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Abstract

The aim of this thesis is to review and improve upon an unpublished the-
sis by Green, whose goal was to construct Chern classes of coherent analytic
sheaves in de Rham cohomology that respect the Hodge filtration.

The second part of this thesis is dedicated to the construction of a cate-
gorical enrichment of the bounded derived category of complexes of coher-
ent sheaves on an arbitrary complex manifold: the objects are ‘simplicial’
vector bundles endowed with a certain type of simplicial connection. This
construction uses the theory of twisting cochains, developed in this setting
by O’Brian, Toledo, and Tong.

The first part is dedicated to defining a categorical lift of the Chern char-
acter in de Rham cohomology that respects the Hodge filtration, and for this
we use the categorical model mentioned above. This construction can be un-
dertaken by adapting classical Chern-Weil theory to the simplicial setting,
using Dupont’s theory of fibre integration.

Résumé

L’objet de cette thèse est de réinterpréter et de poursuivre un travail non
publié de Green, dont l’objet est de construire des classes de Chern pour les
faisceaux analytiques cohérents à valeurs dans la cohomologie de de Rham en
respectant la filtration de Hodge.

La seconde partie de la thèse est consacrée à la construction d’un en-
richissement catégorique de la catégorie dérivée bornée des complexes de
faisceaux cohérents sur une variété complexe arbitraire: les objets considérés
sont des fibrés vectoriels « simpliciaux » munis d’un type spécial de con-
nexions simpliciales. Cette construction repose sur la théorie des cochaînes
tordues, développée dans ce cadre par O’Brian, Toledo, et Tong.

La première partie est consacrée à définir un relèvement catégorique via
le modèle précédent d’un caractère de Chern en cohomologie de de Rham
respectant la filtration de Hodge. Cette construction peut être réalisée en
adaptant la théorie de Chern-Weil classique au cadre simplicial, via la théorie
de l’intégration fibrée de Dupont.
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At lunchtime I bought a huge orange —
The size of it made us all laugh.
I peeled it and shared it with Robert and Dave —
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1The past and the present

I don’t wanna talk
About things we’ve gone through;

Though it’s hurting me
Now it’s history.

ABBA, "The Winner Takes It All".

In 1980, H.I. Green, a student of O’Brian and Eells, wrote his thesis [Gre80]
on the subject of Chern classes of coherent sheaves on complex-analytic man-
ifolds. Although the thesis was never published, an exposition was given in
[TT86], alongside a sketch of a proof of the Hirzebruch-Riemann-Roch formula
for this construction of Chern classes. It combined the theory of twisting cochains,
used with great success by Toledo, Tong, and O’Brian in multiple papers ([TT76;
TT78; OTT81; OTT85]), with the fibre integration of Dupont ([Dup76]), to con-
struct, from a coherent analytic sheaf, classes in H2k(X,Ω•>kX ) that coincide with
those given by the classical construction of Chern classes in H2k(X,Z) by Atiyah-
Hirzebruch ([AH62]). (It is of historical interest to mention that the approach of
expressing characteristic classes in terms of transition functions is very much in
line with ideas propounded by Bott; see e.g. the section entitled ‘Concluding Re-
marks’ in [BT82, §23].) This construction was considered by Grivaux in his thesis
[Gri09], where he constructs unified Chern classes for coherent analytic sheaves
(on compact analytic manifolds) in Deligne cohomology, and where he states an
axiomatisation of Chern classes that ensures uniqueness in any sufficiently nice
cohomology theory (of which de Rham cohomology is an example). Although he
states that the Grothendieck-Riemann-Roch theorem for closed immersions is not
known for Green’s construction of Chern classes if X is non-Kähler, this turns out
to not be a problem, since it follows from his other axioms by a purely formal,
classical argument, involving deformation to the normal cone.

One reason that the study of Chern classes of coherent analytic sheaves is in-
teresting is that it is notably less trivial than the algebraic version. In both the
analytic and algebraic settings, Chern classes of locally free sheaves can be con-
structed by the splitting principle (as explained in e.g. [BT82, §21]) in the ‘most
general’ cohomology theories (Deligne–Beilinson cohomology and Chow rings,
respectively); but, although coherent algebraic sheaves admit global locally free
resolutions, the same is not true of coherent analytic sheaves. In general, complex
manifolds have very few holomorphic vector bundles, and there are whole classes
of examples of coherent sheaves that do not admit a global locally free resolu-
tion ([Voi02, Corollary A.5]). One key insight of [Gre80], however, was that the
holomorphic twisting resolutions of Toledo and Tong (whose existence was guar-
anteed by [TT78, Proposition 2.4]) could be used to construct a global resolution
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1. The past and the present

by ‘simplicial locally free sheaves’, or locally free sheaves on the nerve: objects
that live over the Čech nerve XU• of a coverU of X. The existence of such a global
resolution, glued together from local pieces, is mentioned in the introduction of
[HS01] as a problem that should be amenable to the formal theory of descent.
Indeed, these ‘simplicial sheaves’ can be constructed by taking the lax homotopy
limit (in the sense of [Ber12, Definition 3.1]) of the diagram of model categories
given by the pullback-pushforward Quillen adjunctions along the nerve of a cover
of X. One very useful example of such an object is found by pulling back a global
(i.e. classical) vector bundle to the nerve: given some E � X, defining E• by
Ep = (XUp → X)∗E. This actually satisfies a ‘strongly cartesian’ property: it is
given by the ‘strict’ (i.e. not lax) homotopy limit of [Ber12]. The twisting cochains
from which Green builds these resolutions are also interesting objects in their own
right, having been studied extensively by Toledo, Tong, and O’Brian, as previously
mentioned. In fact, they can be seen as specific examples of the twisted complexes
of [BK91], which are used to pretriangulate arbitrary dg-categories. This gives a
possible moral (yet entirely informal) reason to expect the existence of resolutions
such as Green’s: twisted complexes give the ‘smallest’ way of introducing a sta-
ble structure on a dg-category, and perfect OX-modules can be defined as exactly
the objects of the ‘smallest’ stable (∞,1)-category that contains OX and is closed
under retracts. Alternatively, one can appeal to [Wei16], which shows that, un-
der certain restrictions on (X,OX), twisting cochains constitute a dg-enrichment
of the derived category of perfect complexes.

Another problem in trying to apply Chern-Weil theory to coherent analytic
sheaves is that global holomorphic (Koszul) connections rarely exist: the Atiyah
class (whose trace coincides[1] with the first Chern class in cohomology) measures
the obstruction of the existence of such a connection. The other main result of
Green’s thesis is the construction of ‘simplicial connections’, which are connec-
tions on ‘simplicial sheaves’ pulled back along the projection XU• ×∆•→ XU• . The
idea behind this construction is powerfully simple: given local connections ∇α
(which always exist) on a locally-free sheaf E (that is, ∇α is a connection on E

∣∣∣Uα),
on any intersection Uαβ we consider the path γαβ(t) = t∇β + (1 − t)∇α between
the two local connections as some type of ‘connection’ on XU1 ×∆1. More gener-
ally, on p-fold intersections Uα0...αp , we can consider the ‘connection’

∑p
i=0 ti∇αi on

XUp ×∆p. These objects then assemble to give us what might deserve to be called
a simplicial connection. Green shows that we can take the curvature of such
things, which consists of End(Ep)-valued forms on XUp ×∆p; by certain technical
properties of the sheaves in his resolution, Green shows that these forms satisfy
the property necessary to define a simplicial differential form (the same prop-
erty as found in the equivalence relation defining the fat geometric realisation of
a simplicial space), which lets us apply Dupont’s fibre integration (after taking
the trace, or evaluating under some other invariant polynomial) to recover (Čech

[1]See [Huy05, Exercise 4.4.8], as well as the comments just below Exercise 4.4.11.

4



representatives of) classes in de Rham cohomology. One thing that could be con-
sidered as missing from Green’s thesis is a formal study of simplicial connections,
and so this forms one of the key parts of this paper. It is possible to define simpli-
cial connections in a more general setting, and study conditions that ensure that
Chern-Weil theory can be applied (these give the notions of admissibility, and
being generated in degree zero). Green’s connections do indeed satisfy these for-
mal conditions, and this provides a more rigorous reasoning for their usefulness.

Finally, as (∞,1)-categories (presented by homotopical categories), modulo
some subtleties in the definitions, complexes of sheaves with coherent cohomol-
ogy are equivalent to the homotopy colimit of so-called Green complexes en-
dowed with simplicial connections generated in degree zero ((10.2.9)). This means
that applying Chern-Weil theory to Green complexes does indeed give us a work-
ing version of Chern-Weil theory for complexes of sheaves with coherent coho-
mology.
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2Overview | Vue d’ensemble

All I do, is sit down at the typewriter, and start
hittin’ the keys. Getting them in the right order,

that’s the trick. That’s the trick.

Garth Marenghi.

2.1 For mathematicians | Pour les mathématiciens

Chapter 2. This current chapter provides
various summaries of this thesis: for math-
ematicians, for non-mathematicians, and
for mathematicians who don’t wish to read
all the thoughts in my head that made it
onto paper.

Chapitre 2. Ici on résume cette thèse trois
fois: pour les mathématiciens; pour ceux
qui ne sont pas des mathématiciens; et
pour les mathématiciens qui ne veulent
pas lire mon courant de conscience qui ac-
compagne ce que j’écris partout ailleurs.

Chapter 1. In an attempt to place this
work into context, we give here a short his-
tory of the subjects treated in this thesis.

Chapitre 1. Afin de donner un peu de
contexte, on résume brièvement les sujets
traités dans cette thèse.

Chapter 3. Simplicial methods, in par-
ticular, are rife with different conventions
of notation and nomenclature; we lay out
those that we have decided to use.

Chapitre 3. Les méthodes simpliciales
étant particulièrement lourdes en conven-
tions de notation et nomenclature, on les
grave dans le marbre dès le début.

Chapter 4. The main objects of study are
the Atiyah classes of a holomorphic vector
bundle; simplicial differential forms; and
locally free sheaves on a simplicial space.
We define all these, as well as some other
constructions that we will later use.

Chapitre 4. Les objets centraux dans cette
thèse sont les classes d’Atiyah d’un fibré
vectoriel holomorphe, les formes différen-
tielles simpliciales, et les faisceaux locale-
ment libres sur un espace simplicial. On
donne, entre autres, toutes ces définitions.

Chapter 5. The trace of the so-called
‘exponential’ Atiyah classes (which corre-
spond to exponential Chern classes) can be
manually lifted to closed elements in the
Čech-de Rham bicomplex, and thus corre-
spond to closed classes in de Rham coho-
mology. We give the construction by hand
for the first four cases, but it is messy, and
so prompts us to look for a slicker method.

Chapitre 5. Le trace des classes d’Atiyah
« exponentielles » (qui correspondent aux
classes de Chern exponentielles) peuvent
être relevées aux éléments fermés du bi-
complexe Čech-de Rham et correspondent
ainsi aux éléments fermés de la cohomolo-
gie de de Rham. On donne une construc-
tion à la main pour les quatre premiers cas
mais, celle-ci devenant très vite complexe,
nous sommes poussés à trouver une méth-
ode plus habile.
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2.1. For mathematicians | Pour les mathématiciens

Chapter 6. Green’s thesis describes a
‘barycentric connection’, which, via a sim-
plicial version of Chern-Weil, gives us
Atiyah classes directly as closed elements
in some simplicial Čech-de Rham bicom-
plex; Dupont’s fibre integration then gives
us the required quasi-isomorphism to de
Rham cohomology. This is mainly just a
summary of Green’s thesis, but stated in a
way that makes it amenable to be placed in
a formal framework (which we will intro-
duce in the next chapter).

Chapitre 6. La thèse de Green décrit une
« connexion barycentrique » qui donne les
classes d’Atiyah comme éléments fermés
dans une version simplicale du bicomplexe
Čech-de Rham, via une version simpliciale
de Chern-Weil; puis l’intégration fibrée de
Dupont donne le quasi-isomorphisme à la
cohomologie de de Rham requis. Le but est
de donner un résumé de la thèse de Green,
exprimé de façon plus propice à sa formal-
isation (qui sera introduit dans le prochain
chapitre).

Chapter 7. This gives the formal frame-
work mentioned above: how to define
simplicial connections, how to generalise
Chern-Weil theory to simplicial connec-
tions and simplicial differential forms, and
how to consider Green’s barycentric con-
nection as a particular example.

Chapitre 7. On explique le cadre formel
mentionné au-dessus, c’est-à-dire com-
ment définir les connexions simpliciales,
comment généraliser la théorie de Chern-
Weil aux connexions simpliciales et aux
formes differentielles simpliciales, et com-
ment considérer la connexion barycen-
trique de Green comme un exemple parti-
culier.

Chapter 8. With the construction of Chern
classes in tDR cohomology for vector bun-
dles now under our belt, we recall O’Brian,
Toledo, and Tong’s twisting cochains, and
how they can be thought of as local resolu-
tions of coherent sheaves.

Chapitre 8. À l’aide de la construction de
classes de Chern dans la cohomologie de
tDR pour les fibrés vectoriels, on rappelle
à présent les cochaînes tordues de O’Brian,
Toledo, et Tong, et le point de vue de réso-
lutions locales des faisceux cohérents.

Chapter 9. Green’s second main result is
that a twisting cochain can be ‘locally stric-
tified’ somehow, resulting in a resolution
by locally free sheaves on the nerve; such
resolutions also satisfy various nice prop-
erties. We summarise all of this here.

Chapitre 9. Le deuxième résultat princi-
pal de Green est le fait qu’une cochaîne
tordue peut être « localement strictifiée »
pour obtenir une résolution par des fais-
ceaux localement libres sur le nerf; ce type
de résolutions satisfont quelques bonnes
propriétés.

Chapter 10. Finally, then, we fill in
the holes and piece together the previous
chapters, seeing how to construct Chern
classes in tDR cohomology for coherent
sheaves. We show that, in the compact
case, it agrees with any other construction
that you might wish to use.

Chapitre 10. Enfin, on combine les résul-
tats des chapitres précédents afin de pou-
voir construire les classes de Chern dans
la cohomologie de tDR pour les faisceaux
cohérents. On montre que, dans le cas
compact, cette construction coïncide avec
n’importe quelle autre.

Part IV. In these appendices we give a
bunch of (moderately concise) expository
and explanatory notes on various subjects
mentioned throughout this thesis.

Partie IV. Ces appendices servent à ex-
pliquer brièvement quelques sujets sup-
plémentaires évoqués au travers de cette
thèse.
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2. Overview | Vue d’ensemble

Part V. In these appendices we are often
much less coherent and precise (and much
more prone to rambling) than we proba-
bly should be: there are formal statements
of various definitions which we have made
use of, as well as mild explanations, but we
tend to be content with simply providing
the reader with the necessary keywords to
find better references than this one. The
odd one out, as it were, is Appendix G,
which is, for the most part, pretty formal
and self-contained. In general, these chap-
ters should be treated with the utmost sus-
picion and doubt.

Partie V. Ces appendices sont moins
précises et tendent à se répéter : mal-
gré la présence de quelques définitions
formelles, elles consistent surtout en une
liste de mots clés auxquels le lecteur
pourra se référer afin de trouver une
meilleure source que la présente thèse.
L’intrus, pour ainsi dire, est l’appendice G
qui est en grande partie assez formel et au-
tocontenu. Dans l’ensemble, ces chapitres
devraient être lus avec méfiance et scepti-
cisme.

2.2 For mathematicians in a hurry

Most of the mathematical content of this thesis can be found in a more stream-
lined format in [Hos20a; Hos20b].

Vector bundles

• The Atiyah class of a holomorphic vector bundle can be iterated to get higher
Atiyah classes; these correspond to higher Chern classes. (4.1.21) and (4.1.22)

• The traces of the Atiyah classes admit lifts to the Čech-de Rham bicomplex
that result in closed classes in de Rham cohomology. These can be con-
structed by hand, but the method is ‘messy’. (5.1.1), (5.1.2), and (5.1.4)

• Lifting to a simplicial version of the Čech-de Rham bicomplex can be done
by considering a simplicial version of the Atiyah classes; Dupont’s fibre inte-
gration then gives us a quasi-isomorphism into de Rham cohomology. This
was originally done in Green’s thesis. (6.1.8) and (6.3.1)

• The idea of ‘simplicial connections’ can be formalised, giving a more general
categorical framework, which contains Green’s barycentric connection as a
particular example. Chapter 7

Coherent sheaves

• The twisting cochains of O’Brian, Toledo, and Tong can be used to con-
struct resolutions of coherent sheaves by ‘simplicial vector bundles’ (al-
though these are not just simplicial objects in the category of vector bun-
dles); these resolutions have particularly nice properties. This is exactly a
result of Green. (9.1.2)
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2.3. For non-mathematicians

• There is an equivalence of categories (indeed, there are many) that prove
useful in combining our formalisation of simplicial connections with Green’s
resolutions. (10.2.9)

2.3 For non-mathematicians

I get much more respect than I deserve. [...] I’ve
developed a great reputation for wisdom by ordering
more books than I ever had time to read, and reading

more books, by far, than I learned anything useful
from, except, of course, that some very tedious

gentlemen have written books.

Marilynne Robinson, “Gilead”.

It is very easy to be intimidated by these tens or hundreds of pages of math-
ematics, given the vast quantity of symbols and words that seem to be entirely
unexplained, as if written in a foreign language that seems to only passingly re-
semble English at times. I’m not going to try to explain my entire thesis using
non-mathematical language, for two reasons: (1) other people have already done
much better jobs at explaining these sorts of things; and (2) if you really want to
know, then ask me! But I will try to give some vague approximation to what’s
going on here, as well as some explanation as to what it actually is that I’ve done.

For this latter point, the answer is sort of ‘not much’, and sort of ‘quite a bit’.
A lot of mathematics relies on building on existing results that other people have
discovered; it’s incredibly rare that somebody comes along and just ‘invents’ a
whole branch of maths by themselves. What I’ve done is read somebody else’s
PhD thesis, written in 1980 by a person named H.I. Green, that was never pub-
lished, and so never really expanded on by anybody else. The thesis gives a way
of constructing certain ‘numbers’ (they’re not really numbers, but sort of a gener-
alisation of numbers) associated to certain mathematical objects (coherent sheaves)
that works, in that it gives the numbers we want for simple objects, for which we
can calculate the numbers in easier ways, and numbers that make sense for more
complicated objects, that agree with what we want/expect to be true. There are a
lot of actual algebraic calculations[1] in this older thesis, which is great, because it
tells us how to actually do the construction, but it’s not very easy to understand
what we’re actually doing, conceptually. Think of it like long division: it’s a really
concrete way of actually calculating how to divide one number by another, but
if you just saw a bunch of long division examples then it wouldn’t be necessar-
ily obvious that we were trying to figure out the simple idea of ‘how many times
does this small number go into this bigger number’; complicated algorithms can

[1]Like the ones I’ve tried to explain a bit in Section 8.3, if you want to see what they look like.
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2. Overview | Vue d’ensemble

obscure the simpler ideas behind them. So my job was to try to unravel this con-
struction and figure out what might be going on behind the scenes. There were
some nice hints in the thesis as to what might be secretly happening, but there
were also a bunch of things that were not really explained (sentences like ‘next,
we do this’, without any indication as to why we would want to, or even think of,
doing such a thing). This meant that my supervisors and I had to think of possible
explanations, check to see if they made sense, and then to see if they actually gave
the same answers. By trying to explain what’s going on here, we managed to come
up with a framework that’s a bit more general than what happens in the older
thesis, and so maybe in the future somebody can read this thesis and apply some
of the results to other examples. This is what mathematicians hope for! Of course,
I also had to do some hard calculations myself, and these really are, in essence,
not much more than solving algebraic equations: take a look at Section 5.2.

As for what the maths in this thesis is actually about, I think it’s more inter-
esting to describe certain aspects in more details than others. The main result
is a construction of characteristic classes of coherent sheaves in truncated de Rham
cohomology, so let’s see what each of those three main ideas are about.

Coherent sheaves are particularly ‘well-behaved’ sheaves, so the question re-
duces to ‘what is a sheaf?’. There are many good answers to this, but the one that
best fits the ideas in this thesis is that a sheaf is a space that lives over another space
in a nice way. By ‘space’, I mean something that ‘has some dimensions’, or some-
thing that ‘things can move through’. Looking around you, you seem to be living
in some three-dimensional space (you can move up/down, forwards/back, and
side-to-side); but we could imagine something more abstract, like imagining the
current temperature in Bideford, Devon as a small little point that lives in some
one-dimensional space (that is, it moves about on a line, exactly how the level of
liquid in a thermometer moves). There are even more abstract notions of space
than this, but that’s not enough for mathematicians: we want an idea of generalised
spaces (another name for sheaves). Imagine being in a house, which is sat on top
some area of land. I could describe where I am in the house by saying something
like ‘in the small cupboard next to the upstairs landing’, but I could also describe
where I am by giving you exactly two pieces of information: (1) where I am in
relation to the plot of land (i.e. two feet down and four feet left of the top right
corner), and (2) what floor of the house I’m in. That is, a house with an upstairs
and a downstairs ‘looks exactly like’ (in this mathematical sense) two copies of the
plot of land on which it’s built (or even two copies of, say, the downstairs); a house
with three floors ‘looks exactly like’ three copies of the land on which it’s built;
and so on. This is sort of what a vector bundle is (it’s really the most simple kind: a
trivial vector bundle), and a combined result of my thesis and Green’s thesis, says
that coherent sheaves are built up, in a sort of complicated way, from these such
things. Anywho, nobody is going to test you on these things, so let’s just move on.

Characteristic classes are pretty easy to vaguely explain: they’re like numbers
that we associate to sheaves that tell us things about the sheaf, like how many
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2.3. For non-mathematicians

holes it has or how boring it is or how much it looks like two other sheaves stuck
together. When I say like numbers, I mean that they actually were, historically,
defined as just numbers, but then people (namely, Emmy Noether) realised that
these numbers were actually just the shadows cast by more structured mathe-
matical objects. This becomes a bit easier to understand when we have more of
an idea of what cohomology is, because characteristic classes are ‘just’ elements of
cohomology.

So then, what is cohomology? Again, there are a bunch of answers, and many
mathematicians study pretty much nothing but cohomology, in its many various
disguises, so I won’t try to be at all complete here. In essence though, we can
think of it as ‘hole counting’. This is a great area of mathematics, because it start
out so easy and nice, but turns around and says ‘aha, gotcha’, very quickly. Take
a piece of paper and, using a hole punch, punch a hole in it. How many holes
are there? Well, one, because we just punched one. Punch a few more holes and
you have a few more holes. But paper is a bit boring, because it’s flat (basically
two-dimensional), so let’s do something a bit more exciting. There are two main
types of doughnuts: jam ones, and ring ones.[1] Imagine a jam doughnut being
made in the jam doughnut factory, at the moment just before they put the jam
in it.[2] How many holes are there in the doughnut? Well, there’s one: it’s like
a balloon, or a football at this stage, because it just has some air in the middle
that’s waiting to be replaced by jam. But now, how many holes are there in a
ring doughnut? The answer is also, ‘obviously’, just one: there’s the hole in the
middle, just like in a hula hoop, or a ring. But there’s something different about
these holes in our doughnuts: one of them we could put our finger through, but
the other one is invisible (hidden inside the doughnut itself); you could tie a ring
doughnut to a post to stop it from running away, but you’d struggle to do so with
a jam doughnut. This is where the idea of ‘hole counting’ needs something more
precise than just numbers: it’s not enough to say just how many holes there are; we
also need to describe what sort of holes there are. In fact, you could even imagine
filling the not-a-hole part of a ring doughnut with jam, and then sucking out all
the jam, to give you some weird shape that has both types of holes in it. This is
sort of what cohomology helps us to formalise.

(2.3.1) For non-mathematicians currently sat in my thesis defence. If you are
some poor family member or friend of mine who has felt that you should come
to my thesis defence, you’re probably going to be rather bored after the first
few minutes. You will likely spend over an hour having to listen to people talk
about maths things without really understanding much, if anything at all, of what
they’re saying (bonus points if it’s in French too), but this gives you a chance to

[1]I think that one is called a donut and the other a doughnut, but I’m not sure if that’s actually
true or not.

[2]N.B. I don’t know how doughnuts are really made, and I imagine that what I’m about to say is
wrong, but the mathematical idea behind it is still valid.
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experience my life: being completely lost for hours at a time is pretty much what
going to seminars often feels like. Try amusing yourself by playing ‘thesis de-
fence bingo’, making a note every time you hear one of the following: obviously,
trivially, or clearly[1]; by finiteness/compactness/Stein-ness/exactness/functoriality;
by Cartan’s Theorem B; anything to do with Green; the sentence these ‘things’ are
not just simplicial objects in the category of ‘things’; any mention of higher or infinity
categories; me saying oh, I forgot to mention that ...; some thinly veiled reference or
‘joke’ about birds; something that must be a joke because some of the mathemati-
cians laughed at it but you don’t really know what exactly was so funny; the years
1976 and 1978; an excuse about how I’m not an algebraic geometer; an excuse about
how I’m not a category theorist; slowly saying that’s a really good question as a way to
give me time to think when somebody asks me a question; or, lastly, but certainly
not least-ly, somebody falling asleep (something that happens reasonably often,
or so I am told).

Alternatively, read the previous section and play some games with the ideas
there. How many holes are there in the earth? How many holes are there in a
straw: one big one, or two (one at each end)? An open bottle? In a pair of trousers?
A shirt? Given your answers to the above, do they make sense with one another?
For example, a bottle looks like a fat straw with one of the holes sealed over, so
it should probably have one fewer hole than a straw; a pair of trousers looks like
two straws joined together by stapling their top holes together, and then adding a
little belt on top, so maybe a pair of trousers should have 2s − 1 holes, where s is
the number of holes in a straw; a shirt looks like a pair of trousers with another
hole, or two straws smooshed together in a cross shape, with where they crossed
being replaced with a jam-doughnut-type hole. And so on.

Counting holes has helped me while away many a dull hour. Welcome to my life.

[1]These all mean ‘please don’t ask me for more details because I’m not sure I’ll be able to give
them’.

12



3Conventions
Clichés can be quite fun. That’s how they got to be

clichés.

Alan Bennett, "The History Boys".

(3.0.1) Assumptions. Throughout this entire thesis,X is a complex-analytic para-
compact manifold, and any cover U = {Uα}α∈I will always be locally finite and
Stein.

(3.0.2) Simplicial conventions.

• ∆ is the simplex category:

– the objects are the finite ordinals [p] = [0,1, . . . ,p − 1,p] for p ∈N;

– the morphisms are the order-preserving maps;

– we have, for i ∈ {0, . . . ,p − 1}, the coface[1] maps

f ip : [p − 1]→ [p]

j 7→

j if j < i

j + 1 if j > i

which are the injections that ‘skip over’ i;

– we have, for i ∈ {0, . . . ,p}, the codegeneracy maps

s
p
i : [p+ 1]→ [p]

j 7→

j if j 6 i

j − 1 if j > i

which are the surjections that ‘collapse together’ the points i and i + 1.

• ∆[p] = Hom∆(−, [p]) is the abstract p-simplex; and the collection of all the
∆[p] forms a simplicial set. (This is something that we don’t actually use).

• ∆• : [p] 7→ ∆nTop is the collection of topological simplices and is a cosimplicial

space, and we write ∆p := ∆• ([p]) = ∆
p
Top, where ∆pTop ⊂ R

p+1 is the smooth
space consisting of the points (t0, . . . , tp) such that all the ti are non-negative

[1]Confusingly often called face maps, but we opt for coface (and, similarly, codegeneracy), so that
the terminology is consistent when we talk about (co)simplicial spaces. In a (perhaps seemingly
odd) turn of events, the simplex category itself is not simplicial, but instead cosimplicial.
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and
∑p
i=0 ti = 1. When dealing with coface and codegeneracy maps in this

cosimplicial space, we often omit the functor from the notation, and simply
write e.g. f ip : ∆p−1→ ∆p.

• The coface and codegeneracy maps give us maps on (co)simplicial spaces:

– simplicial spaces Y• have face maps

Y•f
i
p : Yp→ Yp−1

and degeneracy maps

Y•s
p
i : Yp→ Yp+1;

– cosimplicial spaces Z• have coface maps

Z•f ip : Zp−1→ Zp

and codegeneracy maps

Z•s
p+1
i : Zp+1→ Zp.

• Given some topological space Y with a coverV = {Vβ}β∈J we define the nerve
YV• as the simplicial space given by

YVp =
∐

β0,...,βp∈J
Vβ0 ···βp,∅

Vβ0···βp

with face maps acting by

YVp f
i
p : Vβ0···βp 7→ Vβ0···β̂i ···βp

and degeneracy maps by

YVp s
p
i : Vβ0···βp 7→ Vβ0···βiβi ···βp .

(3.0.3) Notational conventions.

• We writeよ to mean the Yoneda embedding C→ [Cop,Set] of any category C,
given (on objects) byよ(x) =よx = HomC(−,x).

• If we have some bigraded object (Ai,j )i,j∈Z then, instead of writing A•,•, we
write A•,? , to emphasise that the two gradings are independent from one
another. That is, if we do ever write A•,• then the implication is that we are
taking the diagonal: A•,• = A• = (Ai,i)i∈Z. Note that this convention some-
times means that the notation for the grading might switch, e.g. Ω• might
later be written as Č•(Ω?).
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• We sometimes write + instead of ⊕.

• A vector is represented by a column vector (an (n × 1)-matrix) c, with com-
ponents/coordinates/entries ci ; a covector is represented by a row vector (a
(1×m)-matrix) r, with components/coordinates/entries rj . This means that a
linear map f : k〈u1, . . . ,um〉 → k〈v1, . . . , vn〉 between (finite-dimensional) vec-
tor spaces (over some field k) is represented by an (n ×m)-matrix A with
entries Aij , acting[1] as vi = Aiju

j .

• We denote the symmetric group on n elements by Sn, and the sign of an
element σ ∈ Sn by |σ |.

• Generally, we use E, F, etc. to denote vector bundles; E, F , etc. to denote
vector bundles on the nerve; and E, F, etc. to denote coherent sheaves.

• Pullbacks bind higher than restrictions: f ∗F
∣∣∣U should be read as (f ∗F)

∣∣∣U ,
not f ∗(F

∣∣∣U ).

• We write Uα0...αp ∈U to mean that each Uαi is inU .

• Rather than the ‘Bourbaki dangerous bend’ sign to signal a particularly diffi-
cult/important/potentially misleading fact (or even just something of which
we should be overtly aware), we opt for using a goose. The reasons for this
choice should be evident to anybody who has ever met a goose; we refer
those who have had the luck to have never done so to [Hou19]. Any reader
annoyed by the number of geese signs in this thesis should probably avoid
learning about how many real geese there are in the real world.

[1]Here we use Einstein summation notation, as well as the fact that having a basis gives us a
non-degenerate form (via the dual basis), which lets us raise and lower indices.
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II. Vector bundles and tDR
cohomology
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4Preliminaries
I can assure you my credentials are top-notch: I’ve

just graduated from Harvard College Yale. I aced
every semester, and I got an ‘A’.

Dr. Liz Asher.

(4.0.1) Purpose. This chapter introduces most of the definitions that form the basis
for our study of characteristic classes of coherent sheaves. Much is classical and can
be found elsewhere; some things are probably also classical, but didn’t come up in any
of my reading, most likely because they are already well known to any experts in the
field. In particular, the question in (4.1.23), and the fact that one even has to take into
account this change of basis (as explained in (4.1.22)), was something that slipped by
me and caused problems for a good week or so before one of my supervisors noticed
what was going on, and so I make more noise about it than any classical text might.
Some of the concepts introduced in Section 4.3 are either ‘new’ enough or subtle enough
to deserve some extra treatment, and I have tried to give them such in Appendices A
and F.

(4.0.2) Throughout, let E be a locally free sheaf of rank r on X, where (X,OX)
is a paracompact complex-analytic manifold with a locally-finite Stein coverU =
{Uα}α∈I that trivialises E. We have trivialisation maps ϕα : E

∣∣∣Uα ∼−−→ (OX
∣∣∣Uα)r, and

transition mapsMαβ : (OX
∣∣∣Uαβ)r ∼−−→ (OX

∣∣∣Uαβ)r given on overlaps byMαβ = ϕα ◦ϕ−1
β .

Finally, assume that we have (holomorphic) connections∇α on each E
∣∣∣Uα (defined

in (4.1.5)).
By picking some basis of sections {sα1 , . . . , sαr } of E over Uα we can realise the

Mαβ as (r× r)-matrices that describe the change of basis when we go from E
∣∣∣Uβ to

E
∣∣∣Uα, i.e.

sαk =
∑
`

(Mαβ)`ks
β
` .

4.1 The Atiyah class

(4.1.1) The original reference for most of the material below is [Ati57, §2]; a more
modern reference to much of this is [Huy05, 4.2.17 onwards] (although the treat-
ment there of the Atiyah class is somehow backwards from ours here: it defines
the Atiyah class as a cocycle and then shows that it corresponds to a splitting of
the Atiyah exact sequence).

17



4. Preliminaries

(4.1.2) Definition. The Atiyah exact sequence (or jet sequence) of E is the short
exact sequence of OX-modules

0→ E ⊗OX Ω
1
X → J1(E)→ E→ 0

where J1(E) = (E ⊗Ω1
X)⊕E as a CX-module[1], but we define the OX-action by

f (s⊗ω,t) = (f s⊗ω+ t ⊗df , f t).

The Atiyah class atE of E is defined by atE = [J1(E)] ∈ Ext1
OX

(E,E ⊗Ω1
X).

(4.1.3) We are interested in the Atiyah class because it is ‘equivalent’, in some
sense that we make precise below, to the (first) Chern class.

• [Huy05, Proposition 4.3.10] shows us that the trace of the Atiyah class gives
the same class in cohomology as the curvature of the Chern connection,
which, combined with [Huy05, Example 4.4.8 i)], tells us that the traces of
the Atiyah classes (defined in (4.1.21)) and the Chern classes are the same,
up to a constant. There are some more general comments about this equiv-
alence on [Huy05, p. 200], just below Example 4.4.11.

• [Huy05, Exercise 4.4.11] tells us that the Chern characters (or exponential
Chern classes) are given (up to a constant) by the traces of the exponential
Atiyah classes (defined in (4.1.18)).

• The traces of Atiyah classes satisfy an axiomatisation of Chern classes that
guarantees uniqueness, when X is compact. This is explained in Section 10.4.

(4.1.4) We talk about connections in more detail in Appendix B, giving more back-
ground motivation and examples, but what follows here is all that is strictly nec-
essary for our purposes.

(4.1.5) Definition. A holomorphic (Koszul) connection ∇ on E is exactly a (holo-
morphic) splitting of the Atiyah exact sequence of E. Recall that, by enforcing the
Leibniz rule

∇(s⊗ω) = ∇s∧ω+ s⊗dω,

we can extend any connection ∇ : E → E ⊗Ω1
X to a map ∇ : E ⊗Ωr

X → E ⊗Ωr+1
X .

Using the same symbol ∇ to denote both the connection and any such extension
is a common abuse of notation.

Given any continuous map f : Y → X, we have the pullback connection f ∗∇ on
the pullback bundle f ∗E (as defined in (B.2.3)).

Given some subsheaf F ⊂ E, we cannot, a priori, restrict a connection on E to
get a connection on F. This is because connections are somehow endomorphism-
valued (as we explain in (B.2.5)), and there is no reason for an arbitrary subsheaf
to be invariant under the given endomorphism.

[1]Where CX is the constant sheaf of value C on X.
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(4.1.6) Definition. The curvature κ (∇) of a connection ∇ is the map

κ (∇) = ∇2 : E→ E ⊗Ω2
X ,

where ∇2 = ∇◦∇ is defined as in (4.1.5), by enforcing the Leibniz rule.

(4.1.7) Definition. Given a connection ∇ on E, we say that a section s ∈ Γ (U,E) is
flat if ∇(s) = 0. We say that ∇ is flat if κ (∇) = 0.

(4.1.8) Lemma. ([Gre80, Lemma O.E.3]). By Cartan’s Theorem B[1], any locally
free sheaf over a Stein manifold admits a holomorphic connection.

(4.1.9) Lemma. The Atiyah class of E is represented by the cocycle[2]

{∇β −∇α}α,β∈I ∈ Č1
U

(
Hom

(
E,E ⊗Ω1

X

))
.

Proof. First, recall that the difference of any two connections is exactly an OX-
linear map (see (B.2.4)). Secondly, note that we do indeed have a cocycle:

(∇β −∇α) + (∇γ −∇β) = ∇γ −∇α .

Thus {∇β −∇α}α,β ∈ Č1
U

(Hom (E,E ⊗Ω1
X)). Then we use the isomorphisms

Ext1
OX

(E,E ⊗Ω1
X) �HomD(X)(E,E ⊗Ω1

X[1]) �H1
(
X,Hom (E,E ⊗Ω1

X)
)
.

Finally, we have to prove that this class in cohomology agrees with that given in
our definition of the Atiyah class of E. This fact is true in more generality, and we
prove it as so.

Let 0→ A → B → C → 0 be a short exact sequence in some abelian category
A. The definition of [B] ∈ Ext1

A
(C,A) is as the class in HomD(A)(C,A[1]) of a

canonical morphism C→A[1] constructed using B as follows:

(i) take the quasi-isomorphism (A→ B) ∼−−→ C, where B is in degree 0;

(ii) invert it to get a map C ∼−−→ (A → B) such that the composite C ∼−−→ (A →
B)→ B→ C is the identity;

(iii) compose with the identity map (A→ B)→A[1].

When A is the category of locally free sheaves on X, we can realise the quasi-
isomorphism C ∼−−→ (A→ B) as a quasi-isomorphism C ∼−−→ Č•(A → B) by using
the Čech complex of a complex:

Č•(A→ B) = Č0(A)
(δ̌,f )
−−−−→ Č1(A)⊕ Č0(B)

(δ̌,−f ,δ̌)
−−−−−−−→ Č2(A)⊕ Č1(B)

(δ̌,f ,δ̌)
−−−−−→ . . .

[1]This is the statement that, if E is a coherent sheaf on a Stein manifold X, then Hp(X,E) = 0 for
all p > 1.

[2]We omit the restriction from our notation: really we mean ∇α
∣∣∣Uαβ −∇β ∣∣∣Uαβ
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where Č0(A) is in degree −1. If we have local sections σα : C
∣∣∣Uα → B ∣∣∣Uα then

σβ − σα lies in the kernel Ker(B
∣∣∣Uαβ → C ∣∣∣Uαβ), and so we can lift this difference

to A, giving us the map

({σα}α , {σβ − σα}α,β) : C→ Č0(B)⊕ Č1(A).

This map we have constructed is exactly [B]. More precisely,

Ext1
OX

(C,A) � HomD(X)(C,A[1]) � H1
(
X,Hom (C,A)

)
[B] ↔ C

∼−−→ (A→ B)→ A[1] ↔ [{σβ − σα}α,β].

(4.1.10) We write ωαβ = ∇β −∇α, recalling that the ∇α are local connections.

(4.1.11) Definition. When E, F , and G are sheaves of OX-modules, with G lo-
cally free, we have the isomorphism

Hom (E,F ⊗G) �Hom (E,F )⊗G.

This means that, taking the trivialisation overUα, we can considerωαβ = (∇β−∇α)
as an (r × r)-matrix of (holomorphic) 1-forms on X, or an endomorphism-valued
form, since

H1
(
X,Hom (E,E ⊗Ω1

X)
)
�H1

(
X,End (E)⊗Ω1

X

)
where, for a sheaf E, we define the collection of E-valued r-forms onX to be E⊗Ωr

X .

(4.1.12) We can calculate ωαβ explicitly in the case where our local sections
{sα1 , . . . , sαr } are ∇α-flat:

ωαβ
(
sαk

)
=

(
∇β −∇α

)(
sαk

)
= ∇β

(
sαk

)
But then, using the change-of-basis identity in (4.0.2) followed by the Leibniz rule,
we get that

∇β
(
sαk

)
= ∇β

∑
`

(Mαβ)`ks
β
`


=

∑
`

[
∇β

(
s
β
`

)
∧ (Mαβ)`k + sβ` ⊗d(Mαβ)`k

]
.

Since the sβ` are ∇β-flat, the first part of each `-term is zero, and, using the inverse
change-of-basis identity, we then have that

ωαβ
(
sαk

)
=

∑
`

∑
m

(M−1
αβ)m` s

α
m

⊗d(Mαβ)`k
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4.1. The Atiyah class

=
∑
m

sαm ⊗ (M−1
αβdMαβ)mk

where we can move the M−1
αβ across the tensor product because the tensor is over

OX , and the Mm
` are exactly elements of this ring.

Thus, in the Uα trivialisation, ωαβ is given by M−1
αβdMαβ . Seasoned readers

might notice that this is exactly the first Chern class dloggαβ of the bundle (here
gαβ =Mαβ).

(4.1.13) We don’t need our local connections ∇α to be flat in order to define these
things, but just to calculate them in such an explicit manner.

(4.1.14) Lemma. dωαβ = −ω2
αβ .

Proof. Using the fact[1] that d
(
A−1

)
= −A−1 ·dA ·A−1, we see that

dωαβ = d
(
M−1
αβdMαβ

)
= d

(
M−1
αβ

)
dMαβ

= −M−1
αβdMαβM

−1
αβdMαβ

= −
(
M−1
αβdMαβ

)2

= −ω2
αβ .

(4.1.15) Lemma. dtrωαβ = 0.

Proof. Since dtrωαβ = trdωαβ = − trω2
αβ , by (4.1.14), this lemma is a specific case

of the fact that tr
(
A2k

)
= 0 for any k ∈N, which we prove in (4.4.3).

This tells us that trωαβ defines a class in de Rham cohomology, since it is
closed under the de Rham differential.

(4.1.16) Our next goal is to construct some idea of ‘higher’ Atiyah classes, i.e.
consider the Atiyah class as the first Atiyah class, and then define the second Atiyah
class, the third Atiyah class, and so on.

(4.1.17) Recall that, for sheaves F and G of OX-modules, we have the cup product

^ : Hm(X,F)⊗Hn(X,G)→Hm+n(X,F⊗G)

which is given in Čech cohomology by the tensor product:

(a^ b)αβγ = (a)αβ ⊗ (b)βγ .

[1](M + tH)−1 =
(
M(id + tM−1H)

)−1
= (id + tM−1H)−1M−1 =

(
id − tM−1H +O(t2)

)
M−1 = id −

tM−1HM−1 +O(t2).
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4. Preliminaries

(4.1.18) Definition. Let us formally construct the second exponential[1] Atiyah
class at◦2E . We start with

(atE ⊗ idΩ1
X

)^ atE ∈H2
(
X,Hom (E ⊗Ω1

X ,E ⊗Ω
1
X ⊗Ω

1
X)⊗Hom (E,E ⊗Ω1

X)
)

and apply the composition map

Hm
(
X,Hom (F ,G)⊗Hom (E,F )

)
→Hm

(
X,Hom (E,G)

)
to obtain

(atE ⊗ idΩ1
X

)^ atE ∈H2
(
X,Hom

(
E,E ⊗Ω1

X ⊗Ω
1
X

))
�H2

(
X,End (E)⊗Ω1

X ⊗Ω
1
X

)
.

Finally, applying the wedge product (of forms) gives us

at◦2E = (atE ⊗ idΩ1
X

)∧ (atE) ∈H2
(
X,End (E)⊗Ω2

X)
)
.

In general, the kth exponential Atiyah class at◦kE is the class

at◦kE =
k∏
i=1

(
atE ⊗ id⊗(k−i)

Ω1
X

)
∈Hk

(
X,End (E)⊗Ωk

X)
)

where the product is given by applying composition and then the wedge product
(of forms) as above.

(4.1.19) As a general note on notation, we will omit the wedge symbol ∧ when
talking about the wedge product of differential forms (or we will use · if we have
to use any symbol at all), and reserve it solely for the wedge product of endomor-
phisms. In particular then, for endomorphism-valued forms M and N , we write
MN (or M ·N ) to mean the object given by composing the endomorphisms (and
wedging the forms), and M ∧N to mean the object given by wedging the endo-
morphisms (and wedging the forms). In terms of (2× 2)-matrices (i.e. taking E to
be of rank 2), this looks like(

a b
c d

)
·
(
e f
g h

)
=

(
ae+ bg af + bh
ce+ dg cf + dh

)
∈ Γ

(
U,Ω2

X ⊗End (E)
)

(
a b
c d

)
∧

(
e f
g h

)
= det

(
a f
c h

)
= ah− f c ∈ Γ

(
U,Ω2

X ⊗End (E ∧E) �Ω2
X

)
.

Note that, if we take the trace, then these two objects will both be 2-forms on U .
Similarly, tr

(
Mk

)
and tr

(
∧kM

)
are both just k-forms on U .

[1]In general, we will be interested in standard Atiyah classes, but we consider the manual con-
struction of exponential ones since these can be written down very explicitly, as in Chapter 5.
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4.1. The Atiyah class

(4.1.20) The classical theory of Chern classes has two important ‘types’ of Chern
class: exponential and ‘standard’. For now, we are content with simply saying, as
a definition, if you like, that the polynomial that corresponds to the exponential
classes is tr(Mp), and the polynomial that corresponds to the standard classes is
tr(∧pM). We discuss this more in Appendix C. Caution is needed when discussing
the kth Atiyah class though: there is no trace in the definition; to obtain charac-
teristic classes we have to take the trace. The reason for not including the trace
in the definition is to do with the simplicial version of Atiyah classes that we will
later define.

(4.1.21) Definition. The second (standard) Atiyah class at∧2
E can be formally

constructed as follows. We start with

atE ^ atE ∈H2
(
X,Hom (E,E ⊗Ω1

X)⊗Hom (E,E ⊗Ω1
X)

)
�H2

(
X,End (E)⊗End (E)⊗Ω1

X ⊗Ω
1
X

)
and then apply the wedge product of endomorphisms and the wedge product of
forms to get

at∧2
E ∈H2

(
X,End (E ∧E)⊗Ω2

X

)
.

In general, the kth (standard) Atiyah class at∧kE is the class

at∧kE =
k∧
i=1

atE ∈Hk
(
X,End (∧kE)⊗Ωk

X

)
.

(4.1.22) We can find an explicit representative for at◦2E by using (4.1.11) and (4.1.17):(
(atE ⊗ idΩ1

X
)^ (atE)

)
αβγ

=
(
atE ⊗ idΩ1

X

)
αβ
⊗ (atE)βγ

↔
(
ωαβ ⊗ idΩ1

Uαβ

)
⊗ωβγ ∈Matr×r

(
Ω1
Uαβ
⊗Ω1

Uαβ

)
⊗Matr×r

(
Ω1
Uβγ

)
where Matr×r(A) is the collection of A-valued (r × r)-matrices. But before com-
posing these two matrices, as described in (4.1.18), we first have to account for
the change of trivialisation from over Uβγ to over Uαβ . That is, after applying
composition and the wedge product, we have(

at◦2E
)
αβγ

=ωαβ ∧MαβωβγM
−1
αβ .

(4.1.23) We know that at◦3E is represented locally by ωαβωβγωγδ, but where ωβγ
and ωγδ undergo a base change to become Ω1

Uαβ
-valued. But then, do we

1. base change ωγδ to be Ω1
Uβγ

-valued,
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4. Preliminaries

2. compose with ωβγ ,

3. then base change this composition to be Ω1
Uαβ

-valued;

or do we instead

1. base change both ωγδ and ωβγ to be Ω1
Uαβ

-valued, and

2. then perform the triple composition?

That is,

ωαβ ∧Mαβ(ωβγ ∧MβγωγδM
−1
βγ )M−1

αβ
?=ωαβ ∧MαβωβγM

−1
αβ ∧MαγωγδM

−1
αγ .

The happy answer is that these two constructions are in fact equal, thanks to
the cocycle condition on the Mαβ and some form of associativity[1], and so we can
use whichever one we so please.

4.2 tDR cohomology

(4.2.1) Since U is Stein (and any finite intersection of Stein open sets is also
Stein) and the sheaves Ωr

X are coherent, we can apply Cartan’s Theorem B, which
tells us that Ȟk(U ,Ω•X) � Ȟ

k(X,Ω•X); since X is paracompact and U is Stein, we
know that Ȟ

k(X,Ω•X) � H
k(X,Ω•X); and e.g. [Voi08, Theorem 8.1] tells us that

H
k(X,Ω•X) � Hk (X,C). In summary, we are in a nice enough setting that Čech-de

Rham bicomplex lets us calculate singular cohomology:

Hr Tot• Č?
(
Ω?
X

)
�Hr (X,C) .

(4.2.2) Definition. Given the de Rham complex Ω•X , we define the kth Hodge
complex Ω•>kX as the truncation

Ω
•>k
X =

(
Ωk
X

d−→Ωk+1
X

d−→ . . .
)

[−k]

i.e. so that Ωk
X is in degree k.

(4.2.3) Definition. We define the kth truncated de Rham (or tDR) cohomology to
be Hk

tDR(X) = H
k(X,Ω•>kX ).

(4.2.4) If we have some closed class c = (c0, . . . , c2k) ∈ Tot2k Č•(Ω•X), where ci ∈
Či(Ω2k−i

X ), such that ci = 0 for i > k + 1, then we can refine the corresponding class
in singular cohomology [c] ∈H2k(X,C) to a class [c] ∈H2k

tDR(X) in tDR cohomology.

[1]That is, A ·MB = AM ·B, where M is a matrix of 0-forms.
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4.3. Sheaves on simplicial spaces and simplicial forms

4.3 Sheaves on simplicial spaces and simplicial forms

(4.3.1) All of our simplicial conventions and notation are listed in (3.0.2).

(4.3.2) Definition. A sheaf E• on a simplicial space Y• is a family of sheaves {Ep}p∈N,
where Ep is a sheaf on Yp, along with, for all ϕ : [p]→ [q] in ∆, morphisms

E•(ϕ) : (Y•ϕ)−1Ep→ Eq

that are functorial[1] in ϕ. The sheaf E• is said to be strongly cartesian if the E•(ϕ)
are all isomorphisms. We say that a (cochain) complex E•,? of sheaves on Y• is
cartesian if the maps E•,?(ϕ) : (Y•ϕ)−1Ep,? → Eq,? are quasi-isomorphisms.

A morphism ϕ• : E•→ F • of sheaves on Y• is a family of morphisms of sheaves
ϕ• = {ϕp : Ep→ F p} such that the ‘obvious’ diagram

(Y•ϕ)−1Ep (Y•ϕ)−1F p

Eq F q

(Y•ϕ)−1ϕp

E•(ϕ) F •(ϕ)

ϕq

commutes.

(4.3.3) There are a few important warnings to give here:

(i) we do not impose the cartesian condition in the definition itself (but we will
later see that it comes ‘for free’ in the scenarios that are of interest to us);

(ii) these sheaves are covariant functors from ∆, not contravariant ones, and are
thus more like cosimplicial objects — because of this, it makes sense to write
E• instead of E•, but note that [Gre80; TT86] do not follow this convention;
and

(iii) these sheaves do not really even deserve the name ‘cosimplicial sheaves’, be-
cause they are not simply cosimplicial objects in some category of sheaves:
each Ep is a sheaf over a different space.

Although it is not necessary for our present purposes, we discuss some of these
points a little bit more in Appendix F.

[1]That is, E•(β ◦ϕ) = E•(β) ◦ E•(ϕ).
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4. Preliminaries

(4.3.4) Definition. In the specific case where Y• = XU• and each Ep is a sheaf of
OXUp -modules, we call the sheaf E• a sheaf of OXU• -modules. We will often play
fast and loose with our nomenclature and simply say ‘vector bundles on the nerve’
to mean ‘locally free sheaves of OXU• -modules’, as well as generally using ‘vector
bundle’ and ‘locally free sheaf’ somewhat interchangeably.

Note that the morphisms E•(ϕ) in (4.3.2) should respect this OXU• -structure:
in particular, the pullback (XU• ϕ)−1Ep should be replaced with the algebraic pull-
back

(XU• ϕ)∗Ep = (XU• ϕ)−1Ep ⊗(XU• ϕ)−1O
XUp
OXUq .

In fact, throughout this thesis we only work with sheaves of OXU• -modules, and so
will only use the algebraic pullback.

It is important to note that there are no conditions on the rank of the bundle
between different simplicial levels: it could be the case that Ep is rank r, but Eq is
of rank s. By definition, however, the rank is constant over different open sets of
the same simplicial degree: Ep

∣∣∣Uα0...αp is of the same rank as Ep
∣∣∣Uα′0...α′p .

In the specific case when E• = E• is the pullback of a global vector bundle[1]

then the rank is constant between simplicial degrees. Further, the maps E•(ϕ) are
simply identity maps (and so, in particular, E• is strongly cartesian).

(4.3.5) As a useful mnemonic, we keep the phrase “Čech complex” in mind when
working with complexes E•,? of sheaves on the nerve: the first grading • is for
the “Čech” part (i.e. the level of the Čech nerve); the second grading ? is for the
“complex” part (i.e. the cochain complex degree).

(4.3.6) Definition. Let Y• be a simplicial complex manifold. Following [Dup76],
we define a simplicial differential r-form ω• on Y• to be a family ω• of forms, with
ωp a global section of the sheaf⊕

i+j=r

π∗YpΩ
i
Yp
⊗O

Yp×∆
p
extd

π∗
∆
p
extd
Ω
j

∆
p
extd

(where ∆pextd is the affine subspace of Rp+1 given by the vanishing of 1−
∑p
m=0 xp;

and where ΩYp is the sheaf of holomorphic forms, and Ω∆
p
extd

is the sheaf of smooth

forms) such that, for all coface maps f ip : [p − 1]→ [p],(
Y•f

i
p × id

)∗
ωp−1 =

(
id× f ip

)∗
ωp ∈Ωr(Yp ×∆p−1). (4.3.6.1)

We writeΩY•(r,∆) to mean the collection of all simplicial differential r-forms on
Y• (distinguishing it from Ωr(Y•), the collection of forms on Y•). We can describe
each ωp as a form of type (i, j), by writing ωp = ξp ⊗ τp, where ξp is the Yp-part

[1]Given some vector bundle E on X, we define Ep = (XUp → X)∗E.
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4.3. Sheaves on simplicial spaces and simplicial forms

of ωp, and τp is the ∆p-part of ωp; then i = |ξp| and j = |τp|. This lets us define a
differential

d: Ωr,∆(Y•) −→Ωr+1,∆(Y•)

which is given by the Koszul convention with respect to the type of the form:

d(ξp ⊗ τp) =
(
dY• + (−1)|ξp |d∆•

)
(ξp ⊗ τp)

= (dξp ⊗ τp) + ((−1)|ξp |ξp ⊗dτp).

See (A.1.1) and (A.1.2) for more details.
This definition of simplicial differential forms is quite natural when seen side-

by-side with the definition of the fat realisation of a simplicial space, since we are
exactly asking that these forms on Y• ×∆• descend to forms on the fat realisation.
This point of view is covered in [Dup76], and we discuss some other motivations
in (F.6).

(4.3.7) Lemma. ([Dup76, Theorem 2.3]). There is a quasi-isomorphism which,
for each fixed r, consists of a map

∫
∆•

: Ωr,∆(Y•)→
r⊕
p=0

Ωr−p(Yp)

induced (see Appendix A) by fibre integration∫
∆p

: Ωr,∆(Y•)→Ωr−p(Yp)

where the latter is given by integrating the type (r − p,p) part of a simplicial
form over the geometric realisation of the p-simplex with its canonical orienta-
tion (again, see Appendix A).

Proof. The classical proof is [Dup76, Theorem 2.3], and the fact that the mor-
phism is given by integrating over the simplices is mentioned in [Dup76, Re-
mark 1, §2]. This proof is for the smooth case, and although the proof for the
holomorphic case is almost identical, we reproduce it (in part) in Appendix A (for
the case Y• = XU• ) so as to clear up the myriad of confusions that can arise from
the choices of orientations and signs.

(4.3.8) We use a different convention from that of [Dup76], which can lead to
even more sign problems — see (A.1.3).
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(4.3.9) Taking Y• = XU• gives∫
∆•

: Ωr,∆(XU• )→
r⊕
p=0

Ωr−p(XUp ) � Totr Č•(Ω•X).

It is interesting to note that the conditions we impose on U are really only[1] to
ensure that this quasi-isomorphism calculates de-Rham cohomology; the existence
of the quasi-isomorphism in (4.3.7) does not depend on the properties of the cover.

4.4 Trace cycles

(4.4.1) This section contains some useful facts about the trace of matrix-valued
forms that we often use to simplify calculations. Throughout, when we say ‘matrix-
valued’, we mean (r × r)-matrix-valued for some fixed r.

(4.4.2) Lemma. Let A1, . . . ,Ak be matrix-valued forms. Then

trA1A2 · · ·Ak = (−1)k−1 trA2 · · ·AkA1.

Proof. This is really just writing down definitions and using the fact that (non-
matrix-valued) forms are anti-commutative. Explicitly,

trA1A2 · · ·Ak =
∑
i

(A1A2 · · ·Ak)ii

=
∑
i

∑
i1,...,ik−1

(A1)ii1(A2)i1i2 · · · (Ak)
ik−1
i

=
∑
i

∑
i1,...,ik−1

−(A2)i1i2(A1)ii1 · · · (Ak)
ik−1
i

= . . .

=
∑
i

∑
i1,...,ik−1

(−1)k−1(A2)i1i2 · · · (Ak)
ik−1
i (A1)ii1

= (−1)k+1 trA2 · · ·AkA1.

(4.4.3) Corollary. Let A be a matrix-valued form. Then trA2k = 0 for any k ∈N.

Proof. By (4.4.2), trA2k = − trA2k , whence trA2k = 0.

(4.4.4) Lemma. Let A1, . . . ,Ak be matrix-valued forms and Pij some monomial in
Ai and Aj . If Pij = −Pji then tr

∑k
i,j=1 Pij = tr

∑k
i=1 Pii .

Proof.
∑k
i,j=1 Pij =

(∑
i<j +

∑
j<i +

∑
i=j

)
Pij =

∑
i<j(Pij + Pji) +

∑
i Pii =

∑
i Pii .

[1]As far as fibre integration is concerned.
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5Manual (exponential) construction

Two people are walking along and see a herd of cows
in a field. One asks the other how many cows they
think there are, to which the other replies, almost
instantly, with an answer of 322. The first person
asks how the other managed to count them all so

quickly, and the other leans in and says: “it’s a
simple trick: you just count the number of legs and

then divide by four.”

Some joke I once heard.

(5.0.1) Purpose. The explicit Čech-de Rham lift of the trace of the first (exponential)
Atiyah class is very well known classically; the lifts of higher classes are mentioned
in the section entitled ‘Concluding Remarks’ in [BT82, §23], but no explicit formulas
are given there (although it is mentioned that the components are all zero below the
diagonal).

(5.0.2) We repeat here the fact that it is the trace of the Atiyah classes that inter-
ests us, not just the Atiyah classes themselves.

(5.0.3) Recalling (4.2.1), we know that we can use the Čech complex to calculate
singular cohomology. Now, say we are given some ck ∈ Čk(Ωk

X) with δ̌ck = 0 but
dck , 0. Then, if we can find ci ∈ Či(Ω2k−i

X ) for i = 1, . . . , (k−1) such that δ̌ci = dci−1,
and define c0 = 0 ∈ Č0(Ω2k

X ), then

(0,±c1, . . . ,±ck−1, ck ,0, . . . ,0) ∈ Tot2k Č•
(
Ω•X

)
is (δ̌+(−1)kd)-closed,[1] and thus represents a cohomology class in H2kTot• Č?(Ω?

X),
and thus a cohomology class in H2k(X,C).

In essence, given some ‘starting element’ in the Čech-de Rham bicomplex, we
can try to manually lift it to some closed element of the same total degree.

(5.0.4) A few important notes before we start.

• Although we have the isomorphism H r Tot• Č?(Ω?
X) � Hr(X,C), we don’t

necessarily have an easy way of computing explicitly what a closed class
in the Čech-de Rham complex maps to under this isomorphism, unless it
has a non-zero degree-(0, r) part, in which case it maps to exactly that.

[1]The signs depend on the parity of k.
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5. Manual (exponential) construction

• We will construct classes in de Rham cohomology, but note that they can
actually all be considered as living in the corresponding tDR cohomology,
thanks to (4.2.4).

• Throughout this chapter we adopt the same notation and assumptions as in
Chapter 4, but always adopt the further assumption that the local connec-
tions ∇α are flat. This is not necessary for the abstract theory, but essential
for these explicit calculations.

• We point out, once more, that the constructions given in this chapter are for
the exponential Atiyah classes.

5.1 The first three Atiyah classes

(5.1.1) The first Atiyah class. We have already calculated the first exponential
Atiyah class in (4.1.12), and we saw, in (4.1.15), that its trace was d-closed. This
means that constructing the manual lift is easy: we have nothing left to do. Re-
calling that we wrote ωαβ = M−1

αβdMαβ , we can draw the closed element in the

Čech-de Rham bicomplex as follows:

0

tr
(
ωαβ

)
0

d

δ̌

(5.1.2) The second Atiyah class. By (4.1.18), we know that

at◦2E =
{
ωαβMαβωβγM

−1
αβ

}
α,β

and we introduce the notation

A =ωαβ M =Mαβ

B =ωαγ X =MωβγM
−1

so that at◦2E = AX, and everything can be thought of as living over Uα.
Thanks to (4.1.14), we know that dA = −A2, and similarly for B andX. Further,

by differentiating the cocycle condition MαβMβγ = Mαγ of the transition maps,
and then right-multiplying by M−1

αγ , we see that[1] A+X = B. Hence

at◦2E = A(B−A).

[1]As we already said, MωβγM−1 is the natural way of thinking of X as being a map into some-
thing lying over Uα , so this equation should be read as a cocycle condition over Uα by thinking of
it as ωαβ +ω̃βγ =ωαγ , where the tilde corresponds to a base change. Note that this is also the result
we expect, since ωαβ corresponds to ∇β −∇α , and (as we have already noted) this clearly satisfies
the additive cocycle condition.
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5.1. The first three Atiyah classes

Using the fact that dA = A2 we see that dA2 = 0, whence

dtr
(
at◦2E

)
= dtr

(
AB−A2

)
= − tr

(
A2B−AB2

)
.

Recalling (5.0.3), we want f ∈ Č1(Ω3
X) such that δf = −dtr

(
at◦2E

)
and df = 0.

It is clear that we need, at least, f to be (the trace of) a polynomial of homoge-
neous degree 3 in the one variable A = ωαβ . But then f (A) = tr

(
A3

)
is, up to a

scalar multiple, our only option. We set f (A) = 1
3 tr

(
A3

)
and compute its Čech

coboundary:

(δf )αβγ = f (ωβγ )− f (ωαγ ) + f (ωαβ)

= f (B−A)− f (B) + f (A)

=
1
3

tr
(
(B−A)3 −B3 +A3

)
=

1
3

tr
(
−AB2 −BAB−B2A+A2B+ABA+BA2

)
.

Using (4.4.2) we see that

1
3

tr
(
−AB2 −AB2 −AB2 +A2B+A2B+A2B

)
= tr

(
A2B−AB2

)
= −dtr

(
at◦2E

)
.

Now we just have to worry about whether or not df is zero. But

df (A) =
1
3

dtr
(
A3

)
=

1
3

tr
(
dAA2 −AdA2

)
= −1

3
tr
(
A4

)
,

and we know, by (4.4.3), that this is zero, and so we are done.
This calculation can be summarised by the following diagram:

0

−1
3 tr

(
A3

)
tr(A(B−A)B)

tr
(
A(B−A)

)
︸         ︷︷         ︸

trat◦2E

0

d

δ̌

d

δ̌

31



5. Manual (exponential) construction

which gives us the closed[1] element(
0 ,

1
3

tr
(
A3

)
, tr

(
AX

)
, 0 , 0

)
∈ Tot4 Č•

(
Ω?
X

)
(5.1.3) We know that trat◦2E is a cocycle by definition, but we can still double-
check that it is Čech closed:

δ̌ tr
(
ωαβ(ωαγ −ωαβ)

)
= δ̌ tr

(
ωαβωαγ

)
= tr

(
ωβγωβδ

)
− tr

(
ωαγωαδ

)
+ tr

(
ωαβωαδ

)
− tr

(
ωαβωαγ

)
= tr

(
(ωαγ −ωαβ)(ωαδ −ωαβ)

)
− tr

(
ωαγωαδ

)
+ tr

(
ωαβωαδ

)
− tr

(
ωαβωαγ

)
= − tr

(
ωαγωαβ

)
+ tr

(
ω2
αβ

)
− tr

(
ωαβωαγ

)
= tr

(
ωαβωαγ

)
− tr

(
ωαβωαγ

)
= 0.

(5.1.4) The third Atiyah class. We extend our notation from (5.1.2), writing

A =ωαβ M =Mαβ X =MωβγM
−1

B =ωαγ N =Mαγ Y =NωγδN
−1

C =ωαδ

so that at◦3E = AXY = A(B−A)(C −B).
It is then relatively simple to calculate that

dtrat◦3E = − tr
(
A(B−A)(C −B)C

)
∈ Č3

(
Ω4
X

)
.

Trying to find some ϕ ∈ Č2(Ω4
X) such that δ̌ϕ = dtrat◦3E , however, is slightly

harder. The most naive approach is to list all the monomials in Č2(Ω4
X), apply

the Čech differential to each one, and then equate coefficients. Using the fact that
(up to a sign) we can cyclically permute under the trace, finding all the monomi-
als is the same as finding all degree-2 monomials in non-commutative variables
X and Y , modulo equivalence under cyclic permutation, and there are just four of
these: X2Y 2, (XY )2, X3Y , and XY 3. Thus, we find that

ϕ =
−1
4

tr
((
A(B−A)

)2
)

+
1
2

tr
(
A2(B−A)2

)
+
−1
2

tr
(
A3(B−A)

)
+
−1
2

tr
(
A(B−A)3

)
is exactly such that δ̌ϕ = dtrat◦3E . Factoring dϕ, we see that

dϕ =
1

10
tr

(
(B−A)5 −B5 +A5

)
= δ̌

1
10

tr
(
A5

)
.

[1]See (5.1.3).
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5.2. The fourth Atiyah class and beyond

This calculation can be summarised in the following diagram:

0

1
10 tr

(
A5

)
1

10 tr
(
(B−A)5 −B5 +A5

)

−1
4 tr

((
A(B−A)

)2
)

+ 1
2 tr

(
A2(B−A)2

)
−1

2 tr
(
A3(B−A)

)
− 1

2 tr
(
A(B−A)3

)
− tr

(
A(B−A)(C −B)C

)

tr
(
A(B−A)(C −B)

)
︸                  ︷︷                  ︸

trat◦3E

0

d

δ̌

d

δ̌

d

δ̌

Taking the signs of the total differential into account, this gives us the closed ele-
ment (

0 ,
−1
10

tr
(
A5

)
, ρ(A,X) , tr(AXY ) , 0 , 0 , 0

)
∈ Tot6 Č•

(
Ω?
X

)
where

ρ(A,X) =
−1
4

tr
(
AXAX

)
+

1
2

tr
(
A2X2

)
+
−1
2

tr
(
A3X

)
+
−1
2

tr
(
AX3

)
.

5.2 The fourth Atiyah class and beyond

(5.2.1) Looking at the first three Atiyah classes, there are some patterns that we
can begin to see — for example, the Čech 1-cocycle of the kth Atiyah class seems to
always be some multiple of tr

(
A2k−1

)
. But beyond some vague pattern recognition,

it becomes increasingly hard to work with the kth Atiyah class as soon as k > 4,
mainly due to the cumbersome amount of monomials that we have to consider in
order to equate coefficients in this naive approach. It seems believable that there
are two patterns — one for k odd, and one for k even — but even this is hard to
verify, since we don’t have many explicit cases to study: k = 0,1 are both rather
trivial, and k > 4 is so unwieldy that it is far too hard (for this author) to spot any
patterns ‘by hand’. For the sake of completeness (and also partly in defence of the
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5. Manual (exponential) construction

fact that there really are a lot of terms to look at), we give below the lift of at◦4E ,
which was calculated with a basic Haskell implementation of the method used in
(5.1.4): calculating all non-commutative monomials of a certain degree, applying
the Čech differential, and then equating coefficients.

(5.2.2) The lift of at◦4E in the total complex is(
0 ,
−1
35

trP (1,7) ,
1
5

trP (2,6) ,
1
5

trP (3,5) , trP (4,4) , 0 , 0 , 0 , 0
)
∈ Tot8 Č•

(
Ω?
X

)
where

P (4,4) = A(B−A)(C −B)(D −C)

P (3,5) =
13
5
A5 + 13A4(B−A) + 5A3(B−A)2 + 5A3(B−A)(C −A)

+ 3A3(C −A)(B−A) + 4A2(B−A)A(B−A) + 4A2(B−A)A(C −A)

+ 3A2(B−A)3 −A2(B−A)2(C −A) + 5A2(B−A)(C −A)2

+ 5A2(C −A)A(B−A) + 2A2(C −A)(B−A)2 +A2(C −A)(B−A)(C −A)

+ 3A2(C −A)2(B−A)−A(B−A)A(C −A)(B−A) + 5A(B−A)A(C −A)2

− 5A(B−A)2(C −A)(B−A) + 5A(B−A)(C −A)A(C −A) + 5A(B−A)(C −A)3

+ 4
(
A(C −A)

)2
(B−A)− 2A(C −A)(B−A)3 + 4A(C −A)(B−A)2(C −A)

+A
(
(C −A)(B−A)

)2
+ 2A(C −A)2(B−A)2 +A(C −A)2(B−A)(C −A)

+ 3A(C −A)3(B−A)

P (2,6) = 5A5(B−A)− 4A4(B−A)2 +A3(B−A)A(B−A) +A3(B−A)3

− 5A2(B−A)A(B−A)2 − 4A2(B−A)2A(B−A)− 4A2(B−A)4

+
1
3

(
A(B−A)

)3
+A(B−A)A(B−A)3 +A(B−A)5

P (1,7) = A7

(5.2.3) The moral of the above calculation is the following: we need to find a
better way of doing this. Enter Chapter 6.
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6Simplicial construction

A novice was trying to fix a broken Lisp machine by
turning the power off and on. Knight, seeing what

the student was doing, spoke sternly: “You cannot fix
a machine by just power-cycling it with no

understanding of what is going wrong.” Knight
turned the machine off and on. The machine worked.

http://catb.org/jargon/html/koans.html

(6.0.1) Purpose. In this chapter I introduce Green’s construction of simplicial Atiyah
classes, from [Gre80]. The original treatment is rather terse; what I have written here
is probably too far in the opposite direction, so I recommend those interested to read
both and take some average between them. A lot of the explicit calculations (especially
those in Section 6.2) are not found in [Gre80]. This chapter has more hand waving
than a Rodgers and Hammerstein musical, but everything should be formally justified
in Chapter 7, as well as being generalised from pullbacks (to the nerve) of global vector
bundles to arbitrary (well, really, so-called Green) vector bundles on the nerve.

(6.0.2) The main idea behind this chapter is the following: in the same way that
we cannot generally resolve a coherent sheaf by locally free sheaves, but can if
we pass to similar simplicial objects, we cannot generally find a (global holomor-
phic) connection on a locally free sheaf, but we can if we content ourselves with
some simplicial version. This means that we can take the ‘simplicial curvature’
(whatever this might mean) and apply some invariant polynomial to find a char-
acteristic class, just as we do in the classical (that is, non-simplicial) case. Looking
ahead to Chapter 9, one of the main results of [Gre80] is that you can resolve any
coherent sheaf (on a sufficiently nice space) by locally free sheaves on the nerve in
such a way that you also get ‘simplicial connections’ on each bundle that behave
‘very nicely’.

(6.0.3) In this chapter we opt for the approach of blindly calculating examples
before formalising why they should even have any sense at all, partially because
this can often be a good pedagogical tool, but mostly because that is exactly how
the author proceeded when first studying the vast majority of the content here.
We formalise everything in Chapter 7.

(6.0.4) We continue to use the notation from (4.0.2). Most of what we say can
(probably) be generalised to arbitrary simplicial complex manifolds, but we work
throughout with Y• = XU• .
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6. Simplicial construction

6.1 Global simplicial connections

(6.1.1) We introduce the following notation:

• write πp : XUp ×∆p→ XUp to mean the projection map;

• write Ep to mean the pullback of E to XUp ;

• and write Ep = π∗pE
p, where the pullback here is the algebraic one, i.e.

π∗pE
p = π−1

p E
p ⊗π−1

p OXUp
OXUp ×∆p

where (·)−1 is the set-theoretic pullback.

Note that the map O∆p → OXUp ×∆p gives an O∆p-action on Ep. Further, we can use

πp to pull back sections[1] and thus define a connection on Ep from any connection
on E0 (see (6.1.2)), and require that Leibniz’s rule holds (see (6.1.3)). As a small
abuse of notation, we may simply write∇α to mean the pullback connection π∗p∇α.

With this definition, ∇α-flat sections of Ep are exactly those of the form π∗p(s)
where s is some ∇α-flat section of E

∣∣∣Uα.

(6.1.2) Pullbacks (to the nerve) of (global) vector bundles are strongly cartesian
(4.3.2). This means that, writing ζip : [0]→ [p] to mean the map of abstract sim-
plices that sends 0 to i, we can identify (XU• ζ

i
p)∗E0 with Ep, by using the isomor-

phism E•ζip between them. This lets us, in particular, think of any connection ∇αi
on E0 as a connection on Ep.

(6.1.3) Definition. ([Gre80, p. 34]). Define the barycentric connection ∇µ• on E•

by[2]

∇µp =
p∑
i=0

ti∇αi : Ep→ Ep ⊗Ω1
XUp ×∆p

which acts on a section s⊗ϕ of Ep = π−1
p E

p ⊗OXUp ×∆p over Uα0...αp ×∆
p by

∇µp(s⊗ϕ) =
p∑
i=0

ti∇αi (s⊗ϕ) =
∑
i

ti∇αi (ϕs⊗ 1)

=
∑
i

ti
(
ϕπ∗p

(
∇αi (s)

)
+ s⊗ 1⊗dϕ

)
[1]Note that π∗p

(
s`

)
= s` ⊗ 1 for any section s` of Ep over Uα0...αp .

[2]Using (6.1.2) to make sense of ∇αi as a connection on Ep, and recalling, from (6.1.1), that we
write ∇αi when, really, we mean π∗p∇αi .
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6.1. Global simplicial connections

=
∑
i

π∗p
(
tiϕ ⊗∇αi (s)

)
+ s⊗ 1⊗ tidϕ

where we use the O∆p-action on Ep described in (6.1.1) for the second equality.

(6.1.4) Note that, a priori, we do not know if the ∇µp glue to give us a connection
with values in simplicial forms, nor if the curvature (defined in (6.1.6)) will give
us an endomorphism-valued simplicial 2-form (something which we have yet to
define). That is, we haven’t justified the fact that we call this map ‘simplicial’, nor
that we call it a ‘connection’. This is the subject of Section 7.3, where we introduce
the notion of admissibility.

(6.1.5) Recalling the notation from (4.1.9), we have an alternative expression for
the barycentric connection:

∇µp = ∇α0
+

p∑
i=1

ti
(
∇αi −∇α0

)
= ∇α0

+
p∑
i=1

tiωα0αi .

In some senses this is a more natural expression to work with, since it places the
same emphasis on the choice of α0 in α0 . . .αp that twisting cochains do.[1]

(6.1.6) Definition. Defining the curvature of the barycentric connection analo-
gously to the classic case[2], we can see how it acts on a section σα0 of Ep over
Uα0...αp ×∆

p:

κ
(
∇µp

)
(σα0) =

∇α0
+

p∑
i=1

tiωα0αi


2

(σα0)

= ∇2
α0

(σα0) +
p∑
i=1

[(
∇α0

(σα0) · tiωα0αi

)
+ σα0 ⊗d(tiωα0αi )

]
+

p∑
i=1

[
tiωα0αi · ∇α0

(σα0)
]
+

p∑
i,j=1

σα0 ⊗
(
tjtiωα0αjωα0αi

)
.

(6.1.7) If our local sections {sα0
1 , . . . , s

α0
r } of E

∣∣∣Uα0
happen to be flat (for ∇α0

) then
we can simplify the expression in (6.1.6) in the case where σα0

k = π∗p(sα0
k ), since

then[3]

∇α0

(
σα0
k

)
= π∗p

(
∇α0

(
sα0
k

))
= 0

[1]As mentioned in (G.1.4).
[2]That is, κ

(
∇µ•

)
= ∇µ• ◦∇

µ
• , where we use (4.1.5) to define the composition, as in (4.1.6).

[3]By the comment at the end of (6.1.1), we are really just saying that the σα0
k are flat.
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6. Simplicial construction

whence

∇2
α0

(
σα0
k

)
+

p∑
i=1

[(
∇α0

(
σα0
k

)
· tiωα0αi

)
+ σα0

k ⊗d(tiωα0αi )
]

+
p∑
i=1

[
tiωα0αi · ∇α0

(
σα0
k

)]
+

p∑
i,j=1

σα0
k ⊗

(
tjtiωα0αjωα0αi

)
=

p∑
i=1

σα0
k ⊗d(tiωα0αi ) +

p∑
i,j=1

σα0
k ⊗

(
tjtiωα0αjωα0αi

)
.

In essence, the above calculation tells us that, given a flat basis of sections of
Ep

∣∣∣ (Uα0...αp ×∆
p) (in the Uα0

trivialisation), the curvature simply acts by

κ
(
∇µp

)
= dωp +ωp ·ωp

where we define the endomorphism-valued type-(1,0) form ω• by

ωp =
p∑
i=1

tiωα0αi .

Recall (4.3.6): the differential for simplicial forms is given by the product rule,
but with signs given by the Koszul convention according to the type of the form
(see (A.1.1) and (A.1.2)). Here this simply means that dωp = (dX − d∆p )ωp. There
are a few important points to make here.

1) There is another (reasonably justified) abuse of notation here: we write tiωα0αi
when we really mean (tiIr)·(ωα0αi ), where Ir is the (r×r) identity matrix. That is,
we (locally) identify End (Ep)-valued forms onXUp ×∆p with (r×r)-matrix-valued
forms on XUp tensored with forms on ∆p times the (r × r) identity matrix.

2) In (6.1.5) we wrote the barycentric connection in the form d + ωp (since, in
the Uα0

trivialisation, with flat local sections, ∇α0
‘equals’ d). This is exactly

like the classical case: locally, a connection looks like d +A, where A is some
matrix-valued 1-form. What we have just shown, then, is that the simplicial
curvature is of the form dA+A ·A, exactly as in the classical case.

3) We would hope that theωp glue to give us an endomorphism-valued type-(1,0)
simplicial 2-form, but, again, this is something that we need to prove (and first,
define).

4) In the non-simplicial case we had that dωαβ = −ω2
αβ , but the analogous state-

ment for ωp is not true (i.e. the barycentric connection is not flat). We discuss
this further in (6.1.12).
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6.1. Global simplicial connections

(6.1.8) Definition. We define the kth simplicial exponential Atiyah class ât◦kE by

ât◦kE =
{
εk

(
dωp +ωp ·ωp

)k}
p∈N

=

εk
−

p∑
i=1

ωα0αi ⊗dti −
p∑
i=1

tiω
2
α0αi +

p∑
i,j=1

tjtiωα0αjωα0αi


k 

p∈N

whereωp is the Ep-endomorphism-valued 2-form onXUp ×∆p defined as in (6.1.7),
and εk = (−1)k(k−1)/2. The reason for the sign εk is that we want the product of
simplicial forms to respect fibre integration, in some sense. In particular, here,
we want the sign of the (k,k)-term of tr

∫
∆•

ât◦kE to agree with the sign of at◦kE (as
Čech k-cocycles of k-forms on X). As shown in (6.3.1), the (k,k)-term involves
changing sign Tk−1 times, where Tn is the n-th triangle number.

(6.1.9) Definition. We define the k-th simplicial standard Atiyah class ât∧kE by

ât∧kE =

εk k∧
i=1

(
dωp +ωp ·ωp

)
p∈N

=

εk k∧
i=1

−
p∑
i=1

ωα0αi ⊗dti −
p∑
i=1

tiω
2
α0αi +

p∑
i,j=1

tjtiωα0αjωα0αi



p∈N

where ωp and εk are as in (6.1.8).

(6.1.10) To repeat ourselves once again, we expect both ât◦kE and ât∧kE to be given
(locally) by an endomorphism-valued simplicial differential form (i.e. for them
to satisfy the condition in (4.3.6)), but we need to prove this. We also note that
there is no reason to expect either ât◦kE or ât∧kE to be a cocycle before applying fibre
integration.

(6.1.11) Lemma. The trace of the k-th simplicial Atiyah class is d-closed.

Proof. Thanks to the product rule, it suffices to prove the case k = 1. For all p ∈N,

d
(
dωp +ωp ·ωp

)
= d2

 p∑
i=0

tiωα0αi

+ d


p∑

i,j=1

tjtiωα0αjωα0αi


= d


p∑

i,j=1

tjtiωα0αjωα0αi


=

p∑
i,j=1

[
ωα0αjωα0αi ⊗d∆(tjti) + tjtidX

(
ωα0αjωα0αi

)]
39



6. Simplicial construction

=
p∑

i,j=1

[
ωα0αjωα0αi ⊗ tidtj +ωα0αjωα0αi ⊗ tjdti

+ tjtidX
(
ωα0αj

)
ωα0αi − tjtiωα0αjdX

(
ωα0αi

) ]
.

But, recalling (4.4.2), we know that tr
(
ωα0αjωα0αi

)
= − tr

(
ωα0αiωα0αj

)
, and (4.1.14)

tells us that dωα0αi = −ω2
α0αi , whence

trd
(
dωp +ωp ·ωp

)
= tr

p∑
i,j=1

[
ωα0αjωα0αi ⊗ tidtj +ωα0αjωα0αi ⊗ tjdti

+ tjtidX
(
ωα0αj

)
ωα0αi − tjtiωα0αjdX

(
ωα0αi

) ]
= tr

p∑
i,j=1

[
ωα0αjωα0αi ⊗ tidtj −ωα0αiωα0αj ⊗ tjdti

+ tjtiω
2
α0αjωα0αi − tjtiωα0αjω

2
α0αi

]
.

For fixed i, j, the first two terms both change sign under i ↔ j, whence, from
(4.4.4), they contribute zero to the trace, since they are equal when i = j. We
also know, from (4.4.2), that tr

(
ω2
α0αjωα0αi

)
= tr

(
ωα0αiω

2
α0αj

)
, whence the last two

terms also both change sign under i↔ j and are equal when i = j, as above. Thus
the trace is zero.

This tells us, as in (4.1.15), that the trace of the Atiyah classes will give us
classes in de Rham cohomology, after applying fibre integration.[1]

(6.1.12) Compare (6.1.11) with (4.1.15) and, more generally, the construction of
the non-simplicial Atiyah class with that of the simplicial Atiyah class. There is
an important difference. Assuming we have (local) flat connections ∇α, then, in the
non-simplicial case, the Atiyah class is given by ωαβ = ∇β −∇α, and this satisfies
dωαβ + dω2

αβ = 0; in the simplicial case, however, we average (‘barycentrically’)
over all the ωαβ to give us a connection which is not necessarily flat, even if all the
local connection ∇α are, since dωp , ±ω2

p (because, e.g., the former has non-trivial
type-(1,1) terms of the form ωα0αi ⊗dti , and the latter has only type-(2,0) terms).
In fact, as we have seen, it is exactly the curvature of this barycentric average which
gives us the simplicial Atiyah class.

There are a few points to note here:

• both the classical and the simplicial Atiyah classes are of total degree 2, but
the part of differential-degree 2 of the classical class is zero;

[1]Since fibre integration is a morphism of complexes, it sends closed elements to closed elements.
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6.2. Semi-explicit examples

• the classical Atiyah class is the obstruction to finding a global connection, but
the simplicial Atiyah class is a ‘global’ connection (where we relax/extend
our idea of what ‘global’ should mean).

Because of this, it may be mildly misleading to use the notation ω for both the
classical and the simplicial constructions, but it seems to be a reasonably natural
choice.

(6.1.13) Recall that we don’t need our local connections ∇α to be flat in order to
define these things, but just to explicitly calculate them (for example, to obtain the
result that the Atiyah class is given (locally) by M−1

αβdMαβ).

6.2 Semi-explicit examples

(6.2.1) In this section we calculate the first few simplicial (exponential) Atiyah
classes for a locally free sheaf E and show that they agree with the manual con-
structions found in Chapter 5, as well as giving a more general proof (6.3.1) that
works for all simplicial (exponential) Atiyah classes. For a truly explicit example
(i.e. where we take a specific coherent sheaf, calculate some simplicial resolution
of it, and then calculate all the relevant barycentric connections and their curva-
tures), see Section 9.3.

(6.2.2) Example (k = 1). The first simplicial (exponential) Atiyah class is given
by

ât◦1E =

−
p∑
i=1

ωα0αi ⊗dti −
p∑
i=1

tiω
2
α0αi +

p∑
i,j=1

tjtiωα0αjωα0αi


p∈N

As explained in (A.2.1), the fibre integral of ât◦1E depends only on the (2,0),
(1,1), and (0,2) parts, but here there is no (0,2) part (i.e. there is no dtjdti term),
and so∫

∆•
ât◦1E = (−1)

∫
∆1
−
p=1∑
i=1

ωα0αi ⊗dti −
∫
∆0

p=0∑
i=1

tiω
2
α0αi +

∫
∆0

p=0∑
i,j=1

tjtiωα0αjωα0αi

=
∫
∆1
ωα0α1

⊗dt1.

Continuing the calculation gives us the result that we expect: as in (5.1.1), we
get that

tr
∫
∆•

ât◦1E = tr
∫ 1

0
ωα0α1

dt1 = tr
(
ωα0α1

)
︸     ︷︷     ︸

p=1

= trat◦1E ,
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6. Simplicial construction

where we write that this term ‘lives in’ p = 1, i.e. to remind us that the result is a
Čech 1-cocycle.

(6.2.3) In general, as in the manual construction, the (fibre integral of the trace

of the) k-th simplicial (exponential) Atiyah class will have terms in Čk−i
(
Ωk+i
X

)
for

i = 0, . . . , k − 1, and so we make up for our notational laziness (namely, using + to
mean ⊕) by labelling the terms with their Čech degree.

(6.2.4) Note that, although the (2k,0) part of ât◦kE is, in general, non-zero, when
we fibre integrate we look at it on the 0-simplex (thanks again to (A.2.1)), and
there it is zero, since all the sums are trivially zero.

(6.2.5) Example (k = 2). Not forgetting the sign ε2 = −1, we know that

ât◦2E =

−
− p∑

i=1

ωα0αi ⊗dti −
p∑
i=1

tiω
2
α0αi +

p∑
i,j=1

tjtiωα0αjωα0αi

2
p∈N

but also that the only parts that will be non-zero after fibre integration are the
(2,2) parts on the 2-simplex, and the (3,1) parts on the 1-simplex.

The only (2,2) part comes from the first half of the (dω2)2 term, which gives
us

tr
∫
∆2

ât◦2E = tr(−1)2·2
∫
∆2
−

− 2∑
i=1

ωα0αi ⊗dti


2

= tr
∫
∆2
−

 2∑
i,j=1

(ωα0αj ⊗dtj ) · (ωα0αj ⊗dtj )


= tr

∫
∆2

2∑
i,j=1

ωα0αjωα0αi ⊗dtjdti

= tr
∫
∆2

(
ω2
α0α1
⊗ (dt1)2 +ωα0α1

ωα0α2
⊗dt1dt2

+ωα0α2
ωα0α1

⊗dt2dt1 +ω2
α0α2
⊗ (dt2)2

)
= tr

∫
∆2

(
ωα0α1

ωα0α2
−ωα0α2

ωα0α1

)
⊗dt1dt2

= tr
∫ 1

0

∫ 1−t2

0

(
ωα0α1

ωα0α2
−ωα0α2

ωα0α1

)
⊗dt1dt2

=
1
2

tr
(
ωα0α1

ωα0α2
−ωα0α2

ωα0α1

)
=

1
2
· 2 · trωα0α1

ωα0α2
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6.2. Semi-explicit examples

= trωα0α1
(ωα0α1

+ωα1α2
)

= trωα0α1
ωα1α2

.

This means that, so far, we have

tr
∫
∆•

ât◦2E = ?︸︷︷︸
p=1

+tr
(
ωα0α1

ωα1α2

)
︸            ︷︷            ︸

p=2

.

For the (3,1) part, we work on the 1-simplex and get

tr
∫
∆1

ât◦2E = tr(−1)3·1
∫
∆1
−
− 1∑

i,j=1

(ωα0αj ⊗dtj ) · (−tiω2
α0αi )

−
1∑

i,j=1

(−tjω2
α0αj ) · (ωα0αi ⊗dti)

−
1∑

i,j,k=1

(ωα0αk ⊗dtk) · (tjtiωα0αjωα0αi )

−
1∑

i,j,k=1

(tktjωα0αkωα0αj ) · (ωα0αi ⊗dti)


= tr

∫ 1

0
2ω3

α0α1
(t1 − t21)dt1

=
1
3

trω3
α0α1

.

Finally then, we have

tr
∫
∆•

ât◦2E =
1
3

trω3
α0α1︸     ︷︷     ︸

p=1

+tr
(
ωα0α1

ωα1α2

)
︸            ︷︷            ︸

p=2

= trat◦2E

which agrees with the result found in (5.1.2).

(6.2.6) There is a subtlety in the calculations when we reach the third simplicial
Atiyah class due to our choice of conventions for Čech cocycles: we don’t assume
skew-symmetry of cocycles (i.e. that exchanging two indices changes sign), but
it is true that skew-symmetrisation of cocycles is a quasi-isomorphism, and so
doesn’t change the resulting cohomology class[1]. If we had worked with skew-
symmetric Čech cocycles from the start then this calculation would appear in
some sense more natural, but we didn’t.

[1]All this says is that you have (at least) two models of Čech cocycles that are quasi-
isomorphic: cocycles with arbitrarily-ordered indices, and cocycles with arbitrarily-ordered but
skew-symmetric indices.
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6. Simplicial construction

In particular, the (traces of the) first two (exponential) Atiyah classes agree with
those that we manually constructed in Chapter 5 on the nose, whereas for k > 3
we will have equality only in cohomology.

(6.2.7) We write ςp to mean the skew-symmetrisation of a Čech p-cochain, i.e.

(ςpc)α0...αp =
1

(p+ 1)!

∑
σ∈Sp+1

|σ |cασ (0)...ασ (p)
.

(6.2.8) Example (k = 3). Writing µi to mean ωα0αi , we start by calculating the
(3,3) part as follows:

tr
∫
∆3

ât◦3E = tr(−1)3·3
∫
∆3
−

3∑
i,j,k=1

(−µk ⊗dtk) · (−µj ⊗dtj ) · (−µi ⊗dti)

= tr
∫
∆3

p=3∑
i,j,k=1

µkµjµi ⊗dtkdtjdti

= tr
∫
∆3

∑
σ∈S3

|σ |µσ (1)µσ (2)µσ (3) ⊗dt1dt2dt3

=
1
6

tr
∑
σ∈S3

|σ |µσ (1)µσ (2)µσ (3)

=
1
2

tr(µ1µ2µ3 −µ1µ3µ2)

=
1
2

tr
(
ωα0α1

(ωα0α1
+ωα1α2

)(ωα0α1
+ωα1α2

+ωα2α3
)

−ωα0α1
(ωα0α1

+ωα1α2
+ωα2α3

)(ωα0α1
+ωα1α2

)
)

=
1
2

tr
(
ωα0α1

ωα1α2
ωα2α3

−ωα0α1
ωα2α3

ωα1α2

)
.

But note that both of the terms in this last expression skew-symmetrise to the
same thing, modulo a minus sign:∑

τ∈S4

|τ |ωατ(0)ατ(1)
ωατ(1)ατ(2)

ωατ(2)ατ(3)
= −

∑
τ∈S4

|τ |ωατ(0)ατ(1)
ωατ(2)ατ(3)

ωατ(1)ατ(2)
.

Since skew-symmetrisation doesn’t change the class in cohomology, we see that[
tr

∫
∆•

ât◦3E

]
=

[
?︸︷︷︸
p=1

+ ?︸︷︷︸
p=2

+trωα0α1
ωα1α2

ωα2α3︸                  ︷︷                  ︸
p=3

]
.

The (4,2) part (including the sign ε3 = −1) is given by

X2Y +XYX +YX2 −X2Z −XZX −ZX2
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6.2. Semi-explicit examples

where

X = −
2∑
i=1

µi ⊗dti Y =
2∑
i=1

tiµ
2
i Z =

2∑
i,j=1

tjtiµjµi .

Using that
∫
∆2 dt1dt2 =

∫ 1
0

∫ 1−t2
0 dt1dt2, we calculate that

(i)
∫
∆2 t1dt1dt2 =

∫
∆2 t2dt1dt2 = 1

6 ;

(ii)
∫
∆2 t

2
1dt1dt2 =

∫
∆2 t

2
2dt1dt2 = 1

12 ;

(iii)
∫
∆2 t1t2dt1dt2 = 1

24 .

whence

tr(−1)2·2
∫
∆2
X2(Y −Z) +X(Y −Z)X + (Y −Z)X2 = −1

2
trµ3

1µ2 −
1
2

trµ1µ
3
2 +

1
4

trµ1µ2µ1µ2

= −1
4

tr
(
(ωα0α1

ωα1α2
)2
)
− 1

2
tr

(
ω3
α0α1

ωα1α2
−ωα0α1

ω3
α1α2

)
.

Comparing this to (5.1.4), we see that we have the same, except for a missing
+1

2 tr
(
ω2
α0α1

ω2
α1α2

)
term. But this missing term skew-symmetrises to zero, since

it is invariant under the permutation that swaps 0 and 2. Thus the (4,2) part is
exactly what we wanted, and

[
tr

∫
∆•

ât◦3E

]
=

 ?︸︷︷︸
p=1

+

−1
4 tr

(
(ωα0α1

ωα1α2
)2
)

−1
2 tr

(
ω3
α0α1

ωα1α2

)
−1

2 tr
(
ωα0α1

ω3
α1α2

)
+1

2 tr
(
ω2
α0α1

ω2
α1α2

)
︸                        ︷︷                        ︸

p=2

+trωα0α1
ωα1α2

ωα2α3︸                  ︷︷                  ︸
p=3

.

Finally, the (5,1) part is

tr(−1)5·1
∫
∆1

ât◦3E = tr
∫ 1

0
−(3t21 + 3t41 − 6t31)µ5

1 ⊗dt1 = − 1
10
ω5
α0α1

which agrees exactly with the manual construction from (5.1.4). Thus

[
tr

∫
∆•

ât◦3E

]
=

− 1
10
ω5
α0α1︸      ︷︷      ︸

p=1

+

−1
4 tr

(
(ωα0α1

ωα1α2
)2
)

−1
2 tr

(
ω3
α0α1

ωα1α2

)
−1

2 tr
(
ωα0α1

ω3
α1α2

)
+1

2 tr
(
ω2
α0α1

ω2
α1α2

)
︸                        ︷︷                        ︸

p=2

+trωα0α1
ωα1α2

ωα2α3︸                  ︷︷                  ︸
p=3

 =
[
trat◦3E

]
.
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6. Simplicial construction

6.3 Equivalence with the manual construction

(6.3.1) Theorem. The degree-(k,k) term in the trace of fibre integral of the kth
simplicial exponential Atiyah class agrees with the kth exponential Atiyah class,
up to skew-symmetrisation. That is,

ςk

(
tr

∫
∆•

ât◦kE

)(k,k)

= ςk tr
(
at◦kE

)
∈ Čk
U

(
Ωk
X

)
.

Proof. First we rewrite the left-hand side. Generalising (6.2.8), we can write the
term coming from fibre integration as

1
k!

∑
σ∈Sk

|σ |µσ (1) · · ·µσ (k)
ςk7−→ 1

k!(k + 1)!

∑
τ∈Sk+1

∑
σ∈Sk

|τσ |ωτ(0)τσ (1) · · ·ωτ(0)τσ (k)

where Sk 6 Sk+1 acts on {0,1, . . . , k} by fixing 0. But then, since σ (0) = 0, we can
rewrite this as

1
k!(k + 1)!

∑
τ∈Sk+1

∑
σ∈Sk

|(τσ )|ωτσ (0)τσ (1) · · ·ωτσ (0)τσ (k).

Now we can use the fact that multiplication by an element of Sk 6 Sk+1 is an
automorphism in order to perform a change of variables, giving us

1
(k + 1)!

∑
η∈Sk+1

|(η)|ωη(0)η(1) · · ·ωη(0)η(k)

which is (trivially, since ωii = 0) equal to

1
(k + 1)!

∑
η∈Sk+1

|(η)|
k∏
i=1

(
ωη(0)η(i) −ωη(0)η(0)

)
.

Next we rewrite the right-hand side. The skew-symmetrisation is simply

ςk tr
(
at◦kE

)
=

1
(k + 1)!

∑
η∈Sk+1

|η|ωη(0)η(1)ωη(1)η(2) · · ·ωη(k−1)η(k)

=
1

(k + 1)!

∑
η∈Sk+1

|η|ωη(0)η(1)(ωη(0)η(2) −ωη(0)η(1)) · · · (ωη(0)η(k) −ωη(0)η(k−1))

=
1

(k + 1)!

∑
η∈Sk+1

|η|
k∏
i=1

(
ωη(0)η(i) −ωη(0)η(i−1)

)
.

Now we prove equality. Since, for each fixed η, there are no relations satisfied
between the ωη(0)η(i), we have two homogeneous (of degree k) polynomials in (k +

46



6.3. Equivalence with the manual construction

1) free non-commutative variables. To emphasise the fact the following argument
is purely abstract, we write xi = ω0i and define an action of Sk+1 on the xi by
xη(i) = ωη(0)η(i). So showing that the left- and right-hand sides are equal amounts
to showing that

A :=
∑
η∈Sk+1

|η|
k∏
i=1

(
xη(i) − xη(0)

)
=

∑
η∈Sk+1

|η|
k∏
i=1

(
xη(i) − xη(i−1)

)
=: B.

Write E to mean the Z-linear span of degree-k monomials in the (k + 1) free
non-commutative variables x0, . . . ,xk , and let σp,q ∈ Sk+1 be the transposition that
swaps p with q. Then σp,q gives an involution on E by swapping xp with xq, and
thus E � Ep,q(1) ⊕ Ep,q(−1), where Ep,q(λ) is the eigenspace corresponding to the
eigenvalue λ.

Let Hp,q be the Z-linear subspace of E spanned by monomials that contain at
least one xp or xq. This subspace is stable[1] under σp,q, and so this space also splits
as Hp,q � Hp,q(1) ⊕Hp,q(−1). Further, we have the inclusion Hp,q(−1) ⊆ Ep,q(−1).
But if X ∈ Ep,q(−1), then, in particular, X must contain at least one[2] xp or xq, so
X ∈Hp,q, whence X ∈Hp,q(−1). Thus Ep,q(−1) =Hp,q(−1).

The intersection H of the Hp,q over all distinct pairs (p,q) ∈ {0, . . . , k} × {0, . . . , k}
is the Z-linear span of all monomials containing all but one of the xi (and, in
particular, containing k distinct xi). But since Hp,q(−1) = Ep,q(−1), we see that the
intersection E(−1) of all the Ep,q(−1) is equal to H(−1). Now both A and B are in
Ep,q(−1) for all p,q (since the sign of ωp,q is −1), and so A,B ∈ E(−1) =H(−1). Since
the coefficient of, for example, the x1 · · ·xk term is the same[3] (and non-zero) in
both A and B , it suffices to show that H(−1) is one-dimensional.

So let X,Y ∈ H(−1) be monomials. Then each one contains k distinct xi ,
and so there exists some (unique) σ ∈ Sk+1 such that σX = ±Y . But, writing
σ = σp1,q1

· · ·σpr ,qr , we know that σX = (−1)rX, whence X = Y , up to some sign
(and so up to some scalar in Z).

[1]If a monomial X contains, say, one xp, then σp,qX contains one xq.
[2]If not, then the action of σp,q would be trivial and X would lie in Ep,q(1).
[3]It’s 1, by taking η = id.
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7Simplicial formalisms

I am searching for abstract ways of expressing reality,
abstract forms that will enlighten my own mystery.

Eric Cantona.

(7.0.1) Purpose. George Orwell wrote, in “Politics and the English Language”, that
“[t]he English language [...] becomes ugly and inaccurate because our thoughts are
foolish, but the slovenliness of our language makes it easier for us to have foolish
thoughts.” Given the explicit calculations of Chapter 6, this chapter aims to formalise
and justify the vast amounts of technical details and theory hiding in the background,
as well as to generalise the methods so that they can be applied to arbitrary vector bun-
dles on the nerve, instead of just pullbacks of non-simplicial ones. I really only talk
about the case where the simplicial space is the nerve of an open cover, and where the
simplicial connection is ‘generated in degree zero’, and so a lot of this chapter is really
overkill for what’s needed in this thesis. My hope, however, is that somebody can use
this framework in an interesting way, and either find a good use for this more general
definition of what a simplicial connection “should be”, or find some examples that prove
my choice of definition to be somehow not quite right. The important corollary of this
section is (7.6.2).

(7.0.2) Throughout this section, we try to use the notation E•, F•, etc. for pull-
backs (to the nerve) of (global) vector bundles, and E•, F •, etc. for arbitrary vector
bundles on the nerve.

We slightly modify the notation of (6.1.1) by writing the projections as

πp,q : XUp ×∆q→ XUp .

In the case where p = q, though, we will simply write πp to mean πp,p. So, for
example, π̂p is now written as πp,p−1. We may still write Ep to mean π∗pE

p.

(7.0.3) As a brief reminder, to hopefully avoid any confusion about the directions
of arrows, we recall that XU• is contravariant, but any sheaf E• is covariant. That
is,

α : [p] −→ [q]
XU• α : XUq −→ XUp
E•α :

(
XU• α

)∗
Ep −→ Eq

which, combined with the contravariance of pullbacks, can lead quite easily to
careless mistakes.[1]

[1]Proof. Personal experience of the author.
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7.1. True morphisms

7.1 True morphisms

(7.1.1) Definition. A morphism f : (A,∇A) → (B,∇B) of locally free sheaves (on
X) with connections is said to be a true morphism if ∇B ◦ f = (f ⊗ id) ◦∇A. That is,
we want the square

A B

A⊗Ω1
X B⊗Ω1

X

f

∇A ∇B

f ⊗ id

to commute.
In some texts, such a morphism is said to be flat, but we avoid this terminology

here for a few reasons (mainly to avoid confusion with flat connections).

(7.1.2) Lemma. If a morphism of locally free sheaves with connections is a true
morphism (7.1.1), then so too is the same morphism of locally free sheaves with
the higher iterations of their respective connections. That is,

∇B ◦ f = f ◦∇A ∈Hom (A,B)⊗Ωr
X

=⇒ ∇B ◦ (f ⊗ id) = (f ⊗ id) ◦∇A ∈Hom (A,B)⊗Ωr+1
X

where ∇E : E⊗Ωr
X → E⊗Ωr+1

X is given by enforcing the Leibniz rule, as in (4.1.5).

Proof. The proof shows us that the Leibniz rule is exactly what we need to make
this calculation work:(

∇B ◦ (f ⊗ id)
)
(s⊗ω) = ∇B(f (s)⊗ω)

=ω∧∇B
(
f (s)

)
+ f (s)⊗dω

=ω∧ (f ⊗ id)
(
∇A(s)

)
+ f (s)⊗dω

= (f ⊗ id)
(
ω∧∇A(s) + s⊗dω

)
=

(
(f ⊗ id) ◦∇A

)
(s⊗ω).

(7.1.3) As we mentioned in (6.1.4) (as well as various other places throughout
Section 6.1), we have to be slightly more careful when dealing with ‘simplicial
connections’ (something that we have still yet to formally define) than we do with
their classical counterparts. This is because a (family of) forms needs to earn the
name ‘simplicial’ by satisfying the gluing condition in (4.3.6), namely

(XU• f
i
p × id)∗ωp−1 = (id× f ip )∗ωp

as sections of Ωr
XUp ×∆p−1 .
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7. Simplicial formalisms

In order to ensure this for some family of connections ∇p on Ep (where Ep is
the pullback to the nerve of some global vector bundle[1]) we claim that we want
to ask for the morphism[2]

Cip : (XU• f
i
p × id)∗

(
Ep−1,∇p−1

)
→ (id× f ip )∗

(
Ep,∇p

)
of sheaves onXUp ×∆p−1 with connections to be a true morphism (7.1.1) with respect
to these connections. The only problem with this is that it isn’t entirely clear what
this morphism is. That is, we have the commuting diagram

XUp ×∆p−1

XUp−1 ×∆p−1 XUp ×∆p

XUp−1 XUp

XU• f
i
p×id id×f ip

πp−1 πp

XU• f
i
p

which would let us pull back both Ep−1 = π∗p−1E
p−1 and Ep = π∗pE

p in exactly the

way that we want[3], as well as the morphism

E•f ip : (XU• f
i
p )∗Ep−1→ Ep,

but how do these give us the morphism that we want?
For now, we forget about the connections, and just work with the bundles. By

using the commutativity of the diagram

XUp ×∆p−1 XUp

XUp−1 ×∆p−1 XUp−1

πp,p−1

XU• f
i
p×id XU• f

i
p

πp−1

we can write the pull back of Ep−1 via (XU• f
i
p × id) as(

XU• f
i
p × id

)∗
Ep−1 =

(
XU• f

i
p × id

)∗
π∗p−1E

p−1 = π∗p,p−1

(
XU• f

i
p

)∗
Ep−1.

[1]We discuss the generalisation to the case of an arbitrary vector bundle on the nerve in (7.1.5).
[2]Warning: the notation here is potentially misleading — the product pullback acts on both Ep

and ∇p simultaneously. That is, (f × g)∗(V ,ϕ) =
(
(f × g)∗V , (f × g)∗ϕ

)
, not (f ∗V ,g∗ϕ).

[3]That is, to lie over XUp ×∆p, so that we can impose the simplicial gluing condition.
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But we know that Ep is defined as π∗pE
p, and so is trivial on the simplex part of

XUp ×∆p. This means that

(id× f ip )∗Ep = (id× f ip )∗π∗pE
p = π∗p,p−1E

p.

So our comparison map Cip is exactly the pullback of E•f ip along πp,p−1.

(7.1.4) Definition. Given some i ∈ {0, . . . ,p − 1}, we define the ith comparison map
Cip(E•) of E• by

Cip(E•) :
(
XU• f

i
p × id

)∗
Ep−1 −→

(
id× f ip

)∗
Ep

q q q

π∗p,p−1

(
E•f ip

)
: π∗p,p−1

(
XU• f

i
p

)∗
Ep−1 −→ π∗p,p−1E

p.

If there is no chance of confusion, we usually omit the dependence on E• from
the notation. We often say ‘the’ comparison map Cp when we really mean ‘all’
comparison maps Cip for i ∈ {0, . . . ,p − 1}.

(7.1.5) Even in the case where E• is not simply the pullback of a locally free sheaf,
the pullback E• will still be trivial on the simplex part (that is, the pullback is via a
projection π∗p, which entirely forgets the simplex). This means that (id×ψ)∗Ep will
always just be π∗p,p−1E

p, no matter what ψ is. At first, this seems like a problem,
because we cannot impose any conditions on the simplex part that are not trivial,
but we have to remember that we are studying sheaves with connections.

So even though the sheaf itself is trivial over the simplex, the connections have
no reason to be so. For example, the barycentric connection clearly has non-trivial
information over the simplex part (because it has ti appearing in its definition).

7.2 The motivating example

(7.2.1) In an effort to motivate the definitions in this chapter, we start with a
simplified example of what we wish to study: we replace vector bundles with
vector spaces, and we replace curvatures of connections with endomorphisms.

(7.2.2) Definition. Let C be the category whose objects are pairs (V ,ϕ) of finite-
dimensional vector spaces V and endomorphismsϕ, and whose morphisms f : (V ,ϕ)→
(W,ψ) are the morphisms f : V →W of vector spaces such that f ◦ϕ = ψ ◦ f .

Let E : C→ C be the endofunctor that sends (V ,ϕ) to (V /Kerϕ,ϕ). Write LEC
to mean the localisation of C along all morphisms that become isomorphisms after
applying E (the wide subcategory of which we denote byW).
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7. Simplicial formalisms

(7.2.3) Recall that the Grothendieck group K(C) of C is the group whose elements
are isomorphism classes [A] of objects A ∈ C, and where, for each short exact
sequence 0→ A→ B→ C→ 0 in C, we introduce the relation [A]− [B] + [C] = 0 in
K(C), whence the group operation is given by

[(V ,ϕ)] + [(W,ψ)] := [(V ⊕W,ϕ ⊕ψ)].

(7.2.4) Definition. An object (V ,ϕ) ∈ C is flat if ϕ = 0. We define an equivalence
relation ∼ on K(C) by saying that flat objects are equivalent to the zero object:

[(V ,0)] ∼ [(0,0)].

(7.2.5) Definition. A morphism f : (V ,ϕ)→ (W,ψ) in C is admissible if there ex-
ist subspaces V1 ↪→ V and W1 ↪→W such that

1. V1 ⊆ Kerϕ and W1 ⊆ Kerψ;

2. f restricts to a morphism V1→W1;

3. f descends to an isomorphism V /V1
∼−−→W/W1.

(7.2.6) Lemma. A morphism f : (V ,ϕ)→ (W,ψ) in C is inW if and only if it is
admissible.

Proof. Let f : (V ,ϕ) → (W,ψ) be a morphism in W , so that E(f ) is an isomor-
phism. Then we take V1 := Kerϕ and W1 := Kerψ.

Conversely, let f : (V ,ϕ)→ (W,ψ) be admissible. Then V1 6 Kerϕ, and so, by
the third isomorphism theorem, (V /V1)/(Kerϕ/V1) � V /Kerϕ. It remains then to
show that E(f ) restricts to an isomorphism Kerϕ/V1

∼−−→ Kerψ/W1. But f ◦ ϕ =
ψ ◦ f , and so E(f ) ◦E(ϕ) ◦E(f )−1 = E(ψ), whence

E(f ) : Kerϕ/V1 = KerE(ϕ) ∼−−→ KerE(ψ) = Kerψ/W1.

(7.2.7) Lemma. There is a (canonical) isomorphism K(LEC) ∼−−→ K(C)/∼.

Proof. It suffices to take the ‘identity’ map, as follows. Take two isomorphic ob-
jects (V ,ϕ) � (W,ψ) ∈ LEC. Then the isomorphism between them is given either
by an isomorphism in C or by some morphism inW . In the former case, we are
done; in the latter case, (7.2.6) tells us that there is an admissible decomposition
f : V � V1 ⊕V2→W1 ⊕W2 �W . But then both (V1,ϕ) and (W1,ψ) are equivalent
to zero, whence f : (V2,ϕ) ∼−−→ (W2,ψ) gives us an isomorphism in K(C)/∼.

Conversely, take two isomorphic objects (V ,ϕ) � (W,ψ) ∈ C. Then they are
also isomorphic in LEC, since all isomorphisms are inW . Further, if [(V ,ϕ)] ∼ [(0,0)]
in K(C)/∼, then ϕ = 0, whence V /Kerϕ = 0, and so [(V ,ϕ)] = [(0,0)] ∈ K(LEC).
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(7.2.8) Now assume that we have some ‘invariant polynomial’[1] P from C⊗n to
some (additive, say) abelian group G (such as C). If P is additive then it will de-
scend to a well-defined polynomial on K(C)⊗n. If P further sends an n-fold tensor
product of flat objects to zero, then it also descends to a well-defined polynomial
on K(C)/∼. Thus, by (7.2.7), P is well defined on K(LEC); thus, by (7.2.6), the
resulting characteristic classes (that is, the values of P ) are invariant under ad-
missible morphisms.

7.3 Admissibility

(7.3.1) In order to define characteristic classes, we introduce the notion of admis-
sibility of simplicial connection. It turns out that this is actually unnecessary for
our purposes, because the only simplicial connection that we’re interested in is the
barycentric one, and this is ‘generated in degree zero’ (something that we explain
in Section 7.7), which makes it very well behaved (in particular, in nice cases, be-
ing generated in degree zero implies admissibility, as explained in (7.7.16)). But
it might be the case that, at some point, somebody is interested in other simplicial
connections, in which case these notions might (hopefully) prove useful.

(7.3.2) Definition. An endomorphism-valued simplicial r-form on E• is a family of
forms {ωp}p∈N, where each ωp is a global section of{

ωp ∈ End
(
Ep

)
⊗O

XUp
Ωr
XUp ×∆p

}
p∈N

such that

(Cip⊗ id)◦
(
(XU• f

i
p × id)∗⊗(XU• f

i
p × id)∗

)
ωp−1 =

(
(id×f ip )∗⊗(id×f ip )∗

)
ωp ◦(Cip⊗ id)

as sections of Hom
(
(XU• f

i
p × id)∗Ep−1, (id× f ip )∗Ep

)
⊗Ωr

XUp ×∆p−1 .

(7.3.3) The condition in (7.3.2) is rather daunting as it stands, but appears quite
naturally when we think about what exactly we want to be satisfied:

1. the form part should be simplicial, in that, if we ‘functorially remove’ the en-
domorphism part (that is, apply some invariant polynomial, such as the
trace), we should be left with a simplicial form — this leads us to ask that
the typical condition from (4.3.6) be satisfied;

2. the endomorphism part should respect the simplicial structure of E•, in that the
comparison maps Cp should be true morphisms with respect to these endo-
morphisms.

[1]That is, invariant under a change of basis (the GLn-action), but with the subtlety that we ac-
tually need a sequence of such polynomials, indexed by N: one for each possible dimension of the
vector space of an element of C. We describe these things in more detail in Section 7.5.
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7. Simplicial formalisms

It is true that the latter of these two points is not explained in such a satisfying
manner as the former, and so we give another justification: if we can believe that
the definition in (7.4.1) is the good one,[1] then all we are doing here is thinking of
a connection as a form-valued endomorphism and asking that the same condition
be satisfied by both parts (the form and the endomorphism).

(7.3.4) Definition. Inspired by (7.2.5), we define an admissible endomorphism-
valued simplicial form to be an endomorphism-valued simplicial form that is fi-
brewise Cp-admissible. Let’s spell out explicitly what we mean by this.

We have the comparison morphism

(
XU• f

i
p × id

)∗ (
Ep−1,ωp−1

) Cip
−−→

(
id× f ip

)∗ (
Ep,ωp

)
of sheaves over XUp × ∆p−1 with endomorphism-valued forms, as described in
(7.1.3). On each fibre, this gives us a family of morphisms of pairs of vector spaces
and endomorphisms, because, over a point in the base space,

(a) the bundle Ep looks like[2]
C
r; and

(b) the endomorphism-valued simplicial forms gives us a family of endomor-
phisms, indexed by tangent vectors (as explained below).

For ω• to be admissible then, we want, for all choices of tangent vectors, for the
induced morphism of pairs of vector spaces and endomorphisms to be admissible,
in the sense of (7.2.5). That is, for all p ∈N, all x ∈ X, and all vx ∈

∧r TxX (where
r is the differential degree of ω•), the endomorphism

Ep
∣∣∣ {x} ωp(vx)
−−−−−→ Ep

∣∣∣ {x}
is such that the map (induced by restriction)

(
XU• f

i
p × id

)∗ (
Ep−1

∣∣∣ {x},ωp−1(vx)
) Cip
−−→

(
id× f ip

)∗ (
Ep

∣∣∣ {x},ωp(vx)
)

is admissible, i.e. the induced map

(
XU• f

i
p × id

)∗ ((
Ep−1

∣∣∣ {x}) /Kerωp−1(vx)
)
Cip
−−→

(
id× f ip

)∗ ((
Ep

∣∣∣ {x}) /Kerωp(vx)
)

is an isomorphism.

[1]A belief that we hope is sufficiently justified by the rest of this section.
[2]In general, there are no conditions on the ranks of each simplicial level of a locally free sheaf

on the nerve, and so the rank may well jump when passing from one level to another: over a point
in the base space, the sheaf would look like C

r(p) for some r(p). In practice though, we often have
a tamer situation, as described in (7.3.5). In particular, if E• is the pullback of a locally free sheaf,
the rank is constant.
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(7.3.5) Lemma. For an endomorphism-valued simplicial form ω• to be admissi-
ble, it is sufficient to ask, for all p, for sub-bundles Lp,Mp ↪→ Ep that lie in the
kernel of the endomorphism-part of the ωp, and such that the comparison map
Cip restricts to an isomorphism

Cip :
(
XU• f

i
p × id

)∗ (
Ep−1/Lp−1

) ∼−−→ (
id× f ip

)∗ (
Ep/Mp

)
.

Proof. This is just the statement that “if something is globally true then it is, in
particular, fibrewise-ly true”. If Lp lies in the kernel of (the endomorphism part of)
ωp then, in particular, Lp

∣∣∣ {x} lies in the kernel of ωp(vx) for any vx ∈
∧r TxX (and

similarly for Mp). Then we appeal to (7.2.6).

7.4 Simplicial connections

(7.4.1) Definition. A simplicial connection ∇• on a locally free sheaf E• of OXU• -
modules is a family of connections ∇• = {∇p}p∈N, where ∇p is a connection on
π∗pE

p, such that the comparison maps

(
XU• f

i
p × id

)∗ (
Ep−1,∇p−1

) Cip(E•)
−−−−−−→

(
id× f ip

)∗ (
Ep,∇p

)
are true morphisms.[1] That is, such that the diagram

(
XU• f

i
p × id

)∗
Ep−1

(
id× f ip

)∗
Ep

(
XU• f

i
p × id

)∗
Ep−1 ⊗Ω1

XUp ×∆p
(
id× f ip

)∗
Ep ⊗Ω1

XUp ×∆p

Cip

(XU• f ip×id)∗∇p−1 (id×f ip )∗∇p

Cip⊗ id

commutes. Note that the ∇p are connections on Ep = π∗pE
p, and not on Ep itself.

(7.4.2) Lemma. The curvature of a simplicial connection is an endomorphism-
valued simplicial 2-form.

Proof. This is a direct consequence of the definitions and (7.1.2).

(7.4.3) Definition. We say that a simplicial connection is admissible if its curva-
ture (which is an endomorphism-valued simplicial 2-form, by (7.4.2)) is admissi-
ble.

[1]Recalling, again, that the pullback acts on both parts of the product simultaneously.
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7. Simplicial formalisms

When talking about connections we often simply write ‘admissible’ instead of
‘admissible simplicial’, under the tacit assumption that it only makes sense to call
a connection admissible if it is already simplicial.

The reason that we place this condition on the curvature and not on the 1-form
part of the connection is because we really only care about characteristic classes,
which are given by evaluating certain polynomials on the curvature. So as long as
the curvature behaves well, we’re happy.

(7.4.4) Corollary. For a simplicial connection ∇• to be admissible, it is sufficient
to ask for sub-bundles Ap,Bp ↪→ Ep such that

(i) Ap and Bp are ∇p-flat;

(ii) the comparison map

(XU• f
i
p × id)∗

(
Ep−1,∇p−1

) Cip
−−→ (id× f ip )∗

(
Ep,∇p

)
.

(which is already known to be a true morphism, since the connection is as-
sumed to be simplicial) restricts to a morphism

(XU• f
i
p × id)∗

(
Ap−1,∇p−1

) Cip
−−→ (id× f ip )∗

(
Bp,∇p

)
;

and;

(iii) the above restriction of the comparison map induces an isomorphism

Cip : (XU• f
i
p × id)∗

(
Ep−1/Ap−1

) ∼−−→ (id× f ip )∗
(
Ep/Bp

)
.

Proof. If Ap (resp. Bp) is ∇p-flat then, in particular, it lies in the kernel of κ
(
∇p

)
.

Since κ
(
∇p

)
is simply ∇p ◦∇p, (7.1.2) tells us that the (true) morphism

(XU• f
i
p × id)∗

(
Ap−1,∇p−1

)
→ (id× f ip )∗

(
Bp,∇p

)
induces a true morphism

(XU• f
i
p × id)∗

(
Ap−1,κ

(
∇p−1

))
→ (id× f ip )∗

(
Bp,κ

(
∇p

))
.

But then, by (7.3.5), we are done.

(7.4.5) The difference of two admissible connections has no reason a priori to be
an admissible endomorphism-valued simplicial 1-form, because there is no link
between the kernels of the curvatures and the kernel of the difference.

This prompts the following definition: a family of admissible connections is
said to be compatible if the difference of any two is an admissible endomorphism-
valued simplicial 1-form.
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(7.4.6) As a brief summary of the various definitions proposed so far:

• the ‘true morphism’ condition (7.4.1) of a simplicial connection (or (7.3.2),
for endomorphism-valued simplicial forms) ensures that the related forms
satisfy the gluing condition needed in order to define a simplicial form, as
explained in (7.1.3), and formalised (for the curvature) in (7.4.2);

• the admissibility condition (7.4.3) (or (7.3.4), for endomorphism-valued
forms) ensures that we can evaluate generalised invariant polynomials on
the curvature of an admissible connection and get something that is the
same in all simplicial degrees, as explained (vaguely) in (7.2.8);

• the compatibility condition (7.4.5) ensures that characteristic classes are
independent of the choice of connection.

7.5 Generalised invariant polynomials

(7.5.1) Thinking about Section 7.2 (and using its notation), we realise that we
need a slightly more general notion of ‘invariant polynomial’ for the following
reason: the dimensions of the vector space of an element of C is entirely arbitrary,
and so we can’t just expect to get by with some invariant polynomial P on C

r for
some fixed r; we need an invariant polynomial Pr for each possible dimension
r of the vector spaces. But there must be some sort of ‘agreement’ between the
invariant polynomials — given some embedding of a low dimensional space into
a higher dimensional one, the two invariant polynomials should agree — and we
propose the following definition (still using the notation of Section 7.2).

(7.5.2) Definition. A sequence (Pr )r∈N of C-valued polynomials Pr on C⊗n is said
to be a generalised invariant polynomial of degree n if the following conditions are
satisfied:

(i) each Pr is a GLr-invariant C-valued ⊕-additive polynomial of degree n on n⊗
i=1

(Vi ,ϕi) ∈ C⊗n
∣∣∣∣ dimVi = r

 ;

(ii) the Pr factor through K(C)/∼.

The second condition is equivalent to the following: the Pr all satisfy the ‘ex-
tension by zero’ property, i.e. Pr = Pr+1 ◦ ιr for all r ∈ N, where ιr is the linear
embedding of a vector space of dimension r into C

r+1 corresponding to v 7→ (v0 ).
This extension by zero property basically (when combined with additivity) tells
us that P is ‘fully’ ⊕-additive:

Pdim(V+W )

(
(V ,ϕ)⊕ (W,ψ)

)
= PdimV

(
(V ,ϕ)

)
+ PdimW

(
(W,ψ)

)
.
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Mirroring classical notation, given some P• = (Pr )r∈N on C⊗n, we write P̃• to
mean the (sequence of (invariant and additive)) polynomial(s) on C given by

P̃dimV

(
(V ,ϕ)

)
= PdimV

(
(V ,ϕ)⊗n

)
.

The prototypical example is the degree-1 polynomial given by Pr = tr for all r ∈
N, where the trace is of the endomorphism part of a pair, or, more generally, the
degree n polynomial given by P nr = tr◦µn, where µn is the multiplication map that
sends an n-fold tensor product of endomorphisms to the endomorphism given by
the composition of all the endomorphisms.[1] A non-example is Pr = 1

r tr.

(7.5.3) Lemma. Using the notation from Section 7.2, let f : (V ,ϕ) → (W,ψ) be
an admissible morphism, and (Pr )r∈N be a generalised invariant polynomial of
degree n that is zero on an n-fold tensor product of flat objects. Then P̃r

(
(V ,ϕ)

)
=

P̃r
(
(W,ψ)

)
for all r ∈N.

Proof. By definition, there exist decompositions V � V1 ⊕ V2 and W � W1 ⊕W2
such that ϕ(V1) = ψ(W1) = 0 and f restricts to an isomorphism V /V1

∼−−→ W/W1.
Then, necessarily, dimV2 = dimW2 = s for some s ∈N. Since Pr is fully additive,

P̃dimV

(
(V ,ϕ)

)
= P̃dimV

(
(V1,0)⊕ (V2,ϕ

∣∣∣V2)
)

= P̃dimV1

(
(V1,0)

)
+ P̃s

(
(V2,ϕ

∣∣∣V2)
)
.

But Pr is assumed to be zero on an n-fold tensor product of flat objects, and so

P̃dimV1

(
(V1,0)

)
+ P̃s

(
(V2,ϕ

∣∣∣V2)
)

= P̃s
(
(V2,ϕ

∣∣∣V2)
)
.

Then the GLr-invariance tells us that

P̃s
(
(V2,ϕ

∣∣∣V2)
)

= P̃s
(
(W2,ϕ

∣∣∣W2)
)
,

and this is equal to P̃dimW

(
(W,ψ)

)
, again by full additivity and being zero on flat

objects.

(7.5.4) Corollary. Let ω• be an admissible endomorphism-valued simplicial k-
form on E•, and P? = (Pr )r∈N a generalised invariant polynomial of degree n that
is zero on n-fold tensor products of flat objects. Then P̃?(ω•) is a simplicial k-form.

Proof. First of all, we need to verify that P̃?(ω•) is well defined. Over any Uα0...αp ,

we have the pair (Ep,ωp)
∣∣∣Uα0...αp×∆

p consisting (after trivialisation) of an OUα0 ...αp×∆
p-

module of rank r(α0 . . .αp) along with a form-valued endomorphism. By (4.3.4),
the rank r(p) = r(α0 . . .αp) is independent of the open set Uα0...αp . This means that

[1]The fact that this is well defined relies on being able to view all the Vi in the tensor product as
being identical, but we can do this thanks to the GL-invariance of the trace, as well as the ‘extension
by zero’ property.
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7.6. Chern-Weil theory

we can define P̃r(p)(ωp) by applying P̃r(p) to the endomorphism part of ω⊗np , and
wedging the n-fold tensor product of the form part.

Then we need to show that (XU• f
i
p × id)∗P̃r(p−1)(ωp−1) = (id× f ip )∗P̃r(p)(ωp). Now

we can use the extension by zero property from (7.5.1) to replace P̃r(p−1) and P̃r(p)

with P̃s, where s = max{r(p − 1),r(p)}. But then, by admissibility and (7.5.3), it
suffices to show that P̃s commutes with pullbacks. Because P̃s is just given by the
wedge product of forms on the form part ofωp, it commutes with pullbacks there.
On the endomorphism part of ωp, since we are working locally, the pullback is
simply a change of basis, and so commutes with the P̃s by GL-invariance.

7.6 Chern-Weil theory

(7.6.1) In (7.5.4), we saw how the theory of admissible simplicial connections
gave us a simplicial form; we know that we can use fibre integration to obtain a
differential form; and so the question remains: how can we get a class in coho-
mology?

Firstly, to see that the form given by evaluating a generalised invariant poly-
nomial on an admissible endomorphism-valued simplicial form is closed, we can
apply the classical argument (e.g. [Huy05, Corollary 4.4.5]) in each simplicial
degree. This means that we get some cohomology class.

Next, we could ask about invariance of this class under a different choice of
simplicial connection.[1] To give an example of what we are trying to show here,
consider the simplest case, where P? = tr. Given two admissible simplicial con-
nections ∇(1)

• and ∇(2)
• , we want that

P?

(
κ
(
∇(1)
•

))
∼ P?

(
κ
(
∇(1)
•

))
where ∼ here means ‘equal in cohomology’. This is equivalent to asking for their
difference to be a closed simplicial differential form. But, working locally, writing

∇(i)
• = d +A(i)

• , we see that

κ
(
∇(2)
•

)
−κ

(
∇(1)
•

)
= d

(
A

(2)
• −A

(1)
•

)
+A(2)
• ·A

(2)
• +A(1)

• ·A
(1)
•

= d
(
A

(2)
• −A

(1)
•

)
+
(
A

(2)
• −A

(1)
•

)2
+A(2)
• ·A

(1)
• +A(1)

• ·A
(2)
• .

By skew symmetry, the last two terms will cancel when we apply P? , and so we
simply want for the difference B• = A(2)

• −A
(1)
• to be an admissible endomorphism-

valued simplicial form, since then P?(dB•) = dP?(B•) will be the differential ap-
plied to a simplicial differential form, and thus closed in the simplicial de Rham
complex.

[1]Here we point out that, since we will eventually be interested in characteristic classes of co-
herent sheaves, there will be another question of independence (that of twisting cochains), that we
discuss in (9.2.3).
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In the general case, we can again use some classical proof if we can show that
“working simplicial degree by simplicial degree” still results in a valid proof. The
statements in [Huy05, §4.4] that are used to prove [Huy05, Lemma 4.4.6] can be
adapted to our situation thanks to the following facts[1] concerning an admissible
simplicial connection ∇•, an admissible endomorphism-valued simplicial 1-form
A•, admissible endomorphism-valued simplicial forms γ j• of degree dj , and a gen-
eralised invariant polynomial P? :

(i) the difference of two admissible simplicial connections in a compatible fam-
ily[2] (7.4.5) is an admissible endomorphism-valued simplicial 1-form, by
definition;

(ii) κ (∇• +A•) = κ (∇•) +A• ·A• +∇•(A•);

(iii) P̃?
(
κ (∇• + tA•)

)
= P̃?

(
κ (∇•)

)
+κ (t)P?

(
κ (∇•) , . . . ,κ (∇•) ,∇•(A•)

)
+O(t2);

(iv) ∇•
(
κ (∇•)

)
= 0 (the Bianchi identity);

(v) dP?(γ1
• , . . . ,γ

k
• ) =

∑k
j=1(−1)

∑j−1
`=1 djP?(γ1

• , . . . ,∇•(γ
j
•), . . . ,γk• ).

(7.6.2) The upshot of all of this abstract theory is that the barycentric connection
(for the pullback of a locally free sheaf) is an admissible simplicial connection (as
we will prove in (7.7.2) and (7.7.3)), and the trace (of the k-th wedge product) is
a generalised invariant polynomial, and so all of our calculations in Sections 6.1
and 6.2 are justified — we do indeed end up with well-defined simplicial forms
when we take the trace (of wedge products) that give us classes that deserve to be
called ‘characteristic classes’.

(7.6.3) Definition. Given a locally free sheaf E• of OXU• -modules and an admis-
sible simplicial connection ∇•, we define the kth simplicial exponential Atiyah class
ât◦kE• by

ât◦kE• = εkκ (∇•)k

and the kth simplicial standard Atiyah class ât∧kE• by

ât∧kE• = εkκ (∇•)∧k

where εk = (−1)k(k−1)/2. Note that tr ât◦kE• and tr ât∧kE• are both generalised invariant
polynomials evaluated on the curvature κ (∇•).

[1]All of which are true either by definition, or by working in each simplicial degree and using
admissibility of the simplicial connection.

[2]For why we can assume that we have a compatible family, see (7.7.17).
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7.7. Simplicial connections generated in degree zero

(7.6.4) Definition. Given a bounded chain complex

X? =
((
E•,? ,ω?•

)
,d?X

)
of vector bundles on the nerve with admissible endomorphism-valued simplicial
forms, and a generalised invariant polynomial P•, we define

P•(X
?) =

∑
m∈N

P̃?(ω•)
(−1)m

where the sum is necessarily (by the boundedness of X?) finite.

7.7 Simplicial connections generated in degree zero

(7.7.1) We now restrict our attention to a specific type of simplicial connection,
which is the generalisation of the barycentric connection, as defined in (6.1.3).
The reason for being interested in barycentric connections in the first place is
twofold: firstly, they are ‘natural’ ones for our applications;[1] and secondly, they
behave very well, in that they are simplicial and admissible (which we show in
(7.7.2) and (7.7.3))

Recall that the barycentric connection was defined for a pullback to the nerve
of a global vector bundle. We wish to define such a connection for an arbitrary
vector bundle on the nerve (though, as we shall see, we actually need to impose
the Green condition on our ‘arbitrary’ bundles). Before doing so, however, we give
a non-definition, and explain why it does not suffice.

Non-definition. We say that a simplicial connection ∇• on a locally free sheaf
E• of OXU• -modules is generated in degree zero if it is of the form

∇p
∣∣∣Uα0...αp =

p∑
i=0

ti∇αi

where the ∇αi are connections on E0 over Uαi , pulled back just as in (6.1.3).

This is a non-definition because arbitrary locally free sheaves of OXU• -modules
have no reason to be strongly cartesian: they are not necessarily pullbacks of
global locally free sheaves. The ’good’ definition should imply this non-definition
whenever the sheaves in question are strongly cartesian, but be general enough to
work even if not.

Before giving this definition, however, we first prove the nice properties of
barycentric connections that we claimed above.

[1]We have a bunch of local data (e.g. connections) but no global data, and wish to patch together
the local data in order to obtain some simplicial version of global data.
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7. Simplicial formalisms

(7.7.2) Lemma. The barycentric connection is a simplicial connection.

Proof. To prove that ∇µ• is indeed a simplicial connection, we need to show that
the comparison map Cip is a true morphism. Since E• is the pullback of a global
locally free sheaf, we know that the map E•f ip : (XU• f

i
p )∗Ep−1 → Ep is (over each

Uα0...αp ) a map(
E
∣∣∣Uα0...α̂i ...αp

) ∣∣∣Uα0...αp → E
∣∣∣Uα0...αp

which is in fact, by definition, simply the identity. So then the comparison map
Cip = π∗p,p−1

(
E•f ip

)
is also just the identity. But, over Uα0...αp ×∆

p−1, we see that

(XU• f
i
p × id)∗∇µp−1 =

p∑
j=0
j,i

tj∇αj = (id× f ip )∗∇µp

and so, since the comparison map is the identity and the two connections are
identical, the comparison map is a true morphism.

(7.7.3) Lemma. The barycentric connection is admissible.

Proof. We already know, from (7.7.2), that the barycentric connection really is a
simplicial connection. So we take Ap = Bp = 0 and Lp =Mp = Ep, and look towards
showing that the conditions in (7.4.4) are satisfied, which reduces to showing that
the comparison map is an isomorphism. But, as explained in (7.7.2), the compar-
ison map is really just the identity map, which is an isomorphism.

(7.7.4) Definition. We say that a complex E•,? of vector bundles on the nerve is
Green if, for all γ 6 β 6 α = (α0 . . .αp), writing Eα to mean Ep

∣∣∣Uα, the following
conditions are satisfied:

(a) E?α � E
?
β

∣∣∣Uα ⊕L?α,β for some (E?α0
, . . . ,E?αp )-elementary (9.1.1) sequences L?α,β;

(b) L?α,γ � L
?
β,γ

∣∣∣Uα ⊕L?α,β;

(c) over each Uα there is an isomorphism of short exact sequences[1]

0 E?β E?α L?α,β 0

0 E?γ ⊕L?β,γ E?γ ⊕L?α,γ L?α,β 0

o o id

(omitting the restriction notation), where the bottom map is induced by the
natural inclusion L?β,γ ↪→ L

?
α,γ coming from L?α,γ � L

?
β,γ ⊕L

?
α,β.

[1]In other words, this diagram commutes, its top and bottom rows are short exact sequences,
and the vertical arrows are all isomorphisms.
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7.7. Simplicial connections generated in degree zero

Note that we require isomorphisms in conditions (a) and (b) rather than just quasi-
isomorphisms.

We say that a single vector bundle E• is Green if the complex E•[0] is Green.

(7.7.5) We do not claim that every complex satisfying the conditions of (7.7.4)
comes from Green’s resolution (9.1.2); because of this, a better name for ‘Green
complexes’ might be anatine complexes.[1]

(7.7.6) Lemma. Let E•,? be a Green complex of vector bundles on the nerve.
Then, in particular,

1. for all coface maps f ip : [p − 1]→ [p], the map(
XU• f

i
p

)∗
Ep−1,?

E•,?f ip
−−−−−→ Ep,?

is injective, and Coker(E•,?f ip ) is an elementary[2] sequence;

2. for all codegeneracy maps spi : [p+ 1]→ [p], the map(
XU• s

p
i

)∗
Ep+1,? E

•,?s
p
i−−−−−→ Ep,?

is surjective, and Ker(E•,?spi ) is an elementary sequence;

3. the complex E•,? is cartesian (4.3.2);

4. the comparison maps Cip(E•,j ) are injective for all j.

Proof. The first two claims follow from the splittings E?α � E
?
β

∣∣∣Uα ⊕L?α,β in the
specific case where β = (α0 . . . α̂i . . .αp); the third claim (saying that the complex
is Cartesian) follows from the fact that adding an elementary sequence gives a
quasi-isomorphism of complexes (as explained in (8.3.11)); the fourth claim (that
the comparison maps are injective) follows from the fact that they can be written
as π∗p,p−1(E•f ip ), and, as mentioned a few other times in this section, we know that
pullbacks preserve injectivity.

(7.7.7) For any simplicial object in a category, its face maps are injections, be-
cause the simplicial identities tell us that they have left inverses. With this in
mind, Green complexes actually look like cosimplicial objects: their coface maps
are injective, which is not necessarily the case for arbitrary complexes of vector
bundles on the nerve.

[1]These complexes behave like something coming from Green’s resolution, and there is the no-
tion of duck typing from computer science: ‘if something looks like a duck and quacks like a duck then,
for all implementation purposes, it is a duck.’ So we might wish for an adjective that combines the
idea of ducks with the colour green; mallards are an example of green ducks; mallards come from
the Anatinae family, the adjective for which is anatine. We refrain, just this once, however, from
introducing more ornithological input to this thesis.

[2]In the E?αi , as in (7.7.4).
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(7.7.8) At last, we can almost give the definition promised in (7.7.1) of simplicial
connections generated in degree zero, with an important caveat: we assume that our
locally free sheaf E• of OXU• -modules satisfies the conditions necessary for it to be
a Green complex (when viewed as a complex concentrated in degree zero). That
is, there are certain splitting between simplicial levels, and these satisfy some
cocycle condition, as we will explain before giving our definition (since otherwise
it makes no sense); the actual definition is given in (7.7.9).

So, for all α, let ∇̃α be a (local) connection on E0
∣∣∣Uα (not on E0), and define

ζip : [0]→ [p] to be, for i ∈ {0, . . . ,p}, the map given by 0 7→ i. Since this is a compo-
sition of coface maps, we have, thanks to the Green assumption[1], that (over each
Uα0...αp )

Ep �
((
XU• ζ

i
p

)∗
E0

∣∣∣Uα0...αp

)
⊕K0,i,p (7.7.8.1)

with the inclusion map

(XU• ζ
i
p)∗E0

E•ζip
↪−−−−→ Ep

(in the notation of (7.7.4), we have α = (α0, . . . ,αp), β = (α0, . . . , α̂i , . . . ,αp), and
L?α,β = K0,i,p[0]). Then, since pullbacks preserve direct sum decompositions, we
have

π∗pE
p � π∗p

((
XU• ζ

i
p

)∗
E0

∣∣∣Uα0...αp

)
⊕π∗pK0,i,p (7.7.8.2)

By the commutativity of the square

XUp XU0

Uα0...αp Uαi

XU• ζ
i
p

(and recalling that restricting a sheaf to an open subset is the same as pulling
back along the corresponding open inclusion), we see that the two following pro-
cedures have the same result when applied to a sheaf on XU0 :

1. restrict to Uαi ⊆ X
U
0 and then to Uα0...αp ⊆Uα0...α̂i ...αp ;

2. pullback by XU• ζ
i
p and then restrict to Uα0...αp ⊆ X

U
p .

[1]And maybe implicitly using the fact that, as mentioned in (9.1.2), the ‘all coface maps f ip : [p −
1]→ [p]’ statement can be replaced by ‘all maps ϕ : [p]→ [q] of coface type’.
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7.7. Simplicial connections generated in degree zero

This means that, over any Uα0...αp , we have an isomorphism[1] of sheaves(
XU• ζ

i
p

)∗
E0

∣∣∣Uα0...αp =
(
E0

∣∣∣Uαi ) ∣∣∣Uα0...αp . (7.7.8.3)

This means that the connection ∇̃αi on E0
∣∣∣Uαi can be considered as a connection

on (XU• ζ
i
p)∗E0, and this then gives us a connection π∗p∇̃αi on π∗p(XU• ζ

i
p)∗E0. Using

the direct sum decomposition (7.7.8.2), we can extend this to a connection on
π∗pE

p by simply defining it to be ‘the’ trivial connection on π∗pK0,i,p: this summand
is elementary in the E?αi , and so we can use a direct sum of the ∇̃αi to endow it with
a connection. We denote this extension again by π∗p∇̃αi .

(7.7.9) Definition. With the formalities developed in (7.7.8), and using the same
notation, we can proceed, as in (6.1.1), by taking a linear combination of connec-
tions, and defining

∇p
∣∣∣Uα0...αp =

p∑
i=0

tiπ
∗
p∇̃αi (7.7.9.1)

and saying that any connection obtained in this way is generated in degree zero.

It is important to note that we cannot a priori restrict this isomorphism back
down to any of the (XU• ζ

i
p)∗E0 because connections are endomorphism-valued, and

the splittings have no reason to agree for j , i (that is, we have no idea how K0,i,p

and K0,j,p relate to one another, and so no idea if ∇̃αj can be restricted to E0
∣∣∣Uαi ).

(7.7.10) Really, Definition (7.7.9) is not that different from that of (6.1.3), but we
just take extra care to point out the formal subtleties that follow from E• not being
strongly cartesian, but having, instead, this ‘cocyclic-splitting’ property of being
Green.

(7.7.11) If the bundle E• is strongly cartesian, then the inclusion maps E•ζip in
(7.7.8) are isomorphisms. This means, in particular, that the definition of ‘being
generated in degree zero’ agrees with that of a barycentric connection for any
bundle given by pulling back a global vector bundle to the nerve.

(7.7.12) To reiterate, for clarity: when we use the phrase ‘barycentric connection’,
the implicit assumption is that we are working with the pullback (to the nerve) of
a global locally free sheaf; we say ‘generated in degree zero’ whenever we wish to
talk about the more general case of arbitrary vector bundles on the nerve. In an
effort to make this even clearer, as mentioned before, we try to use the notation E•,
F•, etc. for pullbacks of global locally free sheaves, and E•, F •, etc. for arbitrary
vector bundles on the nerve.

[1]Really, an equality, in fact, since the square truly commutes.
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(7.7.13) If we wish to study just simplicial connections generated in degree zero
then there is a shift of intuition with regards to admissibility: since our simpli-
cial connections are ‘fixed’, the property of being an admissible connection is now
really a property of the maps E•f ip : (XU• f

i
p )∗Ep−1→ Ep, which says that admissi-

bility is now really a property of the bundle itself (and its local connections) instead
of the simplicial connection.

The idea is that, rather than working with a category of vector bundles on the
nerve and then asking whether an individual object admits an admissible connec-
tion or not, we instead work directly with a category of ‘sufficiently nice’ vector
bundles on the nerve, where ‘sufficiently nice’ means ‘if we put a simplicial con-
nection generated in degree zero on it then it will be simplicial and admissible’.
This is formalised in (7.7.15).

(7.7.14) Maybe somewhat ironically, we have no non-trivial explicit examples of
admissible simplicial connections which are not generated in degree zero; it is an
interesting question to ask whether or not such things exist.

(7.7.15) Theorem. Let E•,? be a Green complex of vector bundles on the nerve.
Then we can endow each E•,j with an admissible connection generated in degree
zero.

Proof. (Compare the following with [Gre80, Lemma 2.2].) We split the proof into
three steps: defining connections that are generated in degree zero; showing that
they are simplicial; and then showing that they are admissible. For ease of notation,
we write E• instead of E•,j .

1. Take arbitrary local connections ∇̃α on E0
∣∣∣Uα for all α. Since E•,? is a Green

complex, we can use (7.7.9) to define connections ∇• on E• that are generated
in degree zero.

As a small side note, we point out that the direct sums of the ∇αi give us
connections on any (E?α0

, . . . ,E?αp )-elementary sequence, and these (trivially)
commute with the differentials (since all differentials are the identity). Such
connections on a complex are said to be compatible[1], and an important
property of such things is that, when we apply an invariant polynomial to
their curvatures, we get 1.[2]

[1]Not to be confused with a compatible family of connections, as in (7.4.5).
[2]This can be seen as a corollary to [BB72, Lemma 4.22] applied to the exact sequence 0→M→

(M→M[1])→M[1]→ 0, where 0→M→M[1]→ 0 is the M-elementary sequence.
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2. To show that each ∇• defined above is a simplicial connection, we need to
show that

(
XU• f

i
p × id

)∗
π∗p−1E

p−1
(
id× f ip

)∗
π∗pE

p

(
XU• f

i
p × id

)∗
π∗p−1E

p−1

⊗Ω1
XUp ×∆p

(
id× f ip

)∗
π∗pE

p

⊗Ω1
XUp ×∆p

Cip(E•)

(XU• f ip×id)∗∇p−1 (id×f ip )∗∇p

Cip(E•)⊗ id

(7.7.15.1)

commutes (where we use (7.7.6), which tells us, in particular, that the com-
parison maps are injective; we also use the fact that tensoring preserves
splittings to see that the bottom horizontal arrow is also an injection). The
proof of this is somewhat irksome: it is almost trivial, but it might take
some convincing to really prove that it is, indeed, almost trivial. We start by
making some simplifications (which probably, sadly, make things look a lot
more complicated than they really are).[1]

First of all, all of the sheaves in (7.7.15.1) lie over XUp ×∆p−1, but we make
the identification

XUp ×∆p−1 ' XUp × f ip
(
∆p−1

)
⊂ XUp ×∆p

so that we can label both (i.e. on the nerve and on the simplex) simplicial
parts with the same indices: the nerve being labelled with {0,1, . . . ,p}; the
simplex being labelled with {0,1 . . . , î, . . . ,p} (so that i is now fixed).

Next, similar to how we proved (7.7.8.3), we can use the commutativity of
the square

XUp XUp−1

Uα0...αp Uα0...α̂i ...αp

XU• f
i
p

(7.7.15.2)

[1]If you think that you understand why the square commutes, then we would suggest that you
skip the reading of this proof, because it might serve only to confuse.
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to see that ((
XU• f

i
p × id

)∗
Ep−1

) ∣∣∣ (Uα0...αp × f
i
p (∆p−1)

)
=

(
Ep−1

∣∣∣ (Uα0...α̂i ...αp ×∆
p−1

)) ∣∣∣ (Uα0...αp × f
i
p (∆p−1)

)
as sheaves over Uα0...αp × f

i
p (∆p−1).

So, to prove the commutativity of (7.7.15.1), we start by calculating how the
two pullbacks of the connections (that is, the vertical arrows in the square)
act (after restricting all sheaves to Uα0...αp ):(

XU• f
i
p × id

)∗
∇p−1 =

(
XU• f

i
p × id

)∗ p∑
j=0
j,i

tjπ
∗
p−1∇̃αj =

p∑
j=0
j,i

tjπ
∗
p∇̃αj

where the first equality is simply the definition. The second equality is the
tricksy one, because we are really writing ∇̃αj to mean two different things:

on the left-hand side, it means the connection π∗p−1∇̃αj extended by the triv-

ial connection[1] on K0,j,p−1; on the right-hand side, is means the connec-
tion π∗p∇̃αj extended by the trivial connection on K0,j,p; all of this using the
notation and properties of (7.7.8.1), (7.7.8.2), and (7.7.15.3). So this second
equality really follows from the (7.7.15.4), which tells us that extending triv-
ially onK0,j,p−1 and then again to the rest ofK0,j,p (which we do for π∗p−1∇̃αj )
is the same as simply extending trivially on K0,j,p (which we do for π∗p∇̃αj ).
The second pullback is much simpler:

(
id× f ip

)∗
∇p =

(
id× f ip

)∗ p∑
j=0

tjπ
∗
p∇̃αj =

p∑
j=0
j,i

tjπ
∗
p∇̃αj

which is ‘exactly the same’ as the first pullback — the scare quotes being
important, because these connections are on different sheaves. But, since the
horizontal arrows in (7.7.15.1) are injections, it means that these two con-
nections really are the same when we just follow how they act on the top-left
sheaf in the square; i.e., the square commutes.

If the reader is confused by the above proof (which is possible, given the round-
about manner in which we show something that follows, almost trivially, from
the definitions), we suggest simplifying to the single case where i = p.

Looking ahead to (7.7.15.3), since we have extended by something compat-
ible on Kp−1,i,p, the characteristic class of Kp−1,i,p will be 1, as mentioned

[1]That is, we extend it in a compatible way, as we mentioned that we could near the start of the
proof.
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above. This means, by additivity of characteristic classes, that the classes of
Ep and Ep−1

∣∣∣Uα0...αp will agree. This is the content of half of the proof of
[Gre80, Lemma 2.2].

3. To show that each ∇• is an admissible simplicial connection, it suffices to
show that the conditions in (7.4.4) are satisfied.

Before proceeding with the proof, however, we take some time to look at
how the splittings that we have been using respect the simplicial structure.
The Green assumption implies that

Ep
∣∣∣Uα0...αp �

(
Ep−1

∣∣∣Uα0...α̂i ...αp

) ∣∣∣Uα0...αp ⊕Kp−1,i,p (7.7.15.3)

which, combined with (7.7.8.1), says that (for i , j)[1]

Ep
∣∣∣Uα0...αp �

((
XU• ζ

j
p−1

)∗
E0

∣∣∣Uα0...α̂i ...αp ⊕K0,j,p−1

) ∣∣∣Uα0...αp ⊕Kp−1,i,p

�
((
XU• ζ

j
p−1

)∗
E0

∣∣∣Uα0...α̂i ...αp

) ∣∣∣Uα0...αp ⊕
(
K0,j,p−1

∣∣∣Uα0...αp ⊕Kp−1,i,p

)
and (again by the Green assumption) these K satisfy some cocycle condi-
tion:

K0,i,p �K0,j,p−1

∣∣∣Uα0...αp ⊕Kp−1,i,p (7.7.15.4)

whence[2]

Ep
∣∣∣Uα0...αp �

((
XU• ζ

j
p−1

)∗
E0

∣∣∣Uα0...α̂i ...αp

) ∣∣∣Uα0...αp ⊕K0,i,p. (7.7.15.5)

Now, for each comparison map Cip, we set

Ap−1 = π∗pK0,j,p−1

Bp = π∗pK0,i,p

from the splitting (7.7.8.2), for an arbitrary j , i.

[1]And we somehow don’t really care about when i = j, since we will always be working
on the embedding of ∆p−1 into ∆p by f ip , which is equivalent to working with the labelling

(α0, . . . , α̂i , . . . ,αp) on ∆p−1.
[2]Here is a false conclusion: by the uniqueness of the quotient Ep/K0,i,p, we see that

((XU• ζ
j
p−1)∗E0

∣∣∣Uα0...α̂i ...αp )
∣∣∣Uα0...αp � (XU• ζ

i
p)∗E0

∣∣∣Uα0...αp

as sheaves overUα0...αp . The reason that this argument does not work is because we don’t know that
the isomorphisms preserve the embeddings: X � A⊕ B and X � A⊕C does not, in general, imply
that B � C. For groups, this is true whenever X is finite, but here we are working with sheaves
of OXU• -modules, which, although locally free of finite rank (in our setting), are still much more
complicated objects than groups, and there is no reason for the same statement to be true (indeed,
the above actually serves as a counter example). The keywords here are ‘stably trivial’, or ‘stably
equivalent’.
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(i) Ap is ∇p flat by definition: we extended the connection π∗p∇̃αi by the
trivial connection on this direct summand.

(ii) The comparison map Cip is simply the pullback (along πp,p−1) of E•f ip ,
and so respects the splitting (7.7.8.2) almost by definition, because
these splittings come from the Green assumption (7.7.4). (This is sort
of what (7.7.15.5) is saying.)

(iii) We want the comparison map to induce an isomorphism when we take
the quotients.
To avoid getting lost in a mire of notation, instead of using (7.7.15.3)
to (7.7.15.5), we use the language of (7.7.4). Set

α = (α0, . . . ,αp)

β = (α0, . . . , α̂i , . . . ,αp)

γ = (αj )

and note that Ap−1 = π∗p−1Lβ,γ and Bp = π∗pLα,γ. Then

Eα � Eγ
∣∣∣Uβ

∣∣∣Uα ⊕Lα,γ

Eβ � Eγ
∣∣∣Uβ ⊕Lβ,γ

and we are interested in(
XU• f

i
p × id

)∗
π∗p−1

(
Eγ

∣∣∣Uβ

) π∗p,p−1(E•f ip )
−−−−−−−−−−−→

(
id× f ip

)∗
π∗p

(
Eγ

∣∣∣Uβ

∣∣∣Uα

)
.

Consider first the source of this map: by (7.1.3), we know that(
XU• f

i
p × id

)∗
π∗p−1

(
Eγ

∣∣∣Uβ

)
� π∗p,p−1

(
XU• f

i
p

)∗ (
Eγ

∣∣∣Uβ

)
but, as in (7.7.15.2), we know that(

XU• f
i
p

)∗ (
Eγ

∣∣∣Uβ

) ∣∣∣Uα =
(
Eγ

∣∣∣Uβ

) ∣∣∣Uβ

∣∣∣Uα = Eγ
∣∣∣Uβ

∣∣∣Uα

The target is much simpler, since, as explained in (7.1.3), the pullback
along f ip on the simplex part changes nothing:(

id× f ip
)∗
π∗p

(
Eγ

∣∣∣Uβ

∣∣∣Uα

)
� π∗p,p−1

(
Eγ

∣∣∣Uβ

∣∣∣Uα

)
.

But then we see that the source and target, when we restrict to Uα, are
identical, so it would suffice to show that the comparison map de-
scends to an injection when we take these quotients. But these quo-
tients are exactly the sheaf with which we started: we added the cok-
ernels and then quotiented them out; and we know, from (7.7.6), that
the comparison map is injective here.
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(7.7.16) Lemma (7.7.15) can really be thought of, in particular, as a proof that,
when working with Green complexes, ‘generated in degree zero’ implies admissibil-
ity.

(7.7.17) Lemma. Let E• be a Green vector bundle on the nerve, and let ∇• and
∇′• be two simplicial connections on E• that are generated in degree zero. Then
the difference ∇′• −∇• is an admissible endomorphism-valued simplicial form. In
other words, the set of generated-in-degree-zero connections on a Green vector
bundle on the nerve is a compatible family.

Proof. The fact that the difference of two arbitrary simplicial connections on an
arbitrary vector bundle on the nerve is an endomorphism-valued simplicial 1-
form follows ‘immediately’ from the definitions, without any extra hypotheses.
The content of this lemma is that generated-in-degree-zero connections on a Green
vector bundle on the nerve have an admissible difference.

Write ∇(1)
• and ∇(2)

• to mean the two connections, so that ∇(i)
• is constructed as

in (7.7.8), but with a different choice of local connections ∇̃(i)
α on each E0

∣∣∣Uα. This
means that, for each p ∈N, we can write

∇(i)
p =

p∑
j=0

tjπ
∗
p∇̃

(i)
αj

which means that the difference is of the form

∇(2)
p −∇

(1)
p =

p∑
j=0

tjπ
∗
p

(
∇̃(2)
αj − ∇̃

(1)
αj

)
=

p∑
j=0

tjπ
∗
pηαj =

p∑
j=0

tjηαj

where ηαj is an endomorphism-valued simplicial 1-form onUαj . The claim is then

that
∑p
j=0 tjηαj is an admissible endomorphism-valued simplicial 1-form, and this

follows almost exactly as in the proof of (7.7.15), because the difference
∑
tjηαj is

somehow also ‘generated in degree zero’, in that it is given by trivially extending
on each (XU• f

i
p )∗Ep−1 ↪→ Ep.

(7.7.18) As we mentioned in (7.3.1), the barycentric connection is particularly
nice because it is generated in degree zero, in the sense that we define ∇µ0 = ∇α0

over Uα0
× ∆0, and every ∇µp (for p > 1) is just a ∆p-linear combination of the

∇µ0. In some sense, we don’t introduce any ‘new’ connections at higher simplicial
levels, and the linear combination that we do take (of those in degree zero) is
somehow the ‘most free’ such one. For what it’s worth, we can try to understand
the definition of ‘generated in degree zero’ in a more abstract manner, as follows.

A principal GLn-bundle P (over a field k) on a space X is equivalent to a map
X → [∗/GLn], and a principal GLn-bundle P on X along with a section σ : X →
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7. Simplicial formalisms

P ×GLn k
n of the associated (k-vector) bundle is equivalent to a map X → [kn/GLn].

To see the latter, consider the cube

P × kn kn

P ∗

[(P × kn)/GLn] [kn/GLn]

X [∗/GLn]

where all the faces are pullbacks. Using the fact that [(P × kn)/GLn] ' P ×GLn k
n,

we see that having a section of the associated bundle does indeed give us (by
composition) a (unique) map X → [kn/GLn], and, conversely, having such a map
gives us a (unique) map X → P ×GLn k

n by using the (unique) map id: X → X,
along with the fact that P ×GLn k

n is a pullback.
Now assume that we have some simplicial space X• along with a principal

GLn-bundle P p on each simplicial level.[1] Then, by the above, having (p + 1)
sections σi : X0 → P 0 is equivalent to having a map (X0)p+1 → [kn/GLn]p+1. Our
goal is to construct a section in simplicial degree p using these (p + 1) sections in
simplicial degree zero.

We have the projection map [kn/GLn]→ [∗/GLn]; the map Xp→ (X0)p+1 given
by the (p + 1) possible combinations[2] of face maps; the diagonal map [∗/GLn]→
[∗/GLn]p+1; and the classifying mapXp→ [∗/GLn] of Pp. Putting these all together,
we get the commuting diagram

Xp

[(kn)p+1/GLn] [∗/GLn]

(X0)p+1 [kn/GLn]p+1 [∗/GLn]p+1

y

and so we get a map Xp→ [(kn)p+1/GLn], which is unique (given the σi).
The aim now is to construct a map

[(kn)p+1/GLn]→ [Hom(∆p, kn)/GLn]

[1]We also want there to be some condition equivalent to the functorial choices of the maps(
X•f ip

)∗
Ep−1 → Ep for sheaves on a simplicial space, but that doesn’t play a role in this story, so

we won’t worry ourselves about it.
[2]The maps corresponding to {0, . . . ,p} 7→ {i} for i ∈ {0, . . . ,p}.
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7.7. Simplicial connections generated in degree zero

since, combined with the other map we just constructed, and by currying,[1] this
would give us a map

Xp ×∆p→ [kn/GLn]

which is, as we have seen, exactly the information of a section of (the associated
vector bundle of) Pp. It suffices to construct a GLn-equivariant map (kn)p+1 →
Hom(∆p, kn), and here is where we have to make some choice: we pick the map
given by

(v0, . . . , vp) 7→

(t0, . . . , tp) 7→
p∑
i=0

tivi

 .
By currying, this is equivalent to the map

∆p→Hom
(
(kn)p+1, kn

)
(t0, . . . , tp) 7→

(
(0, . . . , v, . . . ,0)︸           ︷︷           ︸

zero except in the ith coordinate

7→ tiv
)

which, if we require linear maps that preserve affine structure, as well as making
the diagram

Hom(kn, kn)

∆p Hom
(
(kn)p+1, kn

)cid 4∗

(where cid is the constant map to the identity morphism, and4∗ is pre-composition
by the diagonal map) commute, is pretty much the only choice we have.

[1]That is, the tensor-hom adjunction in a specific setting: Hom(A×B,C) �Hom(A,Hom(B,C)).
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8Perfect twisting cochains

Coo coo.

The pigeon outside as I write this.

(8.0.1) Purpose. Twisting cochains and twisted complexes appear in many, some-
times seemingly unrelated, settings. This chapter contains bare minimum background
needed to be able to understand Chapter 9, and consign everything else to Appendix G.
In particular, I try to explain how Green constructs his simplicial resolution using
twisting cochains, and how to view it as a sort of ‘local strictification’ argument in
Section 8.3.

8.1 A brief introduction

(8.1.1) Given the multiple, and often only subtly different, possible definitions
of twisting cochains, we point out now that all those given in Appendix G are
not used in this chapter; we use only that which is given below. But, of all of
the motivations and approaches discussed in Appendix G, the one that is most
relevant to our discussion here is (G.4), which describes the category of twisting
cochains as a dg-enhancement of the category of complexes of coherent sheaves,
as detailed in [Wei16].

(8.1.2) For this chapter, a good idea to keep in mind is that ‘a twisting cochain
is like a complex of coherent sheaves, but not quite as rigidly glued’. That is,
rather than having transition maps on overlaps, we have maps that only satisfy
the cocycle condition ‘up to homotopy’, and these homotopies only commute ‘up
to higher homotopies’, and so on. As we explain in (G.2.12), a complex of coherent
sheaves is ‘like’ a truncated twisting cochain, with all homotopies being zero in
degrees greater than one.

The other nice thing about twisting cochains is that they let us formalise what
we have been doing throughout most of this thesis: thinking of all data above
some Uα0...αp as lying above Uα0

, so that we can compare everything on an equal
footing.

8.2 Holomorphic twisting resolutions

(8.2.1) Definition. A complex K• of sheaves on a locally-ringed space (X,OX)
is said to be perfect if, locally, it is quasi-isomorphic to a bounded complex of
locally free sheaves. That is, if, for every point x ∈ X, there exists some open
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8. Perfect twisting cochains

neighbourhood U of x and some bounded[1] complex E•U of locally free sheaves
on U such that K•

∣∣∣U is quasi-isomorphic to E•U .

(8.2.2) By the Hilbert syzygy theorem, the smoothness of X, and the fact that co-
herent sheaves are defined exactly to ensure that they are locally of finite type over
OX , with finite-type kernels, we always have local resolutions of a coherent sheaf
by finite complexes of locally free sheaves (and similarly for a complex of coherent
sheaves). We content ourselves with believing that perfect complexes really are
the things that interest us if we want to study coherent sheaves, since this is true
in the algebraic case (where the derived category of complexes with coherent (in-
ternal) cohomology is equivalent to the derived category of coherent complexes).
For those interested, however, we delve deeper into the story in Appendix E.

(8.2.3) Definition. Let X be some paracompact complex-analytic manifold with
a locally-compact Stein open cover U = {Uα}α∈I . Suppose that over each Uα we
have a finite-length complex (V •α ,dα) of locally free OUα -modules[2], the collec-
tion of which we refer to simply as V •. Define the collection Endq(V ) of degree-q
endomorphisms of V over each Uα0...αp by

Endq(V )
∣∣∣Uα0...αp =

{(
f i : V iαp

∣∣∣Uα0...αp → V
i+q
α0

∣∣∣Uα0...αp

)
i∈Z

∣∣∣∣dαp ◦ f i = f i+1◦ dα0

}
.

That is, an element of Endq(V ) is a ‘true’ (in that it commutes with the differen-
tials) morphism[3] of degree q of chain complexes V •αp → V •α0

.

(8.2.4) Definition. Following [Gre80, 0.A], we define the deleted Čech complex

Ĉp
(
U ,Endq(V )

)
=

∏
(α0...αp)

s.t. Uα0 ...αp,∅

Endq(V )
∣∣∣Uα0...αp

with deleted Čech differential δ̂ : Ĉp
(
U ,Endq(V )

)
→ Ĉp+1

(
U ,Endq(V )

)
given by

(δ̂c)α0...αp+1
=

p∑
i=1

(−1)icα0...α̂i ...αp+1

∣∣∣Uα0...αp+1

(note that the sum is only over i ∈ {1, . . . ,p}, missing out both i = 0 and i = p+ 1).

[1]That is, zero in all but finitely-many degrees.
[2]That is, a collection of perfect complexes.
[3]Said differently, Ends(V ) is like Z0 of the endomorphism module of V in the dg-category of

chain complexes (but with this modification of going from Vαp to Vα0 ).
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8.2. Holomorphic twisting resolutions

(8.2.5) There is a natural multiplication on Ĉ•(U ,V ?), given by

(cp · dq)α0...αp+q
= (−1)qcpα0...αpd

q
αp ...αp+q

which plays nicely with all the differentials involved. We often omit the · and just
write cd.

(8.2.6) Definition. A holomorphic twisting cochain for (U ,V •), where U and V •

are as in (8.2.3), is an element

a =
∑
k>0

ak,1−k ∈ Tot1 Ĉ•
(
U ,End?(V )

)
such that (i) a1,0

αα = id; (ii) a0,1
α = dα; and (iii) a satisfies the Maurer-Cartan equation:

δ̂a+ a · a = 0.

(8.2.7) Quoting (G.2.11): if we write out explicitly what δ̂a+a·a = 0 means at each
Čech level k then we can gain some insight into what twisting cochains really look
like.

k = 0 a
0,1
α a

0,1
α = 0, which says exactly that a0,1

α gives us a differential on V •α ,
letting us (finally) think of it as a complex.

k = 1 a
0,1
α a

1,0
αβ = a

1,0
αβa

0,1
β , which tells us that, over Uαβ , we have a chain map of

complexes

a
1,0
αβ :

(
V •β

∣∣∣Uαβ , a0,1
β

)
→

(
V •α

∣∣∣Uαβ , a0,1
α

)
.

k = 2 −a1,0
αγ + a1,0

αβa
1,0
βγ = a0,1

α a
2,−1
αβγ + a2,−1

αβγa
0,1
γ , which says that a1,0

αγ and a1,0
αβa

1,0
βγ are

chain homotopic via the homotopy a2,−1
αβγ . Taking the degenerate simplices

αβα and βαβ, this tells us, in particular, that a1,0
αβ and a1,0

βα are chain homo-

topic inverses, i.e. that the chain map a1,0
αβ is a quasi-isomorphism.

k > 3 some sort of ‘higher-order homotopic gluings’, whatever this might mean,
formally (which we explain in (8.3.4)).

(8.2.8) Definition. Let E be a sheaf of OX-modules on X. Then a holomorphic
twisting resolution of E is a triple (U ,V •,a) such that the following conditions are
satisfied:

(i) U = {Uα} is a locally-finite Stein open cover of X;

(ii) V • = (V •α ,dα) is a collection of local locally free resolutions of E over each
Uα, of globally-bounded length[1];

[1]That is, each V •α is a resolution of E
∣∣∣Uα by locally free OUα -modules. Further, there exists

some B ∈N such that every V •α is of length no more than B.
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8. Perfect twisting cochains

(iii) a is a holomorphic twisting cochain for (U ,V •) over E— that is, we have the
following commutative diagram:

V • V •

E

a1,0

(iv) and, on degenerate simplices of the specific form α = (α0 . . .αp) with αi =
αi+1 for some i, we have that ak,1−k = 0 for k > 2.

(8.2.9) Although (8.2.8) gives a definition of a holomorphic twisting resolution of
a single sheaf, we can just as easily define the notion for a complex of sheaves and
regain this single-sheaf definition by thinking of E as a complex concentrated in
degree zero.

(8.2.10) There are a few existence criteria for holomorphic twisting resolutions.
In particular, when E is coherent, [TT76, Lemma 8.13] and [TT78, Lemma 2.4]
both show that a holomorphic twisting cochain exists (and the latter actually
shows a stronger result using the Hilbert syzygy theorem, namely that we can
ensure that our global-length bound B is no more than the dimension of X).

In the case of resolving complexes of coherent sheaves, we can appeal to [Wei16,
Proposition 3.20], as we explain further in (10.2.7).

(8.2.11) Example. One example to which we will repeatedly refer is the only one
found in [Gre80, p. 41], which is the following.[1] Throughout this example we
have I = {1,2}, and whenever we write α,β ∈ I we implicitly mean that α , β;
we will never write the intersection Uαβγ because there are not three distinct el-
ements of I , and so the only Čech 2-cochains will be those over the degenerate
simplices Uααα, Uααβ ,Uαβα, etc.

Let X = P
1(C), thought of as C∪ {∞}, with the cover U given by U1 = X \ {∞}

and U2 = X \ {0}. Let F be the coherent sheaf given by F = OX /I({0}), where I({0})
is the sheaf of ideals corresponding to the subvariety {0} ⊂ X. The stalks of F are
easy enough to understand:

Fz =

C if z = 0;

0 otherwise.

[1]Interestingly, though, Green doesn’t explicitly describe the twisting cochain in this example,
but instead just his construction. So in some sense, this example is actually not found in [Gre80],
but should be.
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8.3. Almost strictification

This makes it easy to find local resolutions by OUα -modules: over U1 we have the
resolution

ξ•1 →F
∣∣∣U1 =

(
0→ OX

∣∣∣U1
f 7→z·f
−−−−−−→ OX

∣∣∣U1

)
︸                                ︷︷                                ︸

ξ•1

→F
∣∣∣U1,

and over U2 we have the resolution

ξ•2 →F
∣∣∣U2 =

(
0→ 0→ 0

)
︸         ︷︷         ︸

ξ•2

→F
∣∣∣U2.

So we can define some V , with V •α = ξ•α, and also a0,1
α = dα, where dα is the

differential of ξ•α. Then k = 0 in (8.2.7) is satisfied. Note that we have given
something much stronger than required: rather than a collection of graded vector
bundles, or even a collection of complexes of vector bundles, we have given a col-
lection of complexes of vector bundles with almost trivial homology (i.e. zero in all
degrees except the last).

We know that we need to define a1,0
αα = idξ•α , and so we just need to ask what

aαβ should be. But ξ•2 is the zero complex, and so the only possible map (both to

and from) ξ•2 is the zero map, so we have no choice but to define a1,0
αβ = 0. This is

clearly a chain map, and so k = 1 in (8.2.7), is satisfied.
Since 0,∞ <U12, the map f 7→ z · f gives an isomorphism OX

∣∣∣U12
∼−−→ OX

∣∣∣U12

and so the homology of ξ•1
∣∣∣U12 is zero. This means that the zero map is indeed a

quasi-isomorphism between ξ•1
∣∣∣U12 and ξ•2

∣∣∣U12, but we need to construct explicit

a
2,−1
αβα and a2,−1

βαβ that witness this, as well as the other parts of a2,−1, in order to sat-
isfy k = 2 in (8.2.7). We don’t do this here, because it turns out to not be necessary,
but we claim, however, that they do exist, and can be constructed inductively, as
explained in (G.2.15).

8.3 Almost strictification

(8.3.1) The rough idea of a dg-enhancement is as follows: given some triangulated
category T , we say that a pre-triangulated dg-category C is a dg-enhancement of
T if there exists some equivalence H0(C) ∼−−→ T . That is, the triangulated cate-
gory T ‘looks like’ the homotopy category of the dg-category C, and so the dg-
enhancement is like a ‘less strict’ version of the original category.

A main result[1] of [Wei16] is that the category of twisting cochains is a dg-
enhancement of the derived category of Fréchet[2] quasi-coherent sheaves. What

[1]More specifically, [Wei16, Theorem 3.29]. Note, however, that there are some differences of
language, e.g. what we call ‘twisting cochains’ are there called ‘twisted perfect complexes’.

[2]See [Wei16, Appendix 2].
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8. Perfect twisting cochains

exactly is meant by ‘Fréchet quasi-coherent’ is not exactly important for our pur-
poses: what we care about is that the derived category of such things contains the
derived category of coherent sheaves, and so we really can think of holomorphic
twisting resolutions (in particular) as ‘complexes of coherent sheaves that are only
glued up to higher homotopies’.

We spell out more details in (G.4).

(8.3.2) In [Wei16] the definition of a twisting cochain is slightly weaker: aαα is
only required to be quasi-isomorphic to the identity on V •α . Morally, this weaker
condition is ‘better’, not only because the category of twisting cochains then has
mapping cones, but also because it is more ‘in keeping’ with the idea of twist-
ing cochains as weakly-glued objects. In fact, even weaker conditions exist: see
[Wei16, §5.2]. We claim, however, that, for our purposes, this difference can be
ignored.

If we run all the arguments in this section through, but with this weaker con-
dition, we will end up with morphisms f ,g of complexes whose compositions gf
and f g are homotopic to something quasi-isomorphic to the identity, rather than
homotopic to the identity itself. But since locally free sheaves on Stein sets are
projective objects[1], being quasi-isomorphic to the identity implies being homo-
topic to the identity. This is like the fact that the derived category of an abelian
category is the homotopy category of the projective objects (under certain condi-
tions on the abelian category).

(8.3.3) The problem of coherence theorems have been around in higher category
theory since almost the birth of the subject. It is often the case that we have
a bunch of laws about morphisms that hold ‘up to higher morphisms’, and we
want to be able to understand these explicitly. This process of replacing laws
that hold ‘up to higher morphisms’ with laws that hold ‘on the nose’ is called
strictification. A fundamental example is that every bicategory is equivalent to a
(strict) 2-category.

What we would like to say here, that Green described but didn’t really ex-
pound upon, is that holomorphic twisting resolutions can be strictified, but this
turns out to not be the case, as we will explain in (8.3.12).

(8.3.4) We now spell out the details of what a holomorphic twisting resolution[2]

gives you in simplicial degree two, i.e. over some Uαβ , and how we can use this
to (almost) strictify, as mentioned in (8.3.3). We will change notation away from
that used for twisting cochains, to try to make this explanation slightly clearer
than that found in [Gre80, pp. 23–25].

Recalling (8.2.7) and continuing similarly, we have

[1]This is some version of the Serre-Swann theorem.
[2]Not (a priori) an arbitrary twisting cochain, because we will use the fact that a is zero on the

degenerate simplices of the specific form α0 . . .αp with αi = αi+1 for some i.
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(i) (homologically-graded) complexes: (K•, dK ) =
(
V •α , a

0,1
α

)
and (L•, dL) =

(
V •β , a

0,1
β

)
;

(ii) quasi-inverse morphisms f = a1,0
βα : K•→ L• and g = a1,0

αβ : L•→ K•;

(iii) homotopies p1 = a
2,−1
αβα : K• d K•[1] and q1 = a

2,−1
βαβ : L• d L•[1] (where we

write d to mean a map of complexes that doesn’t necessarily commute with
the differentials) such that gf − idK = dKp1 +p1dK and f g − idL = dLq1 +q1dL,
i.e. that witness the above quasi-isomorphism;

(iv) homotopies p2 = a
3,−2
βαβα : K• d L•[2] and q2 = a

3,−2
αβαβ : L• d K•[2] such that

f p1−q1f = dLp2−p2dK and gq1−p1g = dKq2−q2dL (as explained below), i.e.
witnessing the failure of p1 and q1 to commute with f and g;

(v) generally, for n ∈N, we have homotopies

p2n−1 = a2n,−2n+1
αβα...βα : K•d K•[2n− 1]

q2n−1 = a2n,−2n+1
βαβ...αβ : L•d L•[2n− 1]

as well as homotopies

p2n = a2n+1,−2n
βα...βα : K•d L•[2n]

q2n = a2n+1,−2n
αβ...αβ : L•d K•[2n],

but the relations that they satisfy aren’t immediately clear, but we can find
out what they are by evaluating the Maurer-Cartan equation â+ a · a = 0 on
the degenerate simplices αβα . . . and βαβ . . .. For i > 3, we note that δ̂a = 0,
because all terms will be of the form a...αα... or a...ββ..., which are zero, by the
definition of a holomorphic twisting resolution, and so we only have to look
at the a · a term.

For example, on the degenerate simplex βαβα, the Maurer-Cartan equation
(remembering what we have just said about a being zero on certain degener-
ate simplices) tells us that

0 = −aβ · aβαβα + aβα · aαβα − aβαβ · aβα + aβαβα · aα
= −dLp2 + f p1 − q1f + p2dK

so that the homotopy relation satisfied by p2 is

f p1 − q1f = dLp2 − p2dK

which has a (maybe surprising) minus sign in the second term on the right-
hand side.

To see the relation satisfied by p3, we look at what happens on the simplex
αβαβα, and we see that

gp2 + q2f − p1p1 = dKp3 + p3dL.
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8. Perfect twisting cochains

This is maybe not what we would have expected: it says that p3 witnesses a
homotopy between p1p1 and gp2 + q2f .

Generally, for i = 2n− 1 > 3, we will have relations of the form

dKp2n−1 + p2n−1dK =gp2n−2 − p1p2n−3 + q2p2n−4 − p3p2n−5 + . . .

. . .− p2n−3p1 + p2n−2f
(8.3.4.1)

dLq2n−1 + q2n−1dL =f q2n−2 − q1q2n−3 + p2q2n−4 − q3q2n−5 + . . .

. . .− q2n−3q1 + q2n−2g
(8.3.4.2)

and for i = 2n > 4 we will have

dLp2n − p2ndK =f p2n−1 − q1p2n−2 + p2p2n−3 − q3p2n−4 + . . .

. . .+ p2n−2p1 − q2n−1f
(8.3.4.3)

dKq2n − q2ndL =gq2n−1 − p1q2n−2 + q2q2n−3 − p3q2n−4 + . . .

. . .+ q2n−2q1 − p2n−1g.
(8.3.4.4)

Both complexes K• and L• are bounded on both sides, say K j = Lj = 0 for j > N
and j < 0, and we trivially have that f j , gj , pji , and qji are all zero (for all i) for j < 0,
where we write e.g. f j to mean the component of f that has codomain K j . This
will be the first step of our inductive construction.

The idea in [Gre80] is that we can modify the degree-0 and degree-1 terms
in K• and L•, as well as the degree-0 and degree-1 parts of all the maps and
homotopies, in order to make the quasi-isomorphism strict in degree 0. That is,
to define new complexes K̃• and L̃• that are in some sense[1] equivalent to K• and
L•, along with f̃ , g̃, p̃i , and q̃i such that all of the above relations still hold, but
p̃ 0
i and q̃ 0

i are now zero for all i. This means that we have replaced our complexes
by some equivalent complexes, but where the quasi-isomorphism in degree zero
is now a true isomorphism of modules, with higher homotopies all being zero.[2] If
we then shift the new complexes by one degree, then we can inductively repeat
this procedure, until we end up with two complexes that are truly isomorphic in
every degree, but still equivalent to the ones that we started with.

In summary, then, we are going to see how Green turns a holomorphic twisting
resolution into a resolution by vector bundles on the nerve.

We now describe this construction explicitly.

(8.3.5) Although the following calculations may seem unwieldy, the idea is nowhere
near as complex as the notation might suggest. Basically all that we do is force the
two complexes to be isomorphic in degree 0 by adding each one to the other, and

[1]Which we explain in (8.3.11).
[2]This is stronger than just asking for a true isomorphism of modules in degree zero, since it

could be the case that dpi + pid = 0 without necessarily having that pi = 0.
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modifying the morphisms accordingly, and then modifying things in degree 0 so
that everything still commutes. Really we have very little to no choice in how to
define the new maps, once we consider what the codomains, domains, and de-
grees have to be. Then we set all the homotopies in degree 0 to be zero, and adjust
the homotopies in degree 1 to ensure that all the relations are still satisfied.

(8.3.6) [Gre80, pp. 23–25]. As we pointed out in (8.3.4), the two complexes that
we have are both strictly isomorphic in degree j for j < 0, and, further, all homo-
topies pji and q

j
i are zero for j < 0. To give an inductive construction, then, we

assume that this is the case, but do not assume that K j and Lj are zero for j < 0.
This means that, if we can strictify the quasi-isomorphism (and kill all homo-
topies) in degree 0, then we can repeat the procedure indefinitely by just shifting
the complex by one degree, since the same hypotheses will then be satisfied.

So we continue with the notation from (8.3.4), but with the small change that
K• and L• are now complexes from degree N to degree −M. We then define the
following:

• K̃ j = K j , L̃j = Lj , f̃ j = f j , g̃ j = gj , p̃ ji = pji , and q̃ ji = qji (for all i) for all j , 0,1;

• K̃1→ K̃0 = (K1→ K0)⊕ (L0 id−−→ L0) and L̃1→ L̃0 = (L1→ L0)⊕ (K0 id−−→ K0);

• f̃ 0 =
(
f 0 −dLq

0
1

idK −g0

)
, f̃ 1 =

(
f 1 −q0

1
dK −g0

)
, and g̃ 0 =

(
g0 −dKp

0
1

idL −f 0

)
, g̃ 1 =

(
g1 −p0

1
dL −f 0

)
;

• p̃ 0
i = 0 and q̃ 0

i = 0 (for all i);

• p̃1
i =

(
p1
i −q

0
i+1

)
and q̃1

i =
(
q1
i −p

0
i+1

)
(for all i).

That is, the new complexes K̃• and L̃• are unchanged, except in degrees 0 and 1,
where we add an elementary sequence[1], and we only modify the morphisms and
all the homotopies in degrees 0 and 1. We summarise the complexes K̃• and L̃•

and the morphisms f̃ and g̃ in the following diagram:

. . . K2 K1 ⊕L0 K0 ⊕L0 K−1 . . .

. . . L2 L1 ⊕K0 L0 ⊕K0 L−1 . . .

dK

(
dK
0

)

f 2

(
dK 0
0 idL

)
(
f 1 −q0

1
dK −g0

)
(dK 0)

(
f 0 −dLq

0
1

idK −g0

)
dK

f −1

dL
(

dL
0

)
g2

(
dL 0
0 idK

)

(
g1 −p0

1
dL −f 0

)

(dL 0)

(
g0 −dKp

0
1

idL −f 0

)

dL

g−1

There now remain three things to verify:

[1]See (9.1.1).
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8. Perfect twisting cochains

(8.3.7) that f̃ and g̃ are morphisms of complexes;

(8.3.8) that g̃ 0f̃ 0 = idK and f̃ 0g̃ 0 = idL (i.e. we have a strict isomorphism in
degree 0);

(8.3.9) that the homotopy relations corresponding to those satisfied by pi and
qi (given in (8.3.4)) are satisfied by p̃i and q̃i (so that we can repeat this
procedure inductively).

Note that, for all three, since our construction is unchanged if we exchange K with
L, f with g, and p with q throughout, it suffices to give the proofs for just e.g. K , f ,
and p, which saves us from a lot of unnecessary repetition of matrix calculations.

(8.3.7) To check that f̃ is a morphism of complexes we need to check the commu-
tativity of three squares, but the following calculations show that they all com-
mute:

1.
(
f 1 −q0

1
dK −g0

)(
dK
0

)
=

(
f 1dK
dKdK

)
=

(
dLf 2

0

)
=

(
dL
0

)(
f 2

)
2.

(
f 0 −dLq

0
1

idK −g0

)(
dK 0
0 idL

)
=

(
f 0dK −dLq

0
1

dK −g0

)
=

(
dLf 1 −dLq

0
1

dK −g0

)
=

(
dL 0
0 idK

)(
f 1 −q0

1
dK −g0

)

3.
(
f −1

)(
dK 0

)
=

(
f −1dK 0

)
=

(
dLf 0 0

)
=

(
dL 0

)( f 0 −dLq
0
1

idK −g0

)
where we use the fact that f is a morphism of complexes, and so f j−1dK = dLf j .

(8.3.8) Calculating g̃ 0f̃ 0 is routine:

g̃ 0f̃ 0 =
(
g0 −dKp

0
1

idL −f 0

)(
f 0 −dLq

0
1

idK −g0

)
=

(
g0f 0 −dKp

0
1 −g0dLq

0
1 + dKp

0
1g

0

f 0 − f 0 −dLq
0
1 + f 0g0

)
=

(
idK + p−1

1 dK g0(idL − f 0g0 + q−1
1 dL) + (g0f 0 − idK − p−1

1 dK )g0

0 1 + q−1
1 dL

)
=

(
idK g0 − g0f 0g0 + g0f 0g0 − g0

0 idL

)
=

(
idK 0
0 idL

)
where we use the fact that qj1 and pj1 are both zero for j < 0.

(8.3.9) We check the homotopy relations in different ways depending on the (ho-
mological complex) degree. Note that the homotopy relations in (homological
complex) degree j also involve a homotopy in (homological complex) degree (j−1),
e.g. gjf j − idK = dKp

j
1 + pj−1

1 dK .

(i) In degree j < 0, the homotopies are all still zero, and so all the relations are
trivially satisfied.
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(ii) In degree j = 0, the homotopies are now all defined to be zero, and so all the
relations are trivially satisfied.

(iii) In degree j > 2, the homotopies haven’t changed, and so the previous rela-
tions are still satisfied.

(iv) In degree 2, we note that the differential K̃2 → K̃1 is
(

dK
0

)
, and the (1,1)-

entry of p̃1
i is just p1

i , whence p̃1
i dK̃ = p1

i dK , and so the relations are satisfied
exactly as before, since nothing has really changed.

(v) In degree j = 1, we first consider the cases i = 1 and i = 2 before generalising
to a proof for i = 2n− 1 and i = 2n.

(i = 1) We need to show that g̃ 1f̃ 1 −
(

idK 0
0 idL

)
= dK̃ p̃

1
1 + p̃ 0

1 dK̃ , but p̃ 0
1 = 0 by

definition, and dK̃ p̃
1
1 =

(
dK
0

)
(p1

1 −q
0
2 ) =

(
dKp

1
1 −dKq

0
2

0 0

)
. Then

g̃ 1f̃ 1 =
(
g1 −p0

1
dL −f 0

)(
f 1 −q0

1
dK −g0

)
=

(
g1f 1 − p0

1dK −g1q0
1 + p0

1g
0

dLf 1 − f 0dK dLq
0
1 + f 0g0

)
=

(
idK + dKp

1
1 −dKq

0
2 + q−1

2 dL
0 idL + q−1

1 dL

)
=

(
idK + dKp

1
1 −dKq

0
2

0 idL

)
=

(
idK 0
0 idL

)
+ dK̃ p̃

1
1 .

(i = 2) We need to show that f̃ 2p̃ 1
1 − q̃

1
1 f̃

1 = dL̃p̃
1
2 − p̃

0
2 dK̃ , but p̃ 0

2 = 0 by
definition, and dL̃p̃

1
2 = (dLp

1
2 −dLq

0
3 ). Then

f̃ 2p̃ 1
1 − q̃

1
1 f̃

1 =
(
f 2

)(
p1

1 −q0
2

)
−
(
q1

1 −p0
2

)(f 1 −q1
0

dK −g0

)
=

(
f 2p1

1 −f 2q0
2

)
−
(
q1

1f
1 − p0

2dK −q1
1q

1
0 + p0

2g
0
)

=
(
f 2p1

1 − q
1
1f

1 + p0
2dK −f 2q0

2 + q1
1q

1
0 − p

0
2g

0
)

=
(
dLp

1
2 −dLq

0
3 − q

−1
3 dK

)
=

(
dLp

1
2 −dLq

0
3

)
= dL̃p̃

1
2 ,

where we use the fact that f q2 +p2g −q1q1 = dLq3 +q3dK , given by eval-
uating the Maurer-Cartan equation on the degenerate simplex βαβαβ,
as explained in (8.3.4).

(i = 2n− 1 > 3) The left-hand side of (8.3.4.1) will be dK̃ p̃
1
2n−1 + p̃ 0

2n−1dK̃ , but
the latter is zero, by definition. So we are looking at dK̃ p̃

1
2n−1 = (dKp

1
2n−1 −dKq

0
2n ).

We know that the (1,1)-element of this will satisfy (8.3.4.1), by hypoth-
esis, and we can see that the (1,2)-element will satisfy the same relation,
because this is exactly (8.3.4.4).

(i = 2n > 4) This is exactly the same as above: when we replace p2n with
−q2n+1 in Equation (8.3.4.3), we get exactly Equation (8.3.4.2) (but for
q2n+1 instead of q2n−1).
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8. Perfect twisting cochains

(8.3.10) We now want to know what happens in simplicial degree 3, where we
have three complexes, say K•, L•, and M•. First we modify K• and L• to get

K̃• � L̃•. Then we modify K̃• and M• to get ˜̃K• � M̃•, but perform ‘exactly’ (i.e.

up to isomorphism) the same modifications on L̃• (since K̃• � L̃•) to get ˜̃L• �
M̃•. Explicitly, what this will consist of is simply adding the elementary sequence
(L0 ⊕M0 → L0 ⊕M0)[0] to K•, the elementary sequence (K0 ⊕M0 → K0 ⊕M0)[0]
to L•, and the elementary sequence (K0 ⊕L0→ K0 ⊕L0)[0] to M•.

In general, in simplicial degree p over Uα0...αp we will add

(
V 0
α0
⊕ . . .⊕ V̂ 0

αi ⊕ . . .⊕V
0
αp

id⊕...⊕îd⊕...⊕id−−−−−−−−−−−−−→ V 0
α0
⊕ . . .⊕ V̂ 0

αi ⊕ . . .⊕V
0
αp

)
[0]

to V •αi , where the hat denotes omission, just as in the definition of the Čech differ-
ential.

(8.3.11) Adding an elementary sequence to a complex gives a quasi-isomorphism
of complexes: one composition (from K• to itself) is the identity on the nose; the
other composition (from K• ⊕ (M →M)[0] to itself) is homotopic to the identity,
as witnessed by the homotopy that is zero in all degrees except in the degree 0,
where we define it to be (0,−id). That is, the homotopy given by

. . . K2 K1 ⊕M K0 ⊕M K−1 . . .

. . . K2 K1 ⊕M K0 ⊕M K−1 . . .

dK

(
dK
0

)

0

(
dK 0
0 idM

)

0

(dK 0)

(0 −id)

dK

0 0

(8.3.12) A morphism of twisting cochains is a weak equivalence if it is closed, of
degree zero, and its (0,0)-component is a quasi-isomorphism of complexes over
each open set, as defined in [Wei16, Definition 2.2.7].

We have already shown, in (8.3.11), that adding elementary sequences gives
a quasi-isomorphism, and the above construction is of degree zero, but there is a
problem when trying to turn this into a morphism of twisting cochains: namely,
it is not closed because, in particular, it is not functorial. That is, in order for dϕ to
be zero (where we write ϕ to mean this process of turning K• into K̃•) we need, in
degree zero, to have the diagram

K• L•

K̃• L̃•

f

ϕ ϕ

f̃

commute. But if we take ϕ to be the ‘obvious’ map (given by inclusion), this is not
the case. In fact, no matter how we try to define ϕ, there is no way to make this
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8.3. Almost strictification

so. In other words, this construction is not functorial: it looks like strictification
but is somehow not, because it only strictifies locally (i.e. on each Uα0...αp ), and
twisting cochains are stronger than just a disjoint collection of local data.

Surprisingly, and thankfully, however, this is not actually a problem: we use
Green’s construction only to show essential surjectivity of a functor in (10.2.7),
and for this we just need a map defined on objects, which we have. In fact, we will
use Green’s construction to let us forget almost entirely about twisting cochains
and work instead with certain vector bundles on the nerve.
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9Green’s resolution
It’s not easy [understanding] [G]reen[’s resolution].

Kermit the Frog (almost).

(9.0.1) Purpose. This chapter is basically a paraphrasing of Green’s thesis; the ‘novel’
part is Section 9.2, which justifies the definitions of Chapter 7 by showing that Green’s
construction is a specific example of our simplicial framework.

9.1 The resolution

(9.1.1) Definition. Given a ring R and some R-modules N1, . . . ,Ns, we say that a
sequence 0→Mr → . . .→M0→ 0 of R-modules is (N1, . . . ,Ns)-elementary if it is a
(direct) sum of sequences of the form

(0→Ni
id−−→Ni → 0)[n]

for some i ∈ {1, . . . , s} and n ∈Z. Given complexes V •1 , . . . ,V
•
t of R-modules, we say

that a sequence is (V •1 , . . . ,V
•
t )-elementary if it is N -elementary, where

N = {V ji | 1 6 i 6 t,1 6 j 6 s}.

(9.1.2) Green’s simplicial resolution. Let F be a coherent sheaf of OX-modules
on a paracompact complex-analytic manifoldX with locally-finite Stein coverU =
{Uα}α∈I . Let (U ,V •,a) be a holomorphic twisted resolution of F. Denote by F•

the pullback of F to the nerve XU• . Then there exists a resolution[1] E•,? of F• by
vector bundles on the nerve:

0→ E•,n→ . . .→ E•,0→F•

where n = dimX. Further, the E•,j satisfy the following properties:

(i) E0,?
∣∣∣Uα � V ?α ;

(ii) for all coface[2] maps f ip : [p − 1] → [p], the map E•,?f ip :
(
XU• f

i
p

)∗
Ep−1,? →

Ep,? of complexes of sheaves on XUp is injective, and Coker
(
E•,?f ip

)
is an

elementary sequence;[3]

[1]That is, the morphism Ep,? →Fp is a quasi-isomorphism in for every p ∈N.
[2]In fact, in [Gre80, §1.4], properties (ii) and (iii) are stated for arbitrary compositions of coface

(resp. codegeneracy) maps instead of simply for single coface (resp. codegeneracy) maps.
[3]Here the complex is indexed by ? from 0 to n, and E•,?f ip is a map of complexes.
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9.1. The resolution

(iii) for all codegeneracy maps spi : [p+1]→ [p], the map E•,?spi :
(
XU• s

p
i

)∗
Ep+1,? →

Ep,? of complexes of sheaves on XUp is surjective, and Ker
(
E•,?s

p
i

)
is an ele-

mentary sequence.

These follow from the fact that, for all γ 6 β 6 α = (α0 . . .αp), writing Eα to mean
Ep

∣∣∣Uα, we have the following:

(iv) E?α � E
?
β

∣∣∣Uα ⊕L?α,β for some (V ?α0
, . . . ,V ?αp )-elementary sequence L?α,β;

(v) L?α,γ � L
?
β,γ

∣∣∣Uα ⊕L?α,β;

(vi) over each Uα there is the commutative diagram

0 E?β E?α L?α,β 0

0 E?γ ⊕L?β,γ E?γ ⊕L?α,γ L?α,β 0

o o id

(omitting the restriction notation), where the bottom map is induced by the
natural inclusion L?β,γ ↪→ L

?
α,γ coming from L?α,γ � L

?
β,γ ⊕L

?
α,β.

Proof. This is [Gre80, §1.4], although we spell out some of the details (namely the
construction of the sheaves, but without the information of the simplicial maps)
in Section 8.3. Using the nomenclature of (7.7.4), this says that we can resolve
coherent sheaves by Green complexes of vector bundles on the nerve.

(9.1.3) As with holomorphic twisting resolutions (8.2.9), Green’s resolution (9.1.2)
can be generalised to complexes of coherent sheaves: the proof is almost identical,
following along the lines of (8.3.6).

(9.1.4) Green complexes are, in particular, cartesian complexes of locally free
sheaves on the nerve.

Proof. Since taking the direct sum with an elementary sequence gives a quasi-
isomorphism (8.3.11), this follows from properties (ii) and (iii) of (9.1.2). (See
also (7.7.6)).

(9.1.5) Something that doesn’t appear to be mentioned in [Gre80] is that these
elementary sequences L•α,β satisfy a cocycle condition, and so can be written as
elements of degree-zero cohomology of some sheaf. We have no good application
of this fact, but mention it here for the sake of mentioning things.
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9. Green’s resolution

(9.1.6) The key point to make here is that Green’s simplicial resolution is not just
the data of a resolution, but also the properties governing the (co)kernels.This is
important, because it tells us, in particular, that we get admissible simplicial con-
nections on each sheaf in the resolution, which lets us define characteristic classes
using all the results of Chapter 7. We use the coface-injectivity property when
discussing admissibility of connections, but don’t seem to need the codegeneracy-
surjectivity property anywhere. This might be because the simplicial condition
for e.g. simplicial differential forms relies only on (co)face maps, and so we don’t
care so much about (co)degeneracy maps in our formalism, and should really be
talking about ∆- or semi-simplicial-sets.

9.2 Atiyah classes of coherent sheaves

(9.2.1) Lemma. Any simplicial connection generated in degree zero on any one
of the sheaves in Green’s resolution (9.1.2) is admissible.

Proof. This is a direct corollary of (7.7.15) and (9.1.4).

(9.2.2) Definition. Given some coherent sheaf F, we define its standard (resp.
exponential) Atiyah class to be the fibre integral of the standard (resp. exponen-
tial) simplicial Atiyah class of the resolution endowed with simplicial connections
generated in degree zero, as defined in Section 7.5.

(9.2.3) The fact that the class defined in (9.2.2) is independent of the choices of
local connections and holomorphic twisting resolution is shown in [Gre80, The-
orem 2.4], but it seems like the argument could be separated into two disjoint
steps:

1. we could claim that two different choices of twisting resolution give complexes
of OXU• -modules that are quasi-isomorphic;

2. we would then claim that two quasi-isomorphic complexes of OXU• -modules
give identical Chern classes.

As mentioned in (8.3.12), however, we know that Green’s construction is not
functorial, and so it seems like this formalism leads to a dead end. But, once again,
we don’t really care so much, because Green’s resolution lets us pretty much forget
entirely about twisting cochains.

9.3 The example

(9.3.1) Example. We return to the example in [Gre80, p. 41], already discussed
in (8.2.11). Recall that X = P

1(C) is the Riemann sphere C∪ {∞} with the (Stein)
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9.3. The example

cover U1 = X \ {∞} and U2 = X \ {0}, and we let J = I({0}) be the sheaf of ideals
corresponding to the subvariety {0} ⊂ X, so that F = OX /J is a coherent sheaf.

We already found local resolutions of F in (8.2.11) — over U1 we had the
resolution

ξ•1 =
(
0→ OX

∣∣∣U1
f 7→z·f
−−−−−−→ OX

∣∣∣U1

)
→F

∣∣∣U1,

and over U2 we had the resolution

ξ•2 =
(
0→ 0→ 0

)
→F

∣∣∣U2.

If we want to construct a resolution by locally free sheaves on the nerve then
we are going to need a resolution of F

∣∣∣U12 = 0 by locally free sheaves over U12,
such that the simplicial conditions[1] are satisfied. This gives us a problem how-
ever, since we have two different[2] choices for such a complex:

(1)ξ•12 =
(
0→ OX |U12

f 7→z·f
−−−−−−→ OX

∣∣∣U12

)
→F

∣∣∣U12,

(2)ξ•12 =
(
0→ 0→ 0

)
→F

∣∣∣U12.

But we see that adding the elementary sequence

(1)
(2)L

• = (0→ OX
id−−→ OX → 0)

to the latter gives us something isomorphic[3] to the former:

(1)ξ•12 =
(
0 OX

∣∣∣U12 OX

∣∣∣U12

)
(2)ξ•12 ⊕

(1)
(2)L

• =
(
0 OX

∣∣∣U12 OX

∣∣∣U12

)
f 7→z·f

f 7→z·f id

id

and we denote this isomorphism by

A•12 : (1)ξ•12
∼−−→ (2)ξ•12 ⊕

(1)
(2)L

•

i.e. A0
12 = id and A1

12 = (z·).
We don’t actually need this second complex (the codomain of A•12) to construct

the resolution, but we do need it later (in (9.3.4)) in order to be able to pull back
the local connection over U2 to a connection over U12 in a non-trivial manner.

[1]That is, the construction of the maps E•α for all α : [p]→ [q] in the (abstract) simplex category.
[2]Note, though, that these two complexes are quasi-isomorphic, since 0,∞ < U12, and so (z·) is

an isomorphism.
[3]Since 0,∞ <Uαβ , both 1/z and z are well defined and holomorphic.
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9. Green’s resolution

At this point, the construction stabilises: since our cover consists of only two
distinct opens sets, any p-intersection for p > 3 will be exactly some 2-intersection
(either U11, U12, or U22). Thus we have constructed a complex of OXU• -modules
on the nerve of X that give a resolution of F (pulled back to the nerve):

0→ E•,1→ E•,0→F•

where E•,1 and E•,0 are equal, and defined as

E0,i = OX
∣∣∣U1 t 0 over U1 tU2

E1,i = OX
∣∣∣U12 over U12

and the map E•,1→ E•,0 is given by(
(z·)t 0

)
: E0,1→ E0,0 over U1 tU2

(z·) : E1,1→ E1,0 over U12.

(9.3.2) Given an isomorphism f : E ∼−−→ F of locally free sheaves overX, along with
a connection ∇F on F, we have the pullback connection f ∗∇F on E given by

f ∗∇F = (f −1 ⊗ f ∗) ◦∇F ◦ f .

Locally, this takes the trivial connection d on F to d + f −1df on E.
This is different from the pullback connection of (B.2.3), since there we pull

back along some continuous map Y → X of the base spaces, whereas here we ‘pull
back’ along an isomorphism of bundles E ∼−−→ F.

(9.3.3) In general, over each p-intersection Uα0...αp we have (p+ 1) connections on

Eip, given by the pullback of the trivial connection[1] on each Uαi for i ∈ {0, . . . ,p}.

(9.3.4) Example. Continuing the example of (9.3.1), and assuming that we have
a basis of local sections over both U1 and U2, we can look at all the local connec-
tions that we have: the trivial ones, and the pullbacks of the trivial ones by the
isomorphism A•12 constructed above. As throughout Chapter 8, we study things
on Uα0...αp by pulling them back to Uα0

. We summarise the data of all the local
connections in Table 9.1 (which is (at least) 87.5% uninteresting).

Using these local connections, we can form the barycentric connections ∇i• on
E•,i as follows:

∇0
• on E•,0 is given by

∇0
0 = t0d = d

∇0
1 = t0d + t1d = d

[1]For this sentence to make sense, in particular we have to assume that we have a basis of local
sections over each Uα .
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9.3. The example

bundle p p-intersection local connection

Ep,0
0

U1 d
U2 d

1 U12
d (from U1)
d + (A0

1,2)−1dA0
1,2 = d (from U2)

Ep,1
0

U1 d
U2 d

1 U12
d (from U1)
d + (A1

1,2)−1dA1
1,2 = d + dz

z (from U2)

Table 9.1. All the local connections for this example.

∇1
• on E•,1 is given by

∇1
0 = t0d = d

∇1
1 = t0d + t1

(
d + dz

z

)
= d + t1

dz
z .

The only really non-trivial part of the simplicial connections is in (simplicial)
degree 1, over U12, so we calculate the curvatures and see that

κ
(
∇0

1

)
= 0,

κ
(
∇1

1

)
= d

(
t1

dz
z

)
+
(
t1

dz
z

)2

=
dz
z
⊗dt1.

Then we can fibre integrate the curvatures to find the[1] Atiyah classes, recalling
that we integrate the (k−p,p) term over the p-simplex (and that here we are taking
k = 1), and we see that∫

∆1
κ
(
∇0

1

)
= 0,∫

∆1
κ
(
∇1

1

)
=

∫ 1

0

dz
z

dt1 =
dz
z
.

Note that the square of either curvature is zero, and so we only have a non-
trivial first Atiyah class — all higher ones are zero. Using the convention/definition
that the zero-th Atiyah class is 1, we have the total Atiyah classes (that is, Chern
characters), defined as the sums of all the Atiyah classes:

attot
E•,0

= 1,

attot
E•,1

= 1 +
dz
z
.

[1]The first exponential and first standard Atiyah classes agree, by definition.
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9. Green’s resolution

Finally, justified by (7.6.4), we say that, for a resolution

R? = (R•,n→ . . .→ R•,1)→ R•,0,

the total Atiyah class (or Chern character) of R•,0 is given by the alternating sum
of the total Atiyah classes (or Chern characters) of the R•,i . Thus

ch(F) =
[
attot

F•

]
=

[
dz
z

]
.

This agrees with what one might calculate using a short exact sequence (writing
the skyscraper sheaf as a quotient) and the Whitney sum formula, but is stronger,
since Green’s method gives actual representatives of the cohomology class as well.

(Note that we do not have to take the trace of the Atiyah classes here, since we
are working with rank-1 bundles, and so end up with (1×1)-matrices as endomor-
phisms.)
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10A coherent summary

Iċ wȳsce þæt iċ wı̄sra wǣre. (I wish that I were wiser.)

Peter S. Baker, "Introduction to Old English, 7.10 The
subjunctive".

(10.0.1) Purpose. The main result of this chapter is (10.2.9), which reassures us that
we can “do” the theory of characteristic classes by using these ‘vector bundles on the
nerve’. Indeed, as mentioned elsewhere in this thesis, these objects seem to have slipped
past peoples’ attention somewhat, so my hope is that this equivalence of categories
could prove useful to people who work with these sorts of things. Note that there is
some subtlety when it comes to working with coherent analytic sheaves that isn’t a
problem in the algebraic case, as we point out in (10.1.7), and explain in more detail
in Appendix E. It was also never fully explained how the classes constructed in [Gri09]
agree with those in [Gre80], but (10.4.1) tidies up that problem by showing that Green’s
Chern classes satisfy the properties required to ensure uniqueness in the compact case.

10.1 Homotopical categories

(10.1.1) Definition. In this chapter we are interested in relative categories: pairs
(C,W) where C is a category andW (whose morphisms we call weak equivalences)
is a wide subcategory of C. A relative category is said to be a homotopical category
if its weak equivalences satisfy the 2-out-of-6 property: if

W
f
−→ X

g
−→ Y

h−→ Z

is a sequence of composable morphisms such that the compositions gf and hg are
weak equivalences, then f , g, h, and hgf are all weak equivalences too. We often
write a relative (or homotopical) category (C,W) simply as C, omitting the weak
equivalences from our notation.

Using the formalism of [Rez00] along with the results of [BK13], we can think
of a homotopical category (C,W) as presenting the (∞,1)-category LC, which
is the complete Segal space given by taking a Reedy fibrant replacement of the
Rezk/simplicial nerve N (C,W). In particular, [BK13, §1.2 (ii)] tells us that any
homotopically full relative subcategory of a partial model category is again a par-
tial model category, and all of the categories that we study here are such sub-
categories of either the category of complexes of sheaves on X or of the category
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10. A coherent summary

of complexes of sheaves on XU• , both of which[1] are model categories, and thus
partial model categories.

This is about all the technical information concerning our choice of model for
(∞,1)-categories that a reader should need for this chapter; more details are given
in Appendix D.

(10.1.2) If a relative category has weak equivalences defined to be exactly the
morphisms that become isomorphisms under some functor into another (say, abelian)
category, then it is a homotopical category, because isomorphisms satisfy the 2-
out-of-6 property.[2]

(10.1.3) Definition. We begin by formally defining some relative categories (all
of which are actually homotopical categories, by (10.1.2)). All complexes are cochain
complexes, concentrated in non-negative degrees and bounded above; if we don’t
mention what the morphisms are then they are simply morphisms of cochain
complexes (i.e. degree-wise morphisms that commute with the differentials); and
if we don’t mention what the weak equivalences are then they are simply quasi-
isomorphisms of complexes.

• Coh(X) is the category of complexes of sheaves of OX-modules that are quasi-
isomorphic to a complex of coherent sheaves.

• CohU (X) is the category of complexes of sheaves of OX-modules whose re-
striction to any U ∈U is quasi-isomorphic to a complex of coherent sheaves
on U .

• CCoh(X) is the category of complexes of sheaves of OX-modules that have
coherent (internal) cohomology.

• Shcart(XU• ) is the category of cartesian complexes of sheaves on the nerve.
Note that morphisms between two such complexes are maps such that, in
every internal degree (i.e. in every degree of the complex), we have a mor-
phism of sheaves on the nerve (and such that these commute with the dif-
ferentials of the complexes); weak equivalences are given by morphisms of
complexes such that, in each simplicial degree, we have a quasi-isomorphism
of complexes.

• Vectcart(XU• ) is the full subcategory of Shcart(XU• ) consisting of complexes
that are locally (with respect to U) quasi-isomorphic to a (cartesian) complex

[1]The former having, for example, the projective model structure from [Hov01]; the latter having
the model structure coming from its construction as a lax homotopy limit via the formalism of
[Ber12], as described in (F.5.5).

[2]If gf is an isomorphism then f must be a monomorphism, and g an epimorphism; if hg is
an isomorphism then g must be a monomorphism, and h an epimorphism. But then g is both a
monomorphism and an epimorphism, and thus an isomorphism. Then we can use the fact that
isomorphisms satisfy 2-out-of-3, for example.
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10.1. Homotopical categories

of locally free sheaves on the nerve. That is, for F •,? ∈ Shcart(XU• ) to be in
Vectcart(XU• ), there must exist, for all Uα0...αp ∈ U , a complex G?Uα0 ...αp

of lo-

cally free sheaves on Uα0...αp such that

F
p,?
α0...αp ' G

?
Uα0 ...αp

.

Similarly, Cohcart(XU• ) is the full subcategory of Shcart(XU• ) consisting of
complexes that are locally (with respect toU) quasi-isomorphic to a (cartesian)
complex of coherent sheaves on the nerve.

• Green(XU• ) is the full subcategory of Vectcart(XU• ) spanned by objects that
are locally (with respect to U ) quasi-isomorphic to some Green complex.
The fact that this actually is a subcategory is justified by (7.7.6). By defini-
tion, every object of Green(XU• ) is a Green complex.

(10.1.4) Note that all of these categories in (10.1.3) that depend on U are nat-
ural in the choice of cover: taking a refinement V ⊃ U induces a functor e.g.
Green(XU• )→ Green(XV• ). This lets us take homotopy colimits (where

hocolim: [Dop, (∞,1)-Cat]→ (∞,1)-Cat

(with D small) is defined as the (∞,1)-categorical left adjoint to the constant-
diagram functor) over refinements of covers, e.g. hocolimU Green(XU• ).

(10.1.5) Our categories are defined as having ‘objects locally quasi-isomorphic to
a certain class of objects’, and not ‘objects in the class of objects’. For example,
an object F• ∈ CohU (X) is such that, for all U ∈ U , there exists some complex
of coherent sheaves G•U such that G•U ' F•

∣∣∣U . This does not a priori imply the
existence of some global complex of coherent sheaves G• such that G• 'F•. This
subtlety makes the proofs in this section more technical than they morally are.

(10.1.6) Given a full embedding (C,W ′) ↪→ (D,W) of one homotopical category
into another such thatW ′ = C ∩W , there are two (∞,1)-categories defined by C
that, in general, do not agree:

1. LW ′C, given by localising C alongW ′;

2. LDC, given by taking the full sub-(∞,1)-category of D spanned by C.

As mentioned in (10.1.5), we define all our subcategories in the same way: given
some (D,W), we construct some (C,W ′) by taking the full subcategory of D of
objects that are (locally) connected viaW to objects satisfying some specific prop-
erty. This means that, when we write LC, we implicitly mean LDC.
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10. A coherent summary

(10.1.7) In the algebraic setting, there is an equivalence between the category
of complexes of coherent sheaves and the category of complexes of sheaves with
coherent (internal) cohomology. In the analytic case, things are more subtle, and
so we have to take a slightly longer route to prove our desired result. Indeed, to
the best of our knowledge, the question of whether or not Coh(X) and CCoh(X)
are equivalent is still open, except in low dimensions, where it is known to be true
(see [Yu13, §2.2.2]). For more details, see Appendix E.

Note that, given a refinement of our coverV ⊃U , we have full embeddings

Coh(X) ↪→ CohU (X) ↪→ CohV (X) ↪→ CCoh(X)

that preserve and reflect quasi-isomorphisms.

(10.1.8) Definition. We define the category Green∇,0(XU• ) via the Grothendieck
construction applied to the functor F : Green(XU• )→ Set given, on an object E•,? ,
by

F(E•,j ) =
{
generated-in-degree-zero simplicial connections on E•,j

}
,

where (7.7.15) tells us that this set is non-empty. So an object of Green∇,0(XU• )

is a pair (E•,? ,∇?•), where E•,? is an object of Green(XU• ), and ∇j• is a simplicial
connection generated in degree zero (and thus admissible) on E•,j ; the morphisms
of Green∇,0(XU• ) are exactly those of Green(XU• ). In particular, Green∇,0(XU• ) is a
homotopical category with the same weak equivalences as Green(XU• )

(10.1.9) By construction, the forgetful functor

4O : Green∇,0(XU• )→ Green(XU• )

(that forgets about the connections) is fully faithful and essentially surjective, and
thus induces an equivalence of categories. More importantly, though, it also re-
stricts to give an equivalence of the corresponding subcategories of weak equiva-
lences, which will be useful later on.

(10.1.10) In summary, we have the following diagram (of 1-categories), where
we write � to denote a fully-faithful functor, and � to denote an essentially-
surjective one:

Green(XU• ) Vectcart(XU• ) Cohcart(XU• ) CohU (X)

Green∇,0(XU• )

1O 2O 3O

4O
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10.1. Homotopical categories

(10.1.10.1)

where we will define 3O later, and, even then, only at the level of (∞,1)-categories.
Note that 1O and 2O are fully-faithful by definition (as full subcategories), and the
forgetful functor 4O is an equivalence by definition (as explained in (10.1.9)).

Our goal for the rest of this chapter is to prove that, when we localise all the categories
in (10.1.10.1), all the functors become equivalences of (∞,1)-categories.

This is the content of (10.2.9) and (10.2.14).

(10.1.11) We omit the localisation notation from our functors: we will write iO to
mean both the functor between homotopical categories and the induced functor
between their localisations.

(10.1.12) We delay our study of 3O for a little while, and consider first the rest of
(10.1.10.1). Our first goal is to show that this diagram descends to a diagram at
the level of localisations. For this we need to know that all our functors iO really
are functors of relative categories, in that they preserve weak equivalences.

(10.1.13) Note that 1O and 2O are inclusions of full subcategories, and so trivially
preserve weak equivalences; similarly, 4O is constructed in such a way that it
automatically preserves weak equivalences.

In fact, by (10.1.9), 4O actually directly induces an equivalence at the level of
localisations:

4O : LGreen∇,0(XU• ) ∼−−→ LGreen(XU• ).

This is because an equivalence of relative categories that restricts to an equiva-
lence of the wide subcategories of weak equivalences induces an equivalence of
the localisations, as can be shown by using [BK12, Lemma 5.4], as well as the fact
that an equivalence of categories induces an equivalence of their nerves.

As a side note, even though 4O gives an equivalence at the level of locali-
sations, it there no longer looks like a Grothendieck construction: there is no
reason for two weakly equivalent Green complexes (or even, more simply, quasi-
isomorphic complexes of vector bundles) to admit local connections that are in
bijective correspondence with one another. This isn’t something that poses a prob-
lem, but is interesting to note.

(10.1.14) Now we wish to study this mysterious functor 3O. We aim to build an
adjunction of (∞,1)-categories, step by step.
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10. A coherent summary

Writing i : XU• → X to mean the map given by inclusion of each open subset
into X, we have an adjunction[1]

Sh(XU• ) : (i∗ ` i∗) : Sh(X).

Then, recalling that the limit functor can be defined as being the right adjoint
to the constant diagram functor, and writing Sh(XU• ) to mean the category of
complexes of sheaves of OXUX -modules, thought of as a category of XU• -diagrams,
we can compose this adjunction with the above to get a Quillen adjunction

Sh(XU• ) : (lim ◦ i∗ ` cst ◦ i∗) : Sh(X)

where being Quillen follows from the fact that the pullback/pushforward adjunc-
tion and the limit/constant adjunction are both Quillen.

So we are now in the following situation: we have a diagram

Sh(XU• ) Sh(X)

Cohcart(XU• ) CohU (X)

lim◦i∗

cst◦i∗
>

where the adjunction is Quillen. Deriving the functors (and localising the cate-
gories) then gives us the diagram

LSh(XU• ) LSh(X)

LCohcart(XU• ) LCohU (X)

R(lim◦i∗)

L(cst◦i∗)
>

and we wish to know if the adjunction restricts to give an adjunction of the sub-
categories. Following [TV08b, Lemma 2.2.2.13], we write ∫ to mean the total
right derived functor R(lim◦ i∗); we write ι∗ to mean the total left derived functor
L(cst ◦ i∗). So we want to show that

∫ : LCohcart(XU• )→ LCohU (X)

LCohcart(XU• )← LCohU (X) : ι∗

(where we omit the restriction of the functors from our notation).

[1]Note that, to eventually agree with the orientation of our diagram, we write our adjunctions as
(R ` L) instead of as (L a R).
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10.1. Homotopical categories

(10.1.15) Lemma. The image of ι∗ : LCohU (X)→ LSh(XU• ) is contained in LCohcart(XU• ).

Proof. Let F? ∈ LCohU (X). The pullback functor i∗ is exact since it is given by
the topological pullback tensored with the structure sheaf, and the topological
pullback is exact, and tensoring along a disjoint union of open immersions is also
exact. Then, since the constant diagram functor is (trivially) also exact, we see
that ι∗ is just the pullback to the nerve (as with global vector bundles). But, as
mentioned there, the simplicial maps are then simply identity maps, which means
that the resulting object is indeed cartesian; and being coherent is a local property,
so it suffices to check it on each Uα0...αp in XUp , but, over such an open set, ι∗Fj is

simply Fj
∣∣∣Uα0...αp , which is coherent by definition.

(10.1.16) It is a good idea to fully understand the cosimplicial structure of ι∗F •,?

before proceeding, so we spell out all the details here.
Recall that ι∗ = Ri∗ = i∗, where i : XU• → X. We want to describe what (ι∗F •,?)p

is for each p ∈N, as well as how these ‘fit together’ to give a cosimplicial object.
This can be explained by just improving our notation: write ip : XUp → X to mean
the map given by inclusion of each Uα0...αp in XUp into X, so that i is exactly the

data of (ip)p∈N. Then define[1]

(ι∗F
•,?)p = (ip)∗F

p,? =
⊕

(α0...αp)

(ip)∗F
p,?
α0...αp .

Then, given some ϕ : [p]→ [q] in ∆, we want to know how to define

(ip)∗F
p,? (ι∗F •,? )�(ϕ)
−−−−−−−−−−→ (iq)∗F

q,? ,

but, using the pullback/pushforward adjunction, this is the same as asking for a
map

(iq)
∗(ip)∗F

p,? −→ F q,? .

Firstly, we claim, for p < q (dealing with the other case shortly), that there is
a natural map (iq)∗(ip)∗F p,? → (XU• ϕ)∗F p,? ; secondly, we claim that this gives us
the map that we want. To see the first claim, we appeal to the geometric nature
of pushforwards and pullbacks: since the Uα do not necessarily have trivial inter-
section with one another, it is not necessarily true that (i∗i∗F )

∣∣∣U = F
∣∣∣U ; what is

true, however, is that the right-hand side is a direct summand of the left:

(i∗i∗F )
∣∣∣U � F

∣∣∣U ⊕G.
This gives us the first claim (for p < q; we deal with the other case shortly),
since restriction is the same as pulling back along XU• ϕ. For the second claim,

[1]It would probably suffice to simply write ι∗F �,? instead of (ι∗F •,? )�, since the cosimplicial
structure is described by •, but then we should really write (ι•)∗F •,? , which is equally unsightly.
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10. A coherent summary

by definition of what it means to be an element of Cohcart(XU• ), we have maps
(XU• ϕ)∗F p,? → F q,? for every ϕ : [p]→ [q]. Combining all of the above then gives
us the desired maps, and thus the cosimplicial structure.

Finally then, when p > q we can do something similar. Here the map XU• ϕ
is given by inserting degenerate intersections,[1] and so it again isn’t necessar-
ily the case that (iq)∗(ip)∗F p,? = (XU• ϕ)∗F p,? , since we have intersections Uα0...αp
that can be strictly smaller than any Uβ0...βq . But we can still construct some
(iq)∗(ip)∗F p,? → F q,? by precomposing the (XU• ϕ)∗F p,? → F q,? with the projec-
tion maps

(iq)
∗(ip)∗F

p,? = (ip)∗F
p,?

∣∣∣Uβ0...βq =
⊕

(α0...αp)

(ip)∗F
p,?
α0...αp

∣∣∣Uβ0...βq � (ip)∗F q,?β0...βqβq ...βq

where the first ‘equality’ really means that we work locally over each Uβ0...βp , and
we write (β0 . . .βqβq . . .βq) to mean some degenerate embedding of (β0 . . .βq) into
XUp .

(10.1.17) Lemma. The image of ∫ : LCohcart(XU• )→ LSh(X) is contained in LCohU (X).

Proof. Before giving the proof, we give a short summary of how it will proceed,
to save anybody familiar with such arguments the arduous task of following the
notation. In particular, this proof is incredibly similar to that of (10.2.3), which is
really an analytic version of [TV08b, Lemma 2.2.2.13] in that it follows the same
line of argument. We can argue everything locally on some U ∈U ; by definition,
weak equivalences are quasi-isomorphisms; we can use the total complex con-
struction to calculate the homotopy limit in the definition of ∫ ; the fact that our
complexes are cartesian gives us a weak equivalence between this total complex
and the (total complex of the) Čech complex of the simplicial-degree-zero part
of our original complex; the latter is weakly equivalent to the simplicial-degree-
zero part of our original complex (since all covers can be taken to be Stein); a
commuting triangle then tells us that the desired quasi-isomorphism is indeed a
quasi-isomorphism.

Let F •,? ∈ LCohcart(XU• ) and U ∈ U . Then F 0,?
∣∣∣U is a complex of coherent

sheaves on U , and so it would suffice to show that there is a quasi-isomorphism

F 0,?
∣∣∣U ∼−−→ (

∫ F •,?
) ∣∣∣U.

Firstly, note that there exists a good candidate morphism: the cosimplicial
structure of F means that we have a morphism

i∗pF
0,? → F p,?

[1]Obtaining things that look like Uα0...αiαi ...αp .
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10.1. Homotopical categories

of sheaves over XUp for all p ∈N, where ip : XUp → X; by the pull/push adjunction,
this gives us a morphism

F 0,? → (ip)∗F
p,?

and so, by the universal property of the homotopy limit (since R lim = holim), we
get a morphism

F 0,? → holimp(ip)∗F
p,? = ∫ F •,?

which, denoting restriction to U by a subscript U , induces

F
0,?
U →

(
∫ F •,?

)
U
. (10.1.17.1)

Now we wish to show that (10.1.17.1) is indeed a quasi-isomorphism. We can
(justified by (10.1.20)) calculate the homotopy limit with the total construction:
writing F•,? to mean the cosimplicial object ((i•)∗)F •,?), we define

Tot(F)n =
⊕
`∈N

F`,n−`

dTot(F) = dF + (−1)nδ̌

where dF is the differential dF •,? coming from the ?-grading of F •,? , and where

δ̌n =
n+1∑
i=0

(−1)iF•,?(f in+1)

is the alternating sum of coface maps, whose action is given by the cosimplicial
structure of F•,? . To see that this makes sense in terms of degrees, note that

δ̌m : F`,m→ F`+1,m

d`F : F`,m→ F`,m+1.

So (10.1.17.1) becomes

F
0,?
U → Tot(F)?U , (10.1.17.2)

and to show that this is a quasi-isomorphism, it is enough to show that

F
0,?
U (V )→ Tot(F)?U (V ) (10.1.17.3)

is a quasi-isomorphism for all V ∈V , whereV is some cover of U .
The cartesian condition gives us quasi-isomorphisms

F
0,?
β0...βp

∼−−→ F p,?β0...βp
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of complexes of (coherent) sheaves over any Vβ0...βp ∈ V , and so we can refine V
to a cover (which we can always take to be Stein)W = {Wγ } of Vβ0...βp such that we
have quasi-isomorphisms

F
0,?
β0...βp

(Wγ0...γp )
∼−−→ F p,?β0...βp

(Wγ0...γp ) (10.1.17.4)

of complexes of abelian groups.
But, as complexes of sheaves over Vβ0...βp , we trivially have that

F
p,?
β0...βp

= (ip)∗F
p,?
β0...βp

∣∣∣Wβ0...βp

and so the right-hand side of (10.1.17.4) is exactly F•,?U (Vβ0...βp ); further, the left-

hand side is exactly Č•
W

(F 0,?
U ). Together, then, this tells us that (10.1.17.4) gives a

morphism of bicomplexes

Č•
W

(F 0,?
U )→ F•,?U (Vβ0...βp )

which is a quasi-isomorphism on each row. By a classical spectral sequence ar-
gument[1] we can show that such a morphism of bicomplexes induces a quasi-
isomorphism on the respective total complexes:

Tot Č•
W

(F 0,?
U ) ∼−−→ TotF•,?U (Vβ0...βp ).

We can see that the triangle

F
0,?
U (Vβ0...βp ) TotF•,?U (Vβ0...βp )

Tot Č•
W

(F 0,?
U )

commutes, where the horizontal arrow is exactly the morphism (10.1.17.3). But
the vertical arrow is a quasi isomorphism (because taking the Čech complex with
respect to a Stein cover gives a resolution), and we have already shown that the
diagonal arrow is a quasi-isomorphism (by the cartesian condition), and so the
horizontal arrow must also be a quasi-isomorphism.

(10.1.18) In summary then, we have an adjunction

LCohcart(XU• ) : (∫ ` ι∗) : LCohU (X)

(10.1.19) Definition. 3O = ∫ .

[1]Taking the mapping cone, applying the spectral sequences associated to a bicomplex, and us-
ing induction on the number of non-zero rows, combined with the fact that the direct limit functor
for complexes of abelian groups is exact.

104



10.2. Equivalences

(10.1.20) The projective model structure on non-negatively-graded cochain com-
plexes gives us a simplicial model category (by the dual of Dold-Kan), and so, if
we can show that F�,? is Reedy fibrant, then we can apply [Hir03, Theorem 19.8.7],
which tells us that holimF�,? ' Tot(F�,?), for some abstract definition of Tot. The
fact that the totalization (in the sense of Hirschhorn) agrees with the totalization
of a bicomplex (in the usual homological algebra sense), and that the Bousfield-
Kan spectral sequence and the spectral sequence(s) associated to a bicomplex co-
incide, can be found[1] in [Fre17, III.1.1.13].

To show Reedy fibrancy of some cosimplicial object X•, we need to show that
the maps Xn → Mn(X•) are fibrant for all n > 0, where Mn(X•) is the matching
object given by

Mn(X•) = lim
ϕ : [n]�[i]

i,n

Xi .

We can write this down more explicitly as

M0(X•) = {∗}
M1(X•) = X0

M2(X•) = X1 ×X0 X1

and so on.
It is a purely formal consequence of the simplicial identities that any simplicial

set is Reedy cofibrant in the injective model structure; formally dual to this is the
fact that any cosimplicial set is Reedy fibrant in the projective model structure. For
example, the fact that X1 →M1(X•) = X0 is fibrant (i.e. surjective) is due to the
fact that it admits a right inverse (namely either of the two face maps X0 → X1),
thanks to the (co)simplicial identities (namely s00f

0
1 = s00f

0
0 = id[0]).

10.2 Equivalences

(10.2.1) Lemma. The left adjoint ι∗ of the adjunction in (10.1.18) is conservative.

Proof. Let f : F? → G? be a morphism in LCCoh(X) such that ι∗f is an isomor-
phism in LCohcart(XU• ). By definition of the weak equivalences in Cohcart(XU• ),
and the calculation of ι∗ in (10.1.19), over each Uα0...αp ∈ X

U
p , this says that the

map

ι∗f = f
∣∣∣Uα0...αp : F?

∣∣∣Uα0...αp →G?
∣∣∣Uα0...αp

is a quasi-isomorphism. But this is just saying that every restriction of f to
some open subset of X is a quasi-isomorphism, which implies that f is a quasi-
isomorphism, i.e. a weak equivalence in CCoh(X).

[1]We thank Maximilien Péroux for suggesting this reference.
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(10.2.2) Lemma. Let ϕ• : F •→ G• be a morphism[1] in Shcart(XU• ). Then ϕ• is a
weak equivalence if and only if ϕ0 : F 0→ G0 is a weak equivalence.

Proof. If ϕ• is a weak equivalence then, by definition, each ϕp is a weak equiva-
lence, and so it remains only to show ‘if’ part of the claim. Recalling that pulling
back along the inclusion of an open subset is the same as restriction to that same
open subset, the cartesian condition on F • tells us that, for all Uα0...αp ∈U ,

F 0
∣∣∣Uα0...αp

∼−−→ F p
∣∣∣Uα0...αp

as (complexes of) sheaves over Uα0...αp , and similarly for G•. Combining this with
the commutative square that follows from the definition of what it means to be a
morphism of sheaves on the nerve, we get the commutative square

F 0 F p

G0 Gp

∼

ϕ0 ϕp

∼

from which it follows that, if ϕ0 : F 0 → G0 is a weak equivalence, then so too is
ϕp for all p ∈N, and hence also ϕ•.

(10.2.3) Lemma. The counit

ι∗ ◦ ∫ =⇒ idLCohcart(XU• )

of the adjunction in (10.1.18) is a weak equivalence.

Proof. Let F •,? ∈ Cohcart(XU• ). First of all, by (10.2.2), we know that it suffices to
show that the counit is a weak equivalence in simplicial degree zero. But we can
further simplify things: recalling the definition of ∫ , and using the fact that ι∗ is
simply the pullback along i, it suffices to show that the induced morphism(

i∗holimp∈N(ι∗F
•,?)p

) ∣∣∣Uα −→ F 0,?
∣∣∣Uα (10.2.3.1)

in Cohcart(XU• ) is a weak equivalence for all Uα ∈ U . But since the composite
Uα ↪→ U → X is exactly Uα ↪→ X, we see that pulling back along i and then
restricting to Uα is the same as restricting directly to Uα. Finally, just to simplify
notation, we write F•,? to mean the cosimplicial object (ι∗F •,?)•, we write dF to
mean the differential dF •,? coming from the ?-grading of F •,? , and we write a
subscript α to denote restriction to Uα. All together then, (10.2.3.1) becomes(

holimp∈NF
p,?

) ∣∣∣Uα −→ F 0,?
α (10.2.3.2)

But now we can proceed almost exactly as in the proof of (10.1.17): we use
the total construction, and construct the same commuting triangle but with the
horizontal arrow going in the other direction.

[1]Where we omit from our notation the internal grading ? of the complexes, writing e.g. F •

instead of F •,? .
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(10.2.4) The counit of an adjunction being a weak equivalence (or an isomor-
phism, in the 1-categorical case) is equivalent to the right adjoint being fully
faithful.

(10.2.5) Lemma. Let C : (L a R) : D be an adjunction with L conservative and R
fully faithful. Then (L a R) gives an equivalence C 'D.

Proof. It suffices to show that R is essentially surjective, so let c ∈ C, and define
d = L(c). Then LR(d) → d is an equivalence (because R being fully faithful is
equivalent to the counit of the adjunction being an equivalence). But LR(d)→ d is,
by definition, LRL(c)→ L(c), and since this is an equivalence and L is conservative,
we see that RL(c)→ c is an equivalence. That is, R(d) ' c.

(10.2.6) Corollary. The adjunction in (10.1.18) gives an equivalence of (∞,1)-
categories

LCohcart(XU• ) ' LCohU (X)

and thus an equivalence

hocolimU LCohcart(XU• ) ' hocolimU LCohU (X).

(10.2.7) Lemma. The composite functor

hocolimU LGreen(XU• )
3O 2O 1O
−−−−−−−−−→ hocolimU LCohU (X)

is essentially surjective.

Proof. Since 3O is an equivalence (10.2.6), it suffices to show that

2O 1O : hocolimU LGreen(XU• )→ hocolimU LCohcart(XU• )

is essentially surjective. So let F•,? ∈ Cohcart(XU• ).
By definition, for allUα ∈U , there exists some complexG?

α of coherent sheaves
on Uα such that F0,?

α 'G?
α . We know that we can always locally resolve G?

α by lo-
cally free sheaves, and so, by possibly taking a refinement V ⊃ U (and using α,
β, . . . to now label the open sets Vα, Vβ , . . . of the refinement), we can obtain some

(bounded) complex H?
α of free sheaves (of finite rank) on Vα such that F0,?

α 'H?
α .

But this is simply saying that F0,?
α is perfect, and so [OTT85, Proposition 1.2.3]

(or [Wei16, Proposition 3.20]), tells us that, after possibly taking another refine-
ment of our cover, there exists some holomorphic twisting resolution of F0,? . Ap-
plying the construction of Green’s resolution then gives us some E•,? ∼−−→ j∗(F0,?)•,
where E•,? is a complex of locally free sheaves on the Čech nerve of XU0 =

∐
αVα,

and j is the map from the Čech nerve of XU0 to XU0 itself. Note, however, that the
Čech nerve of XU0 is identical to the Čech nerve of X, and so it suffices to prove
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that j∗(F0,?)• 'F•,? as sheaves onXU• , since 1O and 2O are both simply inclusions
of full subcategories.

By (10.2.2), it suffices to show that we have a weak equivalence in simplicial
degree zero, but j∗(F0,?)0 ∼−−→F0,? is simply the identity map.

(10.2.8) Lemma. Let C be a partial model category, and (Dλ)λ∈P be a diagram of
full subcategories of C indexed by some filtered poset[1] P. Assume further that
each Dλ is stable under weak equivalences. Then

hocolimλ∈P LDλ '
⋃
λ∈P

LDλ

where
⋃
λ∈P LDλ is the full sub-(∞,1)-category of LC spanned by the union of the

objects of all of the LDλ.
In particular, the induced map

hocolimλ∈P LDλ→ LC

is fully faithful.

Proof. Since partial model categories present (∞,1)-categories, it suffices to prove
the corresponding claim for hocolimDλ instead of hocolimLDλ. Write Y λ• to
mean the complete Segal space LDλ, and X• to mean the complete Segal space
LC. But since each Dλ is a full subcategory of C stable under weak equivalences,
each Y λn is a union of connected components of Xn, corresponding to the span of
the objects of Dλ. This means that, in particular, for each Dλ ↪→ Dµ, the maps
Y λn ↪→ Y

µ
n are all closed embeddings, and thus cofibrations. Hence

hocolimλY
λ
• � colimλY

λ
• .

Similarly, each Y λn ↪→ Xn is a closed embedding, and thus a cofibration.
We claim that

colimλY
λ
• �

⋃
λ

Y λ•

where
⋃
λY

λ
• is the subspace of X• spanned by the connected components of all

the Y λ• . Note that this is the complete Segal space
⋃
λLDλ, and so proving the

above claim will finish the proof.
By the universal property of the colimit, we have a commutative diagram

(Y λ• )λ∈P

colimλY
λ
•

⋃
λY

λ
•

(fλ)λ∈P
ι

f

[1]The poset assumption is not necessarily necessary
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and we wish to show that f is an isomorphism. Since ι is simply the inclusion of
each Y λ• into the union, it is surjective. Thus, given any y ∈

⋃
λY

λ
• , there exists

some λ such that y ∈ Y λ• , and then, by commutativity, f (fλ(y)) = y, which shows
surjectivity. To show injectivity, let y,z ∈ colimλY

λ
• be such that f (y) = f (z). Since

P is filtered, there exists some λ such that f (y), f (z) ∈ Y λ• . Now f (y) = f fλf (y)
and f (z) = f fλf (z), whence f fλf (y) = f fλf (z). But f is surjective, and so f fλ(y) =
f fλ(z), but f fλ = ιλ is simply the inclusion of Y λ• into the union, whence y = z.

(10.2.9) Theorem. There is an equivalence of (∞,1)-categories

hocolimU LGreen∇,0(XU• ) ' hocolimU LCohU (X).

Proof. Note that, in the following, all the iO are the functors at the level of localisa-
tions. By (10.2.3) and (10.2.4), 3O is fully faithful; since 1O and 2O are inclusions
of full subcategories, they remain fully faithful at the level of localisations, and we
can use (10.2.8) to see that they remain fully faithful after taking homotopy col-
imits; this means that the composite functor 3O 2O 1O is also fully faithful. (10.2.7)
tells us that 3O 2O 1O is essentially surjective. All together then, this tells us that
the composite functor 3O 2O 1O is an equivalence, and since all of the compos-
ite functors are fully faithful, each one must itself also be an equivalence. By
(10.1.13), we know that 4O is an equivalence.

(10.2.10) Lemma. The functor

hocolimU LCohU (X)→ LCCoh(X)

induced by the full embedding CohU (X) ↪→ CCoh(X) is essentially surjective.

Proof. We need to show that, given any K• with coherent cohomology, there ex-
ists some cover U such that, on each Uα ∈ U , there exists some bounded com-
plex of coherent sheaves quasi-isomorphic to K•

∣∣∣ Uα. Following the proof of
[KS90, Proposition 1.7.11], we see that it suffices to show that, for any surjective
morphism u : G→H of analytic sheaves with H coherent, and any point x ∈ X,
there exists a neighbourhood Ux of x, a coherent sheaf F on Ux, and a morphism
t : F→G such that the composite morphism ut : F→H is surjective.

To see this, let x ∈ X. Since H is coherent, Hx is of finite type over the local
ring OX,x, and so can be generated by a finite number of sections s1, . . . , sr . Since
the map Gx→Hx is surjective, we can lift these sections to sections t1, . . . , tr of Gx
defined on some neighbourhood Ux of x. Define the sheaf F on Ux to be the free
sheaf (OUx )

r , and define the morphism t : F→G by the sections t1, . . . , tr . Consider
the cokernel C of ut : F→H, which is coherent, since both F and H are. Since
C is coherent, its support is an analytic set, and thus closed. By construction, the
map (ut)x : F → H is surjective. Since the complement of supp(C) is open, and
not equal to {x}, there exists a neighbourhood Vx of x that does not intersect with
supp(C). Thus ut : F→H is surjective on Vx.
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(10.2.11) Lemma. The functor

hocolimU LCohU (X)→ LCCoh(X)

induced by the full embedding CohU (X) ↪→ CCoh(X) is fully faithful.

Proof. If we identify each LCohU (X) with its ‘weakly-essential’ image in LCCoh(X)
(i.e. the subcategory spanned by objects weakly equivalent to those in the image of
the inclusion), then we can simply apply (10.2.8).

(10.2.12) Definition. Let Vectcart(XU• ) be the subcategory of Vectcart(XU• ) spanned
by complexes that actually are cartesian complexes of locally free sheaves on the
nerve; let Green∇,0(XU• ) be the subcategory of Green∇,0(XU• ) spanned by com-
plexes that actually are Green complexes.

(10.2.13) Lemma. hocolimU LGreen∇,0(XU• ) ' hocolimU LGreen∇,0(XU• ).

Proof. The homotopy colimit over refinements of all covers is equivalent to the
homotopy colimit over some truncation below of refinements over all covers, i.e.
we can always assume that our covers are as fine as we wish when computing
the homotopy colimit. But, by taking a fine enough cover U , every object of
Green∇,0(XU• ) restricted to each Uα is free, and so, as in the proof of (10.2.7),
we can invert quasi-isomorphisms whose target is in Green∇,0(XU• ). This means
that, given some morphism in the localisation LGreen∇,0(XU• ), expressed as a
chain of roofs with the left-legs all quasi-isomorphisms, we can invert the quasi-
isomorphisms and compose the resulting morphisms to obtain a single morphism
in Green∇,0(XU• ) which is equal to that in the localisation with which we started.
This means that LGreen∇,0(XU• ) is equivalent to LGreen∇,0(XU• ), and so their ho-
motopy colimits agree.

(10.2.14) Corollary. There is an equivalence of (∞,1)-categories

hocolimU LGreen∇,0(XU• ) ' LCCoh(X).

Proof. This is a consequence of Sections 10.2.9 to 10.2.11 and (10.2.13).

10.3 General properties

(10.3.1) Lemma. Let L be a holomorphic line bundle, given by transition maps
{gαβ} ∈ Č1(C×). Then

tr
∫
|∆•|

ât◦1L = c1(L),
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where c1(L) denotes the (first) Chern class of the line bundle given by the connect-
ing homomorphism from the Picard group in the long exact sequence associated
to the exponential sheaf sequence

0→ 2πiZ ↪→ OX
exp
−−−→→ O×X → 0

(that is, ‘the’ classical definition, as given in e.g. [Huy05, Definition 2.2.13]).

Proof. We have already calculated, in (4.1.12) and (6.2.2), changing notation from
Mαβ to gαβ , that the left-hand side is equal to g−1

αβdgαβ . That the right-hand side
gives the same result can be found in e.g. the proof of the Proposition in [GH94,
Chapter 1, §1, Chern Classes of Line Bundles, p. 141].

(10.3.2) Lemma. Let f : Y → X be a continuous map of complex-analytic mani-
folds, and let F be a coherent sheaf on X. Then

f ∗
(
tr

∫
|∆•|

ât◦kF

)
= tr

∫
|∆•|

ât◦kf ∗F

for all k ∈N, where f ∗ denotes the derived pullback.

Proof. This is basically the combination of the following facts: the derived pull-
back is exact; the simplicial Atiyah class is defined by taking a resolution; the
derived pullback of a locally free sheaf agrees with the non-derived pullback; the
non-simplicial Atiyah class of the non-derived pullback of a locally free sheaf is
exactly the pullback of the non-simplicial Atiyah class of the locally free sheaf.
We spell out how to join up these facts in slightly more detail below.

Since the derived pullback is exact, we know that, given Green’s resolution
E•,? of F• = (XU• → X)∗F by vector bundles on the nerve, the derived pullback
f ∗E•,? is a resolution for f ∗F•. But the derived pullback on locally free objects
agrees with the non-derived pullback (since we are tensoring with something lo-
cally free), and so f ∗E•,? can be calculated by the non-derived pullback. Now we
can use the fact[1] that, for a single vector bundle, the Atiyah class of the pullback
is the pullback of the Atiyah class; for a single vector bundle on the nerve, the
simplicial Atiyah class is determined entirely by the ωα0αi (which represent the

[1]We are working with vector bundles, which are locally free, and so, as previously mentioned,
the derived pullback is just exactly the non-derived pullback. There is some subtlety however,
since we are using the word ‘pullback’ to mean a few different things here. When we talk about
pulling back the Atiyah class of E, we mean first applying the pullback of sheaves, to get some class
in H1(X,f ∗Ω1

X ⊗ End (f ∗E)) (using the fact that pullbacks commute with End for finite-dimensional
locally free sheaves), and then applying the canonical map f ∗Ω1

X → Ω1
Y (which is what we really

mean when we talk about pulling back forms). The fact that this construction sends atE to atf ∗E
follows from the fact that short exact sequences are distinguished triangles, and so specifying a
morphism between the first and last (non-zero) terms of two SESs extends uniquely to a morphism
of the SESs (in that we get a unique morphism between the middle terms of the two SESs such that
everything commutes).
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non-simplicial Atiyah class). Combining all the above, we see that all the forms
defining the simplicial Atiyah class of the derived pullback of F are exactly the
pullbacks of the forms defining the simplicial Atiyah class of F. In particular,
then, taking the trace and then fibre integrating (both of which commute with the
pullback of forms on X) gives us the required result.

(10.3.3) Lemma. If the total simplicial Atiyah classes are additive on every split
exact sequence of coherent sheaves then they are additive on every short exact
sequence of coherent sheaves.

Proof. Let 0→F
ι−→G

π−→H→ 0 be a short exact sequence of coherent sheaves on
X, and t ∈ C (which can be thought of as t ∈ Γ (C,P1)). Write p : X ×P1 → X to
mean the projection map. Define

N = Ker
(
p∗G(1)⊕ p∗H

π(1)−t·id
−−−−−−−−→ p∗H(1)

)
where (π(1) − t · id) : (g ⊗ y,h) 7→ π(g)⊗ y − h⊗ t. We claim that this gives a short
exact sequence

0→ p∗F(1)→N → p∗H→ 0

of sheaves over X ×P1, where the maps are the ‘obvious’ ones: p∗F(1)→N is the
map ι(1) : p∗F(1)→ p∗G(1) included into p∗G(1)⊕ p∗H (which we prove lands in
N below); and N → p∗H is the projection p∗G(1)⊕ p∗H→ p∗H restricted to N .

To prove surjectivity, let h ∈ Γ (U,p∗H). Then h⊗t ∈ Γ (U,p∗H(1)). Butπ : G→H

is surjective, and thus so too is the induced map π(1) : p∗G(1)→ p∗H(1). Hence
there exists g ⊗y ∈ Γ (U,p∗G(1)) such that π(g ⊗y) = h⊗ t. So (g ⊗y,h) ∈N maps to
h.

To prove injectivity (and that this map is indeed well defined), we use the
fact that tensoring with O(1) is exact, and so, in particular, ι(1) : p∗F(1)→ p∗G(1)
is injective. The inclusion into the direct sum p∗G(1) ⊕ p∗H is injective by the
definition of a direct sum, so all that remains to show is that the image of this
composite map is contained inside N . Let f ⊗ x ∈ Γ (U,p∗F(1)). Then this maps
to (ι(f )⊗ x,0) ∈ p∗G(1)⊕ p∗H, but this is clearly in the kernel of π(1) − t · id since
πι(f ) = 0.

To prove exactness, it suffices to show that Ker(N → p∗F) � p∗F(1). But

Ker(N → p∗F) = {(g ⊗ y,h) ∈N | h = 0}
= {(g ⊗ y,h) ∈ p∗G(1)⊕ p∗H | h = 0 and π(g)⊗ y − h⊗ t = 0}
= {(g ⊗ y,h) ∈ p∗G(1)⊕ p∗H | π(g)⊗ y = 0}
= {(g ⊗ y,h) ∈ p∗G(1)⊕ p∗H | (g ⊗ y) ∈ Im ι(1)}
� p∗F(1).
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Now we claim that the short exact sequence is split for t = 0, and has N � p∗G
for t , 0. Formally, we do this by looking at the pullback of the map X × {t} →
X ×P1, but we can think of this as just ‘picking a value for t’.

For t = 0, by definition,

N = Ker
(
p∗G(1)⊕ p∗H

π(1)−t·id
−−−−−−−−→ p∗H(1)

)
= Ker

(
p∗G(1)⊕ p∗H

π(1)
−−−−→ p∗H(1)

)
� Ker

(
p∗G(1)

π(1)
−−−−→ p∗H(1)

)
⊕ p∗H

� p∗F(1)⊕ p∗H.

For t , 0, define the injective morphism ϕ : p∗G → N of coherent sheaves by
ϕ(g) = (g⊗ t,π(g)). To see that this is also surjective, let (g⊗y,h) ∈N . If y = 0 then
we must have h = 0, and so (g⊗y,h) = (0,0) = ϕ(0⊗0). If y , 0 thenπ(g)⊗y−h⊗t = 0,
with y, t , 0, whence π(g) = y

t h. Then (g ⊗ y,h) = ( ty g ⊗ t,π( ty g)) = ϕ( ty g).
As one final ingredient, note that any coherent sheaf on X pulled back to a

sheaf on X ×P1 is flat over P
1, and so N is flat over P

1, since both F(1) and H

are. Thus, for τt : X × {t} → X ×P1 given by a choice of t ∈C, the derived pullback
Lτ∗tN agrees with the usual pullback τ∗tN .

Now we use the P
1-homotopy invariance of de Rham cohomology, which is the

following statement: the induced map

τ∗t : H•
(
X ×P1,Ω•X×P1

)
→H•

(
X × {t},Ω•X×{t}

)
does not depend on the choice of t. SinceX×{t} is (canonically) homotopic toX, we
can identify (pτt)∗ with the identity on H•(X,Ω•X). Since the SES splits for t = 0, by
our hypothesis, flatness, and the fact that Green’s construction is functorial under
derived pullback, we know that

τ∗0c(N ) = c(Lτ∗0N ) = c(τ∗0N ) = c(τ∗0p
∗F(1)⊕ τ∗0p

∗H)

= c(F)∧ c(H).

But we also know that N � p∗G for t , 0, and so

c(G) = (pτt)
∗c(G) = τ∗t c(N ).

So, finally, the t-invariance of τ∗ tells us that

c(G) = c(F)∧ c(H).

(10.3.4) Lemma. The total simplicial Atiyah classes are additive on every split
exact sequence of coherent sheaves.

Proof. This exactly [Gre80, Lemma 2.6], but the essence of the proof is simple:
twisting cochains behave nicely with respect to direct sums, as do all of the con-
structions giving the simplicial connections generated in degree zero.
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10.4 The compact case

(10.4.1) We have previously said that the trace of the Atiyah class is ‘basically the
same as’ the Chern class, and we can now formalise that in the specific case where
X is compact, using [Gri09, Theorem 6.5]. Since tDR cohomology is ‘nice enough’
(namely, it satisfies conditions (α)–(δ) in [Gri09, §6.2]), it suffices[1] to check the
following things in order to show that the trace of the Atiyah class really is the
same as the Chern class:

(i) The construction agrees with ‘the’ classical one for line bundles. Although [Gre80,
Lemma 2.5] tells us that the construction actually agrees with the classical
one for arbitrary vector bundles, the proof is maybe lacking a bit in explicit
details. It turns out that the case of line bundles is easy enough to do by
hand anyway, hence our inclusion of (10.3.1).

(ii) The construction is functorial under pullbacks. This is (10.3.2).

(iii) The construction gives us the Whitney sum formula for short exact sequences.
We split the proof of this into two steps: firstly, showing in (10.3.3) that
it suffices to prove that we have the Whitney sum formula for split exact
sequences; then showing in (10.3.4) that we do indeed have the Whitney
sum formula for split exact sequences.

(iv) The construction gives us the Grothendieck-Riemann-Roch formula for closed im-
mersions. Although this is given as a requirement in [Gri09, Theorem 6.5],
it is actually not necessary, thanks to e.g. [Gri12, Proposition 3.1], whose
proof relies only on the three properties above, after some classical algebraic
geometry shenanigans.

(10.4.2) Again, when X is compact, [Gre80, Lemma 2.7] gives a direct proof of
the fact that the (p,p)-term of the fibre integral of the trace of these simplicial
Atiyah classes agrees (up to a constant factor) with the Chern classes of Atiyah-
Hirzenbruch.

10.5 The whole story: a summary

(10.5.1) Starting with some complex of coherent sheaves F? ∈ Coh(X), with the
category of complexes of coherent sheaves being defined as in (10.1.3), we take
Green’s resolution, which produces a complex E•,? of vector bundles on the nerve
(of some possible refined cover) resolving i∗F? . Then, also by Green’s resolution,
we get simplicial connections on each of the E•,i , and (7.7.15) tells us that these
are admissible. So, applying the generalised invariant polynomial P• = {tr◦µn}n∈N

[1]As we explain somewhat further in (C.2.3).
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10.5. The whole story: a summary

(where µn is the multiplication map that sends an n-fold tensor product of endo-
morphisms to the endomorphism given by composition (resp. wedge product)) to
the curvatures of each of the simplicial connections, we obtain the simplicial ex-
ponential (resp. standard) Atiyah classes of each E•,i . Using the alternating-sum
convention, this gives us the simplicial exponential (or standard) Atiyah class of
F. Finally, by fibre integration of the trace of these classes, we obtain closed
classes in the Čech-de Rham bicomplex, and thus classes in de Rham (or even
tDR) cohomology.

The fact that this construction is independent of the choice of twisting cochain
(and thus cover) and of local connections is explained in the proof of [Gre80,
Theorem 2.4].

(10.5.2) Of particular importance is (10.2.13), which tells us that the homotopy
colimit (over refinements of covers) of the localisation of the category of Green
complexes (Green∇,0(XU• )) is equivalent to the homotopy colimit of the localisa-
tion of the category of complexes which are locally quasi-isomorphic to Green
complexes (Green∇,0(XU• )). In particular, we only know how to construct admis-
sible simplicial connections for objects of the former, and so it is necessary that
our construction of E•,? in the above is an object of Green∇,0(XU• ).
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ADupont’s fibre integration
(A.0.1) Purpose. As the oft-cited aphorism goes: “the hardest thing in homological
algebra is ensuring that you make an even number of sign errors” — from my experi-
ence, working with fibre integration of simplicial differential forms is exactly the same.
In particular, the choice of convention discussed in (A.1.3) can lead to much confu-
sion. Hopefully, anybody hoping to do any explicit calculations with fibre integration
themselves can use this chapter as a reference for all the mistakes I’ve already made for
them.

A.1 Sign conventions

(A.1.1) We follow the Koszul sign convention for the product of two complexes:

a⊗ b = (−1)|a||b|b⊗ a

(a⊗ b)∧ (x⊗ y) = (−1)|b||x|(a∧ x)⊗ (b∧ y).

(A.1.2) Lemma. The simplicial de Rham complex is isomorphic to the total com-
plex of the de Rham bicomplex of simplicial forms grouped by type, i.e.(

Ω
•,∆
Y•
, dY•×∆•

)
'

(
Tot•Ωi,j

Y•×∆• , dY• + (−1)id∆•
)
.

There is a subtle abuse of notation[1] in the above. What we should really say
is the following: dY• + (−1)id∆• is a differential on

π−1
1 Ω•Y• ⊗(π−1

1 OY•⊗π
−1
2 O∆•) π

−1
2 Ω•∆•

where π1,π2 are the projection maps of Y• ×∆•. This differential then extends to
a differential on

π−1
1 Ω•Y• ⊗(π−1

1 OY•⊗π
−1
2 O∆•) π

−1
2 Ω•∆• ⊗(π−1

1 OY•⊗π
−1
2 O∆•) OY•×∆•

which is exactly dY•×∆• .

(A.1.3) The first trap that we can fall into with simplicial differential forms is the
choice of writing X ×∆ or ∆ ×X. We opted for the former, since it makes things
like currying (see (F.6.3)) seem more natural, and it’s also the convention used in
[Gre80] The convention used in [Dup76] is the opposite, and it seems like this was
definitely the good choice: the map σ : X ×∆→ ∆×X that sends (x, t) to (t,x) only
induces a morphism of complexes if we multiply by (−1)ij , and so when we want
to fibre integrate using our convention (of writing X ×∆) we need to make sure to
multiply by this sign factor every single time.This is not really very fun, but we
have made our bed and so must lie in it.

[1]What a surprise.
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A. Dupont’s fibre integration

(A.1.4) Lemma/Definition. Let M be an oriented manifold with boundary ∂M,
and orientations on each connected component (∂M)α of the boundary (not neces-
sarily the canonically-induced ones). Define

εα =

+1 if (∂M)α has the canonically-induced orientation;

−1 otherwise.

Then, for any (n− 1)-form ω on M, we have that∫
M

dω =
∑
α

εα

∫
(∂M)α

ω.

(A.1.5) Recalling (3.0.2), we write the coordinates of the (topological) p-simplex
as {(t0, . . . , tp) ∈ [0,1]p+1 |

∑
i ti = 1} ⊂ R

p+1. For defining the orientation on the
p-simplex, however, it is easier to use the other standard convention: we have
coordinates {(t1, . . . , tp) ∈ [0,1]p |

∑
i ti 6 1} ⊂ R

p, and can recover the convention
that we use by setting t0 = 1−

∑p
i=1 ti .

We take the ti to all be positively oriented, and pick an orientation on the
p-simplex such that∫

∆p
dt1 ∧ . . .∧dtp > 0.

Orient the i-th face (∂∆p)i ' ∆p−1 using the positive orientation on ∆p−1, i.e. one
that makes

∫
∆p−1 dt1∧ . . .∧dtp−1 positive. Then εi = (−1)i in the notation of (A.1.4).

A.2 Calculations

(A.2.1) ([Gre80, p. 36]). Since the integral of a k-form over an `-dimensional
manifold is only non-zero when k = `, we see that the fibre integral of some sim-
plicial differential r-form ω = {ωi,jp }p∈N,i+j=r is determined entirely by the type-
(r − p,p) parts on the p-simplices:∫

∆•
ω =

∫
∆0
ωr,00 + (−1)(r−1)

∫
∆1
ωr−1,1

1 + . . .+ (−1)(r−p)(p)
∫
∆p
ω
r−p,p
p + . . .+

∫
∆r
ω0,r
r

where the signs come from (A.1.3).

(A.2.2) Theorem. ([Dup76, Theorem 2.3]). Fibre integration gives us a quasi-
isomorphism from the complex of simplicial forms to the total complex of the
Čech complex of the de Rham complex, consisting of the morphisms∫

∆•
: Ωr

XU•
→ Totr Č•(Ω•X).
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A.2. Calculations

Proof. N.B. This proof uses Dupont’s convention of writing ∆×X, and so fibre
integration doesn’t have the signs that it does in (A.2.1). Our goal is to construct
the quasi-inverse to fibre integration, and we proceed step-by-step.[1]

• Elementary forms. Let I = (i0, . . . , ik) be an (k + 1)-tuple of integers, and
define dtI = dti0 ∧ . . .∧dtik . We also define the elementary form βI by

βI =
k∑
a=0

(−1)atiadti0 ∧ . . .∧ d̂tia ∧ . . .∧dtik .

Note that this satisfies the relation dβI = (k + 1)dtI

• Coface maps. Given some p ∈N and some I = (i0, . . . , ik) with i0 < i1 < . . . < ik 6 p,
we have the associated coface map[2] fI,p : [k]→ [p] in the abstract simplex cat-
egory, given by mapping a to ia. This induces a map XU• (fI,p) : XUp → XUk .

• The morphism. We define E : Totr Č•(Ω•X)→Ωr
XU•

on ω ∈ Čk(Ω`
X) by

(Eω)p =


0 if p < k;

k!
∑
|I |=k+1
ik6p

βI ∧XU• (fI,p)∗ω otherwise.

– The image is a simplicial form. Fix some p ∈N and let 0 6 i 6 p. Then
we are interested in the restriction of Eω to {ti = 0} ×X•p (the ith face of
∆p). But, since ti = 0,

βI
∣∣∣ {ti = 0} =

βI if i < I ;

0 if i ∈ I

and so, for p > k,

(Eω)p = k!
∑
|I |=k+1
ik6p
i<I

βI ∧XU• (fI,p)∗ω.

Here we are implicitly using the coordinates {t0, . . . , t̂i , . . . , tp} on ∆p−1,
but if we relabel them as {t0, . . . , tp−1} the we can write

(Eω)p = k!
∑
|J |=k+1
jk6p−1

βJ ∧XU• (fJ ′ ,p)∗ω

[1]Although a proof is given for [Dup76, Theorem 2.3], this is for smooth forms, and so we repro-
duce it (in part) here for forms that are holomorphic on the X component just to reassure ourselves
that things all still work just fine.

[2]In [Dup76] this is denoted by µI , but we use fI,p to reinforce the fact that it depends also on p.
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A. Dupont’s fibre integration

where J ′ is defined by

J ′ = {j | j ∈ J, j < i} ∪ {j + 1 | j ∈ J, j > i}.

But then fJ ′ ,p = f ip ◦ fJ,p−1, where f ip : [p − 1]→ [p] is the ith coface map,
and so

(Eω)p = k!
∑
|J |=k+1
jk6p−1

βJ ∧
(
XU• (fJ,p−1) ◦XU• (f ip )

)∗
ω = XU• (f ip )∗ (Eω)p−1 .

– This is a morphism of complexes. First, consider

d(Eω)p = k!
∑
|I |=k+1
ik6p

[
dβI ∧XU• (fI,p)∗ω+ (−1)kβI ∧XU• (fI,p)∗dω

]
.

The second term in the sum is exactly (−1)k (Edω)p, and the first term
is equal to

(k + 1)!
∑
|I |=k+1
ik6p

dtI ∧XU• (fI,p)∗ω,

using the aforementioned fact that dβI = (k + 1)dtI . Then we look at(
Eδ̌ω

)
p

= (k + 1)!
∑
|J |=k+2
jk6p

βJ ∧XU• (fJ,p)∗δ̌ω

= (k + 1)!
∑
|J |=k+2
jk6p

βJ ∧XU• (fJ,p)∗
k+1∑
i=0

(−1)iXU• (f ik+1)∗ω

= (k + 1)!
∑
|J |=k+2
jk6p

k+1∑
i=0

(−1)iβJ ∧XU• (fJ,p ◦ f ik+1)∗ω.

This map fJ,p ◦f ik+1 sends (0, . . . , k) to (j0, . . . , ĵi , . . . , jk+1), and this gives us
a way to group terms. That is, given L = (`0, . . . , `k) with `0 < . . . < `k 6 p
(and setting `−1 = 0 and `k+1 = p) we can add any `′ ∈ (`i−1, `i) and take
J = L∪ {`′} (reordered), and always get the same image. So we sum all
the corresponding βJ , i.e.

∑
`′<L

(−1)the position of `′ in L · βL∪{`′} =
`1−1∑
`′=0

β`′`0`1...`k+1
−

`2−1∑
`′=`1+1

β`0`′`1...`k+1
+ . . .
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A.2. Calculations

=
∑

`′∈{0,...,p}
`′<L

[
t`′dt`0

∧dt`1
∧ . . .dt`k+1

− t`0
dt`′ ∧dt`1

∧ . . .dt`k+1
+ . . .

]
.

But all terms except the first are zero (since
∑

dt`′ = 0), and the first one
sums to exactly dtL, whence we find exactly the first term of d(Eω)p.

Since the differential on Totr Č•(Ω•X) is given by δ̌+(−1)id, we are done.

The fact that this morphisms really is a quasi-inverse to fibre integration can be
proven in exactly the same way as in [Dup76, Theorem 2.3].
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BDerivations, connections, and
curvature
(B.0.1) Purpose. As somebody with a very weak background in differential geometry,
there was much to learn about the Chern-Weil approach to characteristic classes, the
fundamental of which being the theory of connections and their curvatures. There is
nothing original in this chapter, and the interested reader would be much better off with
a proper reference on the subject, but, having already made notes for myself, it seemed
like I might as well include them here. To understand connections and curvature in the
case where we have a hermitian metric, a classic reference is [GH94, Chapter 0, §5],
or [Huy05, §§4.2, 4.3]; the whole principal-bundle side of the story (Ehresmann con-
nections and covariant derivatives) is explained beautifully in [Son15]; to understand
the links between different notions of connections, take a look at [Gol]. Since this thesis
only really uses connections to get characteristic classes from their curvatures, I don’t
delve too deep into the theory: what is below is really not much more than rather bland
statements of definitions and consequent properties.

(B.0.2) Throughout, unless otherwise stated, let k be a field (almost always as-
sumed to be C) and A a commutative k-algebra (almost always assumed to be
k[x1, . . . ,xn]).

B.1 Kähler differentials and the cotangent bundle

(B.1.1) A derivation on an A-module M is a k-linear map D: A→M such that

D(ab) = D(a)b+ aD(b).

We write Derk(A,M) to mean the collection of all such maps.
As a corollary to this definition, note that D(λ) = 0 for all λ ∈ k.

(B.1.2) The module of Kähler differentials of A over k is the data of an A-module
Ω1
A/k and an A-linear map d: A→Ω1

A/k that are universal, i.e. such that

HomA(Ω1
A/k ,M) �Derk(A,M)

for all A-modules M.

(B.1.3) We can explicitly construct such a module and a map as a free k-module,
generate by formal symbols da, with certain relations imposed:

Ω1
A/k = k

〈
da

∣∣∣dλ, d(s+ t)− (ds+ dt), d(st)− (d(s)t + sd(t))
〉
a∈A,λ∈k
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which, in the case of A = k[x1, . . . ,xn], reduces to

Ω1
k[x1,...,xn]/k =

n⊕
i=1

k[x1, . . . ,xn]〈dxi〉.

(B.1.4) We can define the algebraic de Rham complex (Ω•A/k ,d) by settingΩn
A/k =

∧nΩ1
A/k .

(B.1.5) This definition doesn’t behave very well with the analytic definition (i.e.
the ‘classical’ de Rham complex), as evidenced by the following example. Let X
be some smooth manifold (say, complex analytic), and consider OX(U ) for some
open subset U ⊆ X, which is a C-algebra. Then we can define a sheaf Ω1

OX /C
on X

by

Ω1
OX /C

(U ) =Ω1
OX (U )/C

where the latter is the module of Kähler differentials with d = dde Rham.
But for non-polynomial f ∈ OX(U ) we have a problem: for example, dexp(x)

is not equal to exp(x)dx inΩOX (U )/C. In general, we have to impose a new relation:

df =
n∑
i=1

df
dxi

dxi

for f ∈ OX(U ). This (we claim) gives us a free OX(U )-module generated by the
dxi , and the locally free sheaf Ω1

OX /C
is called the cotangent bundle Ω1

X . Note that
this locally free sheaf is locally isomorphic to the classical cotangent bundle T ∗X,
and the de Rham differential is given exactly by d: OX →Ω1

OX /C
�Ω1

X , where the
second map is the quotient given by enforcing the above relation.

(B.1.6) In the above, we use the fact that if X is smooth then Ω1
X (in the classical

sense) is locally free, and if we choose a chart on any open U ⊆ X then Ω1
X

∣∣∣U (in
the classical sense) is free.

B.2 Connections and curvatures

(B.2.1) Now we really do just assume that k = C, and work in the complex-
analytic case, and so d means the de Rham differential[1] and Ω•X can be taken
to be the classical cotangent bundle.

[1]Although we could really work with any derivation, using the comment at the end of (B.1.5)
and the fact that the Kähler differential d: OX →Ω1

OX /C
is universal.
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B. Derivations, connections, and curvature

(B.2.2) Let (X,OX) be a complex-analytic manifold of dimension n, and E a locally
free sheaf of rank r of OX-modules on X. A linear, or Koszul, connection ∇ on E is
a C-linear map of sheaves of OX-modules

∇ : E→ E ⊗OX Ω
1
X

such that, over any open U ⊆ X,

∇(f s) = f ∇(s) + s⊗df .

This condition is called the Leibniz rule, and generalises to higher degrees (i.e.
for maps ∇̃ : E ⊗Ωr

X → E ⊗Ωr+1
X ) as

∇(s⊗ω) = ∇(s)∧ω+ s⊗dω.

Enforcing this ensures that ∇̃(f s⊗ω) = ∇̃(s⊗ f ω).

(B.2.3) Given a vector bundle E over X, and a continuous map f : Y → X, we
get local frames of f ∗E over any point y ∈ Y by pulling back local frames over
f (y) ∈ X. So although it is not true that any section of a pullback bundle is just the
pullback of a section of the original bundle, we get some linear version of this: any
section of the pullback bundle can be written as a linear combination of elements
of some local frame, and this local frame can be written as the pullback of a local
frame of the original bundle. So, to define the pullback connection f ∗∇ on f ∗E, it
suffices to define how f ∗∇ acts on f ∗s, where s ∈ Γ (U,E) and we assume that E is
trivial (since we can always work locally, and then just apply the Leibniz rule).

(B.2.4) If we have two connections ∇1 and ∇2 on E, then they differ (thanks to the
Leibniz rule) by an OX-linear morphism:

∇1(f s)−∇2(f s) = f
(
∇1(s)−∇2(s)

)
.

This means that, given one connection ∇, we can recover all others by simply
adding OX-linear morphisms E → E ⊗Ω1

X . (This can be formalised using the
notion of affine torsors.)

(B.2.5) If V andW are vector spaces withW free and of finite rank then Hom(V ,V⊗
W ) �Hom(V ,V )⊗W . Thus

HomOX (E,E ⊗Ω1
X) = Γ

(
X,Hom (E,E ⊗Ω1

X)
)
� Γ

(
X,Hom (E,E)⊗Ω1

X

)
(?)

which we call the collection of differential endomorphism-valued 1-forms; an object
of this looks locally like an (r × r)-matrix of 1-forms.

If U is now such that E
∣∣∣U is trivial (i.e. such that E

∣∣∣U � OrX), then Ω1
X

∣∣∣U �
OnX , and we have a natural connection, called the trivial connection, on E given
exactly by the differential d: E→Ω1

X . What do we mean by this? Well, let E
∣∣∣U �

OX〈s1, . . . , sr〉, so that s ∈ Γ (U,E) can be written as
∑r
i=1 fisi for some fi ∈ OX . Then

define ∇d(s) =
∑r
i=1 si ⊗dfi .

This means that, locally, any connection ∇ can be written as ∇d +ω, where
ω ∈Hom (E,E)⊗Ω1

X , by (B.2.4) and (?).

124



B.3. Frobenius integrability and local systems

(B.2.6) By definition, a connection ∇ is not OX-linear, because

∇(f s) = f ∇(s) + s⊗df , f ∇(s)

(but it is C-linear). By enforcing the Leibniz rule, as described in (B.2.2), ∇ induces
a map E⊗Ω1

X → E⊗Ω2
X , which we also (confusingly, but unambiguously) call ∇.

Applying ∇ twice then gives us a map E→ E ⊗Ω2
X , which we denote by κ (∇) and

call the curvature of ∇, and this map is OX-linear (i.e. κ (∇) (f s) = f κ (∇) (s)).
Since any connection can locally be written as ∇d +ω, the curvature can also

locally be written as dω+ω ·ω, where the product · is taken to mean ‘matrix mul-
tiplication, where we multiply the elements using the wedge product of forms’.

(B.2.7) A connection is said to be flat if its curvature is zero; a bundle is said to
be flat if it admits a flat connection; a section s of a bundle is said to be flat for a
given connection ∇ if ∇(s) = 0.

We motivate these definitions in the next section.

B.3 Frobenius integrability and local systems

(B.3.1) Consider a linear differential system: the problem of trying to find (smooth)
functions f1(x1, . . . ,xn), . . . , fr(x1, . . . ,xn) such that

df
dxj

=
r∑
i=1

µi,jfi

for given functions µi,y , where we write f = (f1, . . . , fr ). To turn this into language
similar to that used so far in this chapter, we can think of f as a section of the
trivial rank-r bundle on an n-manifold with local coordinates x1, . . . ,xn.

As an example, with n = r = 2, consider the linear differential system given by

df1
dx1

= af1 + bf2 ,
df2
dx1

= pf1 + qf2 ,

df1
dx2

= cf1 + df2 ,
df2
dx2

= rf1 + sf2 .

Using that dfi = dfi
dx1

dx1 + dfi
dx2

dx2 we can rewrite this as

d
(
f1
f2

)
=

(
adx1 + cdx2 bdx1 + ddx2
pdx1 + rdx2 qdx1 + sdx2

)(
f1
f2

)
which is exactly (d +ω)f = 0, with −ω being the (2 × 2)-matrix of 1-forms on the
right-hand side.

So, if we have some initial-value condition f (x0) = v, then solving our system
is exactly the same as finding a section s of the trivial rank-r bundle with fixed
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B. Derivations, connections, and curvature

value at a given point (i.e. s(x0) = v ∈ Ex0
, where Ex0

is the fibre of E above the
point x0 ∈ X) that is flat for the connection ∇ = d +ω.

Further, if ∇(s) = 0 then κ (∇) (s) = 0, whence κ (∇) (s)(x0) = κ (∇) (v) = 0, and so
the curvature measures the obstruction to solving our system: we can only solve
for initial conditions v ∈ Ex0

such that v ∈ Kerκ (∇). So being able to solve for all
initial conditions is equivalent to the curvature being zero at x0.

(B.3.2) Frobenius integrability theorem. Let ∇ be a flat connection on E, x0 ∈ X,
and v ∈ Ex0

. Then there exists a local section s ∈ Γ (U,E) such that s(x0) = v and
∇(s) = 0.

(B.3.3) What we say is really a theorem of analytic geometry, and not algebraic ge-
ometry: we are taking X to have the usual Cn-induced topology (not Zariski) and
OX to be the collection of holomorphic forms (not regular algebraic functions).
For example, flat sections of ∇ = d − 1/z on C \ {0} are logarithms, which exist
locally as holomorphic functions, but are not rational.

(B.3.4) Using the Frobenius integrability theorem, we have the following general
method of solving linear differential systems (or, equivalently, studying flat con-
nections on a rank-r bundle):

1. take a basis {v1, . . . , vr} of Ex0
;

2. extend these elements to flat sections {s1, . . . , sr};

3. trivialise your bundle using these flat sections;

and then, in this basis, we have that ∇ is exactly d (i.e. ω = 0), since

∇(f si) = f ∇(si) + si ⊗df = si ⊗df .

In other words, locally, flat connections on a rank-r bundle are canonically
modelled by the trivial connection on the trivial rank-r bundle.

(B.3.5) Now assume that E is a flat bundle of rank r. Then we can look at the sheaf
of flat sections (which is a sheaf because it is the kernel of a sheaf morphism). Since,
locally, this sheaf is given by solving df = 0, f = (f1, . . . , fr ) is locally constant. That
is, the sheaf of flat sections is a locally-constant sheaf (which is sometimes referred
to as a local system).

Conversely, let L be a local system. Then, since the differential d is C-linear,
the induced map

d: L⊗
CX
OX → L⊗

CX
Ω1
X � L⊗CX OX ⊗OX Ω

1
X

(where we write CX to mean the constant sheaf on X of value C) lets us realise
L⊗

CX
OX as a flat bundle with connection ∇ = d.
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B.3. Frobenius integrability and local systems

We claim that this correspondence between flat bundles and local systems in-
duces an equivalence of categories.[1] This is interesting, because flat bundles are
‘analytic objects’, but local systems are purely topological.[2][3] In one dimension,
this is demonstrated by the fact that line bundles are in bijection with H1(X,OX),
whereas flat line bundles are in bijection with H1(X, (C \ {0})X), which depends
only on the topological structure of X.

[1]This is a special case of the Riemann-Hilbert correspondence
[2]In fact, local systems are parametrised by representations of the fundamental group in C

r , or
(under nice conditions on X) functors from the fundamental groupoid of X into the category of sets
(when we are interested in sheaves of sets).

[3]As an example, the orientation sheaf on a manifold is a local system.
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CCharacteristic classes
(C.0.1) Purpose. Basically, I can never remember the which polynomials are which
in the fundamental theorem of symmetric polynomials, and I always got confused with
which relations held between the Chern classes, exponential Chern classes, Chern char-
acters, etc. This appendix is mostly just a collection of notational conventions, but also
serves as a brief introduction to the multiple possible definitions of Chern classes.

(C.0.2) Conventions. Throughout, unless otherwise stated, we work with a rank-r
(holomorphic) vector bundle on a complex-analytic manifold X of dimension n.

C.1 Background

(C.1.1) The main idea. Characteristic classes are invariants of principal bundles
that tell us how close the bundle is to being trivial, in that they ‘measure’ the dif-
ference between the local structure of the bundle and the global (product) struc-
ture.

There are different types of characteristic classes depending on the setting
in question, and the coefficients of cohomology that we wish to study: a real
(oriented) vector bundle E � X has Pontryagin classes pk(E) ∈ H4k(X;Z), Stiefel-
Whitney classes wk(E) ∈ Hk(X;Z/2Z), and an Euler class e(E) ∈ Hr(E)(X;Z). If
we have instead a complex vector bundle, then we can study its Chern classes
ck ∈H2k(X;C).

Characteristic classes tend to satisfy some variation of the following axioms,
where we write γ to mean ‘some sort of characteristic class’.

1. Rank vanishing. For sufficiently large k (usually either greater than either
r(E) or dimX), the classes are zero.

2. Naturality/functoriality. For any continuous f : Y → X, the classes respect
pullbacks along f , in that f ∗(γ(E)) = γ(f ∗(E)).

3. Whitney sum/product formula. The class of a direct sum of bundles is the cup
product of the classes of each summand: γ(E ⊕F) = γ(E)^γ(F).

4. Normalisation. The class of a bundle of rank 1 is forced to be something
‘simple’, such as 1 + e(E

R
).

We are often interested in stable characteristic classes, which are those that
are invariant under direct summing with a trivial bundle.[1] All of the aforemen-
tioned classes are stable except for the Euler class.

[1]In a more abstract sense, stability refers to some sort of invariance under the inclusion
BG(n) ↪→ BG(n+ 1).
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C.2. Defining Chern classes

Characteristic classes can often be understood as generalisations of other clas-
sical constructions. For example, the Euler class of the tangent bundle of a smooth
manifold recovers exactly the Euler characteristic.

Note that we haven’t actually said how to define any of these characteristic
classes yet. In general, there are multiple equivalent ways. We discuss the various
constructions of Chern classes in (C.2).

(C.1.2) Topology vs. geometry. As with many objects, there are definitions of
characteristic classes in both algebraic topology and algebraic geometry. For Chern
classes (the specific type of characteristic classes that we study in this thesis), the
topological notion gives classes that live in cohomology, be it Deligne, de Rham,
Hodge, singular, or whatever really; the geometric notion, however, gives classes
that live in the Chow ring.

Since we are working in the analytic case, and not the algebraic one, it is
the topological approach that interests us the most: we want cohomology-valued
classes.

(C.1.3) References. For the complex-analytic constructions of Chern classes, see
[Huy05, §4.4] or [Voi08, §11.2]; for the general topological construction of char-
acteristic classes, see [MS74] or [Hat17, Chapter 3].

C.2 Defining Chern classes

(C.2.1) Chern-Weil. If we have some connection form[1] ω on our bundle E, then
we can define Chern classes in terms of the curvature Ω of the connection: the
classes ck(E) ∈H2k

dR(X;C) are defined by demanding that they satisfy the equation

det
(
itΩ
2π

+ 1
)

=
r∑
k=0

ck(E)tk (*)

where 1 is the identity matrix, and t a formal variable. By using the identity

tr(ln(A)) = ln(det(A))

and the Maclaurin expansion for ln(1 +A), we can expand the left-hand side of (*)
in order to get explicit definitions for the Chern classes:

r∑
k=0

ck(E)tk = 1+i
tr(Ω)

2π
t+

tr
(
Ω2

)
− tr(Ω)2

8π2 t2+i
−2tr

(
Ω3

)
+ 3tr

(
Ω2

)
tr(Ω)− tr(Ω)3

48π3 t3+. . .

[1]See Appendix B.
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C. Characteristic classes

(C.2.2) Classifying spaces. Thinking of vector bundles as their associated GLr-
principal bundles, we can define characteristic classes by using the construction
of the universal bundle (and, in particular, Chern classes arise in this way by
thinking of a holomorphic vector bundle as aGLr(C)-principal bundle). On an ab-
stract level, characteristic classes in this sense can be thought of as natural trans-
formations from the functor BundG : Topop→ Set to the functorH• : Topop→ Set,
where the former sends a topological space X to the set of isomorphism classes of
G-principal bundles on X, and the latter is some sort of cohomology theory (com-
posed with the forgetful functor into Set, so as to forget any algebraic structure).
Writing down what this means, we see that a characteristic class γ consists of,
for each G-principal bundle P on X, an element γ(P ) ∈ H•(X), and the naturality
condition of a natural transformation then tells us that γ(f ∗P ) = f ∗(γ(P )) for any
continuous f : X→ Y .

Apologising in advance for the jargon, here is how we can define characteristic
classes using universal bundles. Write BG to mean the geometric realisation of
the classifying groupoid (or delooping) of G, H = Top, and let A be an arbitrary
abelian group. Then any G-principal bundle P � X is classified by some map
κP : X→ BG; any cocycle γ : BG→ BnA gives a cohomology class

[γ] ∈Hn(BG,A) = π0H(BG,BnA);

and so we can pull back any γ ∈ Hk(BG,A) to get [γ(κP )] ∈ Hk(X,A) by simply
precomposing with κ. This means that it suffices to calculate the characteristic
classes of BG in order to calculate the characteristic classes of any G-principal
bundle, since we can just then pull them back along the classifying map of the
bundle.

For example, it can be shown (by induction on n, and using the Gysin se-
quence, similar to as in [Hat17, Theorem 3.9]) that

H•(BU (n);Z) = Z[γ1, . . . ,γn]

where γk is of degree 2k. This tells us that the kth characteristic class of any
U (n)-principal bundle will live in cohomological degrees 2k, and this agrees with
what we find in any other construction of Chern classes. In general, calculating
the cohomology of classifying spaces of G-principal bundles, for G 6 GLn, can be
done by looking at direct limits of Grassmanians of increasing dimension. The
‘important’ groups G that we study are usually exactly subgroups of GLn, with
G = U (n) recovering Chern classes; G = O(n) recovering Pontryagin and Stiefel-
Whitney classes; and G = SO(n) recovering the Euler class.

(C.2.3) Axiomatic. We can define the ck ∈ H2k(X;Z) by a formal axiomatisation,
followed by some argument showing uniqueness (which we don’t give here). We
give three possible sets of axioms below, where F denotes any other (holomorphic)
rank-s vector bundle on X, and Y denotes any other complex-analytic manifold
of dimension m. For nicer notation, we define the total Chern class c(E) of E as the
sum of all its Chern classes: c(E) =

∑r
k=0 ck(E).
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C.2. Defining Chern classes

• Classical.

1. Unitality. c0(E) = 1;

2. Naturality. ck(f ∗E) = f ∗ck(E) for any continuous map f : Y → X;

3. Whitney sum. ck(E⊕F) =
∑k
i=0 ci(E)^ ck−i(F), or, equivalently, c(E⊕F) =

c(E)^ c(F);

4. Normalisation. The total Chern class of the tautological line bundle
over CPp is 1−H , where H is Poincaré dual to CP

p−1 ⊂CP
p.

• Grothendieck. In [Gro58], Grothendieck showed[1] that the total Chern
class of any complex vector bundle (of finite rank) can be defined in terms
of the first Chern class of a tautological line bundle.[2] This means that the
list of axioms is slightly smaller, and he also generalised the Whitney sum
formula to arbitrary (that is, not necessarily split) short exact sequences.

1. Naturality. ck(f ∗E) = f ∗ck(E) for any continuous map f : Y → X;

2. Additivity. c(E) = c(F) ^ c(F′) for any short exact sequence 0 → F →
E→ F′→ 0;

3. Normalisation. If E is a line bundle then c(E) = 1 + e(E
R

), where e(E
R

) is
the Euler class of the underlying real vector bundle of E.

In special cases (but, importantly, not in the setting of this thesis), we can
use the splitting principle along with the principle of scindage to calculate
Chern classes easily. See, for example, the Birkhoff-Grothendieck theorem.

• Grivaux. In [Gri09, Theorem 6.5], there is another axiomatisation given,
which concerns the Grothendieck-Riemann-Roch theorem:

Let X and Y be smooth quasi-projective manifolds, f : X → Y a proper mor-
phism, and F a coherent algebraic sheaf on X. Then the following identity holds
in the Chow ring of Y :

f∗ (ch(F)td(X)) =
∑
i>0

(−1)ich(Rif∗(F))td(Y )

where td(X) is the Todd class of X, and ch(X) is the Chern character of X.

What interests us in the context of [Gri09] is the analytic version of this,
which, for compact complex-analytic manifolds X and Y , and Chern classes

[1]Using the Leray-Hirsch theorem, which describes, under certain hypotheses, an isomorphism
between the singular cohomology of a fibre bundle and the tensor product of the singular coho-
mologies of its fibre and its base.

[2]This is called the principle of scindage, and tells us that, if we know the Chern classes
1, a,a2, . . . , ak−1 of the projectivisation P(E) of E, then we can define the Chern classes of E by writ-
ing −ak as a linear combination of the 1, a, . . . , ak−1 (which we can do, thanks to Leray-Hirsch), and
taking ci (E) to be the coefficient of ak−i .
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C. Characteristic classes

in the Hodge rings
⊕

i H
i(X,Ωi

X), is shown in [OTT85]. The axiomatisation
is then as follows.

1. Naturality. ck(f ∗E) = f ∗ck(E) for any continuous map f : Y → X;

2. Additivity. c(E) = c(F) ^ c(F′) for any short exact sequence 0 → F →
E→ F′→ 0;

3. Normalisation. If E is a line bundle then c(L) = 1 + c1(L);

4. GRR. The Grothendieck-Riemann-Roch theorem holds for closed im-
mersions.

This axiomatisation is the one that we use in Section 10.4.

C.3 Chern ‘things’

(C.3.1) Symmetric polynomials. Consider polynomials in some formal variables
x1, . . . ,x` over some ring R, along with the canonical action (i.e. permuting the
variables) of the symmetric group S` on such polynomials.

• The symmetric polynomials p(x1, . . . ,x`) are those polynomials which are in-
variant under the S`-action.

• The elementary symmetric polynomials σk(x1, . . . ,x`) are the symmetric poly-
nomials defined to satisfy, for a formal variable t,

∏̀
k=1

(t + xk) =
∑̀
k=1

σk(x1, . . . ,x`)t
`−k ;

σk(x1, . . . ,x`) = 0 for k > `.

They can equivalently be defined by

σk(x1, . . . ,x`) =
∑

16j1<j2<...<jk6`

xj1xj2 . . .xjk for 0 6 k 6 `.

• The power-sum symmetric polynomials τk(x1, . . . ,x`) are defined by

τk(x1, . . . ,x`) =
1
k!

(xk1 + . . .+ xk` ).

• The fundamental theorem of symmetric polynomials says that there exist poly-
nomials Pk and Qk such that

τk(x) = Pk(σ1(x), . . . ,σk(x))

σk(x) =Qk(τ1(x), . . . , τk(x))

where x = (x1, . . . ,x`).
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C.3. Chern ‘things’

(C.3.2) Chern classes and polynomials.

• The Chern classes c0(E) = 1 and c1(E), . . . ,cr(E) are defined by any one of the
constructions in (C.2).

• The total Chern class c(E) is defined to be the sum
∑
k ck(E) of the Chern

classes.

• The Chern polynomial ct(E) =
∑
k ck(E)tk is the formal polynomial corre-

sponding to the total Chern class; its roots are called the Chern roots, and
denoted ai(E).

• The exponential Chern classes ch0(E) = r and ch1(E), . . . ,chn(E) are defined by
the polynomials found in the fundamental theorem of symmetric polyno-
mials evaluated on the Chern classes:

chk(E) = Pk
(
c1(E), . . . ,cr(E)

)
.

• The total exponential Chern class, or Chern character, ch(E) is defined to be
the sum

∑
k chk(E) of the exponential Chern classes.

(C.3.3) Relations.

• ch(E) = r+ c1(E) + 1
2 (c2

1 − 2c2) + 1
6 (c3

1 − 3c1c2 + 3c3) + . . ..

• If E = L1 ⊕ . . .⊕Lr is a direct sum of line bundles, then ai(E) = c1(Li).

• ck(E) = σk
(
a1(E), . . . ,ak(E)

)
=Qk

(
ch1(E), . . . ,chk(E)

)
.

• ch(L) = exp
(
c1(L)

)
for any line bundle L, where the right-hand side is de-

fined to equal
∑∞
i=0(c1(L)i)/i!.

(C.3.4) Atiyah classes. The Atiyah class(es) of E are defined in (4.1.2), and we
discuss how they are equivalent to the Chern classes in (4.1.3) and Section 10.4.

(C.3.5) K-theory. The total Chern class is an additive group morphism from K-
theory into the Q-cohomology[1] of X; the total exponential Chern class is a ring
morphism from K-theory into the Q-cohomology of X. That is,

c(E ⊕F) = c(E)^ c(F)

ch(E ⊕F) = ch(E) + ch(F)

ch(E ⊗F) = ch(E)ch(F)

[1]That is, cohomology with coefficients in Q.
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DRelative categories

(D.0.1) Purpose. There are many models for (∞,1)-categories, but relative cate-
gories work most naturally for what I need in Chapter 10. Rather than place the
technical details there, I’ve put them in this appendix, so that anybody wishing to ig-
nore the∞-details can simply avoid them. I skip over quite a few definitions in (D.2.1),
assuming that the sort of people who care about the proof of Lemma (D.2.3) are the sort
of people who already know far more than I do about such things.

D.1 Relative categories as presentations of
infinity-categories

(D.1.1) Definition. In Chapter 10 we use relative categories (and homotopical cat-
egories) as a way of talking about (∞,1)-categories. As we mention there, a relative
category is a pair (C,W), where C is a category, andW (whose morphisms we call
weak equivalences) is a wide subcategory of C. A relative category is said to be a
homotopical category if its weak equivalences satisfy the 2-out-of-6 property: if

W
f
−→ X

g
−→ Y

h−→ Z

is a sequence of composable morphisms such that the compositions gf and hg are
weak equivalences, then f , g, h, and hgf are all weak equivalences too.

In this appendix, we try to always write (C,W) instead of just C.

(D.1.2) Using the formalism of [Rez00] along with the results of [BK13], we
can think of a homotopical category (C,W) as presenting the (∞,1)-category LC,
which is the complete Segal space given by taking a Reedy fibrant replacement
of the Rezk/simplicial nerve N (C,W). In particular, [BK13, §1.2 (ii)] tells us that
any homotopically full relative subcategory of a partial model category is again a
partial model category, with model categories being a specific example of partial
model categories.

D.2 Bisimplicial sets and model structures

(D.2.1) There is an adjunction

bisSet : (Nξ a Kξ ) : RelCat

between the category of relative categories and the category of bisimplicial sets,
described in [BK12, §5.3]. This induces a model structure on RelCat where, in
particular, the weak equivalences are exactly those morphisms that become weak
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D.2. Bisimplicial sets and model structures

equivalences when we apply Nξ . But [BK12, Lemma 5.4] tells us that it is equiva-
lent to say that a morphism in RelCat is a weak equivalence if and only if its image
under the Rezk nerve N: RelCat→ bisSet is a weak equivalence, where bisSet has
the Rezk complete Segal model structure. We don’t really need many details about
these model structures, except for what we use in the proof of (D.2.3), so we give
the relevant definitions there.

(D.2.2) Morphisms between relative categories are functors that respect the weak
equivalences (that is, they send weak equivalences to weak equivalences). It is not
true, however, if we have some F : (C1,W1) → (C2,W2) such that F : C1 → C2 is
an equivalence of plain categories, that F : LC1→ LC2 is an equivalence of (∞,1)-
categories. Consider, for example, the case when C1 = C2, butW1 is given by just
isomorphisms, andW2 is something strictly larger than this. Then F = idC1

gives
an equivalence C1 ' C2, but LC1 ' C1 and LC2 have no reason to be equivalent, let
alone equivalent via F. What we can sometimes use, however, is Lemma (D.2.3).

(D.2.3) Lemma. Let (C1,W1) and (C2,W2) be relative categories. Assume that
F : (C1,W1)→ (C2,W2) is a functor of relative categories, inducing an equivalence
C1 ' C2, such that the restriction F : W1→W2 is also an equivalence of categories.
Then F induces an equivalence of (∞,1)-categories LC1

∼−−→ LC2.

Proof. Using (D.2.1), we know that we want exactly for

N(F) : N
(
(C1,W1)

)
→N

(
(C2,W2)

)
to be a weak equivalence. Working simplicial level by simplicial level, let’s spell
out what exactly N(F) is.

In degree p = 0, we have the morphism

N(F)0 : (W1) −→ (W2)

which is an equivalence by hypothesis (since W1 'W2, and so their nerves are
also equivalent). In degree p = 1, we have

N(F)1 :
(
•
C1−−→ •,W1

)
−→

(
•
C2−−→ •,W2

)
where (•

Ci−−→ •,Wi) has one ‘direction’ of 1-simplices being morphisms x → y in
Ci , and the other ‘direction’ being commutative squares

x y

x′ y′
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D. Relative categories

where denotes a morphism inWi . Then N(F)1 is essentially surjective because
F is full; it is fully faithful because F induces an equivalenceW1 'W2. In general,
in degree p ∈N, we have

N(F)p :
(
•
C1−−→ •

C1−−→ . . .
C1−−→ •︸                  ︷︷                  ︸

p arrows

,W1

)
−→

(
•
C2−−→ •

C2−−→ . . .
C2−−→ •︸                  ︷︷                  ︸

p arrows

,W2

)
where, on both sides, one ‘direction’ of p-simplices consists of chains of mor-
phisms x0→ . . .→ xp in Ci , and the other ‘direction’ of commutative ‘squares’

x0
0 x0

1 · · · x0
p

x1
0 x1

1 · · · x1
p

...
...

. . .
...

x
p
0 x

p
1 · · · x

p
p .

But, again, the fact that F induces equivalences C1 ' C2 andW1 'W2 tells us that
N(F)p is indeed an equivalence.
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ECoherent sheaves and perfect
complexes
(E.0.1) Purpose. When working with complexes of coherent algebraic sheaves, there
is a well-known equivalences between complexes of actually coherent sheaves, and com-
plexes of sheaves which have coherent internal cohomology. It is not clear, however, that
the same is true in the analytic case, so I thought it would be nice to explain this in some
detail here.

(E.0.2) Definition. Let (X,OX) be a ringed space, and M• a cochain complex
of OX-modules. We say that M• is perfect if it is locally quasi-isomorphic to a
bounded complex of locally free sheaves (i.e. free OX-modules of finite type).
That is, M• is perfect if, for every point x ∈ X, there exists some open neighbour-
hood U of x, and some bounded complex L•U of locally free sheaves on U , such
that M•

∣∣∣U ' L•U .
We write Pf(X) to denote the triangulated category of perfect complexes of

OX-modules, as a full subcategory of the derived category D(Sh(X)) of sheaves of
OX-modules.

(E.0.3) Definition. Let (X,OX) be a ringed space, and F a sheaf of OX-modules
on X. Then F is of finite type if every x ∈ X has an open neighbourhood Ux such
that there exists a surjective morphism

OnX

∣∣∣Ux�F
∣∣∣Ux

for some n ∈N.
We say that F is quasi-coherent if it is locally the cokernel of free modules, i.e.

if there exists some cover U = {Uα} of X such that, for all α, there exist mα ,nα ∈
N∪ {∞} such that

O
mα
X

∣∣∣Uα→ OnαX ∣∣∣Uα→F
∣∣∣Uα→ 0

is exact.
Finally, F is said to be coherent if

1. it is of finite type; and

2. for every open subset U ⊂ X, every n ∈N, and every morphism

ϕ : OnX
∣∣∣U →F

∣∣∣U
of (OX

∣∣∣U )-modules, the kernel kerϕ is of finite type.

Note that coherent sheaves are, in particular, quasi-coherent.
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E. Coherent sheaves and perfect complexes

E.1 Coherent algebraic sheaves

(E.1.1) For an arbitrary ringed space (X,OX), the category QCoh(X) of quasi-
coherent sheaves of OX-modules on X is a full abelian subcategory of the category
Sh(X) of sheaves of OX-modules on X, and its objects are those that correspond
locally to modules over a ring.

If X is further assumed to be Noetherian, then the category Coh(X) of coherent
sheaves of OX-modules on X is a full abelian subcategory of QCoh(X), and its
objects are those that correspond locally to finitely generated modules.

By definition, we see that the full subcategory Pf(X) of D(Sh(X)) is contained
inside Dcoh(Sh(X)), which is the full subcategory of D(Sh(X)) spanned by objects
whose internal (i.e. cochain) cohomology is coherent in each degree.[1]

(E.1.2) Proposition. Let X be a Noetherian scheme. Then the canonical fully
faithful functor

Db(Coh(X)) ↪→D(Sh(X))

identifies Db(Coh(X)) with the full subcategory Dbcoh(Sh(X)) of D(Sh(X)).

Proof. [Ill71b, Corollaire 2.2.2.1].

(E.1.3) Proposition. Let X be a smooth scheme. Then there is a canonical equiv-
alence of triangulated categories

Pf(X) ∼−−→Db(Coh(X)).

Proof. This follows from [Ill71a, Exemples 5.11] combined with (E.1.2).

(E.1.4) Morally, then, when we want to work with coherent algebraic sheaves, if
X is nice enough, then working with perfect complexes, complexes of coherent
sheaves, or complexes of sheaves with coherent cohomology are all equivalent.

(E.1.5) A nice summary of a lot of the fundamental results of [Ill71a; Ill71b]
(SGA 6) concerning perfect complexes can be found in [TT90, §2].

E.2 Coherent analytic sheaves

(E.2.1) For coherent analytic sheaves, the story is more subtle: as far as the author
is aware, the question of whether or not Db(Coh(X)) and Dbcoh(Sh(X)) are equiv-
alent is still open, except in low dimensions, where it is known to be true (see
[Yu13, §2.2.2]). In particular cases (see [TV08a, Théorème 1.1], for example), we

[1]Such objects, if bounded, are exactly the pseudo-coherent objects, as justified by [Ill71a, Corol-
laire 3.5].
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E.2. Coherent analytic sheaves

can sometimes “algebraize” our analytic manifold and then use the nice properties
of coherent algebraic sheaves, but this isn’t always viable.

Finally, if we wish to work with quasi-coherent analytic sheaves, then, follow-
ing [Wei16, Remark 6.4], we need to replace the definition with that of Fréchet
quasi-coherent sheaves (but this does not really concern us here).

(E.2.2) The definition of ‘(complexes of) coherent analytic sheaves’ that we use
in Chapter 10 is such that we have an equivalence with perfect complexes almost
immediately by definition (after potentially refining the cover). This fact is used
in the proof of (10.2.7).

We then show, in (10.2.10) and (10.2.11) that complexes of coherent sheaves
and complexes of sheaves with coherent cohomology are ‘equivalent’, with the
technical detail that we take a homotopy colimit over refinements of covers.

To be precise, we do not prove that Db(Coh(X)) and Dbcoh(Sh(X)) are equiva-
lent, but we prove that the (∞,1)-categorical version of the latter is equivalent to
something that, locally, looks like the former.
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V. Appendices (vague)
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FSimplicial sheafy things

(F.0.1) Purpose. In (4.3.3) I gave some warnings about the definition of sheaves on a
simplicial space, and they all largely stem from the fact that I couldn’t find any reference
for these objects in the literature apart from [Gre80; TT86], where these objects are
called simplicial sheaves — a name which I found slightly misleading. I think that
these objects are interesting in their own right, and so have attempted to formalise what
I can about them, and to introduce them as characters in stories that are already well
known. We also briefly discuss the ‘simplicial gluing condition’ found, for example, in
the definition of simplicial forms.

(F.0.2) Although our notation differs, most of what follows (as well as any missing
proofs) can be found in [Toë02]. In particular, we assume some level of familiarity
with the idea of localisation of categories and the classical categorical approach to
sheaves.

(F.0.3) When we talk about ‘stacks’ we mean as coefficients for cohomology, i.e.
simply ∞-sheaves, without any geometric or algebraic structure. When we talk
about ‘the category of topological spaces’ we always mean ‘some category of sufficiently-
nice topological spaces’.

F.1 Sheaves

(F.1.1) First of all, let’s think about sheaves in a purely categorical way. Given a
topological space X, define

PrSh(X) = [Op(X)op,Set]

to be the category of presheaves on X. Define a set of morphisms

W = {ϕ : A→ B in PrSh(X) | ϕx : Ax→ Bx is a bijection}

(where Ax = lim−−→U3x
A(U ) is the stalk of A at x) and call such morphisms local

isomorphisms. We can then take the (GZ) localisation W −1PrSh(X) and note that
the sheafification functor aSh : PrSh(X)→ Sh(X) factors through W −1PrSh(X). We
denote the right adjoint to aSh by jSh.

(F.1.2) Lemma. The induced functorW −1PrSh(X)→ Sh(X) gives rise to an equiv-
alence of categories. That is, the localisation functor L : PrSh(X)→ W −1PrSh(X)
has a fully-faithful right adjoint whose essential image is exactly the subcategory
of sheaves, realised as W -local objects.
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F.2 Stacks

(F.2.1) We want to define stacks as∞-sheaves somehow, and we do this by taking
a simplicial model of the latter. Let

sPrSh = sPrSh(Top) = [Topop,sSet]

be the category of topological simplicial presheaves. That is, an object A ∈ sPrSh is
the data of a simplicial set A(X) for every space X ∈ Top, along with a morphism
f ∗ : A(Y )→ A(X) for every morphism f : X→ Y in Top, functorial[1] in f .

(F.2.2) There is an equivalence of categories[
Topop, [∆op,Set]

]
'

[
∆op, [Topop,Set]

]
which justifies our definition of simplicial presheaves as presheaves of simplicial
sets, not as simplicial objects in the category of presheaves.

(F.2.3) We again define a set of morphisms to be our local equivalences

W = {ϕ : A→ B in sPrSh | ϕx : Ax
∼−→ Bx for every X ∈ Top and x ∈ X}

where we recall that a morphism of simplicial sets is an equivalence if it induces an
isomorphism on all homotopy groups for all choices of basepoint. We also define
the set of global equivalences

W pr = {ϕ : A→ B in sPrSh | ϕX : A(X)
∼−→ B(X) for every X ∈ Top}.

It follows from the definitions that W pr ⊆W .

(F.2.4) A stack, or ∞-sheaf, is defined to be an object of St = W −1sPrSh, and a
prestack an object of PrSt = (W pr)−1sPrSh (which justifies the choice of notation
W pr). There is a stackification functor aSt : PrSt→ St due to the fact that the (oppo-
site) category of open neighbourhoods of a point is filtered, and a filtered colimit
of equivalences is an equivalence.

(F.2.5) Lemma. The stackification functor aSt : PrSt → St has a right-adjoint jSt
which is fully-faithful, and a local equivalence between two pre-stacks in the im-
age of jSt gives a global equivalence between the two.[2] That is, there is a full
subcategory sPrShdesc of sPrSh consisting of W -local simplicial presheaves such
that St is equivalent to (W pr)−1sPrShdesc. The adjunction morphism A→ jStaSt(A)
in PrSt is the associated stack construction.

[1](g ◦ f )∗ = f ∗ ◦ g∗.
[2]This is the ‘local-to-global’ principle for simplicial presheaves.
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F.3 Sheaves and stacks

(F.3.1) Lemma. There is an adjunction St : (π0 a j0) : Sh where π0 : St→ Sh gives
the sheaf of connected components and j0 : Sh→ St sends a sheaf of sets to the
corresponding presheaf of discrete simplicial sets. Further, j0 is fully faithful and
its essential image[1] consists of 0-truncated stacks.[2] Note also that the compo-
sition j0 ◦ a ◦よ gives us a full embedding of spaces into stacks as representable
stacks.

F.4 1-stacks-in-groupoids and stacks

(F.4.1) A fibred category is a presheaf of groupoids ‘up to isomorphism’: for inclu-
sions i : U ↪→ V and j : V ↪→W of open subsets, the morphism τij : (ji)∗→ i∗j∗ is
only required to be an isomorphism, not necessarily the identity.

We content ourselves in saying that a 1-stack in groupoidsX is a fibred category
X→ Grpd of groupoids that satisfies some extra descent conditions (whatever this
might mean, formally). The morphisms between two 1-stacks in groupoids are
just commutative diagrams of functors, and we say that two such morphisms are
homotopic if there exists a natural isomorphism between them that is compati-
ble with the projection to Grpd. We write 1−St to mean the category of 1-stacks
and Ho(1−St) to mean the homotopy category (relative to the above definition of
homotopies).

(F.4.2) Lemma. We can replace a fibred category of groupoids by an actual presheaf
of groupoids in a functorial way (the so-called strictification of fibred categories).
This is done by the 2-Yoneda lemma: for any 1-stack X we have the presheaf of
groupoids[3] よ(X) given by

よ(X)(X) := HomTop(X,X)

where X is the fibred category represented by X.

(F.4.3) Lemma. Writing BG to mean the classifying simplicial set of a groupoid G,
we have the composition Bよ : 1-St→ sPrSh→ St. This induces a functor on the
level of homotopy categories[4]

Bよ : Ho(1-St)→ St

that is fully faithful and has essential image being exactly the 1-truncated stacks.[5]

[1]That is, the “weakly essential image”, consisting of objects weakly equivalent to those in the
image.

[2]These are the stacks A such that πn(Ax;y) = 0 for all X ∈ Top, x ∈ X, y ∈ Ax, and n > 1.
[3]We are implicitly using the equivalence between Top and Grpd.
[4]We defined St as a localisation along weak equivalences, so taking the homotopy category

changes nothing.
[5]These are the stacks A such that πn(Ax;y) = 0 for all X ∈ Top, x ∈ X, y ∈ Ax, and n > 2.
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(F.4.4) The functors so far can be summarised in the following diagram:

Top

PrSh Sh

PrSt St

Ho(1−St)

よ
aSh

jSh
j0

aSt

jSt

π0

Bよ

F.5 Sheaves on simplicial spaces

(F.5.1) The composition (j0◦aSh◦よ) : Top→ St lets us view any topological space
as a stack. Similarly, any simplicial space X• can be viewed as a stack |X•| in one
of two (equivalent) ways:

1. think of X• ∈ [∆op,Top] as a simplicial presheaf on Top via Yoneda

|X•| = HomTop(−,X•) ∈ sPrSh

and then take the associated stack under localisation sPrSh→W −1sPrSh = St;
or

2. think of X• as a simplicial diagram in St, acting via

X• : [n] 7→ (j0 ◦ aSh ◦よ)Xn

and then take the homotopy colimit |X•| = hocolimX•.

We also have the assignment X 7→ St(X), where St(X) is the ∞-category of
stacks (modelled by simplicial sheaves, as with St) on X. This gives us a stack
of categories on Top. Further, given some stack Y ∈ St, we can define St(Y ) =
holimX→Y St(X) to obtain a stack of categories on all of St. Living inside this
category is Sh(Y ) ↪→ St(Y ), the category of discrete sheaves (i.e. zero-truncated
stacks).

Now we can (finally) talk about the “simplicial sheaves” of [Gre80] (although
we stay in the topological, rather than complex-analytic, setting for the moment).

(F.5.2) A “simplicial sheaf” on a simplicial space Y•, as defined in [Gre80], is a col-
lection of sheaves F p on Yp along with functorial[1] morphisms F •(α) : (Y•α)∗F p→
F q for all α : [p]→ [q] in ∆.

[1]That is, F (β ◦α) = F (β) ◦F (α).
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(F.5.3) We let Y = |XU• | ∈ St and think of Sh(XU• ) and St(XU• ) as cosimplicial
diagrams of categories. By definition, then, we have functors

laxlimSh
(
XU•

)
→ limSh

(
XU•

)
→ holimSh

(
XU•

)
→ Sh(Y )

(where a lax limit is a limit where the cones only commute ‘up to higher mor-
phisms’), and similarly for St. We can think of a “simplicial sheaf” as some sort of
lax limit object of Sh(XU• ), since the cones don’t necessarily commute, but there
does exist a morphism in one direction. That is, they would be true limit objects
if the maps F •(α) were required to be isomorphisms (or even some sort of weak
equivalences), as explained in (F.5.5). This means that we can think of “simplicial
sheaves” as very ‘coarse’ models for discrete sheaves on Y .

(F.5.4) In (4.3.2), we say that a sheaf F • on a simplicial space Y• is strongly carte-
sian if the maps

(Y•α)∗F p
F •α−−−−→ F q

are all isomorphisms, for any α : [p] → [q]; and we say that a complex F •,? of
sheaves on Y• is cartesian if the maps F •,?α are quasi-isomorphisms.

Since the F •α are identity maps whenever F • = (XU• → X)∗F is the pullback
(to the nerve) of a (global) bundle, we can think of the strongly cartesian condition
as being a mild generalisation of this. The (weakly) cartesian condition, for com-
plexes, is then the ‘up to homotopy’ version of this: it tells us that our complex
will glue, up to homotopy, to give global objects. This is exactly one of the prop-
erties guaranteed by Green in his construction of a resolution of coherent sheaves
— see (9.1.4).

Thinking back to (F.5.3), we see that the cartesian condition corresponds to
the sheaf being a true limit object of Sh(XU• ) instead of simply a lax one.

(F.5.5) The construction of sheaves on a simplicial space as lax limit objects (or of
cartesian sheaves as limit objects) can be formalised using [Ber12, Definition 3.1],
setting Fθα,β = (XU• θ)∗ and uθα,β = F •(θ).

(F.5.6) We can move into the world of complex geometry (or, indeed, a bunch of
other worlds) by replacing simplicial sets in all the above with any other model
category (e.g. that of complexes of OX-modules), since there is still some sort
of equivalence between Y and |X•| when Y is a (maybe paracompact) complex
manifold and X• is the nerve of some (Stein, maybe locally-finite) open cover.

(F.5.7) As briefly mentioned in (G.5), we can think of sheaves on simplicial spaces
as cosimplicial diagrams: let F • be some sheaf on XU• , and consider the diagram

∏
α F (Uα)

∏
α,β F

(
Uαβ

) ∏
α,β,γ F

(
Uαβγ

)
. . . .
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If we are in a nice enough setting (here the keywords are those like ‘softness’),
then we can apply L, as defined in (G.5.1), to get a cosimplicial diagram of dg-
categories which is somehow equivalent to the diagram above, but much simpler
to work with.

F.6 The simplicial gluing condition

(F.6.1) For what follows, we don’t really give many references, mostly because we
don’t really explain anything in much detail anyway: this section is really just a
soliloquy on the subject of simplices, full of vague allusions to the truth. All of
the definitions and theorems below can be found, for example, on the nLab, or
your other favourite reference for such things.

(F.6.2) We now think a bit about the condition for a form to be simplicial, as stated
in (4.3.6). As mentioned there, it is a rather natural condition when we consider
how the fat geometric realisation ‖Y•‖ of a simplicial space Y• can be defined as a
quotient:

‖Y•‖ =

∐
p

Yp ×∆
p
Top


/
∼+

where ∼+ is the equivalence relation given by(
(y,f∗t) ∈ Yq ×∆

q
Top

)
∼+

(
(f ∗y, t) ∈ Yp ×∆

p
Top

)
⇐⇒
f : [p]→ [q] is a composition of coface maps.

(Note that it can also be defined as the coend

‖Y•‖ =
∫ [p]∈∆+

Yp ×∆
p
Top

where ∆+ ⊂ ∆ is the subcategory of the simplex category that has only coface (i.e.
strictly increasing) maps).

An important theorem about the fat[1] geometric realisation is that it computes
the homotopy colimit:

‖Y•‖ ' hocolim[p]∈∆Yp.

[1]There is a similar story about the ordinary geometric realisation, which is defined via the same
coend, but over [p] ∈ ∆ instead of [p] ∈ ∆+, but we don’t care too much about it here, because for
this to compute the homotopy colimit, we need to place extra conditions on Y•.
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A very hand-wavy reason why this is true is because the ∆pTop are all contractible,
and thus somehow trivial in the context of topological spaces. This can be for-
malised by the idea of a framing in a model category, but this is something that the
especially-interested reader can find more information about for themselves.

Now let’s look at the algebraic analogue/dual of this story. Take some sim-
plicial space Y• and consider calculating its homology with coefficients in some
field k. This can be expressed as a homotopy limit in the category of complexes of
k-modules:

H?(Y•, k) = holim(Hom?(Y•, k)).

If we wish to remember the algebra structure present, however, then we might
instead wish to compute this homotopy limit in the category of commutative dg-
k-algebras. If so, then we can use the de Rham complex Ω?

∆
p
Top

to help us: the

homotopy limit can be described as a subobject of Hom(Y•, k)⊗k Ω?
∆•Top

. Here, the

de Rham complex of any topological simplex is simply equivalent to k itself, and
so the simplices again play the role of something trivial, and once more we can
formalise this with the idea of framings.

So, the (topological) simplices play an equivalent/dual role in both sides of
the story:

Algebraic Topological

Ω?
∆• ' k[0] ∆• ' {∗}

holimY• ↪→Hom?(Y•, k)⊗Ω?
∆• Y• ×∆•� hocolimY•

In both cases, we have some simplicial-cosimplicial object that takes values in
either commutative dg-k-algebras or topological spaces.

(F.6.3) The tensor-hom adjunction in the category of sets is sometimes referred to
(especially by computer scientists and programmers) as currying. This adjunc-
tion the statement that maps (of sets) A × B → C are in bijections with maps
A→ {maps B→ C}. Given some f : A × B → C, we define the curried function
ga : B → C by ga(b) = f (a,b). With this in mind, a simplicial differential form,
which is form (satisfying certain properties) on X• ×∆•, and thus in particular a
map from X• ×∆• to the cotangent bundle, can be thought of as a map from X• to
a ‘simplicially-valued’ cotangent bundle. There are some subtleties here: in par-
ticular, we forget that forms are really sections, and not just arbitrary maps, but
the vague idea still holds a modicum of merit.
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GTwisting cochains and twisted
complexes
(G.0.1) Purpose. A ‘fun’ exercise is the following: pick a ∈ {twisting, twisted} and b ∈
{cochain,complex}, and look up the definition of (a b) in your favourite book, website,
or other mathematical reference source. Compare your results with the person next to
you, and see by how much they differ.

This appendix hopes to serve as a venue for a ‘family reunion’ — a chance for all
the different definitions that have spawned from one another to meet up and talk about
themselves, as well as seeing how they might still resemble one another. In particular, I
could not find any (even mildly) rigorous explanation as to how the twisted complexes
of [BK91] have anything to do with the twisting cochains of [TT78], and it turns out
that my initial idea of how they might be equivalent was wrong, so the details can be
found in (G.6.4). There are also some proofs (such as (G.2.16)) that seem to be omitted
from the literature[1] that I’ve tried to not skim over here. There is a clear focus on
some specific points of view and not others, but hopefully this chapter can still serve as
an introductory reading guide to the various facets of the subject, at least.

G.1 Historical overview

(G.1.1) Twisting cochains and twisted complexes arise naturally in many differ-
ent settings. They seem to become a very useful tool when studying complex-
analytic manifolds, since they can be used as a substitute for the global resolutions
of coherent sheaves that we have in the algebraic setting. Their history is not just a
story about complex algebraic geometry, but it is this aspect upon which we really
place emphasis in this short exposition.

In particular, we don’t really mention the ‘first’ reference to twisted cochains:
[BJ59]; we also don’t follow what happened to the subject when it branched off
into differential homological algebra (namely [Moo70]), even though this also pre-
dates all of the material that we do cover. For a lovely summary of the subject from
a differential and lie-algebraic viewpoint, we refer the reader to [Sta09]. Our fo-
cus is really split into two parts: firstly (and mainly), the development of twisting
cochains by Toledo and Tong, and O’Brian, in [TT76; TT78; OTT81] using Čech
cohomology and other such explicit methods; secondly (in both order and impor-
tance (to this thesis)), the development of twisted complexes (from [BK91]) and
the application of the language of dg-categories in [BHW15; Wei16; Wei19].

(G.1.2) The purpose of this whole appendix is purely to motivate the definition of
twisting cochains, and so we give a handful of different definitions. Note that the

[1]Often because they are not technically difficult, but still . . .
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definition that we finally use (in Chapter 8) is subtly different from any described
here.

(G.1.3) We try to be consistent in the use of ‘twisted’ and ‘twisting’, using the
former to describe complexes and the latter to describe cochains. There seems to
be, however, no such consistent usage in the literature, so this attempt is almost
entirely pointless.

(G.1.4) To quote (8.1.2), a good idea to keep in mind is that ‘a twisting cochain
is like a complex of coherent sheaves, but not quite as rigidly glued’. That is,
rather than having transition maps on overlaps, we have maps that only satisfy
the cocycle condition ‘up to homotopy’, and these homotopies only commute ‘up
to higher homotopies’, and so on. As we explain in (G.2.12), a complex of coherent
sheaves is ‘like’ a truncated twisting cochain, with all homotopies being zero in
degrees greater than one.

The other nice thing about twisting cochains is that they let us formalise what
we have been doing throughout most of this thesis: thinking of all data above
some Uα0...αp as lying above Uα0

, so that we can compare everything on an equal
footing.

G.2 Holomorphic twisting cochains from local
resolutions

(G.2.1) In [TT78, §§1, 2], they start with arbitrary graded C-vector spaces and
obtain vector bundles by tensoring with OX . We, however, start straight away
with OUα -modules. Apart from that, and a few other subtle differences, though,
this section is mostly just a summary of the above paper.

(G.2.2) LetX be some paracompact complex-analytic manifold with a ‘sufficiently-
nice’[1] open cover U = {Uα}α∈I . Let V = {V •α } be a collection of bounded-graded
OUα -modules. That is,

V •α =
⊕
q∈N

V
q
α

with V qα = 0 for all but finitely many q ∈N. (This is basically asking for a bounded
complex of OUα -modules over each Uα, but without any differential.)

[1]In particular, we assume U to be Stein, locally compact, and, if we are working with some
locally free sheaf F of rank r, such that F

∣∣∣Uα � OrX (i.e. a trivialising cover).
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(G.2.3) We define a Čech-style complex[1] Ĉ•(U ,V ?) by letting an element of
Ĉp(U ,V q) be a Čech p-cochain c whose value cα0...αp on the p-simplex Uα0...αp lies

in V qα0

∣∣∣ α0 . . .αp. The Čech differential on this complex is actually a deleted Čech
differential (written δ̂ instead of the usual δ̌) in that it is given by the usual alter-
nating sum of the cochain on α0 . . . α̂i . . .αp (where the hat denotes omission) but
starting from i = 1, not i = 0.That is,

δ̂ : Ĉp(U ,V q)→ Ĉp+1(U ,V q)(
δ̂c

)
α0...αp+1

=
p+1∑
i=1

(−1)icα0...α̂i ...αp+1

This is a reasonably natural definition because we have defined our cochains to
take values in V qα0 , and something of the form cα1...αp+1

does not live here — it lives

in V qα1 . (We will soon see why we have this seemingly unnatural construction that
depends so heavily on the first coordinate of any given p-simplex.)

Note that, since V is just a collection of graded modules, there is not (yet) a
differential d : V q→ V q+1, and so we don’t (yet) have a bicomplex.

(G.2.4) We don’t assume that our Čech cochains are skew-symmetric (i.e. that
exchanging two indices changes the sign), but this is just a matter of convention.
For more details, see (6.2.6).

(G.2.5) The complex Ĉ•(U ,V ?) has a natural multiplication structure given by

(cp · dq)α0...αp+q
= (−1)qcpα0...αpd

q
αp ...αp+q

which plays nicely with all the differentials involved.[2] In fact, it often also has
an algebra structure, but this isn’t too important for us here. See [TT78, §1] for
details. We often omit the · and just write cd.

(G.2.6) For each s ∈ N, we define the collection Endq(V ) of degree-q endomor-
phisms to be given over each Uα0...αp by

Endq(V )
∣∣∣Uα0...αp =

⊕
i∈Z

Hom(V iαp
∣∣∣Uα0...αp ,V

i+q
α0

∣∣∣Uα0...αp ).

Note that the morphisms are of degree q from V •αp to V •α0
, and not from V •α0

to V •α0
.

The motivation for this is explained further in (G.2.8).

[1]Recall (3.0.3). In particular, we might switch from writing V • to writing V ? whenever we have
multiple gradings floating about.

[2]At the moment there is only the deleted-Čech differential, but later on we consider the case
where V has differentials as well.
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Again, since V is just a collection of graded modules and thus has no differ-
ential, we need not worry about whether the morphisms here are true morphisms
of complexes or not (that is, whether or not they commute with the differentials),
because V doesn’t have the structure of a complex.[1]

(G.2.7) We get another Čech-style complex Ĉ•
(
U ,End?(V )

)
by simply replacing

V with End(V ) in (G.2.3), and modifying the deleted-Čech differential δ̂ so that it
also omits the last term:

(δ̂c)α0...αp+1
=

p∑
i=1

cα0···α̂i ···αp+1
.

Here we delete both the first and the last term because we want all of the cα0···α̂i ···αp+1

to live in the same space, i.e. be maps from Vαp+1

∣∣∣Uα0...αp+1
→ Vα0

∣∣∣Uα0...αp+1
.

Note that we can still define multiplication as in (G.2.5), but where the sign
respects the bidegree:

(cp,q · dp̃,q̃)α0...αp+p̃
= (−1)qp̃cp,qα0...αpd

p̃,q̃
αp ...αp+p̃

Again, if V had differentials then this would give us the structure of a bicom-
plex.

(G.2.8) A holomorphic vector bundle E on X can be described exactly by its tran-
sition maps {gαβ ∈ GL(n,C)}α,β , thought of as describing the change in trivialisa-
tion from over Uβ to over Uα, which satisfy two conditions: the cocycle condition
(gαβ · gβγ = gαγ ) and the invertibility condition (gαα = id). Already, then, the fact
that the transition maps give us a map from (the trivialisation of) E

∣∣∣Uβ to (the triv-
ialisation of) E

∣∣∣Uα (over the intersection Uαβ) half justifies the choice in (G.2.6)
to make elements of End(V ) be maps from Vαp to Vα0

(both over the intersection
Uα0...αp ).

So let’s try to define something in Ĉ•
(
U ,End?(V )

)
that looks like it could de-

scribe a vector bundle.
To begin with, forget the grading on V , and consider a true Čech cochain

a = {aαβ}α,β∈I ∈ Č1 (U ,End(V ))

satisfying the cocycle condition (aαβ · aβγ = aαγ ) and the invertibility condition
(aαα = id). But, here, the cocycle condition is equivalent to

δ̂a+ a · a = 0,

[1]Although when V does have differentials, as in Green’s construction, we will see that we do
want these morphisms to be true morphisms of complexes, i.e. morphisms in the homotopy cate-
gory of the dg-category.
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because[1] (δ̂a)αβγ = −aαγ , and (a · a)αβγ = aαβ · aβγ .
Since we forgot the grading on V , we might as well think of a as being of

degree zero, and so the idea for a general definition seems readily available: we
let a be of arbitrary degree and ask that δ̂a+ a · a = 0. This is exactly how we can
come across the definition of a twisting cochain.[2]

(G.2.9) A (holomorphic) twisting cochain over V is a formal sum[3]

a =
∑
k∈N

ak,1−k

where ak,1−k ∈ Ĉk
(
U ,End1−k(V )

)
such that

δ̂a+ a · a = 0

a1,0
αα = id.

In particular then, it could be the case that all but finitely-many ak,1−k are zero,
but not a1,0, since we need at least a1,0

αα to be the identity.[4]

Note that multiplication is not simply done component-wise, but instead by
taking all possible combinations. That is, for two formal sums a and b,

(a ·b)p,s =
∑
q+q′=p
t+t′=s

aq,t ·bq
′ ,t′ .

Once more, if V had differentials, then awould be an element of total degree 1.
We return to this fact in (G.2.16)

(G.2.10) At the moment we say nothing about the existence of twisting cochains
for a given V , but the hope is that, under reasonably mild conditions, one will
always exist (and this is indeed the case — see (G.2.15)).

(G.2.11) If we write out explicitly what δ̂a+ a · a = 0 means at each Čech level k
then we can gain some insight into what twisting cochains really look like.

k = 0 a
0,1
α a

0,1
α = 0, which says exactly that a0,1

α gives us a differential on V •α ,
letting us (finally) think of it as a complex.

[1]Not forgetting (G.2.7): the deleted-Čech differential for Ĉ•
(
U ,End?(V )

)
omits both the first

and last terms of the sum.
[2]This equation looks (exactly) like the Maurer-Cartan equation, which we discuss later.
[3]We are rather lax in differentiating between + and ⊕ at times, but this hopefully won’t cause

any problems.
[4]Unless some V •α are zero, of course.
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G.2. Holomorphic twisting cochains from local resolutions

k = 1 a
0,1
α a

1,0
αβ = a

1,0
αβa

0,1
β , which tells us that, over Uαβ , we have a chain map of

complexes

a
1,0
αβ :

(
V •β

∣∣∣Uαβ , a0,1
β

)
→

(
V •α

∣∣∣Uαβ , a0,1
α

)
.

k = 2 −a1,0
αγ + a1,0

αβa
1,0
βγ = a0,1

α a
2,−1
αβγ + a2,−1

αβγa
0,1
γ , which says that a1,0

αγ and a1,0
αβa

1,0
βγ are

chain homotopic via the homotopy a2,−1
αβγ . Taking the degenerate simplices

αβα and βαβ, this tells us, in particular, that a1,0
αβ and a1,0

βα are chain homo-

topic inverses, i.e. that the chain map a1,0
αβ is a quasi-isomorphism.

k > 3 some sort of ‘higher-order homotopic gluings’, whatever this might mean,
formally (which we explain in (8.3.4)).

(G.2.12) We started with some collection of graded OUα -modules over each Uα,
with absolutely no compatibility conditions on intersections. If we can find a
twisting cochain, however, then this lets us (i) define differentials that are com-
patible with the grading, and (ii) define quasi-isomorphisms between the (now)
complexes (as well as (iii) define higher-order compatibility conditions).

To formalise this, a twisting cochain a on V lets us glue the homology of each
complex to get a complex H•(a) of coherent[1] sheaves in the following way:

• let H•α(a) = H•(V •α ) be the complex of OUα -modules given by taking the ho-
mology of the complex (V •α ,a

0,1
α );

• over each intersection Uαβ we have an isomorphism

H
(
a

1,0
αβ

)
: H•β(a)

∣∣∣Uαβ ∼−−→H•α(a)
∣∣∣Uαβ

induced by the quasi-isomorphism a
1,0
αβ ;

• over each intersection Uαβγ we have that H
(
a

1,0
αγ

)
= H

(
a

1,0
αβ

)
H

(
a

1,0
βγ

)
;

• some higher-order stuff, which we don’t actually need, since we already have
strict compositional equality of the H

(
a

1,0
αβ

)
.

Since H•(a) forgets all the higher homotopy data (i.e. it uses only a0,1 + a1,0), it is
a bit too ‘blunt’ for the purposes of this thesis, but we mention it here anyway for
completeness.

(G.2.13) If the pair (V ,a) is such that Hi(a) = 0 for i > 0 then we can think of it as
being a local resolution of the coherent sheaf F = H0(a) by locally free sheaves (as
well as being a (trivial) global resolution by coherent sheaves).

[1]The fact that the gluing gives us something coherent is almost immediate by definition, be-
cause the (V •α ,a

0,1
α ) give us something perfect.
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G. Twisting cochains and twisted complexes

(G.2.14) Example. In (8.2.11) we describe an explicit twisting cochain, and so
we can ask what exactly H•(a) is. Well, we know what the homology of each ξ•α
is, by definition, because they are local resolutions: the homology is zero, except
for in degree zero, where it is isomorphic to F

∣∣∣Uα. That is, the complex H•(a) of
coherent sheaves is exactly the trivial resolution of F, since

Hi(a) �

F i = 0;

0 otherwise.

This is exactly what we should expect: we picked our V to be homologically trivial
(i.e. a collection of (local) resolutions), so, by definition, H•(a) will be trivial. Why
bother with this example then? The reason is twofold:

1. this gives us an idea of how it should be possible to construct a twisting cochain
when starting with a collection of complexes of vector bundles (formalised in
(G.2.15)), rather than starting with a collection of graded vector bundles and
then using the degree-zero part of a twisting cochain to define differentials;
and

2. this specific twisting cochain is the basis of the example studied in [Gre80], so
it’s nice to at least mention it.

(G.2.15) Lemma. Let F be a coherent sheaf on X, with the same hypotheses on X
as in (G.2.2). If we have local resolutions ξ•α of F

∣∣∣Uα by locally free sheaves over
each Uα then we can construct a twisting cochain (V ,a), where V = {ξα}, such that
a

0,1
α = dξ•α .

Proof. This is shown in [OTT81, pp. 229–231]. There is also [TT76, Lemma 8.13],
which relies on a different treatment of twisting cochains (which we discuss in
(G.3)), but is ‘translated’ in [TT78, Proposition 2.4].

(G.2.16) It is routine to show that, for any a ∈ Tot1 Ĉ•(U ,End?(V )), the map

Da : Totr Ĉ•(U ,V ?)→ Totr+1 Ĉ•(U ,V ?)

c 7→ δ̂c+ a · c

defines a differential (i.e. squares to zero) if and only if a is a twisting cochain.
In the hope that this thesis has at least some use, we give the proof, since it

doesn’t seem to be written down anywhere in the literature, even though it follows
immediately from the properties of Ĉ•(U ,End?(V )) and Ĉ•(U ,V ?).

Proof. Recall ([TT78, Equation (1.8)]) that δ̂ is a derivation with respect to all
products. Then consider the square of the map:

D2
a(c) = δ̂(δ̂c+ a · c) + a · (δ̂c+ a · c)
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G.2. Holomorphic twisting cochains from local resolutions

= δ̂(a · c) + a · (δ̂c) + a · a · c

= (δ̂a) · c+ (−1)|a|a · (δ̂c) + a · (δ̂c) + (a · a) · c
= (δ̂a+ a · a) · c − a · (δ̂c) + a · (δ̂c)
= (δ̂a+ a · a) · c.

This is equal to zero for all c if and only if (δ̂a + a · a) = 0, but this is exactly the
condition for a to be a twisting cochain.

In some sense, writing Da = δ̂ + a, we can think of this map as a first-order
(since a is of degree one) perturbation of the Čech differential, and this is the
point of view that we emphasise in (G.3). We can first, however, motivate this
definition by giving the two choice examples from [TT78], and so we do so.

(G.2.17) Returning to the example in (G.2.8), where V is just a vector bundle (i.e.
ungraded) and a1,0 is given by the transition maps, we have a = a0,1 + a1,0, where
a

0,1
α = idVα . Then

(Dac)α0...αp+1
= a1,0

α0α1
cα1...αp+1

+
p+1∑
i=1

(−1)icα0...α̂i ...αp+1

for c ∈ Ĉp(U ,V ). Recall that cα0...αp ∈ Vα0

∣∣∣Uα0...αp , and so we had to modify the

Čech differential by deleting the first term, because cα1...αp lives in a fundamen-
tally different space than any cα0...α̂i ...αp+1

for i , 0. But here we have found a way

of fixing this problem: we can use the ‘quasi-isomorphism’[1] a
1,0
α0α1 to think of

cα1...αp as living in Vα0

∣∣∣Uα0...αp instead of Vα1

∣∣∣Uα0...αp . This means that Da can be

thought of as really being the true Čech differential (and this can be made formal
by a spectral sequence argument, as in [TT78, Theorem 2.9]).

(G.2.18) Now consider a slightly richer example, where V is a complex of vector
bundles, and a = a0,1 + a1,0 is given by the data of the differentials dV •α = a0,1

α and
the transition maps a1,0

αβ . Then

(Dac)α0...αp+1
=
p+1∑
i=1

(−1)icα0...α̂i ...αp+1
+ (a0,1 · c+ a1,0 · c)α0...αp+1

=
p+1∑
i=1

(−1)icα0...α̂i ...αp+1
+ (−1)pa0,1

α0
cα0...αp+1

+ a1,0
α0α1

cα1...αp+1

[1]We use scare quotes because there is no structure of a complex on V , and so here ‘quasi-
isomorphism’ just means ‘invertible, with inverse a1,0

α1α0 ’.
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G. Twisting cochains and twisted complexes

for c ∈ Ĉp(U ,V s). The first and last term combine, as in (G.2.17), to give us the
usual Čech differential; the middle term is exactly (−1)pdV (recalling the sign
from (G.2.5)). That is, we recover exactly the usual total differential on the usual
Čech bicomplex: δ̌+ (−1)pdV .

G.3 Holomorphic twisting cochains from total
differentials

(G.3.1) Twisting cochains were defined in [TT76] for more general bigraded al-
gebras, and the idea was to start with some total differential and try to modify it
by some degree-1 perturbation, and ask for control over the ‘curvature’. This is
the construction that we now explain.

(G.3.2) Let A =
⊕

i,j∈ZA
i,j be a bigraded C-algebra, and M =

⊕
i,j∈ZM

i,j a bi-

graded A-module (hence also a bigraded C-module), such that both Ai,j and M i,j

are zero for all i < 0, and non-zero for only finitely-many j. Assume also that M is
a faithful[1] A-module: if am = 0 for all m then a = 0.

Now suppose that we have two C-linear maps

D = D1,0 + D0,1 : Ai,j → Ai+1,j+1

∇ = ∇1,0 +∇0,1 : M i,j →M i+1,j+1

(both of bidegree (1,1), and both decomposed into their (1,0) and (0,1) parts,
respectively) that satisfy the following conditions:

(i) they are both derivations with respect to D, i.e.

D(a · b) = (Da) · b+ (−1)|a|a · (Db)

∇(a ·m) = (Da) ·m+ (−1)|a|a · (∇m)

where |a| = i + j for a ∈ Ai,j ;

(ii) both D0,1 and ∇0,1 are differentials, i.e.
(
D0,1

)2
=

(
∇0,1

)2
= 0;

(iii) there exists some κ ∈ A2,0 such that
(
∇1,0

)2
= κ, i.e.

(
∇1,0

)2
(m) = κ ·m for all

m ∈M;

(iv) the (1,0) and (0,1) parts anticommute, i.e.

D1,0D0,1 = −D0,1D1,0

∇1,0∇0,1 = −∇0,1∇1,0.

[1]This is equivalent to asking that we can identify A with a subalgebra of EndC(M).
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G.3. Holomorphic twisting cochains from total differentials

(G.3.3) There are a few examples of such data in [TT76], and so we won’t really
give any examples in this section, instead referring the interested reader to this
source. We point out, however, that this seemingly long list of hypotheses is not
grossly difficult to satisfy.

The choice of notation is meant to make us think of D as something that we
had hoped was a total differential, but isn’t quite so, and ∇ as some sort of con-
nection on a bundle, with curvature κ. We will further justify this analogy as we
go.

(G.3.4) With the above assumptions, we have the following relations:

(i) ∇2m = κm for all m ∈M;

(ii) D2a = κa− aκ for all a ∈ A;

(iii) Dκ = 0.

Proof. See [TT76, §8] (although all three are reasonably quick consequences of
our assumptions).

To reinforce the analogy of (G.3.3), note that ∇2m = κm looks like the curvature of
a connection, and Dκ = 0 looks like the (second) Bianchi identity for a connection
on a principal bundle. The fact that D2a = κa − aκ, however, tells us that D is in
general not a differential, but only a differential ‘up to homotopy’ somehow.[1]

(G.3.5) We know that neither D nor ∇ is a differential, but we are interested[2] in
modifying ∇ in order to get a differential onM. What do we mean by ‘modifying’?
Well, let’s consider a map of the form

∇a : m 7→ ∇m+ a ·m

for some a =
⊕

i>1a
i+1,−i ∈ A, where am,n ∈ Am,n, and justify this choice after-

wards.
First of all, in order for the degrees to all match up (since ∇ is of bidegree

(1,1)), we need a ∈ A to be of total degree 1, and so we can write a =
∑
k∈Na

k,1−k .
Now, if we want this to give a differential, then we need for its square to be zero,
and a quick calculation tells us that

∇am = ∇2m+ a · ∇m+∇(am) + (a · a)m

= κm+ (Da) ·m+ (a · a)m

= (Da+ a · a+κ) ·m.

So, since M is faithful, we are interested in a ∈ A such that Da+ a · a+κ = 0.

[1]Inspired by the definition that morphisms of complexes f and g are homotopic if f −g = dp−pd.
[2]Motivated by the examples in [TT76].
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G. Twisting cochains and twisted complexes

(G.3.6) Now to explain why we consider maps of the form ∇a in the first place.
The primary justification in the context of [TT76] is that such maps occur natu-
rally in various situations, and so it’s nice to abstractify it. The justification for us,
here, is (once more) largely based on (as of yet) unfounded analogy: this looks like
the local definition of a connection, in that it is a connection ∇ (of curvature κ)
plus some operator of differential degree 0 and total (‘algebraic’) degree 1. In this
light, we are looking exactly for the a such that ∇a is flat (or, equivalently, such
that the ‘curvature’ of a is −κ).

(G.3.7) A twisting cochain for (M,∇) is an element a =
⊕

i>1a
i+1,−i ∈ A such that

Da+ a · a = −κ.

The associated twisted complex (M,∇a) is the complex given by M with the differ-
ential ∇a : m 7→ ∇m+ a ·m.

Note that a = 0 is a twisting cochain with curvature κ = 0, and with this choice
we recover exactly our original bicomplex as the associated twisted complex.

(G.3.8) If A is D(0,1)-acyclic then twisting cochains can always be inductively con-
structed: see [TT76, Lemma 8.13].

G.4 Enrichment of perfect complexes

(G.4.1) Triangulated categories can be understood as some sort of zero truncation
of particularly nice dg-categories (as we explain in more detail in (G.4.2)), and so
we can ask whether or not we can enrich a specific triangulated category with
some dg structure. In particular, we can ask whether or not the (derived) category
of perfect complexes on a (sufficiently nice) scheme admits such an enrichment.

Formally, given some triangulated category T , and a pair (P,ε), where P is a
stable[1] dg-category, and ε : HoP→ T is a functor of triangulated categories, we
say that (P,ε) is a dg-enhancement of T if ε is an equivalence. For a more complete
introduction, we recommend [CS19].

(G.4.2) We can explain the relationship between triangulated categories and other
higher-categorical structures in a bit more detail. In particular, triangulated cat-
egories are the H0 of stable dg-categories, which are semi-strictifications of A∞-
categories, which are models for linear stable (∞,1)-categories. Then the triangu-
lated structure on a triangulated category is essentially the structure that Ho(C)
inherits, for any stable (∞,1)-category C, from the stability of C. This is sum-
marised in Figure (G.4.2.1).

[1]Also known as an enhanced triangulated, or pre-triangulated, dg-category.
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(∞,1)-categories
linear stable

(∞,1)-categories

quasi-categories A∞-categories

sSet-enriched
categories

stable dg-
categories

h(sSetQui)-
enriched

categories

triangulated
categories

underlying
category

underlying
category

choice of model

semi-

strictification

π0 truncation H0

homotopy
coherent
nerve

Hom
(
∗,Hom(−,−)

)
Z0

Figure (G.4.2.1). Relationships between various structures on higher categories,
as explained in (G.4.2).

(G.4.3) As a familiar example of some of the ‘lower’ categorical structures de-
picted in Figure (G.4.2.1), consider the dg-category Chdg(A) of chain complexes
in an abelian category A (that is, the category where the morphisms do not nec-
essarily commute with the differentials). This is a stable dg-category. The ‘homo-
topy category’ K(A) is then the triangulated category given by H0(Chdg(A)); and
the ‘naive’ chain-complex category Ch(A), whose morphisms are those that must
commute with the differentials, is given by Z0(Chdg(A)). Then the ‘derived cate-
gory’ D(A) can be obtained either by inverting weak equivalences in K(A), or by
taking the (1-categorical) homotopy category of Ch(A). So, since Ho = H0 for any
dg-category of chain complexes, we see that Chdg(A) is a dg-enrichment of K(A).

To avoid making this extended digression any longer, we suggest [Coh16] as a
nice reference.

(G.4.4) This idea of stabilisation is one of the key motivations for the definition
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of twisted complexes in dg-categories. We discuss this in (G.6), but just note
here that this point of view, combined with this idea of enrichment of perfect
complexes, lets us say that coherent sheaves really are ‘the’ stabilisation of vector
bundles, and so topological (i.e. those of OTT) twisting cochains really do look
like specific examples of the dg-category ones (of Bondal and Kapranov) which
we will later see.

(G.4.5) We now summarise some of the work of Z. Wei on perfect twisting cochains.

One of the main results of [Wei16] is Theorem 3.32, which tells us that, given
some conditions on a ringed space (X,OX), there is an equivalence of categories

HoTwperf(X,OX ,U ) 'Dperf(X),

where Twperf(X,OX ,U ) is the category of twisted perfect complexes on (X,OX ,U ),
and Dperf(X) is the triangulated subcategory of D(X) consisting of perfect com-
plexes, where D(X) = D(ModOX ) is the derived category of OX-modules. In other
words, Twperf(X,OX ,U ) is, under certain conditions onX and OX , a dg-enhancement
of Dperf(ModOX ).

The main theorem of [Wei18] is that there is a quasi-equivalence

L(X,OX) ' Twperf(X,OX ,U ),

where L(X,OX) denotes the dg-category of bounded complexes of global sections
of finitely-generated locally free sheaves on the ringed space (X,OX). This com-
bines [Wei16, Theorem 3.32] with a more classical result (stated in [Wei18, Theo-
rem 1.1]) which says that, whenever X is compact and OX soft, there is an equiva-
lence

Dperf(ModOX ) 'Dperf(ModOX (X)).

All this fits together in the following commutative (again, given certain con-
ditions on X, OX , andU ) diagram:

Twperf(X,OX ,U ) L(X,OX)

Dperf(ModOX ) Dperf(ModOX (X))

∼

dg-enrichment dg-enrichment

∼

This top equivalence ([Wei18, Theorem 3.1]) has an important interpretation
in terms of homotopy limits, but we save a discussion of this for (G.5).

Finally, in [Wei19], the generalisation of twisted perfect complexes to the case
of simplicial objects in a ringed site is studied, and it is shown (see, e.g., [Wei19,
Lemma 4.2]) that the construction is somehow functorial.
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G.5 Homotopy limits

(G.5.1) With the notation of (G.4.5), we can now talk a bit about descent and ho-
motopy limits. By considering locally free sheaves on each simplicial level of the
Čech nerve of (X,U ), we get the following cosimplicial diagram of dg-categories:

∏
α L (Uα)

∏
α,β L

(
Uαβ

) ∏
α,β,γ L

(
Uαβγ

)
. . .

The so-called descent data of L(U ) is given by the homotopy limit of this dia-
gram; [BHW15] shows that this homotopy limit is equivalent to Twperf(X,OX ,U ),
i.e. twisting cochains calculate descent data. Combining this with the results de-
scribed in (G.4.5), we see that twisting cochains actually let us forget all about
twisting cochains, in that we obtain a quasi-equivalence

L(X) ' holimαL(Uα).

The simplicial generalisation of twisting cochains in [Wei19] also extends to
homotopy limits: [Wei19, Proposition 4.3] tells us that the dg-category of twisted
perfect complexes on a simplicial ringed space gives an explicit construction of
the homotopy limit of Perf(U ).

G.6 Twisted complexes in dg-categories

(G.6.1) The canonical reference for twisted complexes (in the setting of dg-categories)
is [BK91], which we will now explore. For how the following fits into the A∞- and
∞-categorical stories, we recommend [Fao15, §4].

Before explaining any motivation, we first repeat [BK91, Definition 1].

(G.6.2) Definition. Let A be a dg-category. Then a twisted complex C over A is a
collection

C =
(
Ei ∈A, (qij : Ei → Ej )j∈Z

)
i∈Z

such that

• only finitely many of the Ei are non-zero;

• the qij are morphisms of degree i − j + 1;

• dqij +
∑
s qsjqis = 0.
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(G.6.3) One of the motivations behind Definition (G.6.2) is the following ques-
tion: “given a dg-category A, what is the ‘smallest’ dg-category A′, into which A em-
beds, such that we can define shifts and functorial cones in A′?” Or, thinking about
(G.4.2) and (G.4.4), and taking the point of view of a stable-homotopy theorist, we
can pose the following (basically equivalent) question: “an arbitrary dg-categoryA
has no (pre-)triangulated structure a priori, and so lacks stability ‘upstairs’, so what is
the ‘smallest’ way of ‘enriching’ our dg-category to get some dg-category Â which has
a stable structure?”

It turns out that, for both questions, Â is given exactly by the category of
twisted complexes over A. The embedding A ↪→ Â lets us ‘pull back’ the shift and
cones from Â to ones inA. Even nicer, it turns out that the homotopy category of
A is triangulated with this shift functor and these cones.

Further, if A is pre-triangulated, then this embedding A ↪→ Â is a quasi-
equivalence[1] of dg-categories. This means that, if A does already have some
pre-triangulated structure, then we don’t really change anything about it.

(G.6.4) Lemma. It is not the case that the twisting cochains of e.g. [OTT81] are
equivalent to the twisted complexes of [BK91]. In fact, the former is a specific case
of the latter. We know, heuristically, that this should be the case, because twisting
cochains give us a stabilisation of the category of vector bundles (as discussed in
(G.4.4)), which is exactly what twisted complexes are meant to do, but it is inter-
esting to note that twisting cochains are a strict example of twisted complexes, as
we will now explain.

Recalling (G.2), we start with the data of a graded holomorphic vector bundle
Vα on every Uα, and write V = {Vα}α. Let B = Č•(U ,OX) and E0 = Č•(U ,V ). Now,
over each Uα we can consider the graded OUα -module Vα as a complex V ?α with
trivial differential, and this gives E0 the structure of a B-dg-module.

If we then define Ei = 0 for i , 0, we can ask what it means for {Ei}i∈Z to have
the structure of a twisted complex: we need to provide a degree-1 B-linear endo-
morphism a = q00 of E0 such that da + aa = 0. But the dg-algebra EndB(E0) is ex-
actly[2] Č•(U ,End(V )?). Decomposing a into ak,1−k ∈ Čk(U ,End1−k(V )) we recover
exactly the Maurer-Cartan condition for twisting cochains. Thus any holomorphic
twisting cochain gives us a twisted complex in the dg-category of B-dg-modules.

It is not the case, however, that by picking the ‘right’ dg-categoryA, we recover
the definition of holomorphic twisting cochains from that of twisted complexes.
In particular, twisting cochains are twisted complexes with only one non-zero ob-
ject. Further, this object E0 is not an arbitrary B-module: it comes from Č•(U ,V ),
where V is graded, and is thus somehow (via maybe the Serre-Swann theorem)
projective or free.

[1]That is, it induces an equivalence on the level of homotopy categories.
[2][OTT81, §1] shows that we get a module structure on Č•(U ,V ? ) over the algebra

Č•(U ,End?(V ))
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G.7 Dold-Kan and twisting cochains

(G.7.1) As mentioned previously, Green’s resolution (9.1.2) lets us pretty much
forget about twisting cochains. It is still interesting, however, to wonder whether
or not there is some functorial construction from twisting cochains to vector bun-
dles on the nerve, since then we could see if the construction of characteristic
classes mirrors that for twisting cochains, as given in [Bre+07] or [Sha10, §2.2].
In general, it would be nice to be able to use the myriad of nice properties of
the category of twisting cochains, and the constructions that exist therein, so let’s
consider how we might be able to do so.

We repeat the warning: since this is a ‘vague’ appendix, it is not our intention
here to give a rigorous explanation, but instead just furnish the reader with the
appropriate vocabulary to be able to actually understand what we allude to here
by asking people who actually know things (instead of the present author).

The Dold-Kan correspondence is an equivalence of categories between simpli-
cial objects (in some abelian category) and connective chain complexes (in the
same category). There are many generalisations of the correspondence, but the
one that interests us is that for sheaves, which says[1] that

Sh(X,sA) ' Sh(X,Ch+(A)),

where A is some abelian category, and sA = [∆op,A] is the category of simpli-
cial objects in A. Although this, as stated, is an equivalence of 1-categories, it
reflects weak equivalences, and induces an equivalence when we take ‘suitable’
localisations of sA and Ch+(A).

If we just consider sheaves as things that satisfy some equaliser condition[2],
then sheaves of complexes are equivalent to complexes of sheaves, and, simi-
larly, sheaves of simplicial objects are exactly simplicial objects in the category
of sheaves. That is, the above equivalence gives us the equivalence

sSh(X,A) ' Ch−(Sh(X,A)).

which gives us

Ch+(sSh(X,A)) ' Ch+,−(Sh(X,A)),

where we write Ch+,− to mean bicomplexes concentrated in one quadrant.
When we takeA = ModOX to be the category of OX-modules, twisting cochains

can be viewed as elements of the category on the right-hand side, and the result
of Green’s resolution can almost be viewed as an element of the category on the

[1]See, for example, item (3) in [Bro73, p. 426].
[2]As opposed to the finer notion of homotopy sheaves, where we replace the equaliser with a

homotopy limit.
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left-hand side: we just need to figure out the relation between sSh(X,ModOX ) and
Vectcart(XU• ). But in (F.5.4) we explain how objects Vectcart(XU• ) are limit objects
of Sh(XU• ), and, although this is in the purely topological setting, we can see how
one might recover the desired result: Green’s resolution is somehow a coarse, non-
functorial[1] version of Dold-Kan.

To formalise this, [Dyc17] and [Cal18] seem appropriate.

G.8 Alternative viewpoints

(G.8.1) This section just lists all of the twisting cochain constructions that the
author has come across during the writing of this thesis. Much of the content here
is hurried and unmotivated, aimed at readers already somewhat familiar with the
various contexts, and is really meant to serve as nothing more than a ‘minimal
completion’ of this survey of the subject. Most things here are explained in more
detail on, of course, as always, the nLab.

(G.8.2) Maurer-Cartan. Since Maurer-Cartan elements classify deformations of
(finite-dimensional associative unital) algebras, we could better understand (G.3)
by thinking of twisting cochains as deformations of the deleted-Čech complex.

A small side note: it is known that Maurer-Cartan elements of A⊗g are equiva-
lent to morphisms of dg-algebras from the Chevalley-Eilenberg complex of g to A;
with this in mind, one could ask what twisting cochains look like when we work
with endomorphism-valued forms, and if this bears any relevance to the theory
developed elsewhere in this thesis.

(G.8.3) Graded mixed complexes. A graded mixed complex of dg-k-modules is, as
defined towards the end of [Cal+17, §1.1], a family {E(p)}p∈Z of dg-k-modules
together with a family {εp}p∈Z of morphisms

εp : E(p)→ E(p+ 1)[1]

such that εp+1 ◦ εp = 0. It can be shown that a twisted complex (in the sense of
Bondal and Kaprinov) is a specific example of such a thing.

(G.8.4) A∞-categories. All of the following is from [Kel01]; another nice refer-
ence is [Fao15].

LetA be an A∞-algebra (with strict identities). We write C∞A to mean the cat-
egory of A∞-modules overA, and D∞A to mean the homotopy category of C∞A.
In the non-A∞ case we can define a category triaA as follows: up to isomorphism,
the objects of triaA are bounded complexes of finitely-generated freeA-modules,
and the morphisms “are” homotopy classes of morphisms of complexes. We wish

[1]Recall that Green’s construction isn’t functorial: (8.3.12). This means that we can think of it as
a ‘coarse object-level Dold-Kan’.
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to formalise the definition of triaA in the case whereA is an A∞-algebra, starting
with the vague definition as the “A∞-version of the triangulated subcategory of
DA generated by the free rank-1 A module”.

It can be shown that the Yoneda functor よ factors through an A∞-category
twA, called the category of twisting cochains, as

A twA

C∞A

よ1

よ
よ2

Further,よ1 is (strictly) fully faithful, andよ2 induces an equivalence

H0 twA
∼−→ triaA.

This lets us formalise what the A∞-version of twA really is, and an explicit de-
scription is given in [Kel01, §7.6].

To paraphrase [Wei19, Remark 1.5]: to people familiar with A∞-categories,
the definition of twisted complexes might look similar to the construction of A∞-
functors; this is explained in [Tsy19, §16] and [AØ19, §4].

(G.8.5) The bar-cobar adjunction. If we have a dg-coalgebra (C,dC) with comul-
tiplication ∆, and a dg-algebra (A,dA) with multiplication µ, then we can define a
twisting cochain to be a morphism τ : C→ A[1] such that

dA ◦ τ + τ ◦dC +µ ◦ (τ ⊗ τ) ◦∆ = 0.

Note that this is Maurer-Cartan, since the last term is the product τ ? τ in the
convolution algebra.

We will not say any more on this approach, instead referring the interested
reader to, say, the nLab.
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Glossary
2-out-of-6 property, p. 95

admissible
endomorphism-valued simplicial form, p. 54
morphism, p. 52
simplicial connection, p. 55

Atiyah
class (of a holomorphic vector bundle); atE , p. 18
exact sequence, p. 18

barycentric connection; ∇µ• , p. 36

cartesian (complex of sheaves on a simplicial space), p. 25
codegeneracy map, p. 13
coface map, p. 13
comparison map; Cip, p. 51
curvature (of a connection); κ, p. 19

deleted Čech complex; (Ĉ•(U ,End?(V )), δ̂), p. 76

elementary sequence, p. 88
endomorphism-valued form, p. 20
endomorphism-valued simplicial form, p. 53
exponential Atiyah class (of a holomorphic vector bundle); at◦kE , p. 22
exponential sheaf sequence, p. 111

flat
connection, p. 19
morphism (of locally free sheaves with connections), p. 49
section, p. 19

generalised invariant polynomial, p. 57
Green (complex of vector bundles on the nerve), p. 62
Green’s resolution, p. 88
Grothendieck group, p. 52

Hodge
complex; Ω•>kX , p. 24

holomorphic
(Koszul) connection, p. 18
twisting cochain, p. 77
twisting resolution, p. 77
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Glossary

homotopical category, p. 95

jet sequence, p. 18

matching object, p. 105

perfect (complex of sheaves on a locally ringed space), p. 75
pullback connection, p. 18

relative category, p. 95

sheaf of OXU• -modules, p. 26
sheaf on a simplicial space, p. 25
sheaf-valued r-forms, p. 20
simplex category, p. 13
simplicial

connection, p. 55
generated in degree zero, p. 65

differential r-form, p. 26
of type (i, j), p. 26

differential r-forms, the collection of; Ωr,∆
Y•

, p. 26
exponential Atiyah class

of a vector bundle on the nerve; ât◦kE• , p. 60
of a vector bundle; ât◦kE , p. 39

standard Atiyah class
of a vector bundle on the nerve; ât∧kE• , p. 60
of a vector bundle; ât∧kE , p. 39

skew-symmetrisation (of a Čech p-cochain); ςp, p. 44
standard Atiyah class

of a coherent sheaf, p. 90
of a holomorphic vector bundle; at∧kE , p. 23

strongly cartesian (sheaf on a simplicial space), p. 25

tDR
cohomology; Hk

tDR, p. 24
topological simplex, p. 13
total construction, p. 103
true morphism (of locally free sheaves with connections), p. 49

vector bundle on the nerve, p. 26

Yoneda embedding;よ, p. 14
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