component for both the direct and indirect approaches. It

shows that the differences are larger in the indirect approach, with an average value of 3.0 µas,

than the direct approach, with an average value of 2.4 µas. The dispersion of the results between

the even and odd session can be interpreted as an "empirical error". Such error appear much

less homogeneous than the initial standard error when contrasted with the frequency. The less

robust nutation are generally short-period nutation (e.g., 13.78 days). But the empirical error

does not decrease as the period increases: a possible reason for this is the in-homogeneity of

the VLBI data quality and error along the observational period, especially the early data (before

1990) compared with the more recent ones.
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Table 4.2 – In-phase and out-phase coefficients of 42 nutation terms estimated by the indirect

and direct approaches. Here the period is given with respect to the celestial frame. Unit is day

for periods and µas for the coefficients.

l l′ F D Ω Indirect Direct
a1 a2 a3 a4 a5 Period IP OP ± IP OP ±

0 0 0 0 1 -6798.38 26.2 -15.7 1.7 30.8 -26.9 0.9
0 0 0 0 -1 6798.38 2.8 -33.2 1.7 15.2 -32.8 0.9
0 0 0 0 2 -3399.19 7.3 -13.1 1.7 3.0 -10.9 0.9
0 0 0 0 -2 3399.19 20.2 -17.2 1.7 14.1 -11.5 0.9
2 0 -2 0 -2 -1615.75 -0.8 -2.2 1.7 -5.3 -5.7 0.8

-2 0 2 0 2 1615.75 -1.8 -12.8 1.7 2.6 -8.0 0.8
2 0 -2 0 -1 -1305.48 -0.9 10.0 1.7 -3.6 8.8 0.9

-2 0 2 0 1 1305.48 -5.2 1.5 1.7 -4.0 3.3 0.8
2 0 -2 0 0 -1095.18 -3.4 4.8 1.7 1.1 4.1 0.8

-2 0 2 0 0 1095.18 -4.1 6.1 1.7 -4.1 1.1 0.8
0 -1 0 0 -1 -386.00 -9.7 1.5 1.9 -9.1 -4.5 0.9
0 1 0 0 1 386.00 -1.0 -1.2 1.6 0.6 -0.0 0.8
0 -1 0 0 0 -365.26 35.7 4.5 1.8 33.5 7.6 0.9
0 1 0 0 0 365.26 -4.1 -0.2 1.7 -9.7 -0.8 0.8
0 -1 0 0 1 -346.64 -16.2 -2.8 1.8 -13.3 0.8 0.9
0 1 0 0 -1 346.64 1.3 -0.0 1.7 -0.0 -3.0 0.9
0 0 -2 2 -2 -182.62 -11.5 5.5 1.5 -12.6 5.9 0.8
0 0 2 -2 2 182.62 7.8 -5.7 1.5 9.0 -4.3 0.8
0 -1 -2 2 -2 -121.75 -4.2 4.7 1.5 -1.7 4.4 0.8
0 1 2 -2 2 121.75 4.6 1.4 1.6 3.8 -1.2 0.8
1 0 0 -2 0 -31.81 0.8 -3.9 1.5 0.7 -2.8 0.7

-1 0 0 2 0 31.81 -2.0 2.6 1.5 -3.2 2.8 0.8
-1 0 0 0 0 -27.55 -17.6 -9.4 1.5 -17.8 -7.6 0.7
1 0 0 0 0 27.55 1.1 -3.9 1.5 1.0 -2.6 0.8

-1 0 -2 2 -2 -23.94 -0.6 -1.4 1.5 -0.9 -0.2 0.7
1 0 2 -2 2 23.94 -0.8 -1.1 1.5 -1.9 -0.7 0.8
0 0 0 -2 0 -14.77 -3.1 2.2 1.5 -1.9 2.4 0.7
0 0 0 2 0 14.77 1.0 -0.0 1.5 1.3 -0.9 0.8

-2 0 0 0 0 -13.78 -2.4 -2.0 1.5 -2.4 -1.4 0.7
2 0 0 0 0 13.78 1.4 1.1 1.5 0.5 0.4 0.8
0 0 -2 0 -2 -13.66 -6.7 -7.7 1.5 -8.5 -5.6 0.7
0 0 2 0 2 13.66 -3.4 9.0 1.5 -5.6 8.6 0.8
1 0 -2 -2 -2 -9.56 -0.9 -3.7 1.5 -1.7 -1.5 0.7

-1 0 2 2 2 9.56 3.0 -3.7 1.5 2.0 -1.1 0.8
-1 0 -2 0 -2 -9.13 -1.2 1.1 1.6 -1.5 1.5 0.7
1 0 2 0 2 9.13 -1.3 3.8 1.6 -3.3 5.7 0.9

-1 0 -2 0 -1 -9.12 2.1 4.2 1.6 2.2 3.7 0.7
1 0 2 0 1 9.12 1.5 -0.9 1.6 1.4 -1.6 0.9
0 0 -2 -2 -2 -7.10 -3.8 -1.2 1.5 -5.0 0.5 0.7
0 0 2 2 2 7.10 1.4 1.9 1.7 -1.3 2.3 1.0

-2 0 -2 0 -2 -6.86 1.3 -0.1 1.6 0.2 -0.6 0.7
2 0 2 0 2 6.86 -1.3 2.9 1.6 -2.1 6.4 0.9











Chapter 5

Resonances adjustment in retrograde

diurnal band

In order to estimate the Earth resonance parameters through VLBI data, in a first approach,

we strictly follow the procedure of Mathews et al. (2002). It is based on a transfer function

(3.9) that expresses the ratio between the non-rigid Earth nutation terms and its corresponding

rigid Earth nutation. Here, we adopt the value e = 3.2845479 × 10−3, as reported in Mathews

et al. (2002). The observed nutation η(σ′) is estimated by adding up the nutation offset terms

of Table 4.2 to the corresponding IAU2000 nutation model (see Table 5.1 column 9 and 10).

The rigid Earth nutation is adopted from REN2000 model (Souchay et al., 1999), as reported in

Table 5.1 column 7 and 8.

We estimate the complex parameters σ̃ j and Ñ2 by performing a weighted least square in-

version. As Ñ3 is correlated with σ̃3, Ñ3 is fixed to its theoretical value (2.95844 × 10−4 −

i9.57705× 10−5) as given by Mathews et al. (2002). The weights of the nutation terms itself are

deduced from the formal error displayed in Table 4.2. As mentioned by Mathews et al. (2002),

before the inversion is performed, some corrections have to be applied. First, the nutation terms

have to be referred to a dynamical celestial reference frame by removing the geodetic nutation.

Then, non-linear effects are suppressed (see Table 5.2). Finally we eventually get rid of the

atmospheric-oceanic contribution, which cannot be related to the rigid Earth nutation caused by

lunisolar tides.

49
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Table 5.1 – In-phase and out-phase coefficients of 42 nutation terms for a rigid Earth model

REN2000 and a non-rigid three-layered Earth model IAU2000. Here the period is given with

respect to the celestial frame. The Units are in day for the periods and mas for the coefficients.

l l′ F D Ω REN2000 IAU2000
a1 a2 a3 a4 a5 Period IP OP IP OP
0 0 0 0 1 -6798.38 -8050.87 -0.07 -8024.77 -1.43
0 0 0 0 -1 6798.38 -1177.04 -0.08 -1180.46 0.10
0 0 0 0 2 -3399.19 86.74 -0.00 86.14 0.03
0 0 0 0 -2 3399.19 3.59 0.00 3.61 -0.00
2 0 -2 0 -2 -1615.75 -0.00 0.00 -0.00 0.00

-2 0 2 0 2 1615.75 -0.13 0.00 -0.13 0.00
2 0 -2 0 -1 -1305.48 0.31 0.00 0.30 0.00

-2 0 2 0 1 1305.48 2.10 0.00 2.12 -0.00
2 0 -2 0 0 -1095.18 0.22 0.00 0.21 0.00

-2 0 2 0 0 1095.18 -0.22 0.00 -0.22 0.00
0 -1 0 0 -1 -386.00 -0.10 0.00 -0.15 -0.00
0 1 0 0 1 386.00 -0.69 0.00 -0.71 0.00
0 -1 0 0 0 -365.26 -24.89 0.00 -33.05 -0.33
0 1 0 0 0 365.26 25.03 0.00 25.66 -0.13
0 -1 0 0 1 -346.64 -0.46 0.00 -0.57 -0.00
0 1 0 0 -1 346.64 -0.07 0.00 -0.07 0.00
0 0 -2 2 -2 -182.62 -22.59 0.00 -24.56 0.04
0 0 2 -2 2 182.62 -530.74 0.00 -548.47 0.50
0 -1 -2 2 -2 -121.75 -0.88 0.00 -0.94 0.00
0 1 2 -2 2 121.75 -20.74 0.00 -21.50 0.02
1 0 0 -2 0 -31.81 -2.88 0.00 -3.06 0.01

-1 0 0 2 0 31.81 3.07 0.00 3.18 -0.00
-1 0 0 0 0 -27.55 -12.99 0.00 -13.81 0.04
1 0 0 0 0 27.55 13.96 0.00 14.48 -0.00

-1 0 -2 2 -2 -23.94 0.05 0.00 0.05 -0.00
1 0 2 -2 2 23.94 1.14 0.00 1.19 0.00
0 0 0 -2 0 -14.77 -1.12 0.00 -1.20 0.00
0 0 0 2 0 14.77 1.28 0.00 1.32 0.00

-2 0 0 0 0 -13.78 -0.51 0.00 -0.55 0.00
2 0 0 0 0 13.78 0.59 0.00 0.61 0.00
0 0 -2 0 -2 -13.66 -3.40 0.00 -3.65 0.01
0 0 2 0 2 13.66 -91.52 0.00 -94.20 -0.12
1 0 -2 -2 -2 -9.56 -0.08 0.00 -0.09 0.00

-1 0 2 2 2 9.56 -2.41 0.00 -2.46 -0.00
-1 0 -2 0 -2 -9.13 -0.42 0.00 -0.46 0.00
1 0 2 0 2 9.13 -12.19 0.00 -12.45 -0.03

-1 0 -2 0 -1 -9.12 -0.27 0.00 -0.29 0.00
1 0 2 0 1 9.12 -2.30 0.00 -2.34 -0.01
0 0 -2 -2 -2 -7.10 -0.05 0.00 -0.06 0.00
0 0 2 2 2 7.10 -1.57 0.00 -1.59 -0.00

-2 0 -2 0 -2 -6.86 -0.04 0.00 -0.04 0.00
2 0 2 0 2 6.86 -1.26 0.00 -1.28 -0.01
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Table 5.2 – Correction to the observed nutation terms, as reported in Table 7 of Mathews et al.

(2002). Here the period is given in days and with respect to the celestial frame.

l l′ F D Ω Geodesic Non-linear
a1 a2 a3 a4 a5 Period IP OP IP OP
0 0 0 0 1 -6798.38 0.0013 - 0.0037 -
0 0 0 0 -1 6798.38 0.0001 - -0.0336 -
0 0 0 0 2 -3399.19 - - -0.0022 -
0 0 0 0 -2 3399.19 - - -0.0002 -
0 -1 0 0 0 -365.26 0.0304 - - -
0 1 0 0 0 365.26 -0.0304 - - -
0 0 -2 2 -2 -182.62 0.0004 - - -
0 0 2 -2 2 182.62 -0.0004 - - -

5.1 Atmospheric-oceanic contribution

The analysis done in Mathews et al. (2002) was restricted to the atmospheric effect on the an-

nual prograde nutation. Actually, a more complete treatment of the fluid layer perturbations has

to include other nutation components (−365 d, +182.6 d, +121.75 d, +13.66 d) and consider the

contribution of the non-tidal circulation in the ocean. The atmospheric and oceanic effects are

computed by using the effective angular momentum function as explained in Chapter 2. How-

ever, as the nutation is estimated in the celestial reference frame, the straightforward approach

is to transform this angular momentum function from terrestrial reference frame to celestial

reference frame as follows

ξ(t) = −χe f f (t)eiΘ(t) , (5.1)

where Θ(t) is the rotation angle defined in (3.6). Here we used the NIB version of atmo-

spheric effective angular momentum time series from TU Vienna1 (based on ECMWF model)

(Schindelegger et al., 2011) and oceanic effective angular momentum series from ERA40 and

opECMWF (Dobslaw and Thomas, 2007) starting from 1984 to 2017. Table 5.3 shows the

synopsis of the data used in this Chapter. Following Bizouard et al. (1998), we first remove the

mean from the effective angular momentum time series. This time series is then transformed

1ftp://ftp.iers.org/products/geofluids.
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Table 5.3 – Synopsis of geophysical excitation and observed nutation used in this section.

model or version available data sampling

series name interval

Atmosphere ECMWF TU Vienna 1980 - 2019 6 hours

Ocean OMCT ERA40 1958 - 2001 6 hours

OMCT opECMWF 2001 - 2017 6 hours

Nutation VLBI 1979 - 2019 varied

Table 5.4 – Non-tidal atmospheric and oceanic contribution to the nutation circular terms. Unit

is µas. Here the period is given in the celestial frame.

Atmosphere Ocean

Period (days) IP OP ± IP OP ±

−365.26 84.3 −50.6 2.7 −5.5 19.4 3.9

+365.26 43.4 −59.4 0.3 32.5 −22.2 0.3

+182.62 9.3 −43.6 0.2 32.8 7.3 0.2

+121.75 0.8 −3.4 0.2 2.1 −2.5 0.2

+13.66 3.9 −1.8 0.1 −0.1 −0.3 0.0
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5.2 Estimating Earth rotation resonances

The resonance parameters are estimated by weighted least squares based on the total nutation

terms and their formal errors, as reported in Table 4.2, starting from a-priori values given by

Mathews et al. (2002). The impact of atmospheric-oceanic circulation is investigated by con-

sidering three cases: i) no correction at all, ii) correction restricted to the annual prograde term,

iii) correction involving all terms listed in Table 5.4.

The results are displayed in Table 5.5 for the resonance parameters (P,Q) of PMR, FCN, and

FICN in the terrestrial frame. For FCN and FICN, we also provide the equivalent parameters

(P′,Q′) in the celestial frame. It should be noted that the negative value of QPMR is associated

with the dynamical response of the ocean and therefore does not represents the damping of the

resonance itself, as explained in Chapter 6.

Restricting the atmospheric-oceanic correction to the prograde annual term has no signif-

icant impact on the resonance parameters. In contrast, some resonance parameters are signif-

icantly changed if we consider all terms reported in Table 5.4. Whereas PMR parameters are

not modified significantly, the absolute value of the FCN period in celestial frame increases by

0.6 days and the corresponding quality factor in the terrestrial frame by 400. As well, the FICN

parameters are affected: the period decreases by 50 days and the terrestrial quality factor by

90. On the other hand, the way used for estimating nutation terms is not crucial: the direct and

indirect approaches lead to almost the same results according to Table 5.5.

Figure 5.3, 5.4, and 5.5 show a comparison of the resonance parameters estimates based on

no atmospheric-oceanic correction, atmospheric correction only, oceanic correction only, and

their combination. The removal of either atmosphere or ocean terms does not have a significant

influence to the PMR parameters. For the FCN parameters, the removal of atmospheric terms

lengthen the FCN period of about one day, and the quality factor is increased to 17600, whereas

the annihilation of oceanic terms does not have a significant contribution. Meanwhile, the

removal of atmospheric components shorten the FICN period of about 200 days and the removal

of ocean decrease the quality factor of about 90.
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Table 5.5 – Resonance parameters associated with PMR, FCN, and FICN in the terrestrial frame (P,Q).

For FICN and FCN, the period is also given in the celestial frame (P′). Periods are given in mean solar

days. AO is an abbreviation for atmospheric-oceanic.

Procedure AO Correction Resonance Parameters

PPMR QPMR -

Indirect - (380.9, 382.5, 384.0) (-11.0, -10.4, -9.8) -

Indirect +365.26 days only (381.3, 382.6, 383.9) (-11.0, -10.5, -10.0) -

Indirect complete (380.8, 382.1, 383.4) (-10.9, -10.4, -9.9) -

Direct complete (380.7, 382.0, 383.4) (-11.0, -10.4, -9.9) -

PFCN QFCN P′
FCN

Indirect - (-0.994961, -0.994960, -0.994959) (16461, 16907, 17379) (-429.8, -429.6, -429.4)

Indirect +365.26 days only (-0.994961, -0.994960, -0.994959) (16592, 16967, 17358) (-429.8, -429.6, -429.4)

Indirect complete (-0.994964, -0.994963, -0.994962) (16958, 17361, 17785) (-430.3, -430.2, -430.0)

Direct complete (-0.994964, -0.994963, -0.994962) (16946, 17332, 17736) (-430.3, -430.1, -430.0)

PFICN QFICN P′
FICN

Indirect - (-0.998492, -0.998261, -0.998031) (387, 443, 518) (770.8, 1003.8, 1236.9)

Indirect +365.26 days only (-0.998422, -0.998240, -0.998059) (424, 476, 543) (833.9, 1025.6, 1217.4)

Indirect complete (-0.998538, -0.998312, -0.998087) (319, 355, 400) (748.4, 954.7, 1161.0)

Direct complete (-0.998559, -0.998329, -0.998099) (304, 338, 380) (735.6, 939.5, 1143.5)
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Table 5.6 – The period and quality factor of polar motion resonance determined over certain

band of frequencies.

Band frequency (cpd) PPMR QPMR

I (−Ω − 1/6.86 ≤ σ ≤ −Ω + 1/6.86) 382.0 ± 1.3 −10.4 ± 0.5

II1 (−Ω − 1/6.86 ≤ σ ≤ −Ω − 1/386) 418.5 ± 7.2 −8.24 ± 1.7

II2 (−Ω − 1/1095.18 ≤ σ ≤ −Ω + 1/6.86) 381.8 ± 1.2 −10.4 ± 0.5

III1 (−Ω − 1/6.86 ≤ σ ≤ −Ω − 1/31.81) 415.1 ± 3.3 −7.7 ± 0.7

III2 (−Ω − 1/121.75 ≤ σ ≤ −Ω − 1/386) 486.8 ± 58.4 +13.4 ± 30.7

III3 (−Ω − 1/1095.18 ≤ σ ≤ −Ω + 1/1095.18) 381.7 ± 7.6 −10.2 ± 2.9

III4 (−Ω + 1/386 ≤ σ ≤ −Ω + 1/6.86) 381.8 ± 1.3 −10.4 ± 0.5



Chapter 6

Geophysical explanation

The estimation of PMR parameters from nutation data has confirmed that the period of PMR

decreases by approximately 40 days in the retrograde diurnal band in comparison with its esti-

mation in the seasonal band, and the quality factor becomes negative. This chapter is devoted

to a detailed geophysical explanation about this modification.

6.1 Contribution from the ocean

Tidal Argument θ χ H1 Φ1 H2 Φ2 h1 φ1 h2 φ2

(◦) (◦) (◦) (◦) (◦)

Q1 γ − l − 2F − 2κ −90 0.116 340.4 0.264 215.4 0.058 307.8 0.075 217.1

O1 γ − 2F − 2κ −90 0.476 330.1 1.178 221.9 0.291 299.7 0.442 206.1

P1 γ − 2F + 2D − 2κ −90 0.169 310.6 0.450 223.2 0.183 287.4 0.255 192.8

K1 γ +90 0.462 308.3 1.377 224.2 0.557 288.8 0.774 192.1

J1 γ + l +90 0.026 294.0 0.076 228.8 0.036 292.0 0.055 186.7

Table 6.1 – The main terms of the ocean’s angular momentum. These terms are generated

by tesseral diurnal gravitational tides based on the FES 2012 model (Carrère et al., 2013), as

reported in Madzak (2015). The reported coefficient is equivalent to (6.1). The amplitudes H1,

H2, h1, h2 are in the unit of 1025 kg m2/s and γ = GMS T + π.
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In the late 1980s, Dickman (1988) studied the dynamical influence of the ocean pole tide on

the CW period and concluded that the dynamic effects at seasonal scales lengthen the CW period

by one day, corresponding to a rise of about 0.0014 in the oceanic love number. Furthermore,

the dynamic process slightly delays the ocean’s reaction to the pole tide and thus introduces a

tiny imaginary part in the ocean love number k̃o of about−2 × 10−4. This imaginary part is too

small to be regarded, so the assumption of a hydrostatic pole tide in the seasonal band stays

true.

However, below 10 days, many studies have shown that the oceanic response to an atmo-

spheric pressure variations strongly departs from the equilibrium, so the hydrostatic pole tide is

not sound, and k̃o should change accordingly. In the diurnal band, this issue can be solved in

light of the diurnal ocean tides. For, as the pole tide potential has the same form with the lu-

nisolar tesseral potential and is relevant to the same frequency band, the Earth response should

be formally the same. It is well known that the diurnal ocean tides are strongly affected by

dynamical processes. Currents are generated, and in turn a relative angular momentum. Mean-

while, the observed diurnal ocean tide height is smaller than the theoretical equilibrium tide

produced by the tesseral lunisolar potential, and strongly out-of-phased with respect to it. The

tidal component at frequency σ causes the equatorial oceanic angular momentum

H(t) = H1 cos(θ(σ) + χ − Φ1) + i H2 cos(θ(σ) + χ − Φ2) ,

h(t) = h1 cos(θ(σ) + χ − φ1) + i h2 cos(θ(σ) + χ − φ2) ,
(6.1)

where θ(σ) is the tidal argument, H(t) and the coefficients H1, H2, Φ1, Φ2 correspond to the

matter term whereas h(t) and the coefficients h1, h2, φ1, φ2 correspond to the motion term.

According to the FES 2012 ocean tidal model, the main diurnal constituents are for tesseral

tides J1, K1, P1, O1, and Q1. The corresponding coefficients calculated in Madzak (2015) are

provided in Table 6.1. An ancient ocean tide model going back to 1996 yielded close estimates,

as reported in Chao et al. (1996). The retrograde part of (6.1) is written as follows

H−(t) = (H−)e−i(θ+χ) ,

h−(t) = (h−)e−i(θ+χ) ,
(6.2)
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where

H− =

(

H1 cos(Φ1) − H2 sin(Φ2)

2
+ i

H1 sin(Φ1) + H2 cos(Φ2)

2

)

,

h− =

(

h1 cos(φ1) − h2 sin(φ2)

2
+ i

h1 sin(φ1) + h2 cos(φ2)

2

)

.

(6.3)

Here ’-’ corresponds to the retrograde term. From (A.4) and (A.5), the corresponding tesseral

lunisolar potential is −Ω2R2
e/3Re

[

Φ̃(t)Y−1
2

]

, with

Φ̃(t) =
3gN1

2

Ω2R2
e

ξσe−i(θσ−π/2) , (6.4)

where g means equatorial Earth gravity, Re is the Earth equatorial radius, ξσ is the equilibrium

tidal height (see Table A.1), and (N1
2
)2 = 5/24π. Accounting for the deformation effect of the

tidal loading, the retrograde effective angular momentum function caused by Φ̃(t) is

χo(t) = (1 + k′2)χma(t) + χmo(t) , (6.5)

where

χma(t) =
H−(t)

(C − A)Ω
; χmo(t) =

h−(t)

(C − A)Ω
. (6.6)

Since the tidal potential Φ̃(t) is formally equivalent to m(t) (see A.4), so χo(t) is proportional to

Φ̃(t), as the rotation excitation is proportional to m(t):

χo =
k̃o

ks

Φ̃ , (6.7)

where k̃o is the oceanic Love number. Then, we obtain

k̃o = ks

H−(t)(1 + k′
2
) + h−(t)

(C − A)ΩΦ̃
= −ks

H−(1 + k′
2
) + h−

C − A

ΩR2
e

3gN1
2
ξσ

. (6.8)

We can estimate k̃o for the tidal components here-above by considering the ξσ values re-

ported in Table A.1. The resonance of the loading love number k′
2

at FCN frequency does

not impact significantly k̃o in the retrograde diurnal band. For k′
2
= −0.3075, the obtained

values are given in Table 6.2 and Figure 6.2. They differ significantly from the oceanic Love

number ko = 0.044 estimated for an equilibrium pole tide. These results can be compared

with the estimate of Mathews et al. (2002) for the K1 tide. In term of compliance, we have
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Table 6.2 – Oceanic Love number k̃o of five main terms in diurnal retrograde band.

Q1 −0.037 + i 0.039

O1 −0.031 + i 0.038

P1 −0.023 + i 0.042

K1 −0.023 + i 0.042

J1 −0.023 + i 0.047

κ̃o = k̃oe/ks = (−7.9 + i 14.6) × 10−5 in agreement with (−6.9 + i 11.5) × 10−5, as estimated in

Appendix D of Mathews et al. (2002). As shown in Figure 6.1, the values of k̃o can be fitted by

a degree 2 polynomial of the frequency as follows

k̃o( f ) = (−0.716 + i 0.721) f 2 + (−1.483 + i 1.337) f + (−0.791 + i 0.658), (6.9)

where f is in cpd. This expression of k̃o only holds for the diurnal domain. Then we see that

the resonance frequency in (1.15) becomes frequency dependant:

σ̃PMR(σ) = σe

Ā

Am

(

1 −
k̃2 + k̃o(σ)

ks

)

, (6.10)

here k̃2 is slightly differs in diurnal band. In this band we have k̃2 = 0.299 − i 0.00144, (IERS

Conventions 2010: (Petit and Luzum, 2010)). The corresponding period and quality factor is

calculated by

PPMR(σ) =
2π

Re(σ̃PMR)
QPMR(σ) =

Re(σ̃PMR)

2 Im(σ̃PMR)
, (6.11)

Figure 6.2 displays the period and quality factor of PMR in the retrograde diurnal band. In the

frequency band [−1.2 cpd,−0.80 cpd], the dynamic response to the ocean leads to the interval

of resonance parameters (370 d < PPMR < 383 d; −10 < QPMR < −4).
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with the quantities

LPMR = (−0.77896 × 10−3 − i 0.3711 × 10−4) k

LFCN = (0.90963 × 10−4 − i 0.2963 × 10−5) k

LFICN = (−0.11416 × 10−5 + i 0.5325 × 10−7) k

, (6.13)

and

σPMR = 0.0026081 − i 0.0001365

σFCN = −(1.0050624 − i 2.5 × 10−5)

σFICN = −(1.0017612 − i 0.0007821)

, (6.14)

expressed in cpd. Here k = 1.002737811 is the factor for converting the solar day to the sidereal

day. Replacing the pure anelastic value of k̃2 in (6.10) by its resonant version in (6.12), we get

σ̃PMR(σ) = σe

A

Am

k̃2(σ) + k̃o(σ)

ks

. (6.15)

Figure 6.3 displays the resonance parameter plot generated from (6.11) over the frequency

[−1.2 cpd, −0.80 cpd]. It shows that the resonance parameters in the frequency close to K1

are heavily influenced by the FCN. Far from K1, the parameters of resonance rejoin the curve

acquired from the anelastic Earth covered by ocean. In the near-FCN resonance, TPMR strongly

varies between -10 days to 1000 days, whereas the quality factor is below 0.5, then the resonance

at σ̃PMR is heavily mitigated.

6.3 Comparison with observation

Figure 6.4 displays the comparison between the theoretical curve with the estimated values from

lunisolar nutation terms, as reported in Table 5.6. It shows that, in average, the theoretical curve

matches the whole band I (PPMR = 382 ± 1 days, QPMR = −10 ± 1) except in the frequency

near the FCN resonance. Meanwhile, the observation also confirms the strong perturbation of

FCN resonance to the resonance parameters as well as the influence of ocean dynamics. The

estimates of PPMR from band III2 (PPMR = 487 ± 58 days) confirms the enhancement of the

resonance period around ψ1 (theoretical value of 470 days at ψ1). Furthermore, the nutation

inversion in the band III3 fully supports the theoretical decrease around K1 (modeled value





69 6.3. Comparison with observation

retrograde diurnal periods, this does produce significant resonance effect. Indeed, at σFCN the

quality factor of the PMR is close to zero, associated with very strong damping.
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Part III

Prograde diurnal band

71





Chapter 7

Polar motion resonance in prograde

diurnal band

For now, we have investigated the resonance parameters in the seasonal and retrograde diurnal

band. In order to obtain a more comprehensive picture, the analysis has to be extended to

other frequency bands such as the multi-annual frequency range, the semi-diurnal band, and

even the prograde diurnal band, where the resonance is reduced to the PMR. At multi-annual

scales, our results are not conclusive, probably in reason of an incomplete knowledge of the

geophysical excitation. At semi-diurnal time scale, the dominant excitation is the ocean tide

potential. However, as it is no longer a tesseral wave, it cannot be used for deriving the ocean

Love number describing the oceans response to the pole tide potential, which is tesseral. This

leads us to only present our investigation pertaining to the diurnal prograde band, for which the

dominant tidal excitation is represented by a tesseral potential, thus allowing us to model the

corresponding ocean Love number. In the prograde diurnal band, like the retrograde diurnal

band, the oceanic response to the pole tide is dynamic. Therefore, the PMR parameters should

be different from the CW period PCW ∼ 433 days and quality factor QCW ∼ 60 prevailing at

seasonal scale.
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7.1 Theoretical prediction of polar motion resonance

In the diurnal prograde band the angular momentum oscillations produced by the ocean tides is

given by

H(t) = H+ ei (θ+χ) ,

h(t) = h+ ei (θ+χ) ,
(7.1)

where

H+ =

(

H1 cos(Φ1) + H2 sin(Φ2)

2
+ i
−H1 sin(Φ1) + H2 cos(Φ2)

2

)

,

h+ =

(

h1 cos(φ1) + h2 sin(φ2)

2
+ i
−h1 sin(φ1) + h2 cos(φ2)

2

)

.

(7.2)

The corresponding excitation function is associated with the matter and motion terms. It can be

expressed in the frequency domain by

χma(σ) =
H+(σ)

(C − A)
, χmo(σ) =

h+(σ)

(C − A)Ω
. (7.3)

These lead to the effective angular function:

χo(σ) = (1 + k′2)χma(σ) + χmo(σ) =
H+(σ)(1 + k′

2
) + h+(σ)

(C − A)Ω
. (7.4)

The k̃o number for prograde diurnal band is given by (6.8), where χo is replaced by the one

in the prograde diurnal band:

k̃o(σ) = −ks

H+(σ)(1 + k′
2
) + h+(σ)

(C − A)Ω

ΩR2
e

3gN1
2
ξσ

. (7.5)

As shown in Table 7.1 and Figure 7.1, the oceanic love number k̃o in the prograde diurnal

band is much smaller, in comparison with the retrograde diurnal one, notably for the real part,

and is closer to the oceanic Love number estimated for an equilibrium pole tide. As shown in

Figure 7.1, the k̃o values can be fitted by a degree two polynomial as follows

k̃o( f ) = (−0.2390 + i0.5660) ∗ f 2 + (0.4775 − i1.1334) ∗ f + (−0.2298 + i0.5799) , (7.6)

where f is in cpd. Then, the theoretical value of PMR in the prograde diurnal band is derived

by substituting (6.15) with k̃o in (7.6). Meanwhile, the solid Earth number k̃2(σ) is still given in
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7.2 Estimation of prograde diurnal terms through VLBI ob-

servation

The polar motion can be represented by the sum of circular uniform motion as follows

p = xp − iyp =
∑

j

(

A+j ei θ j(t) + A−j e−i θ j(t)
)

, (7.7)

where A+ and A− are the complex amplitude of the prograde and retrograde terms respectively

and θ j(t) is the corresponding frequency associated with a linear combination of five Delaunay

arguments (see Appendix A.3). In the prograde diurnal band, the complex amplitudes A+
j

are

decomposed into two components:

A+j = A+(IERS ; j) + dA+j , (7.8)

where A+
(IERS ; j)

= A+
(OT ; j)

+ A+
(LIB; j)

are the complex amplitudes of the modeled variation in the

pole coordinate, hereafter named IERS model, which can be separated into the ocean tidal terms

A+
(OT ; j)

and the libration terms A+
(LIB; j)

. Here dA+
j
= dA+

(IP; j)
+ i dA+

(OP; j)
are the offsets from the

model. We use the sine and cosine coefficients given in Table 8.2a and Table 5.1a in IERS

conventions to calculate the a-priori A+
(OT ; j)

and A+
(LIB; j)

respectively, whereas dA+
j

are estimated

from the VLBI observation.

Table 7.2 – Diurnal prograde terms estimated from VLBI observation over the period 1990 -

2020. Here γ = GMS T + π and the unit of components are µas.

Tidal argument θ Period (days) A+
IP

A+
OP

±

Q1 γ − l − 2F − 2κ +1.11951 30.47 −8.03 0.86

O1 γ − 2F − 2κ +1.07580 136.70 −48.98 0.83

P1 γ − 2F + 2D − 2κ +1.00274 49.74 −26.29 0.77

K1 γ +0.99726 164.36 −87.75 0.78

J1 γ + l +0.96243 8.70 −3.06 0.74
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Actually, the complex amplitudes dA+j are estimated directly from VLBI time delay accord-

ing to the direct approach as for the nutation terms (see Chapter 4). The partial derivatives of

the time delay with respect to dA+
j

are

∂τ

∂dA+
j

= c−1
· k · Q(X,Y) · R(−θ) ·

∂W(xp, yp)

∂dA+
j

· b . (7.9)

The matrix W can be decomposed as

W(xp, yp) = W(xC04, yC04).W(xIERS , yIERS ).dW(dx, dy) , (7.10)

where (xC04, yC04) are the pole coordinates from C04 series (Bizouard et al., 2018) and (xIERS , yIERS )

are the modeled variation of pole coordinate in the sub-diurnal band caused by ocean tides and

librations, and (dx, dy) are the offsets of the pole coordinate. The matrix dW(dx, dy) is given as

follows

dW(dx, dy) =

































0 0 dx

0 0 dy

−dx −dy 0

































.

Here (dx, dy) are modeled as a harmonic function series:

dx − i dy =
∑

j

(

dA+j ei θ j(t) + dA−j e−i θ j(t)
)

. (7.11)

Therefore, the derivation of dW with respect to the IP and OP components of dA+
j

gives

∂dW

∂dA+
IP; j

=

































0 0 cos θ j(t)

0 0 − sin θ j(t)

− cos θ j(t) sin θ j(t) 0

































,

∂dW

∂dA+
OP; j

=

































0 0 − sin θ j(t)

0 0 − cos θ j(t)

sin θ j(t) cos θ j(t) 0

































.

We implement this partial derivative in Calc/Solve to find the corrections for 5 diurnal prograde

polar motion terms: J1, K1, P1, O1, and Q1.
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7.3 Polar motion resonance estimation

As the FCN and FICN do not play any role, and the ocean tide is a mass transport, we could use

the relation in (1.18) to calculate the PMR parameters. It can be rewritten by considering (1.15)

and (1.16) as follows

p(σ) =
eAΩ

Am

(

−
1

σ − σ̃PMR

(

(1 + k′2)χma(σ) + χmo(σ)
)

)

. (7.12)

In the diurnal prograde band the value of σ̃PMR is much smaller compared to σ. So, the system

obtained from different tidal line in this frequency range could be ill conditioned. Hence, in

order to have more robust results, we have to modify this equation. As χo(σ) = (1+k′
2
)χma(σ)+

χmo(σ), the equation (7.12) becomes

p(σ) =
eAΩ

Am

(

−
χo(σ)

σ − σ̃PMR

)

. (7.13)

As χo = k̃o/ks Φ̃, we obtain

p(σ) =
eAΩ

Am

(

−
k̃o

ks

Φ̃(σ)

σ − σ̃PMR

)

. (7.14)

By considering (6.15), the ocean love number is rewritten in term of σ̃PMR as follows

k̃o = −k̃2 + ks

(

1 −
Am

eΩA
σ̃PMR

)

. (7.15)

Substituting k̃o in (7.14) with (7.15) leads to

p(σ) =

[

−
1

σ − σ̃PMR

(

eAΩ

Am

(

1 −
k̃2

ks

)

− σ̃PMR

)]

Φ̃(σ) . (7.16)

The PMR parameters are estimated from (7.16) by fitting the observed prograde diurnal

terms in Table 7.2 and Table 7.3 to the tidal potential Φ(σ). Before the inversion, the "libration"

effect, corresponding to the effect of Earth triaxiality from lunisolar tide, has to be eliminated

from the observed prograde diurnal terms. We adopt the libration model recommended in IERS

conventions (Table 5.1a of IERS Conventions 2010).

The Table 7.4 displays the results obtained from two different set of data. It shows that the

estimated period PPMR is 400± 2 days and the quality factor QPMR is in the interval (−26,−22).
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Table 7.4 – Estimates PMR parameters in the prograde diurnal band.

Period (days) Q

This study 398.9 ± 0.4 (−24,−22)

Sibois et al. (2017) 401.9 ± 0.6 (−26,−23)

This resonance parameters match strikingly the theoretical value of Figure 7.2 (PPMR = [395, 400]

days; QPMR = [−30,−20]).

We test the sensitivity of the PMR parameters with respect to each prograde diurnal term

by excluding one of them: thus in each estimation, we only consider four terms. The results,

displayed in Table 7.5, show that the estimates are slightly sensitive to the removal of the term

K1, which is understandable since this term is the most dominant one in the polar motion diurnal

band (see Figure 7.4). By neglecting K1, the quality factor becomes (-21, -20).

Table 7.5 – The PMR parameters estimated from Q1, O1, P1, K1, and J1 terms by excluding

one of them.

Ignored tide Period (days) Q

Q1 398.8 ± 0.5 (−24,−22)

O1 398.9 ± 0.3 (−25,−24)

P1 398.8 ± 0.5 (−24,−22)

K1 398.8 ± 0.3 (−21,−20)

J1 398.8 ± 0.5 (−24,−22)
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Conclusions

The main originality of my thesis is to treat three issues that are commonly investigated sepa-

rately by different specialists: the processing of geodetic observations for estimating EOP, the

development of Earth rotation theory, and the conjunction between observation and theory.

We have estimated the Earth resonance parameters in three frequency bands, namely the

common polar motion, the retrograde diurnal, and the prograde diurnal band. The polar motion

resonance (PMR) parameters in the common polar motion band were estimated by modifying

the least squares fit procedure proposed by Kuehne et al. (1996) over the period 1976 - 2019. All

the spectral bands from 10 days to decadal periods were taken into account except the seasonal

terms. By considering all fluid layers excitations, we obtained the period 432.4 ± 1 days and

the quality factor within the range (41, 74). These results are in agreement with the previous

studies, with a tighter quality factor. We calculated the Love number k̃2 from the estimated

PMR parameters and obtained the value in the range of (0.305, 0.310) for the real part and

(−0.0071,−0.0027) for the imaginary part.

Second, we performed the adjustment of the main nutation terms and of the forced-free

motion associated with the FCN by applying both direct and indirect treatment of VLBI ob-

servations. The direct approach, which was never implemented in this context, returned lower

formal errors, lower correlations between the estimated nutation amplitudes, and, for some of

them, amplitudes differing significantly from those of the indirect approach. The obtained nu-

tation terms were used to determine the resonance frequencies of PMR, FCN, and FICN in the
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diurnal retrograde band. For the direct approach, we obtained the period PPMR = 382.5±1.5 and

the quality factor QPMR in the interval (−11,−10). Moreover, the estimates of the FCN period

and quality factor are PFCN = −429.6 ± 0.2 and QFCN in the interval (16461, 17379) and the

estimates of the FICN parameters are PFICN = 1003± 233 and QFICN in the interval (387, 518).

No significant discrepancies have been noticed between the resonance parameters based upon

the ’direct’ and ’indirect’ nutation terms. The inclusion of the complete atmospheric and non-

tidal ocean corrections has increased the FCN period in the celestial frame by 0.6 day and the

corresponding quality factor in the terrestrial frame by 400. Meanwhile, the FICN parameters

have decreased the period by 50 days and the quality factor by 90.

We have shown that the shorter period of the PMR in the nutation band is mainly caused

by the dynamical response of the oceans to the pole tide potential, and the associated nega-

tive quality factor reflects the strong phase-shift of this response with respect to the pole tide.

The comparison of observed nutation terms to those of a rigid Earth, fit amazingly well to the

modeled frequency dependence of PMR parameters derived from the ocean tidal model, and

the knowledge of the effect of the free core nutation resonance on k̃2. So, the lunisolar nuta-

tion determined by VLBI reflects the dynamical behavior of the oceans and the influence of

the fluid core on solid Earth deformations in the retrograde diurnal band. A similar analysis

is carried out for the prograde diurnal band and it shows that the estimated PMR has a period

PPMR = 400 ± 2 days and a quality factor QPMR in the interval (−26,−22). These results match

the results derived from the ocean tidal model.

Our study has shown that the determination of the frequency of the Earth’s rotational modes

is a powerful way for determining the rheological properties of the solid Earth and the ocean

response to an external forcing in a wide range of frequency, from one day to several years. So,

our work has to be continued by analyzing the resonances in the frequency bands that have not

been explored yet. The investigation in the semi diurnal band can be done by considering the

excitation from ocean tides. Moreover, it would be crucial to estimate the PMR parameters at

the decadal time scale, where the nature of the Earth inelasticity has an important impact on

the solid Earth love number k̃2. Finally, since this study is restricted to the equatorial changes

of Earth rotation, it has to be extended to its axial ones. As length of day depends on the

Earth deformation (i.e. k̃2), we foresee the possibility to investigate the frequency dependence
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of k̃2 by treating the length of day and polar motion in a combined approach, as well as their

corresponding excitation.
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Appendix

A.1 Space geodetic technique

Several domains, such as the navigation of the satellites, need regular data for the Earth rotation,

in particular the terrestrial and celestial oscillation of the CIP. In order to fulfill this requirement,

several geodetical techniques monitor the Earth rotation at almost regular intervals. Very Long

Baseline Interferometry (VLBI) is the only technique that can observe the nutation, whereas the

polar motion is mostly monitored by Global Navigation Satellite System (GNSS), and in a less

exact by Satellite Laser Ranging (SLR) and VLBI.

VLBI. This technique consist of a network of radio telescopes that fulfill certain criteria

and make use of the technique called interferometry observing several objects in the sky. The

development of VLBI for astronomical purposes begins in late 1960 (Broten et al., 1967; Bare

et al., 1967). VLBI contributed to the observation of the reference frame and the EOP starting in

1979. It contributes to the International Terrestrial Reference Frame by enabling the estimation

of its station positions. It is also the only technique that can be used to observe quasars in

order to determine the International Celestial Reference Frame. Furthermore, VLBI is the only

technique that can determine all of EOP at a regular basis. A VLBI network consists of several

radio telescopes distributed all over the world. The principle of VLBI is based on the difference

of the arrival time of the signal at the various stations. This information is extracted by using a

so-called correlators. Figure A.1 shows the distribution of VLBI station. We clearly see that the

station network covers the entire globe, even it is still dominated in the northern hemisphere.

GNSS. The four main systems of GNSS are the American GPS, the Russian GLONASS, the

European GALILEO, and the Chinese Beidou. These satellite systems provide an autonomous
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Figure A.1 – The distribution of VLBI station around the world.
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A.4 Tesseral tidal potential

The material of this appendix is inspired from Dehant and Mathews (2015), Section 5.5. Con-

sider a point of the Earth at distance r from the geocenter of latitude φ and longitude λ. At

this place the tesseral part of the tidal potential generated by a celestial body of mass M —

located in the true equatorial frame by its right ascension α, declination δ, and distance d from

the geocenter — is given by

W =
GM

d5

1

3
d2P1

2(sin δ)r2P1
2(sin φ) cos(λ − α) . (A.1)

Here the polar motion effect on the tidal potential is neglected: astronomical and geographic

latitudes are merged, as well the node of prime meridian with the Terrestrial International Origin

(Petit and Luzum, 2010). Introducing the terrestrial Cartesian coordinates (x, y, z) and (dx, dy, dz)

of the location and of the celestial body respectively, we can easily derive

W =
3GM

d5
zdz Re

[

(dx + idy)(x − iy)
]

. (A.2)

Then, noting that r2Y−1
2
= 3(xz − iyz), where Y−1

2
= 3 sin θ cos θe−iλ is the complex conjugate

of the non-normalized spherical harmonic function of degree 2 and order 1, we obtain

W =
GM

d5
dzr

2 Re
[

(dx + idy)Y
−1
2

]

. (A.3)

It is useful to put the W into the form of the pole tide potential ∆U (r) = −Ω
2r2

3
Re

[

m(t)Y−1
2

]

:

W = −
Ω2r2

3
Re

[

Φ̃(t)Y−1
2

]

, with Φ̃(t) = −
3GM

Ω2d5
dz(dx + idy) . (A.4)

Then, Φ̃(t) presents the Cartwright-Taylor like expansion

Φ̃(t) =
3gN1

2

Ω2R2
e

∑

σ≥0

ξσe−i(θσ(t)−π/2) , (A.5)

where θσ is the tidal argument in the corresponding frequency σ. In Table A.1, we report the

coefficients of the tesseral luni-solar tides that are considered in this thesis. For a given tidal

component, the numerical application yields

Φ̃σ(t) = 3.51 10−5 [m−1] ξσ[m]e−i(θσ(t)−π/2) . (A.6)
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Tidal argument θσ σ (cpd) ξσ (m)

Q1 γ − l − 2F − 2κ 0.8932 −0.05021

O1 γ − 2F − 2κ 0.9295 −0.26223

P1 γ − 2F + 2D − 2κ 0.9973 −0.12199

K1 γ 1.0027 0.36864

J1 γ + l 1.0390 0.02062

Table A.1 – Coefficients of the luni-solar tides used in this thesis, as reported in Dehant and

Mathews (2015)
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