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Résumé

Dans ce chapitre, je décris brièvement le contenu et la structuration de l'Univers, tel qu'il est compris selon les derniers modèles cosmologiques et les observations les plus récentes.

"John, the kind of control you're attempting simply is. . . it's not possible. If there is one thing the history of evolution has taught us it's that life will not be contained. Life breaks free, it expands to new territories and crashes through barriers, painfully, maybe even dangerously, but, uh... well, there it is. [ In this chapter, I briefly describe the content and the structuration of our Universe, according to the present cosmological model and observations.

Introduction

From various observations of galaxy distribution, it is well established today that the Universe is structured in nodes connected by filaments and walls which surround large void regions : the Cosmic Web. These large-scale structure are very complex, and the physical processes occurring at these large scales are not quite well understood yet. As the structures in the Cosmic Web span a very wide range of densities, their detection, for the less dense ones, is still debated. Therefore, a key step is to detect and characterise the different structures of the Cosmic Web in order to understand their properties and their evolution.

Since the first observations of the night sky with telescopes (e.g., by Galileo), catalogues of stars, planets, and later of galaxies and even galaxy clusters were constructed, extended, and eventually made public. Today, we have built and launched the most advanced telescopes and satellites (like Planck, ROSAT, WISE, SDSS, LOFAR, or FERMI), and very promising ones are coming in the near future (like SKA, Athena, SRG/eROSITA, Euclid, LSST, or WFIRST). These instruments have observed or will observe the entire sky (or at least a large portion of it) in a very wide range of the electromagnetic spectrum (from the radio to the gamma rays). Thanks to all these observations, we can draw a comprehensive picture of our Universe, for example in terms of galaxy distribution with SDSS, and also in terms of gas content with ROSAT or Planck.

Gigantic public databases of observations in multi-wavelength are being constructed, making their analysis and their combinations increasingly easy. However, all these available data (and even more in the near-future), opens the era of big data (e.g., 300 PB per year are expected in the case of SKA). The analysis of such quantities of complex data is and will be extremely delicate with the current computational facilities and the current approaches. The development today of new statistical methods to archive and analyse efficiently large data volumes is crucial. Some algorithms, especially machine learning and deep learning algorithms, perform better results than traditional approaches, and most of the time in a smaller amount of time. They are now used or tested in a variety of domains of Astrophysics from classification to emulation or component separation.

In my PhD thesis, I have investigated the properties of the largest scale structures of the Cosmic Web. To this aim, I have used publicly available data in different wavelengths, that I have analysed with statistical methods such as machine learning algorithms.

The following manuscript is organised in three parts: the first one, with chapters 1, 2, and 3, is dedicated to an introduction to the subject, a description of the public data analysed and a presentation of the statistical methods used. The second and the third parts of the manuscript include chapters presenting the different studies on the properties of matter around the large scale structure of the Universe and the data reduction of an ESO large programme. More specifically:

• In chapter 4, I describe a new method to estimate the star formation and the stellar mass of galaxies, that allows us to segregate populations of galaxies inside their host structures. This method is based on a machine learning algorithm, more specifically on random forest. In particular, this method led to the construction of value-added catalogues allowing the comparison of spatial distribution of galaxies (selected by their types) with the spatial distribution of the hot gas properties (derived from the Sunyaev-Zel'dovich (SZ) effect).

• In chapter 5, I present the analysis of an exceptional object: a galaxy cluster pair between the clusters A399 and A401 connected by a bridge of matter. This system has already been characterised in terms of gas via X-rays and the Sunyaev-Zel'dovich effect measured by Planck. For the first time I have added a study of the properties of the galaxies lying in between the two clusters.

• In chapter 6, I use the value-added catalogue containing more than 15 million sources constructed with the method described in chapter 4 to statistically characterise the properties of galaxies around cosmic filaments extracted from the SDSS survey. In this chapter, I present the profiles of galaxy density around identified filaments. I then explore the link between the ratio of passive over active galaxies and the profile of the hot gas around filaments. This study opens a path to assess environmental quenching inside the filaments.

• Chapter 7 presents a proof-of-concept study where I use for the first time a state-of-the-art algorithm of deep learning, namely a Convolution Neural Network, in a component separation context to detect the hot and diffuse gas via the SZ effect. This method appears promising for the detection and the characterisation of new individual clusters and complex filamentary structures.

• In chapters 8 and 9, I describe a large ESO programme aimed at confirming galaxy clusters detected via their SZ effect. I have conducted the data reduction of the image and spectra of galaxies in the surrounding regions observed with NTT/EFOSC2 and VLT/FORS2. For one particular object, a giant gravitational arc was detected. In the last chapter, I present the data reduction and the results of a dedicated observation of this object with MUSE.

• Finally, I conclude this manuscript with a summary of the results presented in the different chapters together with the different perspectives that this work opens.

The results presented in this manuscript have led to articles already published or in preparation:

• Gas and galaxies in filament between clusters of galaxies: The study of A399-A401, V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen, 2018, A&A, 609, A49

• Star formation rate and stellar masses from machine learning, V. Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, and E. Soubrié, 2019, A&A, 622, A137

• Detection of intercluster gas in superclusters using the thermal Sunyaev-Zel'dovich effect, H. Tanimura, N. Aghanim, M. Douspis, A. Beelen, and V. Bonjean, 2019, A&A, 625, A67

• Properties and quenching of WISExSCOS galaxies around SDSS filaments, V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, and H. Tanimura, in prep.

• Extracting the Sunyaev-Zel'dovich effect in Planck with deep learning, V. Bonjean, in prep.

• Gas density and temperature in cosmic filaments on scales of tens of megaparsec, H. Tanimura, N. Aghanim, N. Malavasi, V. Bonjean, A. Kolodzig, and M. Douspis, in prep.

• Like a spider in its web: a study of the Large Scale Structure around the Coma cluster, N. Malavasi, N. Aghanim, H. Tanimura, V. Bonjean, and M. Douspis, in prep.

• Measurement of galaxy correlation with thermal Sunyaev-Zel'dovich emission, G. Fabbian, F. Bianchini, N. Aghanim, M. Douspis, and V. Bonjean, in prep.

Composition and structuration of the Universe 1.2.1 Components of the Universe

Today, the Universe is composed of ∼ 69.4% of Dark Energy (DE), ∼ 25.8% of Dark Matter (DM), and ∼ 4.8% of ordinary matter (also called baryons), according to measurements from the Cosmic Microwave Background (CMB) shown in Fig. 1.1 (e.g., Planck Collaboration et al., 2016b). Among these different components, only baryons are directly observable. A budget in their different phases at low redshift has been performed (e.g., Fukugita, Hogan, and Peebles, 1998; Cen and Ostriker, 1999; Shull, Smith, and Danforth, 2012), and according to the latest study by de Graaff et al., 2019 (shown in the right panel of Fig. 1.1), about 14% of the baryons are in stars, cold gas (mostly in galaxies) and in the Circum Galactic Medium (CGM), and about 5% of the baryons are lying in a hot gas at temperature of about 10 8 K in the Intra Cluster Medium (ICM, in the centres of galaxy clusters). The remaining baryons are in the form of diffuse gas, either cold or warm (in the range 10 4 -10 7 K), surrounding the inter-galactic medium. Based on numerical simulations, baryons were traced along the epochs and about half of them are expected at low redshift in the form of a warm hot diffuse gas, at temperature of order 10 5 -10 7 K (shown in Fig. 1.2):

Structuration into a Cosmic Web

The components of the Universe have evolved together, and eventually formed structures through accretion of matter from the very small fluctuations of the density field due to quantum fluctuations in the primordial Universe. Today, as observed in the distribution of galaxies in large surveys, like the Sloan Digital Sky Survey (SDSS, [START_REF] York | The Sloan Digital Sky Survey: Technical Summary[END_REF], the matter in the Universe is distributed following a highly non-linear density field composed of nodes connecting filaments and walls (also called "pancakes" or "sheets"), themselves surrounding large void regions (shown in Fig. 1.3). This complex network is called the Cosmic Web (e.g., [START_REF] Bond | How filaments of galaxies are woven into the cosmic web[END_REF]. Baryons go from voids to walls, from walls to filaments, and from filaments to nodes, flowing along the skeleton driven by the DM. Matter accreted into nodes eventually virialises and forms the largest gravitationally bound objects in the Universe: the galaxy clusters. This complex structure was also observed in the first N-body numerical simulations (e.g., Zel'Dovich, 1970; [START_REF] Doroshkevich | A statistical approach to the theory of galaxy formation[END_REF]. These simulations took only gravity into account (neglecting all baryonic effects), and resulted on a network of connected filamentary structures (shown in the left panel of Fig. 1.4). The first observations of the Cosmic Web were made later in the 80's, with the reconstruction of the galaxy distribution around a galaxy cluster in the Center for Astrophysics Redshift Survey (CfA, de Lapparent, Geller, and Huchra, 1986) (shown in the right panel of Fig. 1.4). This observation has demonstrated that galaxies were not randomly distributed in space, but rather assembled around "bubbles". A few decades later, other large galaxy surveys, e.g., the Two degree Field Galaxy Redshift Survey (2dFGRS, [START_REF] Colless | VizieR Online Data Catalog: The 2dF Galaxy Redshift Survey 100k Data Release (2dFGRS Team, 2001)[END_REF], or the SDSS (Adelman- [START_REF] Adelman-Mccarthy | The Sixth Data Release of the Sloan Digital Sky Survey[END_REF], confirmed these typical filamentary structures connected to galaxy clusters and surrounding large voids (see Fig. 1.

3).

As it is not possible to directly observe the DM, studying the properties of baryons (mainly in galaxies or hot gas) in the structures of the Cosmic Web is challenging. The most recent hydro-dynamical numerical simulations such as Millennium (Springel, 2005), Horizon-AGN [START_REF] Dubois | Dancing in the dark: galactic properties trace spin swings along the cosmic web[END_REF], BA-HAMAS [START_REF] Mccarthy | The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology[END_REF], or Illustris-TNG (Springel et al., 2018), have made extremely large number of particles (up to 15,625,000,000 DM particles in one of the Illustris-TNG simulation) evolve scales, and drawing complex forms and shapes that follow the gradient of the density field. Environments can therefore be characterised through their over-density, defined as:

δ(x) = ρ(x)-< ρ > < ρ > , (1.1) 
where ρ(x) is the density in the spatial position x, and < ρ > is the mean density of the considered field.

Identification of structures

The Cosmic Web density field can be reconstructed based on the distribution of galaxies (in the case of observations), or directly on the dark matter particles (in the case of numerical simulations). Several methods have been developed to extract the structures and classify the Cosmic Web into nodes, filaments, walls, and voids, e.g., Bisous [START_REF] Tempel | Bisous model-Detecting filamentary patterns in point processes[END_REF], DisPerSE [START_REF] Sousbie | The persistent cosmic web and its filamentary structure -I. Theory and implementation[END_REF], or NEXUS+ (Cautun, van de Weygaert, and Jones, 2013). These methods are either based on geometrical pattern recognition (by designing specific filters), on topological analysis of the density field, or on the gradient of the density field. Therefore, the resulting detection and classification of the structures heavily depend on the method, making any comparison delicate to perform (see [START_REF] Libeskind | Tracing the cosmic web[END_REF] for a detailed review on the detection methods). An illustration of the outputs of nine different methods is shown in Fig. 1.6, where red regions indicate the recovered nodes, blue regions show the filaments, green regions display the walls, and white regions designate the voids. It is clearly seen that all these methods give a large variety of outputs, each one with different proportions and sizes of voids, walls, filaments, and nodes.

Over-densities of the Cosmic Web elements

Based on numerical simulations, Cautun et al., 2014 have realised an inventory of the Cosmic Web elements and their evolution. They have detected and classified the structures using their NEXUS+ algorithm. After their identification, they have performed an analysis of the distribution of over-densities associated with each structure. These distributions are shown in Fig. 1.7. Voids, in red, are as expected the lowest density regions, with typical over-densities in the range 0.01 < 1 + δ < 1. Voids also dominate the overall over-density distribution (in black) as they occupy most of the volume of the Cosmic Web. On the other side, nodes (in yellow) are the most over-dense objects, as expected, with over-densities starting at around 1 + δ = 10 and going up to very extreme values of the order of 1 + δ = 10, 000. The over-density distributions of both walls and filaments mainly occupy the same range of values. Most of the wall over-densities (in green) are found in the range 0.1 < 1 + δ < 10, while filament over-densities (in blue) are found in the range 0.1 < 1 + δ < 100. We note that filament over-densities overlap with the nodes' distribution, suggesting that filaments can be rather dense structures. Moreover, the shape of the distribution suggests that there are two categories of filaments: the rather dense (1 + δ = 10 -100) and the less dense (1 + δ = 0.1 -1). The densest filaments might be small-sized bridges of matter in dense environments, which may have different properties from large cosmic filaments (e.g., Aragón-Calvo, van de Weygaert, and Jones, 2010).

Mass and volume fractions of the Cosmic Web elements

Cautun et al., 2014 have also studied the mass and volume fractions of the detected structures (shown in Fig. 1.8). The two structures that dominate the mass fraction budget are filaments and walls (which may look like filaments when projected in 2D): they account for ∼ 50% and ∼ 24% of the total mass fraction, respectively. Voids represent ∼ 15% of the mass fraction, and nodes, where galaxy clusters lie, account for ∼ 11%. In terms of volume, ∼ 77% of the volume fraction is occupied by voids, while filaments and ativistic gas and accretion jets emit powerful lights in the whole range of the electro-magnetic spectrum: these galaxies are called Active Galactic Nuclei (AGN) (e.g., [START_REF] Seyfert | Nuclear Emission in Spiral Nebulae[END_REF].

Galaxy bi-modality

Today, it is well established that there are two main populations of galaxies: active and passive galaxies. This is called the "galaxy bi-modality" (e.g., [START_REF] Baldry | Quantifying the Bimodal Color-Magnitude Distribution of Galaxies[END_REF]. The former population, the active one, contains younger galaxies, that are vigorously forming stars fuelled by their molecular gas. They appear bluer in the optical wavelengths, are rather not massive, and have typical spiral morphologies (as shown in the left panel of Fig. 1.9). Galaxies of the later population, the passive ones, have exhausted their molecular gas supplies and therefore no longer form stars; these galaxies are "red and dead", appearing in redder colours in the optical wavelengths. They are more massive, and have elliptical morphologies (shown in the right panel of Fig. 1.9). Figure 1.9: Difference between passive and active galaxies. Left: the passive galaxy M87 observed with the Hubble Space Telescope. Right: the active galaxy M74 observed with the same telescope. Credits: NASA/ESA.

Star formation activity

Generalities

A main quantity allowing to distinguish galaxies from the two populations is the specific star formation rate (sSFR): how many stars they form compared to their stellar mass. This quantity can hence be deduced by the following two quantities: the stellar mass (M ⋆ ), and the star formation rate (SFR). Indeed, displaying these two quantities on a diagram makes it possible to segregate passive from active galaxies (as shown in Fig. 1.10). This illustration shows positions in the SFR-M ⋆ diagram of a sample of galaxies. Star-forming galaxies (blue dots in Fig. 1.10) are aligned along a line called the main sequence (e.g., [START_REF] Brinchmann | The physical properties of star-forming galaxies in the low-redshift Universe[END_REF][START_REF] Elbaz | The reversal of the star formation-density relation in the distant universe[END_REF]. Galaxies leave the main sequence when they stop forming stars. This process is called "quenching" and happens when a galaxy looses its cold gas. This process is not well understood yet because it can be a combination of different phenomena, like the interaction of galaxies with an external hotter and denser gas (harassment (e.g., [START_REF] Moore | Galaxy harassment and the evolution of clusters of galaxies[END_REF], strangulation (e.g., [START_REF] Peng | Strangulation as the primary mechanism for shutting down star formation in galaxies[END_REF], starvation (e.g., [START_REF] Trussler | Starvation as the primary quenching mechanism in galaxies[END_REF], ram pressure stripping (e.g., [START_REF] Gunn | On the Infall of Matter Into Clusters of Galaxies and Some Effects on Their Evolution[END_REF]), tidal interactions due to mergers, or ejection of the gas through AGN jets (e.g., [START_REF] Dubois | AGN-driven quenching of star formation: morphological and dynamical implications for early-type galaxies[END_REF]. In all cases, galaxies stop forming stars and undergo a transitioning stage (green dots in Fig. 1.10, the so-called green-valley (e.g., [START_REF] Alatalo | Catching Quenching Galaxies: The Nature of the WISE Infrared Transition Zone[END_REF][START_REF] Moutard | On the fast quenching of young low-mass galaxies up to z=0.6: new spotlight on the lead role of environment[END_REF], and finally settle in the region of the passive population (red dots in Fig. 1.10). Galaxies can also undergo episodes of burst of star formation due to recent accretion of gas (e.g., in mergers): this

Galaxy clusters and large scale structures 1.3.2.1 General properties of clusters

Galaxy clusters are the largest gravitationally bound objects in the Universe. They have typical radius of ∼ 1 Mpc and typical masses in the range 10 13.5 -10 15 M ⊙ . Their underlying over-densities can grow, in their centres, up to extreme values (i.e., 1 + δ ≥ 10 4 , as seen in Fig. 1.7).

Due to their high densities, galaxy clusters are relatively easy to observe. However, their extension and their boundaries are not easy to define. To define a cluster's radius, a threshold in density can be set, delimiting a volume in which a certain amount of density is encompassed. Usually, the density is defined as a function of the critical density of the Universe, ρ c = 3H(z) 2 8πG , and is expressed as follows:

ρ ∆ c = ∆ c ρ c . (1.2)
Using this definition, a galaxy cluster is defined by the volume where ρ > ∆ c ρ c , where ∆ c is set arbitrarily. In the literature, three thresholds ∆ c are mainly used to define edges of galaxy clusters, from very central parts to large radii: ∆ c = 2500, ∆ c = 500, and ∆ c = 200. The first two thresholds were initially set to define cores of clusters, in particular when using X-ray observations that are biased to the densest environments. The last threshold ∆ c = 200 was introduced in numerical simulations as a rough proxy to the virial radius. Based on these density thresholds, a radius, and thus a mass can be derived. The radius is defined as the spatial extension up to which the threshold in density is reached: R ∆ c . The mass is defined by the total mass contained inside R ∆ c , and can be estimated with the density:

M ∆ c = ρ ∆ c V ∆ c , (1.3) 
where V ∆ c is the volume embedded in R ∆ c . Assuming spherical symmetry, the volume of a cluster in R ∆ c is:

V ∆ c = 4 3 πR ∆ c 3 .
(1.4)

Mixing Eq. 1.3 with Eq. 1.2, and Eq. 1.4, the mass M ∆ c is thus related to the radius R ∆ c , by:

M ∆ c = ∆ c H(z) 2 2G R ∆ c 3 .
(1.5)

Cluster content

Galaxy clusters are mainly composed of Dark Matter (∼ 80%), hot gas (∼ 16%) at temperature of order 10 8 K, and stars and cold gas in galaxies (∼ 4%) (e.g., [START_REF] Bykov | Structures and Components in Galaxy Clusters: Observations and Models[END_REF]. Dark Matter (originally suggested by [START_REF] Zwicky | On the Masses of Nebulae and of Clusters of Nebulae[END_REF]) can be indirectly observable via gravitational lensing induced by high densities of clusters: the high dense region disturb space-time and lense background galaxies. This phenomenon produces gravitational arcs around galaxy clusters (e.g. ). Hot gas in galaxy clusters can be observed in several ways. First, it is visible in X-rays via the Bremsstrahlung emission (e.g., [START_REF] Byram | Cosmic X-ray Sources, Galactic and Extragalactic[END_REF][START_REF] Bradt | Evidence for X-Radiation from the Radio Galaxy M87[END_REF], for the first detections). This emission is a radiation produced by the deceleration of the hot free electrons by the charged protons lying in the hot ionised gas. Bremsstrahlung emission is proportional to n 2 e (where n e is the electron density), making X-rays suitable to trace the densest regions of the hot gas in the ICM. Hot gas can also be detected by the Sunyaev-Zel'dovich effect, that is described in detail in the next section. Statistical properties of the hot gas around galaxy clusters, like pressure or entropy profiles, have been derived thanks to numerical simulations and to observations in X-rays and SZ (e.g., [START_REF] Nagai | Testing X-Ray Measurements of Galaxy Clusters with Cosmological Simulations[END_REF][START_REF] Arnaud | The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y S Z -M 500 relation[END_REF]Planck Collaboration et al., 2013a;[START_REF] Bartalucci | Recovering galaxy cluster gas density profiles with XMM-Newton and Chandra[END_REF][START_REF] Ghirardini | Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample[END_REF]. The distributions of the different components in galaxy clusters are therefore known on average, even up to clusters' outskirts (see the reviews of [START_REF] Kravtsov | Formation of Galaxy Clusters[END_REF][START_REF] Bykov | Structures and Components in Galaxy Clusters: Observations and Models[END_REF][START_REF] Walker | The Physics of Galaxy Cluster Outskirts[END_REF].

The Sunyaev-Zel'dovich effect

The Sunyaev-Zel'dovich effect (SZ, [START_REF] Sunyaev | The interaction of matter and radiation in the hot model of the Universe, II[END_REF][START_REF] Sunyaev | The Observations of Relic Radiation as a Test of the Nature of X-Ray Radiation from the Clusters of Galaxies[END_REF]) is a secondary CMB anisotropy, resulting from the interaction of CMB photons with a distribution of high energy electrons. CMB photons interact with the hot ionised electrons via inverse Compton scattering. Therefore, free electrons input energy to CMB photons and the CMB spectrum is slightly distorted with a very peculiar spectral signature: a decrement below 217 GHz, and an increment beyond (as shown in Fig. 1.13). The frequency dependency of the distortion is expressed as a function of the temperature change ∆T as:

∆T T CMB = f (x)y, (1.6) 
where T CMB is the temperature of the CMB, f (x) where x = hν k B T CMB is the frequency dependency, and y is the Compton parameter that quantifies the amplitude of the SZ effect. The Compton parameter y is given by:

y = σ T m e c 2 n e (l)k B T e (l)dl, (1.7) 
where σ T is the Thomson cross-section, m e the mass of the electron, c the speed of light, k B the Boltzmann constant, and n e (l) and T e (l) the density and the temperature of the free electrons along the line of sight, respectively.

The frequency dependency of the temperature change, f (x), is given by:

f (x) = x e x + 1 e x -1 -4 (1 + δ SZ (x, T e ), (1.8) 
where δ SZ (x, T e ) is the relativistic correction. While the effect just described above is called the thermal SZ effect (tSZ), there is another effect: the kinetic SZ effect (kSZ). Here, energy of CMB photons are increased (or decreased) by Doppler effect induced by the global proper motion with respect to the CMB rest frame of a bulk of hot electrons moving towards (or backwards) us. For example, it may happen in galaxy clusters that are moving with respect to the CMB frame. In that case, a change of temperature is expressed as:

∆T T CMB = -τ e v pec c , (1.9) 
where v pec is the velocity of the moving electrons along the line of sight, c the speed of light, and τ e is the electron opacity: In this chapter, I describe the main public data in different wavelengths that I have used for my work. The data analysis aspects, such as for example the selections of the sources in the different catalogues (if any), will be presented in more detail in the different chapters.

Résumé

Dans ce chapitre, je décris les donnée publiques en différentes longueur d'ondes que j'ai utilisée pour mon travail. Les aspects d'analyse de données, par exemple la sélection des sources dans les différents catalogues, seront présentés dans les différents chapitres en détail.

The Sloan Digital Sky Survey

The Sloan Digital Sky Survey1 (SDSS, [START_REF] York | The Sloan Digital Sky Survey: Technical Summary[END_REF] is one of the largest available optical survey in astronomy. While other large surveys dedicated to the study of the galaxies cover deeper but smaller the errors of all these quantities. The magnitudes reported in the AllWISE catalogue were computed with different methods (e.g., profile fitting, aperture photometry). For some of these magnitudes, a correction is needed. This is detailed in Chap. 4 where I present the construction of the training set of galaxies used by the machine learning algorithm to estimate SFR and M ⋆ for nearby galaxies.

WISE-based full sky photometric redshift catalogues

A key information to map the Universe through the distribution of galaxies is to know their redshifts z. It is possible to estimate the redshifts of galaxies very precisely by identifying emission or absorption lines in their spectra. However, spectroscopic observations are expensive in terms of observing time. A parallel (and less expensive) way of estimating the redshifts is the use of the photometric observations in the widest possible range of wavelengths, to fit templates of spectra based on observations or on theoretical models (e.g., LEPHARE or CIGALE [START_REF] Arnouts | Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North[END_REF][START_REF] Ilbert | Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey[END_REF][START_REF] Burgarella | Star formation and dust attenuation properties in galaxies from a statistical ultraviolet-to-far-infrared analysis[END_REF]. Another approach is the use of machine learning algorithms applied on magnitudes and/or colours (e.g., ANNz [START_REF] Collister | ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks[END_REF]. WISE data have been successfully used to extend to the infra-red wavelengths the range of photometric bands of optical surveys. This has allowed to construct photometric redshift catalogues with increased accuracy. I present here the two full-sky catalogues of photometric redshifts based on WISE that I have used for my analyses: the 2MPZ and the WISExSCOS catalogues.

I have used these two catalogues as their very high statistics and their full-sky coverage enable the study of galaxies in very large fields of view outside of the SDSS footprint, needed to study the largescale structures. In addition, the machine learning algorithm developed in Chap. 4 can be applied to the WISE measurements and to the photometric redshift estimations available in the catalogues, allowing the estimations of SFR and M ⋆ of a very high number of sources for both catalogues.

The 2MPZ catalogue

The 2MPZ publicly available catalogue 6 [START_REF] Bilicki | Two Micron All Sky Survey Photometric Redshift Catalog: A Comprehensive Three-dimensional Census of the Whole Sky[END_REF]) is a cross-match between the WISE infrared survey, and two near infra-red and optical full-sky surveys: the Two Micron All Sky Survey (2MASS, [START_REF] Skrutskie | The Two Micron All Sky Survey (2MASS)[END_REF], and SuperCOSMOS (Hambly et al., 2001a;[START_REF] Hambly | The SuperCOSMOS Sky Survey -II. Image detection, parametrization, classification and photometry[END_REF]Hambly et al., 2001b). 2MASS has observed the J (1.25µm), H (1.65µm), and K (2.17µm) bands in the late 90's with two 1.3m telescopes at the Fred Lawrence Whipple Observatory on Mount Hopkins, Arizona, USA, and at the Cerro Tololo Inter-American Observatory, in Chile. SuperCOSMOS is a digitisation of the sky survey plates taken with the 1.24m UK Schmidt telescope (UKST) in Siding Spring Observatory, Australia, the 1m ESO Schmidt at La Silla, Chile, and the 1.22m Palomar Schmidt, in Mount Palomar, California, USA. The SuperCOSMOS data are publicly available, and provide magnitudes in three optical bands: B, R, and I. The 2MPZ catalogue contains about one million nearby sources, with spectroscopic redshifts for about a third of them, and photometric redshifts for the remaining two thirds, estimated using the library ANNz (Collister and Lahav, 2004) trained on SDSS spectral galaxies. The median redshift of the catalogue is z med ∼ 0.08 and the statistical error on the redshift is σ z ∼ 0.012. The low sensitivity of 2MASS and the magnitude cut in the 2MASS catalogue K < 13.9 (to ensure catalogue uniformity), make this catalogue useful to statistically study the distribution of the brightest and closest galaxies (i.e., the highest mass galaxies). The distribution of the 2MPZ sources as a function of redshift is shown in Fig. 2.5.

The SZ cluster database

A database of clusters detected in SZ has been developed at the Institut d'Astrophysique Spatiale, Orsay, by M. Douspis, N. Aghanim Consortium et al., 2013a). Clusters in the SZ meta-catalogue are thus spanning a large variety of angular sizes, redshifts, and y amplitudes, quantities depending on the resolution and on the sensitivity of the experiments they were detected with. The SZ cluster database is publicly available 13 , and contains 2,690 sources. For the 1,681 confirmed clusters, redshifts z and mass M 500 are provided. The redshift range of the catalogue is 0.011 < z < 1.7, with a median value z med ∼ 0.31.

The MCXC catalogue

Galaxy clusters can be detected via the hot gas, detected in X-rays through Bremsstrahlung emission. The ROSAT All-Sky Survey (RASS, [START_REF] Truemper | The ROSAT mission[END_REF] is to date the only full-sky survey in X-rays (until the release of SRG/eROSITA that was successfully launched on 13th of July 2019 [START_REF] Cappelluti | eROSITA on SRG. A X-ray all-sky survey mission[END_REF]). Galaxy clusters detected based on ROSAT were combined to build a meta-catalogue: the Meta-Catalogue of X-ray detected Clusters (MCXC, [START_REF] Piffaretti | The MCXC: a meta-catalogue of x-ray detected clusters of galaxies[END_REF]. The MCXC combines galaxy clusters from RASS-based catalogues (i.e., the Northern ROSAT All-Sky Survey (NORAS, [START_REF] Böhringer | The Northern ROSAT All-Sky (NORAS) Galaxy Cluster Survey. I. X-Ray Properties of Clusters Detected as Extended X-Ray Sources[END_REF], the ROSAT-ESO Flux Limited X-ray Survey (REFLEX, [START_REF] Böhringer | The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy cluster survey. V. The cluster catalogue[END_REF] [START_REF] Mullis | The 160 Square Degree ROSAT Survey: The Revised Catalog of 201 Clusters with Spectroscopic Redshifts[END_REF], the 400 square degree ROSAT Cluster Survey catalogue (400SD, [START_REF] Burenin | The 400 Square Degree ROSAT PSPC Galaxy Cluster Survey: Catalog and Statistical Calibration[END_REF], the bright SHARC survey cluster catalogue [START_REF] Romer | The Bright SHARC Survey: The Cluster Catalog[END_REF], the Southern SHARC catalogue [START_REF] Burke | The Southern SHARC catalogue: a ROSAT survey for distant galaxy clusters[END_REF], the WARPS survey catalogues [START_REF] Perlman | The WARPS Survey. VI. Galaxy Cluster and Source Identifications from Phase I[END_REF][START_REF] Horner | The WARPS Survey. VII. The WARPS-II Cluster Catalog[END_REF], and the Einstein Extended Medium Sensitivity Survey catalogue (EMSS, [START_REF] Gioia | The Extended Medium-Sensitivity Survey Distant Cluster Sample: X-Ray Cosmological Evolution[END_REF]). The MCXC provides a mass M 500 , a radius R 500 , and a redshift z for 1,743 galaxy clusters in the all sky. The mass and redshift distributions of MCXC clusters are shown and compared to other SZ and optical catalogues in Fig. 2 Statistical tools are nowadays strongly needed in data analysis. For example, the stacking method can be used to enhance the signals of cosmic filaments that can be very faint due to their low densities, Bayesian statistics are useful to constraint any free parameter, the bootstrap method can help to estimate the errors and/or the significances of any measurement, and the fashionable machine learning algorithms are very efficient to estimate any property without the use of a model. In this chapter, I describe some of the statistical tools, codes, or methods that I have used during my PhD thesis. These tools appear at a regular basis in the future chapters. When possible, I illustrate the applications of the methods with simple toy models.

Résumé

Aujourd'hui dans l'ère du "big data", l'astrophysique a plus que jamais besoin d'outils statistiques performants pour analyser le grand nombre de données. Par exemple, la méthode de "stacking" peut être utilisée pour aider à la détection des filaments cosmiques (pouvant présenter de très faibles signaux en raison de leur faible densité), les statistiques bayésiennes peuvent être utiles pour contraindre les paramètre libres d'un modèle, la méthode de "bootstrap" peut aider à estimer les erreurs et/ou les pertinences des mesures, et les algorithmes de "machine learning" peuvent s'avérer être très efficaces pour estimer toute propriété sans utiliser de modèle physique, avec moindre temps de calcul. Dans ce chapitre, je décris certains des outils (codes ou méthodes statistiques) que j'ai utilisés pendant ma thèse. Ces outils apparaissent régulièrement lors des travaux présentés dans les prochains chapitres. Dans certains cas, j'illustre les applications de ces méthodes à l'aide de modèles simplistes.

Machine learning algorithms

Introduction

In the last decades, new statistical developments have begun to play an important role in data reduction and in data analysis. Particularly, the studies involving machine learning algorithms have increased exponentially, as such tools are very efficient to identify commonalities in data without resorting to any model. There are two families of machine learning algorithms: the unsupervised and the supervised ones. In the first case, the algorithms are designed to classify the input data. The user must assume the number of classes. This family includes clustering methods, such as k-mean algorithms, and the Self-Organizing Maps (SOM) 1 . In the second case, machine learning algorithms are designed to estimate properties or labels, based on inputs and outputs, both provided by the user. The user must in this case have a perfect knowledge of the labels or of the properties of reference used as output in the training catalogue. This family includes algorithms such as Artificial Neural Networks (ANN, W. [START_REF] White | Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms[END_REF], Random Forests (RF, Ho, 1995), Support Vector Machine (SVM, [START_REF] Hearst | Support Vector Machines[END_REF], and algorithm of Deep Learning (DL) such as Convolutional Neural Networks (CNN, [START_REF] Fukushima | Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position[END_REF]. Machine learning algorithms, mostly supervised ones, have already been applied successfully in astronomy, astrophysics, and cosmology (e.g., [START_REF] Baron | Machine Learning in Astronomy: a practical overview[END_REF], for a review on machine learning algorithms in astrophysics). For example, basic machine learning algorithms, like ANN or RF, have been used to estimate galaxy redshifts or galaxy types (e.g., Bilicki et I have also implemented a RF algorithm, together with other algorithms of machine learning (ANN and CNN) in python for a course of machine learning. They are implemented to be applied on a testcase dataset, called the MNIST data. These data are available in the keras module in python, and contains 60, 000 2D 28 × 28 pixels patches, in which digital numbers are drawn. Each patch is associated with its label, between 0 and 9. These data are known to be the "Hello World !" of machine learning. Implementations, short descriptions, and examples of the different codes applied to the MNIST data are publicly available on my on-line courses of machine learning2 .

Caveats: bias and error estimates

Machine learning algorithms are very efficient to find correlations in the data. They always output a result, but results can sometimes be very different from the expected ones. This can be due to a bad training of the algorithm, a correlation found between unexpected features in the training catalogue that biases the training, or to an over-fitting of the training catalogue. Therefore, one of the biggest challenges in the machine learning domain is to estimate the performances of the trained algorithms (e.g., estimating the statistical errors, estimating and understand the biases). As errors on individual predictions of machine learning algorithms are usually not estimated by the algorithms, errors are often estimated statistically, over a sub-sample of the training sample. A usual way to estimate the performance and the errors of a machine learning algorithm is to split the training catalogue into three sub-samples, and train, validate, and test the algorithm on these independent samples. For example, a training catalogue is split into 80% / 10% / 10%. The 80%, called training set, are used for the training process, while other first 10%, called validation set, are used to check the results on an independent catalogue during the training process, and thus to prevent over-fitting of the training catalogue. The remaining 10%, called the test set, are independent of the training process, and are thus used to estimate the statistical errors and the biases. Retrospectively, the original sample can be split differently to ensure these percentages do not affect the results.

Random forests

Random Forests are machine learning algorithms based on decision tree learning (e.g., Ho, 1995, for the first implementation). Decision trees split iteratively and optimally the training set into several classes, by associating classes to data points and by reducing the Gini impurity3 :

G = C i=1 p(i)(1 -p(i)), (3.1) 
where C is the number of classes, and p(i)) is the probability of picking a data point with class i.

In practice, simple if-else rules on the input features are defined, in order to classify the training set at each splitting, so that each class are equally distributed as a function of the outputs commonalities.

RF algorithms then use the mean estimator of a "forest" of decision trees, trained by bootstrapping the training set. For a training set of n samples, with X = x 1 , ..., x n and Y = y 1 , ..., y n being the inputs and the outputs of the machine learning, respectively, the estimator for an untrained value x ′ is computed as follows:

ỹ x ′ = 1 M M m=1 ỹm x ′ , (3.2) 
where M is the number of decision trees, and ỹm is the estimator for x ′ of the decision tree m trained on a random sample with replacement of n elements in the sample of couples (X, Y).

To optimise the training and obtain the best results, some parameters have to be set, such as the number of trees, M, or the maximum depth of the trees (i.e. the maximum number of splitting), d max . These parameters can be set by training the RF on the training set varying the values of M and d max , and by comparing the scores of the RF on the validation set. The best optimised parameters can be set to the ones providing the best score. This method prevents over-fitting.

The RF algorithms are rather easy to understand, and very efficient. In addition, unlike with ANN (described in the next section), no data pre-processing is needed, meaning that the values themselves are The Adam optimiser is commonly use in DL algorithms. It is very efficient as it adapts iteratively the precision of the errors.

One of the main advantages of the neurons is that they can be modulated, to maximise the optimisation of the loss function and learn very high non-linear models. Neurons can be disposed in "layers". In that case, the weights W become a matrix W, and the bias b becomes a vector, b. The biases b i of the i neurons are different to ensure the independence of the features learned by the neurons. The output of a layer is a vector f ( x), mathematically written as follows:

f ( x) = g(W. x + b).
(3.4)

There is no limit in the number of neurons in a layer, and layers can be themselves superposed to increase the non-linear character of the models in case of very complex data. ANN algorithms with a large number of layers are part of Deep Learning (DL) algorithms. In DL, the outputs of the first layer, f ( x), is taken as inputs of the second layer, and so on, with as many layers of as many neurons as wanted. In some cases (e.g., classifiers or segmentations), when a probability is wanted as output of the network, the last activation function after the last layer is chosen to rescale the value between 0 and 1. The Sigmoid is an example of such activation function:

Sigmoid(x) = 1 1 + e -x . (3.5) 
To summarise mathematically, for an ANN composed of three layers (indexed by 1, 2 and 3) of several neurons each with a Relu activation function, and a Sigmoid last activation function, the outputs of the network that are compared with the outputs y are written:

f ( x) = Sigmoid 3 (W 3 .ReLU 2 (W 1 .ReLU 1 (W 2 . x + b 1 ) + b 2 ) + b 3 ). ( 3.6) 
The deeper the algorithm, the more complex the model is, and the better it learns. However, if the model is too deep for a too simple case, the model may start to learn the statistical noise of the training catalogue (this is called over-fitting). To prevent this effect, results are estimated iteratively on the training set and on the validation set. The training can be stopped when the results on the validation set start to decrease as compared to the results on the training set: this is called the early stopping. Another way of preventing over-fitting is to include dropout layers [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF]. Dropout layers randomly ignore a percentage (set by the user) of neurons in the network. This technique approximates a large number of networks with different architectures working together in parallel, improving the results. To increase the performance and the results, parameters can also be tuned. The main ones are the number of layers, and the number of neurons in each layer. I will use ANN to confirm the results obtained with the RF to estimate SFR and M ⋆ of nearby galaxies (presented in Chap. 4).

Convolutional Neural Networks

ANN and deep ANN algorithms are ideal to learn very highly non-linear features in very large sized input data, like images. However, when the aim is to analyse spatial coherent objects in input images (e.g., segmentation, detection of sources), the features to capture can be invariant in translation and in rotation. That can be for example the case for the SZ emission generated by the hot gas in galaxy clusters seen in the Planck frequency maps. In that case, successive convolutional layers can be applied to the images, to extract the relevant spatial information that is encoded and injected into an ANN (or decoded parameters, allowing the study of the statistics of the derived parameters (e.g., their distributions, their degeneracies). The MCMC samples the probabilities of the parameters as a function of the prior distributions (given by the user), and of a likelihood loss function that is computed based on the differences between the estimated models and the data. MCMC algorithms have already been successfully applied in astrophysics and cosmology, e.g., to estimate the cosmological parameters with Planck (e.g., Planck Collaboration et al., 2016b), to compute comet orbits (e.g., [START_REF] Lang | Searching for Comets on the World Wide Web: The Orbit of 17P/Holmes from the Behavior of Photographers[END_REF], or to compute dust properties in warm debris disks (e.g., [START_REF] Olofsson | Transient dust in warm debris disks. Detection of Fe-rich olivine grains[END_REF].

MCMC uses the Metropolis algorithm to generate a chain of parameters. It works as follows. Given any data y, its error σ, and a model f (x, a), where a is the parameter to fit, the required output is the posterior distribution:

p(a | y, x, σ) = p(a) × p(y | x, σ, a), (3.7) 
where p(y | x, σ, a) is the likelihood function computed based on the model f :

L(a) = p(y | x, σ, a) ∝ - 1 2 n (y n -f (x n , a)) 2 σ 2 n , (3.8) 
and p(a) is the prior distribution of the parameter a, usually a uniform or a normal law, between the fixed boundary conditions [a min , a max ]. Then, the chain of parameters is constructed following these steps:

• Initialise the chain with an arbitrary point a 0 .

• For each iteration i, pick up a parameter a i+1 that follows the prior distribution p(a).

• Compare the likelihood obtained with a i+1 with the one obtained with a i : β = L(a i+1 )/L(a i ).

• Generate a uniform random number u ∈ [0, 1]:

if u ≤ β, accept a i+1 in the chain, -else u > β, conserve the previous value in the chain: a i+1 = a i .

The chain converges to the maximum of likelihood, accepting at each iteration a new parameter in the chain if the likelihood is higher than the previous one, and rejecting with a non zero probability parameters with lower likelihoods. The chain contains the probability distribution of the fitted parameters.

The publicly available emcee implementation of the MCMC algorithm in python is very efficient in terms of computation time (Foreman-Mackey et al., 2013). The emcee package uses an optimised algorithm, the Affine Invariant MCMC Ensemble Sampler, described in detail in Goodman and Weare, 2010. This tool has been used at a regular basis in astronomy and in cosmology. I will use the emcee package in my analysis of the physical properties of the gas in the bridge of matter between the galaxy cluster pairs A399-A401 and A21-PSZ2 G114.90-34.35 [START_REF] Bonjean | Gas and galaxies in filaments between clusters of galaxies. The study of A399-A401[END_REF], presented in Chap. 5. I will also use it to fit the quiescent fraction profile around cosmic filaments, presented in Chap. 6.5.2.

Stacking

When the detections of individual objects are not possibles due to their very faint signals (e.g., low densities filaments in galaxy density maps, or diffuse gas in SZ Planck maps), an averaged characterisation of all the objects is possible by stacking. Stacking is equivalent to averaging signals individually measured on the data. By doing so, the noise of the data is reduced by √ n (where n is the number of considered objects), and the average signal is enhanced. This technique has already been succesfully used for example

ρ k = d + 1 n i=1 A ki , (3.9) 
where ρ k is the density at the point k, and A ki are the areas (or volumes) of the triangles (or tetrahedra) connected to the point k.

• The densities estimated with Eq. 3.9 are linearly interpolated on a regular grid, and the density field is reconstructed (bottom panel of Fig. 3.6).

I have developed a python implementation of the DTFE, the pyDTFE, publicly available on GitHub 4 . I will use it to compute the full sky galaxy density maps detailed in Chap. 4.6.3. These maps were used to characterise cosmic filaments and clusters (Chap. 6 and Chap. 7). I will also use the pyDTFE code to detect galaxy over-densities in between the galaxy cluster pair A399-A401 (Chap. 5.4.3).

RadFil

To derive galaxy properties around cosmic filaments in Chap. 6, I have used the code developed by Zucker and Chen, 2018: RadFil5 . It is a code that measures radial profiles around filamentary structures, using interpolation of filament' spines and their first derivatives at each point. RadFil was originally developed to study inter-stellar filaments (e.g., Zucker, Battersby, and Goodman, 2018). I have optimised the code to apply it to large-scale structure cosmic filaments. The advantage of the RadFil code is that knowing the positions of the filaments, a profile can be measured in any 2D python array.

The RadFil code can be used in two ways: in the first option (not used here), the user provides the code with a single python 2D array of a given observable, the code detects the skeleton of the filament, if any, and outputs the measured profiles around the filament. In the second option, the user provides the code with two python 2D arrays, one being the observable (the pixel values representing the quantity to measure), and the other one being a mask tracing the spine of the filament around which RadFil will measure the profiles. I use RadFil in Chap. 6 with the second option for two main reasons. First, the cosmic filaments have very low signal-to-noise ratio observables compared to inter-stellar filaments, preventing the RadFil code for detecting them. Second, optimised methods to extract cosmic filaments in the Cosmic Web have already been successfully applied in galaxy surveys (e.g., Libeskind et al., 2018 for a review, Bonnaire et al. in prep.). Positions of filamentary Cosmic Web structures are thus already known so they can be directly input in the code. In my work, I have used the catalogue of cosmic filaments extracted by DisPerSE in a SDSS spectroscopic sample of galaxies that is presented in Chap. 6.2.1.

An illustration of RadFil is shown hereafter on a single toy model. I have modelled a filament spine in a map of size 1000×1000 pixels, that I smoothed with a Gaussian filter of σ = 30 pixel width (top line of Fig. All of these relations are well calibrated. However, as passive and active galaxies have very different colours in IR, applying these methods to galaxies without having any prior on their types can lead to potential biases. Ideally, optical spectroscopic data are needed to estimate the SFR and M ⋆ properties, but they are not always available as they are costly in terms of observing time.

In this chapter, an alternative approach is chosen to estimate SFR and M ⋆ for all galaxies over 70% of the sky (i.e., outside the Galactic plane) with measured redshifts in the range 0 < z < 0.3, without any priors on galaxy types. To do so, a machine learning algorithm, i.e., a random forest (see Chap. 3.1.3), heve been used. Such a method is able to estimate very non-linear laws based on models trained on reliable given inputs and outputs. In the present case, it allows us to estimate SFR and M ⋆ independently of any complex model nor any priors on galaxy types. Very recently, Delli Veneri et al., 2019 have used a similar approach to derive SFR based on optical colours from the SDSS photometric survey on a limited portion of the sky. Here, the random forest algorithm is trained on WISE infra-red magnitudes, allowing an application on the full usable sky (masked from our galaxy).

Constructing a training set

Ensuring good, that is, unbiased, training of the machine learning algorithm, the choice of inputs and reference outputs is essential.

The choice of inputs and outputs

First of all, the inputs have to be defined, that is, the data that are proxy to estimate the SFR and the M ⋆ . Motivated by its full-sky coverage and its very large number of sources (more than 700,000,000 sources), I have chosen the WISE infrared data as inputs, namely the AllWISE Source Catalogue (see Chap. 2.2.1). As the SFR can evolve with redshift, I have also chosen to use the redshift z as input. As a proxy for the stellar mass, I have chosen the WISE luminosity in the W1 band (3.4µm), that traces the old non-ionizing stars [START_REF] Wen | The stellar masses of galaxies from the 3.4 µm band of the WISE All-Sky Survey[END_REF][START_REF] Jarrett | Extending the Nearby Galaxy Heritage with WISE: First Results from the WISE Enhanced Resolution Galaxy Atlas[END_REF]. As a proxy for the SFR, I have chosen the WISE luminosity in the W3 band (12µm), that traces the emission from small grains of dust, thus directly related to the total quantity of dust, itself indirectly related to the SFR (re-emission of the UV from young stars absorbed by the dust) (Jarrett et [START_REF] Bilicki | WISE x SuperCOSMOS Photometric Redshift Catalog: 20 Million Galaxies over 3/pi Steradians[END_REF] found that its larger beam size (of 12") and its poorer sensitivity could lead to an important incompleteness and a significant bias of source selection with respect to redshift. The aim of my study being to estimate the SFR and the stellar mass for both galaxy types (active and passive), without any prior, I have also chosen as input two WISE colours to segregate the galaxy types: W1-W2 (3.4 -4.6µm) and W2-W3 (4.6 -12µm). Wright et al., 2010 have found that these two colours are very efficient to segregate morphologies, and thus galaxy types: elliptical E and passive spiral S0 galaxies are mainly located in the regions 0.5<W2-W3<1.5 and -0.1<W1-W2<0.3, while active spiral galaxies are located in the regions 1<W2-W3<4.5 and -0.1<W1-W2<0.7. Alatalo et al., 2014 have also found that WISE colours were a good proxy to segregate transiting galaxies and active galaxies, with a threshold between the two types around W2 -W3 ∼ 2.8. I show in Fig. 4.1 the colour W2-W3 as a function of the passivity of the galaxies, i.e., the distance to the main sequence d2ms, for a sample of galaxies from the SDSS MPA-JHU DR8 catalogue cross-matched with WISE. It confirms that WISE colours are very efficient to segregate populations.

The second ingredient of the construction of the training catalogue is the choice of the outputs that are used as reliable reference for SFR and M ⋆ . I have chosen the SFR and stellar masses from the SDSS MPA-JHU DR8 catalogue, as their estimations are based on robust methods and on reliable spectra. The catalogue and the details about the estimations of the SFR and the stellar mass are presented in Chap. seen. Moreover, the scatter of the results depends only very slightly on galaxy type. For passive galaxies, with BPT = -1, the scatter on M ⋆ tends to be reduced: σ SFR = 0.38 dex and σ M ⋆ = 0.11 dex. For active galaxies, with BPT = 1, the inverse trend is seen and the scatter on the SFR tends to be reduced with a small increase of the scatter of M ⋆ : σ SFR = 0.30 dex and σ M ⋆ = 0.23 dex. For transitioning galaxies, with BPT = 2, the scatters are roughly the same as the overall ones obtained on the all the populations: σ SFR = 0.39 dex and σ M ⋆ = 0.13 dex. A summary of the different scatters is shown in Tab. 4.1.

Comparison with other methods

Several studies have derived analytical formulae to determine SFR and M ⋆ , some of them also based on the WISE luminosities (e.g., Wen et I have computed M ⋆ with Eq. 4.1 for all galaxies. In the left panel of Fig. 4.10, I compare M ⋆ estimated with Eq. 4.1 with M ⋆ from the SDSS MPA-JHU DR8 catalogue. I also show the 1, 3, and 5 σ contours of the RF estimations. This comparison shows the smaller scatter of the M ⋆ estimated with the RF algorithm. This result is not surprising considering that the RF algorithm has five inputs compared to only one for Eq. 4.1. Scatters are σ M ⋆Wen = 0.23 dex and σ M ⋆ML = 0.16 dex (see also Tab. 4.1).

SFR are computed, for star-forming galaxies only with BPT = 1, to satisfy the conditions of Cluver et al., 2014, following Eq. 4.2. They are compared with the SFR from the SDSS MPA-JHU catalogue (right panel of Fig. 4.10). The blue contours show the RF estimations, and the red contours show the SFR computed with the method from Cluver et al., 2014 for passive galaxies (i.e., BPT = -1). A smaller scatter for the SFR estimations from the RF algorithm is found; this is again expected since five inputs are used for the RF algorithm compared to only one for Eq. 4.2. The limitation of the application domain of a relation between LW3 and SFR is also shown in terms of its dependence on galaxy type (huge bias on the red contours showing the passive galaxies). Scatter are σ SFR Cluver = 0.47 dex and σ SFR ML = 0.30 dex for active galaxies (see also Tab. 4.1), while for passive galaxies scatters are σ SFR Cluver = 0.49 dex and σ SFR ML = 0.38 dex. For passive galaxies computed with Eq. 4.2, a bias, defined as the absolute difference of the means, is found: b Cluver = 0.93 dex (compared with b ML = 0.04 dex for RF estimations).

As a second comparison, I have used a catalogue of galaxies with SFR computed using an alternative method. An example is the extended version of the COLD GASS (CO Legacy Database for GASS) catalogue of nearby galaxies, the xCOLD GASS catalogue1 [START_REF] Saintonge | xCOLD GASS: The Complete IRAM 30 m Legacy Survey of Molecular Gas for Galaxy Evolution Studies[END_REF]. The sample contains 532 nearby galaxies (z < 0.05) from SDSS selected in mass (M ⋆ > 10 9 M ⊙ ). The galaxies span a wide intersections of the three Gaussians fitted on the distribution of the d2ms on a sample of SDSS galaxies, used to model the three populations of galaxies (shown in the right panel of Fig. 4.1). After the splitting, the catalogue contains 7,249,961 active, 4,353,744 transitioning, and 4,161,830 passive galaxies. The distributions of the three populations of galaxies in redshifts are shown in the right panel of Fig. 4.16.

Galaxy density maps

Based on the WISExSCOS value-added catalogue and on its three sub-samples of galaxy types defined above, I have constructed 3D galaxy density maps, in the redshift range 0.1 < z < 0.3, using the positions of the sources on the sphere and their redshift information. To do so, I have reconstructed the density field with the pyDTFE code presented in Chap. 3.3.1. Based on 3072 3D density fields in patches of 3.7 • × 3.7 • , I have generated four 3D HEALPIX full-sky maps: one for all galaxies, and one for each of the three populations of galaxies. The number of pixels of the HEALPIX maps are n side = 2048, i.e., a pixel resolution of 1.7', and the binning in redshift was arbitrarily set at δ z = 0.01. An example of a slice at z = 0.15 of the 3D passive galaxy density map (smoothed at 30' for visualisation) is shown in Fig. 4.17. The large scale distribution of the galaxies is seen, together with contaminations, i.e., the stripes due to the WISE scanning strategy, the mask of our galaxy and of the Magellanic cloud, and the reddening from dust around our galaxy and the Magellanic cloud. High density concentrations are also seen, which are galaxy clusters. In addition to the four galaxy density maps, I have constructed in the same way 3D maps of SFR and M * for all galaxies, and for the active, transitioning, and passive populations. The maps are constructed by interpolating at their 3D positions the SFR and M * estimated with the RF algorithm.

Towards a WebService tool

I have developed a WebService based on python and on the Django package 5 . It allows to quickly estimate on the fly the SFR and M ⋆ properties of photometric SDSS sources. The interface is very user friendly, one only has to enter the coordinates of the field and a radius for the cone search. The trained RF model is called and loaded in back-end. HTML SQL queries on the AllWISE catalogue and on the SDSS photometric redshift survey are performed in parallel, and a cross-match between the two catalogues is performed on the fly. The RF model then uses the photometric redshifts from SDSS and the WISE luminosities and colours to estimate SFR and M ⋆ , and display the sources in an interactive 3D fields, together with their associated positions on the SFR-M ⋆ diagram. The user can easily select with a lasso selection the sources of a desired type with the information on the distance to the main sequence of star-forming galaxies, and see their updated positions in the 3D field. A screen-shot in Fig. 4.18 shows the interface of the WebService, with an example in a field of 30 arcmin around the position (R.A. = 180 • , Dec.= 0 • ). In this example, passive galaxies were selected with the diagram on the right. An over-density of the selected passive galaxies is seen in the 3D density field on the left (light blue circle). The redshift and the position of this over-density of passive galaxies were matched with a galaxy cluster from the RedMaPPer catalogue presented in Chap.2.4.1: RMJ120143.7-001104.2, at z = 0.16. Thus, this example also shows the potential of such value-added catalogue and tool to detect galaxy clusters.

Summary

I have developed a method based on machine learning to estimate the SFR and M ⋆ of galaxies, in the redshift range 0.01 < z < 0.3, over the whole usable sky when their redshifts are known. 

Abstract

In this chapter, I present a multi-wavelength analysis of two pairs of galaxy clusters selected with the SZ effect. I have focused on one pair of particular interest: A399-A401 at redshift z ∼ 0.073, that is linked by a bridge of matter of 3 Mpc. I have also performed the first analysis of one lower-significance newly associated pair: A21-PSZ2 G114.09-34.34 at z ∼ 0.094, separated by 4.2 Mpc. I have characterised the intra-cluster gas using the SZ signal from Planck and, when possible, the galaxy optical and infra-red properties based on two photometric redshift catalogues: 2MPZ and WISExSCOS. From the SZ data, I have measured the gas pressure in the clusters and in the inter-cluster bridge. In the case of A399-A401, the results are in perfect agreement with previous studies and, using the temperature measured from the X-rays, I have further estimated the gas density in the bridge, n 0 = (4.3 ± 0.7) × 10 -4 cm -3 . The optical and IR colour-colour and colour-magnitude analyses of the galaxies selected in the cluster pair, together with their star formation activities, show no segregation between the galaxy populations both in the clusters and in the bridge of A399-A401: they are all passive. The gas and galaxy properties of this pair suggest that the whole system has formed at the same time and corresponds to a pre-merger, with a cosmic filament gas heated by the collapse. For the cluster pair A21-PSZ2 G144.90-34.35, I have estimated the pressure in the clusters and in the inter-cluster bridge in SZ. However, as the optical and IR data are limited in this case, concluding on the presence of an actual cosmic filament or proposing a scenario is not possible. This chapter uses material from "Gas and galaxies in filament between clusters of galaxies: The study of A399-A401", V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, and A. Beelen, 2018, A&A, 609, A49.

Résumé

Dans ce chapitre, je présente une analyse multi-longueurs d'onde de deux paires d'amas de galaxies sélectionnées avec l'effet SZ. J'ai mis l'accent sur une paire de particuler intérêt : la paire A399-A401, à redshift z ∼ 0, 073, qui est reliée par un pont de matière long de 3 Mpc. J'ai également effectué la première analyse d'une paire nouvellement associée : la paire A21-PSZ2 G114.09-34.34, à z ∼ 0, 094, séparée par 4,2 Mpc. J'ai caractérisé le gaz intra-amas en utilisant le signal SZ de Planck, et spécifiquement pour A399-A401, j'ai étudié les propriétés optiques et infrarouges des galaxies à l'aide de deux catalogues de redshift photométriques : 2MPZ et WISExSCOS. A partir des données SZ, j'ai mesuré la pression du gaz dans les amas et dans le pont. Dans le cas de A399-A401, les résultats sont en accord avec les études précédentes, et en utilisant la température mesurée à partir des observations en X, j'ai estimé la densité du gaz dans le pont comme étant n 0 = (4, 3 ± 0, 7) × 10 -4 cm -3 . Les analyses optiques et infrarouges des couleurs et des magnitude des galaxies sélectionnées comme membre de la paire d'amas, ainsi que leurs activités de formation d'étoiles, ne montrent aucune différence entre les populations de galaxies d'amas et celle du pont : elles sont toutes passives. Les propriétés du gaz et des galaxies de cette paire suggèrent que tout le système s'est formé en même temps et correspond à une pré-fusion, avec un gaz filamentaire cosmique chauffé par l'effondrement des deux amas. Pour la paire d'amas A21-PSZ2 G144.90-34.35, j'ai estimé la pression dans les amas et dans le pont inter-amas avec l'effet SZ. Cependant, comme les données optiques et IR sont limitées dans ce cas, il n'est pas possible de conclure sur la réelle présence d'un filament cosmique ou de proposer un scénario. Ce chapitre utilise du matériel du papier "Gas and galaxies in filament between clusters of galaxies: The study of A399-A401", V. Bonjean, N. Aghanim, P. Salomé, M. Douspis, et A. Beelen, 2018, A&A, 609, A49.

Introduction

As two-dimensional galaxy densities obtained with CFHT and SUBARU observations. Regarding cluster pairs, the inter-cluster filaments or the bridges are expected to be denser, with a hotter gas, and thus in principle easier to detect, in particular in the X-rays and in the SZ effect [START_REF] Dolag | Simulating the physical properties of dark matter and gas inside the cosmic web[END_REF]. Cluster pairs are thus good targets and have therefore been the subject of numerous studies. The photometric properties of the galaxies in the inter-cluster filament, their star-formation evolutions, their stacked weak lensing properties, their stacked SZ contributions, and so on, were performed in many selected cluster (or group) pairs (e.g. ). Galaxy clusters may show substructures or evidence of dynamical effect: they merge, interact, and accrete smaller groups. The galaxy properties derived from optical and near-infrared data thus need to be combined, in a multi-wavelength analysis, with the study of cluster gas content. The gas properties of cluster pairs were therefore also investigated mostly using X-ray observations. This is the case of the particular pair A399-A401, thoroughly studied using data from ASCA, ROSAT, Suzaku and XMM-Newton (e.g. Karachentsev [START_REF] Govoni | A radio ridge connecting two galaxy clusters in a filament of the cosmic web[END_REF], where the authors have detected the presence of magnetic fields in the bridge re-accelerating the electrons in the ionised gas between the two clusters.

In this chapter, I present a multi-wavelength analysis of A399-A401, based on the SZ map of 2015 from Planck, and optical and near infra-red data from photometric redshift catalogues with physical galaxy properties estimated as described in Chap. 4. I also present a newly interesting pair: A21-PSZ2 G114.90-34.35.

SZ selection of galaxy cluster pairs

I have first constructed a sample of cluster pairs based on the SZ signal given that it is a priori the most appropriate tracer of the diffuse hot gas. In practice, I have based the selection both on the SZ cluster database (presented in Chap. 2.4.2) and on the signal-to-noise ratio of the SZ signal between the pairs.

SZ selection

Following Planck Collaboration et al., 2013b, I have applied three conditions to select the galaxy-cluster pairs. First, the two clusters need to be at the same redshift, second, the distance between the two clusters needs to be large enough to avoid blending effects, and finally, the significance of the SZ signal in the inter-cluster region needs to be above 2σ. The two first empirical conditions were proposed by Planck Collaboration et al., 2013b: ∆z<0.01, and considering the Planck MILCA SZ map beam of 10 arcmin, 30 arcmin<θ sep <120 arcmin, where ∆z is the redshift difference between the two clusters and θ sep is the angular distance separating the two clusters. This corresponds to projected distances between 3 and 40 Mpc. I have found a total of 71 cluster pairs satisfying the two conditions (Fig. × 10 -4 cm -3 (see their Fig. 7). I have compared this value to the value of the SZ map, y = 22.2 ± 1.8 × 10 -6 , and have estimated an effective depth of l = 1.7 ± 0.5 Mpc. This value suggests that the shape of the bridge is consistent with a cylinder, compatible with the hypothesis behind the model chosen for the bridge in this analysis. However, the computations of the bridge depth l strongly depend on the model of the electron density and on the assumed value of y.

The re-analysis of the Suzaku data by Akamatsu et al., 2017 has shown hints of a shock in the direction parallel to the one linking the two clusters. Such a shock would be incompatible with a merger scenario of two clusters only, since numerical simulations predict shocks in the radial direction [START_REF] Akahori | Non-Equilibrium Ionization State and Two-Temperature Structure in the Linked Region of Abell 399 and Abell 401[END_REF]. This suggests a pre-existing cosmic filament, an hypothesis supported by Planck Collaboration et al., 2013b. The analysis presented in this chapter is complementary and brings additional information on the scenario. The SZ emission traces and detects the diffuse gas, with a density one order of magnitude below the mean densities in the clusters. In addition, I have detected a galaxy over-density between the clusters A399 and A401 with a significance of approximately 8σ. The colour-colour, colourmagnitude, and SFR-M ⋆ diagram of the galaxies selected in the pair show that they are all passive. No segregation is seen between the galaxies belonging to the three components of the pair. The properties of the galaxies in the pair A399-A401 are those of the typical populations of galaxies in clusters or in dense collapsed structures. This contrasts with the results showing a large fraction of star-forming galaxies in intermediate-density environments such as filaments [START_REF] Gallazzi | Obscured Star Formation in Intermediate-Density Environments: A Spitzer Study of the Abell 901/902 Supercluster[END_REF][START_REF] Edwards | Spitzer Observations of Abell 1763. I. Infrared and Optical Photometry[END_REF]. It suggests that the mechanisms by which galaxies can undergo a quenching of star formation (e.g. mergers, harassment, ram pressure, etc.) are more efficient in the A399-A401 system which could be related to the hot and pressured gas observed in the pair in SZ, X-rays, and radio.

Conclusion

I have performed an SZ-based selection of galaxy-cluster pairs showing hints of SZ signal potentially associated with inter-cluster bridges. Among the 71 pairs satisfying the selection criteria on redshift and angular distance separations, I have selected the systems at the highest significance: A399-A401 at redshift z = 0.073 with S /N fil = 8.74, and A21-PSZ2 G114.90-34.35 at redshift z = 0.094 with S /N fil = 2.53. For these two systems, I have performed a multi-wavelength analysis that constrained the gas properties, and I have studied the galaxy properties in the three components of the pair, defined by the two clusters and the inter-cluster bridge.

For the most significant pair, A399-A401, I have measured a gas pressure in the inter-cluster bridge only with the SZ effect, P 0 = (2.84 ± 0.27) × 10 -3 keV.cm -3 , that is in agreement with previous studies that used both X-ray and SZ measurements (Planck Collaboration et al., 2013b). The types, morphologies, and star-formation activities of the galaxies in the clusters and in the inter-cluster bridge can not be differenciated: they are all passive. The analysis of the galaxy properties weakens the post-merger hypothesis which was already disfavoured by the lack of a big offset between the positions of the BCGs and the centres of the X-ray emissions. This study, alternatively, favour the scenario in which the gas between the two clusters is associated with a former cosmic filament. The gas is collapsing, smoothly compressed, and heated by the collision of the two clusters A399 and A401. The current data are however not deep enough to accurately measure the effect of environmental quenching in the bridge that connects the two clusters. However, since the recent observation of this pair in LOFAR by Govoni et al., 2019, a selection of radio sources can be performed in the bridge. A proposal for observing time with ALMA is being prepared in collaboration with G. Castignani (EPFL), P. Salomé (LERMA), F. Combes (Collège de France), N. Aghanim (IAS), and P. Jablonka (EPFL). We will select specific sources based on the SFR in order to study the influence of the hot gas environment on the galaxies.

For the newly associated pair of clusters A21-PSZ2 G114.90-34.35, I have detected an inter-cluster bridge at 2.5σ from the analysis of the Planck MILCA SZ map and from the 3D galaxy density field. However, a significant detection of the bridge or a detailed study of galaxy properties around the pair is not possible due to the lack of statistics. Dedicated observations in the X-rays, with a higher-resolution SZ instrument, or optical or near infra-red wide-field spectroscopic data are necessary to confirm the presence of inter-cluster bridge.

More complex systems, super-clusters, with high significance inter-cluster SZ signal were identified in my sample and should be subject to future dedicated analyses: the Shapley super-cluster (in collaboration with N. Aghanim and T. Bonnaire) and the super-cluster A3395-A3391. This system is in the footprint of the PACT y map (Aghanim et 

Abstract

The role played by the large-scale structures in the galaxy evolution is not quite well understood yet. In this chapter, I investigate the galaxy properties in the range 0.1 < z < 0.3 from the WISExSCOS valueadded catalogue presented in Chap. 4.6.1 around the cosmic filaments detected with DisPerSE. I also link the galaxy properties and the gas content in the Cosmic Web. I have fitted a profile of galaxy over-density around cosmic filaments with a typical radius r m = 7.4 ± 0.1 Mpc. I have measured an excess of passive galaxies near the filament's spine, higher than the excess of transitioning and active galaxies. I have also detected SFR and M ⋆ gradients pointing towards the filament's spine. I have investigated this result and found an M ⋆ gradient for each type of galaxies: active, transitioning, and passive, and a positive SFR gradient for passive galaxies. I have investigated the quiescent fraction f Q profile of galaxies around the cosmic filaments. Based on recent studies of the role of the gas and of the Cosmic Web on galaxy properties, I have modelled f Q with a β model of gas pressure. The slope obtained here, β = 0.54 ± 0.18, is compatible with the scenario of projected isothermal gas in hydrostatic equilibrium (β = 2/3), and with the profiles of gas fitted in SZ (1/3 < β < 2/3). The material presented in this chapter will be used for a future publication: "Quenching of WISExSCOS galaxies around SDSS filaments", V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, and H. Tanimura, in prep.

Résumé

Le rôle joué par les structures à grande échelle dans l'évolution des galaxies n'est toujours pas bien compris à ce jour. Dans ce chapitre, j'étudie les propriétés des galaxies dans la gamme de redshift 0, 1 < z < 0, 3 du catalogue de valeur ajoutée WISExSCOS présenté au Chap. 4.6.1, autour des filaments cosmiques détectés avec DisPerSE. J'ai étudié le lien entre les propriétés des galaxies et le contenu en gaz dans la toile cosmique. Pour ce faire, j'ai ajusté un profil de surdensité de galaxies autour des filaments cosmiques, et ai obtenu un rayon typique de r m = 7, 4 ± 0, 1 Mpc. J'ai mesuré un excès de galaxies passives dans les régions internes des filaments. J'ai aussi mesuré des excès de galaxies en transition et actives, mais inférieur à celui des galaxies passives. J'ai aussi détecté des gradients de SFR et de M ⋆ pointants vers les régions internes des filaments. J'ai investigué ce résultat en séparant les types de galaxies, et j'ai aussi mesuré un gradient de M ⋆ pour chaque type : active, en transition, et passive, et un gradient de SFR positif pour les galaxies passives. J'ai ensuite étudié le profil de fraction de galaxies éteintes, f Q , autour des filaments cosmiques. Basé sur des études récentes de la distribution du gaz autour des filaments de la toile cosmique, j'ai modélisé f Q avec un modèle β de pression du gaz. La pente obtenue ici, β = 0, 54 ± 0, 18, est compatible avec celle d'un profil projeté d'un gaz isotherme en équilibre hydrostatique (β = 2/3), et compatible avec les profils de gaz détectés en SZ (1/3 < β < 2/3). Le matériel présenté dans ce chapitre sera utilisé dans le cadre d'une future publication : "Quenching of WISExSCOS galaxies around SDSS filaments"', V. Bonjean, N. Aghanim, M. Douspis, N. Malavasi, et H. Tanimura, en préparation.

Introduction

While galaxy clusters are relatively easy to study, to characterise, and even to detect, other Cosmic Web structures, like cosmic filaments, are not easily defined because of their low densities. No global picture such as the one drawn for the galaxy clusters has been derived yet, and even the definition of cosmic filaments is still arguable since it depends on the way they are detected. Several methods have been proposed to detect the cosmic filaments, for example Bisous ( , 2018, at 0.5 > z > 0.9). These studies show evidence of galaxy population segregation inside filaments, hints of pre-processing and quenching process of galaxies while entering the large scale structures, and of a positive stellar mass gradient pointing towards the filament's spines. Although these trends are detected in different studies, the mechanisms responsible of these processes are not understood yet, and the role of the environment on the evolution of the galaxies is still not clear.

In this chapter, I present a statistical study of galaxy properties from the value-added catalogue presented in Chap. 4, around cosmic filaments at low redshift (in the range 0.1 < z < 0.3) extracted with DisPerSE in a spectroscopic sample of galaxies from the SDSS. I show the statistical distributions of all galaxies, and of passive, transitioning, and active galaxies around the cosmic filaments, together with their stellar mass and SFR profiles. I also investigate the role of the Cosmic Web and of the hot gas on the galaxy quenching around the cosmic filaments, by linking the quiescent fraction profile to a profile of hot gas.

The catalogue of filaments 6.2.1 Cosmic filaments from LOWZ/CMASS

The BOSS survey is the only extra-galactic survey in the third stage of the SDSS (SDSS-III). It combines the LOWZ and the CMASS catalogues, probing the low redshift (0.15 < z < 0.45) and the intermediate redshift (0.4 < z < 0.7) Universe, respectively. These two catalogues are extensions of the primary samples of SDSS galaxies to fainter regions and to bluer galaxies, in order to increase the spatial number density by a factor of three 2 . This sample was used by N. Malavasi (IAS, Orsay) to construct a catalogue of cosmic filaments using DisPerSE [START_REF] Sousbie | The persistent cosmic web and its filamentary structure -I. Theory and implementation[END_REF]. I show in Fig. 6.1 the spatial distribution of the filaments overlaid with the SDSS galaxies density field. The details of the construction of the catalogue are given in Malavasi et al., in prep.

DisPerSE is an algorithm that detects filaments in catalogues of discrete points. The method is based on the density field, reconstructed with the Delaunay Tessellation Field estimator (DTFE, described in Chap. 3.3.1). DisPerSE detects critical points in the density field, that can be either maximum density points, minimum density points, saddle points or bifurcation points. The output of DisPerSE is thus a catalogue of filaments, defined as connecting the saddle points to the maximum density points. Each filament is constructed by several small segments, with given positions and redshifts. DisPerSE also outputs a persistence, that is a quantity related to the significance of the filament's detections, that was set to 3 σ in this case. I have defined the mean positions of the filaments (R.A. mean , Dec. mean ) being the mean of the positions (R.A. i , Dec. i ) of the i segments. In the following, I have defined the minimum, mean, and maximum redshifts of the filaments, z min , z mean , and z max , as the minimum, the mean, and the maximum redshifts of the segments composing the filaments.

Selection of DisPerSE filaments

Since I study the properties of the WISExSCOS value-added catalogue, I have thus excluded the filaments for which parts went outside the redshift range of the WISExSCOS catalogue, that is 0.1 < z < 0.3, to ensure that the filaments of our selection are entirely studied. I have also cut the longest filaments at

• 0 < l < 20 : n obj = 1042, • 20 < l < 40 : n obj = 2291, • 40 < l < 100 : n obj = 2226.
For the case of short filaments, I have set the upper limit to 20 Mpc based on the information given by the 2-point correlation functions of groups in the 2DF survey [START_REF] Yang | The two-point correlation of galaxy groups: probing the clustering of dark matter haloes[END_REF], that infer that filaments below this typical size may be the tiniest and densest filaments, i.e., bridges of matter connecting two clusters, such as the bridge between A399 and A401, presented in Chap. 5. I have set the limit between the regular and the long filaments arbitrarily to 40 Mpc to keep the same statistics in the two categories (about 2250 filaments in each).

Measuring the profiles 6.3.1 Methodology

In order to measure the radial profiles of galaxy quantities around filaments, I have used the RadFil code (presented in Chap. 3.3.2). To do so, RadFil takes as input two maps: one of the quantity of interest, here the maps of galaxy densities constructed in Chap. 4.6, and one tracing the spine of the filament around which it will perform the measurement, here the maps tracing the spines of the selected DisPerSE filaments. In order to obtain the radial profiles, few steps were needed, explained hereafter.

• Normalisation of the maps

The galaxies in the WISExSCOS value-added catalogue are not uniformly distributed in redshift, and the three population of galaxies do not follow the same distributions, as it is shown in Fig. 4.16.

Thus, the values of the mean galaxy densities in each redshift slice of the galaxy density maps constructed in Chap. 4.6 also follow the same redshift distribution. Measuring the absolute value of the galaxy densities may thus introduce bias. To avoid this, and to measure only the excess of galaxies relative to the mean galaxy density in the field, I have normalised the 3D density maps in order to consider over-densities δ. I have divided each slice of redshift of each 3D map by their mean galaxy density values:

1 + δ gal (z) = ρ gal (z) < ρ gal (z) > . (6.1) 
In that way, the 3D maps are transformed from biased densities ρ gal to unbiased over-densities 1 + δ gal .

• Projection on patches For each of the 5559 filaments, I have projected the 3D maps of the obtained galaxy over-density 1 + δ gal , on 3D patches centred on the position of the corresponding filament using a tangential projection. The 3D patches have a pixel resolution of θ pix = 1.7 arcmin, a bin in redshift of 0.01 (same as the full-sky maps), and a number of pixels which depends on the length of the filament (computed in arcmin with the mean redshift z mean ). Doing so, all filaments are entirely seen in their corresponding individual patch and the fields of view of the largest patch is 19 • × 19 • . As 95% of the patches have fields of view below 15 • × 15 • , I have neglected the projection effects and assumed the flat sky approximation.

• Stack along redshift Due to the high value of the statistical error on the photometric redshifts of the sources in the WI-SExSCOS catalogue, σ z = 0.033, 3D density profiles around filaments would be biased. Therefore, I have stacked the 3D patches (obtained above) along the redshift axis to remove the uncertainty on the positions of the galaxies in the redshift space. The resulting stacked maps are thus 2D arrays. Before stacking along redshift, in order to minimise the noise due to background and foreground galaxies, I have removed for each filament the regions of the 3D patch that lie outside the redshift range z min -σ z < z < z max + σ z , where z min and z max are the minimum and maximum redshifts of the filament. Mathematically, this step translates into:

< 1 + δ gal >= 1 b z z max +σ z z=z min -σ z 1 + δ gal (z), (6.2)
where b z is the number of redshift bins in the range [z min -σ z , z max + σ z ].

• Application of RadFil I have fed RadFil with the 5559 2D stacked maps obtained above, together with the 5559 associated 2D filament's spine projections, also in the format of 2D arrays. RadFil then measures the radial profiles < 1 + δ gal > (r) around each of the 5559 filaments.

• Stack the profiles Finally, I have stacked the 5559 profiles to get one unique profile, exhibiting statistical trends thanks to the significant reduction of the noise.

• Estimation of the error bars

To estimate the errorbars on the stacked profiles, I have used the bootstrap method (detailed in Chap. 3.2.3). For the n measured profiles (where n is the number of filaments), I have randomly selected n over n profiles with replacement, and have computed the mean profile. I have repeated this measurement 1000 times and have computed the mean and the standard deviation of the 1000 mean profiles. The mean and standard deviations are taken as final measurements and errors in this study.

Masking the galaxy cluster members

In order to measure galaxy over-density profiles along filaments uncontaminated by the galaxy cluster members, I have removed the regions around known galaxy clusters, by masking the maps at the position of all clusters with z < 0. To mask the clusters in an optimal way, I have defined six masks: the first one where the galaxy clusters are not masked, and the five others where the clusters were masked in regions from 1 × R 500 to 5 × R 500 . The results are shown in Fig. 6.3. The galaxy over-density profiles decrease with increasing radius of the mask, up to r = 3 × R 500 . Beyond this radius, the profiles are unchanged but the error-bars increase. I have thus chosen to mask the clusters at r = 3×R 500 . For clusters without estimated R 500 (only a handful from the Planck catalogue in the SDSS area), I have masked a region with radii increasing up to r = 10 arcmin. I show in Fig. 6.4 that masking at r = 5 arcmin is enough, as no difference in the profiles is noticed. I have also masked regions around the critical points provided by DisPerSE, namely a study led by H. Tanimura, we have detected the SZ emission around cosmic filaments detected with DisPerSE on SDSS galaxies in the range 0.2 < z < 0.6. We have estimated the temperature of the gas around the filaments to be T ∼ 10 6 K, that is larger than the temperature of quenching of the halos found in [START_REF] Gabor | Hot gas in massive haloes drives both mass quenching and environment quenching[END_REF]: T ≥ 10 5.4 K.

The quiescent fraction profile measured in the previous section and shown in Fig. 6.12 should depend mostly on the processes of quenching, that drives the population changeover. Driven by the results from Tanimura et al., in prep. and by the previous studies discussed above, I have modelled the f Q profile with a model of distribution of gas density around the cosmic filaments. Considering the results shown in the right panel of Fig. 1.16, where the gas has been successfully fitted in SZ with a β-model, historically used to model the gas density profiles in galaxy clusters [START_REF] Cavaliere | The Distribution of Hot Gas in Clusters of Galaxies[END_REF], I have used the same model for f Q . It writes as:

f Q (r) = f Q 0 1 + r r s 2 3 2 β + c, (6.5) 
where f Q 0 is the mean ratio of excess of passive galaxies over the sum of the excess of active and passive galaxies in the center of the filaments, r s is the core radius, β the slope of the profile, and c is the background value.

I have performed an MCMC analysis (described in Chap. 3.2.1) and obtained the posterior distributions of the four parameters of Eq. 6.5. I show their distributions and their correlations in Fig. 6.13. I also display in orange in Fig. 6.12 1000 models randomly picked from the MCMC distribution. The median parameters are: f Q 0 = 0.017 ± 0.003, r s = 4.4 ± 1.7 Mpc, β = 0.54 ± 0.18, and the background value c = 0.498 ± 0.001. Assuming the quiescent fraction of galaxies traces the pressure of the gas responsible of the quenching, the values of the slope β of the gas profile and of the quiescent fraction profile should be the same. In this study, the slope β is not well constrained as seen in the distribution in Fig. 6.13: it is fully degenerated with the parameter r s . However, β = 2/3 which is the case for projected iso-thermal gas in hydrostatic equilibrium (scenario supported by numerical simulation, e.g., in [START_REF] Gheller | A survey of the thermal and non-thermal properties of cosmic filaments[END_REF], is encompassed in the values allowed by the MCMC. Moreover, the values 1/3 < β < 2/3 that best fit the gas profile in SZ shown in the right panel of Fig. 1.16 (where χ 2 = 3.1, χ 2 = 2.7, and χ 2 = 2.5, for β = 0, β = 1/3, and β = 2/3, respectively) are also encompassed in the allowed values by the MCMC.

Summary

I have studied in detail the statistical properties of the galaxies from the WISExSCOS value-added catalogue around cosmic filaments detected with DisPerSE in the SDSS. I have measured with a high significance ( 5σ) galaxy over-density radial profiles on the full sample of galaxies, and also on the three populations: active, transitioning, and passive galaxies.

Despite some biases on the measurement due to the methodology or to the data themselves, I have fitted an average profile of galaxy over-density around cosmic filaments with an exponential law. I have obtained a typical radius of r m = 7.4 ± 0.1 Mpc. I have also pointed out the evidence of a higher excess of passive galaxies than transitioning galaxies, and a higher excess of transitioning galaxies than active galaxies near the filament's spines. This excess of passive galaxies induces an SFR and an M * gradient pointing towards the filament's spines, that I have also detected. This indicates that there are more passive galaxies near the filament's spines, in agreement with the previous studies (e.g., [START_REF] Malavasi | The VIMOS Public Extragalactic Redshift Survey (VIPERS): galaxy segregation inside filaments at z = 0.7[END_REF][START_REF] Kraljic | Galaxy evolution in the metric of the cosmic web[END_REF][START_REF] Laigle | COSMOS2015 photometric redshifts probe the impact of filaments on galaxy properties[END_REF][START_REF] Sarron | Pre-processing of galaxies in cosmic filaments around AMASCFI clusters in the CFHTLS[END_REF].

I have also studied the excess of M * and of SFR for the three galaxy populations, and have pointed out the evidence of a positive M * gradient for the active, the transitioning, and the passive populations 

Abstract

The Planck collaboration have extensively used the six Planck HFI maps, each of them with a beam below 10 arcmin, to construct a full sky y map and to detect galaxy clusters with dedicated component separation methods. Although powerful, these methods still introduce some bias in the detection of the sources or in the reconstruction of the SZ signal, due to bias priors. For example the cluster detection algorithm use the GNFW profile model as proxy for the shape of the galaxy clusters. This profile is accurate on average, but not in individual clusters. In this chapter, I study the possibility of using deep learning algorithms to detect the SZ signal from the Planck HFI frequency maps, without resorting on any physical model. I use U-Net architecture network that shows very good performance, detecting all of the Planck clusters in a test area. I have detected more than 13,000 candidate SZ sources in the full sky, and have estimated their reliability by stacking different maps at their positions, i.e., CMB lensing, galaxy over-density, ROSAT. They indicate together that very low pressure SZ sources are detected in Planck thanks to the deep learning method. I also show that the diffuse emission is recovered around known large-scale structures such as Shapley, A399-A401, Coma, and Leo. These results are promising for the identification and the characterisation of the gas in the largest structures of the Universe. The material presented in this chapter will be used for a future publication: "Extracting the Sunyaev-Zel'dovich effect in Planck with deep learning", V. Bonjean, in prep.

Résumé

La collaboration Planck a utilisé les six fréquences de Planck HFI, chacune d'elles avec un faisceau inférieur à 10 arcmin, pour construire une carte du ciel complet du paramètre y, et pour détecter des amas de galaxies avec des méthodes de séparation de composantes dédiées. Bien que puissantes, ces méthodes introduisent des biais dans la détection des sources ou dans la reconstruction du signal SZ. Par exemple, l'algorithme de détection d'amas utilise le profil GNFW pour modéliser la forme des amas de galaxies. Ce profil représente les amas en moyenne, mais n'est pas optimal pour représenter les amas individuellement. Dans ce chapitre, j'étudie la possibilité d'utiliser des algorithmes de "deep learning" pour détecter le signal SZ dans les cartes de fréquences de Planck HFI, sans recourir à aucun modèle physique. J'utilise une architecture de réseau de type U-Net, montrant de très bonnes performances, par exemple en détectant tous les amas Planck dans une zone de test. J'ai détecté plus de 13 000 candidats SZ dans le ciel, et j'ai estimé leur fiabilité en utilisant le "stacking" dans différentes cartes à leurs positions, i.e., la carte de lentillage gravitationnel du CMB, des cartes de surdensité de galaxies, et la carte en émission X de ROSAT. Les résultats indiquent que des sources SZ individuelles à très basse pression sont détectées dans Planck avec cette nouvelle méthode. Je montre aussi que l'émission SZ diffuse est détectée autour de structures connues comme Shapley, A399-A401, Coma, et Leo. Ces résultats sont prometteurs pour l'identification et la caractérisation du gaz dans les plus grandes structures de l'Univers. Le matériel présenté dans ce chapitre sera utilisé dans le cadre d'une prochaine publication : "Extracting the Sunyaev-Zel'dovich effect in Planck with deep learning", V. Bonjean, en préparation.

Motivations

The Planck satellite (presented in Chap. Since then, some studies have shown promising results by increasing the number of Planck SZ cluster sources to about 3500 by using new approaches, like artificial neural networks (Hurier, Aghanim, and Douspis, 2017), or by combining with other wavelengths, e.g., in X-ray with ROSAT (Tarrío, Melin, and Arnaud, 2019). Other studies have aimed at producing new higher resolution and lower noise SZ maps by combining Planck and ACT data [START_REF] Aghanim | PACT I: Combining ACT and Planck data for optimal detection of tSZ signal[END_REF]. New detections of individual clusters or of stacked diffuse gas are still ongoing (as discussed in Chap. 1.3.2.4), showing that the full potential of the Planck data has not been completely exploited.

Studies deriving SZ catalogues or maps have combined the data with biased knowledge priors (e.g., assuming GNFW profile model), or by degrading the resolutions to the highest angular beam for homogeneity (Planck Collaboration et al., 2016c). Those biased knowledge priors may prevent us from using the full potential of the Planck data. In this chapter, I show the possible application of deep learning algorithms on the Planck frequency maps to detect the SZ effect. By training on high signal-to-noise SZ sources, i.e., galaxy clusters, deep learning algorithms are able to detect lower signal-to-noise ratio SZ components without depending on any explicit model. This study is promising for the detection and the characterisation of individual structures with low pressure and diffuse gas in the Planck data. This is to date a proof-of-concept study, where the mass or the redshift distributions of the detected SZ candidate sources are still to quantify, and where the limits in signal-to-noise ratios of diffuse gas detections are still to estimate.

Learning procedure

In this study, I have trained a deep learning algorithm applied on the Planck HFI frequency maps to detect low signal-to-noise SZ sources via high signal-to-noise SZ emissions generated by the hot gas inside the galaxy clusters. To do so, I have chosen as inputs of the machine learning algorithm small patches of the Planck HFI frequency maps, and as outputs segmentation maps, showing the positions of the clusters in the patches. The trained model thus provides an SZ probability map, between 0 and 1, that can be compared with the known clusters in a test sample, or with the Planck MILCA SZ map.

Training catalogue 7.2.1.1 Catalogue of clusters

I have selected three catalogues of galaxy clusters to construct the segmentation maps that are used as output data for the training of the machine learning algorithm. First, the PSZ2 catalogue of clusters, to start with the very simplest case: learning Planck with Planck. To ensure the purity of the clusters, I have selected the 1,094 PSZ2 sources that are confirmed galaxy clusters, i.e., with measured redshifts. I note this cleaned catalogue the Planck z catalogue. I note the catalogue of remaining candidates the Planck no-z catalogue. Second, I have chosen the MCXC catalogue of X-ray clusters, as it contains lower mass clusters. I have selected MCXC clusters that are not included in the Planck catalogue, to merge galaxy clusters detected in different wavelengths. In the following, I note the 1,193 galaxy clusters of the MCXC catalogue that are not included in the PSZ2 catalogue, the MCXCwP catalogue. Finally, I have selected the RedMaPPer cluster catalogue from optical data to test the limits of the model and try to detect very low SZ signals, as it contains lower mass and higher redshift clusters. I have used RedMaPPer with different selections in richness λ (relative to the number of galaxies in the clusters), i.e., different selection in mass. I note RM i the selection of the RedMaPPer clusters with the criterion: λ > i. In the following, I use the RM 50 and the RM 30 cluster catalogues. The three initial catalogues, i.e., PSZ2, MCXC, and RedMaPPer, are presented in detail in Chap. 2.4.

Training set and test set

I have used HEALPIX with n side = 2 to split the sky onto 48 tiles of equal-sized area of 860 square degrees each. One of them, the seventh one, is arbitrarily chosen to define a test area. This area is centred on the position (l = 112.5 • , b = 41.81 • ). In this area, there are 40 clusters from the Planck z catalogue, 18 from the Planck no-z catalogue, and 50 from the MCXCwP catalogue. This area, and especially the clusters inside, are used as a test area and a test sample, and none of its 860 square degrees is seen by the model during the training. The training set is based on patches (projected as described in the next section), extracted in the remaining 47 tiles of the sky.

Planck patches and segmentations

I have extracted from the Planck HFI frequency maps n = 100, 000 multi-channel patches, of 64 × 64 pixels with a resolution of θ pix =1.7 arcmin (giving a field of view of 1.83 • × 1.83 • ). These patches are chosen in the sky with random positions and random orientations, but each of the 100,000 patches contains at least one galaxy cluster of the cluster catalogue chosen as output. I have then constructed their associated segmentation maps, by drawing circles of 5 arcmin diameter at the positions of the clusters. The pixels showing the positions of the clusters are set to 1, while the pixels in any other regions are set to 0. The diameter of the circles showing the positions of the galaxy clusters are set to 5 arcmin, i.e., the size of the smallest beam in the Planck HFI frequency maps (at 857 GHz). This fixed size acts like a filter and probably induces a bias in the reconstruction of the SZ sources in the SZ probability maps, preventing the computation of any reliable flux. However, the information up to a resolution of 5 arcmin can be learned by the network. The dimension of the input data is 100, 000 × 64 × 64 × 6 pixels, and the dimension of the output data is 100, 000 × 64 × 64 × 1 pixels. 10% of the 100,000 input patches, randomly chosen, are let selected the validation set, used to compute the performance of the machine learning algorithm during the training process and to stop the training in case of over-fitting. The training set is constructed with the remaining 90% patches.

Data pre-processing

To successfully apply the deep learning algorithm on Planck frequency HFI maps, a pre-processing of the data is needed. The mean input data and their standard deviations should be of the order of the unity, as machine learning algorithms perform better results for this range of values. However, in the Planck maps, a large variety of sources are detected, that are producing signals with very different spectral responses (e.g., radio sources bright in the low frequencies, dust sources bright in the high frequencies). The shapes of the pixel distributions of the Planck HFI frequency maps are thus very non Gaussians, preventing a simple normalisation of the maps to their means and their standard deviations. Here, I have chosen an approach to optimise the capture of the CMB spectrum deviation at the scale of the CMB fluctuation values (i.e., the secondary anisotropies, like the SZ effect).

The CMB fluctuations are themselves Gaussian distributions, but any kind of external sources (other than CMB anisotropies) add positive emissions in the Planck frequency maps. This produces an asymmetric Gaussian distribution, extended to the right part of the pixel distributions. I have thus fitted a Gaussian to the left part of the distributions, up to their statistical modes (values that appear most often), as shown in the left panel of Fig. 7.1. This part of the pixel distributions must contain the noise and the CMB fluctuations in each frequencies. I have then normalised each maps by the means and the standard deviations of the fitted Gaussians. This approach optimises the use of deep learning algorithms on the Planck frequency maps for the study of the CMB fluctuations at each frequencies (e.g., the SZ effect). I show the pixel distributions of each of the pre-processed HFI frequency maps in the right panel of Fig. 7.1.

U-Net architecture

Convolutional Neural Networks (CNN) are very efficient to encode informations on extended objects that can be invariant in translation or in rotation (detailed in Chap. 3.1.5), such as the case for SZ sources in the Planck maps. Moreover, the U-Net architecture, based on CNN, is one of the most efficient to reconstruct segmentation images (Ronneberger, Fischer, and Brox, 2015) (e.g., the U-Net architecture has won the ISBI cell tracking challenge 2015 applied on biomedical image segmentation). For these reasons, I have naturally chosen this network architecture to perform the training. A schema of the original architecture from Ronneberger, Fischer, and Brox, 2015 is shown in Fig. 7.2.

The architecture of the U-Net is symmetric and is composed of two blocks: a contracting part, or encoder (that encodes the spatial relevant informations), and an expansive part, or decoder (that decodes the learned informations to, e.g., reconstruct segmentation maps). This network has already been successfully applied in astrophysics to generate fast numerical simulations, to detect cosmic structures, or to estimate the flux of blended galaxies (e.g., [START_REF] He | Learning to Predict the Cosmological Structure Formation[END_REF][START_REF] Aragon-Calvo | Classifying the large-scale structure of the universe with deep neural networks[END_REF][START_REF] Boucaud | Photometry of high-redshift blended galaxies using deep learning[END_REF].

have also added dropout layers with a rate of 0.2 after each convolutional layers. The number of filters in the beginning of the network is related to the complexity of the recovered different features. As the maps of Planck used do not contain much complex spatial features, I have started the number of filters at 8, increasing to 128 in the last layer of the encoder. I have used the Adam optimizer with an initial learning rate set at 0.4, and the binary cross-entropy loss function. All the parameters on which the training depend (i.e., dropout rate, kernel size, number of filters, initial learning rate) were varied in different trainings of the U-Net, until finding the one actually learning the SZ features. This was performed to study the possibility of detecting very diffuse SZ emissions, and reconstructing an SZ probability map. These results are shown in Chap. 7.4

Results on the test area

To train the algorithm to detect low signal-to-noise SZ sources in Planck HFI frequency maps, I have started with the simplest possible case: learn Planck with Planck. The segmentation maps used as outputs were generated based on the Planck z catalogue, to ensure an absolutely pure catalogue of galaxy clusters. The U-net has been successfully trained for about ∼1.5 h on a GPU NVidia Tesla K80, with a batch size of 20, and an early stopping of 12 epochs. Based on the trained model, I have constructed a full sky map of SZ probability p.

To estimate the performance of the model and ensure that the U-Net has learned to detect SZ sources, I have compared the SZ probability map in the test area and the test catalogues (i.e., clusters in the seventh HEALPIX pixel with n side = 2, described in Chap. 7.2.1.2). To detect galaxy clusters, I have simply defined the clusters as areas of probability p greater than a threshold p max . For each area recovered above p max , I have computed the position as the barycentre of the pixels. This detection method is very simplistic and not optimal but it is yet efficient enough to roughly check overall consistency. I have crossmatched the sources detected with this method with the three catalogues: Planck z, Planck no-z, and MCXCwP, and have studied the recovered clusters as a function of the detection threshold p max . I show in Fig. 7.3 the recovered clusters on the three catalogues (left panel) together with the number of new detected sources (right panel). For a threshold p max = 0.1, all the Planck z clusters are recovered, together with 89% of Planck no-z clusters, and 12% of MCXCwP clusters. I have also detected 187 new sources.

To ensure that the newly detected sources do not correspond statistically to point sources that might contaminate the model (e.g., infra-red point sources), I have stacked the 187 new detected sources detected in the test area with the threshold p max = 0.1 in the Planck MILCA SZ map and in the Planck HFI frequency maps. I show the results of the stack in Fig. 7.4. Presence of SZ sources is suggested by a significant y emission in the Planck MILCA SZ map and by a signature of the SZ effect in the centre of the HFI frequency maps are seen (i.e., a negative emission in the 100 and 143 GHz maps, and a positive emission for the frequencies above 217 GHz). SZ sources may be populated by dust, suggested by the excess of signal also seen in the centre of the map at 217 GHz. A bright infra-red source is also seen in the HFI frequency stacked maps (under the centres), with an intensity increasing with the frequencies, together with a complex background in the 100, 143, and 217 GHz stacked maps coming from the CMB. MCXC and the RedMaPPer clusters that are shown in Chap. 2.4. However, as the SZ effect is a projected effect, there is a degeneracy between the redshift and the mass of the individual clusters. A detailed investigation of the range of redshifts and masses of the new detected sources is not performed in the present study, that only shows the potential of the application of deep learning algorithms on Planck data. This detailed analysis will be subject of a future study.

Diffuse SZ emission

Motivated by the construction of a new SZ map more sensitive to lower signal-to-noise SZ emission, I have trained three other U-nets, by choosing lower SZ signal-to-noise ratio galaxy cluster catalogues of reference to construct the segmentation maps of the training catalogue. In practice, I have added the MCXCwP clusters, the RM 50 , and finally the RM 30 clusters, in addition to the Planck z clusters. There are in total four U-Net models, the first one being the one presented in the previous section.

I have generated four full-sky maps of SZ probability based these four U-Net trained models. To illustrate the detection of diffuse gas, I have arbitrarily focused on four regions around large-scale structures already identified as containing diffuse SZ signal: the Shapley super-cluster (Aghanim et al., in prep.), the galaxy cluster pair A399-A401 that is fully described in Chap. 5, the Coma super-cluster (Erler et al., 2015, Malavasi et al. in prep.), and the Leo super-cluster. I show these structures in patches extracted from the SZ probability maps derived from the four models, together with the Planck SZ MILCA map for a visual comparison in Fig. 7.8.

When adding the MCXCwP clusters, the diffuse gas around the super-clusters and the bridge of matter between A399 and A401 are recovered. For the models with the RedMaPPer clusters, potential indications of large scale structures connecting the structures are seen. The SZ probability maps obtained with the U-Net are visually very close to the MILCA SZ map, but they seem less noisy and better resolved. These preliminary results are promising for the detection and the characterisation of the diffuse gas in the large-scale structures.

Summary

By training deep learning algorithms such as the U-Net on the Planck HFI frequency maps to recognise the spatial and spectral features of high signal-to-noise SZ signatures produced by the hot gas in known galaxy clusters, lower signal-to-noise SZ sources are recovered. In the most conservative case when training with the Planck z catalogue of 1,094 sources, I detect about 200 clusters more that are known MCXC clusters, and more than 13,000 new sources above a detection threshold p max = 0.1. This is about a factor three more than the numbers of sources found by Hurier, Aghanim, and Douspis, 2017 or Tarrío, Melin, and Arnaud, 2019. Although the detection threshold has been set to a low value, the sample of detected sources does not seem to suffer much from contamination, as shown in the stack of the 13,220 new detected sources in maps probing galaxy cluster counterparts in different wavelengths. The presence of dark matter halos is highlighted by the stacked CMB lensing map, the presence of hot gas by the stacked Planck SZ MILCA map and the X-ray ROSAT map, the presence of red galaxy over-density with the stacked galaxy maps constructed with the value-added WISExSCOS photometric redshift catalogue.

By focusing on areas around multiple systems, I have shown that deep learning models can be used to reconstruct an SZ map, more sensitive to lower signal-to-noise ratio SZ emissions. Although a qualitative study is still to perform in a future analysis, this proof-of-concept study shows the potential of applying deep learning algorithms on Planck data.

The U-Net and the method presented in this study can in principle also be applied to any components separation in the Planck data, e.g., radio emission, dust emission, CO emission, CMB, and so on. I am 

Observations

The observations took place before the beginning of my PhD thesis, between 2013 and 2016, with a total of 233 hours 25 minutes and 33 seconds of observations in photometry and in spectroscopy. In total, 119 cluster candidates were observed with the NTT/EFOSC2 telescope in the R and the z bands (with the filters R#642 and z#623 respectively). These observations allowed the estimation of redshifts, z est , based on the red sequence [START_REF] Gladders | A New Method For Galaxy Cluster Detection. I. The Algorithm[END_REF]. The galaxy members of 49 cluster candidates with z est > 0.5 were observed in spectroscopy with VLT/FORS2, and some of the remaining candidates with z est < 0.5 were additionally observed with a shallow V band (with the V#641 filter in the NTT/EFOSC2). 

NTT/EFOSC2 imager

The photometric observations were made with the NTT/EFOSC2 in imaging mode, mounted at the Nasmyth B focus of the NTT (3.58m Richey-Chretien telescope, shown in Fig. 8.2). The camera contains 2048 × 2048 pixels, with sizes of 15 × 15µm, or 0.12" × 0.12" on the sky, with a reading mode of 2 × 2 binned pixels corresponding to a field of view of 4.1 ′ × 4.1 ′ . For all clusters, three observing blocks were performed, together with corresponding biases and flat fields. A positional offset was applied to the three observing blocks to remove the bad pixels, and to fill the inter-pixel regions.

VLT/FORS2 spectrograph

The spectroscopic observations were made with the VLT/FORS2 instrument in MXU mode, installed on the UT1 telescope (Antu) of the European Southern Observatory (ESO) in Paranal (shown in Fig. 8.

3).

The camera is composed of a mosaic of two 2k×4k MIT CCDs with 15µm pixels, with a pixel scale of 0.25"/pixel using the Standard Resolution collimator, corresponding to a field size of 6.8'×6.8'. The GRIS300I grism together with the OG590 filter were chosen in order to span a wavelength range of 6000 -11000Å, and thus to properly detect the 4000Å break of passive galaxies in the typical range of Image from https://www.eso.org/public/images/eso0137k/. Credits: ESO. redshift: 0.5 z 1. For all clusters, two to six observing blocks were taken, together with ten bias, seven flat fields and one arc lamp calibration frames in the end of each observing nights. Standard star frames were observed in MOS mode within one slit of 5", usually one to three nights before or after the MXU observations.

Data reduction

During my PhD thesis, I have conducted the data reduction of the spectroscopic data of the galaxy members of the 49 clusters observed with VLT/FORS2. During the preparation of the spectroscopic observations in 2013-2015, there was an issue with the selection of the targets. The targets were originally supposed to be selected based on the red sequence sources observed with the NTT/EFOSC2, but the selection was instead done on the pre-images with VLT/FORS2 without information on the colour of galaxies. As as result, the purity of the selected members was very low and only a handful galaxy members were available for each cluster, compared to the 50 to 80 originally expected. Spectroscopic data alone can thus not provide enough information to confirm the redshifts of the clusters: they have to be combined with the information about the red sequence of galaxies, obtained with the photometry with NTT/EFOSC2. Therefore, during my PhD, I have supervised an intern-ship, Raphaël Wicker, to work on the reduction of the photometric NTT/EFOSC2 observations.

Spectroscopy

Following the strategy proposed with the ESO large programme collaboration, I have originally started to reduce the data with the software VIMOS Interactive Pipeline and Graphical Interface (VIPGI) adapted to handle FORS2 spectroscopic data: F-VIPGI [START_REF] Nastasi | F-VIPGI: a new adapted version of VIPGI for FORS2 spectroscopy. Application to a sample of 16 X-ray selected galaxy clusters at 0.6 ≤ z ≤ 1.2[END_REF]. This software was performing the standard data reduction steps: bias substraction, correction from flat-field, spectral calibration, spectro-photometric calibration. The F-VIPGI software, although powerful and interactive, was degrading the spectral resolutions of the VLT/FORS2, and was not providing satisfying results on the spectro-photometric calibration (some sources were quite noisy or contaminated by atmosphere emission lines). I have therefore changed software and used the latest FORS2 pipeline 1 , together with the latest EsoRex package 2 (v. 3.12.3) to apply the standard reduction steps. The bias frames were combined using the fors_bias recipe. The flat field frames were combined and corrected from the master bias, the bad pixels, and calibrated in wavelengths with the lamp frame and the lamp line catalog (provided by ESO) using the fors_calib recipe. All the observing files (including standard star frames) were corrected from corresponding master bias, master flat field, bad pixels, dispersion and curvature coefficients with the fors_science recipe. The spectro-photometric calibration was automatically made by the fors_science recipe when a spectro-photometric table computed with the fors_science recipe of a standard star frame is given together with a corresponding flux table provided by ESO. ESO reduction recipe fors_science outputs calibrated spectra for each observing block. The spectra of each observing block and of each observation night were combined, by averaging them, to reduce the noise.

Photometry

Together with Raphaël Wicker, we have used the latest EFOSC2 pipeline 3 , with the EsoRex to apply the standard reduction steps to the raw photometric data. EsoRex has standardised the recipes for all the instruments. Therefore, the reduction steps were the same as for the spectroscopic observations with VLT/FORS2. The bias frames were combined using the efosc_bias recipe. The flat field frames were combined and corrected from the master bias, the bad pixels with the efosc_calib recipe. All of the observing files were corrected from corresponding master bias, master flat field, bad pixels, dispersion and curvature coefficients with the efosc_science recipe. The photometric calibration was automatically made by the efosc_science recipe with the zero points provided by the EFOSC2 pipeline. Images of each observing block and observing night were combined to reduce the noise of the background, and to fill the inter-pixel regions.

The sources were extracted in the combined images, with SExtractor [START_REF] Bertin | SExtractor: Software for source extraction[END_REF]. The resulting source catalogue provides magnitudes in the R, V, and z bands. The S/N of the recovered sources was set at S/N > 1.5 σ for the systematic analysis of the images. Stars from GAIA DR2 in the field of each cluster were removed when they matched SExtractor sources in a radius of 5". False detections due to cosmic rays were also removed from the catalogue based on obvious bias in the magnitudes provided by SExtractor. Spectra observed with VLT/FORS2 were also reduced following the reduction steps described in Chap. 8.3.1. I have used the on-line webservice MARZ 4 to fit template spectra and thus measure the redshifts of the sources. The five well fitted spectra in the field of view of the cluster PSZ1 G231.05-17.32 are shown in Fig. 8.5 and in Fig. 8.6

For this cluster, where five spectra were well fitted at the same redshift, and here an over-density of sources is seen in the field-of-view, I confirm the cluster, at z = 0.644 ± 0.006. 

Résumé

Lors des analyses des images prises avec le NTT/EFOSC2 dans le cadre du large programme de l'ESO pour confirmer certains amas Planck, un arc gravitationnel exceptionellement grand et lumineux a été découvert autour de l'amas PSZ1 G311. 65-18.48. Cet objet a été sujet à des observations complémentaires, notamment avec l'instrument MUSE. Je décris ici l'analyse de données de ces observations, qui serviront par la suite à une étude plus poussée dus gaz moléculaire dans la galaxie lentillée à l'aide d'observation en sub-mm, comme avec ALMA.

Introduction

By construction, the SZ-selected cluster sample seen in spectroscopy is essentially mass limited and contains massive clusters (> 5 × 10 14 M ⊙ ) beyond z ∼ 0.5. These clusters are ideal for the observations of lensed background galaxies (LBG). The NTT/EFOSC2 data from the ESO Large Programme have lead to the discovery of the brightest giant arc ever seen in the optical/NIR at redshift z = 2.37, with an observed total (AB) magnitudes of (R, z, J, K s ) = (18.03, 17.92, 17.66, 17.28), lensed by the cluster PSZ1 G311.65-18.48 at redshift z = 0.44 [START_REF] Dahle | Discovery of an exceptionally bright giant arc at z = 2.369, gravitationally lensed by the Planck cluster PSZ1 G311[END_REF]. The combined NTT/EFOSC2 observation in the R band of the field of view of the cluster PSZ1 G311.65-18.48 with the giant arc is shown in the left panel of Fig. 9.1.

This newly discovered arc is much brighter than any previously known cluster-lensed LBG such as the Cosmic Eye [START_REF] Smail | A Very Bright, Highly Magnified Lyman Break Galaxy at z = 3.07[END_REF], z = 3.0 R=20 AB), or RCSGA 032727-132609 [START_REF] Wuyts | A Bright, Spatially Extended Lensed Galaxy at z = 1.7 Behind the Cluster RCS2 032727-132623[END_REF], z = 1.7, 38" long arc with R=19 AB). Its exceptional observed length (55"; the width is < 1") indicates extremely high magnification (µ 50). In addition, its redshift (z = 2.37) puts it in a fortuitous location where the spectral features ranging from Ly α to H α are readily accessible for ground-based redshift, including one double image of the same source at z = 3.504, their index start with 1000 in Tab. 9.1. Four other sources were detected after visual inspection, with also one double image at z = 4.614 (with index 2000 in Tab. 9.1). I present the four recovered multiple images that will be used to construct the mass model of the cluster PSZ1 G311. 65-18.48 in Tab. 9.1.

In parallel to our own analysis, this giant arc has been studied by an independent team with the 

Summary

I have described the MUSE observation and data reduction of an exceptional giant arc discovered in the Planck/ESO large programme. This giant arc is produced by the galaxy cluster PSZ1 G311.65-18.48 at z = 0.44, which lenses a star forming galaxy at z = 2.37. This analysis is still ongoing to date.

Based on the results obtained in this study, a proposal of observing time with ALMA was performed two times (PI: A. Beelen). The ALMA facilities would allow the detection and the characterisation of gas in resolved clumps inside the lensed galaxy, and therefore study at an unprecedented scale the star formation process in a galaxy at the epoch of the peak of star formation (which occurred at z ∼ 2).

Part IV Conclusions 128 During my PhD, I have explored the properties of the baryonic matter in the Cosmic Web, focusing (i) on the galaxies and (ii) on the hot and diffuse gas, either in the intergalactic medium located along filaments or inside galaxy clusters.

First, I have investigated the potential of using galaxy properties to characterise the largest structures in which they are lying. To do so, I have fully developed a machine learning algorithm to estimate the most relevant galaxy properties that allow their segregation into two types (passive and active) and the measurement of their star formation rates (SFR) and their stellar masses (M ⋆ ). This machine learning algorithm is based on random forest, and was trained on infra-red data from the WISE satellite based on SFR and M ⋆ estimated in optical from the SDSS. The trained model can be applied to WISE counterpart galaxies up to z = 0.3. It provides unbiased results with redshift or galaxy type. The model performs good with standard deviation of σ SFR = 0.38 dex and σ M ⋆ = 0.16 dex. This method can be extended to higher redshifts and can be improved by choosing even better quality catalogue as training set for the machine learning algorithm. For example, choosing as training set the SFR and stellar masses from the GAMA galaxy surveys may allow an estimation of these quantities up to higher redshifts (i.e., z ∼ 0.5). Significant improvements may also be possible with the future large galaxy surveys coming with very high statistics like Euclid or WFIRST.

One product of my PhD was a value-added galaxy catalogue, based on the WISExSCOS photometric redshift catalogue. Using the trained random forest model described above, I have estimated the SFR and the stellar masses for the sources of the WISExSCOS catalogue in the range 0.1 < z < 0.3. Based on this catalogue, I have investigated the link between galaxy properties and the hot gas and in particular the quenching of the star formation activity of the galaxies. I have focused on an exceptionally dense filament: a bridge of matter between the two merging galaxy clusters A399 and A401. This particular pair was previously known and characterised by its gas content in X-rays and in SZ. In my PhD, I have modelled the gas using only the SZ effect, constrained its properties, and for the first time studied the star formation activity of galaxies lying in the bridge. These galaxies were found to be passive, as the galaxies in the two clusters, confirming the hypothesis of a pre-merger stage where the gas lying in the bridge is heated by the future collapse of the two clusters. This analysis could be completed with (i) observations of the galaxy members in optical and in the mm/sub-mm (SITELLE, ALMA) as well as with (ii) higher resolution in SZ (NIKA2). This bridge of matter is a perfect laboratory to study for the first time in details the relation in a filament between the hot gas and the galaxy properties (like their molecular gas content or their star formation efficiency).

I have extended my work on the bridge between A399 and A401 to a more significant number of cosmic filaments. In order to do so, I have performed a statistical analysis of the galaxy properties in a new sample of larger and less dense filaments. These cosmic filaments were detected thanks to the SDSS galaxy spatial distribution with a method based on the gradient of the galaxy density field named DisPerSE. I have identified 5559 filaments in the redshift range 0.1 < z < 0.3. I have then studied profiles of galaxy density and of galaxy properties, namely SFR and M ⋆ around filaments of different sizes. The analysis exhibited an excess of passive, transitioning, and active galaxies around filaments. I have explored the relation between the galaxy properties and the hot gas. More specifically, I have explored the link between the profile of quenching of galaxies, obtained from their passivity, and the profile of the surrounding hot gas, using the outputs of a statistical analysis of the properties of the hot gas around cosmic filaments. No firm conclusion on the relation between both profiles can be drawn for now considering the lack of statistics, but still an MCMC analysis shows commonalities between the allowed value of the shape of the quenching profiles and of the shape of the gas profile. This type of study may be repeated with more significant conclusions using the future large galaxy surveys with higher statistics like Euclid and WFIRST.

I have then explored the possibility of using deep learning algorithms to improve the detection of the hot and diffuse gas around the structures of the Cosmic Web via the SZ effect. Previous studies have already successfully detect the SZ effect and have constructed full-sky y maps or have detected galaxy clusters using the Planck frequency maps. However, the SZ effect is very faint, quite hard to detect, and none of the methods developed for now are optimal for the detection of faint sources. In this context, I have developed a deep learning algorithm to detect the SZ effect in the Planck data. In this proofof-concept, I have detected more than 10,000 galaxy cluster candidates, that together show significant counterparts in other wavelengths by stacking maps at their positions (like presence of dark matter by stacking CMB lensing map or confirmation of diffuse hot gas by stacking ROSAT map in X-rays). This shows promising results for individual detections and characterisation of the hot gas around the largest structures of the Cosmic Web. This method can be improved if one uses higher resolution SZ maps like the ones from the ACT or the SPT surveys. In the future, the galaxy cluster candidates detected thanks to this method may be compared to the next generation of full sky surveys allowing the confirmation of the presence of diffuse gas (i.e., with SRG/eROSITA in the X-rays). This could lead to a relatively high number of new detected galaxy clusters or complex structures in the full sky, mostly expected at intermediate or high redshift (i.e., z ≥ 0.5).

Finally I worked on the data reduction and analysis of an ESO large programme that aimed at confirming 129 southern SZ-cluster candidates from Planck via the detection of their galaxy members in optical bands g, r, and z and in spectroscopy from 4000 to 8000 Angstrom. I have developed pipelines to reduce both photometric data obtained with NTT/EFOSC2 and spectroscopic data obtained with VLT/FORS2. Among the 129 SZ sources, only a handful are false detections. Estimated redshifts can be provided for all the confirmed clusters. A total of 49 clusters with estimated redshifts z > 0.5 were observed with VLT/FORS2. The spectroscopic confirmation of about 10 galaxy clusters with at least 10 galaxy members per cluster is secured but the analysis of the full sample of ∼ 3000 obtained spectra is still ongoing. Within the sample of 129 SZ sources of this programme, a giant arc was detected around one of the observed clusters. This giant arc has been observed with the MUSE facilities in spectroscopy and in photometry. I present the data reduction, and the final products, i.e., (i) well resolved spectra of the giant arc showing emission lines from regions of active star formation and (ii) an integrated image of the giant arc together with of multiple lensed sources. These data will be the basis for the construction of a lensing mass model to characterise both the lens and the high-redshift background object. We proposed to observe this giant arc with ALMA in order to map its molecular gas content at a high angular resolution. This will permit to study the resolved star formation regions in a galaxy at the epoch of the peak of star formation, i.e., z ∼ 2.

As a conclusion, the work achieved in this PhD confirmed that using new techniques of machine learning is relevant and very powerful to efficiently measure the physical properties of large numbers of objects (i.e., galaxy surveys) but also to improve the detection and characterisation of faint signals (i.e., hot gas in filaments and clusters via the SZ effect). This is an important step for the study of the interplay between the galaxies and their environment inside the Cosmic Web. This interaction and the possible galaxy quenching induced is an important agent for the evolution of galaxies. During these three years, I have set-up new methods and applied them to a number of different cases that all together shade a new light on the baryonic content of the Cosmic Web (in clusters, bridges of matter, and cosmic filaments). This work can now be improved and extended to new cases. It opens new perspectives and several projects are currently being implemented on this purpose. U-Net and more generally Convolutional Neural Networks are very powerful, and I intend in the future to keep a close eye on such new statistical developments in data analysis, in order to continue to apply them to various cases in observational cosmology. The increasingly large number of data expected in the near future together with modern data analysis tools are thus very promising for cosmology and in particular for the study of the Cosmic Web. In the context of the big data era in astronomy, well represented for example by the upcoming Square Kilometer Array (SKA) survey, developing computationally and timely efficient tools for data reduction or source extraction in multi-channel data seems to me to be of a highest priority and relevance. diagram of SDSS MPA-JHU DR8 galaxies. The lines show the 1σ to 5σ contours. The dots represent 100 randomly selected galaxies from the catalogue. The purple solid line shows the main sequence of star forming galaxies given by [START_REF] Elbaz | The reversal of the star formation-density relation in the distant universe[END_REF]. The colours of the galaxies indicate the distance to the main sequence, d2ms, illustrating the passivity. . 
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 13 Figure 1.3: Distribution of galaxies in the SDSS survey. Image from https://www.sdss.org/science/. Credits: M. Blanton and SDSS.

  Collaboration et al., 2013c; Planck Collaboration et al., 2013b; Planck Collaboration et al., 2013a; Adam et al., 2018).
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 114 Figure 1.14: The Coma cluster as seen by Planck in SZ, and by ROSAT in X-rays. Credits: ESA. Even outside the region of cluster's outskirts, the SZ effect has also allowed the first detections of the WHIM around different structures using the stacking of the SZ map reconstructed from Planck: • Stacking Luminous Red Galaxies (LRG): the WHIM has first been detected in Tanimura et al., 2019b and de Graaff et al., 2019, where LRG pairs have been stacked in the SZ map and a positive residual emission have detected in between the galaxies. • Stacking super-clusters: in an other study, Tanimura et al., 2019a have stacked the Planck SZ maps at the position of the super-clusters identified in Liivamägi, Tempel, and Saar, 2012, by masking all the known clusters up to 3 × R 500 lying inside. We have detected in this study an excess of SZ signal due to unbound gas between the clusters in the biggest potential wells generated by the dark matter in super-clusters of y = (3.5±1.4)×10 -8 , that correspond to 17-52% of the missing baryons. The stacked SZ MILCA Planck map of the super-clusters masked from the known clusters, and the radial profile with the best fitted model of diffuse gas are shown in Fig. 1.15.

  3.7). I have measured the profile of the smoothed filament around the spine of the modelled filament with RadFil (bottom line of Fig. 3.7). I have fitted a Gaussian on the measured average profile to compare the measured and the theoretical filament's width. The standard deviation of the Gaussian measured by the fit is σ m = 30.07 ± 0.03 pixels, that is very close to the theoretical one, σ = 30 pixels. I will use RadFil to measure the galaxy properties around cosmic filaments based on density maps (presented in Chap. 6). I will also measure SZ profiles in the Planck SZ MILCA map, to compare RadFil with other methods based on Healpix projections, presented in Tanimura et al., in prep.
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 55 5.1) in the SZ cluster database of 2,690 clusters or candidates presented in Chap. 2.4.2.2. This is about three times more pairs than the selection based on clusters from the MCXC catalogue, performed in Planck Collaboration et al., 2013b. About one third of the clusters in these pairs are Abell clusters (Abell, Corwin, and Olowin, 1989), one third are Planck newly detected clusters, and the others are X-ray clusters from the MCXC catalogue or SZ clusters detected by SPT. the bridge, y = 14.5 ± 1.8 l Mpc 010 -6 , where l is an effective depth of the bridge along the line of sight. By comparing the obtained Compton parameter with a weight-averaged y parameter in the SZ map (roughly estimated at y = 14 -17 × 10 -6 in Planck Collaboration et al., 2013b), they have deduced an effective density n 0 = 3.1 × 10 -4 cm -3 and an effective depth l = 1.1 Mpc. Akamatsu et al., 2017 have compared this depth to the size of the bridge in the radial direction, ∼ 2.6 Mpc (compatible with the result of my analysis, a size of 3.0 ± 0.2 Mpc), and have concluded that the bridge is flattened. Following their method, I have focused on the very central region of the bridge (within 2' of the longitudinal axis) and have estimated a Compton parameter y = 17.2 ± 1.3 l Mpc 010 -6 , with k b T X = 6.5 ± 0.5 keV and n 0 = 3.3 l Mpc -0.5

7. 3

 3 Cluster detection I have investigated two cases. First, by training with the Planck z clusters, I have studied the possibility of detecting more clusters in the Planck maps with deep learning. I show the results hereafter. Second, I have trained three other models based on four different cluster catalogues in the output segmentation maps. I have added successively MCXCwP, RM 50 , and RM 30 . Those clusters, even though not included in the Planck catalogue, show statistical traces of SZ emission (as seen by the positive fluxes in Fig. 7.7).
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 82 Figure 8.2: Image of the NTT at La Silla, in the southern part of the Atacama desert of Chile. Image from https://www.eso.org/public/images/ib-la-silla15/. Credits: Iztok Boncina/ESO.
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 83 Figure 8.3: Image of the VLT in Paranal in Chile.Image from https://www.eso.org/public/images/eso0137k/. Credits: ESO.
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 4 Example of results for PSZ1 G231.05-17.32 I present here one example of the cluster PSZ1 G231.05-17.32, for which both photometric and spectroscopic observations have been performed. This cluster was observed in photometry with NTT/EFOSC2 the night of the 27/28th of March 2014, in the R and Z bands, during 24 min each. Spectroscopy with VLT/FORS2 was observed the night of the 13/14 of September 2015 during 10 min and the night of the 9/10 of December 2015 during 42 min. In the left panel of Fig. 8.4, I show the reduced observation of NTT/EFOSC2, and overlaid the sources extracted with SExtractor. I show in the right panel of Fig. 8.4 the galaxy density maps of the cleaned catalogue of photometric sources, constructed with the pyDTFE code (described in Chap. 3.3.1). It clearly shows a source over-density in the left part of the field of view.
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	al., 2014; Bilicki et al., 2016; Krakowski et al., 2016; Siudek et al.,
	2018; Bonjean et al., 2019), to estimate spectral properties of sources (e.g., Ucci et al., 2018) to classify
	sources (e.g., Aghanim et al., 2015), to search for variable stars (e.g., Pashchenko, Sokolovsky, and
	Gavras, 2018), as a very non-exhaustive list of examples of applications. More sophisticated algorithms
	of machine learning, like DL algorithms (e.g., CNN), widely improve the results compared to results
	obtained with physical models. In most of the cases, the computation time required to estimate the
	results is also significantly reduced. For example, CNN algorithms have been already used to estimate
	galaxy morphologies and redshifts (e.g., Huertas-Company et al., 2015; Pasquet et al., 2019; Boucaud
	et al., 2019), to fit galaxy surface brightness profiles (e.g., Tuccillo et al., 2018), to compare galaxy
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	to learn the structure formation from initial conditions (e.g., Lucie-Smith et al., 2018; He et al., 2018),
	or to generate fast Cosmic Web simulations (e.g., Rodríguez et al., 2018, Ullmo et al., in prep.).
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	analyses: the
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4.1 Introduction

Several methods have been developed to estimate SFR and M ⋆ from infra-red or optical bands (e.g., Calzetti et al., 2007; Kennicutt et al., 2009; Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017).

  al., 2013; Cluver et al., 2014; Cluver et al., 2017). I have chosen not to consider the W4 band of WISE although it is a good tracer of the SFR (Jarrett et al., 2013; Cluver et al., 2014; Cluver et al., 2017), as

Table 4 .

 4 2.1. 1: Summary of the different scatters obtained on the test set with different methods.

			ML with z		ML without z	Analytical
	All Passive (BPT = -1) Active (BPT = 1) Transiting (BPT = 2)	All	All
	σ M ⋆ 0.16 σ SFR 0.38	0.11 0.38	0.23 0.30	0.13 0.39	0.32 0.43	0.23 0.47 (active only)

  the galaxy clusters are built up over time from mergers and interactions of smaller systems (e.g.,[START_REF] Navarro | The assembly of galaxies in a hierarchically clustering universe[END_REF] Springel et al., 2005), they are naturally connected to the Cosmic Web via the filaments. Strategies to probe the Cosmic Web are thus associated with our ability to probe filamentary structures between clusters or in their outskirts. This is in principle possible via observation of the galaxy distribution (e.g.,[START_REF] Durret | Searching for filaments and large-scale structure around DAFT/FADA clusters[END_REF], the weak gravitational lensing (e.g.,[START_REF] Eckert | Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web[END_REF], the X-ray emission from the hot gas (e.g.,[START_REF] Eckert | Warm-hot baryons comprise 5-10 per cent of filaments in the cosmic web[END_REF], and the thermal SZ effect (e.g., Planck Collaboration et al., 2013b), but the search for filaments linking the clusters to the Cosmic Web is really difficult due to their very low densities. This subject has gained a lot of interest, and focuses mostly on two cases: filaments in the outskirts of individual clusters, and inter-cluster filaments (or bridges) in pairs of clusters. Regarding the former case, Eckert et al., 2015 detected large-scale structures of several Mpc in the outskirts of the galaxy cluster Abell 2744 at redshift z = 0.306, from combined

observations in the X-ray, of galaxy over-densities, and from weak lensing analysis. For the DAFT/FADA cluster sample

[START_REF] Guennou | The DAFT/FADA survey. I. Photometric redshifts along lines of sight to clusters in the z = [0.4, 0.9] interval[END_REF]

, Durret et al., 2016 found filaments in clusters' outskirts with

  Fadda et al., 2008; Gallazzi et al., 2009; Edwards et al., 2010; Zhang et al., 2013; Martínez, Muriel, and Coenda, 2016; Epps and Hudson, 2017; Tanimura et al., 2019b; de Graaff et al., 2019

  and Kopylov, 1980; Ulmer and Cruddace, 1981; Fujita et al., 1996; Fabian, Peres, and White, 1997; Sakelliou and Ponman, 2004; Fujita et al., 2008; Akamatsu et al., 2017). The gas in this galaxy cluster pair was already studied using both the X-ray (with ROSAT) and the SZ effect (with the Planck SZ MILCA map of 2013) by Planck Collaboration et al., 2013b. Very recently, this pair was studied in LOFAR

  al., 2019), a high resolution SZ map obtained combining ACT and Planck frequency channels. The high resolution of the PACT map should allows to have a more detailed analysis of the gas properties of A3395-A3391. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 The catalogue of filaments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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  Despite this, recent studies have used those methods to investigate the physical properties of the matter (Dark Matter, gas, or galaxies) in the filaments (e.g., Colberg, Krughoff, and Connolly, 2005; Dolag et al., 2006; Aragón-Calvo, van de Weygaert, and Jones, 2010; Cautun et al., 2014; Gheller et al., 2015; Gheller et al., 2016; Martizzi et al., 2019; Gheller and Vazza, 2019, Galárraga et al., in prep.). But studying the gas is only possible in numerical simulations. Indeed, the hot gas around cosmic filaments is very hard to detect either in SZ or in X-rays because of its low density and low temperature. It is only accessible in a few exceptional objects such as the galaxy cluster pair A399-A401 presented in Chap. 5. Alternatively, some studies have used the stacking around the highest density regions (in between galaxy cluster pairs(Tanimura et al., 2019b; de Graaff et al., 2019) or inside super-clusters (Tanimura et al., 2019a)) to detect the densest parts of the gas in the filaments around clusters. A first statistical study of the hot gas using the SZ effect around cosmic filaments is performed in Tanimura et al., in prep. Galaxies around cosmic filaments, easier to detect, have started to be extensively studied recently in different surveys: in SDSS (e.g., Martínez, Muriel, and Coenda, 2016; Chen et al., 2017; Kuutma, Tamm, and Tempel, 2017, at z = 0.1, z < 0.7, and z < 0.7 respectively), in GAMA (e.g., Alpaslan et al., 2015; Alpaslan et al., 2016; Kraljic et al., 2018, at z < 0.2, z < 0.2, and 0.03 < z < 0.25 respectively), in CFHTLS 1 (e.g., Sarron et al., 2019, at 0.15 < z < 0.7), in VIPERS (e.g., Malavasi et al., 2017, at z = 0.7), and in COSMOS (e.g., Laigle et al.

[START_REF] Tempel | Bisous model-Detecting filamentary patterns in point processes[END_REF]

, DisPerSE

[START_REF] Sousbie | The persistent cosmic web and its filamentary structure -I. Theory and implementation[END_REF]

, NEXUS+

(Cautun, van 

de Weygaert, and Jones, 2013), or very recently T-ReX (Bonnaire et al., in prep.). Each of them has advantages and disadvandages, making comparison between them really difficult (see Libeskind et al., 2018 for a review or Bonnaire et al., in prep.).

  4 from the PSZ2 catalogue (presented in Chap. 2.4.2), the MCXC catalogue (presented in Chap. 2.4.3), the RedMaPPer catalogue (presented in Chap. 2.4.1), and from other catalogues of galaxy clusters detected in the SDSS: AMF9 (Banerjee et al., 2018), WHL2012 (Wen, Han, and Liu, 2012), and WHL2015 (Wen and Han, 2015).
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  Filters on the six Planck HFI frequency maps (as detailed in Chap. 2.4.2), to detect hundreds of new galaxy clusters via the SZ effect, that were later confirmed in optical (e.g., Planck Collaboration et al., 2016e; Streblyanska et al., 2019).

2.3)

, thanks to its spectral coverage between 30 GHz and 857 GHz, have provided data ideal to capture the signature of the SZ effect. Based on two component separation techniques, i.e., NILC and MILCA (presented in Chap. 2.3.2), the Planck collaboration has constructed full-sky maps of the y SZ Compton parameter at a resolution of 10 arcmin, using the six frequencies of HFI

(Planck Collaboration et al., 2016c)

.

The Planck collaboration has also applied Matched Multi-

  Part III Analysis of the ESO follow-up of Planck clusters characterization and validation of the PSZ1 catalogue). The sample of selected sources consisted of 142 cluster candidates. These sources comprised 21 high-reliability SZ sources (referred to as class 1 in Planck Collaboration et al., 2014), and 121 good reliability sources (class 2 and 3). In this chapter, I present the ongoing data reduction of both spectroscopic and photometric measurements of the ESO large programme.

Table 9 .

 9 Hubble Space Telescope (Rivera-Thorsen et al., 2019), to construct a lens model with a high accuracy. 1: Table of the four multiple images detected, used to generate the lensing model. The four first rows are each positions of the four arcs of the giant arc. The second part is the multiple image detected with the continuum and SExtractor. The third part is the multiple image detected by muselet. The fourth part is the multiple image detected by visual inspections.

	Index	RA	DEC Redshift A_WORLD B_WORLD THETA MAG_AUTO
	5 237.563288 -78.197442	2.3700	0.000170	0.000050	62.23	18.8026
	28 237.522244 -78.184778	2.3695	0.000249	0.000097	19.04	17.0217
	48 237.499542 -78.188104	2.3694	0.000214	0.000085	46.33	17.6982
	127 237.491025 -78.192897	2.3697	0.000198	0.000162	-59.13	18.6497
	109 237.506232 -78.191985	1.1864	0.000113	0.000078	-76.35	20.8396
	159 237.556697 -78.195855	1.1864	0.000059	0.000037	62.50	22.1555
	1001 237.571100 -78.187364	3.5040	1.000000	1.000000	0.00	NaN
	1002 237.495519 -78.196176	3.5040	1.000000	1.000000	0.00	NaN
	2003 237.497030 -78.193454	4.6140	1.000000	1.000000	0.00	NaN
	2004 237.522970 -78.193377	4.6140	1.000000	1.000000	0.00	NaN

  1.1 Left: content of our Universe according to Planck measurements (Planck Collaboration et al., 2016b). Figure adapted from http://public.planck.fr/multimedia/1-photographies. Right: baryon budget at low redshfit. Figure from de Graaff et al., 2019. . . . . . . . . . 1.2 Evolution of the baryons in different phases from z = 6 to z = 0 based on numerical simulations. Half of the baryons are today lying in the WHIM. Figure from Haider et al., 2016. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Distribution of galaxies in the SDSS survey. Image from https://www.sdss.org/science/. Credits: M. Blanton and SDSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.4 First hints of the Cosmic Web structure. Left: one of the first n-body simulations that reproduced the distribution of the matter in the Universe modelling gravity only. Figure from Doroshkevich and Shandarin, 1978. Right: first observation of the largescale galaxy distributions from the CfA2 survey. Figure from de Lapparent, Geller, and Huchra, 1986. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Snapshot at z = 0 of the TNG300 simulation from Illustris-TNG. It shows the baryonic density field, in a region with sides of about 300 Mpc. Image from the Illustris-TNG website (http://www.tng-project.org/media/). . . . . . . . . . . . . . . . . . . . 1.6 Comparison of nine methods to extract structures and classify them into nodes, filaments, walls, and voids. Figure from Libeskind et al., 2018. . . . . . . . . . . . . . . . . . . . 1.7 Histogram of the density 1 + δ for the four different environments: nodes, filaments, walls, and voids, obtained from numerical simulations. Figure from Cautun et al., 2014. . 1.8 Mass and volume fractions occupied by the Cosmic Web structures, which are the nodes, the filaments, the walls, and the voids, from numerical simulations. Figure from Cautun et al., 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.9 Difference between passive and active galaxies. Left: the passive galaxy M87 observed with the Hubble Space Telescope. Right: the active galaxy M74 observed with the same telescope. Credits: NASA/ESA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.10 Schematic view of the SFR-M ⋆ diagram. Active galaxies in blue follow a main sequence. Starbursts in purple and passive galaxies in red lie in the upper and in the lower region of the diagram, respectively. Transitioning galaxies in green are populating the green valley. Credits: CANDELS collaboration. . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 Spectrum of the galaxy M82, with observations from Spitzer, IRAS, ISO, WISE, 2MASS and Herschel. The contribution of the different components have been reconstructed with models of Galliano, Dwek, and Chanial, 2008 and Galliano et al., 2011. Image from http://dustpedia.com/science.php. Credits: DustPedia team. . . . . . . . . . . . . . . . . 1.12 Distribution of distance of galaxies to filaments D skel normalised by the mean intergalaxy separation < D z > for three selections of galaxies. Left: selection in mass. Middle: selection in galaxy type. Right: selection in mass for active galaxies. Arrows indicate the median values of the distributions. Figure from Malavasi et al., 2017. . . . . 1.13 Left: CMB spectrum in dotted line, and distorded by the SZ effect in solide line. Here, the effect have been modeled for a galaxy cluster 1000 times more massive than typical galaxy clusters to illustrate the effect. Right: spectral distortion of the SZ effect. A decrement in the CMB itensity is seen below 217 GHz, and an increament is seen beyond. Figure from Carlstrom, Holder, and Reese, 2002. . . . . . . . . . . . . . . . . . . . . . 1.14 The Coma cluster as seen by Planck in SZ, and by ROSAT in X-rays. Credits: ESA. . . . 1.15 Left: MILCA y map stacked at the position of the super-clusters identified in Liivamägi, Tempel, and Saar, 2012. Clusters are masked up to 3 × R 500 . Right: radial profile of the stacked y MILCA map. A model of diffuse gas has been fitted, to relate the quantity of unbounded gas to 17-52% of the missing baryons. Figures from Tanimura et al., 2019a. . 1.16 Stacked SZ profiles on the Planck MILCA SZ map around the cosmic filaments detected with DisPerSE in SDSS galaxies in the range 0.2 < z < 0.6. Left: stacked profile and null-tests. Right: profile modelled with three β-models: β = 2/3, β = 1/3, β = 0. The best fits are for β = 2/3 and β = 1/3. Figure from Tanimura et al., in prep. . . . . . . . . 2.1 Image showing the footprint of the SDSS-III survey, together with observations of the galaxy Messier 33 and its HII region NGC 604. Image from https://www.sdss.org/surveys/. Credits: M. Blanton and SDSS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 SFR-M ⋆
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L'activité de formation d'étoiles d'une galaxie est une propriété clé pour sonder la formation des structures, et ainsi caractériser les structures à grande échelle présentes dans l'Univers. Cette information peut être déduite du taux de formation d'étoiles (SFR) et de la masse stellaire (M ⋆ ). La détermination de ces deux grandeurs à partir de luminositiés en UV, en optique, ou en IR, repose sur une modélisation complexe et sur des connaissances a priori du types de galaxies. Dans ce chapitre, je présente une méthode que j'ai développé basée sur un algorithme de machine learning (Random Forest) pour estimer SFR et M ⋆ des galaxies dans la plage de redshift 0, 01 < z < 0, 3, indépendamment de leur type. L'algorithme prend en entrée le redshift, les luminosités et les couleurs de WISE en proche IR, et est basé sur les SFR et M ⋆ du catalogue SDSS MPA-JHU DR8. Le modèle généré est non biasé en ce qui concerne le redshift ou le type de galaxie, et peut estimer SFR et M ⋆ avec des erreurs statistiques de σ SFR = 0, 38 dex et de σ M ⋆ = 0, 16 dex respectivement. La couverture complète du ciel du satellite WISE permet la caractériserisation de l'activité de formation d'étoiles de toutes les galaxies à l'extérieur du masque galactique (avec 0, 01 < z < 0, 3). Le modèle de RF peut également être appliqué aux catalogues de galaxies avec redshifts photométriques, avec des erreurs statistiques de σ SFR = 0, 42 dex et σ M ⋆ = 0, 24 dex. J'ai appliqué cette méthode pour construire un catalogue à valeur ajoutée basé sur le catalogue avec redshifts photométriques : le WISExSCOS catalogue. Le catalogue à valeur ajoutée généré est notamment utilisé pour étudier les propriétés statistiques des galaxies autour des filaments cosmiques (présenté au Chap. 6), et dans une autre étude présentée au Chap. 4.8. Ce chapitre utilise du matériel du papier "Star formation rate and stellar masses from machine learning", V. Bonjean, N. Aghanim, P. Salomé, A. Beelen, M. Douspis, et E. Soubrié, 2019, A&A, 622, A137.
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Abstract

Star-formation activity is a key property to probe the structure formation and hence characterise the large-scale structures of the Universe. This information can be deduced from the star formation rate (SFR) and the stellar mass (M ⋆ ). Determining these quantities from UV, optical, or IR luminosities relies on complex modelling and on priors on galaxy types. In this chapter, I have developed a method based on the machine-learning algorithm Random Forest to estimate the SFR and the M ⋆ of galaxies in the redshift range 0.01 < z < 0.3, independent of their type. The machine-learning algorithm takes as inputs the redshifts, WISE luminosities, and WISE colours in near-IR, and is trained on SFR and M ⋆ from the SDSS MPA-JHU DR8 catalogue. The trained RF is unbiased with respect to redshift or galaxy type, and it can accurately estimate SFR and M ⋆ with scatters of σ SFR = 0.38 dex and σ M ⋆ = 0.16 dex for SFR and stellar mass, respectively. The full-sky coverage of the WISE satellite allows us to characterise the star-formation activity of all galaxies outside the Galactic mask with spectroscopic redshifts in the range 0.01 < z < 0.3. The RF model can also be applied to photometric-redshift catalogues, with best scatters of σ SFR = 0.42 dex and σ M ⋆ = 0.24 dex obtained in the redshift range 0.1 < z < 0.3. I have thus applied the machine learning algorithm to construct a value-added catalogue based on the WISExSCOS catalogue of photometric redshifts. The value-added catalogue is further used to study the statistical properties of galaxies around cosmic filaments (in Chap. 6), and in other studies discussed in Chap. 4.8. This chapter uses material from "Star formation rate and stellar masses from machine learning", V. 

Résumé

Dans ce chapitre, je décris l'analyse de données du large programme ESO (PI: N. Aghanim) obtenu pour confirmer par la spectroscopie des galaxies en optique (avec VLT/FORS2) la présence d'amas de galaxies détectés par leur contenu en gaz avec le satellite Planck. Due à des problèmes lors de la sélection des sources à observer en spectroscopie, cette analyse requiert finalement une analyse des images en photométrie (NTT/EFOSC2), qui ont du être re-traitées. L'analyse est toujours en cours à ce jour.
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Surveying