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Abstract 

Hyperspectral imaging, a non-invasive, in vivo imaging method that can be applied 
to measure skin spectral reflectance, has shown great potential for the analysis of skin 
optical properties on small, flat areas: by combining a skin model, a model of light-skin 
interaction and an optimization algorithm, an estimation of skin chromophore concentration 
in each pixel of the image can be obtained, corresponding to quantities such as melanin and 
blood. The purpose of this work is to extend this method to large, non-flat areas, in 
particular the human face. The accurate measurement of complex objects such as the face 
must account for variances of illumination that result from the three-dimensional geometry 
of an object, which we call irradiance drifts. Unless they are accounted for, irradiance drifts 
will lead to errors in the hyperspectral image analysis. 

In the first part of the work, we propose an extended measurement setup, comprising 

a wide field hyperspectral camera (with an acquisition range of 400 nm to 700 nm, in 10 

nm width wavebands) and a 3D measurement system using fringe projection. As short 

acquisition time is crucial for in vivo measurement, a trade-off between resolution and speed 

has been made so that the acquisition time remains under 5 seconds. 

To account for irradiance drifts, a correction method using the 3D geometry of the 

surface and radiometry principles is proposed. The irradiance received on the face is 

computed for each pixel of the image, and the resulting data used to suppress the irradiance 

drifts in the measured hyperspectral image. This acts as a pre-processing step to be applied 

before image analysis. This correction method, however, failed to yield satisfactory results 

on those parts of the face almost perpendicular to the optical axis of the camera, such as 

the sides of the nose, and was therefore discarded in favor of using an optimization algorithm 

robust to irradiance drifts in the analysis method. 

 

Figure 0.1. 3D hyperspectral acquisition results: (a) oxygen rate, (b) blood volume 
fraction, (c) melanin concentration, and (d) color. 



 

   

Skin analysis from the measured hyperspectral image is performed using optical 

models and an optimization method. Skin is modeled as a two-layer translucent material 

whose absorption and scattering properties are determined by its composition in 

chromophores. Light-skin interactions are modeled using a two-flux method. An inverse 

problem is solved by optimization to retrieve information about skin composition from the 

measured reflectance. The chosen optical models represent a trade-off between accuracy and 

acceptable computation time, which increases exponentially with the number of parameters 

in the model. The resulting chromophore maps can be added to the 3D mesh measured 

using the 3D-hyperspectral camera for display purposes, as shown in Figure 0.1. 

In the spectral reflectance analysis method, skin scattering properties are assumed 

to be the same for everyone and on every part of the body, which represents a shortcoming. 

In the second part of this work, the fringe projector originally intended for measuring 3D 

geometry is used to acquire skin modulation transfer function (MTF), a quantity that yields 

information about both skin absorption and scattering coefficients. The MTF is measured 

using spatial frequency domain imaging (SFDI) and analyzed by an optical model that relies 

on the diffusion equation to estimate skin scattering coefficients. On non-flat objects, 

retrieving such information independently from irradiance drifts is a significant challenge. 

The novelty of the proposed method is that it combines hyperspectral imaging and SFDI 

to obtain skin scattering coefficient maps of the face independently from its shape. 

We emphasize throughout this dissertation the importance of short acquisition time 

for in vivo measurement. The hyperspectral image analysis method, however, is extremely 

time-consuming, preventing real time image analysis. A preliminary attempt to address this 

shortcoming is presented, using neural networks to replace optimization-based analysis. 

Initial results of the method have been promising, and could drastically reduce calculation 

time from around an hour to a second. 

 

  



 

 

 

Résumé 

L’imagerie hyperspectrale, une méthode non invasive permettant de mesurer in vivo 

la réflectance spectrale, a démontré son fort potentiel pour l’analyse des propriétés optiques 

de la peau pour des zones planes et de petite taille : l’association d’un modèle optique de 

peau, d’une modélisation de ses interactions avec la lumière et d’une méthode d’optimisation 

permet d’analyser l’image hyperspectrale en chaque pixel et d’estimer des cartographies de 

concentrations en chromophores, comme la mélanine et le sang. Le but de ce travail est 

l’extension de la méthode pour la mesure et l’analyse de surfaces larges et non planes, et en 

particulier du visage humain. Les mesures d’objets complexes comme le visage sont affectées 

par des variations spatiales d’éclairement, que l’on appelle dérives d’éclairement. Les dérives 

d’éclairement créent des erreurs dans l’analyse des images hyperspectrales, à moins que 

celles-ci soient prisent en compte dans le modèle.  

Dans la première partie de ce travail, nous proposons une évolution du système 

d’acquisition, qui inclut une caméra hyperspectrale grand-champ (permettant l’acquisition 

de bandes spectrales de 10 nm de largeur entre 400 et 700 nm) et un système d’acquisition 

de la géométrie 3D basé sur la projection de franges. Une acquisition courte étant cruciale 

pour les mesures in vivo, un compromis entre résolution et vitesse d’acquisition a été trouvé 

pour que le temps d’acquisition soit inférieur à 5 secondes.  

La caméra hyperspectrale a été combinée avec un scanner 3D dans le but de proposer 

une méthode de correction des dérives d’éclairement utilisant la géométrie 3D et des 

principes de radiométrie. L’éclairement reçu par le visage en chaque pixel de l’image est 

calculé puis cette valeur est utilisée pour supprimer les dérives d’éclairement dans l’image 

hyperspectrale. Ceci constitue une étape de prétraitement à appliquer avant l’analyse de 

l’image hyperspectrale. Cependant, les résultats de cette méthode ne sont pas satisfaisants 

sur les zones du visage qui sont pratiquement perpendiculaires à l’axe optique de la caméra, 

comme les côtés du nez. La méthode a donc été rejetée en faveur de l’utilisation d’un 

algorithme d’optimisation robuste aux dérives d’éclairement dans la méthode d’analyse. 

L’analyse de la peau à partir des images hyperspectrales est basée sur l’utilisation de 

modèles optiques et d’une méthode d’optimisation. La peau est modélisée comme un 

matériau translucide à deux couches, dont les propriétés d’absorption et de diffusion 

dépendent de sa composition en chromophores. Les interactions entre la peau et la lumière 

sont modélisées à l’aide d’une approche à deux flux. La résolution d’un problème inverse 

par optimisation permet de retrouver de l’information sur la composition de la peau en 

chromophores à partir de la réflectance spectrale mesurée. Les modèles optiques choisis sont 

un bon compromis entre une description fidèle de la peau et un temps de calcul acceptable. 



 

   

Ce dernier augmente de manière exponentielle lorsque le nombre de paramètres du modèle 

augmente. Les cartes de chromophores estimées peuvent être affichées sous forme 3D lorsque 

cette information a été mesurée à l’aide de la caméra 3D-hyperspectrale, comme illustré en 

Figure 0.1. 

 

Figure 0.1. 3D hyperspectral acquisition results: (a) oxygen rate, (b) blood volume 
fraction, (c) melanin concentration, and (d) color. 

Un point faible de la méthode d’analyse de la réflectance spectrale est le manque 

d’information sur les propriétés de diffusion de la peau, considérées comme identiques d’une 

personne à l’autre, et d’une partie du corps à l’autre. Dans la seconde partie de ce travail, 

nous utilisons le projecteur de franges, initialement dédié à l’acquisition 3D, pour mesurer 

la fonction de transfert de modulation (FTM) de la peau, qui fournit de l’information à la 

fois sur les propriétés d’absorption et de diffusion. La FTM est mesurée par imagerie dans 

le domaine des fréquences spatiales (SFDI) et analysée à l’aide d’un modèle optique reposant 

sur l’équation de la diffusion dans le but d’estimer le coefficient de diffusion de la peau. Sur 

des objets non-plats, l’extraction d’information indépendamment des dérives d’éclairement 

est un défi important. L’originalité de la méthode proposée repose sur l’association de 

l’imagerie hyperspectrale et de la SFDI dans le but d’estimer des cartes de coefficient de 

diffusion sur le visage indépendamment de sa forme. 

Nous insistons régulièrement sur l’importance du temps d’acquisition court pour des 

mesures in vivo, cependant, l’analyse des données par optimisation demande plusieurs 

heures de calcul, ce qui empêche l’utilisation de la méthode en temps réel. Afin de lever 

cette limitation, nous nous sommes penchés sur l’utilisation des réseaux de neurones, dans 

le but de remplacer la méthode d’analyse par optimisation. Les premiers résultats ont 

montré la possibilité de fortement réduire le temps de calcul, d’environ une heure à une 

seconde. 

Le mémoire est structuré en 10 chapitres : 

Le premier chapitre, l’introduction, présente les enjeux de ce projet et permet de le 

situer dans son contexte applicatif ; 



 

 

 

Le chapitre 2 rappelle les définitions et lois d’optiques utiles à la compréhension de la 

mesure et de la modélisation optique des matériaux translucides ; 

Le chapitre 3 rappelle la structure et composition de la peau, ses propriétés optiques 

et la façon dont elle peut être mesurée optiquement ; 

Le chapitre 4 présente le système d’acquisition hyperspectral grand-champ et le 

chapitre 5 présente le scanner 3D associé à la caméra hyperspectrale. Les performances de 

ces deux systèmes sont discutées en détails ; 

Le chapitre 6 expose une méthode de correction des dérives d’éclairement dont la 

validité est discutée; 

Le chapitre 7 détaille la méthode d’analyse des images hyperspectrales qui permet 

d’estimer des cartographies de concentration en chromophore. 

Le chapitre 8 présente la méthode de mesure de la transludité de la peau par imagerie 

dans le domaine des fréquences spatiales, qui peut être associée à la caméra hyperspectrale, 

et le chapitre 9 présente la méthode d’analyse des mesures SFDI, permettant d’estimer des 

cartographies du coefficient d’absorption ; 

Les conclusions et perspectives de ce travail sont énoncées dans le chapitre 10. 
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Chapter 1.  
Introduction 

 
Skin, by which we interface with the environment, plays an important role in 

protecting our body against pathogens, regulating our temperature, synthetizing vitamin D, 

and mediating sensation. When skin is damaged or afflicted by disease, the consequences 

can be painful, debilitating or even fatal, making the identification and treatment of skin 

injuries and pathologies a major public health issue. From a sociological perspective, our 

skin is one of the first things others notice about us and plays an important role in the 

perception of a person’s beauty, health and age [Matts et al. 2007]. Our collective fascination 

in the way our skin looks is such that an estimated 140 billion dollars are spent every year 

on cosmetology products. It is no surprise then, that the study of human skin has been an 

important field of research for some time, spanning the fields of medicine, dermatology, 

cosmetology, but also in entertainment and art. In painting, for example, the faithful 

reproduction of skin color has long been a challenge for artists, with even a dedicated name 

in French, carnation, literally meaning skin tone [Magnain 2009]. Using glazing and sfumato, 

Leonardo Da Vinci was able to achieve in the Mona Lisa skin tones that are very similar 

to actual skin not only in terms of color but also in terms of spectral reflectance [Elias and 

Cotte 2008]. This shows the capacity of human observers to perceive much more than what 

a RGB-color camera captures, perhaps because we are used to observing skin under different 

spectral illuminations. Returning to a biological perspective of skin, we are also able to 

instinctively judge whether a person is living a healthy lifestyle or not from looking at their 

skin color, most likely because the eye is capable of capturing a light signal that is richer 

than RGB-color. The spectral dimension of skin color is therefore crucial to its accurate 

description, and skin color cannot be reduced to tri-chromatic color only. 

The evaluation of skin in dermatology and cosmetology 

Throughout much of the history of dermatology and cosmetology, skin study has 

mainly been conducted through visual inspection by specialists. Occasionally, this has been 

complemented by invasive biopsy to better understand skin cellular structure or to decide 
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on the benignity or malignancy of a lesion. Relying on human assessment only, however, is 

susceptible to certain shortcomings: it requires highly trained assessors whose time is both 

in demand and costly; it is limited to what is visible at the skin surface; and some 

evaluations are difficult to perform, such as accurately estimating the color of a lesion, or 

quantifying change over time. The development of tools for measuring skin in recent decades 

has proved invaluable to supplementing the judgments of the specialists as well as making 

the study of skin easier, by revealing information that is difficult to assess or that remains 

invisible to the naked eye.  

Challenges of skin optical measurement 

Skin measurement, however, presents many challenges, as skin is alive, soft, with a 

non-flat surface and a complex structure and composition. In particular, methods that 

require applying pressure to the skin invariably modify its properties, and in the case of in 

vitro measurements, these properties are even more drastically altered. In light of this, the 

use of optical methods for skin analysis has grown markedly in recent years, as they allow 

for non-invasive, in vivo and non-contact measurements. In vivo measurements have real 

advantages over in vitro measurements as they are less invasive for the patient. Non-contact 

solutions are also preferable over contact methods because the measurements they yield 

cannot be affected by how much pressure is applied by the operator.  

Among contactless methods, imaging methods have shown particular promise. Unlike 

punctual methods, which provide an average value over a certain area, imaging can be 

applied to heterogeneous materials and yields quantitative information as well as shape 

information. As such, skin images can be analyzed using automatic computation, or can be 

used as a supplement to visual inspection by a specialist. Many imaging methods for skin 

study are now available, with examples given in Chapter 3. These methods are neither 

equivalent nor interchangeable; rather, each is adapted to a specific range of purposes, for 

which their resolution and field of view is adapted. For example, the method that is best-

adapted to study the cellular structure of a melanoma differs from that which is best-suited 

to assess the efficacy of a cosmetic product made to reduce skin redness. Or to give another 

example, a method that is used to study skin cells is likely to have a very high resolution, 

but a field of view that is less than a few mm2; conversely, an imaging system designed to 

study skin at a full body scale is more limited in terms of resolution. 

Context of the project: from research to application 

The project has been developed in collaboration with an industrial partner, Newtone 

Technologies (Lyon, France). The core business of Newtone Technologies is the 

development of image acquisition methods and analysis algorithms to evaluate the efficacy 

of cosmetology products on skin, hair and nails. The general aim of this project is to further 

develop the hyperspectral instrumentation of Newtone Technologies and its skin analysis 

methods. Throughout this work, we have oriented the design of the experimental systems 
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to make them suitable for use outside of a research context. Our particular interest in this 

project is full face imaging. The face is one of the most challenging parts of the body to 

measure because of its size and complex 3D geometry. As such, a method that is capable of 

imaging a full face can in theory also be applied to any other part of the body. The face is 

also of particular interest for applications in cosmetology, the market targeted by the 

industrial partner of the project. 

Skin analysis using optical modeling 

Besides seeing skin from a biomedical point of view, skin can also be considered as an 

optical material: it is a heterogeneous translucent material with which light interacts under 

the form of absorption and scattering, depending on its structure and composition [Igarashi 

et al. 2007; Jacques 2013]. When we look at skin, information about its physiology is 

therefore “hidden” within the optical signal captured by our eye, or by a camera. Optical 

models that describe light propagation within translucent materials can be applied to 

retrieve some of this hidden information, using an inverse approach.  

In addition to imaging, an important part of this work is dedicated to optical modeling 

and analysis methods with the aim of retrieving the information contained in the measured 

signal. Skin is a complex organ which is best described using many parameters. However, 

when applying an inverse approach, the capacity to retrieve information from the measured 

signal tends to be much better when the optical model has fewer parameters than the 

available quantity of information. The selected imaging method should therefore try to 

capture as much information as possible. 

Skin hyperspectral imaging 

Limiting our study to so-called “surface imaging”, hyperspectral imaging (HSI) is one 

of the most promising methods for full face imaging and high resolution measurement, in 

terms of spatial resolution, to be able to discern fine details, and in terms of spectral 

resolution, to be able to gather as much information as possible and allow accurate 

physiological analysis. HSI consists of measuring skin spectral reflectance over many narrow 

and non-overlapping bandwidths that contiguously cover a part of the radiative spectrum. 

In our application, we focus on visible light, between 400 and 700 nm. 

Previous works by Séroul et al. have shown that skin HSI combined with an optical 

model-based analysis can yield information about skin composition, under the form of 

oxygen rate, blood volume content and melanin concentration maps [Seroul et al. 2017]. 

The hyperspectral camera developed by Newtone Technologies and used in Séroul’s work is 

however limited to the acquisition of small and relatively flat areas of the body. 

Consequently, applying such a method on a full face requires further developments, both in 

terms of instrumentation and analysis method. The measurement of a full face presents 

several challenges: for in vivo measurement, acquisition time must be as short as possible 

to reduce the chances of a person moving during acquisition; high resolution and good signal 
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to noise ratio are more difficult to achieve within a large field of few; and finally, although 

illumination is controlled, the measured spectral reflectance is affected by irradiance drifts 

on the curved parts of the face. 

Skin spatial domain frequency imaging 

Once the aforementioned issues are solved, another limitation of skin HSI can be 

identified: the spectral reflectance of skin is determined by both scattering and absorption 

properties, however, these two optical properties cannot be retrieved separately from a 

single measurement. In the analysis of hyperspectral images, this limitation is tackled by 

assuming skin scattering as constant and using a value taken from literature, in order to 

retrieve skin absorption properties. The analysis of skin scattering is however of great 

interest to the field of medicine, and could also pave the way to new analysis methods in 

cosmetology that would allow for more accurate descriptions of skin aging, hydration, 

inflammation, and scar healing. In addition, we are also interested in understanding whether 

the assumption that scattering is constant is generally valid or not, in order to better judge 

the accuracy of the hyperspectral image analysis method that we are using. In order to 

estimate maps of scattering, an additional method for measuring how light is spatially 

spread within skin must be implemented, such as spatial frequency domain imaging (SFDI), 

a method that measures skin modulation transfer function [Cuccia et al. 2009]. 

General content of the work 

In the work reported in this dissertation, we propose firstly to combine wide field of 

view HSI with the measurement of the 3D geometry of the face. This will allow us to tackle 

the issue of irradiance drifts, and to interpret hyperspectral measurements independently 

from the shape of the face. The design of a 3D-HSI system for in vivo measurement is a 

significant challenge, mainly due to the difficulty of acquiring a large quantity of data within 

few seconds. Although 3D-spectral imaging is currently an active field of research, the few 

existing near-field 3D-spectral imaging systems are not entirely suited to broad spectral and 

spatial measurement on living organs: they are either multispectral systems [Paquit et al. 

2009; Hirai et al. 2016; Zhang et al. 2016] providing spectral resolutions that are too low to 

be used for optical analysis, or in the case of those 3D-spectral imaging systems that do 

provide sufficiently high spectral resolutions [Kim 2013], the acquisition process is not 

adapted to living subjects. As far as we know, none of the existing systems are able to 

achieve high resolution images within a short acquisition time, we therefore designed a 3D-

HSI system dedicated to full face measurement. 

Subsequently, we propose to apply SFDI to measure skin modulation transfer function 

on a full face, and then to estimate maps of scattering coefficient. As is the case with 

hyperspectral imaging, the measured modulation transfer function is strongly affected by 

irradiance drifts for complex surfaces like the face. To design an analysis method 

independent from irradiance drifts, we propose to combine SFDI with HSI.  One of the main 
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challenges of SFDI-HSI in vivo acquisition lies in the necessity of acquiring a large quantity 

of data within a short duration of time (preferably below 5 seconds) which leads to 

significant constraints in the design of the acquisition method. 

Validating the estimated skin parameters 

As we do not have access to any “ground truth” values for the parameters that we 

are estimating in vivo, we are also faced with the challenge of validating the analysis 

methods throughout the work. For the validation of biomedical methods, it is common to 

use samples whose optical properties are similar to biological tissues, called “phantoms”. 

However, as such samples have a different composition and structure than skin, our analysis 

method cannot be applied to them. Hence, alternative methodologies to evaluate the 

pertinence and accuracy of the analysis results will be proposed throughout the dissertation. 

Structure of the report 

The present work is constructed in three main parts. The first part, comprising 

Chapters 2 and 3, gives an overview of the optical study of translucent material, and in 

particular of skin.  Chapter 2 covers the optical concepts used in this work, along with few 

typical optical models used to describe light transport in translucent materials. Chapter 3 

presents the specificities of skin as a biological material and as an optical material, as well 

as few acquisition tools commonly used for its study. 

In the second part, Chapters 4 to 7 describe our methods for full face hyperspectral 

acquisition and for analysis that is robust to irradiance drifts. The work presented in this 

part have been the object of an oral presentation at the Material Appearance conference of 

the Electronic Imaging Symposium in 2018 [Gevaux et al. 2018] and has been published in 

a journal [Gevaux et al. 2019a]. Chapter 4 describes the hyperspectral camera, while 

Chapter 5 details the 3D measurement system with which the camera is combined. Chapter 

6 proposes a method for irradiance drift correction that uses the 3D geometry of the 

measured face, and Chapter 7 presents the chromophore map estimation method and the 

optical model associated with it. 

Finally, the third part of the dissertation, which comprises Chapters 8 and 9, is 

dedicated to skin scattering measurement using SFDI and its optical analysis, which has 

been orally presented in the Imaging, Manipulation, and Analysis of Biomolecules, Cells, 

and Tissues XVII conference of SPIE Bios in 2019 [Gevaux et al. 2019b]. Experiments are 

detailed in Chapter 8 and analysis presented in Chapter 9.

 

 



 

   

 

 



 

Chapter 2.  
Bases of optics for the 

measurement and modeling of 

translucent materials 

Throughout this work, many optical objects, including light sources, imaging systems, 

polarizers, surfaces, translucent materials and so on, will be manipulated, implicating a 

large range of optical concepts. This chapter gives an overview of the optical models and 

radiometry concepts necessary for understanding how light interacts with a translucent 

multilayer material such as human skin, as well as for understanding optical measurements, 

including imaging. 

A translucent material is commonly described as a material that allows light to pass 

through. However, such a definition, based on transmission, remains ambiguous—according 

to this definition, a very thick piece of translucent material that does not allow light to pass 

through would be described as opaque rather than translucent, although its visual 

appearance is influenced by subsurface light transport. We define translucent materials as 

scattering and absorbing materials for which subsurface light transport is not negligible. 

We also prefer the term “strongly scattering material” rather than “opaque” to designate 

materials for which the subsurface light transport is strongly limited, that-is-to-say that 

any incident ray is absorbed or backscattered so quickly that the distance it can travel 

within the material is almost zero. 

The chapter is organized as follows: Section 2.1 presents fundamental radiometric 

quantities, which characterize the geometrical distribution of energy in space. Section 2.2 

describes the concepts used to characterize the reflection or transmission properties of 

objects. Section 2.3 describes the categories of light-material interaction and Section 2.4 

gives an overview of some of the existing models for light propagation in random particle 

media. Finally, although we are mainly working with spectral quantities, images are often 



28 Bases of optics for the measurement and modeling of translucent materials 

   

displayed as color images for easier visualization. Section 2.5 describes the color conversion 

process used throughout this work. 

2.1. Basic radiometry concepts 
Radiometry is the process of measuring optical radiation emitted by a source, detected 

by a sensor, reflected at an optical interface or transmitted through an optical object. 

Optical radiation is measured in energy units, and its spectrum covers the wavelength range 

from about 0.01 µm to 1000 µm. In practice however, the part of the radiative spectrum 

that is considered is often reduced according to the properties of the source or detector. The 

perception of light by a human observer is studied in a separate discipline called photometry, 

which uses a different set of units and takes into account the sensitivity of the human eye. 

A fundamental quantity used in radiometry is the flux F, expressed in watts (W). 

Flux corresponds to the energy radiated per unit of time, and is used to define three other 

fundamental quantities that describe the geometrical distribution of energy in space: 

intensity, irradiance and radiance. Before explicitly defining these quantities, the 

geometrical concepts of solid angle and geometrical extent should be elucidated. In 

radiometry, radiation does not travel along a line from one point to another as is the case 

in geometrical optics, since the probability of a photon being precisely located on a line is 

zero. Radiation must rather be considered as flowing through a “pencil of light”, 

characterized by a geometrical extent, considering a small area around each point and a 

small set of directions, or solid angle. 

2.1.a. Solid angle and geometrical extent 

A solid angle measures the amount of field of view covered by an object from a 

particular point. If we consider a sphere of radius R centered at this point, the solid angle, 

in steradian (sr), is the area of the segment of sphere that corresponds to the field of view, 

divided by R2.  

 

Figure 2.1. Infinitesimal solid angle in the direction (θ, φ). 
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In spherical coordinates, the infinitesimal solid angle dω in the direction characterized 

by the polar and azimuthal coordinates (θ, φ) (see Figure 2.1) is: 

sind d d    . (2.1)

 

Figure 2.2. Geometrical extent between two small areas dA1 and dA2. 

Geometrical extent can be defined by considering two small area elements dA1 and 

dA2 which are located at P1 and P2, with the distance between them being d, as illustrated 

in Figure 2.2. The normal directions to these areas form the angles θ1 and θ2 with the 

direction of the light ray given by the line (P1P2). The geometrical extent can be written 

either from P1 or from P2 and is equal to the apparent area around the considered point, 

multiplied by the solid angle subtended by the opposite area: 

2 1 1 2 2
1 1 1 2 2 2 2

( cos )( cos )
cos cos

dA dA
d G dA d dA d

d
  

 
    . (2.2)

2.1.b. Radiometry quantities 

Intensity I, expressed in W.sr-1, is the density of flux per unit solid angle that 

propagates in a specific direction characterized by the infinitesimal solid angle dω: 

dF
I

d



. (2.3)

Intensity is often used to describe how light is emitted from a point source. When the 

light emitted by a point source is the same in all directions, the source is isotropic. 

Irradiance E, expressed in W.m-2, is the density of flux per unit area incident on an 

area dA: 

dF
E

dA
 . (2.4)
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Exitance M, in W.m-2, is the opposite of irradiance in that it is the density of flux per 

unit area that is radiated from an area dA into a hemisphere. 

 

Figure 2.3. Useful notations in the definition of the inverse square law. 

The relationship between irradiance and intensity is given by the inverse square law. 

Let us consider a source of intensity I that illuminates a small area dA, located at a distance 

d in the direction (θ, φ) and oriented with an angle α, as illustrated in Figure 2.3. When d 

is sufficiently large, the irradiance E received by this area is: 

2

( , )cosI
E

d


  
. (2.5)

Radiance L, in W.m-2.sr-1, is the flux per unit extent d2G, that-is-to-say the flux per 

unit area and per unit projected solid angle: 

2

2

d F
L

d G
 . (2.6)

A surface that is perfectly diffusing, i.e. that emits or reflects the same radiance in 

every direction, is called Lambertian. For a Lambertian reflector, the relation between 

radiance L and total exitance M is given by Lambert’s law: 

M L  . (2.7)

Radiance is the radiometric quantity best-adapted to describing light pencils, and can 

be used to describe light flowing through an optical system, toward a detector or from a 

surface source, i.e. a surface that emits or reflects light. 

2.2. Radiometry definitions for surfaces 
In physics, the light reflection and transmission properties of objects are characterized 

by various radiometric quantities, formalized by Nicodemus et al. [Nicodemus et al. 1977]. 
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These quantities allow us to describe how much light is reflected (the concept of 

Reflectance), in which directions (the concept of Bidirectional Reflectance Distribution 

Function – BRDF), and how far light travels inside the material before emerging from it 

(the concept of Bidirectional Scattering-Surface Reflectance Distribution Function – 

BSSRDF). 

For the study of translucent materials, the concept of Point Spread Function (PSF) 

can be added to these three definitions, and can be related to both the material Reflectance 

and BSSRDF. The definitions of these radiometry concepts are covered in this section. 

2.2.a. Reflectance 

Reflectance R, a dimensionless quantity, denotes any ratio of reflected flux Fr to 

incident flux Fi relative to a same surface element.  

r

i

F
R

F
 . (2.8)

It generally depends upon wavelength, illumination geometry and orientation (solid 

angle), observation geometry and orientation (solid angle), polarization and position on the 

surface [McCluney 1994]. This latter parameter is often ignored in the case of uniform 

materials. Spectral reflectance is defined as the reflectance in successive narrow wavebands 

of similar bandwidth. 

 

Figure 2.4. Most common geometries of illumination and observation for the 
definition of reflectance. 

Reflectance is a general concept that has no signification until precise geometries for 

illumination and observation are specified, since different combinations of illumination and 

observation geometries generate very different reflectance values. For example, the 

reflectance of an aluminum mirror illuminated by collimated light at a certain angle is 
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around 0.8 if the observation system captures the specularly reflected light, and 0 otherwise. 

To allow simpler communication of these geometries, Nicomedus proposed a classification  

into nine geometries based on 3 types of solid angles for the incident light and for the 

captured light [Nicodemus et al. 1977]: infinitesimal, conical and hemispherical (Figure 2.4). 

Rigorously, when the incident light fulfills a non-infinitesimal cone, its radiance distribution 

should also be specified. In the cases of illumination through conical and hemispherical solid 

angles, it is assumed in Nicodemus classification that the incident radiance is constant (i.e. 

light is perfectly diffuse). 

Reflectance is hardly measurable in practice, because this would require measuring 

the incident flux, which is difficult. The measurement of a slightly different quantity called 

reflectance factor is therefore often used instead. Reflectance factor is defined as a ratio of 

flux reflected by the surface Fsample to the flux reflected in the same observation direction 

by a perfect diffuser irradiated in exactly the same way as the sample Fref : 

ˆ sample

ref

F
R

F
 . (2.9)

Reflectance has values limited to the interval [0, 1] from the law of conservation of 

energy. Reflectance factor, however, can have large values, such as in the case of a mirror 

measured in the specular direction. 

Reflectance and reflectance factor do not describe the spatial and directional aspects 

of light reflection, which require the introduction of the notions of Bidirectional Reflectance 

Distribution Function (BRDF) and Bidirectional Scattering-Surface Reflectance 

Distribution Function (BSSRDF). 

2.2.b. BRDF and BSSRDF 

Bidirectional Reflectance Distribution Function (BRDF), expressed in sr-1, is a 

function defined for every configuration of incidence and observation directions, denoted 

respectively as i and o and described by their spherical coordinates (θi, φi) and (θo, φo) in 

respect to the normal of the surface. BRDF is the ratio of the radiance Lo issued from an 

infinitesimal area going towards the direction o, to the irradiance Ei produced by a 

collimated illumination of this area from the direction i (Figure 2.5.a). 

( , )
( , , , )

( , )
o o o

o o i i
i i i

L
BRDF

E


 
   

 
. (2.10)

BRDF can also depend on the position on the surface, the wavelength and the 

polarization state of the incident light. In this work, the influence of the polarization state 

of light is ignored, on the assumption that it plays a negligible role in the scattering 

materials that we are studying. 
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(a) (b) 

Figure 2.5. Scheme of the angles and coordinates used in the definition of (a) the 
BRDF and (b) the BSSRDF. 

In his article, Nicodemus states that for uniform irradiance over a “large enough” area 

of a uniform and isotropic surface, BRDF is the basic quantity that characterizes the 

reflection properties of the surface [Nicodemus et al. 1977]. Nicodemus, however, does not 

go into any further detail about the meaning of “large enough”, which depends on the 

properties of the material. For strongly scattering materials, the effects of light subsurface 

scattering are not noticeable, and BRDF is sufficient to characterize the material even for 

very small illuminated areas. For translucent materials however, light can travel further in 

the material, and subsurface scattering affects the reflected radiance, unless a very large 

area is illuminated. Thus, it is necessary to refer to the Bidirectional Scattering-Surface 

Reflectance Distribution Function (BSSRDF) for an accurate description of a translucent 

material. Contrary to BRDF, BSSRDF can fully describe the appearance of a translucent 

object when illumination is non-uniform or punctual, as it takes into account the subsurface 

light transport in addition to the angular distribution of the reflected light. 

Bidirectional Scattering-Surface Reflectance Distribution Function (BSSRDF), 

expressed in m-2.sr-1, relates the radiance Lo leaving the surface in a point Ao(xo, yo), and 

towards a direction o(θo, φo), and the incident flux Fi received from a given direction i(θi, φi) 

at a point Ai(xi, yi) (Figure 2.5.b). 

( , , , )
( , , , , , , , )

( , , , )
o o o o o

o o i i o o i i
i i i i i

L x y
BSSRDF x y x y

F x y


 
   

 
. (2.11)

The concept of BSSRDF has been widely used in image synthesis since the work of 

Jensen et al., who showed the importance of using the BSSRDF instead of the BRDF for 

realistic rendering of translucent materials such as marble, milk and human skin [Jensen et 

al. 2001].  
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2.2.c. Point spread function and modulation transfer function 

Surface and subsurface interactions between light and a material can be fully described 

using BSSRDF, however it is a rather complex quantity to measure and to use. For the 

study of translucent materials, the Point Spread Function (PSF) is a simpler quantity 

describing the spatial aspects of subsurface light scattering. When translucent materials are 

illuminated punctually, some light exits further from the illuminated area due to subsurface 

scattering, creating a region of gradually diminishing brightness around the point of 

illumination. The pattern of light that is observed is the PSF of the material, expressed in 

m-2. PSF is a function of the incident light geometry, observation geometry, wavelength, 

polarization state and location on the sample. It is defined as the ratio of the exitance of 

an infinitesimal area located in Ao(xo, yo) to the flux Fi punctually received at the point 

Ai(xi, yi). For homogeneous materials, PSF does not depend on the location of the point Ai 

that receives light. Similarly to reflectance, PSF can be characterized according to the 

classification of geometries of measurement shown in Figure 2.4. 

PSF can be related to BSSRDF by integrating over the solid angles Γi and Γo, which 

define respectively the illumination and observation configurations. By considering the 

incident radiance Li(θi, φi) flowing in the cone Γi,, the relationship between PSF and 

BSSRDF can be written as: 

 
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, (2.12)

where dΩi = cosθisinθidθidφi and dΩo = cosθosinθodθodφo. 

PSF can also be related to reflectance. When a surface receives a flux Fi punctually, 

its reflectance can be deduced from the PSF through a spatial integration over an area of 

observation A, which is large compared to the dimensions of the PSF: 

 ,
( , )

o o
o o o ox y A

R PSF x y dx dy


  . (2.13)

PSF can be used to describe the light pattern Mo(xo, yo) that results from a 

translucent material receiving a flux of spatial distribution Fi(x, y): 

(( , ) )( , )
o io o o o

M PSF Fx y x y  , (2.14)

where ⨂ denotes the two-dimensional convolution, defined as: 

( , ) ( , ) ( , ) ( , )
u v

A x y B x y A x u y v B x y dudv     . (2.15)

In biomedical optics, PSF has often been referred to as diffuse reflectance [Wilson and 

Jacques 1990], however, we prefer the term of PSF which, in our opinion, makes clear the 
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fact that this quantity describes the diffuse reflectance when illumination is punctual. The 

PSF used to describe the performance of an imaging system is often normalized to unity, 

which means that it does not account for how much light is transmitted (or reflected) by 

the system. In this thesis, the PSF that we use is normalized to the reflectance, as expressed 

in Eq. (2.13). 

Modulation Transfer Function (MTF), the Fourier transform of PSF in the spatial 

frequency domain, can also be used to characterize translucent materials. It describes the 

loss of contrast of a pattern image projected onto the material according to the spatial 

frequency of the pattern. Contrary to the MTF commonly used to describe the performances 

of imaging systems, it also contains information about the reflectance (or transmittance, 

when considering light travelling through a translucent material) of the material: as PSF is 

normalized to the reflectance, MTF at zero is the reflectance. 

2.3. Surface and volume light interactions for 
translucent materials 
When a translucent material (often referred to as “turbid” in biomedical optics) is 

illuminated, light undergoes a number of events at the surface of the material and within 

its volume, illustrated by Figure 2.6. Photons can also be emitted in the material for 

fluorescent materials, however this possibility is not considered in this work. 

 

Figure 2.6. Types of light interaction with a translucent material: (a) Specular 
reflection and refraction, (b) surface scattering, (c) volume scattering (or subsurface 
scattering) and (d) volume absorption. 

2.3.a. Surface reflection 

The events can be reflections at the interface between the material and the outside 

media (generally air) due to a change of refractive index. The direction of reflection depends 
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on the surface topology. If the surface is perfectly smooth, such as a polished surface or a 

mirror, reflection is specular only (Figure 2.6.a) and can be described by the Snell-Descartes 

laws. The fraction of reflected light when the incident angle is θ is given by Fresnel formulae: 

 
2

2 2 2

2 2 2

cos sin

cos sin
p

n n
R

n n

   
   

 


 
, (2.16)
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 

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with Rp and Rs the respective reflection coefficients for p- and s-polarized light, and n the 

relative refractive index of the interface defined as n2/n1 when light propagates in a media 

of index n1 and is incident on a media of index n2. The reflection coefficient for natural light 

is the average of Rp and Rs. 

If the surface is rough, light is scattered (Figure 2.6.b). For many materials, surface 

reflection can be approximately described as a sum of specular reflection and diffuse 

reflection, a hypothesis used in some simple BRDF models for computer graphics such as 

the Phong reflection model [Phong 1975]. However, for more realistic rendering, slope 

distribution models allow a more accurate description of rough surface scattering by taking 

into account the surface topology. These models, such as the one developed by Torrance, 

Sparrow and Cook [Torrance and Sparrow 1967; Cook and Torrance 1982], model the rough 

interface as a set of randomly inclined microfacets reflecting and transmitting light as flat 

oblique interfaces. These models apply to rough surfaces for which the roughness 

characteristic length is much larger than light wavelength. Within these conditions, 

diffraction is negligible and light behavior relies on geometrical optics. 

2.3.b. Subsurface interactions 

Subsurface interactions, or volume interactions, are scattering and absorption events 

(Figure 2.6.c and d). Scattering and absorption events that occur in translucent materials 

can be modeled with a radiometric approach, such as the radiative transfer formalism, which 

is the subject of the next section. 

Absorption, which occurs when the photon frequency is resonant with the transition 

frequencies of the atoms in the material, corresponds to a photon energy being taken up by 

matter and converted into another form of energy [Fox 2002]. Absorption is generally 

characterized by how much a light flux is attenuated when travelling through the material, 

using quantities such as the absorption coefficient µa, in m-1, defined according to the 

surviving fraction of the incident light T travelling a unity length ∂L as in Eq. (2.18), or 

the absorption mean-free-path labs = 1/µa (in m). 
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Scattering denotes a photon’s deviation due to variations of refractive index within 

the volume. For simplicity, we consider that the scattering centers are particles. Depending 

on the shape and size of the particle, elastic scattering (the photon is deviated with no 

energy loss) can be modeled using the Rayleigh formalism [Rayleigh 1871] or the Mie theory 

[Mie 1908]. The Rayleigh formalism applies for particles much smaller than the wavelength 

and can be used to explain phenomenon such as the blue sky and the redness of sunsets. 

The Mie theory describes scattering by larger particles such as fat droplets in milk.  

Scattering can be described using two parameters. The first parameter is the scattering 

coefficient µs, which represents the probability of a photon being scattered when travelling 

a unity length, and is expressed in m-1, defined similarly as the absorption coefficient. The 

scattering coefficient can be replaced by the scattering mean-free-path lsca = 1/µs (in m). 

The second parameter is the scattering phase function P(θ), the angular distribution of light 

intensity scattered by a particle at a given wavelength. This function, which shows the 

chances that a photon will be scattered in a particular direction θ, is normalized: 

 , 1
sphere

P d     . (2.19)

When multiple scattering occurs, it is common, for the sake of simplicity, to average 

this function over the whole sphere and use the anisotropy coefficient g: 

 cos
1

,
4 sphere

g P d     


. (2.20)

The anisotropy coefficient, which varies between -1 and 1, indicates whether light is 

mostly scattered forwards (0 < g ≤ 1), as in the example shown in Figure 2.7, or backwards 

(-1 ≤ g < 0). For isotropic scattering, g = 0.  

 

Figure 2.7. Example of phase function. 

In order to take anisotropy into account, the reduced scattering coefficient 

µs’ = (1 - g)µs is often used instead of the scattering coefficient. 
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2.3.c. Multilayer materials 

For multilayer materials, the material’s overall reflectance properties depends on each 

layer properties. 

 

Figure 2.8. Light propagation in a two-layer material. 

We consider a two-layer material, illustrated by Figure 2.8, composed of homogeneous 

layers for which the direction of measurement, i.e. whether light travels from top to bottom 

or inversely, does not impact reflectance and transmittance. They are described by their 

reflectance and transmittance, (R1, T1) for the top layer and (R2, T2) for the bottom layer. 

The Kubelka formulae [Kubelka 1954] describes the total reflectance R and the total 

transmittance T of the two-layer material : 

2
1 2

1
1 21

T R
R R

RR
 


. (2.21)

1 2

1 21

T T
T

R R



. (2.22)

2.3.d. Light polarization 

The light-material interactions described above affect the polarization state of light. 

This property can be used to separate the surface specular reflection from the light exiting 

the material after being scattered inside the volume. Indeed, as long as light is not scattered, 

its polarization is maintained. Thus, the polarization state of light is preserved during a 

specular reflection. However, light is depolarized when it undergoes multiple scattering 

events, either within a translucent material, or at the surface of a rough material. 

Consequently, when a translucent material is illuminated with linearly polarized light, 

placing a second linear polarizer (called an analyzer) in front of the detector allows us to 
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either retain or remove the surface specular reflection, depending on the orientation of the 

analyzer. 

 

Figure 2.9. Principle of the cross-polarization (CP) configuration used to remove the 
specular component of reflection from the signal received by the sensor. 

When the surface is viewed in a cross-polarization configuration (CP), i.e. when the 

analyzer is oriented perpendicularly to the incident light polarization, the specular reflection 

is cut and the depolarized light, which comprises volume scattering reflection and surface 

diffuse reflection, is partly transmitted by the analyzer, as illustrated by Figure 2.9. When 

using a parallel-polarization configuration (PP), the specular reflection is completely 

transmitted and the volume scattering reflection is partly transmitted by the analyzer. 

Illustrations of applications of PP and CP configurations for skin imaging are presented in 

Chapter 3. 

2.4. Modeling light propagation within random 
particle media 
Historically, two approaches have been developed to model light scattering: analytical 

theory, which takes fundamental equations such as the Maxwell equations as its starting 

point, and transport theory, also called radiative transfer theory, which considers the 

transport of energy through a medium containing particles. The transport theory is based 

on the approximation that powers, rather than fields, can be added, neglecting any wave 

effects (such as interferential or diffraction effects), except for the description of scattering 

by a single center.  

In this section, we consider only the transfer theory and the models that are based on 

it, as in most cases, this formalism is sufficient to model light propagation in translucent 
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materials. The transfer theory gives a general model to describe wave propagation in the 

presence of random particles. The resolution of the radiative transfer equation can, however, 

be complex, and simpler models which derive from the transfer theory are often preferred 

in practice. In the case of a parallel-plane problem, flux models or the diffusion 

approximation have the advantage of being simpler while maintaining an acceptable degree 

of accuracy. In this section, the construction of the radiative transfer model, the diffusion 

equation and the Kubelka-Munk model are summarized along with discussions about their 

range of validity. 

2.4.a. The radiative transfer theory 

The radiative transfer theory, initiated by Schuster in 1903 and to which 

Chandrasekhar significantly contributed [Chandrasekhar 1943; Chandrasekhar 1960], is a 

unified formulation of the transport of energy through a medium containing particles, 

without considering wave equations. The transfer theory is able to describe a wide range of 

light-material interactions, for materials including atmosphere, oceans, paper or biological 

tissue. Diffraction and interference effects are not included, as this model considers the 

addition of powers rather than the addition of waves. In this section, we use the same 

notations as Ishimaru [Ishimaru 1978]. 

The most important and fundamental quantity used in the radiative transfer theory 

is the specific intensity I(r, s) also called spectral radiance, defined as follow: For a given 

direction defined by a unit vector s, at a point r of a given random medium, the specific 

intensity is the average power flux density within a unit solid angle (illustrated in Figure 

2.10.a) and within a unit frequency band centered at frequency υ. Its unit is W.m-2.sr-1.Hz- 1. 

In our application, the frequency dependence is omitted as there is no energy exchange 

between frequencies. 

 
(a) (b) 

Figure 2.10. Useful notations in the definition of (a) the specific intensity and (b) 
elementary cylinder [Ishimaru 1978]. 

Several useful quantities in the radiative transfer theory can be defined from the 

specific intensity, such as flux (forward and backward) and average intensity: 
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- The flux dF flowing within a solid angle dω through an elementary area da, 
respectively oriented in the directions s and s0 as illustrated in Figure 2.10.a, is: 

( ),dF I r dad 
0

s s s  . (2.23)

- The forward flux F+, which is the total flux passing through a small area da of 
normal vector s0 in the forward direction: 

2
,( ), ) (F r I r d 

 0 0
s s s s


 . (2.24)

- Similarly, the backward flux F-, which denotes the total flux passing through da in 
the backwards direction, is given by the same expression as Eq. (2.24), with an 
integration over the hemisphere oriented according to the backward direction -s0. 

- The average intensity U is defined as: 

4
,(

1
( )  

4
)U r I r d  s





. (2.25)

Let us consider an elementary cylinder illustrated in Figure 2.10.b: it is centered on 

point r, of volume dS, and contains ρdS particles, with ρ the number of particles in a unit 

volume, called number density. For a specific intensity I(r, s) incident on this volume, each 

particle scatters σsI and absorbs σaI, with σs and σa the particle scattering and absorption 

cross sections. The intensity loss for all particles is therefore:  

, ( ) ( , )

( , )

( )
loss s a

t

dI r ds I r

ds I r

  

 

s s

s

  

 
, (2.26)

with σt = σa + σs.  

In addition to this intensity loss, some of the incident power flowing into the solid 

angle dω’ along the direction s’ can scatter inside the solid angle dω along the direction s. 

As there are ρdS particles in the cylinder, and scattered flux can come from any direction 

s’, the intensity gain can be expressed in function of the amplitude function f(s, s’): 

2

4
, ( ,( ) ) ( , ) '

gain
dI r ds f I r d s s s' s'


  . (2.27)

In Eq. (2.27), the amplitude function can be replaced by the phase function defined 

by: 

24
( , ) ( , )

t

p fs s' s s'



, (2.28)

04

1
( , ) '

4
t

sp d w  s s'





 
, (2.29)
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where w0 is called the albedo of a single particle. We can notice here that the scattering 

phase function P(θ) defined in Section 2.3 is slightly different from p(s, s’), as P(θ) is 

normalized to unity. 

Finally, if light is emitted within the volume, the specific intensity increases by: 

, . ( ),
gain emission

dI dS r s , (2.30)

where ε denotes the power radiation per unit volume per unit solid angle in the direction s.  

The radiative transfer equation (RTE) is given by considering these three sources of 

specific intensity losses and gains. In the following equations, we introduce the absorption, 

scattering and total coefficients µa = ρσa, µs = ρσs and µt = ρσt. The addition of  Eqs. (2.26), 

(2.27) and (2.30), yields the following expression: 

4

( , )
( , ) ( , ) ( , ) ( , )

4
t

t

dI r
I r p I r d r

dS
   

s
s s s' s s




  


. (2.31)

The specific intensity is often separated into two parts: the reduced incident intensity 

Iri and the diffuse intensity Id. The reduced incident intensity is the part of the incident flux 

which decreases due to absorption and scattering: 

( , )
( , )ri

rit

dI r

S
I

d
r 

s
s . (2.32)

The diffuse intensity is the specific intensity produced within the medium due to 

scattering. Replacing the specific intensity by Iri + Id in Eq. (2.31), the RTE can be 

rewritten as a function of the diffuse intensity: 

4

( , )
( , ) ( , ) ( , ) ( , ) ( , )

4t
d t

d d ri

d
d

dS
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s s s' s s s




   


 

with 

(2.33)

4
( , ) ( , ) ( , )

4
t

ri ri
r p I r d  s s s' s




 


. (2.34)

When there is no light emission within the material, ε is zero. The term εri is called 

the equivalent source function generated by the reduced incident intensity. Equation (2.33) 

can be further simplified by defining the phase function p using a model, such as the 

Rayleight or the Henyey-Greestrein phase function [Henyey and Greenstein 1941]. 

Except in simple cases, the solution to the radiative transport equation can only be 

done by simulation, such as by using Monte Carlo simulations. Approximated models exist 

in particular cases, as explained in the following. 
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2.4.b. The diffusion approximation 

The diffusion equation is an approximated solution of the radiative transfer equation, 

valid for dense materials — where the particle content is much greater than 1%, and where 

a high number of scattering events occur: the diffuse intensity Id defined in the previous 

section encounters many particles and is scattered almost uniformly in all directions. The 

diffusion approximation is valid for materials that are not too absorbing (µa << µs), such 

as is generally the case for biological tissues, and for samples whose dimensions are larger 

than the scattering mean free path (1/µs). In order to allow for simpler expressions, we 

limit our study to materials in which there is no light emission within the material. 

  

Figure 2.11. Almost uniform diffuse intensity Id in the diffusion approximation 
[Ishimaru 1978]. 

In the diffusion approximation, the angular distribution of the diffuse intensity is 

almost uniform. It is not, however, completely uniform, as the total flux would then be zero. 

The diffuse intensity magnitude is thus a little higher in the direction of propagation, and 

is written in a first order approximation as a sum of an isotropic term and a non-isotropic 

term assumed to be proportional to the total flux, as described in Figure 2.11. With c a 

constant, we have: 

( , ( ) ( ))
d d

I rU cr   
d

rs F s , (2.35)

with the diffuse flux vector 

4
( , )( ) ( )

d d
r rF I d  d f

F s sr s


 , (2.36)

and the average diffuse intensity 

4
(( ) )1 4 ,

d d
U r I r d  s


  . 

(2.37)

Using the relationship between the magnitude of the diffuse flux Fd and the diffuse 

intensity Id [Eq. (2.36)] in Eq. (2.35), we obtain: 

3 4c  . (2.38)
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Combining Eqs. (2.35) and (2.38) with the RTE for a diffuse intensity [Eq. (2.33)] 

yields the diffusion approximation equation after performing the steps below [Ishimaru 

1978]. 

- First, the integration of the RTE over 4π of solid angle gives: 

( ) 4 ( ) 4
a s rid

µ r µv U Udi   
d

F r   . (2.39)

- Then, combining Eq. (2.35) with Eq. (2.33) and the additional hypothesis that 
p(�̂, �̂′) is function of only the angle between s and s’, yields: 

1
3 3 3

( )
4 4 4d t d t s d t ri

gradU grad µ U µ µ U µ p           
d d d

s s F s F s F s 
  

 (2.40)

with p1 defined as 

1 04
1 4 ( , )p p d gw   s s' s s'


  . (2.41)

- Equation (2.40) multiplied by s and integrated over 4π yields: 

1 4

3 3
(1 ) ( , )

4 4d t ri
gradU µ p r d    d

F s s

 

 
. (2.42)

- Finally, Eq. (2.42) allows us to express Fd, which can consequently be eliminated 
from Eq. (2.39) and yields the diffusion approximation equation: 

2

4
(

3
( ) ( ) 3  ( d

4
) , )

d d d s tr ri ri
U r U r r rµ µ U       s s
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
  


 (2.43)

with 

1  (1 ) (1 ) 
atr t s

µ p µ µ gµ     , (2.44)

2 3
d a tr

µ µ , (2.45)

and 

4
( ) ( ,4 )1

ri ri
U r I dr  s


  . 

(2.46)

The diffusion approximation equation [Eq. (2.43)] can be further simplified when the 

geometry of the problem is defined. Let us consider a thin collimated light beam illuminating 

a slab of particles along its normal direction. We consider the orthonormal coordinates 

system (X, Y, Z) centered on the illuminated area, with the Z axis normal to the surface 

and directed inward the material. With ρ the distance to the origin on the (X, Y) plane, 

and z the coordinate along the Z axis, the reduced incident intensity is: 
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I Fr µ z  s s z  , (2.47)

and the corresponding average incident intensity is 
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exp( )(

4
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ri t
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


 . (2.48)

The last term of Eq. (2.43) implies the equivalent source function εri, defined in Eq. 

(2.34). This last term can be further simplified using Eq. (2.47): 
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For isotropic scattering, p(s, s’) is constant, thus 
4

( , )p d  s s'


 = 0, and the term 

expressed in Eq. (2.49) is zero. 

Substituting Eqs. (2.48) and (2.49) into Eq. (2.43) yields a simplified diffusion 

equation applicable for collimated incident beams, with S a source term: 

2( ) ( ) ( )
d d d

U r U r S r    . (2.50)
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3
( ) ( )exp( )

4
s tr

t

µ µ
S r F µ z 


. (2.51)

The diffusion equation can also be expressed as a function of the fluence φ = 4πUd 

(or diffuse photon flux density) and the diffusion coefficient D = 1/3µtr:  

0( ) ( ) ( )exp( )a s
t

µ µ
r r F µ z

D D
       . (2.52)

The diffusion equation can be applied to simulate the fluence obtained when a 

translucent material of known optical parameters µa and µs’ is illuminated by a thin pencil 

of light. Such a model can be applied for homogeneous or multi-layer materials [Schmitt et 

al. 1990] using the appropriate boundary conditions. Figure 2.12, which represents 

simulations performed for various materials and has been reproduced after [Schmitt et al. 

1990], shows that light subsurface transport presents different patterns depending on the 

material scattering and absorption properties: light travels wider in terms of radial distance 

from the entrance point when µa decreases, and deeper in the material when µs’ decreases. 



46 Bases of optics for the measurement and modeling of translucent materials 

   

 

Figure 2.12. Fluence contour plot simulated using the diffusion approximation for 
homogenous materials of difference absorption and reduced scattering coefficients µa 
and µs’ (reproduced from [Schmitt et al. 1990]). 

2.4.c. The Kubelka-Munk model 

The theory introduced by Kubelka and Munk in 1931 [Kubelka and Munk 1931] 

proposes a two-flux model for light propagation in parallel-plane materials illuminated by 

diffuse light. It models light propagation as two diffuse fluxes travelling perpendicularly to 

the layer in the forward and backward directions. The Kubelka-Munk (KM) model has been 

extensively used due to its simplicity and its relative accuracy as a predictive tool. Initially 

applied to printed materials, its use has been extended to the modeling of layered materials 

such as skin or makeup [Doi et al. 2006]. 

 

Figure 2.13. Positive and negative flux flowing through a slice of thickness dz located 
at a depth z. 
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Let us consider a homogeneous parallel-plane material which scatters and absorbs 

light, and a thin horizontal slice of this material, located at a depth z and of thickness dz.  

This material is diffusely illuminated, and does not interact with light besides through 

absorption and scattering, characterized by the absorption and scattering coefficients K and 

S. Let us consider diffuse fluxes I and J, illustrated on Figure 2.13, traveling respectively in 

the positive and negative Z directions. 

The variations of I(z) when it crosses the slice dz are due to absorption and back-

scattering: I(z) decreases proportionally to the coefficient K when light is absorbed, and 

proportionally to the coefficient S when light is scattered. But I(z) also increases due to the 

portion of J(z) that has been back-scattered in the positive Z direction by this slice of 

material, proportionally to the coefficient S. The same principles also apply to J(z) (with a 

negative sign as it is travelling in the negative Z direction), yielding a system of differential 

equations: 

( ) ( ) ( )

( ) ( ) ( )

dI
K S I z SJ z

dz
dJ

K S J z SJ z
dz


   


   


. (2.53)

Eq. (2.53) can be solved using approaches such as the Laplace transform or the matrix 

exponential (detailed in [Hébert et al. 2014; Ishimaru 1978]). Using the Laplace transform, 

the general solution for the differential system (2.53) is: 

 

 

1
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1
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J z J Sbz aJ I bSz
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
  


   


, (2.54)

with ( )/a K S S    and  2 1b a  . 

Let us consider a parallel plane layer of thickness h, receiving an incident flux I0. Its 

transmittance and reflectance are τ = I(h)/I0 and ρ = J(0)/I0. At z = 0, the forward flux 

is I(0) = I0. At z = h, there is no backward flux incident upon the slab of material, and 

J(h) = 0. With these two boundary conditions, Eq. (2.54) expressed for z = h yields the 

reflectance and transmittance of the layer: 

sinh( )
cosh( ) sinh( )

Sbh

b Sbh a Sbh



 . (2.55)

cosh( ) sinh( )
b

b Sbh a Sbh



 . (2.56)

The K and S coefficients should be related to the µa and µs’ coefficients of the radiative 

transfer theory, as the Kubelka Munk theory corresponds to a special case of the radiative 
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transfer theory for which the phase function is reduced to two opposite directions. However, 

µa and µs’ depend on the particle absorption and scattering cross-sections defined for a 

collimated beam of light, while the values of K and S are defined for a diffuse incident flux. 

For these reasons, the relationships between the Kubelka Munk coefficients and the RTE 

coefficients have been empirically estimated. The relationships given in literature [Thennadil 

2008] are, with x a constant: 

2
a

K µ . (2.57)

3
'

4 s a
S µ xµ  . (2.58)

Eq. (2.58) shows that K and S can be interdependent as S can contain absorption 

effects in addition to scattering when x is not zero. However, Thennadil [Thennadil 2008] 

has shown that for a diffuse incident flux and for not too absorbing materials (µa/µs’ < 75), 

x = 0 yields a good approximation of the exact RTE. 

2.4.d. Monte Carlo 

Monte Carlo refers to a whole range of computational methods using repeated random 

samplings of a physical quantity to obtain numerical results. Monte Carlo methods are 

especially useful for dealing with physics-related problems that are difficult or impossible to 

solve by conventional and deterministic methods. In optics, Monte Carlo can be described 

as a non-deterministic ray tracing method: photons propagate in the media step by step, 

with a propagation direction sampled randomly according to a probability distribution, 

until it is completely absorbed or has reached the detector. Monte Carlo has been applied 

to biological tissue optics [Zhu and Liu 2013], as it can model light propagation in 

translucent materials with complex structures and solve the radiative transport equation at 

any accuracy as long as computation cost is not limited. In terms of calculation costs, Monte 

Carlo can be expensive as each ray propagation is computed. However, a variety of methods 

for speeding it up have been developed. In contrast with the other models presented in this 

section, results are not affected by boundary effects or limiting hypotheses. For these reasons, 

Monte Carlo is used in many applications and seen as a reference model.  

Figure 2.14, reproduced from [Cuccia et al. 2009] and [Foschum et al. 2011], shows 

comparisons between simulations using Monte Carlo and the diffusion theory. Figure 2.14.a 

shows the difference in the spatial frequency domain. We can notice that the curves 

representing the two approaches are relatively similar at lower frequencies, but begin to 

deviate further and further from each other as frequency increases (with more error as µs’ 

decreases). Figure 2.14.b shows the difference in the spatial domain, where ρ designates the 

distance between the source and the point of interest. On this graph, we can notice a 

significant difference between the Monte Carlo curves (MCd, MCs) and the diffusion theory 

(DT) for small ρ values, which is coherent with the observations in the frequency domain. 
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(a) (b) 

Figure 2.14. Comparison between Monte Carlo and diffusion theory (DT) 
simulations (a) in the frequency domain (with l* = 1/µtr) (reproduced from [Cuccia 
et al. 2009]) and (b) in the spatial domain (reproduced from [Foschum et al. 2011]). 

These two graphs show that the diffusion approximation does not correctly describe 

light propagation close to the source, at distances smaller than the scattering mean free 

path l* = 1/µtr. More precisely, the diffusion approximation is valid only after several 

scattering events, and not for the light rejected back at the early entrance of the turbid 

material. In its valid range however, diffusion approximation is quite accurate, i.e., for 

isotropic scattering, µa << µs’ and dimensions larger than the scattering mean free path 

(~1/µs’). 

2.5. Conversion of spectral information into color 
The spectral reflectance of a surface, or the spectral luminance measured by a 

hyperspectral camera, contains significantly more information than color. The choice to 

convert this information to color is for illustration purposes, as color information 

corresponds to the way we are used to seeing. As such, color information will often be 

displayed in this work rather than spectral information. In this section, we summarize the 

rules of spectral to color conversion as well as the possible color systems that can be used, 

as defined by the Commission Internationale de l’Eclairage (CIE). 

In this work, spectral images are converted into RGB color images, in the CIE 1931 

RGB color space. However, when visual perception is involved, such as when color difference 

needs to be assessed, color systems derived from the CIE 1931 XYZ color space are used. 

In the case of the CIE 1931 XYZ color space, spectrum conversion into the tri-stimulus 

values (X, Y, Z) requires contextualized observation and illumination conditions. By itself, 

spectral reflectance R(λ) does not contain any information about the scene (illumination 

and observation context). Its conversion into color is possible only by setting illumination 

and observation conditions. The observation condition is given by the color matching 
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functions �̅�	
, �
�	
 and �̅�	
 of the CIE 1931 XYZ color space, for either a 2° or a 10° 

standard observer [Wyszecki and Stiles 1982] (see Figure 2.15). The illumination I(λ) is 

generally a standard illuminant, such as one of the illuminants of the D series, meant to 

represent natural daylight. In particular, D65 is intended to represent average daylight with 

a correlated color temperature of approximately 6500°K. Unless there are specific reasons 

for using a different illuminant, D65 is recommended by the CIE for colorimetric 

calculations in which daylight is to be represented [ISO/CIE 1999].  

The spectral reflectance R(λ) is converted into color values (X, Y, Z) by applying the 

following formula: 

( ) ( ) ( )
( ) ( )

K R I k d
I y d

 
 



   

  
, (2.59)

where (K, �
) represents alternately (X, �̅), (Y, �
) and (Z, �̅) and γ is a factor (generally 

100). In this work, we have chosen the color matching functions for a 2° standard observer. 

When spectral luminance L(λ) is measured, the illumination context is already 

defined, and the conversion only relies on the color matching functions:  

( ) ( )K L k d     , (2.60)

where (K, �
) represent alternately (X, �̅), (Y, �
) and (Z, �̅). 

 

Figure 2.15. Color matching functions �̅�	
, �
�	
  and �̅�	
  for a 2° standard 
observer as defined by the CIE for the CIE1931 XYZ color space. 

In the CIE 1931 RGB color space, �̅�	
, �̅�	
 and �
�	
 color matching functions have 

been defined by the CIE from visual experiments, and formulae similar to Eqs. (2.59) and 

(2.60) can be used for conversion. As the �̅�	
, �
�	
 and �̅�	
 color matching functions are 
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linear combinations of the RGB color matching functions, it is also possible to retrieve (R, 

G, B) tristimulus from (X, Y, Z) by matrix multiplication. 

 

Figure 2.16. Illustration of the CIE 1976 L*a*b* color space. 

Colors expressed in the XYZ space can then be converted into other color spaces, such 

as the CIE 1976 L*a*b* space (or CIELAB), which is perceptually uniform and in which it 

is possible to compute a distance between two colors. The L*a*b* space is often used in 

image analysis, as it offers a more intuitive interpretation of color than RGB. As illustrated 

in Figure 2.16, the L* coordinates represent lightness, the a* coordinates correspond to the 

red-green axis, and b* to the blue-yellow axis. 

Cylindrical color space in which colors are classified in function of their appearance 

to the human eye are also used here. For example, Munsell uses a color space that combines 

hue, value and chroma. In such a system, for a given hue, it is easy to organize colors 

according to their chroma and value. 

 

Figure 2.17. Hue, chroma and value color diagram of the system used by Munsell 
Color (USA) in its book of color. 
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In this thesis, spectral reflectance will often be converted into color. Unless a different 

method is specified, conversions are done into the CIE 1976 RGB color space using the D65 

illuminant. 

2.6. Conclusion 
This chapter gives an overview of the most important concepts used throughout the 

thesis. Describing how light interacts with translucent materials involves complex 

quantities: BSSRDF must be used rather than BRDF and light subsurface transport can 

be described accurately by the radiative transfer equation, whose resolution is complex 

unless several simplifying assumptions are made. Up to this point, we have only been looking 

at light interaction with homogenous materials; in Chapter 3, we will consider the specific 

problems of modeling skin, which is a heterogeneous and translucent material.  

 



 

Chapter 3.  
The optical study of human skin 

Skin is an organ that is made up of a complex arrangement of different cells, glands 

and fibers, which determine its optical and visual properties at a macroscopic scale. Optical 

measurement methods capture a light signal. When they are used on skin, our objective is 

to provide an interpretation of the measured light signal into a quantity that can be related 

to skin physiology, for applications in dermatology and cosmetology. It is therefore 

important to have a basic understanding of how the different skin elements are arranged 

together and how their interactions with light can be described by optical concepts. 

The chapter is organized as follows: Section 3.1 gives a brief summary on skin 

physiological structure and composition. In Section 3.2, we present typical skin optical 

properties. Finally, we propose an overview of the existing methods used for skin punctual 

study and for skin imaging in Section 3.3. 

3.1. Physiological structure and composition of skin 

Skin, the largest organ in the body in terms of surface area, acts as a barrier to the 

exterior environment. Its complex structure, illustrated by Figures 3.2 and 3.1, is composed 

of three main layers: epidermis, dermis and hypodermis [Igarashi et al. 2007]. 

 

Figure 3.1.  Skin histological section [Newton et al. 2017]. 
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The epidermis can be further divided into sub-layers, from the stratum basal, which 

constitutes the boundary with the dermis, to the stratum corneum, which interfaces with 

the air. The stratum basal is composed of a single layer of basal cells producing keratinocytes. 

Melanocytes are also located in this sub-layer. They generate melanin when exposed to 

sunlight and distribute it to their neighboring keratinocytes. As new keratinocytes are 

produced by basal cells, the old keratinocytes travel upward and change shape. In the 

stratum granulosum sub-layer, they start deteriorating and finish by losing their nuclei and 

becoming totally flat. The oldest cells, the corneocytes, constitute the stratum corneum. 

They are dry, dead, and contain keratin fibers only. The stratum corneum plays an 

important role in retaining skin moisture and can deteriorate with age or skin dryness. 

The interface between the dermis and the epidermis is called the dermal-epidermal 

junction. This interface is not flat: the dermal-epidermal junction forms epidermal 

protrusions down into the dermis (rete ridges) and dermal projections up into the epidermis 

(dermal papillae) [Newton et al. 2017]. The shape of this junction depends on the location 

on the body (for example, it is relatively flat on the face), but also on age. The junction 

flattens with age, leading to a decrease in skin elasticity. 

 

Figure 3.2. Schematic diagram of skin showing some of its structure and composition. 

The skin’s intermediary layer is called the dermis. Its thickness varies from less than 

a millimeter to half a centimeter. It is mainly composed of collagen and elastin fibers, and 

contains blood vessels, nerves and a variety of elements such as fibroblasts, the cells that 

synthetize extracellular matrix and collagen. Dermis is generally sub-divided between the 

papillary layer and the reticular layer. The papillary layer contains more nerves, more 

capillaries and a finer network of collagen than the reticular layer, in which the dense 

network of collagen aggregates into thick bundles. Collagen fibers, which represent around 

70% of dermis dry weight, evolve over a person’s lifetime [Varani et al. 2006], with 

significant variations between newborn skin, adult skin and aged or photodamaged skin. 
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The hypodermis is the deepest layer of the skin, located beneath the dermis. It 

typically has a thickness of several millimeters and includes a large number of fat cells and 

blood vessels. 

Table 3.1 summarizes the typical structures of skin as described above, imaged at 

various depths using a Confocal Microscope [Hofmann-Wellenhof et al. 2012]. 

 

Location of 

the observed 

area 

Confocal 

microscopy image 

Schematic 

strucure  

Confocal 

microscopy 

image, zoom in 

Schematic 

strucure  

     

  
 

  

  
 

  

     

     

Table 3.1. Reflectance Confocal Microscopy of healthy skin at various depths 
[Hofmann-Wellenhof et al. 2012]. 

Skin composition in light-absorbing chemical compounds, or chromophores, strongly 

influences skin optical properties. Melanin is the main chromophore in the epidermis. It is 

a polymer produced inside melanocytes, and stored and transported within the epidermis 

in melanosomes. It has a photoprotective role and strongly absorbs ultraviolet (UV) and 

visible light. Melanin content in the epidermis is generally expressed as a volume fraction 

of melanosomes within the tissue [Jacques 2013], although in following the conventions of 

the existing literature, we will refer to this as a melanin concentration in this thesis. This 

quantity varies between 1% and 43%, and is influenced by the person’s genetic traits and 

UV radiation exposure. Two chemically distinct types of melanin exist: eumelanin, which 
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is black to brown, and pheomelanin, which is yellow to red. Regardless of skin color, the 

proportion of the two types of melanin in the human epidermis is approximately 74% 

eumelanin and 26% pheomelanin [Del Bino et al. 2015].  

Hemoglobin, the protein contained in red blood cells (95% of a blood cell dry weight), 

is responsible for oxygen transportation. It can be found in blood vessels in the dermis, and 

its quantity influences skin color as it absorbs some of the light that has reached the dermis. 

A typical blood mass concentration within blood is 150 g.L-1 [Jacques 2013], but this varies 

with gender and age. Each hemoglobin protein can carry up to four oxygen molecules, and 

is called oxyhemoglobin (HbO2) or deoxy-hemoglobin (Hb) depending on whether it is 

carrying oxygen or not. Hemoglobin is responsible for the red color of blood, as it absorbs 

light within most of the visual spectrum but is almost transparent for the large visible 

wavelengths (see Figure 3.3). Its shape changes when it binds with oxygen, resulting in 

different spectral absorption properties between Hb and HbO2. Blood oxygen rate, the ratio 

of oxyhemoglobin to total hemoglobin content, is called oxygen saturation.  

Other chromophores, generally present in low quantities in healthy skin, can also 

affect skin color. Methemoglobin, bilirubin and biliverdin, which are the products of 

hemoglobin deterioration, are three chromophores that are present in blood, in generally 

much lower quantities than hemoglobin. In cases of jaundice or hematoma, an abnormally 

high amount of bilirubin is present, giving the skin a yellowish color. 

3.2. Skin optical properties 

From the point of view of optics, skin is a turbid (or translucent) material which 

reflects, absorbs and scatters light. 

Skin specular reflection properties, which are related to the visual attribute called 

gloss, can vary with sebum and transpiration secretions, or according to the state of the 

stratum corneum. Cells in the superficial layer can, for example, become detached from the 

rest of the layer due to skin dryness or deterioration, which alters light reflection and 

transmission at the skin surface. In this work, we use a cross-polarization (CP) configuration 

in most acquisition, and the specular reflection, which is discarded, will not be studied. 

Considering only skin volume absorption and scattering properties, skin can be 

described using the quantities defined in Chapter 2: its anisotropy coefficient g, its refractive 

index n, its absorption coefficient µa and its scattering coefficient µs. 

The anisotropy coefficient g varies between 0.5 and 0.75 and appears to increase as 

wavelength increases [Jacques 2013]. The anisotropy of light propagation in human skin can 

be studied on its own [Nickell et al. 2000], however, in this thesis, we do not separate the 

anisotropy coefficient from scattering and use the reduced scattering parameter 

µs’ = µs(1- g), which accounts for both scattering and anisotropy. 
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The real refractive index of skin n depends, in a first approximation, on skin water 

content and varies between 1.5 for completely dry skin to 1.33 for water only. For skin, 

n = 1.37 or n = 1.4 is often used [Igarashi et al. 2007]. 

3.2.a. Skin absorption coefficient 

The spectral absorption coefficient µa(λ) of skin is the sum of contributions from all 

absorbing chromophores i and depends on their concentration Ci and their individual 

absorption coefficient µa,i(λ). It can be described by the Beer-Lambert-Bouguer law [Bouguet 

1729]: 

,( ) ( )
a i a i

i

µ C µ  . (3.1)

Measurements of skin chromophore spectral absorption coefficients have been 

published in literature, for example by Jacques and Prahl, with their data tables available 

on their website [Jacques; Prahl]. Spectral values for melanin and hemoglobin are shown in 

Figure 3.3. 

 

Figure 3.3. Spectral absorption coefficients µa(λ) for 1 g.L-1 of eumelanin, 
pheomelanin, oxyhemoglobin (HbO2) and deoxy-hemoglobin (Hb) [Jacques; Prahl]. 

In this work, we will often mention the blood volume fraction cblood, which is related 

to the apparent Hb and HbO2 molar concentration in the tissue cHb,mol and cHbO2,mol using 

the following formula : 

, 2,

,
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where MWHb is the molecular weight of hemoglobin, equal to 64 458 g.mol-1 and cHb,mass is 

the hemoglobin mass concentration within blood, chosen as 150 g.L-1. 

3.2.b. Skin scattering coefficient 

Skin is a heterogeneous material composed of many structural elements, resulting in 

many variations in the refractive index, which lead to light scattering. The collagen fibers 

of the dermis strongly influence skin scattering properties. However, the influence of each 

element (cells, fibers, blood vessels, glands, shape of the dermal-epidermal junction, etc.) on 

scattering in skin is still little understood. 

In contrast to the absorption coefficient, the scattering coefficient varies 

monotonically with wavelength: it decreases as wavelength increases. Skin contains elements 

that are small compared to visible wavelengths as well as larger elements. A possible model 

for skin scattering properties is a combination of Rayleigh and Mie scattering: 

4

'( ) ' (1 )
500( ) 500( )

mie
b

s ray ray
µ a f f

nm nm

                

 
 , (3.3)

with a’ the value of the scattering coefficient at 500 nm, bmie the Mie scattering power and 

fray ϵ [0..1] the fraction of Rayleigh scattering. 

Jacques’ measurements [Jacques 1996] yield a’ = 4.29 mm-1, bmie = 0.351 and 

fray = 0.76. However, other studies [Jonasson et al. 2018] provide slightly different values, 

with µs’ average values of 2.8 mm-1 and 1.5 mm-1 at 500 and 700 nm, while Jacques gives 

4.3 mm-1 and 1.8 mm-1 at the same wavelengths. 

Aging-related changes in skin structure impact skin scattering properties. For example, 

Branchet et al. have shown that the mean thickness of the collagen fibers increases and the 

distribution of fiber diameters becomes more heterogeneous with age [Branchet et al. 1991]. 

Iglesias-Guitan et al. showed in a study on skin aging modeling for applications in computer 

graphics that these variations mainly affect the wavelength dependence of the Mie scattering 

component [Iglesias-Guitian et al. 2015]. It can therefore be said that the way in which 

aging affects skin scattering properties is dependent on wavelength: the µs’(λ) curve becomes 

flatter with age, which corresponds to skin color becoming more and more dull. 

3.3. Skin study using optical methods 

Optical methods for skin acquisition have the advantage of being fast, non-invasive 

and capable of being performed in vivo. The existing measurement methods can be classified 

into punctual methods and imaging methods. Punctual methods provide an average value 

on a given area. Imaging methods provide a value in each pixel, making it possible to study 

skin heterogeneity. Both punctual and imaging methods can be sub-divided into two 
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categories depending on the type of measurement. Some methods deliver information that 

is directly related to skin visual appearance such as color, gloss and translucency, while 

others deliver information that can then be interpreted in terms of skin properties using an 

optical model. In this section, various skin acquisition methods and system used in 

dermatology and cosmetology are presented. We will also see that skin optical properties 

fluctuate with each beat of the heart. 

3.3.a. Skin punctual acquisition 

Spectrophotometers and colorimeters dedicated to skin measurement are probes which 

can be used on any part of the body.  

 

Figure 3.4. Skin L*a*b* color volume projected on the L*b* plane, used to classify 
skin between different shades of color [Chardon et al. 1991]. 

Skin color is often expressed in the Commission Internationale de l’Eclairage (CIE) 

L*a*b* 1976 colorimetric system, and can be classified according to an index such as the 

Individual Typology Index (ITA) developed by Chardon [Chardon et al. 1991]. When 

represented in the L*a*b* 1976 colorimetric space, the distribution of skin colors 

corresponds to a “banana shaped” volume (see Figure 3.4). The ITA angle, given by Eq. 

(3.4), can be used to classify color according to different degrees of lightness and darkness. 
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Measuring skin spectral reflectance gives more information than color and can be used 

to determine specific skin properties. For example, reflectance pulse oximetry consists of 

measuring skin spectral reflectance at two wavelengths to determine peripheral oxygen 

saturation (SpO2). 

As skin is a translucent material, the types of measurement device should be carefully 

chosen. Most measurement devices designed for strongly scattering materials have identical 

illumination and observation areas. If such a device is used to measure skin, the light 

scattered outside of the illumination area due to subsurface transport is not detected. It 

results in errors on the amplitude and shape of the measured spectrum in the case of 

spectrophotometers, and on the measured color in the case of colorimeters. To overcome 

this issue, which has been named “red loss” artefact [Vidovič et al. 2015], the measurement 

device must be designed with an observation area smaller than the illumination area, or 

vice versa. The Konika Minolta (Japan) spectrophotometer CM-700d, which diffusely 

illuminates the sample on a 11 mm diameter area and measures it in the normal direction 

on an 8 mm diameter area, is adapted to skin measurement and often used for applications 

in cosmetology. Spectro2guide (BYK-Gardner, Germany) is another example of a 

spectrophotometer suitable for skin measurement. 

Skin is a soft, non-planar material that becomes distorted under the pressure of a 

measurement probe. Consequently, measuring skin gloss using a glossmeter is not 

recommended as it is very difficult to ensure a constant viewing angle (generally 60° for 

gloss). A few instruments offer punctual gloss measurement for skin, such as Goniolux 

(Orion Concept, France) or Seelab GP (Seelab, France). They use multi-angle acquisition 

to compute a gloss index by estimating the BRDF peak width obtained for a certain 

directional illumination. 

Skin translucency measurement has mainly been investigated for applications in 

medicine. The most common measurement method is Diffuse Reflectance Spectroscopy 

(DRS), first presented in 1990 by Wilson and Jacques [Wilson and Jacques 1990]. This 

method consists in measuring the point spread function (PSF) of the material by 

illuminating punctually a surface and measuring the exitance profile of the halo of light 

around the illuminated area. The shape of the PSF, which is a function of wavelength, can 

be analyzed using an optical model to retrieve absorption and scattering coefficients. 

However, rather than measuring skin optical coefficients, most DRS applications aim at 

determining the presence or absence of an “optical signature” which allows the diagnosis of 

a pathology. This method has been used to monitor glucose rate in diabetics [Bruulsema et 

al. 1997] or to interpret the results in tuberculin skin tests [Koenig et al. 2015]. Instruments 

using the same principle also exist for applications in cosmetology, such as Transluderm 

(Orion Concept, France) or Translucymètre (Monaderm, Monaco). These methods are, 
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however, less accurate than DRS probes dedicated to medical applications, and do not 

separate absorption and scattering in the interpretation of the measured signal. 

3.3.b. Skin imaging 

The methods presented in § 3.3.a provide an average measurement on a small area. 

However, skin is not a uniform surface and shape is also an important marker in the analysis 

of skin structures. An average measurement is generally not enough: a high quantity of 

melanin can either mean a darker skin color if it is spread uniformly, or a stain if melanin 

is concentrated on a small area; for dermatologists, the shape of a suspicious lesion provides 

important clues in the diagnosis of pathologies.  

Historically, the diagnosis of skin pathologies has been performed by the naked eye, 

with skin imaging used only for illustration purposes to characterize the different types of 

skin lesions. In recent decades however, a number of imaging methods dedicated to the 

study of skin have been developed, and their role in dermatological consultations can be 

expected to dramatically increase. 

Many skin imaging methods exist, with various specificities in term of spatial 

resolution and field of view. However, none are able to study skin at all scales, from the cell 

to a full body. For example, Reflectance Confocal Microscopy (RCM) and Optical 

Coherence Tomography (OCT) are two sophisticated optical methods that can image inside 

skin with a high resolution but on a very small area, generally in the order of a few mm2. 

RMC can image inside skin (see Table 3.1) using a pinhole to block out-of-focus light, 

capturing only information close to the focal plane, whose depth can be chosen. RMC has 

a very high resolution, generally 1 µm; its main limitation is its weak penetration depth of 

only 200 µm. OCT is an interferometric modality producing images corresponding to a 

vertical section with a resolution of a few micrometers, with a penetration depth in the 

order of 1 mm. 

A method which provides high resolution images on a relatively larger area, in the 

order of few cm2, is dermatoscopy. Quite likely the most commonly used optical device in 

dermatology, a dermatoscope is a magnifier (typically × 10, and up to × 400) that also 

suppresses skin specular reflection. Gloss suppression can be achieved by creating optical 

contact using an immersion liquid, and in this way the optical index variation at the 

interface is small enough to remove perceptible surface reflection. It can also be achieved 

by using light polarization in a CP configuration (see Chapter 2). Recent dermatoscopes 

can capture digital images. 

For larger zones of interest, such as the full body, “surface” imaging is generally used. 

Skin can be captured using color cameras or spectral cameras. All these imaging modalities 

require controlled acquisition conditions and color or radiometric calibration. In 

dermatology, color images can be used to follow the evolution of a pathology, but two 

images can be compared only if they have been taken is similar conditions— in particular, 

similar illumination and observation geometries —necessitating dedicated acquisition 
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benches. The acquired information can be used to study skin color, which can be used to 

address cosmetic claims such as redness or pigmented spots. 

Multispectral and hyperspectral cameras provide more information than skin color 

and can be sensitive in the visible spectrum as well as the infrared spectrum. Spectral 

information can for example be used for diagnosis purposes, as is the case with the 

multispectral camera SIAscope® (MedX Health, USA), which measures 8 wavebands of the 

visible spectrum and close infrared for mole analysis [Moncrieff et al. 2002]. The MelaFind® 

system (Mela Science, USA), a 10-waveband multispectral system, is even more diagnosis 

oriented, using big data analysis to assist the dermatologist in its biopsy decision making 

[Monheit et al. 2011]. With hyperspectral imaging, the measured signal can also yield skin 

absorption properties estimation by applying an optical model. The potential uses of this 

application will be further developed in Chapter 7. 

 
(a) (b) 

Figure 3.5. Images of the same area of skin acquired (a) in a cross-polarization (CP) 
configuration and (b) a parallel-polarization (PP) configuration (right). 

 

Figure 3.6. Example of gloss measurement on the ColorFace® (Newtone 
Technologies, France): (a) PP configuration, (b) CP configuration and (c) difference 
between the two images which shows the glossy areas. 
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Imaging methods are also used to measure skin gloss by capturing two images in a 

CP and PP configuration, and analyzing the difference (Figure 3.5). This method is used 

in many commercial systems dedicated to cosmetology, such as Samba (Bossa Nova 

Technologies, USA) or ColorFace® (Newtone Technologies, France) (Figure 3.6). 

Finally, skin translucency can also be captured using imaging methods. Whilst 

punctual methods rely on measuring skin PSF, imaging methods work in the spatial 

frequency domain, measuring skin modulation transfer function (MTF). The method 

equivalents to DRS in the spatial frequency domain is Spatial Frequency Domain Imaging 

(SFDI). The principles, methods and applications of SFDI will be elaborated in Chapters 8 

and 9. 

3.3.c. Skin temporal variations 

Skin properties vary with time. At a slow pace, skin evolves throughout a lifetime due 

to natural aging, or from the influence of the exterior environment such as weather 

conditions, ultra-violet exposure and pollution.  Skin is also alive and its optical properties 

can change very rapidly, from moment to moment. Such variations occur with every beat 

the heart makes and every breath taken, oblivious to the naked eye. These variation can 

however be captured using an optical device, as it has been demonstrated in several studies 

[Poh et al. 2010; Wu et al. 2012]. The heartbeat especially affects the a* component of skin 

L*a*b* color, as illustrated in Figure 3.7.  

 

Figure 3.7. Evolution of the a* component of skin L*a*b* color in regard to time. 

The curve of Figure 3.7 has been measured on the face, on a person with a light skin 

color. The acquisition system comprises a CMOS color camera, LED lights and polarizing 

filters arranged in a CP configuration. The acquisition rate was set to 15 frames per second, 

which offers an adequate temporal sampling to study heartbeat. Images, acquired in RGB, 

were finally converted into L*a*b* (CIE 1976) and the average color on the forehead was 

computed. From this measurement, we have estimated 72 heartbeats and 8 breathing cycles 

per minute. 
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Heartbeat rate camera-based measurement is an interesting method to monitor 

patients in a non-invasive way and has been used to monitor newborns in hospital nurseries 

[Wu et al. 2012]. 

3.4. Conclusion 

The brief (and incomplete) overview of optical methods for skin measurement given 

in this chapter reveals some of the challenges present when working on skin, a complex, 

alive, soft, heterogeneous and non-planar material. When possible, non-contact 

measurement methods are preferable to contact probes, which are prone to change skin 

properties. In terms of imaging methods, a compromise between being able to measure a 

large area and obtaining a high resolution is necessary, and the preference of one over the 

other should be adapted to the application. Finally, acquisition time is particularly 

important. In this chapter, only skin temporal variations in terms of color due to the beating 

of the heart is mentioned. While this phenomenon affects measurements that take longer 

than a single heartbeat, it is likely to be negligible compared to the artefacts due to the 

person moving during acquisition. In this thesis, we will emphasize many times the 

importance of reducing acquisition time as much as possible, in order to limit the effects of 

body movement on the measurement accuracy.  

This chapter also provides the basic grounding in skin physiology, structure, 

composition, and optical properties necessary for understanding how the measurement of 

an optical signal can be transformed into information that is intelligible to a dermatologist 

or that can be interpreted as a cosmetological claim. Understanding the complexity of skin 

also defines the limitations of model-base analysis. In this work, we will be generally looking 

at what we call “healthy skin”, as described in Section 3.1 of the chapter. 
 

 



 

Chapter 4.  
Capturing wavelength selective 

information:  

Hyperspectral imaging (HSI) 

Multispectral and hyperspectral imaging are methods for measuring the spectral 

radiance of scenes as well, if appropriate calibration is possible, as the spectral reflectance 

factor of surfaces. The spectral reflectance factor, already defined in Chapter 2, is a 

radiometric quantity describing how much incident light is reflected by an object according 

to the wavelength of the light [Hébert et al. 2014]. This quantity can be used to simulate 

color under any illuminant such as natural sunlight and indoor lighting. It can also be used 

to reveal information usually invisible to the naked eye and estimate the optical properties 

of a material, making it suited to applications in various fields including cultural heritage 

[Liang 2012], art [Cucci et al. 2016], agronomy [Lorente et al. 2012], biology [Manley 2014] 

and medicine [Lu and Fei 2014].  

Originally developed for observing Earth from space, spectral modalities of imaging 

have become more and more prevalent in the last decade, thanks to progress in sensor 

performances and computational power. The development of applications that can be used 

for skin acquisition and analysis is still in its infancy today, but it is foreseeable that new 

optical tools for non-invasive diagnosis will be available in the future. In particular, the 

work of Séroul [Seroul et al. 2017] has shown the considerable potential of HSI for skin 

chromophore composition analysis. His acquisition method, however, is limited to small and 

planar parts of the body. To extend his work, we have built a wide field hyperspectral 

camera, able to acquire a full human face. We have decided to focus on the human face, 

the part of the body that presents the most significant challenge for 3D scanning, as well 

as being of greatest interest to cosmetology. The acquisition method, however, can be 

applied to any part of the human body. 
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In this chapter, we give in Section 4.1 a brief review of the existing spectral imaging 

methods with a few examples of systems that can be used for body imaging. Then, we detail 

the hyperspectral camera built for full face acquisition in Section 4.2 before discussing the 

efficacy of the method in Section 4.3 and reach conclusions in Section 4.4. 

4.1. Spectral imaging methods 

Spectral imaging extends conventional RGB color imaging by replacing the three 

channels corresponding to three large wavebands, usually referred to as “red”, “green” and 

“blue”, with a considerably higher number of wavebands [Garini et al. 2006].  

Multispectral Imaging (MSI) and Hyperspectral Imaging (HSI) are based on a similar 

principle, and differ only in the number of channels acquired (see Figure 4.1). While MSI 

typically measures 4 to 15 wavebands with no constraints on the waveband width and the 

spectrum sampling, HSI comprises of up to hundreds of narrow wavebands of similar 

bandwidths covering contiguously the spectrum of interest (potentially covering the 

ultraviolet, visible and infrared domains). There is no clear consensus about the definition 

of HSI in literature, as the minimum number of wavebands is not precisely defined. However, 

we propose that the conditions of regular spectral sampling and non-overlapping narrow 

wavebands are the most important criterion defining HSI. 

 

Figure 4.1. Difference between RGB imaging, multispectral imaging (MSI) and 
hyperspectral imaging (HSI).  

Hyperspectral imaging can also be compared to spectroscopy, but whereas 

spectroscopy measures the average spectral reflectance of a given area, spectral imaging 

provides a spectrum for each pixel of the camera’s field. These measurements in many small 

areas on the observed surface makes hyperspectral imaging especially suitable for the 

observation of heterogeneous surfaces. Hyperspectral image data are often called 

“hypercubes” since they are three dimensional: two dimensions corresponding to the spatial 

domain, one dimension corresponding to the spectral domain. 
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4.1.a. Acquisition methods 

Many near-field spectral imaging systems have been developed using various 

technologies and physical principles, with different specificities in terms of spatial resolution, 

spectral resolution, surface shape constraints and acquisition time. The targeted 

applications and their requirements often determine the choice of acquisition method. 

The capacity to distinguish details on a spectral image depends on both spectral and 

spatial resolutions. A good spectral resolution allows discrimination between very subtle 

variations in the spectral reflectance, which can indicate variations in the material 

composition. A good spatial resolution makes it possible to see very fine details. As for 

acquisition time, with the exception of snapshot cameras, which acquire the spectral image 

instantaneously (providing multispectral data only), the acquisition of a hypercube requires 

a temporal scan. A short acquisition time allows working on live objects, such as the body, 

and a very short acquisition time can be used to capture videos. 

Several methods, surveyed in [Lu and Fei 2014; Li et al. 2013; Garini et al. 2006], are 

commonly used: the staring approach, the pushbroom approach and the time-scan approach. 

Snapshot cameras, which simultaneously measure the spectral and spatial information, can 

be classified as a fourth category, although their acquisition principles are various [Hagen 

and Kudenov 2013]. 

 

Figure 4.2. Concepts of the (a) staring and (b) pushbroom approaches for 
hyperspectral imaging. 

The staring approach, illustrated in Figure 4.2.a, also called the wavelength scanning 

approach, records the full spatial information for each spectral band, and requires a temporal 

scan of the spectral dimension. When the acquisition system comprises a controlled 

illumination, this method can be implemented by using a wavelength selection system either 

at the level of the sensor or at the level of the light source. Several filtering tools can be 
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used, such as filtering wheels with a set of color filters or tunable filters. Filtering wheels 

offer a simple acquisition method [Zhang et al. 2016], however, as the filter plates are moving, 

a geometrical calibration is required [Brauers et al. 2008]. The spectral resolution of such a 

method is generally low, as the number of filters that can be placed on the wheel is limited.  

  
(a) (b) 

Figure 4.3. (a) VariSpecTM LCTF (PerkinElmer, USA), (b) LCTF mounted in front 
of a monochromatic camera. 

Tunable filters, such as liquid crystal tunable filters (LCTF) (Figure 4.3) or acousto-

optical tunable filters (AOTF), are electro-optical components with no moving parts 

[Duempelmann et al. 2017; Jullien et al. 2017; Calpe-Maravilla 2006]. Their narrow 

transmission bandwidth is tuned during a temporal scan to obtain a hyperspectral image 

with a relatively good spectral resolution. Filtering wheels and tunable filters can be used 

to filter either the light reflected by the surface in the direction of the sensor, or the light 

emitted by the source under the condition that the light source power is within the filter 

acceptance [Jolivot et al. 2013]. 

In the recent years, systems comprising sets of monochromatic sources rather than 

filters have emerged. These methods, which consist of illuminating the object using multiple 

light sources with discrete narrow spectral bandwidths, are attractive in terms of cost and 

acquisition time, given the availability of a wide range of LEDs with different emission 

spectra. For example, several systems, using a monochromatic sensor and a set of 

monochromatic LEDs illuminating in turn the surface of interest, have been designed for 

applications in medicine [Goel et al. 2015; Li et al. 2012; Ohsaki et al. 2017; Islam et al. 

2017]. These systems generally provide multispectral images. Nevertheless, some of them 

are able to acquire information at video rate and can be used in surgery. The main drawback 

of this method is the difficulty of achieving uniform illumination on large objects, which is 

crucial for wide field imaging. This is especially the case when the acquired surface is not 

flat, as the effects of lighting non-uniformities cannot be corrected using calibration for non-

flat surfaces. Uniform lighting requires specific designs, such as integrating spheres, whose 

complexity increases with the size of the object of interest. Consequently, although this 
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solution is well-suited to the acquisition of small areas of interest, it presents certain 

challenges for full face acquisition. 

The pushbroom approach or line scanning approach, illustrated in Figure 4.2.b, 

consists in acquiring the spectral information for a single line of an image. The complete 

image is then retrieved by performing a temporal scan of the second spatial dimension. This 

method generally uses a wavelength separating system such as a diffraction grating or a 

prism. Line scanning is very similar to single-point spectrometers, with spectral information 

measured on one line of the object using a 2D sensor: the spectral information is spread 

along one axis of the sensor, while the other contains spatial information. The temporal 

scan of the second spatial dimension can be achieved by moving the camera, the object, or 

the image of the object. When pushbroom cameras are integrated on an automated line for 

industrial applications such as food inspection or object sorting, the object moves. For 

applications on still objects for which there is no constraint on acquisition time, the camera 

can be mounted on a translation system [Pottier et al. 2019]. In both cases, this kind of HSI 

system is not portable. Recent developments aim at making line scanning faster, more 

compact and easier to use, by comprising elements designed to move the image of the object 

rather than the object itself, such as rotating mirrors [Gutiérrez-Gutiérrez et al. 2019]. 

Methods using line scanning generally provide very high spectral resolution images with 

more than a hundred wavebands within a wide spectral range. However, their spatial 

resolution is often limited. We had the opportunity to try the camera SPECIM IQ (Specim, 

Finland) (see Figure 4.4), a pushbroom system for which the temporal scan of the object 

image is integrated in the design of the camera. The acquisition time (around 5 seconds 

with appropriate lighting) was acceptable; the spectral range and resolution were very good 

(more than 200 wavebands between 400 and 1000 nm); however, the spatial resolution 

(512 × 512 pixels) was not sufficient to acquire fine details on a full face. 

  
(a) (b) 

Figure 4.4. Full face hyperspectral acquisition using the SPECIM IQ camera 
(Specim, Finland), image displayed at (a) 446 nm and (b) 785 nm. 
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Time-scan methods, such as Fourier transform interferometry imaging [Bai et al. 2018], 

are a third category for which the acquired data are a superposition of spectral and spatial 

information from which the spectral image can be retrieved. Fourier spectroscopy measures 

the spectrum using light interference rather than filter, allowing it to collect more signal 

than wavelength scanning methods. These methods are mainly used for remote sensing 

applications, although some examples of their use in biomedical applications can also be 

found [Pham et al. 2000]. 

Finally, snapshot cameras use a variety of methods [Hagen and Kudenov 2013]. The 

simplest design relies on color filters placed on each pixel [Hirose et al. 2016], similarly to 

the way in which Bayer filters are used in color imaging. The drawback of such methods is 

the limited number of wavebands measured, leading to a necessary tradeoff between spectral 

and spatial resolution. 

Whatever the acquisition method, spectral reflectance factor is obtained after a 

calibration step, generally using a perfectly diffusing white sample. The calibration consists 

in dividing the spectral radiance measured from the object with the spectral radiance 

measured from a reference surface (a perfectly white diffuser) that is illuminated and viewed 

in the same way as the object. For a Lambertian reflector (which we can assume skin to be 

if we ignore the specular reflection), this calibration also yields reflectance, which is 

equivalent to reflectance factor for perfectly diffusing surfaces. However, when measuring 

parts of the body that are not flat, the calibration method does not account for the 

illumination variations that can occur. On curved surface, the measured reflectance varies 

proportionally to the local irradiance of the surface. 

4.1.b. Spectral imaging of the body 

Several multispectral systems have been developed to acquire skin in vivo for 

applications in dermatology and cosmetology. A few hyperspectral cameras also exist for 

this purpose. 

Various commercial systems relying on multispectral imaging have been developed for 

melanoma analysis since the early 2000s: SIAscope® (MedX Health, Canada) [Moncrieff et 

al. 2002], MelaFind (MELA Science, US) [Elbaum et al. 2001; Kupetsky and Ferris 2013] 

and SpectroShade (MHT Optic Research AG, Switzerland) [Tomatis et al. 2005]. These 

three systems measure between 8 and 15 bandwidths and are combined with software 

analysis to study melanoma, supplying information useful for diagnosis or even allowing for 

automatic detection. The target of these systems is however limited to small skin areas, and 

consequently, their field of view is relatively restricted. 

VideometerLab (Videometer, Denmark), illustrated in Figure 4.5, is a commercial 

multispectral system which comprises a monochromatic sensor and 20 LEDs placed in an 

integrating sphere of a diameter around 50 cm. It measures the spectral reflectance between 

365 and 970 nm under diffuse illumination. One version of the system aims at applications 

in dermatology and cosmetology and incorporates an articulated arm to allow easy 
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positioning on the body. The spatial resolution is 40 µm per pixel, which is very good, 

however the size of the measured area, around 10 cm2, is relatively small compared to the 

size of the system. 

        
(a) (b) 

Figure 4.5. (a) VideometerLab multispectral acquisition system (Videometer A/S, 
Denmark), (b) principle of the setup, which uses a set of LEDs and an integrating 
sphere to uniformly lit the sample. 

SpectraCam® (Newtone Technologies, France), in Figure 4.6, is one of the rare 

hyperspectral cameras specially designed for in vivo skin acquisition. In particular, it meets 

the requirement of short acquisition time, which is very important for acquisition on a live 

subject, which is prone to move. Its technical characteristics will be detailed in the next 

section, as SpectraCam® has been used as a starting point for the design of the full face 

acquisition system. 

 
(a) (b) 

Figure 4.6. (a) SpectraCam® hyperspectral camera (Newtone Technologies, France) 
and (b) working principle. 
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4.2. Full face hyperspectral camera 

The camera that we designed for full face acquisition has been conceived to provide 

hyperspectral images within the constraints of in vivo face acquisition: it must be safe for 

the skin and the eyes; adapted to the geometry of a face; its resolution must be sufficiently 

high; and its acquisition time must be short. It partly relies on the experience of Newtone 

Technologies in the field of HSI, as the method implemented in SpectraCam® seems to be 

well-adapted to the specifications listed above. In this section, we detail the acquisition 

setup and the calibration step necessary to reconstruct the reflectance of the surface. 

4.2.a. Acquisition setup and software 

The full face hyperspectral imaging system, illustrated in Figure 4.7, is an extension 

of SpectraCam®, a portable system that can capture images of flat areas measuring 4 × 5 

cm  at 30 wavelengths [Nkengne et al. 2018; Seroul et al. 2017]. The wide field acquisition 

system has been named “SpectraFace”. The new system uses some of the elements already 

present in the SpectraCam®, but as full face acquisition requires a wider field of view and 

a deeper depth of field, the dimensions of the acquisition system have been adapted to suit 

these specific needs. 

 

Figure 4.7. Hyperspectral acquisition setup for full face imaging. 

The camera sensor comprises a monochrome CMOS 2048 × 2048 pixels camera 

(acA2040-90umNIR, Basler, Germany), a 35 mm focal length lens, and the liquid crystal 

tunable filter (LCTF) (VariSpecTM, PerkinElmer, USA) shown in Figure 4.3.  

The Basler camera has been selected for its good quantum efficiency in the visible 

spectrum, shown in Figure 4.8. The camera can encode gray level values on either 8 bits or 

12 bits. 
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Figure 4.8. Quantum efficiency (%) as a function of wavelength for the acA2040 
CMOS camera and its NIR version, given in the datasheet of the camera. 

VariSpecTM allows light filtering within the visible spectrum (400 to 720 nm). It is 

based on the association of several Lyot filters [Gat 2000] (see Figure 4.9), and is equivalent 

to high quality interference filters with a bandwidth of 10 nm and a precision of 1 nm for 

the central wavelength. VariSpecTM tuning speed is around 50 milliseconds, which mainly 

corresponds to the liquid crystal relaxation time from “charge” to “no charge”. Two versions 

of VariSpecTM have been used, with respective apertures of 22 mm and a 35 mm. For both 

systems, the half angle of acceptance is 7.5°.  

VariSpecTM transmission, illustrated in Figure 4.10, varies according to wavelength, 

with a very low transmission at 400 nm as well as in the shorter wavelengths. Transmission 

is weaker than 20% between 400 and 460 nm, which is one of the limitations of using a 

LCTF. Finally, VariSpecTM polarizes light linearly. 

 

Figure 4.9. Operating principle of Lyot based LCTF [Gat 2000]. Transmission 
functions a, b, c and d are each associated with a crystal quartz plate, and e 
corresponds of the overall transmission. This illustration shows 4 elements, 
VariSpecTM comprises 6. 
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Figure 4.10. VariSpecTM transmission between 400 and 720 nm. 

Other tunable filter technologies exist, such as acousto-optical tunable filters (AOTF), 

which uses a crystal in which vibrational waves at radio frequencies allow a single 

wavelength to cross. The transmission of an AOTF is relatively high and tuning speed can 

be quite fast. However, the field-of-view is narrow and the image quality is poor, which 

limits the potential applications of using AOTF for wide field imaging. 

 
(a) (b) (c) 

Figure 4.11. Images of the same scene taken with the 22 mm aperture VariSpecTM, 
using three different lenses of focal length: (a) 16mm, (b) 24mm and (c) 35mm. 

The focal length of the camera lens has been selected according to the limited 

acceptance angle of the LCTF. The LCTF is located in front of the camera, and introduces 

strong vignetting. Figure 4.11 shows the amount of vignetting produced for several focal 

lengths: the entire field of view was uniformly illuminated in all three images, with the loss 

of light that can be seen in the edges of the image are the result of vignetting. A 35 mm 

focal length was selected as a trade-off between minimizing vignetting and minimizing the 

distance between the camera and the face, so as to create a system that is as compact as 
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possible. When the large aperture LCTF is used with the 35 mm focal length lens, the 

recommended distance between the camera and the face is around 50 cm for a full face 

acquisition. A larger focal length could be chosen to prevent vignetting, but this would 

require a much longer distance between the camera and the face in order to have a sufficient 

field of view for full face imaging.  

In order to reduce the amount of vignetting, VariSpecTM can also be placed between 

the sensor and the lens rather than in front of the lens. This would require an adaptor to 

be added to obtain proper focus. We have not tried such a configuration, but such an 

approach could improve the efficacy of the camera. 

The focus of the camera cannot be adjusted between two acquisitions on two different 

persons, as the lens of the camera is difficult to access. The position of the face must 

therefore be constrained. Ear hooks, visible on Figure 4.12, are used to regulate the position 

of the person, so that the face is in the middle of the field of view and in focus when imaged 

by the camera. The ear hooks can also be oriented in the direction of the optical axis of the 

camera or at a 45° angle for side view acquisition. 

To collect the highest light signal and obtain a better signal-to-noise ratio for the 

captured image, the lens entrance pupil is set as relatively open (around F/4). This reduces 

the camera’s depth of field, but for the most part, we are able to obtain a relatively sharp 

image on the entire face. 

 

Figure 4.12. Full face acquisition using the SpectraFace, side view configuration. 

A reference plane is used for the black and white calibration acquisitions. On it, black 

and white Lambertian samples are successively mounted. These samples are 4A Munsell 

color sheets of references N 9.5/ for white and N 2/ for black (Munsell Color, USA). 

The light sources are two LED lighting units shown in Figure 4.13.a, each one designed 

with 5 blue and 5 white LEDs aligned in the vertical direction, with LED plastic lens used 

to spread light horizontally. They provide sufficient irradiance on the skin over the whole 

visible spectrum for hyperspectral acquisition. Their position on each side of the camera has 

been set in order to provide uniform lighting on the reference plane: they are placed 30 cm 
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apart, and oriented in direction of the face at a distance of 40 cm (see details on Figure 

4.13.b). 

         
(a) (b) 

Figure 4.13. (a) Details on the LED lighting unit and (b) geometry of the acquisition 
system. 

Linear polarizing filters are added to each lighting unit. They are oriented to create a 

cross-polarization (CP) configuration with the LCTF polarization direction, the latter 

playing the role of an analyzer for the reflected light. This CP configuration is used to 

remove the specular component of the reflected light, as explained in Chapter 2. The 

polarizing filters are made of polymer and are almost opaque at 400 nm. For these reasons, 

the hyperspectral images are acquired between 410 and 700 nm. Below 400 nm, light is 

harmful to the eyes and skin, and above 700 nm, blood and melanin are almost not 

absorbent. Therefore, we are not in any case interested in wavelengths outside this range. 

A micro-controller is used to synchronize the image acquisition with the LCTF 

wavelength selection using the trigger mode of the camera for maximum acquisition speed. 

The acquisition software has been developed in C++ using the Qt framework. It 

comprises a live preview tool to ensure that the subject is correctly positioned, and a GUI 

for settings. For each wavelength, exposure can be independently set to maximize the signal-

to-noise ratio. The acquisition software currently used by Newtone Technologies is an 

improved version of the software developed as part of the PhD project. It includes additional 

features for clinical studies management. The post-processing of the hyperspectral images 

is done in Newtone’s software NtImageAnalyzor, which includes a calibration function and 

color conversion tools. 

The hyperspectral image acquisition time is around 2.5 seconds. The total acquisition 

time depends on the exposure time set for each wavelength acquisition as well as on the 

LCTF tuning time which constraints the delay between two wavelength acquisitions. The 

exposure time at each wavelength is selected to maximize the amount of light collected by 

the sensor without saturating the white reference plane used for the calibration described 

in the next paragraph. 
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4.2.b. Calibration 

Once the hyperspectral acquisition has been performed, a radiometric calibration is 

necessary to retrieve the reflectance factor of the face from the captured signal. The signal 

Q(x, y, λ) captured by the sensor in each pixel (x, y) for each wavelength λ is proportional 

to the radiance reflected by the imaged surface in the direction of the camera. Assuming 

that the surface is a Lambertian reflector, the determining factors are:  

- the surface reflectance of the object R(x, y, λ), 
- the incident irradiance E(x, y, λ), 
- the sensor spectral response S(λ), assumed to be independent from the location of 

the pixel, 
- the optical system transmittance T(x, y, λ), 
- a coefficient k(x, y) which depends on the angular location of the pixel in the field 

of view but is similar for all wavelengths,  
- and the background noise n, estimated to be similar on all images. 

R
Q E S T k n    


. (4.1)

E, S, T, k and n are unknown parameters that are calibrated via the acquisition of 

the signals Qw(x, y, λ) and Qk(x, y, λ) from respectively black and white reference Lambertian 

samples, of respective albedo ρw(λ) and ρk(λ). We have: 
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The calibration, illustrated by Figure 4.14, results in the object radiance factor (equal 

to reflectance for skin assumed to be Lambertian) for each pixel and each wavelength after 

applying the formula: 
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The camera calibration relies on the use of black and white reference samples, however, 

there is research showing that a better spectral calibration can be performed by using two 

shades of gray as reference samples [Doi et al. 2019]. Such an alternative could be used to 

improve the quality of the hyperspectral image, and could be especially useful for dark skin 

acquisitions, as the signal-to-noise ratio is a little low to provide satisfactory images with 

the current setting. 
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Figure 4.14. Acquired and corrected images at 590 nm: (a) Non-uniform illumination 
on the white reference plane, (b) uncalibrated image, (c) calibrated image. 

The proposed calibration method gives satisfactory results when applied to flat objects. 

Applied to 3D objects, however, the incident irradiance on the reference samples differs 

from the incident irradiance on the measured object, which results in an error in the 

calibration output. For example, this is observable in Figure 4.14.c, where the sides of the 

nose appear darker than the rest of the skin. For non-planar objects, a “3D irradiance 

calibration” (see Chapter 6) is necessary to retrieve the spectral reflectance independently 

from irradiance variations, requiring a more complex photometric calculation and knowledge 

of the 3D geometry of the object. 

4.3. Efficacy of the method and acquisitions on skin 

In this section, the efficacy of the method is discussed and hyperspectral images 

acquired on skin are presented. 

4.3.a. Acquisition speed, resolution and accuracy of the method 

For in vivo application on skin, the efficacy of the system can be judged in terms of 

acquisition speed, resolution and accuracy. 

Acquisition time is around 2.5 seconds. This acquisition time is satisfactory for static 

acquisitions and is short enough to mitigate the risk of the person moving during acquisition. 

A shorter acquisition time than this appears difficult to achieve for hyperspectral imaging 

using tunable filters. 

The implemented hyperspectral camera captures hypercubes whose resolution is 

adequate for analysis: spatial resolution (one pixel roughly corresponds to 0.1 mm on the 

face) is high enough to discern fine details, and spectral resolution (30 narrow wavebands) 

is sufficient for estimating concentrations of skin components (see Chapter 7). 

The spectral accuracy of the camera was investigated by measuring an A4 Munsell 

sheet (X-Rite, USA) representing the color of light skin (reference CC2 of the 

ColorChecker®). Two areas of different sizes were analyzed, as illustrated in Figure 4.15. 
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Area 1 corresponds to the entire field of view of the camera and is larger than a human 

face. Area 2 is of a smaller size, comparable to that of a human face. The spectrum and the 

L*a*b* color values of the acquired data were compared to values measured on the same 

sample using the X-Rite Color i7 spectrophotometer (X-Rite, USA). The measured spectral 

reflectance are shown in Figure 4.15.b and color values detailed in Table 4.1. 

 
(a) (b) 

Figure 4.15. (a) Color image of an A4 light skin Munsell sheet measured using the 
hyperspectral camera, (b) average reflectance factor (%) on two different areas 
(dotted lines) and comparison with the spectrum acquired using the X-rite Color i7 
spectrophotometer (solid line). 

  Color i7 HSI area 1 HSI area 2 

Mean Value 

L* 64.65 60.86 62.28 

a* 13.57 14.77 14.20 

b* 17.84 18.75 18.34 

∆E*94  REF 3.86 2.41 

Standard 

deviation 

L* - 5.47 0.47 

a* - 18.77 0.89 

b* - 27.75 0.78 

Table 4.1. CIE1976 L*a*b* values acquired on the Munsell sheet using the X-rite 
Color i7 spectrophotometer and the hyperspectral camera. 

On average, the measured spectra of the two areas are similar. The high standard 

deviation observed in Area 1 can be explained by the border of the image being affected by 

noise. This is not the case for the measurement of Area 2. The camera can therefore be used 

for full face measurement as long as the corners of the image are not part of the area of 

interest. The ∆E*94 color difference between the camera measurement and the Color i7 



80 Capturing wavelength selective information: Hyperspectral imaging (HSI) 

   

measurement on Area 2 is 2.41. This difference, which appears on the spectral reflectance 

factor graph (Figure 4.15.b) as a constant shift, results from using two different 

configurations for the measurements. The Color i7 spectrophotometer measurement was 

obtained using the “specular reflection excluded” mode of the device, which means that 

light in the specular direction is excluded, while light scattered everywhere else in the 

hemisphere is measured. The hyperspectral camera relies on a CP configuration to discard 

the specular reflection, so that all the scattered light is cut by the polarizer. In this CP 

configuration, more flux is discarded and the recorded reflectance factor is therefore lower. 

For skin analysis, this difference is not problematic, as it does not affect the shape of the 

spectrum containing the “spectral signature” of the measured area. 

 

Figure 4.16. ColorChecker (X-Rite, USA) measured using SpectraFace and 
MetavueTM (X-Rite, USA). 

A ColorChecker color chart (X-Rite, USA), shown in Figure 4.16, was also used to 

assess the system repeatability as well as the correlation between the system and a 

commercial spectrophotometer. 

The system’s repeatability has been estimated in the CIE1976 L*C*h* color space, 

giving the lightness, chroma and hue of a color. Each patch of the ColorChecker has been 

imaged three times in a row and the quantity � = ���������������
/�̅ 
  has been 

calculated for each coordinate (denoted as x in the expression). The lower the k parameter, 

the more repeatable the system. The average value for k is 0.2% for lightness, 1.3% for 

chroma and 1% for hue. The value is higher for the last two components due to a lower 

repeatability on achromatic surfaces (i.e. the black and gray patches of the ColorChecker) 

for chroma and hue. The maximum k value is 7% for the hue of the black patch. This was 

expected, as chroma and hue are theoretically equal to zero for achromatic samples. 

Consequently, low levels of noise yield high relative error on the C* and h* and thus lower 

repeatability.  

MetaVueTM from X-Rite is a spectrophotometer used to perform reference 

measurements on the same ColorCheker. The correlation between MetavueTM and 
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SpectraFace was investigated in the CIE1976 L*a*b* color space, and the calculated values 

show a very high correlation: more than 0.99. The high repeatability and correlation with 

a commercial device on the ColorChecker validates the accuracy of the camera on 

homogeneous samples.  

For applications on a face, which comprise many small elements, both the LCTF and 

camera contribute to chromatic distortion. This results in spectral errors on small objects 

in the image, such as spots and hairs. This chromatic error, which can be described as a 

geometrical distortion for each spectral channel of the camera, is not visible to the eye, but 

can lead to errors of analysis, discussed in Chapter 7.  

 

Figure 4.17. Example of chromatic error on eyelashes due to small movements: (a) 
part of the face image, (b) zoom on the eyelashes. 

Chromatic errors can also result from the subject moving during the acquisition 

process. The eyelashes are especially susceptible to involuntary micro-movements during 

acquisition. When zooming in the eyelashes, some rainbow effects can be observed on the 

color image when the person has moved during acquisition, as shown in Figure 4.17. 

4.3.b. Skin hyperspectral imaging 

The calibrated images can be visualized at any desired wavelength as a grayscale 

image (see Figure 4.18.a, b and c) or converted into a color image (Figure 4.18.d).  

Each of the wavelengths shown in Figure 4.18 highlights a specific skin characteristic 

and are coherent with the skin optical properties described in Chapter 3. At short 

wavelengths (Figure 4.18.a), melanin stains are particularly visible, since melanin mainly 

absorbs UV and blue light. Skin is also strongly scattering for these wavelengths, which 

means that blue light cannot travel very deeply into the skin before exiting: skin is strongly 

opaque in this spectral domain. The consequence of this property on the hyperspectral 

image is that the superficial skin structure and fine lines are clearly visible. Blood vessels 

can be seen with high contrast between 530 nm and 600 nm (Figure 4.18.b), due to a peak 

absorbance of hemoglobin in this part of the visible spectrum. Beyond 650 nm (Figure 

4.18.c), skin is less scattering and its chromophores are less absorbent, therefore skin is more 
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translucent, which allows light to travel deeper into the tissue. Consequently, skin appears 

more uniform and surface details are blurred. In addition, blood absorption coefficient is 

close to zero for red light, and lips and skin have similar gray levels at 700 nm. 

 

Figure 4.18. Example of channels of a hyperspectral image of a face: Image (a) at 
420 nm, (b) at 590 nm, (c) at 700 nm, and (d) color image after conversion into 
RGB values. (These images can be found in large format in Appendix 1). 

 
(a) (b) (c) (d) 

Figure 4.19. Color image under several illuminants: (a) D50, (b) D65, (c) D75 and 
(d) E illuminant. 
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The hypercube can also be used to model the color of the face under any illuminant, 

an operation called “relighting”, illustrated by Figure 4.19. 

Various effects that can be observed on pathological skin are illustrated by two 

examples in Figure 4.20, which are images acquired using the SpectraCam® on pathological 

skin at the University Hospital of Saint-Etienne (France) in collaboration with Pr. Jean 

Luc Perrot. Figure 4.20.a shows the presence of angiomas and lentigos, whose appearance 

varies according to two distinct patterns when looking at different wavelengths. These 

distinct patterns may constitute a classification criterion. On the image at 440 nm, both 

angiomas and lentigos appear as dark spots, as a consequence of light absorption by melanin 

and hemoglobin in this waveband. At higher wavelengths, blood contained in angiomas, 

visible with a high contrast at 520 nm and 580 nm, suddenly “disappears” from the image 

between 620 nm and 700 nm, since it is almost transparent in this spectral range. The visual 

signature of lentigos is different: their visibility decreases as wavelength increases.  

 

Figure 4.20. Spectral images of a 5 × 4 cm area of skin at various wavelengths and 
color representation for (a) angiomas and lentigos, and (b) for an hemangioma and 
a scar. 



84 Capturing wavelength selective information: Hyperspectral imaging (HSI) 

   

The second example (Figure 4.20.b), showing a hemangioma and a scar, demonstrates 

how spectral imaging can reveal information about how deep blood vessels are in skin. At 

440 nm, a few blood vessels can be distinguished, but since skin is very scattering at this 

wavelength, light cannot propagate very deeply into the tissue, and we can deduce that 

these blood vessels are very close to the surface. As wavelength increases (see for example 

at 520 nm and 580 nm), skin becomes more and more translucent, and we can see more and 

more vessels. For each spectral image, the newly visible vessels are located a bit deeper in 

the skin than the ones visible at the shorter wavelength. At 620 nm and 700 nm, blood is 

not very absorbent, therefore blood vessels are no longer visible and skin appears very 

homogeneous. The scar color does not vary according to wavelength, as scar tissue generally 

does not contain blood vessels or melanin. 

The wavelengths shown in Figure 4.20 have been selected by looking at the images. 

The automatic selection of wavelengths of interest is not part of this work. 

4.4. Conclusion 

The developed system meets the requirements of wide field of view, high resolution 

and short acquisition time that are crucial for obtaining satisfactory full face hypercubes, 

but achieving such efficacy depends on certain constraints: the lighting must be controlled, 

and the position of the subject must be fixed. Furthermore, the hyperspectral camera 

developed in this thesis relies on a technology which is now obsolete, as the key component, 

VariSpecTM
, is no longer commercially available. Other LCTF or tunable filters could in 

theory be substituted, but we have not so far been able to find a replacement that is 

adequate in terms of both size and efficacy. If a completely different system had to be 

developed, spectral acquisition using monochromatic LEDs should definitely be explored. 

Although it might not work for a full face camera, a system with an average field of view 

could be designed (e.g. able to image half or a quarter of a face). Such an instrument could 

provide high spatial resolution images at a favorable cost. 

With the emergence of artificial neural networks, hyperspectral cameras could be 

replaced by multispectral cameras, as discussed later in Chapter 7. If a sufficiently large 

quantity of diverse skins were to be acquired using both hyperspectral and multispectral 

cameras, a neural network could be trained to retrieve a complete spectrum from 

multispectral acquisitions [Setiadi and Nasution 2019]. The accuracy of such a method, 

however, would highly depend on the quality and diversity of the learning database. 

 

 



 

Chapter 5.  
Measuring non-flat parts of the 

body: 3D scanning 

Methods for measuring the three-dimensional (3D) geometry of a scene have been an 

intense topic of research for more than half a century. 3D scanning is now part of our daily 

life and used in many applications including numerical modeling and virtual reality, which 

can make it easier to study objects that are fragile or non-accessible; carrying out inspections 

in manufacturing and healthcare; or simulating immersive environments in games. These 

applications cover a wide range of fields such as healthcare, industry, cultural heritage and 

entertainment.  

Decades of research in 3D scanning has generated a number of methods surveyed in 

[Blais 2004], each of which have specific advantages and limitations for a given application. 

Nowadays, the physical principles of these methods are generally well defined, and recent 

research axes have focused on improving efficacy, whether in terms of resolution, sensitivity, 

robustness, speed, sensor miniaturization, or cost. 

The 3D measurement of a human body, including the face, is of interest to many 

applications, spanning the sectors of entertainment, healthcare, virtual reality and 

augmented reality. For some of these applications, high resolution is sought to create 

realistic content; in healthcare, this becomes even more crucial, for example if 3D scanning 

is used as an aid to surgery. With regard to the latter, obtaining high resolution 

measurements of a living person or part of the body is especially challenging. High 

resolutions can be obtained either by performing multiple acquisitions, or by using several 

sensors to simultaneously acquire the necessary information. The former runs the risk of 

the person moving during the acquisitions, thus affecting the quality of the acquisition, 

whilst the latter can be prohibitively expensive. Unless price is not a limitation, as for some 

medical applications, the choice of acquisition method is constrained: a tradeoff must be 

made between acquisition time, price and quality. In our project, we wish to combine 3D 
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measurement with hyperspectral imaging, which adds further limitations. The challenge is 

to find an acquisition method suitable for full face acquisition and hyperspectral imaging 

that can be produced at an affordable price. 

In Section 5.1 of this chapter, we first review the different types of 3D acquisition 

methods and discuss the existing setups for skin acquisition to determine the best-suited 

method for full face acquisition. Details about the implemented method and the acquisition 

system are given in Section 5.2. Acquisitions on a full face and discussion of the method 

implemented are presented in Section 5.3, and conclusions made in 5.4. 

5.1. Optical methods for 3D scanning 

Various optical and imaging technologies provide non-contact methods for collecting 

the geometrical shape of an object. These methods, recapitulated in Figure 5.1, can be 

categorized into those that are passive and active, with the main point of difference between 

the two being whether lighting conditions are controlled as part of the method [Remondino 

and El-Hakim 2006]. Hybrid methods combining both active and passive principles also 

exist. A good representation of commercially-available 3D scanners can be found on the 

website <https://all3dp.com> [All3dp].  

 

Figure 5.1. Examples of optical methods for 3D scanning, with the acquisition 
principle involved for each method in italic. 

3D information obtained using a 3D scanner is generally in the form of a point cloud 

that can be visualized as a polygon mesh using a dedicated software (e.g. MeshLab, ISTI – 

CNR, Italy). Some methods, which can be qualified as “2.5D”, yield depth maps. 
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Depending on the geometry of the scene, some objects might be occluded and absent 

from the reconstruction. This limitation can be compensated by merging several acquisitions 

taken from different points of view.  

In this section, some of the existing active methods, passive methods, and their 

potential applications to body 3D scanning are discussed. 

5.1.a. Passive methods 

Passive methods do not require any controlled illumination and utilize ambient light. 

Among these methods, Stereovision, or photogrammetry, is one of the most-used techniques 

[Zheng et al. 2007]. It is inspired by binocular vision: by recording a scene from at least two 

points of view, the 3D geometry can be estimated using triangulation. A given point of the 

scene must be located in each of the acquired images to compute its location in 3D space, 

and the scene is subsequently reconstructed in 3D by gathering these points. Consequently, 

binocular and multi-view stereovision consist in solving a correspondence problem. As the 

development of matching algorithms to find corresponding points is a challenging task for 

uniform objects, light patterns can be projected onto the surface to create a texture and 

improve the quality of 3D reconstruction using a hybrid approach. Many systems, of varying 

scales, cost and quality of results obtained, use stereovision. Some examples are given in 

Figure 5.2. 

        
(a) (b) (c) 

Figure 5.2. (a) Stereoscopic video acquisition system for the production of 3D movies 
(Angénieux, France), (b) Structure Sensor (Occipital, USA), (c) PrimeSenseTM 3D 
depth scanner combining two cameras and an infrared projector (PrimeSense, 
Israel). 

3D reconstruction from stereovision requires precise knowledge of the position of each 

camera, which can be determined through calibration. This calibration step can be avoided 

by using multiple images that contain redundant information. This is, for example, the 

method used in the Agisoft Metashape software (Agisoft LLC, Russia), which can build a 

precise 3D model of a scene or object (such as a human face as shown in Figure 5.3.a). 
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However, quantity and quality of input data is crucial for accurate 3D measurement, as 

illustrated in Figure 5.3.b, which shows an example of a poor 3D reconstruction. 

    
(a) (b) 

Figure 5.3. (a) Example of very high quality result obtained using the Agisoft 
Metashape software (data provided by Ten24: <https://ten24.info/sample-scan/>). 
(b) Test of the software in our lab, without a sufficiently high number of images, 
yielding poor accuracy. 

While multi-view 3D scanning remains a classical passive 3D acquisition method, 

several single view methods sidestep the point-to-point correspondence problem and offer 

low cost solutions. One of them is the depth from focus, or shape from focus method [Moeller 

et al. 2015], which consists in imaging an object at different focus settings and using the 

defocus to identify the distance to the camera. 

Passive methods are preferred when the lighting environment cannot be controlled. 

However, whilst they provide 3D information within a large field of view, their accuracy is 

generally lower than most active methods. As such, active methods are generally better-

suited for acquisitions where accuracy and the ability to discern small details is a priority.  

5.1.b. Active methods 

Many active methods are also based on triangulation [Lanman and Taubin 2009]. In 

contrast to stereovision, active methods use only one camera, with the other (in a 

stereovision set-up) replaced by a controlled light source that projects onto the object a 

spot, line or structured light. Single point laser scanning, which first emerged in the 1970s, 

is an example of an early active method which allows 3D acquisition without any ambiguity.  

As this process is quite slow, a similar approach using a sweeping line, called a slit 

scanner, is often preferred for the 3D acquisition of small static scenes. Examples of a single 

point laser scanner and a slit scanner are presented in Figure 5.4. The slit scanner is 

adequate for scanning small objects that can fit on a turntable, and several “Do it yourself” 

kits are available at a fairly low cost [Herakleous and Poullis]. Nevertheless, slit scanning is 

limited to static scenes or objects that can be placed on a turntable. 
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(a) (b) 

Figure 5.4. (a) 3D laser scanner (FARO, USA), (b) FabScan Pi slit scanner (Open 
source kit [Herakleous and Poullis]). 

An alternative method is structured light projection, which involves projecting a light 

structure into a full field-of-view. This method is not ambiguity-free, as several identical 

patterns are projected on the object, but solutions have been proposed to overcome the 

correspondence problem: coded pattern projection using spots, colour coded fringes and 

binary coded fringes, or sinusoidal fringe projection with phase unwrapping algorithms being 

two [Gorthi and Rastogi 2010; Geng 2011].  

     
(a) (b) 

Figure 5.5. (a) Artec EVA 3D scanner and (b) an example of 3D scan obtained when 
we had the opportunity to test the system. 

Figure 5.5 shows the EVA 3D scanner (Artec 3D, Luxembourg), an example of a 

device using structured light. The 3D geometry of a scene takes several minutes to record, 

requiring the object to be scanned from several points of view to overcome the limitations 

of its small field of view (the operator has to move around the object), with the final 3D 

reconstruction created by stitching the acquired 3D meshes together. 

5.1.c. Body 3D scanning 

The requirements that must be met to obtain an adequate 3D scan of the human 

body vary widely in terms of field of view, resolution and acquisition speed, depending on 
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the type of application. Among passive methods, stereovision is often used for applications 

in computer graphics, as the limited resolution of the 3D data can be balanced by applying 

a high quality image, named texture, on top of the 3D mesh. Another example of 

stereoscopic system used for body acquisition is Vectra M3 (Canfield, USA), a solution for 

full face 3D acquisition combining 3 stereoscopic cameras arranged in a triangle. This system 

can be used for applications such as face volume analysis in cosmetic surgery. However, its 

relatively poor resolution (the length of the polygon mesh edge is 1.2 mm) is not sufficient 

for detailed analysis on fine features such as wrinkles. 

For applications where accuracy and resolution are critical, active methods are 

generally preferred. For example, the EVA fringe projection scanner (Figure 5.5) can be 

used for applications in healthcare, such as assisting the design of better-fitting custom-

made prostheses and orthoses.  

For many years in the field of cosmetology, wrinkles have been measured by first 

replicating skin topology using silicon, then measuring the silicon replica using methods 

adapted to small samples [Grove et al. 1989; Hatzis 2004]. The study of wrinkles using 

silicon replicas is today mostly replaced by optical measurements, as it is faster and 

contactless. A device often used for wrinkle characterizations is PrimosCR (Canfield, USA), 

a small system with field of view around 4 × 3 cm, which offers a depth resolution of 2 µm 

with pixels of 20 µm (Figure 5.6). This device, which relies on multiple fringe projections, 

can be used to study the efficacy of a cosmetic product in reducing the size of wrinkles. 

Dermatop-HE, commercialized by Aeva 3D (Luxembourg) is a competitor using the same 

method. 

   
(a) (b) 

Figure 5.6. (a) PrimosCR (Canfield, USA) 3D scanner, using fringe projection for skin 
measurement and (b) associated high resolution results given as an example by the 
constructor. 

5.2. Full face 3D scanner using fringe projection 

The 3D scanning system that we have developed is based on a fringe projection 

method, which offers an excellent compromise between speed, quality and cost, within a 
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field of view that is compatible with full face acquisition. This method has already shown 

its efficacy in biomedical applications such as human body 3D shape measurements [Zhang 

and Yau 2006], deformation measurements and in vivo measurements [Wang et al. 2013]. 

Structured light projection also allows the use of a single camera for both hyperspectral and 

3D acquisition, which ensures a good pixel to pixel correspondence between the measured 

polygon mesh and the color texture. 

The overall acquisition process, illustrated in Figure 5.7, is as follows: After a 

radiometric calibration of the projector (detailed in 5.2.e), sinusoid fringes are projected 

onto the face and distorted by the geometry of the face. The difference between the 

measured phase on the face and the measured phase on a reference plane yields the 3D 

geometry using the triangulation principle. It should be noted however that in a first stage, 

this phase difference is “wrapped”, i.e. discontinuous and limited to [-π, π]. The continuous 

phase is retrieved from applying a phase unwrapping algorithm [Ghiglia and Romero 1994]. 

Finally, the phase can be converted into a depth map after a calibration step, and used to 

create a 3D mesh. Once the 3D reconstruction is completed, a color texture can be added 

for a better visual rendering. 

 

Figure 5.7. Illustration of the 3D scanner acquisition and reconstruction process. 

In this section, we detail only the 3D scanner, but the system is combined with the 

hyperspectral camera presented in the previous chapter. The architecture of the system 

must therefore be compatible with the hyperspectral camera. The acquisition time must 

also be as short as possible, as the overall acquisition time (3D scanning and hyperspectral 

image) must remain within a few seconds for in vivo acquisition. 

The acquisition setup and software are presented first. Then, the different tools that 

have been employed are detailed: the triangulation principle and the phase shift method 

are at the root of the method; phase unwrapping is required to solve the correspondence 

problem; finally, for a practical implementation, the radiometric and geometric calibrations 

that are necessary are presented. 
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5.2.a. Acquisition setup and software 

The acquisition setup is illustrated in Figure 5.8. The sensor part is from the 

hyperspectral camera (Basler monochrome CMOS 2048 × 2048 pixel camera, 35 mm focal 

length lens, and liquid crystal tunable filter – LCTF). A distance of around 40 cm between 

the camera and the face is ideal for full face acquisition with the chosen focal length. 

 

Figure 5.8. 3D scanner acquisition setup. Parts in gray correspond to the elements 
used for the hyperspectral acquisition. 

For fringe projection, the system comprises a portable digital LED projector (DLP) 

(ML330, Optoma, Taiwan), connected to the computer. This DLP has been selected for its 

modest dimensions (it weighs 460 g), its short focal length (12 mm), its ability to focus at 

a distance as short as 30 cm, its acceptable luminous flux compared to most portable 

projectors (500 lumens according to the manufacturer), its acceptable resolution in its range 

(1280 × 800 pixels), and its relatively low price (now less than 500€). This projector is not 

the most powerful DLP on the market, but is one of the rare systems satisfying the 

conditions of a very short projection distance and sufficiently long focal length. The shorter 

the focal length, the larger the projected image for a fixed projector-to-image distance. For 

our application, we preferred a small field of projection, as long as it remained large enough 

to cover the human face, to maximize the resolution of the projected image and light power 

on the area of interest (the smaller the projection area, the higher the illuminance). 

The light sources of the projector are red, green and blue LEDs, with maximum 

emission at 450 nm, 520 nm and 630 nm respectively. The spectral radiance of the white 

light emitted by the projector, corresponding to the three LEDs turned on together, is 

plotted in Figure 5.9. When 3D scanning is combined with hyperspectral imaging, the LCTF 

of the hyperspectral camera is a restricting element for the 3D scanner. It limits the field 

of view and reduces the amount of light transmitted to the sensor. More precisely, its 

transmission corresponds to a 10 nm wide waveband centered on a selected wavelength. 

The LCTF wavelength must be carefully chosen for the 3D scanning acquisition, depending 



CHAPTER 5  93 

 

 

 

on the spectral power distribution of the projector light. The emission of the DLP limits 

our possibilities to 450 nm, 520 nm and 630 nm. For acquisition on translucent materials 

such as skin, a wavelength for which the material is most opaque should be selected (this 

point will be discussed in Section 5.3). For skin, red should be avoided and blue should be 

preferred. However, the LCTF transmission at 450 nm is very low (less than 15%) and skin 

reflectance at this wavelength is low a well, yielding a bad signal-to-noise ratio. The 3D 

acquisition wavelength is thus set to 520 nm. 

 

Figure 5.9. Spectral radiance of the white light emitted by the Optoma ML 330 DLP 
measured by using a spectrophotometer. 

 

Figure 5.10. Example of 3D acquisition using SpectraFace, with the face illuminated 
by the Optoma projector. 

The angle between the camera and the projector is approximately 10 degrees. It allows 

full face acquisition while minimizing occluded areas. Originally, the fringe direction was 

set as vertical, which is often the case for face 3D measurement using fringe projection: 

considering that the face is similar to a vertical cylinder, vertical fringes yield the best 

accuracy for this kind of topology. However, our experience has shown that the method 



94 Measuring non-flat parts of the body: 3D scanning 

   

using vertical fringes was sensitive to the person’s face orientation, and one side of the nose 

was often occluded when vertical fringes were used. Horizontal fringes where finally 

preferred, as they were more robust to such occlusions. Some 3D acquisition methods project 

both vertical and horizontal fringes to increase the accuracy of the measurement. For our 

application, however, this possibility has been rejected as it would increase acquisition time 

above what is reasonable for in vivo acquisition. The projector can be placed either above 

or beneath the camera, but we chose to place it beneath to obtain better results on the nose 

reconstruction. Figure 5.10 shows the fringes projected for 3D scanning. 

A panel is used for reference and calibration, defining the X and Y axes of the 

Cartesian coordinate system shown in Figure 5.8. The panel is perpendicular to the optical 

axis of the camera (Z axis), and is mounted on a translation system which allows precise 

translations along the Z axis. The camera and projector pupils are located on the same (X, 

Y) plane. 

The acquisition software used has already been mentioned in Chapter 4, and was 

developed in C++ using the Qt framework. This software provides a live preview of the 

scene and controls the 3D acquisition (as well as the hyperspectral acquisition). It can be 

used to perform a radiometric calibration of the projector (detailed below), and generate 

corrected fringe images. The SpectraFace system used by Newtone Technologies is 

controlled using another software, developed by the company to manage clinical studies in 

addition to the basic acquisition and calibration features. 

The fringe images acquired using this software correspond to the first step of the 3D 

scanning process. These images are then used to compute the object’s 3D geometry using 

MatLab scripts (MathWorks, USA), written using the triangulation principle, the phase-

shift method and the unwrapping algorithm described below.  

Acquisition time is around 2 seconds. 

5.2.b. Triangulation principle 

Sinusoid fringes are projected onto an object and deformed according to the object 

geometry. Once the phase deformation is measured, the triangulation principle is applied 

to retrieve the depth information between the object and the reference plane. 

Let us consider a perfect projector whose pupil is centered at a point E, and a perfect 

camera whose pupil is centered at a point D (Figure 5.11). Let us also consider a reference 

plane where the optical axes of the camera and the projector intercept at points G and C, 

respectively. Let us now consider a point F on the object, separated from the reference 

plane by a length h called the depth. Point F is illuminated by a ray from the projector 

that would intercept the reference plane at point A were it not for the presence of the object; 

point F is also viewed by the same pixel (x, y) in the camera as point B on the reference 

plane. We denote as L the distance DG between the reference plane and the camera's pupil; 

as b the distance DE between the camera and projector pupils; and as f the fringe frequency 

on the reference plane. 
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According to the pinhole model, the depth h satisfies the following equation: 

AB h

DE DG h


 . 
(5.1)

 

Figure 5.11. Illustration of the triangulation principle. 

The phase difference between points A and B is 

–  
obj ref

    , (5.2)

where φobj and φref are respectively the phase at point F (or A) and at point B. Consequently,  

2 f AB    . (5.3)

From Eqs. (5.1) and (5.3), it is possible to write the relationship between the depth 

and the phase difference: 

1 2
L

h
fb


  

. (5.4)

5.2.c. Phase shift principle 

In order to retrieve the phase difference information in each pixel (x, y), we use the 

phase shift method [Gorthi and Rastogi 2010]. Let us consider a perfect projector. N fringe 

images are projected, encoded into an 8 bit gray scale such that the radiance incident on a 

flat reference plane in each pixel (x, y) is defined by the following equation: 
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where I’ is the average radiance, I” is the modulation and f is the fringe frequency on the 

reference plane. 

The projected images represent identical fringes, each of which are successively shifted 

by 2π/N. The phase, 2πfx, depends on the pixel location x.  

We denote as Jn (n=1,… N) the images recorded by the camera (we do not model 

camera noise here), which are fringes whose phase φ(x, y) is modified in function of the 3D 

geometry of the object: 
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where J’ is the average value and J” is the modulation. 

The phase φ(x, y) can be computed in each pixel by using the following equation: 
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From the N acquired images, the grayscale image Q3D that would be measured if the 

illumination was uniform (which also corresponds to the average value J’) can be retrieved: 

3D
1
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n

Q J
N 

  . (5.8)

The 3D scanning process is illustrated in Figure 5.12. The phase is computed from 

images projected on the object and on a reference plane (Figure 5.12.a-b) The information 

that yields the depth map of the object is the phase difference Δφ (Figure 5.12.c). 

 
(a) (b) (c) 

Figure 5.12. (a) Image acquisition (N = 6), (b) object wrapped phase and (c) phase 
difference between the object and the reference plane. 
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(a) (b) (c) 

Figure 5.13. Phase shift method with N = 3 (top) and N = 6 (bottom): (a) depth 
map of a titled plane (false color), (b) profile of the phase map and (c) error between 
the profile and the best linear fit. The variations are displayed in mm. The root-
mean-square error is 1.6 mm for N = 3 and 0.4 mm for N = 6. 

The selection of the value for N depends on the application requirements. When N 

increases, the acquisition time also increases but noise is reduced, as illustrated in Figure 

5.13 [Li and Li 2011]. The observed noise, a consequence of the projector’s limitations, is 

specific to fringe projection acquisition: it is periodic, with a period of N times the period 

of the projected fringes. For our acquisition system, an N value around 5 or 6 is a good 

compromise between reduced noise and acquisition time. 

5.2.d. Phase unwrapping 

The phase calculated using Eq. (5.7) is discontinuous since its values are restricted to 

the interval [–π, π]. The continuous phase is retrieved through a phase unwrapping 

algorithm. Phase unwrapping techniques can be classified into two categories: temporal 

phase unwrapping and spatial phase unwrapping. Temporal phase unwrapping [Zuo et al. 

2016] relies on the projection of a large number of images, such as using binary coded fringes, 

multiple frequency acquisition or coded structured light, in order to obtain the necessary 

information and solve the unwrapping problem. Spatial phase unwrapping uses the 

continuity between pixels to retrieve the original phase [Ghiglia and Pritt 1998]. As short 

acquisition time is of primary importance in our project, we ruled out the implementation 

of a temporal method.  

An intuitive spatial phase unwrapping method is to assume that the phase difference 

between two neighboring pixels is always less than π: the phase has to be unwrapped each 

time the difference between two neighboring pixels is higher than π. Regrettably, this 
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method is not robust to noise and errors propagate, as illustrated in Figure 5.14, 

necessitating more complex solutions. 

  
(a) (b) 

Figure 5.14. (a) Example of a depth map obtained after applying an unwrapping 
algorithm using phase continuity only, (b) corresponding 3D mesh display. 

The solution that we selected is Ghilia’s “2D unweighted phase unwrapping” [Ghiglia 

and Romero 1994], a spatial method based on the discrete cosine transform (DCT). Ghilia’s 

method, however, yields distorted continuous phase, especially when the image contains the 

object’s borders or when parts of the image contain significant depth variations. As can be 

seen in Figure 5.15, which represents a hand in front of a plane, the phase is not very well 

reconstructed in the areas of transition between the hand and the background plane. This 

is especially visible on Figure 5.15.c, which shows the difference between the original 

wrapped phase and the unwrapped phase using the DCT algorithm. As phase unwrapping 

corresponds to the removal of 2π discontinuities, the difference between these two images 

should be exclusively multiples of 2π, which is not the case. Otherwise, Figure 5.15.c would 

display only 4 uniform areas. 

 
(a)  (b)  (c) 

Figure 5.15. Example of Ghilia’s unwrapping method on a hand. (a) Original 
wrapped phase, (b) continuous phase obtained from the DCT method and (c) 
difference between the wrapped phase and the unwrapped phase (false colors 
display). 

To prevent these deformations, we decided to add an additional step to the DCT 

method, as follows. Let us denote as ��,� the wrapped phase for each pixel (i, j), ��,� the 
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continuous phase and � �,� the estimated phase using the DCT method, the latter two being 

given by Eqs. (5.9) and (5.10). The exact continuous phase is retrieved by applying Eq. 

(5.12), where .    denotes the floor function. By definition, we can write: 

, , ,2
i j i j i j

k    , k ℤ , (5.9)

, , , ,
ˆ 2
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This method yields very good results as long as there are no problematic 

discontinuities. We can see in the image of the hand (Figure 5.16) that the phase map of 

the background is not well reconstructed. However, when the original wrapped phase is 

cropped to eliminate significant phase variations, as in Figure 5.17, this method is quite 

effective and yields depth maps without artefacts with a short computation time. 

 

Figure 5.16. Continuous phase map of the hand obtained after applying the modified 
DTC method. We notice areas of errors on the background plane, due to high phase 
variations. 

    
(a)  (b)  (c) 

Figure 5.17. 3D reconstructions obtained using the modified DTC method on a 
cropped face: (a) wrapped phase, (b) unwrapped phase and (c) 3D mesh display. 
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For full face acquisition, the camera’s field of view must necessarily include some of 

the background. As wrapped phase is especially noisy in pixels belonging to this background 

area (see Figure 5.18.a), a polygon area is created to delimit the area of interest (i.e. the 

face) and used as a mask to discard the background pixels in the phase reconstruction 

process. Then, the phase-unwrapping algorithm is applied to the discontinuous phase. If no 

precautions are taken, applying the phase unwrapping algorithm on a discontinuous image 

leads to substantial errors in the phase reconstruction. These errors occur for masked images 

because the new border created when masking the image adds very sharp discontinuities. 

These errors correspond to several phase “jumps” of 2π (see Figure 5.18.b).  

In our first attempt to address this issue, we tried to identify the areas where the 

phase was not well-reconstructed, i.e. where there were phase “jumps” of 2π, assuming that 

the shape of the acquired face did not contain such discontinuities. The correct phase was 

then retrieved by adding or subtracting multiples of 2π on the erroneous pixels. This method 

was implemented using a watershed algorithm to locate the pixels that required correction. 

However, this approach was later abandoned as it was not sufficiently robust and required 

too much manual supervision to obtain a satisfactory phase reconstruction. 

 
(a)  (b)  (c)  (d) 

Figure 5.18. Unwrapping method for masked images using horizontal padding: (a) 
Original wrapped phase, (b) unwrapped phase when no padding is used, (c) masked 
and padded wrapped phase and (d) unwrapped phase when padding is used. 

Our next idea was to directly remove the discontinuities at the edge of the mask. A 

typical method for achieving this purpose, which can also be used for computing the Fourier 

transform on masked images without obtaining all the frequencies created by the edge of 

the mask, is to “erase” the edge discontinuity by using the heat equation. The zeros in the 

area outside the zone of interest are replaced by values computed using the heat equation. 

However, this method requires a long computation time. We finally conceived a simpler 

solution, illustrated in Figure 5.18.c: the masked images are padded with the values of the 

pixels located at the edge, in the horizontal direction for vertical fringes and vice versa. 

This method does not totally remove the edge discontinuity, but discards most of the high 
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spatial frequencies resulting from the edge of the mask. It is sufficient for the unwrapping 

method to yield satisfactory unwrapped phase maps. The limitation of this method is that 

it requires a mainly convex mask, but this is generally the case for a human face.  

Finally, noise on the phase map can produce phase errors within the masked area. 

This usually occurs when phase information is missing due to particular characteristics of 

the area of the object, such as on the eyelashes. In such cases, the error is a clear 

discontinuity of 2kπ (k ∈ ℤ) and it is relatively easy to correct it by manually adding 2kπ. 

Once the continuous phase map is retrieved, the depth map of the object can be 

obtained by applying the triangulation principle given by Eq. (5.4) using parameters 

determined through calibration. 

The acquisition process comprises three calibration steps for 3D scanning: a 

radiometric calibration which must be performed prior to generating the projected fringes, 

a depth calibration which allows the conversion of the phase onto a depth map, and an XY 

plane calibration which allows the conversion of the depth map into (x, y, z) coordinates 

expressed in millimeters, detailed in the following paragraphs. 

5.2.e. Radiometric calibration 

The projected fringes must be perfectly sinusoidal to ensure optimal 3D reconstruction 

quality. In practice, however, the sinusoidal profile of the projected image is distorted due 

to the radiometric nonlinearity of the projector. Indeed, commercial digital projectors are 

designed to project nonlinear images in order to comply with human vision, which has a 

nonlinear sensitivity. As the selected DLP does not have a mode for projecting linear images, 

a radiometric calibration is necessary [Li and Li 2011; Zhang and Huang 2017]. The method 

we have chosen consists in measuring the projector non-linearity by successively projecting 

gray levels on a white plane. For each input gray level, the average value on the recorded 

image is calculated and we obtain an experimental curve. The projector’s non-linearity is 

then modeled: the quadratic polynomial that best matches the experimental curve is 

computed using a least-square algorithm. Finally, this model is used to compute a new 

fringe image, closer to sinusoidal fringes after projection. This method accounts for both 

the projector’s and camera’s non-linearity. In practice, however, the selected camera is very 

linear and most of the grayscale distortion comes from the projector. 

The projector’s non-linearity is modeled by the following expression, relying on the 

gray level Ioutput measured by the camera, the gray level Iinput given as an input of the 

projector, and constants (A, B, C) determined experimentally: 

2
output input input
I AI BI C   .  (5.13)

Figure 5.19 shows the gray images that are sent to the digital projector, and the 

corresponding acquired images. This example corresponds to a grayscale calibration 

performed using the hyperspectral camera described Chapter 4. The acquired images are 
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not uniform, mainly due to vignetting from the LCTF of the hyperspectral camera. The 

output gray level used in the calibration method is the average value on a central area of a 

500 × 500 pixel dimension. 

  

Figure 5.19. Input gray images and output images acquired by the camera. 

 

Figure 5.20. Output gray values for input gray levels limited to [0.2; 0.9] (diamond 
markers) and fitting polynomial curve (dotted curve).  

The projector is an 8 bit device with input values that are integers between 0 and 

255. In this model, however, the gray level is expressed as a value between 0 (dark) and 1 
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(white). Since the projector used does not perform well at very dark and very bright gray 

levels, we chose to limit the gray level input between 0.2 and 0.9 (Figure 5.20). 

The modified input image Icorrected is computed from the sinusoidal fringe image Iimage 

that we wish to project according to the following formula: 

2 4

2
image

corrected

B B AI
I

A

  
 . 

(5.14)

Figure 5.21 shows the difference between non-corrected and corrected fringes. Figure 

5.21.d shows the Fourier transform of the fringe profiles. For the non-corrected fringes, we 

can observe several peaks that do not correspond to the frequencies of a sine curve. This is 

less the case for the corrected fringes, where the frequencies corresponding to the sine curve 

are predominant. 

 
(a) (b) (c) (d) 

Figure 5.21. Difference between projecting non-corrected and corrected images: (a) 
input image, (b) image acquired by the camera, (c) fringe profile and (d) Fourier 
transform of the profile. 

5.2.f. Geometric calibration 

The conversion of the phase map into depth information from the triangulation 

principle described by Eq. (5.4) requires knowledge of the system geometrical parameters 

L, b and f. These parameters, in addition to being dependent on the pixel location for the 

fringe frequency f, are difficult to measure accurately. Therefore, a calibration must be 

performed. The simplest calibration is linear, based on the approximate assumption that 

the phase difference is directly proportional to the depth when L is much larger than h. A 

non-linear calibration which does not rely on this approximation is also possible. 
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The implemented calibration is non-linear, and has been described by Jia [Jia et al. 

2007]. It requires the acquisition of several phase maps on planes located at various positions 

(h1, h2 …) along the Z axis (Figure 5.22) to find the two coefficients M and N: 

( , )
( , )

( , ) ( , ) ( , )
x y

h x y
M x y N x y x y




 



. (5.15)

 

Figure 5.22. Scheme illustrating the depth calibration process. 

A minimum of three acquisitions is required to evaluate the coefficients, but further 

measurements can be performed to give a better estimate of M and N by applying a least-

squares algorithm.  Figure 5.23 shows an example of the phase acquired for several h values 

and the regression curve that corresponds to Eq. (5.15). 

 

Figure 5.23. Acquisition of the phase on translated planes: Phase difference as a 
function of the depth h in mm, measurements (blue) and regression curve (red). 

Finally, it is necessary to know the pixel to millimeter conversion to obtain the 2.5D 

information, which is a set of points with X, Y, Z coordinates in the 3D Cartesian space of 

the scene. This plane calibration is implemented by imaging a known object, such as a ruler. 
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In our system, one pixel of the camera roughly corresponds to 0.1 mm on the reference 

plane. 

 

Figure 5.24. Example of the checkerboard images used in Bouguet’s camera 
calibration method [Bouguet]. 

The optical distortion of the camera and the projector can also be measured to fully 

calibrate the system. A typical camera geometrical calibration method is to acquire a known 

checkerboard at various positions and orientations, as illustrated in Figure 5.24 [Lanman 

and Taubin 2009]. The projector calibration can be done using a similar method [Moreno 

and Taubin 2012; Zhang and Huang 2006], in which a known checkerboard is projected 

onto a plane at various positions and orientations. The camera calibration is relatively easy 

to implementand [Bouguet] so long as the camera depth of field can be set to keep the 

checkerboard to be in focus in all images. The projector calibration is more difficult to 

implement in our set-up, as the projector depth of field is not adapted to such a method. 

Ultimately, we decided not to correct the camera and projector geometrical distortions, 

given that the distortion on the area of interest, i.e. the center of the field of view only for 

full face acquisition, was acceptable. 

5.3. Full face 3D geometry measurement 

The 3D scanner, its acquisition methods and the 3D data reconstruction process 

presented in the previous section yield full face depth maps that can be visualized in 3D 

after a mesh conversion. Although the methods used have been fine-tuned to maximize 

accuracy, there remain some errors, discussed in this section, which might be due to 

shortcomings of the method itself, from the specificities of full face measurement, or from 

the specificities of translucent materials measurement. 

5.3.a. 3D meshes displayed with texture 

3D scanning produces depth maps that must then be converted into meshes in order 

to be displayed as a 3D object. A denoising filter is first applied to the depth map (either 

an average filter or a Gaussian filter, both using matrix convolution). The filtered depth 
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map looks smoother than the original depth map, but periodic noise is now even more 

visible (see Figure 5.25).  

 

Figure 5.25. 3D display of a face depth map after an average filtering. The horizontal 
fringes result from the limitations of the fringe projection method. 

This periodic noise is filtered using a 2D low pass Butterworth filter, which utilizes a 

multiplication in the Fourier domain. The parameters of the filter are chosen to reduce the 

frequency that corresponds to the periodic noise. The direction of the noise is dependent on 

the direction of the projected fringes. The Butterworth filter is asymmetric: only high 

frequencies are cut in the fringe direction, and the cutoff frequency is lower in the direction 

perpendicular to the fringes. Unfortunately, a small amount of facial shape information is 

also lost during the noise removal, as certain details on the face have similar frequencies to 

the noise. Consequently, this filtering step limits the resolution of the obtained image. 

Figure 5.26.a and b. shows the depth map before and after filtering. 

 
(a) (b) (c) (d) 

Figure 5.26. 3D hyperspectral acquisition of a full face: (a) depth map before 
smoothing, (b) depth map after smoothing, (c) 3D mesh without texture and (d) 3D 
mesh with color texture. 

The depth map is converted into a .vtk 3D mesh file using a function from the Visual 

Toolkit library [Kitware]. During 3D mesh conversion, a texture can be added to represent 
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information such as reflectance for a given wavelength, or color. Figure 5.26.d shows the 

3D-HSI measurement after conversion of the spectral reflectances into RGB color. These 

3D meshes are displayed in Newtone Technologies’ SkinSurf software. This software 

includes a shader which adds shadows on the 3D face to give the impression of volume. 

5.3.b. Acquisition speed, resolution and accuracy of the method 

The efficacy of the implemented method can be assessed by its resolution, accuracy 

and acquisition time. Generally, it is much easier to achieve high resolution and accuracy 

when there are no constraints on acquisition time.  Our method was designed to obtain 

maximum resolution and accuracy with an acquisition time that could be used for in vivo 

objects. 

The method described in this chapter requires an acquisition time of around 2 seconds, 

which corresponds to the time needed for the projection of the different fringe images and 

their acquisition using a hyperspectral camera. The parameters that determine the 

acquisition time are the luminance of the projector, the sensitivity of the camera (i.e., the 

sensor response and the LCTF transmission at the 3D acquisition wavelength) and the 

projector refresh rate. The refresh rate of the chosen projector is not very high: the 

manufacturer indicates a vertical scan rate of 24 to 85 Hz, while 120 Hz is recommended 

for smooth videos. A delay of 100 milliseconds between two successive image acquisitions is 

thus necessary to avoid artefacts caused by refresh rate limitations. In addition, a 

satisfactory signal-to-noise ratio requires adequate exposure time, which was set at 150 

milliseconds. For the projection of 5 fringe images, taking into account additional delay due 

to signal transfer between the camera and the computer, the approximate acquisition time 

is around 2 seconds. 

The accuracy and precision of the system are determined by the limitations of both 

the hardware setup and software method. The fringe projection method has a limited 

resolution, while the hardware has shortcomings that degrade the accuracy of the 

acquisition. This is exacerbated when the measured surface is a translucent material such 

as skin. In this subsection, each source of limitation is separately investigated. 

Precision of the fringe projection method 

The fringe projection method relies on measuring the phase variation between a 

measurement on the object and a measurement on the reference plane. The minimum 

detectable height corresponds to a phase difference of one pixel of the projector, which 

corresponds to  

   2
min pixel

fx   , (5.16)

with f the fringe frequency on the reference plane and xpixel the size of a pixel of the projector 

on the reference plane. Using Eq. (5.4), this condition leads to the following minimum 

detectable height 
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and minimum slope 
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(5.18)

The maximum measurable height difference between two neighboring pixels is 2π. 

Otherwise, the phase unwrapping algorithm cannot be applied. This yields a condition on 

the maximal measurable height difference 

max 1
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

, (5.19)

and the corresponding slope 
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The minimum detectable height and minimum slope expressed in Eqs. (5.17) and 

(5.18) do not depend on the fringe frequency. The choice of fringe frequency, however, does 

have an impact on the minimum detectable height in practice: when the fringes are too 

large, the difference in radiance between two pixels is small, and a very small height 

difference is difficult to measure as it is likely to be of the same magnitude as the noise. 

The maximum height [Eq. (5.19)] also depends on the fringe frequency. If fringes are too 

small, the measurement can be performed only on objects that do not vary significantly in 

height. For these reasons, some methods targeting very high resolution acquisitions use 

multi-frequency projection [Yalla and Hassebrook 2005], to ensure both accuracy and high 

slope measurement. Such methods, however, increase acquisition time, which make them 

unsuited for vivo application. In this project, we selected an intermediate fringe frequency, 

of a value around 1 cm-1. 

Equations (5.17) and (5.19) show how b, the distance between the projector and the 

camera, and L, the distance between the camera and the reference plane, play a role in the 

system’s resolution. These quantities b and L are related to the angle between the camera’s 

and the projector’s optical axis, which consequently greatly affects the resolution of the 

system [Geng 2011]: a large angle between the camera’s and the projector’s optical axis 

yields a better resolution. A large angle, though, increases the risk of having occluded areas. 

An angle of 10 degrees between the camera’s and the projector’s directions has been selected 

as a compromise to maximize resolution while minimizing occlusion. 

The resolution is also influenced by the size of the projector pixels on the reference 

plane. This parameter is determined by the characteristics of the projector (pixel size, 
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resolution and focal length) and on the position of the reference plane. Although our choice 

of projector was informed by these considerations, it was equally limited by what was 

available and affordable on the market. In our system, the size of a projector’s pixel on the 

reference plane is around 0.3 mm. 

Quantitative error estimation on opaque objects 

The precision of the acquisition method has been ascertained by measuring a tilted 

plane (Figure 5.27). The analysis of the 3D measurements shows that the noise is a 

combination of white noise, periodic noise and a low frequency deformation.  

The low frequency deformation is caused by the geometrical distortions of the camera 

and the projector. It yields a higher disparity between the best-fitting plane and the 

acquired points on the corner of the image, as seen in Figure 5.27.b. As the region of interest 

is located in the center of the image for full face acquisition, the distortion observed in the 

corner of the image does not significantly affect the accuracy of the measurement of a full 

face. The maximum deviation between the acquired data and the best-fitting plane in the 

region of interest (which does not include the corners of the image) is 1.4 mm, the average 

deviation is 0.3 mm and the standard deviation is 0.4 mm.  

 

Figure 5.27. (a) Point cloud display of the measured titled plane before smoothing, 
(b) difference between the measured data and the best fitting plane. 

Although the system’s accuracy is theoretically determined by its dimensions, in 

practice, the quality of the projector significantly influences the results. Our chosen 

projector has a relatively low resolution (1200 × 800 pixels), and it displays images on an 

8-bit gray scale. These two parameters determine the quality with which the projected 

signal is discretized and quantized. A low number of pixels per fringe results in high error 

between the projected signal and a perfect sinusoid. If the number of pixels per fringe is 

high (higher than 510 pixels), it is the 8 bit quantization that is limiting, as the projector 
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cannot render more than 255 gray levels. In addition to these limitations, the projector is 

not linear. A radiometric calibration has been performed to improve the quality of the 

projected fringes, however it is not sufficient to obtain a perfectly sinusoid signal. Finally, 

the depth of focus of the projector is shallow (an image projected on a plane translated of 

as little as 2 cm is out-of-focus), and the fringes projected can be blurred on some parts of 

the face. When the phase-shift method is used, the limitations listed above result in the 

periodic noise described above, visible on Figures 5.13 and 5.25.  

As mentioned in Section 5.2, various solutions can be used to increase the quality of 

the measurement: in addition to performing a radiometric calibration, periodic noise can be 

reduced by increasing the number N of projected images in the phase shift method. The 

noise reduction, however, is not linear in respect to N: there is an optimum value for N 

when considering noise and acquisition time. After trying several configurations, we 

considered that N = 5 and N = 6 were the most appropriate configurations for full face 

3D scanning. 

The precision of the method was also characterized by measuring an opaque spherical 

object, namely a yellow ball, with a radius of 31 mm ± 0.5 mm, measured using a caliper.  

 

Figure 5.28. Acquisition on a spherical object: (a) object, (b) depth map and (c) 3D 
surface. The dotted line on (b) shows the location of the profile represented in Figure 
5.29. 
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(a) (b) 

Figure 5.29. Profile of the depth map and best fitting circle calculated using the 
root-mean-square distance (a) when accounting for all the data and (b) when 
discarding the data at the border. 

The depth map of the object has been reconstructed, and the vertical profile of the 

ball on the depth map has been used to assess the acquisition error. The 3D acquisition of 

the ball is illustrated by Figures 5.28 and 5.29. 

When the entire profile is used to search for the best fitting circle using a method of 

least square (Figure 5.29.a), the corresponding circle radius is underestimated by 8%. 

However, when the pixels corresponding to the border of the ball are discarded (Figure 

5.29.b), the ball radius estimated from the measurement is much closer to the manual 

measurement using a caliper. 

Looking more closely at Figure 5.29.a, we can observe that the error is higher on the 

top of the ball (corresponding to the left of the profile) than the bottom. A possible 

explanation for this difference is the position of the projector: as the projector is located 

underneath the camera, the top of the ball receives less light, thus the signal-to-noise ratio 

is low and the measurement error is high. For an acquisition on a full face, it confirms that 

having the projector underneath the camera is the most appropriate position given the 

shape of a face. 

The measured deviation on the tilted plane and on the ball are to be interpreted as 

minimum error values characterizing the acquisition method on non-translucent objects. 

Efficacy of the method on skin 

In vivo acquisitions on translucent materials such as skin are challenging for two 

reasons. The first is that unintentional movements of the person during the acquisition can 

generate noise. These movements can be more or less disadvantageous, but are in any case 

inevitable as the body moves when a person breathes. In order to minimize this source of 

noise, we have built an acquisition method with the aim of minimizing acquisition time. In 

the specific case of 3D acquisition, other strategies are also possible, such as using 

reconstruction methods that are more robust to movement [Cong et al. 2015]. 
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The second challenge results from the fact that skin is a translucent material, causing 

subsurface scattering that deteriorates the quality of the projected fringes by blurring them. 

This subsurface scattering can be described by a point spread function (PSF), or by a 

modulation transfer function (MTF) in the Fourier domain. In theory, the effects of 

scattering on a pattern projected onto a medium can be estimated by the convolution of 

the PSF of the medium with the projected pattern. In the Fourier domain, this is equivalent 

to a multiplication of the MTF of the medium and the Fourier transform of the pattern. 

When the projected pattern is sinusoidal, its Fourier transform is a Dirac delta function. 

Hence, whatever the MTF of the medium, the result of the multiplication in the Fourier 

domain remains a Dirac delta function and the impact in the real domain is a loss of contrast 

of the sine function. In practice however, the implemented radiometric calibration was not 

sufficient to guarantee a perfectly sinusoidal output signal, resulting in distortion caused by 

subsurface scattering. This subsurface scattering can be minimized by limiting the 

acquisition to the channel of the projector for which skin is the most opaque [Wang et al. 

2013]. As already discussed in Section 5.2.a, this is the blue channel for skin. However, as 

the camera in the proposed acquisition setup is more susceptible to noise in this waveband, 

we have chosen to perform 3D scanning at 520 nm. 

5.4. Conclusion 

The 3D scanning method detailed in this chapter allows us to measure the 3D 

geometry of a full face with a reasonable acquisition time. The precision and accuracy of 

the method are satisfactory, taking into account the simplicity of the setup. However, for 

applications targeting finer details such as wrinkles, higher precision would be necessary, 

while for applications targeting full face shape analysis, the acquisition of a single depth 

map is not sufficient. 

If we wished to design a more effective system, two strategies could be considered: 

focusing on accurate full-face 3D scanning, or targeting high resolution wrinkle 

measurements on a small area. Both strategies would require a much more complex and 

expensive 3D scanner. For full face acquisition, it would be necessary to build a system 

comprising one or several projectors and several cameras (three for example) to perform 

multiple acquisitions with multiple points of view. For wrinkle measurements, the method 

implemented in Primos (Canfield, USA) and Dermatop-HE (Aeva 3D, Luxembourg), which 

uses multiple frequency fringe projection, appears to be an effective means of ensuring high 

precision. To build such a system however, a custom-built projector for which intensity, 

focal length and depth of field could be fully adjusted, would be required rather than a 

commercially available DLP. 

 

 



 

Chapter 6.  
Measuring the spectral 

reflectance of curved surfaces: 

irradiance drift correction 

As already mentioned in Chapters 4 and 5, a simple radiometric correction based on 

a flat reference sample is not adequate to provide accurate spectral measurement of complex 

3D objects. On a full face, the measured spectral reflectance is not a faithful representation 

of the actual spectral reflectance except in those areas that receive the same irradiance as 

that received by the flat panel used for calibration, e.g., the forehead and cheeks. On the 

other areas of the face, the measured spectral reflectance corresponds to the actual 

reflectance multiplied by a factor related to the irradiance deviation between the skin area 

and the flat reference plane. We propose to call this difference irradiance drift. 

 With respect to skin analysis, irradiance drifts can lead to errors in analysis. For 

example, an area that appears darker in the image because of lower illumination could be 

erroneously interpreted as an area containing more melanin. When working on a full face 

then, it is crucial that the image is pre-processed to manage irradiance drifts before 

attempting relevant skin analysis. This pre-processing takes the form of an irradiance 

correction method, and is a necessary step in the skin optical analysis. 

Several methods are discussed in literature to address this problem, sometimes referred 

as a “curvature artefact”. We can categorize these methods into those using structured light 

or fringe pattern projection for 3D scanning [Westhäuser et al. 2008; Gioux et al. 2009; 

Paquit et al. 2008], and those relying on curvature intensity bias correction [Kainerstorfer 

et al. 2010], which do not require the additional acquisition of the 3D shape of the object. 

Certain 3D acquisition methods, such as shape from shading [Barron and Malik 2015], aim 

at retrieving surface reflectance information (and potentially more information, such as the 

lighting conditions) using similar principles. 
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The proposed method is an extension to a “3D irradiance correction” of the spectral 

calibration method detailed in Chapter 4. By assuming in a first approximation that skin 

is a Lambertian reflector, and acquiring the 3D geometry of the object, we can compute the 

irradiance of each pixel and subsequently perform an irradiance correction that takes into 

account the effects of the geometry of the object on the measured signal. 

Knowledge of the 3D geometry, lighting conditions and BRDF of the surface allows 

us to render the visual appearance of the object using radiometric concepts described in 

Chapter 2. If the surface is Lambertian, the calculation is simplified, as BRDF is constant 

over the entire hemisphere whatever the illumination geometry. Reflected radiance, in every 

direction, is therefore proportional to irradiance. Figure 6.1 illustrates such an application 

by showing the visual appearance of a silicon skin replica (assumed to be a Lambertian 

reflector) under collimated illuminations at various angles. This rendering was computed in 

MatLab from the normal map of the object (Figure 6.1.a). The normal map has been 

acquired at the SYMME Laboratory (Annecy, France) using a LED dome which captures 

the object under many directional illuminations in order to reconstruct the 3D geometry of 

the surface.  

 

Figure 6.1. (a) Normal map of a white skin silicon replica and (b) rendering of the 
replica for a collimated illumination at various incident angles, assuming that the 
surface is Lambertian. 

When an object whose 3D geometry is known is imaged under controlled lighting 

conditions, the same radiometry concepts that have been used to create the rendering of 

Figure 6.1 can be used to retrieve the reflectance factor of the object from the radiance 

measured by the camera. If the surface of the object is Lambertian, the reflectance factor 

corresponds to the reflectance (or albedo). In our case, skin is acquired using a cross-

polarization (CP) configuration (the specular component is discarded), and only the diffuse 

reflectance component, which can be assumed as Lambertian for skin, is measured. 

The method implemented by Gioux on spatially modulated imaging systems [Gioux 

et al. 2009] or Westhauser on color images [Westhäuser et al. 2008] uses the angle between 

the object surface and the optical axis of the camera. This method, however, is valid only 
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for a punctual illumination. As we have a complex illumination configuration in the 

hyperspectral imaging system, our approach must consider the full geometry of the 

acquisition system. Since we could not find any reference related to this issue in the 

literature, we conceived a new approach, in two steps. First, considering a point source, the 

amount of light received on each point of the object is computed so as to perform an 

irradiance drift correction, assuming that the surface is a Lambertian reflector. Secondly, 

the irradiance drift correction valid for point sources is extended to the full hyperspectral 

image (called hypercube) with the additional hypothesis that artefacts due to curvature are 

similar at every wavelength. 

In this chapter, we detail in Section 6.1 the two-step irradiance correction method 

and its implementation, and discuss the efficacy of the method in Section 6.2. In Section 

6.3, we present another possible application of the 3D imaging system: its use as a non-

contact BRDF measurement device. Conclusions are drawn in Section 6.4. 

6.1. Irradiance correction methods for simple and 

complex configurations 

The irradiance drift correction method relies on computing the radiance reflected by 

the object toward the camera. This calculation is simple when the source is punctual, which 

can be assumed to be the case when the light source is a digital projector. However, this 

comes more complex when the object is illuminated by a series of lights, as it is the case for 

our hyperspectral acquisition system. In this section, the method valid for a point 

illumination is described first, then extended to the case of a complex illumination 

configuration. 

6.1.a. Analytical formula for the point source correction method 

Let us consider the following configuration: a point source (henceforth described to 

the “projector” to conform with our application) emits light in a cone, the object surface is 

Lambertian, and the area of interest is a small surface dS(x, y) of the object that corresponds 

to one pixel (x, y) when imaged on the camera sensor. 

The surface dS(x, y) receives the irradiance E(x, y), that can be expressed according 

to the inverse square law (already defined in Chapter 2) as a function of the source intensity 

I(θ, φ) in the direction of the object, the distance d(x, y) between dS and the source and 

the angle α(x, y) between the normal of the surface and the lighting direction, illustrated in 

Figure 6.2: 

( , )
2

cos
E I

d



 

. 
(6.1)
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Figure 6.2. Geometry of the object, of the lighting, and useful quantities for the 
irradiance correction method. 

Finally, the flux F(x, y) received on the pixel of the camera is defined as the quantity 

of light flowing through the geometrical extent dG(x, y) between the surface dS and the 

pupil of the imaging system. 

  

Figure 6.3. Simplified geometry of the imaging system. 

As a property of geometric extent, dG is also equal to the geometrical extent between 

the pupil and the pixel (x, y), and can be written as a function of the area of the pixel Apixel, 

the area of the pupil Apupil, the focal length of the system f and the angular position of the 

pixel in the field on view β(x, y) (see Figure 6.3): 
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

 . (6.2)

The flux F(x, y) received on the pixel of the camera depends on the radiance L(x, y) 

leaving the surface in the direction of the camera, the optics transmittance T(x, y) and the 

angular position β(x, y) of the pixel in the field of view of the camera: 
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4cosF k L T   , (6.3)

where k is a coefficient that depends on the properties of the camera (focal length, aperture, 

pixel’s size): 

2
pixel pupil

A A
k

f
 . (6.4)

Finally, the electronic signal Q(x, y) emitted by the sensor, which corresponds to the 

image, is proportional to the received flux: 

Q F S n   . (6.5)

where S is the sensor sensitivity and n is the acquisition noise, both assumed to be 

independent from the location of the pixel. 

The combination of Eqs. (6.1), (6.3) and (6.5) yields: 

4( , ) cos
2

R cos
nQ

d
T SI k   


  


. (6.6)

The surface reflectance R(x, y), which is the parameter to be determined, can be 

retrieved by performing a calibration using a flat black sample and a flat white sample to 

provide the unknown quantities and remove the effect of noise. The source intensity can be 

calibrated by considering the pixel (x’, y’), which corresponds to the area on the reference 

plane illuminated under the same angle (θ, φ) as the area on the object imaged in the pixel 

(x, y).  

The signal Qw(x’, y’) captured in the pixel (x’, y’) when the white reference plane of 

albedo ρw is measured can be written as: 

4'
( , ) cos '

'2
'w

w
n

cos
Q TI k

d
S  

 
  


, (6.7)

where the quantities α’, d’, β’ and T’ are related to the pixel (x’, y’): d’(x’, y’) is the distance 

between the light source and the pixel on the reference plane; α’(x’, y’) is the angle between 

the normal of the reference plane and the illumination direction; β’(x’, y’) is the angular 

position of the pixel in the camera’s field of view; and T’(x’, y’) is the transmission of the 

optical system  

The signal Qk captured on the black reference plane can be described by a similar 

expression, replacing ρw with ρk in Eq. (6.7). Combining Eqs. (6.6) and (6.7), we can express 

the reflectance factor of the surface as: 
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and thus becomes independent of the sensor response, source intensity and background 

noise. 

Equation (6.8) involves values in two different pixels (x, y) and (x’, y’), as well as the 

transmittance of the camera for this two pixels, which cannot be determined by calculation. 

In order to further simplify Eq. (6.8) and obtain an expression which is independent from 

T and T’, we assume that the light intensity of the projector is the same in the direction of 

pixel (x, y) and in the direction of pixel (x’, y’). We obtain an expression that depends only 

on the pixel (x, y): 

2
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  


. (6.9)

In our application, both the object-reference plane distance and camera-projector 

distance are small compared to the camera-reference plane distance, so that the pixels (x, y) 

and (x’, y’) are not far from each other. Consequently, the assumption mentioned above 

does not significantly affect the quality of the corrected images, which mainly depend on 

the quality of the 3D measurement, as discussed later in Section 6.2. 

6.1.b. Implementation of the method 

The irradiance correction method has been implemented in MatLab. In addition to 

the image acquired on the object and reference planes (Q, Qw and Qk), it requires information 

on the object (normal map and pixel location), on the camera (location) and on the lighting 

(position of the source). Eq. (6.9) gives the correction formula for each pixel, which is turned 

into a matrix expression, better suited to the computational facilities of MatLab. 

Parameters α, α’, d and d’ become matrices with similar size as the whole image. 

The 3D acquisition first yields a depth map which gives the location of the object 

surface for each pixel. From this depth map, the surface normal vectors N = [Nx, Ny, Nz] 

are computed using the following formulas, where ⊗ refers to the 2 dimensional convolution 

[Barron and Malik 2015]: 
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with 

2 2
3 31 ( ) ( )x yB Z h Z h     , (6.11)
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The map of normal vectors can then be encoded as an RGB color image: Nx is 

represented by the red coordinate, Ny by the green coordinate and Nz by the blue coordinate. 

Consequently, the background of the image, for which the normal vector is [0 0 1], appears 

as blue. Figure 6.4 shows an example of normal map calculated from a depth map.  

 

 
(a) (b) 

Figure 6.4. (a) Depth map and (b) corresponding normal vector map displayed as a 
color image. 

  
(a) (b) 

Figure 6.5. (a) Depth map of half a face (false color display) and (b) corresponding 
normal map when no smoothing has been applied. 
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The depth map must first be smoothed before computing the normal map. If no 

smoothing is applied, the computed normal map is very noisy, as can be seen in Figure 6.5. 

Noise reduction has been achieved by first applying a Gaussian filter, then an averaging 

filter. The averaging filter is larger in the horizontal direction to reduce the noise deriving 

from the 3D acquisition when vertical fringes are used (and vice versa when the 3D 

information is acquired using horizontal fringes). 

Once the normal map is known, the quantities cosα and cosα’ can be calculated: they 

are scalar products given by 

cos obj proj

obj proj

O O N

O O




���������� ���

���������� , (6.13)

and 

cos ' obj proj

obj proj

O O Z

O O




���������� ��

���������� , (6.14)

with Oproj and Oobj respectively designating the location of the projector and considered pixel. 

An example of cosine map is illustrated in Figure 6.6. We can notice on these images 

that the cosine map produces an impression of 3D shape. This is due to the fact that our 

brain uses information related to the quantity of reflected light to perceive volume, a 

quantity which is mainly determined by the cosine of the angle between the illumination 

direction and the surface normal vector. 

   
(a) (b) 

Figure 6.6. (a) Normal map and (b) cosine map representing the quantity cosα. 

The term obj proj
O O
����������

 corresponds to the distance d between the source and the object. 

The last quantity that is required to apply the correction method is the distance 
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d’ = ref proj
O O
����������

. This distance is obtained after finding the location of the intersection 

Oref = (xref, yref, zref) between the projector-object axis and the reference plane, defined by 

the equation Z = 0. The location of the intersection is given by the following expression: 

ref proj proj obj
O O c O O  

����������

, (6.15)

where c is a constant satisfying zref = 0. 

Figure 6.7 shows the results of an irradiance correction performed with a punctual 

source, a digital projector in our application. On the corrected image, we can see blood 

vessels on the left of the forehead that were not visible on the original image because of low 

contrast. However, the corrected image also contains artefacts, all of them resulting from 

quality issues in the normal map: irradiance drifts are sometimes over-corrected, such as on 

the eye, where some areas are lighter than they should be. 

 
(a) (b) (c) 

Figure 6.7. (a) Cosine map, (b) original image before correction and (c) image after 
correction. 

This correction, valid when the illumination is punctual, is the first step to the general 

method that can be applied to images acquired using the hyperspectral camera, described 

below. 

6.1.c. Case of a complex illumination geometry 

In the proposed system, each lighting unit of the hyperspectral acquisition system 

comprises ten LEDs; the total incident irradiance is the sum the irradiances coming from 

each LED. The first idea for extending the method to a complex configuration was to 

consider the overall lighting configuration as a sum of point sources, 20 in our application. 

To implement this method, images on black and white reference planes had to be acquired 

for each point source, with all the other LEDs turned off. The correction method was then 

applied independently for each wavelength of the hypercube. However the quality of the 

corrected images was poor: it was difficult to accurately determine the position of each LED, 



122 Measuring the spectral reflectance of curved surfaces: irradiance drift correction 

   

and although the assumption that illumination is punctual is valid for a digital projector, 

it is not clear whether this remains the case for LEDs combined with a plastic lens. The 

method described by Eq. (6.9) was therefore revised using an additional step to make it 

suitable to complex illumination configurations. 

The hypercube correction is based on the assumption that once the radiometric 

calibration described in Chapter 4 has been applied, the remaining irradiance drifts are the 

same for all wavelengths. Indeed, the radiometric calibration detailed in Chapter 4 removes 

the effects of the illumination heterogeneities and camera transmission for each wavelength, 

and the irradiance drifts that remain after this first step derive from the shape of the face 

only. With this in mind, we can compute an irradiance correction on one image, 

corresponding to one wavelength, and apply it to the entire hypercube. Using our 3D-HSI 

system, the face is acquired a first time at a single wavelength during the 3D scanning (with 

the projector turned on and the LEDs turned off), then acquired again for all wavelengths 

using the hyperspectral camera (with the projector turned off and the LEDs turned on). 

We can apply the simple correction method on the image corresponding to the 3D 

acquisition. Consequently, we can identify the irradiance drifts at a single wavelength, and 

then use it to correct the whole hypercube. 

Let us recall that the 3D scanning, performed for a single wavelength λ3D (520 nm), 

provides Q3D, the image that would be recorded by the camera if the object was illuminated 

by uniform light from the projector, with Jn, (n = 1 … N) the N fringe images recorded by 

the camera: 

3D
1

1 N

n
n

Q J
N 

  . (6.16)

For 3D acquisition, the lighting geometry is simple because there is only one source, 

the digital projector, which emits light within a cone. Its position can be determined by 

calibration. By performing an irradiance normalization using Eq. (6.9) on Q3D(λ3D), the 

normalized reflectance factor #$%& (λ3D) for the wavelength λ3D
 is obtained. For this 

wavelength, the output of the hyperspectral acquisition is Qhsi(λ3D). The ratio of #$%&(λ3D) to 

Qhsi(λ3D) gives a correction factor K which stands for every wavelength: 

3 3
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
. (6.17)

Finally, this correction factor is used on the hyperspectral image Qhsi(λ) and we can 

thereby obtain the normalized spectral reflectance factor #$'(�(λ) for each wavelength:  

( ) ( )
hsi hsi

R K L ɶ   . (6.18)

This correction method is partly implemented in MatLab, where the correction factor 

K is calculated using the method already described in § 6.1.b, and partly implemented in 
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NtImageAnalysor, an image analysis software developed by Newtone Technologies which 

allows the multiplication of hypercubes, to compute Eq. (6.18) for all wavelengths at once. 

This method applies only if the hyperspectral image and the 3D image have been 

acquired in the same CP polarization configuration. Hence, a linear polarizing filter has 

been added to the projector to create a CP configuration with the LCTF polarization 

direction. 

Notice that in the methods described in this section, shadows corresponding to light 

that is completely blocked by an obstacle are not modeled. We consider that the digital 

projector is positioned in such a way that there are not occluded areas visible on the 

acquired images. To account for shadowed areas in the current method, the location of the 

reference point Oref (i.e. the point of the reference plane located in the direction (θ, φ) as 

the point on the object Oobj, calculated using Eq.(6.15)) could be used. If two pixels have 

the same reference point, then one of them receives light and one of them is occluded. 

6.2. Irradiance correction on hyperspectral images 

In this section, we present and discuss the efficacy of the method detailed above for 

irradiance drift correction applied to a full face. 

 

Figure 6.8. (a) Original image with incident irradiance non-uniformities, (b) image 
after correction and (c) profile of the radiance intensity on the forehead before (gray) 
and after correction (black). The dotted line on images (a) and (b) indicates the 
location of the profile. For display purposes, the maximum gray level corresponds 
to a reflectance of 0.5. 
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Figure 6.8 shows an example of a corrected image obtained in a simple configuration 

with the projector illuminating only the face, for a single wavelength (520 nm), before 

(Figure 6.8.a) and after (Figure 6.8.b) irradiance correction. Figure 6.8.c shows the 

irradiance horizontal profile on the forehead before and after correction.  

The implemented method corrects the irradiance variation observed on the forehead. 

The curve observed on the gray line in Figure 6.8.c is the consequence of irradiance non-

uniformities on the forehead but does not describe the skin reflectance on this zone. The 

black line shows that the reflectance profile is more homogeneous after applying the 

irradiance correction. Local variations are due to skin surface micro-reliefs.  

Although this method yields good results for most parts of the face, there are areas 

for which it is not satisfactory. When the angle α between the lighting direction and the 

normal to the surface is high, the cosine of the angle is close to zero. Since in Eq. (6.9), the 

original radiance is divided by cosα, a small error on α yields a high error on the corrected 

reflectance factor. This can be seen on the sides of the nose, where the shadows are 

overcorrected. 

Figure 6.9 shows an example of color images before and after applying the irradiance 

normalization method on a full hyperspectral image. The corrected hypercube has been 

converted into a color image for better visualization. Except for the overcorrected areas 

observed on the nose and border, the color obtained after correction is visually satisfactory. 

However, the errors observed on areas such as the nose, which appear to be unavoidable 

when generating a depth map acquired from a single point of view, is still present and must 

be considered as a limitation of the developed methodology. 

 

Figure 6.9. Full face color image (a) before correction and (b) after correction on a 
hyperspectral image (color conversion with a D65 illuminant). 

Figures 6.8 and 6.9 show that the efficacy of the correction method depend highly on 

the quality of the depth map used. Unfortunately, using our 3D scanner, the depth map 

has to be heavily smoothed to prevent artefacts due to noise, which likely impacts the 



CHAPTER 6  125 

 

 

 

accuracy of the 3D information. For example, we suspect that filtering the depth map 

slightly modifies the shape of the nose, directly impacting the quality of the correction 

method. 

Figure 6.10 shows three slices of the hypercube corresponding to the wavelengths 420 

nm, 600 nm and 700 nm, before and after correction. Examining them, certain observations 

concerning the validity of the two assumptions can be made:  

- Assumption 1. Skin is a Lambertian reflector, 
- Assumption 2. Irradiance drifts are independent of wavelength. 

 
(a) (b) (c) 

Figure 6.10. Images at (a) 420 nm, (b) 600 nm and (c) 700 nm before correction 
(top) and after correction (bottom). The gray levels of the images at 420 nm are 
multiplied by two for better contrast in the figure. 

The image at 600 nm shows a mostly satisfactory corrected image when discarding 

the nose from the area of interest. On the images at 700 nm, however, the image after 

correction is much noisier than before correction. On the original image, the skin appears 

very smooth, and its micro-reliefs are not visible. This is due to the fact that skin is rather 
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translucent at this wavelength. However, when the correction is applied using the 

information acquired at 520 nm, the surface details that are visible on the image at 520 nm 

are artificially added to the corrected image. This shows that the validity of the second 

hypothesis is questionable when working on translucent materials, as light is blurred by 

skin according to wavelength. 

The images at 420 nm also show less satisfactory correction than at 600 nm. Some 

areas are not perfectly corrected, such as the part underneath the eyebrows which remains 

slightly lighter than the rest of the face after correction. This artefact questions the validity 

of assumption 1: skin might be less Lambertian at 420 nm than at 600 nm. Such an 

explanation seems plausible, as skin translucency is not constant over the spectrum. 

As the irradiance correction solution proposed was not as satisfactory as expected on 

a full face, we did not investigate any objective measure to quantify its accuracy. 

6.3. Going further: using imaging methods to 

estimate skin BRDF 

While working on the correction of irradiance drifts on skin, we were inclined to ask 

whether our system could also provide skin BRDF.  

Measuring skin BDRF in vivo is a highly challenging task. Most commercial non-

imaging BRDF measurement systems are gonio-reflectometers, which are designed to 

illuminate and measure flat samples at various angles. For non-contact instruments, it is 

difficult to properly position the part of the body to be measured and perform a reliable 

measurement. For contact measurements (with the acquisition device directly placed on top 

of the sample), skin is likely to be distorted into a less-than-flat surface under the weight 

of the system. In addition, BRDF measurement using a gonio-reflectometer can be too long 

for in vivo acquisitions: the person is likely to move if acquisition time is superior to a few 

seconds. 

BRDF measurement based on imaging, on the contrary, permits for very short 

acquisition times. For example, using methods that require cylindrical homogeneous samples, 

a single image contains information about the reflectance factor at many incident and 

observation directions [Sole et al. 2018]. For in vivo skin measurement, it is not possible to 

control the shape of the sample, but it is possible to measure its 3D geometry and retrieve 

its BRDF from an image [Nielsen et al. 2017; Bintz et al. 2016; Marschner et al. 1999a; 

Marschner et al. 1999b]. Other methods are also possible, relying on light fields without 

requiring a 3D scan of the object [Debevec et al. 2000; Lu et al. 2017]. However, as our 

camera already includes a 3D scanner, we tried to retrieve information about the BRDF 

using “4D” information: the 3D geometry of the object and the luminance resulting from 

the object illuminated by the digital projector. 
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The method that we implemented is based on the same theory as that for irradiance 

correction for punctual sources detailed in Section 6.1.a. It yields the reflectance factor 

associated with two angles for each pixel: one angle for illumination and one angle for the 

direction of measurement. For simpler BRDF values, we consider only the angle between 

the specular reflection and the measurement direction, rather than both angles. In this case, 

the BRDF is a function of one angle only. We also assumed that the measured objects were 

uniform in order to sum the contribution of each pixel and obtain a single curve describing 

the object surface. We tested the method on still objects of different properties: a rough 

blue notebook and a smooth yellow mug. Results are presented in Figure 6.11.  

Notebook Mug 

 
(a) (b) 

Figure 6.11. BRDF measurement using imaging and 3D scanning, (a) blue notebook 
and (b) yellow mug: From top to bottom, 3D acquisition using fringe projection, 
depth map (false color), image before and after correction and BRDF in relation to 
the angle to the specular direction (in radians). 
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The estimated BRDF of these two objects seem to correspond to their properties: for 

the yellow mug, which is highly specular, the central peak, which corresponds to the specular 

direction, is rather thin; in contrast, for the textured book surface, the central peak is wider: 

its size is almost twice the size of the peak of the mug. This is due to the fact that the 

surface of the book has micro-reliefs. We can also observe some measurement artefacts due 

to imprecisions in the 3D scanning (see the wave effects on the images after correction). In 

addition to these measurement errors, our setup is mainly limited by the narrow range of 

measured angles. The angle between the camera and the digital projector is around 10 

degrees, which is required for 3D scanning. It is too limiting in the case of BRDF 

measurement, as the angles between illumination and observation remain small for a 

cylinder-like object in this configuration. The solution proposed by Marschner [Marschner 

et al. 1999b] is to move the sensor while the punctual source remains at the same location 

to increase the quantity of acquired data and increase the range of acquired angles. In our 

case, moving the camera would not be adapted for in vivo acquisition. Instead, several 

punctual sources at various location can be added at relatively low economic cost. In such 

a scenario, the image-based BRDF measurement would no longer be a one shot acquisition, 

but acquisition time would still remain relatively short (a few seconds). 

6.4. Conclusion 

The possibility of using 3D information for correcting irradiance non-uniformity and 

improving the measurement of spectral reflectance was the initial motivation for combining 

the hyperspectral camera with a 3D scanning system. The corrected images presented in 

this chapter, however, demonstrate that although geometry-based irradiance correction is 

a “physics-based” method, the chosen approach is too sensitive to acquisition noise. A more 

precise 3D acquisition system or a less “brute-force” method, which partially relies on 

optimization for example, should be considered to address this issue. 

Given the limitations raised above, we have not implemented this irradiance 

correction method as a pre-processing step for skin analysis. Instead, we have used an 

analysis algorithm that is robust to irradiance shifts, described in Chapter 7. 

As mentioned before, we can also wonder whether the assumption that skin is 

Lambertian is valid. The works of Marschner on the measurement of skin BRDF have 

shown that skin is mainly Lambertian near normal incidence, but as the angle of incidence 

increases, forward scattering also increases [Marschner et al. 1999a; Marschner et al. 1999b]. 

Skin reflection properties differ from those of a Lambertian reflector when high angles of 

incidence are involved. 

 

 



 

Chapter 7.  
Chromophore map estimation 

from HSI analysis 

Skin structure and composition determine how light travels within skin and, 

consequently, influences its color. In particular, skin spectral reflectance, acquired using the 

hyperspectral camera described in Chapter 4, contains a “spectral signature” that can be 

linked to skin optical properties through modeling. It is thus possible to analyze skin spectral 

reflectance using an optical-model based method to retrieve information pertaining to skin 

physiology. The analysis of skin spectral reflectance consists of modeling how incident light 

on skin travels within it before being reflected back in the field of view of the camera. This 

is the direct approach, which predicts skin spectral reflectance when its optical properties 

are known. In our work, as we are aiming to retrieve skin optical properties from the 

measured spectral reflectance, the inverse problem must be solved. 

In our application, we are seeking specifically to retrieve information about skin 

chromophore composition. As each skin chromophore has distinct absorption properties 

with regard to wavelength, their respective quantities can be estimated from the measured 

spectral signal. We model skin as a stack of two planar layers and use a two-flux model to 

describe light-skin interactions. Previous works have shown that this method yields highly 

satisfactory results on small and flat surfaces [Seroul et al. 2017]. The method, however, 

has not been tested on complex three-dimensional surfaces, on which the measurement is 

affected by irradiance drifts. We show in this chapter that the implemented method is 

robust to irradiance drifts and can consequently be applied to complex three-dimensional 

objects such as a full face. 

In this chapter, we first detail in Section 7.1 the “skin analysis” method used to 

estimate maps of chromophore concentrations from the hyperspectral images, which 

comprises a model of skin, a model of light-skin interaction and an optimization method. 

In Section 7.2, the efficacy of the method is discussed by means of simulations and 
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experimental analysis. Finally, projects for going further using convolutional neuron 

networks are presented in Section 7.3 before drawing the conclusions. 

7.1. Model-based estimation of chromophore maps 

The hyperspectral image analysis method presented in this section, is the continuation 

of Seroul’s work [Seroul et al. 2017]. It uses two optical models, both detailed in this section, 

that together define the direct approach: a model describes skin structure and composition 

in chromophores, and a model describes how light interacts with absorbing and scattering 

materials. 

The overall optical model combines three laws, as illustrated in Figure 7.1. The first 

one corresponds to the relationship between each layer’s optical properties and skin 

chromophore concentrations. The second one gives, for a given layer, the relationship 

between the absorption and scattering coefficients of the layer and its transmittance and 

reflectance. Finally, the third law accounts for both layer reflectance and transmittance in 

skin reflectance. 

 

Figure 7.1. Skin model and light-skin interaction models used in the analysis method: 
○1 Beer-Lambert-Bouguer laws, ○2 Kubelka Munk theory and ○3 Kubelka formula 
and Saunderson correction. 

The last part of this section details the optimization method used to compute 

chromophore concentration maps. For the analysis of full face hyperspectral images, the 

method must be as robust as possible to irradiance drifts, in order to limit the impact of 

curvature on the chromophore concentration estimation. 

7.1.a. Skin model 

The direct approach comprises a model for skin structure and composition. A trade-

off between accuracy and simplicity must be found: a very simple skin model yields a model 
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easy to inverse, but its parameters do not accurately describe skin; a complex model that 

accurately describe skin with many parameters might provide more accurate analysis, but 

the calculation time needed for inversion is likely to be long, and errors arising from 

optimization are more likely to occur. As seen in Chapter 3, skin is a complex organ, made 

of two main layers, epidermis and dermis, themselves divided into several sub-layers, each 

of which have their own specific cell structures and chemical compositions.  

The literature on tissue optics usually considers skin as a parallel plane comprising 

between one and 22 layers: some studies using Monte Carlo algorithms have limited their 

model to one layer to minimize calculation time [Cuccia et al. 2009]; the Kubelka-Munk 

method is often applied to two-layer models [Doi et al. 2016]; three layers have been used 

to account for the hypodermis beneath the dermis [Schmitt et al. 1990]; and Magnain 

showed that using the radiative transfer theory, the most accurate skin spectra were 

obtained using a 22-layer model [Magnain et al. 2007]. 

We have opted for a model that describes skin as a two-layer medium, roughly 

corresponding to the epidermis and the dermis, whose composition and optical properties 

are significantly different. Our decision to use two layers is a trade-off between a realistic 

description of skin structure and a model that is sufficiently simple to allow for optimization-

based model inversion: the number of layer increases the number of parameters that have 

to be optimized – and concomitantly, the risk of failing to find the minimum of the cost 

function during the optimization process, which can result in significant errors. 

Our two-layer model does not separate the stratum corneum from the epidermis. The 

stratum corneum is the outermost layer of the epidermis composed of dead cells filled with 

keratin [Igarashi et al. 2007], which especially affects skin specular reflection. For our 

application, the cross-polarization (CP) configuration used in the imaging system discards 

this reflection. In addition, the stratum corneum is a mainly scattering layer which has 

little impact on the absorption properties that we are estimating. Consequently, the 

nonseparation of the stratum corneum from the epidermis has a little effect on our analysis 

accuracy. 

 

Figure 7.2. Skin model used in the optical analysis of hyperspectral reflectance. 

The two-layer model for skin (Figure 7.2) is a simplification in which each layer is 

considered as flat and homogeneous. The epidermis is composed of a baseline and melanin, 
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and the dermis is composed of a baseline, deoxyhemoglobin (Hb), oxyhemoglobin (HbO2) 

and bilirubin. 

Each layer can be characterized by spectral absorption and scattering coefficients, 

K(λ) and S(λ) respectively. The absorption coefficient depends on the spectral absorbance 

of chromophores contained in the layer and their volume fraction: according to the Beer-

Lambert-Bouguer law [Bouguet 1729], the spectral absorption coefficients of the epidermis 

Ke(λ) and dermis Kd(λ) can be written according to additive linear laws: 

( ) (1 ) ( ) ( )
e m b m m

K c K c K     , (7.1)

and 
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K c c c K c K c K c K           . (7.2)

We refer to the work of Jacques [Jacques 2013] for the spectral absorption coefficient 

values of the baseline Kb(λ), melanin Km(λ), hemoglobin KHb(λ), oxyhemoglobin KHbO2(λ) and 

bilirubin Kbi(λ), as well as for the spectral scattering coefficients of the epidermis Se(λ) and 

dermis Sd(λ). The volume fractions of melanin cm, hemoglobin cHb, oxyhemoglobin cHbO2 and 

bilirubin cbi are unknown quantities that will be estimated through optimization, based on 

the two-flux model described in the next section. 

7.1.b. Light-skin interactions model 

Various optical methods have been used to describe light-skin interaction, including 

Monte Carlo methods [Nishidate et al. 2004; Meglinski and Matcher 2003], solutions of the 

radiative transfer equation [Magnain et al. 2007], models based on the diffusion 

approximation [Kienle et al. 1998; Zonios and Dimou 2006] or flux models [Jolivot et al. 

2013; Doi et al. 2016]. The method that we have selected is framed by practical constraints: 

it must yield accurate parameter estimation but computation time must also remain 

reasonable.  

The Monte Carlo methods are considered a benchmark in terms of accuracy but their 

inversion is time-consuming. For imaging applications, the calculation time required for one 

optimization on one pixel has to be multiplied by the number of pixels to estimate the 

overall calculation time. Consequently, while Monte Carlo can be used for punctual 

measurement analysis, it becomes prohibitively costly in terms of time when dealing with 

high resolution imaging. Pre-calculated look-up tables can be used as an alternative [Cuccia 

et al. 2009], but the number of parameters in the model must be low to allow affordable 

computation.  

Two-flux models, such as the Kubelka Munk theory, are limited to diffuse illumination 

and materials with high scattering properties. However, they provide analytical reflectance 

and transmittance formulae, an advantage over other light scattering models.  



CHAPTER 7  133 

 

 

 

Methods based on the radiative transfer theory describe more finely the scattering of 

light, in particular taking into account its angular distribution, and have been applied for 

accurate skin spectral reflectance modeling [Magnain et al. 2007]. Using such methods in 

applications that require the solving of an inverse problem is however difficult in practice, 

mainly due to computation time and complex angular measurements.  

Finally, diffusion approximation can also be used to model skin spectral reflectance, 

but it is even more constrained than two-flux models as it describes materials whose 

absorbance is low in comparison to scattering. Diffusion approximation can be efficacious 

in modeling light transport for heterogeneous illumination but it is less effective than two-

flux methods when considering multi-layer materials under homogeneous illumination.  

For the reasons listed above, we chose to use a two-flux model for our application, as 

a trade-off between accuracy and simplicity.  

The hyperspectral reflectances are analyzed with the two-flux model described in 

Seroul’s work [Seroul et al. 2017], in which light propagation within each layer is described 

by the Kubelka-Munk formulae [Kubelka and Munk 1931]. The epidermis is characterized 

by its thickness h, spectral absorption coefficient Ke(λ) and spectral scattering coefficient 

Se(λ). Its spectral reflectance Re(λ) and transmittance Te(λ) are, for each wavelength: 

sinh( )

cosh( ) sinh( )
e e

e
e e e e e e

b S h
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b b S h a b S h
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
, (7.3)
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The dermis is assumed to be infinitely thick from an optical point of view, and its 

transmittance is zero. It is characterized by its spectral absorption coefficient Kd(λ) and 

spectral scattering coefficient Sd(λ). According to the Kubelka-Munk model, its spectral 

reflectance Rd(λ) is given for each wavelength by:  

( 2 )
d d d d d

d d d
d

K S K K S
R a b

S

  
   , (7.6)

where ad and bd are functions of Kd and Sd, defined in the same way as in Eq. (7.5). 

Finally, the spectral reflectance of skin, described as the superposition of dermis and 

epidermis, is given by Kubelka's formula [Kubelka 1954]: 
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The effects of the air-skin interface have not been taken into account up to this point. 

Reflections at the interface also occur inside the skin. To account for the portion of light 

that is reflected back into the skin, we must apply the Saunderson correction [Saunderson 

1942], illustrated in Figure 7.3: 
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R R R
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. (7.8)

In our application, the specular reflection at the surface, represented by the orange 

arrow in Figure 7.3, is discarded by the cross-polarization (CP) configuration. The measured 

quantity is: 
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2

(1 )(1 )

1skin

R R R
R

R R

 



. (7.9)

 

Figure 7.3. Principle of the Saunderson correction at the air-skin interface. 

In this expression, the diffuse reflectance R is the only quantity that is dependent on 

skin chromophore concentration and epidermis thickness. The quantities R1 and R2 are 

functions of skin optical index n. The Fresnel reflectance at the interface from air to skin 

R1 and at the interface from skin to air R2 are given as a function of the Fresnel reflectance 

RFresnel(θ) given in Chapter 2 [§ 2.3.a, Eqs (2.16) and (2.17)]: 
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Equation (7.10) also has an analytical formula [Hébert et al. 2014]: 
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7.1.c. Resolution of the inverse problem using an optimization 

The direct model described above gives skin spectral reflectance when skin 

chromophore composition is known. In our case however, we are required to determine the 

skin chromophore concentrations {cmel, cHb, cHbO2, cbi} from the measured spectral reflectance 

by solving the inverse problem. This process consists of finding for each pixel the parameter 

values that minimize the distance d(Rskin, Rm) between the measured spectrum Rm(λ) and 

the predicted spectrum Rskin(λ) computed using Eq. (7.9): 

 
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, , , , arg i ( ,n  m )
m Hb HbO bi

sm Hb HbO bi
c c c c

n
h

ki m
c c d Rc c h R    . (7.13)

The parameters obtained by optimization are dependent on the definition of the 

distance d. A classical distance that can be used is the Euclidean distance, defined as: 

2( , ) ( ( ) ( ))
E skin m skin m

d R R R R 


  . (7.14)

On complex shapes like the face, some areas receive less light and the amplitude of 

the measured spectrum is consequently lower. Using the Euclidian distance in the analysis 

algorithm, these irradiance non-uniformities are interpreted as variations of chromophore 

concentrations. In order to prevent these errors, the metric must be independent from the 

spectrum amplitude, which is the case for the Spectral Angle Mapper (SAM) [Yuhas et al. 

1992], defined as: 
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To illustrate the SAM properties, let us compare three areas of skin (Figure 7.4). The 

first is a reference area characterized by the measured spectral radiance S0(λ). The second 

area has the same chromophore composition as the first but with a lower incident irradiance, 

which implies that the perceived color is darker and the spectral radiance is S1(λ) = kS0(λ) 

with k < 1. The third area of skin differs in chromophore composition from the first two 

areas and is characterized by the measured spectral radiance S2(λ). 

When comparing the three spectral radiances using the root-mean-square (RMS) 

metric, dRMS(S0, S1) is high while dRMS(S0, S2) is low, due to the invariance of this metric in 

respect to lightness. The RMS metric is consistent with perceived color, which can be 
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affected by varying irradiance, but does not represent well the variations in skin 

chromophore properties. When comparing the three spectral radiances using the SAM 

metric, on the other hand, dSAM(S0, S1) is zero, while dSAM(S0, S2) is a not. The SAM metric 

evaluates only the shape difference between the two spectra, and is insensitive to irradiance 

variations. Owing to these properties, the SAM metric yields better results for the skin 

analysis algorithm. 

 
(a) (b) 

Figure 7.4. (a) Spectral radiance and (b) corresponding RGB colors. Distances to 
the reference spectrum S0 according to the RMS metric and the SAM metric are: 
dRMS(S0, S1) = 14; dRMS(S0, S2) = 2; dSAM(S0, S1) = 0; dSAM(S0, S2) = 6.10-2.  

7.2. Full face spectral reflectance analysis 

The parameters of the model described so far are the skin chromophore concentrations 

{cmel, cHb, cHbO2, cbi} and the epidermis thickness. In the outputs of the skin analysis 

optimization, the concentrations in Hb and HbO2 are replaced by the total blood volume 

content cblood and the oxygen rate α, defined as: 

2blood Hb HbO
c c c  , (7.16)

and 

2
/

HbO blood
c c  . 

(7.17)

The skin analysis outputs are displayed in the form of maps that show melanin 

concentration (actually corresponding to melanosome volume fraction, as mentioned in 

Chapter 3), oxygen rate and blood volume fraction (Figures 7.5.b, c and d). These maps, 

which correspond to estimated values, can be used to visualize and sort different structures 

such has veins, capillaries, hematoma, red spots and pigmented spots. They can also be 

used to follow the evolution of the skin conditions that affect chromophores or to monitor 

the effects of anti-dark circle cosmetic products on skin [Nkengne et al. 2018].  
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(a) (b) (c) (d) 

Figure 7.5. (a) Color image and maps of estimated chromophore concentration: (b) 
blood volume fraction, (c) melanin concentration and (d) oxygen rate. The top 
images correspond to a full face acquisition done using the SpectraFace camera 
(Chapter 4), the bottom images results from analysis on a SpectraCam® acquisition. 
(These images can be found in large format in Appendix 2). 

The calculation time required to obtain these maps is around 5 hours for full face 

maps and one hour for smaller maps. On a full face, the calculation time could be reduced 

by removing the non-skin pixels from the input image. Indeed, for each pixel, a maximum 

number of iterations is set in the optimization algorithm, with an early stop possible when 

the error is lower than a certain threshold. Outside of skin areas, the model does not 

converge and the algorithm keeps running until the maximal number of iteration has been 

reached, which wastes time. 

 
(a) (b) 

Figure 7.6. (a) Original color image and (b) reconstructed color image. 



138 Chromophore map estimation from HSI analysis 

   

Figure 7.6.b shows the color image obtained after conversion of the predicted spectrum 

into color. The predicted spectrum was computed using the optical model [Eq. (7.9)] and 

the chromophore concentrations estimated by the skin analysis algorithm. As the 

computation erases irradiance drifts, we have the impression that the face has been flattened, 

especially in the reconstructed color image. 

A map showing the residual distance of the optimization for each pixel allows us to 

compare the efficacy of the different optimization metrics and to validate our choice. The 

residual distance map gives a general idea of the quality of the analysis, but it is not an 

error map: it only indicates how well the model has converged, without accounting for the 

errors produced by model itself.  Figure 7.7 shows the residual distance maps obtained using 

the RMS and SAM metrics, and the oxygen rate maps obtained for each analysis. 

We notice that the values of the residual distance map for the RMS-based 

optimization are influenced by the shape of the face. As such, this metric cannot be applied 

on non-planar objects unless each pixel receives the same incident irradiance. The SAM, on 

the other hand, is more robust to irradiance drifts: the residual error map shows that the 

optical analysis using SAM is good at distinguishing skin (low residual distance) from other 

elements such as hair, fabric, make-up and background (high residual distance). This 

validates the use of SAM rather than RMS distance in the optimization process. 

 

Figure 7.7. Maps of oxygen rate and residual distance from the skin optical analysis 
for a RMS-based optimization and a SAM-based optimization. 
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(a) (b) (c) 

Figure 7.8. (a) Map of bilirubin concentration (displayed between 0 and 10%), (b) 
maps of epidermis thickness and (c) map of melanin concentration. 

In addition to the 3 chromophore maps shown in Figure 7.5, the analysis method 

yields maps of bilirubin concentration and epidermis thickness (Figure 7.8). In the absence 

of pathologies such as jaundice or bruises, the bilirubin content in skin is very low. 

Consequently, the bilirubin map is rarely shown. Regarding the epidermis thickness map, 

its values are close to the typical range for healthy skin [Seroul et al. 2017], but seem to be 

highly correlated with the melanin concentration, which should not be the case from a 

biological perspective. We cannot therefore be sure that this map is actually showing skin 

thickness. It seems that the epidermis thickness is the free variable helping the algorithm 

to converge toward the closest spectrum to the spectrum measured. Questions about what 

it is representing and on the validity of the method in general have led us to investigate 

how variations in spectral reflectance are converted into variations in estimated skin 

parameters. We present below two approaches to assess the efficacy of the method, 

theoretical and experimental. Each yields particular insights on the model errors and its 

limitations. 

7.2.a. Robustness of the analysis method: theoretical study 

The theoretical study relies on creating synthetic spectral reflectance data from a set 

of chromophore concentration values, using the direct model described in Section 7.1. If the 

analysis method is accurate, applying it to synthetic data should allow us to retrieve the 

parameters used to generate the data. The robustness of the analysis method can therefore 

be assessed by computing the difference between the skin parameters estimated by the 

algorithm and their expected values. 

In our work, we used the following set of parameters, to predict the spectral reflectance 

shown in Figure 7.9, considered as a reference: 

 60%, 11%, 27.5%, 0.5%, 42
blood mel bi

c c c h µm      . (7.18)
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Figure 7.9. Reference spectral reflectance (%) and corresponding color. 

From this reference, a dataset of spectral reflectance has been created using the direct 

model, varying one parameter at a time within a range of plausible values (excluding very 

low epidermis thicknesses). The corresponding simulated spectra are illustrated in Figure 

7.10, with low values for the parameter plotted in dark shades of blue and high values 

plotted in light shades of blue. The color corresponding to each spectrum is represented 

underneath the graph, with the values of the parameter increasing from left to right. 

We can notice on Figure 7.10 that the color variations due to changes in oxygen rate 

are almost imperceptible: variations of oxygen rate slightly affect the amplitude of the 

spectrum in the long wavelengths (above 600 nm) and also modify the “W” shape of the 

spectrum around 550 nm, which is more distinct for higher oxygen rate values. 

Variations of blood volume fraction create strong spectral variations, which 

correspond to color variations mainly in terms of hue and chroma. These color variations, 

however, are less noticeable than those obtained when melanin concentration or epidermis 

thickness, which influence color lightness, vary. When comparing the variations induced by 

changes in melanin concentration and epidermis thickness, we observe a noticeable 

difference between the two diagrams only in the short wavelengths (between 400 and 450 

nm). Melanin concentration and epidermis thickness are not totally independent from each 

other: for a given melanin concentration, the overall quantity of melanin varies with 

epidermis thickness, which partly explains why the melanin and the epidermis thickness 

maps are correlated. However, in the short wavelengths, light cannot travel very deep into 

the skin because of scattering, and the epidermis thickness has a weaker impact on 

reflectance. The corresponding color variations exhibit these properties: higher melanin 

concentration or higher epidermis thickness both result in a darker color; and low melanin 

concentration or thin epidermis thickness both result in a light color. When epidermis 

thickness is low, the hue is more yellowish. 
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Figure 7.10. Simulated spectral reflectance (%) as a function of wavelength (nm) 
obtained when one parameter varies. For each graph, the color bar displayed below 
it depicts the color corresponding to the spectral reflectance when the parameter 
varies from its lowest value (left) to its highest (right).  

The analysis method has been applied on synthetic spectral reflectance data, yielding 

estimated chromophore concentrations and epidermis thickness. The difference between the 

estimated parameters and the expected parameters has been plotted in Figure 7.11 in the 

form of relative error (%). Error on the bilirubin parameter has not been plotted on the 

figures of this section. In relative values, bilirubin shows a high amount of error, but we do 

not consider that this invalidates the analysis method, given the very small initial value of 

the parameter, and the fact that this information is rarely used in normal skin analysis. 

Figure 7.11 shows that the model provides estimations close to the expected values 

when oxygen rate or blood volume fraction vary. Variations of epidermis thickness and 

melanin concentration yield greater error, especially on the estimation of the oxygen rate, 
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which is under-estimated. Relative errors are high when epidermis thickness is low, however, 

the very small values used to create the synthetic data do not correspond to real skin. As 

for melanin concentrations, for which the range of variation is representative of real skin, 

error is also high for high concentrations of melanin. Consequently, the analysis method 

might not yield accurate analysis on darker colored skin, which contains higher 

concentrations of melanin than lighter colored skin. 

  

   

Figure 7.11. Relative error between the parameters estimated by the analysis method 
and the expected values of the parameters. For each graph, only one parameter 
varies. 

In addition to oxygen rate, blood volume content, melanin concentration and 

epidermis thickness, the impact of skin scattering coefficient on the estimated parameter 

values was also evaluated. For simplicity, we described skin scattering by a Rayleigh law 

with two parameters bµs and µs_500 : 
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In the analysis algorithm, µs’(λ) is fixed and can be approximated by bµs = 3.1 and 

µs_500 = 49.9 cm-1. We have created a range of synthetic spectral reflectance by varying one 
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or the other parameter around these reference values. The corresponding spectral reflectance 

values are illustrated in Figure 7.13. The parameter bµs influences the slope of the µs’(λ) 

curve, and µs_500 corresponds to the height of the curve. We can notice similar effects on the 

spectral reflectance curves of Figure 7.13, with variations of slope when bµs varies, and 

translations whenµs_500 varies.  

  
  

Figure 7.12. Simulated spectral reflectance (%) as function of wavelength (nm) 
obtained when one parameter of skin scattering properties varies, and corresponding 
skin color, from the lower value (left) to the highest value (right) of the varied 
parameter. 

  

Figure 7.13. Relative error on the estimated parameter values when the parameters 
bµs  and µs_500  vary. 

Figure 7.13 shows the estimated parameter values when skin scattering coefficient 

varies. The relative error is high, which is expected since the scattering coefficient is not a 

parameter of the model and is assumed as constant on all pixels.  The amount of error is 

especially high when bµs varies, with a significant amount of error in the blood volume 

fraction estimation when bµs is underestimated in the model. These results underline a 
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significant limitation of the method and the importance of accounting for skin scattering 

properties, which will be the theme of the next two chapters. 

The analysis algorithm has been designed to be robust to irradiance drifts, which can 

also be verified using the same theoretical approach. The reference spectrum was multiplied 

by constants varying between 0.1 and 1.9 to model the effects of various illumination 

conditions. The modified spectra, the corresponding color and the relative error on the 

estimated parameter values are presented in Figure 7.14. Whatever the multiplicative 

constant applied on the spectral reflectance, there is no variation of relative error, which is 

consistent with the use of SAM, a metric robust to irradiance drifts. 

  

 

Figure 7.14. Effects of varying irradiance drifts on the spectrum, corresponding 
relative error and corresponding color. 

Finally, to assess the robustness of the analysis method to noise, spectral reflectance 

data with various amounts of noise have been created. Gaussian noise with a standard 

deviation proportional to the reflectance at each wavelength has been added to the reference 

spectral reflectance. The standard deviation varies from 0 to 4.5% of the signal amplitude 

for the 19 small images that have been created. Their properties illustrated in Figure 7.15. 

  

 

Figure 7.15. Effects of varying Gaussian noise on the average spectrum, standard 
deviation and color (from low noise on the left to high noise on the right). 
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On average, all the spectral reflectances are similar. Looking at the color bar (Figure 

7.15), we can barely see any noise. However, in Figure 7.16, the effects of noise on the 

estimated parameter values, are clearly visible. In particular, the oxygen rate and the blood 

volume fraction are the two parameters that are the most sensitive to noise.  

  

 

Figure 7.16. Effects of varying Gaussian noise on the estimated parameter values: 
relative mean error (%), relative standard deviation and corresponding chromophore 
maps, from low amount of noise (left) to high amount of noise (right). For these 
images, the display ranges are: [0%, 30%] for blood volume fraction, [0%, 10%] for 
bilirubin concentration, [0%, 50%] for melanin concentration and [0 µm, 80 µm] for 
epidermis thickness. 

The analysis method shows satisfactory accuracy on light-colored skin. On dark-

colored skin, however, the estimated parameter values are very noisy and not sufficiently 

accurate for clinical studies. This can be explained as follows. First, on dark skins, the 

spectrum amplitude is low and the signal to noise ratio is high, which generates noise to 

which the oxygen rate parameter is particularly sensitive (see Figure 7.16). Then, the 

simulations illustrated in Figure 7.11 shows that when the melanin concentration is high, 

the shape of the reflectance spectrum is relatively flat, making the “W” signature of oxygen 

difficult to distinguish. It also results in high amount of error on the estimation of the 

oxygen rate. From these two remarks and the noisy chromophore maps calculated from 

experimental measurements on dark-colored skin, we are forced to conclude that the current 

method is not adapted to their analysis. 
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7.2.b. Experimental validation of the method 

The theoretical study developed above does not account for the shortcomings of the 

skin model itself, as the spectral reflectances are generated using the model. Skin spectrum 

simulated using Monte Carlo, which we were unable to carry out for lack of time, should 

be used for further theoretical analysis. Therefore, to further validate the method, we 

decided to observe the parameter values calculated from experimental measurements and 

to try to identify any variations that seem abnormal. 

Error in this skin analysis method is difficult to assess as no ground truth chromophore 

concentration is available for in vivo measurements. It is also difficult to validate the 

method using skin phantoms as this would require samples made with a similar structure 

and spectral properties as real in vivo skin. The results of SpectraCam® have been validated 

by showing that the estimated chromophore concentrations are consistent with those 

expected in terms of melanin when measuring skin with lentigos, and in terms of blood 

content and oxygen rate after applying local pressure to induce blood inflow [Nkengne et 

al. 2018]. This study, however, is valid only for planar areas. On a full face, the proposed 

method can be validated by comparing two acquisitions of the same person at different 

orientations and verifying that the estimated chromophore concentrations remain similar. 

This comparison has been implemented by calculating the relative deviation between the 

average chromophore concentrations corresponding to the same areas on a front view and 

a side view. 

 

Figure 7.17. Areas selected for verifying the constancy of the estimated chromophore 
concentrations independently from the orientation of the face: (a) front view and 
(b) side view. 

The areas used for front-face and side-face comparison are illustrated in Figure 7.17, 

and the estimated parameter values shown in Table 7.1. The chromophore concentrations 

estimated from both views using the analysis method are very similar on the two views of 

the face: for most values, the relative deviation is below 3%, with values as low as 0%. The 
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maximum deviation is 10.2% for melanin concentration on area 3, which corresponds to 

around 3% in absolute value. 
 

  

  Oxygen rate 
Blood volume 

fraction 

Melanin 

concentration 

Area 1 

Front 71.2% 5.4% 28.4% 

Side 71.6% 5.3% 30.6% 

Deviation 0.6% 0.8% 7.4% 

Area 2 

Front 70.8% 9.0% 35.4% 

Side 72.2% 8.3% 36.5% 

Deviation 2.0% 7.7% 2.8% 

Area 3 

Front 80.1% 4.2% 30.2% 

Side 80.1% 4.6% 33.4% 

Deviation 0.0% 7.7% 10.2% 

Area 4 

Front 82.7% 6.0% 28.3% 

Side 83.8% 6.0% 29.0% 

Deviation 1.3% 0.1% 2.2% 

Area 5 

Front 69.3% 8.6% 34.0% 

Side 72.1% 8.4% 35.9% 

Deviation 4.0% 2.3% 5.7% 

Table 7.1. Average chromophore concentrations for front and side view of the face, 
and relative deviation between the two measurements. 

Given the median deviation value of 2.3%, we consider that this front and side view 

comparison validate our method. The melanin concentration deviates the most between the 

two measurements (the median relative deviation is 5.5% for melanin concentration). 

However, the average values given in Table 7.1 depend on the precision of the selection of 

exactly the same area on both views. Higher deviations for melanin are expected given that 

melanin is very heterogeneous. 

The residual error map (already shown in Figure 7.7), has been displayed at two 

dynamic ranges in Figure 7.18 for a closer analysis of errors. While the full dynamic image 

(Figure 7.18.a) shows that the algorithm converged well on skin and badly on hairs, the 

optimized dynamic (Figure 7.18.b) reveals that the residual distance is higher on small 

structures such as the eyelid blood vessels or on the border of nevi. This can be caused by 

the chromatic aberration of the acquisition system: on small structures or on borders, the 

pixel spectrum is altered by chromatic aberration, affecting the pixel-by-pixel chromophore 

map. We can consider, however, that the number of pixels affected by this error is 

sufficiently low to be negligible in the final image. 
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(a) (b) 

Figure 7.18. Error map from the skin optical analysis, (a) full dynamic (SAM ∈ [0, 
0.5]) and (b) optimized dynamic (SAM ∈ [0, 0.1]) to observe errors on skin. 

Similar errors might also result from skin scattering. The optical model relies on the 

assumption that, on average, light fluxes travel through a parallel plane along the vertical 

direction. In our application, however, the analysis method is independently applied on each 

pixel whose dimension is small compared to average lateral propagation distance in skin, 

and light propagation in directions other than vertical is not negligible, as illustrated in 

Figure 7.19. In the estimated maps of chromophore concentration, some spatial information 

is likely to be blurred. In addition, as scattering varies as a function of wavelength, the 

spectrum on the contours of small structures varies accordingly with the wavelength, which 

adds another chromatic distortion. 

 

Figure 7.19. Effects of scattering on the contours of skin small elements.  

Higher residual error can also be found on regions such as the sides of the nostril and 

the ears, where the geometry is convex. A possible explanation for this is the occurrence of 

interreflections [Forsyth and Zisserman 1989]. Interreflections are multiple light reflections 
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within a concave surface which modify the reflected radiance as a nonlinear function of the 

spectral reflectance. These spectral modifications impact the chromophore map 

reconstruction and results in an error. Table 7.2 gives an example of how the estimated 

chromophore maps can be affected by interreflections. In this example, a reflectance 

spectrum measured on skin has been associated to a flat surface. From it, reference 

chromophore maps have been estimated by applying the analysis algorithm, illustrated on 

the first row of the table. Then, the shape of the surface has been “changed” to a 45° V-

cavity, and the resulting interreflections have been computed in MatLab [Saint-Pierre et al. 

2018]. 

The effects of interreflections on the values estimated by analysis are mainly visible 

on the melanin concentration map. These simulations are coherent with what can be 

observed on the full face melanin concentration map (Figure 7.5.c): high concentrations of 

melanin are erroneously estimated in the corner of the eyes. 

 

Configuration Color Oxygen rate  
Blood volume 

fraction 

Melanin 

concentration  

Diffuse or 

collimated 

illumination 
    

Collimated 

normal 

illumination 
  

    

Collimated 

10° 

illumination 
  

    

Diffuse 

illumination 

 

    

Table 7.2. Simulation of the effects of 45° V-cavity interreflections on chromophore 
estimation. 

Finally, error is also higher on the sides of the face, where the incident light is grazing. 

This is especially visible in Figure 7.6.b, which represents skin color simulated from the 

estimated parameters, where the color on the side of the face is noticeably lighter than the 
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rest of the face and does not correspond to a realistic skin color as seen on the original 

picture. We interpret this as a limitation of the model: the optical analysis is based on the 

assumptions that skin is Lambertian (ignoring the specular reflection, which is discarded 

by the cross-polarization configuration of the hyperspectral camera) and that the Kubelka-

Munk model can be applied in the same way regardless of whether the observed surface is 

normal to the observation direction or not. However, at grazing angles, skin cannot be 

modeled as a Lambertian reflector. An extended model taking into account the angular 

dependence of the skin reflectance would be necessary to improve the accuracy of the 

method. 

7.2.c. Discussion 

The experimental evaluation of the accuracy has shown the limitations of the method, 

which yields erroneous parameters on parts where incident light is grazing, where 

interreflections occur, on small details affected by chromatic distortion and on the artefacts 

that result from light scattering within skin. These limitations indicate that some parts of 

the maps, such as the side of the face, contain a high amount of error and cannot be used 

for cosmetological studies. 

Error also appears when the scattering properties of skin are different to the ones used 

in the model. This source of error is not limited to distinct parts of the face, but is present 

across all pixels. As skin scattering properties can be considered relatively homogenous 

compared to absorption properties, we can assume in a first approximation that the error 

remain the same for all pixels. If this is the case, the estimated chromophore maps do not 

give absolute information but should rather be interpreted relatively, for comparisons 

between acquisitions made at two different times, between two areas or for the segmentation 

of objects such as vessels, stains and moles.  

This limitation, however, is inherent to any analysis method that relies on the 

acquisition of only one parameter: the Kubelka-Munk model gives the relationship between 

the spectral reflectance and the ratio K/S of absorption and scattering parameters. In order 

to retrieve absorption, scattering must therefore be estimated by hypothetical value taken 

from literature. For methods using hyperspectral imaging, both scattering and absorption 

can be retrieved when two measurements are possible. For example, such methods can be 

performed on make-up, for which two samples of different thickness can be measured, or 

which can be applied on white and black background to create two measurement conditions 

[Doi et al. 2006]. In the case of skin in vivo measurement, two measurement conditions are 

not possible and we must find an alternative to get both absorption and scattering 

coefficients. 
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7.3. Going further: using artificial neural networks 

for skin chromophore map estimation 

The skin acquisition and analysis method presented in this chapter has a significant 

computational cost: typically, around 1 hour for a 1-megapixel image representing an area 

of few cm2 and around 5 hours for a 4-megapixel image representing a full face. In a 

cosmetology study context, this long computation time represents a significant limitation, 

as it prevents the user from previewing the results immediately after acquiring the image, 

and consequently from evaluating the quality of the images obtained. To tackle this 

limitation and reduce computation time, we trained an artificial neural network to replace 

the optimization algorithm.  

Machine learning algorithms have shown utility for modeling non-linear functions 

when a lot of data is available. In the course of studies over the past years, Newtone 

Technologies have collected a sufficient amount of data, comprising hyperspectral images 

and their corresponding chromophore concentration maps, to train a neural network capable 

of solving the inverse problem in place of the classical optimization algorithm, allowing 

results to be obtained within a few seconds. Machine learning applied to regression problems 

present an interesting alternative to time-consuming optimization-based algorithms, which 

have hitherto been used in many works in the field of tissue optics [Wang et al. 1994; Jäger 

et al. 2013; Wirkert et al. 2016; Panigrahi and Gioux 2018]. Nowadays, many machine 

learning tools are open source and user-friendly, which make their application relatively 

straightforward. Although the selection of the neural network architecture is important, we 

will see in this section that the dataset used to train the neural network has a high influence 

on the efficacy of the method. This work, done in collaboration with Newtone Technologies, 

is somehow a preliminary study aiming at understanding whether machine learning can 

help us reduce computation time. 

7.3.a. Architecture of the artificial neural network 

The type of neural network used in our work is a multi-layer perceptron (MLP), a 

very popular class of feed-forward network [Jain et al. 1996] that can be applied to a wide 

variety of tasks including prediction, function approximation and pattern classification. 

Such a network is an ensemble of several perceptrons, or artificial neurons, organized into 

layers. MLP networks partly owe their emergence to the back-propagation learning 

algorithm for multi-layer feed-forward networks first proposed by Werbos [Werbos 1974], 

an optimization algorithm that uses a gradient-descent method.  

The concept of the perceptron, clearly inspired by how a nerve cell processes 

information within a biological network, was first drafted in the works of McCulloch and 

Pitts in 1943 [McCulloch and Pitts 1943] and then developed by Rosenblatt in 1958 
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[Rosenblatt 1958]. A perceptron, illustrated in Figure 7.20 is a function of several inputs xi, 

each associated with a weight wi, that provides a single output Y. It is described by its 

activation function f which takes the weighted sum of the inputs as an argument, and 

includes a bias b, added to increase the robustness of the algorithm to noise. 

 

Figure 7.20. Perceptron model 

The proposed method uses the Rectified Linear Unit (ReLU) activation function, 

which is simple and yields good results for modeling regression problems, given by: 

max(0, )Y X . (7.20)

The organization of several perceptrons in parallel defines a layer. The assembly of 

several layers one after the other defines a multi-layer network, where the output of one 

layer corresponds to the inputs of the next one.  

 

Figure 7.21. Architecture of the MLP used to model the function that relates skin 
spectral reflectance to skin properties. 

The selected MLP architecture, shown in Figure 7.21, contains three hidden layers 

that are each constituted of 31 perceptrons. The entry layer connects the 31 perceptrons of 
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the first hidden layer with the spectral reflectance R at each wavelength λi. The output 

layer comprises 4 perceptrons that yield output signals corresponding to the oxygen rate, 

the blood volume fraction, the melanin concentration and the epidermis thickness. Each 

hidden layer is preceded by a batch normalization function according to the method 

developed by Ioffe and Szegedy [Ioffe and Szegedy 2015]. This method increases the 

performance of the training process by constraining the distribution of each layer’s input. 

Without such a method, the distribution of the layer input changes during training, which 

requires the layer to adapt to the new distribution at each iteration. Batch normalization 

allows higher learning rates and reduces the result dependence on initialization, which 

makes the setting of the initial parameters easier. In total, the MLP comprises 3290 

trainable parameters, which are randomly initialized according to a normal distribution of 

mean value 0 and standard deviation 0.01. 

The choice of the number of layers and the number of perceptrons depends on the 

complexity of the function that has to be modeled [Gardner and Dorling 1998]. Too few 

trainable parameters yield a poor fitting of the function, and too many parameters yield a 

model that overfits the training data and has poor generalization performances, i.e. that 

learns very well the training set and performs very well on it, but is not able to perform 

well on any data that is outside of the training set. Similar issues occur in case of overtrained 

network. Indeed, if a network is trained for too long, it is likely to perform poorly on unseen 

data although the error on the training dataset is very low, especially when noisy, real world 

data are used. To overcome this problem, a part of the dataset is used for validation 

purposes. The training dataset is used to optimize the trainable parameters of the network, 

and the validation dataset is used at each iteration of the training process to verify the 

generalization abilities of the network. When the model is converging, error decreases for 

both the training and verification datasets. However, when the network starts to be 

overtrained, error on the verification dataset increases while error on the training dataset 

keeps decreasing. This change of trend provides a clear indication of when to stop the 

training. 

7.3.b. Training dataset and process 

The dataset used to train and test the MLP has been created from the hyperspectral 

images acquired during a clinical knowledge study conducted by Clarins (France) on 204 

patients. For each patient, hyperspectral images were acquired on the inside of the forearm, 

on the cheek and on the dark circles below the eyes using SpectraCam® (Newtone 

Technologies, France). These images represent skin spectral reflectance at 31 wavelengths 

between 400 and 700 nm for 1148 × 948 pixels. 

From these images, maps of skin parameters have been estimated using the skin 

analysis method described in Section 7.1. The measured skin spectral reflectance on one 

pixel corresponds to the input data of the MLP, and the output values that we want to 



154 Chromophore map estimation from HSI analysis 

   

predict are the calculated skin parameters for the pixel, i.e. the oxygen rate α, blood volume 

fraction cblood, melanin concentration cmel and epidermis thickness h. 

 

Figure 7.22. Illustration of the dataset creation process. (a) Original image, (b) 
selection of an area of interest, (c) random selection of pixels and (d) example of the 
spectral reflectance associated with the pixels labelled as A, B and C. 

The dataset used to create the MLP is a collection of pixels selected among the 

available images, associated with their skin parameters. To train the MLP into an accurate 

model of the skin analysis algorithm, the training dataset must contain varied reflectance 

spectra that accurately represent the entire spectrum of possible skin spectral reflectance 

measurements, and must not contain any pixels corresponding to features that are not skin, 

such as the eyelashes. Hence, areas of interest corresponding to the most diversified and 

vascularized areas have been manually created on each image. A total of 800 000 pixels 

have been randomly selected from these areas to form the dataset, making sure the 

corresponding measured spectral reflectance is between 0 and 1, and that the estimated skin 

parameters are within the possible ranges of [0, 100%] for oxygen rate and the 

concentrations, and [0, 150 µm] for epidermis thickness. The dataset creation process is 

illustrated in Figure 7.22. 

A normalization step is applied to the measured skin spectral reflectance in order to 

create input values that are independent from irradiance drifts. In a first attempt, a 

normalization of the total quantity of reflected light, which corresponds to the normalization 

that can be found in the definition of the spectral angle mapper (SAM), was applied. Such 

a normalization appeared to us as the most effective solution to remove the effects of 

irradiance drifts. However, it didn’t yield satisfying results for the training of the MLP. As 

an alternative that is less grounded on physics meaning, the following normalization formula 

was applied: 
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and σ the standard deviation: 
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The 4 skin parameters have also been normalized, using the following equation: 
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where ci’ is the normalized parameter for pixel i, ci the original value, cmin and cmax the 

minimum and maximum values of the parameter among all the dataset. 

This normalization is necessary for the machine to learn from data that have the same 

amplitude, and ensures better results for the neural network. Indeed, for skin, the considered 

parameters do not vary within the same intervals. For example, melanin concentration 

typically varies between 1% and 43% while blood volume fraction varies between 2% and 

15% [Jacques 1996]. Rescaling all the reference parameters between 0 and 1 ensures that 

the parameters are equally important and estimated with the same precision. If this step is 

not performed, the parameters that have the lower values have less weight in the training 

process and are estimated with less accuracy. For example, when the original values of the 

parameters are used in the dataset, the trained neural network yields good results on the 

melanin concentration parameter but very noisy results on the blood volume fraction 

parameter. 

Finally, the 800 000 selected training patterns have been randomly dispatched 

between the learning dataset (which contains 516 000 data), the validation dataset 

(136 000 data) and the test dataset (160 000 data). 

Each pixel i of the training set corresponds to a training pattern or input-output pair 

  , ,( ); , , ,
i i blood i mel i i

R c c h  . (7.25)

where Ri(λ) refers to the spectral reflectance at 31 wavelengths, αi to the estimated oxygen 

rate, cblood,i to the estimation blood volume fraction, cmel,i to the melanin concentration and 

hi to the epidermis thickness. 

The skin analysis model yields maps of bilirubin concentrations, for the neural network 

model, however, we decided to exclude this parameter. Bilirubin is a breakdown product of 

melanin, and is present only at very low concentrations in healthy skin, typically around 

0.1%. Higher concentrations occur only in the incidence of pathologies such as jaundice, or 

on healing bruises. The maps of bilirubin estimated using the optimization algorithm are 

consequently very noisy and including such values in the training dataset reduces the 

performances of the neural network method. 
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With {Ai, Cblood,i, Cmel,i, Hi} the parameters estimated by the neural network and N 

the number of pixels, the mean-square error between the reference values and the ouput 

values is: 

, , , ,
1

1 1
( )2 ( )2 ( )2 ( )2
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N

i i blood i blood i mel i mel i i i
i

A c C c C h H
N

 
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The weight on the connection between the kth neuron of layer (m-1) and the lth neuron 

of layer m is denoted as wk,l,m. The combination of these weights form the trainable 

parameters that are determined through optimization: 

, ,
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k l m

k l m
w

w 
. (7.27)

 

Figure 7.23. Maps of skin chromophore concentration estimated using the neural 
network, reference maps computed using the optimization based model (middle row) 
and difference between the estimated maps and the expected maps (bottom row): 
(a) oxygen rate, (b) blood volume fraction, (c) epidermis thickness and (d) melanin 
concentration. 

The model has been implemented in TensorFlow 1.10 framework using Python 3.5. 

The training process has been performed on a single GPU NVidia 1080 Ti GTX 10Gb RAM. 

The model trained for around 6 days and required around 5 500 steps. 
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A low residual error of the MLP on the validation set is necessary, but does not 

guarantee reliable results on real world images. Indeed, the training data must fully 

represent all possible skin spectral measurements for the network to be able to generalize 

the function, and the best way to validate the method is to visually compare the output of 

the network with the expected results on an image. Maps of chromophore estimated by the 

neural network on an image that corresponds to the dark circles under the eyes are presented 

in Figure 7.23.  

On Figure 7.23, the maps of difference show that the oxygen rate is very well 

reconstructed by the neural network method, but the result is noisy. Differences on the 

melanin concentration map and epidermis thickness map show that more information is lost 

using the neural network analysis. However, from a visual perspective, the difference is 

barely noticeable excepted near the eye. Finally, the map that is the most difficult to 

reconstruct with a machine learning approach is the blood volume fraction. This might be 

due to the high dynamic of the possible values, as the blood volume fraction is very high 

when there is a blood vessel and relatively low when it is not the case. 

7.3.c. Estimated chromophore maps 

While computation was about 1 hours for a 1148 × 948 pixels image with the 

optimization based algorithm, the computation time using the MLP is is only 0.28 second 

using a GPU and 1.29 seconds using a CPU, on the same computer (Intel®Core™ i7-6700 

CPU 3.40 Ghz). It is respectively 13 000 times and 2 800 times faster than classical method. 

 

Figure 7.24. Full face analysis, comparison between the neural network analysis and 
the optimization based analysis: (a) color image, (b) map of blood volume fraction, 
(c) map of melanin concentration, (d) map of oxygen rate. 
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Figure 7.24 shows the maps of chromophore concentration estimated from a full face 

hyperspectral image, obtained by applying the neural network that has been trained on 

normalized spectral reflectances. These maps are noisier than the maps estimated using the 

optimization based method, however, they allow a preview of the result almost 

instantaneously (calculation time was 1.4 seconds on a 1548 × 1948 pixels image). The 

eyelid part is the less well reconstructed, possibly because no pixel representing the eyelid 

was part of the training dataset. Among the estimated maps, the melanin concentration 

map is the less well reconstructed. It might result from the loss of data implied by the 

spectral reflectance normalization preprocessing.  

7.3.d. Discussions 

The implementation of a neural network based method for the estimation of maps of 

chromophore concentration has shown calculation time drastically reduced, which allows a 

visualization of the result right after acquisition. The maps of chromophore concentration 

obtained with this method are close to the one computed using the model-based skin 

analysis method, and they are satisfying for visual inspection of the results.  

In this study, we pointed out that the selection of the training dataset is critical, and 

that it must include as various skin spectral reflectance as possible. At the moment, our 

training dataset is not sufficiently representative of all possible skin properties, and a 

dataset created from measurement on more patients of different age, skin color and living 

conditions would be necessary to train a new neural network. We also showed the 

importance of spectral reflectance data normalization to account for irradiance drifts and 

make full face analysis possible. Without normalization, the neural network fails on pixels 

that are affected by irradiance drifts because the model has not learned at all on such pixels. 

As an alternative solution to data normalization, spectral reflectance data that mimic 

irradiance drifts could be created by applying various multiplication constants on the 

current training set. The extended training dataset thereby created would be more 

representative of the spectral reflectance measured by the hyperspectral camera on a full 

face. 

In addition, the method presented in this paper relies on training a neural network 

from a dataset obtained using an optical model based method, which itself has limitations. 

A different approach could be investigated, using as a training dataset created using a 

Monte Carlo method [Panigrahi and Gioux 2018; Deeb et al. 2019; Zherebtsov et al. 2019] 

and a much more detailed model of skin than our two-layer model. In that case, the neural 

network would provide a model for skin spectral reflectance and solve the inverse approach. 

However, using synthetic data, we cannot be certain that this kind of approach would yield 

satisfactory results on noisy spectral reflectance corresponding to real skin. Conversely, our 

current approach has the advantage of accounting for real data, acquired with a real optical 

system that also induces noise. 
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A possibility for further developing the acquisition system is to reduce the complexity 

of the measured data, using a neural network to replace the optimization based analysis. 

Currently, the quality of the results requires high resolution skin spectral reflectance 

measurements as an input, as skin parameters are estimated using the shape of the spectrum. 

High spectral resolutions are thus required to distinguish small variations in the shape of 

the spectrum, corresponding to small variations in skin optical properties. However, it is 

possible that not all acquired wavelengths contain useful information, just as it is possible 

that two different wavelengths might be correlated, making it redundant to measure both. 

If such is the case, the quantity of acquired data could be reduced by ignoring certain 

wavelengths, and the analysis method could be replaced by a neural network. This would 

allow us to reduce acquisition time or even to consider using a multispectral camera rather 

than a hyperspectral camera, as illustrated in Figure 7.25. 

 

Figure 7.25. Using artificial neural network to replace hyperspectral imaging by 
multispectral imaging? 

Using a multispectral camera would have many advantages, as a it is generally lighter, 

less fragile and cheaper than a hyperspectral camera. Such a simplification requires a careful 

selection of the acquired wavelengths, retaining those that carry the most relevant 

information to ensure the good convergence of the neural network.  

7.4. Conclusion 

Several studies on the estimation of chromophore concentration maps have been 

published, however, most of them address relatively flat parts of the body, and to our 

knowledge, the estimation of full face maps is currently without precedent. 

Although the chromophore maps show very promising results, one of the main 

limitations of the method is its long computation time. On a full face image, 5 hours are 

required to obtain the maps of estimated chromophore concentrations. However, a large 

amount of data has now been gathered and could be used to train a neural network to 
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replace the classical optimization-based method. The preliminary results shown in Section 

7.3 demonstrates the potential of such a method to drastically shorten analysis time, from 

5 hours to few seconds for full face image analysis. 

Another limitation is related to one of the main assumptions of the analysis method: 

currently the method does not include the variation of skin scattering properties in its model. 

This is due to the fact that the measured information - spectral reflectance - is mainly 

influenced by skin absorption properties, and scattering is difficult to assess from only one 

measurement. Quantification of scattering could provide a better description of skin 

properties that could aid in the study of phenomena such as inflammation and aging. This 

would require the addition of spatial frequency domain imaging to the proposed method, 

and could be done with several minor modifications to the camera. 
 

 

 



 

Chapter 8.  
Measuring skin translucency: 

Spatial frequency domain 

imaging (SFDI) 

Skin spectral reflectance provides information about how light interacts with the 

absorbing and scattering components in skin before being reflected back towards the 

detector. The measurement of spectral reflectance alone, however, is not sufficient to 

evaluate both the absorption and scattering coefficients. We have shown in Chapter 7 how 

skin absorption properties can be estimated with scattering coefficients taken from literature. 

We would like to go further and find an acquisition method that provides enough 

information to estimate both absorption and scattering, and that is compatible with the 

experimental equipment presented so far. 

When observing a homogeneous and large material under uniform lighting, no visual 

cue can be used to judge the degree of translucency of the material. Rather, translucency 

can be characterized by border effects: we understand how translucent a material is from 

how blurred its borders are, either between a region that receives light and a region that 

does not, or at the border between two elements of different optical properties. The pattern 

observed at a border can be characterized by the point spread function (PSF) of the material, 

already defined in Chapter 2, which describes how light spreads at the surface of the 

material when illumination is punctual. Thus, translucency can be characterized by 

measuring the PSF, or any other quantity related to it, such as the line spread function 

(LSF), which describes how a line of light spreads in a homogenous material, or the 

modulation transfer function (MTF), which corresponds to the PSF in the spatial frequency 

domain. 

When dealing with skin or any other biological tissue, translucency is related to the 

morphology and chemical composition of the tissue. Hence, the measurement of 
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“translucency” can provide useful information for better understanding the physiology and 

structure of a tissue, and can be used as a diagnosis tool [Wilson and Jacques 1990]. One 

of the first methods implemented to measure the optical properties of tissue was diffuse 

reflectance spectroscopy (DRS), which measures the PSF of a material by illuminating it 

punctually, collecting the diffusely reflected light and measuring the optical signal using a 

spectrometer. While this method has proved useful for a number of applications, DRS 

systems are often probes that are put into direct contact with the tissue [Koenig et al. 2015], 

which risks altering its optical proprieties depending on the pressure applied. This limitation 

has been overcome by the development of contactless systems relying on imaging [Foschum 

et al. 2011]. Yet, DRS only provides an average measurement over a small area, which 

provides much less information than imaging methods for the study of heterogeneous 

materials such as skin. 

Spatial frequency domain imaging (SFDI), which is both contactless and wide field, 

was developed around 15 years ago [Dognitz and Wagnières 1998; Cuccia et al. 2005; Cuccia 

et al. 2009] to estimate the optical properties of a material from the measurement of the 

modulation transfer function (MTF). MTF, also defined in Chapter 2, describes the loss of 

contrast of a sinusoidal fringe light pattern projected onto the material, in function of the 

spatial frequency of the fringes. While PSF measurement requires punctual illumination 

(Figure 8.1.a), MTF is generally measured by projecting sinusoidal fringes on the surface 

(Figure 8.1.b). 

 
(a) (b) 

Figure 8.1. (a) Point spread function (PSF), which can be measured using DRS, and 
(b) modulation transfer function (MTF), which can be measured using SFDI. 

The literature on SFDI methods has steadily increased in recent years, with a growing 

number of studies investigating its potential for medical applications [Gioux et al. 2019]. As 

part of this trend, open source data for building such systems has recently been made 

available on a dedicated website, < OpenSFDI.org > [Applegate], and suggestions on how 

to build SFDI systems at low cost have also been proposed by Erfanzadeh et al. [Erfanzadeh 

et al. 2018]. 
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In this chapter, we propose an SFDI acquisition system that uses a digital projector, 

designed to study skin scattering properties on the face. This system is described in Section 

8.1, and acquisition results on milk samples, wax samples and skin are presented in Section 

8.2. The efficacy of the method is discussed in Section 8.3 and then conclusions are drawn. 

8.1. Full face SFDI system 

The measurement of MTF can be performed by projecting fringes of different 

frequencies and calculating their contrast. This method uses similar principles to that of 3D 

scanning using fringe projection, with the main difference being that 3D scanning measures 

phase deformation rather than loss of contrast. 

The SFDI system uses the same elements as the 3D hyperspectral camera, and has 

been designed to fulfil the requirements of full face imaging in terms of safety, field of view, 

resolution and acquisition time. For the acquisition of 3D objects like a human face, the 

issue of irradiance drifts has to be managed. In this work, we propose to combine SFDI 

with hyperspectral imaging (HSI) to estimate full face scattering maps independently from 

irradiance drifts (discussed in further detail in Chapter 9). Thus, the acquisition system 

comprises all the elements necessary to HSI. For flat objects, HSI is not necessary. In that 

case, the SFDI system is designed to acquire MTF information within the wavebands 

corresponding to the digital projector emission. In this section, we describe the setup used 

for SFDI, the acquisition method and the calibration process. 

8.1.a. Acquisition setup and software 

The setup, illustrated in Figures 8.2 and 8.3, is very similar to the one used for 3D 

scanning. The sensor is the same 2048 × 2048 pixel Basler monochromatic camera (acA2040-

90um, Basler, Germany) that we used for hyperspectral imaging and we kept the 35 mm 

focal length lens as it is well-adapted to the liquid crystal tunable filter (LCTF). The face 

is illuminated by structured light projected by the Optoma digital LED projector (DLP) 

(ML330, Optoma, Taiwan). 

A panel, defining the X- and Y-axis of the Cartesian coordinate system as well as the 

origin of the Z-axis, is used for calibration. For 3D scanning, the sensor and the projector 

must be located on the same Z-plane, their respective optical axes creating an angle. For 

SFDI, the DLP can be placed anywhere. We have placed it next to the camera to prevent 

occluded areas. 

The system uses a cross-polarization (CP) configuration to discard surface specular 

reflection. When the LCTF is used, a linear polarizing filter is placed in front of the projector, 

and oriented perpendicularly to the polarization direction of the LCTF. When the LCTF is 

not included in the acquisition system, there is not analyzer anymore in front of the camera 

to create a CP configuration, and another linear filter must be added. 
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Figure 8.2. SFDI acquisition setup. Parts in gray correspond to the elements used 
for the hyperspectral acquisition. 

 

Figure 8.3. Acquisition system for SFDI and HSI, comprising: (A) a computer, (B) 
a camera, (C) a LCTF, (D) a DLP, (E) a microcontroller, (F) LED lighting units 
and (G) a reference plane. 

The acquisition software has been developed in C++ with a Qt framework. It 

comprises a live preview tool and can be used for SFDI acquisition, HSI acquisition or both. 

The parameters of the SFDI acquisition can be controlled in a settings window. The 

sensor parameters are the camera exposure time and the filter wavelength. The filter 

wavelength setting is necessary when the camera comprises a LCTF, with a choice between 

450, 520 and 630 nm to match with the peaks in the emission spectrum of the DLP. The 

color of the projected image can also be specified. When a LCTF is used, white light can 

be projected, as color filtering is done by the LCTF; when only the monochromatic sensor 



CHAPTER 8  165 

 

 

 

is used, selecting a specific color channel of the projector allows measurement of the material 

MTF in either the blue, green or red wavebands corresponding to the emission spectrum of 

each LED of the DLP. A radiometric calibration can also be performed to correct the non-

linearity of the projector using the same method as that in the 3D acquisition system, 

detailed in Chapter 5. 

Finally, the settings of the projected fringes can be specified. In particular, the number 

of images projected for each frequency and the fringe period can be chosen. Three non-zero 

frequencies are acquired in addition to the zero frequency. 

After acquisition, the images of the projected fringes are treated with MatLab in order 

to calculate the MTF of the object in each pixel. 

8.1.b. Multiple frequency contrast measurement using a projector 

The implemented method is very similar to the phase-shift principle used for 3D 

scanning. For a given frequency, several fringe images that are successively shifted must be 

projected to retrieve the contrast on each pixel by applying a demodulation formula. As 

MTF is a function of spatial frequency, this operation must be repeated for several 

frequencies. 

Contrast measurement at one frequency 

For each frequency f, N fringe images, encoded into 8-bit gray levels such that the 

radiance projected onto a flat reference plane by a perfect projector is given by Eq. (8.1), 

are successively projected: 
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where I’ is the average radiance, I’’ the radiance modulation, f the fringe frequency on the 

object and (x, y) the pixel position on the field of projection. 

The camera records images that correspond to the reflected radiance Jn: 
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with J’ the average radiance, J’’ the modulation, and φ the fringe phase, which are all 

contingent upon location (J’’ is also frequency-dependent). 

The quantity J’/I’ corresponds to the surface reflectance, with J’ measured by 

projecting a uniform image on the object. 

In this work, MTF is defined such that its value at zero is the reflectance. It is 

expressed as the contrast multiplied by reflectance: 
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The radiance modulation J’’ can be retrieved for each pixel of the image by combining 

the acquired images Jn: 
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with 3 /2k   for 3N  , or 1/2k  for 4N   (the value of k can remain unknown as 

a calibration is performed). 

The DLP only has a “video mode”, but no “pattern projection” mode, which means 

that the projected images are to be observed by the human eye with a nonlinear gray level 

emission. This nonlinearity can be partly corrected by performing a gray scale calibration 

prior to image projection, as described in Chapter 5. However, this gray scale calibration is 

generally not sufficient, and projecting only 3 images, which is the minimum for this method, 

does not yield satisfactory measurements. Similarly to 3D scanning, the choice of N, the 

number of projected images, impacts the quality of the reconstructed radiance modulation: 

higher N yields better quality but extends acquisition time [Li and Li 2011]. An N value of 

4 has been chosen as a compromise between acceptable quality and short acquisition time. 

Multiple frequency measurement 

In our system, illustrated in Figure 8.4, four different frequencies are acquired, one of 

which is the zero frequency. The other three frequencies have been chosen in order to obtain 

the best projected image quality. They correspond to periods of 8 pixels, 16 pixels and 32 

pixels on the projector image. Choosing periods that are multiples of 4 is especially adapted 

when the phase shift method is applied with N = 4 to ensure the best possible signal for 

projection. 

When projecting on an object located at around 40 cm from the projector, these 

periods correspond to frequencies around 0.15 mm-1, 0.3 mm-1 and 0.6 mm-1, which are 

adequate samples for retrieving the shape of the MTF with only 3 non-zero frequencies. 

The fringes described in this section are vertical, but they can also be horizontal depending 

on the geometry of the measured surface. Their direction should be selected to minimize 

the frequency variation of the fringes projected on the surface due to the 3D shape of the 

surface. For example, horizontal fringes yield more accurate measurement for a vertical 

cylinder. 
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Figure 8.4. Acquisition principle of SFDI, fringes at 4 frequencies are successively 
projected on the object. 

8.1.c. Calibration and normalization 

For a perfect acquisition system, SFDI measurement on an object yields 

MTFobj(x, y, f) for each spatial frequency f and each pixel (x, y) using Eqs. (8.4), (8.5) and 

(8.6). For a real and imperfect acquisition system, however, the measured radiance 

modulation also depends on the MTF of the acquisition system MTFsystem(x, y, f): 

'' '
obj obj system

J I MTF MTF   . (8.7)

The MTF of the acquisition system depends on both the projector and camera. It is 

pixel-dependent, since the amount of projected light varies in the field of projection, the 

camera transmittance varies in the field of view, and the addition of polarizing filters affects 

the MTF of the projector in the field of projection. 

The MTF of the object is retrieved independently from the acquisition system 

properties and the incident radiance through a calibration step described in Eq. (8.8). 

Calibration involves a white opaque reference sample whose MTF MTFref(x, y, f) is one (or 

any other reference object for which MTFref is well known). Such a reference sample is non-

absorbent and strongly scattering. Therefore, we have: 

''

''
obj

obj ref

ref

J
MTF MTF

J
  . (8.8)

For the analysis purposes detailed in Chapter 9, MTF can be normalized to remove 

the effects of irradiance drifts in the following way: 
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Finally, a ruler is acquired to estimate the spatial frequency of the projected fringes 

onto the surface, accounting for the distance between the projector and the surface. The 

image of the ruler gives the pixel-to-millimeter ratio for an object located near the reference 

plane. Fringe period in pixels is calculated from the fringe images on the reference plane, 

and then converted in mm to obtain the frequency in mm-1. 

For non-planar samples, this calibration is not accurate enough to account for the 

irradiance drifts that occur on curved surfaces. In such cases, SFDI acquisition yields the 

MTF multiplied by a constant that renders the difference between the irradiance incident 

on the flat reference surface and on the object. The problem of irradiance drift must be 

addressed before analyzing the MTF to retrieve the absorption and scattering properties of 

the material, which is the topic of Chapter 9. For curved surfaces like the human face, an 

irradiance drift correction can be performed using the method described in Chapter 6 only 

if the 3D geometry of the surface is known [Gioux et al. 2009]. Otherwise, one must use 

normalized data as an alternative. 

8.2. SFDI acquisition on phantom samples and skin 

In this section, we present SFDI measurement for which the LCTF has been removed 

from the acquisition system. The MTF was acquired on various translucent flat samples, 

which we can also refer to as phantoms, and on skin. 

8.2.a. Milk samples 

Samples of various absorption and scattering properties have been made using milk, 

water, agar and yellow food coloring (Figure 8.5). 

Figure 8.5.c shows the average MTF measured for each sample at 13 frequencies. The 

SFDI system has been designed to measure only 4 frequencies. For still objects, a series of 

measurements can be performed for a better sampling. Here, the reference plane and the 

samples have been translated along the Z-axis between each acquisition to measure more 

than 4 frequencies. 

Although the value at zero differs for each sample, we notice on Figure 8.5.c two 

trends: the samples with similar scattering properties have similar curves at high frequencies. 

Mixing milk, water, agar and food coloring was a convenient way to create translucent 

samples whose optical properties are close to those of human skin. In addition, milk 

absorbance can be neglected and different dyes can be used to vary the scattering properties 

of the sample. However, samples made from milk and agar (or gelatin) are relatively fragile, 

and cannot keep for very long as they quickly dry out when kept for more than a few days 
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in the fridge. For these reasons, we chose to use samples made of wax rather than milk for 

further experiments. 

 

Figure 8.5. Average MTF measured at 13 frequencies on samples made of agar, milk, 
water and yellow coloring. Scattering properties are increased by adding more milk 
than water, and absorption properties are increased by adding more colorant. (a) 
Picture of the samples, (b) compositions and (c) corresponding MTF curves. 

8.2.b. Wax samples 

The wax samples are made of paraffin, palm wax, black oil paint and TiO2 white oil 

paint in different proportions to obtain samples with variable absorption and scattering 

properties. They are homogeneous and can be molded to any shape. Paraffin, which is 

highly translucent, has been used as a base, and oil paints have been pre-mixed with palm 

wax (more scattering than paraffin), to create what we have called “black wax” and “white 

wax”. For the purposes of the experiment, 4 flat samples were created, with absorption 

properties varying depending on the quantity of black paint and scattering properties 

varying depending on the quantity of wax and white paint. The composition of each sample, 

labelled 1 to 4, is given in Table 8.1. 
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Sample  Composition 

  White wax Black wax Base wax 

No 1  25% 46% 28% 

No 2  50% 24% 26% 

No 3  55% 44% 0% 

No 4  25% 28% 47% 

Table 8.1. Composition of each wax sample. 

SFDI measurements were repeated 4 times to obtain the MTF of the samples at 13 

frequencies, with the reference plane and samples translated between each acquisition. The 

green channel of the projector was used for these measurements. The fringe images obtained 

for one of these acquisitions are illustrated in Figure 8.6. Although the color in samples 3 

and 4 are very similar (Figure 8.6.a), the translucency in sample 4 is much higher, as can 

be seen from the greater blurriness of the projected fringes (such as on Figure 8.6.d). 

 

Figure 8.6. SFDI acquisition at four frequencies on wax reference samples (green 
channel of the digital projector). 
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Figure 8.7. Average MTF measured on the wax samples at 13 frequencies. 

Figure 8.7 represents the average MTF for each sample. The reflectance MTF at zero 

corresponds to the sample reflectance; for the other frequencies, the lower the scattering, 

the more the projected fringes are blurred and thus the lower MTF. The graph shows that 

sample 3 is the most scattering, which is to be expected from its composition, and that 

samples 4 and 1 are the most translucent, which is also to be expected as they contain a 

lower amount of white wax than the other two samples. These wax samples are more 

convenient than the milk samples, as they remain stable for a long time. However, it is 

difficult to determine precisely their optical properties from their composition: although 

they are mostly uniform on the area of interest, some pigments fall to the bottom of the 

mold while the wax is setting, and it is consequently difficult to use their composition to 

precisely determine their absorption and scattering properties. 

8.2.c. Skin 

SFDI measurements were performed on the inner wrist (Figure 8.8), a relatively flat 

part of the body which is heterogeneous in terms of color and structure, mainly due to the 

presence of a large number of veins close to skin surface.  

 
(a) (b) (c) (d) 

Figure 8.8. SFDI acquisition at four frequencies on the skin of the inner wrist, 
frequencies (mm-1): (a) f = 0, (b) f = 0.15, (c) f = 0.3 and (d) f = 0.8. 
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(a) (b) 

Figure 8.9. MTF measured using SFDI on the skin of the inner wrist. (a) Location 
of the points of interest and (b) MTF for each area. 

We tried to identify different MTF properties for pixels corresponding to skin color 

(points 1, 2 and 4) and a visible vein (point 3). On the image and curves presented in Figure 

8.9, we can observe that MTF is much lower in the region where a vein is visible (point 3) 

from the other regions. On Figures 8.8 and 8.9, we can notice specular reflections on the 

images, as no polarization filter was used for this acquisition. This introduces a significant 

amount of error in the analysis process, since specular reflection dramatically affects the 

value of the MTF at the zero frequency. For all other acquisitions, polarizing filters have 

been added in a CP configuration to avoid such artefacts. The effects of irradiance drifts 

are not especially visible on the crop of the original image displayed in Figure 8.9.a, however, 

it is worth asking how much of the difference between the MTF at two different region 

results from a change in skin optical properties and how much results from a change in the 

illumination conditions. 

So far, the illustrations of this section have shown either projected fringes that are 

more or less blurry depending on the degree of translucency of the object or the 

corresponding MTF curves obtained by averaging the measured information on the area of 

interest. These curves could also be obtained using non imaging methods, such as DRS, and 

thus do not provide a persuasive argument in favor of the use of SFDI for the study of 

heterogeneous materials.  

Figure 8.10 shows maps of MTF at 3 frequencies, providing a value at each pixel and 

thus demonstrating the potential of imaging methods. The area of skin imaged here has 

stretch marks. In the case of conventional imaging (corresponding to the image at the zero 

frequency), only horizontal stretch marks are visible and can be segmented. When using 

SFDI, “invisible” vertical marks can be seen at the non-zero frequencies. Such measurements 

are very encouraging as they demonstrate the potential input of SFDI compared to 

conventional imaging for applications such as the study of healing scars. 
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Figure 8.10. MTF at 3 frequencies on stretch marks, acquired in the red channel of 
the projector (the grayscale has been adjusted differently for each image for better 
visualization). 

Finally, MTF was also measured on a full face (see Figures 8.11 and 8.12), this time 

combined with hyperspectral imaging (the LCTF is included in the camera).  

 

Figure 8.11. SFDI acquisition at four frequencies on a full face, side view acquisition. 
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Figure 8.12. MTF at 4 frequencies acquired in the green channel of the projector. 

On the images shown in Figures 8.11 and 8.12, we can notice again the presence of 

irradiance drifts, which must be addressed for reliable skin analysis. This point will be 

discussed in detail in Chapter 9. The MTF reconstructed from the SFDI acquisition shows 

some noise (horizontal fringes are especially visible on the image at f = 0.11 mm-1), which 

partly results from the imperfect quality of the projected fringes and partly from the 

person’s head slightly moving during acquisition. 

8.3. Efficacy of the method 

As is the case for hyperspectral imaging and 3D scanning, the efficacy of the proposed 

SFDI method can be evaluated in terms of resolution, accuracy and acquisition speed. 

The resolution of the method can be described in the spatial, spatial frequency and 

spectral domains, as maps of MTF are acquired at several frequencies and potentially at 

several wavebands. The size of a pixel of the camera depends on the distance between the 

object and the camera and generally varies between 70 and 100 µm for a full face acquisition, 
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which corresponds to the spatial resolution. For in vivo applications, the resolution in the 

spatial frequency domain is limited to three or four frequencies, as increasing this number 

can only be done at the expense of acquisition time. Moreover, the possible frequencies are 

limited by the resolution of the digital projector, its focal length and the distance between 

the projector and the object. However, for applications such as skin analysis using diffusion 

theory (described in Chapter 9), the maximum frequency limitation is not a significant 

factor, as the optical model used to described light behavior in translucent materials is not 

valid for very high frequencies. Finally, spectral resolution is also limited by the properties 

of the projector, as acquisitions must be made in one of the three bandwidths emitted by 

the projector. In the current setup, multiple bandwidth acquisition is not recommended as 

it requires more time than is reasonable for a person to remain still (greater than 10 seconds). 

The smallest detectable MTF depends on the properties of the camera. If the camera 

is used in 8-bit mode, the recorded images are quantified between 0 and 255. The smallest 

detectable MTF is obtained when: 

( 1 )
1

n n
J J


  ,    1,... 1n N  . (8.10)

Using Eqs. (8.6) and (8.8), the condition given in Eq. (8.10) yields the smallest 

detectable MTF in theory: 
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where J’ref is the gray value recorder by the camera on the reference sample. If the dynamic 

of the camera is fully used and J’ref is 255, then MTFmin is 0.7%. 

The accuracy of the measured MTF is affected by many factors. First of all, as MTF 

is reconstructed from several projected images, subject movement can add artifacts, such 

as the horizontal fringes visible on the top right picture in Figures 8.12. In addition, as with 

3D scanning, the quality of the projected fringes significantly affects the measured 

information. The choice of the reference surface for calibration can also affect the accuracy 

of the measurement, as its MTF must be precisely known. The accuracy of the reference 

MTF directly affects the accuracy of the method. In this work, we did not have time to 

further characterize the precision of the method, which could be done by measuring several 

translucent reference samples with well-known absorption and scattering properties and 

comparing the results of our method with the expected values. However, we were not able 

to build such samples by lack of time, and we therefore consider this work as a proof of 

concept. A complete accuracy characterization would be required if the method were to be 

used for cosmetic studies or in a commercial context. 

Acquisition speed is determined by on a number of parameters, related to the 

acquisition method itself, the camera efficacy and the projector efficacy. In particular, when 

the SFDI system comprises a LCTF for hyperspectral imaging, the amount of light 



176 Measuring skin translucency: Spatial frequency domain imaging (SFDI) 

   

transmitted to the sensor is drastically reduced. In such cases, acquisition time is set to 200 

ms if the green channel is selected (less for acquisition in the red channel) to achieve a 

satisfactory signal-to-noise ratio. The method relies on the successive acquisition of 13 

images, and the slow projector refresh rate imposes a time delay of 100 milliseconds between 

two image acquisitions. In total, taking into account additional delay due to signal transfer 

between the camera and the computer, SFDI acquisition time is around 5 seconds. Given 

that SFDI measurement is generally combined with hyperspectral imaging, which adds 

around 2 seconds on the total acquisition time, the acquisition speed of the system is not 

optimal for in vivo acquisition. In particular, it is difficult to perform SFDI measurements 

at several spectral bandwidths at once, such as in the green and red channels, as the person 

is very likely to move when acquisition time is superior to 10 seconds. 

8.4. Conclusion 

In this work, we have shown that a SFDI system can be built by simply using a 

camera and a digital projector. Although the proposed acquisition system can be improved, 

especially in terms of acquisition time, and further accuracy characterization is required, 

the described acquisition method can be applied to measure translucency properties with a 

relatively cheap acquisition system which is also compatible with the 3D-hyperspectral 

camera described in Chapters 4 and 5. 

We will see in the next chapter that full face analysis is a challenge due to the presence 

of irradiance drifts, and that SFDI information alone is not enough to retrieve information 

about skin scattering properties. However, we believe that an SFDI system, even one that 

is limited to measuring small and relatively flat areas of the body, could be useful for many 

applications in cosmetology. To our knowledge, the only skin translucency measurement 

devices on the marketplace for cosmetology studies are Transluderm (Orion Concept, 

France) and Translucymètre (Monaderm, Monaco). However, both systems use probe set-

ups that can compromise the accuracy of measurements by being in contact with the skin 

and are based on punctual measurements that do not provide sufficient information to 

separate the effects of scattering and absorption. 

One of the major limitations of our acquisition system originates from the 

characteristics of the digital projector, which does not include a pattern projection mode. 

In building a new acquisition system, we would try to include a digital mirror device, such 

as the one recommended on the aforementioned website < opensfdi.org >. 

 

 



 

Chapter 9.  
Scattering map estimation from 

SFDI analysis 

The optical model based analysis of hyperspectral images presented in Chapter 7 is 

limited to the only estimation of the absorption coefficient. The scattering coefficient has 

been taken from literature, and is assumed to be constant over the acquired surface [Jacques 

2013]. However, as skin scattering properties can vary from one area to another one, and 

from one person to another, we are also interested in computing maps of scattering 

coefficients, which can be of use in dermatology and cosmetology. In particular, estimating 

skin scattering coefficients has proven to be useful for monitoring glucose rate in blood 

[Bruulsema et al. 1997] and for studying the severity of burns [Mazhar et al. 2014]. Skin 

scattering coefficients can also be used to study skin aging, as collagen fibers, whose number 

and diameter greatly affect skin scattering coefficients [Iglesias-Guitian et al. 2015], evolve 

as a person gets older [Branchet et al. 1991]. Finally skin scattering is also related to the 

cosmetology concept of skin “complexion radiance” [Musnier et al. 2004], a multi-factorial 

descriptor that involves skin color, luminosity, brightness and transparency. This complex 

claim is generally visually assessed by trained evaluators. Although these evaluators are 

specialists, different evaluators can have slightly different opinions, and for a single 

evaluator, perception might vary from one day to the other on such a subjective task. The 

evaluation of complexion radiance can therefore benefit from instrumental methods 

including systems able to measure skin scattering coefficient. 

Skin modulation transfer function (MTF), measured using spatial frequency domain 

imaging (SFDI) (Chapter 8), can yield the estimation of both absorption and scattering 

coefficients using optical model based analysis [Cuccia et al. 2009]. This approach, however, 

is mainly suited to the study of flat surfaces and is difficult to implement on three-

dimensional objects due to the presence of irradiance drifts. If irradiance drifts are not taken 

into account, analysis can be incorrect. Typically, an area that is darker because it has 
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received less light might be erroneously interpreted as an area with a higher absorption 

coefficient. For full face analysis, this issue must be addressed in order to estimate maps of 

scattering coefficient. 

This limitation of SFDI for non-flat objects has been addressed in several works [Gioux 

et al. 2009; Nguyen et al. 2012] by combining SFDI with 3D measurement for correcting 

irradiance drifts. However, this solution, which closely resembles the method described in 

Chapter 6 for hyperspectral imaging (HSI), is sensitive to any errors in the 3D acquisition 

and does not yield satisfactory results on objects with high slopes using our 3D acquisition 

system. Such an irradiance correction method therefore appears inadequate to be applied 

to the human face. As such, we have sought to identify another solution to overcome the 

limitation of being only able to work on flat samples: normalizing the measured MTF to 

remove the effects of irradiance drifts. However, as a large amount of information about the 

material absorbance is contained in the MTF magnitude, normalizing the MTF results in 

an important loss of information that can compromise the estimation of the optical 

properties. 

We therefore propose to combine SFDI with HSI. HSI is still used to estimate maps 

of skin absorption properties by optimization as described in Chapter 7. These absorption 

properties are then used as an input to compensate for the loss of information due to MTF 

normalization and to retrieve the scattering coefficient from SFDI acquisitions in a second 

optimization process. The spectral reflectance analysis, detailed in Chapter 7, relies on a 

two-layer skin model characterized by 5 parameters. In this chapter, we investigate the 

feasibility of a combined HSI-SFDI acquisition, in which as a starting point for the sake of 

simplicity, skin is modeled as a semi-infinite material and characterized using only two 

parameters. 

In Section 9.1, a method of MTF analysis based on the diffusion approximation is 

presented. Then, we propose a MTF analysis method that accounts for irradiance drifts in 

Section 9.2. This method has been tested on phantom samples. Details on the validation 

process, along with experimental measurement analysis on a full face, are presented in 

Section 9.3. In Section 9.4, a potential future application that would allow us to “see through” 

a scattering material is explored. Finally, conclusions are presented in Section 9.5. 

9.1. MTF model using the diffusion approximation 

As with the analysis method implemented on hyperspectral images, the estimation of 

skin absorption and scattering properties from the measured MTF requires an optical model 

that describes the direct problem and a method of inversion. The direct model, which gives 

the relationship between skin optical properties and its MTF, includes a model of skin and 

a model of interactions between light and translucent materials. In this part, we present a 

direct model based on the diffusion equation. The material considered, illustrated in Figure 
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9.1, is characterized by its optical index n, absorption coefficient µa, reduced coefficient µs’ 

and total coefficient µt. 

As already mentioned in Chapter 2, the diffusion equation is an approximation of the 

radiative transfer equation that is relatively easy to apply, although it has several 

limitations. It is valid under the assumption that the diffusion is mainly isotropic, with 

poorly absorbing layers (µa << µs’), for a sample whose typical dimensions are larger than 

the scattering mean free path (~µs’ -1). The validity of the diffusion approximation for non-

pathological skin analysis has been confirmed in previous studies [Cuccia et al. 2009; 

Schmitt et al. 1990; Kienle et al. 1998]. Under these assumptions, the fluence, or diffuse 

photon flux density φ satisfies the following equation: 

Δ  
a

µ S

D D
    , (9.1)

where S is the source term that describes the propagation of the incident flux and D the 

diffusion coefficient given by: 
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µ µ




. (9.2)

 

Figure 9.1. Semi-infinite model for skin. 

Boundary conditions have to be specified to solve the diffusion equation. These 

conditions depend on how a material is modeled, for example as homogenous, or as multi-

layered with interfaces between materials of different index. Although skin is more 

accurately described as a multi-layer material, we decided to model it as a semi-infinite 

material with a planar boundary, a model for which the solution of the diffusion 

approximation can be solved analytically in the spatial frequency domain. This model has 

been chosen for its ease of implementation, as the focus of this chapter is to understand the 

overall experimental method. A finer model, such as a multi-layer model that describes skin 

more accurately, could be considered in a future work. In the spatial frequency domain, the 

diffusion approximation also has analytical solutions for multi-layer materials [Kienle et al. 

1998]. 
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When the source term corresponds to a thin beam incident upon the material along 

the Z axis, as illustrated in Figure 9.1, the equation of the diffusion approximation describes 

the PSF of the material. Its expression in the Fourier domain can be used to describe the 

MTF of the material.  

In the spatial domain frequency, Eq. (9.1) can be rewritten as the following expression, 

involving the spatial depth z and the wave vector s = (sx2+sy2)1/2: 

2
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S s z
s z s z
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with the fluence in the frequency domain 
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with the source term, that depends on φ0 the incident irradiance 
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The wave factor s can be replaced with the spatial frequency f according to the 

relationship: 

2s f . (9.8)

In our application, the projected fringes correspond to a one-dimensional frequency, 

arbitrarily chosen along the X dimension, therefore f = fx. 

For semi-infinite materials, the solution to Eq. (9.3) is the sum of a general 

homogeneous solution and a particular solution, and can be written as:  
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where C is a constant that has to be determined from applying boundary conditions.  

At the material interface (z = 0), no diffuse flux oriented toward the positive Z 

direction is created. However, due to a change of index between the outside environment 

and the material, a fraction of the diffuse flux oriented toward the outside of the material 

is reflected back into the material according to Fresnel reflection. This yields the partial-

current boundary condition described by Haskell [Haskell et al. 1994]: 
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with 
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and Reff the effective reflection coefficient [Egan and Hilgeman 1979] 
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where n is the relative index of refraction of the medium with the reflected ray to the other 

medium. 

The combination of Eqs. (9.9) and (9.10) yields the expression of the fluence in the 

spatial frequency domain at the depth z: 
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The reflectance in the spatial frequency domain is related to the fluence through the 

exiting flux F -(0): 

0

(0)F
R





 ɶ , (9.14)

3
(0)

1
(0)

t

F
µ z

 
 



ɶ
. (9.15)

Finally, Eqs. (9.13), (9.14) and (9.15) yield the analytic expression of the diffuse 

reflectance in the spatial frequency domain (which is also the MTF): 
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In the spatial domain, the diffusion approximation is valid for an area located far 

enough from the impact point of the incident light beam, i.e. at a distance higher than the 

transport mean free path, l = 1/µt. In the spatial frequency domain, this condition means 

that results are valid for frequencies inferior to 1 ⁄ l = µt. Since the quantity µt is typically 

superior to 1 for skin, our acquisition method meets this condition (f < 0.7 mm-1). At the 

zero frequency, Rɶ (f = 0) depends only on the quantity µs'/µt, often called the reduced 

albedo, a quantity that does not allow us to measure µa or µs’ separately. Rɶ (f = 0) also 
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corresponds to the reflectance in the real domain. Consequently, the expression given in Eq. 

(9.16) can also be used in principle to analyze the spectral reflectance acquired by HSI 

[Bjorgan et al. 2014]. 

(a)  

(b)  

Figure 9.2. MTF variations for (a) varying absorption properties and (b) varying 
scattering properties (optical index n = 1.4). 

  (a)  



CHAPTER 9  183 

 

 

 

(b)  

Figure 9.3. Normalized MTF variations for (a) varying absorption properties and 
(b) varying scattering properties (optical index n = 1.4). 

MTF computed from Eq. (9.16) at several frequencies are presented in Figure 9.2 to 

show the variations that occur when either the absorption coefficient or the scattering 

coefficient are fixed. Figure 9.2.a shows MTF curves corresponding to a fixed µs’ value and 

varying µa values. Interestingly, the MTF varies with µa at low frequencies, but not at high 

frequencies, where the curves converge to the same asymptotic curve. The curves on Figure 

9.2.b, which correspond to MTF for a fixed µa value and varying µs’ values, show that the 

scattering properties of the material influence the MTF in both the low and high frequencies.  

Figure 9.3 shows normalized MTF for the same optical parameters as in Figure 9.2. 

Figure 9.3.b shows that when the value of µa is fixed, the shape of the normalized MTF 

clearly varies with µs’. However, the inverse is not true: for a given µs’ (Figure 9.3.a), 

changing µa affects less significantly the shape of the curves. This observations illustrate the 

difficulties of estimating µa from normalized data, as the variations are not strong enough 

to ensure an accurate estimation of µa using an optimization approach. In the following, a 

method to tackle this issue is proposed. 

9.2. MTF analysis for a full face 

The direct model presented in the previous section is suitable for analyzing the 

measured MTF as long as the acquired area of skin is flat. When curved surfaces are 

considered, the acquisitions are affected by irradiance drifts and the measured MTF 

corresponds to the surface MTF multiplied by a constant factor that is the ratio of the 

sample irradiance to the reference plane irradiance. 

In the analysis of full face hyperspectral images, this problem was tackled using the 

spectral angle mapper (SAM) in the optimization process, which relies on a comparison 
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between normalized spectra. Spectral reflectance normalization leads to a loss of information 

(i.e. the total quantity of light that has been reflected), but in practice, the measured 

information is altered by irradiance drifts. Normalization is therefore a way to suppress the 

effects of irradiance drifts, but it does not impede the estimation of skin absorption 

properties, as it is the shape of the spectrum that provides information about skin 

chromophore concentrations. 

In the case of MTF, normalization also removes the effects of irradiance drifts, but 

contrary to spectral reflectance, MTF is monotonic with respect to frequency, and 

estimating of the scattering coefficient using only the shape of the MTF is difficult. The 

loss of information caused by normalization must therefore be compensated. 

To address this problem, we propose to combine SFDI with HSI in a dual-step 

measurement, as illustrated in Figure 9.4. The analysis of the hyperspectral image yields 

the skin absorption coefficient independent of irradiance drifts. Once this coefficient is 

known, it is possible to analyze the normalized MTF to estimate the skin scattering 

coefficient. 

 

Figure 9.4. HSI and SFDI combined analysis to estimate maps of absorption and 
scattering coefficients. 

Once the spectral reflectance analysis is completed (indicated by ① in Figure 9.4), its 

output parameters (oxygen rate, blood volume fraction, melanin concentration, bilirubin 

concentration and epidermis thickness) are converted into a map of absorption coefficients 

(indicated by ② in Figure 9.4). The spectral reflectance analysis method considers skin as 

a two-layer material. In the MTF analysis, however, skin is modeled as a one-layer material 

characterized by an overall absorption coefficient µa and an overall reduced scattering 

coefficient µs’. To compute the absorption coefficient, we refer to the Kubelka Munk theory 

applied to a semi-infinite homogeneous layer, which describes skin reflectance as a function 

of absorption and scattering parameters Kskin and Sskin, for each wavelength: 



CHAPTER 9  185 

 

 

 

( 2 )
skin skin skin skin skin

skin

skin

K S K K S
R

S

  
 . (9.17)

The inversion of Eq. (9.17) yields (it also corresponds to the formula that gives the 

remission function K/S): 
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A map of the absorption parameter Kskin can be calculated using Eq. (9.18). The 

scattering parameter Sskin is taken from literature [Jacques 2013] and used in the spectral 

reflectance analysis method presented in Chapter 7 to described the scattering properties of 

both the epidermis and dermis. Rskin is the skin reflectance calculated from the estimated 

parameters (oxygen rate, blood volume fraction, melanin concentration, bilirubin 

concentration and epidermis thickness) by applying the direct model given in Eq. (7.9) in 

Chapter 7. 

Then, the absorption coefficient µa is obtained from the Kubelka Munk parameter 

Kskin using: 

2
skin a

K µ . (9.19)

This coefficient is used as an input in the analysis of the normalized MTF, in order 

to estimate the skin scattering coefficient. 

The third step of the method, indicated by ③ in Figure 9.4, is the normalization of 

the measured MTF: 

( , , )
( , ,0)

( , , )
m

MTF x
MTF x y

y
f

f

MTF x y
 . (9.20)

Finally, the reduced scattering coefficient µs’ can be estimated by an optimization, 

indicated by ④ in Figure 9.4. The reduced scattering coefficient for each pixel (x, y) is 

estimated by using a least squares fitting method: 
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The distance is defined by a sum over fi, where fi designates the non-zero acquired 

spatial frequencies (i = 1… 3 in for our acquisition system). 
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The normalization of the theoretical MTF is given by the following formula, with 

th
MTF  given by Eq. (9.16): 
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As the cost function described by Eq. (9.21) is unidimensional with a single minimum, 

simple optimization can be used. The method that we implemented is based on a look-up-

table: we computed, for all µs’ values, the distance dE defined in Eq. (9.22) and searched for 

the µs’ value for which dE is the lowest.  

9.3. Experimental measurement analysis 

Before performing in vivo acquisition on skin, we first verified the analysis method on 

translucent phantoms. To create irradiance drifts, we front-tilted and side-tilted these 

samples at various angles, from 0 to 60 degrees, and applied the method to estimate 

scattering properties from normalized MTF. We then performed HSI and SFDI acquisitions 

on a full face. The reduced scattering coefficient maps obtained are presented in this section. 

9.3.a. Phantom SFDI measurement 

Four flat wax samples with varying absorption and scattering properties, as described 

in Chapter 8, have been used to assess the method’s ability of extracting scattering 

coefficients independently from irradiance drifts. For this experimental test, SFDI has been 

performed at the green waveband emitted by the digital LED projector (the tunable filter 

used for HSI was not part of the acquisition system). The wax samples can be considered 

as infinitely thick in this waveband, as their thickness exceeds the maximum light depth 

propagation.  

As the properties of oil paint and wax are unknown, a first SFDI measurement has 

been performed for calibration purposes. To retrieve both absorption and reduced scattering 

coefficients, we assumed that there was no irradiance drift on these flat samples and 

consequently, that no normalization was required. The 4 frequencies projected by the 

acquisition system are insufficient to precisely measure the samples’ MTF. The SFDI 

acquisition was thus repeated 4 times, with the distance between the sample and the 

acquisition system varying each time, which allows for 13 frequencies to be measured instead 

of 4. As SFDI provides a value in each pixel, MTF has been obtained by computing the 

average value on the sample. The acquired data has then been analyzed in order to retrieve 

the optical properties of each sample. During this part of the process, the non-normalized 

model described in Eq. (9.16) was used within an optimization based on Euclidean distance 
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[Eq. (9.22)]. The optical index for wax was assumed to be n = 1.45. The measured MTF 

and estimated optical coefficients are illustrated in Figure 9.5 and Table 9.1.  

On Figure 9.5, we notice that the distance between the theoretical curves (dotted 

lines) and the measured curves (solid lines) is relatively minor, which suggests that the 

diffuse approximation applied for a single-layer material is an accurate description of the 

MTF for this kind of sample. 

 

Figure 9.5. Average MTF measured on the wax samples and theoretical fitting 
curves yielding to values of µa and µs’ for each sample (optical index n = 1.45). 

  Composition  SFDI analysis at 520 nm 

Sample 
 White 

wax 

Black 

wax 

Base 

wax 

 µa  

(mm-1) 

µs’  

(mm-1) 
Error* 

No 1  25% 46% 28%  0.0414 1.439 0.021 

No 2  50% 24% 26%  0.0320 1.973 0.019 

No 3  55% 44% 0%  0.0634 2.817 0.018 

No 4  25% 28% 47%  0.0265 1.077 0.025 

Table 9.1. Composition of each wax samples, estimated optical absorption and 
reduced scattering coefficient, and residual error after optimization (*Error denotes 
the residual Euclidean distance after optimization). 

The 4 wax phantoms were tilted around the X-axis (front tilted) and the Y-axis (side 

tilted), as illustrated in Figure 9.6, and acquired at varying angles using SFDI with vertical 

fringes. The normalization method was then applied to estimate scattering properties, using 

the absorption coefficient determined in the calibration step. 
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Figure 9.6. SFDI acquisition on front tilted and side tilted wax samples. 

 

Figure 9.7. Maps of estimated reduced scattering coefficient µs’ (mm-1) obtained for 
sample No 1 at several tilt angles around (a) the Y-axis and (b) the X-axis. 

On the estimated reduced scattering coefficients presented in Figure 9.8, we observe 

that the method yields values close to those expected for angles below 25 degrees when 

samples are side-tilted, and satisfactory results for all front-tilted measurements. The 
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difference between the front and side tilt, illustrated in Figure 9.7, can be explained by the 

variation of the fringe frequency induced by the sample’s rotation. On the sample surface, 

fringe frequency remains almost unchanged for a front tilt when fringes are vertical, but 

decreases with a cosine law for a side tilt. In case of a side tilt, the frequencies used to 

compute MTF in the inverse problem do not correspond to the frequencies that are actually 

projected onto the surface, which results in errors in the optical property estimation. Given 

this limitation, 3D objects should be carefully positioned for SFDI acquisitions. In the case 

of face imaging, we limit our studies to a three-quarter view of the face (i.e. angled at 45° 

to the camera) and we project horizontal fringes, whose spatial frequency is less affected by 

the shape of the face than vertical fringes. 

 (a)  

(b)  

Figure 9.8. Estimated reduced scattering coefficient µs’ of the 4 paraffin wax samples 
at various (a) front tilt and (b) side tilt positions. 
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We can also notice on Figure 9.8 that there is an error between the expected reduced 

scattering coefficient value, obtained from the calibration, and the estimated value using 

normalized MTF for the first tilt position (approximately zero degrees). This might result 

from errors in sample calibration, frequency measurement and reference acquisition. This 

error, 15% at the highest for sample No 1, provides some information about the accuracy 

of the analysis method. Better calibrated samples would be necessary to properly 

characterize the method’s accuracy. 

9.3.b. Face measurement using HSI and SFDI 

The acquisition and analysis method combining HSI and SFDI was applied to the 

human face. A three-quarter view of the face was acquired using HSI and SFDI at 520 nm, 

which corresponds to the peak of emission of the projector green LED. Hyperspectral images 

have been analyzed using the method described in Chapter 7, and maps of skin reduced 

scattering coefficient µs’ have been estimated using the method described in Section 9.2. 

Acquisition and analysis results on three different persons are presented in Figures 9.9, 9.10, 

9.11 and 9.12. 

   

   

Figure 9.9. HSI and SFDI analysis images: (a) acquired hyperspectral image 
converted into RGB color, (b) map of oxygen rate, (c) map of blood volume fraction, 
(d) map of melanin concentration, (e) grayscale image at 520 nm, (f) map of 
absorption coefficient µa (mm-1) and (g) estimated map of reduced scattering 
coefficient µs’ (mm- 1). 

(e)          (f)     (g) 
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Figure 9.10. Enlarged map of reduced scattering coefficient µs’ (mm-1) from Figure 
9.9.g and map from an additional front view acquisition. The parts enclosed in 
dotted red exhibit a lower scattering coefficient than the average and parts enclosed 
in black show areas for with the scattering coefficient is higher. 

Figures 9.9.g and 9.10 show the computed maps of reduced scattering 

coefficient µs’ at 520 nm. Except for the side of the face and the top of the nose, we observe 

no strong correlation between the computed µs’ and the 3D shape of the face, which 

indicates that the analysis was not affected by irradiance drifts. The low correlation between 

the estimated reduced coefficient µs’ and the shape of the face can also be verified by 

checking that the estimated values for µs’ are similar on a side view and front view of the 

face, which is the case here, as illustrated in Figure 9.10. 

On Figure 9.10, values for µs’ vary between 1 and 4 mm-1, which is consistent with 

the values found in previous works [Calin et al. 2013; Cuccia et al. 2009], however, though 

inferior to the ones published by Jacques [Jacques 2013]. We can also observe that µs’ does 

not drastically vary on the face, which corroborates the use of a constant scattering 

coefficient in chromophore map estimation from HSI. However, several “patterns” of 

variation can be pointed out: the reduced scattering coefficient is lower on the middle of 

the forehead, on the tip of the nose, on the chin and on the cheek; it is higher on the bridge 

of the nose, on the dark circles below the eyes, on the corners of the mouth, or on the part 

of the forehead above the eyes. For some of these areas, such as the bridge of the nose, skin 

is directly on top of a bone, where the optical model of skin as semi-infinite skin may not 

be valid. At this stage of our research, we cannot therefore say with any certainty that the 

estimated scattering coefficients for these areas accurately represent skin physiology. 

Another limitation of the method can be noticed: on the inside corner of the eye and on the 
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nostril, the values estimated for µs’ are likely to be erroneous as the light interreflections 

that occur on these concave parts are not a linear variation of the spectral irradiance. This 

issue, already mentioned in Chapter 7, is not accounted for in the model. 

Figures 9.11 and 9.12 show acquisition and analysis results on two men of different 

ethnicity. While the chromophore maps obtained from spectral reflectance analysis (Figures 

9.11.b-d and Figures 9.12.b-d) show similar patterns on the chromophore maps, e.g. a lack 

of oxygen around the dark circles under the eyes, the maps of reduced scattering coefficients 

differ (Figures 9.11.f and 9.12.f), with greater variations for the subject on Figure 9.11. 

While there have been studies that have aimed to measure skin reduced scattering 

properties on large groups of people in order to understand its typical variations [Jonasson 

et al. 2018], as far as we could tell, very little is known about how skin reduced scattering 

coefficient varies on the face, given differences of age, sex, or ethnicity. Our method could 

allow such a study. 

  
  

 

   

     

 
Figure 9.11. HSI and SFDI analysis images: (a) acquired hyperspectral image 
converted into RGB color, (b) map of oxygen rate, (c) map of blood volume fraction, 
(d) map of melanin concentration, (e) map of absorption coefficient µa (mm-1) and 
(f) estimated map of reduced scattering coefficient µs’ (mm-1). 

 

(f) 

(a) 

(b) (c) (d) 

(e) 
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Figure 9.12. HSI and SFDI analysis images: (a) acquired hyperspectral image 
converted into RGB color, (b) map of oxygen rate, (c) map of blood volume fraction, 
(d) map of melanin concentration, (e) map of absorption coefficient µa (mm-1) and 
(f) estimated map of reduced scattering coefficient µs’ (mm-1). 

9.3.c. Discussion on the limitations of the method 

The maps presented in § 9.3.b are currently difficult to interpret, as the one-layer 

optical model that is used might not be valid on parts of the face for which skin is close to 

a bone. Additional studies are also required to fully understand the limitations and accuracy 

of the method. In particular, the estimated reduced scattering coefficient values are likely 

to be sensitive to errors arising from calibration and fringe frequency estimation: finding 

the right values for the projected fringe frequency presents a challenge, as they are measured 

on a flat reference surface but vary on non-flat objects. To validate the acquisition method, 

the acquisition of well-known calibrated samples with optical coefficients comparable to 

human skin would be necessary. Then, to validate the analysis method on skin, the 

estimated reduced scattering coefficient would need to be compared with measurements 

obtained using an already validated method. 

In this work, a one-layer model was preferred over the two-layer model used for 

spectral reflectance analysis. A first improvement could therefore be to model the skin as a 

two-layer material [Weber et al. 2006]. Working in the spatial frequency domain makes the 

resolution of the diffusion equation rather simple for multi-layered materials, but the 

complexity of the inverse problem lies in the number of parameters involved.  

(f) 

(a) 

(b) (c) (d) 

(e) 
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Finally, although using an imaging method such as SFDI for MTF measurement yields 

a value per pixel, the resolution of the measurement depends on the translucency properties 

of the material more than on the size of the pixel. At a wavelength for which skin is strongly 

scattering, light does not travel very far, and we can consider that it is the material 

delimited by a pixel that is measured. At higher wavelengths however, skin is more 

translucent and light can travel distances larger than the size of a pixel. In such cases, the 

measurement does not depict skin optical properties on each pixel, but rather corresponds 

to an average value within a certain radius around the pixel. 

9.3.d. Using µs’ maps to improve the analysis of hyperspectral 

images? 

This chapter shows that the reduced scattering coefficient is relatively uniform on a 

person’s face, an assumption on which the spectral reflectance analysis (Chapter 7) relies. 

While the values used in the algorithm might not exactly match the person’s skin properties, 

its relative uniformity on the face shows that the interpretation of chromophore maps are 

generally valid as a relative measure, for example, when comparing two locations on the 

face, or at two times for the face person. However, for parts of the face such as dark circles 

under the eyes, which can have different scattering properties than “normal” skin, the 

amount of error caused by this assumption can be higher. As a next step of development, 

we could put back the scattering coefficient obtained by MTF analysis into the spectral 

reflectance analysis algorithm to better understand its impact, as illustrated in Figure 9.13. 

This would require an iterative optimization process, as the new estimated maps of 

chromophore concentration could be used in turn to estimate the reduced scattering 

coefficient again.  

 

Figure 9.13. HSI and SFDI iterative analysis process to improve the estimation of 
chromophore concentration maps. 
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The reason for which this has not yet been implemented is that it would require 

reduced scattering coefficients at every visible wavelength. As the variation of this 

coefficient can be modeled by a Rayleigh law, acquisition at two or three wavelengths would 

suffice to interpolate data at any wavelength. However, due to limitations of the SFDI 

acquisition system in terms of acquisition speed, we failed to acquire maps of skin MTF at 

more than one wavelength at a time. 

Throughout this thesis, we insist on the importance of short acquisition time. This 

constraint aside, another limitation is computation time. In particular, an iterative analysis 

method as described above would require enormous calculation time. While more than one 

day of computation per image is feasible from a research point of view, it is a strong 

limitation for applications in cosmetology studies. To tackle this issue, we could take 

advantage of machine learning method, which can drastically reduce computation time as 

illustrated in the preliminary study presented in Chapter 7.3. 

9.4. Going further: “seeing” through a scattering 

material by using deconvolution techniques 

In this chapter, we have seen that skin optical properties determine the extent to 

which fringes projected onto its surface are blurred. Similarly, skin optical properties also 

affect the contours of the objects located inside it, such as veins: the deeper in the skin a 

vein is located, the blurrier its contours appear. 

 

Figure 9.14. Increasing quantity of milk on coins at different heights and screw, 
illuminated from underneath. 

To quantify the blurring effect on an object located at a certain depth in a translucent 

material, the diffusion approximation theory can be applied, by considering for the 

boundary conditions that the object is a source point, and modeling the PSF in transmission 

rather than reflection. Figure 9.14 illustrates an experiment with coins, a screw, and a 

changing quantity of milt poured over them to show that the amount of blur increases with 

depth in translucent media. 
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In theory, if the optical properties of the translucent material and the depth of the 

object are known, then the contour of the object can be “unblurred” through deconvolution 

using the PSF of the material. The PSF is modeled according to the depth of object in the 

material. This method has been applied to skin, e.g. finger vein image restoration [Yang 

and Bai 2012]. 

 

Figure 9.15. Milk on an Allen key, illuminated from underneath: (a) Allen key alone, 
(b) Allen key under 3.5 mm of milk and (c) deconvoluted image obtained using a 
PSF modeled by the diffusion approximation. 

We tried to implement it on an Allen key in milk: the acquired and processed images 

are shown in Figure 9.15. The deconvoluted image, represented in Figure 9.15.c, shows a 

key whose size is similar to the one in image of the key itself (Figure 9.15.a), however, there 

is a noticeable loss of image quality and contrast caused by the deconvolution process is 

significant. For applications on skin, such methods might help to improve the contrast of 

skin vessels, or to estimate their depth. However, this would require a complicated process 

involving deconvolution with multiple PSFs. 

9.5. Conclusion 

We have investigated the potential of combining HSI with SFDI to estimate maps of 

absorption and scattering coefficients of skin independently from irradiance drifts. This 

preliminary study has shown the feasibility of this method, but additional measurements 

on calibrated samples would be required to fully identify its limitations and its sensitivity 

to errors. The estimated scattering values might not be reliable as an absolute measurement, 

however, we believe that the estimated maps of scattering properties might be of interest 

as a relative result that can be used for purposes of comparison (for example, at two different 

times, between two different regions or for two different persons), since calibration errors, 

frequency estimation errors, model limitations, and so on, are the same for every pixel. 

Additional studies are required to understand whether the method is sensitive enough to 

provide the sufficiently accurate information for such applications. The most conspicuous 

limitation of the method may be that the maximum tilt angle is relatively small (around 
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25°) in one of the tilt directions. This appears to be of little consequence for face acquisition 

when horizontal fringes are used, nevertheless, the acquired surfaces need to be carefully 

oriented to minimize errors resulting from 3D geometry. This limitation could be addressed 

by correcting both irradiance drifts and spatial frequency variations that occur when 

projecting fringe patterns on a complex 3D object. This approach would need additional, 

high precision acquisition of 3D geometry, which remains a challenge for full face 

acquisitions.

 

  



 

   

 

 



 

Chapter 10.  
Conclusion 

The aim of this project was to develop an imaging system and a skin analysis method 
that could be applied to a full face and yield information about skin composition. The 
challenges of this were manifold: in vivo full face imaging requires wide field imaging, fast 
acquisition to limit artefacts caused by a person moving during measurement, and an optical 
analysis method robust to irradiance drifts. In addition, obtaining images of a sufficiently 
high resolution was also essential if we wished to use the measurements acquired for the 
purpose of skin analysis. The content of this work was developed with all these requirements 
in mind. 

In the first part, we proposed a 3D-hyperspectral camera capable of acquiring 
hyperspectral images of the full face and its 3D geometry in around 5 seconds. The 
acquisition method, detailed in Chapters 4 and 5, is safe for the skin and the eyes, non-
invasive, and contactless. In terms of measurement resolutions, we succeeded in finding a 
good trade-off between spectral and spatial resolution: spectral reflectance is measured at 
30 wavebands of 10 nm width within the visible spectrum, which adequately records the 
reflectance spectrum to allow for skin chromophore concentration analysis; and spatial 
resolution is around 0.1 mm per pixel on the face, which is sufficient for discerning fine 
details on the face such as blood vessels. The acquisition system was designed for 
applications in cosmetological studies: today, the full face hyperspectral camera, the 
“SpecraFace”, has been used on hundreds of patients by clients of Newtone Technologies. 
This demonstrates that the design of the system is suited to applications outside of a 
research lab. 

Using an optical model and an optimization algorithm, the acquired hyperspectral 
images can be analyzed into maps of skin properties (e.g. maps of blood volume fraction, 
melanin concentration, oxygen rate …). The analysis method, which was developed prior to 
the undertaking of this project, was extended to the full face, with its limitations defined 
in Chapter 7. Using a metric that is robust to irradiance drifts in the optimization algorithm, 
we obtained skin composition maps for a full face, shown in Figure 10.1, even in areas where 
irradiance was low in the measured spectral images. While there are existing studies on the 
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estimation of chromophore concentration maps for flat areas, as far as we could tell from 
the literature, the estimation of skin component maps over the full face is without precedent. 

 

Figure 10.1. 3D hyperspectral acquisition results: (a) oxygen rate, (b) blood volume 
fraction, (c) melanin concentration, and (d) color. 

The combination of 3D scanning with hyperspectral imaging (HSI) was originally 
conceived to correct irradiance drifts, as a pre-processing step before image analysis. 
Irradiance drift correction is relatively easy to implement for simple illumination 
configurations, typically when the object is illuminated by a single punctual source. In the 
case of HSI, however, the illumination configuration is far more complex, and finding a 
suitable correction method was a real challenge. We found and implemented a method 
whose simplicity is worth mentioning given the complexity of the problem, detailed in 
Chapter 6, and obtained satisfactory results on most parts of the face. It is only on highly-
sloped areas, such as the nose, that the method does not yield good results, as it is very 
sensitive to errors in the 3D measurement, which result in over-corrected irradiance drifts. 
The precision and accuracy of the 3D scanner are satisfactory given the simplicity of the 
setup: the 3D measurement method relies on multiple fringe projection, a feature that has 
been added to the hyperspectral camera simply by adding a digital projector beside the 
camera. Unfortunately, this proved inadequate for obtaining accurate results on a full face. 
Using this method, it would be necessary to use more than one camera and perhaps more 
than one projector to achieve the precision required for suitable irradiance drift correction. 
Given the commercial context of the work, we decided to stick with the simple, low cost 
3D measurement method we devised and did not apply the irradiance drift correction 
method as a pre-processing step to image analysis. Instead, we used an alternative method 
for addressing irradiance drift, as mentionned above. 

The combination of the hyperspectral camera and a digital projector was not 
therefore used according to our initial intentions, but instead led us, in the second part of 
this work, to another imaging method: modifying the set-up, we managed to create a spatial 
frequency domain imaging (SFDI) using the same camera and digital projector. The system 
that we have built, described in Chapter 8, has been used to measure skin modulation 
transfer function (MTF), a quantity that contains information about both skin scattering 
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and absorption coefficients. We have subsequently shown, using an original approach, how 
combining SFDI with HSI and optical analysis can be used as a method for estimating 
reduced scattering coefficient maps independently from irradiance drifts. We present in 
Chapter 9 preliminary results on a full face that are promising. This work can be interpreted 
as an initial proof of concept for the feasibility of the method and used to evaluate its 
relevance for applications in cosmetology. Presently, similar methods are used in the medical 
field, but as far as we know, no such equivalents exist in cosmetology. The design of a 
portable and relatively cheap system for applications in cosmetology could therefore 
significantly strengthen the services offered by the industrial partner of the project.  

Certain limitations have been encountered. First of all, the efficacy of the analysis 
method is difficult to evaluate, as a ground truth value for the properties that we are 
estimating is difficult to obtain. Throughout this dissertation, we have therefore insisted on 
the fact that these maps of skin properties are estimated values using a given optical method, 
which itself relies on assumptions. Secondly, we have not been able to obtain satisfactory 
skin analysis results on dark-colored skin, especially in the estimation of oxygen rate maps. 
To address this shortcoming, the acquisition method would need to be perfected to yield a 
better noise-to-signal ratio for dark-colored skin. Finally, the implemented HSI system uses 
a technology which is now obsolete: the key component of the system, the VariSpecTM liquid 
crystal tunable filter, is no longer commercially available. Further development of the 
method therefore relies on finding an adequate substitute. 

We have also often emphasized throughout the work the importance of short 
acquisition time for in vivo measurements, and designed the acquisition methods with this 
requirement in mind. The hyperspectral image analysis method, however, is extremely time- 
consuming in terms of computation time (1 hour for a small image and 5 hours for a full 
face image). A possible approach to reduce this duration is to train neural networks to 
replace the classical optimization-based analysis, which could drastically shorten 
computation time and allow for real time analysis. We have presented the findings of a 
preliminary study in this direction in Chapter 7. Initial results are promising: an analysis 
which would require 1 hour using the classical method has been reduced to 1 second using 
the neural network. Another possibility that could be explored using machine learning is to 
replace high resolution hyperspectral imaging with a slightly less well resolved multispectral 
imaging method. Such as system would have the advantage of being less expensive than 
hyperspectral imaging, with the loss of resolution compensated by machine learning 
methods. 

Currently, the skin analysis method presented in this work is satisfactory for 
characterizing cosmetological products that affect melanin concentration or oxygen rate. 
The scope of applications of the method is relatively limited and has not yet been fully 
explored. It is imperative that their full scope is investigated in the near future.
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Appendix 1: Reproduction of Figure 4.18 (page 82) 

 
Image at 420 nm Image at 590 nm 

   
Image at 700 nm Color image 
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Appendix 2: Reproduction of Figure 7.5 (page 137) 

  
Oxygen rate Blood volume fraction 

  
Melanin concentration Reconstituted color image 
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