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conditions d’encadrement possibles, en se rendant disponible du début jusqu’à
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Abstract

In the context of autonomous vehicle perception applications, the interest of the

research community for deep learning approaches has continuously grown since

the last decade. This can be explained by the fact that deep learning techniques

provide nowadays state-of-the-art prediction performances for several computer

vision challenges. More specifically, deep learning techniques can provide rich

semantic information concerning the complex visual patterns encountered in

autonomous driving scenarios, from several kinds of input data and under various

weather conditions.

However, such approaches require, as their name implies, to learn on data. In

particular, state-of-the-art prediction performances on discriminative tasks often

demand hand labeled data of the target application domain. Hand labeling has

a significant cost, while, conversely, unlabeled data can be easily obtained in the

autonomous driving context. It turns out that a category of learning strategies,

referred to as weakly supervised learning, enables to exploit partially labeled

data. Therefore, we aim in this thesis at reducing as much as possible the hand

labeling requirement by proposing weakly supervised learning techniques.

We start by presenting a type of learning methods which are self-supervised. They

consist of substituting hand-labels by upstream techniques able to automatically

generate exploitable training labels. Self-supervised learning (SSL) techniques

have proven their usefulness in the past for offroad obstacles avoidance and path

planning through changing environments, by learning at the application time.

More recently, they have also been applied for depth map estimation, asphalt

road segmentation, and moving obstacles instance segmentation and tracking.

However, SSL techniques still leave the door open for detection, segmentation,

and classification of static potentially moving obstacles. For instance, the latter

can be motionless cars at a road intersection, or pedestrians waiting to cross the

street. Consequently, we propose in this thesis three novel weakly supervised

learning methods with the final goal to deal with such road users through an

SSL framework.



The first two proposed contributions of this work deal with partially labeled

image classification datasets, such that the labeling effort can be focused only

on our class of interest, the positive class. Then, we propose an approach which

deals with training data containing a high fraction of wrong labels, referred to as

noisy labels. Next, we demonstrate the potential of such weakly supervised image

classification strategies for the two following real application tasks: detection

and segmentation of potentially moving obstacles.
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Introduction
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1.1 Context and Objectives: Towards a rich autonomous ve-
hicle environment perception

The vision of urban autonomous driving applications has progressively become a reality

since the last decades. For instance, several companies and research institutes are actively

working on this novel type of technological mobility. Additionally, the potential introduction

of autonomous vehicles in our daily life has also motivated recent studies on the societal

impacts both in terms of rights and ethics [101].

1.1.1 Context: Autonomous driving implies autonomous perception

Before considering the potential autonomous driving technologies as mature, we need to

build them up, showcase their usefulness, and more importantly, demonstrate their safety.

The latter point includes a wide range variety of conditions. Generally speaking, a safe

autonomous vehicle implies that it is able to undertake appropriate decisions on its own.

In turn, this entails upstream to understand the given environment and situation. From a

perception point of view, this task can be referred to as semantic scene understanding [32].

Scene understanding can be performed using different sources of information, including the

sensor information of the ego-vehicle as illustrated in Fig. 1.1.
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Figure 1.1: VEDECOM autonomous vehicle equipped with integrated lidar, radar and
camera sensors.

Although fusing the information coming from several and varied sensor sources is in

practice very impactful to improve perception performances, the contributions of this study

focus on the use of a single monocular camera. This sensor presents, for potential industrial

applications, a lower cost both in terms of fabrication and usage. Moreover, our goal is to

provide semantic information and it turns out that image and video can provide dense visual

information in comparison to low-cost sparse and dispersive LIDAR sensors.

1.1.2 Objectives

Potentially moving obstacles analysis using deep learning: Several semantic scene

understanding tasks of broad interest include scene context classification, road segmentation,

traffic sign and lane marking detection. In our case, we focus our attention on the urban

road users that we refer to as potentially moving obstacles, for instance pedestrians, cars, or

motorcyclists. It is of major importance to correctly analyze them, as they interact with

the ego-vehicle and hence directly influence the ego-vehicle path planning decisions [30].

One of the main difficulty is to ensure that the perception model designed for this task can

correctly analyze all encountered potentially moving obstacles, despite their complex and

varied visual shape patterns, and under varying conditions such as moving observation point

of view or changing weather.

Deep learning approaches [63] present nowadays state-of-the-art prediction performances

for several semantic visual pattern analysis tasks [115]. They are essentially based on

a high-level feature representation of the sensor data to analyze. Visual deep learning

techniques generally use several consecutive layers of convolutional filters. Historically, these

architectures have been inspired from [76]. First, they have been called neocognitron [55]
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before being democratized and rendered functional thanks to backpropagation algorithms

during the last two decades under the name convolutional neural networks (CNNs) [95].

Current CNN baseline methods are trained on fully labeled datasets to perform state-

of-the-art prediction performances exposed on online available benchmark computer vision

datasets such as ImageNet [93] for image classification, COCO dataset [102] for object

detection, and ADE20K dataset [179] for semantic segmentation task [48]. Image classification

associates a label class to a given image, object detection predicts bounding boxes of the

objects to detect, and pixelwise semantic segmentation independantly classifies pixels of

a given image. Fig. 1.2 illustrates these three key visual perception tasks by presenting

real-time output predictions of the deep CNN model MultiNet [162], on Kitti dataset [59].

This vision dataset is specifically designed for autonomous vehicle perception.

Figure 1.2: MultiNet real-time predictions for road-type classification, vehicle detection and
road segmentation.

Limitations of deep learning techniques: However, such baseline CNN methods

also present the following drawback: They require to be trained on labeled data following

the distribution of the target domain data to predict. If this requirement is not satisfied,

then it is possible to obtain critical and unintended decreasing prediction performances as

illustrated in Fig. 1.3 for MultiNet predictions. This phenomenon is also referred to as

overfitting issue. We deduce that the learning model naturally specializes its generalization

capacity of prediction on the training data distribution. As providing an adequate labeling

effort has a significant cost, we propose to investigate solutions to overcome this problem.

The computational cost of deep learning techniques is another aspect of broad interest

for real-time embedded applications. Computational cost of a given CNN architecture can

be drastically reduced, for instance by applying pruning [69] or binarization [139] techniques

on the deep learning model connections, weights parameters and predicted feature maps.

However, this issue is not discussed in the scope of this thesis.

Improving the generalization model capacity using Transfer Learning: Nowa-

days, several strategies can reasonably attenuate the requirement of labeled data by improving

the learning model capacity to generalize high-level feature concepts. For instance, a tech-

nique consists of pre-training the model on a generic dataset like ImageNet, before fine-tuning
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(a) (b)

Figure 1.3: MultiNet overfitting issue for road segmentation task: A lack of generalization
capacity when not trained on the target domain data. These images present MultNiet road
segmentation pixel-level predictions on a Kitti dataset image (a) and on an image of a desert
road (b).

on data of the target application domain, as proposed in [145] and [171]. While it enables to

adapt a learning model to a novel data distribution in order to perform the same prediction

task, transfer learning also allows adapting a pre-trained-model to a novel prediction task,

as proposed in [157].

Reducing the need of hand labeled training data using Weakly Supervised

Learning: Weakly Supervised Learning strategies have also been proposed to address the

same lack of hand-labeled training data. Weakly supervised learning techniques focus on

the ability to directly deal with a weakly labeled dataset of the target application domain,

rather than on the ability to adapt a pre-trained model to these data. For instance, these

approaches exploit partially labeled data (i.e. both labeled and unlabeled data) or noisy

labeled data which contain a fraction of incorrect labels. However, existing methods still

leave the door open to deal with complex shapes and high asymmetric fractions of corrupted

labels. Moreover, despite being reduced, the labeling effort is still necessary.

Avoiding the need of hand labeled training data using Self-Supervised Learn-

ing: The need of hand labeled data can be avoided using some self-supervised learning (SSL)

strategies. SSL techniques in the context of the autonomous vehicle perception propose

to learn to extrapolate the available data information in order to fill the missing data

information. In particular, SSL monocular camera vision approaches propose to exploit the

temporal sequences of previously recorded images with the same camera. For instance, they

can be trained to predict the next frame of a given video sequence based on the previously

observed temporal sequences evolution [116]. However, existing state-of-the-art techniques

are not able, to the best of our knowledge, to deal with partial or noisy labeled annotations

in the context of discriminative tasks, such as binary image classification, detection and

segmentation.

Selected direction: In our autonomous vehicle context, unlabeled training data can be

easily acquired. It turns out that the above mentioned weakly supervised learning and SSL
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techniques can exploit unlabeled data. Thus, based on these considerations, we propose to

investigate weakly supervised learning techniques, in supplement to existing SSL techniques,

with the final goal to envision novel computer vision framework perspectives for potentially

moving obstacles analysis. Furthermore, in a real application context, it can be difficult

to record all the varieties of urban scenario which can possibly be encountered. Thus, we

propose to exploit in the meantime deep generative models for data augmentation in the

context of the proposed weakly supervised learning frameworks.

Next, Sec. 1.2 presents the contributions of this thesis to address the mentioned goals.

1.2 Contributions

Scientific contributions presented through this thesis are the following:

• We propose a tutorial style overview of Self-Supervised Learning techniques for au-

tonomous vehicles perception. More specifically, we identify relations between existing

methods, advantages, drawbacks, and we highlight the current state-of-the-art limita-

tions.

[27] Florent Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frederic Dufaux.

Self-supervised learning for autonomous vehicles perception: A conciliation between

analytical and learning methods. Accepted to IEEE Signal Processing Magazine, 2020.

arXiv preprint arXiv:1910.01636.

• We propose to regularize the classical biased Positive Unlabeled (PU) training by

applying a Generative Adversarial Network [64] (GAN) on unlabeled data of Positive

Unlabeled (PU) tiny image classification datasets.

[24] Florent Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frederic Dufaux.

Learning with a generative adversarial network from a positive unlabeled dataset for

image classification. In IEEE, 25th International Conference in Image Processing

(ICIP), October 2018.

[26] Florent Chiaroni, Mohamed-Cherif Rahal, Frederic Dufaux, and Nicolas Hueber.

Classification d´images en apprenant sur des échantillons positifs et non labelisés avec

un reseau antagoniste génératif. In CNIA-RJCIA, 2018.

• We propose to generate adversarially relevant counter-examples from PU tiny image

datasets without prior knowledge. To do this, we have proposed the two following

contributions:
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– We propose to incorporate a biased PU learning loss function inside the original

GAN [64] discriminator loss function. The intuition behind it is to have the

generative model solving the PU learning problem formulated in the discriminator

loss function. In this way, the generator learns the distribution of the examples

which are both unlabeled and not positive, namely the negative ones included in

the unlabeled dataset;

– In addition, we study normalization techniques compatibility with the proposed

framework. A learning model which manipulates different minibatches distribu-

tions should not use batch normalization techniques [77]. Alternative normaliza-

tion techniques are discussed and experimented.

[25] Florent Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frederic Dufaux.

Generating relevant counter-examples from a positive unlabeled dataset for image

classification. Submitted to Pattern Recognition, 2019 (under revision). arXiv preprint

arXiv:1910.01968.

• We propose a novel GAN-based approach to tackle the noisy labeled learning task on

small and complex datasets. The main contributions of this work consist of:

– incorporating a noisy labeled risk inside the GAN discriminator loss function;

– applying carefully regularization techniques during the GAN adversarial training.

This addresses GAN mode collapse and discriminator overfitting issues;

– exploiting prior knowledge of the corrupted labels fractions in order to estimate

the most appropriate adversarial training labels.

[23] Florent Chiaroni, Mohamed-Cherif Rahal, Nicolas Hueber, and Frederic Dufaux.

Hallucinating a cleanly labeled augmented dataset from a noisy labeled dataset using

GANs. In IEEE, 26th International Conference on Image Processing (ICIP), September

2019. Spotlight article (Top 10% of accepted papers).

• We propose a new temporally self-supervised method for unsupervised classification of

moving obstacles. The main contribution is to improve state-of-the-art unsupervised

image classification methods in the context of autonomous vehicle perception by adding

temporal information provided by videos.

[68] Sid Ali Hamideche and Florent Chiaroni and Mohamed-Cherif Rahal. Self-

supervised classification of dynamic obstacles using the temporal information provided

by videos. To be submitted in 2020. arXiv preprint arXiv:1910.09094.
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• As an application contribution, we propose for the first time to adapt PU learning

strategies for potentially moving obstacles detection and segmentation.

Best student poster award received at the 6th Budding Science ISL Colloquium

for the presentation entitled: See farther spatially and temporally using self-

supervised learning, 2017.

Participation for a demonstrator for vehicle detection from aerial images, at VIVA

Tech forum, 16-18 may 2019.

1.3 Overview of the thesis

The outline of this thesis is as follows:

Chapter 2 presents an overview of existing self-supervised learning (SSL) frameworks

for autonomous vehicle perception. First, we motivate the interest for this specific type of

unsupervised approaches. Then, we successively highlight the hand-crafted and learning

tools that can cooperate into SSL systems. Next, we present SSL techniques respectively for

high level and low level perception analysis of ego-vehicle sensor data. Then, we finish by a

section discussing the remaining limitations of presented approaches in order to open up

research perspectives in this aerea and to motivate the contributions presented in the next

chapters.

Then the next three chapters 3, 4, 5 propose weakly supervised solutions for dealing

with partially labeled and noisy labeled datasets for baseline binary image classification

tasks as follow:

• Chapters 3 and 4 present two novel two-stage GAN-based frameworks for dealing with

tiny image classification using a positive unlabeled training dataset. Positive Unlabeled

learning related work is established and the proposed approaches are detailed. Then,

their usefulness and competitiveness in terms of prediction scores are presented through

qualitative and quantitative empirical experiments. Chapter 4 presents a solution

solving the first-stage overfitting limitation of the approach proposed in chapter 3.

• Chapter 5 presents a novel GAN-based solution for dealing with small-scale noisy

labeled data on tiny image datasets. The related work is discussed. Then, the proposed

approach is presented and followed by empirical experiments simulating small-scale

noisy labeled datasets.

Next, chapter 6 presents adaptations of previously presented PU techniques for potentially

moving obstacle detection and segmentation in real-world applications. More specifically,

the first section highlights the ability to reduce the need of hand labeled data for vehicle
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detection on aerial images. Then, the second section proposes a theoretical and empirical

study showing the proof of concept of applying PU learning principles for challenging real-

world semantic image segmentation tasks. Then, we present a temporally self-supervised

image clustering framework to classify without training labels the detected urban moving

obstacles. This strategy improves the prediction performances of a current state-of-the-art

image clustering technique. Then, based on the previous contributions and corresponding

considerations, we highlight the potential to develop a future unified SSL framework enabling

to jointly detect, segment, and classify potentially moving obstacles without supervision.

Finally, this thesis research work draws its overall conclusions and perspectives in chapter

7.
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Chapter 2

Self-supervised learning for
autonomous vehicle perception

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.4 SSL Autonomous Driving Applications . . . . . . . . . . . . . . 18
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2.4.2 Low-level sensor data analysis . . . . . . . . . . . . . . . . . . . . . 23

2.5 Limitations and future challenges . . . . . . . . . . . . . . . . . . 25

This related work chapter mainly aims at motivating more investigations on self-

supervised learning (SSL) perception techniques and their applications in autonomous

driving. Such approaches are of broad interest as they can improve analytical methods

performances, for example to perceive farther and more accurately spatially and temporally.

In the meantime, they can also reduce the need of hand-labeled training data for learning

methods, while offering the possibility to update the learning models through an online

process. This can help an autonomous system to deal with unexpected changing conditions

in its surrounding environment. In all, this chapter first highlights the analytical and learning

tools which may be interesting for improving or developping SSL techniques. Second, it

presents the insights and correlations between existing autonomous driving perception SSL

techniques. Then, we draw some of their remaining limitations. This opens up some research

perspectives which have motivated the contributions presented through the next following

chapters of this thesis.

9



2.1 Introduction

The interest for autonomous driving has continuously increased during the last two decades.

However, to be adopted, such critical systems need to be safe. Concerning the perception

of the ego-vehicle environment, the litterature has investigated two different types of

methods. On the one hand, analytical methods, also referred to as hand-crafted, are

generally designed from end-to-end. On the other hand, learning methods aim to design

their proper representation of the observed scene.

Analytical methods have demonstrated their usefulness for several tasks, including the

keypoints detection [109], [84], optical flow, depth map estimation, background subtraction,

geometric shape detection, tracking filtering, and simultaneous localization and mapping

(SLAM) [16]. Those methods have the advantage to be explainable from end-to-end. However,

it is difficult to apply them on high dimensional data for semantic scene analysis. For example,

identifying the other users present in an urban scene requires to extract complex patterns

from high dimensional data captured by camera sensors.

Learning methods are nowadays the most adapted in terms of prediction performances

for complex pattern recognition tasks [89] implied in autonomous vehicles scene analysis

and understanding. However, the state-of-the-art results are often obtained with large

and fully labeled training datasets [33]. Hand-labeling a large dataset for a given specific

application has a cost. Another difficulty is to aprehend from end-to-end the learned

representations. To overcome the former limitation, transfer learning and weakly supervised

learning methods have appeared. Some of them can exploit partially labeled datasets

[126], [26], or noisy labeled datasets [112], [22]. Concerning the latter problem, under mild

theoretical assumptions on the learning model, we can interpret the predicted outputs. For

instance, it is possible to automatically detect the training overfitting [75], to estimate the

fraction of mislabeled examples [78], or estimate the uncertainty in the prediction outputs

[56].

Another challenge is to prevent unpredictable events. Indeed, some scenes unseen

during the training can appear frequently in the context of the autonomous vehicle. For

instance, an accident on the road can change drastically the appearance and the location of

potential obstacles. Thus, even if it is possible to predict when the model does not know

what it observes, it may be interesting to confirm it through an analytical process and to

adapt the learning model to this novel situation.

It turns out that self-supervised learning methods (SSL) have shown in the litter-

ature the ability to address such issues. For instance, the SSL system in [35] won the 2005

DARPA Grand Challenge thanks to its adaptability to changing environments. SSL for

10



autonomous driving vehicles perception is most often based on learning from data which is

automatically labeled by an upstream method, similarly to feature learning in [80]. In this

chapter, we discuss the following aspects of SSL:

• abilities such as sequential environment adaptation on the application time, referred

to as online learning, self-supervised evaluation, unnecessity of hand-labeled data,

fostering of multimodal techniques [35], and self-improvement. For example, iterative

learning reduces progressively the corrupted predictions [177];

• applications enabled by those advantages such as depth map estimation [58], [177],

temporal predictions [40], moving obstacles analysis [12], long range vision [35], [67].

For example, the SSL system in [67] learns to extrapolate the appearance of obstacles

and traversable areas observable by stereo-vision in a short-range, to identify the

long-range obstacles and traversable areas which cannot directly be detected by stereo-

vision.

(a) (b) (c)

Figure 2.1: Some self-driving cars. (a) is the self-driving car Stanley that won the DARPA
Grand Challenge using a SSL system equipped with a calibrated monocular camera and
a LIDAR sensor [35]. (b) is the autonomous mobile robot LAGR. It integrates another
SSL vision approach [67] able to identify online the obstacles and road segmentation from a
short-range stereovision up to a long-range monocular vision. (c) is the car equipped with
the perception sensors used to generate the KITTI dataset [59].

While the cited SSL techniques are respectively designed for a specific use case application,

they present some similitudes. In particular, a shared underlying idea is to: Learn to predict,

from a given spatio-temporal information (e.g. a single camera frame [35], [67], [65], [58],

[129]), something (e.g. traversable area segmentation [35], [67], depth estimation [58], or

moving obstacles segmentation [65], [129]) that can be automatically labeled in another way

using additional spatio-temporal information (e.g. stereo-vision camera [67], [58], a temporal

sequence [128], or depth sensor [35]).

We propose to highlight those interdependencies hereafter. In this way, we aim at

providing to the reader some analytical, learning and hybrid tools which are transversal
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to the final application use cases. In addition, the limitations of the presented frameworks

are discussed and highlighted in Table 2.1, as well as the perspectives of improvement for

self-evaluation, self-improvement, and self-adaptation, in order to address future autonomous

driving challenges.

Table 2.1: Summary of global trends for advantages and drawbacks of current state-of-the-art
Analytical, Learning and SSL methods for autonomous vehicle perception challenges.

Methodology no hand-labeling dense complex pattern analysis online self-evaluation and adaptation knowledge extrapolation low-cost sensor requirements

Analytical +++ + ++ + +
Supervised learning + +++ + + +++

Self-Supervised Learning +++ ++ +++ +++ ++

The outline of this chapter is as follows. After this introduction, we present in Sec. 2.2

and 2.3 some analytical and learning perception tools relevant to SSL. We follow in Sec.

2.4 by the presentation of existing SSL techniques for some autonomous driving perception

applications. Finally we will end by a discussion focusing on limitations and future challenges

in Sec. 2.5.

2.2 Analytical methods

Before the recent growing interest around deep learning methods, many analytical methods

(without learning) have been proposed, bringing baseline reference tools for multiple challeng-

ing perception tasks in the context of autonomous driving. Some of the most investigated

tasks considered in this chapter are briefly introduced hereafter:

• Keypoints feature detection. Before analyzing the sensor data from a relatively

high point of view, analytical techniques often require to perform spatial or temporal

data matching using feature detection methods. More specifically, these methods

consist of detecting and extracting local features in the sensor data. These hand-crafted

features can be small regions of interest [70]. In order to enable the matching of sensor

data, captured from the same scene with different spatial or temporal points of view,

such features need to be as invariant as possible to scale, translation, and rotation

transformations. The most common sensor data is an image captured by a camera.

In this case, competitive feature detectors include SIFT [109], SURF [6], ORB [149].

When a depth sensor is also available, the depth information can be exploited in

order to further improve feature detection. For instance, the TRISK method [84]

is specifically designed for RGB-D images. More recently, LIDAR has enabled to

capture of point clouds. To tackle this new form of sensor data, some feature detection

techniques are derived from image ones (e.g. Harris and SIFT). Alternatively, some

new approaches such as as ISS [178] are exclusively designed for point clouds. From a
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practical point of view, implementations of common image feature detectors can be

found in image libraries as OpenCV1, and in point clouds libraries as PCL2. Feature

detectors are exploited by several autonomous driving perception techniques requiring

matching of sensor data, including optical flow, disparity map, visual odometry, SLAM,

tracking techniques.

• Optical flow is a dense [49] or sparse [111] motion pattern. It can be obtained by

computing points or features transformations throughout a temporal images sequence

captured from a static or mobile ego-camera point of view. In the context of autonomous

driving perception, optical flow can be interesting for background subtraction, motion

estimation of the ego-vehicle and surrounding moving obstacles as proposed by Menze

et al. [117]. It can also be used, in the absence of additional information, for relative

depth map estimation [134] of the surrounding static environment.

• Depth map estimation aims at providing image pixels depths, namely the relative

or absolute distance between the camera and the captured objects. Several techniques

exist to address this task. One of the most common and effective approaches is to

compute a disparity map from a stereo-camera. Combined with the extrinsic cameras

parameters, such as the baseline distance separating both cameras, the disparity map

can be converted into an inversely proportional absolute depth map. Another approach

is to project LIDAR points on some of the camera image pixels. It also requires extrinsic

spatial and temporal calibrations between both sensors. As mentioned previously,

a relative depth map can also be directly deduced on the move from the optical

flow obtained with a moving camera in a static scene. Under some assumptions, the

absolute depth map can then be obtained, for example with additional accurate GPS

and IMU sensors information concerning the absolute pose transformations of the

moving camera. The depth map can also be directly obtained with some RGB-D

sensors. Depth map is interesting for identifying the 3D shape of objects in the

scene. More specifically, in autonomous driving, an absolute depth map is relevant

for estimating the distance between the ego-vehicle and detected obstacles. However,

we can note that absolute depth map estimation is constraining compared to relative

depth map, as at least two jointly calibrated sensors are necessary. Consequently, this

has a relative higher financial cost in production. Moreover, extrinsic calibrations can

be sensitive to the ego-vehicle physical shocks. Finally such sensor fusions can only

offer limited long-range depth estimation, due to fixed baselines with stereo cameras,

1https://opencv.org/
2http://pointclouds.org/
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or sparse point cloud projections with dispersive LIDAR sensors. Nevertheless, relative

depth map can be sufficient to detect obstacles and traversable areas. For example,

considering the traversable area as a set of planes in the depth map 3D point cloud

projection, some template matching techniques can be used [67].

• Geometric shape detection techniques such as Hough transform and RANSAC [52]

initially aimed at identifying some basic geometric shapes such as lines for lane marking

detection, ellipses for traffic lights detection, or planes for road segmentation. In order

to deal with sophisticated template matching tasks, techniques such as the hough

transform have been generalized (GHT [5]) for arbitrary shape detection. Nonetheless,

these techniques require an exact model definition of the shapes to detect. Consequently,

they are sensitive to noisy data and are impractical for detection of complex and varying

shapes such as obstacles encountered in the context of autonomous driving. Indeed,

such objects typically suffer from outdoor illumination changes, background clutter, or

non-rigid transformations.

• Motion tracking aims at following some data points, features or objects through

time. Tracking filters, such as the Extended Kalman Filter (EKF), predict the next

motion using the prior motion knowledge. Conversely, objects tracking can be achieved

by features or template matching between consecutive video frames. Pixel points

and features tracking is interesting for dense or sparse optical flow, as well as visual

odometry estimation [155]. Obstacle objects tracking is very relevant in autonomous

driving for modeling or anticipating their trajectories into the ego-vehicle environment.

However, on the whole, while some techniques integrate uncertainty, they remain

limited when dealing with complex real motion patterns. Pedestrians and drivers

behaviour prediction typically requires knowledges about the context. Moreover,

mobile obstacles appearence can drastically change depending on their orientation.

• SLAM techniques. The complementarity between the above enumerated concepts

has been demonstrated through the problem of simultaneously localizing the ego-vehicle

and mapping the surrounding environment (SLAM) [16]. Features matching provides

the pose transformations of the moving ego-vehicle. In turn, 3D scaled projections of

depth maps combined with the successive estimated poses provide the environment

mapping. Tracking filters and template matching can offer some robustness against

sensor data noise and drifting localization estimation, as respectively proposed in EKF

SLAM [37] and SLAM++ [151] approaches.
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To summarize, analytical methods can successfully deal with several perception tasks of

significant interest in the context of autonomous driving. In particular, a self-driving

vehicle embedding these techniques is able to carry out physical analysis such as the 3D

reconstruction modelling of the environment, and dynamic estimations concerning the

ego-vehicle and the encountered surrounding mobile obstacles. These techniques have the

advantage to be end-to-end explainable in terms of design. This facilitates the identification

and prevention of failure modes. However, some critical limitations persist nowadays:

• A lack of landmarks and salient features combined with the presence of dynamic

obstacles may entail a severe degradation of the feature detection and matching.

• Severe noisy sensor data induces the same risks.

• It is impossible to achieve dense real-time semantic scene analysis of environments

including a wide range of complex shape patterns.

Learning to recognize and predict complex patterns with generalization abilities aims at

overcoming such issues, as developed in the next section.

2.3 Learning methods

Learning methods have demonstrated state-of-the-art prediction performances for semantic

tasks during the last two decades. Autonomous driving is a key application which can

greatly benefit from these recent developments. For instance, learning methods have been

investigated in this context, for identifying the observed scene context using classification,

for detecting the other road users surrounding the ego-vehicle, for delineating the traversable

area surface, or for dynamic obstacles tracking.

• Classification: It aims at predicting, for a given input sensor sample, an output class

label. In order to deal with high dimensional data containing complex patterns, the

first stage is generally to extract relevant features using hand-crafted filters or learned

feature extractors. For image feature extraction, the state-of-the-art techniques use

Convolutional Neural Network (CNN) architectures. The latter are composed of a

superposition of consecutive layers of trainable convolutional filters. Then, a second

stage is to apply a learning classifier on the feature maps generated as output of

these filters. Some commonly used classifiers are the Support Vector Machine (SVM)

and the Multi-Layer Perceptron (MLP). Both require a training which is most of the

time performed in a fully supervised way on labeled data. The CNN and MLP deep

learning models are trained by backpropagating the output prediction error on the

15



trainable weigths up to the input. Concerning the evaluation of these models, a test

dataset is required, which is labeled as well. The Accuracy metric is commonly used

for evaluating the prediction performances, while the F1-Score, an harmonic mean of

the precision and recall, is relevant for information retrieval. An image classification

application example in autonomous driving is for categorizing the context of the driven

road [162].

• Detection: It generally identifies in a visual sensor data the regions of interest,

which in turn can be classified. A commonly used strategy invariant to scales and

rotations applies an image classifier on sliding windows over an image pyramid. Then,

several advanced competitive image detection techniques as Faster R-CNN [144] which

improved Fast R-CNN [60] and R-CNN [61], SSD [106] and Yolo versions [141] [142]

[143] have been more recently developed, and have been adapted for road users detection

[162].

• Segmentation: As its name suggests, this task provides a segmentation of visual

sensor data. Three distinct problems can be considered:

– Semantic segmentation assigns a semantic class label to each pixel. An example

is road segmentation [162]. State-of-the-art methods generally present a fully

convolutional network (FCN) autoencoder (AE) architecture connecting in dif-

ferent ways the encoding part with the decoding part [3]. A standard AE is a

generative model composed of an encoder and a decoder learning models which

are jointly trained to reconstruct as output the input. State-of-the-art semantic

segmentation methods can also use dilated [169] or atrous convolutions [20], as

well as an image context modeling strategy [176], as reviewed in [57]. In the

discussed image segmentation context, these models are trained to predict as

output a per-pixel classification of the input image pixels.

– Instance segmentation aims at detecting and segmenting each object instance.

Examples include foreground segmentation and object detection of potentially

moving obstacles [71].

– Panoptic segmentation [89] is a unification of the two previously mentioned

segmentation tasks.

Some models dealing with these segmentation tasks have been adapted for performing

per-pixel regression tasks such as dense optical flow estimation [41] or depth map

estimation [104].
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• Temporal object tracking follows the spatial location of selected objects along a

temporal data sequence. State-of-the-art learning techniques use variants of the Recur-

rent Neural Network (RNN) model [119]. Compared to standard filtering techniques,

RNNs have the ability to learn complex and relatively long-term temporal patterns in

the context of autonomous driving.

These methods can be combined in a unified framework, for instance by sharing the

same encoded latent feature maps, as proposed in MultiNet [162] for joint real-time scene

classification, vehicle detection and road segmentation.

While demonstrating competitive prediction performances, the above mentioned learning

techniques are fully supervised. In other words, they have in common the limitation to

require large-scale fully annotated training datasets. In order to reduce this issue, some

other learning strategies have been investigated:

• Weakly supervised learning: These techniques can be trained with a partially

labeled dataset [126], and eventually with a fraction of corrupted labels [112], [22].

Advantageously, these approaches drastically reduce the need of labeled data.

• Clustering: These approaches can be defined as an unlabeled classification stategy,

such that it aims at gathering without supervision the data depending on their features

similarities. A huge advantage is that no labels are required. However, if it is necessary

to associate the clusters obtained with humanly understandable semantic meanings,

then a final step of ponctual hand-labeling per-cluster is required. State-of-the-art

methods [18] dealing with complex real images mix trainable feature extractors with

standard clustering methods such as a Gaussian Mixture Model (GMM) [122].

• Pre-training: Some relevant generic visual feature extractors can be obtained by

performing a preliminary pre-training of the CNN model on unlabeled or labeled data

coming from the target application domain [67] or even from a different one [62].

We note also that in order to aprehend from end-to-end the learned representations, it is

possible to identify the training overfitting [75] of deep learning models without validation

test supervision. Furthermore, some learning approaches can estimate the prior of a noisy

labeled training dataset [78] or the model uncertainty [56], [86].

Now that some considered analytical and learning methods have been treated separately,

the next section shows the complementarity between these two different types of approaches

through several Self-Supervised Learning (SSL) systems developed in the context of the

autonomous driving vehicle perception.
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2.4 SSL Autonomous Driving Applications

In the context of autonomous driving applications, we can organize the Self-Supervised

Learning (SSL) perception techniques in two main categories:

• High-level scene understanding:

– road segmentation in order to discriminate the traversable path from obstacles to

be avoided

– dynamic obstacles detection and segmentation

– obstacles tracking and motion anticipation predictions

• Low-level sensor data analysis, with a particular focus on:

– dense depth map estimation, which is a potentially relevant input data information

for dealing with the previously enumerated scene understanding challenges.

2.4.1 Scene understanding

In order to navigate safely, smoothly, or fast when it is required, a self-driving car must

perform a path planning adapted to the surrounding environment. The planned trajectories

must pass trough traversable areas, while ensuring that surrounding static and dynamic

obstacles are avoided. For this purpose, it is necessary to detect and delineate them in

advance, but also to anticipate future positions of the mobile ones.

2.4.1.1 Traversable area segmentation

A traversable area can be identified by performing its segmentation over the mapped physical

environment. Two different strategies have been successively applied. The former is mainly

dedicated to offroad unknown terrain crossing. It entails fully self-supervised training (i.e.

without hand-labeled data) systems. The latter, that appeared more recently, is dedicated

to urban road analysis. The main difference is that the SSL online systems developed are

initialized with a supervised pre-training on hand-labeled data. This preliminary step aims

at replacing the lack of landmarks on urban asphalt roads having uniform textures, by prior

knowledge.

SSL offroad systems: a road segmentation is proposed in [100] by exploiting temporal

past information concerning the road appearence on monocular camera images. It considers

the close observable area on the current moncular camera frame in front of the car as a

traversable road. Next, it propagates optical flow on this area from the current frame up

to the past captured frames. Then, it can deduce this close area appearence when it was
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spatially farther in the past. This past appearence of the actual close traversable area is

exploited for producing horizontal line templates using the SSD (sum of squared differences)

matching measure. It is combined with a hough transform-based horizon detector to define

the image horizontal lines of pixels on which to apply the horizontal 1-D template matching.

Next, with the assumption that the actual distant traversable area has roughly the same

appearence as the actual close area had in the past, the 1D templates are applied over

the current frame to segment the distant traversable area. If the best template matching

measure changes abruptly, then it is supposed that the ego-vehicle is going out of the road

or that the road appearence has suddenly and drastically changed. The approach in [100]

is relevant for providing a long-range road image segmentation using a monocular camera

only. However, a major issue is the critical assumption considering the close area as always

traversable. If the road aspect suddenly changes, then it is impossible with this SSL strategy

to correctly segment the image pixels following an unknown distribution corresponding this

novel road region.

Another SSL road segmentation approach is proposed in [35] dealing naturally with this

issue. Instead of using temporal information with the assumption that the close area is

always traversable, and in addition to the monocular camera, a LIDAR sensor is used for

detecting the obstacles close to the ego-vehicle. Projected on the camera images, LIDAR

depth points enable to automatically and sparsely labelize the close traversable area on

images pixels. Then, a gaussian mixture model (GMM) is trained online to recognize the

statistical appearence of these sparse analytically labeled pixels. Next, the learning model is

applied on the camera pixels which cannot benefit from the sparse LIDAR points projection,

in order to classify them as road pixels or not. In this way, the vehicle can anticipate the far

obstacles observable in the monocular camera images, but not in the dispersive LIDAR data.

This SSL system enabled the Stanley self-driving car, presented in Figure 2.1(a), to win the

DARPA Grand Challenge3 by smoothing the trajectories and increasing the vehicle speed

thanks to the anticipation of distant obstacles. This highlighted the interest of combining

multiple sensors in a self-driving car.

More recently, with the growing interest for deep learning methods, Hadsell et al. [67]

propose to use a CNN classifier model instead of the earlier template matching or GMM

learning techniques. Moreover, an additional paired camera (i.e. stereo-camera) replaces

the LIDAR sensor as in [35]. As offroad terrain traversable areas are not always completely

flat, a multi-ground plane segmentation is performed in [67], on the short-range point cloud

projection, obtained with the stereo-vision depth map, by using a hough transform plane

detector. This technique provides several automatic labels for image patches which are

3https://www.darpa.mil/about-us/timeline/-grand-challenge-for-autonomous-vehicles
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observable in the short-range region. Then, addressing the long-range vision segmentation,

the authors firstly train a classifier to predict patches labels automatically estimated within

the short-range region. Next, the trained classifier predicts the same labels on the long-

range observable image region patches by using a sliding window classification strategy.

Concerning the prediction performances, the authors have demonstrated that the online

fine tuning of the classifier and the offline pre-taining of its convolutional layers using an

unsupervised autoencoder architecture can improve prediction performances. Moreover,

an interesting point to note is that instead of using uncertainty or noisy labeled learning

techniques, the authors created transition class labels for the boundary image surfaces

separating the obstacles from the traversable area. Finally, from an initial 11-12 meters short

range stereo-vision, the developed SSL system was able to extrapolate a long-range vision up

to 50-100 meters. Nonetheless, in order to estimate the short-range stereo 3D reconstruction,

including planar sets of points corresponding to the offroad traversable area, this approach

requires the presence of salient visual features in the road regions. This may be impractical

for instance on the uniform visual texture of asphalt roads commonly encountered in urban

scenarios, as illustrated in Fig. 2.2.

(a) (b)

Figure 2.2: Salient features location on urban ego-vehicle environment. (a) is an arbitrary
frame, extracted from the KITTI dataset [59], illustrating an urban asphalt road with the
surrounding environment. (b) shows keypoints detected on the left input image using SIFT
detector. Keypoints distribution is dense on the offroad region observable in the image right
side, and sparse on the asphalt road observable in the image center.

Pre-trained SSL urban road systems: Some other techniques, that we propose to

consider as SSL only during the online process, deal with this issue by exploiting a classifer

pre-trained offline on hand-labeled data [180], [147].

The automatic labeling step previously performed with analytical methods is replaced in

[180] by an SVM classifier pre-trained offline using a human annotated dataset. In this way,

this approach is also compatible with uniform asphalt road surfaces. However, compared to

the previously presented SSL offroad approaches, it requires hand-labeled data.

A hybrid path segmentation technique is proposed in [147]. It combines a 3D traversability

cost map obtained by stereo-vision, and an SVM classifier pre-trained offline over a human
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annotated dataset. Six different ground surfaces are considered to train the classifier:

asphalt, big gravel, small gravel, soil, grass, bushes and stones. The strategy is as follows.

SVM predictions refine online the cost map concerning the flat regions. In turn, the 3D

traversability cost map obtained without supervision is exploited to update online some

mis-classifications of the pre-trained classifier.

To sum up regarding these road segmentation SSL systems, we can notice that while

the sensor data and the analytical and learning models are different for each approach, the

online process remains essentially the same. The first stage always consists of generating

automatic labels by using additional temporal [100], sensor [35], [67], or prior knowledge

information [180], [147]. Then, a second stage trains or updates online a classifier, such

that it can be used to provide a long-range or refine road segmentation. Overall, while

the short-range visions based on depth sensors aims at ensuring the reliable detection of

close obstacles, using such SSL vision techniques in static environments directly enables to

anticipate the path planning evolution. Consequently, it is possible to increase the maximum

speed velocity of the self-driving car [35], while preserving smooth trajectories [67].

Now that we have presented some SSL techniques dealing with limited depth sensors in

static environments, we focus on dynamic obstacles, as they represent the other potential

road users interacting with the ego-vehicle in the shared surrounding environment.

2.4.1.2 Dynamic obstacles analysis

We start by presenting an SSL approach [65] based on a binary per-pixel segmentation

of dynamic obstacles. Then, we present its extension [12] for dynamic obstacles instance

segmentation, such that the different road users can be separated.

SSL for dynamic obstacles per-pixel segmentation: a per-pixel binary segmenta-

tion of dynamic obstacles is proposed in [65], using temporal image sequences captured with a

monocular camera installed on a mobile urban vehicle. The approach firstly separates sparse

dynamic keypoints features from the static ones, by applying a RANSAC technique over

the optical flow between consecutive frames. Then, the automatically produced per-pixel

dynamic labels are transferred as input of a learning Gaussian Process (GP) model. Next,

the learned model extrapolates this knowledge to label as dynamic the pixels following

the same visual propoerties than the ones previously automatically identified as dynamic.

The whole process is achieved during an online procedure. The system is evaluated on

a hand-labeled dataset. This SSL strategy has the advantage to provide the background

subtraction from a moving camera, while extrapolating a dense per-pixel segmentation of

the dynamic obstacles from sparse detected keypoints only. However, this technique cannot
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provide per-obstacles analysis as it merely predicts a binary mask of pixels corresponding to

dynamic obstacles.

The technique in [12] extends the previous approach for SSL multi-instance segmentation

by using temporal image sequences captured with a monocular camera installed on a mobile

urban vehicle. The authors apply, over the mobile keypoints detected by [65], a clustering

method using the tracked keypoints information such as their spatial location and motion

pattern features. The multi-instance segmentation of dynamic obstacles is evaluated on a

hand-labeled video sequence of the KITTI dataset [59].

Overall, the authors state that some issues shared with analytical methods persist in

their approach. If the dynamic obstacles shadows are projected on the background, then the

latter are considered as dynamic as well. Moreover, the segmentation of distant dynamic

obstacles can be missed if the corresponding keypoints variations are considered as noise

due to the difficulty to detect the corresponding slight optical flow variations. Furthermore,

if a dynamic obstacle, large or close to the sensor, represents the majority of the image

keypoints, then this given obstacle is likely to be treated as the static background scene.

Nonetheless, it is important to bear in mind that these approaches present state-of-the-art

competitive performances for dynamic obstacles detection and segmentation without training

or pre-training on annotated data. In addition, the method in [12] provides interesting tools

to analyze on the move the dynamic obstacles, for example to separately track them and

learn to predict their intention.

The next focus is on SSL techniques designed for object tracking and temporal predictions

in urban road scene evolution, including dynamic obstacles.

2.4.1.3 Temporal tracking predictions

In order to deal with object appearence changes, a competitive SSL tracking technique

[83] proposes an online adaptive strategy combining tracking, learning, and object detector

real-time modules. However, in the context of autonomous driving, it may be often necessary

to simultaneously track, and even anticipate the trajectories of several surrounding road

users. Moreover, being able to consider the interactions between each road user requires

under particular circumstances some complex motion pattern analysis.

It turns out that some SSL approaches propose to deal with this challenge by focusing

the prediction effort on the entire scene in a unified way, rather the on every obstacles

independently. The deep tracking system [128]4 learns to predict the future state of a 2D

LIDAR occupancy grid. This is achieved by training an RNN on the latent space of a CNN

4Such an approach could be categorized as unsupervised. However, exploiting during the training an
additional future temporal information, not available during the prediction step, is a type of self-supervision.
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autoencoder (AE) which is applied on the input occupancy grid considered as an image.

Each cell of the grid is represented by a pixel, which can be color-coded as occluded, void, or

as an obstacle surface. Consequently, the model can be trained from end-to-end by learning

to predict the next occupancy grid states using the past and current grid states. Solely the

prediction output error of non occluded cells is backpropagated during the training. By

definition, this system can perform a self-evaluation by computing a per-pixel photometric

error between the predicted occupancy grid and the real future observed occupancy grid

at the same temporal instant. This technique has the advantage of being compatible with

complex motion patterns compared to Bayesian and Kalman tracking techniques. In addition,

the training process enables to predict the obstacles trajectories even during occlusions. The

major interest of deep tracking is that, as the model learns to predict a complete scene, it

naturally considers interactions between each dynamic obstacle present in the scene. In [40],

the deep tracking model is extended for a real mobile LIDAR sensor by adding a spatial

transformer module in order to take into consideration the displacements of the ego-vehicle

with respect to its environment during objects tracking.

In turn, these tracking approaches provide the tools to collect motion pattern information

of surronding dynamic obstacles such that this information may help to classify obstacles

depending on their dynamic properties [51].

2.4.2 Low-level sensor data analysis

We address now the sensor data analysis for low-level information estimation in the context

of autonomous driving. Compared to the previous methods, the attention has mainly focused

recently on SSL depth map estimation from monocular or stereo cameras.

2.4.2.1 SSL Depth map estimation

The self-supervised depth map estimation approach presented in [58] predicts a depth map

from a monocular camera without relying on annotated depth maps. The pose transformation

between both left and right cameras is known. The SSL strategy is as follows. First, the

left camera frame is provided as input to a CNN model trained from scratch to predict,

the corresponding depth map. Second, an inverse warping is performed by combining the

predicted left depth map with the right camera frame in order to output a synthesized frame

similar to the input left frame. In this way, an SSL photometric reconstruction error can

be computed in output of the decoder part. Next, this per-pixel error is directly used to

train the encoder weights using an SGD optimization technique. While not requiring pre-

training, nor annotated ground-truth depths, this approach presents prediction preformances

comparable with the state-of-the-art fully supervised monocular techniques. However, the
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ground truth pose transformation, related to the inter-view displacement between both

cameras, is required.

Following a similar idea, another technique is proposed in [177]. It is trained to reconstruct,

from a given frame, the second frame taken from a different point of view. It generates a

depth map using a stereo camera during the training step, but also during the prediction

step. This makes the approach more robust, such that it becomes competitive with standard

stereo matching techniques. Moreover, the constraint of preserving two cameras and the

pose transformation ground truth for predictions, enables in counterpart to perform online

learning. This may be interesting for dealing with novel ego-vehicle environments unseen

during the training.

In order to overcome the necessity of the pose transformation ground-truth, Zhou et al.

[181] propose to predict, from a temporal sequence of frames, the depth map with a learning

model, and the successive camera pose transformations with another learning model. Both

models are trained together from end-to-end for making the novel view synthesis of the next

frame. However, such a pose transformation estimation implies that the predicted depth

map is defined up to a scale factor.

A more modular technique [62] exploits either temporal monocular sequences of frames as

in [181], the paired frames of a stereo camera as in [177], or to jointly exploit both temporal

and stereo information. This framework also deals with the false depth estimation of moving

obstacles by ignoring, during training, the pixels not varying between two consecutive

temporal frames. It also deals with occluded pixels when the captured point of view changes

by using a minimum reprojection loss.

(a) Supervised learning (b) Analytical (c) SSL

Figure 2.3: Function diagrams showing the common connections depending on the strategy.
Functional blocks represent single monocular camera frame S1, additional sensor data (e.g.
temporal frame sequence, stereo-camera, or lidar data) Sn, a Learning model L, an Analytical
method A, and Evaluation method E.

To summarize, low-level analysis techniques for depth map estimation have demonstrated

that SSL strategies without using ground truth labels can bring state-of-the-art solutions

competitive with fully supervised techniques.
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SSL Methodologies S1 → L Sn → L S1 → A Sn → A Sn → E A→ L L→ E A→ E E → L datasets performances

(Off)road segmentation
[100], [35], [67], [180], [147]

√ √ √ √ √ √ √
- -

Dynamic obstacles KITTI [59]
analysis [65], [12]

√ √ √ √
Sidney [65] -

Temporal tracking Oxford Robotcar
predictions [128], [40]

√ √ √ √ √
dataset [113] -

Depth map estimation KITTI [54]*>[62]>[58]>

[58], [181], [177]1, [62]1
√ √1 √ √ √

Make3D [154] [181]>[45]*

Table 2.2: Functional block connections of presented SSL methodologies depending on
the application. Experimental datasets exploited and relative prediction performances are
reported whenever available. *refers to supervised methods.

Overall, the SSL techniques presented in this section support the following conclusion.

By exploiting the complementarity between analytical and learning methods, it is possible

to address several low-level and challenging autonomous driving perception tasks, without

necessarily requiring an annotated dataset. Presented methodologies are summarized in Fig.

2.3 along with Table 2.2.

The next section presents self-supervised learning limitations and future challenges for

autonomous driving perception applications.

2.5 Limitations and future challenges

In the context of autonomous driving, some limitations remain in the presented SSL

perception systems and open future research perspectives:

• Catastrophic forgetting: During the online learning procedure, the trainable weights of

the model may require unnecessary repetitive updates for detecting a given pattern

throughout the environment exploration. In fact, when a learning model is continuously

specialized for dealing with the latest data, the likelihood increases that the model

simultaneously forget the potentially relevant formerly learned patterns. It turns out

that it is possible to deal with this catastrophic forgetting issue when using neural

networks [90]. For future research directions, it may be interesting to combine such

incremental learning techniques with the presented SSL frameworks.

• Concerning the scene depth map estimation solely based on temporal analysis:

– the presence of dynamic obstacles in the scene during the learning stage can result

in poor estimates of the observed scene. As discussed in [65], further research on

SSL for potentially dynamic obstacles delineations on the sensor data may help

to deal with this issue.
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– the current state-of-the-art techniques cannot estimate the real depth map without

requiring a supervised scaling factor. The latter is generally obtained by estimating

the real metric values of the pose transformation between two consecutive camera

viewpoints. As proposed in the supervised detector Deep MANTA [19], it may

be interesting to recover automatically this scale factor by using some template

matching techniques on the observable objects of the scene.

• Concerning the online self-evaluation, some of the presented systems require a baseline

reference obtained analytically [67]. However, if we consider that the analytical

processes, considered as ground-truth labeling techniques, are likely to generate some

noisy labels, it may be interesting to investigate some future reasearch on how to

evaluate this prior noise from the learning model point of view [78], and how to deal

with it as proposed in chapter 5 for image classification using noisy labels [22].

• Concerning potentially moving obstacles analysis, the presented SSL state-of-the-art

strategies [65] and [12] propose to exclusively segment and detect the moving instances

of this class. Hence, static potentially moving obstacles, like a car waiting in front of a

street intersection, a pedestrian waiting to cross the street, or any of them standing

on the road in an accident backdrop, cannot be detected. What is more, to the best of

our knowledge, there is no current existing SSL framework enabling to automatically

allocate these moving obstacles into semantically interpretable different sub-categories

like pedestrian, motocyclist, car. Yet, in a real autonomous driving application context,

such static potentially moving obstacles can prospectively interact in the near future

with our ego-vehicle, and consequently influence the actions to be undertaken into the

given situation. Therefore, they necessarily deserve the same rights than the currently

moving ones to be considered by the ego-vehicle.

Next chapters propose weakly supervised learning solutions envisioned to be complemen-

tary with existing presented SSL frameworks to address the last point: Detect, segment,

and classify static potentially moving obstacles from a monocular camera by reducing as far

as possible the need of hand-labeled training data.
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Chapter 3

Positive unlabeled learning using
unlabeled data generation
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In this chapter, we propose a novel approach for image classification task from a positive

unlabeled dataset. It is based on generative adversarial networks (GANs) abilities. These

allow us to generate fake images whose distribution is close to the distribution of the negative

samples included in the unlabeled dataset available, while remaining different from the

distribution of positive samples that are not labeled. Then, we train a CNN classifier with

the positive samples and the fake generated samples, as with a classical Positive Negative

dataset. Although very different, this method is empirically competitive with state-of-the-art

PU learning on complex RGB images while keeping a steady behaviour.

This chapter is organized as follows. We start by introducing in Sec. 3.1 the motivations

of this work before presenting the proposed method in Sec. 3.2. Then, its corresponding

experimentations and results are presented in Sec. 3.3. At the end, a conclusion is drawn on

our approach.
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3.1 Motivation

Deep learning methods using convolutional kernel filters have demonstrated good prediction

performance in the field of computer vision and especially for the task of image classification

despite the high dimensionality of these data. To achieve such performance, large fully

labeled datasets are generally required. To reduce this need, some semi-supervised learning

techniques exist [137]. However, if an image object, not belonging to any labeled class of the

training dataset, must be treated, then it is difficult to predict the behaviour of the learning

model.

To mitigate this problem, an idea is to mainly focus on data of interest. This is the case

in One-Class Classification methods (OCC) [87], [131] where samples of the class of interest

only, namely the positive class, are used during training. However, in the autonomous vehicle

context, it is often easy to acquire unlabeled samples that may contain relevant information

especially about the counter-examples (i.e. examples of the negative class) of the class of

interest (i.e. examples of the positive class). In this way, we address a Positive Unlabeled

(PU) learning problem.

Another interest for PU learning is to combine it with Self-Supervised Learning (SSL).

SSL purpose is to learn to extrapolate automatically labeled data using another method. In

such a context, PU techniques may bring adaptability for applying SSL in every problems

where one is only able to automatically label examples of the class of interest, but not what is

not included in this positive class (i.e. counter-examples). Using PU learning for potentially

moving obstacles analysis through an SSL framework is a potential application explored in

Chapter 6. Beyond the scope of this thesis, other PU learning application examples are

presented in [153].

3.1.1 Related Work for Positive Unlabeled learning

According to [126], PU learning techniques become competitive when the number of unlabeled

examples in the training set considerably increases. This is an advantage when it is easy

to get unlabeled data. Moreover, some PU approaches have demonstrated the ability to

deal with very small-scale unlabeled samples proportions of the class to detect, as proposed

in [175], for anomaly detection by using multi-features on normal and unlabeled data. It

turns out that PU learning methods have been recently applied to image [43], [91], [74],

[127]. They can be classified in two subcategories from a functionnal point of view, and in

two others from a practical point of view.

From a functional point of view, it is possible to perform the binary classification by

directly training a classifier with the PU dataset without any pre-processing, as suggested

28



in uPU [43] and nnPU [91]. The second kind of approaches consists of first applying an

upstream process on the initial PU dataset, to exploit during the second stage a subset which

is considered by the classifier as a standard Positive Negative (PN) dataset (i.e. including

only labeled positive and negative examples). For instance, Rank Pruning method (RP)

[127] consists of consecutively carrying out several training samples of the classifier, by

removing the least relevant samples after each training stage before performing the final

training where it is considered that only correctly labeled images are preserved. However,

this technique has a high computational cost due to its multiple consecutive trainings.

From a practical point of view, uPU and nnPU methods require to know the fraction π

of positive samples present in the unlabeled set. This can be limiting for real applications.

In contrast, to our knowledge and according to [130], RP method is the best state-of-the-art

method when we do not have prior knowledge on this samples fraction π. For these reasons,

experimental results compare our approach with RP.

3.1.2 Generative Adversarial Networks

Generative adversarial networks (GANs) have drawn our attention because of their ability

to generate fake samples xF that have a distribution pF that tends towards the distribution

pdata of the real samples xR used during its training. The original GAN [64] contains a

generative model G and a discriminative model D. Both models have a multilayer perceptron

structure. A noise vector z with a distribution pz, composed of continuous random variables,

is placed at the input of G. D is trained to distinguish real samples from fake samples

generated by G, while the latter is trained to produce fake samples that seem as real as

possible for D. This adversarial training consists of using a minimax function value V (G,D):

min
G

max
D

V (D,G) = ExR∼pdata [logD(xR)]

+Ez∼pz [log(1−D(G(z)))].
(3.1)

When D can no longer distinguish real samples from fake samples, we have the following

property for its scalar predicted output yD:

pF (xF ) −−−−−→
yD→0.5

pdata(xR). (3.2)

Other variants of GAN have emerged such as the DCGAN [136], which adapts its structure

to image processing by incorporating convolutional layers. The Wasserstein GAN (WGAN)

[1], on one hand integrates the Earth−Mover distance (EM) into its cost function. On

the other hand, it limits the weights values of its model over a pre-defined interval, in order

to rectify the instability, the mode collapse problem of these early versions of GANs.
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Because of their ability to learn relevant semantic representations and their already

demonstrated interest for semi-supervised learning [152], their advantages have been exploited

for a PU learning application.

The GenPU [74] approach also appeared during the same period than the proposed PGAN

approach to answer the same PU problematic by the use of a GAN learning model. GenPU

trains simultaneously five neural networks using prior knowledge during the first-stage to

generate both positive and negative samples.

Here, our proposed approach that we called Positive-GAN (hereafter PGAN ) has been

tested on four different datasets and whose results are competitive with the state-of-the-art

and very promising in terms of prediction performance and stability for complex images

analysis. It outperforms RP on CIFAR-10 and enables to outperform as well a fully supervised

training on STL-10, when using a huge amount of unlabeled data.

In the context of image classification, we have drawn the comparative Table 3.1 highlight-

ing the proposed contribution advantages comparing to previous state-of-the-art techniques

mentioned.

Table 3.1: Table summarizing contributions of the Positive-GAN compared to the state-of-
the-art PU learning for image classification.

Methods PGAN RP GenPU nnPU uPU

No use of prior knowledge X X × × ×
Reproducibility X X × X X

Stability X ×
Appropriate for complex image analysis X ×

3.2 Proposed approach

In this section, we describe our PU learning framework as generically as possible and focus

the description on the training process. The Positive-GAN learning method (PGAN) consists

of substituting the absence of labeled negative samples xN with fake samples xF generated

by our GAN, whose distribution is as close as possible to that of xN , while being different

from that of positive samples xP . Fig. 3.1 illustrates the structure of the system.

During the Step 1, the GAN is trained with the unlabeled samples xU following a

distribution pU from the PU training dataset that contains an unknown fraction π ∈ (0, 1)

of positive samples xP following a distribution pP and a fraction 1− π of negative samples

xN following a distribution pN , such that:

pU = π · pP + (1− π) · pN . (3.3)
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Figure 3.1: Proposed two-stage PU system using unlabeled GAN generated samples: Positive-
GAN (PGAN) learning model.

The Positive Unlabeled framework includes three convolutional neural network models with

different roles:

• The discriminative model DU is trained to distinguish real unlabeled samples xU from

fake generated unlabeled samples xF following a distribution pF , with yDU ∈ (0, 1) its

scalar output prediction.

• The generative model G takes in input a noise vector z of continuous random variables

with a uniform distribution in this case and outputs, in the same format as xU , the

fake image samples xF = G(z). G is trained in an adversarial way with DU in order

to generate fake samples such that their distribution pF converges towards pU .

• In Step 2, once the GAN training is considered as completed, the convolutional classifier

DB, designed for binary image classification task, is trained to distinguish the real

positive samples xP from fake samples xF .

The next explanations aim at developping the intuition behind the proposed system. First,

we recall that the untagged dataset is composed of a fraction π of positive samples xP and

a fraction 1− π of negative samples xN . If the GAN is correctly trained on the unlabeled

samples xU following the distribution pU detailed in Eq. (3.3), then the convergence proposed

in [64] as follows

pF −−−−−→
yDU→

1
2

pU (3.4)

can be developed in our context as

pF −−−−−→
yDU→

1
2

πpP + (1− π)pN . (3.5)

As a consequence, we can make the hypothesis that

pF = πpFP + (1− π)pFN , (3.6)
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with respectively pFP and pFN the distributions of generated positive samples xFP and

negative samples xFN , such that 
pFP −−−−−→

yDU→
1
2

pP

pFN −−−−−→
yDU→

1
2

pN .
(3.7)

On another note, it is also known that a GAN is not perfect in its operation when it is

applied to high dimensional data, therefore{
pFP 6= pP
pFN 6= pN .

(3.8)

To go even further, we also suppose that if the processed images have a high complexity

of information, then the intersection between distributions pU and pF can remain zero in

practice, such that

supp(pU ) ∩ supp(pF ) = ∅, (3.9)

with supp the support function. This phenomenon is intuitively illustrated in Fig. 3.2 and

experimentally illustrated in Fig. 3.3.

Figure 3.2: One dimensional representation of the proposed PGAN method. From the
classifier point of view during the second stage, pP is separable from the generated distribution
pF composed of pFP and pFN . In the meantime, pN is semantically closer to generated pFN
samples than to pP real samples. Consequently, learning to separate pP from pF can be
relevant for learning to separate pP from pN .

We can observe that the distributions of the discriminator predictions for real and

generated samples are separated after the interruption of the adversarial training with G.

This is due to the fact that the interruption of G training enables the discriminator DU to go

ahead of G learning, and to determine more accurately the boundary between the real and

generated distribution as the latter is frozen, such that it no longer evolves. The discriminator

becomes then like a classifier which is trained on fixed distributions. This separation of pU

from pF is possible as well during the second stage of the proposed framework if the classifier
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Figure 3.3: Histograms of the discriminator predictions depending on the epoch iteration,
over a minibatch containing a first half of unlabeled samples xU and a second half of
generated samples xF , during the interruption of the adversarial training. The generator
G training is stopped at the fifteenth epoch while the DU discriminator training continues
during the next epochs. This experiment is realized on the dataset MNIST using the DCGAN
architecture. Orange surfaces respectively represent a histogram of DU predictions at a
given epoch iteration. Horizontal lines represent epoch iterations. The bottom horztontal
axis represents DU output predictions yDU between 0 and 1.

architecture of DB provides a capacity to encode complexity similar or greater than the DU

discriminator architecture enables during the first-stage adversarial training.

Thus, during the second stage starting when yDU → 1
2 , it is possible to discriminate

real positive samples xP from all generated unlabeled samples xF using an arbitrary cost

function l in the training loss function LDB of the classifier DB, defined as follows

LDB =ExP ,xF∼pP ,pF [l(xP , xF )]

=π · ExP ,xFP∼pP ,pFP [l(xP , xFP )] + (1− π) · ExP ,xFN∼pP ,pFN [l(xP , xFN )].
(3.10)

It turns out that the training cost function term ExP ,xFP∼pP ,pFP l(xP , xFP ) does not influence

the final predictions of the classifier DB on the test dataset as the latter only treats real test

samples. In other words, this enables to avoid the positive bias training issue previously

discussed in the PU learning state-of-the-art literature. Moreover, when pFN −−−−−→
yDU→

1
2

pN , and

DB has been correctly trained, pFN can be considered as pN , such that the difference between

the distributions pP and pN can be approximated using the term ExP ,xFN∼pP ,pFN [l(xP , xFN )]

which is introduced in Eq. (3.10). We are thus able to calculate the distance that interests

us. By transposing this reasoning in the second stage of the proposed PU framework, this

amounts to asserting the following equality at the output loss function LDB of the classifier

DB when yDU → 1
2 :

LDB = π · ExP ,xFP∼pP ,pFP [l(xP , xFP )] + (1− π) · ExP ,xFN∼pP ,pFN [l(xP , xFN )]

= π · ExP ,xFP∼pP ,pFP [l(xP , xFP )] + (1− π) · ExP ,xN∼pP ,pN [l(xP , xN )].
(3.11)
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With l the binary cross-entropy loss function, we obtain

LDB = ExP∼pP [logDB(xP )] + Ez∼pz(z)[log(1−DB(G(z)))] (3.12)

that we consider as

LDB =ExP∼pP [logDB(xP )] + π · ExFP∼pFP [log(1−DB(xFP ))]

+ (1− π) · ExN∼pN [log(1−DB(xN ))].
(3.13)

Thus, from the assumptions made above, we can assume that the PGAN method is getting

closer to a Positive Negative training while moving away from a Positive Unlabeled training

despite the fact that the training dataset contains only labeled positive samples and unlabeled

samples. In addition, the estimation of l(xP , xFP ) has the potential to foster the learning of

pP boundaries. However, two risks can occur with this method:

• If the untagged samples xU contain mostly positive samples xP , then it is possible

that G no longer generates enough fake samples similar to the samples xN .

• If G generates false samples with a distribution equal to that of the real samples,

unlike the inequalities presented in Eq. (3.8), then PGAN would become equivalent in

terms of performance to a classical Positive Unlabeled training.

But, when the dimensionality of images to be processed is large, the second risk disappears

as empirically shown in Sec. 3.3. Moreover, it can be reduced using a DB classifier structure

for which prediction performances are better than those of the DU discriminator. What

is more, we recall that the discriminator is adversarially trained to separate unlabeled

samples including positive and negative samples from generated samples. For its part, the

classifier DB is trained to distinguish labeled samples representing only the positive class

from generated samples. Given that the unlabeled set contains samples from the positive

and negative classes, the classification task that the classifier DB has to perform can be

considered as a subset of the task previously performed by the discriminator DU . This

suggests that the task of the classifier DB requires a smaller capacity for encoding the

information complexity than the task of the discriminator DU . Consequently, when the

discriminator is no longer suitable for separating real from generated unlabeled samples (i.e.

when its classification error has sufficiently converged towards 0.5), the classifier DB is still

able to perform its task correctly.

To sum up, the ideal operation is obtained when pF has sufficiently converged towards

pU , while remaining different. This is possible in practice as empirically demonstrated in

Sec. 3.3. The PGAN thus consists of simultaneously exploiting strengths and weaknesses

of the generative model. Nonetheless, finding a solution dealing simultaneously with the
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Algorithm 1 Training of the Positive-GAN

Initialize epochsGAN = 10 (10 for MNIST, 20 for Fashion-MNIST and 100 for CIFAR-10).
Initialize epochsClassifier = 20.
GAN training (Step 1):
for epoch = 0 to epochsGAN do

for minibatch = 0 to int(nbrImagesDatasetUm ) do

Minibatch sample of m unlabeled images {x(1)U , ..., x
(m)
U } from the distribution pU .

Minibatch sample of m noise vectors {z(1), ..., z(m)} from the distribution pz(z).
Update of the trainable weights θDU of DU by performing a stochastic gradient
descent:

∇θDU
1

m

m∑
i=1

log[DU (x
(i)
U )] + log[1−DU (G(z(i)))]

Update of the trainable weights θG of G by performing a stochastic gradient descent:

∇θG
1

m

m∑
i=1

log[1−DU (G(z(i)))]

end for
end for
Training of the classifier DB (Step 2):
for epoch = 0 to epochsClassifier do

for minibatch = 0 to int(nbrImagesSetPmP
) do

Minibatch sample of mP positive images {x(1)P , ..., x
(mP )
P } from the distribution pP .

Minibatch sample of mz = mP noise vectors {z(1), ..., z(mz)} from the distribution
pz(z).
Update of the trainable weights θDB of DB by performing a stochastic gradient
descent computed using the cost function l:

∇θDB
1

mP +mz

[ mP∑
i=1

l(DB(x
(i)
P ), y = [0; 1]) +

mZ∑
i=1

l(DB(G(z(i))), y = [1; 0])
]

end for
end for
The stochastic gradient descent (SGD) method used is Adam. The cost function l can be
the binary-cross entropy or the mean-squared error (MSE).

above mentioned risks is an interesting question for improving the proposed approach

trustworthiness. Thus, this PhD work leads to propose in chapter 4 a novel GAN-based PU

approach addressing this second risk.

From a practical point of view, the implementation of the proposed framework is detailed

with Algorithm 1.

3.3 Experiments

3.3.1 Settings

Experiments have been realized on datasets MNIST [96], Fashion-MNIST [166], CIFAR-10

[92], and STL-10 [31]. We have compared our approach to RP [127], which is to the best
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of our knowledge the best asymetric noisy labeled learning and PU learning method not

using ground truth prior knowledge concerning the fraction π. Author’s implementation is

available 1. We also report the performance of the classifier trained on the entire initial fully

labeled Positive Negative training dataset, naturally referred to as PN. We also compare our

method to a training referred to as PU, which is equivalent to PN but with a substitution of

the labeled negative samples by unlabeled samples.

For comparative experiments on MNIST, Fashion-MNIST and CIFAR-10, PN, PU, RP

and proposed PGAN methods are tested with exactly the same convolutional neural network

(CNN) classifier in order to stay impartial. In order to remain generic, the classifier has

the same structure as the model2 proposed by tensorflow that is devoted to classify tiny

images. It contains two successive convolutional layers, two corresponding maxpooling steps,

and then two consecutive fully connected layers. The activation function after each layer is

ReLU except the last one where softmax is applied. We only changed its last top layer from

10 to 2 neurons to adapt it for binary classification. The classifier is trained on 20 epochs

iterations. For the CIFAR-10 dataset with images of size 32× 32× 3, the input and output

tensors of the two convolutional layers are adapted and the depth of the first convolutional

kernel filters is 3 to correspond to the 3 channels of the RGB images. But the number of

kernel filters and their height and width remain unchanged.

Thanks to the WGAN [1] abilities, we combine its training method with the DCGAN

architecture for these experiments. Note that with the distance Earth Mover, pF converges

towards pU when yDU converges towards 0. In these experiments, the input noise vector

z is a continuous random variable with uniform distribution. The training duration for

the generative model depends on the dataset complexity: 10 epochs for MNIST, 20 for

Fashion-MNIST, and 100 for CIFAR-10. For the latter, we do the same modifications in the

structures of DU and G as explained before for the classifier.

Regarding the PU training dataset, ρ corresponds to the fraction of positive samples

from the total of positive samples in the initial training dataset which contains nP positive

samples. Collected ρ · nP samples are then introduced into the Utrain unlabeled dataset,

which initially contains only negative samples whose total number is nN . π is the fraction

of positive samples in the unlabeled training dataset Utrain. To achieve this, we remove

some negative samples from Utrain, such that Utrain contains both negative and positive

samples according to the ρ and π parameters. We establish that with π ∈ [ 1
nN
ρ·nP

+1
, 1) and

ρ ∈ (0, 1), we can obtain consecutively, with Ptrain the set of positive labeled samples, the

1https : //github.com/cgnorthcutt/rankpruning
2https : //github.com/tensorflow/tensorflow/blob/master/

tensorflow/examples/tutorials/mnist/mnist softmax.py
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two following training sets:

Ptrain = {(1− ρ)nP P ; 0 N},

Utrain = {ρ · nP P ;
1− π
π

ρ · nP N},
(3.14)

where notations a P and b N respectively refer to a positive and b negative items (i.e. images

or examples).

To find equations making Utrain depending on parameters ρ and π, and the interval of

possible values for the latter, we use nU which represents the total number of unlabeled

samples contained in the set Utrain such that

Utrain = {π · nU P ; (1− π)nU N}

= {ρ · nP P ; (1− π)
ρ · nP
π

N},
(3.15)

as one imposes ρ · nP = π · nU . However, in order to satisfy this constraint, the term

(1− π)ρ·nPπ must be less than or equal to nN . This implies that π ∈ [ 1
nN
ρ·nP

+1
, 1). The results

presented below are all performed with ρ = 0.5 and for several values of π.

Concerning our comparative experiments with RP for the One-versus-Rest task, and as

previously proposed in RP article [127], we use the F1-Score metric for its relevance in such

information retrieval and binary classification tasks. As highlighted in [103], the F1-score

measures the positive examples retrieval. More specifically, the F1-Score is the harmonic

mean of the precision and recall such that we have:

F1− Score = 2 · precision · recall
precision+ recall

, (3.16)

with precision = TP
TP+FP and recall = TP

TP+FN , with TP , FP and FN the true positive

rate, the false positive rate and the false negative rate, respectively. Concerning the other

experiments, we use the Accuracy metric for prediction performance evaluation of the

proposed approach. In contrast to the F1-Score metric, the Accuracy metric exploits in

addition the true negative rate TN in its formula defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
. (3.17)

To compute the F1-Score and the Accuracy, the ArgMax function is applied to the two

output neurons of the classifier. Thus, if the index of the first neuron is returned by ArgMax,

then the current sample is considered as negative. Otherwise, the sample is considered

as positive. In addition, the One-versus-Rest test datasets have nine times more negative

examples than positive ones. Thus, once every test prediction is performed, we upsample

the proportion of test ground truth positive examples up to the size of test ground truth

counter-examples set, in order to measure balanced scores.
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3.3.2 Results

In Fig. 3.4, we present some of the fake images generated from MNIST, Fashion-MNIST

and CIFAR-10 respectively. We can notice that images generated by G seem visually real,

which indicates from a qualitative point of view the effectiveness of the generative model. In

order to get such a rendering, more complex and larger images imply that the generative

model requires an increased number of training epochs.

(a) (b) (c)

Figure 3.4: Images generated by G trained with ρ = 0.5 and π = 0.5 after (a) 10 epoch
iterations on MNIST, (b) 20 epoch iterations on Fashion-MNIST, and (c) 100 epoch iterations
on CIFAR-10. Respective positive classes are ”5”, ”trouser” and ”automobile”.

Table 3.2 and Fig. 3.5 show F1-Score comparative results for every tested method

previously mentioned in Sec. 3.3.1, depending on π. It can be observed that the PN method

is a good reference for MNIST and Fashion-MNIST datasets. We find that the efficiency

of the PGAN learning method is equivalent to that of the RP method up to π = 0.5 on

MNIST and π = 0.3 on Fashion-MNIST. Its efficiency then declines slightly faster than for

RP, while keeping a correct F1-Score. On CIFAR-10 from end to end, the average F1-Score

is better for PGAN than for RP. Note that the PGAN method also presents better results

than the reference PN up to π = 0.8, which is quite surprising. This is probably due to

the fact that the generated samples represent a larger field of negative sample distributions

than the real negative samples present in the initial Positive Negative dataset. Moreover,

the PGAN F1-Score is consistently higher than the PU method on the three datasets, even

with only 10% of positive samples among unlabeled samples (i.e. with π = 0.1).

Figure 3.6 presents the study of the steadiness of PGAN. Figures 3.6(a) and 3.6(b) show

that PGAN has a comparatively steadier behavior such that we can predict more easily the

F1-Score evolution as a function of π for each dataset class. Figure 3.6(e) shows that the

classifier stabilizes and converges after about 10 training epochs. To generate histograms
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Table 3.2: F1-Score results comparisons on MNIST, Fashion-MNIST and CIFAR-10 after 20
epochs of the classifier.

ref ρ = 0.5, π = 0.1 ρ = 0.5, π = 0.3 ρ = 0.5, π = 0.5 ρ = 0.5, π = 0.7

Dataset PN PU PGAN RP PU PGAN RP PU PGAN RP PU PGAN RP

0 0.997 0.633 0.974 0.992 0.445 0.973 0.955 0.320 0.973 0.991 0.689 0.902 0.880
1 0.998 0.774 0.971 0.995 0.642 0.979 0.996 0.851 0.958 0.994 0.884 0.863 0.993
2 0.990 0.395 0.972 0.975 0.658 0.959 0.923 0.795 0.947 0.936 0.692 0.914 0.987
3 0.996 0.716 0.963 0.991 0.620 0.953 0.991 0.766 0.934 0.882 0.729 0.885 0.829
4 0.997 0.512 0.964 0.972 0.802 0.952 0.995 0.717 0.945 0.933 0.551 0.914 0.977
5 0.993 0.701 0.974 0.985 0.725 0.950 0.943 0.799 0.949 0.910 0.626 0.873 0.973
6 0.992 0.708 0.962 0.928 0.758 0.959 0.992 0.699 0.971 0.993 0.613 0.944 0.990
7 0.995 0.603 0.962 0.947 0.433 0.960 0.991 0.620 0.926 0.988 0.783 0.737 0.979
8 0.995 0.741 0.949 0.929 0.506 0.941 0.982 0.339 0.922 0.941 0.651 0.849 0.818
9 0.981 0.785 0.959 0.954 0.442 0.956 0.979 0.561 0.939 0.941 0.750 0.865 0.904

AV GMNIST 0.993 0.657 0.965 0.967 0.603 0.958 0.975 0.647 0.946 0.951 0.697 0.875 0.933

T-shirt/top 0.908 0.724 0.926 0.899 0.206 0.91 0.937 0.821 0.873 0.947 0.695 0.802 0.91
Trouser 0.993 0.815 0.983 0.993 0.247 0.969 0.989 0.938 0.953 0.99 0.681 0.911 0.984
Pullover 0.932 0.635 0.9 0.887 0.29 0.885 0.925 0.695 0.865 0.917 0.657 0.842 0.888

Dress 0.952 0.601 0.941 0.948 0.312 0.925 0.955 0.852 0.893 0.914 0.631 0.853 0.882
Coat 0.882 0.614 0.909 0.847 0.252 0.889 0.942 0.788 0.845 0.92 0.686 0.83 0.918

Sandal 0.995 0.793 0.945 0.977 0.444 0.964 0.98 0.819 0.923 0.985 0.67 0.919 0.981
Shirt 0.818 0.446 0.852 0.758 0.398 0.846 0.847 0.797 0.819 0.873 0.554 0.792 0.853

Sneaker 0.983 0.73 0.973 0.973 0.271 0.952 0.979 0.865 0.943 0.967 0.64 0.922 0.977
Bag 0.989 0.772 0.978 0.976 0.536 0.947 0.99 0.837 0.96 0.965 0.685 0.757 0.977

Ankle boot 0.985 0.704 0.964 0.979 0.354 0.973 0.986 0.824 0.963 0.976 0.609 0.942 0.976

AV GF-MNIST 0.944 0.683 0.937 0.924 0.331 0.926 0.953 0.824 0.904 0.945 0.651 0.857 0.935

Plane 0.727 0.341 0.818 0.669 0.557 0.784 0.795 0.295 0.758 0.743 0.621 0.731 0.718
Auto 0.78 0.506 0.801 0.695 0.492 0.737 0.829 0.414 0.789 0.798 0.521 0.734 0.783
Bird 0.447 0.175 0.688 0.56 0.439 0.744 0.68 0.184 0.694 0.644 0.359 0.688 0.542
Cat 0.5 0.125 0.658 0.384 0.272 0.722 0.651 0.249 0.718 0.67 0.446 0.69 0.698
Deer 0.698 0.272 0.68 0.605 0.232 0.708 0.708 0.3 0.708 0.64 0.43 0.633 0.602
Dog 0.567 0.2 0.632 0.539 0.37 0.756 0.648 0.258 0.746 0.733 0.514 0.678 0.712
Frog 0.691 0.35 0.837 0.666 0.418 0.793 0.794 0.256 0.788 0.769 0.693 0.75 0.749
Horse 0.786 0.373 0.693 0.653 0.515 0.757 0.723 0.26 0.751 0.759 0.611 0.675 0.711
Ship 0.832 0.313 0.821 0.764 0.565 0.809 0.831 0.324 0.775 0.785 0.623 0.716 0.755

Truck 0.771 0.462 0.822 0.685 0.367 0.786 0.637 0.272 0.754 0.617 0.539 0.724 0.564

AV GCIFAR-10 0.680 0.312 0.745 0.622 0.423 0.760 0.730 0.281 0.748 0.716 0.536 0.702 0.684

in Figures 3.6(c) and 3.6(d), we have retrieved the scalar of the second output neuron of

the classifier which corresponds to the predicted probability for an input image belonging

to the positive class. It can be seen that the prediction distribution of the negative and

positive test samples processed by the PGAN is of the Gaussian type, which is an interesting

characteristic for real applications. Compared to a biased PU training (see Fig. 3.6(c)),

PGAN plays the role of a regularizer.

Moreover, Table 3.3 presents the prediction performance statibility for RP and PGAN,

depending on π, for the three datasets. To this end, we have respectively smoothed the

curves s(π) of each class representing the F1-Score evolution as a function of π. Smoothed

curves s̃(π) have been obtained using a mean filter with a kernel size of 3. Then, the mean
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Figure 3.5: Average F1-Scores after 20 training epoch iterations of the classifier depending
on the rate π that is varied between 0 and 1 with a step of 0.1, for PU (red), RP (blue) and
PGAN (orange) on (a) MNIST, (b) Fashion-MNIST and (c) CIFAR-10.

squared error MSE for every class is estimated between s̃(π) and s(π), such that

MSE =
1

k

k∑
i=1

(s̃(i) − s(i))2, (3.18)

with k the number of samples of s̃(π). Then, for every dataset, we can compute the mean

errors EPGAN and ERP over their 10 One-vs-Rest tasks respectively, as well as the ratio

ERP : EPGAN . In this way we can observe that the proposed approach has a systematically

steadier behaviour, by a factor four on MNIST and CIFAR-10.

In view of the interesting results obtained on CIFAR-10, we have also compared the

PGAN with a PN training on the STL-10 dataset [31]. The main specificity of this dataset is

that it provides only 500 labeled images for each class and 1 000 000 unlabeled images. This

enables to test our method under conditions which are similar to a real application case,
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Table 3.3: F1-Score predictions stability of PGAN and RP on MNIST, Fashion-MNIST and
CIFAR-10 datasets.

Datasets EPGAN (×10−3) ERP (×10−3) ERP
EPGAN

MNIST 0.39 1.72 4.410
Fashion-MNIST 0.16 0.25 1.563

CIFAR-10 0.44 1.82 4.136

and to highlight its relevance from performance and stability perspectives. Fig. 3.7 presents

the training evolution of the PGAN classifier Accuracy depending on the first-stage. For

this purpose, we have trained entirely the classifier DB during 35 epochs from stratch for

every GAN first stage epoch. Concerning this first stage, the WGAN-GP [66]3 framework

is used. Concerning the second step, the classifier DB maintains the same structure as

the discriminator DU used during the first stage. This empirically demonstrates that the

proposed approach is as well valuable when the classifier DB has a capacity to encode

complexity equivalent to the discriminator DU . In Table 3.4, we observe that the proposed

approach significantly outperforms a PN training using the same classifier architecture. We

can also observe that there is no first-stage overfitting issue occuring. Based on generated

images presented in Fig. 3.8, it is also interesting to observe that it is not necessary to

obtain generated images which are visually acceptable from a qualitative human point of

view for the proper operation and convergence of the proposed system.

Table 3.4: Accuracy test of the classifier DB after 35 epochs, comparing a PN training which
only uses 500 positive and 4500 negative labeled images, versus a PGAN using 500 labeled
positive images and one million of unlabeled images.

STL-10 (One vs. Rest) PGAN PN

training settings {500 P ; 1 000 000 U} {500 P ; 4 500 N}

airplane 0.805 0.674
bird 0.64 0.574
car 0.794 0.645
cat 0.614 0.521
deer 0.65 0.561
dog 0.605 0.529

horse 0.721 0.632
monkey 0.674 0.539

ship 0.787 0.633
truck 0.724 0.594

average 0.701 0.59

3Official implementation available at: https : //github.com/igul222/improved wgan training.
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3.4 Conclusion

In this chapter, we demonstrated that the proposed PGAN PU learning approach provides

state-of-the-art prediction performances and has a steady behavior on complex image datasets

up to an acceptable fraction π of positive samples in the unlabeled training dataset. Moreover,

the results obtained on natural image datasets as CIFAR-10 and STL-10 are consistent with

the proposed framework reasoning and thus enable to consider PU applications on high

dimensional data without using prior knowledge concerning the unlabeled set.

However, an issue of the proposed framework is the first-stage overfitting which can

appear on simple datasets as MNIST. As the semantic complexity of images to be processed

is a notion very difficult to empirically check upstream, we propose in the next chapter a

second GAN-based PU approach which overcomes the PGAN first-stage overfitting, such

that its usefulness does not depend on the data complexity to deal with.
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Figure 3.6: Stability analysis on MNIST. F1-Score evolution for each class as a function of
π for (a) PGAN, and (b) RP [127]. (c) and (d) are the histogram of the output predictions
of the classifier trained in PU and PGAN modes at its 20th epoch iteration for positive
(green) and negative (blue) test samples. The positive class is ”5” and π = 0.5. (e) shows
the Accuracy evolution during the PGAN training for the same One-vs-Rest task.
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Figure 3.7: Evolution of the average of the test Accuracy for every class, depending on
training iterations of the WGAN-GP on unlabeled images of the dataset STL-10.

Figure 3.8: Generated images (96*96*3) with the WGAN-GP after 25 epochs on the 1
000 000 unlabeled images on the dataset STL-10. Although visually unacceptable for a
human analysis, these images are relevant from the DB classifier point of view, as shown
quantitatively in Table 3.4.
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Chapter 4

Counter-examples generation from
a Positive Unlabeled dataset
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The previously presented GAN-based two-stage approach can deal with a Positive

Unlabeled (PU) dataset without a cumbersome architecture or requiring prior knowledge.

However, this strategy may suffer from a first-stage overfitting depending on the learning

abilities of the models to encode the information complexity of the image data to process.

To overcome this first-stage overfitting issue, while also demonstrating prior knowledge

insensitivity, we propose in this chapter to incorporate a biased PU risk within the standard

GAN discriminator loss function. In this manner, the discriminator is constrained to request

the generator to converge towards the unlabeled samples distribution while diverging from

the positive samples distribution. This enables the proposed model, referred to as D-GAN,

to exclusively learn the counter-examples distribution without prior knowledge. Experiments

demonstrate that our approach outperforms state-of-the-art PU methods.
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4.1 Introduction

Nowadays, the number of available labeled datasets dedicated to perception applications

such as image classification [150] and semantic scene understanding [32] has considerably

augmented. However, when learning methods trained on these datasets are applied on real

data, their performances are likely to deteriorate. Consequently, it is necessary to use a

dataset specialized for the given target application. It turns out that it can be easy to

get unlabeled data in some applications domains such as autonomous driving. Positive

Unlabeled (PU) learning, also called partially supervised classification [103], enables to use

these unlabeled data in combination with labeled samples of our class of interest: the positive

class. The interest is that unlabeled data can contain relevant counter-examples, also called

negative examples1. The difficulty is that unlabeled data can also contain a fraction πp

of unlabeled positive examples. [153] enumerates several learning problems which can be

addressed in this way such as the challenging information retrieval task.

Several PU learning methods exist. While some of them are adapted to time series

[38] or text classification, for instance by using non-negative matrix factorization [99], we

focus in this chapter on those that are applied to image classification using deep neural

networks. They are generally classified into two categories. The former is censoring PU

learning, formalized in [47] and recently improved in [127]. The latter is case-control PU

learning, introduced in [164], formalized in [44], and then consecutively improved in [43] and

[91] to reduce the training computational cost and alleviate the overfitting issue. In the

context of the proposed approach, we focus our attention in this chapter on the recently

presented GAN-based PU approaches. Thus, we classify PU learning approaches into the

two following groups suggested in [91]: one-stage and two-stage PU methods.

One-stage PU methods, such as the unbiased PU method (uPU) [43] and the non-negative

PU method (nnPU) [91], consist of training a classifier using an unbiased risk directly on the

PU dataset. These methods have the advantage to need only one training of the classifier.

However, they require dataset prior knowledge and consequently uPU and nnPU need to

be combined with an approach estimating the prior knowledge [29]. Consequently, they

are critically sensitive to slight prior variations per minibatch, as shown experimentally in

Section 4.4.3.1.

Two-stage PU methods prepare during the first stage a Positive Negative (PN) dataset.

Some noisy labeled learning strategies consist of detecting automatically the most plausible

mislabeled examples [46] through an iterative process in order to accelerate the manual

PN labeling. Some other methods can prepare automatically a PN dataset without human

1We use the term example to design a single instance (i.e. item, observation) included in a sample set of
data following a given distribution.
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supervision from end-to-end. For instance, Rank Pruning method (RP) [127] firstly estimates

the prior such that it can select only the examples considered as the most confident, in

order to substitute the unlabeled samples for the second-stage training of the classifier. RP

achieves two-stage state-of-the-art performances without prior knowledge. However, it can

only exploit a sub part of the training PU dataset. This can curb its prediction performances

on complex datasets like CIFAR-10. Recently, a new subcategory of two-stage PU methods

appeared: GAN-based PU methods. They address the PU learning challenge by producing,

thanks to an adversarial training [64], generated samples from a PU dataset during the first

step. Then, they are used to train a standard Positive Negative (PN) classifier during the

second step.

We discuss in more details the previously introduced PU methods (see chapter 3) uPU

[43], nnPU [91], RP [127], and GenPU [74], and we also recall PGAN [26] proposed approach

(see chapter 3), in the related work Section 4.2.

We can nonetheless already make the following remarks, motivating the design of the

proposed approach. Unbiased methods [91], [43], and GenPU [74] are by definition sensitive

to the prior knowledge in order to deal with a PU dataset. Conversely, whereas the two-stage

censoring methods, such as RP [127], do not require prior information, they suffer from

generalization and unstability problems due to their selective process. We recall that PGAN

method, previously proposed in chapter 3, is the first one that does not need prior knowledge

nor a selective process, thus preserving a low sensitivity to prior knowledge combined with

a training stability. However, as mentioned in chapter 3, PGAN inherently suffers from

first-stage overfitting. Based on these considerations, we propose in this chapter a novel

GAN-based model, referred to as Divergent-GAN (D-GAN), to overcome the latter issue

while preserving the PGAN advantages. To the best of our knowledge, we are the first

to propose a GAN-based method to capture exclusively the unlabeled negative samples

distribution from a PU dataset without prior knowledge. More specifically, our contributions

are the following:

• We propose to incorporate a biased PU learning loss function inside the original GAN

[64] discriminator loss function. The intuition behind it is to have the generative model

solving the PU learning problem formulated in the discriminator loss function. In this

way, the generator learns the distribution of the examples which are both unlabeled

and not positive, namely the negative ones included in the unlabeled dataset;

• In addition, we study normalization techniques compatibility with the proposed frame-

work. A learning model which manipulates different minibatches distributions should
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not use batch normalization techniques [77]. Alternative normalization techniques are

discussed and experimented.

Consequently, the proposed D-GAN framework compares favorably with state-of-the-art PU

learning performances on simple MNIST [96] and complex CIFAR-10 [92] image datasets.

The proposed framework code is available.

The remaining of this chapter is structured as follow. Section 4.2 presents previous PU

learning approaches. Section 5.2 describes the proposed method. Section 5.3 presents the

corresponding experimental results. Finally, in Section 4.5, we draw conclusions and discuss

perspectives.

4.2 Related work

The PU learning problem consists of trying to distinguish positive samples from negative

ones by using a PU dataset. Let X ∈ Rm be the input random variable and Y ∈ {0, 1}
its associated label. X can be a positive XP , negative XN or unlabeled XU sample

which respectively follow the distributions pP = p(X|Y = 0), pN = p(X|Y = 1) and

pU = (1 − πP ) · pN + πP · pP . The unknown prior πP ∈ (0, 1) represents the fraction of

unlabeled positive examples included in the unlabeled dataset.

Previous works on PU learning [39] consider the entire distribution of the unlabeled

examples as negative. In this way, all the negative examples, present in the unlabeled dataset,

are always considered as negative. However, concerning the positive examples, it implies

associating two contradictory labels to the distribution of positive examples in unknown

proportions depending on the πP value. Thus, training directly a classifier with positive

and unlabeled data provokes a bias in the training estimator, which is not present during

a standard positive negative training. This bias can limit prediction performances of the

learning model.

Several strategies have been proposed to solve this drawback such as unbiased methods

[44], [43], [91], pruning method [127], and more recently GAN based methods [74], [26].

However, those strategies still present some issues including prior knowledge sensitivity,

training unsteadiness, or overfitting problems.

We present in this section different state-of-the-art methods and their respective draw-

backs that we aim at overcoming with the proposed GAN-based PU framework.

4.2.1 Unbiased methods

In order to palliate a biased training, the authors of unbiased techniques [44], [43], [91]

suggest to avoid the estimator bias by adding some terms in the training loss function.
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Then, the classifier behaves as if it is trained with a positive negative dataset. The authors

firstly used a non convex loss function [44], which then has been reformulated as convex loss

functions [43] in order to reduce the computational burden. Subsequently, it was proposed

to overcome the training overfitting by adding a binary condition (an ”if” condition) in the

training loss function [91].

These methods exploit the prior πP in the empirical training loss function. However,

we observe that the empirical prior value π̂P per batch of small size (minibatch) is slightly

different to πP , as its standard deviation depends on the minibatch size, such that:

π̂P = πP + α, (4.1)

with α ∼ pα(m), where pα is the probability distribution of the noise α depending on the

minibatch size m, as shown in Figure 4.1. We observe that the worst case scenario is when

πP is close to the value 0.5, combined with a small batch size. The cases where πP is higher

than 0.5 behave symmetrically to the cases where πP is smaller than 0.5.
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Figure 4.1: Standard deviation per minibatch of the global prior πP in function of the
minibatch size, for a given uniformly mixed dataset composed by 60000 examples.

In our case, we want to train a deep learning model using the stochastic gradient descent

(SGD) optimization technique, which is known to be relevant with batches of small size. So

the theoretical formulation of unbiased techniques cannot be maintained using SGD with

small batch sizes. We will show empirically that in practice, unbiased techniques are highly

sensitive to the minibatch size in terms of prediction performances, as they are theoretically

sensitive to the prior πP .

It turns out that it is possible to avoid this limitation with two-stage approaches.
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4.2.2 Two-stage approaches

Two-stage approaches mainly consist of preparing during the first-stage a positive negative

(PN) training dataset which then will be used to directly train a standard classifier during

the second stage. One interest of those approaches is that they are not sensitive to the prior

knowledge variation. Consequently, they are compatible with the use of minibatches, and

thus are suitable when applying SGD optimization.

4.2.2.1 Pruning approach

Rank Pruning (RP) method [127] is a two-stage technique. It first estimates the prior πP

and exploits it to prune the dataset in order to capture only a subset corresponding to the

most confident positive and negative samples. Then, during the second stage it considers

this subset as a cleanly labeled positive negative dataset to train a classifier. While not

requiring prior knowledge in input, RP achieved state-of-the-art results for information

retrieval in the One-vs-Rest task on simple datasets such as MNIST. However, by using a

pruning strategy, RP can miss some relevant training examples not included in the selected

subset of training. As a consequence, this can limit its generalization, as will be shown

experimentally in Table 4.4, where RP is shown to be relatively unstable when compared to

GAN-based approaches in terms of prediction performances. Using only a training subset

is also a weakness on complex datasets like CIFAR-10, where a large training dataset is

preferable to obtain better results.

Some approaches have been more recently proposed by exploiting generative adversarial

networks (GANs) benefits, maintaining or increasing the prediction scores over the same PU

learning tasks.

4.2.2.2 GAN-based approaches

GAN-based PU approaches represent a recent subcategory of two-stage PU methods, as

proposed in GenPU [74] and PGAN [26] chapter 3. The interest of using GANs is twofold.

First, GANs enable relevant data augmentation, as will be experimentally demonstrated on

Table 4.4. Second, it allows for the use of high-level feature metrics to evaluate generated

samples quality, thanks to the adversarial training. This can ease to capture a target

distribution in a meaningful manner.

In this PU learning context, the generated samples replace the unlabeled ones by learning

on the latter as PGAN [26], or on both unlabeled and positive labeled ones as GenPU [74].

Both methods exploit GANs benefits, but their functioning is different and they are not

suitable under the same datasets conditions.
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GenPU [74] is based on the original GAN convergence [64], such that: πP · pGP + (1−
πP ) · pGN −→ pU , with pGP the distribution of positive samples generated by the generator

GP , pGN the distribution of the negative samples generated by the generator GN , and pU

the distribution of real unlabeled samples. In practice, GenPU is an interesting PU method

on simple datasets with few positive labeled samples, and it generates relevant counter-

examples. However, training adversarially five learning models instead of two as in the original

GAN framework [64] to address standard PU learning challenge2 is more computational

demanding and not necessary to generate relevant counter-examples. Moreover, using five

models amplifies the mode collapse issue, and the corresponding training optimization

functions need three additional hyper-parameters combined with prior knowledge. This

is impractical in the context of real applications where hyper-parameters tuning may be

required on limited computational resources to adapt the model for a given application

dataset.

Concerning the previously proposed approach PGAN [26] (see chapter 3), we recall

that it is trained to converge towards the unlabeled dataset distribution during the first

step. During the second step, it exploits GANs imperfections for capturing the unlabeled

distribution, such that the generated distribution at the adversarial equilibrium is still

separable from the unlabeled samples distribution by a classifier. It presents a relatively

steadier behaviour and better prediction performances than the two-stage baseline RP

method on the complex RGB image dataset CIFAR-10 without prior knowledge. However,

it is less suitable for relatively simpler datasets like MNIST. The problem is that the

generated samples are all considered as negative samples by the classifier. But this is possible

only if the generated samples distribution converges close enough towards the unlabeled

samples distribution, while not matching it. If the PGAN first-stage performs as expected

theoretically by [64], then the PGAN classification second stage falls back into the initial

PU learning problem.

Our proposed approach in this chapter, presented in Sec. 5.2, overcomes previously

enumerated PU methods shortcomings, as summarized in Table 4.1.

4.3 Proposed Approach

In this section, we first briefly recall the main reasoning which motivated our research work.

Next, we discuss some features of a biased PU risk. We then propose to incorporate this

risk into a generic GAN framework in order to guide the generator convergence towards

the negative samples distribution, denoted as pN , included inside the unlabeled dataset

2We use the term standard to refer to the case where we have enough positive labeled examples (at least
100), such that the difficulty is mainly the ability to exploit counter-examples included in the unlabeled set.
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Methods D-GAN (proposed) PGAN (chapter 3) GenPU [74] RP [127] nnPU [91]

No need of priori knowledge
√ √ √

No first-stage overfitting
√ √ √ √

Generalizable over complex datasets
√ √

Able to generate relevant counter-examples
√ √

Training stability using SGD
√ √ √

Original GAN architecture
√ √

Code availability
√ √ √

Table 4.1: Summary of presented state-of-the-art methods advantages and drawbacks
compared to the proposed D-GAN approach. A void cell means that the mentioned criterium
is not applicable with the corresponding method.

distribution, denoted as pU . Furthermore, we study regularization techniques to manipulate

three distinct types of minibatches: positive, unlabeled and generated ones.

4.3.1 Motivation

In PU learning, if a classifier associates a given expected label value with positive examples,

and in parallel associates a second distinct label value with unlabeled examples, then it is

proven that the negative non-labeled examples are exclusively associated with the label of

non-labeled examples [39]. Concerning GANs, it has been shown that the discriminator

learning task influences directly the adversarial generator behaviour [114]. Based on these

considerations, this work aims at incorporating a biased PU risk inside the traditional

GAN discriminator cost function. This compels the discriminator D, to separate negative

from positive distributions, which in turn guides the generator G, to exclusively learn the

unlabeled counter-examples distribution from a PU dataset. As a matter of the fact, the

proposed method is novel in the way it exclusively generates relevant counter-examples

without prior knowledge information, while preserving a standard GAN architecture.

Thereafter, we present the biased PU risk that we incorporate in the proposed GAN PU

discriminator training loss function.

4.3.2 Biased PU risk to incorporate

In what follows, we first explain the expected PU functionality to be incorporated into the

GAN discriminator loss function.

Biased PU risk setting: Let D : Rm → [0, 1] be the decision function which is, later

on, considered as the discriminator D, of the proposed framework network. We have l(ŷ, y)

such that l : [0, 1]× [0, 1]→ R is the arbitrary cost function with the predicted output ŷ of

D for a given example and the corresponding label y as input. D is trained with a PU risk

RPU to predict the label value 1 for the unlabeled examples, and the label value 0 for the
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positive labeled ones such that:

RPU (D) = ExU∼pU
[l(D(xU ), 1)] + ExP∼pP [l(D(xP ), 0)]. (4.2)

Given the composition of the distribution pU , we develop:

RPU (D) =(1− πP ) · ExN∼pN [l(D(xN ), 1)] + πP · ExP∼pP [l(D(xP ), 1)]

+ ExP∼pP [l(D(xP ), 0)].
(4.3)

Counter-examples are correctly labeled: Decomposed in this way, the negative

examples included in the unlabeled dataset are associated exclusively to the label value 1

for any πP value, such that the negative training examples are all correctly labeled. When

there is no overfitting on training positive examples, then one can assume that labeled and

unlabeled positive examples follow the same distribution pP , as mentioned in [91]. Since

expectations are linear, pP is associated to both contradictory labels 0 and 1 as below:

RPU (D) = ExN∼pN [(1− πP )l(D(xN ), 1)] + ExP∼pP [πP l(D(xP ), 1) + l(D(xP ), 0)]. (4.4)

Positive samples distribution pP is shifted away from the counter-examples

distribution pN : When defining the cost-function l as the binary cross-entropy H (Eq.

4.5) such that l = H, then we can demonstrate that the second term in the Eq. (4.4) is

equivalent to associating the positive distribution pP with a unified biased intermediate

label value δ. The binary cross-entropy H is defined as:

H(D(X), Y ) = −Y log(D(X))− (1− Y )log(1−D(X)), (4.5)

where Y is the label value associated with the input X of D. If l = H, then concerning the

second term of the Eq. (4.4), we can demonstrate that:

πPH(D(xP ), 1) + 1H(D(xP ), 0) =− πP log(D(xP ))− 1log(1−D(xP ))

=− πP log(D(xP ))− (1 + πP − πP )log(1−D(xP ))

=(1 + πP ) ·
[
− πP

1 + πP
log(D(xP ))

− (1− πP
1 + πP

)log(1−D(xP ))

]
=(1 + πP ) ·H

(
D(xP ),

πP
1 + πP

)
=(1 + πP ) ·H(D(xP ), δ),

(4.6)

with δ = πP /(1 + πP ). Consequently, the PU risk becomes:

RPU (D) = ExN∼pN [(1− πP )H(D(xN ), 1)] + ExP∼pP [(1 + πP )H(D(xP ), δ)]. (4.7)
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Such a PU risk has been previously called biased or constrained in the literature [103]. The

equivalence between Eqs. (4.4) and (4.7) makes it possible to estimate the restricted interval

of possible values for δ without using prior such that if πP ∈ (0, 1) then:

0 < πP < 1⇔ 0 < δ <
1

1 + 1
. (4.8)

In other words, δ ∈ (0, 1/2). This confirms that for any πP value between 0 and 1, labeled

and unlabeled positive examples are associated with a label value δ comprised between 0 and

1/2. Therefore, when training D with the risk RPU , the D prediction related to the unlabeled

positive examples is shifted away from the label value 1. From D prediction output point of

view, this risk makes the positive distribution pP diverging from the negative distribution

pN . Thus, D is trained to predict the label value 1 exclusively for the counter-examples.

4.3.3 Proposed generative model

The insight in the proposed D-GAN model can be expressed as follows: D addresses to G the

riddle: Show me what IS unlabeled AND NOT positive. It turns out that negative examples

included in the unlabeled dataset are both unlabeled and not positive. Consequently, G

addresses this riddle by learning to show the negative samples distribution to D.

GAN background: We first give a short recall of the original GAN discriminator. It

is trained to distinguish real unlabeled samples distribution pU from generated samples

distribution pG with the loss function LDGAN defined as:

LDGAN (G,D) = ExU∼pU [−logD(xU )] + Ez∼pz [−log(1−D(G(z)))], (4.9)

where z stands for the input random vector of the generative model G such that G(z)

is a generated sample. z follows a uniform or normal distribution. It turns out that

the binary cross-entropy formulation (Eq. 4.5) implies H(D(X), 1) = −log(D(X)) and

H(D(X), 0) = −log(1−D(X)). Consequently, LDGAN can be expressed as follows:

LDGAN (G,D) =ExU∼pU [H(D(xU ), 1)] + Ez∼pz [H(D(G(z)), 0)]. (4.10)

Towards a GAN biased discriminator loss function: The proposed approach

aims at training G to learn the negative samples distribution pN instead of learning the

distribution pU . This replaces the standard GAN task “Show me what is unlabeled ”, by the

task “Show me what is both unlabeled and not positive”. We now propose to incorporate

the benefits of a biased PU risk (Eq. 4.2) into the original GAN discriminator loss function

(Eq. 4.9). To this end, we define the D-GAN discriminator loss function LD by adding the
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term ExP∼pP [H(D(xP ), 0)] to LDGAN . Consequently, in the proposed D-GAN framework,

the training discriminator loss function LD of D becomes:

LD(G,D) =LDGAN (G,D) + ExP∼pP [H(D(xP ), 0)]. (4.11)

If we develop the term LDGAN , we then obtain:

LD(G,D) =ExU∼pU [H(D(xU ), 1)] + Ez∼pz [H(D(G(z)), 0)] + ExP∼pP [H(D(xP ), 0)]

=RPU (D) + Ez∼pz [H(D(G(z)), 0)].
(4.12)

In other words, the RPU risk (Eq. 4.2) is incorporated inside the D-GAN discriminator

loss function. To this extent, D can be trained to only consider the counter-examples as

the most real examples by associating to them exclusively the label value 1. This can be

considered as applying a constrained optimization.

The generator generates the counter-examples distribution: In contrast, the

role of G during the adversarial training is to generate samples considered by D as 1. As

proposed in [64], the training loss function LG of G is such that:

LG(G,D) = Ez∼pz [−log(D(G(z)))]

= Ez∼pz [H(D(G(z)), 1)].
(4.13)

We recall that D exclusively considers the negative examples as 1 thanks to the RPU risk

introduced in Eq. (4.2). Thus, if D trainable weights are fixed in the proposed framework,

then we propose to reinterpret in LG the label value 1 as D(xN ), as follows:

LG(G,D) = Ez∼pz ,xN∼pN [H(D(G(z)), D(xN ))]

= Ez∼pz ,xN∼pN [−D(xN )log(D(G(z)))],
(4.14)

such that the distance between the generated samples distribution and pN is minimized.

Consequently, this justifies the convergence of G in the proposed D-GAN framework towards

the negative samples distribution pN , for any πP ∈ (0, 1).

Implementation: The corresponding implementation Algorithm 2 of the proposed

first-stage D-GAN approach enables to adversarially train D and G to respectively minimize

loss functions LD and LG.

Second-stage: Positive-Generative learning. Once the D-GAN training is com-

pleted, the second step can be carried out. It consists of training a classifier C to distinguish

fake generated examples xFN = G(z), which are ideally equivalent to the real negative

samples, from real positive labeled samples as illustrated in Figure 4.2.

In practice, the worst-case scenario is when D overfits the positive examples during

the adversarial training. Another pitfall is when D cannot encode the complexity of the

boundary between positive and negative examples included in the unlabeled dataset. In such
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Algorithm 2 Minibatch SGD training of the D-GAN

GAN training (1st step)
for number of training iterations do

Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.

Sample minibatch of m unlabeled examples {x(1)U , ..., x
(m)
U } from data distribution pU .

Sample minibatch of m positive labeled examples {x(1)P , ..., x
(m)
P } from data distribution

pP .
Update D by descending its stochastic gradient:

∇θD
1

m

m∑
i=0

[
− logD(x

(i)
U )− log

[
1−D(G(z(i)))

]
− log

[
1−D(x(i)p )

]]
Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.
Update G by descending its stochastic gradient:

∇θG
1

m

m∑
i=0

−log
[
D(G(z(i)))

]
end for
Classifier training (2nd step):
for number of training iterations do

Sample minibatch of m positive labeled examples {x(1)P , ..., x
(m)
P } from data distribution

pP .
Sample minibatch of m noise samples {z(1), ..., z(m)} from data distribution pz.
Update C by descending its stochastic gradient:

∇θC
1

2 ·m

m∑
i=1

[
l(C(x

(i)
P ), 1) + l(C(G(z(i))), 0)

]
end for
The gradient-based updates can use any standard gradient-based learning rule. We use
Adam in our experiments.

cases, D will consider some unlabeled positive examples as negative ones. As a consequence,

this implies that G will also generate some examples following a subset of the positive

samples distribution. Thus, the D-GAN will tend to behave as the PGAN [26], which seems

to be the best solution in this situation.

The next section presents effective regularization techniques to overcome these issues in

the context of the proposed GAN-based PU framework.

4.3.4 Discriminator regularizations

Nowadays, Batch Normalization (BN) [77] is considered as a one of the most relevant

regularization techniques commonly used in deep neural networks architectures. Its utility

for GANs training has been highlighted in [136] for the DCGAN architecture in order

to stabilize the adversarial training. Other variants like the Wasserstein-GAN [1] or the

Loss-Sensitive GAN [135] confirmed its interest. As developed in [77], BN addresses issues

like vanishing or exploding gradient problems, as well as the risk of getting stuck in a poor
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Figure 4.2: Proposed GAN-based PU approach, xFN represents the generated samples which
are similar to real negative samples xN , G is the generative model, D is the discriminator,
C is the classifier used to perform the binary Positive-Negative (PN) classification.

local minima, by reducing the internal covariate shift problem of the learning model. A

higher learning rate can be used and it can significantly improve the training speed.

Multiple minibatch manipulation incompatibility. BN regularizes the model, in

such a way that a training example (i.e. single instance) from a given minibatch sample is

considered in conjunction with other examples of this minibatch sample. It is the consequence

of estimating the mean and variance normalization parameters one time per minibatch, and

then applying them on each example in the minibatch. When positive examples xP and

unlabeled examples xU are not in the same training minibatch, as this is the case in our

discriminator loss function, this does not allow to link labeled positive examples with the

unlabeled positive ones. Consequently, this cannot produce a distance between positive and

negative examples predictions. To counter this problem, we could imagine to apply BN on a

unified minibatch which contains a fraction of each distribution xP , xU and xF . But the BN

effect is greatly influenced by the content of the minibatch on which it is applied. Therefore,

the fraction πP of positive examples included in xU will negatively impact the BN outcome.

Compatible normalization techniques: However, BN benefits in a more traditional

training are not negligible. Hence, we propose to use two alternative techniques in order to

replace the BN role in the proposed GAN-based PU framework. On the one hand, Layer

Normalization (LN) [2] is a frequently used technique with sequential networks, as it

can be applied for each sequential example independently. With LN, the normalization

for a given example is computed on its resulting output feature map layers, and the mean

and variance are computed independently for each example of a minibatch. On the other

hand, Spectral Normalization (SN) [120] is a recent competing technique for GANs [120]

training which can stabilize the training of D against input perturbations [50] by perfoming

a weight normalization. In this way, a training manipulating multiple types of minibatch
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distributions preserves SN effectiveness. For these reasons, we propose to apply LN or SN

instead of BN inside our discriminative model structure. The use of these normalization

techniques will be validated in Sec. 5.3.

Dropout alleviates the positive overfitting problem: As mentioned in the previous

section, we can only deduce Eq. (4.4) if we consider that the positive samples distribution

is the same for both labeled and unlabeled ones. In practice, this assumption holds in the

case of a large dataset, such that this overfitting problem concerning the positive examples

disappears. While some model averaging strategies such as bootstrap aggregating techniques

have been previously combined with Support-Vector Machines (SVMs) in order to deal with

PU learning [123], the dropout [158] generalization technique is also a solution concerning

the deep neural networks. Consequently, in the context of the proposed D-GAN training,

we propose to introduce dropout in the top fully connected layer of D. We enable it during

D training steps, and conversely disable it during G training steps. This improves the

evaluation of generated samples which is transmitted from D to G by back-propagation.

In the next section, we will show that dropout alleviates the positive examples overfitting

during long D-GAN trainings. This insures to exclusively generate counter-examples.

The next section presents experimental results demonstrating the usefulness of the

proposed approach.

4.4 Experimental Results

In this section, we assess the performance of the proposed approach. We first experimentally

validate the expected discriminator prediction behaviour when it is applied on a positive

unlabeled dataset (Sec. 4.4.2.1), and study the impact of regularization (Sec. 4.4.2.2). Then,

we show the ability of the generator to generate counter-examples for different types of PU

datasets, including two-dimensional points and natural RGB images (Sec. 4.4.2.3). Finally,

we evaluate the proposed model prediction robustness and compare it with state-of-the-art

PU learning methods in terms of prior noise (Sec. 4.4.3.1) and first-stage overfitting (Sec.

4.4.3.3).

4.4.1 Settings

We detail in this section the settings of the experiments. We have adapted the first-

stage discriminator and generator architectures of the proposed GAN based PU framework

depending on the dataset on which they are applied, as follows:
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• 2D point dataset: In order to deal with 2D point datasets, we use a GAN architecture

composed of fully connected layers (FullyConnected). The generator and discriminator

architectures are summarized in Figure 4.3.

• MNIST [96]: In order to deal with grayscale images of dimension 28*28 pixels from

the MNIST dataset, we use a deep convolutional GAN architecture (DCGAN) such

that the generator contains transposed convolutional (DeConv2D) top layers, and the

discriminator contains convolutional (Conv2D) bottom layers as illustrated in Figures

4.4 (a) and (b).

• CIFAR-10 [92]: In order to deal with RGB images of size 32*32 pixels from the

CIFAR-10 dataset, we use the same DCGAN architecture presented in Figures 4.4 (a)

and (b). We only adapt the feature maps size depending on the width (w), the height

(h), and the number of channels (ch) of input RGB images.

• celebA [107]: In order to deal with RGB images of size 64*64 from the celebA dataset,

we use a deeper convolutional GAN architecture presented in Figure 4.5.

Input: z ∈ R8 ∼ N (0, 1)

FullyConnected (128)
eLU

FullyConnected (2)
Sigmoid

Output: 2D point x ∈ R2

(a) Generator

Input: Image x ∈ R2

FullyConnected (128)
eLU

FullyConnected (1)
Sigmoid

Output: Scalar y ∈ (0, 1)

(b) Discriminator

Figure 4.3: Fully connected GAN model architecture used for two dimensional points
datasets. Minibatch size 64, optimizer Adam. We trained the model during 100 epochs on
2D point datasets.

Concerning the PU dataset initialization from a standard PN dataset, in all the experi-

ments, except the ones in Sec. 4.4.3.1, we use the methodology proposed in chapter 3. More

specifically, we set ρ = 0.5 which is the fraction of positive labeled examples of the initial

PN dataset that we unlabel such that they are included into the unlabeled dataset. Then,

we set πP which is the fraction that represents these unlabeled positive examples among

the unlabeled dataset. This method is interesting for testing an approach depending on πP ,

independantly of the selected fraction 1− ρ of positive labeled samples.

4.4.2 Qualitative analysis

We start by studying qualitatively whether the discriminator behaves as expected in practice.

More precisely, we need to verify that it exclusively associates the counter-examples distri-
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FullyConnected (1024)
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Dropout (0.5)
FullyConnected (2)

Softmax

Output: One hot vector y ∈ (0, 1)2
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Figure 4.4: Convolutional GAN model architecture used for 28*28 grayscale MNIST and
32*32 RGB CIFAR-10 image datasets. For MNIST we set h=28, w=28, ch=1. For CIFAR-10
we set h=32, w=32, ch=3. Minibatch size: 64, optimizer: Adam, strides of 2 × 2 for the
generator Deconv2D and the discriminator Conv2D layers, strides of 1× 1 for the classifier
Conv2D layers. We trained the model during 40 epochs and 1000 epochs respectively on
MNIST and CIFAR-10 datasets.
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Figure 4.5: Convolutional GAN model architecture used for 64*64 RGB images of celebA
dataset. Minibatch size: 64, optimizer: Adam, 2D stride of 2× 2. We trained the model
during 100 epochs on the celebA dataset.

bution with the label value 1, and the positive samples distribution with an intermediate

label value between 0 and 1/2.

In Sec. 4.4.2.1, we start by showing the relation between the PU loss function and the

proposed equivalent PN loss function including a biased label for positive examples, as

mentioned in Sec. 4.3.2. Then, in Sec. 4.4.2.2, we investigate which regularization techniques
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enable to preserve the same behaviour on an image dataset such that the discriminator does

not suffer from overfitting during the epoch training iterations.

4.4.2.1 Empirical Positive Unlabeled risk analysis

We have previously demonstrated (Eq. 4.6) that we can reformulate the discriminator

PU training loss function RPU into a PN training loss function, referred to as RPN , by

replacing the two opposite labels 0 and 1 associated to positive samples distribution pP by

an intermediate label value δ depending on πP , such that we obtain:

RPU (D) = RPN (D), (4.15)

with:{
RPU (D) = ExU∼pU

[H(D(xU ),1)] + ExP∼pP
[H(D(xP ),0)],

RPN (D) = ExN∼pN
[(1− πP )H(D(xN ),1)] + ExP∼pP

[(1 + πP )H(D(xP ), δ)].
(4.16)

It turns out that we can verify the same relation empirically. As illustrated in Figure 4.6

with 2D point samples following gaussian distributions, if we train the discriminator D with a

multilayer perceptron structure using the PU loss function RPU , then its predictions outputs

for an unlabeled batch sample are partitioned in the vicinity of two different labels. Positive

examples are centered around an intermediate label value corresponding to δ. Conversely,

D output predictions for the negative examples are centered around the label value 1. In

addition, we have also computed the approximated PN risk R̂PN using negative labeled and

positive labeled samples, for several δ values between 0 and 1. We can observe that the

global minimum of the PN approximated risk R̂PN as a function of δ corresponds graphically

to the global maximum of the density function corresponding to D output predictions for a

positive set. This coincides also with the equality presented in Eq (4.15).

To sum up, this illustrates experimentally that if D is trained with the RPU loss function,

then it should predict the label value 1 exclusively for the negative samples, which is the

necessary condition to guide the generator during the adversarial training to learn exclusively

the counter-examples distribution.

However, this behaviour is only possible if D does not overfit labeled and unlabeled

positive samples. In other words, D should be able to discriminate unlabeled positive

examples from the unlabeled negative ones. Therefore, in order to generalize the proposed

GAN framework to image datasets, we compare in the next section some state-of-the-art

regularization techniques commonly used in deep learning models, in order to select the

most appropriate one.
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Figure 4.6: Link between the PN loss function suggested (Eq. 4.15) and the distribution of
the discriminator output predictions for an input training minibatch. For this experiment, D
is a multi-layer perceptron. D has been trained to distinguish a 2D gaussian distribution to
another one by using the risk RPU on a PU dataset. (a) Shows a set of 2D points considered
as positive samples. (b) Shows a set of 2D points considered as unlabeled samples. Both
curves in (c) and (d) have been normalized to get a better visualization. For (c), pY (yU )
(in blue), with yU = D(xU ), represents the probability distribution of D predicted outputs
for a minibatch of unlabeled samples, with πP = 0.5. R̂PU (D) (in red) represents the PN
risk computed in function of δ with the RPN proposed Equation 4.16 on a minibatch of
positive and negative labeled samples, once D is trained with RPU risk (Eq. 4.2). (d) shows
the same curves as in (c) but by giving in input a concatenation of an unlabeled minibatch
with a positive labeled minibatch. Unlabeled positive and labeled positive samples provide
a unified prediction output distribution.

4.4.2.2 Impact of regularizations on the discriminator

We compare in Figure 4.7 the ability of D to distinguish positive from negative samples

distributions included inside the unlabeled training dataset when D is trained on a PU image
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dataset without normalization and with BN, LN, and SN normalizations. We also consider

the cases when they are combined with the dropout regularization. In this experiment, D is

trained alone such that it is not adversarially trained with G. This enables to better observe

and anticipate the adversarial behaviour of D, and consequently the behaviour of G during

the adversarial training.

We show in Figure 4.7 the histograms of D predictions concerning the unabeled training

examples. As previously explained in Sec. 4.3.2, if D associates exclusively the label 1 with

the distribution pN , then we can observe a mixture of two distributions in the corresponding

histograms. The one on the right corresponds to D predictions for unlabeled negative

examples. The second one on the left corresponds to D predictions for unlabeled positive

examples. It is shifted away from the label 1 and centered around δ. Both distributions

cannot be observed with BN. With LN, we can observe both distributions at the beginning

of the training before the appearance of an overfitting problem for the unlabeled positive

examples. Consequently, at the end of the training, both distributions have merged as with

BN. In contrast, SN considerably decreases this overfitting problem. Moreover, the addition

of the dropout further helps, such that the dispersion of D predictions is attenuated. This

confirms that BN is not compatible with the proposed framework. LN can be used for

relatively short trainings. And we conclude that the combination SN +Dropout is the best

solution to preserve the distinction between pP and pN for long trainings. This is consistent

with the arguments discussed in Sec. 4.3.4.

Now that we have validated the discriminator ability to separate positive and negative

distributions from a positive unlabeled dataset, we select the most appropriate regularization

techniques SN and dropout to train adversarially the discriminator and the generator

hereafter. The proposed GAN based PU model ability to generate relevant counter-examples

is assessed in the next section.

4.4.2.3 Generating counter-examples

From a qualitative point of view, and contrary to the PGAN model, the proposed D-GAN

paradigm generates items which only follow the counter-examples distribution for diverse

data types. This is illustrated in Figure 4.8 for 2D point datasets and in Figure 4.9 for

image datasets.

In Figure 4.8, we can observe on the top line that the generated sample exclusively follows

the distribution of the counter-examples included in the unlabeled set (i.e. simultaneously

not positive and unlabeled). On the bottom line, we can observe that the generator has

learned the distribution of confident complements of the positive sample distribution over

the uniform distribution of unlabeled sample. In addition, we can also observe that a small
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Figure 4.7: D predictions on unlabeled training examples. (a), (b), (c), (d), (e), (f), (g), (h)
images show the evolutions of the histograms of predictions during the training of D. Each
horizontal line of pixels represents the histogram of predictions, between 0 and 1 along the
horizontal axis, of D on the entire unlabeled training dataset. Clear hot colors represent a
high density of prediction. The vertical axis indicates the training iterations from 0 to 50
epochs. Figures (i) and (j) represent the corresponding histograms of predictions after 5 and
25 epochs. Settings are with positive class 8 and negative class 3 of MNIST dataset, with
πP = 0.5.

area around the positive sample distribution is not captured by the generator. This shows

the ability of the proposed generative model to not overfit the positive sample distribution

boundary.

In Figure 4.9, we can also observe that the generated examples systematically follow the
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Positive Unlabeled Generated

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Proposed approach applied to two different clusters of 2D points. D and G have
a multilayer-perceptron structure with respectively 128 hidden units. From left to right,
figures are respectively labeled positive, unlabeled with πP = 0.5, and generated samples.
Figures (a), (b), (c) case corresponds to distributions following circle shapes. Figures (d),
(e), (f) case corresponds to a half circle distribution of positive examples, and a uniform
distribution over a defined interval for unlabeled examples.

counter-examples distribution on three image datasets: MNIST, CIFAR-10 and celebA.

In order to enable reproducibility, a D-GAN implementation corresponding to Figure 4.10

results is applied on the LS-GAN model [135]. Our code also includes the method proposed

by [26] to establish a PU training dataset from a fully labeled dataset with parameters ρ

and πP .

Morevover, as mentioned previously, the regularization technique used in the discriminator

has a direct impact on the samples generated by the generator. Figure 4.10 shows samples

generated by G depending on the normalization technique used in D. We can observe that

in the first row, with πP = 0.3, we naturally obtain around thirty percent of men faces

generated using any normalization techniques with the orginial GAN framework used in

PGAN. The generated images quality seems visually equivalent between BN, LN or SN. As

previously explained, in the second row, also with πP = 0.3, the proposed D-GAN approach

is not compatible with BN. On the contrary, with LN, it exclusively generates counter-

examples: women faces with only few men patterns like facial hairs. Finally, it exclusively

generates women faces with SN. Those results are consistent with Sec. 4.3.4 and 4.4.2.2.
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MNIST
(πP = 0.5)

CIFAR-10
(πP = 0.3)

celebA
(πP = 0.5)

Figure 4.9: Counter-examples generation from Positive Unlabeled image datasets. The
two left columns present input positive and unlabeled training samples xP and xU . The
right column presents output generated minibatch samples xG. The first row presents
results for MNIST classification task 5-vs-3 when πP = 0.5. The second row presents results
for CIFAR-10 classification task Car-vs-Airplane when πP = 0.3. The third row presents
results for the arbitrary celebA classification task Male-vs-Female when πP = 0.5. Visually,
all generated examples observed follow the counter-examples distribution included in the
unlabeled training set.

The D-GAN trained with πP = 0.5 and BN naturally generates around fifty percents of men

faces, as we recall that BN does not enable to capture the counter-examples distribution.

The D-GAN also performs relatively well with SN+Dropout when πP = 0.5. It exclusively

generates women faces. This confirms that the generator behaviour is highly dependent on

the discriminator generalization ability, which in turn depends on normalization techniques
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used. This also confirms that the proposed D-GAN framework presents the interesting

ability to exclusively hallucinate counter-examples on a real PU image dataset when it is

combined with appropriate discriminator regularizations.

BN LN SN

GAN
(πP = 0.3)

D-GAN
(πP = 0.3)

D-GAN
(πP = 0.5)

Figure 4.10: Discriminator regularizations impacts on the generated samples from a PU
celebA image dataset after 100 training epochs iterations. The three columns correspond
respectively to training experiments with BN, LN, and SN normalization techniques. The
first row presents samples generated using the original LS-GAN discriminator loss function.
The two bottom rows present the samples generated by integrating the proposed model
discriminator loss function term ExP∼pP [MSE(D(xP ), 0)] in the original LS-GAN loss
function, with MSE the mean squared error metric.

We have shown in this section, from a qualitative point of the view, the discriminator

ability to separate positive and negative distributions from a positive unlabeled dataset, and

the generator ability to learn the counter-examples distribution on various datasets during
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the first stage. Next, we propose in Sec. 4.4.3 to quantitatively evaluate the proposed model

through an empirical study by focusing on the second-stage classifier C output predictions.

4.4.3 Divergent-GAN for Positive Unlabeled learning

In this section, we evaluate empirically our method on standard PU learning tasks such that

we can test its ability to address respective issues of the state-of-the-art methods presented

in Section 4.2.

Concerning these comparative experiments, we use the DCGAN [136] architecture.

4.4.3.1 Robustness to prior noise

Nowadays, the stochastic gradient descent (SGD) method remains a useful deep learning

regularization technique for large-scale machine learning problems [14]. SGD provides a

regularizing effect by using minibatches [165]. However, a smaller batch size implies a

higher prior noise per batch. Thus, in this section, we empirically study the proposed model

robustness to prior noise using small batch sizes.
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minibatch size std(πP ) · 102 Test Accuracy

512 2.22 0.936 0.932 0.921
256 3.2 0.935 0.931 0.906
128 4.31 0.934 0.929 0.9
64 6.51 0.929 0.507 0.804
32 8.62 0.895 0.508 0.508
16 13.06 0.907 0.5 0.5

(b) Detailed scores

Figure 4.11: Prediction test Accuracy on MNIST for the Even-vs-Odd classification task,
as a function of the minibatch size. We choose the prior value πP = 0.5, as the standard
deviation of the real prior per minibatch is the highest in this way (see Fig. 4.1). This eases
to observe the prior sensitivity. We reproduce the experiment exp-mnist proposed by nnPU.
The PU dataset contains one thousand positive labeled examples, which are even digits.
The unlabeled set is composed of the entire initial dataset, thus including also the positive
labeled ones. std(πP ) is the standard deviation of the prior per minibatch. uPU and nnPU
results have been obtained with the code provided by the authors of the nnPU work. (b)
details the prediction scores used to plot the curves in (a).

We reproduce the Even-vs-Odd experiment proposed by [91] as a function of the batch

training size. It consists of learning to discriminate even digits 0, 2, 4, 6, 8 from odd digits 1,
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3, 5, 7, 9. Concerning the second-stage classifier, we use the multilayer perceptron architecture

provided in [91] 3. We only replace the bottom fully connected layer of the classifier by a

convolutional layer, similarly to the generator top layer and discriminator bottom layer in

the DCGAN [136] structure that we use. This avoids compatibility problems between the

generator top convolutional layer output and the bottom classifier layer input. Unwanted

artifacts in output of GANs MLP structure are slightly different from unwanted artifacts

observed in output of GANs convolutional structures. It turns out that PU approaches

using prior such as uPU, nnPU and GenPU make the assumption that the global training

dataset prior πP is fixed and known. But in the same PU context, when the minibatch size

decreases, the dispersion of πP per minibatch consequently increases. Figure 4.11 (a) shows

that using small batch training sizes causes critical prediction performances collapse issues

for unbiased techniques like nnPU and uPU. On the other hand, our proposed approach

without using prior knowledge is drastically less sensitive to this problem: While nnPU and

uPU methods become ineffective in terms of test Accuracy (i.e. Accuracy score around 0.5),

the D-GAN still provides a prediction test Accuracy of 0.907 for training minibatches of

size 16 in D, G and C to address the Even-vs-Odd MNIST superclass classification task,

as detailed in Figure 4.11 (b). We can conclude that the D-GAN outperforms nnPU and

uPU in terms of prediction performances such that it can use minibatches to take advantage

of SGD. This capacity is also interesting for incremental learning requirements where only

small sample sizes may be managed at each new training iteration. Moreover, recent studies

show that it is possible to continually train GANs models [98].

The next section compares the proposed approach with GenPU in the context of few

positive labeled examples.

4.4.3.2 PU learning with few positive labeled examples

Table. 4.2 compares the D-GAN Accuracy prediction to GenPU for the One-vs-One task

with few positive labeled examples 4. The D-GAN presents the best test Accuracy for 100

labeled positive examples after 40 first-stage training epochs iterations. In the meantime,

this confirms that GenPU remains an interesting choice for fewer labeled positive examples,

as it also generates fake labeled positive examples during the first stage. It is also interesting

to observe that the D-GAN still globally outperforms nnPU and uPU methods without

using prior knowledge.

3The code is available at: https://github.com/kiryor/nnPUlearning.
4It would have been interesting to evaluate GenPU performances as well within some other comparative

experiments, but it turns out that all information concerning hyper-parameters of GenPU training loss
functions are lacking in the authors article [74]. This does not enable us to fairly conduct additional
comparative experiments.
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Table 4.2: Comparative results of Accuracy prediction performances on MNIST in a One-vs-
One mode. GenPU, uPU and nnPU results are reported from the GenPU article. nP is the
number of positive labeled examples and nU is the number of unlabeled examples which
mixes all the rest of positive and negative examples.

One-vs-One ’3’-vs-’5’ ’8’-vs-’3’

Dataset: MNIST D-GAN GenPU nnPU uPU D-GAN GenPU nnPU uPU

Without prior X × × × X × × ×

nP=100 : nU=9900 0.987 0.983 0.969 0.914 0.989 0.982 0.974 0.932
nP=50 : nU=9950 0.964 0.982 0.966 0.854 0.974 0.979 0.965 0.873

Now that we have shown that the proposed model is robust to prior noise, we continue

the comparative tests with the methods which do not use prior knowledge πP in their

training cost-functions to address the PU learning task.

4.4.3.3 One-versus-Rest challenge

We compare in this section the proposed approach with the PGAN and RP methods that

we consider as baselines for the PU learning task without prior knowledge. More specifically,

we evaluate them on the challenging One-vs-Rest task which consists of trying to distinguish

a class from all the other ones. This task is interesting for binary image classification

applications where the labeling effort may be exclusively done on the class of interest, the

positive class. Another motivation is that One-vs-Rest binary classification brings the tools

for multiclass classification, as presented in [156].

Tables 4.3 and 4.4 show average predictions for the One-vs-Rest task over MNIST and

CIFAR-10 datasets. We use the F1-Score metric for its relevance in such information retrieval

and binary classification tasks as highlighted by [103]: the F1-score measures the positive

examples retrieval. The PU datasets are simulated as proposed in PGAN chapter 3 such that

we can evaluate the results as a function of several πP fractions. Concerning the second-stage

classifier in these experiments, we have used the convolutional architecture presented in

Figure 4.4 (c).

First, the Table 4.3 confirms the regularization effects previously observed in Figure. 4.7.

Indeed, SN+dropout is an interesting combination for relatively long trainings, as this is the

case on the CIFAR-10 dataset on which we have adversarially trained D during 1000 epochs.

One-vs-Rest AV GMNIST AV GCIFAR-10

πp LN SN+dropout LN SN+dropout

0.1 0.99 0.99 0.75 0.82
0.3 0.98 0.98 0.73 0.79
0.5 0.97 0.97 0.75 0.75
0.7 0.92 0.94 0.71 0.72

Table 4.3: Regularization methods comparison through the One-vs-Rest task without prior.

70



Second, we can observe on Table. 4.4 that the D-GAN, using SN+Dropout regularizations,

globally outperforms PGAN and RP methods in terms of F1-Score on both MNIST and

CIFAR-10 datasets. Moreover, PNGAN represents GAN-based methods reference for the

ideal case where πP = 0, such that we train during the first stage a GAN exclusively over all

the initial cleanly labeled counter-examples set. PNGAN results highlight the GAN-based

methods data augmentation advantage on complex datasets. This justifies the superior

scores obtained by our method compared to RP over the CIFAR-10 dataset.

One-vs-Rest AV GMNIST AV GCIFAR-10

πP PN PNGAN D-GAN PGAN RP PN PNGAN D-GAN PGAN RP

0.1 0.993 0.988 0.989 (0.01) 0.965 (0.01) 0.967 (0.02) 0.680 0.812 0.815 (0.05) 0.745 (0.08) 0.622 (0.10)
0.3 0.993 0.988 0.983 (0.01) 0.958 (0.01) 0.975 (0.02) 0.680 0.812 0.792 (0.05) 0.760 (0.03) 0.730 (0.07)
0.5 0.993 0.988 0.971 (0.01) 0.946 (0.02) 0.951 (0.04) 0.680 0.812 0.751 (0.04) 0.748 (0.03) 0.716 (0.06)
0.7 0.993 0.988 0.938 (0.02) 0.875 (0.05) 0.933 (0.07) 0.680 0.812 0.721 (0.04) 0.702 (0.03) 0.684 (0.08)

Table 4.4: One-vs-Rest task with two-stage PU methods without prior, as proposed
in PGAN [26]: From a fully labeled PN dataset, we firstly select a fraction ρ of positive
labeled examples that we put in the simulated unlabeled set. Then, we add negative labeled
examples in the latter to obtain up to a fraction πP of positive examples in this unlabeled
set. Compared to nnPU simulation method, this simulation method has the advantage
to simultaneously and independently control the number of positive labeled examples to
keep, and the fraction πP for the unlabeled set to simulate. PNGAN expression represents
GAN-based methods reference for the ideal case where πP = 0, such that we train during
the first stage a GAN exclusively over all the initial cleanly labeled counter-examples set.
For each dataset and depending on the fraction πP , we have tested respectively the ten
One-vs-Rest task possibilities and display the corresponding average test F1-score predictions.
The standard deviation is indicated in parenthesis.

Reducing the overfitting problem: In addition, we can observe that the proposed

model also outperforms PGAN on MNIST with a significant margin. This is due to the fact

that, compared to the PGAN which is trained to generate unlabeled examples, the proposed

approach only generates counter-examples as previously shown in Figures 4.8 and 4.9.

Consequently, the proposed first-stage generative model does not learn the positive samples

distribution, and it avoids the PGAN first-stage overfitting issue on simple datasets like

MNIST. Figure 4.12 illustrates this phenomenon. In Figure 4.12 (a), without normalization,

the D-GAN method gets faster a better Accuracy than PGAN when both are trained under

the same conditions. In Figure 4.12 (b), the D-GAN with LN, SN or SN+dropout follows

the learning speed of the PGAN with BN, while demonstrating a steadier behaviour once the

Accuracy progression is finished, as it overcomes the PGAN first-stage overfitting problem.

To sum up, in Sec. 4.4.2, we demonstrate that the proposed approach is effective at

capturing and delivering the counter-examples distribution of our class of interest from

only positive and unlabeled data, without using the prior information πP . In addition,

comparative experiments in Sec. 4.4.3 have subsequently highlighted the proposed model
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Figure 4.12: Second-stage Classifier (architecture presented in Figure 4.4 (c)) test Accuracy
evolution as a function of the first-stage GAN epochs. 8-vs-Rest MNIST task, with ρ = 0.5
and πP = 0.5. (a) D-GAN and PGAN are trained without normalization layers. (b) D-
GAN and PGAN are respectively trained with LN, SN, SN + dropout, and BN inside the
discriminator.

ability to address state-of-the-art PU learning issues such as prior sensitivity and first-stage

overfitting. It turns out that addressing simultaneously thoses issues fosters the proposed

approach to outperform PU state-of-the-art methods in terms of prediction scores without

using prior on both simple and complex image datasets.

4.5 Conclusion

In this chapter, we proposed to incorporate a constrained PU risk into the GAN discriminator

loss function in order to deal with PU learning. In this way, the proposed model generates

relevant counter-examples from a PU dataset. It outperforms state-of-the-art PU learning

methods by addressing their respective issues. Namely, it addresses the prior knowledge

dependence of cost-sensitive PU methods and the lack of generalization of selective pro-

cesses. Moreover, it reduces the PGAN first-stage overfitting, while keeping the minimalist

standard GAN architecture, such that it is easily adaptable to recent GANs variants. A side

contribution of this work is to have identified discriminator normalizations effects appearing

when one manipulates multiple minibatches distributions to deal with a PU training dataset.

Although being competitive with the state-of-the-art, the proposed approach cannot

deal with a noisy labeled positive set. A solution to overcome the issue is to extend the

proposed framework for censoring PU learning by drawing on existing asymmetric noisy

labeled learning techniques [23], as presented in the next chapter 5.
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Chapter 5

Noisy labeled learning using GANs
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The previous two chapters deal with positive and unlabeled data such that the positive set

contains only positive labeled examples, and the unlabeled set contains an unknown fraction

of negative examples supplemented with a fraction of positive examples. As discussed in

[124], the unlabeled set can be considered as a corrupted negative labeled set which contains

a fraction of correctly labeled negative examples supplemented with a fraction of mislabeled

positive examples. Furthermore, keeping in mind this equivalence, if the set labeled as

positive contains some mislabeled examples, then the resulting noisy PU dataset can be

considered as a noisy labeled positive negative dataset that includes mislabled positive and

mislabled negative instances. It turns out that some noisy labeled learning methods deal

with such training datasets containing corrupted labels. However, prediction performances

of existing methods on small-scale datasets still leave room for improvements. With this

objective, and knowing that GANs are effective for data augmentation, we propose to address

in this chapter the following question:
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• Can Generative Adversarial Networks be effectively applied to deal with small-scale

noisy labeled datasets ?

In order to answer this question, we present in this chapter a GAN-based method, referred

to as Noisy Labeled GAN (NL-GAN), able to generate a clean augmented training dataset

from a small and noisy labeled dataset. The proposed approach combines binary asymmetric

noisy labeled learning principles with GAN state-of-the-art techniques. We demonstrate the

usefulness of the proposed approach through an empirical study on simple and complex tiny

image datasets.

5.1 Introduction

Nowadays, the lack of clean labels remains an issue in many image classification applications.

As a consequence, we need to tackle the problem of handling noisy labeled data. In the

context of binary classification, a noisy labeled dataset contains examples of the positive

and negative classes, however, a fraction of the labels are flipped. Noisy labeled learning

methods [124], [167], [78] target this issue.

5.1.1 Related work

5.1.1.1 Learning from noisy labels

Some approaches can deal with class-conditional noise as in [124] and [160]; the probability

for a label to be corrupted depends on the initial ground truth value of this label. The

class-conditional noise-tolerance is proven theoretically in [124], for biased SVM and weighted

logistic regression when they use a weigthed loss function satisfying a symmetric condition.

In this way, an unbiased estimator can be obtained. However, as empirically observed in

the previous chapter, such unbiased approaches suffer from a high sensitivity to the class-

conditional noise prior knowledge estimation πP and πN as they are used in the unbiased

loss function defined as follows:

l̃(t, y) =
(1− p−y) · l(t, y)− py · l(t,−y)

1− p+1 − p−1
, (5.1)

with l the surrogate loss function, such that Eỹ[l̃(t, ỹ)] = l(t, y) for any t ∈ (−1, 1), y ∈
{−1, 1}.

Noisy labels with neural networks: The interest for using deep neural network

(DNN) classifiers for dealing with noisy labels has been introduced and empirically demon-

strated in [160]. More specifically, a DNN classifier is propoosed which incoporates a top

noisy layer enabling to correctly train the given classifier from noisy labels. Note that this

work in [160] deals with labels obtained automatically using tags from social web site or
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keywords from image search engines. This motivation is relatively close to ours, as we aim at

dealing with noisy labels automatically generated using self-supervised learning techniques

in the context of autonomous driving perception, as previously discussed in chapter 2.

Stopping the training before the overfitting of outliers (i.e. noisy labeled

instances): Transversely, it has been proposed in [112] to deal with multiclass noisy

labels. The approach adapts the training loss function of a CNN classifier depending on

the dimensionality of the latent feature map subspaces. Indeed, this dimensionality has

been empirically demonstrated to be in correlation with the overfitting of the corrupted

labels. First, the dimensionality decreases during the underfitting generalization. Then, it

increases during the overfitting. The dimensionality measure used is referred to as Local

Intrinsic Dimensionaly (LID) and has been previously introduced in [75]. An advantage

of this approach is that it is complementary to other NL related approaches in the sense

that avoiding overfitting is a particularly critical issue if one desires to train neural networks

on noisy labels. However this approach has only been tested with symmetric noise (i.e.

independent of the class) and with relatively small fractions of noise. This approach alone is

thus not appropriate for high fractions of asymmetric noise.

It turns out that Rank Pruning (RP) is a state-of-the-art solution, able to deal with

potentially high and asymmetric fractions of corrupted labels in binary classification [127]. It

consists of first iteratively identifying confident positive and negative examples. During the

second step, it trains a classifier with identified examples by considering them as correctly

labeled. However, small and complex noisy labeled datasets remain challenging.

Weakly supervised learning using GANs: Recently, some GAN-based approaches

[26], [74] have demonstrated state-of-the-art prediction performances to overcome similar

issues on partially labeled datasets. In particular, GANs are compelling for learning the

representation of sub-distributions and for data augmentation on small and complex datasets.

RP and GAN-based approaches consist of preparing a clean Positive-Negative (PN)

dataset from the input noisy one. Consequently they are referred to as two-stage methods.

5.1.1.2 GANs

We recall that the original GAN [64] is an unsupervised generative model. It contains a

classifier model, often called discriminator D, and a generator G. D is trained to distinguish

real samples xR from generated samples G(z), with z an input random vector following a

uniform or normal distribution pz. Adversarially, G is trained to generate examples which

are considered as real as possible by D. In this way, the generated examples distribution

converges towards the real examples distribution pR. This two-player game can be formalized
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with the following minimax value function:

min
G

max
D

V (G,D) =ExR∼pR [−H(D(xR), 1)]

+ Ez∼pz [−H(D(G(z)), 0)],
(5.2)

with H the binary cross entropy metric. Moreover, the GAN litterature provides nowadays

effective techniques to overcome the original mode collapse issue [152] and to improve

the hallucinated examples quality [85]. The DCGAN [136] method stabilizes the original

GAN for image datasets by using convolutional layers and batch normalization (BN) [77].

The spectral GAN [120] increases the examples quality by replacing BN with the spectral

normalization (SN). Even more recently, the SAGAN [172] has incorporated attention layers

to take into consideration spatial features correlations.

5.1.2 Contributions

To sum up, on the one hand the noisy labeled learning methods can manage noisy labeled

datasets. On the other hand, GAN-based approaches have demonstrated their effectiveness

for the partially labeled learning task on small and complex datasets. For these reasons, we

propose a novel GAN-based approach to tackle the noisy labeled learning task on small and

complex datasets. The main contributions of this work consist of:

• incorporating a noisy labeled risk inside the GAN discriminator loss function;

• carefully applying regularization techniques during the GAN adversarial training. This

addresses GAN mode collapse and discriminator overfitting issues;

• exploiting prior knowledge of the corrupted labels fractions in order to estimate the

most appropriate adversarial training labels.

The outline of the chapter is as follow. Section 5.2 presents the proposed approach.

Section 5.3 presents the experimental results. Then, the chapter ends by a conclusion.

5.2 Proposed Method

The insight of the proposed approach is to train two generators to generate examples which

are considered by the discriminator as the most positive, respectively most negative, with

the highest confidence as possible. To correctly guide the generators, we first identify the

discriminator prediction behaviour when it is trained on a noisy labeled dataset.
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5.2.1 Problem statement

We start by describing the noisy labeled dataset. The positive and negative samples xP

and xN follow distributions pP and pN respectively. The noisy labeled training dataset

is composed of partially corrupted positive and negative samples xP̂ and xN̂ with the

distributions pP̂ and pN̂ respectively. These latter are mixtures of distributions of pP

and pN such that pP̂ = πP pP + (1 − πP )pN and pN̂ = πNpN + (1 − πN )pP . πP is the

fraction of correctly labeled (not corrupted) positive examples, and πN is the fraction of

correctly labeled (not corrupted) negative examples. Finally, we make the assumption that

(πP + πN ) ∈ (1, 2), such that the majority of labels are not corrupted. In other words, we

always have (1 − πP ) + (1 − πN ) ∈ (0, 1) such that less than fifty percents of the initial

ground truth labels are mislabeled.

5.2.2 Noisy labeled training

We train the discriminator D to predict the label value 0 for corrupted positive samples

xP̂ and the label value 1 for corrupted negative samples xN̂ such that the corresponding

training loss function LNoisy is defined as

LNoisy(D) =ExP̂∼pP̂
[H(D(xP̂ ),0)]

+ ExN̂∼pN̂
[H(D(xN̂ ),1)].

(5.3)

As we use binary cross entropy H metric in the training loss function, we recall that (as

demonstrated in appendix A)

α · Ex∼px [H(x, 0)] + β · Ex∼px [H(x, 1)] = (α+ β) · Ex∼px [H(D(xN ),
β

α+ β
)]. (5.4)

with (α+ β) ∈ (1, 2). Thus considering the composition of corrupted distributions pP̂ and

pN̂ depending on πP and πN , Eq. (5.3) can be developed as

LNoisy(D) =ExP∼pP [πP ·H(D(xP ), 0) + (1− πN ) ·H(D(xP ), 1)]

+ ExN∼pN [(1− πP ) ·H(D(xN ), 0) + πN ·H(D(xN ), 1)],
(5.5)

and, by taking into account Eq. (5.4), the following resulting biased and cleanly labeled loss

function is obtained

LNoisy(D) = (πP + (1− πN ))ExP∼pP
[H(D(xP ), δP )]

+ ((1− πP ) + πN )ExN∼pN
[H(D(xN ), δN )],

(5.6)

with δP = (1−πN )
πP+(1−πN ) and δN = πN

(1−πP )+πN . In practice, if we do not know prior πP and πN ,

we can estimate δP and δN values with a clustering algorithm such as a Gaussian Mixture

Model (GMM) [122]. It is sufficient to apply GMM on the discriminator prediction output

for a training batch of noisy labeled examples (see Fig. 5.1).
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Figure 5.1: Histogram of discriminator output predictions for a training batch including
the same proportion of xP̂ and xN̂ samples. We trained D during 15 epochs on the MNIST
dataset with ”5” as the positive class, ”7” as the negative class, πP = 0.7 and πN = 0.7.
GMM clustering algorithm identifies empirically δP and δN . This histogram is empirically
consistent with the proposed equivalence between Eq. (5.3) and (5.6).

5.2.3 Noisy labeled image classification

Concerning the noisy labeled learning task, we firstly use the proposed GAN-based approach

to generate a clean augmented dataset from the noisy labeled one. Fig. 5.2 presents the

framework of this first-stage.

5.2.3.1 Generative models step: training loss functions

The proposed GAN-based model contains a discriminator D, a positive generator GP , and

a negative generator GN . We train GP to hallucinate fake positive samples xGP and we

train GN to hallucinate fake negative samples xGN . We train GP and GN to minimize loss

functions LGP and LGN , using labels δP and δN , as follow{
LGP (D,GP ) = ExGP∼pGP

[H(D(xGP ), δP )]
LGN (D,GN ) = ExGN∼pGN

[H(D(xGN ), δN )].
(5.7)

Moreover, we train adversarially D with GP and GN such that we define D training loss

function LD as

LD(D,GP , GN ) =α · [ExP̂∼pP̂
[H(D(xP̂ ),0)] + ExN̂∼pN̂

[H(D(xN̂ ),1)]]

+ β · [ExGP∼pGP
[H(D(xGP ),1)] + ExGN∼pGN

[H(D(xGN ),0)]],
(5.8)

with α and β the hyper-parameters such that α >> β. This accentuates the guidelines to

train GP and GN to converge towards the positive and negative samples distribution. As

D, GP and GN are deep convolution models, we backpropagate the training errors in their

weights with the stochastic gradient descent (SGD) method [14].

Note that in practice, we can replace the binary cross-entropy H by the mean squared

error (MSE) metric, while preserving the same training labels.
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Figure 5.2: Proposed GAN-based label denoising model: This illustrates how to generate a
cleanly labeled augmented dataset from a small input noisy labeled dataset. z represents an
input random vector following a uniform or normal distribution pz, such that xGP = GP (z)
and xGN = GN (z).

5.2.3.2 Posterior step: A standard classification

Concerning the binary noisy labeled classification task, once we have generated a cleanly

labeled augmented dataset with the proposed generative model during the first stage, we

can train a classifier C with this relevant dataset by considering xGP and xGN samples as

respectively real correctly labeled samples xP and xN .

From a practical aspect, Algorithm 3 presents the proposed GAN-based two-stage NL

framework.

5.2.3.3 Regularizations

In practice, regularization techniques ensure the expected behaviour. We use BN to help

the generators training stability and to accelerate their convergence. However, in the

discriminator we rather use SN instead of BN. As SN is a weight normalization technique, it

is not influenced by the use of four different minibatch samples distributions (see Fig. 5.2).

Moreover, we avoid overfitting problems on small datasets by using dropout [158] in the

discriminator. More specifically, we activate it during the discriminator training while it is
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Algorithm 3 Minibatch SGD training of the NL-GAN

GAN training (1st step)
for number of training iterations do

Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.

Sample minibatch of m noisy labeled positive examples {x(1)
P̂
, ..., x

(m)

P̂
} from data

distribution pP̂ .

Sample minibatch of m noisy labeled negative examples {x(1)
N̂
, ..., x

(m)

N̂
} from data

distribution pN̂ .
Update D by descending its stochastic gradient:

∇θD
1

m

m∑
i=0

[
− α

[
log[1−D(x

(i)

P̂
)] + logD(x

(i)

N̂
)
]

− β
[
logD(GP (z(i))) + log[1−D(GN (z(i)))]

]]
Sample minibatch of m noise samples {z(1), ..., z(m)} from noise prior pz.
Update GP by descending its stochastic gradient:

∇θGP
1

m

m∑
i=0

[
− δP · logD(GP (z(i)))− (1− δP ) · log[1−D(GP (z(i)))]

]
Update GN by descending its stochastic gradient:

∇θGN
1

m

m∑
i=0

[
− δN · logD(GN (z(i)))− (1− δN ) · log[1−D(GN (z(i)))]

]
end for
Classifier training (2nd step):
for number of training iterations do

Sample minibatch of m noise samples {z(1), ..., z(m)} from data distribution pz.
Update C by descending its stochastic gradient:

∇θC
1

2 ·m

m∑
i=1

[
l(C(GP (z(i))), 1) + l(C(GN (z(i))), 0)

]
end for
The gradient-based updates can use any standard gradient-based learning rule. We use
Adam in our experiments. l is an arbitrary binary classification cost-function which can
be for instance binary cross-entropy H or mean squared error MSE.

disabled during the generators trainings.

The next section demonstrates the effectiveness of the proposed approach through an

empirical study.

5.3 Experiments

The proposed approach has been tested on small and complex image datasets MNIST [96]

and CIFAR-10 [92]. First, we present experimental settings defining the way to simulate a

binary classification dataset with noisy labels and the proposed learning model architecture

with training hyper-parameters. Then, we present the cleanly labeled samples generated

from noisy labeled datasets. Finally, we show that the accuracy prediction performances,
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obtained on small and complex highly corrupted datasets, confirm the proposed approach

competitiveness.

5.3.1 Settings

In order to test our approach, we first prepared appropriate challenging NL datasets.

5.3.1.1 Noisy labeled dataset simulation

The main goal of this chapter is to test a NL stategy using GANs on small-scale training

sets which are highly corrupted. Thus, we simulated the corrupted labels from fully cleanly

labeled datasets MNIST and CIFAR-10 depending on prior knowledge parameters πP and πN

as illustrated in Fig. 5.3. More specifically, we aimed at simulating the following corrupted

training sets:
P̂NL−train = {πP · nP̂ P ; (1− πP ) · nP̂ N},

N̂NL−train = {πN · nN̂ N ; (1− πN ) · nN̂ P},
(5.9)

where notations a P and b N respectively refer to a positive and b negative items (i.e. images

or examples), and nP̂ and nN̂ are correspondingly the total number of instances present in

the simulated corrupted positive and negative training sets P̂NL−train and N̂NL−train. To

comply with this requirement for binary symmetric (i.e. πP = πN ) and asymmetric NL

learning (i.e. πP 6= πN ), we propose to up-sample or down-sample the number of items

included in the initial cleanly labeled sets depending on πP , (1− πP ), πN , (1− πN ), nP̂ , nN̂

in such a way that we get:

Pinit−train up−down sampled = πP · nP̂ + (1− πN ) · nN̂ P,

Ninit−train up−down sampled = πN · nN̂ + (1− πP ) · nP̂ N,
(5.10)

with Pinit−train up−down sampled and Ninit−train up−down sampled the up-sampled or down-

sampled initial training datasets. By following the previously presented requirements,

empirical comparative experiments are performed with rates of corruption settled up to

fourty percents (i.e. πP = 0.6) and on small sizes of sets as detailed in Table 5.1. A size of 100

for the MNIST task {5; 7−vs−2, 4} means that we only use in average 25 partially corrupted

examples for each subclass. Thus, after such drastic dataset reductions, we systematically

perform an upsampling such that the training datasets used always have a size of 10000

examples. It introduces redundancy in the training dataset, but it empirically enables to

keep the same number of epochs iterations for any dataset reduction. Hyper-parameters

and the proposed framework architecture are presented in next section.
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Figure 5.3: Visualization of our simulated NL training data compared to the initial cleanly
labeled data. πP and πN represent the fraction of not corrupted positive and negative labels
present in the NL training dataset.

Table 5.1: Composition of the simulated training sets with noisy labels depending on πP
and πN , and resulting GP and GN training loss function parameters δP and δN .

NL training sets contents πP = 0.85, πN = 0.85 πP = 0.7, πN = 0.85 πP = 0.6, πN = 0.65

Size: 1000
P̂NL−train = {425 P ; 75 N}
N̂NL−train = {75 P ; 425 N}

P̂NL−train = {350 P ; 150 N}
N̂NL−train = {75 P ; 425 N}

P̂NL−train = {300 P ; 200 N}
N̂NL−train = {175 P ; 325 N}

Size: 100
P̂NL−train = {43 P ; 7 N}
N̂NL−train = {7 P ; 43 N}

P̂NL−train = {35 P ; 15 N}
N̂NL−train = {7 P ; 43 N}

P̂NL−train = {30 P ; 20 N}
N̂NL−train = {17 P ; 33 N}

GP and GN loss function parameters δP = 0.15, δN = 0.85 δP = 0.18, δN = 0.74 δP = 0.37, δN = 0.62

5.3.1.2 Settings of the proposed GAN-based NL framework

Concerning the loss function LD, we established empirically α = 5 and β = 0.5, while

parameters δP and δN of generator loss functions LGP and LGN are theoretically inferred

depending on prior knowledge πP and πN and indicated in Table 5.1. For the corresponding

first-stage learning models D, GP and GN , we adapted the previous DCGAN [136] architec-

ture to this novel framework as specified in Fig. 5.4. D contains two bottom convolutional

layers, followed by two top fully-connected layers. The input convolutional layer contains 64

3*3 filters, the next one has 128 3*3 filters, and the hidden fully connected layer has 1024

filters. GP and GN contain symetrically two bottom fully connected layers followed by two

deconvolutional layers with the same number of filters. The generators input is a vector z

of 100 random values following a uniform distribution. As discussed in the regularization

subsection, we use BN on the generators deconvolutional layers. In D, we apply SN on

convolutional layers, and dropout of 0.5 in the fully connected hidden layer. To deal with the

relatively complex CIFAR-10 image dataset containing 32*32*3 RGB images, we included

in D an additional hidden convolutional layer with 256 filters. GP and GN consequently

include a hidden deconvolutional layer. Concerning the second-stage classifier C, we use
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the convolutional structure previously mentioned in [26] 1. We use the Adam SGD method

[88] for all previously enumerated learning models, and a learning rate initialized to 2 · 10−4

during the first-stage and to 1 · 10−4 during the classification step. We train D, GP and GN

adversarially during 40 epochs on MNIST and during 500 epochs on CIFAR-10. Then, we

train during 25 epochs the classifier C, as we train RP 2 during 25 epochs.

Input: z ∈ R100 ∼ N (0, 1)

FullyConnected (1024)
BN

ReLU

FullyConnected (256× h
8 ×

w
8 )

BN
ReLU

DeConv2D* (128 filters 4× 4)
BN*

ReLU*

DeConv2D (64 filters 4× 4)
BN

ReLU

DeConv2D (ch filters 4× 4)
Sigmoid

Output: Image x ∈ Rh×w×ch

(a) Generators GP and GN

Input: Image x ∈ Rh×w×ch

Conv2D (64 filters 4× 4)
SN

LeakyReLU

Conv2D (128 filters 4× 4)
SN

LeakyReLU

Conv2D* (256 filters 4× 4)
SN*

LeakyReLU*

FullyConnected (1024)
SN

LeakyReLU

Dropout (0.5)
FullyConnected (1)

Sigmoid

Output: Scalar y ∈ (0, 1)

(b) Discriminator D

Input: Image x ∈ Rh×w×ch

Conv2D (32 filters 5× 5)
ReLU

Maxpooling (2× 2)

Conv2D (64 filters 5× 5)
ReLU

Maxpooling (2× 2)

FullyConnected (1024)
ReLU

Dropout (0.5)
FullyConnected (2)

Softmax

Output: One hot vector y ∈ (0, 1)2

(b) Classifier C

Figure 5.4: Convolutional GAN model architecture used for 28*28 grayscale MNIST and
32*32 RGB CIFAR-10 image datasets. For MNIST we set h=28, w=28, ch=1. For CIFAR-
10 we set h=32, w=32, ch=3. Minibatch size: 64, optimizer: Adam, strides of 2 × 2 for
generators Deconv2D and discriminator Conv2D layers, strides of 1 × 1 for the classifier
Conv2D layers. We trained the model during 40 epochs and 1000 epochs respectively on
MNIST and CIFAR-10 datasets. Functions assigned with * are added when dealing with
the latter.

5.3.2 Qualitative results

Fig. 5.5 illustrates the images that the proposed approach is able to generate on MNIST and

the natural image dataset CIFAR-10. We corrupt up to 40 percents of the training labels.

However, despite the fact that the generated examples are cleanly labeled, the hallucinated

images quality probably still has the potential to be improved with hyper-parameters

fine-tuning study in the context of this novel framework.
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xP̂ xN̂ xGP xGN

πP = 0.6 πN = 0.65

πP = 0.7 πN = 0.85

πP = 0.85 πN = 0.85

Figure 5.5: Cleanly labeled dataset generation from noisy labeled datasets. The two left
columns present noisy labeled minibatch input positive samples xP̂ and negative samples xN̂ .
The two right columns present output generated minibatch samples xGP and xGN . The first
row presents results for MNIST classification task 5-vs-7 when πP = 0.6 and πN = 0.65. The
second row presents results for MNIST classification task {5; 7}-vs-{2; 4} when πP = 0.7 and
πN = 0.85. The third row presents results for CIFAR-10 classification task Car-vs-Airplane
when πP = 0.85 and πN = 0.85. Visually, every generated samples observed hallucinate
cleanly labeled examples.

5.3.3 Comparative results

Table 5.2 presents comparative accuracy prediction performances on small corrupted training

datasets. PN baseline reference in Table 5.2 represents a training of the classifier, used during

the second stage, on the initial dataset reduced and without corrupted labels, such that

1https : //github.com/tensorflow/tensorflow/blob/master/
tensorflow/examples/tutorials/mnist/mnist softmax.py

2RP code is available at: https : //github.com/cgnorthcutt/rankpruning
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Table 5.2: Two-stage noisy labeled learning comparative results in terms of test accuracy
prediction performances on small noisy labeled image datasets. As we use a SGD optimization
method, each result is respectively the average of five identical independent trainings.

Test Accuracy ref πP = 0.85, πN = 0.85 πP = 0.7, πN = 0.85 πP = 0.6, πN = 0.65

{5; 7}-vs-{2; 4}MNIST PN NL-GAN RP NL-GAN RP NL-GAN RP

Size: 1000 0.97 0.961 0.965 0.956 0.948 0.926 0.809

Size: 100 0.9 0.909 0.892 0.881 0.853 0.814 0.703

Car-vs-AirplaneCIFAR-10 PN NL-GAN RP NL-GAN RP NL-GAN RP

Size: 1000 0.878 0.843 0.833 0.824 0.794 0.704 0.659

Size: 100 0.789 0.789 0.761 0.782 0.739 0.687 0.64

πP = 1 and πN = 1. The other columns show results for three experiments: πP = πN = 0.85,

πP = 0.70 and πN = 0.85, and πP = 0.60 and πN = 0.65, respectively.

The proposed approach, referred to as Noisy Labeled GAN (NL-GAN), globally outper-

forms RP method on both MNIST and CIFAR-10 datasets. In particular, the proposed

approach becomes especially interesting with high fractions of corrupted training labels.

Nonetheless, because of the adversarial training, we recall that 500 first-stage epochs itera-

tions are necessary on CIFAR-10 to get these results while only 40 epochs are necessary on

MNIST. Therefore, if we can afford the computational complexity, the proposed approach

remains competitive on complex image datasets like CIFAR-10.

5.4 Conclusion

In this chapter, we proposed a novel GAN-based framework to deal with small-scale noisy

labeled image datasets. The proposed approach compares favorably with the state-of-the-art

in terms of prediction performances. Furthermore, experimental results show that it is

possible to generate an augmented cleanly labeled dataset from asymmetric noisy labeled

datasets with GANs. Thus, combining GANs and NL learning is an answer for the lack of

clean hand-labeled training data.

However, we expect that the proposed approach can further be improved for complex

images by including recent GAN-based advances [17] as discussed in chapter 7.

The next chapter 6 presents real application adaptations of PU and NL techniques in the

context of aerial and urban road image analysis for potentially moving obstacles detection

and semantic segmentation from, weakly hand-labeled datasets, or partial automatic labels

obtained using hand-crafted techniques playing the role of supervision through a complete

self-supervised learning framework.
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Chapter 6

Applications
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In this chapter, we propose to apply weakly supervised image classification strategies

studied in previous chapters for real image understanding applications. More specifically,

this chapter addresses the following questions:

• 1) Is Positive Unlabeled data useful to address an object detection task on aerial

images?

• 2) Is Positive Unlabeled data useful to address an urban semantic segmentation task?

• 3) Is it possible to detect, segment, and classify urban moving obstacles without

hand-labeled data?

Corresponding answers are respectively presented in next sections in the same order.
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6.1 PU learning for vehicle detection on aerial images

This section presents a solution for vehicle detection on aerial images using PU learning.

This objective is to drastically reduce the need of hand labeled training data required

with Positive Negative (PN) techniques, while providing equivalent or better prediction

performances. Although the selected object detection strategy which incorporates the

proposed PU technique is not novel, to the best of our knowledge, we are the first to apply

PU techniques for an object detection task.

Sec. 6.1.1 introduces the target application and its specificities. Sec. 6.1.2 presents the

object detector integrating the PGAN framework (see chapter 3) in order to deal with a PU

object detection dataset. Sec. 6.1.3 presents experiments demonstrating the potential of PU

learning techniques for vehicle detection from aerial images. Then a conclusion is drawn in

Sec. 6.1.4.

6.1.1 Context and Motivation

Image object detection is a common task in the state-of-the-art computer vision literature. It

consists of automatically delineating with bounding boxes the target objects in a given image.

During the last decade, object detection techniques, such as Faster R-CNN [144] and Yolov3

[143], have appeared, using deep convolutional neural networks for visual feature extraction.

They achieve state-of-the-art performances, both in terms of predictions [144] and real-time

computational cost [143]. However, such competitive techniques require large-scale labeled

datasets. Thus, if one aims at applying an object detector on a novel target domain, then

an adapted labeling effort is required which can entail a significant cost.

This section focuses on object detection on aerial images for civil [28] and military

applications. More specifically, we focus on vehicle detection [21], [8]. Providing automatic

suggestions of detection to an operator has the potential to ease and accelerate his task. In

our context, it is required to consider the following restricting conditions:

• Avoid False Negative (FN) predictions in order to not miss potential vehicles of interest.

• The object detector is applied on low-resolution images.

• Altitude of the aerial camera view point is constant.

• Reduce as much as possible hand-labeling task of the operator for the training stage.

For instance, the operator may only have to partially label the training data.

The first point can be addressed by enabling the operator to adjust the detection threshold.

We address the second point by using deep learning architectures dedicated to dealing
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with tiny images. With the third point, we do not need to consider multiscale analysis.

Concerning the last point, it turns out that unlabeled data of the target domain are easily

available during the offline training step. Thus, we propose to drastically reduce the need

of labeled data by only focusing the labeling effort for positive instances and by exploiting

unlabeled data instead of counter-examples. In other words, it is equivalent to performing

PU learning. Thus, we propose to address this visual object detection task using a classifier

trained through the GAN-based PU framework introduced in chapter 3 and referred to as

PGAN.

6.1.2 Proposed approach

We propose to adopt the sliding window strategy, commonly used for object detection task,

as the object detection task can then be defined as a classification problem. Consequently,

we can directly adapt the previously proposed PGAN image classification PU techniques.

The sliding window strategy consists of applying a classifier as a patch filter on the given

image to analyze. In this way, a prediction score is obtained for several overlapping location

in the target image. Then, in order to keep only the most relevant location, we apply

Non-Maximum Suppression (NMS) algorithm using bounding box size and coordinates in

order to estimate the intersection over union (i.e. interestion area between two given boundox

boxes) of existing bounding boxes. Finally, we only keep the non-overlapping bounding

boxes with the highest prediction probabilities.

In order to perform a sliding window strategy during the prediction step, we first need

to train the classifier to apply on this sliding window.

6.1.2.1 PU classifier training

Concerning the PU training of the classifier, we need a learning technique able to deal

with a PU dataset without prior knowledge concerning the unlabeled data. Moreover, the

images under consideration have low-resolution, represent natural content, and contain

color information. The PGAN technique does not suffer from overfitting on tiny complex

RGB images, empirically demonstrated on CIFAR-10 and STL-10 datasets in chapter 3.

Therefore, we propose to use the PGAN technique to address this vehicle detection task on

aerial images.

In this context, we provide sets of vehicle patch images (i.e. positive examples) and

unlabeled patches, which potentially include a high fraction of background counter-examples,

as input to the PGAN. This patch dataset preparation is detailed in Sec. 6.1.3.

Then, as PGAN is a two-stage technique, we only keep the second-stage trained classifier

during the detection task.
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6.1.2.2 Object detector

Concerning the object detector, the framework is relatively simple. As we know that the

distance with the ground is constant, all vehicles approximately have the same scale. Hence,

we only apply the sliding window classifier on a single scale. The size of the sliding window

has been defined statistically using the prior information of the median size of vehicles in

terms of pixels from the given altitude of the camera view point. In addition, it is not

necessary to have the orientation and width/height of the detected vehicles. Thus, the

presented detector does not integrate additional regression predictions to complement the

classifier role.

First, we apply the trained classifier on patches extracted with a sliding window. In

order to reduce the computational time, we decide to first extract all patches to be classified

of the given aerial image to process, and then we apply simultaneously and independantly

the classifier on every patch through parallelization on a GPU. Then, we keep the patch

coordinates for which the classifier has predicted a positive probability higher than a pre-

defined threshold. This threshold is selected by the operator depending on the desired False

Positive rate.

Then, in order to reduce the number of false detections while preserving isolated detections

with low confidence, we apply the Non-Maximum-Suppression (NMS) algorithm. In this

way, we only keep the best centered patches coordinates. IoU threshold parameter of NMS

is also a parameter predefined by the operator.

The next section shows the experimental results of the developed approach.

6.1.3 Experiments

This experiment section is structured as follow. First, we describe the parameter settings

concerning the dataset, and learning model architectures. Then, we present PGAN generated

images that we consider as counter-examples during the PGAN second-stage. We also

illustrate the object detector inputs and outputs. Next, we show an example of the proposed

PU detector predictions when it is trained with few positive labeled examples and unlabeled

examples. Finally, we present experiments comparing a PN training with a Positive Unlabeled

training in terms of classification prediction performances.

6.1.3.1 Settings

Aerial image dataset preparation: We use VEhicle Detection in Aerial Imagery (VEDAI)

dataset [140] as it is composed of 1269 labeled aerial images which contain 1378 labeled car

vehicles. Images are available with 1024*1024 and 512*512 RGB pixel resolutions. In order

to train the classifier, we extract patches of size 48*48*3 for 1024*1024*3 images, and of
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size 24*24*3 for 512*512*3 images. We have defined these patch dimensions by computing

the median width and height of ground truth bounding box annotations of car vehicles. In

this way, we have extracted patches centered on car vehicles concerning the positive sets.

Concerning negative examples, we have randomly extracted up to 9000 patches corresponding

to the background. However, for the unlabeled set, we have randomly extracted 18000

patches without considering potential overlaps with annotated positive vehicle patches. The

last 400 car vehicles are used for the test evaluation of classifier prediction performances.

During the training step, we perform a data augmentation processing including horizontal

and vertical patch flipping, translation and rotation transformations. Moreover, we perform

upsampling on small-scale datasets in order to have 18000 instances for each training set.

Learning models: Concerning the first-stage generative adversarial network, we have

selected the Wasserstein GAN (WGAN) [1] optimization process as it converges relatively

faster than the original GAN [64] towards a given target distribution. In order to deal with real

natural tiny visual patches, we have used the DCGAN architecture. Concerning the second-

stage classifier, we have adapted the ResNet model with 32 layers (ResNet32) to 48*48*3 and

24*24*3 resolutions. This model is an interesting compromise between prediction accuracy

and computational cost, which motivated our choice. In these experiments, ResNet32 is

trained during 20 epoch iterations. As we deal with sets of small size, this training duration

avoids potential overfitting issues. The sliding window has an arbitrary stride of 6 on

1024*1024 images and a stride of 3 on 512*512 images.

Sec. 6.1.3.2 presents visual predictions of the developed GAN-based PU detector.

6.1.3.2 Qualitative results

Fig. 6.1 shows the evolution of generated samples appearence during the PGAN first-stage

training. We can observe that the quality progressively increases while still exhibiting some

visual artifacts. This weak visual quality is maybe due to the fact that the background

lacks specific visual patterns in opposition to vehicles. Moreover, the mode collapse issue

prevents the GAN to learn to generate vehicles distribution as their proportion in unlabeled

data is drastically smaller than background examples. As an advantageous consequence,

we can observe that exclusively counter-examples distribution of our class of interest is

learned. On another note, as previously discussed in chapters 3 and 5, it is not necessary to

generate samples of good visual quality to have interesting prediction performances during

the second-stage classifier training. Thus, for reasons of computational time, and despite

the fact that the generated samples visual quality still has the potential to be improved, we

arbitrarily decided to stop the PGAN first-stage training at 2500 epoch iterations.
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Figure 6.1: Visualization of generated images during the first-stage training of the PGAN.
The model is trained on 18000 unlabeled patches of size 24*24*3 randomly selected in the
512*512*3 aerial images of VEDAI dataset.

Fig. 6.2 presents predictions of the proposed PGAN detector approach when it is trained

with few positive examples. Moreover, NMS is used to avoid several detections for a given

single instance. Car vehicles are correctly detected, but we can also observe some false

positive detections. However, we recall that the number of labels is drastically reduced and

that the final application is to propose an assisting tool. Moreover, the prediction map

shows that the trained PU classifier is very sensistive to most of the salient regions.

0 256 512

0

256

512

Aerial input image PGAN detector output Prediction map

Figure 6.2: Visualization of PGAN detector predictions using only 100 vehicle patches and
unlabeled patches randomly selected. The prediction map is obtained by concatenating
predictions outputs of the positive class neuron of the sliding window classifier.

Now that we have shown the predicted outputs of the proposed framework, we propose

to evaluate the interest of the proposed model in terms of prediction performances with few

labeled examples.
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6.1.3.3 Quantitative comparison

We used SGD optimization method which brings prediction variations on small-scale datasets.

Each test accuracy result presented in this section is the average of five identical independent

trainings for which we have respectively preserved the best test Accuracy.

Before evaluating the PGAN detector, we first compare the prediction performances

of the state-of-the-art classifier ResNet32, depending on the resolution and on the size of

the labeled PN training dataset. We observe in Table 6.1 equivalent or better prediction

performances of ResNet32 classifier with 24*24*3 patches than with higher resolution 48*48*3

patches. Surprisingly, results are globally better with the lowest resolution. This may be due

to the fact that the exploited ResNet32 architecture was initially designed for tiny images of

CIFAR-10 dataset.

Table 6.1: Comparative results in terms of test accuracy prediction performances on small-
scale PN image datasets.

Test Accuracy Car-vs-RestVEDAI

training sets {900 P ; 9000 N} {100 P ; 900 N} {100 P ; 100 N} {50 P ; 50 N} {10 P ; 10 N}

Window size: 48 ∗ 48 ∗ 3 0.992 0.957 0.883 0.872 0.621

Window size: 24 ∗ 24 ∗ 3 0.993 0.961 0.898 0.869 0.667

In order to observe the potential interest of PU techniques for real aerial images analysis,

we propose to compare PN and PGAN trainings. In these experiments, both techniques

use the same ResNet32 [72] classifier architecture. Concerning the first-stage generative

model, it is trained during 2500 epoch iterations. Comparative results are presented in Table

6.2. We can observe that the GAN-based PU technique enables to drastically reduce the

number of labeled instances while preserving results competitive with PN trainings. For

instance, the PGAN technique using 100 positive examples achieves a similar prediction

score as the PN training with ten times fewer labeled examples. Moreover, with very few

labeled examples, the PGAN approach significantly outperforms the predictions of the PN

training. However, from the operator point of view, a classifier with a prediction accuracy of

0.828 still may not be enough to help during the analysis task.

Table 6.2: Comparative results in terms of test accuracy prediction performances on small-
scale PN (i.e. the baseline) and PU image datasets. ResNet32 classifier is directly applied
on PN sets while PGAN method is applied on PU training sets. ∞ symbol corresponds in
practice to 18000 unlabeled patches.

Test Accuracy Car-vs-RestVEDAI

methods PN PGAN PN PGAN PN PGAN PN PGAN
training sets {100 P ; 900 N} {100 P ;∞ U} {100 P ; 100 N} {100 P ;∞ U} {50 P ; 50 N} {50 P ;∞ U} {10 P ; 10 N} {10 P ;∞ U}

Window size: 24 ∗ 24 ∗ 3 0.961 0.962 0.898 0.962 0.869 0.952 0.667 0.828
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To sum up on these experiments, it is possible to adopt a PU detection strategy in

order to drastically reduce the need of labeled training data. Nonetheless, a minimum

labeling effort is still required with the presented technique in order to provide an exploitable

detector.

6.1.4 Conclusion

To conclude, we can answer to the first question of this chapter as follows:

• Yes, it is possible to apply a PU training dataset for car vehicle detection on aerial

images. However, the presented approach needs further improvements to provide more

accurate predictions, for instance by applying a regressor on feature maps predicted at

the classifier top layers, for predicting the detected vehicles width and height.

6.2 Positive Unlabeled analysis for semantic segmentation of
urban potentially moving obstacles

This section studies the ability of a deep learning segmentation model to deal with a Positive

Unlabeled segmentation dataset. In the context of autonomous vehicle perception, we focus

on the task of segmenting potentially moving obstacles.

The outline of this section is as follow. Sec. 6.2.1 presents the motivation of this work.

Sec. 6.2.2 presents a novel generic and simple strategy for Positive Unlabeled Segmentation

task, referred to as PUseg. Sec. 6.2.3 presents the corresponding empirical results obtained

on a PU segmentation dataset simulated using Cityscapes dataset [32]. Sec. 6.2.4 draws a

conclusion.

6.2.1 Context and Motivation

This section first presents the targeted autonomous vehicle perception application and

then presents two distinct types of existing solutions: Analytical and learning methods.

Then, we introduce a self-supervised learning framework combining advantages of previously

mentioned techniques, such that it is able to deal with the lack of hand-labeled data. This

framework is based on a PUseg model, which is the focus of this section. Corresponding

contributions are then stated before describing the PUseg model in Sec. 6.2.2.

6.2.1.1 Targeted application: Potentially Moving Obstacles Segmentation with-
out hand-labeled data

A target application in autonomous driving is the ability to robustly identify surrounding

potentially moving obstacles (i.e. moving obstacles, but also static obstacles which can
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potentially move in the near future.) of the ego-vehicle. In the urban scene context, these

obstacles are generally other road users, such as vehicles, cyclists, and pedestrians. Correctly

identifying them is a critical task for an autonomous vehicle for safety reasons. However,

their shapes may be complex and varied.

Analytical techniques (i.e. hand-crafted) enable to correctly highlight the moving ones

during the sensor data analysis. Several techniques are mentioned in the overview presented

in [94]. These strategies are often based on computing temporal variations of the target visual

scene, for example using temporal camera frame sequences, as proposed in [9], using optical

flow or in [53] and [182] by performing background subtraction [15] using an EM-based [125]

Gaussian Mixture Model (GMM) algorithm [138].

Conversely, some recent deep learning methods, as discussed in surveys [42] and [105],

present state-of-the-art prediction performances to detect obstacles [133], even in real-time

from a single monocular camera frame [168]. Furthermore, all potentially moving obstacles

can be delineated by combining such bounding box detection modules with a semantic

segmentation mask [71]. However, this type of approach often needs to be trained with a large

number of manually annotated data. As previously discussed in chapter 1, this limitation

combined with a potential overfitting on training data, reduces prediction performances of

pre-trained state-of-the-art techniques on a specific real world application unlabeled dataset.

As a consequence and to the best of our knowledge, state-of-the-art learning techniques still

leave the door open to identify all potentially moving obstacles instantaneously at a given

frame, without using any training hand-labeled data. It turns out that, from a practical point

of view, it can be easy to acquire unlabeled data for urban autonomous driving applications.

6.2.1.2 Motivation

Based on the above analytical and learning strategies, we envision to exploit labeling

information automatically extracted from unlabeled camera sensor data with analytical

techniques to train a learning model through a partially labeled dataset: Identified moving

obstacles represent examples of our class of interest (i.e. the positive class potentially moving

obstacle), the tip of the iceberg of all potentially moving obstacles. The hidden parts of this

iceberg, in other words the remaining static visual patterns, are considered as unlabeled.

Indeed, a static region can also be a potentially moving obstacle, which can start to move in

the near future. Examples include a car waiting in front of a stop sign, a pedestrian waiting

to cross the street, or any of them constrained to remain static on the traversable area due

to an accident.

In practice, we propose to capture some moving positive instances using GMM background

subtraction from a static point of view to reduce as much as possible the false positive
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per-pixel labels. Complementarily, we propose to record unlabeled data from a moving

ego-vehicle in order to capture as many unlabeled counter-examples (i.e. everything which

is not a potentially moving obstacle) as possible. These two Positive and Unlabeled sets

define a Positive Unlabeled segmentation (PUseg) learning challenge. The proposed SSL

PU framework combining background subtraction and PU learning for potentially moving

obstacle segmentation is summarized through the illustration in Fig. 6.3.

Figure 6.3: Potentially moving obstacles segmentation through a monocular visual learn-
ing framework partially self-supervised using temporal information. This potential Self-
supervised framework provides us the guidelines to follow to design our PUseg model S to
integrate inside.

6.2.1.3 Contribution

In order to deal with the PUseg challenge included in this SSL application framework, the

following provides a preliminary study showing a proof of concept for performing a PUseg

task. Moreover, this empirical study shows that it is possible to coarsly estimate the fraction

of positive examples present in the unlabeled training set. This PUseg study includes the

following contributions:

• Study the behaviour of an AE designed for image segmentation when it is trained on

a PU dataset.

• Highlight the possibility to coarsly estimate prior knowledge of a sample set of a given

PUseg training dataset.

Sec. 6.2.2 presents the proposed PUseg framework.

6.2.2 Proposed PUseg approach

The main idea of the proposed approach consists of adapting PU classification baseline

principles to PUseg. This enables to directly consider PUseg as the PU classification problem

[7] previously addressed in chapters 3 and 4.
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More specifically, we propose to consider every pixel-level predicted label as an indepen-

dant output of a given classifier. This PUseg problem formalization leads us to the folllowing

assumption: If one trains a learning segmentation model with PU labels, then, for a given

pixel, we can observe at the corresponding predicted output a histogram of predictions

similar to the histogram of a biased PU classifier. Consequently, this pixel-level histogram

of predictions should be a mixture of the two following distributions:

• The distribution of negative pixels, centered around the label associated to unlabeled

items.

• The distribution of positive pixels, centered around an intermediate label value δ

depending on the fraction of unlabeled positive pixels.

Positive pixels and negative pixels, respectively, refer to pixels of the positive and the

negative classes. Now that we know the expected behavior of the PUseg model, we need

to define the requirements of such a learning model. In particular, we need to choose the

appropriate training loss function and the segmentation model architecture to train with.

6.2.2.1 Biased PU training loss function with symmetric properties

The PU training loss function must be able to separate positive from negative pixel examples

using PU labels. As discussed in chapter 4, a biased solution without using prior knowledge

is to enforce the trained model to associate a unified intermediate label value δ ∈ (0, 1),

depending on the unknown prior knowledge, with all positive examples (i.e. labeled and

unlabeled positive examples), and a distinct label value for unlabeled negative examples.

In this PUseg context, the prior knowledge refers to the fraction α of unlabeled positive

examples over the total number of positive examples (i.e. the sum of labeled and unlabeled

positive examples).

The correct convergence of the learning model must ensure that the empirical intermediate

label value predicted for positive examples corresponds to the theoretical argument of the

global minimum of the selected biased PU training loss function. The interest is that given

an empirical estimation of the global minimum argument equal to δ, one can deduce the

prior knowledge α.

Problem statement: We want to associate negative samples xN following the distribu-

tion pN to the negative class label 0, and the positive samples xP following a distribution pP

to a different label value. Thus, we propose to associate available unlabeled samples xU to

the label 0 and the labeled positive samples to the label value 1. In terms of proportion in

the training PU dataset, let β be the fraction of positive samples and (1− β) be the fraction

of negative samples. And let α be the fraction of positive example which are unlabeled as
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previously mentioned. We define the global distribution pPU of the PU dataset samples xPU

as
pPU = β · pP + (1− β) · pN

= βα · pP + β(1− α) · pP + (1− β) · pN

= β(1− α) · pP + pU ,

(6.1)

with pU = βα · pP + (1− β) · pN . Now let S be our segmentation model which takes as input

pixel samples following the distribution pPU , and which predicts for a given input pixel a

value over an interval between 0 and 1. Let LPU be the biased PU training loss function of

the proposed PUseg model S that we train to associate the label 1 to labeled positive pixels

and the label 0 to unlabeled pixels. Let l be the cost function used in LPU to associate a

label to a given sample. Considering the above considerations, we define LPU as

LPU (S) = β(1− α) · ExP∼pP [l(S(xP ), 1)] + ExU∼pU
[l(S(xU ), 0)]. (6.2)

According to the composition of the distribution pU and the expectation linearity, we can

develop LPU as

LPU (S) =β · ExP∼pP
[
(1− α) · l(S(xP ), 1) + α · l(S(xP ), 0)

]
+ (1− β) · ExN∼pN

[l(S(xN ), 0)].
(6.3)

Desired loss function properties: The selected loss function l must associate all

positive examples following the distribution pP to a label value different to the label associated

to pN . Thus, we propose the two following desired properties for the cost function l:

• A unified intermediate label value δ can be associated to given samples xA following

the distribution pA if one asssociates the latter, using l, to two different label value yB

and yC , depending on the fraction α such that:

arg min
xA

(l(xA, δ)) = arg min
xA

(
α · l(xA, yB) + (1− α) · l(xA, yC)

)
= δ,

(6.4)

with δ = α·yB+(1−α)·yC
α+(1−α) .

• l must be symmetric such that its input arguments can be permuted as follows:

l(y1, y2) = l(y2, y1), (6.5)

with y1 and y2 the input arguments.

The second condition is due to the empirical observation that with symmetry, the labeled

positive examples distribution can be learned at the same rythm that unlabeled positive
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examples. This ensures in practice that the learning model predicts on average the δ

intermediate label value depending on α for all input pixel positive examples.

Loss function selection: The binary cross-entropy loss function H has been used in

the previous chapters for weakly supervised learning tasks. But we empirically observed

that it is not the best candidate to estimate prior knowledge during the training due to

its asymmetry: Labeled positive examples distribution is not learned at the same rythm

that unlabeled positive examples distribution. Consequently, we do not use H hereafter.

As developed in Appendix A, it turns out that Mean Squared Error (MSE) is a symmetric

loss function with interesting properties for dealing with corrupted training labels. MSE

respects both conditions mentioned with eq. (6.4) and eq. (6.5). MSE presents the wished

symmetric and global minimum argument caracteristics, while enabling a deep learning

model to converge sufficiently fast. Therefore, we propose to use MSE as the cost function l,

such that we can formulate LPU as

LPU (S) = β(1− α) · ExP∼pP [MSE(S(xP ), 1)] + ExU∼pU
[MSE(S(xU ), 0)], (6.6)

with MSE(y1, y2) = (y1 − y2)2, with y1 and y2 the input arguments.

Prior knowledge estimation: Concerning the prior knowledge estimation, as MSE

respects the previously mentioned conditions, then considering the labels associated using

LPU to labeled and unlabeled examples, one can deduce that

δ =
α · 0 + (1− α) · 1

1
⇔ α = 1− δ. (6.7)

Thus, prior knowledge α can be estimated by computing the empirical average prediction of

the trained PUseg model S for available labeled positive pixels.

Next section presents the selected segmentation model architecture.

6.2.2.2 Segmentation model architecture

AutoEncoder architecture for image segmentation: Several learning model archi-

tectures designed for image semantic segmentation have been previously proposed in the

literature as detailed in [57]. State-of-the-art techniques generally present an architecture

composed of an encoding step. Some convolutional layers of classifier architectures can be

used during this step. Then, during the second step, a decoding model takes as input the

encoded latent space of a given input image. Inspired by deep learning image classification

techniques, this decoder can use convolutional layer combined with upsampling filters, or

dilated, transposed convolutional layers. To deal with the semantic segmentation task, a

softmax top layer is finally added as output of the decoder to predict a per-pixel semantic

classification.
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AutoEncoder for weakly supervised learning: It has been previously proposed in

[118] to deal with PU image classification using an AutoEncoder. Although this was not a

pixelwise semantic segmentation task, this shows the potential of AEs to deal with PU image

datasets. On another note, a self-supervised feature learning technique proposed in [129]

shows autoencoder segmentation models ability to smooth output predictions despite noisy

input labels. Recently, it has been proposed in [73] to deal with noisy labels for biomedical

images using state-of-the-art AutoEncoder segmentation architectures as FCN [108], SegNet

[3] [86], U-Net [148]. U-Net has been highlighted through this study as the more robust

model. This confirms the ability of decoding layers of a segmentation autoencoder to behave

similarly to successive convolutional layers of classification models in terms of prediction

robustness against label noise.

These knowledge guided our reasoning concerning the capacity to deal with a PUseg

training dataset using a segmentation AutoEncoder architecture. Several techniques exist

and the current state-of-the-art techniques present high definition and accurate predictions.

However, this exploratory study mainly aims at focusing on the ability to deal with PUseg

labels. Thus, we want to avoid unexpected prediction phenomenon which are potentially not

interpretable using the theoretically defined biased PU training loss LPU . For this reason,

we made the choice to use a relatively simple AE segmentation architecture. FCN is a good

candidate as it contains only convolutional layers. However, it suffers from a lack of accuracy

concerning the boundary details of instances to segment. SegNet contains convolutional

and deconvolutional layers combined with skip connections in order to deal with unpooling

information loss issue. This improves low frequency prediction details. SegNet uses in

addition a Conditional Random Fiels (CRF) post-processing step [159] to obtain its final

prediction performances. In turn, U-Net is composed of a convolutional encoder sharing

its predicted feature maps with the input feature maps of the deconvolutional decoder, by

concatenating them. These shared feature maps play the same role as the skip connections

in SegNet.

A more recent segmentation technique appeared called PSPNet [176]. It proposes to

deal with multiscale limitation of the previously mentioned techniques. This is done by

concatenating feature maps predicted with convolutional layers applied respectively at

different scale of a given output encoder feature map. We argue that this novel process

is transversal to the biased PU technique loss function effect, as this is the case for CRF

technique. However, PSPNet model has a more important training computational cost which

is not interesting for the purpose of this study. In addition, we recall that the targeted final

application consists of using positive pixel labels automatically generated using a background

subtraction technique. It turns out that considering large-scale context information of the
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given image to analyze can bring the following issue: The learning model can statistically

learn that potentially moving obstacles are always standing on the traversable area dedicated

to them. For instance, potential undetected outliers may include parked car drivers, and

pedestrians out of sidewalks and pedestrian crossings. This is a potentially critical issue

that we want to avoid.

Based on these remarks, we propose to use U-Net architecture during experiments

presented in Sec. 6.2.3.

Concerning regularization techniques to prevent the model to overfit mislabeled positive

examples, the combination SN+dropout can be used as in previous chapters. However,

these two regularization techniques increase the training computational cost of the learning

model. Therefore, although we have the conviction that these techniques are beneficial for

improving prediction performances, we do not use them on U-Net during experiments in the

next section.

6.2.3 Experiments

In this section, we empirically study the predictiong behaviour of U-Net autoencoder

segmentation model when it is trained on a PUseg dataset. We first describe the experimental

settings concerning the PU dataset preparation and the selected PUseg architecture. Then,

we present both qualitative and quantitative results for the proposed PUseg framework,

investigating the relationship between the fraction α of unlabeled positive examples, the

semantic pixel-level segmentation output predictions, and the learning convergence speed.

6.2.3.1 Experimental settings

Semantic segmentation dataset selection: As the target application is to segment

potentially moving obstacles at the pixel-level on monocular images, we decide to study the

PUseg model behaviour on Cityscapes dataset [32]. This dataset is interesting as it contains

up to 213 241 labeled instances of urban potentially moving obstacles.

PUseg dataset simulation: We first identify the fine ground truth labels of potentially

moving obstacle instances. Second, we make a list of these instances. Then we randomly

unlabel some of them depending on the probability fraction α that we have defined. In

these experiments, we have simulated three distinct PUseg datasets with respectively

α = {0.3, 0.5, 0.7}. This fraction of unlabeled positive examples aims at simulating all static

potentially moving obstacles present in camera recorded unlabeled data of a real-world

application. For computation cost reasons, the initial Cityscapes dataset images resolution

is resized to 128*256 RGB pixels.
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Urban input image 1 Urban input image 2

PN labels (α = 0) prediction PN labels (α = 0) prediction

PU labels (α = 0.3) prediction PU labels (α = 0.3) prediction

PU labels (α = 0.5) prediction PU labels (α = 0.5) prediction

PU labels (α = 0.7) prediction PU labels (α = 0.7) prediction

Figure 6.4: Visualization of output binary semantic segmentation predictions of the PUseg
model on two training images depending on the corresponding training PU labels fraction α.

PUseg model architecture: As previously motivated in Sec. 6.2.2, we use U-Net AE

semantic segmentation model in these experiments. More specifically, we use the original

U-Net architecture presented in [148]. The encoder part includes 8 convolutional layers

with 3*3 filters combined with intermediate Maxpooling layers with filters of size 2*2. The

bottlneck part, working on the encoded feature map latent space, contains two layers with

3*3 convolutional filters. The decoder includes, symmetrically to the encoder, 8 convolutional

layers with respectively 3*3 filters combined with 4 intermediate 2*2 upsampling layers.

Then, an output convolutional layer is composed of one chanel only as we consider binary

segmentation. A second channel is not relevant in this PU context, as we want to interpret
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the predicted output rather than combining softmax and argmax output functions. We use

the Stochastic Gradient Descent optimization algorithm to train the model. Concerning the

training loss function, we use MSE as previously discussed in Sec. 6.2.2.

Evaluation metric: Regarding the evaluation metric, we use Intersection over Union

(IoU) metric to evaluate the proposed model ability to classify positive pixels. We perform

a One-versus-Rest task, such that the negative class includes everything that is not a

potentially moving obstacle.

6.2.3.2 Empirical results

Yes, PUseg learning is possible! Fig. 6.4 presents the predictions of the PUseg model

on training images when it is trained with different fractions α. We can observe that

when α = 0.7, this drastically reduces for a given training image the proportion of training

labeled positive pixels. However, despite this severe disadvantage, the PUseg model is still

able to segment the central pixel regions of corresponding observable potentially moving

obstacle instances. Even more importanly, we can observe that the PUseg model is able to

segment similarly labeled positive and unlabeled positive instances as they are predicted

with the same pixel color intensity. We can conclude that the PUseg model does not suffer

from overfitting concerning the training positive examples initially considered as unlabeled.

Otherwise, the output prediction intensity, represented in gray colors, would have been

visually different between labeled and unlabeled positive examples. Namely, we would have

observed whiter predictions concerning the labeled positive examples. In addition, we can

observe that the intensity of predictions directly depends on α prior knowledge.

Empirical prior knowledge estimation: In order to confirm this dependance between

output prediction values and the fraction α of training positive examples which are unlabeled,

Fig. 6.5 shows histograms of pixel-level predictions for a given minibatch sample depending

on α. We can observe on every histogram a mixture of two distributions. The one centered

at the value 0 corresponds to the PUseg predictions for negative pixels. For the other

one, its distance to the label value 1 depends on α. We can note that the center of this

second distribution is close to the previously discussed theoretical value δ. As we recall

that α = 1− δ, we can approximately deduce from these histograms the prior knowledge

α by looking at the abscisse coordinate of the distribution located on the right side. This

is the distribution of predictions for our class of interest, the potentially moving obstacles.

Moreover, it is interesting to see that the center of the right distribution is closer to the

theoretical expected value δ when there is a high fraction α of unlabeled positive examples

in the PUseg training dataset. It may be interesting to further investigate this empirical

phenomenon.
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Figure 6.5: Visualization of the histograms of the pixel-level predictions of the PUseg model
depending on α, for a given minibatch sample. The first column presents predictions of the
PUseg model for a given sample minibatch depending on the fraction α of unlabeled positive
instances included in the simulated training PUseg cityscapes dataset. The second column
presents the corresponding histograms of pixelwise predictions.

A trade-off between convergence speed and hand-labeling effort? Fig. 6.6

presents the training evolution of prediction results on the test dataset of the presented

PUseg model in terms of IoU scores. The threshold selected to separate positive from

negative binary predictions is respectively equal to (1− α)/2. If we do not know the prior
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knowledge α, and considering the shapes of histograms of predictions in Fig. 6.5 which are

similar to gaussian distributions, we propose to define this threshold by applying GMM

clustering algorithm on output predictions. In this way, predictions can be clustered into

positive and negative sets with an associated probability. However, as tails of the visualized

histogram distributions are relatively thick in comparaison to gaussian distribution tails,

some other EM-based algorithms recently proposed [146] may be more relevant than GMM

to define the threshold. We can observe in Fig. 6.6 that the PUseg model learning speed

convergence highly depends on the fraction α of positive examples considered as unlabeled

during the training. For instance, an IoU score of 0.35 is obtained with α = 0.3 before 300

epochs, while with α = 0.7 the same IoU prediction score is obtained after more than 1400

epoch iterations.
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Figure 6.6: Evolution of IoU test score during training epoch iterations on simulated PU
Cityscapes segmentation datasets depending on α.

As a complementary information to Fig. 6.6, final target IoU scores depending on epoch

iteration and α are indicated in Table 6.3. This confirms the previous analysis of Fig. 6.6:

The higher α is, the lower the model convergence speed is along training epoch iterations.

Moreover, from a practical point of view, the following idea could be considered based

on Table 6.3: For a given prediction accuracy score expected in the target application, and

depending on the available computational ressources, one can decide the fraction of instances

to label in its offline training dataset.

6.2.4 Conclusion

To sum up, the proposed study has been focused on the output predictions of an AE trained

to semantic segmentation using pixel-level PU training labels. Empirical results obtained

confirm both following theoretical expectations:
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Table 6.3: Comparative results in terms of IoU score on simulated PU Cityscapes segmenta-
tion datasets depending on α. The positive class represents potentially moving obstacles.
The negative class represents all the counter-examples of the positive class. This is a
One-vs-Rest binary image segmentation task.

IoU test scores One-vs-RestCityscapes

training labels PN (baseline) PU
α 0 0.3 0.5 0.7

Epoch iteration 200 350 650 1800
Positive class IoU 0.36 0.38 0.36 0.36

• AutoEncoder pixel-level output predictions can be independantly interpreted as clas-

sifier output predictions such that an AE can be trained using Positive Unlabeled

pixel-level labels.

• Prior knowledge concerning the unlabeled fraction of positive instances can be coarsly

approximated using the distribution of the segmenter AE output predictions.

To the best of our knowledge, it is the first time that a PU learning process is studied for the

semantic image segmentation task. More importantly, we think that the presented PUseg

model can be considered as a baseline reference because of its simplicity while demonstrating

empirical results consistent with biased PU training loss function theoretical functionning.

Therefore we expect that existing state-of-the-art PU classification techniques can be directly

applied for image segmentation by using an AutoEncoder framework. This opens several

application perspectives to address perception tasks of major importance like urban scene

understanding in autonomous driving.

This study enables to answer the second main question of this chapter as follows: Yes, it

is possible to deal with a Positive Unlabeled segmentation dataset, and to coarsly estimate

the prior knowledge. However, the proposed framework still needs further improvements

in order to be competitive with fully supervised segmentation techniques of the current

state-of-the-art.

6.3 Unsupervised classification of urban moving obstacles us-
ing temporal information

Previous sections of this chapter have proposed to use PU learning strategies to reduce the

labeling effort for potentially moving obstacles detection and segmentation. In this section,

as a complementary and exploratory study1, we propose to classify the identified moving

1This section study has been realized through an internship supervised in the context of this thesis.
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obstacles, without hand labeled data, into subcategories by using their respective temporal

information.

More specifically, we propose to provide motion pattern temporal information of obstacles

to classify in input of a state-of-the-art image clustering approach [79]. The proposed

approach can be decomposed into the two following stages:

• (1) The former stage consists of

– segmenting moving obstacles using GMM background subtraction [182],

– detecting moving obstacles inspired by the self-supervised detection technique

proposed in [12],

– tracking detected moving obstacles using the Simple Online and Realtime Tracking

method (SORT) proposed in [11],

from a static point of view. Using the prior knowledge that the ego-vehicle is static

ensures more robust motion analysis of visual patterns of interest. In this way,

sequences of image patches, as illustrated in Fig. 6.7, corresponding to motion patterns

of detected moving obstacles can be automatically extracted.

Figure 6.7: Patch sequences of moving obstacles automatically extracted from a static
monocular video sequence.

• (2) Then, the second stage is to use these sequences of patches corresponding to

potentially moving obstacles in input of an image clustering approach.

The usefulness of the proposed system is demonstrated through empirical experiments

performed on BDD100K dataset [170]. This self-supervised training process improves the

prediction performances of the exploited image clustering approach. Some illustrations of

the proposed temporally self-supervised system can be found in Fig. 6.8.
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Figure 6.8: Inputs and outputs of the proposed visual monocular temporally self-supervised
system for moving obstacles segmentation, detection and classification without hand-labeled
data.
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Chapter 7

Conclusion and perspectives
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To conclude on this thesis, this chapter draws conclusions and perspectives of the

previously presented research work and contributions.

7.1 Conclusion

This thesis research work aimed at reducing or completely avoiding the need of hand labeled

training data for image analysis tasks, such as image classication, object detection and

pixel-level semantic segmentation, in the context of the autonomous vehicle perception.

We first have presented existing Self-Supervised Learning (SSL) solutions in the context

of autonomous vehicle perception tasks, as they propose to completely avoid the need of

hand labeled data. For instance, SSL approaches can deal with low level perception taks

such as depth map estimation from a monocular camera or high level perception tasks such

as traversable area segmentation, and moving obstacles detection and tracking. Nevertheless,

the SSL state-of-the-art still leaves the door open for some tasks of broad interest, such as

the semantic classification, detection and segmentation of static potentially moving obstacles.

Consequently, with the goal to address this challenge, we have proposed weakly supervised

strategies presenting promising prediction performances. More specifically, we have proposed:

• Two solutions for dealing with Positive Unlabeled (PU) learning without the need

of prior knowledge. They have been tested and compared on small-scale datasets of
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natural tiny images. Moreover, we have shown that using Generative Adversarial

Networks (GANs) can help to better generalize the distribution of the training dataset.

In practice, this semantic data augmentation improves the prediction performances of

the classifier used in the proposed frameworks.

• One solution for dealing with asymmetric noisy labeled and small-scale datasets of

natural tiny images. The proposed approach consists of adapting GANs training loss

functions in order to generate cleanly labeled augmented datasets using few noisy

labels. Empirical results demonstrate the potential and usefulness of the proposed

approach for dealing with asymmetric binary noisy labels.

Next, as the motivation of this study is to detect, segment, and classify potentially

moving obstacles, we propose to adapt the previously studied PU learning concepts to deal

with object detection and pixel-level semantic segmentation tasks. For this purpose, we

reformulate these tasks as image classification tasks. More specifically, object detection

can be considered as sliding window classification, and image semantic segmentation as

independant per-pixel classifications. Empirical results demonstrate the possibility to detect

and segment potentially moving obstacles using PU learning. Moreover, the prediction

results, as a function of the ratio of labeled data, provide some insights concerning the

amount of labeled data required to accomplish the target tasks.

Finally, the main advantage of proposed approaches is their ability to generalize the target

information over weakly labeled datasets. Nonetheless, the prediction performances obtained

still have the potential to be improved for real-world applications, and the scope of their

autonomous driving applications to be extended. For instance, presented approaches only

focus on binary discriminative tasks. Moreover, detection, segmentation and classification

weakly supervised tasks have been studied separately. It would also be interesting to unify

them into a complete SSL framework for potentially moving obstacles detection, segmentation

and classification.

The following Sec. 7.2 presents corresponding perspectives.

7.2 Future research directions

Concerning the perspectives, we respectively propose future directions for potential improve-

ments or extensions of the presented contributions.

7.2.1 Positive unlabeled learning using unlabeled data generation

PGAN system optimization presented in chapter 3 can be carried on by testing other

generative models instead of the WGAN [1] or WGAN-GP variant [66], like BEGAN [10],
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or the progressive growing GAN [85]. The latter can deal with very high dimensional

images as shown empirically in Fig. 7.11. We have tested it on urban images captured in

Versailles. Some other types of generative models as variational autoencoders (VAEs) may

be compatible with the proposed framework and may enable to generalize the proposed

approach to other generative models. Another orientation is to exploit the z latent space of

GANs to perform linear arithmetic operations, as in [13], to generate more relevant fake

samples.

Figure 7.1: A sample of images generated (512*512*3) with the progressive growing GAN
that we trained on a set of 5 000 unlabeled images captured in the city of Versailles, in
France.

Overall, considering the promising performances obtained for image classifiation, an

interesting direction is to extend this PU method to more complex tasks such as semantic

segmentation [3].

7.2.2 Counter-examples generation from a Positive Unlabeled dataset

Concerning the second GAN-based PU method proposed in chapter 4, as adversarial and

weakly supervised learning techniques are continuously evolving, we believe that the proposed

approach stability, prediction performances, and computational cost still have the potential

to be improved. For instance, recent promising GAN training approaches [17], not necessarily

using BN, may be suitable to extend the proposed approach for higher dimensional image

datasets.

Some other contribution perspectives can be considered as discussed in the following

sections.
1Images have been captured using the camera ZED (https://www.stereolabs.com/zed/).

110



7.2.2.1 Discriminator predictions using weighted loss functions
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Figure 7.2: Discriminator behaviour study in function of α and β during the interruption
of the adversarial training from 25 until 50 epoch iterations. Tests are realized on the
MNIST dataset for the 8-vs-3 task for several values of πP . The vertical axis represents
the training epochs iterations. The horizontal axis represents output values predicted by
the discriminator. Each horizontal line of pixels represents a histogram for a given epoch
iteration. Pixel regions with clear hot colors express high densities of predictions. A sample
of 10 000 examples composed by two third of unlabeled examples and one third of generated
examples is predicted at each epoch iteration.

The Figure. 7.2 shows some impacts of applying weight hyper-parameters α and β to

the terms of the discriminator loss function LD, such that we obtain

LD(G,D) = ExU∼pU [−logD(xU )]

+ α · ExP∼pP [−log(1−D(xP ))]

+ β · Ez∼pz [−log(1−D(G(z)))].

(7.1)
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From 0 to 25 epochs, both D and G are alternatively trained. Then, from 25 until 50 epochs

the discriminator D training continues, while that of generator G is stopped (i.e. G training

parameters are fixed). The former step enables to observe the discriminator prediction

behaviour during the adversarial training. The latter step enables to observe, independently

to G, the discriminator behaviour such that unlabeled positive, unlabeled negative, and

generated examples distributions become relatively easier to separate with D.

When α+ β = 1, with α = πP and hence β = 1− α = 1− πP , the prediction dispersion

during the first step seems to be reduced and to remain centered around the middle value

0.5.

During the second step, each prediction histogram becomes a mixture of distributions.

We can observe three distinct distributions corresponding respectively from left to right to

generated, unlabeled positive, and unlabeled negative distributions. In addition, we can

observe that the density repartion of D predictions directly depends on πP fraction:

• When πP = α = 0.3, the unlabeled positive distribution (i.e. the distribution centered

at 0.5) includes more predictions than the unlabeled negative distribution (i.e. the

distribution at 1).

• When πP = α = 0.5, the unlabeled positive distribution (i.e. the distribution centered

at 0.5) is equivalent in terms of density to the unlabeled negative distribution (i.e. the

distribution at 1).

• When πP = α = 0.7, the unlabeled positive distribution (i.e. the distribution centered

at 0.5) includes less predictions than the unlabeled negative distribution (i.e. the

distribution at 1).

Those histograms evolutions during the training reveal qualitatively a correlation between

the fraction πP and hyper-parameters α and β. This opens new perspectives to identify the

prior knowledge and possibly to adapt automatically the hyper-parameters values during

the adversarial training of the proposed framework.

7.2.2.2 GAN-based PU framework adaptation for image segmentation

As it has been previously empirically demonstrated in the literature that we can adversarially

train with a discriminator a segmenter model for image semantic segmentation task [110],

one can envision the extension of the proposed GAN-based PU framework for this task by

using PU pixel-level training labels. We present in Fig. 7.3 an adaptation of the presented

D-GAN framework for potentially moving obstacles segmentation using only positive and

unlabeled pixel labels during the training. The generator G remains identical in the sense
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Figure 7.3: Potential future adaptation of the D-GAN framework for PU semantic segmen-
tation.

that it generates counter-example images from a random latent vector z using a decoder

architecture. However, the discriminator D and the classifier C replace their encoder

architecture with an autoencoder architecture. This enables to discriminate and classify each

pixel of the input image such that a pixelwise semantic segmentation is obtained as output.

In addition, training loss functions previously used for G, D and C for image classification

may prospectively be applied independently on each per-pixel output prediction in this novel

context. Per-pixel classification using an autoencoder based architecture in order to deal

with semantic segmentation has been previously proposed by methods such as FCN [108],

U-Net [148], Segnet [3] or PSPNet [176].

7.2.3 Noisy labeled learning using GANs

This section presents perspectives for the GAN-based noisy labeled learning approach

NL-GAN proposed in chapter 5.

Multi-class NL learning using a conditional GAN: In order to improve the pro-

posed NL-GAN framework for complex multiclass image datasets, it may be relevant to take

into consideration recent GANs using several generators [173]. More closely related to our

topic, it has also been recently2 proposed in [163] a conditional GAN model robust to label

noise called RCGAN. It uses a confusion matrix representing the label noise and a projection

discriminator [121] in order to deal with the corrupted training set. It may be interesting to

adapt the conditional GAN ResNet architecture exploited by the RCGAN to our NL-GAN

framework in order to improve the quality of generated samples and adapt it for multiclass

classification. Moreover, as RCGAN can deal with multiclass datasets containing few3 noisy

2Published at the end of 2018 (i.e. concurrently to the submission of the article presented in chapter 5).
3If we compare the same fraction of noise α between binary and multiclass classification, we can notice

that in binary classification this consists of having α fraction of noise in the corrupted counter-examples set.
However, the same fraction α of corrupted labels in a multiclass dataset of n classes means that there is a
fraction of (n− 1) · α corrupted labels for a given class which are present in the corrupted counter-examples
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labels, additional experiments comparing its performances with the proposed approach for

both multiclass noisy labels and high binary asymmetric label noise could be interesting for

a deeper and updated state-of-the-art comparative study.

Improved empirical estimation of intermediate labels δP and δN : On another

note, in the absence of prior knowledge information we have naively proposed to use GMM

clustering algorithm to identify the intermediate labels δP and δN . However, concerning

the shape of the probability density function of the discriminator predictions, this implies

the assumptions that such distributions are similar to gaussian distributions. Consequently,

it may be interesting to reconsider different hypotheses about the shape of the probability

density function of the CNN classifier predictions. For instance, we could test more noise-

permissive clustering techniques such as the EM-like algorithm, recently proposed in [146],

which can deal with various tails distributions.

Design training loss functions specialized for the proposed NL-GAN frame-

work: Concerning the binary cross-entropy loss function used in the proposed generator

and discriminator training loss functions, its asymmetry between left and right slopes can

potentially change the learning convergence between corrupted and correct labels. Thus, the

theoretical arg min
xP∼pP

LD = δP and arg min
xN∼pN

LD = δN values depending on πP and πN run the

risk to not be empirically reached. This potential issue has a direct impact on generators

GP and GN ability to respectively learn distributions pP and pN . Consequently it may

be interesting to further investigate more relevant classification symmetric loss functions

compatible with such a GAN-based framework.

Some other interesting perspectives could be to use:

• continuous conditional variables in the latent space of NL-GAN generators in order

to set the probability estimated with GMM on D predictions, for a given generated

sample, to follow a target distribution pP or pN .

• NL-GAN for assessing, without ground-truth, hand-crafted methods within a self-

supervised framework.

• NL-GAN downstream to clustering methods by considering every cluster label as a

noisy label. A similar state-of-the-art strategy [82] is to perform Unlabeled Unlabeled

classification. This consists of learning to better clusterize instances from two unlabeled

sets which contain asymmetric conditional fractions of each class.

class sets. Consequently, multiclass NL approaches are systematically tested with relatively small fractions of
noise compared to binary NL approaches.
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7.2.4 Applications

7.2.4.1 PU learning for vehicle detection on aerial images

Some perspectives concerning the PU detector presented in chapter 6 are envisioned:

• The operator may wish to identify vehicles of smaller sizes. Thus it can be required

to design a learning model able to deal with patterns of smaller resolutions. In order

to classify corresponding small patches, another solution can be to integrate in the

first-stage generative step some super-image resolution techniques, as in [34] where it

is proposed a deep multi-scale strategy, or in [97] where GANs potential interest for

this task is highlighted.

• Encourage the learning of potentially more relevant counter-examples by extracting a

higher fraction of salient unlabeled patches during the training PU dataset preparation

as previously proposed in [140].

• Combine standard transformation data augmentation techniques with generative

models for positive labeled examples as proposed in [28] to help the second-stage

classifier to better generalize the boundary between positive and negative examples.

• Adapt PU techniques to more advanced models, such as Faster R-CNN [144], SSD

[106] and Yolov3 [143]. For example, the region proposal process can be based on

image classification principles such that PU classification techniques can be used.

7.2.4.2 Positive Unlabeled analysis for semantic segmentation of urban poten-
tially moving obstacles

It may be interesting to integrate the PU segmentation (PUseg) model, presented in chapter

6, in the Self-supervised framework presented in the same chapter, in order to demonstrate

its usefulness for learning to segment potentially moving obstacles without hand labeled

training data.

We have proposed throught this study to consider PUseg challenge as per-pixel PU

classification problem. Nonethelss, we think that it would be interesting to investigate novel

reasearch for designing segmentation techniques specifically designed for this PUseg task.

The recent competitive state-of-the-art Deeplab model [20] architecture could be investigated

in this PUseg context.

It may be interesting to also study the effect of regularization techniques exploited in

previous chapters 4 and 5 in the context of this novel PUseg framework. However, the training

process is relatively longer in comparison to a PU training for image classification. Thus,
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the previously selected combinations of regularization techniques need to be reconsidered in

this context as they can considerably increase the training computational cost.

Concerning the potential applications for aerial and satellite images analysis as proposed

in [132] by using deep neural networks, the proposed PUseg learning strategy may provide

complementary information to the previously presented PU detector.

7.2.4.3 Unified self-supervised learning application perspectives

By combining the three different approaches presented in chapter 6, respectively for PU

detection, PU segmentation, and unsupervised classification, we foresee future research

perspectives to develop a unified Positive Unlabeled learning framework, self-supervised by

temporal information. Inspiration for such a unified deep learning framework can come

from supervised techniques such as Mask R-CNN [71], or panoptic segmentation concepts

introduced in [89]. Such an envisioned SSL framework may then be able, by only learning

on the spatio-temporal variations of the surrounding environment without any human

supervision, to provide rich information concerning potentially moving obstacles as their

shape, motion patterns, and their category.

Moreover, by automatically estimating the fraction of mislabeled predicted information,

as proposed in chapter 6 for PUseg, then such a SSL PU learning system may have the

capacity to autonomously evaluate itself without human supervision. Moreover, such a self-

evaluation could enable to update online the learning model by using fine-tuning techniques

as proposed in [81]. This may provide relatively fast online adaptation of a given deep

learning SSL system through an incremental learning scenario.

Moreover, concerning the classification of detected moving obstacles into subcategories,

it may be interesting to identify automatically the uncommon obstacles which can have

unpredictable behaviours. For instance, an unusual wild animal must be handled differently

to classifical road users. We argue that this kind of situation could be addressed by using

anomaly detection techniques, as proposed in [174]. This approach deals with PU datasets

containing a high fraction of unlabeled positive examples. It consists of training several

classifiers trough a boosting process depending on the estimated positive class prior (i.e.

fraction of positive examples in the unlabeled dataset). In our context, usual road users can

be considered as positive examples, and wild animals as the anomalies to detect.

On another note, beyond the scope of this thesis study which focuses exclusively on

visual monocular camera data analysis using deep learning, it may be interesting to exploit

additional sensor information as proposed in [36] and [4] for obstacle analysis.
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7.2.4.4 Create an autonomous driving dataset specifically designed for tempo-
rally self-supervised learning

In closing of this thesis research, we believe that it is of broad interest, for both academic and

industrial autonomous driving research communities, to create and make publicly available

a dataset designed for temporally self-supervised learning.

Nowadays, to the best of our knowledge, the largest dataset with video sequences intended

for autonomous vehicle perception is BDD100K [170]. We observed on this dataset that

for a given recording time, one can observe a wider number of moving obstacles on static

scenes rather than during ego-vehicle movements. It turns out that BDD100K contains in

total less than 1 hour of recording for static scenes under daytime clear weather conditions.

Thus, increasing such a quantity of static video scene may improve unsupervised analysis of

potentially moving obstacles.

As a matter of fact, one can aspire to record ego-vehicle sensor data at strategic urban

road intersection places, with a wide variety of potentially moving obstacles. In this way,

one could easily and effectively acquire a considerably large amount of rich information for

improving current urban potentially moving obstacles analysis.

Furthermore, in order to effectively learn on such large-scale and high resolution vision

data, it may be interesting to study strategies allowing to directly interpret compressed

information, as previously proposed in [161] for camera motion estimation.
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Appendix A

Corrupted training loss functions
formalization

”Give me a place to stand, and I’ll move the earth.”

- Archimede
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A.1 Training loss functions

One can find below the definitions of binary cross-entropy H and Mean Squared Error MSE

loss functions:

• Binary Cross-Entropy H:

H(ŷ, yt) = Eŷ∼p[−ytlog(ŷ)− (1− yt)log(1− ŷ)], (A.1)

• Mean Squared Error MSE:

MSE(ŷ, yt) = Eŷ∼p[(ŷ − yt)2], (A.2)

with ŷ ∈ (0, 1) the sample following a distribution p representing the predictions of a given

learning model, and yt ∈ [0, 1] the corresponding training label.
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A.2 Corrupted training loss functions, a constrained formal-
ization

When some labels in a binary dataset are corrupted, then the training consists of associating

two different labels for a given distribution depending on the fraction of corrupted labels.

Let ŷ be a sample prediction following a distribution p. By performing an empirical risk

minimization of a loss function L, one can train a flexible learning model to associate ŷ with

two labels yA and yB depending respectively on weights α and β as follows

L(ŷ) = Eŷ∼p[α · l(ŷ, yA)] + Eŷ∼p[β · l(ŷ, yB)], (A.3)

with l an arbitrary cost function which can be H or MSE.

Then, expectation linearity enables to obtain

L(ŷ) = Eŷ∼p[α · l(ŷ, yA) + β · l(ŷ, yB)]. (A.4)

It turns out that the arg min
ŷ

of L can be obtained as well by using a single intermediate

label value δ which jointly replaces yA and yB depending on α and β with the loss function

Lδ that we propose to define as follows

Lδ(ŷ) = Eŷ∼p[γ · l(ŷ, δ)], (A.5)

with γ depending as well on α and β. More specifically, with l = {H,MSE}, we have the

following relation between L and Lδ:

arg min
ŷ∈(0,1)

[α · l(ŷ, yA) + β · l(ŷ, yB)] = arg min
ŷ∈(0,1)

[l(ŷ, δ)]

= δ,
(A.6)

with

δ =
αyA + βyB
α+ β

. (A.7)

Proof of Equation. (A.6) can be demonstrated by finding the value of ŷ for which the

partial derivative of L depending on ŷ is equal to zero, such that we have

∂(L(x))

∂(x)
= 0. (A.8)

This can be generalized for multiclass labels as follows

arg min
ŷ∈(0,1)

[
m∑
i=1

(wi · l(ŷ, yi))] = arg min
ŷ∈(0,1)

[l(ŷ,

∑m
i=1wiyi∑m
i=1wi

)]

=

∑m
i=1wiyi∑m
i=1wi

,

(A.9)
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with wi the probability to associate the label yi with the predicted sample ŷ. From physical

and geometrical perspectives point of view, this recalls the barycenter of masses formula

enabling to estimate the center of gravity, introduced by Archimede.

Corrupted fractions estimation: Furthermore, let one suppose that a given learning

model trained using L has correctly converged towards the minimum of L. Hence, we may

have ŷ = δ. So one can deduce the potentially unknown prior α using the equivalence

δ̂ =
αyA + βyB
α+ β

⇔ α = β · yB − δ̂
δ̂ − yA

, (A.10)

with yA, yB and β the prior parameters known.

Next sections show the demonstration of eq. (A.6) with the Binary Cross-Entropy H,

and the Mean Squared Error MSE cost functions for dealing with two different labels

associated with the same sample distribution.

A.2.1 Mean Squared Error (MSE)

With LMSE the loss function version of L using the Mean Squared Error cost function

l = MSE defined in eq. (A.2), the derivative of LMSE is as follows

∂(LMSE(ŷ))

∂(ŷ)
=
∂(α ·MSE(ŷ, yA))

∂(ŷ)
+
∂(β ·MSE(ŷ, yB))

∂(ŷ)
, (A.11)

with
∂(α ·MSE(ŷ, yA))

∂(ŷ)
=α ·

∂(Eŷ∼p[(ŷ − yA)2])

∂(ŷ)

=α · Eŷ∼p[2ŷ − 2yA],

(A.12)

and respectively
∂(β ·MSE(ŷ, yB))

∂(ŷ)
=β ·

∂(Eŷ∼p[(ŷ − yB)2])

∂(ŷ)

=β · Eŷ∼p[2ŷ − 2yB],

(A.13)

such that we obtain

∂(LMSE(ŷ))

∂(ŷ)
=Eŷ∼p[2(α+ β)ŷ − 2(αyA + βyB)]. (A.14)

Then, we can deduce the value of ŷ for which the partial derivative of LMSE depending on

ŷ is equal to zero as follows

∂(LMSE(ŷ))

∂(ŷ)
= 0⇔ Eŷ∼p[2(α+ β)ŷ − 2(αyA + βyB)] = 0

⇔ ŷ =
αyA + βyB
α+ β

,

(A.15)

such that

arg min
ŷ∈(0,1)

(LMSE(ŷ)) =
αyA + βyB
α+ β

=arg min
ŷ∈(0,1)

(MSE(ŷ,
αyA + βyB
α+ β

)).

(A.16)
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A.2.2 Binary Cross-Entropy

Concerning the binary cross-entropy cost function H, we first demonstrate the identity

between loss functions L and Lδ when the cost function l = H, such that we obtain LH

defined as:

LH(ŷ) = Eŷ∼p[α ·H(ŷ, yA) + β ·H(ŷ, yB)]. (A.17)

The identity can be demonstrated with labels yA, yB ∈ [0, 1] as follow:

α ·H(ŷ, yA) + β ·H(ŷ, yB) =α[−yAlog(ŷ)− (1− yA)log(1− ŷ)]

+ β[−yBlog(ŷ)− (1− yB)log(1− ŷ)]

=− (αyA + βyB)log(ŷ)− (α+ β − αyA − βyB)log(1− ŷ)

=(α+ β)[−(
αyA + βyB
α+ β

)log(ŷ)− (1− αyA + βyB
α+ β

)log(1− ŷ)]

=γ[−δlog(ŷ)− (1− δ)log(1− ŷ)]

=γ ·H(ŷ, δ),
(A.18)

with γ = α + β and δ = αyA+βyB
α+β . To find the arg min

ŷ∈(0,1)
of the loss function term γH(ŷ, δ),

we first estimate its partial derivative depending on ŷ as follows

∂[γ ·H(ŷ, δ)]

∂ŷ
= −γ ·

(δ
ŷ

+
δ − 1

1− ŷ
)
. (A.19)

Second, the argument of the minimum output value can be found when this derivative is

equal to zero, such that we have to solve the following equation

−γ ·
(δ
ŷ

+
δ − 1

1− ŷ
)

= 0, (A.20)

bringing us to the following result

−γ ·
(δ
ŷ

+
δ − 1

1− ŷ
)

=0

⇔ δ

ŷ
=

1− δ
1− ŷ

⇔ 1− ŷ
ŷ

=
1− δ
δ

⇔ ŷ =δ.

(A.21)

Thus we have as well by using H the following statement:

arg min
ŷ∈(0,1)

(LH(ŷ)) =arg min
ŷ∈(0,1)

(H(ŷ,
αyA + βyB
α+ β

))

=
αyA + βyB
α+ β

.

(A.22)
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A.3 Graphical visualization

This section shows graphically in Fig. A.1 the loss functions L, l(ŷ, δ) and its permutation

l(δ, ŷ) depending on ŷ and l = {MSE,H}, with α = 0.3, β = 0.7, yA = 0, yB = 1. As MSE

is symmetric, and H is not, we can observe graphically that MSE(ŷ, δ) = MSE(δ, ŷ), while

H(ŷ, δ) 6= H(δ, ŷ).
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Figure A.1: Corrupted loss functions visualization. (a) Shows MSE(ŷ, δ), MSE(δ, ŷ),
LMSE and arg min(LMSE) depending on ŷ. Similarly, (b) shows H(ŷ, δ), H(δ, ŷ), LH and
arg min(LH) depending on ŷ.
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Appendix B

Résumé

Dans le contexte de la perception du véhicule à conduite déléguée, l’intérêt de la communauté

pour les méthodes d’apprentissage profond a continuellement augmenté pendant ces deux

dernières décennies. Cela peut être expliqué par le fait que ces techniques fournissent

les meilleures performances de prédiction de l’état de l’art actuel, pour plusieurs tâches

de vision par ordinateur. En particulier, ces méthodes peuvent fournir des informations

sémantiques riches concernant les obstacles de formes complexes rencontrés dans des scénarios

de conduite déléguée, à partir de divers types de données et dans des conditions climatiques

variées. Cependant, obtenir les meilleures performances en prédiction de l’état l’art demande

souvent un grand nombre de données manuellement labélisées, provenant du cas d’application

ciblé. Le problème est que la labélisation manuelle a un coût non négligeable. Néanmoins,

dans le contexte d’un véhicule équipé de capteurs, les données non labélisées quant à elles,

peuvent être obtenues relativement plus facilement. Il se trouve qu’une catégorie de méthodes

d’apprentissage, dites faiblement supervisées, permettent d’exploiter directement des données

partiellement labélisées. Ainsi, notre objectif dans cette thèse est de réduire au possible

le besoin en données manuellement labélisées en proposant des modèles d’apprentissage

faiblement supervisés.

Nous commençons par présenter un type de méthodes d’apprentissage dites auto-

supervisées. Elles consistent à substituer les données manuellement labélisées par des

méthodes capable de générer automatiquement en amont des labels d’entrâınement ex-

ploitables. Les techniques d’apprentissage auto-supervisées ont prouvé leur utilité dans le

passé pour l’évitement d’obstacles et la planification de trajectoires à travers des environ-

nements changeants, en apprenant lors de la phase d’application. Plus récemment, elles ont

aussi été appliquées pour l’estimation de cartes de profondeurs, la segmentation de routes

goudronnées, et pour le suivi et la segmentation d’obstacles en mouvement. Cependant, les

méthodes auto-supervisées de l’état de l’art laissent encore la porte ouverte pour la détection,

la segmentation, et la classification des obstacles statiques potentiellement mobiles. Ces
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derniers que l’on rencontre également souvent dans le contexte de la conduite déléguée,

peuvent être par exemple des voitures arrêtées à une intersection, ou des piétons patientant

pour traverser la voie. En conséquence, nous proposons dans cette thèse trois nouvelles

approches faiblement supervisées, avec l’objectif final de percevoir de tels usagers de la route

en utilisant un système auto-supervisé.

Les deux premières contributions de ce travail ont pour objectif de répondre au problème

de classification d’images partiellement labélisées, tel que l’effort de labélisation peut être

focalisé exclusivement sur notre classe d’intérêt, la classe positive. La première approche

consiste essentiellement à régulariser le biais provoqué par un apprentissage directement

effectué sur des données partiellement labélisées. La deuxième approche proposée consiste à

générer des contre exemples pertinents de la classe positive afin de résoudre le problème

de sur-apprentissage de la première approche. Ensuite, nous proposons une approche

pouvant traiter des données d’entrâınement possédant une grande fraction de faux labels, et

disponibles en faible quantité. La deuxième contrainte a été palliée efficacement en effectuant

de l’augmentation de donnees, au travers de modèles génératifs antagonistes capables

d’apprendre a généraliser la distribution des classes qui nous intérèssent. Ensuite, nous

proposons de démontrer le potentiel de telles méthodes de classification d’image faiblement

supervisées pour les deux applications réelles suivantes : détection et segmentation des

obstacles potentiellement mobiles.

Enfin, nous présentons une conclusion sur ce travail de recherche, suivie par des perspec-

tives de recherches et applications futures.
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[99] Mei Li, Shirui Pan, Yang Zhang, and Xiaoyan Cai. Classifying networked text data

with positive and unlabeled examples. Pattern Recognition Letters, 77:1–7, 2016.

[100] David Lieb, Andrew Lookingbill, and Sebastian Thrun. Adaptive Road Following

using Self-Supervised Learning and Reverse Optical Flow. In Robotics: science and

systems, pages 273–280, 2005.

[101] Patrick Lin. Why ethics matters for autonomous cars. In Autonomous driving, pages

69–85. Springer, Berlin, Heidelberg, 2016.

[102] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in

context. In European conference on computer vision, pages 740–755. Springer, 2014.

134



[103] Bing Liu, Wee Sun Lee, Philip S. Yu, and Xiaoli Li. Partially supervised classification

of text documents. In International Conference on Machine Learning, volume 2, pages

387–394. Citeseer, 2002.

[104] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from single monocular images

using deep convolutional neural fields. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(10):2024–2039, Oct 2016.

[105] Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and
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Titre: Apprentissage faiblement supervisé pour la classification d’images et l’analyse des obsta-
cles potentiellement mobiles

Mots clés: Véhicule autonome, Vision par ordinateur, Apprentissage automatique, Réseaux de neurones
artificiels

Résumé: Dans le contexte des applications de
perception pour le véhicule à conduite déléguée,
l’intérêt pour les approches d’apprentissage automa-
tique a continuellement augmenté pendant cette
dernière décennie. Cependant, lorsque ces ap-
proches doivent être discriminatives, elle nécessitent
généralement d’apprendre sur des données manuelle-
ment annotées. L’annotation manuelle a un coût
non négligeable, tandis que les données non an-

notées peuvent être facilement obtenues dans le
contexte d’un véhicule autonome équipé de cap-
teurs. Il se trouve qu’une catégorie de stratégies
d’apprentissage, dite d’apprentissage faiblement su-
pervisé, permet d’exploiter des données partielle-
ment labélisées. Ainsi, nous avons pour objectif dans
cette thèse de réduire autant que possible le besoin
de labélisation manuelle en proposant des techniques
d’apprentissage faiblement supervisées.

Title: Weakly supervised learning for image classification and potentially moving obstacles anal-
ysis

Keywords: Self-driving car, Computer vision, Machine learning, Artificial Neural Networks

Abstract: In the context of autonomous vehicle
perception, the interest of the research community
for deep learning approaches has continuously grown
since the last decade. This can be explained by the
fact that deep learning techniques provide nowadays
state-of-the-art prediction performances for several
computer vision challenges. More specifically, deep
learning techniques can provide rich semantic infor-
mation concerning the complex visual patterns en-
countered in autonomous driving scenarios. How-
ever, such approaches require, as their name implies,
to learn on data. In particular, state-of-the-art pre-
diction performances on discriminative tasks often
demand hand labeled data of the target applica-
tion domain. Hand labeling has a significant cost,
while, conversely, unlabeled data can be easily ob-
tained in the autonomous driving context. It turns
out that a category of learning strategies, referred
to as weakly supervised learning, enables to exploit
partially labeled data. Therefore, we aim in this
thesis at reducing as much as possible the hand la-
beling requirement by proposing weakly supervised
learning techniques.

We start by presenting a type of learning meth-
ods which are self-supervised. They consist of sub-
stituting hand-labels by upstream techniques able
to automatically generate exploitable training la-
bels. Self-supervised learning (SSL) techniques have
proven their usefulness in the past for offroad obsta-
cles avoidance and path planning through changing
environments. However, SSL techniques still leave
the door open for detection, segmentation, and clas-
sification of static potentially moving obstacles.

Consequently, we propose in this thesis three
novel weakly supervised learning methods with the
final goal to deal with such road users through an
SSL framework. The first two proposed contribu-
tions of this work aim at dealing with partially la-
beled image classification datasets, such that the la-
beling effort can be only focused on our class of in-
terest, the positive class. Then, we propose an ap-
proach which deals with training data containing a
high fraction of wrong labels, referred to as noisy
labels. Next, we demonstrate the potential of such
weakly supervised strategies for detection and seg-
mentation of potentially moving obstacles.
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